

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 589 566

(51) Int. CI.:

H04L 29/06 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 28.11.2011 E 15152713 (2)
Fecha y número de publicación de la concesión europea: 15.06.2016 EP 2903192

(54) Título: Método de manipulación de paquetes y dispositivo de reenvío

(30) Prioridad:

29.03.2011 CN 201110078459

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **15.11.2016**

(73) Titular/es:

HUAWEI TECHNOLOGIES CO., LTD. (100.0%) Huawei Administration Building, Bantian, Longgang District, Shenzhen, Guangdong 518129, CN

(72) Inventor/es:

ZHENG, HEWEN y CHEN, HAIBIN

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Método de manipulación de paquetes y dispositivo de reenvío

5 CAMPO DE LA INVENCIÓN

15

20

35

45

La presente invención se refiere al campo técnico de las comunicaciones y más en particular, a un método de manipulación de paquetes, un dispositivo de reenvío y un sistema.

10 ANTECEDENTES DE LA INVENCIÓN

En las redes actuales, el tráfico de red está constituido principalmente por un tráfico de servicio de vídeo. El 20 de octubre de 2010, Sandvine publicó un informe de supervisión sobre el tráfico de red, en el que el tráfico de servicio de vídeo procedente de Netflix representaba un 20 por ciento de datos de flujo descendente desde las 8:00 horas de la tarde a las 10:00 horas de la tarde en toda América. Está previsto que el tráfico de servicio de vídeo representará el 91 por ciento del tráfico de red en 2014.

Los datos de vídeo se transmiten en el formato de paquetes TCP por medio de un mecanismo de transmisión de ventana deslizante, en particular en el proceso siguiente.

Etapa A: una conexión TCP se establece entre un cliente y un servidor, el servidor y el cliente transmiten entre sí sus magnitudes máximas de recepción de datos.

Conviene señalar que antes de recibir un paquete TCP ACK (esto es, un mensaje de acuse de recibo de TCP con un bit indicador de ACK en la cabecera TCP del mensaje que se envía a 1) desde el cliente, con la cantidad de datos que el servidor transmite en una sola transmisión no será superior a la magnitud de recepción de datos máxima del cliente. Al mismo tiempo, el cliente incluye su tamaño de recepción de datos máxima actual en el paquete TCP ACK (esto es, según se identifica en el campo de ventana de la cabecera TCP);

30 La ventana de envío del servidor, esto es, la magnitud de datos que se transmiten en una sola transmisión por el servidor, no es mayor que el más pequeño entre el tamaño de recepción de datos máximo del cliente y una ventana de congestión *cwnd*.

Etapa B: el servidor envía un primer paquete TCP;

El servidor recibe el primer paquete TCP ACK y establece la ventana de congestión *cwnd* a dos paquetes, esto es, el servidor puede enviar dos paquetes TCP al cliente en una sola transmisión;

El servidor envía dos paquetes TCP posteriores de forma continua, recibe un segundo y tercero paquetes TCP ACK y establece la ventana de congestión *cwnd* a 4, esto es, el servidor puede enviar cuatro paquetes TCP al cliente en una sola transmisión:

Después de que el servidor envíe posteriormente paquetes TCP y reciba todos los paquetes TCP ACK para esta conexión TCP desde el cliente, la ventana de congestión *cwnd* se aumenta en 1 cada vez que el servidor recibe un paquete TCP ACK, lo que se conoce como la fase SS (inicio lento), hasta que la ventana de congestión *cwnd* se aumente a un valor umbral de fase SS ssthresh, que es de 65536 bytes para la mayoría de las puestas en práctica de TCP.

Etapa C: Cuando la ventana de congestión *cwnd* se aumenta al umbral de fase SS y después de que se confirme por el cliente con TCP ACK que todos los paquetes TCP enviados al cliente desde el servidor sean recibidos de forma satisfactoria, la ventana de congestión del servidor se aumenta en 1, lo que se conoce como CA (evitación de congestión), hasta que la ventana de congestión *cwnd* alcance la magnitud de recepción de datos máxima del cliente.

Etapa D: el cliente comprueba el número de secuencia de un paquete TCP recibido, y cuando el número de secuencia en la cabecera TCP del paquete TCP es mayor que la suma del número de secuencia en la cabecera TCP de un paquete TCP anteriormente recibido por el cliente y el número de bytes en la carga útil (excluyendo la cabecera TCP) del paquete TCP anteriormente recibido, lo que indica la pérdida de un paquete TCP, el cliente envía paquetes TCP ACK repetidamente para demandar al servidor que retransmita el paquete TCP perdido.

Después de notificar la pérdida de paquetes, el servidor establece el umbral de fase de inicio lento ssthresh a la mitad de la ventana de congestión actual *cwnd*, restablece la ventana de congestión a 1 y reinicia la fase de inicio lento (SS).

Puede deducirse del proceso de manipulación de paquetes TCP anterior, después de que ocurra la pérdida de paquetes TCP, que la ventana de congestión TCP *cwnd* se reduce con rapidez y también es necesario dedicar tiempo a gestionar la retransmisión, lo que significa un descenso rápido en el rendimiento de TCP. Para las aplicaciones en tiempo real

sensibles a la latencia o rendimiento, tal como una comunicación de vídeo, la experiencia del usuario se puede degradar en gran medida.

Para resolver este problema, la ventana de congestión *cwnd* puede inhibirse en el servidor, lo que hace que sea incapaz de ajustar el número de bytes enviados por el servidor en función de las condiciones de congestión de la red con lo que se agrava todavía más la congestión de la red y se reduce la relación de utilización de recursos de la red.

El documento EP 1169826 B1, publicado con fecha 24-02-2010 da a conocer un dispositivo de cadencia de acuse de recibo mejorado.

10

15

SUMARIO DE LA INVENCIÓN

Para resolver los problemas técnicos anteriores un método de manipulación de paquetes, un dispositivo de reenvío de paquetes y un sistema se dan a conocer en las formas de realización de esta invención para resolver el problema de congestión de red más agravado y la relación de utilización de recursos de red de valor más bajo debido a la ventana de congestión inhibida *cwnd* en el servidor. Las soluciones técnicas son como sigue.

En conformidad con un aspecto de las formas de realización de esta invención, un método de manipulación de paquetes se da a conocer según se estipula en la reivindicación 1, que comprende:

20

25

recibir un paquete TCP ACK actualmente enviado por un cliente;

obtener una ventana de recepción actual y una ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual cuando se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado por el cliente difiere del valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK anteriormente enviado por el cliente en la misma conexión TCP, o cuando un paquete TCP requerido para una retransmisión por el paquete TCP ACK actualmente recibido no se encuentra en un dispositivo de almacenamiento;

30 en donde la obtención de la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual comprende en particular:

obtener un ancho de banda BD de flujo ascendente y un tiempo T de ida y vuelta cuando el paquete TCP ACK es un paquete de flujo descendente;

35

calcular el producto del ancho de banda BD de flujo ascendente y el tiempo T de ida y vuelta para obtener un resultado de la multiplicación:

obtener el producto del resultado de la multiplicación y un primer umbral multiplicador preestablecido y utilizar el producto del resultado de la multiplicación y el primer umbral multiplicador preestablecido como la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual; o

en donde obtener la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual comprende en particular:

45

obtener un ancho de banda BD de flujo descendente y un tiempo T de ida y vuelta cuando el paquete TCP ACK es un paquete de flujo ascendente;

calcular el producto del ancho de banda BD de flujo descendente y el tiempo T de ida y vuelta para obtener un resultado de la multiplicación;

obtener el producto del resultado de la multiplicación y un segundo umbral multiplicador preestablecido, y utilizar el producto del resultado de la multiplicación y el segundo umbral multiplicador preestablecido como la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual;

55

los valores de la ventana de recepción actual y de la ventana de recepción recomendada se comparan, y el valor más pequeño de los dos se selecciona como la nueva ventana de recepción del cliente que envía el paquete TCP ACK actual, siendo la ventana de recepción la magnitud de recepción máxima actual del cliente que envía el TCP ACK actual;

el valor del campo de ventana en la cabecera TCP del paquete TCP ACK se sustituye con la nueva ventana de recepción, y el paquete TCP ACK sustituido se envía al servidor para permitir al servidor controlar la magnitud de los paquetes TCP a enviarse en conformidad con la ventana de recepción.

En conformidad con otro aspecto de las formas de realización de esta invención, se da a conocer un dispositivo de reenvío según la reivindicación 7, que comprende:

un módulo de recepción de paquete ACK (31) configurado para recibir un paquete TCP ACK actualmente enviado por un cliente;

- un módulo de determinación de valor de campo (32) configurado para determinar el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado por el cliente y el valor del campo del Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK anteriormente enviado por el cliente en la misma conexión TCP:
- un módulo de adquisición de ventana (35) configurado para obtener una ventana de recepción actual y una ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual cuando se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado difiere de los valores de campo del Número de Acuse de Recibo en las cabeceras TCP de los paquetes TCP ACK que se envían por el cliente anteriormente en la misma conexión TCP, o cuando un paquete TCP requerido para una retransmisión por el paquete TCP ACK actualmente recibido no se encuentra en el dispositivo de almacenamiento;

15

45

60

- en donde obtener la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual comprende en particular:
- obtener un ancho de banda BD de flujo ascendente y un tiempo T de ida y vuelta cuando el paquete TCP ACK es un paquete de flujo descendente;
 - calcular el producto del ancho de banda BD de flujo ascendente y el tiempo T de ida y vuelta para obtener un resultado de la multiplicación;
- obtener el producto del resultado de la multiplicación y un primer umbral multiplicador preestablecido y utilizar el producto del resultado de la multiplicación y el primer umbral multiplicador preestablecido como la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual; o
- en donde obtener la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual comprende, 30 en particular:
 - obtener un ancho de banda BD de flujo descendente y un tiempo T de ida y vuelta cuando el paquete TCP ACK es un paquete de flujo ascendente;
- 35 calcular el producto del ancho de banda BD de flujo descendente y el tiempo T de ida y vuelta para obtener un resultado de la multiplicación:
- obtener el producto del resultado de la multiplicación y un segundo umbral multiplicador preestablecido, y utilizar el producto del resultado de la multiplicación y el segundo umbral multiplicador preestablecido como la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual;
 - un módulo de selección de ventana (36) configurado para comparar los valores de la ventana de recepción actual y de la ventana de recepción recomendada y seleccionar el más pequeño valor de los dos como la nueva ventana de recepción del cliente que envía el paquete TCP ACK actual, siendo la ventana de recepción la magnitud de recepción máxima actual del cliente que envía el paquete TCP ACK actual;
 - un módulo de envío de paquete TCP ACK (37) configurado para sustituir el valor de campo de ventana en la cabecera TCP del paquete TCP ACK actual con la ventana de recepción y para enviar el paquete TCP ACK sustituido.
- En conformidad con otro aspecto de las formas de realización de esta invención, se da a conocer un sistema de manipulación de paquetes, que comprende: un cliente, un servidor y un dispositivo de reenvío, en donde los paquetes se transmiten entre el cliente y el servidor por intermedio del dispositivo de reenvío; y el dispositivo de reenvío se utiliza para recibir un paquete TCP ACK actualmente enviado por un cliente, para buscar en un dispositivo de almacenamiento un paquete TCP requerido para una retransmisión por el paquete TCP ACK cuando se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK actualmente enviado por el cliente es igual al valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK anteriormente enviado por el cliente en la misma conexión TCP, y para rechazar el paquete TCP ACK y para transmitir el paquete TCP al cliente que envía el paquete TCP ACK cuando el paquete TCP requerido para una retransmisión se encuentra en el dispositivo de almacenamiento.
 - Con las soluciones técnicas anteriores, después de recibir un paquete TCP ACK, el dispositivo de reenvío busca en un dispositivo de almacenamiento para un paquete TCP requerido para una retransmisión por el paquete TCP ACK cuando se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado por el cliente es igual al valor del campo del Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK anteriormente enviado por el cliente en la misma conexión TCP; cuando el paquete TCP requerido para una retransmisión por el paquete TCP ACK se encuentra en el dispositivo de almacenamiento, el dispositivo de

reenvío transmite el paquete TCP al cliente. En comparación con la técnica anterior, en donde un paquete TCP, en cualquier momento, se transmite directamente desde un servidor al cliente por intermedio del dispositivo de reenvío, puede economizarse el ancho de banda entre el servidor y el dispositivo de reenvío y puede mejorarse la relación de utilización del ancho de banda, con lo que se da lugar a una congestión de red reducida y a un aumento de la relación de utilización de recursos de red.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

5

20

55

- La Figura 1 es un diagrama de flujo de un método de manipulación de paquetes dado a conocer en una forma de realización de esta invención;
 - La Figura 2 es otro diagrama de flujo de un método de manipulación de paquetes dado a conocer en una forma de realización de esta invención;
- La Figura 3 es un diagrama estructural esquemático de un dispositivo de reenvío dado a conocer en una forma de realización de esta invención;
 - La Figura 4 es un diagrama estructural esquemático de un módulo de determinación de valor de campo en el dispositivo de reenvío;
- La Figura 5 es otro diagrama estructural esquemático del módulo de determinación de valor de campo en el dispositivo de reenvío;
- La Figura 6 es también otro diagrama estructural esquemático del módulo de determinación de valor de campo en el dispositivo de reenvío;
 - La Figura 7 es otro diagrama estructural esquemático del dispositivo de reenvío dado a conocer en una forma de realización de esta invención:
- 30 La Figura 8 es un diagrama estructural esquemático de un módulo de adquisición de ventana en el dispositivo de reenvío;
 - La Figura 9 es otro diagrama estructural esquemático del módulo de adquisición de ventana en el dispositivo de reenvío:
- La Figura 10 es otro diagrama estructural esquemático del módulo de adquisición de ventana en el dispositivo de reenvío.

DESCRIPCIÓN DETALLADA DE LAS FORMAS DE REALIZACIÓN

- 40 Para un mejor conocimiento de esta invención por los expertos en esta técnica, en el inicio, se describirán brevemente los paquetes TCP y los paquetes TCP ACK.
- Una conexión TCP se establece entre un servidor y un cliente por intermedio de un dispositivo de reenvío para transmitir paquetes. El servidor envía un paquete TCP al cliente por intermedio de la conexión TCP. Un campo del "Número de Secuencia" en la cabecera TCP del paquete TCP incluye el número de secuencia del primer byte de la carga útil de paquetes. Después de recibir el paquete TCP, el cliente envía un paquete TCP ACK al servidor por intermedio de la conexión TCP. El valor de campo de "Número de Acuse de Recibo" en la cabecera TCP del paquete TCP ACK indica el valor del campo del "Número de Secuencia" del siguiente paquete que está previsto por el cliente recibir del servidor y asimismo, implica que todos los datos envidos desde el servidor que tengan valores del "Número de Secuencia" menores que el valor del "Número de Acuse de Recibo" del paquete TCP ACK han sido recibidos por el cliente.
 - A continuación, se ilustrará un ejemplo particular. Se transmiten paquetes entre un servidor que tiene una dirección IP 192.168.0.199 y un cliente que tiene una dirección IP 192.168.0.8 por intermedio de un dispositivo de reenvío. El primer paquete recibido por el dispositivo de reenvío es un paquete TCP enviado por el servidor, en el que el valor del campo de "Número de Secuencia" en la cabecera TCP es 14481, lo que indica que el número de secuencia del primer byte de su carga útil de paquetes es 14481.
- Un segundo paquete es un paquete TCP enviado por el servidor, en el que el valor del campo de "Número de Secuencia" en la cabecera TCP es 15929, lo que indica que el número de secuencia del primer byte de su carga útil de paquetes es 15529. El valor del campo de "Número de Secuencia" en la cabecera TCP se calcula como sigue: añadir el valor del campo de "Número de Secuencia" de un paquete TCP anteriormente enviado por el servidor por intermedio de esa conexión TCP al número de bytes enviados en la carga útil de paquete TCP anterior para obtener el valor del "Número de Secuencia" en la cabecera TCP del paquete actual, esto es, 14481+1448= 15929.
- 65 Se supone que el valor del campo de "Número de Secuencia" en la cabecera TCP del segundo paquete es 17377, lo que indica que el número de secuencia del primer byte de su carga útil de paquetes es 17377. Puesto que el valor del campo

de "Número de Secuencia" en la cabecera TCP del paquete TCP anterior 14481 y el número de bytes de su carga útil de paquetes TCP es 1448, el valor del campo de "Número de Secuencia" en la cabecera TCP del segundo paquete debe ser 15929 pero no 17377. Cuando ocurre lo que antecede, ello indica la pérdida del segundo paquete (esto es, el paquete TCP que tiene el valor del "Número de Secuencia" de 15929 en su cabecera TCP) enviado por el servidor.

5

10

15

25

Un tercer paquete es un paquete TCP ACK enviado por el cliente, en el que el valor de campo de "Número de Secuencia" en la cabecera TCP es 15929, lo que indica que el valor de campo de "Número de Secuencia" del siguiente paquete que está previsto por este paquete desde el servidor es 15929. Este paquete TCP ACK enviado por el cliente representa que el primer paquete ha sido satisfactoriamente recibido por el cliente (esto es, se han recibido todos los datos de paquetes que tienen valores del campo de "Número de Secuencia" menores que 15929 enviados desde el servidor). Ésta es una respuesta del cliente que se envía después de la recepción del primer paquete.

Se supone que el valor del campo de "Número de Acuse de Recibo" en la cabecera TCP del tercer paquete es 14481, lo que indica que el valor del campo de "Número de Secuencia" del paquete siguiente que se espera por este paquete desde el servidor es 14481. El valor del campo de "Número de Secuencia" del segundo paquete enviado desde el servidor 15929 y el paquete TCP ACK enviado desde el cliente indica que el cliente espera recibir el primer paquete, dicho de otro modo, el primer paquete no ha sido satisfactoriamente recibido por el cliente. Cuando ocurre lo que antecede, ello indica la pérdida del primer paquete enviado desde el servidor.

20 Una forma de realización

Se ha encontrado por los inventores como resultado de su invernadero que la retransmisión de paquetes TCP es un aspecto que causa una mayor congestión de la red y una menor relación de utilización de recursos de la red. En particular, cuando un paquete TCP se pierde durante la congestión de la red, el dispositivo de reenvío envía un paquete TCP ACK recibido desde el cliente al servidor y el servidor busca un paquete TCP a retransmitirse según se demanda en el paquete TCP ACK y luego, envía el paquete TCP al cliente por intermedio del dispositivo de reenvío, lo que da lugar a una mayor congestión de la red y a una menor relación de utilización de recursos de la red.

Con el fin de resolver el problema anterior, un método de manipulación de paquetes se da a conocer en esta forma de realización de la invención. El dispositivo de reenvío almacena paquetes TCP recibidos en un dispositivo de almacenamiento – memoria intermedia. Cuando un paquete TCP se pierde durante la congestión de la red de flujo descendente, el dispositivo de reenvío puede intentar obtener a partir de su memoria intermedia un paquete TCP a retransmitirse cuando se requiera en un paquete TCP ACK procedente del cliente. Si el paquete TCP requerido para retransmisión se obtiene en la memoria intermedia, el dispositivo de reenvío puede enviar directamente el paquete TCP requerido para retransmisión, lo que puede economizar ancho de banda entre el servidor y el dispositivo de envío y mejorar la relación de utilización del ancho de banda y reducir la congestión de la red. Hay que referirse la Figura 1 para conocer el diagrama de flujo de este método, que comprende:

S101: recibir un paquete TCP ACK enviado desde un cliente.

40

El paquete TCP ACK se envía desde un cliente a un dispositivo de reenvío y luego, se envía a un servidor por el dispositivo de reenvío, lo que indica que un paquete TCP enviado desde el servidor ha sido recibido por el cliente. Cuando el valor de campo ACK en el campo de Bits de Control en la cabecera TCP del paquete recibido por el dispositivo de reenvío se establece a 1, ello indica que el paquete recibido es un paquete TCP ACK.

45

S102: Determinar si el valor del campo del Número de Acuse de Recibo en la cabecera TCP de paquete TCP ACK actualmente enviado es igual al valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK anteriormente enviado por el cliente; si es así, se ejecuta la etapa S103; de no ser así, se realiza la etapa S106.

50

Puesto que un servidor puede establecer múltiples conexiones TCP a múltiples clientes, es decir, el dispositivo de reenvío puede recibir al mismo tiempo paquetes TCP ACK enviados desde múltiples clientes, la etapa S102 debe analizar los paquetes TCP ACK enviados en la misma conexión TCP por el mismo cliente. La conexión TCP entre el servidor y el cliente se identifica, de forma única, por la dirección IP origen, la dirección IP de destino, el tipo de protocolo, el puerto origen de TCP y el puerto de destino de TCP en las cabeceras TCP de los paquetes enviados por el servidor y el cliente, y diferentes conexiones TCP tienen uno o más valores de campo diferentes de entre los valores de campo de dirección IP origen, dirección IP de destino, tipo de protocolo, puerto origen de TCP y puerto de destino TCP. De este modo, analizando el valor del campo de la dirección IP origen, dirección IP destino, tipo de protocolo, puerto origen de TCP y puerto de destino de TCP, en la cabecera TCP del paquete, puede reconocerse si los paquetes TCP ACK se envían desde el mismo cliente a la misma conexión TCP.

60

65

55

Cuando se determina en la etapa S102 si el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado es igual al valor del campo del Número de Acuse de Recibo de la cabecera TCP del paquete TCP ACK anteriormente enviado por el cliente, el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado y el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK anteriormente enviado por el cliente pueden determinarse en este momento operativo.

El dispositivo de reenvío puede almacenar, además, una lista de valores de campo del Número de Acuse de Recibo en las cabeceras TCP de paquetes TCP ACK recibidos en cualquier momento en que se envíen por el cliente a la misma conexión TCP y determinar el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado y los valores de campo del Número de Acuse de Recibo almacenados. Cuando el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado es igual a por lo menos uno de los valores de campo del Número de Acuse de Recibo almacenados, se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado es igual al valor del campo del Número de Acuse de Recibo almacenado; de no ser así, se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado difiere de los valores de campo del Número de Acuse de Recibo almacenados.

5

10

15

20

25

35

40

55

60

65

Por supuesto, el dispositivo de reenvío puede almacenar, además, los paquetes TCP ACK recibidos cada vez que se envían por el cliente en la misma conexión TCP, analizar los paquetes TCP ACK almacenados y el paquete TCP ACK actualmente recibido para adquirir sus valores de campo del Número de Acuse de Recibo respectivamente para tomar la decisión. Cuando el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado es igual a por lo menos uno de los valores de campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado es igual al valor del campo del Número de Acuse de Recibo almacenado. De no ser así, se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado difiere de los valores de campo del Número de Acuse de Recibo almacenados.

S103: determinar si un paquete TCP a retransmitirse según se requiere por el paquete TCP ACK puede encontrarse en la memoria intermedia; si es así, se realiza la etapa S104; de no ser así, se realiza la etapa S105. En donde la memoria intermedia está integrada en el dispositivo de reenvío o está unida exteriormente al dispositivo de reenvío.

S104: rechazar el paquete TCP ACK procedente del cliente, y enviar el paquete TCP requerido para retransmisión, es decir, el paquete TCP encontrado, al cliente.

30 S105: enviar un paquete TCP ACK al servidor y enviar por el servidor el paquete TCP a transmitirse como se requiere por el paquete TCP ACK al cliente por intermedio del dispositivo de reenvío.

A continuación, la presente invención se ilustrará con una realización ejemplo en la que se transmiten paquetes entre un servidor que tiene una dirección IP 192.168.0.198 y un cliente que tiene una dirección IP 192.168.0.9 por intermedio de un dispositivo de reenvío, en donde el tamaño de los paquetes enviados por el servidor es de 1400 bytes.

El primer paquete recibido por el dispositivo de reenvío es un paquete TCP enviado por el servidor, en el que el valor del campo de "Número de Secuencia" en la cabecera TCP es 14000, lo que indica el número de secuencia del primer byte de su carga útil de paquetes es 14000.

El segundo paquete es un paquete TCP enviado por el servidor, en el que el valor del campo de "Número de Secuencia" en la cabecera TCP es 15400, lo que indica que el número de secuencia del primer byte de su carga útil de paquetes es 15400.

El tercer paquete es un paquete TCP ACK enviado por el cliente, en el que el valor del campo del "Número de Acuse de Recibo" en la cabecera TCP es 15400, lo que indica que el valor del campo del "Número de Secuencia" del paquete siguiente a enviarse que se espera por este paquete es 15400. El paquete TCP ACK enviado por el cliente indica que el primer paquete ha sido recibido satisfactoriamente por el cliente. Ésta es una respuesta que se envía después de que se haya recibido el primer paquete.

El cuarto paquete es un paquete TCP ACK enviado por el cliente, en el que el valor del campo de "Número de Acuse de Recibo" en la cabecera TCP es 15400, lo que indica que el valor del campo de "Número de Secuencia" del siguiente paquete a enviarse como está previsto por este paquete es también 15400, es decir, el cliente deja de recibir el segundo paquete.

El dispositivo de reenvío compara el valor del campo del Número de Acuse de Recibo en la cabecera TCP del cuarto paquete con el valor del campo del Número de Acuse de Recibo en la cabecera TCP del tercer paquete, y determina que los valores de campo del Número de Acuse de Recibo en las cabeceras TCP del tercer y cuarto paquetes son los mismos, lo que indica que el cliente deja de recibir el segundo paquete enviado por el servidor de forma satisfactoria. El dispositivo de reenvío intenta obtener, en su memoria intermedia de trabajo, un paquete con el valor del campo de "Número de Secuencia" de 15400, esto es, el segundo paquete a retransmitirse según se requiere por el cuarto paquete. Si el dispositivo de reenvío encuentra el segundo paquete en su memoria intermedia de trabajo, el dispositivo de reenvío desde el servidor al dispositivo de reenvío, el dispositivo de reenvío no puede encontrar el segundo paquete en su memoria intermedia de trabajo, en cuyo caso, el dispositivo de reenvío envía el cuarto paquete al servidor

y el servidor envía el paquete a retransmitirse según se requiere por el cuarto paquete, en el que el valor del campo de "Número de Secuencia" es 15400, esto es, el segundo paquete al cliente por intermedio del dispositivo de reenvío.

Con la solución técnica anterior, después de recibir un paquete TCP ACK, el dispositivo de reenvío determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado es igual al valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK anteriormente enviado por el cliente en la misma conexión TCP, y entonces, el dispositivo de reenvío busca en un dispositivo de almacenamiento un paquete TCP a retransmitirse según se requiere por el paquete TCP ACK; cuando el paquete TCP a retransmitirse según se requiere por el paquete TCP ACK se encuentra en el dispositivo de almacenamiento, el dispositivo de reenvío envía el paquete TCP al cliente. En comparación con la técnica anterior, en donde un paquete TCP, en cualquier momento, se transmite directamente desde un servidor al cliente por intermedio del dispositivo de reenvío se puede economizar ancho de banda entre el servidor y el dispositivo de reenvío y se puede mejorar la relación de utilización del ancho de banda, con lo que se obtiene una reducción de la congestión de la red y se aumenta la relación de utilización de recursos de la red.

Otra forma de realización

5

10

15

20

25

30

35

50

55

60

65

Otro aspecto de los métodos de manipulación de paquetes existentes que pueden causar una mayor congestión de la red y disminuir la relación de utilización de recursos es: la ventana de congestión *cwnd* se inhibe por el servidor, y el tamaño de los paquetes TCP enviados no se asigna en conformidad con la ventana de recepción del cliente. Se ha reconocido por los inventores utilizando sus propias experiencias que cuando la ventana de congestión *cwnd* es inhibida en el servidor, en conformidad con el método en el que la ventana de recepción controla el tamaño de los paquetes TCP que se envían por el servidor, se reduce el tamaño de los paquetes TCP enviados en el momento de congestión de la red, lo que puede reducir la congestión de la red y mejorar la relación de utilización de recursos de la red.

Con el fin de conseguir el objeto anterior, haciendo referencia a la Figura 2, otro diagrama de flujo del método de manipulación de paquetes dado a conocer en una forma de realización de esta invención comprende:

S201: Recibir un paquete TCP ACK enviado por un cliente.

El paquete TCP ACK se envía desde un cliente a un dispositivo de reenvío, y luego se envía a un servidor por el dispositivo de reenvío, indicando que un paquete TCP enviado desde el servidor ha sido recibido por el cliente. Cuando el valor del campo ACK en el campo de Bits de Control en la cabecera TCP del paquete recibido por el dispositivo de reenvío se establece a 1, ello indica que el paquete recibido es un paquete TCP ACK.

S202: Determinar si el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado es un valor de campo repetitivo; si es así, se realiza la etapa S203 y de no ser así, se realiza la etapa S205.

Puesto que un servidor puede establecer múltiples conexiones TCP a múltiples clientes, es decir, el dispositivo de reenvío puede recibir al mismo tiempo paquetes TCP ACK enviados desde múltiples clientes, la etapa S202 debe analizar los paquetes TCP ACK enviados en la misma conexión TCP por el mismo cliente. Las conexiones TCP entre el servidor y el cliente se identifican, de forma única, por la dirección IP origen, la dirección IP destino, el tipo de protocolo, el puerto origen TCP y el puerto destino TCP en las cabeceras TCP de los paquetes enviados por el servidor y el cliente, y diferentes conexiones TCP tienen uno o más valores de campo diferentes de la dirección IP origen, la dirección IP destino, el tipo de protocolo, el puerto origen TCP y el puerto destino TCP en sus valores de campos respectivos. De este modo, analizando el valor del campo de la dirección IP origen, la dirección IP destino, el tipo de protocolo, el puerto origen TCP y el puerto destino TCP en las cabeceras TCP del paquete, puede reconocerse si los paquetes TCP ACK se envían desde el mismo cliente por intermedio de la misma conexión TCP.

Cuando se determina en la etapa S202 que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado es igual al valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK anteriormente enviado por el cliente, el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado y el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK anteriormente enviado por el cliente pueden determinarse según lo que antecede.

El dispositivo de reenvío puede almacenar, además, una lista de valores de campo del Número de Acuse de Recibo en las cabeceras TCP de los paquetes TCP ACK recibidos en cualquier momento que se envíen por el cliente a la misma conexión TCP, y determinar el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado y los valores de campo del Número de Acuse de Recibo dados. Cuando el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado es igual a por lo menos uno de los valores de campo del Número de Acuse de Recibo almacenados, se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado es igual al valor del campo del Número de Acuse de Recibo almacenado; de no ser así, se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado del Número de Acuse de Recibo almacenados.

Por supuesto, el dispositivo de reenvío puede almacenar también los paquetes TCP ACK recibidos cada vez que se envían por el cliente en la misma conexión TCP, analizar los paquetes TCP ACK almacenados y el paquete TCP ACK actualmente recibido para adquirir sus valores de campo del Número de Acuse de Recibo respectivamente para tomar la decisión. Cuando el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado es igual a por lo menos uno de los valores de campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado es igual al valor del campo del Número de Acuse de Recibo almacenado. De no ser así, se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado difiere de los valores de campo del Número de Acuse de Recibo almacenados.

S203: Determinar si un paquete TCP a retransmitirse según se requiere por el paquete TCP ACK puede encontrarse en la memoria intermedia de trabajo; si es así, se realiza la etapa S204, de no ser así, se realiza la etapa S205. En donde la memoria intermedia está integrada en el dispositivo de reenvío o está exteriormente asociada al dispositivo de reenvío.

S204: Desechar el paquete TCP ACK y enviar el paquete TCP requerido para la retransmisión, esto es, el paquete TCP encontrado, al cliente.

S205: Obtener una ventana de recepción actual y una ventana de recepción recomendada del cliente, en donde

el valor de campo de ventana en la cabecera TCP de un paquete TCP ACK es la ventana de recepción. Por lo tanto, después de recibir el paquete TCP ACK, el paquete TCP ACK se analiza para obtener el valor de campo de ventana en la cabecera TCP del paquete TCP ACK, que es la ventana de recepción actual del cliente desde donde se envía el paquete TCP ACK.

La ventana de recepción recomendada del cliente puede adquirirse mediante tres maneras operativas. Estas tres maneras se describirán a continuación.

Primera manera: establecer la ventana de recepción recomendada en conformidad con un umbral de ventana preestablecido, en particular estableciendo la ventana de recepción recomendada a 0, o reduciendo la ventana de recepción actual, a modo de ejemplo, multiplicando el valor de la ventana de recepción actual con un coeficiente predeterminado menor que 1 y utilizando su producto como la ventana de recepción recomendada.

Segunda manera: cuando el paquete TCP ACK es un paquete de flujo descendente, esto es, el paquete se transmite desde el servidor al cliente, se obtiene un ancho de banda BD de flujo ascendente y un tiempo T de ida y vuelta de los paquetes, y un resultado del cálculo se obtiene como la ventana recomendada del cliente aplicando la ecuación siguiente: ventana de recepción R = BD*T*TH, en donde R se expresa en bytes, BD en Mbps y T es una longitud de tiempo en ms (milisegundos) entre una temporización en la que un paquete TCP alcanza al cliente y una temporización en la que el paquete TCP ACK que responde al paquete TCP alcanza el servidor, lo que puede obtenerse consultando el campo de marca temporal en la cabecera TCP del paquete TCP. TH es un primer umbral multiplicador preestablecido, que difiere dependiendo de las diferentes situaciones. En particular,

se supone que BD = 2 Mbps, T = 500 ms y TH= 120,

5

10

15

20

25

50

55

60

45 con lo que se tiene R = $2*10^6*500*10^{-3}*120/8 = 1.5*10^7$ bytes.

El ancho de banda BD de flujo ascendente es un ancho de banda de línea de flujo ascendente o un ancho de banda de sesión de flujo ascendente o un ancho de banda de paquete de flujo ascendente ajustado, en donde, el ancho de banda de línea de flujo ascendente puede ser el ancho de banda de acceso del cliente, tal como un ancho de banda de 2 Mbps proporcionado para el cliente por un operador de comunicaciones. El ancho de banda de sesión de flujo ascendente puede ser un tráfico multimedia de vídeo o una tasa binaria constante, tal como la tasa binaria constante de una señal de vídeo que se vigila actualmente por un usuario.

El ancho de banda de paquete de flujo ascendente ajustado es un ancho de banda de paquete de flujo ascendente obtenido reajustando los anchos de banda de múltiples paquetes de flujo ascendente transmitidos en una sesión de flujo ascendente transmitidos en una sesión de flujo ascendente transmitidos en una sesión de flujo ascendente, el paquete de flujo ascendente A con un ancho de banda de 2 Mbps, el paquete B de flujo ascendente con un ancho de banda de 3 Mbps y el paquete C de flujo ascendente con un ancho de banda de 4 Mbps. Reajustando los anchos de banda de dichos paquetes en conformidad con el principio de distribución uniforme del ancho de banda, el ancho de banda de estos tres paquetes es 3 Mbps. De este modo, el ancho de banda BD de flujo ascendente es 3 Mbps cuando se calcula una ventana recomendada del cliente para recibir un paquete de flujo ascendente A. Por supuesto, el ancho de banda del paquete de flujo ascendente puede aumentarse en un valor, tal como 1 Mbps sobre la base de su ancho de banda original.

Tercera manera: cuando el paquete TCP ACK es un paquete de flujo ascendente, esto es, el paquete se transmite desde el servidor al cliente, un ancho de banda BD de flujo ascendente y un tiempo T de ida y vuelta del paquete se obtiene de

esta manera y un resultado del cálculo se obtiene como la ventana recomendada del cliente aplicando la ecuación siguiente: ventana de recepción R = BD*T*TH, en donde R se expresa en bytes, BD en Mbps y T es una longitud de tiempo en ms entre una temporización en la que un paquete TCP alcanza al cliente y una temporización en la que el paquete TCP ACK alcanza el servidor, lo que puede obtenerse consultando el campo de marca temporal en la cabecera TCP del paquete TCP. TH es un primer umbral multiplicador preestablecido, que difiere dependiendo de las diferentes situaciones. En particular,

se supone que BD = 4 Mbps, T = 400 ms y TH= 100,

5

15

60

65

10 con lo que se tiene R = $4*10^6*400*10^{-3}*100/8 = 2*10^7$ bytes.

El ancho de banda BD de flujo descendente es un ancho de banda de línea de flujo descendente o un ancho de banda de sesión de flujo descendente o un ancho de banda de paquete de flujo descendente ajustado, en donde el ancho de banda de línea de flujo descendente puede ser el ancho de banda de acceso del cliente, tal como un ancho de banda de 6 Mbps proporcionado para el cliente por un operador de comunicaciones. El ancho de banda de la sesión de flujo descendente puede ser un tráfico multimedia de vídeo o una tasa binaria constante, tal como la tasa binaria constante de una señal de vídeo que se vigila actualmente por un usuario.

- El ancho de banda de paquete de flujo descendente ajustado es un ancho de banda de paquete de flujo descendente obtenido reajustando los anchos de banda de múltiples paquetes de flujo descendente transmitidos en una sesión de flujo descendente en conformidad con algunos criterios. A modo de ejemplo, existen tres paquetes de flujo descendente transmitidos en una sesión de flujo descendente, el paquete de flujo descendente A con un ancho de banda de 2 Mbps, el paquete B de flujo descendente con un ancho de banda de 3 Mbps y el paquete C de flujo descendente con un ancho de banda de 4 Mbps. Reajustando los anchos de banda de dichos paquetes en conformidad con el principio de distribución uniforme del ancho de banda, el ancho de banda de estos tres paquetes de flujo descendente es 3 Mbps. De este modo, el ancho de banda BD de flujo descendente es 3 Mbps cuando se calcula una ventana recomendada del cliente para recibir un paquete de flujo descendente A. Por supuesto, el ancho de banda del paquete de flujo descendente puede aumentarse en un valor, tal como 1 Mbps sobre la base de su ancho de banda original.
- 30 S206: Seleccionar un valor más pequeño de entre la ventana de recepción actual y la ventana de recepción recomendada como la nueva ventana de recepción del cliente, en donde la ventana de recepción es el tamaño de recepción máximo actual del cliente.
- S207: Sustituir el valor de campo de ventana en la cabecera TCP del paquete TCP ACK con la nueva ventana de recepción, y enviar el paquete TCP ACK sustituido al servidor. El servidor establece su ventana de congestión *cwnd* actual para la ventana de recepción y controla el tamaño de los paquetes TCP a enviase en conformidad con la ventana de congestión actual.
- Conviene señalar que el valor del campo de suma de control del paquete TCP ACK es una suma de control calculada sobre la base de todos los campos en el paquete TCP ACK. De este modo, después de sustituir el valor del campo de ventana, es necesario recalcular y sustituir el valor del campo de suma de control original para garantizar la transmisión efectiva del paquete TCP ACK.
- Con la solución técnica anterior, cuando el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado difiere del valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK anteriormente enviado por el cliente en la misma conexión TCP, o cuando un paquete TCP requerido para retransmisión por el paquete TCP ACK se encuentra en el dispositivo de almacenamiento, se obtienen la ventana de recepción actual la ventana de recepción recomendada del cliente; una de ellas que tenga un tamaño más pequeño se selecciona como la nueva ventana de recepción del cliente, el valor del campo de ventana en el paquete TCP ACK se sustituido se envía al servidor. El servidor recibe el paquete TCP ACK sustituido y utiliza la ventana de recepción en el paquete TCP ACK como el número máximo de bytes que pueden transmitirse en un paquete TCP bajo el control del servidor. En comparación con la técnica anterior, la forma de realización de esta invención reduce el número máximo de bytes en un paquete TCP que se envía por el servidor disminuye la magnitud de la ventana de recepción del cliente, con lo que se da lugar a una reducción de la congestión de la red y se aumenta la relación de utilización de recursos de la red.

Las formas de realización en la presente especificación se describen de una manera progresiva. Para las mismas partes o similares de varias formas de realización, puede hacerse entre las formas de realización. Cada forma de realización se centra en la diferencia con respecto a otras formas de realización. A partir de la descripción de las formas de realización de los métodos anteriores, los expertos en esta técnica pueden entender claramente que la invención puede ponerse en práctica de una manera de software junto con una plataforma de hardware de uso general esencial. Por supuesto, esta invención puede ponerse en práctica en hardware, pero lo anterior se prefiere en la mayoría de los casos. Sobre la base de dicho entendimiento, las soluciones técnicas de la invención o una parte de ellas, que contribuyen a la técnica anterior, pueden materializarse esencialmente en la forma de un producto informático, que puede almacenarse en un soporte de memorización, incluyendo varias instrucciones para hacer que un dispositivo de reenvío informático (que puede ser un ordenador personal, un servidor, un dispositivo de reenvío de red, etc.) para realizar la totalidad o una parte

de las etapas en los métodos en conformidad con las respectivas formas de realización de la invención. El soporte de memorización anteriormente descrito comprende una memoria ROM, una memoria RAM, un disco magnético, un disco óptico y otros soportes que pueden memorizar un código de programa.

- En correspondencia con las formas de realización de los métodos anteriores, un dispositivo de reenvío se da a conocer, además, en una forma de realización de esta invención, cuya estructura se ilustra en la Figura 3, que comprende: un módulo de recepción de paquetes ACK 31, un módulo de determinación de valor de campo 32, un módulo de adquisición de paquete TCP 33 y un módulo de envío de paquete TCP 34, en donde,
- el módulo de recepción de paquete ACK 31 se utiliza para recibir un paquete TCP ACK actualmente enviado por un cliente;
- El módulo de determinación de valor de campo 32 se utiliza para determinar el valor del campo del Número de Acuse de Recibo en la cabecera TCP de paquete TCP ACK actualmente enviado por el cliente y el valor del campo del Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK que se envía con anterioridad en la misma conexión TCP
- El módulo de búsqueda de paquete TCP 33 se utiliza para buscar en un dispositivo de almacenamiento un paquete TCP requerido para retransmisión por el paquete TCP ACK cuando el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado por el cliente es igual al valor del campo del Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK que se envió anteriormente por el cliente en la misma conexión TCP. El dispositivo de almacenamiento es una memoria intermedia. La memoria intermedia puede incorporase en el dispositivo de reenvío o puede asociarse exteriormente al dispositivo de reenvío.
- El módulo de envío de paquete TCP 34 se utiliza para rechazar un paquete TCP ACK y enviar el paquete TCP requerido para retransmisión al cliente que envía el paquete TCP ACK cuando el paquete TCP requerido para retransmisión por el paquete TCP ACK se encuentra en el dispositivo de reenvío.
- El módulo de determinación de valor de campo anterior 32 puede tomar una decisión operativa sobre la base del valor del campo del Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK que se envió anteriormente por el cliente. De este modo, el módulo de determinación de valor de campo anterior 32 comprende: una primera unidad de adquisición de valor de campo actual 321, una unidad de adquisición de valor de campo anterior 322 y una primera unidad de determinación 323. Haciendo referencia a la Figura 4 en la que se ilustra un diagrama estructural esquemático, en donde:

35

- La primera unidad de adquisición de valor de campo actual 321 se utiliza para analizar el paquete TCP ACK actual y para obtener el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK como el valor del campo del Número de Acuse de Recibo actual.
- 40 La unidad de adquisición de valor de campo anterior 322 se utiliza para analizar un paquete TCP ACK anteriormente enviado por el cliente que envía el paquete TCP ACK actual, en la misma conexión TCP, y para obtener el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK como el valor del campo del Número de Acuse de Recibo anterior.
- La primera unidad de determinación 323 se utiliza para determinar si el valor del campo del Número de Acuse de Recibo actual es igual al valor del campo del Número de Acuse de Recibo anterior.
- El módulo de determinación de valor de campo 32 puede memorizar, además, el valor del campo del Número de Acuse de Recibo en la cabecera TCP de cada paquete TCP ACK recibido que se envía por el cliente en la misma conexión TCP, y para determinar el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado y los valores de campo del Número de Acuse de Recibo anteriormente memorizados. Su estructura se ilustra en la Figura 5 que comprende: una unidad de almacenamiento de campos 324, una segunda unidad de adquisición de valor de campo actual 325 y una segunda unidad de determinación 326, en donde:
- La unidad de almacenamiento de campo 324 se utiliza para memorizar el valor del campo del Número de Acuse de Recibo en la cabecera TCP de cada paquete TCP ACK recibido que se envía por el cliente en la misma conexión TCP.
- La segunda unidad de adquisición de valor de campo actual 325 se utiliza para analizar el paquete TCP ACK y para obtener el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK como el valor del campo del Número de Acuse de Recibo actual.
 - La segunda unidad de determinación 326 se utiliza para determinar si el valor del campo del Número de Acuse de Recibo actual es igual a un valor del campo del Número de Acuse de Recibo almacenado. Cuando el valor del campo del Número de Acuse de Recibo actual es igual a por lo menos uno de los valores de campo del Número de Acuse de Recibo almacenados, se determina que el valor del Campo del Número de Acuse de Recibo actual es igual a un valor del

campo del Número de Acuse de Recibo almacenado; de no ser así, se determina que el valor del campo del Número de Acuse de Recibo actual difiere de los valores de campo del Número de Acuse de Recibo almacenados.

Por supuesto, el dispositivo de reenvío puede almacenar, además, cada paquete TCP ACK recibido que se envía por el cliente en la misma conexión TCP; analizar los paquetes TCP ACK almacenados y el paquete TCP ACK actualmente recibido, respectivamente, para adquirir sus valores de campo del Número de Acuse de Recibo para su determinación. La estructura del módulo de determinación de valor de campo se ilustra en la Figura 6, que comprende: una unidad de almacenamiento de paquetes 327, una tercera unidad de adquisición del valor del campo actual 328, una unidad de adquisición de campo almacenado 329 y una tercera unidad de determinación 330, en donde:

5

10

20

25

40

45

60

65

La unidad de almacenamiento de paquetes 327 se utiliza para almacenar cada paquete TCP ACK recibido que se envía por el cliente en la misma conexión TCP.

La tercera unidad de adquisición de valor de campo actual 328 se utiliza para analizar el paquete TCP ACK actual, y para obtener el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK como el valor del campo del Número de Acuse de Recibo actual.

La unidad de adquisición de campo almacenado 329 se utiliza para analizar los paquetes TCP ACK almacenados para obtener los valores de campo del Número de Acuse de Recibo en las cabeceras TCP de los paquetes TCP ACK como los valores de campo del Número de Acuse de Recibo almacenados.

La tercera unidad de determinación 330 se utiliza para determinar si el valor del campo del Número de Acuse de Recibo actual es igual a un valor del campo del Número de Acuse de Recibo almacenado. Cuando el valor del campo del Número de Acuse de Recibo actual es igual a por lo menos uno de los valores de campo del Número de Acuse de Recibo almacenados, se determina que el valor del campo del Número de Acuse de Recibo actual es igual a un valor del campo del Número de Acuse de Recibo actual es igual a un valor del campo del Número de Acuse de Recibo actual difiere de los valores de campo del Número de Acuse de Recibo almacenados.

Otro aspecto de los métodos de manipulación de paquetes existentes que pueden causar una mayor congestión de la red y reducir la relación de utilización de recursos de la red es: la ventana de congestión *cwnd* se inhibe por el servidor y la magnitud de los paquetes TCP enviados no se asigna en conformidad con la ventana de recepción del cliente. Se ha reconocido por los inventores gracias a sus experiencias que cuando la ventana de congestión *cwnd* se inhibe en el servidor, en conformidad con el método en el que la ventana de recepción controla la magnitud de los paquetes TCP que se envían por el servidor, se reduce la magnitud de los paquetes TCP enviados en el momento de congestión de la red, lo que puede reducir la congestión de la red y mejorar la relación de utilización de recursos de la red.

Para poder conseguir el objetivo anterior, un dispositivo de reenvío se da a conocer en una forma de realización de esta invención, sobre la base de la ilustración de la Figura 3, que comprende, además: un módulo de adquisición de ventana 35, un módulo de selección de ventana 36 y un módulo de envío de paquete TCP ACK 37, según se ilustra en la Figura 7, en donde:

El módulo de adquisición ventana 35 se utiliza para obtener la ventana de recepción actual y una ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual cuando se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado difiere de los valores de campo del Número de Acuse de Recibo en las cabeceras TCP de los paquetes TCP ACK que se enviaron anteriormente por el cliente en la misma conexión TCP, o cuando un paquete TCP requerido para retransmisión por el paquete TCP ACK actualmente recibido no se encuentra en el dispositivo de almacenamiento.

El módulo de selección de ventana 36 se utiliza para seleccionar una más pequeña de entre la ventana de recepción actual y la ventana de recepción recomendada como la nueva ventana de recepción del cliente que envía el paquete TCP ACK actual, en donde la ventana de recepción indica la magnitud de recepción máxima actual del cliente que envía el paquete TCP ACK actual.

El módulo de envío de paquete TCP ACK 37 se utiliza para sustituir el valor del campo de ventana en la cabecera TCP del paquete TCP ACK actual con la ventana de recepción, y para enviar el paquete TCP ACK sustituido al servidor. El servidor controla la magnitud de los paquetes TCP a enviarse sobre la base de la ventana de recepción.

Conviene señalar que el valor del campo de la suma de control del paquete TCP ACK es una suma de control calculada sobre la base de todos los campos en el paquete TCP ACK. De este modo, después de sustituir el valor del campo de ventana, es necesario recalcular y sustituir el valor de campo de suma de control original para garantizar la transmisión efectiva del paquete TCP ACK.

Haciendo referencia a la Figura 8 para conocer la estructura del módulo de adquisición de ventana 35, que comprende una unidad de análisis 351 y una unidad de adquisición de ventana 352, en donde:

12

La unidad de análisis 351 se utiliza para analizar el paquete TCP ACK recibido actualmente enviado por el cliente;

La unidad de adquisición de ventana 352 se utiliza para obtener el valor del campo de ventana en la cabecera TCP del paquete TCP ACK, en donde el valor del campo de ventana es la ventana de recepción actual del cliente que envía el paquete TCP ACK actual.

5

Cuando el paquete TCP ACK actual es un paquete de flujo descendente, con el fin de obtener la ventana de recepción recomendada del cliente, sobre la base de la ilustración de la Figura 9, el módulo de adquisición de ventana 35 comprende, además: una primera unidad de adquisición de parámetros 353, una primera unidad de cálculo 354 y una primera unidad de adquisición 355, según se ilustra en la Figura 10, en donde:

10

La primera unidad de adquisición de parámetros 353 se utiliza para obtener un ancho de banda BD de flujo ascendente y un tiempo T de ida y vuelta de paquetes cuando el paquete TCP ACK actual es un paquete de flujo descendente, en donde el ancho de banda BD de flujo ascendente es un ancho de banda de línea de flujo ascendente o un ancho de banda de sesión de flujo ascendente o un ancho de banda de paquete de flujo ascendente ajustado.

15

La primera unidad de cálculo 354 se utiliza para calcular el producto del ancho de banda BD de flujo ascendente y el tiempo T de ida y vuelta de paquetes para obtener un resultado de la multiplicación.

20

La primera unidad de adquisición 355 se utiliza para obtener el producto del resultado de la multiplicación y un primer umbral multiplicador preestablecido, y para utilizar el producto del resultado de la multiplicación y un primer umbral multiplicador preestablecido como la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual.

25

Cuando el paquete TCP ACK actual es un paquete de flujo ascendente, con el fin de obtener la ventana de recepción recomendada del cliente, sobre la base de la ilustración de la Figura 9, el módulo de adquisición de ventana 35 comprende, además: una segunda unidad de adquisición de parámetros 356, una segunda unidad de cálculo 357 y una segunda unidad de adquisición 358, según se ilustra en la Figura 10, en donde:

30

La segunda unidad de adquisición de parámetros 356 se utiliza para obtener un ancho de banda BD de flujo descendente y un tiempo T de ida y vuelta de paquetes cuando el paquete TCP ACK es un paquete de flujo ascendente, en donde el ancho de banda BD de flujo descendente es un ancho de banda de línea de flujo descendente o un ancho de banda de sesión de flujo descendente o un ancho de banda de paquete de flujo descendente ajustado.

25

La segunda unidad de cálculo 357 se utiliza para calcular el producto del ancho de banda BD de flujo descendente y el tiempo T de ida y vuelta de paquetes para obtener un resultado de la multiplicación.

35

La segunda unidad de adquisición 358 se utiliza para obtener el producto del resultado de la multiplicación y un segundo umbral multiplicador preestablecido como la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual.

40

En correspondencia con la forma de realización del aparato anterior, un sistema de manipulación de paquetes se da a conocer, además, en una forma de realización de esta invención, que comprende un cliente, un servidor y un dispositivo de reenvío, siendo los paquetes transmitidos entre el cliente y el servidor por intermedio del dispositivo de reenvío, en donde el dispositivo de reenvío se utiliza para recibir un paquete TCP ACK actualmente enviado por un cliente, para obtener un paquete TCP requerido para retransmisión por el paquete TCP ACK cuando se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado por el cliente es igual al valor del campo del Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK anteriormente enviado por el cliente en la misma conexión TCP, y para rechazar el paquete TCP ACK y enviar el paquete TCP al cliente desde el que el paquete TCP ACK fue enviado cuando el paquete TCP se requería para la retransmisión por el paquete TCP ACK que se encuentra en el dispositivo de almacenamiento.

50

45

El dispositivo de reenvío se utiliza, además, cuando se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado difiere del valor del campo del Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK anteriormente enviado por el cliente en la misma conexión TCP o cuando un paquete TCP requerido para retransmisión por el paquete TCP ACK no se encuentra en el dispositivo de almacenamiento, obtener una ventana de recepción actual y una ventana de recepción recomendada del cliente; seleccionar la más pequeña entre la ventana de recepción actual y la ventana de recepción recomendada como la nueva ventana de recepción del cliente, en donde la ventana de recepción es la magnitud de recepción máxima actual del cliente que envía el paquete TCP ACK actual; sustituir el valor del campo de ventana en el paquete TCP ACK con el valor del campo de ventana en el paquete TCP ACK y enviar el paquete TCP ACK sustituido al servidor. El servidor controla la magnitud de los paquetes TCP a enviarse en conformidad con la ventana de recepción.

60

65

55

La forma de realización del aparato anterior y la forma de realización del sistema pueden adoptar el método de manipulación de paquetes dado a conocer en la forma de realización del método anterior para resolver el problema en la técnica anterior, es decir, inhibir la ventana de congestión *cwnd* en el servidor puede hacer imposible ajustar el número

de bytes que el servidor puede enviar en función de las situaciones de congestión de la red, lo que puede dar lugar a una mayor congestión de la red y a una reducción de la relación de utilización de recursos de la red.

En cuanto a la forma de realización del aparato, puesto que prácticamente corresponde a la forma de realización del método, para sus partes relacionadas, puede hacerse referencia a la forma de realización del método. La forma de realización del aparato anteriormente descrita es simplemente illustrativa, por cuanto que los elementos que se describen como partes separadas pueden estar o no pueden estar físicamente separados entre sí y los que se illustran de forma individual pueden ser, o pueden no ser, elementos físicos, que pueden situarse en una posición o pueden distribuirse en múltiples unidades de red. Algunos o la totalidad de sus módulos pueden seleccionarse como requeridos para realizar el objeto de las formas de realización de esta invención como puede entenderse y ponerse en práctica por los expertos en esta técnica sin necesidad de esfuerzos creativos.

A partir de las formas de realización dadas a conocer en esta invención, puede entenderse que el aparato y método aquí dados a conocer, sin desviarse del espíritu y del alcance de esta invención, pueden realizarse en otras maneras operativas. Las presentes formas de realización son simplemente ejemplos ilustrativos, pero no establecen ninguna limitación, y los contenidos particulares aquí dados a conocer no deben considerarse como limitación a la presente invención. A modo de ejemplo, la división de unidades o de sub-unidades es simplemente una división funcional lógica y otras maneras de división son también posibles en las puestas en práctica de la invención, tales como unidades o sub-unidades múltiples pueden combinarse juntas. Además, múltiples elementos o componentes pueden combinarse en otro sistema o integrarse en dicho sistema o algunas características pueden omitirse o no realizarse.

La anterior descripción es simplemente formas de realización particulares de esta invención. Conviene señalar que numerosas variaciones y modificaciones pueden realizarse por expertos en esta técnica sin desviarse por ello del alcance de protección de las reivindicaciones adjuntas.

REIVINDICACIONES

- 1. Un método de manipulación de paquetes utilizado en un dispositivo de reenvío, que comprende:
- 5 recibir un paquete TCP ACK actualmente enviado por un cliente (201);

10

25

35

45

50

55

60

65

obtener una ventana de recepción actual y una ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual cuando se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado por el cliente difiere del valor del campo del Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK anteriormente enviado por el cliente en la misma conexión TCP, o cuando un paquete TCP requerido para una retransmisión por el paquete TCP ACK actualmente recibido no se encuentra en un dispositivo de almacenamiento (205),

en donde la obtención de la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual comprende: establecer la ventana de recepción recomendada en conformidad con un umbral de ventana preestablecido; o

en donde obtener la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual comprende:

20 obtener una ancho de banda BD de flujo ascendente y un tiempo T de ida y vuelta cuando el paquete TCP ACK es un paquete de flujo descendente;

calcular el producto del ancho de banda BD de flujo ascendente y el tiempo T de ida y vuelta para obtener un resultado de la multiplicación;

obtener el producto del resultado de la multiplicación y un primer umbral multiplicador preestablecido y utilizar el producto del resultado de la multiplicación y el primer umbral multiplicador preestablecido como la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual; o

30 en donde la obtención de la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual comprende:

obtener un ancho de banda BD de flujo descendente y un tiempo de ida y vuelta T cuando el paquete TCP ACK es un paquete de flujo ascendente;

calcular el producto del ancho de banda BD de flujo descendente y el tiempo T de ida y vuelta para obtener un resultado de la multiplicación;

obtener el producto del resultado de la multiplicación y un segundo umbral multiplicador preestablecido y utilizar el producto del resultado de la multiplicación y el segundo umbral multiplicador preestablecido como la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual;

los valores de la ventana de recepción actual y de la ventana de recepción recomendada son comparados y el más pequeño valor de los dos se selecciona como la nueva ventana de recepción del cliente que envía el paquete TCP ACK actual, siendo la ventana de recepción de la magnitud de recepción máxima actual del cliente que envía el TCP ACK actual (206);

el valor de campo de ventana en la cabecera TCP del paquete TCP ACK se sustituye con la nueva ventana de recepción, y el paquete TCP ACK sustituido se envía al servidor para permitir al servidor controlar el tamaño de los paquetes TCP a enviarse en conformidad con la ventana de recepción (207).

2. El método de manipulación de paquetes según la reivindicación 1, en donde buscar en un dispositivo de almacenamiento un paquete TCP requerido para una retransmisión por el paquete TCP ACK cuando se determina que el valor del campo de Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado por el cliente es igual al valor del campo Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK anteriormente enviado por el cliente en la misma conexión TCP;

rechazar el paquete TCP ACK y transmitir (S105) el paquete TCP al cliente que envía el paquete TCP ACK cuando el paquete TCP requerido para una retransmisión se encuentra en el dispositivo de almacenamiento.

3. El método de manipulación de paquetes según la reivindicación 2, en donde el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado por el cliente y el valor del campo del Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK anteriormente enviado por el cliente en la misma conexión TCP son el valor del campo de Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK que se envía actualmente y el valor del campo del Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK que fue enviado la última vez por el cliente en la misma conexión TCP.

- 4. El método de manipulación de paquetes según la reivindicación 2, en donde el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado por el cliente y el valor del campo del Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK anteriormente enviado por el cliente en la misma conexión TCP son el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK que se envía actualmente y un valor del campo del Número de Acuse de Recibo almacenado, en donde el valor del campo del Número de Acuse de Recibo almacenado se obtiene a partir de la cabecera TCP de un paquete TCP ACK enviado por el cliente en la misma conexión TCP.
- 5. El método de manipulación de paquetes según la reivindicación 2, en donde el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado por el cliente y el valor del campo del Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK anteriormente enviado por el cliente a través de la misma conexión TCP son el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK que se envía actualmente y un valor del campo del Número de Acuse de Recibo obtenido a partir de un paquete TCP ACK almacenado enviado por el cliente en la misma conexión TCP.
 - **6.** El método de manipulación de paquetes según la reivindicación 1, en donde obtener una ventana de recepción actual del cliente que envía el paquete TCP ACK comprende:
- 20 analizar el paquete TCP ACK actualmente recibido enviado por el cliente;

obtener el valor del campo de ventana en la cabecera TCP el paquete TCP ACK, en donde el valor del campo de ventana es la ventana de recepción actual del cliente que envía el paquete TCP ACK actual.

25 **7.** Un dispositivo de reenvío, que comprende:

5

55

un módulo de recepción de paquete ACK (31) configurado para recibir un paquete TCP ACK actualmente enviado por un cliente;

- un módulo de determinación de valor de campo (32) configurado para determinar el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado por el cliente y el valor del campo del Número de Acuse de Recibo en la cabecera TCP de un paquete TCP ACK anteriormente enviado por el cliente en la misma conexión TCP:
- un módulo de adquisición de ventana (35) configurado para obtener una ventana de recepción actual y una ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual cuando se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado difiere de los valores del campo del Número de Acuse de Recibo en las cabeceras TCP de los paquetes TCP ACK que se envían por el cliente con anterioridad en la misma conexión TCP o cuando un paquete TCP requerido para una retransmisión por el paquete TCP ACK actualmente recibido no se encuentra en el dispositivo de almacenamiento,
 - en donde obtener la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual comprende: establecer la ventana de recepción recomendada en conformidad con un umbral de ventana preestablecido; o
- 45 en donde obtener la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual comprende:
 - obtener un ancho de banda BD de flujo ascendente y un tiempo T de ida y vuelta cuando el paquete TCP ACK es un paquete de flujo descendente;
- 50 calcular el producto del ancho de banda BD de flujo ascendente y el tiempo T de ida y vuelta para obtener un resultado de la multiplicación;
 - obtener el producto del resultado de la multiplicación y un primer umbral multiplicador preestablecido y utilizar el producto del resultado de la multiplicación y el primer umbral multiplicador preestablecido como la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual, o
 - en donde obtener la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual comprende:
- obtener un ancho de banda BD de flujo descendente y un tiempo T de ida y vuelta cuando el paquete TCP ACK es un paquete de flujo ascendente;
 - calcular el producto del ancho de banda BD de flujo descendente y el tiempo T de ida y vuelta para obtener un resultado de la multiplicación;

obtener el producto del resultado de multiplicación y un segundo umbral multiplicador preestablecido y utilizar el producto del resultado de la multiplicación y el segundo umbral multiplicador preestablecido como la ventana de recepción recomendada del cliente que envía el paquete TCP ACK actual;

- un módulo de selección de ventana (36) configurado para comparar los valores de la ventana de recepción actual y de la ventana de recepción recomendada y seleccionar el más pequeño valor de los dos como la nueva ventana de recepción del cliente que envía el paquete TCP ACK actual, siendo la ventana de recepción la magnitud de recepción máxima actual del cliente que envía el paquete TCP ACK actual;
- un módulo de envío de paquete TCP ACK (37) configurado para sustituir el valor del campo de ventana en la cabecera TCP del paquete TCP ACK actual con la ventana de recepción, y enviar el paquete TCP ACK sustituido.
- 8. El dispositivo de reenvío según la reivindicación 7, que comprende, además: un módulo de búsqueda de paquete TCP (33) configurado para buscar en un dispositivo de almacenamiento un paquete TCP requerido para una retransmisión por el paquete TCP ACK cuando se determina que el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK actualmente enviado por el cliente es igual al valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK anteriormente enviado por el cliente en la misma conexión TCP;
- un módulo de envío de paquete TCP (34) configurado para rechazar el paquete TCP ACK y transmitir el paquete TCP al cliente que envía el paquete TCP ACK cuando el paquete TCP requerido para una retransmisión se encuentra en el dispositivo de almacenamiento.
- **9.** El dispositivo de reenvío según la reivindicación 8, en donde el módulo de determinación de valor de campo (32) comprende:

una primera unidad de adquisición de valor de campo actual (321) configurada para analizar el paquete TCP ACK actual y para obtener el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK como el valor del campo del Número de Acuse de Recibo actual;

una unidad de adquisición de valor de campo anterior (322) configurada para analizar un paquete TCP ACK anteriormente enviado por el cliente que envía el paquete TCP ACK actual en la misma conexión TCP y para obtener el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK como el valor del campo del Número de Acuse de Recibo anterior;

una primera unidad de determinación (323) configurada para determinar si el valor del campo del Número de Acuse de Recibo actual es igual al valor del campo del Número de Acuse de Recibo anterior.

10. El dispositivo de reenvío según la reivindicación 8, en donde el módulo de determinación del valor del campo (32) comprende:

una unidad de almacenamiento de campo (324) configurada para almacenar el valor del campo del Número de Acuse de Recibo en la cabecera TCP de cada paquete TCP ACK recibido enviado por el cliente en la misma conexión TCP;

- una segunda unidad de adquisición de valor de campo actual (325) configurada para analizar el paquete TCP ACK actual y para obtener el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK como el valor del campo del Número de Acuse de Recibo actual;
- una segunda unidad de determinación (326) configurada para determinar si el valor del campo del Número de Acuse de Recibo actual es igual a un valor del campo del Número de Acuse de Recibo almacenado; cuando el valor del campo del Número de Acuse de Recibo actual es igual a al menos uno de los valores del campo del Número de Acuse de Recibo almacenados, se determina que el valor del campo del Número de Acuse de Recibo actual es igual a un valor del campo del Número de Acuse de Recibo actual es igual a un valor del campo del Número de Acuse de Recibo actual difiere de los valores del campo de Número de Acuse de Recibo almacenados.
 - **11.** El dispositivo de reenvío según la reivindicación 8, en donde el módulo de determinación del valor de campo (32) comprende:
- una unidad de almacenamiento de paquetes (327) configurada para almacenar cada paquete TCP ACK recibido enviado por el cliente en la misma conexión TCP;

una tercera unidad de adquisición de valor de campo actual (328) configurada para analizar el paquete TCP ACK actual y para obtener el valor del campo del Número de Acuse de Recibo en la cabecera TCP del paquete TCP ACK como el valor del campo del Número de Acuse de Recibo actual;

65

30

una unidad de adquisición de campo almacenado (329) configurada para analizar los paquetes TCP ACK almacenados y para obtener los valores del campo de Número de Acuse de Recibo en las cabeceras TCP de los paquetes TCP ACK almacenados como los valores del campo de Número de Acuse de Recibo almacenados;

- una tercera unidad de determinación (330) configurada para determinar si el valor del campo del Número de Acuse de Recibo actual es igual a un valor del campo del Número de Acuse de Recibo almacenado; cuando el valor del campo del Número de Acuse de Recibo actual es igual a al menos uno de los valores de campo del Número de Acuse de Recibo almacenados, se determina que el valor del campo del Número de Acuse de Recibo actual es igual a un valor del campo del Número de Acuse de Recibo actual es igual a un valor del campo del Número de Acuse de Recibo actual difiere de los valores de campo del Número de Acuse de Recibo almacenados.
 - 12. El dispositivo de reenvío según la reivindicación 7, en donde el módulo de adquisición de ventana (35) comprende:
 - una unidad de análisis (351) configurada para analizar el paquete TCP ACK recibido actualmente enviado por el cliente;
 - una unidad de adquisición de ventana (352) configurada para obtener el valor de campo de ventana en la cabecera TCP del paquete TCP ACK, siendo el valor del campo de ventana la ventana de recepción actual del cliente que envía el paquete TCP ACK actual.

20

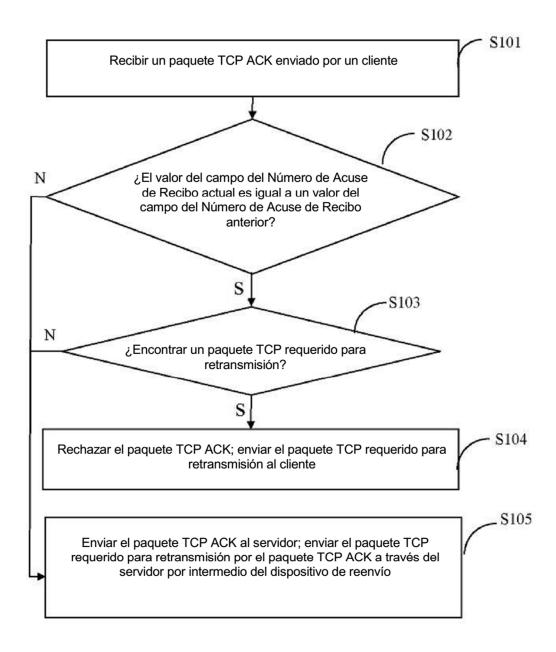


FIG.1

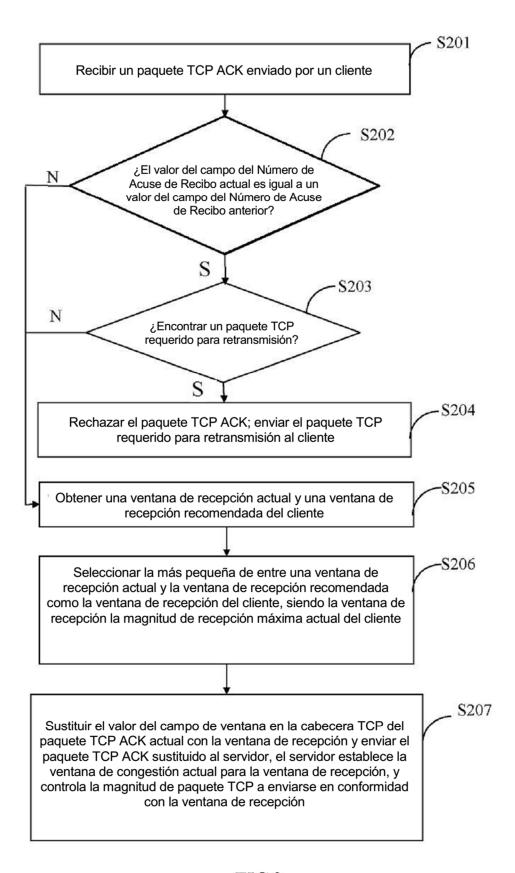


FIG.2

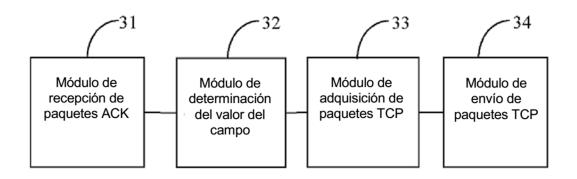


FIG.3



FIG.4

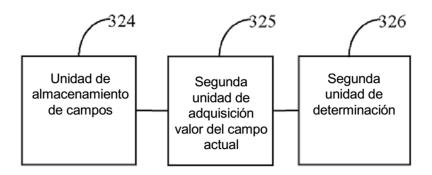


FIG.5

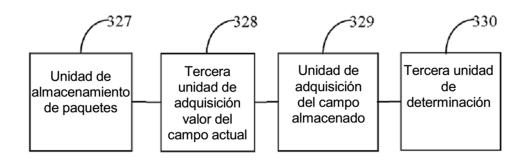


FIG.6

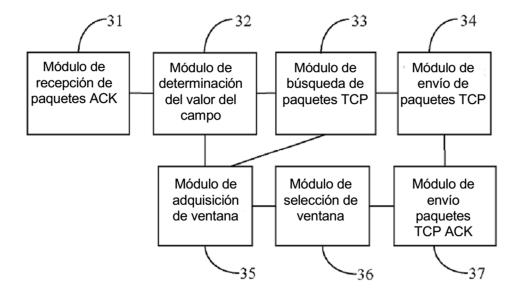


FIG.7

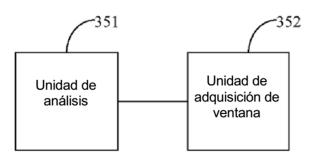


FIG.8

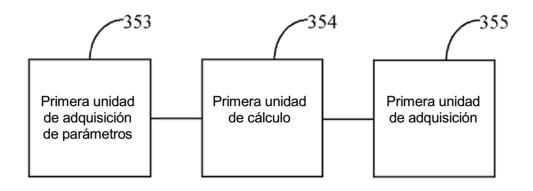


FIG.9

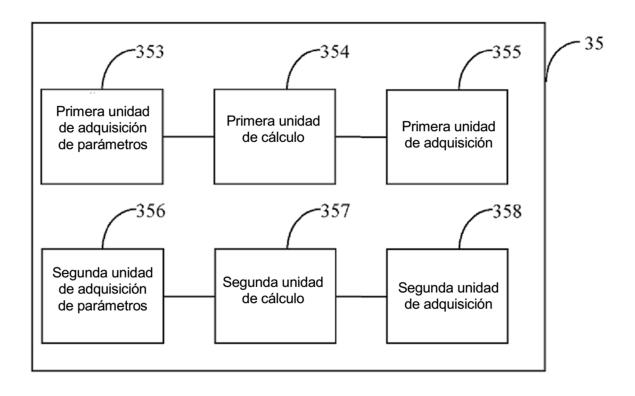


FIG.10