

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 591 256

51 Int. Cl.:

F15B 11/05 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 24.01.2007 PCT/FR2007/000133

(87) Fecha y número de publicación internacional: 09.08.2007 WO07088262

(96) Fecha de presentación y número de la solicitud europea: 24.01.2007 E 07730851 (8)

(97) Fecha y número de publicación de la concesión europea: 27.07.2016 EP 1979625

(54) Título: Dispositivo de control de un circuito consumidor de gas comprimido y generador de vacío que lo utiliza

(30) Prioridad:

30.01.2006 FR 0600807

Fecha de publicación y mención en BOPI de la traducción de la patente: **25.11.2016**

(73) Titular/es:

COVAL (100.0%)
ZONE D'ACTIVITES DES PETITS CHAMPS
26120 MONTELIER, FR

(72) Inventor/es:

CECCHIN, MICHEL; MILHAU, PIERRE; ORIEUX, STÉPHANE; BALDAS, LUCIEN y BOUTEILLE, DANIEL

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Dispositivo de control de un circuito consumidor de gas comprimido y generador de vacío que lo utiliza

5 La presente invención concierne a un dispositivo de control de la abertura y de la interrupción de un circuito consumidor de aire comprimido.

Un circuito de este tipo se puede enchufar por ejemplo a un accionamiento neumático o a un dispositivo de aire comprimido, un amplificador de aire o, sobre todo, a una fuente de aspiración (vacío) por efecto Venturi.

ANTECEDENTES DE LA INVENCIÓN

10

15

20

40

Los dispositivos de control conocidos (véase el documento US2004 094979) comprenden una válvula de dos posiciones que une el aparato consumidor a una fuente de aire comprimido en un primer estado de la válvula y que lo aísla en un segundo estado. Esta válvula es clásicamente una válvula guiada neumáticamente, el circuito neumático de control comprendiendo una electroválvula de guiado de dos posiciones y tres orificios (electro válvula 3/2), a saber el orificio de presión, el orificio de salida (en dirección de la válvula guiada) y el orificio de escape. Para asegurar una comunicación selectiva del orificio de salida con uno y el otro de los orificios de presión y de escape, hay que poner en práctica dos asientos si se trata de una válvula de trampilla. Esta disposición tecnológica es costosa y además se presta mal a una miniaturización de alto grado o a una adaptación a los débiles niveles de corriente de los circuitos electrónicos que pertenecen al control eléctrico de la electroválvula de quiado.

OBJETO DE LA INVENCIÓN

La presente invención es una solución al control de la abertura o del cierre de un circuito consumidor de aire comprimido, más adaptado a las necesidades más y más urgentes de miniaturización y de coste bajo.

RESUMEN DE LA INVENCIÓN

A este efecto la invención tiene por lo tanto por primer objeto un dispositivo de control de la abertura y de la interrupción de un circuito consumidor de gas comprimido que comprende una válvula de interrupción de dos estados, normalmente cerrada, dicha válvula de interrupción comprendiendo una cámara de guiado y una cámara de contra guiado, en comunicación permanente con una fuente de gas comprimido, directamente para la cámara de guiado y por medio de una restricción para la cámara de contra guiado, esta última comprendiendo una derivación de purga abierta o cerrada por una válvula de guiado de dos orificios y dos posiciones.

Una válvula de guiado de este tipo de dos orificios y dos posiciones es de fabricación mucho más económica que una válvula de tres orificios y dos posiciones puesto que en el caso de una válvula de trampilla, únicamente se pone en práctica un asiento.

La válvula de guiado que de manera preferida es una electroválvula, está en una posición estable, la cual puede ser ya sea la posición de abertura de la purga, ya sea la posición de obturación de esta última, según que se desee que en caso de fallo de alimentación eléctrica, el circuito consumidor de gas esté respectivamente abierto o cerrado.

- 45 Un segundo objeto de la invención es un generador de vacío que comprende dentro de un cuerpo:
 - una tobera y un mezclador coaxiales,
- una cámara de aspiración entre la tobera y el mezclador que constituye la fuente de vacío en la cual desemboca un canal de aspiración,
 - un dispositivo de control según el primer objeto de la invención. En este caso, la válvula de interrupción ventajosamente es una válvula de trampilla normalmente mantenida aplicada sobre un asiento, la trampilla presentando además dos superficies de guiado opuestas, una sometida a la presión que reina dentro de la cámara de guiado y la otra, opuesta, sometida a la presión que reina dentro de la cámara de contra guiado, de modo que en caso de igualdad de presión, la trampilla se mantiene en aplicación sobre su asiento mientras que la derivación de purga comprende un asiento coaxial al asiento de la válvula de interrupción, enfrente del cual está montada una trampilla móvil entre una posición alejada y una posición en contacto con el asiento, la trampilla siendo solidaria del núcleo móvil de un accionamiento electromagnético.

El espacio transversal de un aparato de este tipo está dictado por los medios que aseguran el efecto Venturi. La válvula de interrupción y la válvula de guiado de esta última según la invención ventajosamente pueden estar alojadas en un espacio como máximo igual a aquel del Venturi, si bien que los bloques que reagrupan varios Venturi de comportamientos complementarios pueden hacerse compactos y de fabricación económica.

65

55

60

ES 2 591 256 T3

En una variante de realización del generador de la invención, éste comprende un canal de soplado de aire comprimido dentro del canal de aspiración, este canal de soplado comprendiendo él mismo una válvula de interrupción normalmente cerrada, equipada de un dispositivo de control según el primer objeto de la invención anunciado antes en este documento.

5

Otras características y ventajas de la invención se pondrán de manifiesto a partir de la descripción proporcionada más adelante en este documento de algunos ejemplos de su realización.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

10

Se hará referencia a los dibujos adjuntos entre los cuales:

- la figura 1 es un esquema funcional del dispositivo de control de la invención,
- 15 la figura 2 ilustra un modo de realización del dispositivo según el esquema funcional de la figura 1,
 - la figura 3 ilustra un generador de vacío según la invención,
 - la figura 4 ilustra un detalle de una variante de realización del generador de la figura 3,

20

la figura 5 ilustra un generador de vacío según la invención equipado con un canal de soplado.

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

30

35

40

45

50

55

En la figura 1, se ha representado en U un circuito consumidor de gas comprimido y en P el extremo de una fuente 25 de gas bajo presión. El dispositivo de control 1 según la invención se compone de una válvula de interrupción 2 de dos posiciones y dos orificios, con un estado estable que corresponde a la obturación de la comunicación entre la fuente P y el circuito U (aquella representada), estado estable obtenido y mantenido especialmente por el efecto de un resorte 3 integrado en la válvula.

Esta válvula comprende una cámara de guiado 2a y una cámara de contra guiado 2b cada una estando conectada permanentemente a la fuente de presión P. Más exactamente, la cámara de guiado 2a está alimentada permanentemente con fluido bajo presión por un canal de guiado 4 mientras que la cámara de contra guiado 2b está alimentada permanentemente con fluido bajo presión por un canal de contra guiado 5 sobre el cual está montada una restricción 6 al igual que un filtro 7.

La cámara de contra quiado 2b comprende un canal de purga 8 sobre el cual está montada una electroválvula 9 de dos orificios y dos posiciones de las cuales una posición estable se obtiene bajo la acción de un resorte 10 en ausencia de excitación de la electroválvula, esta posición estable en este caso siendo la posición de obturación del canal de purga 8. En su segunda posición, la electroválvula 9 es desplazada contra el efecto del resorte 10 por un accionamiento electromagnético 11 de modo que en esta segunda posición la electroválvula 9 coloca el canal de purga 8 en el escape 12.

Tal y como se representa, el circuito consumidor de gas comprimido está aislado de la fuente de presión P. Las dos cámaras de guiado 2a y 2b están a la misma presión, aquella de la fuente de fluido bajo presión, y, como las superficies expuestas a esta presión son idénticas, el resorte 3 es preponderante y mantiene la válvula 2 en su posición de obturación. El mismo resultado se obtiene sin resorte si la presión de contra guiado engendra sobre la pieza móvil de la válvula 2 una fuerza superior a la presión de guiado (la misma en la ocasión). Una señal eléctrica de control es transmitida al accionamiento electromagnético 11 de la electroválvula 9 y le hace cambiar de estado. Se produce una purga por lo menos parcial de la cámara de contra guiado 2b con una caída de presión correspondiente. La presión en el interior de la cámara de guiado 2a se hace preponderante, supera el esfuerzo del resorte 3 y la válvula 2 cambia de estado. El circuito consumidor de gas comprimido U está por lo tanto conectado a la fuente P. Durante todo este período, se produce una fuga de gas a través del conducto 5 y la purga 8. Esta fuga sin embargo es reducida por el hecho mismo de la restricción 6 puesto que la sección de paso es muy inferior a aquella del conducto 8. Cuando se deia de alimentar la electroválvula 9, ésta vuelve a su posición de obturación del conducto 8. La presión se restaura en el interior de la cámara de contra guiado 2b que contrarresta, con la fuerza del resorte, aquella de la cámara de guiado 2a para colocar la válvula 2 posición de obturación.

En la figura 2 se ha representado un modo de realización de un dispositivo según el esquema funcional de la figura 1, que comprende un cuerpo 20. Este cuerpo 20 está equipado con un asiento 21 sobre el cual se apoya una 60 chapaleta 22 bajo el efecto de un resorte 23. El asiento 21 está dispuesto en el interior de un inserto colocado en el interior del cuerpo 20 por ejemplo por fijación por grapas, dicho inserto definiendo un elemento de conexión al circuito consumidor de gas comprimido.

Por una contera lateral del cuerpo 20, el dispositivo puede estar conectado por cualquier medio apropiado a la fuente 65 de presión P. Esta fuente de presión alimenta por un conducto 24 una cámara 22a que constituye una cámara de guiado de la chapaleta 22. Esta cámara 22<u>a</u>, por lo tanto el conducto 24, comunica con una cámara 22<u>b</u> de contra guiado de la chapaleta 22 por medio de un canal 25 dispuesto en el interior del cuerpo mismo de la chapaleta 22. Este canal 25 de contra guiado tiene una restricción 26, una garganta 26<u>a</u> de la chapaleta 22 de la cual sale la restricción 26 y un filtro 27 que recubre la garganta 26<u>a</u>. El papel de este filtro es evitar un taponamiento de la restricción por una impureza del fluido bajo presión.

5

10

40

45

50

55

60

65

La cámara de contra guiado 22b comunica con la atmósfera por medio de un canal de purga 28 que atraviesa un asiento 29 que se puede obturar por una chapaleta 30. Esta chapaleta 30 está llevada por el núcleo móvil 31 de una electroválvula 32 y reposa sobre el asiento 29 bajo el efecto de un resorte de retorno 33 colocado entre el núcleo émbolo 31 y un cierre 34 de la electroválvula. Una alimentación eléctrica de esta electroválvula tiende a traer de nuevo el núcleo 31 contra el cierre 34 al encuentro del efecto del resorte 33, despegando así la chapaleta 30 del asiento 29. Es así como se purga la cámara de contra guiado 22b. Se habrá observado en 32a un borne de conexión eléctrica de la electroválvula. El escape de la electroválvula se indica con 35 en la figura 2.

En ausencia de excitación de la electroválvula 32, la presión P reina en el interior de la cámara 22a y en el interior de 15 la cámara 22b. Las superficies de la chapaleta 22 expuestas a la presión de la cámara 22b son superiores a las superficies de esta chapaleta expuesta a la presión de la cámara 22a. Resulta que la chapaleta con la ayuda además del efecto del resorte 23 es adherida contra su asiento 21 y que la comunicación P - U se interrumpe. Una alimentación de la electroválvula 32 levanta la chapaleta 30 de su asiento 29 y coloca la cámara 22b en comunicación con el escape 35. Se produce por lo tanto una caída de presión en el interior de la cámara 22b, 20 aunque persista una alimentación de ésta a través del canal 25 de la restricción 26 cuya sección de paso es muy inferior a aquella del canal 28 del asiento 29. La presión en el interior de la cámara 22a ejerce por lo tanto una fuerza sobre la chapaleta 22 que es capaz de desplazarse ella misma al encuentro del resorte 23 del resorte de retorno. En estas condiciones, la chapaleta 22 es despegada de su asiento 21 y la comunicación se establece entre la fuente de 25 presión P y el canal U consumidor de gas bajo presión. Cuando se deja de alimentar la electroválvula 22, la chapaleta 30 se vuelve a cerrar y la presión en el interior de la cámara 22b se restaura progresivamente y la fuerza del resorte 23 sobre la chapaleta 22 vuelve a ser de nuevo preponderante y conduce a volver a adherir la chapaleta sobre su asiento 21. En estas condiciones, la comunicación P - U está de nuevo interrumpida.

En la figura 3 se encuentran la mayor parte de los elementos ya descritos con respecto a la figura 2 con las mismas referencias, esta figura 3 ilustrando un generador de vacío. En efecto, más allá del asiento 21, el circuito U consumidor de presión está formado por una tobera 40, un "mezclador" 41, término consagrado en el ámbito, alejado de la tobera 40, dando así lugar a un efecto Venturi que tiene como consecuencia la creación de una depresión en el interior de la cámara 42 dispuesta entre la tobera y el mezclador. Esta cámara 42 es el generador de vacío para un canal de aspiración 43, conectado por ejemplo de manera conocida con una ventosa.

El interés del dispositivo de control según la invención aplicado a un generador de vacío es que el consumo de aire comprimido del dispositivo de control no se acciona más que cuando el generador de vacío consume igualmente aire comprimido. Como este consumo por el dispositivo de control es muy inferior al consumo de aire comprimido necesario para engendrar el vacío, este "inconveniente" nacido de este consumo es totalmente aceptable en el caso especial. Además, se observará que el conjunto de las piezas funcionales está alojado en el interior del cuerpo 20 según una dirección única que es aquella de su eje común. Si el cuerpo 20 es de material plástico, puede alojar por fijación por grapas el inserto que forma la tobera 40 y el mezclador 41 por un extremo del cuerpo 20 después la chapaleta 22, el asiento 29 y la electroválvula 32 por el otro extremo abierto de este cuerpo 20. Esta concepción simplifica considerablemente la fabricación del aparato.

En la figura 3 se constata que en ausencia de alimentación de la electroválvula 32, la chapaleta 30 reposa sobre el asiento 29 empujada por el resorte 33 y aísla la cámara de guiado 22b del escape. En esta configuración, la chapaleta 22 es forzada contra su asiento 21 y el Venturi está aislado de la alimentación de gas comprimido. En ciertas aplicaciones, es deseable, es decir útil, que la aspiración realizada por el Venturi perdure especialmente en el momento de un fallo de corriente eléctrica. Hace falta entonces que la cámara de guiado 22b esté en comunicación con el escape en ausencia de alimentación de la electroválvula de guiado. La figura 4 ilustra una electroválvula 50 de este tipo. Está representada no alimentada y la chapaleta 30 está alejada del asiento 29. En efecto, esta chapaleta 30 es solidaria de un núcleo émbolo 51 por un vástago no magnético 51a, que en ausencia de alimentación es alejado del cierre 52 por un resorte 53. La alimentación de la bobina 54 de la electroválvula 50 atrae el núcleo émbolo 51 en la dirección del cierre 52 y adhiere la chapaleta 30 contra el asiento 29. Así, con una electroválvula normalmente abierta, la válvula de interrupción de la alimentación del Venturi está abierta en caso de fallo de la alimentación eléctrica y está cerrada cuando la alimentación eléctrica de la electroválvula 40 está asegurada.

En la figura 5 finalmente, se encuentran la mayor parte de los elementos ya descritos con respecto a la figura 3 con las mismas referencias. El conducto 24 de alimentación de gas comprimido de la cámara de guiado 2<u>a</u> de la chapaleta 22 desemboca igualmente en el interior de una cámara de guiado 60<u>a</u> de una chapaleta 60 que coopera con un asiento 61 a través del cual, cuando la chapaleta 60 está alejada, el gas comprimido puede alcanzar el conducto de aspiración 43.

ES 2 591 256 T3

La chapaleta 60 es idéntica a la chapaleta 22 con una cámara de contra guiado $60\underline{b}$ que puede ser colocada en escape por la abertura de un conducto de purga 62. Esta abertura se obtiene por desplazamiento de una chapaleta 63 de una electroválvula de guiado 64 semejante a la electroválvula de guiado 32 que asegura la comunicación entre la fuente de presión P y los componentes 40 y 41 que definen la cámara de aspiración 42.

Se comprende que por un control secuencial de las electroválvula las 32 y 64, ya sea se crea en el conducto de aspiración 43 una depresión que permita que una ventosa tome a su cargo una pieza, ya sea se crea en el interior de este conducto 43 una sobrepresión que permita expulsar rápidamente la pieza previamente agarrada por la ventosa.

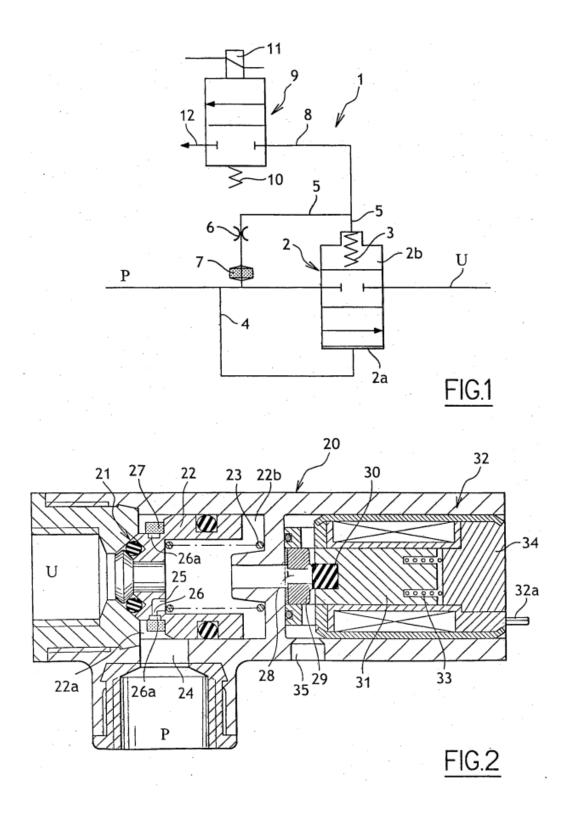
10

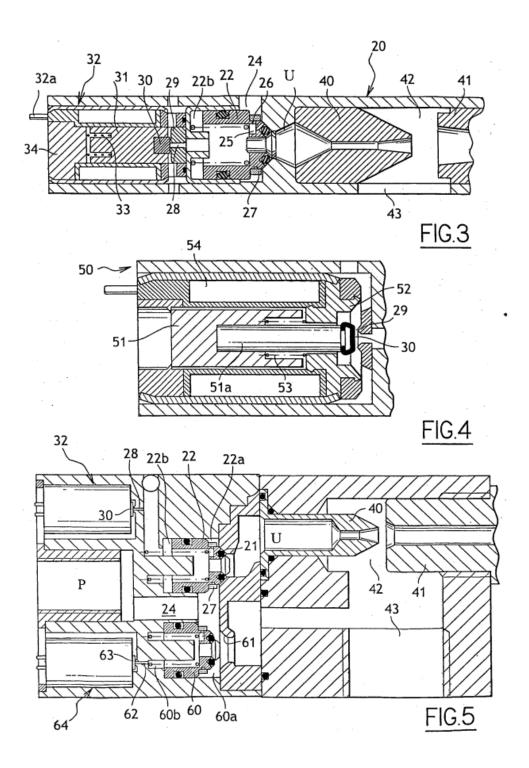
5

REIVINDICACIONES

- 1. Dispositivo de control de la abertura y de la interrupción de un circuito (U) consumidor de gas comprimido que comprende una válvula (2) de interrupción de dos posiciones, normalmente cerrada, dicha válvula (2) de interrupción comprendiendo una cámara de guiado (2a) y una cámara de contra guiado (2b) en comunicación permanente con una fuente (P) de gas comprimido, directamente para la cámara de guiado (2a) y por medio de una restricción (6) para la cámara de contra guiado (2b), esta última comprendiendo una derivación de purga (8) abierta o cerrada por una válvula (9) de guiado de dos orificios y dos posiciones.
- 10 2. Dispositivo según la reivindicación 1 caracterizado por que la válvula de purga (9) del canal de contra guiado (8) es una electroválvula de una posición estable.
 - 3. Dispositivo según la reivindicación 2 caracterizado por que la posición estable es la posición de obturación del canal (8).
 - 4. Dispositivo según la reivindicación 2 caracterizado por que la posición estable de la electroválvula es la posición de abertura de este canal (8).
 - 5. Generador de vacío que comprende en el interior de un cuerpo (20):

5


15


20

25

40

- una tobera (40) y un mezclador (41) coaxiales,
- una cámara de aspiración (42) entre la tobera y el mezclador, que constituye la fuente de vacío en el interior de la cual desemboca un canal de aspiración (43),
- un dispositivo de control según cualquiera de las reivindicaciones anteriores de alimentación de la tobera (40) con gas comprimido,
- caracterizado por que la válvula de interrupción es una válvula de chapaleta (22) normalmente mantenida aplicada sobre un asiento (21), la chapaleta (22) presentando además dos superficies de guiado opuestas, una sometida a la presión que reina en el interior de la cámara (22a) de guiado y la otra opuesta sometida a la presión que reina en el interior de la cámara (22b) de contra guiado de modo que en caso de igualdad de presión, la chapaleta (22) se mantiene aplicada sobre su asiento (21) y por que la derivación de purga (28) comprende un asiento (29) coaxial al asiento (21) de la válvula de interrupción, en frente del cual está montada una chapaleta (30) móvil entre una posición alejada y una posición en contacto con el asiento (29), la chapaleta (30) siendo solidaria del núcleo móvil (31) de un accionamiento electromagnético (32).
 - 6. Generador de vacío según la reivindicación 5 caracterizado por que el núcleo móvil (51) es mantenido separado del asiento (29) en ausencia de alimentación eléctrica del accionamiento (50).
 - 7. Generador de vacío según la reivindicación 5 caracterizado por que el núcleo móvil (51) es mantenido cerca del asiento (29) en ausencia de alimentación eléctrica del accionamiento (32).
- 8. Generador de vacío según cualquiera de las reivindicaciones 5 a 7 que comprende un canal de soplado de aire comprimido en el interior del canal (43) de aspiración, caracterizado con que este canal de soplado comprende una válvula de interrupción (60, 61) nuevamente cerrada, equipada con un dispositivo de control según cualquiera de las reivindicaciones 1 a 3 anteriores.

