

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 588 306

61 Int. Cl.:

C07K 16/00 (2006.01) C07K 16/24 (2006.01) C07K 16/28 (2006.01) C07K 16/32 (2006.01) C07K 16/46 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 28.03.2012 PCT/US2012/030948

(87) Fecha y número de publicación internacional: 04.10.2012 WO12135345

(96) Fecha de presentación y número de la solicitud europea: 28.03.2012 E 12716818 (5)

(97) Fecha y número de publicación de la concesión europea: 18.05.2016 EP 2691416

(54) Título: Proteínas de unión similares a anticuerpos con regiones variables duales con una orientación de entrecruzamiento de la región de unión

(30) Prioridad:

28.03.2011 US 201161468276 P 14.11.2011 FR 1160311

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 02.11.2016 (73) Titular/es:

SANOFI (100.0%) 54, rue La Boétie 75008 Paris, FR

(72) Inventor/es:

BAURIN, NICOLAS; BEIL, CHRISTIAN; CORVEY, CARSTEN; LANGE, CHRISTIAN; LI, DANXI; MIKOL, VINCENT; STEINMETZ, ANKE Y RAO, ERCOLE

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Proteínas de unión similares a anticuerpos con regiones variables duales con una orientación de entrecruzamiento de la región de unión

CAMPO DE LA INVENCIÓN

45

50

La invención se refiere a proteínas de unión similares a anticuerpos que comprenden cuatro cadenas polipeptídicas que forman cuatro sitios de unión a antígeno, en el que cada uno de los pares de polipéptidos que forman la proteína de unión similar a anticuerpo posee dominios variables doble que tienen una orientación de entrecruzamiento. También se describen métodos para preparar tales proteínas de unión similares a antígeno.

ANTECEDENTES DE LA INVENCIÓN

Anticuerpos IgG que se producen de forma natural son bivalentes y monoespecíficos. Los anticuerpos biespecíficos 10 que tienen especificidades de unión para dos antígenos diferentes se pueden producir utilizando tecnologías recombinantes y se prevé que tengan amplias aplicaciones clínicas. Es bien sabido que las moléculas completas de anticuerpos IgG son moléculas en forma de Y que comprenden cuatro cadenas polipeptídicas: dos cadenas pesadas y dos cadenas ligeras. Cada una de las cadenas ligeras se compone de dos dominios, el dominio N-terminal, conocido como el dominio (o región) variable o V_L y el dominio C-terminal, conocido como el dominio constante (o 15 C_L) (dominio kappa constante (C_K) o lambda constante (Cλ)). Cada una de las cadenas pesadas consiste en cuatro o cinco dominios, dependiendo de la clase del anticuerpo. El dominio N-terminal es conocido como el dominio (o región) variable (o V_H), que es seguido por el primer dominio constante (o C_{H1}), la región de bisagra, y después el segundo y tercer dominios constantes (o C_{H2} y C_{H3}). En un anticuerpo ensamblado, los dominios V_L y V_H se asocien 20 para formar un sitio de unión al antígeno. También los dominios C_L y C_{H1} se asocian juntos para mantener una cadena pesada asociada con una cadena ligera. Los dos heterodímeros de cadena ligera-pesada se asocian entre sí mediante la interacción de los dominios CH2 y CH3 y la interacción entre las regiones de bisagra en las dos cadenas pesadas.

Se sabe que la digestión proteolítica de un anticuerpo puede conducir a la producción de fragmentos de anticuerpos (Fab y Fab2). Tales fragmentos del anticuerpo entero pueden exhibir actividad de unión a antígeno. Los fragmentos de anticuerpos también se pueden producir de forma recombinante. Se pueden obtener Fragmentos Fv, que consisten solamente en los dominios variables de las cadenas pesadas y ligeras asociadas entre sí. Estos fragmentos Fv son monovalentes para la unión de antígeno. Los fragmentos más pequeños tales como dominios individuales variables (anticuerpos de dominio o dABs Ward *et al.*, 1989, *Nature* 341 (6242): 544-46), regiones determinantes de la complementariedad o CDR individuales (Williams *et al.*, 1989, *Proc Natl. Acad Sci. U.S.A.* 86 (14): 5537-41) también han demostrado conservar las características de unión del anticuerpo parental, aunque la mayoría de los anticuerpos que se producen de forma natural generalmente necesitan tanto una V_H como una V_L para conservar una potencia unión completa.

Construcciones de fragmento de cadena sencilla (scFv) comprenden un dominio V_H y un dominio V_L de un anticuerpo contenido en una única cadena de polipéptido, en donde los dominios están separados por un enlazador flexible de una longitud suficiente (más de 12 residuos aminoácidos), que fuerza una interacción intramolecular, lo que permite un auto-ensamblaje de los dos dominios en un sitio de unión a epítopo funcional (Bird *et al.*, 1988, *Science* 242 (4877): 423-26). Estas pequeñas proteínas (PM ∼ 25.000 Da) generalmente conservan la especificidad y afinidad por su antígeno en un solo polipéptido y pueden proporcionar un bloque de construcción conveniente para moléculas más grandes, específicas de antígeno.

Una ventaja de utilizar fragmentos de anticuerpos en lugar de anticuerpos enteros en diagnóstico y terapia se encuentra en su tamaño más pequeño. Son probablemente menos inmunogénicos que los anticuerpos enteros y más capaces de penetrar en los tejidos. Una desventaja asociada con el uso de tales fragmentos es que tienen solamente un sitio de unión a antígeno, lo que conduce a una avidez reducida. Además, debido a su pequeño tamaño, que se borra muy rápido a partir del suero y, por lo tanto, muestran una semi-vida corta.

Ha sido de interés producir anticuerpos biespecíficos (BsAbs) que combinan los sitios de unión a antígeno de dos anticuerpos dentro de una sola molécula y que, por lo tanto, serían capaces de unirse a dos antígenos diferentes simultáneamente. Además de las aplicaciones con fines de diagnóstico, tales moléculas allanan el camino para nuevas aplicaciones terapéuticas, p. ej., mediante la reorientación de sistemas efectores potentes a las zonas enfermas (en donde las células cancerosas a menudo desarrollan mecanismos para suprimir respuestas inmunes normales desencadenadas por anticuerpos monoclonales tal como la citotoxicidad celular dependiente de anticuerpos (ADCC) o la citotoxicidad dependiente del complemento (CDC)), o mediante el aumento de las actividades neutralizantes o estimulantes de los anticuerpos. Este potencial fue reconocido desde el principio, dando

lugar a una serie de enfoques para la obtención de dichos anticuerpos biespecíficos. Intentos iniciales para acoplar las especificidades de unión de dos anticuerpos completos contra diferentes antígenos diana con fines terapéuticos utilizaban moléculas de heteroconjugados fusionadas químicamente (Staerz *et al.*, 1985, *Nature* 314 (6012): 628-31).

5 Los anticuerpos biespecíficos se hicieron originalmente mediante la fusión de dos hibridomas, cada uno capaz de producir una inmunoglobulina diferente (Milstein et al., 1983, Nature 305 (5934): 537-40), pero la complejidad de las especies (hasta diez especies diferentes) producidas en cultivo celular hicieron la purificación difícil y costosa. George et al., 1997, THE ANTIBODIES 4: 99-141 (Capra et al., comp., Harwood Academic Publishers)). Utilizando este formato, un anticuerpo IgG2a de ratón y un anticuerpo IgG2b de rata se produjeron juntos en la misma célula (p. ej., ya sea como una fusión cuadroma de dos hibridomas, o en células CHO modificadas por ingeniería). Debido 10 a que las cadenas ligeras de cada uno de los anticuerpos se asocian preferentemente con las cadenas pesadas de sus especies afines, se ensamblan tres especies principales de anticuerpo: los dos anticuerpos parentales, y un heterodímero de los dos anticuerpos comprenden un par de cadenas pesada/ligera de cada uno, asociándose a través sus porciones Fc. El heterodímero deseado puede purificarse a partir de esta mezcla debido a que sus propiedades de unión a la Proteína A son diferentes de las de los anticuerpos parentales: IgG2b de rata no se une a 15 la Proteína A, mientras que la IgG2a de ratón sí lo hace. En consecuencia, el heterodímero ratón-rata se une a Proteína A, pero eluye a un pH más alto que el homodímero de IgG2a de ratón, y esto hace posible la purificación selectiva del heterodímero biespecífico (Lindhofer et al., 1995, J. Immunol 155 (1): 219-25). El heterodímero biespecífico resultante es totalmente no humano, por lo tanto es altamente inmunogénico, lo que podría tener 20 efectos secundarios perjudiciales (p. ej., reacciones "HAMA" o "HARA") y/o neutralizan la terapéutica. Quedaba una necesidad de biespecíficos modificados por ingeniería con propiedades superiores que se puedan producir fácilmente en un alto rendimiento del cultivo de células de mamífero.

A pesar de los prometedores resultados obtenidos utilizando heteroconjugados o anticuerpos biespecíficos producidos a partir de la fusión de células como se cita anteriormente, varios factores les hacen poco prácticos para aplicaciones terapéuticas a gran escala. Tales factores incluyen: la rápida eliminación de los heteroconjugados *in vivo*, las técnicas intensivas de laboratorio requeridas para la generación de cualquier tipo de molécula, la necesidad de una purificación extensiva de heteroconjugados lejos de los homoconjugados o anticuerpos monoespecíficos, y los bajos rendimientos obtenidos en general.

25

55

La ingeniería genética ha sido utilizada con frecuencia cada vez mayor para diseñar, modificar y producir anticuerpos o derivados de anticuerpo con un conjunto deseado de propiedades de unión y funciones efectoras. Se ha desarrollado una diversidad de métodos recombinantes para la producción eficiente de BsAbs, tanto como fragmentos de anticuerpos (Carter et al., 1995, J. Hematother 4(5):463-70; Pluckthun et al., 1997, Immunotechnology 3(2): 83-105; Todorovska et al., 2001, J. Immunol Methods 248(1-2): 47-66) y los formatos de IgG de longitud completa (Carter, 2001, J. Immunol Methods 248(1-2): 7-15).

La combinación de dos scFv diferentes resulta en formatos de BsAb con masa molecular mínima, denominado sc-BsAbs o Ta-scFv (Mack et al., 1995, Proc Natl Acad. Sci. U.S.A. 92(15): 7021-25; Mallender et al., 1994, J. Biol. Chem. 269(1): 199-206). BsAbs se han construido fusionando genéticamente dos scFvs a una funcionalidad de dimerización tal como una cremallera de leucina (Kostelny et al., 1992, J. Immunol. 148 (5): 1547-53;. de Kruif et al., 1996, J. Biol. Chem. 271(13): 7630-34).

Los diacuerpos son pequeños fragmentos de anticuerpos bivalentes y biespecíficos. Los fragmentos comprenden un V_H conectado a un V_L en la misma cadena de polipéptido, mediante el uso de un enlazador que es demasiado corto (menos de 12 residuos aminoácidos) para permitir el emparejamiento entre los dos dominios en la misma cadena. Los dominios son forzados a emparejarse de manera intermolecular con los dominios complementarios de otra cadena y crear dos sitios de unión a antígeno. Estos fragmentos de anticuerpos diméricos, o "diacuerpos", son bivalentes y biespecíficos (Holliger *et al.*, 1993, *Proc. Natl. Acad. Sci. U.S.A.* 90 (14):.6444-48). Los diacuerpos son de un tamaño similar a un fragmento Fab. Cadenas de polipéptidos de dominios V_H y V_L se unieron con un enlazador de entre 3 y 12 residuos de aminoácidos forman predominantemente dímeros (diacuerpos), mientras que con un enlazador de entre 0 y 2 residuos aminoácido predominan trímeros (triacuerpos) y tetrámeros (tetracuerpos). Además de la longitud del enlazador, el patrón exacto de oligomerización parece depender de la composición, así como de la orientación de los dominios variables (Hudson *et al.*, 1999, *J. Immunol Methods* 231(1-2): 177-89). La predictibilidad de la estructura final de las moléculas de diacuerpo es muy pobre.

Aunque sc-BsAb y construcciones basadas en diacuerpos exhiben un interesante potencial clínico, se demostró que tales moléculas asociadas de forma no covalente no son suficientemente estables en condiciones fisiológicas. La estabilidad global de un fragmento scFv depende de la estabilidad intrínseca de los dominios V_L y V_H, así como de la estabilidad de la interfaz del dominio. Una estabilidad insuficiente de la interfaz V_L y V_H de fragmentos scFv a menudo ha sido sugerida como una causa principal de la inactivación irreversible de scFv, ya que la apertura transitoria de la interfaz, que fuese permitida por el enlazador peptídico, expone parches hidrofóbicos que favorecen

la agregación y, por lo tanto, inestabilidad y un pobre rendimiento de la producción. Wörn et al., 2001, J. Mol. Biol. 305(5): 989-1010).

Un método alternativo de fabricación de proteínas de unión a antígeno bivalentes biespecíficas a partir de dominios V_H y V_L se describe en la Patente de EE.UU. Nº 5.989.830. Configuraciones de doble cabeza y Fv dual de este tipo se obtienen mediante la expresión de un vector bicistrónico, que codifica dos cadenas polipeptídicas. En la configuración de Fv Dual, los dominios variables de dos anticuerpos diferentes se expresan en una orientación en tándem en dos cadenas separadas (una cadena pesada y una cadena ligera), en donde una cadena polipeptídica tiene dos veces un V_H en serie separados por un enlazador peptídico (V_{H1} -enlazador- V_{H2}) y la otra cadena polipeptídica consiste en dominios V_L complementarios conectados en serie por un enlazador peptídico (V_{L1} -enlazador- V_{L2}). En la configuración de doble cabeza de entrecruzamiento, los dominios variables de dos anticuerpos diferentes se expresan en una orientación en tándem en dos cadenas polipeptídicas separadas (una cadena pesada y una cadena ligera), en donde una cadena polipeptídica tiene dos veces un V_H en serie separado por un enlazador peptídico (V_{H1} -enlazador- V_{H2}) y la otra cadena polipeptídica consiste en dominios V_L complementarios conectados en serie por un enlazador peptídico en la orientación opuesta (V_{L2} -enlazador- V_{L1}). El modelado molecular de las construcciones sugirió que el tamaño del enlazador fuese lo suficientemente grande para abarcar 30-40 Å (15-20 residuos aminoácidos).

10

15

20

25

30

35

40

45

50

55

El aumento de la valencia de un anticuerpo es de interés, ya que mejora la afinidad funcional de ese anticuerpo debido al efecto de avidez. Complejos de proteínas polivalentes (PPC) con una valencia incrementada se describen en la Publicación de la Solicitud de Patente de EE.UU. Nº 2005/0003403 A1. Los PPCs comprenden dos cadenas de polipéptidos, en general dispuestas lateralmente entre sí. Cada una de las cadenas de polipéptidos comprende típicamente tres o cuatro "regiones v", que comprenden secuencias de aminoácidos capaces de formar un sitio de unión al antígeno cuando se combina con una región v correspondiente en la cadena polipeptídica opuesta. Se pueden utilizar hasta aproximadamente seis "regiones v" en cada una de las cadenas polipeptídicas. Las regiones v de cada una de las cadenas polipeptídicas están conectadas linealmente entre sí y pueden estar conectados por regiones de enlace intercaladas. Cuando se disponen en forma del PPC, las regiones v de cada una de las cadenas polipeptídicas forman sitios individuales de unión al antígeno. El complejo puede contener una o varias especificidades de unión.

Una estrategia fue propuesto por Carter *et al.* (Ridgway *et al.*, 1996, *Protein Eng.* 9(7): 617-21; Carter, 2011, *J. Immunol. Methods* 248 (1-2): 7-15) para producir un heterodímero Fc utilizando un conjunto de mutaciones de "botón-en-ojal" en el dominio C_{H3} de Fc. Estas mutaciones conducen a la alteración de la complementariedad del empaquetamiento de residuos entre la interfaz del dominio C_{H3} dentro del núcleo hidrofóbico conservado estructuralmente, de modo que se favorece la formación del heterodímero en comparación con homodímeros, lo cual logra una buena expresión del heterodímero a partir del cultivo de células de mamífero. Aunque la estrategia condujo a un mayor rendimiento de heterodímeros, los homodímeros no fueron suprimidos por completo (Merchant *et al.*, 1998, *Nat. Biotechnol.* 16(7): 677-81.

Gunasekaran *et al.* exploró la viabilidad de conservar la integridad del núcleo hidrofóbico mientras se impulsa la formación de heterodímero Fc cambiando la complementariedad de carga en la interfaz de dominio C_{H3} (Gunasekaran *et al.*, 2010, *J. Biol. Chem.* 285(25): 19637-46). Aprovechando el mecanismo de dirección electrostática, estas construcciones mostraron una promoción eficiente de la formación de heterodímeros Fc con una mínima contaminación de homodímeros a través de la mutación de dos pares de residuos cargados situados periféricamente. En contraste con el diseño de botón-en-ojal, los homodímeros fueron suprimidos de manera uniforme debido a la naturaleza del mecanismo de repulsión electrostática, pero no se evitaron totalmente.

Davis et~al, describen un enfoque de ingeniería de anticuerpos para convertir homodímeros Fc en heterodímeros por interdigitación de segmentos de la cadena β de dominios C_{H3} de IgG e IgA humanos, sin la introducción de enlaces disulfuro entre cadenas extra (Davis et~al., 2010, Protein~Eng.~Des.~Sel.~23 (4):195-202). La expresión de proteínas de fusión SEEDbody (Sb) por células de mamífero proporciona heterodímeros Sb con un alto rendimiento que se purifican fácilmente para eliminar subproductos secundarios.

La Publicación de Solicitud de Patente de EE.UU. Nº US 2010/331527 A1 describe un anticuerpo biespecífico basado en la heterodimerización del dominio C_{H3}, la introducción en una cadena pesada de las mutaciones H95R e Y96F dentro del dominio C_{H3}. Estas sustituciones de aminoácidos se originan en el dominio C_{H3} del subtipo IgG3 y se heterodimerizará con una cadena principal de IgG1. Una cadena ligera común propensa a emparejarse con cada una de las cadenas pesadas es un requisito previo para todos los formatos basados en la heterodimerización a través del dominio C_{H3}. Por lo tanto, se produce un total de tres tipos de anticuerpos: 50% tiene una cadena principal de IgG1 pura, un tercio tiene una cadena principal H95R e Y96F mutada pura, y un tercio tiene dos cadenas pesadas diferentes (biespecíficas). El heterodímero deseado puede purificarse a partir de esta mezcla, debido a que sus propiedades de unión a Proteína A son diferentes de las de los anticuerpos parentales: los dominios C_{H3} derivados de IgG3 no se unen a Proteína A, mientras que la IgG1 sí lo hace. En consecuencia, el heterodímero se

une a Proteína A, pero se eluye a un pH más alto que el homodímero de IgG1 pura, y esto hace posible la purificación selectiva del heterodímero biespecífico.

La Patente de EE.UU. Nº 7.612.181 describe un anticuerpo biespecífico IgG Dual-Dominio Variable (DVD-IgG) que se basa en el formato de Fv Dual descrito en la Patente de EE.UU. Nº 5.989.830. Un formato biespecífico similar se describió también en la Publicación de la Solicitud de Patente de EE.UU. Nº 2010/0226923 A1. La adición de dominios constantes a respectivas cadenas de la Fv Dual (C_{H1}-Fc a la cadena pesada y el dominio constante kappa o lambda de la cadena ligera) dio lugar a anticuerpos biespecíficos funcionales sin necesidad de modificaciones adicionales (es decir, la adición obvia de dominios constantes para mejorar la estabilidad). Algunos de los anticuerpos expresados en el formato DVD-Ig/TBTI muestran un efecto de posición en la segunda posición (o más interna) de unión al antígeno (Fv2). Dependiendo de la secuencia y la naturaleza del antígeno reconocido por la posición Fv2, este dominio de anticuerpo muestra una afinidad reducida a su antígeno (es decir, la pérdida de tasa de enlace en comparación con el anticuerpo parental). Una posible explicación para esta observación es que el enlazador entre V_{L1} y V_{L2} sobresale en la región CDR de Fv2, haciendo que Fv2 sea algo inaccesible para los antígenos más grandes.

La segunda configuración de un fragmento de anticuerpo biespecífico descrita en la Patente de EE.UU. Nº. 5.989.830 es la doble cabeza de entrecruzamiento (CODH), que tiene la siguiente orientación de los dominios variables expresadas en dos cadenas:

 V_{L1} -enlazador- V_{L2} , para la cadena ligera, y V_{H2} -enlazador- V_{H1} , para la cadena pesada

La patente '830 describe que un fragmento de anticuerpo biespecífico de doble cabeza de entrecruzamiento (construcción GOSA.E) conserva una actividad de unión mayor que un Fv Dual (véase la página 20, líneas 20-50 de la patente '830) y describe, además, que este formato se ve menos impactado por los enlazadores que se utilizan entre los dominios variables (véanse las páginas 20-21 de la patente '830). Los documentos EP 2 050 764 y WO 2010/014659 describen formatos de anticuerpos biespecíficos.

25 SUMARIO DE LA INVENCIÓN

10

El alcance de la presente invención se define en las reivindicaciones adjuntas.

En una realización de la invención, una proteína de unión similar a anticuerpo comprende cuatro cadenas polipeptídicas que forman cuatro sitios de unión a antígeno, en donde dos cadenas polipeptídicas tienen una estructura representada por la fórmula:

$$V_{L1}-L_1-V_{L2}-L_2-C_L$$
 [I]

y dos cadenas polipéptídicas tienen una estructura representada por la fórmula:

$$V_{H2}-L_3-V_{H1}-L_4-C_{H1}-Fc$$
 [II]

en donde:

35

V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina;

V_{L2} es un segundo dominio variable de cadena ligera de inmunoglobulina;

V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina;

V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

C_L es un dominio constante de la cadena ligera de inmunoglobulina;

C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina;

Fc es la región de bisagra de inmunoglobulina y C_{H2}, C_{H3} son los dominios constantes de la cadena pesada de inmunoglobulina;

L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos tal como se definen en las reivindicaciones adjuntas;

y en donde los polipéptidos de fórmula I y los polipéptidos de fórmula II forman un par de cadena ligera-cadena pesada de entrecruzamiento.

La invención también proporciona una proteína de unión similar a anticuerpo que comprende dos cadenas polipeptídicas que forman dos sitios de unión a antígeno, en donde una primera cadena polipeptídica tiene una estructura representada por la fórmula:

$$V_{L1}-L_1-V_{L2}-L_2-C_L$$
 [I]

y una segunda cadena polipéptídica tiene una estructura representada por la fórmula:

$$V_{H2}-L_3-V_{H1}-L_4-C_{H1}$$
 [II]

en donde:

5

15

20

30

35

10 V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina;

V_{L2} es un segundo dominio variable de cadena ligera de inmunoglobulina;

V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina;

V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

C_L es un dominio constante de la cadena ligera de inmunoglobulina;

C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina;

L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos tal como se definen en las reivindicaciones adjuntas;

y en donde los primero y segundo polipéptidos forman un par de cadena ligera-cadena pesada de entrecruzamiento.

También se describe un método de producir una proteína de unión similar a anticuerpo, que comprende cuatro cadenas polipeptídicas que forman cuatro sitios de unión a antígeno, que comprende identificar un primer dominio variable del anticuerpo que se une a un primer antígeno diana y un segundo dominio variable de anticuerpo que une a un segundo antígeno diana, conteniendo cada uno un V_L y un V_H ; asignar la cadena ligera o la cadena pesada en forma de una cadena de molde; asignar el V_L del primer dominio variable del anticuerpo o el segundo dominio variable del anticuerpo como V_{L1} ; asignar un V_{L2} , un V_{H1} y un V_{H2} de acuerdo con las fórmulas [I] y [II] que figuran a continuación:

$$V_{L1}-L_1-V_{L2}-L_2-C_L$$
 [I]

$$V_{H2}-L_3-V_{H1}-L_4-C_{H1}-Fc$$
 [II]

determinar longitudes máxima y mínima para L₁, L₂, L₃ y L₄; generar las estructuras de polipéptidos de fórmulas I y II; seleccionar estructuras de polipéptidos de fórmulas I y II que se unen al primer antígeno diana y al segundo antígeno diana cuando se combinan para formar la proteína de unión similar a anticuerpo; en donde:

V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina;

V_{L2} es un segundo dominio variable de cadena ligera de inmunoglobulina;

V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina;

V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

C_L es un dominio constante de la cadena ligera de inmunoglobulina;

C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina;

Fc es la región de bisagra de inmunoglobulina y C_{H2}, C_{H3} son los dominios constantes de la cadena pesada de inmunoglobulina; y

L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos;

y en donde los polipéptidos de fórmula I y los polipéptidos de fórmula II forman un par de cadena ligera-cadena pesada de entrecruzamiento.

También se describe un método de producir una proteína de unión similar a anticuerpo, que comprende cuatro cadenas polipeptídicas que forman cuatro sitios de unión a antígeno, que comprende identificar un primer dominio variable del anticuerpo que se une a un primer antígeno diana y un segundo dominio variable de anticuerpo que une a un segundo antígeno diana, conteniendo cada uno un V_L y un V_H; asignar la cadena ligera o la cadena pesada en forma de una cadena de molde; asignar el V_L del primer dominio variable del anticuerpo o el segundo dominio variable del anticuerpo como V_{L1}; asignar un V_{L2}, un V_{H1} y un V_{H2} de acuerdo con las fórmulas [I] y [II] que figuran a continuación:

 $V_{L1}-L_1-V_{L2}-L_2-C_L$ [I]

V_{H2}-L₃-V_{H1}-L₄-C_{H1} [II]

determinar longitudes máxima y mínima para L₁, L₂, L₃ y L₄; generar las estructuras de polipéptidos de fórmulas I y II; seleccionar estructuras de polipéptidos de fórmulas I y II que se unen al primer antígeno diana y al segundo antígeno diana cuando se combinan para formar la proteína de unión similar a anticuerpo; en donde:

V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina;

V_{L2} es un segundo dominio variable de cadena ligera de inmunoglobulina;

V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina;

V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

C_L es un dominio constante de la cadena ligera de inmunoglobulina;

C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina; y

L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos;

y en donde los polipéptidos de fórmula I y los polipéptidos de fórmula II forman un par de cadena ligera-cadena pesada de entrecruzamiento.

Realizaciones específicas de la invención resultarán evidentes a partir de la siguiente descripción más detallada de ciertas realizaciones y las reivindicaciones.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

15

20

- **Figura 1.** Representación esquemática de los dominios Fv1 y Fv2 de unión a antígeno dentro de la configuración de la región V dual y disposición de sus respectivos enlazadores peptídicos L_L y L_H en el formato TBTI.
 - **Figura 2.** Diagrama esquemático (2D) de los dominios de unión a antígeno Fv1 (anti-IL4) y Fv2 (anti-IL13) dentro de la configuración dual variable de entrecruzamiento (CODV) y la disposición de sus respectivos enlazadores peptídicos.
- **Figura 3.** Representación esquemática de Fv de anti-IL4 y Fab de anti-IL13 que muestra una posible disposición espacial obtenida por acoplamiento proteína-proteína de Fv de anti-IL4 y el Fv de anti-IL13.
 - **Figura 4.** Evaluación de la capacidad de unión tetravalente y biespecífica de la proteína CODV en un ensayo de BIACORE mediante la inyección de los dos antígenos de forma secuencial o simultánea a través de un chip revestido con proteína DVD-Ig. La señal máxima observada por inyección secuencial se puede obtener por coinyección de ambos antígenos, lo que demuestra la saturación de todos los sitios de unión.
- 40 **Figura 5.** Diagrama esquemático (2D) de los dominios de unión a antígeno dentro de la configuración CODV y la disposición de sus respectivos enlazadores peptídicos L_L (L₁ y L₂) y L_H (L₃ y L₄). En el panel A, la cadena ligera se

mantiene en una alineación "lineal o de molde", mientras que la cadena pesada está en la configuración de "entrecruzamiento". En el panel B, la cadena pesada se mantiene en una alineación "lineal o de molde" y la cadena ligera está en la configuración de "entrecruzamiento".

Figura 6. Representación esquemática del diseño CODV-Ig en función de si la cadena ligera o la cadena pesada se utiliza como "molde".

Figura 7. Comparación de moléculas TBTI/DVD-Ig o CODV-Ig que incorporan secuencias de anti-IL13 y anti-IL4.

Figura 8. Comparación de formatos CODV-Fab y B-Fab en un ensayo citotóxico utilizando células NALM-6.

DESCRIPCION DETALLADA DE LA INVENCION

5

15

20

25

30

35

40

45

50

La invención proporciona proteínas de unión similares a anticuerpos tal como se define en las reivindicaciones adjuntas, que comprenden cuatro cadenas polipeptídicas que forman cuatro sitios de unión a antígeno, en donde cada par de polipéptidos que forman una proteína de unión similar a anticuerpo posee dominios variables duales que tienen una orientación de entrecruzamiento. También se describen métodos para preparar tales proteínas de unión similares a antígeno.

El modelado por ordenador predijo que el diseño de entrecruzamiento de doble cabeza (CODH) de la Patente de EE.UU. Nº 5.989.830 produciría un complejo en el que los dos sitios de unión miran en la dirección opuesta, sin las restricciones sugeridas para la configuración Dual-Fv de la Patente de EE.UU. Nº 7.612.181. En particular, el modelado por ordenador indicó que la longitud de los enlazadores de aminoácidos entre los dominios variables no era crítica para el diseño CODH, pero era importante para permitir el acceso completo a los dos sitios de unión a antígeno en el diseño de Dual Fv. Al igual que con el formato DVD-Ig/TBTI, se prepararon construcciones de proteínas de unión similares a anticuerpos en las que dominios constantes se fijaron a la configuración CODH para formar proteínas de unión similares a anticuerpos que comprenden cuatro cadenas de polipéptidos que forman cuatro sitios de unión a antígeno, en donde cada uno de los pares de polipéptidos que forman una proteína de unión similar a anticuerpo posee dominios duales variables que tienen una orientación de entrecruzamiento (es decir, CODH-Ig). Se espera que las moléculas de CODH-Ig posean una estabilidad significativamente mejorada en comparación con las moléculas de CODH (dado que DVD-Ig/TBTI poseía una estabilidad mejorada frente a moléculas Dual Fv).

Con el fin de probar la hipótesis anterior, se preparó una molécula de CODH-lg utilizando las secuencias de anticuerpos el anti-IL4 y anti-IL13 descritas en la Publicación de la Solicitud de Patente de EE.UU. Nº 2010/0226923 A1. La molécula de CODH-Ig difería de la molécula de CODH del documento US 2010/0226923 con respecto a las longitudes de enlazadores de aminoácidos que separan los dominios variables en las respectivas cadenas de polipéptidos. Las moléculas de CODH-Ig se expresaron en células después de la transfección transitoria y se purificaron por cromatografía de Proteína A. Aunque sus perfiles de cromatografía de exclusión por tamaño (SEC) mostraron niveles de agregación de 5-10%, ninguna de las moléculas de CODH-Ig era funcional, y por lo tanto ninguna de las moléculas de CODH-Ig era capaz de unirse a todos sus antígenos diana. La falta de actividad de unión al antígeno puede haber sido debida a una dimerización perturbado de las regiones Fv de las cadenas pesadas y ligeras debido a las inadecuadas longitudes del enlazador comprometiendo la formación correcta del paratopo. Como resultado, se desarrolló un protocolo para identificar enlazadores de aminoácidos adecuados para la inserción entre los dos dominios variables y el segundo dominio variable y el dominio constante tanto en las cadenas polipeptídicas pesada y ligera de una proteína de unión similar a anticuerpo. Este protocolo se basó en el acoplamiento proteína-proteína de homología y modelos experimentales de las regiones FvIL4 y FvIL13, respectivamente, la inclusión del dominio Fc1 el modelo y la construcción de enlazadores apropiados entre las regiones FvIL4 y FvIL13 y entre las regiones de Fv y Fc1 constantes.

Metodologías de ADN recombinante estándares se utilizan para construir los polinucleótidos que codifican los polipéptidos que forman las proteínas de unión similares a anticuerpos de la invención, incorporan estos polinucleótidos en vectores de expresión recombinantes e introducen dichos vectores en células huésped. *Véase,* p. ej., Sambrook *et al.*, 2001 MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor Laboratory Press, 3ª ed.). Reacciones enzimáticas y técnicas de purificación se pueden realizar de acuerdo con las especificaciones del fabricante, tal como comúnmente se logra en la técnica, o tal como se describe en esta memoria. A menos que se proporcionan definiciones específicas, la nomenclatura utilizada en relación con, y los procedimientos y técnicas de laboratorio de química analítica, química orgánica sintética y química médica y farmacéutica descritas en esta memoria son aquellos bien conocidos y comúnmente utilizados en la técnica. De manera similar, se pueden utilizar técnicas convencionales para síntesis químicas, análisis químicos, preparación farmacéutica, formulación, suministro y tratamiento de los pacientes.

1. <u>Definiciones Generales</u>

Tal como se utiliza de acuerdo con la presente descripción, se entenderá que los siguientes términos y expresiones, a menos que se indique otra cosa, tienen los siguientes significados. A menos que sea requerido por el contexto, los términos en singular incluirán plurales y los términos en plural incluirán el singular.

El término "polinucleótido", tal como se utiliza en esta memoria, se refiere a polímeros de ácidos nucleicos de cadena sencilla o de doble cadena de al menos 10 nucleótidos de longitud. En ciertas realizaciones, los nucleótidos que comprenden el polinucleótido pueden ser ribonucleótidos o desoxirribonucleótidos o una forma modificada de cualquier tipo de nucleótido. Tales modificaciones incluyen modificaciones de bases tales como bromuridina, modificaciones de ribosa tales como arabinósido y 2',3'-didesoxirribosa, y modificaciones de enlaces internucleótidos tales como fosforotioato, fosforoditioato, fosforoselenoato, fosforodiselenoato, fosforoanilotioato, fosforaniladato y fosforoamidato. El término "polinucleótido" incluye específicamente formas de cadena sencilla y de doble cadena de ADN

5

10

15

20

25

30

35

40

45

50

55

Un "polinucleótido aislado" es un polinucleótido de origen genómico, ADNc o sintético o alguna combinación de los mismos que, en virtud de su origen, el polinucleótido aislado: (1) no está asociado con todo o una parte de un polinucleótido en el que el polinucleótido aislado se encuentra en la naturaleza, (2) está unido a un polinucleótido al que no está unido en la naturaleza, o (3) no se produce en la naturaleza como parte de una secuencia mayor.

Un "polipéptido aislado" es uno que: (1) está libre de al menos algunos otros polipéptidos con los que normalmente se encuentra, (2) está esencialmente libre de otros polipéptidos de la misma fuente, p. ej., de la misma especie, (3) se expresa por una célula de una especie diferente, (4) se ha separado de al menos aproximadamente 50 por ciento de polinucleótidos, lípidos, hidratos de carbono u otros materiales con los que está asociado en la naturaleza, (5) no está asociado (por interacción covalente o no covalente) con porciones de un polipéptido con el que el "polipéptido aislado" se asocia en la naturaleza, (6) está asociado operativamente (por interacción covalente o no covalente) con un polipéptido con el que no está asociado en la naturaleza, o (7) no se produce en la naturaleza. Un polipéptido aislado de este tipo puede ser codificado por ADN genómico, ADNc, ARNm u otro ARN, de origen sintético, o cualquier combinación de los mismos. Preferiblemente, el polipéptido aislado está sustancialmente libre de polipéptidos u otros contaminantes que se encuentran en su entorno natural que interferirían con su uso (terapéutico, de diagnóstico, profiláctico, de investigación o de otro tipo).

La expresión "anticuerpo humano", tal como se utiliza en esta memoria, incluye anticuerpos que tienen regiones variables y constantes que corresponden esencialmente a secuencias de inmunoglobulina de la línea germinal humana. En algunas realizaciones, los anticuerpos humanos se producen en mamíferos no humanos, incluyendo, pero no limitados a, roedores tales como ratones y ratas, y lagomorfos tales como conejos. En otras realizaciones, los anticuerpos humanos se producen en células de hibridoma. Aún en otras realizaciones, los anticuerpos humanos se producen de forma recombinante.

Anticuerpos que se producen de forma natural comprenden típicamente un tetrámero. Cada uno de tales tetrámeros se compone típicamente de dos pares idénticos de cadenas polipeptídicas, teniendo cada uno de los pares una cadena "ligera" de longitud completa (que tiene típicamente un peso molecular de aproximadamente 25 kDa) y una cadena "pesada" de longitud completa (que tiene típicamente un peso molecular de aproximadamente 50-70 kDa). Las expresiones "cadena pesada" y "cadena ligera", tal como se utilizan en esta memoria, se refieren a cualquier polipéptido de inmunoglobulina que tenga suficiente secuencia de dominio variable para conferir especificidad para un antígeno diana. La porción amino-terminal de cada una de las cadenas ligera y pesada incluye típicamente un dominio variable de aproximadamente 100 a 110 o más aminoácidos que típicamente es responsable del reconocimiento del antígeno. La porción carboxi-terminal de cada una de las cadenas define típicamente un dominio constante responsable de la función efectora. Así, en un anticuerpo que se produce de forma natural, un polipéptido de inmunoglobulina de cadena pesada de longitud completa incluye un dominio variable (V_H) y tres dominios constantes (C_{H1}, C_{H2} y C_{H3}), en el que el dominio V_H está en el extremo amino del polipéptido y el dominio C_{H3} está en el extremo carboxilo, y un polipéptido de inmunoglobulina de cadena ligera de longitud completa incluye un dominio variable (V_L) y un dominio constante (C_L), en donde el dominio V_L está en el extremo amino del polipéptido y el dominio C_L está en el extremo carboxilo.

Las cadenas ligeras humanas se clasifican típicamente como cadenas ligeras kappa y lambda, y las cadenas pesadas humanas se clasifican típicamente como mu, delta, gamma, alfa o épsilon, y definen el isotipo del anticuerpo tal como IgM, IgD, IgG, IgA e IgE, respectivamente. IgG tiene varias subclases, incluyendo, pero no limitadas a IgG1, IgG2, IgG3 e IgG4. IgM tiene subclases, incluyendo, pero no limitadas a IgM1 e IgM2. IgA se subdivide de manera similar en subclases, incluyendo, pero no limitadas a IgA1 e IgA2. Dentro de las cadenas ligeras y pesadas de longitud completa, los dominios variables y constantes están típicamente unidos por una región "J" de aproximadamente 12 o más aminoácidos, incluyendo la cadena pesada también una región "D" de aproximadamente 10 aminoácidos más. Véase, p. ej., FUNDAMENTAL IMMUNOLOGY (Paul, W., comp., Raven Press, 2ª ed., 1989). Las regiones variables de cada par de cadena ligera/pesada forman típicamente un sitio de unión a antígeno. Los dominios variables de anticuerpos que se producen de forma natural exhiben típicamente la misma estructura general de regiones marco relativamente conservadas (FR) unidas por tres regiones

hipervariables, también denominadas regiones determinantes de complementariedad o CDRs. Las CDRs de las dos cadenas de cada uno de los pares están alineadas normalmente por las regiones marco, que pueden permitir la unión a un epítopo específico. Desde el extremo amino al extremo carboxilo, ambos dominios variables de cadena ligera y pesada normalmente comprenden los dominios FR1, CDR1, FR2, CDR2, FR3, CDR3 y FR4.

La expresión "Fc nativa", tal como se utiliza en esta memoria, se refiere a una molécula que comprende la secuencia de un fragmento de no unión al antígeno que resulta de la digestión de un anticuerpo o producido por otros medios, ya sea en forma monomérica o multimérica, y puede contener la región de bisagra. La fuente de inmunoglobulina original del Fc nativo es preferiblemente de origen humano y puede ser cualquiera de las inmunoglobulinas, aunque se prefieren IgG1 e IgG2. Moléculas de Fc nativo se componen de polipéptidos monoméricos que pueden estar enlazados en formas diméricas o multiméricas mediante enlaces covalentes (es decir, enlaces disulfuro) y asociación no covalente. El número de enlaces disulfuro intermoleculares entre subunidades monoméricas de moléculas de Fc nativo oscila entre 1 y 4 dependiendo de la clase (p. ej., IgG, IgA e IgE) o subclase (p. ej., IgG1, IgG2, IgG3, IgA1 e IgGA2). Un ejemplo de un Fc nativo es un dímero unido por disulfuro resultante de la digestión con papaína de una IgG. La expresión "Fc nativo", tal como se utiliza en esta memoria, es genérica para las formas monoméricas, diméricas y multiméricas.

La expresión "variante de Fc", tal como se utiliza en esta memoria, se refiere a una molécula o secuencia que se modifica a partir de un Fc nativo, pero que comprende todavía un sitio de unión para el receptor de salvamento, FcRn (receptor Fc neonatal). Variantes Fc a modo de ejemplo, y su interacción con el receptor de salvamento, son conocidas en la técnica. Así, la expresión "variante de Fc" puede comprender una molécula o secuencia que se humaniza a partir de un Fc nativo no humano. Además de ello, un Fc nativo comprende regiones que pueden separarse porque proporcionan características estructurales o actividad biológica que no son necesarias para las proteínas de unión similares a anticuerpos de la invención. Así, la expresión "variante de Fc" comprende una molécula o secuencia que carece de uno o más sitios o residuos Fc nativos, o en el que uno o más sitios o residuos Fc ha de ser modificado, que afectan o están implicados en: (1) la formación de un enlace disulfuro, (2) la incompatibilidad con una célula huésped seleccionada, (3) la heterogeneidad N-terminal tras de la expresión en una célula huésped seleccionada, (4) glicosilación, (5) interacción con el complemento, (6) la unión a un receptor Fc distinto de un receptor de salvamento o (7) citotoxicidad celular dependiente de anticuerpos (ADCC).

La expresión "dominio Fc", tal como se utiliza en esta memoria, abarca Fc nativos y variantes de Fc y secuencias tal como se define anteriormente. Al igual que con las variantes de Fc y moléculas de Fc nativas, la expresión "dominio de Fc" incluye moléculas en forma monomérica o multimérica, ya sean digeridas a partir del anticuerpo entero o producidos por otros medios.

La expresión "proteína de unión similar a anticuerpo", tal como se utiliza en esta memoria, se refiere a una molécula que no se produce de forma natural (o recombinante) que se une específicamente a al menos un antígeno diana, y que comprende cuatro cadenas polipeptídicas que forman cuatro sitios de unión de antígeno, en donde dos cadenas polipeptídicas tienen una estructura representada por la fórmula:

$$V_{L1}-L_1-V_{L2}-L_2-C_L$$
 [I]

y dos cadenas polipéptídicas tienen una estructura representada por la fórmula:

$$V_{H2}-L_3-V_{H1}-L_4-C_{H1}-Fc$$
 [II]

en donde:

20

25

30

35

40 V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina;

V_{L2} es un segundo dominio variable de cadena ligera de inmunoglobulina;

V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina;

V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

C_L es un dominio constante de la cadena ligera de inmunoglobulina;

45 C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina;

Fc es la región de bisagra de inmunoglobulina y C_{H2} , C_{H3} son los dominios constantes de la cadena pesada de inmunoglobulina;

L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos;

y en donde los polipéptidos de fórmula I y los polipéptidos de fórmula II forman un par de cadena ligera-cadena pesada de entrecruzamiento. La expresión "proteína de unión similar a anticuerpo", tal como se utiliza en esta memoria, se refiere también a una molécula que se produce de forma no natural (o recombinante) que se une específicamente a al menos un antígeno diana y que comprende dos cadenas polipeptídicas que forman dos sitios de unión a antígeno, en donde una primera cadena polipeptídica tiene una estructura representada por la fórmula:

$$V_{L1}$$
- L_1 - V_{L2} - L_2 - C_L [1]

y una segunda cadena polipéptídica tiene una estructura representada por la fórmula:

$$V_{H2}$$
- L_3 - V_{H1} - L_4 - C_{H1} [II]

10 en donde:

5

20

25

30

35

40

45

V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina;

V_{L2} es un segundo dominio variable de cadena ligera de inmunoglobulina;

V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina;

V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

15 C_L es un dominio constante de la cadena ligera de inmunoglobulina;

C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina;

L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos;

y en donde los primero y segundo polipéptidos forman un par de cadena ligera-cadena pesada de entrecruzamiento. Una molécula "recombinante" es una que ha sido preparada, expresada, creada o aislada por medios recombinantes.

Una realización de la invención proporciona proteínas de unión similares a anticuerpos tal como se define en las reivindicaciones adjuntas que tienen especificidad biológica e inmunológica para entre uno y cuatro antígenos diana. Otra realización de la invención proporciona moléculas de ácido nucleico que comprenden secuencias de nucleótidos que codifican cadenas polipeptídicas que forman estas proteínas de unión similares a anticuerpos. Otra realización de la invención proporciona vectores de expresión que comprenden moléculas de ácido nucleico, que comprenden secuencias de nucleótidos que codifican cadenas polipeptídicas que forman tales proteínas de unión similares a anticuerpos. Aún otra realización de la invención proporciona células huésped que expresan tales proteínas de unión similares a anticuerpos (es decir, que comprenden moléculas o vectores de ácidos nucleicos que codifican cadenas de polipéptidos que forman tales proteínas de unión similares a anticuerpos).

La expresión "capacidad de permuta", tal como se utiliza en esta memoria, se refiere a la capacidad de intercambio de dominios variables dentro del formato CODV y con retención de plegado y afinidad de unión final. "Capacidad de permuta completa" se refiere a la capacidad de permutar el orden de los dos dominios V_{H1} y V_{H2} y, por lo tanto, el orden de los dominios V_{L1} y V_{L2} , en un CODV-Ig (es decir, para invertir el orden) o CODV-Fab,. al tiempo que se mantiene la plena funcionalidad de la proteína de unión similar a anticuerpo, como se evidencia por la retención de la afinidad de unión. Además, hay que señalar que las designaciones V_H y V_L dentro de un CODV-Ig o CODV-Fab particular se refieren sólo a la ubicación del dominio de una cadena de proteína particular en el formato final. Por ejemplo, V_{H1} y V_{H2} podrían derivarse de los dominios V_{L1} y V_{L2} en los anticuerpos parentales y se colocan en las posiciones V_{H1} y V_{H2} en la proteína de unión similar a anticuerpo. Del mismo modo, V_{L1} y V_{L2} se podrían derivar de los dominios V_{H1} y V_{H2} en los anticuerpos parentales y se colocan en las posiciones V_{H1} y V_{H2} en la proteína de unión similar a anticuerpo. Por lo tanto, las designaciones V_H y V_L se refieren a la ubicación actual y no a la ubicación original en un anticuerpo parental. Los dominios V_H y V_L son, por lo tanto, "permutables".

Una proteína de unión similar a anticuerpo "aislada" es una que ha sido identificada y separada y/o recuperada de un componente de su entorno natural. Los componentes contaminantes de su entorno natural son materiales que interferirían con los usos diagnósticos o terapéuticos para la proteína de unión similar a anticuerpo, y pueden incluir enzimas, hormonas y otros solutos proteicos o no proteicos. En realizaciones preferidas, la proteína de unión similar a anticuerpo se purificará: (1) hasta más del 95% en peso de anticuerpo según se determina por el método de Lowry, y más preferiblemente más de 99% en peso, (2) hasta un grado suficiente para obtener al menos 15 residuos

de secuencia de aminoácidos N-terminal o interna mediante el uso de un secuenciador de copa giratoria, o (3) hasta homogeneidad mediante SDS-PAGE en condiciones reductoras o no reductoras utilizando azul de Coomassie o, preferiblemente, tinción de plata. Proteínas de unión similares a anticuerpos aisladas incluyen la proteína de unión similar a anticuerpo *in situ* dentro de células recombinantes, ya que al menos un componente del entorno natural de la proteína de unión similar a anticuerpo no estará presente.

5

10

25

30

50

Las expresiones "sustancialmente puro" o "sustancialmente purificado", tal como se utiliza en esta memoria, se refieren a un compuesto o especie que es la especie predominante presente (es decir, sobre una base molar es más abundante que cualquier otra especie individual en la composición). En algunas realizaciones, una fracción sustancialmente purificada es una composición en la que la especie comprende al menos aproximadamente 50% (sobre una base molar) de todas las especies macromoleculares presentes. En otras realizaciones, una composición sustancialmente pura comprenderá más de aproximadamente 80%, 85%, 90%, 95% o 99% de todas las especies macromolares presentes en la composición. En aún otras realizaciones, la especie se purifica hasta una homogeneidad esencial (especies contaminantes no pueden detectarse en la composición mediante métodos de detección convencionales) en donde la composición consiste esencialmente en una única especie macromolecular.

El término "antígeno" o la expresión "antígeno diana", tal como se utiliza en esta memoria, se refiere a una molécula o una porción de una molécula que es capaz de unirse por una proteína de unión similar a anticuerpo y, además, es capaz de ser utilizada en un animal para producir anticuerpos capaces de unirse a un epítopo de ese antígeno. Un antígeno diana puede tener uno o más epítopos. Con respecto a cada uno de los antígenos diana reconocidos por una proteína de unión similar a anticuerpo, la proteína de unión similar a anticuerpo es capaz de competir con un anticuerpo intacto que reconoce el antígeno diana. Una proteína de unión similar a anticuerpo "bivalente", que no sea una proteína de unión similar a anticuerpo "multiespecífica" o "multifuncional", se entiende que comprende sitios de unión a antígeno que tienen especificidad antigénica idéntica.

Un anticuerpo biespecífico o bifuncional es típicamente un anticuerpo híbrido artificial que tiene dos pares de cadena pesada/cadena ligera diferentes y dos sitios de unión o epítopos diferentes. Anticuerpos biespecíficos pueden producirse mediante una diversidad de métodos incluyendo, pero no limitados a la fusión de hibridomas o enlace de fragmentos F(ab').

Un fragmento F(ab) incluye típicamente una cadena ligera y los dominios V_H y C_{H1} de una cadena pesada, en donde la porción $V_{H^-}C_{H1}$ de la cadena pesada del fragmento F(ab) no puede formar un enlace disulfuro con otro polipéptido de cadena pesada . Tal como se utiliza en esta memoria, un fragmento F(ab) también puede incluir una cadena ligera que contiene dos dominios variables separados por un enlazador de aminoácidos y una cadena pesada que contiene dos dominios variables separadas por un enlazador de aminoácido y un dominio C_{H1} .

Un fragmento F(ab') incluye típicamente una cadena ligera y una porción de una cadena pesada que contiene más de la región constante (entre los dominios C_{H1} y C_{H2}), de manera que se puede formar un enlace disulfuro intercadena entre dos cadenas pesadas para formar una molécula $F(ab')_2$.

Las frases "propiedad biológica", "característica biológica" y el término "actividad" en referencia a una proteína de unión similar a anticuerpo de la invención se utilizan de manera indistinta en esta memoria e incluyen, pero no se limitan a, afinidad por y especificidad para el epítopo, la capacidad de antagonizar la actividad de la diana de antígeno (o polipéptido fijado como objetivo), la estabilidad *in vivo* de la proteína de unión similar a anticuerpo y las propiedades inmunogénicas de la proteína de unión similar a anticuerpo. Otras propiedades biológicas identificables o características de una proteína de unión similar a anticuerpo incluyen, por ejemplo, reactividad cruzada, (es decir, con homólogos no humanos de la diana antigénica, o con otras dianas antigénicas o tejidos, generalmente), y capacidad de preservar los altos niveles de expresión de proteínas en células de mamíferos. Las propiedades o características mencionadas anteriormente pueden observarse o medirse utilizando técnicas reconocidas en la técnica, incluyendo, pero no limitadas a ELISA, ELISA competitivo, análisis de resonancia de plasmones de superficie, ensayos de neutralización *in vitro e in vivo* y la inmunohistoquímica con secciones de tejido de diferentes fuentes, incluyendo seres humanos, primates o cualquier otra fuente según se necesite.

La expresión "fragmento de inmunoglobulina inmunológicamente funcional", tal como se utiliza en esta memoria, se refiere a un fragmento de polipéptido que contiene al menos las CDRs de las cadenas pesada o ligera de inmunoglobulina de las que se deriva el fragmento de polipéptido. Un fragmento de inmunoglobulina inmunológicamente funcional es capaz de unirse a un antígeno diana.

Una proteína de unión similar a anticuerpo "neutralizante", tal como se utiliza en esta memoria, se refiere a una molécula que es capaz de bloquear o reducir sustancialmente una función efectora de un antígeno diana al que se une. Tal como se utiliza en esta memoria, "reducir sustancialmente" significa al menos aproximadamente 60%, preferiblemente al menos aproximadamente 70%, más preferiblemente al menos aproximadamente 75%, incluso

más preferiblemente al menos aproximadamente 80%, aún más preferiblemente al menos aproximadamente 85%, más preferiblemente al menos una reducción de aproximadamente 90% de una función efectora del antígeno diana.

El término "epítopo" incluye cualquier determinante, preferiblemente un determinante polipeptídico, capaz de unirse específicamente a una inmunoglobulina o receptor de células T. En ciertas realizaciones, los determinantes epítopos incluyen agrupaciones superficiales químicamente activas de moléculas tales como aminoácidos, cadenas laterales de azúcares, grupos fosforilo o grupos sulfonilo y, en ciertas realizaciones, pueden tener características estructurales tridimensionales específicas y/o características de carga específicas. Un epítopo es una región de un antígeno que está unida por un anticuerpo o proteína de unión similar a anticuerpo. En ciertas realizaciones, se dice que una proteína de unión similar a anticuerpo se une específicamente a un antígeno cuando reconoce preferencialmente su antígeno diana en una mezcla compleja de proteínas y/o macromoléculas. En realizaciones preferidas, se dice que una proteína de unión similar a anticuerpo se une específicamente a un antígeno cuando la constante de disociación de equilibrio es $\leq 10^{-9}$ M, y más preferiblemente cuando la constante de disociación de equilibrio es $\leq 10^{-9}$ M, y más preferiblemente cuando la constante de disociación es $\leq 10^{-10}$ M.

5

10

15

20

25

30

35

40

45

50

55

La constante de disociación (K_D) de una proteína de unión similar a anticuerpo puede determinarse, por ejemplo, mediante resonancia de plasmones de superficie. En general, el análisis de resonancia de plasmones de superficie mide en tiempo real las interacciones entre la unión del ligando (un antígeno diana en una matriz de biosensor) y analito (una proteína de unión similar a anticuerpo en disolución) mediante resonancia de plasmones de superficie (SPR) utilizando el sistema BIAcore (Pharmacia Biosensor; Piscataway, NJ). El análisis de plasmones de superficie también se puede realizar mediante la inmovilización del analito (proteína de unión similar a anticuerpo en una matriz de biosensor) y la presentación del ligando (antígeno diana). El término "K_D", tal como se utiliza en esta memoria, se refiere a la constante de disociación de la interacción entre una proteína de unión similar a anticuerpo particular y un antígeno diana.

La expresión "se une específicamente", tal como se utiliza en esta memoria, se refiere a la capacidad de una proteína similar a anticuerpo o un fragmento de unión a antígeno del mismo de unirse a un antígeno que contiene un epítopo con una Kd de al menos aproximadamente 1 x 10⁻⁶ M, 1 x 10⁻⁷ M, 1 x 10⁻⁸ M, 1 x 10⁻⁹ M, 1 x 10⁻¹⁰ M, 1 x 10⁻¹¹ M, 0 más, y/o para unirse a un epítopo con una afinidad que es al menos dos veces mayor que su afinidad por un antígeno no específico.

El término "enlazador", tal como se utiliza en esta memoria, se refiere a uno o más residuos aminoácidos insertados entre dominios de inmunoglobulina para proporcionar suficiente movilidad para los dominios de las cadenas ligeras y pesadas para doblar en cruz inmunoglobulinas de región variable duales. Un enlazador se inserta en la transición entre los dominios variables o entre los dominios variables y constantes, respectivamente, a nivel de secuencia. La transición entre dominios puede ser identificada, debido a que el tamaño aproximado de los dominios de inmunoglobulina se conoce bien. La ubicación exacta de una transición de dominio se puede determinar mediante la localización de tramos de péptidos que no forman elementos estructurales secundarios tales como láminas beta o hélices alfa tal como se demuestra por los datos experimentales o como puede ser asumido por técnicas de modelado o de predicción de estructura secundaria. Los enlazadores descritos en esta memoria se denominan L₁, que se encuentra en la cadena ligera entre los dominios V_{L2} y C_L C-terminal. Los enlazadores de cadena pesada se conocen como L₃, que se encuentra entre los dominios V_{H2} y V_{H1} N-terminales; y L₄, que se encuentra entre los dominios V_{H1} y C_{H1}-Fc Los enlazadores L₁, L₂, L₃ y L₄ son independientes, pero pueden, en algunos casos, tener la misma secuencia y/o longitud.

El término "vector", tal como se utiliza en esta memoria, se refiere a cualquier molécula (p. ej., ácido nucleico, plásmido, o virus) que se utiliza para transferir información de codificación a una célula huésped. El término "vector" incluye una molécula de ácido nucleico que es capaz de transportar otro ácido nucleico al que está unido. Un tipo de vector es un "plásmido", que se refiere a una molécula de ADN de doble cadena circular, en la que pueden insertarse segmentos adicionales de ADN. Otro tipo de vector es un vector viral, en el que segmentos de ADN adicionales se pueden insertar en el genoma viral. Ciertos vectores son capaces de replicación autónoma en una célula huésped en la que se introducen (p. ej., vectores bacterianos que tienen un origen bacteriano de replicación y vectores episomales de mamífero). Otros vectores (p. ej., vectores no episomales de mamíferos) pueden integrarse en el genoma de una célula huésped tras la introducción en la célula huésped y, con ello, se replican junto con el genoma del huésped. Además, ciertos vectores son capaces de dirigir la expresión de genes a los que están enlazados operativamente. Tales vectores se denominan en esta memoria "vectores de expresión recombinante" (o simplemente, "vectores de expresión"). En general, los vectores de expresión de utilidad en técnicas de ADN recombinante están a menudo en forma de plásmidos. Los términos "plásmido" y "vector" pueden utilizarse indistintamente en esta memoria, dado que un plásmido es la forma más comúnmente utilizada de vector. Sin embargo, la invención pretende incluir otras formas de vectores de expresión, tales como vectores virales (p. ej., retrovirus de replicación defectuosa, adenovirus y virus adeno-asociados), que sirven para funciones equivalentes.

La expresión "enlazado operativamente" se utiliza en esta memoria para referirse a una disposición de secuencias flanqueantes en la que las secuencias flanqueantes así descritas se configuran o ensamblan con el fin de realizar su función habitual. Por lo tanto, una secuencia flanqueante unida operativamente a una secuencia codificante puede ser capaz de efectuar la replicación, transcripción y/o traducción de la secuencia codificante. Por ejemplo, una secuencia codificante está unida operativamente a un promotor cuando el promotor es capaz de dirigir la transcripción de esa secuencia de codificación. Una secuencia flanqueante no necesita ser contigua a la secuencia codificante, siempre que funcione correctamente. Así, por ejemplo, secuencias intermedias, no traducidas aunque transcritas, pueden estar presentes entre una secuencia de promotor y la secuencia codificante y la secuencia promotora todavía puede considerarse "operativamente unida" a la secuencia codificante.

5

40

45

50

55

La frase "célula huésped recombinante" (o "célula huésped"), tal como se utiliza en esta memoria, se refiere a una 10 célula en la que se ha introducido un vector de expresión recombinante. Una célula huésped o una célula huésped recombinante pretende referirse no sólo a la célula objeto particular, sino también a la progenie de dicha célula. Debido a que pueden producirse ciertas modificaciones en generaciones sucesivas debido a mutación o influencias ambientales, tal progenie puede, de hecho, no ser idéntica a la célula parental, pero este tipo de células todavía están incluidas dentro del alcance de la expresión "célula huésped" tal como se utiliza en esta memoria. Una amplia 15 variedad de sistemas de expresión de célula huésped se puede utilizar para expresar las proteínas de unión similares a anticuerpo de la invención, incluyendo sistemas de expresión en bacterias, levaduras, baculovirus y mamíferos (así como los sistemas de expresión de presentación de fagos). Un ejemplo de un vector de expresión bacteriano adecuado es pUC19. Para expresar una proteína de unión similar a anticuerpo de forma recombinante, 20 una célula huésped se transforma o transfecta con uno o más vectores de expresión recombinantes que portan fragmentos de ADN que codifican las cadenas de polipéptidos de la proteína de unión similar a anticuerpo, de manera que las cadenas polipeptídicas se expresan en la célula huésped y , preferiblemente, se secretan en el medio en el que se cultivan las células huésped, medio del cual se puede recuperar la proteína de unión similar a anticuerpo.

El término "transformación" tal como se utiliza en esta memoria, se refiere a un cambio en las características genéticas de una célula, y una célula ha sido transformada cuando ha sido modificada para contener un nuevo ADN. Por ejemplo, una célula se transforma cuando se modifica genéticamente a partir de su estado nativo. Después de la transformación, el ADN transformante puede recombinarse con el de la célula mediante la integración física en un cromosoma de la célula, o puede ser mantenido transitoriamente como un elemento episomal sin ser replicado, o puede replicarse independientemente como un plásmido. Se considera que una célula que ha sido transformada de forma estable cuando el ADN se replica con la división de la célula. El término "transfección", tal como se utiliza en esta memoria, se refiere a la captación de ADN extraño o exógeno por parte de una célula, y una célula ha sido "transfectada" cuando el ADN exógeno ha sido introducido dentro de la membrana celular. Un cierto número de técnicas de transfección son bien conocidas en la técnica. Tales técnicas se pueden utilizar para introducir una o más moléculas de ADN exógeno en células huésped adecuadas.

La expresión "que se produce de forma natural", tal como se utiliza en esta memoria y se aplica a un objeto, se refiere al hecho de que el objeto puede encontrarse en la naturaleza y no ha sido manipulado por el hombre. Por ejemplo, un polinucleótido o polipéptido que está presente en un organismo (incluyendo virus) que puede aislarse de una fuente en la naturaleza y que no ha sido modificado intencionadamente por el hombre es que se produce de forma natural. Del mismo modo, " que no se produce de forma natural", tal como se utiliza en esta memoria, se refiere a un objeto que no se encuentra en la naturaleza o que ha sido modificado estructuralmente o sintetizado por el hombre.

Tal como se utiliza en esta memoria, los veinte aminoácidos convencionales y sus abreviaturas siguen el uso convencional. Estereoisómeros (p. ej., D-aminoácidos) de los veinte aminoácidos convencionales; aminoácidos no naturales tales como aminoácidos α , α -disustituidos, N-alquil- aminoácidos, ácido láctico y otros aminoácidos no convencionales también pueden ser componentes adecuados para las cadenas polipeptídicas de proteínas de unión similares a anticuerpo de la invención. Ejemplos de aminoácidos no convencionales incluyen: 4-hidroxiprolina, γ -carboxiglutamato, ϵ -N,N,N-trimetillisina, ϵ -N-acetillisina, O-fosfoserina, N-acetilserina, N-formilmetionina, 3-metilhistidina, 5-hidroxilisina, σ -N-metilarginina, y otros aminoácidos e iminoácidos similares (p. ej., 4-hidroxiprolina). En la notación de polipéptidos utilizada en esta memoria, la dirección de la izquierda es la dirección amino-terminal y la dirección de la derecha es la dirección carboxi-terminal, de acuerdo con el uso y la convención estándares.

Residuos que se producen de forma natural pueden dividirse en clases basadas en propiedades de cadena lateral común:

- (1) hidrofóbicos: Met, Ala, Val, Leu, Ile, Phe, Trp, Tyr, Pro;
- (2) hidrofílicos polares: Arg, Asn, Asp, Gln, Glu, His, Lys, Ser, Thr;
- (3) alifáticos: Ala, Gly, Ile, Leu, Val, Pro;
- (4) hidrofóbicos alifáticos: Ala, Ile, Leu, Val, Pro;
- (5) hidrofílicos neutros: Cys, Ser, Thr, Asn, Gln;

(6) de carácter ácido: Asp, Glu;

5

10

15

30

50

- (7) de carácter básico: His, Lys, Arg;
- (8) residuos que influyen en la orientación de la cadena: Gly, Pro;
- (9) aromáticos: His, Trp, Tyr, Phe; y
- (10) hidrofóbicos aromáticos: Phe, Trp, Tyr.

Sustituciones de aminoácidos conservativas pueden implicar el intercambio de un miembro de una de estas clases con otro miembro de la misma clase. Sustituciones conservadoras de aminoácidos pueden abarcar residuos aminoácidos que no se producen de forma natural, que se incorporan típicamente mediante síntesis peptídica química en lugar de mediante síntesis en sistemas biológicos. Estos incluyen peptidomiméticos y otras formas revertidas o invertidas de restos de aminoácidos. Las sustituciones no conservativas pueden implicar el intercambio de un miembro de una de estas clases por un miembro de otra clase.

Un experto en la técnica será capaz de determinar variantes adecuadas de las cadenas polipeptídicas de las proteínas de unión similares a anticuerpos de la invención utilizando técnicas bien conocidas. Por ejemplo, un experto en la técnica puede identificar zonas adecuadas de una cadena polipeptídica que se pueden cambiar sin destruir la actividad, fijando como objetivo regiones que no se cree que sean importantes para la actividad. Alternativamente, un experto en la técnica puede identificar residuos y porciones de las moléculas que se conservan entre polipéptidos similares. Además, incluso zonas que pueden ser importantes para la actividad biológica o para la estructura pueden ser objeto de sustituciones conservativas de aminoácidos sin destruir la actividad biológica o sin afectar adversamente la estructura del polipéptido.

20 El término "paciente", tal como se utiliza en esta memoria, incluye sujetos humanos y animales.

Un "trastorno" es cualquier condición que se beneficiaría del tratamiento utilizando las proteínas de unión similares a anticuerpos de la invención. "Trastorno" y "afección" se utilizan indistintamente en esta memoria e incluyen trastornos o enfermedades crónicas y agudas, incluyendo aquellas afecciones patológicas que predisponen a un paciente al trastorno en cuestión.

Los términos "tratamiento" o "tratar", tal como se utilizan en esta memoria, se refieren tanto al tratamiento terapéutico como a medidas profilácticas o preventivas. Los que están en necesidad de tratamiento incluyen aquellos que tienen el trastorno, así como aquellos propensos a tener el trastorno o aquellos en los que el trastorno debe prevenirse.

Las expresiones "composición farmacéutica" o "composición terapéutica", tal como se utiliza en esta memoria, se refieren a un compuesto o composición capaz de inducir un efecto terapéutico deseado cuando se administra apropiadamente a un paciente.

La expresión "soporte farmacéuticamente aceptable" o "soporte fisiológicamente aceptable" tal como se utiliza en esta memoria, se refiere a uno o más materiales de formulación adecuados para llevar a cabo o mejorar la administración de una proteína de unión similar a anticuerpo.

Las expresiones "cantidad eficaz" y "cantidad terapéuticamente eficaz", cuando se utilizan en referencia a una composición farmacéutica que comprende una o más proteínas de unión a anticuerpos se refieren a una cantidad o dosis suficiente para producir un resultado terapéutico deseado. Más específicamente, una cantidad terapéuticamente eficaz es una cantidad de una proteína de unión similar a anticuerpo suficiente para inhibir, durante algún periodo de tiempo, uno o más de los procesos patológicos clínicamente definidos asociados con la afección a tratar. La cantidad eficaz puede variar dependiendo de la proteína de unión similar a anticuerpo específico que se utiliza, y también depende de una diversidad de factores y condiciones relacionadas con el paciente a tratar y la gravedad del trastorno. Por ejemplo, si la proteína de unión similar a anticuerpo se ha de administrar *in vivo*, factores tales como la edad, el peso y la salud del paciente, así como las curvas de dosis-respuesta y los datos de toxicidad obtenidos en el trabajo preclínico con animales estaría entre esos factores considerados. La determinación de una cantidad eficaz o cantidad terapéuticamente eficaz de una composición farmacéutica dada está dentro de la capacidad de los expertos en la técnica.

Una realización de la invención proporciona una composición farmacéutica que comprende un soporte farmacéuticamente aceptable y una cantidad terapéuticamente eficaz de una proteína de unión similar a anticuerpo tal como se define en las reivindicaciones adjuntas.

2. Proteínas de unión similares a anticuerpos

En una realización de la invención, las proteínas de unión similares a anticuerpos comprenden cuatro cadenas polipeptídicas que forman cuatro sitios de unión a antígeno en donde dos cadenas polipeptídicas tienen una estructura representada por la fórmula:

$$V_{L1}-L_1-V_{L2}-L_2-C_L$$
 [I]

5 y dos cadenas polipéptídicas tienen una estructura representada por la fórmula:

$$V_{H2}-L_3-V_{H1}-L_4-C_{H1}-Fc$$
 [II]

en donde

10

20

30

V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina;

V_{1.2} es un segundo dominio variable de cadena ligera de inmunoglobulina;

V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina;

V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

C₁ es un dominio constante de la cadena ligera de inmunoglobulina;

C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina;

Fc es la región de bisagra de inmunoglobulina y C_{H2} , C_{H3} son los dominios constantes de la cadena 15 pesada de inmunoglobulina;

L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos tal como se definen en las reivindicaciones adjuntas;

y en donde los polipéptidos de fórmula I y los polipéptidos de fórmula II forman una pareja de cadena ligera-cadena pesada de entrecruzamiento.

En otra realización de la invención, las proteínas de unión similares a anticuerpos comprenden dos cadenas polipeptídicas que forman dos sitios de unión a antígeno en donde una primera cadena polipeptídica tiene una estructura representada por la fórmula:

$$V_{L1}$$
- L_1 - V_{L2} - L_2 - C_L [I]

y una segunda cadena polipéptídica tiene una estructura representada por la fórmula:

$$V_{H2}$$
- L_3 - V_{H1} - L_4 - C_{H1} [II]

25 en donde

V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina;

V_{L2} es un segundo dominio variable de cadena ligera de inmunoglobulina;

V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina;

V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

C_L es un dominio constante de la cadena ligera de inmunoglobulina;

 C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina;

 L_1 , L_2 , L_3 y L_4 son enlazadores de aminoácidos tal como se definen en las reivindicaciones adjuntas;

y en donde los primer y segundo polipéptidos forman una pareja de cadena ligera-cadena pesada de entrecruzamiento.

Las proteínas de unión similares a anticuerpos de la invención se pueden preparar utilizando los dominios o secuencias obtenidos o derivados de cualquier anticuerpo humano o no humano, incluyendo, por ejemplo, anticuerpos humanos, murinos o humanizados.

En algunos anticuerpos como proteínas de unión similares a anticuerpos de la invención, la longitud de L_3 es al menos el doble de la longitud de L_1 . En otro anticuerpo, como proteínas de de unión similares a anticuerpos de la invención, la longitud de L_4 es al menos dos veces la longitud de L_2 . En algunas proteínas de unión similares a anticuerpos de la invención, la longitud de L_1 es al menos el doble de la longitud de L_3 . En otras proteínas de unión similares a anticuerpos de la invención de unión, la longitud de L_2 es al menos dos veces la longitud de L_4 .

5

20

25

35

40

45

50

En algunas proteínas de unión similares a anticuerpos de la invención, L₁ es de 3 a 12 residuos aminoácidos de longitud, L₂ es de 3 a 14 residuos aminoácidos de longitud, L₃ es de 1 a 8 residuos aminoácidos de longitud y L₄ es de 1 a 3 residuos aminoácidos de longitud. En otras proteínas de unión similares a anticuerpos, L₁ es de 5 a 10 residuos aminoácidos de longitud, L₂ es de 5 a 8 residuos aminoácidos de longitud, L₃ es de 1 a 5 residuos aminoácidos de longitud y L₄ es de 1 a 2 residuos aminoácidos de longitud. En una proteína de unión similar a anticuerpo preferida, L₁ es de 7 residuos aminoácidos de longitud, L₂ es de 5 residuos aminoácidos de longitud, L₃ es de 1 residuo aminoácido de longitud y L₄ es de 2 residuos aminoácidos de longitud.

En algunas proteínas de unión similares a anticuerpos de la invención, L_1 es de 1 a 3 residuos aminoácidos de longitud, L_2 es de 1 a 4 residuos aminoácidos de longitud, L_3 es de 2 a 15 residuos aminoácidos de longitud y L_4 es de 2 a 15 residuos aminoácidos de longitud. En otras proteínas de unión similares a anticuerpos, L_1 es de 1 a 2 residuos aminoácidos de longitud, L_2 es de 1 a 2 residuos aminoácidos de longitud y L_4 es de 2 a 12 residuos aminoácidos de longitud. En una proteína de unión similar a anticuerpo preferida, L_1 es de 1 residuo aminoácido de longitud, L_2 es de 2 residuos aminoácidos de longitud, L_3 es de 7 residuos aminoácidos de longitud y L_4 es de 5 residuos aminoácidos de longitud.

También se describen en esta memoria proteínas de unión similares a anticuerpos, en las que L_1 , L_3 o L_4 pueden ser iguales a cero. Sin embargo, en proteínas de unión similares a anticuerpos, en donde L_1 , L_3 o L_4 es igual a cero, el enlazador de transición correspondiente entre la región variable y la región constante o entre los dominios variables duales en la otra cadena pueden no ser cero. En algunas realizaciones, L_1 es igual a cero y L_3 es 2 o más residuos aminoácidos, L_3 es igual a cero y L_1 es igual a 1 o más residuos aminoácidos, o L_4 es igual a 0 y L_2 es de 3 o más residuos aminoácidos.

En algunas proteínas de unión similares a anticuerpos de la invención, al menos uno de los enlazadores seleccionados del grupo que consiste en L₁, L₂, L₃ y L₄ contienen al menos un residuo cisteína.

La identidad y la secuencia de residuos aminoácidos en el enlazador pueden variar en función del tipo de elemento estructural secundario necesario para alcanzar en el enlazador. Por ejemplo, glicina, serina y alanina son los mejores para enlazadores que tienen la máxima flexibilidad. Una cierta combinación de glicina, prolina, treonina y serina es útil si es necesario un enlazador más rígido y extendido. Cualquier residuo aminoácido puede ser considerado como un enlazador en combinación con otros residuos aminoácidos para la construcción de enlazadores peptídicos más grandes según sea necesario dependiendo de las propiedades deseadas.

En algunas proteínas de unión similares a anticuerpos de la invención, V_{L1} comprende la secuencia de aminoácidos de SEQ ID NO: 1; V_{L2} comprende la secuencia de aminoácidos de SEQ ID NO: 3; V_{H1} comprende la secuencia de aminoácidos de SEQ ID NO: 2; y V_{H2} comprende la secuencia de aminoácidos de SEQ ID NO: 4.

En algunas realizaciones de la invención, la proteína de unión similar a anticuerpo es capaz de unirse específicamente a una o más dianas antigénicas. En realizaciones preferidas de la invención, la proteína de unión similar a anticuerpo es capaz de unirse específicamente a al menos una diana de antígeno seleccionada del grupo que consiste en B7.1, B7.2, BAFF, BlyS, C3, C5, CCL11 (eotaxina), CCL15 (MIP-1d), CCL17 (TARC), CCL19 (MIP-3b), CCL2 (MCP-1), CCL20 (MIP-3a), CCL21 (MIP-2), SLC, CCL24 (MPIF-2/eotaxina-2), CCL25 (TECK), CCL26 (eotaxina-3), CCL3 (MIP-1a), CCL4 (MIP-lb), CCL5 (RANTES), CCL7 (MCP-3), CCL8 (mcp-2), CD3, CD19, CD20, CD24, CD40, CD40L, CD80, CD86, CDH1 (E-cadherina), quitinasa, CSF1 (M-CSF), CSF2 (GM-CSF), CSF3 (GCSF), CTLA4, CX3CL1 (SCYD1), CXCL12 (SDF1), CXCL13, EGFR, FCER1A, FCER2, HER2, IGF1R, IL-1, IL-12, IL13, IL415, IL17, IL18, IL1A, IL1B, IL1F10, IL1β, IL2, IL4, IL6, IL7, IL8, IL9, IL12/23, IL22, IL23, IL25, IL27, IL35, ITGB4 (b 4 integrina), LEP (leptina), MHC de clase II, TLR2, TLR4, TLR5, TNF, TNF-a, TNFSF4 (ligando OX40), TNFSF5 (ligando CD40), receptores de tipo Toll, TREM1, TSLP, TWEAK, XCR1 (GPR5/CCXCR1), DNGR-1 (CLEC91) y HMGB1. En otras realizaciones de la invención, la proteína de unión similar a anticuerpo es capaz de inhibir la función de una o más de las dianas de antígeno.

En algunas realizaciones de la invención, la proteína de unión similar a anticuerpo biespecífica es capaz de unir dos dianas o epítopos de antígenos diferentes. En una realización preferida de la invención, la proteína de unión similar a anticuerpo es biespecífica y cada par de cadena pesada-cadena ligera es capaz de unir dos dianas o epítopos antigénicos diferentes. En una realización más preferida, la proteína de unión similar a anticuerpo es capaz de unir dos dianas de antígenos diferentes que se seleccionan del grupo que consiste en IL4 e IL13, IGF1R y HER2, IGF1R y EGFR, EGFR y HER2, BK e IL13, PDL-1 y CTLA-4, CTLA4 y MHC clase II, IL-12 e IL-18, IL-1α e IL-1β, TNF e IL12/23, TNF e IL-12p40, TNFα e IL-1β, TNFα e IL-23, e IL17 e IL23. En una realización incluso más preferida, la proteína de unión a anticuerpo es capaz de unir las dianas de antígeno IL-4 e IL13.

En algunas realizaciones de la invención, la proteína de unión similar a anticuerpo se une específicamente a IL-4 con una tasa de enlace de 2.97 E + 07 y una tasa de desenlace de 3,30 E-04, y se une específicamente a IL-13 con una tasa de enlace de 1,39 E + 06 y una tasa de desenlace de 1,63 E-04. En otras realizaciones de la invención, la proteína de unión a anticuerpo se une específicamente a IL-4 con una tasa de enlace de 3,16 E + 07 y una tasa de desenlace de 2,89 E-04 y se une específicamente a IL-13 con una tasa de enlace de 1,20 E + 06 y una tasa de desenlace de 1,12 E-04.

También se describe un método, en el que una proteína de unión similar a anticuerpo, que comprende cuatro cadenas polipeptídicas que forman cuatro sitios de unión a antígeno, se prepara identificando un primer dominio variable del anticuerpo que se une a un primer antígeno diana y un segundo dominio variable del anticuerpo que se une a un segundo antígeno diana, conteniendo cada uno un V_L y un V_H ; asignando la cadena ligera o la cadena pesada en forma de una cadena de molde; asignando el V_L del primer dominio variable del anticuerpo o el segundo dominio variable del anticuerpo como V_{L1} ; asignando un V_{L2} , un V_{H1} y un V_{H2} de acuerdo con las fórmulas [I] y [II] que figuran a continuación:

$$V_{L1}-L_{1}-V_{L2}-L_{2}-C_{L} \qquad \qquad [I] \\ V_{H2}-L_{3}-V_{H1}-L_{4}-C_{H1}-Fc \qquad \qquad [II]$$

determinando longitudes máxima y mínima para L₁, L₂, L₃ y L₄; generando las estructuras de polipéptidos de fórmulas I y II; seleccionando estructuras de polipéptidos de fórmulas I y II que se unen al primer antígeno diana y al segundo antígeno diana cuando se combinan para formar la proteína de unión similar a anticuerpo;

40 en donde:

45

5

10

25

30

V_{1,1} es un primer dominio variable de cadena ligera de inmunoglobulina:

V₁₂ es un segundo dominio variable de cadena ligera de inmunoglobulina:

V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina:

V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

C_L es un dominio constante de la cadena ligera de inmunoglobulina;

C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina;

Fc es la región de bisagra de inmunoglobulina y C_{H2}, C_{H3} son los dominios constantes de la cadena pesada de inmunoglobulina;

L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos;

y en donde los polipéptidos de fórmula I y los polipéptidos de fórmula II forman una pareja de cadena ligera-cadena pesada de entrecruzamiento.

También se describe un método, en el que una proteína de unión similar a anticuerpo, que comprende cuatro cadenas polipeptídicas que forman cuatro sitios de unión a antígeno, se prepara identificando un primer dominio variable del anticuerpo que se une a un primer antígeno diana y un segundo dominio variable del anticuerpo que se une a un segundo antígeno diana, conteniendo cada uno un V_L y un V_H ; asignando la cadena ligera o la cadena pesada en forma de una cadena de molde; asignando el V_L del primer dominio variable del anticuerpo o el segundo dominio variable del anticuerpo como V_{L1} ; asignando un V_{L2} , un V_{H1} y un V_{H2} de acuerdo con las fórmulas [I] y [II] que figuran a continuación:

$$V_{L1}-L_1-V_{L2}-L_2-C_L$$
 [I]

determinando longitudes máxima y mínima para L₁, L₂, L₃ y L₄; generando las estructuras de polipéptidos de fórmulas I y II; seleccionando estructuras de polipéptidos de fórmulas I y II que se unen al primer antígeno diana y al segundo antígeno diana cuando se combinan para formar la proteína de unión similar a anticuerpo;

en donde:

5

10

15

20

25

30

35

V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina;

V_{L2} es un segundo dominio variable de cadena ligera de inmunoglobulina;

V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina;

V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

C_L es un dominio constante de la cadena ligera de inmunoglobulina;

C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina; y

L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos;

y en donde los polipéptidos de fórmula I y los polipéptidos de fórmula II forman una pareja de cadena ligera-cadena pesada de entrecruzamiento.

También se describe un método para producir una proteína de unión similar a anticuerpo, que comprende expresar en una célula una o más moléculas de ácido nucleico que codifican polipéptidos que tienen estructuras representadas por las fórmulas [I] y [II] que figuran a continuación:

$$V_{L1}-L_1-V_{L2}-L_2-C_L$$
 [1]

$$V_{H2}-L_3-V_{H1}-L_4-C_{H1}-Fc$$
 [II]

en donde:

 V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina;

V_{L2} es un segundo dominio variable de cadena ligera de inmunoglobulina;

V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina;

V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

C_L es un dominio constante de la cadena ligera de inmunoglobulina;

 C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina;

Fc es la región de bisagra de inmunoglobulina y C_{H2} , C_{H3} son los dominios constantes de la cadena pesada de inmunoglobulina;

L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos;

y en donde los polipéptidos de fórmula I y los polipéptidos de fórmula II forman una pareja de cadena ligera-cadena pesada de entrecruzamiento.

También se describe un método para producir una proteína de unión similar a anticuerpo, que comprende expresar en una célula una o más moléculas de ácido nucleico que codifican polipéptidos que tienen estructuras representadas por las fórmulas [I] y [II] que figuran a continuación:

 $V_{L1}-L_1-V_{L2}-L_2-C_L$ [I]

 V_{H2} - L_3 - V_{H1} - L_4 - C_{H1} [II]

en donde:

5

10

15

20

25

30

35

40

V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina;

V_{1.2} es un segundo dominio variable de cadena ligera de inmunoglobulina;

V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina;

V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

C_L es un dominio constante de la cadena ligera de inmunoglobulina;

C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina; y

L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos;

y en donde los polipéptidos de fórmula I y los polipéptidos de fórmula II forman una pareja de cadena ligera-cadena pesada de entrecruzamiento.

3. Usos de las proteínas de unión similares a anticuerpos

Las proteínas de unión similares a anticuerpos de la invención se pueden emplear en cualquier procedimiento de ensayo conocido tales como ensayos de unión competitiva, ensayos de sándwich directos e indirectos, y ensayos de inmunoprecipitación para la detección y cuantificación de uno o más antígenos diana. Las proteínas de unión similares a anticuerpos se unirán al uno o más antígenos diana con una afinidad que es apropiada para emplear el método de ensayo.

Para aplicaciones de diagnóstico, en ciertas realizaciones, las proteínas de unión similares a anticuerpos se pueden marcar con un resto detectable. El resto detectable puede ser uno cualquiera que sea capaz de producir, directa o indirectamente, una señal detectable. Por ejemplo, el resto detectable puede ser un radioisótopo tal como 3 H, 14 C, 32 P, 35 S, 125 I, 99 Tc, 111 In, o 67 Ga; un compuesto fluorescente o quimioluminiscente tal como isotiocianato de fluoresceína, rodamina o luciferina; o una enzima tal como fosfatasa alcalina, β -galactosidasa o peroxidasa de rábano picante.

Las proteínas de unión similares a anticuerpos de la invención también son útiles para la formación *in vivo* de imágenes. Una proteína de unión similar a anticuerpo marcada con un resto detectable se puede administrar a un animal, preferiblemente en el torrente sanguíneo, y se ensaya la presencia y localización del anticuerpo marcado en el huésped. La proteína de unión similar a anticuerpo puede marcarse con cualquier resto que sea detectable en un animal, ya sea por resonancia magnética nuclear, radiología u otro medio de detección conocido en la técnica.

También se describe un kit que comprende una proteína de unión similar a anticuerpo y otros reactivos útiles para detectar niveles de antígeno diana en muestras biológicas. Estos reactivos pueden incluir un marcador detectable, suero de bloqueo, muestras de control positivas y negativas y reactivos de detección.

4. <u>Composiciones Terapéuticas de Proteínas de Unión Similares a Anticuerpos y administración de las mismas</u>

Composiciones terapéuticas o farmacéuticas que comprenden proteínas de unión similares a anticuerpos tal como se definen en las reivindicaciones adjuntas están dentro del alcance de la invención. Tales composiciones terapéuticas o farmacéuticas pueden comprender una cantidad terapéuticamente eficaz de una proteína de unión similar a anticuerpo, o conjugado de proteína-fármaco de unión similar a anticuerpo, en mezcla con un agente de formulación farmacéutica o fisiológicamente aceptable seleccionado para la idoneidad con el modo de administración.

5

50

55

Materiales de formulación aceptables son preferiblemente no tóxicos para los receptores a las dosis y concentraciones empleadas.

La composición farmacéutica puede contener materiales de formulación para modificar, mantener o preservar, por 10 ejemplo, el pH, la osmolaridad, viscosidad, claridad, el color, la isotonicidad, el olor, la esterilidad, estabilidad, velocidad de disolución o liberación, la adsorción o la penetración de la composición. Materiales de formulación adecuados incluyen, pero no se limitan a aminoácidos (tales como glicina, glutamina, asparagina, arginina o lisina), antimicrobianos, antioxidantes (tales como ácido ascórbico, sulfito sódico o hidrógeno-sulfito de sodio), tampones (tales como borato, bicarbonato, Tris-HCI, citratos, fosfatos u otros ácidos orgánicos), agentes conferidores de 15 consistencia (tales como manitol o glicina), agentes quelantes (tales como ácido etilendiaminotetraacético (EDTA)), agentes formadores de complejos (tales como cafeína, polivinilpirrolidona, beta-ciclodextrina o hidroxipropil-betaciclodextrina), cargas, monosacáridos, disacáridos y otros hidratos de carbono (tales como glucosa, manosa, o dextrinas), proteínas (tales como albúmina de suero, gelatina o inmunoglobulinas), colorantes, aromatizantes y agentes diluyentes, agentes emulsionantes, polímeros hidrofílicos (tales como polivinilpirrolidona), polipéptidos de bajo peso molecular, iones conjugados formadores de sales (tales como sodio), conservantes (tales como cloruro de 20 benzalconio, ácido benzoico, ácido salicílico, timerosal, alcohol fenetílico, metilparabeno, propilparabeno, clorhexidina, ácido sórbico o peróxido de hidrógeno), disolventes (tales como glicerol, propilenglicol o polietilenglicol), azúcar-alcoholes (tales como manitol o sorbitol), agentes de suspensión, tensioactivos o agentes humectantes (tales como pluronics; PEG; ésteres de sorbitán; polisorbatos tales como polisorbato 20 o polisorbato 25 80; tritón; trometamina; lecitina; colesterol o tiloxapal), agentes mejoradores de la estabilidad (tales como sacarosa o sorbitol), agentes potenciadores de la tonicidad (tales como haluros de metales alcalinos - preferiblemente cloruro de sodio o potasio - o manitol sorbitol), vehículos de administración, diluventes, excipientes y/o adyuvantes farmacéuticos (véase, p. ej., REMINGTON'S PHARMACEUTICAL SCIENCES (18ª ed., A.R. Gennaro, comp., Mack Publishing Company 1990), y ediciones posteriores del mismo).

La composición farmacéutica óptima será determinada por un experto en la técnica dependiendo, por ejemplo, de la ruta de administración pretendida, el formato de suministro y la dosis deseada. Tales composiciones pueden influir en el estado físico, la estabilidad, velocidad de liberación *in vivo* y la tasa de aclaramiento *in vivo* de la proteína de unión similar a anticuerpo.

El vehículo o soporte primario en una composición farmacéutica puede ser acuoso o no acuoso por naturaleza. Por ejemplo, un vehículo o soporte adecuado para inyección puede ser agua, solución salina fisiológica o líquido cefalorraquídeo artificial, posiblemente complementado con otros materiales comunes en composiciones para la administración parenteral. Solución salina tamponada neutra o solución salina mezclada con albúmina de suero son vehículos a modo de ejemplo adicionales. Otras composiciones farmacéuticas a modo de ejemplo comprenden tampón Tris de aproximadamente pH 7,0-8,5, o tampón acetato de aproximadamente pH 4,0-5,5, que puede incluir además sorbitol o un sustituto adecuado. Composiciones de proteínas de unión similares a anticuerpos se pueden preparar para el almacenamiento mezclando la composición seleccionada que tiene el grado deseado de pureza con agentes de formulación opcionales en forma de una torta liofilizada o una disolución acuosa. Además, la proteína de unión similar a anticuerpo puede formularse como un liofilizado utilizando excipientes apropiados tales como sacarosa.

Las composiciones farmacéuticas de la invención se pueden seleccionar para la administración parenteral. Alternativamente, las composiciones pueden seleccionarse para inhalación o para el suministro a través del tracto digestivo tal como por vía oral. La preparación de tales composiciones farmacéuticamente aceptables está dentro de la experiencia de la técnica.

Los componentes de la formulación están presentes en concentraciones que son aceptables para el sitio de administración. Por ejemplo, se utilizan tampones para mantener la composición a pH fisiológico o a un pH ligeramente inferior, típicamente dentro de un intervalo de pH de aproximadamente 5 a aproximadamente 8.

Cuando se contempla la administración parenteral, las composiciones terapéuticas pueden estar en forma de una disolución apirógena, parenteralmente aceptable, acuosa que comprende la proteína de unión similar a anticuerpo deseada en un vehículo farmacéuticamente aceptable. Un vehículo particularmente adecuado para inyección parenteral es agua destilada estéril en la que una proteína de unión a anticuerpo se formula como una disolución estéril, isotónica, apropiadamente preservada. Aún otra preparación puede implicar la formulación de la molécula

deseada con un agente tal como microesferas inyectables, partículas bioerosionables, compuestos poliméricos (tales como ácido poliláctico o ácido poliglicólico), perlas o liposomas, que proporciona la liberación controlada o sostenida del producto que puede ser suministrado a través de una inyección de depósito. También se puede utilizar ácido hialurónico, y esto puede tener el efecto de fomentar la duración sostenida en la circulación. Otros medios adecuados para la introducción de la molécula deseada incluyen dispositivos de administración de fármacos implantables.

5

10

15

45

En una realización, una composición farmacéutica se puede formular para inhalación. Por ejemplo, una proteína de unión similar a anticuerpo se puede formular como un polvo seco para inhalación. Disoluciones de inhalación de proteína de unión similares a anticuerpos también se pueden formular con un propulsor para la administración en aerosol. Aún en otra realización, las disoluciones se pueden nebulizar.

También se contempla que ciertas formulaciones se puedan administrar por vía oral. Proteínas de unión similares a anticuerpos que se administran de esta manera se pueden formular con o sin los soportes habitualmente utilizados en la composición de formas de dosificación sólidas tales como comprimidos y cápsulas. Por ejemplo, una cápsula puede diseñarse para liberar la porción activa de la formulación en el punto en el tracto gastrointestinal cuando la biodisponibilidad es maximizada y la degradación pre-sistémica se minimiza. Pueden incluirse agentes adicionales para facilitar la absorción de la proteína de unión similar a anticuerpo. Pueden emplearse también diluyentes, aromatizantes, ceras de bajo punto de fusión, aceites vegetales, lubricantes, agentes de suspensión, agentes disgregantes de comprimidos y aglutinantes.

Otra composición farmacéutica puede implicar una cantidad eficaz de proteínas de unión similares a anticuerpo en una mezcla con excipientes no tóxicos que son adecuados para la fabricación de comprimidos. Disolviendo los comprimidos en agua estéril, u otro vehículo apropiado, las disoluciones se pueden preparar en forma de dosis unitaria. Excipientes adecuados incluyen, pero no se limitan a diluyentes inertes tales como carbonato de calcio, carbonato o bicarbonato de sodio, lactosa o fosfato de calcio; o agentes de unión tales como almidón, gelatina o acacia; o agentes tales como estearato de magnesio, ácido esteárico o talco lubricante.

Composiciones farmacéuticas adicionales resultarán evidentes para los expertos en la técnica, incluyendo formulaciones que implican proteínas de unión similares a anticuerpos en formulaciones de suministro sostenida o controlada. Las técnicas para formular una diversidad de otros medios de suministro sostenido o controlado tales como soportes de liposomas, micropartículas bio-erosionables o perlas porosas e inyecciones de depósito, también son conocidas por los expertos en la técnica. Ejemplos adicionales de preparaciones de liberación sostenida incluyen matrices poliméricas semipermeables en forma de artículos conformados, p. ej., películas o microcápsulas. Matrices de liberación sostenida pueden incluir poliésteres, hidrogeles, polilactidas, copolímeros de ácido Lglutámico y gamma etil-L-glutamato, poli(2-hidroxietilmetacrilato), etileno-acetato de vinilo o ácido poli-D(-)-3-hidroxibutírico. Las composiciones de liberación sostenida también pueden incluir liposomas, que se pueden preparar por cualquiera de varios métodos conocidos en la técnica.

Las composiciones farmacéuticas de la invención a utilizar para la administración *in vivo* típicamente deben ser estériles. Esto se puede lograr mediante filtración a través de membranas de filtración estériles. En los casos en los que la composición se liofiliza, la esterilización utilizando este método puede llevarse a cabo ya sea antes de, o después de la liofilización y reconstitución. La composición para administración parenteral se puede almacenar en forma liofilizada o en una disolución. Además, las composiciones parenterales generalmente se colocan en un recipiente que tiene una lumbrera de acceso estéril, por ejemplo, una bolsa o vial de disolución intravenosa que tiene un tapón perforable por una aquja de inyección hipodérmica.

Una vez que se ha formulado la composición farmacéutica, se puede almacenar en viales estériles en forma de una disolución, suspensión, gel, emulsión, sólido, o como un polvo deshidratado o liofilizado. Tales formulaciones se pueden almacenar ya sea en una forma lista para usar o en una forma (p. ej., liofilizada) que requiere la reconstitución antes de la administración.

También se describen kits para producir una unidad de administración de dosis única. Cada uno de los kits puede contener tanto un primer recipiente que tiene una proteína seca como un segundo recipiente que tiene una formulación acuosa. También se describen kits que contienen jeringas precargadas de una y múltiples cámaras (p. ej., jeringas de líquido y liso-jeringas).

La cantidad eficaz de una composición farmacéutica de proteína de unión similar a anticuerpo a emplearse terapéuticamente dependerá, por ejemplo, del contexto y los objetivos terapéuticos. Un experto en la técnica apreciará que los niveles de dosificación apropiados para el tratamiento variarán, por lo tanto, dependiendo, en parte, de la molécula suministrada, de la indicación para la que se utiliza la proteína de unión similar a anticuerpo, la vía de administración y el tamaño (peso corporal, superficie corporal o tamaño del órgano) y condición (edad y salud general) del paciente. De acuerdo con ello, el médico puede titular la dosificación y modificar la vía de administración

para obtener el efecto terapéutico óptimo. Una dosis típica puede oscilar entre aproximadamente 0,1 μg/kg y hasta aproximadamente 100 mg/kg o más, dependiendo de los factores mencionados anteriormente. En otras realizaciones, la dosificación puede variar desde 0,1 μg/kg hasta aproximadamente 100 mg/kg; o 1 μg/kg hasta aproximadamente 100 mg/kg; o 5 μg/kg, 10 μg/kg, 15 μg/kg, 20 μg/kg, 25 μg/kg, 30 μg/kg, 35 μg/kg, 40 μg/kg, 45 μg/kg, 50 μg/kg, 60 μg/kg, 65 μg/kg, 70 μg/kg, 75 μg/kg hasta aproximadamente 100 mg/kg.

La frecuencia de dosificación dependerá de los parámetros farmacocinéticos de la proteína de unión similar a anticuerpo en la formulación que se esté utilizando. Típicamente, un médico administrará la composición hasta que se alcance una dosis que consiga el efecto deseado. Por lo tanto, la composición puede administrarse como una dosis única, como dos o más dosis (que pueden o no contener la misma cantidad de la molécula deseada) a lo largo del tiempo, o como una infusión continua a través de un dispositivo de implantación o catéter. El refinamiento adicional de la dosificación apropiada se realiza rutinariamente por los expertos ordinarios en la técnica y está dentro del ámbito de las tareas realizadas rutinariamente por ellos. Las dosificaciones apropiadas pueden determinarse a través del uso de datos de dosis-respuesta apropiados.

La vía de administración de la composición farmacéutica está de acuerdo con métodos conocidos, p. ej., por vía oral; a través de inyección por vía intravenosa, intraperitoneal, intracerebral (intraparenquimatosa), intracerebroventricular, intramuscular, intraocular, intraarterial, intraportal o intralesional; por sistemas de liberación sostenida; o mediante dispositivos de implantación. En los casos en los que se desee, las composiciones se pueden administrar por inyección de bolo o continuamente mediante infusión, o mediante un dispositivo de implantación.

La composición también se puede administrar localmente a través de implantación de una membrana, esponja, u otro material apropiado sobre el que la molécula deseada se ha absorbido o encapsulado. En los casos en los que se utilice un dispositivo de implantación, el dispositivo puede ser implantado en cualquier tejido u órgano adecuado, y el suministro de la molécula deseada puede ser mediante difusión, bolo de liberación en el tiempo o una administración continua.

5. Ejemplos

5

10

20

40

45

50

Los Ejemplos que siguen son ilustrativos de realizaciones específicas de la invención, y diversos usos de los mismos. Se recogen únicamente con fines explicativos, y no deben interpretarse como limitantes del alcance de la invención de modo alguno.

Ejemplo 1. Diseño y Modificación por Ingeniería de Proteínas de Unión similares a Anticuerpo de la Región Variable Dual de Entrecruzamiento Biespecíficos

La región variable dual de entrecruzamiento en un formato Fv fue descrita en la Patente de EE.UU. Nº 5,989,830 y fue aludida como una configuración de doble cabeza de entrecruzamiento (CODH). El modelado molecular predijo que los resultados del diseño de doble cabeza de entrecruzamiento (CODH) en un complejo con los dos sitios de unión que miran en direcciones opuestas, sin las restricciones sugeridas para la configuración de Fv Dual. El formato CODH Fv se examinó para determinar si se podría convertir en moléculas similares a anticuerpos completas por adición de un dominio C_L en la cadena ligera y una región Fc en la cadena pesada. Una conversión similar fue un éxito para los correspondientes dominios variables duales (DVD-lg) y TBTI tal como se describe en la Patente de EE.UU. Nº 7.612.181 y la Publicación Internacional Nº WO 2009/052081. La disposición de las regiones variables en el formato CODH se muestra en las estructuras que figuran a continuación, que indican la orientación de amino a carboxilo de las cadenas peptídicas:

```
(a) cadena ligera: NH<sub>2</sub>-V<sub>L1</sub>-Enlazador-V<sub>L2</sub>-COOH
(b) cadena pesada: NH<sub>2</sub>-V<sub>H2</sub>-Enlazador-V<sub>H1</sub>-COOH
```

La disposición amino a carboxilo-terminal de las regiones variables en (a) y (b) anteriores se pueden distinguir de la disposición en la configuración de Fv-Dual mostrada en (c) y (d) que figuran a continuación:

```
(c) cadena ligera: NH<sub>2</sub>-V<sub>L1</sub>-Enlazador-V<sub>L2</sub>-COOH
(d) cadena pesada: NH<sub>2</sub>-V<sub>H1</sub>-Enlazador-V<sub>H2</sub>-COOH
```

La principal diferencia a destacar es la colocación distinta de las correspondientes regiones variables de cadena ligera y de cadena pesada (V_{H1}/V_{L1} y V_{H2}/V_{L2}) con respecto entre sí en las dos configuraciones de la región variable duales. Los correspondientes dominios V_{L1} y V_{H1} estaban ambos en el extremo N de las cadenas ligeras y pesadas en la configuración de la región variable dual. En contraste, en la configuración de entrecruzamiento, la mitad de un par de una región variable de anticuerpo se separó espacialmente dentro de la cadena de proteína en la configuración de entrecruzamiento. En la configuración de entrecruzamiento, el dominio V_{L1} sería en el extremo N-

terminal de la cadena ligera de la proteína, pero el emparejamiento del dominio V_{H1} está en el extremo C de la cadena pesada de configuración de entrecruzamiento. La relación espacial entre V_{L1} y V_{H1} encontrada en la configuración de la región variable dual es la disposición que se encuentra en los anticuerpos naturales.

Una desventaja potencial de la configuración de Fv dual es que el enlazador L_L que separa las dos regiones variables sobresale en el sitio de unión al antígeno del dominio Fv2 (*véase* la Figura 1). Esta protuberancia puede interferir con la unión del antígeno y resultar en una accesibilidad perturbada del Antígeno 2 a Fv2. Esta accesibilidad perturbada o interferencia puede impedir la unión a antígenos. Además, esta interferencia podría ser más pronunciada cuando el tamaño del antígeno 2 es mayor. De hecho, se ha documentado en la Patente de EE.UU. Nº 7.612.181 que la afinidad de unión y la capacidad de neutralización de una molécula de DVD-lg depende de qué especificidad para antígeno esté presente en el extremo N o el extremo C. *Véase* la Patente de EE.UU.Nº 7.612.181, Ejemplo 2.

Por lo tanto, para crear proteínas de unión similares a anticuerpos más estables que no estén sujetas a la pérdida de afinidad de antígeno en comparación con el anticuerpo parental, se diseñaron y construyeron moléculas de la región variable dual de entrecruzamiento que tienen un dominio C_L en la cadena ligera y una región Fc en la cadena pesada. Los polipéptidos que forman estas proteínas similares a anticuerpos tienen las estructuras mostradas más adelante, en que se indica la orientación amino a carboxilo terminal de las cadenas polipeptídicas:

(e) cadena ligera: NH₂-V_{L1}-Enlazador-V_{L2}-C_L-COOH (f) cadena pesada: NH₂-V_{H2}-Enlazador-V_{H1}-C_{H1}-Fc-COOH

15

20

25

30

35

Para evaluar si este diseño de proteína similar a anticuerpo biespecífica podría unirse a dos antígenos diferentes, se utilizaron dos regiones variables previamente generadas y humanizadas de anticuerpos específicos para IL-4 (anti-IL4 parental humanizado) e IL13 (anti-IL13 parental humanizado) para construir moléculas similares a anticuerpos biespecíficas mostradas en la Tabla 1. La secuenciación de los anticuerpos de ratón y el proceso de humanización se han descrito en la Publicación Internacional Nº WO 2009/052081 (TBTI). En síntesis, las secuencias de aminoácidos de las cadenas pesadas y ligeras variables del clon B-B13 de anti-IL13 murina y el clon 8D4-8 de anti-IL4 murina se determinaron mediante secuenciación de aminoácidos. Las secuencias murinas fueron humanizadas y luego se volvieron a traducir en secuencias de nucleótidos tal como se describe en el Ejemplo 5 de la Publicación Internacional Nº WO 2009/052081. Las secuencias V_H y V_L anti-IL4 parentales humanizadas y V_H y V_L anti-IL13 parentales humanizadas se combinaron y se dispusieron tal como se muestra en la Tabla 1. Los códigos abreviados en la columna uno de la Tabla 1 fueron creados para simplificar la discusión de estas proteínas de unión similares a anticuerpos. Las proteínas de unión similares a anticuerpos difieren en el tamaño del enlazador insertado entre las dos regiones variables tal como se muestra en la Tabla 1. Las moléculas de ADN que codifican los polipéptidos mostrados en la Tabla 1 fueron generadas a partir de los anticuerpos anti-IL-4 y anti-IL13 parentales retrotraducidos. Los dominios CH1, CL y Fc se obtuvieron de IGHG1 (GenBank Nº de Acceso 569F4) e IGKC (GenBank Nº de Acceso Q502W4).

Tabla 1. Inmunoglobulinas de Doble Cabeza de Entrecruzamiento

Código Abreviado para Proteína	Descripción de la Proteína	SEQ ID NO:
Cadena Ligera de anti-IL4 Parental	anti-IL4 V _L	1
Cadena Pesada de anti-IL4 Parental	anti-IL4 V _H	2
Cadena Ligera de anti-IL13 Parental	anti-IL13 V _I	3
Cadena Pesada de anti-IL13 Parental	anti-IL13 V _H	4
Códigos de Cadena Pesada		
IL13(G4S)IL4CH1-Fc	anti-IL13 V _H -(G ₄ S)-anti-IL4 V _H -C _{H1} -Fc	5
IL13(G4S2)IL4CH1-Fc	anti-IL13 V _H -(G ₄ S) ₂ -anti-IL4 V _H -C _{H1} -Fc	6

Código Abreviado para Proteína	Descripción de la Proteína	SEQ ID NO:
IL4(G4S)IL13CH1-Fc	anti-IL4 V _H -(G ₄ S)-anti-IL13V _H -C _{H1} -Fc	7
IL4(G4S2)IL13CH1-Fc	anti-IL4 V _H -(G ₄ S) ₂ -anti-IL13V _H -C _{H1} -Fc	8
Códigos de Cadena Ligera		
IL13(G4S)IL4CL	anti-IL13 V _L -(G₄S)-anti-IL4 V _L -CL	9
IL13 (G4S2)IL4CL	anti-IL13 V _L -(G ₄ S) ₂ -anti-IL4 V _L -CL	10
IL4(G4S)IL13CL	anti-IL4 V _L -(G₄S)-anti-IL13 V _L -CL	11
IL4(G4S2)IL13CL	anti-IL4 V _L -(G ₄ S) ₂ -anti-IL13 V _L -CL	12

Las combinaciones de proteínas mostradas en la Tabla 2 se expresaron mediante transfección transitoria y se purificaron por cromatografía de Proteína A. En cada caso, la cromatografía de exclusión por tamaño reveló menos de 12% de agregación, teniendo la mayoría menos de 7% de agregación; pero se encontró que ninguna de las inmunoglobulinas de doble cabeza de entrecruzamiento exhibía capacidad alguna de unirse a IL-4 o IL-13. Sin embargo, no se pudo detectar ninguna unión similar a anticuerpo, y las razones de esta falta de actividad no se pudo establecer. Se predijo anteriormente que esta disposición podría mostrar una estabilidad superior a lo largo del los anticuerpos de dominio de la región variable dual descritos en la Patente de EE.UU. Nº 7.612.181 y la Publicación Internacional Nº WO 2009/052081.

5

Tabla 2. Unión de CODH-Ig a IL4 e IL13

Tabla 2. Union de CODH-ig a IL4 e IL	13		
Combinación de Proteínas	Agregación	Unión a IL4	Unión a IL13
anti-IL13 V _H -(G ₄ S)-anti-IL4 V _H -C _{H1} -Fc	5,4%	ND*	ND
anti-IL4 V _L -(G ₄ S)-anti-IL13 V _L -C _L			
anti-IL13 V _H -(G ₄ S)-anti-IL4 V _H - C _{H1} -Fc	6,3%	ND	ND
anti-IL4 V _L -(G ₄ S) ₂ -anti-IL13 V _L -CL			
anti-IL13 V _H -(G _a S) ₂ -anti-IL4 V _H - C _{H1} -Fc	11,5%	ND	ND
anti-IL4 V_L -(G ₄ S)-anti-IL13 V_L -CL			
anti-IL13 V _H -(G ₄ S) ₂ -anti-IL4 V _H - C _{H1} -Fc	10,1%	ND	ND
anti-IL4 V_L -(G ₄ S) ₂ -anti-IL13 V_L -CL			
anti-IL4 V _H -(G ₄ S)-anti-IL13 V _H - C _{H1} -Fc	2,7%	ND	ND
anti-IL13 V _L -(G ₄ S)-anti-IL4 V _L -CL			
anti-IL4 V _H -(G ₄ S)-anti-IL13 V _H - C _{H1} -Fc	3,6%	ND	ND
anti-IL13 V_L -(G ₄ S) ₂ -anti-IL4 V_L -CL			
anti-IL4 V _H -(G ₄ S) ₂ -anti-IL13 V _H - C _{H1} -Fc	2,9%	ND	ND
anti-IL13 V_L -(G ₄ S)-anti-IL4 V_L -CL			
anti-IL4 V_H -(G ₄ S) ₂ -anti-IL13 V_H - C_{H1} -Fc anti-IL13 V_L -(G ₄ S) ₂ -anti-IL4 V_L –CL	10,8%	ND	ND

^{*} ND significa ninguna detectada

Ejemplo 2. Diseño de Proteínas CODV-Ig mediante Modelado Molecular

Para obtener proteínas similares a anticuerpos completamente funcionales utilizando la configuración de doble cabeza de entrecruzamiento que son modificables a la incorporación de los dominios Fc y C_{L1}, se desarrolló un protocolo de modelado molecular para la inclusión y la evaluación de diferentes enlazadores entre los dominios constante y variable y entre los dominios variables de las cadenas tanto pesadas como ligeras. La cuestión era si la adición de enlazadores únicos entre cada interfaz de dominio constante/variable y entre las dos interfaces de dominio variable/variable en las cadenas tanto pesadas como ligeras permitiría que se produjera un plegamiento adecuado de la proteína y produjera moléculas similares a anticuerpos funcionales en la configuración de la región variable dual de entrecruzamiento (*véase* la Figura 2). En otras palabras, se evaluaron un total de cuatro enlazadores independientes y únicos (*véase* la Figura 2). Este protocolo de modelado molecular se basó en el acoplamiento proteína-proteína de modelos de homología y modelos experimentales de las regiones Fv_{IL4} y Fv_{IL13}, respectivamente, en combinación con enlazadores apropiados entre las regiones Fv_{IL4} y Fv_{IL13} y entre las regiones Fv y constante o Fc.

A los enlazadores independientes se les asignaron nombres únicos como sigue: L_1 se refiere al enlazador entre V_L N-terminal y V_L C-terminal en la cadena ligera; L_2 se refiere al enlazador entre V_L C-terminal y C_L en la cadena ligera; L_3 se refiere al enlazador entre V_H N-terminal y el V_H C-terminal en la cadena pesada; L_4 se refiere al enlazador entre el V_H C-terminal y C_{H1} (y Fc) en la cadena pesada. Cabe señalar que las designaciones V_H y V_L se refieren sólo a la ubicación del dominio en una cadena de proteína particular en el formato final. Por ejemplo, V_{H1} y V_{H2} podrían derivarse de dominios V_{L1} y V_{L2} en los anticuerpos parentales y se colocan en las posiciones V_{H1} y V_{H2} en una CODV-lg. Del mismo modo, V_{L1} y V_{L2} se podrían derivar de dominios V_{H1} y V_{H2} en los anticuerpos parentales y se colocan en las posiciones V_{H1} y V_{H2} en una CODV-lg. Por lo tanto, las designaciones V_H y V_L se refieren a la ubicación actual y no a la ubicación original en un anticuerpo parental.

5

25

30

- En más detalle, se construyó un modelo de homología de Fv _{IL4} en entradas AP 1YLD (cadena ligera) y 1IQW (cadena pesada). El dímero Fv_{IL4} se recompuso en una estructura cristalina interna del complejo IL13 / anti-IL13 Fab_{IL13} y se optimizó. Con el fin de obtener una estimación del volumen requerido por IL4 cuando se une a Fv_{IL4}, la estructura cristalina de IL4 (1RCB.pdb) fue acoplada al modelo de homología de Fv_{IL4}. A continuación, se generaron veintidós modelos putativos del complejo que merecían una mayor consideración.
- Paralelamente, el modelo de homología de Fv_{IL4} se acopló a Fv_{IL13} extraído de una estructura cristalina interna del complejo IL13/Fab_{IL13}. Se encontró que una solución superior permitía la construcción de enlazadores relativamente cortos, al tiempo que no muestran interferencia estérica para la unión al antígeno y la colocación de los dominios constantes como fue el caso para las inmunoglobulinas de la región variable dual *(véase* la Figura 3). En esta disposición Fv_{IL4} (V_{L1}) se colocó en el extremo N de la cadena ligera, seguido de Fv_{IL13} (V_{L2}) y Fc (C_{L1}) en el extremo C de la cadena ligera. En la cadena pesada, Fv_{IL13} (V_{H2}) se colocó en posición N-terminal, seguido de Fv_{IL4} (V_{H1}) y las regiones constantes (C_{H1} C_{H2} C_{H3}).

Tal como se muestra en la Tabla 3, los modelos de la cadena ligera sugirieron que el enlazador L_1 entre los dominios V_{L1} y V_{L2} y el enlazador L_2 entre los dominios V_{L2} y C_{L1} debería ser entre uno a tres y cero a dos residuos glicina de longitud, respectivamente. Modelos de la cadena pesada sugirieron que el enlazador L_3 entre los dominios V_{H2} y V_{H1} y el enlazador L_4 entre los dominios V_{H1} y C_{H1} debe ser entre dos y seis y cuatro a siete residuos glicina de longitud, respectivamente (*véase* la Tabla 3 y la Figura 2). En este ejemplo, la glicina se utilizó como un aminoácido prototípico para los enlazadores, pero otros residuos de aminoácidos también pueden servir como enlazadores. La estabilidad estructural de los modelos propuestos se verificó mediante la optimización de las conformaciones de los enlazadores, la minimización y los cálculos de dinámica molecular. La combinación sistemática entre cuatro construcciones de cadena ligera y seis construcciones de cadena pesada resultó en 24 posibles proteínas de unión similares a anticuerpos anti-IL-4 y anti-IL13 biespecíficas de región variable dual de entrecruzamiento (*véase* la Tabla 4).

Tabla 3. Longitudes de Enlazador Propuestas

Enlazador Entre	Inserción Máxima del Enlazador	Inserción Mínima del Enlazador	Nombre del Enlazador
V _{L1} -V _{L2}	Gly₃	Gly	L ₁
V _{L2} -C _L	Gly₂	None	L ₂
V _{H2} -V _{H1}	Gly ₆	Gly₂	L ₃
V _{H1} -C _{H1}	Gly ₇	Gly₄	L ₄

Tabla 4. CODV-lg para Expresión

	Tabla 4. CODV-lg para Expresión	
Código*	Cadenas Pesadas (extremo N a C)	SEQ ID NO:
HC1	IL13 V _H -(Gly6)-IL4 V _H -(Gly7)-C _{H1} -Fc	13
HC2	IL13 V _H -(Gly6)-IL4 V _H -(Gly4)- C _{H1} -Fc	14
нсз	IL13 V _H -(Gly2)-IL4 V _H -(Gly7)- C _{H1} -Fc	15
HC4	IL13 V _H -(Gly2)-IL4 V _H -(Gly4)- C _{H1} -Fc	16
HC5	IL13 V _H -(Gly4)-IL4 V _H -(Gly7)- C _{H1} -Fc	17
HC6	IL13 V _H -(Gly4)-IL4 V _H -(Gly4)- C _{H1} -Fc	18
Código*	Cadenas Ligeras (extremo N a C)	
LC1	IL4 V _L -(Gly3)-IL13 V _L -C _{L1}	19
LC2	IL4 V _L -(Gly)-IL13 V _L - C _{L1}	20
LC3	IL4 V _L -(Gly3)-IL13 V _L -(Glv2)- C _{L1}	21
LC4	IL4 V _L -(Gly)-IL13 V _L -(Gly2)- C _{L1}	22
C _{L1}	dominio constante de la cadena ligera C _{L1} humano	23
C _{H1} -Fc	dominio constante de la cadena pesada C _{H1} humano y región Fc	24
Gly4	enlazador peptídico con 4 glicinas (GGGG)	25
Gly5	enlazador peptídico con 5 glicinas (GGGGG)	26
Glv6	enlazador peptídico con 6 glicinas (GGGGGG)	27
Gly7	enlazador peptídico con 7 glicinas (GGGGGGG)	28
Gly8	enlazador peptídico con 8 glicinas (GGGG GGGG)	29

^{*}Se diseñó un código corto para representar las estructuras asociadas. Los códigos que comienzan con HC representan la cadena pesada adyacente, y los códigos que comienzan con LC representan la cadena ligera adyacente.

En la Tabla 4, no se incluye el prefijo "anti", sino que pretende dar a entender que significa que IL13 se refiere a anti-IL13 e IL4 se refiere a anti-IL4.

Ejemplo 3. Generación de Plásmidos de Expresión de CODV-Ig

Moléculas de ácido nucleico que codifican las cadenas pesadas y ligeras variables de las seis cadenas pesadas y cuatro cadenas ligeras descritas en la Tabla 4 fueron generadas por síntesis de genes en Geneart (Regensburg, Alemania). Los dominios de cadena ligera variable se fusionaron a la cadena ligera constante (IGKC, GenBank Nº de Acceso Q502W4) por digestión con las endonucleasas de restricción ApaLl y BsiWl y, posteriormente, se ligaron en los sitios ApaLl/BsiWl del vector de expresión episomal pFF, un análogo del vector pTT descrito por Durocher *et al.*, (2002, *Nucl. Acids Res.* 30(2): E9), creando el plásmido de expresión en mamíferos para la expresión de las cadenas ligeras.

Los dominios de cadena pesada variable se fusionaron a la variante "Ted" de la cadena humana pesada constante (IGHG1, GenBank N° de Acceso 569F4) o, alternativamente, a un dominio C_{H1} marcado con 6x His de IGHG1 constante humana con el fin de crear un Fab biespecífico. A continuación, el dominio V_{H} se digirió con las endonucleasas de restricción ApaLl y Apal y después se fusionó al IGHG1 o al dominio C_{H1} marcado con 6x His, respectivamente, por ligadura en los sitios ApaLl/Apal del vector de expresión episomal pFF, creando los plásmidos de expresión de mamífero para la expresión de las cadenas pesadas (IgG1 o Fab, respectivamente).

Ejemplo 4. Expresión de CODV-Ig

5

10

15

20

40

45

50

Los plásmidos de expresión que codifican las cadenas pesadas y ligeras de las construcciones correspondientes se propagaron en células DH5a de *E. coli*. Los plásmidos utilizados para la transfección se prepararon a partir de *E. coli* utilizando el kit EndoFree Plasmid Mega de Qiagen.

Células HEK 293-FS que crecen en Medio Freestyle (Invitrogen) fueron transfectadas con plásmidos LC y HC indicados que codifican las cadenas pesadas y las cadenas ligeras mostradas en la Tabla 4 utilizando reactivo de transfección 293fectin (Invitrogen) tal como se describe por el fabricante. Después de 7 días, las células se separaron por centrifugación y el sobrenadante se pasó por un filtro de 0,22 µm para separar partículas.

- Construcciones de CODV-IgG1 se purificaron por cromatografía de afinidad en columnas de Proteína A (Columnas HP de Proteína A HiTrap, GE Life Sciences). Después de la elución de la columna con tampón acetato 100 mM y NaCl 100 mM, pH 3,5, las construcciones de CODV-IgG1 se desalaron utilizando Columnas de Desalinización HiPrep 26/10, formuladas en PBS a una concentración de 1 mg/mL y se filtraron utilizando una membrana de 0,22 µm.
- Construcciones biespecíficas de CODV Fab se purificaron mediante IMAC en columnas HiTrap IMAC HP (GE Life Sciences). Después de la elución de la columna con un gradiente lineal (tampón de elución: fosfato de sodio 20 mM, NaCl 0,5 M, imidazol 50-500 mM, pH 7,4), la proteína que contiene fracciones se agrupó y se desaló utilizando Columnas de Desalinización HiPrep 26/10, se formuló en PBS a una concentración de 1 mg/mL y se filtró utilizando una membrana de 0,22 μm.
- La concentración de proteína se determinó por medición de la absorbancia a 280 nm. Cada uno de los lotes se analizó mediante SDS-PAGE en condiciones reductoras y no reductoras para determinar la pureza y el peso molecular de cada subunidad y del monómero.

Una placa Nunc F96-MaxiSorp-Inmuno se recubrió con IgG anti-humana de cabra (específica para Fc) [NatuTec A80-104A]. El anticuerpo se diluyó a 10 μg/ml en tampón de recubrimiento de carbonato (carbonato de sodio50 mM, pH 9,6) y se dispensó a 50 μL por pocillo. La placa se selló con cinta adhesiva y se almacenó durante la noche a 4°C. La placa se lavó tres veces con tampón Wash (PBS, pH 7,4 y Tween 20 al 0,1%). 150 μL de disolución de bloqueo (BSA / PBS al 1%) se dispensó en cada pocillo para cubrir la placa. Después de 1 hora a temperatura ambiente, la placa se lavó tres veces con tampón Wash. Se añadieron 100 μL de muestra o patrones (en un intervalo de 1500 ng/ml a 120 ng/ml) y se dejó reposar durante 1 hora a temperatura ambiente. La placa se lavó tres veces con tampón Wash. Se añadieron 100 μL de conjugado de IgG-FC anti-humano de cabra - HRP [NatuTec A80-104P-60] diluido en la relación 1:10.000 utilizando disolución de incubación (BSA al 0,1%, PBS, pH 7,4, y Tween 20 al 0,05%). Después de 1 hora de incubación a temperatura ambiente, la placa se lavó tres veces con tampón Wash. 100 μL de sustrato ABTS (comprimido de 10 mg de ABTS (Pierce 34026) en Na₂HPO₄ 0,1 M, disolución de ácido cítrico 0,05 M, pH 5,0). La adición de 10 μL de H₂O₂ al 30%/ 10 ml de tampón Sustrato antes de su uso) se dispensó a cada uno de los pocillos, y se dejó que el color se desarrollara. Después de que el color se hubiese desarrollado (aproximadamente 10 a 15 minutos), se añadieron 50 μL de disolución de SDS al 1% para detener la reacción. La placa se leyó a A₄₀₅.

Ejemplo 5. Caracterización de Variantes de CODV-Ig

Para determinar si las cadenas pesadas y ligeras de proteína similar a anticuerpo CODV-Ig se apareaban y plegaban correctamente, se midió el nivel de agregación mediante cromatografía de exclusión por tamaño analítica (SEC). La SEC analítica se realizó en parejas ensambladas utilizando un explorador AKTA 10 (GE Healthcare) equipado con una columna de TSKgel G3000SWXL (7,8 mm x 30 cm) y la columna de seguridad de TSKgel SWXL (Tosoh Bioscience). El análisis se realizó a 1 ml/min utilizando NaCl 250 mM, fosfato de Na100 mM, pH 6,7, con detección a 280 nm. 30 µL de muestra de proteína (a 0,5-1 mg/ml) se aplicaron a la columna. Para la estimación del tamaño molecular, la columna se calibró utilizando una mezcla estándar de filtración en gel (MWGF-1000, Sigma Aldrich). La evaluación de los datos se realizó utilizando el software UNICORN v5.11.

La Tabla 5 muestra los resultados de la primera serie de 24 diferentes moléculas de CODV-Ig hechas utilizando las combinaciones de la región variable de anti-IL4 y anti-IL13 que se describen en la Tabla 4. Los códigos asignados en la Tabla 4 representan las estructuras adyacentes que se muestran en la Tabla 4. Para los pares de cadena ligera y cadenas pesadas en donde se producía proteína, los niveles de agregación se midieron utilizando SEC. Los resultados se muestran en la Tabla 5, en donde LC4 (L₁ = 1; L₂ = 2) tuvo más éxito en el apareamiento con las seis cadenas pesadas. LC4 corresponde a la estructura de IL-4 V_L- (Gly) -IL13 V_L- (Gly2)-C_{L1} con el enlazador L₁ igual a 1, en donde un único residuo aminoácido separa los dos dominios V_L de la cadena ligera de la región variable dual. Además, LC4 tenía L₂ igual a 2, que contenía un enlazador dipéptido Gly-Gly entre el V_L central y el C_{H1} C-terminal.

Tabla 5. Niveles de Agregación Entre Pares de Cadenas Pesadas y Ligera	Tabla 5. Niveles de A	gregación Entre Pares	de Cadenas Pesadas	v Ligeras
--	-----------------------	-----------------------	--------------------	-----------

	HCI	HC2	НС3	HC4	HC5	HC6
LCI	>50%	>50%	ND*	ND	ND	ND
LC2	ND	ND	ND	>50%	ND	ND
LC3	ND	ND	ND	ND	ND	ND
LC4	7.2%	6.8%	6.8%	7.1%	6.3%	5.9%

^{*}ND indica que no se produjo proteína

20 En los casos en los que se produjeron moléculas de CODV-Ig, se llevó a cabo un experimento BIACORE de una sola concentración a concentraciones de IL-4 e IL-13 intermedias para verificar la unión a antígenos diana. Moléculas similares a anticuerpos CODV-Ig correspondientes a las combinaciones LC4:HC4 y LC4:HC6 descritas en la Tabla 4 fueron elegidos para la evaluación de un análisis cinético completo utilizando la resonancia de plasmones de superficie.

Tal como se representa en la Tabla 5, la mayoría de las moléculas de CODV-Ig no se podían producir en absoluto o sólo en forma de agregados (hasta 90%). Las combinaciones de cadena pesada/ cadena ligera que dan lugar a niveles de agregación aceptables (5-10%) después de una etapa de cromatografía fueron los combinados con la cadena ligera de IL-4 V_L-(Gly)-IL13 V_L-(Gly2)-C_{L1}. La cadena ligera fue la cadena más meticulosa dentro de estas variantes de CODV-Ig y sirvió como plataforma para aceptar diferentes cadenas pesadas con diferentes composiciones de enlazador.

1. Análisis cinético

35

40

Se seleccionaron dos pares de cadenas pesadas y ligeras para el análisis cinético completo. IL13 e IL4 humanas recombinantes se adquirieron de Chemicon (EE.UU.). La caracterización cinética de los anticuerpos purificados se llevó a cabo utilizando la tecnología de resonancia de plasmones de superficie en un BIACORE 3000 (GE Healthcare). Un ensayo de captura utilizando un anticuerpo específico para especies (p. ej., MAB 1302 específico para Fc humano, Chemicon) se utilizó para la captura y la orientación de los anticuerpos investigados. El anticuerpo de captura se inmovilizó a través de grupos amina primaria (11.000 RU) en un chip CM5 de calidad para investigación (GE Life Sciences) utilizando procedimientos estándares. El anticuerpo analizado fue capturado a un caudal de 10 µL/min con un valor de RU ajustado que resultaría en la unión de analito máxima de 30 RU. Las cinéticas de unión se midieron frente a IL4 e IL13 humanas recombinantes en un intervalo de concentraciones entre 0 y 25 nM en HBS EP (HEPES 10 mM, pH 7.4, NaCl 150 mM, EDTA 3 mM y tensioactivo P20 al 0,005%) a un

caudal de 30μ l/min. Las superficies de chips se regeneraron con glicina 10μ mM, pH 2,5. Los parámetros cinéticos se analizaron y se calcularon en el paquete de programas v4.1 de BIAevaluation utilizando una celda de flujo sin anticuerpo capturado como referencia.

La Tabla 6 muestra la comparación de la cinética de los anticuerpos BB13 (anti-IL13) y 8D4 (anti-IL-4) parentales (expresados como IgGs) con los dominios respectivos dentro del formato CODV-Ig (Tabla 4, Códigos de LC4:HC4 y LC4:HC6). Tal como se muestra en la Tabla 6, las construcciones de CODV-Ig no exhibían propiedades de unión reducidas frente a los antígenos correspondientes, en comparación con los anticuerpos anti-IL13 y anti-IL4 parentales. La pérdida en la tasa de enlace observada en el formato DVD-Ig/TBTI utilizando las mismas secuencias de Fv no se produjo con la configuración CODV-Ig. Los sitios de unión que miran en dirección opuesta deben permitir la unión de grandes antígenos o el puenteo de células diferentes con una configuración similar a anticuerpo biespecífica, y también sería adecuado para una selección más amplia de anticuerpos parentales. Una ventaja adicional de la CODV-Ig era que no hay residuos de enlazador que sobresalgan en el sitio de unión al antígeno y que reduzcan la accesibilidad del antígeno.

5

10

20

25

30

35

Tabla 6. Análisis Cinético de LC4:HC4 y LC4:HC6

Código		Tasa de Enlace [1/Ms]	Tasa de Desenlace [1/s]	KD [M]
	mAb anti-IL4 parental	2,49E+07	1,95E-04	7,83E-12
	mAb anti-IL13 parental	1,59E+06	1,30E-04	8,18E-11
LC4:HC4	CODV-Ig con IL4	3,16E+07	2,89E-04	9,14E-12
LC4:HC4	CODV-IG con IL13	1,20E+06	1,12E-04	9,34E-11
LC4:HC6	CODV-lg con IL4	2,97E+07	3,30E-04	1,11E-11
LC4:HC6	CODV-IG con IL13	1,39E+06	1,63E-04	1,18E-10

15 2. Co-inyección de IL4 e IL13 para la Demostración de la Unión de Antígeno Aditivo por CODV-Ig

Para investigar la unión aditiva de los dos antígenos, se aplicó un método de co-inyección con asistente en el que se inyectó inmediatamente un antígeno seguido por el otro antígeno después de un tiempo de retraso (IL4, después IL13, y viceversa). El nivel de unión resultante se puede comparar con el que se consigue con una mezcla 1: 1 de los dos antígenos en la misma concentración. Con el fin de demostrar la unión aditiva de ambos antígenos IL4 y IL13 por las moléculas de CODV-Ig, se llevó a cabo un experimento BIACORE con una combinación CODV-Ig [HC4:LC4] por co-inyección de ambos antígenos en tres ciclos de análisis separados (véase la Figura 4). La co-inyección se realizó con IL4 3,125 nM/IL13 25 nM (y viceversa) y con una mezcla 1:1 de IL4 3,125 nM e IL13 25 nM. Una co-inyección de tampón HBS-EP se hizo como una referencia. En un punto de 800 segundos, se logró un nivel de unión idéntico de 63 RU después de la inyección de la mezcla de antígenos o de la co-inyección de los antígenos, independientemente de la secuencia de co-inyección. Cuando la proteína CODV-Ig había sido saturada por el primer antígeno (IL4), se inyectó el segundo antígeno (IL13) y se observó una segunda señal de unión. Esta observación se reprodujo cuando se invirtió la secuencia de la inyección del antígeno. Esto demuestra la unión aditiva y la no inhibición de la unión de ambos antígenos por la CODV-Ig. Por lo tanto, la construcción CODV-Ig fue capaz de unir ambos antígenos simultáneamente (es decir, exhiben biespecificidad) saturando todos los sitios de unión (es decir, exhiben tetravalencia).

Ejemplo 6. Tolerancia de las Longitudes de Enlazador para CODV-Ig

La tolerancia para los enlazadores de diferentes longitudes se evaluó mediante la construcción de moléculas de CODV-lg que tienen diferentes combinaciones de longitudes de enlazador para L_1 , L_2 en la cadena ligera y para L_3 y L_4 en la cadena pesada. Construcciones de CODV-lg se generaron con enlazadores de la cadena pesada L_3 y L_4 que varían entre 1 y 8 residuos para L_3 y 0 ó 1 residuo para L_4 . La cadena pesada contenía anti-IL4 como el dominio de unión N-terminal y anti-IL13 como el dominio de unión C-terminal, seguido de C_{H1} -Fc. Los enlazadores de la cadena ligera L_1 y L_2 se variaron de 3 a 12 residuos para L_1 y de 3 a 14 residuos para L_2 . La cadena ligera contenía anti-IL13 como el dominio de unión N-terminal y anti-IL4 como el dominio de unión C-terminal seguido de C_{L1} .

1. Caracterización de Variantes CODV-Ig

5

15

20

25

30

35

La determinación del nivel de agregación se realizó por cromatografía de exclusión por tamaño analítica (SEC). La SEC analítica se realizó utilizando un explorador ÄKTA 10 (GE Healthcare) equipado con una columna TSKgel G3000SWXL (7,8 mm x 30 cm) y una columna de seguridad TSKgel SWXL (Tosoh Bioscience). El análisis se realizó a 1 ml/min utilizando NaCl 250 mM, fosfato de Na 100 mM, pH 6,7, con detección a 280 nm. 30 μL de muestra de proteína (a 0,5-1 mg/ml) se aplicó en la columna. Para la estimación del tamaño molecular, la columna se calibró utilizando una mezcla estándar de filtración en gel (MWGF-1000, SIGMA Aldrich). La evaluación de los datos se realizó utilizando el software UNICORN v5.11.

IL13 e IL4 humanas recombinantes se adquirieron de Chemicon (EE.UU.). TNF-α humano recombinante se adquirió de Sigma Aldrich (H8916-10 μg), IL-1β humana recombinante (201-LB/CF), IL-23 humana recombinante (1290-IL/CF), EGFR humana recombinante (344 ER) y HER2 humana recombinante (1129-ER-50) se adquirieron de R&D Systems.

El análisis de unión cinética por Biacore se realizó como sigue. Se utilizó la tecnología de resonancia de plasmones de superficie en un Biacore 3000 (GE Healthcare) para la caracterización cinética detallada de los anticuerpos purificados. Un ensayo de captura utilizando un anticuerpo específico para la especie (p. ej., MAB 1302 específico para Fc humano, Chemicon) se utilizó para la captura y la orientación de los anticuerpos investigados. Para la determinación de las cinéticas de unión de IL4 e IL13, se capturaron los correspondientes CODV Fabs como en el Ejemplo 10, Tabla 12 utilizando el kit de captura de Fab anti-humano (GE Healthcare). El anticuerpo de captura se inmovilizó a través de grupos amina primaria (11000 RU) en un chip CM5 de calidad para investigación (GE Life Sciences) utilizando procedimientos estándares. El anticuerpo analizado fue capturado a un caudal de 10 µL/min con un valor ajustado RU que resultaría en la unión de analito máxima de 30 RU. Las cinéticas de unión se midieron frente a IL4 humana recombinante e IL13 en un intervalo de concentraciones entre 0 y 25 nM en HBS EP (HEPES 10 mM pH 7,4, NaCl 150 mM, EDTA 3 mM, tensioactivo P20 al 0,005%) a un caudal de 30 µL/min. Las superficies de los chips se regeneraron con glicina 10 mM pH 2,5. Los parámetros cinéticos se analizaron y se calcularon en el paquete de programas v4.1 de BIAevaluation utilizando una celda de flujo sin anticuerpo capturado como referencia.

Las afinidades de unión de CODV-Ig, CODV-Fab y TBTI frente a EGFR y HER2 se midieron utilizando un sistema de matriz de interacción de proteínas Proteon XPR36 (Biorad). Los antígenos fueron inmovilizadas por acoplamiento de amina reactiva en chips sensores GLC (BioRad). Series de dilución de las variantes de anticuerpos biespecíficos en tampón PBSET (Biorad) se analizaron en paralelo en un modo de cinética de un solo disparo con doble referencia. Los datos se analizaron utilizando el Software Proteon Manager v3.0 (Biorad) con el modelo de Langmuir 1:1 con transferencia de masa modelo o modelo de analito bivalente.

La Tabla 7 resume los resultados para el rendimiento, la agregación (tal como se mide por cromatografía de exclusión por tamaño) y la afinidad de unión para CODV-lg que tienen diferentes combinaciones de tamaños de los enlazadores. Los resultados revelaron que las moléculas de Ig-CODV, en las que Ig-QDV, en las que Ig-QDV, en los casos en los que se produjo la proteína, había un alto nivel de agregación (Veanse Lotes con Ig-QDV, en Ig-QDV, en los casos en los que se produjo la proteína, había un alto nivel de agregación (Veanse Lotes con Ig-QDV, en Ig-

Tabla 7. Optimización de los Tamaños de Enlazador para CODV-Ig

Lote ID	Alineación sobre LC1*	L ₁	L ₂	L ₃	L ₄	Rendimiento [mg/L]	Agregación [%]	KD (Antigeno1) IL4 [pM]	KD (Antigeno2) IL13 [pM]
101	IL4 x IL13	0	0	0	0	n.p.	-	-	-
102	IL4 x IL13	0	0	2	4	1,0	66,4	35	125
103	IL4 x IL13	0	1	2	4	2,0	10,8	4	124
104	IL4 x IL13	0	2	2	4	1,0	10,0	3	137
105	IL4 x IL13	0	2	4	4	2,0	8,5	6	94

Lote ID	Alineación sobre LC1*	L ₁	L ₂	L ₃	L ₄	Rendimiento [mg/L]	Agregación [%]	KD (Antigeno1) IL4 [pM]	KD (Antigeno2) IL13 [pM]
106	IL4 x IL13	1	0	2	4	4,2	61,0	-	-
107	IL4 x IL13	1	0	2	7	n.p.	-	-	-
108	IL4 x IL13	1	0	4	4	n.p.	-	-	-
109	IL4 x IL13	1	0	4	7	n.p.	-	-	-
110	IL4 x IL13	1	0	6	4	3,0	75,0	-	-
111	IL4 x I13	1	0	6	7	5,6	91,0	-	-
112	IL4 x IL13	1	1	2	4	5,3	8,8	5	55
113	IL4 x IL13	1	2	0	0	2,0	1,9	6	59
114	IL4 x IL13	1	2	0	2	1,0	7,2	4	75
115	IL4 x IL13	1	2	0	4	2,0	8,0	11	62
116	IL4 x IL13	1	2	1	4	3,0	5,7	5	74
117	IL4 x IL13	1	2	12	12	4,0	9,2	7	75
118	IL4 x IL13	1	2	12	9	7,0	11,8	7	74
119	IL4 x IL13	1	2	15	15	10,0	7,9	6	64
120	IL4 x IL13	1	2	2	2	2,0	5,9	6	70
121	IL4 x IL13	1	2	2	4	7,0	7,1	11	118
122	IL4 x IL13	1	2	2	7	6,6	6,8	1	50
123	IL4 x IL13	1	2	4	4	5,8	5,9	9	93
124	IL4 x IL13	1	2	4	7	5,6	6,3	6	51
125	IL4 x IL13	1	2	6	4	7,6	6,8	8	64
126	IL4 x IL13	1	2	6	7	8,2	7,2	9	56
127	IL4 x IL13	1	2	9	12	4,0	8,7	2	83

Lote ID	Alineación sobre LC1*	L ₁	L ₂	L ₃	L ₄	Rendimiento [mg/L]	Agregación [%]	KD (Antigeno1) IL4 [pM]	KD (Antigeno2) IL13 [pM]
128	IL4 x IL13	1	2	9	9	10,2	14,0	12	94
129	IL4 x IL13	1	3	2	4	4,0	4,7	5	70
130	IL4 x IL13	1	4	2	4	7,1	6,0	4	57
131	IL4 x IL13	2	2	2	4	1,0	7,3	5	50
132	IL4 x IL13	3	0	2	4	n.p.	-	-	-
133	IL4 x IL13	3	0	2	7	n.p.	_	_	-
134	IL4 x IL13	3	0	4	4	n.p.	_	-	-
135	IL4 x IL13	3	0	4	7	n.p.	_	-	-
136	IL4 x IL13	3	0	6	4	9,8	93,0	-	-
137	IL4 x IL13	3	0	6	7	5,8	90,0	-	-
138	IL4 x IL13	3	2	2	4	n.p.	<u>-</u>	_	_
139	IL4 x IL13	3	2	2	7	n.p.	_	<u>-</u>	_
140	IL4 x IL13	3	2	4	4		-	_	_
						n.p.			
141	IL4 x IL13	3	2	4	7	n.p.	-	-	-
142	IL4 x IL13	3	2	6	4	n.p.	-	-	-
143	IL4 x IL13	3	2	6	7	n.p.	-	-	-

La alineación en la cadena pesada debe ser IL13V_H-L₃-IL4V_H-L₄-C_{H1}-Fc n.p. significa que la construcción no se pudo producir.

Además, se encontró que las longitudes de enlazador CODV-Ig descritas anteriormente eran más sensibles a los aumentos en 1 residuo aminoácido que aumentos en 2 residuos aminoácidos. Por ejemplo, mientras que los Lotes de Nºs de ID 103 y 104 difieren en 1 residuo aminoácido en L_2 , el Lote de Nº de ID 103 muestra 6 veces más agregación y el Lote de Nº de ID 104 muestra menos agregación y dos veces el rendimiento. En contraposición, los Lotes de Nºs de ID de lote No. 104 y 105, que se diferencian por dos residuos en L_2 exhibían perfiles similares con respecto al rendimiento, la agregación y la unión.

Ejemplo 7. Cadena Pesada como la Cadena de Molde para CODV-Ig

10 En los ejemplos 1 a 5, los tamaños de enlazadores cortos óptimos en la cadena ligera sugirieron que la cadena ligera servía como un molde al permanecer en una disposición lineal y que se requerían enlazadores más grandes en la cadena pesada con el fin de que la cadena pesada se plegara correctamente en la configuración de

entrecruzamiento para adaptarse a la cadena ligera del molde (véase la Figura 5, Panel A). Seguidamente se evaluó si los enlazadores cortos colocados específicamente en la cadena pesada para mantener una disposición de revestimiento en la cadena pesada hicieron que la cadena pesada fuese la cadena "molde", y si el patrón se repetiría y serían necesarios enlazadores más grandes para permitir que la cadena no molde se plegara correctamente y alojara ahora la cadena pesada del molde (véase la Figura 5, Panel B).

5

10

15

20

La Figura 6 ilustra estos principios de diseño CODV-lg sobre la base de tener a la cadena ligera o a la cadena pesada como "molde". Para evaluar el carácter genérico de este concepto, se generaron construcciones CODV-lg con enlazadores de cadena pesada L_3 y L_4 que varía entre 1 y 8 residuos para L_3 y 0 ó 1 residuos para L_4 . La cadena pesada contenía anti-IL4 como el dominio de unión N-terminal y anti-IL13 como el dominio de unión C-terminal seguido de C_{H1} -Fc. Los enlazadores de la cadena ligera L_1 y L_2 se variaron de 3 a 12 residuos para L_1 y de 3 a 14 residuos para L_2 . La cadena ligera contenía anti-IL13 como el dominio de unión N-terminal y anti-IL4 como el dominio de unión C-terminal seguido de C_{L1} .

La Tabla 8 resume los resultados para el rendimiento, la agregación (tal como se mide por cromatografía de exclusión por tamaño) y la afinidad de unión para CODV-lg que tienen diferentes combinaciones de tamaños de los enlazadores y en donde la cadena pesada se mantiene en una disposición lineal como la cadena de molde y se permite que la cadena ligera se pliegue en una configuración de entrecruzamiento. Los resultados revelaron que no podían producirse las moléculas de CODV-lg en las que L4 era generalmente cero, o en los casos en los que se produjo la proteína, había un alto nivel de agregación (similar a las moléculas en las que L2 era igual a cero) (véanse los Lotes de N°s de ID 207-209, 211-212, 219-224, 231-236, 243-252 y 263-266 en la Tabla 8). Una excepción era el Lote de N° de ID 210, en el que L1 era 7, L2 era 5, L3 era 2 y L4 era cero. Esta disposición produjo una cantidad suficiente de proteína y tenía un nivel aceptable de la agregación y de unión, lo que sugirió que alguna combinación de los tamaños de enlazador se pudo encontrar para compensar un enlazador de longitud cero en L4 en algunas circunstancias.

Tabla 8. Optimización de los Tamaños de Enlazador con Cadena Pesada como Molde

Lote	Alineación sobre HC*	L ₁	L ₂	L ₃	L ₄	Rendimiento [mg/L]	Agregación [%]	KD (Antigeno1) IL4 [pM]	KD (Antigeno2) IL13 [pM]
201	IL4 x IL13	5	3	1	2	6,3	12	4	72
202	IL4 x IL13	5	5	1	2	10,5	7,0	9	54
203	IL4 x IL13	7	3	1	2	19,3	9,4	80	46
204	IL4 x IL13	7	5	1	2	15,3	5,2	3	25
205	IL4 x IL13	10	3	1	2	4,7	4,0	8	58
206	IL4 x IL13	10	5	1	2	9,1	3,9	4	58
207	IL4 x IL13	5	3	2	0	6,7	25,3	3	33
208	IL4 x IL13	5	5	2	0	10,2	18,4	10	77
209	IL4 x IL13	7	3	2	0	16,2	22,2	5	47
210	IL4 x IL13	7	5	2	0	14,7	9,7	4	47
211	IL4 x IL13	10	3	2	0	2,1	12,8	7	53
212	IL4 x IL13	10	5	2	0	7,0	36,3	10	29

Lote	Alineación sobre HC*	L ₁	L ₂	L ₃	L ₄	Rendimiento [mg/L]	Agregación [%]	KD (Antigeno1) IL4 [pM]	KD (Antigeno2) IL13 [pM]
213	IL4 x IL13	5	3	2	2	4,0	13,2	5	27
214	IL4 x IL13	5	5	2	2	8,0	7,9	10	53
215	IL4 x IL13	7	3	2	2	14,9	11,5	4	50
216	IL4 x IL13	7	5	2	2	7,5	3,6	11	40
217	IL4 x IL13	10	3	2	2	2,4	4,4	8	79
218	IL4 x IL13	10	5	2	2	4,6	6,6	4	36
219	IL4 x IL13	3	6	3	0	2,1	51,8	8	71
220	IL4 x IL13	3	10	3	0	3,9	59,4	1	42
221	IL4 x IL13	3	14	3	0	1,9	57,6	35	81
222	IL4 x IL13	6	6	3	0	4,0	11,8	7	53
223	IL4 x IL13	6	10	3	0	10,3	16,6	6	23
224	IL4 x IL13	6	14	3	0	5,1	13,5	9	52
225	IL4 x IL13	3	6	3	2	2,8	71,6	6	68
226	IL4 x IL13	3	10	3	2	7,3	65,8	6	64
227	IL4 x IL13	3	14	3	2	1,6	53,6	7	39
228	IL4 x IL13	6	6	3	2	4,0	19,1	7	44
229	IL4 x IL13	6	10	3	2	2,2	15,4	3	14
230	IL4 x IL13	6	14	3	2	4,0	16,2	6	76
231	IL4 x IL13	5	3	5	0	n.p.	-	-	-
232	IL4 x IL13	5	5	5	0	0,6	24,9	8	70
233	IL4 x IL13	7	3	5	0	0,4	15,1	3	113
234	IL4 x IL13	7	5	5	0	1,3	30,7	3	122

Lote	Alineación sobre HC*	L ₁	L ₂	L ₃	L ₄	Rendimiento [mg/L]	Agregación [%]	KD (Antigeno1) IL4 [pM]	KD (Antigeno2) IL13 [pM]
235	IL4 x IL13	10	3	5	0	0,1	11,3	2	82
236	IL4 x IL13	10	5	5	0	0,4	18,6	11	112
237	IL4 x IL13	5	3	5	2	2,1	45,3	8.1	101.0
238	IL4 x IL13	5	5	5	2	0,6	45,4	9.3	67.2
239	IL4 x IL13	7	3	5	2	n.p.	-	-	-
240	IL4 x IL13	7	5	5	2	1,6	31,7	4	65
241	IL4 x IL13	10	3	5	2	0,2	14,7	7	119
242	IL4 x IL13	10	5	5	2	1,1	17,6	10	37
243	IL4 x IL13	3	6	6	0	1,6	54,3	5	50
244	IL4 x IL13	3	10	6	0	1,5	63,9	10	10
245	IL4 x IL13	3	14	6	0	1,0	61,5	10	69
246	IL4 x IL13	6	6	6	0	1,1	16,2	6	57
247	IL4 x IL13	6	10	6	0	4,7	27,9	2	41
248	IL4 x IL13	6	14	6	0	0,9	18,1	10	79
249	IL4 x IL13	10	6	6	0	0,3	8,7	3	87
250	IL4 x IL13	10	8	6	0	0,7	21,3	8	53
251	IL4 x IL13	12	6	6	0	1,3	9,7	8	70
252	IL4 x IL13	12	8	6	0	1,3	11,7	7	85
253	IL4 x IL13	3	6	6	2	5,1	66,8	6	66
254	IL4 x IL13	3	10	6	2	2,4	62,4	6	80
255	IL4 x IL13	3	14	6	2	2,0	72,1	2	60
256	IL4 x IL13	6	6	6	2	2,0	32,4	4	81

Lote	Alineación sobre HC*	L ₁	L ₂	L ₃	L ₄	Rendimiento [mg/L]	Agregación [%]	KD (Antigeno1) IL4 [pM]	KD (Antigeno2) IL13 [pM]
								.= . [b]	.=.e [b]
257	IL4 x IL13	6	10	6	2	1,9	29,8	7	30
258	IL4 x IL13	6	14	6	2	2,5	24,6	5	70
259	IL4 x IL13	10	6	6	2	1,4	16,4	8	71
260	IL4 x IL13	10	8	6	2	0,8	16,6	10	71
261	IL4 x IL13	12	6	6	2	1,2	12,3	5	265
262	IL4 x IL13	12	8	6	2	1,1	13,2	4	111
263	IL4 x IL13	10	6	8	0	2,4	10,8	2	74
264	IL4 x IL13	10	8	8	0	0,8	8,0	7	22
265	IL4 x IL13	12	6	8	0	1,0	9,5	8	66
266	IL4 x IL13	12	8	8	0	2,0	9,3	3	69
267	IL4 x IL13	10	6	8	2	1,4	15,0	9	170
268	IL4 x IL13	10	8	8	2	1,0	12,9	4	52
269	IL4 x IL13	12	6	8	2	1,2	8,8	5	66
270	IL4 x IL13	12	8	8	2	2,4	11,7	3	72

^{*} La alineación en la cadena ligera debe ser IL13 V_L - L_1 -IL4 V_L - L_2 - C_{L1}

10

Los resultados de las Tablas 7 y 8 demuestran claramente que se requieren enlazadores entre los dominios variables y constantes para permitir un plegamiento óptimo. Sólo en raras disposiciones se toleró un enlazador igual a cero (*véanse* los Lotes de N°s de ID 103 a 105, en donde L₁ (LC) era cero, y el Lote N° 210, en que L₄ era cero). Sin embargo, en cada caso, el enlazador de transición correspondiente entre la región variable y la región constante en la otra cadena podría no ser cero.

Los resultados anteriores indicaron que las combinaciones de L_1 = 7, L_2 = 5, L_3 = 1 y L_4 = 2 eran un buen punto de partida para la optimización de un nuevo CODV-Ig en el que la cadena pesada es el molde. Los intervalos en la Tabla 9 demostraron ser intervalos razonables para la modificación por ingeniería con éxito un nuevo CODV-Ig a partir de dos anticuerpos parentales.

Tabla 9. Intervalos de Tamaños de Enlazador para cada LC o HC como Molde

Enlazador	LC como	o Molde	HC como	o Molde
	Intervalo Máx.	Intervalo Mín.	Intervalo Máx.	Intervalo Mín.

Enlazador	LC como	o Molde	HC come	o Molde
	Intervalo Máx.	Intervalo Mín.	Intervalo Máx.	Intervalo Mín.
L ₁	1-3	1-2	3-12	5-10
L ₂	1-4	1-2	3-14	5-8
L ₃	2-15	4-12	1-8	1-5
L ₄	2-15	2-12	1-3	1-2

Ejemplo 8. Aplicabilidad Universal de Formato CODV-Ig

10

Para evaluar la idoneidad del formato CODV-Ig para la ingeniería de nuevas proteínas de unión similares a anticuerpos de las regiones variables de numerosos anticuerpos humanos y humanizados existentes que tienen especificidad para el receptor del factor de crecimiento similar a la insulina 1 (IGF1R(1)), un segundo receptor del factor de crecimiento similar a la insulina 1 (IGF1R(2)), receptor 2 de factor de crecimiento epidérmico humano (HER2), receptor del factor de crecimiento epidérmico (EGFR), factor de necrosis tumoral - alfa (TNFα), interleuquinas 12 y 23 (IL-12/23) e interleuquina 1beta (IL-1β) se incorporaron en el formato CODV-Ig (véase la Tabla 10).

Tabla 10. Códigos Descriptivos para Cadenas Pesadas y Ligeras utilizados en CODV-lg Biespecífico

Código*	Cadenas Pesadas (extremos N a C)	SEQ ID NO:
HC10	IGF1R(1) V _H -(Gly)-HER2 V _H -(Gly2)-C _{H1} -Fc	32
HC11	HER2 V _H -(Glv)- IGF1R(1) V _H -(Gly2)-C _{H1} -Fc	33
HC12	IGF1R(2) V _H -(Gly)-EGFR V _H -(Gly2)-C _{H1} -Fc	34
HC13	EGFR V _H -(Gly)- IGF1R(2) V _H -(Gly2)- C _{H1} -Fc	35
HC14	TNFα V _H -(Gly)-IL12/23 V _H -(Gly2)- C _{H1} -Fc	36
HC15	IL12/23 V _H -(Gly)-TNFα V _H -(Gly2)- C _{H1} -Fc	37
HC16	TNFα V _H -(Gly)-IL1β V _H -(Gly2)-C _{H1} -Fc	38
HC17	IL1β V _H -(Gly)-TNFα V _H -(Gly2)- C _{H1} -Fc	39
Código*	Cadenas Ligeras (extremos N a C)	
LC10	HER2 V _L -(Gly7)-IGF1R(1) V _L -(Gly5)-C _{L1}	40
LC11	IGF1R(1) V _L -(Gly7)- HER2 V _L -(Gly5)- C _{L1}	41

Código*	Cadenas Pesadas (extremos N a C)	SEQ ID NO:
LC12	EGFR V _L -(Gly7)-IGF1R(2) V _L -(Gly5)-C _{L1}	42
LC13	IGF1R(2) V _L -(Gly7)- EGFR V _L -(Gly5)- C _{L1}	43
LC14	IL12/23 V _L -(Gly7)- TNFα V _L -(Gly5)-C _{L1}	44
LC15	TNFα V _L -(Gly7)- IL12/23 V _L -(Gly5)- C _{L1}	45
LC16	IL1β V _L -(Gly7)- TNFα V _L -(Gly5)-C _{L1}	46
LC17	TNFα V _L -(Gly7)- IL1β V _L -(Gly5)-C _{L1}	47
C _{L1}	dominio constante de la cadena ligera de C _{L1} humano	23
C _{H1} -Fc	dominio constante de la cadena pesada de C _{H1} humano y región Fc	24
Gly4	enlazador peptídico con 4 glicinas (GGGG)	25
Gly5	enlazador peptídico con 5 glicinas (GGGGG)	26
Glv6	enlazador peptídico con 6 glicinas (GGGGGG)	27
Gly7	enlazador peptídico con 7 glicinas (GGGGGG)	28
Gly8	enlazador peptídico con 8 glicinas (GGGG GGGG)	29

^{*} Se diseñó un código corto para representar las estructuras asociadas. Los códigos que comienzan con HC representan la cadena pesada adyacente, y los códigos que comienzan con LC representan las cadenas ligeras adyacentes

- Las regiones variables de anticuerpos de anticuerpos humanos y humanizados conocidos se utilizaron para ensayar la aplicabilidad universal del formato CODV-Ig en el diseño de proteínas de unión similares a anticuerpos biespecíficas. Además, se examinó la posibilidad de efectos posicionales con respecto a la colocación de ciertas regiones variables de anticuerpo N-terminal o C-terminal en cualquiera de la cadena pesada o la cadena ligera. Basado en el diseño de moléculas de CODV-Ig que tienen una composición de enlazador L₁ = 7, L₂ = 5, L₃ = 1 y L₄ = 2, se introdujeron diferentes secuencias de anticuerpos en el formato CODV-Ig.
- Las actividades de anticuerpos biespecíficos o derivados contra IL1β y TNFα se determinaron utilizando células informadoras HEK-Blue TNFα/IL1β disponibles comercialmente (InvivoGen). Para determinar las actividades de anticuerpos contra TNFα e IL1β, las citoquinas se pre-incubaron durante 1 hora con diferentes concentraciones de los anticuerpos y se añaden a 50.000 células HEK Blue TNFα/IL1β. La inducción mediada por citoquinas de SEAP se midió después de 24 horas en el sobrenadante del cultivo con el ensayo QUANTI-Blue (InvivoGen).
- Tal como se muestra en la Tabla 11, todas las construcciones mostraron un buen a excelente rendimiento de proteínas y niveles aceptables de agregación (*véase*, en particular, Lotes de Nºs de ID 301 y 302 en la Tabla 11). La afinidad medida para cada dominio variable de anticuerpo estaba dentro de la afinidad publicada o esperada. En los casos en que se evaluó la afinidad, no se detectaron efectos posicionales. En resumen, tal como se muestra en las

siguientes tablas, no se observaron efectos posicionales con ninguno de los dominios variables de anticuerpos utilizados o con el uso de estos dominios en cualquier cadena de anticuerpo.

IC50 [pM] TNFα Ensayo Celular 138 138 136 95 Tabla 11. Uso Universal de Formato CODV-Ig para Proteínas de Unión similares a Anticuerpos Biespecíficas KD (Antígeno 2) [pM] 153 (HER2) 543 (TNFα) 358 (TNFa) 155 (IL1B) 65 (IL23) n.m. n.m. KD (Antígeno 1) 321 (TNFa) 340 (TNFα) 163 (HER2) 97,5 (IL1B) 118 (1L23) n.m. n.m. Agregación [%] 13,6 5,9 4,8 4°,3 7,5 7,1 5,7 2,7 Rendimiento [mg/L] 1,9 9,5 6,6 7,1 2 9 17 7 0 0 2 $^{\circ}$ $^{\circ}$ 0 0 0 Ľ **L**2 2 2 2 2 2 2 2 2 ī / _ _ _ _ _ / _ Alineación sobre IGF1R(1) x HER2 HER2 x IGF1R(1) **IGF1R(2)** × **EGFR** EGFR x IGF1R(2) IL12/23 × TNFα TNFα × IL12/23 $TNF\alpha \times IL1\beta$ IL1β × TNFα Lote ID DC/LC Códigos¹ 301 HC10/LC10 304 HC13/LC13 306 HC15/LC15 307 HC16/LC16 308 HC17/LC17 302 HC11/LC11 303 HC12/LC12 305 HC14/LC14

¹ – La cadena pesada y las cadenas ligeras correspondientes a los códigos pueden encontrarse en la Tabla 10. *n.m.= no medibles por Biacore

Ejemplo 9. Retención de la Afinidad de Anticuerpos Parentales en Formato CODV-Ig

Las secuencias de anticuerpos idénticas para anti-IL4 y anti-IL13 se incorporaron en los formatos TBTI/DVD-lg o CODV-lg para una comparación directa de estas configuraciones, el posicionamiento de los enlazadores y las afinidades de las moléculas resultantes. Como se muestra en la Figura 7, la afinidad de los parentales de cada uno de los anticuerpos se mantuvo en el formato CODV. Tal como se muestra en el panel superior de la Figura 7, cuando las regiones variables se colocaron en el formato TBTI/DVD-lg, un descenso en la afinidad del anticuerpo IL4 colocado en la posición interior de Fv2 se manifestó como una reducción de la tasa en enlace de la unión del anticuerpo al antígeno. En contraposición, no hubo pérdida en la afinidad para el formato CODV-lg, en comparación con los anticuerpos parentales (*véase* la Figura 7, Panel inferior).

10 Ejemplo 10. Adaptabilidad de CODV-lg al Formato de Fab

15

30

35

Se evalúo seguidamente la capacidad del formato CODV-Ig de proporcionar fragmentos tales como fragmentos Fab. Dos cadenas pesadas variables diferentes se fusionaron entre sí a través del enlazador L₃ y fueron alargadas en posición C-terminal por el enlazador L₄. Este complejo V_H se fusionó entonces al dominio C_{H1} de IGHG1 (GenBank Nº de Acceso Q569F4) que alberga en posición C-terminal las cinco secuencias de aminoácidos DKTHT (SEQ ID NO: 60) de la región de bisagra seguidas de seis residuos histidina. Dos cadenas ligeras variables diferentes se fusionaron entre sí en una configuración de entrecruzamiento a la cadena pesada correspondiente a través del enlazador L₁ y fueron extendidas en posición C-terminal por el enlazador L₂ y posteriormente fueron fusionadas a la cadena kappa constante (IGKC, GenBank Nº de Acceso Q502W4).

Los fragmentos Fab se expresaron mediante transfección transitoria tal como se ha descrito anteriormente. Siete días después de la transfección, las células se separaron por centrifugación, se añadió Tris-HCl 1M al 10% v/v, pH 8,0 y el sobrenadante se hizo pasar por un filtro de 0,22 μm para separar las partículas. Las proteínas Fab fueron capturadas utilizando columnas de alto rendimiento Histrap (GE Healthcare) y fueron eluidas a través de gradiente de imidazol. Las fracciones que contienen proteínas se reunieron y se desalaron utilizando columnas PD-10 o Sephadex. Disoluciones de proteínas concentradas y filtradas en condiciones estériles (0,22 μm) se ajustaron a 1 mg/ml y se mantuvieron a 4°C hasta su uso.

Se observaron ventajas inmediatas debido a que las moléculas de tipo Fab en una orientación CODV no mostraron tendencia a agregarse y conservaron las afinidades de los anticuerpos parentales (*véase* la Tabla 12). Construcciones de proteínas de unión de los Lotes de N°s de ID. 401-421 compararon directamente proteínas similares a anticuerpos en las que las regiones variables de anticuerpos se dispusieron como en moléculas CODV-Ig con la cadena pesada como molde (401, 402, 406, y 407), fragmentos similares a Fab CODV (402, 408, 413, 418 y 421), moléculas de cuatro dominios similares a anticuerpos en formato TBTI/DVD-Ig (404, 409, 414 y 419) y CODV-Ig sin enlazadores (405, 410, 415 y 420). Tal como se muestra en la Tabla 12, los resultados de esta comparación indicaron que hay más probabilidades de haber una pérdida en la afinidad en comparación con los anticuerpos parentales cuando la región variable se incorpora en un formato TBTI o DVD-Ig. Por el contrario, tanto el formato CODV-Ig como el formato CODV-Ig similares a Fab eran más capaces de mantener las afinidades de los parentales. Los resultados confirmaron, además, que moléculas de Ig-CODV requieren enlazadores entre las regiones variables y entre las regiones variables y los dominios constantes (*véase* la Tabla 12).

Lote ID	Muestra-ID	Formato	Tabla 12.		del Formato C	C T	Uso del Formato CODV-lg para Fragmentos similares a Fab	similares a Fab Agregación [%]	KD (Antige-	KD (Antige-	IC50 [pM] TNFα Ensay
	TNFα×	CODV-la		r ₂	-	2	7.1	7.5	321 (TNFα)	90 (1L23)	Celular 95
	IL12/23 x	CODV-la	7	r _C	_	2	6,17	7.1	118 (1L23)	543 (TNFα)	138
	TNFa x	CODV-Fab	. 2	· υ	-	2	18,7	1,7	232 (TNFa)	41 (IL23)	785
	TNFa x IL12/23	TBTI	(G4S)2	0	(G4S)2	0	26,0	8,7	219 (TNFα)	399 (1L23)	1
	TNFα x IL12/23	CODV-Ig	0	0	0	0	3,5	77			1
	IL1β x TNFα	CODV-Ig	7	5		2	2,4	5,7	98 (1L1β)	358 (TNFα)	139
1	TNFα x IL1β	CODV-Ig	7	2	_	7	9,9	13,6	340 (TNFα)	155 (ΙL1β)	122
	IL1β x TNFα	CODV-Fab	7	2	_	2	8,6	0	179 (ΙL1β)	1	
	IL1β x TNFα	TBTI	(G4S)2	0	(G4S)2	0	1,3	40,5	133 (IL1β)	456 (TNFα)	,
	TNFα x IL1β	CODV-Ig	0	0	0	0	n,p.	1	ı	1	
	EGFR x IGF1R(2)	CODV-Ig	7	5	_	2	9,5	4,3	124nM (EGFR)	n.m.	1
	IGF1R(2) x EGFR	CODV-Ig	7	5	_	7	17	2,7	n.m.	ı	ı
	EGFR x IGF1R(2)	CODV-Fab	7	ιΩ	~	2	13,3	0	42nM (EGFR)	n.m.	
	EGFR x IGF1R(2)	TBTI	(G4S)2	0	(G4S)2	0	2,1	2,9	7nM (EGFR)	n.m.	1
	EGFR x IGF1R(2)	CODV-Ig	0	0	0	0	4,4	100		ı	ı
	HER2 x IGF1R(1)	CODV-Ig	7	2	-	2	0,09	1,8	163 (HER2)	n.m.	ı
	IGF1R(1) x HER2	CODV-Ig	7	5	~	7	70	5,9	n.m.	41 (HER2)	ı
	HER2 x	CODV-Fab	7	2	_	7	34,4	0	190 (HER2)	n.m.	1

Muestra-ID Formato	Form	ato	ت	Ľ	٦	7	L4 Rendimiento [mg/L] Agregación [%]	Agregación [%]	KD (Antíge- no 1) [pM]	KD (Antigeno 1) [pM] No 2) [pM]	IC50 [pM] TNFα Ensayo Celular
IGF1R(1)											
HER2 × 18T1 (G4S)2 0 (G	(G4S)2 0	0	9) 0	9)	(G4S)2 0	0	6,3	6,8	56 (HER2)	n.m.	ı
IGF1R(1) x CODV-Ig 0 0 0		0 0	0		0	0	0,35	54,5	ı	ı	1
	7	7 5	22		_	7	8,7	41	12 (1L4)	48 (IL13)	1

Ejemplo 11. Sustitución de los Dominios Variables dentro de CODV-lg y CODV-Fab

5

10

15

20

25

30

35

40

45

50

Para caracterizar el formato CODV en un enfoque de acoplamiento de células T, se generaron proteínas de unión similares a CODV Fab biespecíficas (CODV-Fab) que tienen un sitio de de unión TCR (CD3epsilon) y un sitio de unión a CD19 y se compararon con un Fab biespecífico derivado del formato TBTI/DVD-Ig (B-Fab). Para investigar la importancia de la orientación de los sitios de unión (TCR x CD19 frente a CD19 x TCR), se evaluaron ambas orientaciones para cada una de las proteínas de unión.

Las proteínas de unión se caracterizaron en un ensayo citotóxico utilizando células NALM-6 (que expresan CD 19) como células diana y células T primarias humanas como células efectoras. Células CD3 positivas se aislaron de PBMCs humanas recién preparadas. Las células efectoras y diana se mezclaron en una proporción de 10:1 y se incubaron durante 20 horas con las concentraciones indicadas de las proteínas de unión biespecíficas (véase la Figura 8). Se determinaron las células diana apoptóticas en un ensayo basado en FACS utilizando tinción con 7-aminoactinomicina.

El formato B-Fab en la configuración CD3-CD19 (1060) demostró ser activo para inducir la citotoxicidad mediada por células T hacia células NALM-6 con una CE50 de 3,7 ng/ml. Se observó una actividad similarmente alta para el CD19-CD3 CODV-Fab (1109) con una EC50 de 3,2 ng/ml (*véase* la Figura 8).

Una permuta de la configuración de la molécula de B-Fab (Fab del formato TBTI/DVD-lg) a una orientación CD19-CD3 resultó en una pérdida significativa de la actividad (*véase*la Figura 8). La molécula de B-Fab permutada no mostró actividad a concentraciones que eran máximas para ambas orientaciones de CODV-lg Fab y la otra orientación de B-Fab. Para los CODV-lg Fabs y una orientación de B-Fab, se observó una respuesta máxima (que oscila entre 1 y 100 ng/ml). Para la orientación CD19-CD3 de B-Fab, incluso a la concentración máxima (30 μg/ml), no se alcanzó la respuesta óptima citotóxica. En contraste nítido, un cambio en la orientación de los dominios en el CODV-Fab hacia CD3-CD19 (1108) dio como resultado una molécula con actividad significativa en este ensayo (*véase* la Figura 8). Aunque la permuta del dominio en el CODV-Fab también redujo la inducción de la citotoxicidad mediada por células T (aumento de EC50 en un factor de ~ 100), este efecto fue mucho menos pronunciado que el que se vio en el formato B-Fab y la molécula fue capaz de inducir citotoxicidad hasta el nivel máximo. Los datos eran representativos y se obtuvieron a partir de tres experimentos independientes.

Ejemplo 12. Influencia de la Identidad de la Secuencia de Aminoácidos en Enlazadores de CODV-Ig

La construcción optimizada correspondiente al Lote ID 204 (*véase* el Ejemplo 7 y la Tabla 8) fue elegida para investigar la influencia de la composición de enlazador en los enlazadores L₁ a L₄. Las longitudes de enlazador se ajustaron a 7, 5, 1 y 2 residuos de longitud para L₁, L₂, L₃ y L₄, respectivamente (*véase* la Tabla 13). Las secuencias de ensayo se derivaron de enlazadores que se producen de forma natural en las transiciones entre los dominios V_H y C_{H1} de anticuerpos naturales o entre los dominios Fv y C_L de anticuerpo de cadenas ligeras kappa o lambda. Las secuencias candidatas eran ASTKGPS (SEQ ID NO: 48), que se deriva de la transición de los dominios V_H y C_{H1}, RTVAAPS (SEQ ID NO: 49) y GQPKAAP (SEQ ID NO: 50), que se derivaron de las transiciones de los dominios Fv y C_L de cadenas ligeras kappa y lambda, respectivamente. Además, se generó una construcción con una composición arbitraria de enlazador para demostrar que potencialmente se puede utilizar cualquier secuencia en los enlazadores L₁ a L₄. Esta composición de enlazador se obtuvo mediante la distribución al azar de los aminoácidos valina, leucina, isoleucina, serina, treonina, lisina, arginina, histidina, aspartato, glutamato, asparagina, glutamina, glicina y prolina en las 15 posiciones de los cuatro enlazadores. Los aminoácidos aromáticos fenilalanina, tirosina y triptófano, así como los aminoácidos metionina y cisteína fueron excluidos deliberadamente para evitar potenciales aumentos en la agregación.

Un modelo tridimensional de la construcción para el Lote ID No. 204 fue generado para asegurar la idoneidad o refinar las opciones de composición de enlazador. Por lo tanto, serina fue elegido para el enlazador L_3 , ya que se observan residuos cargados positiva y negativamente en las inmediaciones del modelo tridimensional. Los residuos en el enlazador L_4 fueron seleccionados para que fuesen compatibles con la exposición a disolventes de estas posiciones tal como se sugiere por el modelo. Del mismo modo, no se anticiparon o pronosticaron problemas para las composiciones de enlazador de L_1 y L_2 . Se construyeron modelos tridimensionales de las propuestas seleccionadas para la composición de enlazador.

Tal como se muestra en la Tabla 12, la composición de enlazador puede tener una influencia drástica en el rendimiento. Las secuencias que se derivaron de la cadena lambda en L₁ (comparando los Lotes de N°s de ID 505 a 507 con Lotes de N°s de ID 501 a 503) eran los generadores de proteínas más productivos (hasta 8 veces mayor). De hecho, los enlazadores basados en la generación aleatoria también producen buenos rendimientos, tal como se muestra en la Tabla 13, Lote de N° de ID 508. Por lo tanto, la composición de enlazador debe ser un parámetro considerado durante la optimización de CODV-Ig.

Tabla 13. Efecto de la Composición del Enlazador sobre CODV-Ig	L ₂ L ₄ Rendimiento Agrega- KD (IL4) KD (IL13) IC50 Ensayo IC50 Ensayo IC50 Ensayo Celular IL4 [nM] Celular IL13 [nM]	ID TKGPS (SEQ S RT 10,8 1,2 1 55 0,034 4,5	ID TVAAP (SEQ ID NO: 53) S QP 15,8 2,9 3 61 0,049 2,4	ID TVAAP (SEQ ID S SS 11,6 3,5 3 52 0,047 2,1	ID QPKAA (SEQ S TK 15 1,9 8 71 0,042 1,4	A TKGPS (SEQ ID NO: 52) S RT 71,7 1,9 6 68 0,033 0,9	A TVAAP (SEQ ID NO: 53) S TK 49,3 1,7 7 55 0,045 1,8	Q PKAA (SEQ S RT 62,4 2 1 69 0,040 2,0	QR.
or sobre								,	,
Enlazad	Agrega ción [%	1,2	2,9	3,5	1,9	1,9	1,7	7	2,1
Composición de	Rendimiento [mg/L]	10,8	15,8	11,6	15	71,7	49,3	62,4	37,7
de la		RT	Р	SS	¥	RT	¥	R	SL
cto	ت	တ	တ	Ø	S	တ		σ	>
Tabla 13. Efe	L ₂	TKGPS (SEQ ID NO: 52)	TVAAP (SE NO: 53	TVAAP (SE NO: 53	QPKAA (SEQ ID NO: 54)	TKGPS (SEQ ID NO: 52)	TVAAP (SEQ ID NO: 53)	QPKAA (SEQ ID NO: 54)	QRIEG (SEQ ID NO: 55)
	7	ASTKGPS (SEQ ID NO: 48)	ASTKGPS (SEQ ID NO: 48)	ASTKGPS (SEQ ID NO: 48)	RTVAAPS (SEQ ID NO: 49)	GQPKAAP (SEQ ID NO: 50)	GQPKAAP (SEQ ID NO: 50)	GQPKAAP (SEQ ID NO: 50)	HIDSPNK (SEQ ID
	Alineación sobre HC	IL4 x IL13	IL4 x IL13	IL4 x IL13	IL4 x IL13	L4 x L13	IL4 x IL13	IL4 x IL13	IL4 x IL13
	Lote	501	502	503	504	505	206	507	208

Las actividades de anticuerpos biespecíficos o derivados contra citoquinas IL4 e IL13 se determinaron en células informadoras HEK-Blue IL-4/IL-13 disponibles comercialmente (InvivoGen). Las células HEK-Blue IL-4/IL-13 están diseñadas para controlar la activación de la vía STAT6 por IL-4 o IL13. La estimulación de las células con cualquiera de las citoquinas resulta en la producción del gen informador fosfatasa alcalina secretada embrionaria (SEAP), que puede medirse en el sobrenadante del cultivo con el ensayo QUANTI-Blue. Para testar las actividades de anticuerpos contra IL4 o IL13, las citoquinas se pre-incubaron durante 1 hora con diferentes concentraciones de los anticuerpos y se añadieron a 50.000 células HEK-Blue IL-4/IL-13. La inducción de SEAP mediada por citoquinas se midió después de 24 horas de incubación en el sobrenadante de cultivo de células con el ensayo QUANTI-Blue (InvivoGen).

10 Ejemplo 13. Introducción de Cisteínas en Enlazadores de CODV-Ig

5

15

25

30

35

50

Los datos publicados sugieren que la estabilidad de los anticuerpos y proteínas derivadas de anticuerpos se puede aumentar mediante la introducción de puentes disulfuro no naturales (véase Wozniak-Knopp et al., 2012, "Stabilisation of the Fc Fragment of Human IgG1 by Engineered Intradomain Disulfide Bonds," PLoS ONE 7(1): e30083). Para examinar si el fragmento Fc equivalente derivado de un anticuerpo IgG1 humano y modificado por ingeniería genética en una molécula de CODV-Ig se puede estabilizar por la introducción de puentes disulfuro intere intra-cadena, las posiciones de Fc equivalentes de la construcción de CODV-Ig Lote de N° de ID 204 (del Ejemplo 7) se mutaron a residuos cisteína, y las proteínas mutantes se produjeron en exceso, se purificaron y se caracterizaron (véase la Tabla 14).

Tal como se muestra en la Tabla 14, cada una de las moléculas de CODV-lg mutadas que contienen residuos cisteína adicionales tenían temperaturas de fusión que eran la misma que la temperatura de fusión para la construcción de CODV-lg Lote de Nº de ID 204.

Además, dos cisteínas simultáneas se introdujeron en las posiciones Kabat 100 para la cadena ligera y 44 para la cadena pesada en cada uno de los dominios variables tal como se describe en Brinkmann et al., 1993, *Proc. Natl. Acad. Sci. U.S.A.* 90: 7538-42. Estas posiciones han demostrado estar conservadas estructuralmente dentro de los pliegues de anticuerpos y, por lo tanto, son tolerables de la sustitución de cisteínas sin interferir en la integridad de los dominios individuales.

Tal como se muestra en la Tabla 15, construcciones de CODV y CODV-Ig en las que se introdujeron residuos cisteína en las posiciones Kabat 100 para la cadena ligera y 44 para la cadena pesada en cada uno de los dominios variables tenían temperaturas de fusión más altas que las construcciones de CODV y CODV-Ig, en las que los residuos cisteína no se introdujeron en estas posiciones (*véase*, p. ej., Lote de N°s de ID 704 y 706 y Lote de N°s de ID 713 y 714).

1. Mediciones de Termoestabilidad de Variantes de CODV y TBTI

Los puntos de fusión (Tm) de variantes de CODV y TBTI se determinaron utilizando fluorimetría de exploración diferencial (DSF). Las muestras se diluyeron en tampón D-PBS (Invitrogen) a una concentración final de 0,2 µg/µl y se añadieron a 2 µl de una disolución concentrada 40x de colorante SYPRO-Orange (Invitrogen) en D-PBS en placas de 96 pocillos con semi-faldón blancas. Todas las mediciones se realizaron por duplicado utilizando un instrumento de PCR en tiempo real MyiQ2 (Biorad). Los valores de Tm fueron extraídos de la primera derivada negativa de las curvas de fusión utilizando el Software iQ5 v2.1.

A continuación, se examinó el efecto de introducir residuos cisteína directamente en los enlazadores o dentro de la región variable. En este ejemplo, el Lote de Nº de ID 204 (del Ejemplo 7 y la Tabla 8) se utilizó como proteína de unión CODV-Ig modelo, y la cisteína fue sustituida por glicina en L₁, L₃, o la región variable sobre la base del modelo tridimensional. Tal como se muestra en la Tabla 16 que figura más adelante, los resultados indican cómo la introducción de pares de cisteína afectaría al rendimiento y a la agregación. Las mutaciones previstas fueron modeladas para comprobar si los enlaces disulfuro se formaron correctamente y la geometría correcta se mantuvo para los enlazadores y su entorno en los modelos. No obstante, el Lote de Nº de ID 808 mostró un buen rendimiento y poca agregación, lo que sugiere que se podría formar un puente cisteína adecuada.

Cada una de las realizaciones descritas en esta memoria se puede combinar con cualquier otra realización o realizaciones, a menos que se indique claramente lo contrario. En particular, cualquier característica o realización indicada como preferida o ventajosa se pueden combinar con cualquier otra característica o características o realización o realizaciones indicadas como preferentes o ventajosas, salvo que se indique claramente lo contrario.

			abia 4. Fiecto	- 6		de la Estabili.	de la Estabilización del Puente Disulturo sobre CODV-19	Distillaro	opre copy	5		
Lote	Alineación sobre HC	Mutaciones Introducidas IGHG1	٢_	L ₁ L ₃	- i	Rendimiento [mg/L]	ento Agrega-] ción [%]		KD (IL4) KD (IL13) [pM]	IC50 Ensayo Celular IL4 [nM]	IC50 Ensayo Celular IL13 [nM]	T C
601	L4 x IL13	P344C & A432C	7	ۍ	- 7	21,6	6,0	n.d.	n.d.	0,032	1,7	64
602	L4 x IL13	S376C & P397C	^	ر ب	-2	13,9	0,8	10	100	0,034	1.5	49
603	IL4 x IL13	P446G447 to G446E447C448		ر ر		15,7	1,3	4	64	0,036	4.1	64

1					
	E S			64	89
	KD (Antígeno 2) [pM]	25	61		ı
	KD (Antígeno 1) [pM]	ဇ	80	163 (HER2)	362 (HER2)
CODV-Ig	Agregación [%]	5,2	17,7	1,8	6,7
de la Estabilización del Puente Disulturo sobre CODV-19	Rendimiento [mg/L]	15,3	3,2	09	3,4
	7	7	7	7	7
֡֟֞֟֟֟֟֟֟֟֟	L ₁ L ₂ L ₃ L ₄	_		_	
de	Ľ	7 5 1	7 5 1	7 5	7 5 1
	ت		7		
recto de la Estabilizat	Mutaciones Introducidas HC	•	G44C & G44C	1	G44C & G44C
l abia 15. Efecto	Mutaciones Introducidas LC		G100C & G100C	,	G100C & Q100C
	Forma- to	CODV	CODV	CODV-	CODV-
	Alineación sobre HC	IL13 x IL4	IL4 x IL13	IGF1R(1) x HER2	IGF1R(1) x HER2
	Lote ID	704	902	713	714

Tabla 16A. Efecto de la Estabilización del Puente Disulfuro sobre CODV-Ig

14 × 17 18 19 19 19 19 19 19 19		2			-	L	Rendimiento [mg/L]	Agregacion [%]	[bM]	[bM]	E
			7	C)		2	15,3	5,2	က	25	64
		Q43C	GGCGGGG (SEQ ID NO: 56)	GGGGG (SEQ ID NO: 26)	ŋ	99	3,0	11,3	9	34	64
IL4 × IL) c c	Q43C	GGGCGGG (SEQ ID NO: 57)	GGGGG (SEQ ID NO: 26)	ŋ	99	4,0	4,0	9	20	63
	.13 G116C	Q43C	GGGGCGG (SEQ ID NO: 58)	GGGGG (SEQ NO: 26)	ŋ	99	1,1	9,6	2	33	64
IL4 × IL13	.13 G117C	Q43C	GGGGCG (SEQ ID NO: 59)	GGGGG (SEQ ID NO: 26)	<u> </u>	99	5,8	10,6	7	45	64
L4 x L13	.13 S60C	S122C	GGGGGG (SEQ ID NO: 28)	GGGGG (SEQ ID NO: 26)	ŋ	99	g.n	1	ı	1	ı
L4 x L13	.13 S60C	S123C	GGGGGG (SEQ ID NO: 28)	GGGGG (SEQ NO: 26)	ŋ	99	7,5	27,9	2	202	99
1L4 x 1L13	.13 S60C	G124C	GGGGGG (SEQ ID NO: 28)	GGGGG (SEQ NO: 26)	U U	99	7.	5.8	rð.	70	64
L4 x L13	.13 G61C	S122C	GGGGGG (SEQ ID NO: 28)	GGGGG (SEQ ID NO: 26)	9	99	8,7	6.9	9	81	65

Lote	Alineación sobre HC	Mutaciones Introducidas LC	Mutaciones Introducidas HC	ت	L ₂	ت 4	IC50 Ensayo Celular IL4 [nM]	IC50 Ensayo Celular IL13 [nM]
801	IL4 x IL13			7	S	1 2	0,045	1,8
802	IL4 x IL13	G114C	Q43C	GGCGGGG (SEQ ID NO: 56)	GGGGG (SEQ ID NO: 26)	99 9	9 0,027	1,2
803	IL4 x IL13	G115C	Q43C	GGGCGGG (SEQ ID NO: 57)	GGGGG (SEQ ID NO: 26)	99 9	0,036	7,2
804	IL4 x IL13	G116C	Q43C	GGGGCGG (SEQ ID NO: 58)	GGGGG (SEQ ID NO: 26)	99 9	9 0,040	8,'
805	IL4 x IL13	G117C	Q43C	GGGGCG (SEQ ID NO: 59)	GGGGG (SEQ ID NO: 26)	99 9	9 0,047	1,9
908	IL4 x IL13	209S	S122C	GGGGGG (SEQ ID NO: 28)	GGGGG (SEQ ID NO: 26)	99 9	,	,
807	IL4 x IL13	S60C	S123C	GGGGGG (SEQ ID NO: 28)	GGGGG (SEQ ID NO: 26)	99 9	0,048	10,1
808	IL4 x IL13	S60C	G124C	GGGGGG (SEQ ID NO: 28)	GGGGG (SEQ ID NO: 26)	99 0	9 0,023	3,8
808	IL4 x IL13	G61C	S122C	GGGGGG (SEQ ID NO: 28)	GGGGG (SEQ ID NO: 26)	99 9	0,035	2,8

LISTADO DE SECUENCIAS

```
<110> Rao, Ercole
Mikol, Vincent
Corvey, Carsten
Beil, Christian
Lange, Christian
Steinmetz, Anke
Baurin, Nicolas
Li, Danxi
```

10

<120> Proteínas de unión similares a anticuerpos con regiones variables duales con una orientación de entrecruzamiento de la región de unión

<130> US2011/026

<140> TBD 15 <141> 11-03-2011

<160> 59

<170> PatentIn version 3.5

20

<210> 1

<211> 108 <212> PRT

25 <213> Secuencia Artificial

< 223> Cadena ligera (VL) humanizada de anticuerpo anti-IL4

30 <400> 1

Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser Val Ser Val Gly

Asp Thr Ile Thr Leu Thr Cys His Ala Ser Gln Asn Ile Asp Val Trp 25

Leu Ser Trp Phe Gln Gln Lys Pro Gly Asn Ile Pro Lys Leu Leu Ile 35 40

Tyr Lys Ala Ser Asn Leu His Thr Gly Val Pro Ser Arg Phe Ser Gly

Ser Gly Ser Gly Thr Gly Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro

Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Ala His Ser Tyr Pro Phe

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg 100

<210> 2

<211> 124

<212> PRT

35

<213> Secuencia Artificial

```
<220>
< 223> Región V de la cadena pesada (VH) humanizada de anticuerpo anti-IL4
<400> 2
        Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala
        Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ser Phe Thr Ser Tyr
        Trp Ile His Trp Ile Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
        Gly Met Ile Asp Pro Ser Asp Gly Glu Thr Arg Leu Asn Gln Arg Phe
        Gln Gly Arg Ala Thr Leu Thr Val Asp Glu Ser Thr Ser Thr Ala Tyr
        Met Gln Leu Arg Ser Pro Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
        Thr Arg Leu Lys Glu Tyr Gly Asn Tyr Asp Ser Phe Tyr Phe Asp Val
                                           105
        Trp Gly Ala Gly Thr Leu Val Thr Val Ser Ser Ala
<210> 3
<211> 111
<212> PRT
<213> Secuencia Artificial
< 223> Región V de la cadena ligera (VL) humanizada de un anticuerpo anti-IL13
<400> 3
Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly 1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser Val Asp Ser Tyr 20 25 30
Gly Gln Ser Tyr Met His Trp Tyr Gln Gln Lys Ala Gly Gln Pro Pro
```

Lys Leu Leu Ile Tyr Leu Ala Ser Asn Leu Glu Ser Gly Val Pro Ala

5

	Arg 65	Phe	Ser	Gly	Ser	Gly 70	Ser	Arg	Thr	Asp	75	∋ Th:	r Le	u Th	r Il	e Asp 80	
	Pro	Val	Gln	Ala	Glu 85	Asp	Ala	Ala	Thr	Ty 2	Туз	Cy:	G 1:	n Gl	n As 95	n Ala	
	Glu	Asp	Ser	Arg 100	Thr	Phe	Gly	Gly	Gly 105		Lys	s Lei	ı Gl	ı Il 11		s	
5	<212	l> 11 2> PF	-	ncia A	Artific	ial											
	<220 < 22		egiór	ı V d	e la d	cadei	na pe	esada	ı (VL) hun	naniz	ada	de ui	n ant	icuer	po ant	i-IL13
	<400)> 4															
10	Glu 1	Val	Gln	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Ala	Pro	Gly 15	Gly	
	Ser	Leu	Ser	Ile 20	Thr	Cys	Thr	Val	Ser 25	Gly	Phe	Ser	Leu	Thr 30	Asp	Ser	
	Ser	Ile	Asn 35	Trp	Val	Arg	Gln	Pro 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Leu	
	Gly	Met 50	Ile	Trp	Gly	Asp	Gly 55	Arg	Ile	Asp	Tyr	Ala 60	Asp	Ala	Leu	Lys	
	Ser 65	Arg	Leu	Ser	Ile	Ser 70	Lys	Asp	Ser	Ser	Lys 75	Ser	Gln	Val	Phe	Leu 80	
	Glu	Met	Thr	Ser	Leu 85	Arg	Thr	Asp	Asp	Thr 90	Ala	Thr	Tyr	Tyr	Cys 95	Ala	
	Arg	Asp	Gly	Tyr 100	Phe	Pro	Tyr	Ala	Met 105	Asp	Phe	Trp	Gly	Gln 110	Gly	Thr	
	Ser	Val	Thr 115	Val	Ser	Ser											
15	<210 <211 <212 <213	l> 57 2> PF		ncia <i>P</i>	Artific	ial											
	<220 <223		onstru	ucció	n de	dobl	e cat	eza	de cr	uzan	nient	o pes	sada	IL13	(G48	S)IL4CI	HFc
	<400)> 5															

Glu 1	Val	Gln	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Ala	Pro	Gly 15	Gly
Ser	Leu	Ser	Ile 20	Thr	Cys	Thr	Val	Ser 25	Gly	Phe	Ser	Leu	Thr 30	Asp	Ser
Ser	Ile	Asn 35	Trp	Val	Arg	Gln	Pro 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Leu
Gly	Met 50	Ile	Trp	Gly	Asp	Gly 55	Arg	Ile	Asp	Tyr	Ala 60	Asp	Ala	Leu	Lys
Ser 65	Arg	Leu	Ser	Ile	Ser 70	Lys	Asp	Ser	Ser	Lys 75	Ser	Gln	Val	Phe	Leu 80
Glu	Met	Thr	Ser	Leu 85	Arg	Thr	Asp	Asp	Thr 90	Ala	Thr	Tyr	Tyr	Cys 95	Ala
Arg	Asp	Gly	Tyr 100	Phe	Pro	Tyr	Ala	Met 105	Asp	Phe	Trp	Gly	Gln 110	Gly	Thr
Ser	Val	Thr 115	Val	Ser	Ser	Gly	Gly 120	Gly	Gly	Ser	Gln	Val 125	Gln	Leu	Gln
Gln	Ser 130	Gly	Pro	Glu	Leu	Val 135	Lys	Pro	Gly	Ala	Ser 140	Val	Lys	Ile	Ser
Cys 145	Lys	Ala	Ser	Gly	Туг 150	Ser	Phe	Thr	Ser	Tyr 155	Trp	Ile	His	Trp	Ile 160
Lys	Gln	Arg	Pro	Gly 165	Gln	Gly	Leu	Glu	Trp 170	Ile	Gly	Met	Ile	Asp 175	Pro
Ser	Asp	Gly	Glu 180	Thr	Arg	Leu	Asn	Gln 185	Arg	Phe	Gln	Gly	Arg 190	Ala	Thr
Leu	Thr	Val 195	Asp	Glu	Ser	Thr	Ser 200	Thr	Ala	Tyr	Met	Gln 205	Leu	Arg	Ser
Pro	Thr 210	Ser	Glu	Asp	Ser	Ala 215	Val	Tyr	Tyr	Сув	Thr 220	Arg	Leu	Lys	Glu
Tyr 225	Gly	Asn	Tyr	Asp	Ser 230	Phe	Tyr	Phe	Asp	Val 235	Trp	Gly	Ala	Gly	Thr 240

Leu	Val	Thr	Val	Ser 245	Ser	Ala	Ser	Thr	Lys 250	Gly	Pro	Ser	Val	Phe 255	Pro
Leu	Ala	Pro	Ser 260	Ser	Lys	Ser	Thr	Ser 265	Gly	Gly	Thr	Ala	Ala 270	Leu	Gly
Cys	Leu	Val 275	Lys	Asp	Tyr	Phe	Pro 280	Glu	Pro	Val	Thr	Val 285	Ser	Trp	Asn
Ser	Gly 290	Ala	Leu	Thr	Ser	Gly 295	Val	His	Thr	Phe	Pro 300	Ala	Val	Leu	Gln
Ser 305	Ser	Gly	Leu	Tyr	Ser 310	Leu	Ser	Ser	Val	Val 315	Thr	Val	Pro	Ser	Ser 320
Ser	Leu	Gly	Thr	Gln 325	Thr	Tyr	Ile	Cys	As n 330	Val	Asn	His	Lys	Pro 335	Ser
Asn	Thr	Lys	Val 340	Asp	Lys	Lys	Val	Glu 345	Pro	Lys	Ser	Суѕ	Asp 350	Lys	Thr
His	Thr	Cys 355	Pro	Pro	Суз	Pro	Ala 360	Pro	Glu	Leu	Leu	Gly 365	Gly	Pro	Ser
Val	Phe 370	Leu	Phe	Pro	Pro	Lys 375	Pro	Lys	Asp	Thr	Leu 380	Met	Ile	Ser	Arg
Thr 385	Pro	Glu	Val	Thr	Cys 390	Val	Val	Val	Asp	Val 395	Ser	His	Glu	Asp	Pro 400
Glu	Val	Lys	Phe	Asn 405	Trp	Tyr	Val	Asp	Gly 410	Val	Glu	Val	His	Asn 415	Ala
Lys	Thr	Lys	Pro 420	Arg	Glu	Glu	Gln	Tyr 425	Asn	Ser	Thr	Tyr	Arg 430	Val	Val
Ser	Val	Leu 435	Thr	Val	Leu	His	Gln 440	Asp	Trp	Leu	Asn	Gly 445	Lys	Glu	Tyr
Lys	Cys 450	Lys	Val	Ser	Asn	Lys 455	Ala	Leu	Pro	Ala	Pro 460	Ile	Glu	Lys	Thr
11e 465	Ser	Lys	Ala	Lys	Gly 470	Gln	Pro	Arg	G1u	Pro 475	Gln	Val	Tyr	Thr	Leu 480
Pro	Pro	Ser	Arg	Asp 485	Glu	Leu	Thr	Lys	Asn 490	Gln	Val	Ser	Leu	Thr 495	Cys

	Leu	Val	Lys	Gly 500	Phe	Tyr	Pro	Ser	Asp 505	Ile	Ala	Val	Glu	Trp 510	Glu	Ser
	Asn	Gly	Gln 515	Pro	Glu	Asn	Asn	Tyr 520	Lys	Thr	Thr	Pro	Pro 525	Val	Leu	Asp
	Ser	Asp 530	Gly	Ser	Phe	Phe	Leu 535	Tyr	Ser	Lys	Leu	Thr 540	Val	Asp	Lys	Ser
	Arg 545	Trp	Gln	Gln	Gly	A sn 550	Val	Phe	Ser	Cys	Ser 555	Val	Met	His	Glu	Ala 560
	Leu	His	Asn	His	Tyr 565	Thr	Gln	Lys	Ser	Leu 570	Ser	Leu	Ser	Pro	Gly 575	
<210> 6 <211> 58 <212> Pl <213> Se	RT	ıcia A	rtificia	al												
<220> <223> C	onstrı	ıcciór	n de d	loble	cabe	za de	entre	cruza	amien	to pe	sada	IL13(G4S2	?)IL4C	HFc	
<400> 6																
	Glu 1	Val	Gln	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Ala	Pro	Gly 15	Gly
	Ser	Leu	Ser	Ile 20	Thr	Cys	Thr	Val	Ser 25	Gly	Phe	Ser	Leu	Thr 30	Asp	Ser
	Ser	Ile	Asn 35	Trp	Val	Arg	Gln	Pro 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Leu
	Gly	Met 50	Ile	Trp	Gly	Asp			Ile				Asp	Ala	Leu	Lys
	Ser 65	Arg	Leu	Ser	Ile	Ser 70	Lys	Asp	Ser	Ser	Lys 75	Ser	Gln	Val	Phe	Leu 80
	Glu	Met	Thr	Ser	Leu 85	Arg	Thr	Asp	Asp	Thr 90	Ala	Thr	Tyr	Tyr	Cys 95	Ala
	Arg	Asp	Gly	Tyr 100	Phe	Pro	Tyr	Ala	Met 105	Asp	Phe	Trp	Gly	Gln 110	Gly	Thr

5

10

Ser Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser 115 120 125

Gln	Val 130	Gln	Leu	Gln	Gln	Ser 135	Gly	Pro	Glu	Leu	Val 140	Lys	Pro	Gly	Ala
Ser 145	Val	Lys	Ile	Ser	Cys 150	Lys	Ala	Ser	Gly	Tyr 155	Ser	Phe	Thr	Ser	Tyr 160
Trp	rle	His	Trp	Ile 165	Lys	Gln	Arg	Pro	Gly 170	Gln	Gly	Leu	Glu	Trp 175	Ile
Gly	Met	Ile	Asp 180	Pro	Ser	Asp	Gly	Glu 185	Thr	Arg	Leu	Asn	Gln 190	Arg	Phe
Gln	Gly	Arg 195	Ala	Thr	Leu	Thr	Val 200	Asp	G1u	Ser	Thr	Ser 205	Thr	Ala	Tyr
Met	Gln 210	Leu	Arg	Ser	Pro	Thr 215	Ser	Glu	Asp	Ser	Ala 220	Val	Tyr	Tyr	Cys
Thr 225	Arg	Leu	Lys	Glu	Tyr 230	Gly	Asn	Tyr	Asp	Ser 235	Phe	Tyr	Phe	Asp	Val 240
Trp	Gly	Ala	Gly	Thr 245	Leu	Val	Thr	Val	Ser 250	Ser	Ala	Ser	Thr	Lys 255	Gly
Pro	Ser	Val	Phe 260	Pro	Leu	Ala	Pro	Ser 265	Ser	Lys	Ser	Thr	Ser 270	Gly	Gly
Thr	Ala	Al a 275	Leu	Gly	Cys	Leu	Val 280	Lys	Asp	Tyr	Phe	Pro 285	Glu	Pro	Val
Thr	Val 290	Ser	Trp	Asn	Ser	Gly 295	Ala	Leu	Thr	Ser	Gly 300	Val	His	Thr	Phe
Pro 305	Ala	Val	Leu	Gln	Ser 310	Ser	Gly	Leu	Tyr	Ser 315	Leu	Ser	Ser	Val	Val 320
Thr	Val	Pro	Ser	Ser 325	Ser	Leu	Gly	Thr	Gln 330	Thr	туг	Ile	Суз	A sn 335	Val
Asn	His	Lys	Pro 340	Ser	Asn	Thr	Lys	Val 345	Asp	Lys	Lys	Val	Glu 350	Pro	Lys
Ser	Cys	Asp 355	Lys	Thr	His	Thr	Cys 360	Pro	Pro	Суз	Pro	Ala 365	Pro	Glu	Leu
Leu	Gly	Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr

Leu 385	Met	Ile	Ser	Arg	Thr 390	Pro	Glu	Val	Thr	Cys 395	Val	Val	Val	Asp	Val 400
Ser	His	Glu	Asp	Pro 405	Glu	Val	Lys	Phe	Asn 410	Trp	Tyr	Val	Asp	Gly 415	Val
Glu	Val	His	Asn 420	Ala	Lys	Thr	Lys	Pro 425	Arg	Glu	Glu	Gln	Tyr 430	Asn	Ser
Thr	Tyr	Arg 435	Val	Val	Ser	Val	Leu 440	Thr	Val	Leu	His	Gln 445	Asp	Trp	Leu
Asn	Gly 450	Lys	Glu	Tyr	Lys	Cys 455	Lys	Val	Ser	Asn	Lys 460	Ala	Leu	Pro	Ala
Pro 465	Ile	Glu	Lys	Thr	Ile 470	Ser	Lys	Ala	Lys	Gly 475	Gln	Pro	Arg	Glu	Pro 480
Gln	Val	Tyr	Thr	Leu 485	Pro	Pro	Ser	Arg	Asp 490	Glu	Leu	Thr	Lys	Asn 495	Gln
			500	_			_	505					510	Ile	
		515				-	520					525	_	Thr	
	530					535					540			Lys	
545		-	-		550	_			-	555				Cys	560
Val	Met	His	Glu	Ala 565		His	Asn	His	-	Thr		Lys	Ser	Leu 575	

Leu Ser Pro Gly 580

<210> 7

<211> 698

<212> PRT

5 <213> Secuencia Artificial

<220>

<223> Construcción de doble cabeza de cruzamiento pesada IL4(G4S)IL13CHFc

<400> 7

Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Glu 10	Leu	Val	Lys	Pro	Gly 15	Ala
Ser	Val	Lys	Ile 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Ser	Phe	Thr 30	Ser	Tyr
Trp	Ile	His 35	Trp	Ile	Lys	Gln	Arg 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Ile
Gly	Met 50	Ile	Asp	Pro	Ser	Asp 55	Gly	Glu	Thr	Arg	Leu 60	Asn	Gln	Arg	Phe
Gln 65	Gly	Arg	Ala	Thr	Leu 70	Thr	Val	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
Met	Gln	Leu	Arg	Ser 85	Pro	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Tyr 95	Cys
Thr	Arg	Leu	Lys 100	Glu	Tyr	Gly	Asn	Tyr 105	Asp	Ser	Phe	Tyr	Phe 110	Asp	Val
Trp	Gly	Ala 115	Gly	Thr	Leu	Val	Thr 120	Val	Ser	Ser	Gly	Gly 125	Gly	Gly	Ser
Glu	Val 130	Gln	Leu	Lys	Glu	Ser 135	Gly	Pro	Gly	Leu	Val 140	Ala	Pro	Gly	Gly
Ser 145	Leu	Ser	Ile	Thr	C ys 150	Thr	Val	Ser	Gly	Phe 155	Ser	Leu	Thr	Asp	Ser 160
			_	165	_				170				Glu	175	
-			180	_	-	-	Ī	185		_			Ala 190		-
	_	195				-	200			-		205	Val		
	210				·	215	_				220		Tyr	-	
225	-	_	-		230	-				235			Gln		240
Ser	Val	Thr	Val	Ser 245	Ser	Gln	Val	Gln	Leu 250	Gln	Gln	Ser	Gly	Pro 255	Glu

Leu	Val	Lys	Pro 260	Gly	Ala	Ser	Val	Lys 265	Ile	Ser	Cys	Lys	Ala 270	Ser	Gly
Tyr	Ser	Phe 275	Thr	Ser	Tyr	Trp	11e 280	His	Trp	Ile	Lys	Gln 285	Arg	Pro	Gly
Gln	Gly 290	Leu	Glu	Trp	Ile	Gly 295	Met	Ile	Asp	Pro	Ser 300	Asp	Gly	Glu	Thr
Arg 305	Leu	Asn	Gln	Arg	Phe 310	Gln	Gly	Arg	Ala	Thr 315	Leu	Thr	Val	Asp	Glu 320
Ser	Thr	Ser	Thr	Ala 325	Tyr	Met	Gln	Leu	Arg 330	Ser	Pro	Thr	Ser	Glu 335	Asp
Ser	Ala	Val	Tyr 340	Tyr	Cys	Thr	Arg	Leu 345	Lys	Glu	Tyr	Gly	Asn 350	Tyr	Asp
Ser	Phe	Tyr 355	Phe	Asp	Val	Trp	Gly 360	Ala	Gly	Thr	Leu	Val 365	Thr	Val	Ser
Ser	Ala 370	Ser	Thr	Lys	Gly	Pro 375	Ser	Val	Phe	Pro	Leu 380	Ala	Pro	Ser	Ser
Lys 385	Ser	Thr	Ser	Gly	Gly 390	Thr	Ala	Ala	Leu	Gly 395	Cys	Leu	Val	Lys	Asp 400
Tyr	Phe	Pro	Glu	Pro 405	Val	Thr	Val	Ser	Trp 410	Asn	Ser	Gly	Ala	Leu 415	Thr
Ser	Gly	Val	His 420	Thr	Phe	Pro	Ala	Val 425	Leu	Gln	Ser	Ser	Gly 430	Leu	Tyr
Ser	Leu	Ser 435	Ser	Val	Val	Thr	Val 440	Pro	Ser	Ser	Ser	Leu 445	Gly	Thr	Gln
Thr	Tyr 450	Ile	Cys	Asn	Val	Asn 455	His	Lys	Pro	Ser	Asn 460	Thr	Lys	Val	Asp
Lys 465	Lys	Val	Glu	Pro	Lys 470	Ser	Суз	Asp	Lys	Thr 475	His	Thr	Cys	Pro	Pro 480
Cys	Pro	Ala	Pro	Glu 485	Leu	Leu	Gly	Gly	Pro 490	Ser	Val	Phe	Leu	Phe 495	Pro
Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr

			500					505					510		
Суз	Val	V al 515	Val	Asp	Val	Ser	His 520	Glu	Asp	Pro	Glu	V al 525	Lys	Phe	Asn
Trp	Tyr 530	Val	Asp	Gly	Val	Glu 535	Val	His	Asn	Ala	Lys 540	Thr	Lys	Pro	Arg
Glu 545	Glu	Gln	Туг	Asn	Ser 550	Thr	Tyr	Arg	Val	Val 555	Ser	Val	Leu	Thr	Val 560
Leu	His	Gln	Asp	Trp 565	Leu	Asn	Gly	Lys	Glu 570	Tyr	Lys	Cys	Lys	Val 575	Ser
Asn	Lys	Ala	Leu 580	Pro	Ala	Pro	Ile	Glu 585	Lys	Thr	Ile	Ser	Lys 590	Ala	Lys
Gly	Gln	Pro 595	Arg	Glu	Pro	Gln	Val 600	Tyr	Thr	Leu	Pro	Pro 605	Ser	Arg	Asp
Glu	Leu 610	Thr	Lys	Asn	Gln	Val 615	Ser	Leu	Thr	Суз	Leu 620	Val	Lys	Gly	Phe
Tyr 625	Pro	Ser	Asp	Ile	Ala 630	Val	Glu	Trp	Glu	Ser 635	Asn	Gly	Gln	Pro	Glu 640
Asn	Asn	Tyr	Lys	Thr 645	Thr	Pro	Pro	Val	Leu 650	Asp	Ser	Asp	Gly	Ser 655	Phe
Phe	Leu	Tyr	Ser 660	Lys	Leu	Thr	Val	Asp 665	Lys	Ser	Arg	Trp	Gln 670	Gln	Gly
Asn	Val	Phe 675	Ser	Cys	Ser	Val	Met 680	His	Glu	Ala	Leu	His 685	Asn	His	Tyr
Thr	Gln 690	Lys	Ser	Leu	Ser	Leu 695	Ser	Pro	Gly						
<212)> 8 > 703 !> PR }> Sed	Т	cia Art	tificial											
<220 <223		nstruc	cción	de do	ble c	abeza	a de e	ntrec	ruzan	niento	pesa	ada IL	.4(G4	S2)IL	.13CHFc
<400															
Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Glu 10	Leu	Val	Lys	Pro	Gly 15	Ala

Ser	Val	Lys	Ile 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Ser	Phe	Thr 30	Ser	Tyr
Trp	Ile	His 35	Trp	Ile	Lys	Gln	Arg 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Ile
Gly	Met 50	Ile	Asp	Pro	Ser	Asp 55	Gly	Glu	Thr	Arg	Leu 60	Asn	Gln	Arg	Phe
G1n 65	Gly	Arg	Ala	Thr	Leu 70	Thr	Val	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
Met	Gln	Leu	Arg	Ser 85	Pro	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Tyr 95	Суз
Thr	Arg	Leu	Lys 100	Glu	Tyr	Gly	Asn	Tyr 105	Asp	Ser	Phe	Tyr	Phe 110	Asp	Val
Trp	Gly	Ala 115	Gly	Thr	Leu	Val	Thr 120	Val	Ser	Ser	Gly	Gly 125	Gly	Gly	Ser
Gly	Gly 130	Gly	Gly	Ser	Glu	Val 135	Gln	Leu	Lys	Glu	Ser 140	Gly	Pro	Gly	Leu
Val 145	Ala	Pro	Gly	Gly	Ser 150	Leu	Ser	Ile	Thr	Cys 155	Thr	Val	Ser	Gly	Phe 160
Ser	Leu	Thr	Asp	Ser 165	Ser	Ile	Asn	Trp	Val 170	Arg	Gln	Pro	Pro	Gly 175	Lys
Gly	Leu	Glu	Trp 180	Leu	Gly	Met	Ile	Trp 185	Gly	Asp	Gly	Arg	11e 190	Asp	Tyr
Ala	Asp	Ala 195	Leu	Lys	Ser	Arg	Leu 200	Ser	Ile	Ser	Lys	Asp 205	Ser	Ser	Lys
	210	•	Phe			215					220				
Thr 225	Tyr	Tyr	Cys	Ala	Arg 230	Asp	Gly	Tyr	Phe	Pro 235	Tyr	Ala	Met	Asp	Phe 240
Trp	Gly	Gln	Gly	Thr 245	Ser	Val	Thr	Val	Ser 250	Ser	Gln	Val	Gln	Leu 255	Gln

Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala Ser Val Lys Ile Ser

			260					265					270		
Cys	Lys	Ala 275	Ser	Gly	Tyr	Ser	Phe 280	Thr	Ser	Tyr	Trp	Ile 285	His	Trp	Ile
Lys	Gln 290	Arg	Pro	Gly	Gln	Gly 295	Leu	Glu	Trp	Ile	Gly 300	Met	Ile	Asp	Pro
Ser 305	Asp	Gly	Glu	Thr	Arg 310	Leu	Asn	Gln	Arg	Phe 315	Gln	Gly	Arg	Ala	Thr 320
Leu	Thr	Val	Asp	Glu 325	Ser	Thr	Ser	Thr	Ala 330	Tyr	Met	Gln	Leu	Ar g 335	Ser
Pro	Thr	Ser	Glu 340	Asp	Ser	Ala	Val	Tyr 345	Tyr	Cys	Thr	Arg	Leu 350	Lys	Glu
Tyr	Gly	Asn 355	Tyr	Asp	Ser	Phe	Tyr 360	Phe	Asp	Val	Trp	Gly 365	Ala	Gly	Thr
Leu	Val 370	Thr	Val	Ser	Ser	Ala 375	Ser	Thr	Lys	Gly	Pro 380	Ser	Val	Phe	Pro
Leu 385	Ala	Pro	Ser	Ser	Lys 390	Ser	Thr	Ser	Gly	Gly 395	Thr	Ala	Ala	Leu	Gly 400
Суѕ	Leu	Val	Lys	Asp 405	Tyr	Phe	Pro	Glu	Pro 410	Val	Thr	Val	Ser	Trp 415	Asn
Ser	Gly	Ala	Leu 420	Thr	Ser	Gly	Val	His 425	Thr	Phe	Pro	Ala	Val 430	Leu	Gln
Ser	Ser	Gly 435	Leu	Tyr	Ser	Leu	Ser 440	Ser	Val	Val	Thr	Val 445	Pro	Ser	Ser
Ser	Leu 450	Gly	Thr	Gln	Thr	Tyr 455	Ile	Cys	Asn	Val	Asn 460	His	Lys	Pro	Ser
Asn 465	Thr	Lys	Val	Asp	Lys 470	Lys	Val	Glu	Pro	Lys 475	Ser	Cys	Asp	Lys	Thr 480
His	Thr	Cys	Pro	Pro 485	Cys	Pro	Ala	Pro	Glu 490	Leu	Leu	Gly	Gly	Pro 495	Ser
Val	Phe	Leu	Phe 500	Pro	Pro	Lys	Pro	Lys 505	Asp	Thr	Leu	Met	Ile 510	Ser	Arg

1	Gln	Ara	Ala	Thr	Ile	Ser	Cvs	Ara	Ala	Ser	Glu	Ser	Val	Asp	Ser	Tyr
	Asp 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly
<	400	> 9														
<220> < 223> Construcción de doble cabeza de entrecruzamiento ligera IL13(G4S)IL4CL														CL		
<	212	> 330 > PR	Т	ia Art	ificial											
	Leu	His 690	Asn	His	Tyr	Thr	Gln 695	Lys	Ser	Leu	Ser	Leu 700	Ser	Pro	Gly	
	Arg	Trp	Gln 675	Gln	Gly	Asn	Val	Phe 680	Ser	Cys	Ser	Val	Met 685	His	Glu	Ala
	Ser	Asp	Gly	Ser 660	Phe	Phe	Leu	Tyr	Ser 665	Lys	Leu	Thr	Val	Asp 670	Lys	Ser
	Asn	Gly	Gln	Pro	G1u 645	Asn	Asn	Tyr	Lys	Thr 650	Thr	Pro	Pro	Val	Leu 655	Asp
	Leu 625	Val	Lys	Gly	Phe	Tyr 630	Pro	Ser	Asp	Ile	Ala 635	Val	Glu	Trp	Glu	Ser 640
:	Pro	Pro 610	Ser	Arg	Asp	Glu	Leu 615	Thr	Lys	Asn	Gln	Val 620	Ser	Leu	Thr	Суз
	Ile	Ser	Lys 595	Ala	Lys	Gly	Gln	Pro 600	Arg	Glu	Pro	Gln	Val 605	Tyr	Thr	Leu
:	Lys	Cys	Lys	Val 580	Ser	Asn	Lys	Ala	Leu 585	Pro	Ala	Pro	Ile	Glu 5 9 0	Lys	Thr
	Ser	Val	Leu	Thr	Val 565	Leu	His	Gln	Asp	Trp 570	Leu	Asn	Gly	Lys	Glu 575	Tyr
	Lys 5 4 5	Thr	Lys	Pro	Arg	G1u 550	Glu	Gln	Tyr	Asn	Ser 555	Thr	Tyr	Arg	Val	Val 560
i	Glu	Val 530	Lys	Phe	Asn	Trp	Tyr 535	Val	Asp	Gly	Val	Glu 540	Val	His	Asn	Ala
	Thr	Pro	Glu 515	Val	Thr	Cys	Val	Val 520	Val	Asp	Val	Ser	His 525	Glu	Asp	Pro

			20					25					30		
Gly	Gln	Ser 35	Tyr	Met	His	Trp	Tyr 40	Gln	Gln	Lys	Ala	Gly 45	Gln	Pro	Pro
Lys	Leu 50	Leu	Ile	Tyr	Leu	Ala 55	Ser	Asn	Leu	Glu	Ser 60	Gly	Val	Pro	Ala
Arg 65	Phe	Ser	G1y	Ser	Gly 70	Ser	Arg	Thr	Asp	Phe 75	Thr	Leu	Thr	Ile	Asp 80
Pro	Val	Gln	Ala	Glu 85	Asp	Ala	Ala	Thr	Tyr 90	Tyr	Cys	Gln	Gln	Asn 95	Ala
Glu	Asp	Ser	Arg 100	Thr	Phe	Gly	Gly	Gly 105	Thr	Lys	Leu	Glu	Ile 110	Lys	Gly
Gly	Gly	Gly 115	Ser	Asp	Ile	Gln	Met 120	Thr	Gln	Ser	Pro	Ala 125	Ser	Leu	Ser
Val	Ser 130	Val	Gly	Asp	Thr	Ile 135	Thr	Leu	Thr	Cys	His 140	Ala	Ser	Gln	Asn
Ile 145	Asp	Val	Trp	Leu	Ser 150	Trp	Phe	Gln	Gln	Lys 155	Pro	Gly	Asn	Ile	Pro 160
Lys	Leu	Leu	Ile	Tyr 165	Lys	Ala	Ser	Asn	Leu 170	His	Thr	Gly	Val	Pro 175	Ser
Arg	Phe	Ser	Gly 180	Ser	Gly	Ser	Gly	Thr 185	Gly	Phe	Thr	Leu	Thr 190	Ile	Ser
Ser	Leu	Gln 195	Pro	Glu	Asp	Ile	Ala 200	Thr	Tyr	Tyr	Cys	Gln 205	Gln	Ala	His
Ser	Tyr 210	Pro	Phe	Thr	Phe	Gly 215	Gly	Gly	Thr	Lys	Leu 220	Glu	Ile	Lys	Arg
Thr 225	Val	Ala	Ala	Pro	Ser 230	Val	Phe	Ile	Phe	Pro 235	Pro	Ser	Asp	Glu	Gln 240
Leu	Lys	Ser	Gly	Thr 245	Ala	Ser	Val	Val	Cys 250	Leu	Leu	Asn	Asn	Phe 255	Tyr
Pro	Arg	Glu	Ala 260	Lys	Val	Gln	Trp	Lys 265	Val	Asp	Asn	Ala	Leu 270	Gln	Ser

Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys 295 His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 310 315 Val Thr Lys Ser Phe Asn Arg Gly Glu Cys <210> 10 <211> 335 <212> PRT <213> Secuencia Artificial <220> <223> Construcción de doble cabeza de entrecruzamiento ligera IL13(G4S2)IL4CL <400> 10 Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly 10 Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser Val Asp Ser Tyr Gly Gln Ser Tyr Met His Trp Tyr Gln Gln Lys Ala Gly Gln Pro Pro Lys Leu Leu Ile Tyr Leu Ala Ser Asn Leu Glu Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Arg Thr Asp Phe Thr Leu Thr Ile Asp Pro Val Gln Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Asn Ala Glu Asp Ser Arg Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly 105 Gly Gly Gly Ser Gly Gly Gly Ser Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser Val Ser Val Gly Asp Thr Ile Thr Leu Thr Cys 130 135 His Ala Ser Gln Asn Ile Asp Val Trp Leu Ser Trp Phe Gln Gln Lys

5

Pro	Gly	Asn	Ile	Pro 165	Lys	Leu	Leu	Ile	Tyr 170	Lys	Ala	Ser	Asn	Leu 175	His
Thr	Gly	Val	Pro 180	Ser	Arg	Phe	Ser	Gly 185	Ser	Gly	Ser	Gly	Thr 190	Gly	Phe
Thr	Leu	Thr 195	Ile	Ser	Ser	Leu	Gln 200	Pro	Glu	Asp	Ile	A la 205	Thr	Tyr	Tyr
Cys	Gln 210	Gln	Ala	His	Ser	Tyr 215	Pro	Phe	Thr	Phe	Gly 220	Gly	Gly	Thr	Lys
Leu 225	Glu	Ile	Lys	Arg	Thr 230	Val	Ala	Ala	Pro	Ser 235	Val	Phe	Ile	Phe	Pro 240
Pro	Ser	Asp	Glu	Gln 245	Leu	Lys	Ser	Gly	Thr 250	Ala	Ser	Val	Val	Cys 255	Leu
Leu	Asn	Asn	Phe 260	Tyr	Pro	Arg	Glu	Ala 265	Lys	Val	Gln	Trp	Lys 270	Val	Asp
Asn	Ala	Leu 275	Gln	Ser	Gly	Asn	Ser 280	Gln	Glu	Ser	Val	Thr 285	Glu	Gln	Asp
Ser	Lys 290	Asp	Ser	Thr	Tyr	Ser 295	Leu	Ser	Ser	Thr	Leu 300	Thr	Leu	Ser	Lys
Ala 305	Asp	Tyr	Glu	Lys	His 310	Lys	Val	Tyr	Ala	Cys 315	Glu	Val	Thr	His	Gln 320
Gly	Leu	Ser	Ser	Pro 325	Val	Thr	Lys	Ser	Phe 330	Asn	Arg	Gly	Glu	Cys 335	
<212	> 11 > 330 > PR ⁻ > Sec	Т	ia Art	ificial											
<220 <223	> > Cor	nstruc	ción (de do	ble ca	abeza	a de e	ntrec	ruzan	niento	liger	a IL4	(G4S)IL13(CL
<400	> 11														
Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ala	Ser 10	Leu	Ser	Val	Ser	Val 15	Gly
Asp	Thr	Ile	Thr 20	Leu	Thr	Cys	His	Ala 25	Ser	Gln	Asn	Ile	Asp 30	Val	Trp

Leu	Ser	Trp 35	Phe	Gln	Gln	Lys	Pro 40	Gly	Asn	Ile	Pro	Lys 45	Leu	Leu	Ile
Tyr	Lys 50	Ala	Ser	Asn	Leu	His 55	Thr	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
Ser 65	Gly	Ser	Gly	Thr	Gly 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
Glu	Asp	Ile	Ala	Thr 85	Tyr	Tyr	Сув	Gln	Gln 90	Ala	His	Ser	Tyr	Pro 95	Phe
Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys	Gly	Gly	Gly 110	Gly	Ser
Asp	Ile	Val 115	Leu	Thr	Gln	Ser	Pro 120	Ala	Ser	Leu	Ala	Val 125	Ser	Leu	Gly
Gln	Arg 130	Ala	Thr	Ile	Ser	Cys 135	Arg	Ala	Ser	Glu	Ser 140	Val	Asp	Ser	Tyr
Gly 145	Gln	Ser	Tyr	Met	His 150	Trp	Tyr	Gln	Gln	Lys 155	Ala	Gly	Gln	Pro	Pro 160
Lys	Leu	Leu	Ile	Tyr 165	Leu	Ala	Ser	Asn	Leu 170	Glu	Ser	Gly	Val	Pro 175	Ala
Arg	Phe	Ser	Gly 180	Ser	Gly	Ser	Arg	Thr 185	Asp	Phe	Thr	Leu	Thr 190	Ile	Asp
Pro	Val	Gln 195	Ala	Glu	Asp	Ala	Ala 200	Thr	Tyr	Tyr	Cys	Gln 205	Gln	Asn	Ala
Glu	Asp 210	Ser	Arg	Thr	Phe	Gly 215	Gly	Gly	Thr	Lys	Leu 220	Glu	Ile	Lys	Arg
Thr 225	Val	Ala	Ala	Pro	Ser 230	Val	Phe	Ile	Phe	Pro 235	Pro	Ser	Asp	Glu	Gln 240
Leu	Lys	Ser	Gly	Thr 245	Ala	Ser	Val	Val	Cys 250	Leu	Leu	Asn	Asn	Phe 255	Tyr
Pro	Arg	Glu	Ala 260	Lys	Val	Gln	Trp	Lys 265	Val	Asp	Asn	Ala	Leu 270	Gln	Ser

Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr

	Tyr	290	Leu	Ser	Ser	Thr	Leu 295	Thr	Leu	Ser	Lys	Ala 300	Asp	Tyr	Glu	Lys
	His 305	Lys	Val	Tyr	Ala	Cys 310	Glu	Val	Thr	His	Gln 315	Gly	Leu	Ser	Ser	Pro 320
	Val	Thr	Lys	Ser	Phe 325	Asn	Arg	Gly	Glu	Cys 330						
5	<210 <211 <212 <213	> 335 > PR		ia Art	ificial											
	<220> <223> Construcción de doble cabeza de entrecruzamiento ligera IL4(G4S2)IL13CL															
	<400	> 12														
	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ala	Ser 10	Leu	Ser	Val	Ser	Val 15	Gly
	Asp	Thr	Ile	Thr 20	Leu	Thr	Суѕ	His	Ala 25	Ser	Gln	Asn	Ile	Asp 30	Val	Trp
	Leu	Ser	Trp 35	Phe	Gln	Gln	Lys	Pro 40	Gly	Asn	Ile	Pro	Lys 45	Leu	Leu	Ile
	Tyr	Lys 50	Ala	Ser	Asn	Leu	His 55	Thr	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
	Ser 65	Gly	Ser	Gly	Thr	Gly 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
	Glu	Asp	Ile	Ala	Thr 85	Tyr	Tyr	Суз	Gln	Gln 90	Ala	His	Ser	Tyr	Pro 95	Phe
	Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys	Gly	Gly	Gly 110	Gly	Ser
	Gly	Gly	Gly 115	Gly	Ser	Asp	Ile	V al 120	Leu	Thr	Gln	Ser	Pro 125	Ala	Ser	Leu
	Ala	Val 130	Ser	Leu	Gly	Gln	Ar g 135	Ala	Thr	Ile	Ser	Cys 140	Arg	Ala	Ser	Glu
10	Ser 145	Val	Asp	Ser	Tyr	Gly 150	Gln	Ser	Tyr	Met	His 155	Trp	Tyr	Gln	Gln	Lys 160

Ala	GLY	GIn	Pro	165	ГÀЗ	Leu	Leu	Ile	Tyr 170	Leu	Ala	Ser	Asn	Leu 175	Glu
Ser	Gly	Val	Pro 180	Ala	Arg	Phe	Ser	Gly 185	Ser	Gly	Ser	Arg	Thr 190	Asp	Phe
Thr	Leu	Thr 195	Ile	Asp	Pro	Val	Gln 200	Ala	Glu	Asp	Ala	Ala 205	Thr	Tyr	Tyr
Cys	Gln 210	Gln	Asn	Ala	Glu	Asp 215	Ser	Arg	Thr	Phe	Gly 220	Gly	Gly	Thr	Lys
Leu 225	Glu	Ile	Lys	Arg	Thr 230	Val	Ala	Ala	Pro	Ser 235	Val	Phe	Ile	Phe	Pro 240
Pro	Ser	Asp	Glu	Gln 245	Leu	Lys	Ser	Gly	Thr 250	Ala	Ser	Val	Val	Суs 255	Leu
Leu	Asn	Asn	Phe 260	Tyr	Pro	Arg	Glu	Ala 265	Lys	Val	Gln	Trp	Lys 270	Val	Asp
Asn	Ala	Leu 275	Gln	Ser	Gly	Asn	Ser 280	Gln	Glu	Ser	Val	Thr 285	Glu	Gln	Asp
Ser	Lys 290	Asp	Ser	Thr	Tyr	Ser 295	Leu	Ser	Ser	Thr	Leu 300	Thr	Leu	Ser	Lys
Ala 305	Asp	Tyr	Glu	Lys	His 310	Lys	Val	Tyr	Ala	Cys 315	Glu	Val	Thr	His	Gln 320
Gly	Leu	Ser	Ser	Pro 325	Val	Thr	Lys	Ser	Phe 330	Asn	Arg	Gly	Glu	Cys 335	
<212	> 13 > 583 > PR > Sed	Т	ia Art	ificial											
<220 <223		cuenc	ia de	la ca	dena	pesa	da pa	ra V-	lg dua	al de e	entre	cruza	mient	o con	el código HC1
<400	> 13														
Glu 1	Val	Gln	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Ala	Pro	Gly 15	Gly
Ser	Leu	Ser	Ile 20	Thr	Cys	Thr	Val	Ser 25	Gly	Phe	Ser	Leu	Thr 30	Asp	Ser

Ser	Ile	Asn 35	Trp	Val	Arg	Gln	Pro 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Leu
Gly	Met 50	Ile	Trp	Gly	Asp	Gly 55	Arg	Ile	Asp	Tyr	Ala 60	Asp	Ala	Leu	Lys
Ser 65	Arg	Leu	Ser	Ile	Ser 70	Lys	Asp	Ser	Ser	Lys 75	Ser	Gln	Val	Phe	Leu 80
Glu	Met	Thr	Ser	Leu 85	Arg	Thr	Asp	Asp	Thr 90	Ala	Thr	Tyr	Tyr	Cys 95	Ala
Arg	Asp	Gly	Tyr 100	Phe	Pro	Tyr	Ala	Met 105	Asp	Phe	Trp	Gly	Gln 110	Gly	Thr
Ser	Val	Thr 115	Val	Ser	Ser	Gly	Gly 120	Gly	Gly	Gly	Gly	Gln 125	Val	Gln	Leu
Gln	Gln 130	Ser	Gly	Pro	Glu	Leu 135	Val	Lys	Pro	Gly	Ala 140	Ser	Val	Lys	Ile
Ser 145	Суз	Lys	Ala	Ser	Gly 150	Tyr	Ser	Phe	Thr	Ser 155	Tyr	Trp	Ile	His	Trp 160
Ile	Lys	Gln	Arg	Pro 165	Gly	Gln	Gly	Leu	Glu 170	Trp	Ile	Gly	Met	Ile 175	Asp
Pro	Ser	Asp	Gly 180	Glu	Thr	Arg	Leu	Asn 185	Gln	Arg	Phe	Gln	Gly 190	Arg	Ala
Thr	Leu	Thr 195	Val	Asp	Glu	Ser	Thr 200	Ser	Thr	Ala	Tyr	Met 205	Gln	Leu	Arg
Ser	Pro 210	Thr	Ser	Glu	Asp	Ser 215	Ala	Val	Tyr	Tyr	Cys 220	Thr	Arg	Leu	Lys
Glu 225	Tyr	Gly	Asn	Tyr	Asp 230	Ser	Phe	Tyr	Phe	Asp 235	Val	Trp	Gly	Ala	Gly 240
Thr	Leu	Val	Thr	Val 245	Ser	Ser	Gly	Gly	Gly 250	Gly	Gly	Gly	Gly	Ala 255	Ser

Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr 260 265 270

Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro 275 280 285

Glu	Pro 290	Val	Thr	Val	Ser	Trp 295	Asn	Ser	Gly	Ala	Leu 300	Thr	Ser	Gly	Val
His 305	Thr	Phe	Pro	Ala	Val 310	Leu	Gln	Ser	Ser	Gly 315	Leu	Tyr	Ser	Leu	Ser 320
Ser	Val	Val	Thr	Val 325	Pro	Ser	Ser	Ser	Leu 330	Gly	Thr	Gln	Thr	Туг 335	Ile
Cys	Asn	Val	Asn 340	His	Lys	Pro	Ser	Asn 345	Thr	Lys	Val	Asp	Lys 350	Lys	Val
Glu	Pro	Lys 355	Ser	Cys	Asp	Lys	Thr 360	His	Thr	Cys	Pro	Pro 365	Cys	Pro	Ala
Pro	Glu 370	Leu	Leu	Gly	Gly	Pro 375	Ser	Val	Phe	Leu	Phe 380	Pro	Pro	Lys	Pro
Lys 385	Asp	Thr	Leu	Met	Ile 390	Ser	Arg	Thr	Pro	G1u 395	Val	Thr	Сув	Val	Val 400
Val	Asp	Val	Ser	His 405	Glu	Asp	Pro	Glu	Val 410	Lys	Phe	Asn	Trp	Tyr 415	Val
Asp	Gly	Val	Glu 420	Val	His	Asn	Ala	Lys 425	Thr	Lys	Pro	Arg	Glu 430	Glu	Gln
Tyr	Asn	Ser 435	Thr	Tyr	Arg	Val	Val 440	Ser	Val	Leu	Thr	Val 445	Leu	His	Gln
Asp	Trp 450	Leu	Asn	Gly	Lys	Glu 455	Tyr	Lys	Cys	Lys	Val 460	Ser	Asn	Lys	Ala
Leu 465	Pro	Ala	Pro	Ile	Glu 470	Lys	Thr	Ile	Ser	Lys 475	Ala	Lys	Gly	Gln	Pro 480
Arg	Glu	Pro	Gln	Val 485	Tyr	Thr	Leu	Pro	Pro 490	Ser	Arg	Asp	Glu	Leu 495	Thr
Lys	Asn	Gln	Val 500	Ser	Leu	Thr	Cys	Leu 505	Val	Lys	Gly	Phe	Tyr 510	Pro	Ser
Asp	Ile	Ala 515	Val	Glu	Trp	Glu	Ser 520	Asn	Gly	Gln	Pro	Glu 525	Asn	Asn	Tyr
Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe	Phe	Leu	Tyr

	Ser 545	Lys	Leu	Thr	Val	Asp 550	Lys	Ser	Arg	Trp	Gln 555	Gln	Gly	Asn	Val	Phe 560
	Ser	Cys	Ser	Val	Met 565	His	Glu	Ala	Leu	His 570	Asn	His	Туг	Thr	Gln 575	Lys
	Ser	Leu	Ser	Leu 580	Ser	Pro	Gly									
5	<210 <211 <212 <213	> 580 > PR	Т	ia Art	ificial											
	<220 <223		cuenc	ia de	la ca	dena	pesa	da pa	ra V-l	g dua	al de e	entred	cruza	mient	o con	el código HC2
	<400	> 14														
	Glu 1	Val	Gln	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Ala	Pro	Gly 15	Gly
	Ser	Leu	Ser	Ile 20	Thr	Cys	Thr	Val	Ser 25	Gly	Phe	Ser	Leu	Thr 30	Asp	Ser
	Ser	Ile	Asn 35	Trp	Val	Arg	Gln	Pro 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Leu
	Gly	Met 50	Ile	Trp	Gly	Asp	Gly 55	Arg	Ile	Asp	Tyr	Ala 60	Asp	Ala	Leu	Lys
	Ser 65	Arg	Leu	Ser	Ile	Ser 70	Lys	Asp	Ser	Ser	Lys 75	Ser	Gln	Val	Phe	Leu 80
	Glu	Met	Thr	Ser	Leu 85	Arg	Thr	Asp	Asp	Thr 90	Ala	Thr	Tyr	Tyr	Cys 95	Ala
	Arg	Asp	Gly	Tyr 100	Phe	Pro	Tyr	Ala	Met 105	Asp	Phe	Trp	Gly	Gln 110	Gly	Thr
	Ser	Val	Thr 115	Val	Ser	Ser	Gly	Gly 120	Gly	Gly	Gly	Gly	Gln 125	Val	Gln	Leu
	Gln	Gln 130	Ser	Gly	Pro	Glu	Leu 135	Val	Lys	Pro	Gly	Ala 140	Ser	Val	Lys	Ile
10	Ser 145	Cys	Lys	Ala	Ser	Gly 150	Tyr	Ser	Phe	Thr	Ser 155	Tyr	Trp	Ile	His	Trp 160

Ile	Lys	Gln	Arg	Pro 165	Gly	Gln	Gly	Leu	Glu 170	Trp	Ile	Gly	Met	Ile 175	Asp
Pro	Ser	Asp	Gly 180	Glu	Thr	Arg	Leu	As n 185	Gln	Arg	Phe	Gln	Gly 190	Arg	Ala
Thr	Leu	Thr 195	Val	Asp	Glu	Ser	Thr 200	Ser	Thr	Ala	Tyr	Met 205	Gln	Leu	Arg
Ser	Pro 210	Thr	Ser	Glu	Asp	Ser 215	Ala	Val	Tyr	Tyr	Cys 220	Thr	Arg	Leu	Lys
Glu 225	Tyr	Gly	Asn	Tyr	Asp 230	Ser	Phe	Tyr	Phe	Asp 235	Val	Trp	Gly	Ala	Gly 240
Thr	Leu	Val	Thr	Val 245	Ser	Ser	Gly	Gly	Gly 250	Gly	Ala	Ser	Thr	Lys 255	Gly
Pro	Ser	Val	Phe 260	Pro	Leu	Ala	Pro	Ser 265	Ser	Lys	Ser	Thr	Ser 270	Gly	Gly
Thr	Ala	Ala 275	Leu	Gly	Cys	Leu	Val 280	Lys	Asp	Tyr	Phe	Pro 285	Glu	Pro	Val
Thr	Val 290	Ser	Trp	Asn	Ser	Gly 295	Ala	Leu	Thr	Ser	Gly 300	Val	His	Thr	Phe
Pro 305	Ala	Val	Leu	Gln	Ser 310	Ser	Gly	Leu	Туг	Ser 315	Leu	Ser	Ser	Val	Val 320
Thr	Val	Pro	Ser	Ser 325	Ser	Leu	Gly	Thr	Gln 330	Thr	Tyr	Ile	Cys	Asn 335	Val
Asn	His	Lys	Pro 340	Ser	Asn	Thr	Lys	Val 345	Asp	Lys	Lys	Val	Glu 350	Pro	Lys
Ser	Cys	Asp 355	Lys	Thr	His	Thr	Суs 360	Pro	Pro	Cys	Pro	Ala 365	Pro	Glu	Leu
Leu	Gly 370	Gly	Pro	Ser	Val	Phe 375	Leu	Phe	Pro	Pro	Lys 380	Pro	Lys	Asp	Thr
Leu 385	Met	Ile	Ser	Arg	Thr 390	Pro	Glu	Val	Thr	Cys 395	Val	Val	Val	Asp	Val 400
Ser	His	Glu	Asp	Pro	Glu	Val	Lys	Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val

				405					410					415	
Glu	Val	His	Asn 420	Ala	Lys	Thr	Lys	Pro 425	Arg	Glu	Glu	Gln	Tyr 430	Asn	Ser
Thr	Tyr	Arg 435	Val	Val	Ser	Val	Leu 440	Thr	Val	Leu	His	Gln 445	Asp	Trp	Leu
Asn	Gly 450	Lys	Glu	Tyr	Lys	Cys 455	Lys	Val	Ser	Asn	Lys 460	Ala	Leu	Pro	Ala
Pro 465	Ile	Glu	Lys	Thr	Ile 470	Ser	Lys	Ala	Lys	Gly 475	Gln	Pro	Arg	Glu	Pro 480
Gln	Val	Tyr	Thr	Leu 485	Pro	Pro	Ser	Arg	Asp 490	Glu	Leu	Thr	Lys	Asn 495	Gln
Val	Ser	Leu	Thr 500	Cys	Leu	Val	Lys	Gly 505	Phe	Tyr	Pro	Ser	Asp 510	Ile	Ala
Val	Glu	Trp 515	Glu	Ser	Asn	Gly	Gln 520	Pro	Glu	Asn	Asn	Tyr 525	Lys	Thr	Thr
Pro	Pro 530	Val	Leu	Asp	Ser	Asp 535	Gly	Ser	Phe	Phe	Leu 540	Tyr	Ser	Lys	Leu
Thr 545	Val	Asp	Lys	Ser	Arg 550	Trp	Gln	Gln	Gly	Asn 555	Val	Phe	Ser	Cys	Ser 560
Val :	Met	His	Glu	Ala 565	Leu	His	Asn	His	Tyr 570	Thr	Gln	Lys	Ser	Leu 575	Ser
Leu	Ser	Pro	Gly 580												
<210><211><211><212><213>	> 579 > PR	Γ	ia Art	ificial											
<220> <223>		uenc	ia de	la ca	dena	pesa	da pa	ra V-l	g dua	al de (entred	cruza	mient	o con	el código HC3
<400>	15														
Glu 1	Val	Gln	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Ala	Pro	Gly 15	Gly
Ser	Leu	Ser	Ile 20	Thr	Cys	Thr	Val	Ser 25	Gly	Phe	Ser	Leu	Thr 30	Asp	Ser

Ser	Ile	Asn 35	Trp	Val	Arg	Gln	Pro 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Leu
Gly	Met 50	Ile	Trp	Gly	Asp	Gly 55	Arg	Ile	Asp	Tyr	Ala 60	Asp	Ala	Leu	Lys
Ser 65	Arg	Leu	Ser	Ile	Ser 70	Lys	Asp	Ser	Ser	Lys 75	Ser	Gln	Val	Phe	Leu 80
Glu	Met	Thr	Ser	Leu 85	Arg	Thr	Asp	Asp	Thr 90	Ala	Thr	Tyr	Tyr	Cys 95	Ala
Arg	Asp	Gly	Tyr 100	Phe	Pro	Tyr	Ala	Met 105	Asp	Phe	Trp	Gly	Gln 110	Gly	Thr
Ser	Val	Thr 115	Val	Ser	Ser	Gly	Gly 120	Gln	Val	Gln	Leu	Gln 125	Gln	Ser	Gly
Pro	Glu 130	Leu	Val	Lys	Pro	Gly 135	Ala	Ser	Val	Lys	Ile 140	Ser	Сув	Lys	Ala
Ser 145	Gly	Tyr	Ser	Phe	Thr 150	Ser	Tyr	Trp	Ile	His 155	Trp	Ile	Lys	Gln	Arg 160
Pro	G1y	Gln	Gly	Leu 165	Glu	Trp	Ile	Gly	Met 170	Ile	Asp	Pro	Ser	Asp 175	Gly
Glu	Thr	Arg	Leu 180	Asn	Gln	Arg	Phe	Gln 185	Gly	Arg	Ala	Thr	Leu 190	Thr	Val
Asp	Glu	Ser 195	Thr	Ser	Thr	Ala	Tyr 200	Met	Gln	Leu	Arg	Ser 205	Pro	Thr	Ser
Glu	As p 210	Ser	Ala	Val	Tyr	Tyr 215	Cys	Thr	Arg	Leu	Lys 220	Glu	Tyr	Gly	Asn
Tyr 225	Asp	Ser	Phe	Tyr	Phe 230	Asp	Val	Trp	Gly	Ala 235	Gly	Thr	Leu	Val	Thr 240
Val	Ser	Ser	Gly	Gly 245	Gly	Gly	Gly	Gly	Gly 250	Ala	Ser	Thr	Lys	Gly 255	Pro
Ser	Val	Phe	Pro 260	Leu	Ala	Pro	Ser	Ser 265	Lys	Ser	Thr	Ser	Gly 270	Gly	Thr

Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr

		275					280					285			
Val	Ser 290	Trp	Aşn	Ser	Gly	Ala 295	Leu	Thr	Ser	Gly	V al 300	His	Thr	Phe	Pro
Ala 305	Val	Leu	Gln	Ser	Ser 310	Gly	Leu	Tyr	Ser	Leu 315	Ser	Ser	Val	Val	Thr 320
Val	Pro	Ser	Ser	Ser 325	Leu	Gly	Thr	Gln	Thr 330	Tyr	Ile	Cys	Asn	Val 335	Asn
His	Lys	Pro	Ser 340	Asn	Thr	Lys	Val	Asp 345	Lys	Lys	Val	Glu	Pro 350	Lys	Ser
Cys	Asp	Lys 355	Thr	His	Thr	Cys	Pro 360	Pro	Cys	Pro	Ala	Pro 365	Glu	Leu	Leu
Gly	Gly 370	Pro	Ser	Val	Phe	Leu 375	Phe	Pro	Pro	Lys	Pro 380	Lys	Asp	Thr	Leu
Met 385	Ile	Ser	Arg	Thr	Pro 390	Glu	Val	Thr	Суз	Val 395	Val	Val	Asp	Val	Ser 400
His	Glu	Asp	Pro	Glu 405	Val	Lys	Phe	Asn	Trp 410	Tyr	Val	Asp	Gly	Val 415	Glu
Val	His	Asn	Ala 420	Lys	Thr	Lys	Pro	Arg 425	Glu	Glu	Gln	Tyr	Asn 430	Ser	Thr
Tyr	Arg	Val 435	Val	Ser	Val	Leu	Thr 440	Val	Leu	His	G ln	Asp 445	Trp	Leu	Asn
Gly	Lys 450	Glu	Tyr	Lys	Cys	Lys 455	Val	Ser	Asn	Lys	Ala 460	Leu	Pro	Ala	Pro
Ile 465	Glu	Lys	Thr	Ile	Ser 470	Lys	Ala	Lys	Gly	Gln 475	Pro	Arg	Glu	Pro	Gln 480
Val	Tyr	Thr	Leu	Pro 485	Pro	Ser	Arg	Asp	Glu 490	Leu	Thr	Lys	Asn	Gln 495	Val
Ser	Leu	Thr	Сув 500	Leu	Val	Lys	Gly	Phe 505	Tyr	Pro	Ser	Asp	Ile 510	Ala	Val
Glu	Trp	Glu 515	Ser	Asn	Gly	Gln	Pro 520	Glu	Asn	Asn	Tyr	Lys 525	Thr	Thr	Pro

Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 565 570 Ser Pro Gly <210> 16 <211> 576 <212> PRT <213> Secuencia Artificial <220> < 223> Secuencia de la cadena pesada para V-lg dual de entrecruzamiento con el código HC4 <400> 16 Glu Val Gln Leu Lys Glu Ser Gly Pro Gly Leu Val Ala Pro Gly Gly Ser Leu Ser Ile Thr Cys Thr Val Ser Gly Phe Ser Leu Thr Asp Ser Ser Ile Asn Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Leu Gly Met Ile Trp Gly Asp Gly Arg Ile Asp Tyr Ala Asp Ala Leu Lys Ser Arg Leu Ser Ile Ser Lys Asp Ser Ser Lys Ser Gln Val Phe Leu Glu Met Thr Ser Leu Arg Thr Asp Asp Thr Ala Thr Tyr Tyr Cys Ala 85 Arg Asp Gly Tyr Phe Pro Tyr Ala Met Asp Phe Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Gly Gly Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala Ser Val Lys Ile Ser Cys Lys Ala

Ser Gly Tyr Ser Phe Thr Ser Tyr Trp Ile His Trp Ile Lys Gln Arg

145					150					155					160
Pro	Gly	Gln	Gly	Leu 165	Glu	Trp	Ile	Gly	Met 170	Ile	Asp	Pro	Ser	Asp 175	Gly
Glu	Thr	Arg	Leu 180	Asn	Gln	Arg	Phe	Gln 185	Gly	Arg	Ala	Thr	Leu 190	Thr	Val
Asp	Glu	Ser 195	Thr	Ser	Thr	Ala	Туг 200	Met	Gln	Leu	Arg	Ser 205	Pro	Thr	Ser
Glu	Asp 210	Ser	Ala	Val	Tyr	Tyr 215	Суз	Thr	Arg	Leu	Lys 220	Glu	Tyr	Gly	Asn
Туг 225	Asp	Ser	Phe	Tyr	Phe 230	Asp	Val	Trp	Gly	Ala 235	Gly	Thr	Leu	Val	Thr 240
Val	Ser	Ser	Gly	Gly 2 4 5	Gly	Gly	Ala	Ser	Thr 250	Lys	Gly	Pro	Ser	Val 255	Phe
Pro	Leu	Ala	Pro 260	Ser	Ser	Lys	Ser	Thr 265	Ser	Gly	Gly	Thr	Ala 270	Ala	Leu
Gly	Суз	Leu 275	Val	Lys	Asp	Tyr	Phe 280	Pro	Glu	Pro	Val	Thr 285	Val	Ser	Trp
Asn	Ser 290	Gly	Ala	Leu	Thr	Ser 295	Gly	Val	His	Thr	Ph e 300	Pro	Ala	Val	Leu
Gln 305	Ser	Ser	Gly	Leu	Tyr 310	Ser	Leu	Ser	Ser	Val 315	Val	Thr	Val	Pro	Ser 320
Ser	Ser	Leu	Gly	Thr 325	Gln	Thr	Tyr	Ile	Cys 330	Asn	Val	Asn	His	Lys 335	Pro
Ser	Asn	Thr	Lys 340	Val	Asp	Lys	Lys	Val 345	Glu	Pro	Lys	Ser	Суs 350	Asp	Lys
Thr	His	Thr 355	Cys	Pro	Pro	Суз	Pro 360	Ala	Pro	Glu	Leu	Leu 365	Gly	Gly	Pro
Ser	Val 370	Phe	Leu	Phe	Pro	Pro 375	Lys	Pro	Lys	Asp	Thr 380	Leu	Met	Ile	Ser
Arg 385	Thr	Pro	Glu	Val	Thr 390	Cys	Val	Val	Val	Asp 395	Val	Ser	His	Glu	Asp 400

Pro	Glu	Val	Lys	Phe 405	Asn	Trp	Tyr	Val	Asp 410	Gly	Val	Glu	Val	His 415	Asn
Ala	Lys	Thr	Lys 420	Pro	Arg	Glu	Glu	Gln 425	Tyr	Asn	Ser	Thr	Tyr 430	Arg	Val
Val	Ser	Val 435	Leu	Thr	Val	Leu	His 440	Gln	Asp	Trp	Leu	Asn 445	Gly	Lys	Glu
Tyr	Lys 450	Суз	Lys	Val	Ser	Asn 455	Lys	Ala	Leu	Pro	Ala 460	Pro	Ile	Glu	Lys
Thr 465	Ile	Ser	Lys	Ala	Lys 470	Gly	Gln	Pro	Arg	Glu 475	Pro	Gln	Val	Tyr	Thr 480
Leu	Pro	Pro	Ser	Arg 485	Asp	Glu	Leu	Thr	Lys 490	Asn	Gln	Val	Ser	Leu 495	Thr
Cys	Leu	Val	Lys 500	Gly	Phe	Tyr	Pro	Ser 505	Asp	Ile	Ala	Val	Glu 510	Trp	Glu
Ser	Asn	Gly 515	Gln	Pro	Glu	Asn	Asn 520	Tyr	Lys	Thr	Thr	Pro 525	Pro	Val	Leu
Asp	Ser 530	Asp	Gly	Ser	Phe	Phe 535	Leu	Tyr	Ser	Lys	Leu 540	Thr	Val	Asp	Lys
Ser 5 4 5	Arg	Trp	Gln	Gln	Gly 550	Asn	Val	Phe	Ser	Cys 555	Ser	Val	Met	His	Glu 560
Ala	Leu	His	Asn	His 565	Tyr	Thr	Gln	Lys	Ser 570	Leu	Ser	Leu	Ser	Pro 575	Gly
<210: <211: <212: <213:	> 581 > PR	Т	ia Art	ificial											
<220 <223		cuenc	ia de	la ca	dena	pesa	da pa	ra V-l	g dua	al de e	entred	cruzai	mient	o con	el código HC5
<400	> 17														
Glu 1	Val	Gln	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Ala	Pro	Gly 15	Gly
Ser	Leu	Ser	11e 20	Thr	Cys	Thr	Val	Ser 25	Gly	Phe	Ser	Leu	Thr 30	Asp	Ser
Ser	Ile	Asn	Trp	Val	Arg	G1n	Pro	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Leu

		35					40					45			
Gly	Met 50	Ile	Trp	Gly	Asp	Gly 55	Arg	Ile	Asp	Tyr	Ala 60	Asp	Ala	Leu	Lys
Ser 65	Arg	Leu	Ser	Ile	Ser 70	Lys	Asp	Ser	Ser	Lys 75	Ser	Gln	Val	Phe	Leu 80
Glu	Met	Thr	Ser	Leu 85	Arg	Thr	Asp	Asp	Thr 90	Ala	Thr	Tyr	Tyr	Cys 95	Ala
Arg	Asp	Gly	Tyr 100	Phe	Pro	Tyr	Ala	Met 105	Asp	Phe	Trp	Gly	Gln 110	Gly	Thr
Ser	Val	Thr 115	Val	Ser	Ser	Gly	Gly 120	Gly	Gly	Gln	Val	Gln 125	Leu	Gln	Gln
Ser	Gly 130	Pro	Glu	Leu	Val	Lys 135	Pro	Gly	Ala	Ser	Val 140	Lys	Ile	Ser	Cys
Lys 145	Ala	Ser	Gly	Tyr	Ser 150	Phe	Thr	Ser	Tyr	Trp 155	Ile	His	Trp	Ile	Lys 160
Gln	Arg	Pro	Gly	Gln 165	Gly	Leu	Glu	Trp	Ile 170	Gly	Met	Ile	Asp	Pro 175	Ser
Asp	Gly	Glu	Thr 180	Arg	Leu	Asn	Gln	Arg 185	Phe	Gln	Gly	Arg	Ala 190	Thr	Leu
Thr	Val	Asp 195	Glu	Ser	Thr	Ser	Thr 200	Ala	Tyr	Met	Gln	Leu 205	Arg	Ser	Pro
Thr	Ser 210	Glu	Asp	Ser	Ala	Val 215	Tyr	Tyr	Cys	Thr	Arg 220	Leu	Lys	Glu	Tyr
Gly 225	Asn	туг	Asp	Ser	Phe 230	Туг	Phe	Asp	Val	Trp 235	Gly	Ala	Gly	Thr	Leu 240
Val	Thr	Val	Ser	Ser 245	Gly	Gly	Gly	Gly	Gly 250	Gly	Gly	Ala	Ser	Thr 255	Lys
Gly	Pro	Ser	Val 260	Phe	Pro	Leu	Ala	Pro 265	Ser	Ser	Lys	Ser	Thr 270	Ser	Gly
Gly	Thr	Ala 275	Ala	Leu	Gly	Cys	Leu 280	Val	Lys	Asp	Tyr	Phe 285	Pro	Glu	Pro

Val	290	Val	Ser	Trp	ASN	295	GIÀ	ALA	Leu	Thr	300	GIĀ	vai	HIS	Thr	
Phe 305	Pro	Ala	Val	Leu	Gln 310	Ser	Ser	Gly	Leu	Tyr 315	Ser	Leu	Ser	Ser	Val 320	
Val	Thr	Val	Pro	Ser 325	Ser	Ser	Leu	Gly	Thr 330	Gln	Thr	Tyr	Ile	Cys 335	Asn	
V al	Asn	His	Lys 340	Pro	Ser	Asn	Thr	Lys 345	Val	Asp	Lys	Lys	Val 350	Glu	Pro	
Lys	Şer	Cys 355	Asp	Lys	Thr	His	Thr 360	Cys	Pro	Pro	Cys	Pro 365	Ala	Pro	Glu	
Leu	Leu 370	Gly	Gly	Pro	Ser	Val 375	Phe	Leu	Phe	Pro	Pro 380	Lys	Pro	Lys	Asp	
Thr 385	Leu	Met	Ile	Ser	Arg 390	Thr	Pro	Glu	Val	Thr 395	Cys	Val	Val	Val	Asp 400	
Val	Ser	His	Glu	Asp 4 05	Pro	Glu	Val	Lys	Phe 410	Asn	Trp	Tyr	Val	Asp 415	Gly	
Val	Glu	Val	His 420	Asn	Ala	Lys	Thr	Lys 425	Pro	Arg	Glu	Glu	Gln 430	Tyr	Asn	
Ser	Thr	Tyr 435	Arg	Val	Val	Ser	Val 440	Leu	Thr	Val	Leu	His 445	Gln	Asp	Trp	
Leu	Asn 450	Gly	Lys	Glu	Tyr	Lys 455	Cys	Lys	Val	Ser	Asn 460	Lys	Ala	Leu	Pro	
Ala 465	Pro	Ile	Glu	Lys	Thr 470	Ile	Ser	Lys	Ala	Lys 475	Gly	Gln	Pro	Arg	Glu 480	
Pro	Gln	Val	Tyr	Thr 485	Leu	Pro	Pro	Ser	_	Asp		Leu	Thr	Lys 495	Asn	

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 515 520 525

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 530 540

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 545 550 555 560

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 565 570 575

Ser Leu Ser Pro Gly 580

	<210 <211 <212 <213	> 578 > PR	Т	ia Art	ificial											
5	<220 <223		dena	pesad	da pa	ra V-I	g dua	al de d	cruzai	mient	o con	ı el cá	odigo	HC6		
	<400	> 18														
	Glu 1	Val	Gln	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Ala	Pro	Gly 15	G1
	Ser	Leu	Ser	Ile 20	Thr	Сув	Thr	Val	Ser 25	Gly	Phe	Ser	Leu	Thr 30	Asp	Se
	Ser	Ile	Asn 35	Trp	Val	Arg	Gln	Pro 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Le
	Gly	Met 50	Ile	Trp	Gly	Asp	Gly 55	Arg	Ile	Asp	Tyr	Ala 60	Asp	Ala	Leu	Ly
	Ser 65	Arg	Leu	Ser	Ile	Ser 70	Lys	Asp	Ser	Ser	Lys 75	Ser	Gln	Val	Phe	Let 80
	Glu	Met	Thr	Ser	Leu 85	Arg	Thr	Asp	Asp	Thr 90	Ala	Thr	Tyr	Tyr	Cys 95	Ala
	Arg	Asp	Gly	Tyr 100	Phe	Pro	Tyr	Ala	Met 105	Asp	Phe	Trp	G1 y	Gln 110	Gly	Th
	Ser	Val	Thr 115	Val	Ser	Ser	Gly	Gly 120	Gly	Gly	Gln	Val	Gln 125	Leu	Gln	Glı
	Ser	Gly 130	Pro	Glu	Leu	Val	Lys 135	Pro	Gly	Ala	Ser	Val 140	Lys	Ile	Ser	Суз

Lys Ala Ser Gly Tyr Ser Phe Thr Ser Tyr Trp Ile His Trp Ile Lys 145 150 150 155

Gln Arg	Pro	Gly	Gln 165	Gly	Leu	Glu	Trp	Ile 170	Gly	Met	Ile	Asp	Pro 175	Ser
Asp Gly	Glu	Thr 180	Arg	Leu	Asn	Gln	Arg 185	Phe	Gln	Gly	Arg	Ala 190	Thr	Leu
Thr Val	Asp 195	Glu	Ser	Thr	Ser	Thr 200	Ala	туг	Met	Gln	Leu 205	Arg	Ser	Pro
Thr Ser 210		Asp	Ser	Ala	Val 215	Tyr	Tyr	Cys	Thr	Arg 220	Leu	Lys	Glu	Tyr
Gly Asn 225	Tyr	Asp	Ser	Phe 230	Tyr	Phe	Asp	Val	Trp 235	Gly	Ala	Gly	Thr	Leu 240
Val Thr	Val	Ser	Ser 245	Gly	Gly	Gly	Gly	Al a 250	Ser	Thr	Lys	Gly	Pro 255	Ser
Val Phe	Pro	Leu 260	Ala	Pro	Ser	Ser	Lys 265	Ser	Thr	Ser	Gly	Gly 270	Thr	Ala
Ala Leu	Gly 275	Cys	Leu	Val	Lys	Asp 280	Tyr	Phe	Pro	Glu	Pro 285	Val	Thr	Val
Ser Trp 290		Ser	Gly	Ala	Leu 295	Thr	Ser	Gly	Val	His 300	Thr	Phe	Pro	Ala
Val Leu 305	Gln	Ser	Ser	Gly 310	Leu	Tyr	Ser	Leu	Ser 315	Ser	Val	Val	Thr	Val 320
Pro Ser	Ser	Ser	Leu 325	Gly	Thr	Gln	Thr	Tyr 330	Ile	Сув	Asn	Val	Asn 335	His
Lys Pro	Ser	Asn 340	Thr	Lys	Val	Asp	Lys 345	Lys	Val	Glu	Pro	Lys 350	Ser	Cys
Asp Lys	Thr 355	His	Thr	Cys	Pro	Pro 360	Cys	Pro	Ala	Pro	Glu 3 6 5	Leu	Leu	Gly
Gly Pro 370		Val	Phe	Leu	Phe 375	Pro	Pro	Lys	Pro	Lys 380	Asp	Thr	Leu	Met
Ile Ser 385	Arg	Thr	Pro	Glu 390	Val	Thr	Суз	Val	Val 395	Val	Asp	Val	Ser	His 400

His	Asn	Ala	Lys 420	Thr	Lys	Pro	Arg	Glu 425	Glu	Gln	Tyr	Asn	Ser 430	Thr	Tyr
Arg	Val	Val 435	Ser	Val	Leu	Thr	Val 440	Leu	His	Gln	Asp	Trp 445	Leu	Asn	Gly
Lys	Glu 450	Tyr	Lys	Cys	Lys	Val 455	Ser	Asn	Lys	Ala	Leu 460	Pro	Ala	Pro	Ile
Glu 465	Lys	Thr	Ile	Ser	Lys 470	Ala	Lys	Gly	Gln	Pro 475	Arg	Glu	Pro	Gln	Val 480
Tyr	Thr	Leu	Pro	Pro 485	Ser	Arg	Asp	Glu	Leu 490	Thr	Lys	Asn	Gln	Val 495	Ser
Leu	Thr	Сув	Leu 500	Val	Lys	Gly	Phe	Tyr 505	Pro	Ser	Asp	Ile	Ala 510	Val	Glu
Trp	Glu	Ser 515	Asn	Gly	Gln	Pro	Glu 520	Asn	Asn	Tyr	Lys	Thr 525	Thr	Pro	Pro
Val	Leu 530	Asp	Ser	Asp	Gly	Ser 535	Phe	Phe	Leu	Tyr	Ser 540	Lys	Leu	Thr	Val
Asp 545	Lys	Ser	Arg	Trp	Gln 550	Gln	Gly	Asn	Val	Phe 555	Ser	Cys	Ser	Val	Met 560
His	Glu	Ala	Leu	His 565	Asn	His	Tyr	Thr	Gln 570	Lys	Ser	Leu	Ser	Leu 575	Ser
Pro	Gly														
<212	> 19 > 328 > PR ⁻ > Sec	Т	ia Art	ificial											
<220 <223		cuenc	ia de	la ca	dena	ligera	ı para	V-Ig	dual	de en	trecru	ızami	iento	con e	l código LC1
<400	> 19														
Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ala	Ser 10	Leu	Ser	Val	Ser	Val 15	Gly
Asp	Thr	Ile	Thr 20	Leu	Thr	Суз	His	Ala 25	Ser	Gln	Asn	Ile	Asp 30	Val	Trp

Leu	Ser	Trp 35	Phe	Gln	Gln	Lys	Pro 40	Gly	Asn	Ile	Pro	Lys 45	Leu	Leu	Ile
Tyr	Lys 50	Ala	Ser	Asn	Leu	His 55	Thr	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
Ser 65	Gly	Ser	Gly	Thr	Gly 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
Glu	Asp	Ile	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Ala	His	Ser	Tyr	Pro 95	Phe
Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys	Gly	Gly	Gly 110	Asp	Ile
Val	Leu	Thr 115	Gln	Ser	Pro	Ala	Ser 120	Leu	Ala	Val	Ser	Leu 125	Gly	Gln	Arg
Ala	Thr 130	Ile	Ser	Сув	Arg	Ala 135	Ser	Glu	Ser	Val	Asp 140	Ser	Tyr	Gly	Gln
Ser 145	Tyr	Met	His	Trp	Tyr 150	Gln	Gln	Lys	Ala	Gly 155	Gln	Pro	Pro	Lys	Leu 160
Leu	Ile	Tyr	Leu	Ala 165	Ser	Asn	Leu	Glu	Ser 170	Gly	Val	Pro	Ala	Arg 175	Phe
Ser	Gly	Ser	Gly 180	Ser	Arg	Thr	Asp	Phe 185	Thr	Leu	Thr	Ile	Asp 190	Pro	Val
Gln	Ala	Glu 195	Asp	Ala	Ala	Thr	Tyr 200	Tyr	Cys	Gln	Gln	As n 205	Ala	Glu	Asp
Ser	Arg 210	Thr	Phe	Gly	Gly	Gly 215	Thr	Lys	Leu	Gl u	Ile 220	Lys	Arg	Thr	Val
Ala 225	Ala	Pro	Ser	Val	Phe 230	Ile	Phe	Pro	Pro	Ser 235	Asp	Glu	Gln	Leu	Lys 240
Ser	Gly	Thr	Ala	Ser 245	Val	Val	Cys	Leu	Leu 250	Asn	Asn	Phe	Tyr	Pro 255	Arg
Glu	Ala	Lys	Val 260	Gln	Trp	Lys	Val	Asp 265	Asn	Ala	Leu	Gln	Ser 270	Gly	Asn
Ser	Gln	Glu 275	Ser	Val	Thr	Glu	Gln 280	Asp	Ser	Lys	Asp	Ser 285	Thr	Tyr	Ser

Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys

Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr 305 310 315 320

Lys Ser Phe Asn Arg Gly Glu Cys 325

<210: <211: <212: <213:	> 326 > PR	Т	ia Art	ificial											
<220: <223:		cuenc	ia de	la ca	dena	ligera	ı para	ı V-lg	dual	de en	itrecri	uzami	iento	con e	l código l
<400	> 20														
Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ala	Ser 10	Leu	Ser	Val	Ser	Val 15	Gly
Asp	Thr	Ile	Thr 20	Leu	Thr	Суз	His	A la 25	Ser	Gln	Asn	Ile	Asp 30	Val	Trp
Leu	Ser	Trp 35	Phe	Gln	Gln	Lys	Pro 40	Gly	Asn	Ile	Pro	Lys 45	Leu	Leu	Ile
Tyr	Lys 50	Ala	Ser	Asn	Leu	His 55	Thr	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
Ser 65	Gly	Ser	Gly	Thr	Gly 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
Glu	Asp	Ile	Ala	Thr 85	Tyr	Tyr	Суз	Gln	Gln 90	Ala	His	Ser	Tyr	Pro 95	Phe
Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys	Gly	Asp	Ile 110	Val	Leu
Thr	Gln	Ser 115	Pro	Ala	Ser	Leu	Ala 120	Val	Ser	Leu	Gly	Gln 125	Arg	Ala	Thr
Ile	Ser	Cys	Arg	Ala		Glu		Val	Asp	Ser	Tyr	Gly	Gln	Ser	Tyr

Met His Trp Tyr Gln Gln Lys Ala Gly Gln Pro Pro Lys Leu Leu Ile 145 150 150 155 160

Tyr	Leu	Ala	Ser	Asn 165	Leu	Glu	Ser	Gly	Val 170	Pro	Ala	Arg	Phe	Ser 175	Gly
Ser	Gly	Ser	Arg 180	Thr	Asp	Phe	Thr	Leu 185	Thr	Ile	Asp	Pro	Val 190	Gln	Ala
Glu	Asp	Ala 195	Ala	Thr	Tyr	Tyr	Cys 200	Gln	Gln	Asn	Ala	Glu 205	Asp	Ser	Arg
Thr	Phe 210	Gly	Gly	Gly	Thr	Lys 215	Leu	Glu	Ile	Lys	Arg 220	Thr	Val	Ala	Ala
Pro 225	Ser	Val	Phe	Ile	Phe 230	Pro	Pro	Ser	Asp	Glu 235	Gln	Leu	Lys	Ser	Gly 240
Thr	Ala	Ser	Val	Val 245	Cys	Leu	Leu	Asn	Asn 250	Phe	Tyr	Pro	Arg	Glu 255	Ala
Lys	Val	Gln	Trp 260	Lys	Val	Asp	Asn	Ala 265	Leu	Gln	Ser	Gly	Asn 270	Ser	Gln
Glu	Ser	Val 275	Thr	Glu	Gln	Asp	Ser 280	Lys	Asp	Ser	Thr	Tyr 285	Ser	Leu	Ser
Ser	Thr 290	Leu	Thr	Leu	Ser	Lys 295	Ala	Asp	Tyr	Glu	Lys 300	His	Lys	Val	Tyr
Ala 305	Cys	Glu	Val	Thr	His 310	Gln	Gly	Leu	Ser	Ser 315	Pro	Val	Thr	Lys	Ser 320
Phe	Asn	Arg	Gly	Glu 325	Cys										
<212	> 330 > PR	Т	ia Art	ificial											
<220 <223		cuenc	ia de	la ca	dena	ligera	ı para	V-Ig	dual	de en	ıtrecrı	uzam	iento	con e	l código LC3
<400	> 21														
Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ala	Ser 10	Leu	Ser	Val	Ser	Val 15	Gly
Asp	Thr	Ile	Thr 20	Leu	Thr	Сув	His	Ala 25	Ser	Gln	Asn	Ile	Asp 30	Val	Trp
Leu	Ser	Trp	Phe	Gln	Gln	Lys	Pro	Gly	Asn	Ile	Pro	Lys	Leu	Leu	Ile

		35					40					45			
Tyr	Lys 50	Ala	Ser	Asn	Leu	His 55	Thr	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
Ser 65	Gly	Ser	Gly	Thr	Gly 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
Glu	Asp	Ile	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Ala	His	Ser	Tyr	Pro 95	Phe
Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys	Gly	Gly	Gly 110	Asp	Ile
Val	Leu	Thr 115	Gln	Ser	Pro	Ala	Ser 120	Leu	Ala	Val	Ser	Leu 125	Gly	Gln	Arg
Ala	Thr 130	Ile	Ser	Cys	Arg	Ala 135	Ser	Glu	Ser	Val	Asp 140	Ser	Tyr	Gly	Gln
Ser 145	Tyr	Met	His	Trp	Туг 150	Gln	Gln	Lys	Ala	Gly 155	Gln	Pro	Pro	Lys	Leu 160
Leu	Ile	Tyr	Leu	Ala 165	Ser	Asn	Leu	Glu	Ser 170	Gly	Val	Pro	Ala	Arg 175	Phe
Ser	Gly	Ser	Gly 180	Ser	Arg	Thr	Asp	Phe 185	Thr	Leu	Thr	Ile	Asp 190	Pro	Val
Gln	Ala	Glu 195	Asp	Ala	Ala	Thr	Tyr 200	Tyr	Cys	Gln	Gln	Asn 205	Ala	Glu	Asp
Ser	Arg 210	Thr	Phe	Gly	Gly	Gly 215	Thr	Lys	Leu	Glu	Ile 220	Lys	Gly	Gly	Arg
Thr 225	Val	Ala	Ala	Pro	Ser 230	Val	Phe	Ile	Phe	Pro 235	Pro	Ser	Asp	Glu	Gln 240
Leu	Lys	Ser	Gly	Thr 245	Ala	Ser	Val	Val	Cys 250	Leu	Leu	Asn	Asn	Phe 255	Tyr
Pro	Arg	Glu	Ala 260	Lys	Val	Gln	Trp	Lys 265	Val	Asp	Asn	Ala	Leu 270	Gln	Ser
Gly	Asn	Ser 275	Gln	Glu	Ser	Val	Thr 280	Glu	Gln	Asp	Ser	Lys 285	Asp	Ser	Thr
Tyr	Ser 290	Leu	Ser	Ser	Thr	Leu 295	Thr	Leu	Ser	Lys	Ala 300	Asp	Tyr	Glu	Lys
His 305	Lys	Val	Tyr	Ala	Cys 310	Glu	Val	Thr	His	Gln 315	Gly	Leu	Ser	Ser	Pro 320
Val	Thr	Lys	Ser	Phe 325	Asn	Arg	Gly	Glu	Cys 330						

	<210: <211: <212: <213:	> 328 > PR	Γ	ia Art	ificial												
5	<220: <223:		uenc	ia de	la ca	dena	ligera	n para	ı V-lg	dual	de er	ıtrecrı	uzami	iento	con e	l código L	C4
	<400	> 22															
	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ala	Ser 10	Leu	Ser	Val	Ser	Val 15	Gly	
	Asp	Thr	Ile	Thr 20	Leu	Thr	Суз	His	Ala 25	Ser	Gln	Asn	Ile	Asp 30	Val	Trp	
	Leu	Ser	Trp 35	Phe	Gln	Gln	Lys	Pro 40	Gly	Asn	Ile	Pro	Lys 45	Leu	Leu	Ile	
	Tyr	Lys 50	Ala	Ser	Asn	Leu	His 55	Thr	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
	Ser 65	Gly	Ser	Gly	Thr	Gly 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80	
	Glu	Asp	Ile	Ala	Thr 85	Tyr	Tyr	Сув	Gln	Gln 90	Ala	His	Ser	Tyr	Pro 95	Phe	
	Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys	Gly	Asp	Ile 110	Val	Leu	
	Thr	Gln	Ser 115	Pro	Ala	Ser	Leu	Ala 120	Val	Ser	Leu	Gly	Gln 125	Arg	Ala	Thr	
	Ile	Ser	Cys	Arg	Ala	Ser	Glu	Ser	Val	Asp	Ser	Tyr	Gly	Gln	Ser	Tyr	

135

Met His Trp Tyr Gln Gln Lys Ala Gly Gln Pro Pro Lys Leu Leu Ile 145 150 150 155 160

Tyr Leu Ala Ser Asn Leu Glu Ser Gly Val Pro Ala Arg Phe Ser Gly

130

				165					170					175	
Ser	Gly	Ser	Arg 180	Thr	Asp	Phe	Thr	Leu 185	Thr	Ile	Asp	Pro	V al 190	Gln	Ala
Glu	Asp	Ala 195	Ala	Thr	Tyr	Tyr	Cys 200	Gln	Gln	Asn	Ala	Glu 205	Asp	Ser	Arg
Thr	Phe 210	Gly	Gly	Gly	Thr	Lys 215	Leu	Glu	Ile	Lys	Gly 220	Gly	Arg	Thr	Val
Ala 225	Ala	Pro	Ser	Val	Phe 230	Ile	Phe	Pro	Pro	Ser 235	Asp	Glu	Gln	Leu	Lys 240
Ser	Gly	Thr	Ala	Ser 245	Val	Val	Cys	Leu	Leu 250	Asn	Asn	Phe	туг	Pro 255	Arg
Glu	Ala	Lys	Val 260	Gln	Trp	Lys	Val	Asp 265	Asn	Ala	Leu	Gln	Ser 270	Gly	Asn
Ser	Gln	Glu 275	Ser	Val	Thr	Glu	Gln 280	Asp	Ser	Lys	Asp	Ser 285	Thr	Tyr	Ser
Leu	Ser 290	Ser	Thr	Leu	Thr	Leu 295	Ser	Lys	Ala	Asp	Tyr 300	Glu	Lys	His	Lys
Val 305	Tyr	Ala	Cys	Glu	Val 310	Thr	His	Gln	Gly	Leu 315	Ser	Ser	Pro	Val	Thr 320
Lys	Ser	Phe	Asn	Arg 325	Gly	Glu	Cys								
	> 107 > PR	Т	ia Art	ificial											
<400	> 23														
Arg 1	Thr	Val	Ala	Ala 5	Pro	Ser	Val	Phe	Ile 10	Phe	Pro	Pro	Ser	Asp 15	Glu
Gln	Leu	Lys	Ser 20	Gly	Thr	Ala	Ser	Val 25	Val	Cys	Leu	Leu	Asn 30	Asn	Phe
Tyr	Pro	Arg 35	Glu	Ala	Lys	Val	Gln 40	Trp	Lys	Val	Asp	Asn 45	Ala	Leu	Gln
Ser	Gly	Asn	Ser	Gln	Glu	Ser	Val	Thr	Glu	Gln	Asp	Ser	Lys	Asp	Ser

	50					55					60				
Thr 1	Fyr	Ser	Leu	Ser	Ser 70	Thr	Leu	Thr	Leu	Ser 75	Lys	Ala	Asp	Tyr	Glu 80
Lys i	His	Lys	Val	Tyr 85	Ala	Cys	Glu	Val	Thr 90	His	Gln	Gly	Leu	Ser 95	Ser
Pro V	Val	Thr	Lys 100	Ser	Phe	Asn	Arg	Gly 105	Glu	Cys					
<210> <211> <212> <213>	329 PR	Γ	piens	;											
<400>	24														
Ala : 1	Ser	Thr	Lys	Gly 5	Pro	Ser	Val	Phe	Pro 10	Leu	Ala	Pro	Ser	Ser 15	Lys
Ser :	Thr	Ser	Gly 20	Gly	Thr	Ala	Ala	Leu 25	Gly	Cys	Leu	Val	Lys 30	Asp	Tyr
Phe 1	Pro	Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
Gly '	Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
Leu 8 65	Ser	Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Gln	Thr 80
Tyr :	Ile	Cys	Asn	Val 85	Asn	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
Lys \	Val	Glu	Pro 100	Lys	Ser	Cys	Asp	Lys 105	Thr	His	Thr	Cys	Pro 110	Pro	Cys
Pro i	Ala	Pro 115	Glu	Leu	Leu	Gly	Gly 120	Pro	Ser	Val	Phe	Leu 125	Phe	Pro	Pro
Lys I	Pro 130	Lys	Asp	Thr	Leu	Met 135	Ile	Ser	Arg	Thr	Pro 140	Glu	Val	Thr	Cys
Val 1 145	Val	Val	Asp	Val	Ser 150	His	Glu	Asp	Pro	Glu 155	Val	Lys	Phe	Asn	Trp 160

Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu

175

170

165

Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 200 Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 215 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 260 265 Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 280 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 325 <210> 25 <211> 4 <212> PRT 5 <213> Secuencia Artificial <220> <223> Enlazador peptídico con cuatro residuos glicina <400> 25 10 Gly Gly Gly Gly <210> 26 <211> 5 <212> PRT 15 <213> Secuencia Artificial <220>

<223> Enlazador peptídico con 5 residuos de aminoácido glicina

```
<400> 26
      Gly Gly Gly Gly
      <210> 27
      <211>6
      <212> PRT
      <213> Secuencia Artificial
      < 223> Enlazador peptídico con 6 residuos de aminoácido glicina
10
      <400> 27
      Gly Gly Gly Gly Gly
      <210> 28
15
      <211> 7
      <212> PRT
      <213> Secuencia Artificial
      <223> Enlazador peptídico con siete residuos de aminoácido glicina
20
      <400> 28
      Gly Gly Gly Gly Gly Gly
      <210> 29
      <211>8
25
      <212> PRT
      <213> Secuencia Artificial
      <223> Enlazador peptídico con ocho residuos de aminoácido glicina
      <400> 29
30
      Gly Gly Gly Gly Gly Gly Gly
      <210> 30
      <211> 5
      <212> PRT
35
      <213> Secuencia Artificial
      < 223> Enlazador peptídico artificial
      <400> 30
```

```
Gly Gly Gly Ser
     <210> 31
     <211> 10
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <223> enlazador peptídico artificial
     <400> 31
10
     Gly Gly Gly Ser Gly Gly Gly Ser
     <210> 32
     <211> 582
     <212> PRT
15
     <213> Secuencia Artificial
     <223> Secuencia de la cadena pesada para V-lg dual de entrecruzamiento con el código HC10
     <400> 32
      Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
      Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
      Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
                               40
      Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe
      Gln Gly Arg Val Thr Ile Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr
      Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
     Ala Arg Ala Pro Leu Arg Phe Leu Glu Trp Ser Thr Gln Asp His Tyr
                                       105
                  100
      Tyr Tyr Tyr Met Asp Val Trp Gly Lys Gly Thr Thr Val Thr Val
      Ser Ser Gly Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln
          130
                                                   140
     Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile
```

155

150

Lys	Asp	Thr	Tyr	Ile 165	His	Trp	Val	Arg	Gln 170	Ala	Pro	Gly	Lys	Gly 175	Leu
Glu	Trp	Val	Ala 180	Arg	Ile	Tyr	Pro	Thr 185	Asn	Gly	туг	Thr	Arg 190	туг	Ala
Asp	Ser	Val 195	Lys	Gly	Arg	Phe	Thr 200	Ile	Ser	Ala	Asp	Thr 205	Ser	Lys	Asn
Thr	Ala 210	Tyr	Leu	Gln	Met	Asn 215	Ser	Leu	Arg	Ala	Glu 220	Asp	Thr	Ala	Val
Tyr 225	Tyr	Cys	Ser	Arg	Trp 230	Gly	Gly	Asp	Gly	Phe 235	Tyr	Ala	Met	Asp	Tyr 240
Trp	Gly	Gln	Gly	Thr 245	Leu	Val	Thr	Val	Ser 250	Ser	Gly	Gly	Ala	Ser 255	Thr
Lys	Gly	Pro	Ser 260	Val	Phe	Pro	Leu	Ala 265	Pro	Ser	Ser	Lys	Ser 270	Thr	Ser
Gly	Gly	Thr 275	Ala	Ala	Leu	Gly	Cys 280	Leu	Val	Lys	Asp	Tyr 285	Phe	Pro	Glu
Pro	Val 290	Thr	Val	Ser	Trp	A sn 295	Ser	Gly	Ala	Leu	Thr 300	Ser	Gly	Val	His
Thr 305	Phe	Pro	Ala	Val	Leu 310	Gln	Ser	Ser	Gly	Leu 315	Tyr	Ser	Leu	Ser	Ser 320
Val	Val	Thr	Val	Pro 325	Ser	Ser	Ser	Leu	Gly 330	Thr	Gln	Thr	Tyr	11e 335	Cys
Asn	Val	Asn	His 340	Lys	Pro	Ser	Asn	Thr 345	Lys	Val	Asp	Lys	Lys 350	Val	Glu
Pro	Lys	Ser 355	Cys	Asp	Lys	Thr	His 360	Thr	Cys	Pro	Pro	Cys 365	Pro	Ala	Pro
Glu	Leu 370	Leu	Gly	Gly	Pro	Ser 375	V al	Phe	Leu	Phe	Pro 380	Pro	Lys	Pro	Lys
Asp 385	Thr	Leu	Met	Ile	Ser 390	Arg	Thr	Pro	Glu	Val 395	Thr	Суs	Val	Val	Val 400
Asp	Val	Ser	His	Glu	Asp	Pro	Glu	Val	Lys	Phe	Asn	Trp	Tyr	Val	Asp

				405					410					415	
Gly	Val	Glu	Val 420	His	Asn	Ala	Lys	Thr 425	Lys	Pro	Arg	Glu	Glu 430	Gln	Tyr
Asn	Ser	Thr 435	Tyr	Arg	Val	Val	Ser 440	Val	Leu	Thr	Val	Leu 445	His	Gln	Asp
Trp	Le u 450	Asn	Gly	Lys	Glu	Tyr 455	Lys	Сув	Lys	Val	Ser 460	Asn	Lys	Ala	Leu
Pro 465	Ala	Pro	Ile	Glu	Lys 470	Thr	Ile	Ser	Lys	Ala 475	Lys	Gly	Gln	Pro	Arg 480
Glu	Pro	Gln	Val	Tyr 485	Thr	Leu	Pro	Pro	Ser 490	Arg	Asp	Glu	Leu	Thr 495	Lys
Asn	Gln	Val	Ser 500	Leu	Thr	Суз	Leu	Val 505	Lys	Gly	Phe	Tyr	Pro 510	Ser	Asp
Ile	Ala	Val 515	Glu	Trp	Glu	Ser	As n 520	Gly	Gln	Pro	Glu	Asn 525	Asn	Tyr	Lys
Thr	Thr 530	Pro	Pro	Val	Leu	Asp 535	Ser	Asp	Gly	Ser	Phe 540	Phe	Leu	Tyr	Ser
Lys 545	Leu	Thr	Val	Asp	Lys 550	Ser	Arg	Trp	Gln	Gln 555	Gly	Asn	Val	Phe	Ser 560
Cys	Ser	Val	Met	His 565	Glu	Ala	Leu	His	Asn 570	His	Tyr	Thr	Gln	Lys 575	Ser
Leu	Ser	Leu	Ser 580	Pro	Gly										
<210 <211 <212 <213	> 582 > PR	Τ	ia Art	ificial											
<220 <223		cuenc	ia de	la ca	dena	pesa	da pa	ıra V-l	lg dua	al de e	entred	cruza	mient	o con	el código HC11
<400	> 33														
Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
Ser	Leu	Arg	Leu 20	Ser	Суз	Ala	Ala	Ser 25	Gly	Phe	Asn	Ile	Lys 30	Asp	Thr

Tyr	Ile	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
Ala	Arg 50	Ile	Tyr	Pro	Thr	Asn 55	Gly	Tyr	Thr	Arg	Tyr 60	Ala	Asp	Ser	Val
Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Ala	Asp	Thr	Ser 75	Lys	Asn	Thr	Ala	Tyr 80
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ser	Arg	Trp	Gly 100	Gly	Asp	Gly	Phe	Tyr 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Gly	Glu	Val	Gln	Leu 125	Val	Gln	Ser
Gly	Ala 130	Glu	Val	Lys	Lys	Pro 135	Gly	Ser	Ser	Val	Lys 140	Val	Ser	Суѕ	Lys
Ala 145	Ser	Gly	Gly	Thr	Phe 150	Ser	Ser	Tyr	Ala	Ile 155	Ser	Trp	Val	Arg	Gln 160
Ala	Pro	Gly	Gln	Gly 165	Leu	Glu	Trp	Met	Gly 170	Gly	Ile	Ile	Pro	Ile 175	Phe
Gly	Thr	Ala	Asn 180	Tyr	Ala	Gln	Lys	Phe 185	Gln	Gly	Arg	Val	Thr 190	Ile	Thr
Ala	Asp	Lys 195	Ser	Thr	Ser	Thr	Ala 200	Tyr	Met	Glu	Leu	Ser 205	Ser	Leu	Arg
Ser	Glu 210	Asp	Thr	Ala	Val	Tyr 215	Tyr	Cys	Ala	Arg	Ala 220	Pro	Leu	Arg	Phe
Leu 225	Glu	Trp	Ser	Thr	Gln 230	Asp	His	Tyr	Tyr	Tyr 235	Tyr	Tyr	Met	Asp	Val 240
Trp	Gly	Lys	Gly	Thr 245	Thr	Val	Thr	Val	Ser 250	Ser	Gly	Gly	Ala	Ser 255	Thr
Lys	Gly	Pro	Ser 260	Val	Phe	Pro	Leu	Ala 265	Pro	Ser	Ser	Lys	Ser 270	Thr	Ser
Gly	Gly	Thr	Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu

		275					280					285			
Pro	Val 290	Thr	Val	Ser	Trp	Asn 295	Ser	Gly	Ala	Leu	Thr 300	Ser	Gly	Val	His
Thr 305	Phe	Pro	Ala	Val	Leu 310	Gln	Ser	Ser	Gly	Leu 315	Туг	Ser	Leu	Ser	Ser 320
Val	Val	Thr	Val	Pro 325	Ser	Ser	Ser	Leu	Gly 330	Thr	Gln	Thr	Tyr	11e 335	Cys
Asn	Val	Asn	His 340	Lys	Pro	Ser	Asn	Thr 345	Lys	Val	Asp	Lys	Lys 350	Val	Glu
Pro	Lys	Ser 355	Cys	Asp	Lys	Thr	His 360	Thr	Cys	Pro	Pro	Cys 365	Pro	Ala	Pro
Glu	Leu 370	Leu	Gly	Gly	Pro	Ser 375	Val	Phe	Leu	Phe	Pro 380	Pro	Lys	Pro	Lys
Asp 385	Thr	Leu	Met	Ile	Ser 390	Arg	Thr	Pro	Glu	Val 395	Thr	Cys	Val	Val	Val 400
Asp	Val	Ser	His	Glu 405	Asp	Pro	Glu	Val	Lys 410	Phe	Asn	Trp	Tyr	Val 415	Asp
Gly	Val	Glu	Val 420	His	Asn	Ala	Lys	Thr 425	Lys	Pro	Arg	Glu	Glu 430	Gln	Tyr
Asn	Ser	Thr 435	Туг	Arg	Val	Val	Ser 440	Val	Leu	Thr	Val	Leu 445	His	Gln	Asp
Trp	Leu 450	Asn	Gly	Lys	Glu	Tyr 455	Lys	Cys	Lys	Val	Ser 460	Asn	Lys	Ala	Leu
Pro 465	Ala	Pro	Ile	Glu	Lys 470	Thr	Ile	Ser	Lys	Ala 475	Lys	Gly	Gln	Pro	Arg 480
Glu	Pro	Gln	Val	Tyr 485	Thr	Leu	Pro	Pro	Ser 490	Arg	Asp	Glu	Leu	Thr 495	Lys
Asn	Gln	Val	Ser 500	Leu	Thr	Cys	Leu	Val 505	Lys	Gly	Phe	Tyr	Pro 510	Ser	Asp
Ile	Ala	Val 515	Glu	Trp	Glu	Ser	Asn 520	Gly	Gln	Pro	Glu	Asn 525	Asn	Tyr	Lys

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

5

10

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 550 Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser 565 570 Leu Ser Leu Ser Pro Gly 580 <210> 34 <211> 571 <212> PRT <213> Secuencia Artificial <220> <223> Secuencia de la cadena pesada para V-lg dual de entrecruzamiento con el código HC12 <400> 34 Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val Lys Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Ser Val Ile Asp Thr Arg Gly Ala Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80 Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Leu Gly Asn Phe Tyr Tyr Gly Met Asp Val Trp Gly Gln Gly Thr 105 Thr Val Thr Val Ser Ser Gly Gln Val Gln Leu Gln Glu Ser Gly Pro 115 Gly Leu Val Lys Pro Ser Gln Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly Asp Tyr Tyr Trp Ser Trp Ile Arg Gln

145					150					155					160
Pro	Pro	Gly	Lys	Gly 165	Leu	Glu	Trp	Ile	Gl y 170	Tyr	Ile	Tyr	туг	Ser 175	Gly
Ser	Thr	Asp	Tyr 180	Asn	Pro	Ser	Leu	Lys 185	Ser	Arg	Val	Thr	Met 190	Ser	Val
Asp	Thr	Ser 195	Lys	Asn	Gln	Phe	Ser 200	Leu	Lys	Val	Asn	Ser 205	Val	Thr	Ala
Ala	Asp 210	Thr	Ala	Val	Tyr	Tyr 215	Cys	Ala	Arg	Val	Ser 220	Ile	Phe	Gly	Val
Gly 225	Thr	Phe	Asp	Tyr	Trp 230	Gly	Gln	Gly	Thr	Leu 235	Val	Thr	Val	Ser	Ser 240
Gly	Gly	Ala	Ser	Thr 245	Lys	Gly	Pro	Ser	Val 250	Phe	Pro	Leu	Ala	Pro 255	Ser
Ser	Lys	Ser	Thr 260	Ser	Gly	Gly	Thr	Ala 265	Ala	Leu	Gly	Cys	Leu 270	Val	Lys
Asp	Tyr	Phe 275	Pro	Glu	Pro	Val	Thr 280	Val	Ser	Trp	Asn	Ser 285	Gly	Ala	Leu
Thr	Ser 290	Gly	Val	His	Thr	Phe 295	Pro	Ala	Val	Leu	Gln 300	Ser	Ser	Gly	Leu
Tyr 305	Ser	Leu	Ser	Ser	Val 310	Val	Thr	Val	Pro	Ser 315	Ser	Ser	Leu	Gly	Thr 320
Gln	Thr	Tyr	Ile	Cys 325	Asn	Val	Asn	His	Lys 330	Pro	Ser	Asn	Thr	Lys 335	Val
Asp	Lys	Lys	Val 340	Glu	Pro	Lys	Ser	Cys 345	Asp	Lys	Thr	His	Thr 350	Cys	Pro
Pro	Cys	Pro 355	Ala	Pro	Glu	Leu	Leu 360	Gly	Gly	Pro	Ser	Val 365	Phe	Leu	Phe
Pro	Pro 370	Lys	Pro	Lys	Asp	Thr 375	Leu	Met	Ile	Ser	Arg 380	Thr	Pro	Glu	Val
Thr 385	Cys	Val	Val	Val	Asp 390	Val	Ser	His	Glu	Asp 395	Pro	Glu	Val	Lys	Phe 400

Asn	Trp	Tyr	Val	Asp 405	Gly	Val	Glu	Val	His 410	Asn	Ala	Lys	Thr	Lys 415	Pro
Arg	Glu	Glu	Gln 420	Tyr	Asn	Ser	Thr	Tyr 425	Arg	Val	Val	Ser	Val 430	Leu	Thr
Val	Leu	His 435	Gln	Asp	Trp	Leu	Asn 440	Gly	Lys	Glu	Tyr	Lys 445	Сув	Lys	Val
Ser	Asn 450	Lys	Ala	Leu	Pro	Ala 455	Pro	Ile	Glu	Lys	Thr 460	Ile	Ser	Lys	Ala
Lys 465	Gly	Gln	Pro	Arg	Glu 470	Pro	Gln	Val	Tyr	Thr 475	Leu	Pro	Pro	Ser	Arg 480
Asp	Glu	Leu	Thr	Lys 485	Asn	Gln	Val	Ser	Leu 490	Thr	Cys	Leu	Val	Lys 495	Gly
Phe	Tyr	Pro	Ser 500	Asp	Ile	Ala	Val	Glu 505	Trp	Glu	Ser	Asn	Gly 510	Gln	Pro
Glu	Asn	Asn 515	Tyr	Lys	Thr	Thr	Pro 520	Pro	Val	Leu	Asp	Ser 525	Asp	Gly	Ser
Phe	Phe 530	Leu	Tyr	Ser	Lys	Leu 535	Thr	Val	Asp	Lys	Ser 540	Arg	Trp	Gln	Gln
Gly 545	Asn	Val	Phe	Ser	Cys 550	Ser	Val	Met	His	G1u 555	Ala	Leu	His	Asn	His 560
Tyr	Thr	Gln	Lys	Ser 565	Leu	Ser	Leu	Ser	Pro 570	Gly					
<212	> 35 > 571 > PR ⁻ > Sec	Т	ia Art	ificial											
<220 <223		cuenc	ia de	la ca	dena	pesa	da pa	ra V-	lg dua	al de e	entred	cruza	mient	o con	el código HC13
<400	> 35														
Gln 1	Val	Gln	Leu	Gln 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln
Thr	Leu	Ser	Leu 20	Thr	Cys	Thr	Val	Ser 25	Gly	Gly	Ser	Ile	Ser 30	Ser	Gly
Asp	Tyr	Tyr	Trp	Ser	Trp	Ile	Arg	Gln	Pro	Pro	Gly	Lys	Gly	Leu	Glu

		35					40					45			
Trp	Ile 50	Gly	Tyr	Ile	Tyr	Tyr 55	Ser	Gly	Ser	Thr	Asp 60	Tyr	Asn	Pro	Ser
Leu 65	Lys	Ser	Arg	Val	Thr 70	Met	Ser	Val	Asp	Thr 75	Ser	Lys	Asn	Gln	Phe 80
Ser	Leu	Lys	Val	Asn 85	Ser	Val	Thr	Ala	Ala 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
Cys	Ala	Arg	Val 100	Ser	Ile	Phe	Gly	Val 105	Gly	Thr	Phe	Asp	Tyr 110	Trp	Gly
Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser	Gly	Glu	Val	Gln 125	Leu	Val	Gln
Ser	Gly 130	Gly	Gly	Leu	Val	Lys 135	Pro	Gly	Gly	Ser	Leu 140	Arg	Leu	Ser	Cys
Ala 145	Ala	Ser	Gly	Phe	Thr 150	Phe	Ser	Ser	Phe	Ala 155	Met	His	Trp	Val	Arg 160
Gln	Ala	Pro	Gly	Lys 165	Gly	Leu	Glu	Trp	Ile 170	Ser	Val	Ile	Asp	Thr 175	Arg
Gly	Ala	Thr	Tyr 180	Tyr	Ala	Asp	Ser	Val 185	Lys	Gly	Arg	Phe	Thr 190	Ile	Ser
Arg	Asp	Asn 195	Ala	Lys	Asn	Ser	Leu 200	Tyr	Leu	Gln	Met	Asn 205	Ser	Leu	Arg
Ala	Glu 210	Asp	Thr	Ala	Val	Tyr 215	Tyr	Cys	Ala	Arg	Leu 220	Gly	Asn	Phe	Tyr
Tyr 225	Gly	Met	Asp	Val	Trp 230	Gly	Gln	Gly	Thr	Thr 235	Val	Thr	Val	Ser	Ser 240
Gly	Gly	Ala	Ser	Thr 245	Lys	Gly	Pro	Ser	Val 250	Phe	Pro	Leu	Ala	Pro 255	Ser
Ser	Lys	Ser	Thr 260	Ser	Gly	Gly	Thr	Ala 265	Ala	Leu	Gly	Cys	Leu 270	Val	Lys
Asp	Tyr	Phe 275	Pro	Glu	Pro	Val	Thr 280	Val	Ser	Trp	Asn	Ser 285	Gly	Ala	Leu

Thr	Ser 290	Gly	Val	His	Thr	Phe 295	Pro	Ala	Val	Leu	Gln 300	Ser	Ser	Gly	Leu
Tyr 305	Ser	Leu	Ser	Ser	Val 310	Val	Thr	Val	Pro	Ser 315	Ser	Ser	Leu	Gly	Thr 320
Gln	Thr	Tyr	Ile	Cys 325	Asn	Val	Asn	His	Lys 330	Pro	Ser	Asn	Thr	Lys 335	Val
Asp	Lys	Lys	Val 340	Glu	Pro	Lys	Ser	Cys 345	Asp	Lys	Thr	His	Thr 350	Cys	Pro
Pro	Cys	Pro 355	Ala	Pro	Glu	Leu	Leu 360	Gly	Gly	Pro	Ser	Val 365	Phe	Leu	Phe
Pro	Pro 370	Lys	Pro	Lys	Asp	Thr 375	Leu	Met	Ile	Ser	Arg 380	Thr	Pro	Glu	Val
Thr 385	Cys	Val	Val	Val	Asp 390	Val	Ser	His	Glu	Asp 395	Pro	Glu	Val	Lys	Phe 400
Asn	Trp	Tyr	Val	Asp 405	Gly	Val	Glu	Val	His 410	Asn	Ala	Lys	Thr	Lys 415	Pro
Arg	Glu	Glu	Gln 420	Tyr	Asn	Ser	Thr	Tyr 425	Arg	Val	Val	Ser	Val 430	Leu	Thr
Val	Leu	His 435	Gln	Asp	Trp	Leu	Asn 440	Gly	Lys	G1u	Tyr	Lys 445	Cys	Lys	Val
Ser	As n 4 50	Lys	Ala	Leu	Pro	Ala 455	Pro	Ile	Glu	Lys	Thr 460	Ile	Ser	Lys	Ala
Lys 465	Gly	Gln	Pro	Arg	Glu 470	Pro	Gln	Val	Tyr	Thr 475	Leu	Pro	Pro	Ser	Arg 480
Asp	Glu	Leu	Thr	Lys 485	Asn	Gln	Val	Ser	Leu 490	Thr	Cys	Leu	Val	Lys 495	Gly
Phe	Tyr	Pro	Ser 500	Asp	Ile	Ala	Val	Glu 505	Trp	Glu	Ser	Asn	Gly 510	Gln	Pro
Glu	Asn	Asn 515	Tyr	Lys	Thr	Thr	Pro 520	Pro	Val	Leu	Asp	Ser 525	Asp	Gly	Ser
Phe	Phe 530	Leu	Туг	Ser	Lys	Leu 535	Thr	V al	Asp	Lys	Ser 540	Arg	Trp	Gln	Gln
Gly 545	Asn	Val	Phe	Ser	Cys 550		· Val	. Met	: Hi	5 G1 55		a Le	u Hi	is As	n Hi 56
Tyr	Thr	Gln	Lys	Ser 565		Ser	Let	se:	r Pro	_	y				

<210> 36 <211> 572 <212> PRT

<213	> Sec	cuenc	ia Art	ificial											
<220 <223		cuenc	ia de	la ca	dena	pesa	da pa	ra V-	lg dua	al de e	entred	cruza	mient	o con	ı el código HC14
<400	> 36														
Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Arg
Ser	Leu	Arg	Leu 20	Ser	Суз	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asp 30	Asp	Tyr
Ala	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
Ser	Ala 50	Ile	Thr	Trp	Asn	Ser 55	Gly	His	Ile	Asp	Tyr 60	Ala	Asp	Ser	Val
Glu 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ala 75	Lys	Asn	Ser	Leu	Tyr 80
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Lys	Val	Ser 100	Tyr	Leu	Ser	Thr	Ala 105	Ser	Ser	Leu	Asp	Tyr 110	Trp	Gly
Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser	Gly	Glu	Val	Gln 125	Leu	Val	Gln
Ser	Gly 130	Ala	Glu	Val	Lys	Lys 135	Pro	Gly	Glu	Ser	Leu 140	Lys	Ile	Ser	Cys
Lys 145	Gly	Ser	Gly	Tyr	Ser 150	Phe	Thr	Thr	Tyr	Trp 155	Leu	Gly	Trp	Val	Arg 160
Gln	Met	Pro	Gly	Lys 165	Gly	Leu	Asp	Trp	Ile 170	Gly	Ile	Met	Ser	Pro 175	Val

Asp	Ser	Asp	Ile 180	Arg	Tyr	Ser	Pro	Ser 185	Phe	Gln	Gly	Gln	Val 190	Thr	Met
Ser	Val	Asp 195	Lys	Ser	Ile	Thr	Thr 200	Ala	Tyr	Leu	Gln	Trp 205	Asn	Ser	Leu
Lys	Ala 210	Ser	Asp	Thr	Ala	Met 215	Tyr	Tyr	Cys	Ala	Arg 220	Arg	Arg	Pro	Gly
Gln 225	Gly	Tyr	Phe	Asp	Phe 230	Trp	Gly	Gln	Gly	Thr 235	Гел	Val	Thr	Val	Ser 240
Ser	Gly	Gly	Ala	Ser 245	Thr	Lys	Gly	Pro	Ser 250	Val	Phe	Pro	Leu	Ala 255	Pro
Ser	Ser	Lys	Ser 260	Thr	Ser	Gly	Gly	Thr 265	Ala	Ala	Leu	Gly	Cys 270	Leu	Val
Lys	Asp	Tyr 275	Phe	Pro	Glu	Pro	Val 280	Thr	Val	Ser	Trp	Asn 285	Ser	Gly	Ala
Leu	Thr 290	Ser	Gly	Val	His	Thr 295	Phe	Pro	Ala	Val	Leu 300	Gln	Ser	Ser	Gly
Leu 305	Tyr	Ser	Leu	Ser	Ser 310	Val	Val	Thr	Val	Pro 315	Ser	Ser	Ser	Leu	Gly 320
Thr	Gln	Thr	Tyr	Ile 325	Cys	Asn	Val	Asn	His 330	Lys	Pro	Ser	Asn	Thr 335	Lys
Val	Asp	Lys	Lys 340	Val	Glu	Pro	Lys	Ser 345	Cys	Asp	Lys	Thr	His 350	Thr	Суз
Pro	Pro	Сув 355	Pro	Ala	Pro	Glu	Leu 360	Leu	Gly	Gly	Pro	Ser 365	Val	Phe	Leu
Phe	Pro 370	Pro	Lys	Pro	Lys	Asp 375	Thr	Leu	Met	Ile	Ser 380	Arg	Thr	Pro	Glu
Va1 385	Thr	С у в	Val	Val	Val 390	Asp	Val	Ser	His	Glu 395	Asp	Pro	Glu	Val	Lys 400
Phe	Asn	Trp	Tyr	Val 405	Asp	Gly	Val	Glu	Val 410	His	Asn	Ala	Lys	Thr 415	Lys
Pro	Arg	Glu	Glu 420	Gln	Tyr	Asn	Ser	Thr 425	Tyr	Arg	V al	Val	Ser 430	Val	Leu

Thr	Val	Leu 435	His	Gln	Asp	Trp	Leu 440	Asn	Gly	Lys	Glu	Tyr 445	Lys	Cys	Lys
Val	Ser 450	Asn	Lys	Ala	Leu	Pro 455	Ala	Pro	Ile	Glu	Lys 460	Thr	Ile	Ser	Lys
Ala 465	Lys	Gly	Gln	Pro	Arg 470	Glu	Pro	Gln	Val	Tyr 475	Thr	Leu	Pro	Pro	Ser 480
Arg	Asp	Glu	Leu	Thr 485	Lys	Asn	Gln	Val	Ser 490	Leu	Thr	Cys	Leu	Val 495	Lys
Gly	Phe	Tyr	Pro 500	Ser	Asp	Ile	Ala	Val 505	Glu	Trp	Glu	Ser	Asn 510	Gly	Gln
Pro	Glu	Asn 515	Asn	Tyr	Lys	Thr	Thr 520	Pro	Pro	Val	Leu	Asp 525	Ser	Asp	Gly
Ser	Phe 530	Phe	Leu	Tyr	Ser	Lys 535	Leu	Thr	Val	Asp	Lys 540	Ser	Arg	Trp	Gln
Gln 545	Gly	Asn	Val	Phe	Ser 550	Cys	Ser	Val	Met	His 555	Glu	Ala	Leu	His	Asn 560
His	Tyr	Thr	Gln	Lys 565	Ser	Leu	Ser	Leu	Ser 570	Pro	Gly				
	> 572 > PR	Т	ia Art	ificial											
<220 <223		cuenc	ia de	la ca	dena	pesa	da pa	ra V-l	lg dua	al de e	entred	cruzai	mient	o con	el código HC15
<400	> 37														
Glu 1	Val	Gln	Leu	val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Glu
Ser	Leu	Lys	Ile 20	Ser	Cys	Lys	Gly	Ser 25	Gly	Tyr	Ser	Phe	Thr 30	Thr	Tyr
Trp	Leu	G1y 35	Trp	Val	Arg	Gln	Met 40	Pro	Gly	Lys	Gly	Leu 45	Asp	Trp	Ile
Gly	Ile 50	Met	Ser	Pro	Val	Asp 55	Ser	Asp	Ile	Arg	Tyr 60	Ser	Pro	Ser	Phe

	G1n 65	Gly	Gln	Val	Thr	Met 70	Ser	Val	Asp	Lys	Ser 75	Ile	Thr	Thr	Ala	Tyr 80
•	Leu	Gln	Trp	Asn	Ser 85	Leu	Lys	Ala	Ser	Asp 90	Thr	Ala	Met	Tyr	Туг 95	Cys
2	Ala	Arg	Arg	Arg 100	Pro	Gly	Gln	Gly	Tyr 105	Phe	Asp	Phe	Trp	Gly 110	Gln	Gly
•	Thr	Leu	Val 115	Thr	Val	Ser	Ser	Gly 120	Glu	Val	Gln	Leu	Val 125	Glu	Ser	Gly
•	Gly	Gly 130	Leu	Val	Gln	Pro	Gly 135	Arg	Ser	Leu	Arg	Leu 140	Ser	Cys	Ala	Ala
	Ser 145	Gly	Phe	Thr	Phe	Asp 150	Asp	Tyr	Ala	Met	His 155	Trp	Val	Arg	Gln	Ala 160
1	Pro	Gly	Lys	Gly	Leu 165	Glu	Trp	Val	Ser	Ala 170	Ile	Thr	Тгр	Asn	Ser 175	Gly
1	His	Ile	Asp	Tyr 180	Ala	Asp	Ser	Val	Glu 185	Gly	Arg	Phe	Thr	Ile 190	Ser	Arg
2	Asp	Asn	Ala 195	Lys	Asn	Ser	Leu	Tyr 200	Leu	Gln	Met	Asn	Ser 205	Leu	Arg	Ala
•	Glu	Asp 210	Thr	Ala	Val	Tyr	Tyr 215	Cys	Ala	ГÃЗ	Val	Ser 220	Tyr	Leu	Ser	Thr
	Ala 225	Ser	Ser	Leu	Asp	Tyr 230	Trp	Gly	Gln	Gly	Thr 235	Leu	Val	Thr	Val	Ser 240
	Ser	Gly	Gly	Ala	Ser 245	Thr	Lys	Gly	Pro	Ser 250	Val	Phe	Pro	Leu	Ala 255	Pro
	Ser	Ser	Lys	Ser 260	Thr	Ser	Gly	Gly	Thr 265	Ala	Ala	Leu	Gly	Cys 270	Leu	Val
•	Lys	Asp	Tyr 275	Phe	Pro	Glu	Pro	Val 280	Thr	Val	Ser	Trp	Asn 285	Ser	Gly	Ala
3	Leu	Thr 290	Ser	Gly	Val	His	Thr 295	Phe	Pro	Ala	Val	Leu 300	Gln	Ser	Ser	Gly
	Leu 305	Tyr	Ser	Leu	Ser	Ser	Val	V al	Thr	Val	Pro	Ser	Ser	Ser	Leu	Gly 320

Thr	Gln	Thr	Tyr	Ile 325	Cys	Asn	Val	Asn	His 330	Lys	Pro	Ser	Asn	Thr 335	Lys
Val	Asp	Lys	Lys 340	Val	Glu	Pro	Lys	Ser 345	Cys	Asp	Lys	Thr	His 350	Thr	Cys
Pro	Pro	Cys 355	Pro	Ala	Pro	Glu	Leu 360	Leu	Gly	Gly	Pro	Ser 365	Val	Phe	Leu
Phe	Pro 370	Pro	Lys	Pro	Lys	Asp 375	Thr	Leu	Met	Ile	Ser 380	Arg	Thr	Pro	Glu
Val 385	Thr	Cys	Val	Val	Val 390	Asp	Val	Ser	His	Glu 395	Asp	Pro	Glu	Val	Lys 400
Phe	Asn	Trp	Tyr	Val 405	Asp	Gly	Val	Glu	Val 410	His	Asn	Ala	Lys	Thr 415	Lys
Pro	Arg	Glu	Glu 420	Gln	Tyr	Asn	Ser	Thr 425	Tyr	Arg	Val	Val	Ser 430	Val	Leu
Thr	Val	Leu 435	His	Gln	Asp	Trp	Leu 440	Asn	Gly	Lys	Glu	Tyr 445	Lys	Суз	Lys
Val	Ser 450	Asn	Lys	Ala	Leu	Pro 455	Ala	Pro	Ile	Glu	Lys 460	Thr	Ile	Ser	Lys
Ala 465	Lys	Gly	Gln	Pro	Arg 470	Glu	Pro	Gln	Val	Tyr 475	Thr	Leu	Pro	Pro	Ser 480
Arg	Asp	Glu	Leu	Thr 485	Lys	Asn	Gln	Val	Ser 490	Leu	Thr	Cys	Leu	Val 495	Lys
Gly	Phe	Tyr	Pro 500	Ser	Asp	Ile	Ala	Val 505	Glu	Trp	Glu	Ser	Asn 510	Gly	Gln
Pro	Glu	As n 515	Asn	Tyr	Lys	Thr	Thr 520	Pro	Pro	Val	Leu	Asp 525	Ser	Asp	Gly
Ser	Phe 530	Phe	Leu	Tyr	Ser	Lys 535	Leu	Thr	Val	Asp	Lys 540	Ser	Arg	Trp	Gln
Gln 545	Gly	A sn	Val	Phe	Ser 550	Cys	Ser	Val	Met	His 555	Glu	Ala	Leu	His	Asn 560
His	туг	Thr	Gln	Lys 565	Ser	Leu	Ser	Leu	Ser 570	Pro	Gly				
	> 38 > 57′ > PR														
<213	> Se	cuend	cia Ar	tificia	l										

<223> Secuencia de la cadena pesada para V-lg dual de entrecruzamiento con el código HC16 <400> 38

Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Arg
Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asp 30	Asp	Tyr
Ala	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
Ser	Ala 50	Ile	Thr	Trp	Asn	Ser 55	Gly	His	Ile	Asp	Tyr 60	Ala	Asp	Ser	Val
Glu 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ala 75	Lys	Asn	Ser	Leu	Tyr 80
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Lys	Val	Ser 100	Tyr	Leu	Ser	Thr	Ala 105	Ser	Ser	Leu	Asp	Tyr 110	Trp	Gly
Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser	Gly	Gln	Val	Gln 125	Leu	Val	Glu
Ser	Gly 130	Gly	Gly	Val	Val	Gln 135	Pro	Gly	Arg	Ser	Leu 140	Arg	Leu	Ser	Суз
Ala 145	Ala	Ser	Gly	Phe	Thr 150	Phe	Ser	Val	Tyr	Gly 155	Met	Asn	Trp	Val	Arg 160
Gln	Ala	Pro	Gly	Lys 165	Gly	Leu	Glu	Trp	Val 170	Ala	Ile	Ile	Trp	Tyr 175	Asp
Gly	Asp	Asn	Gln 180	Tyr	Tyr	Ala	Asp	Ser 185	Val	Lys	Gly	Arg	Phe 190	Thr	Ile
Ser	Arg	Asp 195	Asn	Ser	Lys	Asn	Thr 200	Leu	Tyr	Leu	Gln	Met 205	Asn	Gly	Leu

Arg	Ala 210	Glu	Asp	Thr	Ala	Val 215	Tyr	Tyr	Cys	Ala	Arg 220	Asp	Leu	Arg	Thr
Gly 225	Pro	Phe	Asp	Tyr	Trp 230	Gly	Gln	Gly	Thr	Leu 235	Val	Thr	Val	Ser	Ser 240
Gly	Gly	Ala	Ser	Thr 245	Lys	Gly	Pro	Ser	V al 250	Phe	Pro	Leu	Ala	Pro 255	Ser
Ser	Lys	Ser	Thr 260	Ser	Gly	Gly	Thr	Ala 265	Ala	Leu	Gly	Суз	Leu 270	Val	Lys
Asp	Tyr	Phe 275	Pro	G1u	Pro	Val	Thr 280	Val	Ser	Trp	Asn	Ser 285	Gly	Ala	Leu
Thr	Ser 290	Gly	Val	His	Thr	Phe 295	Pro	Ala	Val	Leu	Gln 300	Ser	Ser	Gly	Leu
Tyr 305	Ser	Leu	Ser	Ser	Val 310	Val	Thr	Val	Pro	Ser 315	Ser	Ser	Leu	Gly	Thr 320
Gln	Thr	Tyr	Ile	Cys 325	Asn	Val	Asn	His	Lys 330	Pro	Ser	Asn	Thr	Lys 335	Val
Asp	Lys	Lys	Val 340	Glu	Pro	Lys	Ser	Cys 345	Asp	Lys	Thr	His	Thr 350	Суз	Pro
Pro	Сув	Pro 355	Ala	Pro	Glu	Leu	Leu 360	Gly	Gly	Pro	Ser	Val 365	Phe	Leu	Phe
Pro	Pro 370	Lys	Pro	Lys	Asp	Thr 375	Leu	Met	Ile	Ser	Ar g 380	Thr	Pro	G1u	Val
Thr 385	Cys	Val	Val	Val	Asp 390	Val	Ser	His	Glu	Asp 395	Pro	Glu	Val	Lys	Phe 400
Asn	Trp	Tyr	Val	Asp 405	Gly	Val	Glu	Val	His 410	Asn	Ala	Lys	Thr	Lys 415	Pro
Arg	Glu	Glu	Gln 420	Tyr	Asn	Ser	Thr	Tyr 425	Arg	Val	Val	Ser	Val 430	Leu	Thr
Val	Leu	His 435	Gln	Asp	Trp	Leu	Asn 440	Gly	Lys	Glu	Tyr	Lys 445	Суз	Lys	Val
Ser	Asn 450	Lys	Ala	Leu	Pro	Ala 455	Pro	Ile	Glu	Lys	Thr 460	Ile	Ser	Lys	Ala

465	GIÀ	Gln	Pro	Arg	Glu 470	Pro	Gln	Val	Tyr	Thr 475	Leu	Pro	Pro	Ser	Arg 480
Asp	Glu	Leu	Thr	Lys 485	Asn	Gln	Val	Ser	Leu 490	Thr	Cys	Leu	Val	Lys 495	Gly
Phe	Tyr	Pro	Ser 500	Asp	Ile	Ala	Val	Glu 505	Trp	Glu	Ser	Asn	Gly 510	Gln	Pro
Glu	Asn	Asn 515	Tyr	Lys	Thr	Thr	Pro 520	Pro	Val	Leu	Asp	Ser 525	Asp	Gly	Ser
Phe	Phe 530	Leu	Tyr	Ser	Lys	Leu 535	Thr	Val	Asp	Lys	Ser 540	Arg	Trp	Gln	Gln
Gly 545	Asn	Val	Phe	Ser	Cys 550	Ser	Val	Met	His	Glu 555	Ala	Leu	His	Asn	His 560
Tyr	Thr	Gln	Lys	Ser 565	Leu	Ser	Leu	Ser	Pro 570	Gly					
<212	> 571 > PR	Т													
<213	> Sec	cuenc	ia Art	ificial											
<220	>					pesa	da pa	ra V-I	g dua	al de e	entred	cruzai	mient	o con	el código HC17
<220	> > Sed					pesa	da pa	ra V-I	g dua	al de e	entred	cruzai	mient	o con	el código HC17
<220 <223 <400	> > Sed > 39	cuenc	ia de	la ca											-
<220 <223 <400 Gln 1	> > Sec > 39 Val	Gln	ia de Leu	la ca	dena	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
<220 <223 <400 Gln 1	> > Sec > 39 Val Leu	Gln Arg	Leu Leu 20	Val 5	dena Glu	Ser	Gly Ala	Gly Ser 25	Gly 10	Val Phe	Val Thr	Gln Phe	Pro Ser 30	Gly 15 Val	Arg
<220 <223 <400 Gln 1 Ser	> Sec > 39 Val Leu	Gln Arg Asn 35	Leu Leu 20 Trp	Val 5 Ser	Glu Cys	Ser Ala Gln	Gly Ala Ala 40	Gly Ser 25	Gly 10 Gly	Val Phe Lys	Val Thr Gly	Gln Phe Leu 45	Pro Ser 30	Gly 15 Val Trp	Arg Tyr Val
<220 <223 <400 Gln 1 Ser Gly	> > Sec > 39 Val Leu Met	Gln Arg Asn 35	Leu Leu 20 Trp	Val 5 Ser Val	Glu Cys Arg	Ser Ala Gln Gly 55	Gly Ala Ala 40	Gly Ser 25 Pro	Gly 10 Gly Gly	Val Phe Lys	Val Thr Gly Tyr 60	Gln Phe Leu 45	Pro Ser 30 Glu	Gly 15 Val Trp Ser	Arg Tyr Val

Ala	Arg	Asp	Leu 100	Arg	Thr	Gly	Pro	Phe 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr
Leu	Val	Thr 115	Val	Ser	Ser	Gly	Glu 120	Val	Gln	Leu	Val	Glu 125	Ser	Gly	Gly
Gly	Leu 130	Val	Gln	Pro	Gly	Arg 135	Ser	Leu	Arg	Leu	Ser 140	Cys	Ala	Ala	Ser
Gly 145	Phe	Thr	Phe	Asp	Asp 150	Tyr	Ala	Met	His	Trp 155	Val	Arg	Gln	Ala	Pro 160
Gly	Lys	Gly	Leu	Glu 165	Trp	Val	Ser	Ala	Ile 170	Thr	Trp	Asn	Ser	Gly 175	His
Ile	Asp	Tyr	Ala 180	Asp	Ser	Val.	Glu	Gly 185	Arg	Phe	Thr	Ile	Ser 190	Arg	Asp
Asn	Ala	Lys 195	Asn	Ser	Leu	Tyr	Leu 200	Gln	Met	Asn	Ser	Leu 205	Arg	Ala	Glu
Asp	Thr 210	Ala	Val	Tyr	Tyr	Cys 215	Ala	Lys	Val	Ser	Tyr 220	Leu	Ser	Thr	Ala
Ser 225	Ser	Leu	Asp	Tyr	Trp 230	Gly	Gln	Gly	Thr	Leu 235	Val	Thr	Val	Ser	Ser 240
Gly	Gly	Ala	Ser	Thr 245	Lys	Gly	Pro	Ser	V al 250	Phe	Pro	Leu	Ala	Pro 255	Ser
Ser	Lys	Ser	Thr 260	Ser	Gly	Gly	Thr	Ala 265	Ala	Leu	Gly	Cys	Leu 270	Val	Lys
Asp	Tyr	Phe 275	Pro	Glu	Pro	Val	Thr 280	Val	Ser	Trp	Asn	Ser 285	Gly	Ala	Leu
Thr	Ser 290	Gly	Val	His	Thr	Phe 295	Pro	Ala	Val	Leu	Gln 300	Ser	Ser	Gly	Leu
туr 305	Ser	Leu	Ser	Ser	Val 310	Val	Thr	Val	Pro	Ser 315	Ser	Ser	Leu	Gly	Thr 320
Gln	Thr	Tyr	Ile	Cys 325	Asn	Val	Aşn	His	Lys 330	Pro	Ser	Asn	Thr	Lys 335	Val
Asp	Lys	Lys	Val 340	Glu	Pro	Lys	Ser	Cys 345	Asp	Lys	Thr	His	Thr 350	Cys	Pro

Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe 355 360 365

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val 370 375 380

Thr 385	Cys	Val	Val	Val	Asp 390	Val	Ser	His	Glu	Asp 395	Pro	Glu	Val	Lys	Phe 400
Asn	Trp	Tyr	Val	Asp 405	Gly	Val	Glu	Val	His 410	Asn	Ala	Lys	Thr	Lys 415	Pro
Arg	Glu	Glu	Gln 420	Tyr	Asn	Ser	Thr	Tyr 425	Arg	Val	Val	Ser	Val 430	Leu	Thr
Val	Leu	His 435	Gln	Asp	Trp	Leu	Asn 440	Gly	Lys	Glu	Tyr	Lys 445	Cys	Lys	Val
Ser	Asn 450	Lys	Ala	Leu	Pro	Ala 455	Pro	Ile	Glu	Lys	Thr 460	Ile	Ser	Lys	Ala
Lys 465	Gly	Gln	Pro	Arg	Glu 470	Pro	Gln	Val	Tyr	Thr 475	Leu	Pro	Pro	Ser	Arg 480
Asp	Glu	Leu	Thr	Lys 485	Asn	Gln	Val	Ser	Leu 490	Thr	Cys	Leu	Val	Lys 495	Gly
Phe	Tyr	Pro	Ser 500	Asp	Ile	Ala	Val	Glu 505	Trp	Glu	Ser	Asn	Gly 510	Gln	Pro
Glu	Asn	Asn 515	Tyr	Lys	Thr	Thr	Pro 520	Pro	Val	Leu	Asp	Ser 525	Asp	Gly	Ser
Phe	Phe 530	Leu	Tyr	Ser	Lys	Leu 535	Thr	Val	Asp	Lys	Ser 540	Arg	Trp	Gln	Gln
Gly 545	Asn	Val	Phe	Ser	Cys 550	Ser	Val	Met	His	Glu 555	Ala	Leu	His	Asn	His 560
Tyr	Thr	Gln	Lys	Ser 565	Leu	Ser	Leu	Ser	Pro 570	Gly					
<210 <211 <212 <213	> 334 > PR	Т	ia Art	ificial											
<220 <223		cuenc	ia de	la ca	dena	ligera	a para	ı V-lg	dual	de en	trecri	uzam	iento	con e	el código LC10
<400	> 40														

Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	GTĀ
Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Asp	Val	Asn 30	Thr	Ala
Val	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile
Tyr	Ser 50	Ala	Ser	Phe	Leu	Tyr 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
Ser 65	Arg	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	His	Tyr	Thr	Thr	Pro 95	Pro
Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Gly	Gly	Gly 110	Gly	Gly
Gly	Gly	Ser 115	Ser	Glu	Leu	Thr	Gln 120	Asp	Pro	Ala	Val	Ser 125	Val	Ala	Leu
Gly	Gln 130	Thr	Val	Arg	Ile	Thr 135	Cys	Gln	Gly	Asp	Ser 140	Leu	Arg	Ser	Tyr
Tyr 145	Ala	Thr	Trp	Tyr	Gln 150	Gln	Lys	Pro	Gly	Gln 155	Ala	Pro	Ile	Leu	Val 160
Ile	Tyr	Gly	Glu	Asn 165	Lys	Arg	Pro	Ser	Gly 170	Ile	Pro	Asp	Arg	Phe 175	Ser
Gly	Ser	Ser	Ser 180	Gly	Asn	Thr	Ala	Ser 185	Leu	Thr	Ile	Thr	Gly 190	Ala	Gln
Ala	Glu	Asp 195	Glu	Ala	Asp	Tyr	Tyr 200	Cys	Lys	Ser	Arg	Asp 205	Gly	Ser	Gly
Gln	His 210	Leu	Val	Phe	Gly	Gly 215	Gly	Thr	Lys	Leu	Thr 220	Val	Leu	Gly	Gly
Gly 225	Gly	Gly	Arg	Thr	Val 230	Ala	Ala	Pro	Ser	Val 235	Phe	Ile	Phe	Pro	Pro 240

Asn	Asn	Phe	Tyr 260	Pro	Arg	Glu	Ala	Lys 265	Val	Gln	Trp	Lys	Val 270	Asp	Asn
Ala	Leu	Gln 275	Ser	Gly	Asn	Ser	Gln 280	Glu	Ser	Val	Thr	Glu 285	Gln	Asp	Ser
Lys	Asp 290	Ser	Thr	Tyr	Ser	Leu 295	Ser	Ser	Thr	Leu	Thr 300	Leu	Ser	Lys	Ala
Asp 305	Tyr	Glu	Lys	His	Lys 310	Val	Tyr	Ala	Cys	Glu 315	Val	Thr	His	Gln	Gly 320
Leu	Ser	Ser	Pro	Val 325	Thr	Lys	Ser	Phe	A sn 330	Arg	Gly	Glu	Cys		
<212	> 41 > 334 > PR > Sec	Т	ia Art	ificial											
<220 <223		cuenc	ia de	la ca	dena	ligera	ı para	V-lg	dual	de en	trecru	ızami	ento (con e	l código LC11
<400	> 41														
Ser 1	Ser	Glu	Leu		Gln	Asp	Pro	Ala	Val	502	Val	Ala	Leu	G1 ₁₇	Cln
				5					10	SEL				15	GIII
Thr	Val	Arg	Ile 20		Cys	Gln	Gly	Asp 25	10					15	
	Val Trp		20	Thr	_			25	10 Ser	Leu	Arg	Ser	Tyr 30	15 Tyr	Ala
Thr		Tyr 35	20 Gln	Thr	Lys	Pro	Gly 40	25 Gln	10 Ser Ala	Leu Pro	Arg Ile	Ser Leu 45	Tyr 30 Val	Tyr	Ala Tyr
Thr	Trp	Tyr 35 Asn	20 Gln Lys	Thr Gln Arg	Lys Pro	Pro Ser 55	Gly 40	25 Gln Ile	10 Ser Ala Pro	Leu Pro Asp	Arg Ile Arg 60	Ser Leu 45	Tyr 30 Val Ser	Tyr Ile	Ala Tyr Ser
Thr Gly Ser 65	Trp Glu 50	Tyr 35 Asn Gly	20 Gln Lys Asn	Thr Gln Arg	Lys Pro Ala 70	Pro Ser 55	Gly 40 Gly Leu	25 Gln Ile Thr	10 Ser Ala Pro	Leu Pro Asp Thr 75	Arg Ile Arg 60	Ser Leu 45 Phe	Tyr 30 Val Ser Gln	Tyr Ile Gly	Ala Tyr Ser Glu 80

5

10

Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu 245 250 255

Gly	Gly	Gly 115	Asp	Ile	Gln	Met	Thr 120	Gln	Ser	Pro	Ser	Ser 125	Leu	Ser	Ala
Ser	Val 130	Gly	Asp	Arg	Val	Thr 135	Ile	Thr	Суз	Arg	Ala 140	Ser	Gln	Asp	Val
Asn 145	Thr	Ala	Val	Ala	Trp 150	Tyr	Gln	Gln	Lys	Pro 155	Gly	Lys	Ala	Pro	Lys 160
Leu	Leu	Ile	Tyr	Ser 165	Ala	Ser	Phe	Leu	Tyr 170	Ser	Gly	Val	Pro	Ser 175	Arg
Phe	Ser	Gly	Ser 180	Arg	Ser	Gly	Thr	Asp 185	Phe	Thr	Leu	Thr	Ile 190	Ser	Ser
Leu	Gln	Pro 195	Glu	Asp	Phe	Ala	Thr 200	Tyr	Tyr	Cys	Gln	Gln 205	His	Tyr	Thr
Thr	Pro 210	Pro	Thr	Phe	Gly	Gln 215	Gly	Thr	Lys	Val	Glu 220	Ile	Lys	Gly	Gly
Gly 225	Gly	Gly	Arg	Thr	Val 230	Ala	Ala	Pro	Ser	Val 235	Phe	Ile	Phe	Pro	Pro 240
Ser	Asp	Glu	Gln	Leu 245	Lys	Ser	Gly	Thr	Ala 250	Ser	Val	Val	Cys	Leu 255	Leu
Asn	Asn	Phe	Туг 260	Pro	Arg	Glu	Ala	Lys 265	Val	Gln	Trp	Lys	Val 270	Asp	Asn
Ala	Leu	Gln 275	Ser	Gly	Asn	Ser	Gln 280	Glu	Ser	Val	Thr	Glu 285	Gln	Asp	Ser
Lys	Asp 290	Ser	Thr	Tyr	Ser	Leu 295	Ser	Ser	Thr	Leu	Thr 300	Leu	Ser	Lys	Ala
Asp 305	Tyr	Glu	Lys	His	Lys 310	Val	Tyr	Ala	Cys	Glu 315	Val	Thr	His	Gln	Gly 320
Leu	Ser	Ser	Pro	Val 325	Thr	Lys	Ser	Phe	Asn 330	Arg	Gly	Glu	Cys		
<210 <211 <212 <213	> 333 > PR	Т	ia Art	ificial											
<220 <223		cuenc	ia de	la ca	dena	ligera	ı para	V-Ig	dual	de cri	uzam	iento	con e	el códi	go LC12
<400	> 42														

Glu 1	Ile	Val	Met	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Tyr
Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Arg 45	Leu	Leu	Ile
Tyr	Asp 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro 80
Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	His	Gln 90	Tyr	Gly	Ser	Thr	Pro 95	Leu
Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Ala	Glu 105	Ile	Lys	Gly	Gly	Gly 110	Gly	Gly
Gly	Gly	Glu 115	Ile	Val	Leu	Thr	Gln 120	Ser	Pro	Gly	Thr	Leu 125	Ser	Val	Ser
Pro	Gly 130	Glu	Arg	Ala	Thr	Leu 135	Ser	Cys	Arg	Ala	Ser 140	Gln	Ser	Ile	Gly
Ser 145	Ser	Leu	His	Trp	Tyr 150	Gln	Gln	Lys	Pro	Gly 155	Gln	Ala	Pro	Arg	Leu 160
Leu	Ile	Lys	Tyr	Ala 165	Ser	Gln	Ser	Leu	Ser 170	Gly	Ile	Pro	Asp	Arg 175	Phe
Ser	Gly	Ser	Gly 180	Ser	Gly	Thr	Asp	Phe 185	Thr	Leu	Thr	Ile	Ser 190	Arg	Leu
Glu	Pro	Glu 195	Asp	Phe	Ala	Val	Tyr 200	Tyr	Cys	His	Gln	Ser 205	Ser	Arg	Leu
Pro	His 210	Thr	Phe	Gly	Gln	Gly 215	Thr	Lys	Val	Glu	Ile 220	Lys	Gly	Gly	Gly
Gly 225	Gly	Arg	Thr	Val	Al a 230	Ala	Pro	Ser	Val	Phe 235	Ile	Phe	Pro	Pro	Ser 240

				245	001	CLY		ATG	250	Val	Vai	cys	reu	255	ASII
Asn	Phe	Tyr	Pro 260	Arg	Glu	Ala	Lys	Val 265	Gln	Trp	Lys	Val	Asp 270	Asn	Ala
Leu	Gln	Ser 275	Gly	Asn	Ser	Gln	Glu 280	Ser	Val	Thr	Glu	Gln 285	Asp	Ser	Lys
Asp	Ser 290	Thr	Tyr	Ser	Leu	Ser 295	Ser	Thr	Leu	Thr	Leu 300	Ser	Lys	Ala	Asp
Tyr 305	Glu	Lys	His	Lys	Val 310	Tyr	Ala	Суз	Glu	Val 315	Thr	His	Gln	Gly	Leu 320
Ser	Ser	Pro	Val	Thr 325	Lys	Ser	Phe	Asn	Arg 330	Gly	Glu	Cys			
<212	> 43 > 333 > PR > Sec	Т	ia Art	ificial											
<220								\							
<223	> Sec	cuenc	ia de	la ca	dena	ligera	para	v-ig	dual	de en	trecru	ızami	ento	con e	l código LC13
<223 <400		cuenc	ia de	la ca	dena	ligera	ı para	ı V-Ig	dual	de en	trecru	ızami	ento	con e	I código LC13
<400															·
<400	> 43	Val	Leu	Thr 5	Gln	Ser	Pro	Gly	Thr 10	Leu	Ser	Val	Ser	Pro 15	Gly
<400 Glu 1	> 43	Val Ala	Leu Thr 20	Thr 5 Leu	Gln Ser	Ser Cys	Pro Arg	Gly Ala 25	Thr 10 Ser	Leu Gln	Ser	Val Ile	Ser Gly 30	Pro 15 Ser	Gly Ser
<400 Glu 1 Glu Leu	> 43 Ile Arg	Val Ala Trp 35	Leu Thr 20 Tyr	Thr 5 Leu Gln	Gln Ser Gln	Ser Cys Lys	Pro Arg Pro 40	Gly Ala 25	Thr 10 Ser	Leu Gln Ala	Ser Ser Pro	Val Ile Arg 45	Ser Gly 30 Leu	Pro 15 Ser Leu	Gly Ser Ile
<400 Glu 1 Glu Leu	> 43 Ile Arg His	Val Ala Trp 35	Leu Thr 20 Tyr	Thr 5 Leu Gln	Gln Ser Gln Ser	Ser Cys Lys Leu 55	Pro Arg Pro 40	Gly Ala 25 Gly	Thr 10 Ser Gln	Leu Gln Ala Pro	Ser Ser Pro Asp	Val Ile Arg 45	Ser Gly 30 Leu	Pro 15 Ser Leu	Gly Ser Ile
<400 Glu 1 Glu Leu Lys Ser 65	> 43 Ile Arg His	Val Ala Trp 35 Ala	Leu Thr 20 Tyr Ser	Thr 5 Leu Gln Thr	Gln Ser Gln Ser Asp	Ser Cys Lys Leu 55	Pro Arg Pro 40 Ser	Gly Ala 25 Gly Gly Leu	Thr 10 Ser Gln Ile	Leu Gln Ala Pro Ile 75	Ser Pro Asp 60 Ser	Val Ile Arg Arg	Gly 30 Leu Phe	Pro 15 Ser Leu Ser	Gly Ser Ile Gly Pro

Gly	Gly	Glu 115	Ile	Val	Met	Thr	Gln 120	Ser	Pro	Ala	Thr	Leu 125	Ser	Leu	Ser
Pro	Gly 130	Glu	Arg	Ala	Thr	Leu 135	Ser	Cys	Arg	Ala	Ser 140	Gln	Ser	Val	Ser
Ser 145	Tyr	Leu	Ala	Trp	Tyr 150	Gln	Gln	Lys	Pro	Gly 155	Gln	Ala	Pro	Arg	Leu 160
Leu	Ile	Tyr	Asp	Ala 165	Ser	Asn	Arg	Ala	Thr 170	Gly	Ile	Pro	Ala	A rg 175	Phe
Ser	Gly	Ser	Gly 180	Ser	Gly	Thr	Asp	Phe 185	Thr	Leu	Thr	Ile	Ser 190	Ser	Leu
Glu	Pro	Glu 195	Asp	Phe	Ala	Val	Tyr 200	Tyr	Cys	His	Gln	Tyr 205	Gly	Ser	Thr
Pro	Leu 210	Thr	Phe	Gly	Gly	Gly 215	Thr	Lys	Ala	Glu	11e 220	Lys	Gly	Gly	Gly
Gly 225	Gly	Arg	Thr	Val	Ala 230	Ala	Pro	Ser	Val	Phe 235	Ile	Phe	Pro	Pro	Ser 240
Asp	Glu	Gln	Leu	Lys 2 4 5	Ser	Gly	Thr	Ala	Ser 250	Val	Val	Cys	Leu	Leu 255	Asn
Asn	Phe	Tyr	Pro 260	Arg	Glu	Ala	Lys	Val 265	Gln	Trp	Lys	Val	Asp 270	Asn	Ala
Leu	Gln	Ser 275	Gly	Asn	Ser	Gln	Glu 280	Ser	Val	Thr	Glu	Gln 285	Asp	Ser	Lys
Asp	Ser 290	Thr	Tyr	Ser	Leu	Ser 295	Ser	Thr	Leu	Thr	Leu 300	Ser	Lys	Ala	Asp
Tyr 305	Glu	Lys	His	Lys	Val 310	Tyr	Ala	Cys	Glu	Val 315	Thr	His	Gln	Gly	Leu 320
Ser	Ser	Pro	Val	Thr 325	Lys	Ser	Phe	Asn	Arg 330	Gly	Glu	Cys			
<210 <211 <212 <213	> 333 > PR	Т	ia Art	ificial											
~220	_														

< 223> Secuencia de la cadena ligera para V-lg dual de cruzamiento con el código LC14

5

<400> 44

Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Gly	Ile	Ser 30	Ser	Trp
Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Glu	Lys	Ala	Pro	Lys 45	Ser	Leu	Ile
Tyr	Ala 50	Ala	Ser	Ser	Leu	Gln 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Asn	Ile	Tyr	Pro 95	Tyr
Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys	Gly	Gly	Gly 110	Gly	Gly
Gly	Gly	Asp 115	Ile	Gln	Met	Thr	Gln 120	Ser	Pro	Ser	Ser	Leu 125	Ser	Ala	Ser
Val	Gly 130	Asp	Arg	Val	Thr	Ile 135	Thr	Суз	Arg	Ala	Ser 140	Gln	Gly	Ile	Arg
Asn 145	Tyr	Leu	Ala	Trp	Tyr 150	Gln	Gln	Lys	Pro	Gly 155	Lys	Ala	Pro	Lys	Leu 160
Leu	Ile	Tyr	Ala	Ala 165	Ser	Thr	Leu	Gln	Ser 170	Gly	Val	Pro	Ser	A rg 1 75	Phe
Ser	Gly	Ser	Gly 180	Ser	Gly	Thr	Asp	Phe 185	Thr	Leu	Thr	Ile	Ser 190	Ser	Leu
Gln	Pro	Glu 195	Asp	Val	Ala	Thr	Tyr 200	Tyr	Cys	Gln	Arg	Туг 205	Asn	Arg	Ala
Pro	Tyr 210	Thr	Phe	Gly	Gln	Gly 215	Thr	Lys	Val	Glu	Ile 220	Lys	Gly	Gly	Gly
Gly 225	Gly	Arg	Thr	Val	Ala 230	Ala	Pro	Ser	Val	Phe 235	Ile	Phe	Pro	Pro	Ser 240

Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys 280 Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp 295 300 290 Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys <210> 45 <211> 333 <212> PRT <213> Secuencia Artificial <223> Secuencia de la cadena ligera para V-Ig dual de entrecruzamiento con el código LC15 <400> 45 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 Tyr Ala Ala Ser Thr Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Val Ala Thr Tyr Tyr Cys Gln Arg Tyr Asn Arg Ala Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Gly Gly Gly Gly Gly 100 105 Gly Gly Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser

	13	_	, in	•		135	****	Cys	my	niu	140	02	01,		502	
Se 14		p Let	ı Ala	Trp	Tyr 150	Gln	Gln	Lys	Pro	Glu 155	Lys	Ala	Pro	Lys	Ser 160	
Le	u Il	е Туі	r Ala	Ala 165	Ser	Ser	Leu	Gln	Ser 170	Gly	Val	Pro	Ser	A rg 175	Phe	
Se	r Gl	y Sez	Gly 180		Gly	Thr	Asp	Phe 185	Thr	Leu	Thr	Ile	Ser 190	Ser	Leu	
G1	n Pr	0 Glu 195	a Asp	Phe	Ala	Thr	Tyr 200	Tyr	Cys	Gln	Gln	Tyr 205	Asn	Ile	Tyr	
Pr	o Ty: 21		Phe	Gly	Gln	Gly 215	Thr	Lys	Leu	Glu	11e 220	Lys	Gly	Gly	Gly	
G1 22		y Arç	J Thr	Val	Ala 230	Ala	Pro	Ser	Val	Phe 235	Ile	Phe	Pro	Pro	Ser 240	
As	p Gl	ı Glr	. Leu	Lys 245	Ser	Gly	Thr	Ala	Ser 250	Val	Val	Суз	Leu	Leu 255	Asn	
As	n Ph	≘ Туг	260		Glu	Ala	Lys	Val 265	Gln	Trp	Lys	Val	Asp 270	Asn	Ala	
Le	u Gl	n Sei 275	Gly	Asn	Ser	Gln	Glu 280	Ser	Val	Thr	Glu	Gln 285	Asp	Ser	Lys	
As	p Se: 29		Tyr	Ser	Leu	Ser 295	Ser	Thr	Leu	Thr	Leu 300	Ser	Lys	Ala	Asp	
Ту 30		ı Lys	His	Lys	Val 310	Tyr	Ala	Cys	Glu	Val 315	Thr	His	Gln	Gly	Leu 320	
Se	r Se	r Pro	Val	Thr 325	Lys	Ser	Phe	Asn	Arg 330	Gly	Glu	Cys				
<21 <21	10> 46 11> 33 12> P 13> S	33 RT	cia Ar	tificial												
<22 <22		ecuen	cia de	la ca	dena	ligera	a para	a V-Ig	dual	de er	ıtrecrı	uzam	iento	con e	l código	LC16
<4(00> 46	6														

Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Asp	Phe 10	Gln	Ser	Val	Thr	Pro 15	Lys
Glu	Lys	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Ile	Gly 30	Ser	Ser
Leu	His	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Asp	Gln	Ser	Pro	Lys 45	Leu	Leu	Ile
Lys	Tyr 50	Ala	Ser	Gln	Ser	Phe 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Asn	Ser	Leu	Glu	Ala 80
Glu	Asp	Ala	Ala	Ala 85	Tyr	Tyr	Cys	His	Gln 90	Ser	Ser	Ser	Leu	Pro 95	Phe
Thr	Phe	Gly	Pro 100	Gly	Thr	Lys	Val	Asp 105	Ile	Lys	Gly	Gly	Gly 110	Gly	Gly
Gly	Gly	Asp 115	Ile	Gln	Met	Thr	Gln 120	Ser	Pro	Ser	Ser	Leu 125	Ser	Ala	Ser
Val	Gly 130	Asp	Arg	Val	Thr	Ile 135	Thr	Cys	Arg	Ala	Ser 140	Gln	Gly	Ile	Arg
Asn 145	Tyr	Leu	Ala	Trp	Туг 150	Gln	Gln	Lys	Pro	Gly 155	Lys	Ala	Pro	Lys	Leu 160
Leu	Ile	Tyr	Ala	Ala 165	Ser	Thr	Leu	Gln	Ser 170	Gly	Val	Pro	Ser	Arg 175	Phe
Ser	Gly	Ser	Gly 180	Ser	Gly	Thr	Asp	Phe 185	Thr	Leu	Thr	Ile	Ser 190	Ser	Leu
Gln	Pro	Glu 195	Asp	Val	Ala	Thr	Tyr 200	Tyr	Cys	Gln	Arg	Tyr 205	Asn	Arg	Ala
Pro	Tyr 210	Thr	Phe	Gly	Gln	Gly 215	Thr	Lys	Val	Glu	Ile 220	Lys	Gly	Gly	Gly
Gly 225	Gly	Arg	Thr	Val	Ala 230	Ala	Pro	Ser	Val	Phe 235	Ile	Phe	Pro	Pro	Ser 240
Asp	Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn

				245					250					255		
Asn	Phe	Tyr	Pro 260	Arg	Glu	Ala	Lys	Val 265	Gln	Trp	Lys	Val	Asp 270	Asn	Ala	
Leu	Gln	Ser 275	Gly	Asn	Ser	Gln	Glu 280	Ser	Val	Thr	Glu	Gln 285	Asp	Ser	Lys	
Asp	Ser 290	Thr	Tyr	Ser	Leu	Ser 295	Ser	Thr	Leu	Thr	Leu 300	Ser	Lys	Ala	Asp	
Tyr 305	Glu	Lys	His	Lys	Val 310	Tyr	Ala	Суз	Glu	Val 315	Thr	His	Gln	Gly	Leu 320	
Ser	Ser	Pro	Val	Thr 325	Lys	Ser	Phe	Asn	Arg 330	Gly	Glu	Cys				
		Т	ia Art	ificial												
<220 <223		uenc	ia de	la ca	dena	ligera	a para	ı V-lg	dual	de en	ıtrecrı	uzami	iento	con e	l código LC17	
<400	> 47															
Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly	
Asp	Arg	Val	Thr 20	Ile	Thr	Суз	Arg	Ala 25	Ser	Gln	Gly	Ile	Arg 30	Asn	Tyr	
Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile	
Tyr	Ala 50	Ala	Ser	Thr	Leu	Gln 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80	
Glu	Asp	Val	Ala	Thr 85	Tyr	Tyr	Суѕ	Gln	Arg 90	Tyr	Asn	Arg	Ala	Pro 95	Tyr	
Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Gly	Gly	Gly 110	Gly	Gly	
Gly	Gly	Glu	Ile	Val	Leu	Thr	Gln	Ser	Pro	Asp	Phe	Gln	Ser	Val	Thr	

Pro Lys 130	Glu	Lys	Val	Thr	Ile 135	Thr	Cys	Arg	Ala	Ser 140	Gln	Ser	Ile	Gly
Ser Ser 145	Leu	His	Trp	Tyr 150	Gln	Gln	Lys	Pro	Asp 155	Gln	Ser	Pro	Lys	Leu 160
Leu Ile	Lys	Tyr	Ala 165	Ser	Gln	Ser	Phe	Ser 170	Gly	Val	Pro	Ser	Arg 175	Phe
Ser Gly	Ser	Gly 180	Ser	Gly	Thr	Asp	Phe 185	Thr	Leu	Thr	Ile	Asn 190	Ser	Leu
Glu Ala	Glu 195	Asp	Ala	Ala	Ala	Tyr 200	Tyr	Cys	His	Gln	Ser 205	Ser	Ser	Leu
Pro Phe 210	Thr	Phe	Gly	Pro	Gly 215	Thr	Lys	Val	Asp	Ile 220	Lys	Gly	Gly	Gly
Gly Gly 225	Arg	Thr	Val	Ala 230	Ala	Pro	Ser	Val	Phe 235	Ile	Phe	Pro	Pro	Ser 240
Asp Glu	Gln	Leu	Lys 245	Ser	Gly	Thr	Ala	Ser 250	Val	Val	Cys	Leu	Leu 255	Asn
Asn Phe	Tyr	Pro 260	Arg	Glu	Ala	Lys	Val 265	Gln	Trp	Lys	Val	Asp 270	Asn	Ala
Leu Gln	Ser 275	Gly	Asn	Ser	Gln	Glu 280	Ser	Val	Thr	Glu	Gln 285	Asp	Ser	Lys
Asp Ser 290	Thr	Tyr	Ser	Leu	Ser 295	Ser	Thr	Leu	Thr	Leu 300	Ser	Lys	Ala	Asp
Tyr Glu 305	Lys	His	Lys	Val 310	Tyr	Ala	Cys	Glu	Val 315	Thr	His	Gln	Gly	Leu 320
Ser Ser	Pro	Val	Thr 325	Lys	Ser	Phe	Asn	Arg 330	Gly	Glu	Cys			
<210> 48 <211> 7 <212> PR <213> Sec		ia Art	ificial											
<220> <223> Enl	azado	or pep	otídico)										
<400> 48														
Ala Ser 1	Thr	Lys	Gly 5	Pro	Ser									
<210> 49 <211> 7														

```
<212> PRT
      <213> Secuencia Artificial
      <220>
      <223> Enlazador peptídico
 5
    <400> 49
      Arg Thr Val Ala Ala Pro Ser
      <210> 50
      <211> 7
      <212> PRT
10
      <213> Secuencia Artificial
      <220>
      <223> Enlazador peptídico
      <400> 50
      Gly Gln Pro Lys Ala Ala Pro
                         5
15
      <210> 51
      <211> 7
      <212> PRT
      <213> Secuencia Artificial
20
     <220>
      <223> Enlazador peptídico
      <400> 51
      His Ile Asp Ser Pro Asn Lys
25
      <210> 52
      <211> 5
      <212> PRT
      <213> Secuencia Artificial
30
      <223> Enlazador peptídico
      <400> 52
      Thr Lys Gly Pro Ser
      <210> 53
35
      <211> 5
      <212> PRT
      <213> Secuencia Artificial
      <220>
      <223> Enlazador peptídico
```

Thr Val Ala Ala Pro <210> 54 <211> 5 <212> PRT <213> Secuencia Artificial <220> <223> Enlazador peptídico 10 <400> 54 Gln Pro Lys Ala Ala <210> 55 <211> 5 15 <212> PRT <213> Secuencia Artificial <220> <223> Enlazador peptídico <400> 55 20 Gln Arg Ile Glu Gly <210> 56 <211>7 <212> PRT 25 <213> Secuencia Artificial <220> <223> Enlazador peptídico artificial <400> 56 Gly Gly Cys Gly Gly Gly 30 <210> 57 <211> 7 <212> PRT <213> Secuencia Artificial <220> 35 <223> Enlazador peptídico artificial <400> 57 Gly Gly Gly Cys Gly Gly Gly

<400> 53

```
<210> 58
      <211> 7
      <212> PRT
      <213> Secuencia Artificial
 5
      <223> Enlazador peptídico artificial
      <400> 58
      Gly Gly Gly Cys Gly Gly 1
      <210> 59
10
      <211> 7
      <212> PRT
      <213> Secuencia Artificial
      <220>
     <223> Enlazador peptídico artificial
15
      <400> 59
      Gly Gly Gly Gly Cys Gly 1
```

REIVINDICACIONES

1. Una proteína de unión similar a anticuerpo que comprende cuatro cadenas polipeptídicas que forman cuatro sitios de unión a antígeno, en donde dos cadenas polipeptídicas tienen una estructura representada por la fórmula:

$$V_{L1}-L_1-V_{L2}-L_2-C_L$$
 [1]

5 y dos cadenas polipéptídicas tienen una estructura representada por la fórmula:

$$V_{H2}-L_3-V_{H1}-L_4-C_{H1}-Fc$$
 [II]

en donde:

 V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina;

V_{L2} es un segundo dominio variable de cadena ligera de inmunoglobulina;

10 V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina;

V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

C_L es un dominio constante de la cadena ligera de inmunoglobulina;

C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina;

Fc es la región de bisagra de inmunoglobulina y C_{H2} , C_{H3} son los dominios constantes de la cadena pesada de inmunoglobulina;

L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos;

en donde:

15

L₁ es 3 a 12 residuos aminoácidos de longitud;

L₂ es 3 a 14 residuos aminoácidos de longitud;

20 L₃ es 1 a 8 residuos aminoácidos de longitud;

L₄ es 1 a 3 residuos aminoácidos de longitud;

y en donde los polipéptidos de fórmula I y los polipéptidos de fórmula II forman un par de cadena ligera-cadena pesada de entrecruzamiento.

2. Una proteína de unión similar a anticuerpo que comprende dos cadenas polipeptídicas que forman dos sitios de unión a antígeno, en donde una primera cadena polipeptídica tiene una estructura representada por la fórmula:

$$V_{L1}-L_1-V_{L2}-L_2-C_L$$
 [I]

y una segunda cadena polipéptídica tiene una estructura representada por la fórmula:

$$V_{H2}-L_3-V_{H1}-L_4-C_{H1}$$
 [II]

en donde:

30 V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina;

V_{L2} es un segundo dominio variable de cadena ligera de inmunoglobulina;

V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina;

V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

C_L es un dominio constante de la cadena ligera de inmunoglobulina; C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina; y L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos; en donde: 5 L₁ es 3 a 12 residuos aminoácidos de longitud; L₂ es 3 a 14 residuos aminoácidos de longitud; L₃ es 1 a 8 residuos aminoácidos de longitud; L₄ es 1 a 3 residuos aminoácidos de longitud; y en donde los primero y segundo polipéptidos forman un par de cadena ligera-cadena pesada de entrecruzamiento. 3. La proteína de unión similar a anticuerpo de la reivindicación 1 ó 2, en donde: 10 L₁ es 5 a 10 residuos aminoácidos de longitud; L₂ es 5 a 8 residuos aminoácidos de longitud; L₃ es 1 a 5 residuos aminoácidos de longitud; L₄ es 1 a 2 residuos aminoácidos de longitud. 15 4. La proteína de unión similar a anticuerpo de la reivindicación 1 ó 2, en donde: L₁ es 7 residuos aminoácidos de longitud; L₂ es 5 residuos aminoácidos de longitud; L₃ es 1 residuo aminoácido de longitud; L₄ es 2 residuos aminoácidos de longitud. 20 5. Una proteína de unión similar a anticuerpo que comprende cuatro cadenas polipeptídicas que forman cuatro sitios de unión a antígeno, en donde dos cadenas polipeptídicas tienen una estructura representada por la fórmula: $V_{L1}\hbox{-} L_1\hbox{-} V_{L2}\hbox{-} L_2\hbox{-} C_L$ y dos cadenas polipéptídicas tienen una estructura representada por la fórmula: V_{H2}-L₃-V_{H1}-L₄-C_{H1}-Fc [11] 25 en donde: V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina; V_{L2} es un segundo dominio variable de cadena ligera de inmunoglobulina; V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina; V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina; 30 C_L es un dominio constante de la cadena ligera de inmunoglobulina; C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina;

Fc es la región de bisagra de inmunoglobulina y C_{H2} , C_{H3} son los dominios constantes de la cadena pesada de inmunoglobulina;

L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos;

en donde:

5 L₁ es 1 a 3 residuos aminoácidos de longitud;

L₂ es 1 a 4 residuos aminoácidos de longitud;

L₃ es 2 a 15 residuos aminoácidos de longitud;

L₄ es 2 a 15 residuos aminoácidos de longitud;

y en donde los polipéptidos de fórmula I y los polipéptidos de fórmula II forman un par de cadena ligera-cadena pesada de entrecruzamiento.

6. Una proteína de unión similar a anticuerpo que comprende dos cadenas polipeptídicas que forman dos sitios de unión a antígeno, en donde una primera cadena polipeptídica tiene una estructura representada por la fórmula:

$$V_{L1}-L_1-V_{L2}-L_2-C_L$$
 [I]

y una segunda cadena polipéptídica tiene una estructura representada por la fórmula:

 $V_{H2}-L_3-V_{H1}-L_4-C_{H1}$ [II]

en donde:

 V_{L1} es un primer dominio variable de cadena ligera de inmunoglobulina;

V_{L2} es un segundo dominio variable de cadena ligera de inmunoglobulina;

V_{H1} es un primer dominio variable de cadena pesada de inmunoglobulina;

20 V_{H2} es un segundo dominio variable de cadena pesada de inmunoglobulina;

C_L es un dominio constante de la cadena ligera de inmunoglobulina;

 C_{H1} es el dominio constante de la cadena pesada C_{H1} de inmunoglobulina; y

L₁, L₂, L₃ y L₄ son enlazadores de aminoácidos;

en donde:

25

L₁ es 1 a 3 residuos aminoácidos de longitud;

L₂ es 1 a 4 residuos aminoácidos de longitud;

L₃ es 2 a 15 residuos aminoácidos de longitud;

L₄ es 2 a 15 residuos aminoácidos de longitud;

y en donde los primero y segundo polipéptidos forman un par de cadena ligera-cadena pesada de entrecruzamiento.

30 7. La proteína de unión similar a anticuerpo de la reivindicación 5 ó 6, en donde:

L₁ es 1 a 2 residuos aminoácidos de longitud;

L₂ es 1 a 2 residuos aminoácidos de longitud;

L₃ es 4 a 12 residuos aminoácidos de longitud;

L₄ es 2 a 12 residuos aminoácidos de longitud.

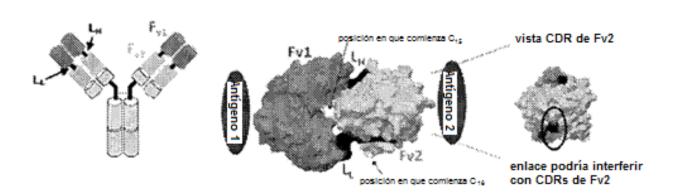
8. La proteína de unión similar a anticuerpo de la reivindicación 5 ó 6, en donde:

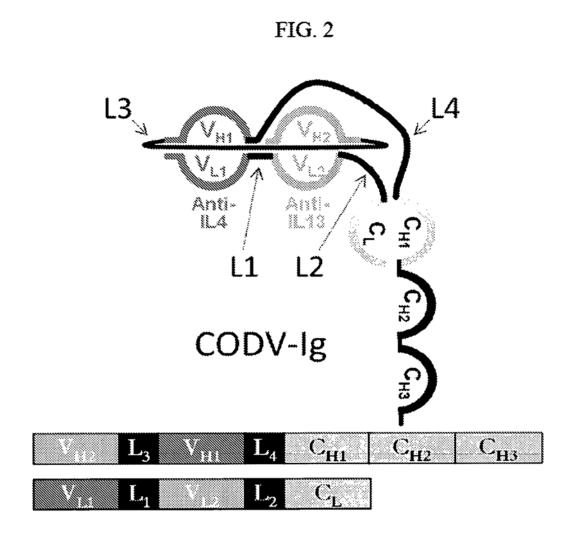
L₁ es 1 residuo aminoácido de longitud;

L₂ es 2 residuos aminoácidos de longitud;

5

10


15


L₃ es 7 residuos aminoácidos de longitud;

L₄ es 5 residuos aminoácidos de longitud.

- 9. La proteína de unión similar a anticuerpo de una cualquiera de las reivindicaciones 1, 2, 5 ó 6, en donde la proteína de unión es capaz de unirse específicamente a una o más dianas de antígenos, en donde, preferiblemente, las una o más dianas de antígenos se selecciona del grupo que consiste en B7.1, B7.2, BAFF, BlyS, C3, C5, CCL11 (eotaxina), CCL15 (MIP-ld), CCL17 (TARC), CCL19 (MIP-3b), CCL2 (MCP-1), CCL20 (MIP-3a), CCL21 (MIP-2), SLC, CCL24 (MPIF-2/eotaxina-2), CCL25 (TECK), CCL26 (eotaxina-3), CCL3 (MIP-la), CCL4 (MIP-lb), CCL5 (RANTES), CCL7 (MCP-3), CCL8 (mcp-2), CD3, CD19, CD20, CD24, CD40, CD40L, CD80, CD86, CDH1 (Ecadherina), quitinasa, CSF1 (M-CSF), CSF2 (GM-CSF), CSF3 (GCSF), CTLA4, CX3CL1 (SCYD1), CXCL12 (SDF1), CXCL13, EGFR, FCER1A, FCER2, HER2, IGF1R, IL-1, IL-12, IL13, IL15, IL17, IL18, IL1A, IL1B, IL1F10, IL1β, IL2, IL4, IL6, IL7, IL8, IL9, IL12/23, IL22, IL23, IL25, IL27, IL35, ITGB4 (b 4 integrina), LEP (leptina), MHC clase II, TLR2, TLR4, TLR5, TNF, TNFα, TNFSF4 (ligando OX40), TNFSF5 (ligando CD40), receptores similares a Toll, TREM1, TSLP, TWEAK, XCR1 (GPR5/CCXCR1), DNGR-1(CLEC91) y HMGB1.
- 10. La proteína de unión similar a anticuerpo de una cualquiera de las reivindicaciones 1, 2, 5 ó 6, en donde la proteína de unión es biespecífica y es capaz de unirse a dos dianas de antígenos diferentes, preferiblemente, las dos dianas de antígenos diferentes se seleccionan del grupo que consiste en IL4 e IL13, IGF1R y HER2, IGF1R y EGFR, EGFR y HER2, BK e IL13, PDL-1 y CTLA-4, CTLA4 y MHC clase II, IL-12 e IL-18, IL-1α e IL-1β, TNFα e IL12/23, TNFα e IL-12p40, TNFα e IL1β, TNFα e IL-23, e IL17 e IL23.
- 11. La proteína de unión similar a anticuerpo de una cualquiera de las reivindicaciones 1, 2, 5 ó 6, en donde la proteína de unión es capaz de inhibir la función de una o más de las dianas de antígenos.
 - 12. La proteína de unión similar a anticuerpo de una cualquiera de las reivindicaciones 1, 2, 5 ó 6, en donde al menos uno de los enlazadores seleccionados del grupo que consiste en L_1 , L_2 , L_3 y L_4 contiene al menos un residuo cisteína.
- 13. Una molécula de ácido nucleico aislada que comprende una secuencia de nucleótidos que codifica la proteína de unión similar a anticuerpo de una cualquiera de las reivindicaciones 1, 2, 5 ó 6.
 - 14. Un vector de expresión que comprende la molécula de ácido nucleico de la reivindicación 13.
 - 15. Una célula huésped aislada que comprende la molécula de ácido nucleico de la reivindicación 13 o el vector de expresión de la reivindicación 14, en donde, preferiblemente, la célula huésped es una célula de mamífero o una célula de insecto.
- 16. Una composición farmacéutica que comprende un soporte farmacéuticamente aceptable y una cantidad terapéuticamente eficaz de la proteína de unión similar a anticuerpo de una cualquiera de las reivindicaciones 1, 2, 5 ó 6.

FIG. 1

FIG. 3

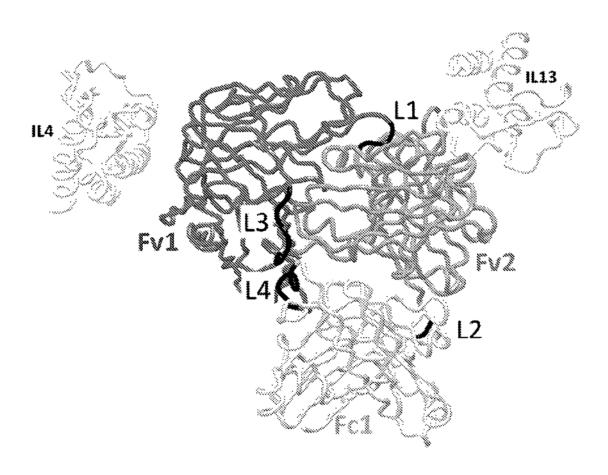
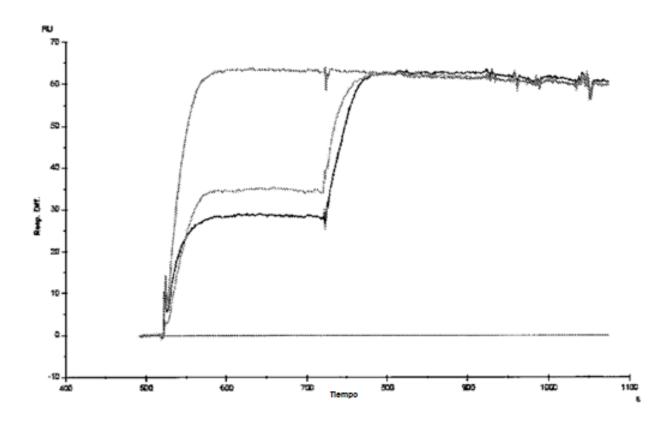



FIG. 4

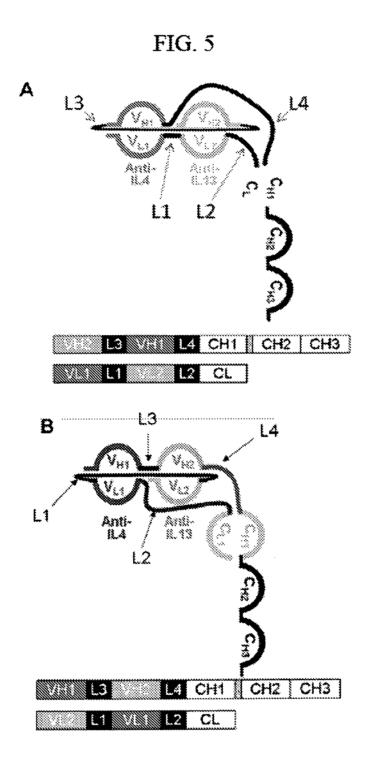


FIG. 6

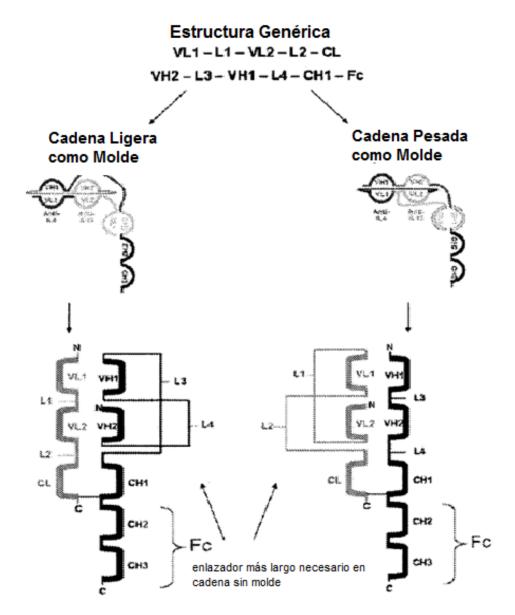
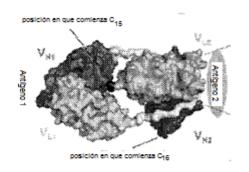
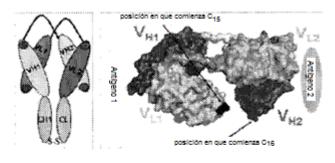
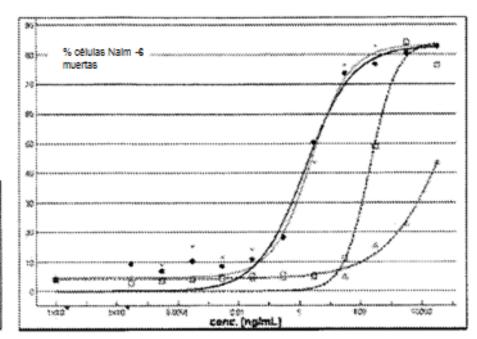
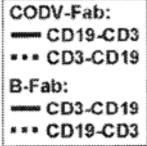




FIG. 7




	T. enlace (%/Ms)	T. desenlace[18]	KO [M]
anti-iL4 mAb parental	(2.49E+07)	1.955-04	7.83E-12
anti-IL13 mAb parental	1.596+06	1 305-04	8.18E-11
TBTI (8.4)	(5.705+06)	1.50E-04	2.63E-11
TBTI (IL 13)	3.28E+06	1,70E-04	5.18E-11

	T. enlace 【常/的版】	T. desenlace [1/g]	KD [M]
anti-iL4 mAb parental	2.49E+07	1.98E-04	7,83E-12
anti-iL13 mAb parental	1,59E+06	1.30E-04	9.18E-11
CODH (JL4)	3 16E+07	2.89E-04	9.14E-12
CODH (IL13)	1.20E+06	1,12E-04	9.34E-11

FIG. 8

