

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 590 136

51 Int. Cl.:

B01D 53/053 (2006.01) **B01D 53/047** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 28.04.2011 PCT/US2011/034253

(87) Fecha y número de publicación internacional: 10.11.2011 WO11139813

96 Fecha de presentación y número de la solicitud europea: 28.04.2011 E 11777993 (4)

(97) Fecha y número de publicación de la concesión europea: **08.06.2016** EP 2566600

(54) Título: Extracción escalonada de un lecho de adsorbente

(30) Prioridad:

05.05.2010 US 331612 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 18.11.2016

(73) Titular/es:

LUMMUS TECHNOLOGY INC. (100.0%) 1515 Broad Street Bloomfield, NJ 07003-3096, US

(72) Inventor/es:

LOMAX, FRANKLIN, D.; TODD, RICHARD, S. y ZAKRAJSEK, BRIAN, A.

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Extracción escalonada de un lecho de adsorbente

5 Campo de la divulgación

Las realizaciones divulgadas en este documento se refieren, en general, a sistemas de adsorción con presión oscilante. Más específicamente, las realizaciones divulgadas en este documento se refieren a métodos y aparatos para controlar el flujo de los gases que entran o salen de un lecho de adsorbente.

Antecedentes

10

15

20

25

40

45

50

55

60

La adsorción con presión oscilante (PSA) es una técnica usada para fraccionar mezclas de gases para proporcionar al menos un producto gaseoso purificado y una mezcla de subproducto refinado. La PSA se ha usado satisfactoriamente para separar hidrógeno de otros gases, oxígeno y nitrógeno del aire y helio del gas natural, entre otros

Los primeros sistemas de PSA generalmente usados para recipientes de adsorbente funcionaban en paralelo. Un ejemplo de esto es la patente de Estados Unidos n.º 3.430.418 de Wagner. Las mejoras posteriores al proceso de Wagner añadieron una etapa de compensación de presión adicional mientras mantenían cuatro lechos adsorbentes (por ejemplo, patente de Estados Unidos n.º 3.564.,816 de Batta) y posteriormente añadieron incluso más etapas de compensación de presión, hasta siete o más lechos en la patente de Estados Unidos n.º 3.986.,849 de Fuderer et al. Estos aumentos en el número de compensaciones de presión y el número de recipientes de adsorbente se implementaron para aumentar la recuperación de producto y la productividad de adsorbente. Desafortunadamente, los aumentos en el rendimiento iban acompañados de un aumento en el número de válvulas requeridas, que era de treinta y una para el proceso Wagner, treinta y tres para el proceso Batta, hasta un mínimo de cuarenta y cuatro para el proceso de Fuderer et al.

El rendimiento de los ciclos de PSA comúnmente se mide basándose en varios criterios. El primero es la recuperación de producto a un nivel de impurezas dado, la fracción de especies de producto en la corriente de alimentación total que se suministra como producto purificado. Una segunda medida es la productividad del adsorbente, que está relacionada con la proporción del ciclo de PSA durante el cual se suministra el producto, en comparación con la longitud total del ciclo. Para maximizar uno o ambos de estos parámetros en composiciones de alimentación fija, se ha descrito un número de enfoques en otros sistemas.

Wagner describe el uso de gas almacenado en los lechos presurizados para represurizar otro de los recipientes que se ha purgado, después de purgar posteriormente otro recipiente antes de que la presión en el primer recipiente se haya reducido. Batta posteriormente describe que podría añadirse una segunda compensación de presión a la primera, y que esto mejoraría la recuperación enormemente. Batta mantuvo la provisión de gas de purga en su ciclo. Fuderer et al. ampliaron este enfoque a una tercera compensación de presión y dieron a conocer que el gas más puro extraído de un lecho siempre debía ser el último gas admitido a otro cualquiera de los lechos que se están represurizando. El ciclo de cuarto recipientes de Batta estaba constituido de manera que se admitía un gas menos puro en el recipiente que se estaba presurizando, lo cual era verdaderamente deseable. Además, la invención de Fuderer et al. permitía conseguir una productividad de adsorbente mayor que con los ciclos previos, porque la fracción de tiempo en el ciclo asignada a la adsorción era mayor debido a los detalles de la lógica de conmutación de válvula.

Aunque estos métodos facilitan una excelente recuperación de producto y productividad de adsorbente, lo hacen a expensas de un alto grado de complejidad. El proceso original de Wagner empleaba cuatro recipientes y treinta y una válvulas para facilitar una compensación de presión y purga de uno de los otros recipientes. Batta aumentó esto en total a treinta y tres válvulas y cuatro recipientes para su ciclo con dos compensaciones. Ambos de estos ciclos de cuatro lechos producían gas a partir de un recipiente dado un veinticinco por ciento del tiempo. Batta también proporcionaba un sistema de cinco recipientes con cuarenta y tres válvulas para reordenar las compensaciones para proporcionar la presurización deseada con gases que aumentaban continuamente de pureza. Este ciclo producía a partir de un recipiente dado únicamente un veinte por ciento del tiempo. El ciclo de Fuderer et al. más simple proporcionaba tres compensaciones y una etapa de purga requería nueve recipientes y cincuenta y cinco válvulas. Este ciclo producía un treinta y tres por ciento del tiempo, un aumento significativo respecto a los ciclos de Batta y Wagner. Aunque estos ciclos progresaban en las áreas críticas de recuperación y productividad, lo hacían a expensas de una complejidad mecánica mucho mayor. Este aumento en la complejidad va acompañado de aumentos en el volumen del sistema, masa, tiempo de ensamblaje y coste económico. Además, el gran aumento en el número de válvulas con el tiempo reduce significativamente la fiabilidad del sistema de PSA; por este motivo los sistemas de PSA son un punto único de fallo de los sistemas, debiendo pararse incluso si falla solo una de las válvulas.

65 Se han realizado recientes esfuerzos por reducir la complejidad para abordar los problemas pertinentes. La patente de Estados Unidos n.º 4.761.165 de Stocker implementaba el proceso de Wagner usando cuatro recipientes y

dieciocho válvulas, de las cuales cuatro podían ser válvulas controladas proporcionalmente. La patente de Estados Unidos n.º 6.146.450 de Duhayer et al. describe un medio para reducir la complejidad y disponer conexiones de tuberías óptimamente, aunque este enfoque no altera materialmente el ciclo de PSA en términos de recuento de válvulas o recipientes. En la patente de Estados Unidos n.º 6.755.895 de Lomax et al. se describe un proceso que incluye simplificación mecánica adicional.

La patente de Estados Unidos n.º 6.858.065, también de Lomax et al., divulga un proceso que incluye una primera etapa de compensación que tiene al menos dos fases, donde la presión disminuye, y una segunda etapa de compensación que tiene al menos dos fases, donde la presión aumenta.

La patente de Estados Unidos n.º 7.674.319, también de Lomax et al., divulga un sistema de PSA con un sistema de control para supervisar el rendimiento y funcionamiento del sistema de PSA, que incluye múltiples transductores de presión localizados en diversos puntos en el sistema. Stocker et al. divulgan también el uso de múltiples transductores de presión en los recipientes de adsorción, líneas de alimentación y líneas de producto, que se proporcionan para controlar progresivamente la apertura de las válvulas de apertura proporcional para evitar la fluidización del adsorbente.

La patente de Estados Unidos 6.755.895 de Lomax, et al. divulga un sistema de orificios de restricción de flujo fijos para limitar la velocidad de los gases que salen de un recipiente de adsorbente sin usar ningún control de retroalimentación o válvulas proporcionales.

Se ha encontrado que, en el límite de la operación cíclica extremadamente rápida, que el caudal conseguido por la invención de Lomax '895 puede limitar indeseablemente la rapidez con la cual puede ejecutarse una etapa de compensación de presión, limitando así la productividad de adsorbente.

Sumario de la divulgación

5

10

15

20

25

30

35

40

65

Varios de los procesos mencionados anteriormente pueden conseguir una simplificación en el número total de válvulas usadas respecto al proceso de Wagner. Otros pueden proporcionar múltiples dispositivos de medición para supervisar y controlar el sistema de PSA para determinar el fallo de una válvula y el rendimiento del sistema.

Se ha encontrado, sorprendentemente, que la simplificación del proceso y las mejoras en el rendimiento y supervisión del sistema pueden conseguirse usando dos o más válvulas para controlar el flujo de gases que entran o salen de un lecho de adsorbentes, donde las dos o más válvulas se abren secuencialmente (es decir, en al menos dos acciones separadas por un retraso en el tiempo). La apertura secuencial de las válvulas puede aumentar el grado al cual las especies absorbidas se purgan del lecho, y facilita también una ejecución más rápida de ciertas etapas de tiempo del ciclo de PSA, aumentando así la productividad de adsorbente. La apertura secuencial de las válvulas puede permitir también la verificación del funcionamiento de la válvula midiendo, ya sea el valor absoluto, la pendiente (derivada) o la velocidad de cambio de la derivada de la presión, en el lecho de adsorbente, en el colector aguas abajo o en un volumen de gas mantenido en un recipiente de amortiguación. El sistema resultante puede tener el mismo recuento de piezas o uno más reducido (incluyendo ambas válvulas y sensores) en comparación con los procesos anteriores y, de esta manera, un riesgo reducido de fallos de funcionamiento, mientras que da como resultado mejoras tanto en el funcionamiento como en el control del sistema de PSA.

45 En un aspecto, la invención proporciona un sistema de adsorción con presión oscilante que comprende: una pluralidad de recipientes que tienen una o más capas de material adsorbente en su interior; un canal de gas de alimentación conectado a la pluralidad de recipientes; un canal de recuperación de producto conectado a la pluralidad de recipientes; un canal de gas de purga conectado a la pluralidad de recipientes; un canal de gas residual conectado a la pluralidad de recipientes y un canal de compensación conectado a la pluralidad de 50 recipientes, en el que: el canal de recuperación de producto está conectado a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas en una disposición de flujo paralelo; y/o el canal de gas de purga está conectado a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas en una disposición de flujo paralelo; y/o el canal de gas residual está conectado a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas en una 55 disposición de flujo paralelo; y/o el canal de compensación está conectado a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas en una disposición de flujo paralelo, y un sistema de control en el que, cuando los colectores respectivos están presentes, el sistema de control está configurado para: abrir las al menos dos válvulas en el colector que conecta el canal de recuperación de producto secuencialmente; abrir las al menos dos válvulas en el colector que conecta el canal de gas de purga secuencialmente, abrir las al 60 menos dos válvulas en el colector que conecta el canal de gas residual secuencialmente; y abrir las al menos dos válvulas en el colector que conecta el canal de compensación secuencialmente.

Las realizaciones divulgadas en este documento se refieren a un sistema de adsorción con presión oscilante que incluye: una pluralidad de recipientes que tiene una o más capas de material adsorbente en su interior; un canal de gas de alimentación conectado a la pluralidad de recipientes; un canal de recipientes; un canal de gas de purga conectado a la pluralidad de recipientes; un canal de gas

residual conectado a la pluralidad de recipientes; y un canal de compensación conectado a la pluralidad de recipientes; el canal de recuperación de producto está conectado a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas en una disposición de flujo paralelo; y un sistema de control configurado para abrir las al menos dos válvulas secuencialmente.

5

10

25

30

35

40

45

50

55

60

65

Las realizaciones divulgadas en este documento se refieren a un sistema de adsorción con presión oscilante que incluye: una pluralidad de recipientes que tienen una o más capas de material adsorbente en su interior; un canal de gas de alimentación conectado a la pluralidad de recipientes; un canal de gas de purga conectado a la pluralidad de recipientes; un canal de gas residual conectado a la pluralidad de recipientes; y un canal de compensación conectado a la pluralidad de recipientes; y un canal de compensación conectado a la pluralidad de recipientes; estando conectado el canal de gas de purga a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas en una disposición de flujo paralelo; y un sistema de control configurado para abrir las al menos dos válvulas secuencialmente.

Las realizaciones divulgadas en este documento se refieren a un sistema de adsorción con presión oscilante que incluye: una pluralidad de recipientes que tienen una o más capas de material adsorbente en su interior; un canal de gas de alimentación conectado a la pluralidad de recipientes; un canal de recuperación de producto conectado a la pluralidad de recipientes; un canal de gas residual conectado a la pluralidad de recipientes; y un canal de compensación conectado a la pluralidad de recipientes; estando conectado el canal de gas residual a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas en una disposición de flujo paralelo; y un sistema de control configurado para abrir las al menos dos válvulas secuencialmente.

Las realizaciones divulgadas en este documento se refieren a un sistema de adsorción con presión oscilante que incluye: una pluralidad de recipientes que tienen una o más capas de material adsorbente en su interior; un canal de gas de alimentación conectado a la pluralidad de recipientes; un canal de gas de purga conectado a la pluralidad de recipientes; un canal de gas residual conectado a la pluralidad de recipientes; y un canal de compensación conectado a la pluralidad de recipientes; estando conectado el canal de compensación a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas en una disposición de flujo paralelo; y un sistema de control configurado para abrir las al menos dos válvulas secuencialmente.

Las realizaciones divulgadas en este documento se refieren a un sistema de adsorción con presión oscilante, que incluye: una pluralidad de recipientes que tienen una o más capas de material adsorbente en su interior; un canal de gas de alimentación conectado a la pluralidad de recipientes; un canal de recuperación de producto conectado a la pluralidad de recipientes; un canal de gas de purga conectado a la pluralidad de recipientes; un canal de gas residual conectado a la pluralidad de recipientes; y un canal de compensación conectado a la pluralidad de recipientes; estando conectado el canal de recuperación de producto a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas en una disposición de flujo paralelo; estando conectado el canal de gas de purga a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas en una disposición de flujo paralelo; estando conectado el canal de gas residual a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas en una disposición de flujo paralelo; estando conectado el canal de compensación a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas en una disposición de flujo paralelo; y un sistema de control configurado para: abrir las al menos dos válvulas en el colector que conectan el canal de recuperación de producto secuencialmente; abrir las al menos dos válvulas en el colector que conectan el canal de gas de purga secuencialmente; abrir las al menos dos válvulas en el colector que conectan el canal de gas residual secuencialmente; y abrir las al menos dos válvulas en el colector que conectan el canal de compensación secuencialmente.

El sistema puede incluir además uno o más de los siguientes: un sensor de presión para medir una presión en cada uno de la pluralidad de recipientes; un sensor de presión para medir una presión en el canal de recuperación de producto; un sensor de presión para medir una presión en un recipiente de amortiguación conectado fluidamente al canal de recuperación de producto; un sensor de presión para medir una presión en el canal de gas de purga; y un sensor de presión para medir una presión en un recipiente de amortiguación conectado fluidamente al canal de gas de purga; un sensor de presión para medir una presión en el canal de gas residual; y un sensor de presión para medir una presión en el canal de gas residual; un sensor de presión para medir una presión en el canal de compensación; y un sensor de presión para medir una presión en un recipiente de amortiguación conectado fluidamente al canal de compensación.

El sistema de control puede estar configurado para determinar el fallo de una válvula basándose en al menos uno de: la presión medida por al menos uno de, cuando está presente, el sensor de presión en cada uno de la pluralidad de recipientes, el sensor de presión en el canal de recuperación de producto y el sensor de presión en el recipiente de amortiguación conectado fluidamente al canal de recuperación de producto durante la apertura secuencial de las al menos dos válvulas en el colector que conecta el canal de recuperación de producto; la presión medida por al menos uno de, cuando está presente, el sensor de presión en cada uno de la pluralidad de recipientes, el sensor de

presión en el canal de gas de purga y el sensor de presión en el recipiente de amortiguación conectado fluidamente al canal de gas de purga durante la apertura secuencial de las al menos dos válvulas en el colector que conecta el canal de gas de purga; la presión medida por al menos uno de, cuando está presente, el sensor de presión en cada uno de la pluralidad de recipientes, el sensor de presión en el canal de gas residual y el sensor de presión en el recipiente de amortiguación conectado fluidamente al canal de gas residual durante la apertura secuencial de las al menos dos válvulas en el colector que conecta el canal de gas residual; la presión medida por al menos uno de, cuando está presente, el sensor de presión en cada uno de la pluralidad de recipientes, el sensor de presión en el canal de compensación y el sensor de presión en el recipiente de amortiguación conectado fluidamente al canal de compensación durante la apertura secuencial de las al menos dos válvulas en el colector que conecta el canal de compensación.

El sistema puede incluir, además, el canal de gas de alimentación que está conectado a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas en una disposición de flujo paralelo; y un sistema de control configurado para abrir las al menos dos válvulas de alimentación secuencialmente.

En otro aspecto, la invención proporciona un método de operación de un sistema de adsorción con presión oscilante que comprende una pluralidad de recipientes, un canal de gas de alimentación conectado a la pluralidad de recipientes, un canal de gas de purga conectado a la pluralidad de recipientes, un canal de gas de purga conectado a la pluralidad de recipientes, un canal de compensación conectado a la pluralidad de recipientes y un canal de gas residual conectado a la pluralidad de recipientes, comprendiendo el método al menos uno de: apertura secuencial de dos o más válvulas dispuestas en una disposición de flujo paralelo y conectar uno de la pluralidad de recipientes al canal de recuperación de producto; abrir secuencialmente dos o más válvulas dispuestas en una disposición de flujo paralelo y conectar uno de la pluralidad de recipientes al canal de gas residual; abrir secuencialmente dos o más válvulas dispuestas en una disposición de flujo paralelo y conectar uno de la pluralidad de recipientes al canal de compensación; y abrir secuencialmente dos o más válvulas dispuestas en una disposición de flujo paralelo y conectar uno de la pluralidad de recipientes al canal de compensación; y abrir secuencialmente dos o más válvulas dispuestas en una disposición de flujo paralelo y conectar uno de la pluralidad de recipientes al canal de gas de purga.

Otros aspectos y ventajas resultarán evidentes a partir de la siguiente descripción y las reivindicaciones adjuntas.

30 Breve descripción de los dibujos

5

10

15

20

25

35

45

50

55

La Figura 1 es un diagrama de flujo simplificado de un sistema de adsorción con presión oscilante de la técnica anterior.

La Figura 1A es un diagrama simplificado de un esquema de control usado para hacer funcionar un sistema de adsorción con presión oscilante de la técnica anterior.

La Figura 2 es un diagrama de flujo simplificado de un sistema de adsorción con presión oscilante de acuerdo con las realizaciones divulgadas en este documento.

La Figura 3 es un diagrama de flujo simplificado de un sistema de adsorción con presión oscilante de acuerdo con las realizaciones divulgadas en este documento.

40 La Figura 4 es un diagrama de flujo simplificado de un sistema de adsorción con presión oscilante de acuerdo con las realizaciones divulgadas en este documento.

La Figura 5 es un diagrama de flujo simplificado de un sistema de adsorción con presión oscilante de acuerdo con las realizaciones divulgadas en este documento.

La Figura 6 es un diagrama de flujo simplificado de un sistema de adsorción con presión oscilante de acuerdo con las realizaciones divulgadas en este documento.

La Figura 7 es un diagrama simplificado de un esquema de control usado para hacer funcionar un sistema de adsorción con presión oscilante de acuerdo con una realización divulgada en este documento.

La Figura 8 es un diagrama de flujo simplificado de un sistema de adsorción con presión oscilante de acuerdo con las realizaciones divulgadas en este documento.

Las Figuras 9A-9D son un cuadro-resumen de la secuencia de válvulas de ejemplo para un sistema de adsorción con presión oscilante de 8 recipientes como se ilustra en la Figura 8, usando 3 fases de compensación.

La Figura 10 es un diagrama de flujo simplificado de un sistema de adsorción con presión oscilante de acuerdo con las realizaciones divulgadas en este documento.

Las Figuras 11A-11E son un cuadro-resumen de la secuencia de válvulas de ejemplo para un sistema de adsorción con presión oscilante de 9 recipientes como se ilustra en la Figura 10, usando 4 fases de compensación.

Descripción detallada

60 En un aspecto, las realizaciones divulgadas en este documento se refieren a métodos y aparatos para controlar el flujo de gases que entran o salen de un lecho de adsorbente. Más específicamente, las realizaciones divulgadas en este documento se refieren al uso de dos o más válvulas para controlar el flujo de gases que entran o salen de un lecho de adsorbentes, donde las dos válvulas se abren secuencialmente (es decir, en al menos dos acciones separadas por un retraso en el tiempo).

65

Haciendo referencia ahora a la Figura 1, se ilustra un diagrama de flujo de proceso simplificado del sistema de PSA de la técnica anterior. El sistema de PSA 5 incluye un primer recipiente 10, un segundo recipiente 12, un tercer recipiente 14 y un cuarto recipiente 16. Cada uno de los recipientes 10, 12, 14, 16 típicamente incluye uno o más lechos de material adsorbente. Los recipientes 10, 12, 14, 16 están conectados en relación de flujo paralelo entre un colector de fuente 18, que suministra una mezcla de gas de alimentación, y un colector de producto 20, que proporciona una salida para el gas efluente de producto no adsorbido. Los recipientes 10, 12, 14, 16 también están conectados a un colector de residuos 22, que proporciona una salida para los componentes adsorbidos. Adicionalmente, los recipientes 10, 12, 14, 16 están conectados a un colector de compensación 24, que proporciona la compensación de la presión entre dos o más recipientes para conservar la energía de presión durante el funcionamiento del sistema. Estos son cuatro colectores típicamente analizados en la técnica, tales como la patente de Estados Unidos n.º 6.858.065. La patente de Estados Unidos n.º 7.674.319 divulga también recipientes de conexión 10, 12, 14, 16 con un colector de gas de purga 26.

5

10

15

20

25

30

35

40

65

Cada uno de los recipientes 10, 12, 14, 16 puede conectarse a los colectores respectivos con una válvula para controlar el flujo de gas hacia y desde los recipientes. En el sistema de la Figura 1, el flujo de gases hacia y desde el lecho de adsorbente puede controlarse, por ejemplo, usando un sistema como se ilustra en la Figura 1A. El recipiente 10, por ejemplo, puede conectarse a una válvula de control de flujo 30, provista de conjuntos de control e informe de posición (posicionadores) 32, usados junto con un sistema de control 34 y al menos dos sensores de presión 36, 38 que supervisan la presión en el recipiente 10 para consequir una diferencia diana en la presión y/o velocidad de pérdida de presión. El caudal a través de la válvula de control de flujo 30 varía continuamente y requiere un algoritmo de control complejo para ajustar el rendimiento de la válvula. Adicionalmente, hay una ausencia inherente de fiabilidad en el propio posicionador. Esto da como resultado que tales sistemas generalmente estén provistos de un modo de funcionamiento de accionamiento manual. Además, tal sistema no puede hacerse funcionar si falla cualquiera de los sensores de presión 36, 38. Este defecto necesita la provisión de múltiples sensores o de medios para aislar el recipiente de adsorbente que ha fallado para reparar los componentes defectuosos. Un mal funcionamiento de la válvula de control 30 puede dar como resultado un flujo de salida excesivamente rápido del recipiente 10, que puede dar como resultado la fluidización aerodinámica de las partículas individuales en el uno o más lechos de adsorbentes contenidos en este recipiente, lo que puede provocar que estas partículas se arrastren fuera del recipiente, se degraden debido al impacto con el recipiente u otras partículas o se redispongan de una manera no uniforme, empeorando así potencialmente la tendencia de las partículas a fluidizar posteriormente. Si la válvula de control 30 proporciona un flujo insuficiente, entonces el tiempo requerido para completar la etapa en el ciclo de PSA tardará más en completarse. Si el ciclo de PSA está funcionando a una frecuencia de ciclo fija, esto dará como resultado que una mayor proporción del gas producto deseado se deseche como residuo, reduciendo así la recuperación fraccionada y la productividad de adsorbente. Si la frecuencia de ciclo se reduce para compensar un caudal bajo, entonces se reduce la productividad de adsorbente.

Se ha encontrado, sorprendentemente, que un sistema de PSA puede mejorarse usando dos o más válvulas de conexión/desconexión en paralelo para controlar la velocidad a la cual fluye el gas durante la alimentación, compensación de presión, presurización del producto, extracción a contracorriente y/o purga. Se ha encontrado también que el uso de válvulas de conexión/desconexión en paralelo también permite que un sistema de PSA funcione con una reducción de la dependencia de los sensores y bucles de control de retroalimentación, ambos de los cuales son inherentemente poco fiables.

Como un ejemplo, aumentar la recuperación fraccionada de las especies deseadas menos adsorbentes (ligeras) requiere una eliminación más eficiente de las especies adsorbidas (pesadas) del lecho de adsorbente al final de cada ciclo. Esto puede conseguirse controlando la velocidad a la cual cambia la presión a través del lecho de adsorbente durante la etapa de extracción contracorriente, sin restringir el caudal de ese mismo recipiente al mismo tubo colector de gas residual durante la etapa de purga posterior.

Haciendo referencia ahora a la Figura 2, se ilustra una realización de un sistema de PSA de acuerdo con las realizaciones divulgadas en este documento, que usa dos o más válvulas de conexión/desconexión para controlar el flujo de gases que salen del lecho de adsorbente hacia el canal de gas residual. El sistema de PSA 40 incluye un primer recipiente 42, un segundo recipiente 44, un tercer recipiente 46 y un cuarto recipiente 48. Cada uno de los recipientes 42, 44, 46, 48 típicamente incluye uno o más lechos de material adsorbente (no mostrados). Los recipientes 42, 44, 46, 48 están conectados en una relación de flujo paralelo entre un canal de gas de alimentación 50, que suministra una mezcla de gas de alimentación, y un canal de recuperación del producto 52, que proporciona una salida para el gas efluente de producto no adsorbido. Los recipientes 42, 44, 46, 48 también están conectados a un canal de gas residual 54, que proporciona una salida para los componentes adsorbidos. Adicionalmente, los recipientes 42,44, 46, 48 están conectados a un canal de compensación 56, que proporciona la compensación de la presión entre dos o más recipientes para conservar la energía de presión durante el funcionamiento del sistema, y un canal de gas de purga 57, que suministra un gas de purga al sistema de PSA.

Para conseguir una eliminación mejorada de las especies adsorbidas del lecho de adsorbente durante la etapa de despresurización, cada recipiente 42, 44, 46, 48 puede conectarse respectivamente al canal de gas residual a través de válvulas de conexión/desconexión paralelas 58, 60. Aunque se muestran solo dos válvulas, pueden usarse también tres o más válvulas. Las válvulas de conexión/desconexión 58, 60 pueden incluir un orificio de flujo del

mismo o diferente diámetro eficaz, donde los diámetros del orificio de flujo pueden seleccionarse para adaptarse a la velocidad a la cual cambia la presión durante el ciclo de despresurización.

5

10

15

20

25

30

35

40

45

50

55

60

65

Haciendo referencia ahora a las Figuras 2 y 7, durante el funcionamiento, el ciclo de despresurización puede controlarse y supervisarse usando un sistema de control 64 y puede comenzar abriendo la válvula 58, proporcionando una primera trayectoria de flujo de despresurización, seguido de la apertura de la válvula 60 después de un intervalo de tiempo seleccionado, proporcionando un aumento en el tamaño de la trayectoria de flujo durante la despresurización continua. Como apreciará un experto en la materia, el uso de n válvulas de conexión/desconexión, cada una de diferente tamaño, puede proporcionar 2" resistencias de flujo distintas. La selección del tamaño de los orificios de flujo respectivos puede ajustarse para satisfacer el proceso de separación específico y los cambios de presión deseados durante el ciclo de despresurización, que pueden permitir que se optimice la eliminación de las especies adsorbentes. En una realización de la presente invención, la capacidad de flujo final de las válvulas combinadas usadas durante la etapa de purga es suficiente para que la pérdida de presión a través de estas válvulas sea menor de 13,79 kPa (2 psi). En otra realización de la presente invención, las válvulas 58 y 60 se eligen de manera que abran en primer lugar la válvula 58 para comenzar la extracción contracorriente del recipiente 42, después de un periodo de tiempo predeterminado, que es menor que la duración de la etapa de extracción contracorriente, abran la válvula 60, pudiendo completarse sustancialmente la extracción contracorriente antes de que comience la etapa de purga posterior. En una realización de la presente invención, se juzgaría que ocurre la terminación sustancial cuando la presión dentro del recipiente 42 es menor de 34,47 kPa (5 psi) mayor que la presión en el tubo colector de residuos 54.

Los presentes inventores han encontrado también que las válvulas de conexión/desconexión pueden mejorar la fiabilidad del sistema de PSA en comparación con las válvulas de control de flujo típicas, tal como las ilustradas en la Figura 1A. El sistema de PSA de la Figura 1 y la Figura 1A, como se ha mencionado anteriormente, requiere ajustar el flujo de la válvula de control y situar el regulador de la válvula. El algoritmo de control es complejo, y pueden cambiarlo los operarios aleatoriamente usando un sistema de control digital y requiere un tiempo significativo para que comience la puesta en marcha del control deseado. Además, la variabilidad en el rendimiento de la válvula significa que los parámetros de control usados para una válvula 30 en el recipiente 10 puede que no sean adecuados para una válvula 30 en el recipiente 12, 14, o 16. Esto puede deberse a diferencias en los tiempos de respuesta (tiempos muertos de control, diferencias en los ajustes del regulador de presión y rendimiento, etc.), posición del regulador y tamaño del regulador y otros factores. Además, los cambios en el posicionador, la propia válvula (es decir debido a la erosión, ensuciamiento con partículas, etc.), o el lecho de adsorbente (debido a sedimentación, obstrucción y fluización másica o localizada con el tiempo, pueden afectar al rendimiento de la válvula y al algoritmo de control de retroalimentación asociado para controlar el caudal hacia dentro o hacia fuera del recipiente.

Las válvulas de conexión/desconexión usadas en la presente invención no requieren un algoritmo de control para proporcionar grados variables de resistencia al flujo. No obstante, el funcionamiento secuencial de las dos o más válvulas de conexión/desconexión da como resultado un cambio deseado en la resistencia al flujo. El cambio en la resistencia al flujo es predecible (abierta o cerrada) con las válvulas de conexión/desconexión. Se ha encontrado también que la cantidad de tiempo para completar un ciclo puede disminuir con el uso de dos o más válvulas de conexión/desconexión en comparación con una única válvula de control de flujo reguladora. Además, las válvulas de conexión/desconexión son significativamente más robustas que las válvulas de control de flujo típicas, son menos costosas de adquirir y mantener y pueden funcionar durante más ciclos antes del fallo de la válvula.

La apertura secuencial de las válvulas de conexión/desconexión, como se ha indicado anteriormente, puede usarse para crear más de un cambio de etapa ya sea en la propia presión, en la velocidad de cambio de presión o en la velocidad de cambio en la velocidad de cambio de presión. Esto puede dar como resultado múltiples beneficios, incluyendo uno o más de: eliminación mejorada de especies adsorbidas durante la despresurización, tiempo de ciclo de despresurización reducido, reducción en el número de sensores de presión requeridos y menos tiempo muerto del sistema de PSA debido al aumento de la fiabilidad del sistema usando las válvulas de conexión/desconexión.

Aunque más robustas y fiables, como se ha indicado anteriormente, incluso las válvulas de conexión/desconexión fallan también. En referencia aún a la Figura 2, para determinar el fallo de la válvula, un sensor de presión puede localizarse en un recipiente 42, 44, 46, 48, puede localizarse en el canal de gas residual o puede localizarse en un tanque de amortiguación conectado al canal de gas residual. Como se ilustra en la Figura 2, un sensor de presión 62 está localizado en el canal de gas residual. Un sensor de presión único en cualquiera de estas localizaciones puede proporcionar una medición indirecta de la apertura de la válvula midiendo el cambio de etapa en la presión, la velocidad de cambio de presión o la velocidad de cambio en la velocidad de cambio de presión. Cuando no ocurre el cambio, la velocidad de cambio o la derivada del cambio en la presión esperados, esto puede indicar un fallo de la válvula.

En algunas realizaciones, unas válvulas redundantes (no mostradas) pueden conectar un recipiente al canal de gas residual. En el caso de que la válvula 58, 60 falle, el sistema de control 64 reconocería que el cambio de etapa esperado en la presión, por ejemplo, no ocurre, y un algoritmo complementario puede abrir una de las válvulas redundantes para realizar la reducción de presión pretendida con solo un moderado retraso en la acción.

Aunque la mayor parte de la técnica anterior descrita anteriormente en los antecedentes está destinada a reducir el número total de válvulas, se ha encontrado que, aunque la presente invención emplea válvulas de proceso más discretas que la solución tradicional de una única válvula grande (situada continuamente para proporcionar grados variables de resistencia al flujo), los presentes sistemas de PSA usan menos sensores y poca o ninguna acción de retroalimentación, dando como resultado un sistema global más fiable. Tal sistema, de hecho, puede tener los mismos o menos componentes debido a la necesidad reducida de sensores y accionadores para proporcionar el control del sistema. Además, una desviación del accionamiento pretendido es más fácil de rectificar automáticamente que el uso de una válvula de control de flujo, que típicamente requiere intervención manual.

5

40

45

50

55

60

65

- El uso de al menos dos válvulas de acuerdo con las realizaciones divulgadas en este documento puede proporcionar también una ventaja respecto al uso de una única válvula proporcional de control de flujo de en tanto que las válvulas proporcionadas tienen una velocidad reducida de apertura y cierre en comparación con las válvulas de conexión/desconexión. Esta velocidad reducida provoca la posibilidad de un tiempo de etapa excesivamente prolongado en el ciclo de PSA para adaptarse al cierre de la válvula, que por lo demás se desea que sea muy rápido o la provisión de una válvula accionada adicional para proporcionar un escape rápido. Esta válvula adicional se añade a un componente adicional que puede provocar fallos. Cuando al menos se usan dos válvulas de conexión/desconexión en lugar de una válvula proporcional, cada una de estas válvulas puede proporcionar un accionamiento rápido y positivo.
- 20 Una ventaja adicional del uso de dos o más válvulas que se abren secuencialmente en un sistema de PSA es que, inevitablemente, la diferencia de presión entre el recipiente y la fuente o destino del gas que fluye disminuye entre la primera vez que se abre la primera de las dos o más válvulas y la segunda vez que se abren las válvulas adicionales. Para la mayoría de tipos de válvulas de proceso, el par de torsión y/o la fuerza del accionador es una función de la presión diferencial. De esta manera, aunque la primera válvula debe estar provista de un accionador 25 suficiente para abrir la válvula contra el diferencial de presión máximo, las otras válvulas pueden estar provistas de un accionador más pequeño. Esto reduce ventajosamente el tamaño y el peso del accionador, pero reduce también la tensión de fatiga a la cual se ve sometida la válvula, reduciendo ventajosamente el riesgo de fallo de fatiga eventual de la válvula en servicio. Una ventaja relacionada de la provisión de un accionador más pequeño es que puede evitarse el funcionamiento inadvertido de la válvula cuando la presión diferencial es indeseablemente alta. En 30 una realización de la presente invención, los recipientes 42, 44, 46, 48 en la Figura 2 se proporcionan con una válvula 58 que tiene una capacidad de flujo relativamente pequeña y capaz de abrir un primer diferencial de presión. La válvula 60 está provista de una segunda capacidad de flujo más grande, pero está provista de un accionador relativamente más débil que puede abrir solo la válvula a un diferencial de presión apropiado en el momento de apertura pretendido. Esta realización evita la apertura no intencionada de la gran válvula 60 mientras el recipiente 42 35 está a alta presión, evitando así un caudal alto no intencionado al tubo colector de residuos 54, que podría provocar problemas operativos graves. Además, si el diferencial de presión de apertura de la válvula 60 se elige cuidadosamente, la apertura de esta válvula auto-compensaría las variaciones en el caudal a través de la válvula 58, e incluso aunque se active la señal digital para abrir la válvula (a menudo neumática), la válvula de hecho no se abrirá hasta que se consiga el diferencial de presión deseado.

El rendimiento mejorado conseguido con el uso de dos o más válvulas de conexión/desconexión que conectan los recipientes al canal de gas residual puede realizarse también usando dos o más válvulas de conexión/desconexión para realizar otras etapas en el ciclo. Por consiguiente, puede desearse conectar uno o más de los canales de gas de alimentación, el canal de gas de purga, el canal de gas de producto y el canal de compensación a los recipientes con un colector de válvula que comprende dos o más válvulas de conexión/desconexión en una disposición de flujo paralelo. El sistema de control puede estar configurado también para abrir tales válvulas, cuando están presentes, secuencialmente.

Haciendo referencia ahora a la Figura 3, donde los números iguales representan las mismas partes, se ilustra una realización de un sistema de PSA de acuerdo con las realizaciones divulgadas en este documento, que usa dos o más válvulas para controlar el flujo de gases hacia o desde el lecho de adsorbente a través del canal de gas de purga. Este canal de purga puede configurarse para realizar solo la etapa de purga o puede configurarse para realizar secuencialmente varias etapas. Igualmente, aunque la Figura 3 representa un PSA que tiene cuatro recipientes, la presente invención puede aplicarse a sistemas de PSA que tienen cualquier número de recipientes de 2 o mayor. En la realización de la Figura 3, el canal de gas de purga 57 está conectado a cada uno de los recipientes 42, 44, 46, 48 a través de un colector de válvula que incluye al menos dos válvulas de conexión/desconexión 66, 68 en una disposición de flujo paralelo. Similar a la realización de la Figura 2, puede localizarse un sensor de presión (no ilustrado) en uno cualquiera de los recipientes 42, 44, 46, 48, el canal de gas de purga 57 o en un tanque de amortiguación conectado fluidamente al canal de gas de purga.

Haciendo referencia ahora a la Figura 4, donde los números iguales representan las mismas partes, se ilustra una realización de un sistema de PSA de acuerdo con las realizaciones divulgadas en este documento, que usa dos o más válvulas para controlar el flujo de gases que entran o salen del lecho de adsorbente al canal de recuperación del producto. En esta realización, el canal de recuperación del producto 52 está conectado a cada uno de los recipientes 42, 44, 46, 48 a través de un colector de válvula que incluye al menos dos válvulas de conexión/desconexión 70, 72 en una disposición de flujo paralelo. Similar a la realización de la Figura 2, puede

localizarse un sensor de presión 74 en uno cualquiera de los recipientes 42, 44, 46, 48, el canal de recuperación del producto 52 (como se ilustra) o en un tanque de amortiguación (no ilustrado) conectado fluidamente al canal de recuperación del producto 52.

5 El funcionamiento de la realización de la Figura 4 difiere un poco de las realizaciones previas en tanto que el flujo que se controla entra al recipiente 42 desde el tubo colector del producto 52. Al comienzo de la etapa de presurización final después de la última de las etapas de la una o más etapas de compensación de presión, la presurización final puede conseguirse usando un gas producto purificado, un gas de alimentación no purificado o ambos de ellos. Abriendo una primera válvula 70 que tiene una primera capacidad de flujo al comienzo de la etapa 10 de presurización final, se consigue un primer caudal de gas producto al recipiente 42. En una realización de la presente invención, la restricción de flujo de la válvula 70 puede seleccionarse de manera que el caudal a través de la válvula 70 provoca una desviación en el flujo de producto neto fuera de la PSA 40, que es menor que un valor diana, es decir del 15 %. Después de un primer intervalo de tiempo, la válvula de alimentación 80 podría abrirse para efectuar una represurización de producto parcial. Después de un segundo intervalo de tiempo, la válvula 72 puede 15 abrirse. Como alternativa, las al menos dos válvulas pueden proporcionarse en la posición de la válvula de alimentación 80, en lugar de la posición de las válvulas de producto 70 y 72, o pueden proporcionarse dos o más válvulas en cada una de las posiciones. En una realización donde se proporcionan dos válvulas en una posición y solo se proporciona una válvula en la otra, existen cinco estados distintos para el flujo entre los tubos colectores. Que no haya flujo en ninguna de las direcciones. Que haya flujo únicamente desde el tubo colector de alimentación 20 50, que haya flujo únicamente desde el tubo colector de producto 52 y dos combinaciones de resistencia de flujo a través del recipiente y a través de la combinación de las válvulas abiertas. Estas combinaciones pueden permitir ajustar la velocidad del caudal entre los tubos colectores para ejecutar la represurización final sin una fluidización desventajosa del lecho de adsorbente, y pueden permitir ventajosa y posteriormente la producción de producto purificado durante lo que, de lo contrario, nominalmente constituiría la etapa de presurización final. Esto aumenta ventajosamente la fracción del ciclo de PSA durante la cual está ocurriendo la separación de adsorción y aumenta la 25 productividad de adsorbente.

Haciendo referencia ahora a la Figura 5, donde los números iguales representan las mismas partes, se ilustra una realización de un sistema de PSA de acuerdo con las realizaciones divulgadas en este documento, usando dos o más válvulas para controlar el flujo de gases que salen del lecho de adsorbente al canal de compensación. En esta realización, el canal de compensación 56 está conectado a cada uno de los recipientes 42, 44, 46, 48 a través de un colector de válvula que incluye al menos dos válvulas de conexión/desconexión 76, 78 en una disposición de flujo paralelo. Similar a la realización de la Figura 2, un sensor de presión 80 puede estar localizado en uno cualquiera de los recipientes 42, 44, 46, 48, el canal de compensación 56 (como se ilustra), o en un tanque de amortiguación (no ilustrado) conectado fluidamente al canal de compensación 56. Como en el caso anterior, el canal de compensación no es necesario usarlo únicamente para la compensación y puede ser del tipo conocido en la técnica, donde el mismo canal se usa para ejecutar al menos dos etapas secuenciales tales como una primera y una segunda etapa de compensación.

30

35

- Haciendo referencia ahora a la Figura 6, donde los números iguales representan las mismas partes, se ilustra una realización de un sistema de PSA de acuerdo con las realizaciones divulgadas en este documento, usando dos o más válvulas para controlar el flujo de gases que fluyen hacia o desde el lecho de adsorbente a cada uno del canal de recuperación de producto, el canal de purga, el canal de gas residual y el canal de compensación.
- 45 Los procesos de adsorción cíclicos, como se ha mencionado anteriormente, usan varias etapas para conseguir la separación deseada, incluyendo adsorción, compensación y despresurización, entre otros. Estas etapas pueden realizarse flujo arriba o flujo abajo, dependiendo del recipiente y de la configuración de tuberías usada. Por ejemplo, como se ilustra en la Figura 5, el sistema de PSA 40 incluye un canal de compensación 56 dispuesto por encima de los recipientes 42, 44, 46, 48. Los procesos de adsorción cíclicos pueden recuperar la energía de presión igualando 50 la presión entre un recipiente a una presión inicial alta con otro recipiente a una presión inicial menor para conseguir una presión intermedia final. Un recipiente que realiza la compensación de presión en una dirección de flujo ascendente tiene potencial para fluidizar y pulverizar las válvulas aguas abajo y tuberías si la velocidad no puede controlarse cuidadosamente. De esta manera, debe tenerse cuidado cuando se selecciona la amplitud de la restricción de flujo para las dos o más válvulas 76, 78. Para limitar el potencial de fluidización cuando comienza la 55 compensación de presión, donde el diferencial de presión y por tanto las velocidades son mayores, una primera válvula 76 con un área de flujo limitada puede abrirse en primer lugar, limitando la velocidad máxima conseguible a una fracción de la velocidad requerida para fluidizar el recipiente de flujo ascendente. En un punto posterior en la etapa de compensación de presión, se abre una segunda válvula 78 mientras que la primera válvula 76 permanece abierta, para aumentar el área total para el flujo y asegurar que la presión intermedia se consigue en el periodo de 60 tiempo deseado. El intervalo en el cual la segunda válvula 78 se abre puede programarse, por ejemplo, para que ocurra en un punto donde el diferencial de presión entre los recipientes es más pequeño y la velocidad resultante en el recipiente de flujo ascendente no fluidizará el adsorbente. Para controlar una mayor velocidad, este concepto puede extenderse a una pluralidad (tres o más) de válvulas que están programadas para abrirse a diferentes intervalos durante la compensación de presión para conseguir el perfil de velocidad deseado en el recipiente de flujo 65 ascendente.

Aunque solo se muestran cuatro recipientes en las Figuras 2-6, los sistemas de PSA de acuerdo con las realizaciones de este documento pueden incluir cualquier número de recipientes. Tales como 2, 3, 4, 5, 6, 7, 8, 9 o más recipientes. La PSA de recipiente único puede beneficiarse también de las realizaciones de este documento, aunque puede que no sea necesario un canal de compensación de presión.

Haciendo referencia ahora a las Figuras 8 y 9A-9D, donde los números iguales representan las mismas partes, se ilustra una secuencia de válvulas para un sistema de PSA de acuerdo con las realizaciones divulgadas en ese documento. El sistema de PSA de las Figuras 8 y 9A-9D incluye 8 recipientes con la configuración de válvula mostrada en la Figura 8, incluyendo dos válvulas de conexión/desconexión paralelas que conectan el recipiente a cada uno del canal de gas de alimentación 50, el canal de recuperación de producto 52, el canal de gas residual 54, el canal de compensación 56 y el canal de gas de purga 57. Aunque solo se ilustra un recipiente, se aprecia que los 8 recipientes del sistema están conectados de forma similar a las realizaciones ilustradas en las Figuras 2-6.

La secuencia de válvulas ilustrada en las Figuras 9A-9D usa 3 etapas de compensación en el ciclo de PSA, que incluye: adsorción ("Adsorb"), donde el recipiente está a una alta presión y preferentemente produce gas producto enriquecido; "Prv EQ1", "Prv EQ2" y "Prv EQ3", donde el recipiente proporciona gas para una fase de compensación de presión; extracción ("extracción"), que denota despresurización a la menor presión del sistema; "Rcv EQ1", "Rcv EQ2" y "Rcv EQ3" donde el recipiente recibe gas durante una fase de compensación de presión; represurización del producto ("Repres Prod"); y "Prv Purga" y "Rcv Purga" donde el gas de purga se alimente desde o hacia el recipiente, respectivamente.

Las dos válvulas que conectan el recipiente a cada uno del canal están diferenciadas en las Figuras 9A-9D indicando una como la "piloto", que es típicamente la primera válvula en abrirse durante el inicio de una fase, teniendo la válvula "piloto" un orificio de flujo más pequeño para controlar el flujo inicial desde los recipientes como se ha descrito anteriormente. Por ejemplo, la válvula 58 en la Figura 8 puede ser la válvula piloto que conecta el recipiente al canal de gas residual 54 y la válvula 60 puede ser la segunda válvula que conecta el recipiente al canal de gas residual 54. La apertura secuencial de la segunda válvula se indica en las Figuras 9A-9D mediante "retraso", donde el retraso de tiempo entre la apertura de la válvula piloto y la segunda válvula es apropiado para la fase del ciclo de PSA. La secuencia de válvulas ilustrada en las Figuras 9A-9D usa tres etapas de compensación en el ciclo de PSA que incluyen: Adsorción ("Adsorb"), donde el recipiente está a una alta presión y preferentemente obtiene el gas producto enriquecido; "Prv EQ1", "Prv EQ2" y "Prv EQ3", donde el recipiente proporciona gas para una fase de compensación de presión; extracción ("extracción") denotando despresurización a la menor presión del sistema; "Rcv EQ1", "Rcv EQ2" y "Rcv EQ3", donde el recipiente recibe gas durante una fase de compensación de presión; represurización de producto ("Repres Prod"); y "Prv Purga" y "Rcv Purga" donde el gas de purga se alimenta desde o hacia el recipiente, respectivamente.

En referencia ahora a las Figuras 10 y 11A-11E, donde los números iguales representan las mismas piezas, se ilustra una secuencia de válvulas para un sistema de PSA de acuerdo con las realizaciones divulgadas en este documento. El sistema de PSA de las Figuras 10 y 11A-11E incluyen 9 recipientes con la configuración de válvulas mostrada en la Figura 10, incluyendo dos válvulas de conexión/desconexión paralelas que conectan el recipiente a cada uno del canal de gas de alimentación 50, el canal de recuperación de producto 52, el canal de gas residual 54, un primer canal de compensación 56(1), un segundo canal de compensación 56(2) y el canal de gas de purga 57. Aunque solo se ilustra un recipiente, se aprecia que los 9 recipientes del sistema están conectados de forma similar a las realizaciones ilustradas en las Figuras 2-6.

La secuencia de válvulas ilustrada en las Figuras 11A-11E usa 4 etapas de compensación en el ciclo de PSA, que incluye: Adsorción ("Adsorb"), donde el recipiente está a una alta presión y preferentemente obtiene gas producto enriquecido; "Prv EQ1", "Prv EQ2", "Prv EQ3" y "Prv EQ4", donde el recipiente proporciona gas para una fase de compensación de presión; extracción ("extracción") denotando despresurización a la menor presión del sistema; "Rev EQ1", "Rev EQ2", "Rev EQ3" y "Rev EQ4", donde el recipiente recibe gas durante una fase de compensación de presión; represurización de producto ("Repres Prod"); y "Prv Purga" y "Purga Rev" donde el gas de purga se alimenta desde y hacia el recipiente, respectivamente.

Las dos válvulas que conectan el recipiente a cada canal están diferenciadas en las Figuras 11A-11E indicando una como la "piloto", que típicamente es la primera válvula en abrirse durante el inicio de una fase, teniendo la válvula "piloto" un orificio de flujo más pequeño para controlar el flujo inicial desde los recipientes como se ha descrito anteriormente. Por ejemplo, la válvula 58 en la Figura 10 puede ser la válvula piloto que conecta el recipiente al canal de gas residual 54 y la válvula 60 puede ser la segunda válvula que conecta el recipiente al canal de gas residual 54. La apertura secuencial de la segunda válvula está indicada en las Figuras 9A-9D como "retraso", donde el tiempo de retraso entre la apertura de la válvula piloto y la segunda válvula es apropiado para la fase del ciclo de PSA. La secuencia de válvulas ilustrada en las Figuras 9A-9D usa 3 etapas de compensación en el ciclo de PSA, que incluyen: Adsorción ("Adsorb"), donde el recipiente está a una alta presión y preferentemente obtiene gas producto enriquecido; "Prv EQ1", "Prv EQ2" y "Prv EQ3", donde el recipiente proporciona gas para una fase de compensación de presión; extracción ("extracción") denotando la despresurización de la menor presión del sistema; "Rev EQ1", "Rev EQ2" y "Rev EQ3", donde el recipiente recibe el gas durante una fase de compensación de presión; represurización de producto ("Repres Prod"); y "Prv Purga" y "Purga Rev" donde el gas de purga se

alimenta desde o hacia el recipiente, respectivamente. Las Figuras 11A-11E muestran otro ejemplo de la aplicación de algunos aspectos de la presente invención y difieren del ejemplo ilustrado en las Figuras 9A-9D por adición de una 4ª compensación de presión, donde se incluyen dos etapas de tiempo adicionales en el ciclo para ejecutar "Prv EQ4" y "Rev EQ42, respectivamente.

5

10

15

20

Como se ha descrito anteriormente, los sistemas de PSA de acuerdo con las realizaciones incluyen dos o más válvulas de conexión/desconexión en una disposición de flujo paralelo para proporcionar el control potenciado del flujo hacia o desde los lechos de adsorbente durante los ciclos respectivos. Aunque se usan múltiples válvulas para cada etapa, el recuento de piezas total para los sistemas de PSA en este documento puede disminuir o minimizarse localizando apropiadamente sensores de presión.

Ventajosamente, las realizaciones divulgadas en este documento pueden proporcionar uno o más de: rendimiento de proceso potenciado (recuperación fraccionada mayor de gas producto); una reducción en la dependencia de sensores y bucles de control de retroalimentación; rendimiento técnico equivalente o mejor con menos piezas, mayor simplicidad, así como el potencial para permitir un modo de "auto-tratamiento" donde el fallo de una única válvula o sensor no interrumpe el funcionamiento del sistema de PSA.

Aunque la divulgación incluye un número limitado de realizaciones, los expertos en la materia, habiéndose beneficiado de esta divulgación, apreciarán que pueden preverse otras realizaciones que no se alejan del alcance de la presente divulgación, que está definido por las reivindicaciones.

REIVINDICACIONES

- 1. Un sistema de adsorción con presión oscilante (40), que comprende:
- 5 una pluralidad de recipientes (42, 44, 46, 48) que tienen una o más capas de material adsorbente en su interior; un canal de gas de alimentación (50) conectado a la pluralidad de recipientes;
 - un canal de recuperación de producto (52) conectado a la pluralidad de recipientes;
 - un canal de gas de purga (57) conectado a la pluralidad de recipientes;
 - un canal de gas residual (54) conectado a la pluralidad de recipientes; y
- un canal de compensación (56) conectado a la pluralidad de recipientes, en el que:

25

30

40

el canal de recuperación de producto (52) está conectado a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas (70, 72) en una disposición de flujo paralelo; y/o el canal de gas de purga (57) está conectado a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas (66, 68) en una disposición de flujo paralelo; y/o el canal de gas residual (54) está conectado a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas (58, 60) en una disposición de flujo paralelo; y/o el canal de compensación (56) está conectado a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas (76, 78) en una disposición de flujo paralelo, y

un sistema de control (64), en el que, cuando los colectores respectivos están presentes, el sistema de control está configurado para:

abrir las al menos dos válvulas (70, 72) en el colector conectando el canal de recuperación de producto secuencialmente:

abrir las al menos dos válvulas (66, 68) en el colector conectando el canal de gas de purga secuencialmente; abrir las al menos dos válvulas (58, 60) en el colector conectando el canal de gas residual secuencialmente; y abrir las al menos dos válvulas (76, 78) en el colector conectando el canal de compensación secuencialmente.

- 2. El sistema de la reivindicación 1, en el que cada una de las válvulas en los colectores respectivos es una válvula de conexión/desconexión.
- 35 3. El sistema de la reivindicación 2, en el que las válvulas de conexión/desconexión en cada colector respectivo tienen un orificio de fluio de un diámetro similar.
 - 4. El sistema de la reivindicación 2, en el que las válvulas de conexión/desconexión en cada colector respectivo tienen un orificio de flujo de diferentes diámetros.
 - 5. El sistema de cualquier reivindicación anterior, que comprende además al menos uno de:
 - un sensor de presión para medir una presión en cada uno de la pluralidad de recipientes;
 - un sensor de presión (74) para medir una presión en el canal de recuperación de producto; y
- un sensor de presión para medir una presión en un recipiente de amortiguación conectado fluidamente al canal de recuperación de producto;
 - un sensor de presión para medir una presión en el canal de gas de purga; y
 - un sensor de presión para medir una presión en un recipiente de amortiguación conectado fluidamente al canal de gas de purga;
- 50 un sensor de presión (62) para medir una presión en el canal de gas residual; y
 - un sensor de presión para medir una presión en un recipiente de amortiguación conectado fluidamente al canal de gas residual:
 - un sensor de presión (80) para medir una presión en el canal de compensación; y
- un sensor de presión para medir una presión en un recipiente de amortiguación conectado fluidamente al canal de compensación;

en el que el sistema de control está configurado para determinar un fallo de válvula basándose en al menos uno de:

la presión medida por al menos uno de, cuando está presente, el sensor de presión en cada uno de la pluralidad de recipientes, el sensor de presión en el canal de recuperación de producto y el sensor de presión en el recipiente de amortiguación conectado fluidamente al canal de recuperación de producto durante la apertura secuencial de las al menos dos válvulas en el colector que conecta el canal de recuperación de producto; la presión medida por el al menos uno de, cuando está presente, el sensor de presión en cada uno de la pluralidad de recipientes, el sensor de presión en el canal de gas de purga, y el sensor de presión en el

65 recipiente de amortiguación conectado fluidamente al canal de gas de purga durante la apertura secuencial de las al menos dos válvulas en el colector que conecta el canal de gas de purga;

la presión medida por al menos uno de, cuando está presente, el sensor de presión en cada uno de la pluralidad de recipientes, el sensor de presión en el canal de gas residual y el sensor de presión en el recipiente de amortiguación conectado fluidamente al canal de gas residual durante la apertura secuencial de las al menos dos válvulas en el colector que conecta al canal de gas residual;

- la presión medida por al menos uno de, cuando esté presente, el sensor de presión en cada uno de la pluralidad de recipientes, el sensor de presión en el canal de compensación y el sensor de presión en el recipiente de amortiguación conectado fluidamente al canal de compensación durante la apertura secuencial de las al menos dos válvulas en el colector que conecta el canal de compensación.
- 6. El sistema de cualquier reivindicación anterior, en el que uno o más de los colectores respectivos comprende al menos tres válvulas, y en el que el sistema de control está configurado para abrir las al menos tres válvulas secuencialmente.
- El sistema de cualquier reivindicación anterior, en el que al menos dos válvulas respectivas en una disposición de
 flujo paralelo están dimensionadas de manera que mantienen una velocidad en los recipientes respectivos por debajo de la cual fluidizarían los materiales adsorbentes en su interior.
 - 8. El sistema de la reivindicación 7, en el que el sistema de control está configurado para abrir las válvulas secuencialmente basándose en una presión, un diferencial de presión, una velocidad de cambio de presión, o una velocidad de cambio en la velocidad de cambio de presión.
 - 9. El sistema de cualquier reivindicación anterior, que comprende además:

de la pluralidad de recipientes al canal de gas de purga (57).

- el canal de gas de alimentación está conectado a cada uno de la pluralidad de recipientes a través de un colector que comprende al menos dos válvulas (80(1), 80(2)), en una disposición de flujo paralelo, y un sistema de control (64) conectado para abrir las al menos dos válvulas de alimentación secuencialmente.
 - 10. Un método de operación de un sistema de adsorción con presión oscilante (40) que comprende una pluralidad de recipientes (42, 44, 46, 48), un canal de gas de alimentación (50) conectado a la pluralidad de recipientes, un canal de recuperación de producto (52) conectado a la pluralidad de recipientes, un canal de gas de purga (57) conectado a la pluralidad de recipientes, un canal de compensación (56) conectado a la pluralidad de recipientes y un canal residual (54) conectado a la pluralidad de recipientes, comprendiendo el método al menos uno de:
- abrir secuencialmente dos o más válvulas (70, 72) dispuestas en una disposición de flujo paralelo y que conectan uno de la pluralidad de recipientes al canal de recuperación de producto (52); abrir secuencialmente dos o más válvulas (58, 60) dispuestas en una disposición de flujo paralelo y que conectan uno de la pluralidad de recipientes al canal de gas residual (54); abrir secuencialmente dos o más válvulas (76, 78) dispuestas en una disposición de flujo paralelo y conectar uno de la pluralidad de recipientes al canal de compensación (56); y

 40 abrir secuencialmente dos o más válvulas (66, 68) dispuestas en una disposición de flujo paralelo y conectar uno
 - 11. El método de la reivindicación 10, que comprende además abrir una válvula redundante dispuesta en una disposición de flujo paralelo como respuesta al fallo de una válvula.

45

20

30

4 5

Figura 1 (Técnica Anterior)

Figura 7

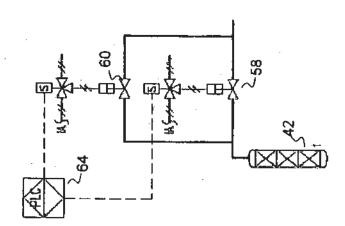
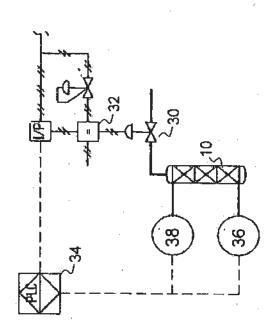
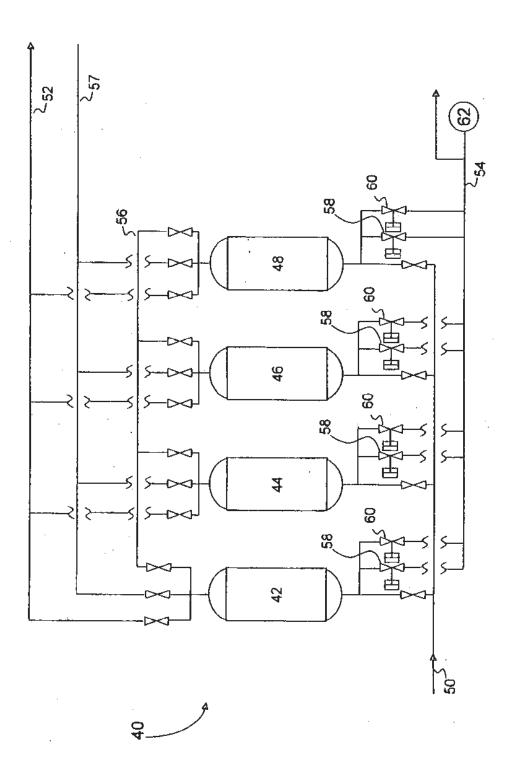
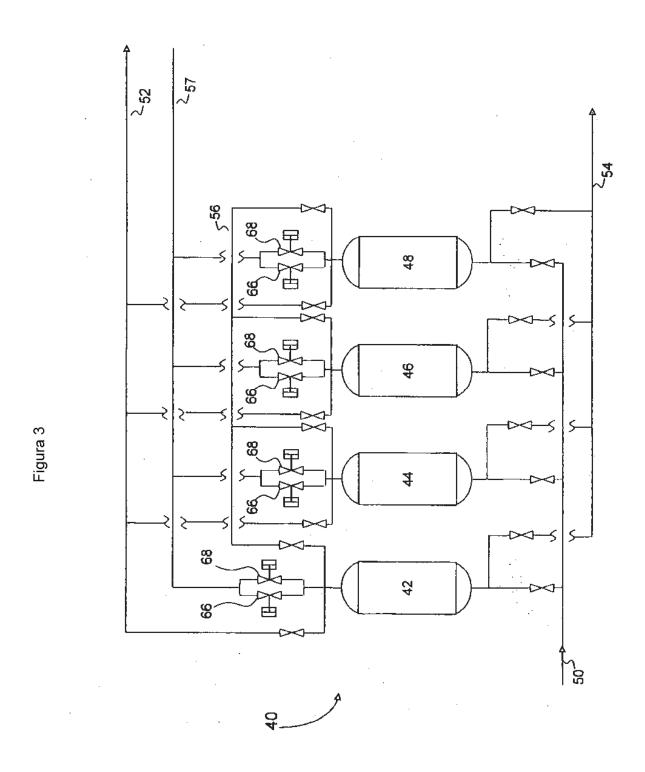
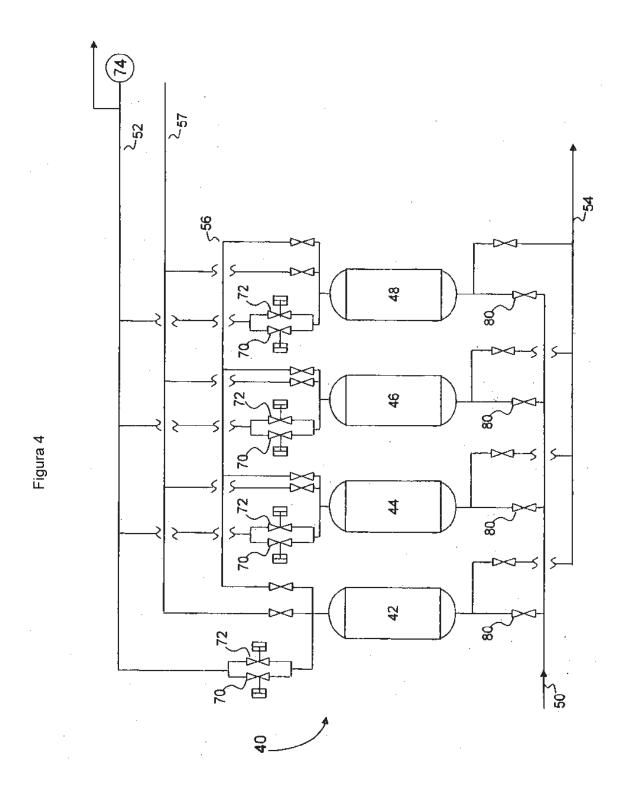
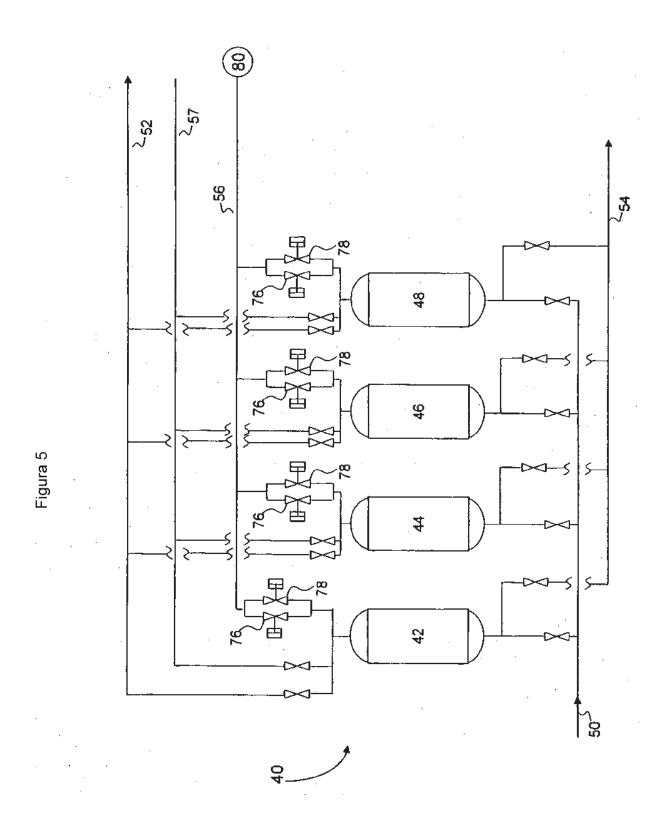
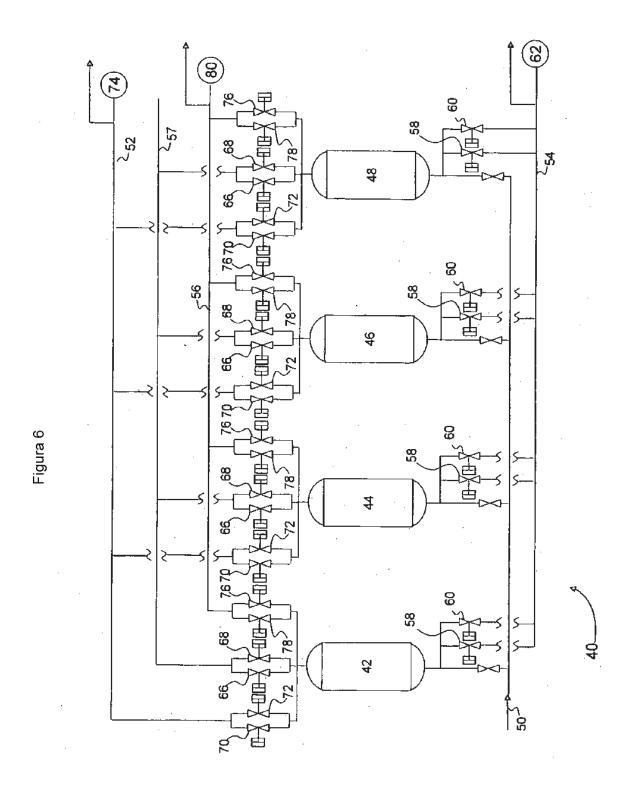
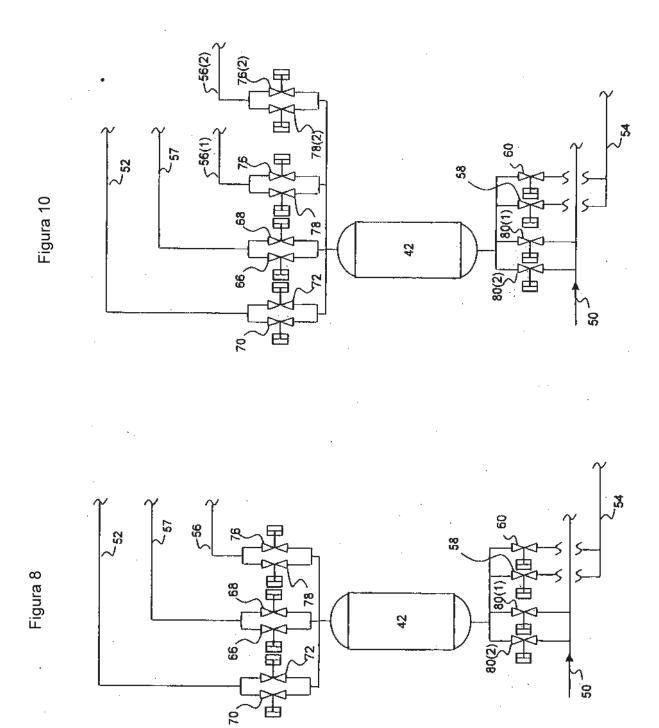



Figura 1A (Técnica Anterior)


Figura 2

Prv Purga	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Prv Eq2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Etapa 16
E 23	Cerrada C	Cerrada C	Cerrada C	Cerrada C	Cerrada	Cerrada C	Abierta A	Retraso R	Cerrada	Cerrada C	ğ	Cerrada	Cerrada C	Cerrada	Cerrada	Cerrada C	Cerrada C	Cerrada C	Cerrada	Abierta A	Retraso R	Etapa 15 Et
ş	_	⊢	—	—	_	-	╙	⊢	⊢	_	g S	-	-	_	_	⊢	⊢	⊢	_	ـــــ	_	
Prv EC2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso		Abierta	Abierta	Cerrada	Cerrada	Ablerta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 14
Prv EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso		Abierta	Abierta	Cerrada	Cerrada	Ablerta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 13
	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	đ.	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 12 Etapa 13
	Abierta	Abierta	Cerrada	Септада	Abierta	Abierta	Септада	Cerrada	Септада	Септада	Adsorb	Abierta	Abierta	Септада	Септада	Abierta	Abierta	Септада	Септада	Септада	Cerrada	tapa 11
£	Ablerta	Abierta ,	Cerrada	Cerrada (Abierta ,	Ablerta	Cerrada (Cerrada	Cerrada (Cerrada		Abierta ,	Abierta ,	Cerrada	Cerrada (Ablerta	Abierta ,	Cerrada (Cerrada	Cerrada (Cerrada	Etapa 10 Etapa 11
Adsorb	Ablerta 4	Abierta 🗚	Cerrada	Cerrada	Abierta A	Ablerta 4	Cerrada	Cerrada C	Cerrada	Cerrada		Abierta 🗚	Retraso A	Cerrada	Cerrada	Ablerta 4	Abierta	Cerrada	Cerrada	Cerrada	Cerrada C	Etapa 9 E1
	Abierta A	Abierta	Cerrada C	Септада	Abierta A	Abierta A	Септада	Cerrada C	Септада	Септада	Repres Prod	Cerrada A	Cerrada R	Септада	Септада	Abierta A	Retraso A	Септада	Септада	Септада	Cerrada C	Etapa 8 E
	Ablerta A	Retraso A	Cerrada C	Cerrada C	Abierta A	Ablerta A	Cerrada C	Cerrada C	Cerrada C	Cerrada C	Rov EQ1	Cerrada C	Cerrada C	Cerrada	Cerrada C	Cerrada A	Cerrada R	Cerrada C	Cerrada C	Abierta	Ablerta	Etapa 7 E
Repres Prod	Cerrada Al	Cerrada Re	Cerrada Ce	Cerrada Ce	Abierta At	Retraso At	Cerrada Ce	Cerrada Ce	Cerrada Ce	Cerrada Ce	Rev EQ2 Re	Cerrada Ce	Cerrada Ce	Cerrada Ce	Cerrada Ce	Cerrada Ce	Cerrada Ce	Cerrada Ce	Cerrada Ce	Abierta At	Ablerta A	Etapa 6 Et
F	-	-	-	-	-	-	-	_	-	⊢	_	-	_	_	⊢	⊢	-	⊢	-	⊢	⊢	-
Rev EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Rcv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Etapa 5
Rev EQ2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Rev Purga	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Etapa 4
Rcv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Ablerta	Cerrada	Cerrada	Extracción	Cerrada	Cerrada	Abierta	Retraso	Cosed	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 3
cv Purga	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Prv Purga	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Etapa 2
Extracción	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Prv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Etapa 1
Válvula en el recipiente	Alimentación Piloto	Alimentación	Gas residual piloto	Gas residual	Producto piloto	Producto	Purga piloto	Purga	Eq piloto	Eq	Válvula en el recipiente	Alimentación Piloto	Alimentación	Gas residual piloto	Gas residual	Producto piloto	Producto	Purga piloto	Purga	Eq piloto	Ed	
			ι	ω'N	311	NEI	ECII	Я							٥5	EИ	TNE	IIdio	REC			

Válvula en el recipiente	Rev EG3	Rcv EQ2	Rcv EQ2	Repres Prod			Adsorb	م			Prv EQ1	Prv EQ1	Prv EQ1	Prv Purga	Prv Purga Extracción Rov Purga	Rcv Purga
imentación Piloto	Cerrada	Сепада	Cerrada	Cerrada	Abierta	Abierta	Abierta	Abierta	Abierta	Abierta	Cerrada	Септада	Cerrada	Cerrada	Cerrada	Сепада
Alimentación	Cerrada	Cerrada	Cerrada	Cerrada	Retraso	Abierta	Abierta	Abierta	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada
as residual piloto	Cerrada	Септада	Cerrada	Cerrada	Cerrada	Сепада	Cerrada	Cerrada	Септада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta
Gas residual	Cerrada	Септада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Сепада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Retraso	Abierta
Producto piloto	Cerrada	Септада	Cerrada	Abierta	Abierta	Abierta	Abierta	Abierta	Abierta	Abierta	Cerrada	Сепада	Cerrada	Cerrada	Cerrada	Сепада
Producto	Cerrada	Сепада	Cerrada	Retraso	Abierta	Abierta	Abierta	Abierta	Abierta	Abierta	Cerrada	Сепада	Cerrada	Cerrada	Cerrada	Сепада
Purga piloto	Abierta	Септада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Сепада	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Abierta
Purga	Abierta	Сепада	Cerrada	Cerrada	Cerrada	Септада	Септада	Cerrada	Сепада	Cerrada	Cerrada	Септада	Retraso	Retraso	Cerrada	Abierta
Eq piloto	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Сепада	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada
Eq	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Септада	Септада	Cerrada	Сепада	Cerrada	Retraso	Retraso	Cerrada	Cerrada	Cerrada	Септада
Válvula en el recipiente	Prv EQ1	Prv Ea2	Prv EQ2	Prv Purga	Extracción	Rev Purga	Rev EQ3	Rev Eq2	Rcv EQ1	Repres Prod			¥	Adsorb		
imentación Piloto	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Септада	Cerrada	Abierta	Abierta	Abierta	Abierta	Abierta	Abierta
Alimentación	Сеггада	Септада	Cerrada	Cerrada	Cerrada	Септада	Септада	Cerrada	Септада	Cerrada	Retraso	Abierta	Abierta	Abierta	Abierta	Abierta
as residual piloto	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada
Gas residual	Cerrada	Cerrada	Cerrada	Cerrada	Retraso	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada
Producto piloto	Cerrada	Сепада	Cerrada	Cerrada	Cerrada	Септада	Септада	Cerrada	Сепада	Abierta	Abierta	Abierta	Abierta	Abierta	Abierta	Abierta
Producto	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Retraso	Abierta	Abierta	Abierta	Abierta	Abierta	Abierta
Purga piloto	сепада	Сепада	Abierta	Abierta	Cerrada	Abierta	Abierta	Cerrada	Септада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Септада
Purga	Cerrada	Cerrada	Retraso	Retraso	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada
Eq piloto	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Септада
Eq	Refraso	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Септада
	Etapa1	Etapa 2	Etapa 3	Etapa 4	Etapa 5	Etapa 6	Etapa 7	Etapa 8	Etapa 9	Etapa 10	Etapa 11	Etapa 10 Etapa 11 Etapa 12 Etapa 13		Etapa 14	Etapa 15	Etapa 16

Fig. 9B

RECIPIENTE N.º 4

RECIPIENTE N.º 3

Rev EQ2	Сепада	Сепада	Сепада	Сепада	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta		Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Септада	Cerrada	Cerrada	Cerrada	Etapa 16
Rev Eq3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	م	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 15
Rcv Purga	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Adsorb	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 14
Extracción	Сепада	Сепада	Abierta	Retraso	Сетада	Сепада	Сетада	Cerrada	Сепада	Сепада		Abierta	Retraso	Cerrada	Cerrada	Abierta	Abierta	Септада	Септада	Cerrada	Cerrada	Etapa 13
Prv Purga	Септада	Сепада	Сепада	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Сепада	Сепада	Repres Prod	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 12
Prv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Rev EG3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Etapa 11
Prv EQ2	Сепада	Сепада	Сепада	Септада	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Rcv EQ2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Etapa 10
Prv EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Rcv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Etapa 9
	Abierta	• Abjerta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Extracción Rev Purga Rev EQ3	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Etapa 8
	Abierta	Abierta	Сеггада	Сеггада	Abierta	Abierta	Cerrada	Cerrada	Септада	Септада	Extracción	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Септада	Cerrada	Cerrada	Cerrada	Etapa 7
Adsorb	Abierta	Abierta	Cerrada	Сепада	Abierta	Abierta	Cerrada	Cerrada	Сетгада	Сеггада	Prv Purga	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Etapa 6
,	Abierta	Abierta	Сепада	Септада	Abierta	Abierta	Cerrada	Cerrada	Септада	Сепада	Prv EG3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Etapa 5
	Abierta	Abierta	Септадо	Септада	Abierta	Abierta	Cerrada	Cerrada	Септада	Септада	Prv EG2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Септада	Септада	Abierta	Retraso	Etapa 4
	Abierta	Retraso	Септада	Септада	Abierta	Abierta	Cerrada	Cerrada	Септада	Септада	Prv EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Септада	Септада	Abierta	Retraso	Etapa 3
Repres Prod	Септада	Сепада	Сепада	Септада	Abierta	Retraso	Cerrada	Cerrada	Септада	Септада	Adsorb	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Септада	Септада	Cerrada	Cerrada	Etapa 2
Rev EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Ą	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 1
Válvula en el recipiente	Alimentación Piloto	Alimentación	Gas residual piloto	Gas residual	Producto piloto	Producto	Purga piloto	Purga	Eq piloto	Eq	Válvula en el recipiente	Alimentación Piloto	Alimentación	Gas residual piloto	Gas residual	Producto piloto	Producto	Purga piloto	Purga	Eq piloto	Eq	
				9 3	TNE	laid	BEC								9	эт	NBIa	ECIL	ы			

Repres Prod	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada		Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 16
Ray EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Септада	Септада	Септада	Септада	Abierta	Abierta	Adsorb	Abierta	Retraso	Септада	Септада	Abierta	Abierta	Cerrada	Cerrada	Септада	Септада	Etapa 15 E
Rcv EQ2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta		Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 14
Rcv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Rcv EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Etapa 13
Rcv Purga	Cerrada	Cerrada	Abierta	Abierta	Сегтада	Сеггада	Abierta	Abierta	Cerrada	Cerrada	Rcv EQ2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Etapa 12
Extracción	Cerrada	Cernada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Rcv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Etapa 11
Prv Purga	Cerrada	Cerrada	Cerrada	Cerrada	Сетада	Септада	Abierta	Retraso	Cerrada	Cerrada	Scv Purga	Септада	Септада	Abierta	Abierta	Септада	Септада	Abierta	Abierta -	Септада	Септада	Etapa 10
Prv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Extracción Rcv Purga	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etaba 9
Prv EQ2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Prv Purga	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Etapa 8
Prv EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Prv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Etapa 7
	Abierta	Abierta	Cerrada	do3ed	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Prv EQ2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Etapa 6
	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Prv EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Etapa 5
Adsorb	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada		Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 4
Ads	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Adsorb	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 3
	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Ads	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 2
	Abierta	Retraso	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada		Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 1
Válvula en el recipiente	Alimentación Piloto	Alimentación	Gas residual piloto Cerrada	Gas residual	Producto piloto	Producto	Purga piloto	Purga	Eq piloto	ם	Válvula en el recipiente	Alimentación Piloto	Alimentación	Gas residual piloto Cerrada	Gas residual	Producto piloto	Producto	Purga piloto	Purga	Eq piloto	2	
				13	TNE	IIII	ЭH								8	3T	NEI	ECII	Я			

Prv Purga	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Prv Eg3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Etapa 18
-		Ŀ	ľ	Ŀ	Ŀ	Ľ	Ľ	┡	Ŀ	Ŀ	╙	_	┡	_	Ľ	Ľ	Ľ	Ŀ	L	_	Ľ	Ĺ	╙	Ŀ	_	
Prv EQ4	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Ablerta	Retraso	Cerrada	Cerrada	Prv EQ2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Ablerta	Retraso	Etapa 17
Prv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Ablerta	Retraso	Cerrada	Cerrada	Prv EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Ablerta	Retraso	Etapa 16
Prv EQ2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Ablerta	Retraso		Abierta	Abierta	Cerrada	Cerrada	Ablerta	Ablerta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 15
Prv EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso		Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 14
п	Abierta C	Abierta	Cerrada C	Cerrada C	Abierta	Abierta	Септада	Септада	Cerrada C	Cerrada C	Cerrada /	Cerrada F		Abierta /	Abierta /	Cerrada	Cerrada C	Abierta /	Abierta /	Cerrada	Септада	Септада	Cerrada	Cerrada C	Cerrada C	Etapa 13 E
	Ablerta A	Ablerta A	Cerrada C	Cerrada C	Abierta A	Abierta A	Cerrada C	Cerrada C	Cerrada C	Cerrada C	Cerrada C	Cerrada C	Adsorb	Abierta A	Abierta A	Cerrada Co	Cerrada C	Ablerta A	Ablerta A	Cerrada Co	Cerrada C	Cerrada C	Cerrada C	Cerrada C	Cerrada C	Etapa 12 Et
	_	⊢	-	Cerrada Ce	⊢	\vdash	Cerrada Ce	-	⊢	Cerrada Ce	Cerrada Ce	⊢		⊢	⊢	-	⊢	⊢	⊢	⊢	Септада - Се	-	⊢	├	-	Etapa 11 Eta
Adsorb	a Abierta	a Abierta	la Cerrada	_	a Abierta	a Abierta	⊢	la Cerrada	la Cerrada	┡	⊢	la Cerrada		a Abierta	o Abierta	la Cerrada	la Cerrada	a Abierta	a Abierta	la Cerrada	-	la Cerrada	la Cerrada	la Cerrada	la Cerrada	
`	Ablerta	Ablerta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada Cerrada	Cerrada	Cerrada		Abierta	Retraso	Cerrada	Cerrada	Ablerta	Ablerta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 10
	epelda	Ablerta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Септада	Cerrada	Cerrada	Cerrada	Cerrada	Repres Prod	Cerrada	Септада	Cerrada	Cerrada	Ablerta	Retraso	Cerrada	Септада	Септада	Cerrada	Cerrada	Cerrada	Etapa 9
	Ablerta	Ablerta	Cerrada	Cerrada	Abierta	Abierta	Септада*	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Rov EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Ablerta	Ablerta	Etapa 8
Repres Prod	Cerrada	Retraso	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Rov EQ2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Ablerta	Ablerta	Etapa 7
Rcv EQ1	Cerrada (Cerrada	Cerrada (Cerrada	Cerrada	Cerrada	Cerrada (Cerrada (Cerrada (Cerrada (Ablerta (Ablerta (Rcv EQ3	Cerrada (Cerrada (Cerrada (Cerrada (Cerrada (Cerrada (Cerrada (Cerrada (Abierta (Abierta (Cerrada	Cerrada	Etapa 6
Rcv EQ2 R	Cerrada C	Cerrada	Cerrada	Cerrada	Cerrada C	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta 4	Abierta 4	Rcv EQ4 R	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta /	Abierta /	Cerrada	Cerrada	Etapa 5 E
RCV EQ3 R	Cerrada C	Cerrada C	Cerrada C	Serrada C	Cerrada C	Cerrada	Cerrada	Cerrada	Ablerta	Ablerta	Cerrada 🛕	Cerrada 🛕	Rcv Purga R	Cerrada	Cerrada C	Abierta C	Abierta	Cerrada C	Cerrada C	Abierta C	Retraso	Cerrada #	Cerrada A	Cerrada C	Cerrada C	Etapa 4 E
H	_	Ŀ	F	H	⊢	F	F	F	H	H	⊢	┢	-	F	-	H	Ë	F	F	ļ.	⊢	F	F	⊢	F	Н
Rcv EQ4	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Ablerta	Ablerta	Cerrada	Cerrada	Extracción	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 3
Rcv Purga	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Prv Purga	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Etaps 2
Extracción	Cerrada	Cerrada	Abierta	Retraso	Септада	Септада	Септада	Септада	Cerrada	Cerrada	Cerrada	Cerrada	Prv EQ4	Септада	Септада	Септада	Септада	Cerrada	Cerrada	Септада	Септада	Abierta	Retraso	Cerrada	Cerrada	Etaps 1
Válvula en el recipiente	Alimentación Piloto	Alimentación	Gas residual piloto	Gas residual	Producto piloto	Producto	Purga piloto	Purga	Eq plloto n.º1	Eq n.º1	Eq plloto n.º2	Eq n.%	Válvula en el recipiente	Alimentación Piloto	Alimentación	Gas residual piloto	Gas residual	Producto piloto	Producto	Purga piloto	Purga	Eq piloto n.º1	Eq n.º1	Eq plloto n.º2	Eq n.2	
				ı	۰'N	313	INId	ECI	Я									7	.'N	313	NIAI	SEC	_			

Rcv Purga	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Ablerta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Prv EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Etapa 18
Extracción	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada		Ablerta	Ablerta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 17
Prv Purga	Септада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Ablerta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada		Ablerta	Ablerta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 16
Prv EQ4	Сепада	Септада	Септада	Септада	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Септада	Сепада	Adsorb	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Септада	Септада	Etapa 15
Prv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	A	Ablerta	Ablerta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 14
Prv EG2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada.	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso		Ablerta	Ablerta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 13 Etapa 14
Prv EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso		Abierta	Retraso	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 12
	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Repres Prod	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 11
	Abierta	Abierta	Септада	Септада	Abierta	Abierta	Cerrada	Cerrada	Септада	Септада	Септада	Септада	Rcv EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Септада	Септада	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta.	Etapa 10
rb	Abierta	Abierta	Cerrada	Cerrada	Ablerta	Ablerta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Rcv EQ2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Etapa 9
Adsorb	Abierta	Abierta	Cerrada	Cerrada	Ablerta	Ablerta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Rcv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Ablerta	Ablerta	Cerrada	Cerrada	Etapa B
	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Rcv EQ4	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Etapa 7
	Abierta	Retraso	Cerrada	Cerrada	Ablerta	Ablerta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Rcv Purga	Cerrada	Cerrada	Ablerta	Ablerta	Cerrada	Cerrada	Ablerta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 6
Repres Prod	Cerrada	Cerrada	Cerrada	Cerrada	Ablerta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Extracción	Cerrada	Cerrada	Ablerta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 5
Rov EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Prv Purga	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Ablerta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 4
Rcv EQ2	Септада	Септада	Септада	Септада	Cerrada	Cerrada	Cerrada	Cerrada	Септада	Сепада	Abierta	Abierta	Prv EQ4	Cerrada	Cerrada	Cerrada	Cerrada	Септада	Септада	Cerrada	Cerrada	Abierta	Retraso	Септада	Септада	Etapa 3
Rev Eas	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Prv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Ablerta	Retraso	Cerrada	Cerrada	Etapa 2
Rov EQ4	Септада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Prv EQ2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Etapa 1
Válvula en el reciplente	Alimentación Piloto	Alimentación	Gas residual piloto	Gas residual	Producto piloto	Producto	Purga piloto	Purga	Eq piloto n.º1	Eq n.91	Eq piloto n.º2	Eq n.2	Válvula en el reciplente	Alimentación Piloto	Alimentación	Gas residual piloto	Gas residual	Producto piloto	Producto	Purga piloto	Purga	Eq plloto n.º1	Eq n.º1	Eq piloto n.º2	Eq n.º2	
				٤	ı.'N	313	BIME	ECI	Я									۲.	EΝ	ИEL	Idio	BEC				

Š	epe	gg	gg	gg	ьpь	ada	gg	gg	ā	ā	gg	ege		먑	ā	еþ	ер	ā	ā	epe	ьф	ga	вþ	ada	еþ	18
Rcv EQ4	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada		Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 18
Rcv EQ4	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada		Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 17
Rcv Purga	Cerrada	Cerrada	Abierta	Abierta	Сепада	Сепада	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Adsorb	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Сепада	Сепада	Cerrada	Сепада	Cerrada	Etapa 16
Extracción	Cerrada	Cerrada	Abierta	Retraso	Септада	Септада	Септада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada		Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Септада	Септада	Cerrada	Септада	Cerrada	Etapa 15
Prv Purga	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada		Abierta	Retraso	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 14
Prv EQ4	Cerrada	Cerrada	Cerrada	Сепада	Сепада	Сепада	Сепада	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Repres Prod	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 13
Prv EQ3	Cerrada	Cerrada	Cerrada	Сепада	Сепада	Сепада	Сепада	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Rcv EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Etapa 12 Etapa 13
Prv EG2	Cerrada	Cerrada	Cerrada	Септада	Сепада	Сепада	Сепада	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Rcv EQ2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Септада	Септада	Септада	Abierta	Abierta	Etapa 11
Prv EQ1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Rcv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Etapa 10
	Abierta	Abierta	Cerrada	Сепада	Abierta	Abierta	Сепада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Rcv EQ4	Сепада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Сепада	Abierta	Abierta	Сепада	Cerrada	Etapa 9
	Abierta	Abierta	Cerrada	Септада	Abierta	Abierta	Сепада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Rcv Purga	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Abierta	Retraso	Сепада	Cerrada	Септада	Cerrada	Etapa 8
Adsorb	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Extracción	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 7
ΡΨ	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Prv Purga	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 6
	Abierta	Abierta	Cerrada	Сепада	Abierta	Abierta	Сепада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Prv EQ4	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Септада	Abierta	Retraso	Септада	Cerrada	Etapa 5
	Abierta	Retraso	Cerrada	Сепада	Abierta	Abierta	Сепада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Prv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Сепада	Abierta	Retraso	Сепада	Cerrada	Etapa 4
Repres Prod	Cerrada	Cerrada Ret	Cerrada	Сепада Сеп	Abierta	Retraso	Сепада Сеп	Cerrada	Cerrada Ceri	Cerrada Ceri	Cerrada	Cerrada Ceri	Prv EQ2	Cerrada Cen	Cerrada Cen	Cerrada Cerrada Cerr	Cerrada Cerrada Cer	Cerrada Cerr	Cerrada Cerr	Cerrada Cerr	Сепада Сеп	Сепада	Cerrada Ret	Abierta	Retraso	Etapa 3
Rcv EQ1	Cerrada	Cerrada	Cerrada	Сепада	Cerrada	Сепада	Сепада	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Prv EQ1	Cerrada	Cerrada			Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Etapa 2
Rcv EQ2	Cerrada	Cerrada	Cerrada	Сепада	Сепада	Сепада	Сепада	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Adsorb	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Септада	Септада	Септада	Септада	Cerrada	Etapa 1
Válvula en el recipiente	Alimentación Piloto	Alimentación	Gas residual piloto	Gas residual	Producto piloto	Producto	Purga piloto	Purga	Eq piloto n.º1	Eq n.º1	Eq piloto n.º2	Eq n.2	Válvula en el recipiente	Alimentación Piloto	Alimentación	Gas residual piloto	Gas residual	Producto piloto	Producto	Purga piloto	Purga	Eq piloto n.º1	Eq n.º1	Eq piloto n.º2	Eq n.º2	
				9	ı'nN	ΒŢ	NId	ECI	Я									9' 6	N E	TET	ıldı) BR				

2	æ	æ	æ	æ	æ	æ	æ	æ	æ	æ		æ	П	e e	ro.	6	В	6	60	æ	æ	а	а	В	6	<u></u>
Rcv EQ1	Септада	Септада	Септада	Септада	Cerrada	Cerrada	Септада	Септада	Cerrada	Септада	Abierta	Abierta		Abierta	Abierta	Септада	Септада	Abierta	Abierta	Cerrada	Cerrada	Септада	Септада	Септада	Септада	Etapa 18
Rcv EQ2	Септада	Септада	Септада	Септада	Cerrada	Cerrada	Сепада	Септада	Cerrada	Сепада	Abierta	Abierta	Adsorb	Abierta	Abierta	Септада	Септада	Abierta	Abierta	Cerrada	Cerrada	Септада	Септада	Септада	Септада	Etapa 17
Rcv EQ3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada		Abierta	Retraso	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Etapa 16
Rcv EQ4	Сепада	Сепада	Сепада	Сепада	Cerrada	Cerrada	Сепада	Сепада	Abierta	Abierta	Cerrada	Cerrada	Repres Prod	Cerrada	Cerrada	Cerrada	Сепада	Abierta	Retraso	Cerrada	Cerrada	Сепада	Сепада	Сепада	Cerrada	Etapa 15
Rcv Purga	Сеггада	Сегтада	Abierta	Abierta	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Сепада	Cerrada	Cerrada	Rev EQ1	Cerrada	Cerrada	Cerrada	Септада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Сеггада	Abierta	Abierta	Etapa 14
Extracción	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Rcv EQ2	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Etapa 13
Prv Purga	Септада	Септада	Сепада	Сепада	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Сепада	Cerrada	Cerrada	Rev EQ3	Cerrada	Cerrada	Cerrada	Сепада	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Сепада	Cerrada	Etapa 12
Prv EQ4	Сепада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Сепада	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Rev EQ4	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Etapa 11
Prv EQ3	Септада	Септада	Септада	Септада	Cerrada	Cerrada	Септада	Септада	Abierta	Retraso	Cerrada	Cerrada	Rcv Purga	Cerrada	Cerrada	Abierta	Abierta	Септада	Септада	Abierta	Retraso	Септада	Септада	Септада	Септада	Etapa 10
Prv EQ2	Сеглада	Сегтада	Сеглада	Сеглада	Cerrada	Cerrada	Сепада	Сегтада	Cerrada	Сепада	Abierta	Retraso	Extracción	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Сеггада	Сеггада	Сепада	Cerrada	Etapa 9
Prv EQ1	Сепада	Cerrada	Сепада	Сепада	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Prv Purga	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Cerrada	Cerrada	Etaba 8
	Abierta	Abierta	Сепада	Сепада	Abierta	Abierta	Сеттада	Сепада	Cerrada	Сеттада	Cerrada	Cerrada	Prv EQ4	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Etapa 7
	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Prv Eq3	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada-	Cerrada	Abierta	Retraso	Cerrada	Cerrada	Etapa 6
ę.	Abierta	Abierta	Септада	Септада	Abierta	Abierta	Септада	Септада	Cerrada	Септада	Cerrada	Cerrada	Prv EQ2	Cerrada	Cerrada	Септада	Септада	Септада	Септада	Cerrada	Cerrada	Септада	Септада	Abierta	Retraso	Etapa 5
Adsorb	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	rada	age	Cerrada	agga	Prv EQ1	Cerrada	Cerrada	Cerrada	ada	Cerrada	Cerrada	epe	epe	Cerrada	ada	Abierta	Retraso	Etapa 4
	Abierta	Abierta		Cerrada	Abierta	Abierta	Cerrada	Cerrada (Cerrada	Cerrada	Cerrada	Cerrada	_	Abierta	Abierta	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada			Etaba 3
	Abierta		Cerrada	Септада	Abierta	Abierta	Септада	Септада	Cerrada	Септада	Cerrada	Cerrada	Adsorb	Abierta	Abierta	Cerrada	Септада	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Септада	Cerrada	Cerrada	Etaba 2
Repres Prod	Сепада	Cerrada Retraso	Септада Септада	Сепада Сепада Сепада	Abierta	Retraso	Сепада Сепада Сепада	Сепада Сепада Сепада	Cerrada Cerrada Cerrada Cer	Сетада Сетада Сетада Сел	Cerrada Cerrada	Cerrada Cerrada Cerrada Cerr		Abierta	Abierta	Септада Септада Септада	Сеттада Сеттада Сеттада Сетт	Abierta	Abierta	Cerrada Cerrada Cerrada Cen	Cerrada Cerrada Cerrada Cen	Сепада Сепада Сепада	Сеттада Сеттада Сеттада Сет	Cerrada Cerrada	Сепада Сепада Сепада	Etapa 1
Válvula en el recipiente	Alimentación Piloto	Alimentación	Gas residual piloto	Gas residual (Producto piloto	Producto	Purga piloto	Purga	Eq piloto n.º1	Eq n.º1	Eq piloto n.º2	Eq n.2	Válvula en el recipiente	Alimentación Piloto	Alimentación	Gas residual piloto	Gas residual (Producto piloto	Producto	Purga piloto	Purga	Eq piloto n.º1	Eq n.ºº	Eq piloto n.º2	Eq n.2	
					L o'N	1313	BNId	ECI	Я									8 .	E N	TЭN	ы	ВВ				

Válvula en el recipiente			Adsorb			Prv EQ1	Prv EQ2	Prv EQ3	Prv EQ4	Prv Purga	Extracción	Rcv Purga Rcv EQ4		Rev EQ3	Rev EQ2 Rev EQ1		Repres Prod	Adsorb
iloto	Alimentación Piloto Abierta Abierta	Abierta	Abierta	Abierta	Abierta	Сепада	Сепада Сепада	Септада	Сепада	Септада	Септада	Cerrada	Cerrada	Септада	Сепада	Сепада	Сеттада	Abierta
Alimentación	Abierta	Abierta	Abierta	Abierta	Abierta	Cerrada	Cerrada Cerrada Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Retraso
piloto	Cerrada	Cerrada	Gas residual piloto Cerrada Cerrada Cerrada Cerrada	Cerrada		Cerrada	Cerrada Cerrada Cerrada		Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada
Gas residual	Cerrada	Септада	Сепада	Cerrada	Cerrada	Сепада	Септада	Cerrada Cerrada Cerrada Cerrada Cerrada Cerrada Cerrada Cerrada		Септада	Retraso	Abierta	Cerrada	Сеггада Септада	Септада	Сепада	Cerrada	Сепада
Producto piloto	Abierta	Abierta	Abierta	Abierta	Abierta	Cerrada	Cerrada Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta
Producto	Abierta	Abierta	Abierta	Abierta	Abierta	Cerrada	Cerrada Cerrada		Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Retraso	Abierta
Purga piloto	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada Cerrada Cerrada Cerrada Cerrada Cerrada Cerrada Cerrada	Cerrada	Abierta	Cerrada	Abierta	Cerrada	Cerrada Cerrada	Cerrada	Cerrada	Cerrada	Cerrada
Purga	Cerrada	Септада	Cerrada	Cerrada	Cerrada Cerrada Cerrada Cerrada	Сепада	Септада	Септада	Cerrada	Retraso	Cerrada	Retraso	Cerrada	Cerrada	Cerrada	Сепада	Cerrada	Cerrada
Eq piloto n.º1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada Cerrada Cerrada Cerrada Cerrada Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada
Eq n.º1	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada Cerrada Cerrada Cerrada Cerrada	Cerrada	Retraso	Retraso	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Cerrada	Cerrada	Cerrada
Eq piloto n.º2	Cerrada	Cerrada	Cerrada Cerrada Cerrada Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Cerrada	Abierta	Abierta	Cerrada	Carrada
Eq n.2	Cerrada	Септада	Сегтада	Cerrada	Cerrada	Retraso	Retraso	Cerrada Cerrada Cerrada Cerrada Retraso Retraso Cerrada Cerrada		Септада	Cerrada	Cerrada	Cerrada Cerrada	Cerrada	Abierta	Abierta	Cerrada	Септада
	Etapa 1	Etapa 2	Etapa 3	Etapa 4	Etaba 5	Etaba 6	Etapa 7	Etaba 8	Etaba 9	Etaba 10	Etapa 11	Etapa 12	Etapa 13	Etapa 13 Etapa 14 Etapa 15 Etapa 16	Etapa 15	Etapa 16	Etapa 17	Etapa 18

Fig. 11E