

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 595 161

61 Int. Cl.:

A61K 39/00 (2006.01) A61P 43/00 (2006.01) A61K 31/7088 (2006.01) C12N 15/09 (2006.01)

A61K 35/76 (2015.01)
A61K 38/21 (2006.01)
A61K 39/39 (2006.01)
A61K 45/00 (2006.01)
A61K 48/00 (2006.01)
A61P 35/00 (2006.01)
A61P 37/04 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 18.05.2012 PCT/JP2012/062750

(87) Fecha y número de publicación internacional: 22.11.2012 WO12157737

(96) Fecha de presentación y número de la solicitud europea: 18.05.2012 E 12784927 (1)

(97) Fecha y número de publicación de la concesión europea: 03.08.2016 EP 2711017

54 Título: Agente inmunoinductor

(30) Prioridad:

19.05.2011 JP 2011112181

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 28.12.2016

(73) Titular/es:

TORAY INDUSTRIES, INC. (100.0%) 1-1, Nihonbashi-Muromachi 2-chome Chuo-ku, Tokyo, 103-8666, JP

(72) Inventor/es:

KURIHARA, AKIRA Y OKANO, FUMIYOSHI

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Agente inmunoinductor

Campo técnico

La presente invención se relaciona con un novedoso agente inmunoinductor útil como agente terapéutico y/o profiláctico para el cáncer.

10 Técnica antecedente

El cáncer es la causa de muerte más común entre todas las causas de muerte y las terapias que se llevan a cabo para éste por el momento son principalmente el tratamiento quirúrgico, el cual puede llevarse a cabo en combinación con radioterapia y/o quimioterapia. A pesar de los desarrollos de nuevos métodos quirúrgicos y del descubrimiento de nuevos agentes anticancerosos en los últimos años, los resultados del tratamiento de los cánceres no han mejorado mucho hasta ahora, excepto para algunos cánceres. En los últimos años, gracias al desarrollo en la biología molecular y en la inmunología del cáncer, se identificaron antígenos cancerosos reconocidos por linfocitos T citotóxicos que reaccionan con los cánceres, así como los genes que codifican los antígenos cancerosos, y han aumentado las expectativas de las inmunoterapias específicas de antígeno.

20

25

30

35

40

45

15

En inmunoterapia, a fin de reducir efectos secundarios, es necesario que el péptido o la proteína que han de reconocerse como antígeno apenas estén presentes en las células normales y estén presentes de forma específica en las células cancerosas. En 1991, Boon et al, del Instituto Ludwig de Bélgica aislaron un antígeno de melanoma humano MAGE 1, que es reconocido por linfocitos T CD8 positivos, mediante un método de clonación de expresión de ADNc usando una línea celular de cáncer autóloga y linfocitos T reactivos al cáncer (documento no de patente 1). A partir de ahí, se publicó el método SEREX (identificaciones serológicas mediante clonación de expresión recombinante), en el que los antígenos tumorales reconocidos por anticuerpos producidos en el organismo vivo de un paciente con cáncer en respuesta al propio cáncer del paciente se identifican mediante la aplicación de un método de colación de expresión génica (documento de patente 1, documento no de patente 2), y se han aislado varios antígenos de cáncer mediante este método. Han comenzado ensayos clínicos para inmunoterapia de cáncer usando una parte de los antígenos de cáncer como dianas.

Por otra parte, al igual que en los seres humanos, se conocen una serie de tumores tales como tumor de glándula mamaria y carcinoma epidermoide en perros y gatos y también varían mucho en las estadísticas de enfermedades en perros y gatos. Sin embargo, no existe por el momento ningún agente terapéutico, profiláctico o diagnóstico eficaz para los cánceres en perros y gatos. Como los dueños perciben la mayoría de los tumores de perros y gatos sólo cuando han aumentado debido a su avance, su visita al hospital ya es demasiado tarde y, aun cuando reciban escisión quirúrgica o administración de un fármaco humano (un fármaco anticanceroso o similar), suelen morir poco después del tratamiento. En dichas circunstancias, si llegan a estar disponibles agentes terapéuticos y agentes profilácticos para el cáncer, eficaces para perros y gatos, se espera que se desarrollen sus usos para los cánceres de perros.

La subunidad A de tipo 1 de p60 de katanina (KATNAL1, por sus siglas en inglés) se identificó como una proteína que tiene un dominio de unión a microtúbulo (documento de patente 2, documento no de patente 3), Sin embargo, no hay comunicaciones que sugieran que la proteína KATNAL1 tenga actividad inductora de la inmunidad contra células cancerosas y, por tanto, que la proteína sea útil para el tratamiento o profilaxis del cáncer.

Documentos de la técnica anterior

Documentos de patente

50

[Documento de patente 1] US 5698396 B [Documento de patente 2] JP 2004-8216 A

Documentos no de patente

55

65

[Documento no de patente 1] Bruggen P. et al., Science, 254: 1643-1647 (1991) [Documento no de patente 2] Proc. Natl. Acad. Sci. EE.UU., 92: 11810-11813 (1995) [Documento no de patente 3] Rigden DJ. et al., FEBS Lett., 4 de marzo; 583(5): 872-8 (2009)

60 Sumario de la invención

Problemas para resolver mediante la invención

La presente invención se propone descubrir un polipéptido novedoso útil para ser un agente terapéutico y/o profiláctico para el cáncer y proporcionar el polipéptido para su uso en un agente inductor de la inmunidad.

Medios para resolver los problemas

10

15

20

30

35

40

55

65

Mediante el método SEREX, usando una biblioteca de ADNc procedente de testículo de perro y suero obtenido de un perro portador de un tumor, los presentes inventores estudiaron exhaustivamente para obtener un ADNc que codifica una proteína que se une a anticuerpos presentes en suero procedente de un organismo vivo portador de tumor y, basándose en el ADNc, se preparó un polipéptido de subunidad A de tipo 1 de p60 de katanina (de aquí en adelante denominada como KATNAL1) de perro que tiene la secuencia de aminoácido de la SEQ ID NO:2. Además, basándose en genes homólogos humano y ratón del gen obtenido, se prepararon KATNAL1 humano y de ratón que tienen las secuencias de aminoácidos de las SEQ ID NO:4 y 6. Además, los presentes inventores descubrieron que estos polipéptidos de KATNAL1 se expresan de forma específica en tejidos o células de cáncer de mama, tumor cerebral, adenocarcinoma perianal, neuroblastoma, mastocitoma, cáncer de hígado, cáncer de próstata, cáncer de pulmón, cáncer de tiroides y leucemia. Los presentes inventores descubrieron además que la administración del KATNAL1 a un organismo vivo posibilita la inducción de inmunocitos contra KATNAL1 en el organismo vivo y la regresión de un tumor que expresa KATNAL1 en el organismo vivo. Además, los presentes inventores descubrieron que un vector recombinante que puede expresar un polinucleótido que codifica el polipéptido de KATNAL1 o un fragmento del mismo induce un efecto antitumoral contra el cáncer que expresa KATNAL1 en un organismo vivo.

Además, los presentes inventores descubrieron que un polipéptido de KATNAL1 tiene una capacidad de ser presentado por células presentadoras de antígeno para causar activación y el crecimiento de linfocitos T citotóxicos específicos para el péptido (actividad inmunoinductora) y, por tanto, que el polipéptido es útil para terapia y/o profilaxis del cáncer. Además, los presentes inventores descubrieron que las células presentadoras de antígeno que han entrado en contacto con el polipéptido y los linfocitos T que han entrado en contacto con las células presentadoras de antígeno son útiles para terapia y/o profilaxis del cáncer, completando de esa forma la presente invención.

- 25 Por tanto, la presente invención tiene las siguientes características:
 - (1) Un agente inmunoinductor para su uso en un método de tratamiento médico o veterinario, comprendiendo el agente inmunoinductor como principio(s) eficaz(ces) al menos un polipéptido que tiene actividad inmunoinductora seleccionado de entre los polipéptidos (a) a (b) más adelante, y/o un(os) vector(es) recombinante(s) que comprende(n) un(os) polinucleótido(s) que codifica(n) el al menos un polipéptido, el(los) vector(es) recombinante(s) que son capaces de expresar el(los) polipéptido(s) *in vivo:*
 - (a) un polipéptido que tiene secuencias de aminoácidos de una cualquiera de las SEQ ID NO:4. 2. 8. 10 v 12:
 - (b) un polipéptido que tiene una identidad de secuencia de no menos del 85 % con el polipéptido (a).
 - (2) El agente inmunoinductor para su uso de acuerdo con 1, en el que el polipéptido que tiene actividad inmunoinductora es un polipéptido que tiene la secuencia de aminoácidos de las SEQ ID NO:4, 2, 8, 10 o 12.
 - (3) El agente inmunoinductor para su uso de acuerdo con (1) o (2), en el que el método comprende administrar a un paciente (i) el polipéptido o vector, (ii) un linfocito T citotóxico que se une de forma selectiva a un complejo que comprende al menos uno de dicho polipéptido incorporado dentro de una molécula de MHC y/o (iii) una célula presentadora de antígeno que presenta sobre su superficie un complejo que comprende al menos uno de dicho polipéptido incorporado dentro de una molécula de MHC.
 - (4) El agente inmunoinductor para su uso de acuerdo con (1)-(3), el cual es para su uso en el tratamiento o prevención del(los) cáncer(es).
- 45 (5) El agente inmunoinductor para su uso de acuerdo con (4), en el que dicho(s) cáncer(es) es/son cáncer(es) que expresan KATNAL1.
 - (6) El agente inmunoinductor para su uso de acuerdo con (4) o (5), en el que dicho(s) cáncer(es) es/son cáncer de mama, tumor cerebral, adenocarcinoma perianal, neuroblastoma, mastocitoma, cáncer de hígado, cáncer de próstata, cáncer de pulmón, cáncer de tiroides y/o leucemia.
- 50 (7) El agente inmunoinductor para su uso de acuerdo con uno cualquiera de (1)-(6), que comprende además un inmunopotenciador.
 - (8) El agente inmunoinductor para su uso de acuerdo con (7), en el que dicho inmunopotenciador es al menos uno seleccionado del grupo que consiste en adyuvante incompleto de Freund; montanida; poli-l:C y derivados del mismo; oligonucleótidos de CpG, interleucina 12; interleucina 12; interferón α , interferón β ; interferón β ; interferón γ y ligando Flt3.
 - (9) Un método *in vitro* de preparar una célula presentadora de antígeno, comprendiendo el método poner en contacto la célula presentadora de antígeno con dicho al menos un polipéptido seleccionado de entre: (a) un polipéptido que tiene una secuencia de aminoácidos de una cualquiera de las SEQ ID NO:4, 2, 8, 10 y 12; y (b) un polipéptido que tiene una identidad de secuencia de no menos del 85 % con un polipéptido (a).
- 60 (10) Un método *in vitro* de preparar un linfocito T citotóxico, comprendiendo el método cocultivar una célula presentadora de antígeno preparada de acuerdo con el método de (9) con al menos un linfocito T y permitir que prolifere el al menos un linfocito T.
 - (11) Un método *in vitro* de acuerdo con (10), en el que se usa opcionalmente una proporción de célula presentadora de antígeno: linfocito T de 1:1 a 1:100 en el que los ejemplos de cocultivo mencionados posteriormente, la administración del polipéptido usado en la presente invención a un organismo vivo permite la inducción de inmunocitos en el organismo vivo y puede reducirse o hacerse regresar un cáncer que ya ha aparecido. Por lo

tanto, el polipéptido es útil para terapia y/o profilaxis del cáncer.

Breve descripción de los dibujos

15

30

50

- La fig. 1 muestra los patrones de expresión del gen KATNAL1 identificado en tejidos normales, tejidos tumorales y líneas celulares de cáncer de perro. Referencia numérica 1, los patrones de expresión del gen KATNAL1 de perro en diversos tejidos y líneas celulares de perro; Referencia numérica 2, los patrones de expresión del gen GAPDH de perro en diversos tejidos y líneas celulares de perro;
- La fig. 2 muestra los patrones de expresión del gen KATNAL1 identificado en tejidos normales, tejidos tumorales y líneas celulares de cáncer humano. Referencia numérica 3, los patrones de expresión del gen KATNAL1 humano en diversos tejidos y líneas celulares humanas; Referencia numérica 4, los patrones de expresión del gen GAPDH humano en diversos tejidos y líneas celulares humanas.
 - La fig. 3 muestra los patrones de expresión del gen KATNAL1 identificado en tejidos normales, tejidos tumorales y líneas celulares de cáncer de ratón. Referencia numérica 5, los patrones de expresión del gen KATNAL1 de ratón en diversos tejidos y líneas celulares de ratón; Referencia numérica 6, los patrones de expresión del gen GAPDH de ratón en diversos tejidos y líneas celulares de ratón.

Modo óptimo de llevar a cabo la invención

- Los ejemplos del polipéptido contenido en el agente inmunoinductor de la presente invención como principio eficaz incluyen los siguientes. El término "polipéptido" significa una molécula formada por una pluralidad de aminoácidos unidos entre sí mediante enlaces peptídicos e incluye no solo moléculas de polipéptido que tienen grandes números de aminoácidos que las constituyen, sino también moléculas de bajo peso molecular que tienen números pequeños de aminoácidos (oligopéptidos) y proteínas de longitud completa. La presente invención usa las proteínas KATNAL1 de longitud completa que tienen las secuencias de aminoácidos de las SEQ ID NO:2, 4, 8, 10 o 12.
 - (a) un polipéptido que tiene la secuencia de aminoácidos de las SEQ ID NO:4, 2, 8, 10 o 12 del LISTADO DE SECUENCIAS y tiene actividad inmunoinductora.
 - (b) un polipéptido, polipéptido que tiene una identidad de secuencia de no menos del 85 % con el polipéptido (a) y una actividad inmunoinductora.
- En la presente invención, la expresión "que tiene una secuencia de aminoácidos" significa que los restos de aminoácidos están dispuestos en dicho orden. Por lo tanto, por ejemplo, "polipéptido que tiene la secuencia de aminoácidos de la SEQ ID NO:2" significa polipéptido que tiene la secuencia de aminoácidos de Met Asn Leu Ala ... (corte)... Glu Phe Gly Ser Ala que se muestra en la SEQ ID NO:2, polipéptido que tiene un tamaño de 490 restos de aminoácidos. Además, por ejemplo, "polipéptido que tiene la secuencia de aminoácidos de la SEQ ID NO:2" puede denominarse como "polipéptido de SEQ ID NO:2" para abreviar. Esto también es pertinente para la expresión "que tiene una secuencia de bases". En este caso, el término "que tiene" puede sustituirse por la expresión "compuesto de"
- 40 Tal como se usa en el presente documento, la expresión "actividad inmunoinductora" significa una capacidad de inducir inmunocitos que segregan citocinas tales como interferón en un organismo vivo.
- Puede confirmarse si el polipéptido tiene o no una actividad inmunoinductora usando, por ejemplo, el conocido ensayo ELISPOT. Más específicamente, por ejemplo, tal como se describe en los ejemplos a continuación, se obtienen células tales como células mononucleares de sangre periférica a partir de un organismo vivo sometido a administración del polipéptido cuya actividad inmunoinductora se va a evaluar y las células obtenidas se cocultivan después con el polipéptido, seguido de medición de la (s) cantidad(es) de una(s) citocina(s) producidas por las células usando un(os) anticuerpo(s) específico(s), posibilitando de esa forma la medición del número de inmunocitos entre las células. Mediante esto, es posible la evaluación de la actividad inmunoinductora.
- Como alternativa, tal como se describe en los ejemplos que se mencionan posteriormente, la administración del polipéptido recombinante de cualquiera de (a) o (b) descrito anteriormente a un animal portador de un tumor permite la regresión del tumor mediante su actividad inmunoinductora. Por lo tanto, la actividad inmunoinductora anterior puede evaluarse también como una capacidad de suprimir el crecimiento de células cancerosas o de causar la reducción o desaparición de un tejido canceroso (tumor) (de aquí en adelante denominada como "actividad antitumoral"). La actividad antitumoral de un polipéptido puede confirmarse mediante, por ejemplo, tal como se describe de forma más específica en los ejemplos a de más adelante, la observación de si un tumor se reduce o no cuando el polipéptido se administró realmente a un organismo vivo portador de un tumor.
- Como alternativa, la actividad antitumoral de un polipéptido puede evaluarse también mediante la observación de si los linfocitos T estimulados con el polipéptido (esto es, linfocitos T puestos en contacto con células presentadoras de antígeno que presentan el polipéptido) muestran o no una actividad citotóxica contra las células tumorales *in vitro*. El contacto entre los linfocitos T y las células presentadoras de antígeno puede llevarse a cabo mediante su cocultivo en un medio líquido, tal como se menciona más adelante. La medición de la actividad citotóxica puede llevarse a cabo mediante, por ejemplo, el conocido método llamado ensayo de liberación de ⁵¹Cr descrito en Int. J. Cancer, 58: pág. 317, 1994. En los casos en los que el polipéptido va a usarse para terapia y/o profilaxis del cáncer, la evaluación de la

capacidad inmunoinductora se lleva a cabo preferentemente usando la actividad antitumoral como índice, aunque el índice no se limita a ésta.

Cada una de las secuencias de aminoácidos de las SEC ID NO: 4, 8, 10 y 12 del LISTADO DE SECUENCIAS desvelado en la presente invención es una secuencia de aminoácidos de la proteína KATNAL1 que se ha aislado, mediante el método SEREX, usando una biblioteca de ADNc procedente de testículo de perro y suero obtenido de un perro portador de un tumor, como un polipéptido que se une de forma específica a un anticuerpo existente en el suero de un perro portador de un tumor, o un factor homólogo del polipéptido en el ser humano, vaca, caballo o pollo (véase el ejemplo 1). La KATNAL1 humana, que es el factor homólogo humano de KATNAL1 de perro, tiene una identidad de secuencia del 95 % en cuanto a la secuencia de bases y del 98 % en cuanto a la secuencia de aminoácidos; la KATNAL1 bovina, que es el factor homólogo bovino, tiene una identidad de secuencia del 91 % en cuanto a la secuencia de bases y del 97 % en cuanto a la secuencia de la secuencia de bases y del 88 % en cuanto a la secuencia de aminoácidos; y la KATNAL1 de pollo, que es el factor homólogo de pollo, tiene una identidad de secuencia del 81 % en cuanto a la secuencia de bases y del 90 % en cuanto a la secuencia de aminoácidos.

10

15

20

25

30

35

65

El polipéptido (a) es un polipéptido que tiene la secuencia de aminoácidos de las SEQ ID NO:2, 4, 8, 10 o 12 y tiene actividad inmunoinductora. El polipéptido es más preferentemente un polipéptido compuesto de una secuencia de aminoácidos que tiene una identidad de secuencia de no menos del 85 % con la secuencia de aminoácidos de la SEQ ID NO:4 y el polipéptido especialmente preferible tiene la secuencia de aminoácidos de las SEC ID Nº: 2. 4, 8, 10 o 12. Tal como se conoce en la técnica, un polipéptido que tiene no menos de alrededor de 7 restos de aminoácidos puede ejercer su antigenicidad e inmunogenicidad. Por lo tanto, un polipéptido que tiene no menos de alrededor de 7 restos de aminoácidos consecutivos de la secuencia de aminoácidos de las SEQ ID NO:2 o 4 puede tener una actividad inmunoinductora, de modo que el polipéptido puede usarse para la preparación del agente inmunoinductor.

Como principio de inducción inmunitaria mediante administración de un polipéptido antigénico frente al cáncer, se conoce el siguiente procedimiento: se incorpora un polipéptido dentro de una célula presentadora de antígeno y después se degrada en fragmentos más pequeños mediante peptidasas de la célula, seguido de la presentación sobre la superficie de la célula. Los fragmentos son reconocidos por un linfocito T citotóxico o similar que destruye de forma selectiva a las células presentadoras de antígeno. El tamaño de los polipéptidos que se presentan sobre la superficie de la célula presentadora de antígeno es relativamente pequeño y de alrededor de 7 a 30 aminoácidos. Por lo tanto, desde el punto de vista de la presentación del polipéptido sobre la superficie de la célula presentadora de antígeno, un modo preferido del polipéptido (a) descrito anteriormente es un polipéptido compuesto de alrededor de 7 a 30 aminoácidos consecutivos de la secuencia de aminoácidos de las SEC ID NO:2, 4, 8, 10 o 12 y, más preferentemente, polipéptido compuesto de alrededor de 8 a 30 aminoácidos o de alrededor de 9 a 30 aminoácidos es suficiente como polipéptido (a). En algunos casos, estos polipéptidos relativamente pequeños se presentan directamente sobre las células presentadoras de antígeno sin incorporarse dentro de las células presentadoras de antígeno.

Además, un polipéptido incorporado dentro de una célula presentadora de antígeno se escinde en sitios aleatorios mediante peptidasas de la célula para dar diversos fragmentos de polipéptido, los cuales se presentan después sobre la superficie de la célula presentadora de antígeno. Por lo tanto, la administración de un polipéptido grande tal como la región de longitud completa de las SEQ ID NO:2, 4, 8, 10 o 12 causa inevitablemente producción de fragmentos de polipéptido por la degradación en la célula presentadora de antígeno, fragmentos que son eficaces para la inmunoinducción por medio de la célula presentadora de antígeno. Por lo tanto, también para la inmunoinducción por medio de células presentadoras de antígeno, puede usarse preferentemente un polipéptido grande y el polipéptido puede estar compuesto de no menos de 30, preferentemente no menos de 100, preferentemente no menos de 200, aún más preferentemente no menos de 250 aminoácidos. El polipéptido puede estar compuesto aún más preferentemente de la región de longitud completa de las SEQ ID NO:2, 4, 8, 10 o 12.

50 El polipéptido (b) es el mismo polipéptido que el polipéptido (a), excepto porque un número pequeño de restos de aminoácidos (preferentemente uno o varios) se sustituyen, eliminan o insertan, el cual tiene una identidad de secuencia de no menos del 90 %, preferentemente no menos del 95 %,, más preferentemente no menos del 98 %, aún más preferentemente no menos del 99 % o no menos del 99.5 % con la secuencia original y tiene una actividad inmunoinductora Se conoce bien en la técnica que, en general, hay casos en los que un antígeno proteico conserva 55 casi la misma antigenicidad que la proteína original aun cuando la secuencia de aminoácidos de la proteína se modifique de modo que un número pequeño de restos de aminoácidos se sustituyan, eliminen o inserten, Por lo tanto, como el polipéptido (b) también puede ejercer una actividad inmunoinductora, puede usarse para la preparación del agente inmunoinductor para su uso de acuerdo con la presente invención. Además, el polipéptido (b) también es preferentemente un polipéptido que tiene la misma secuencia de aminoácidos que la secuencia de aminoácidos de las 60 SEQ ID NO:2, 4, 8, 10 o 12, excepto porque uno o varios restos de aminoácidos se sustituyen, eliminan y/o insertan. Tal como se usa en el presente documento, el término "varios" significa un número entero de 2 a 10, preferentemente un número entero de 2 a 6, más preferentemente un número entero de 2 a 4.

Tal como se usa en el presente documento, la expresión "identidad de secuencia" de secuencias de aminoácidos o secuencias de bases significa el valor calculado alineando dos secuencias de aminoácidos (o secuencias de bases) para comparar, de modo que el número de restos de aminoácidos (o bases) emparejados entre las secuencias de

aminoácidos (o secuencias de bases) sea máximo, y dividiendo el número de restos de aminoácidos emparejados (o el número de bases emparejadas) por el número total de restos de aminoácidos (o el número total de bases), cuyo valor se representa como un porcentaje. Cuando se lleva a cabo el alineamiento, se insertan uno o más huecos dentro de una o las dos secuencias para comparar según sea necesario. Dicho alineamiento de secuencias puede llevarse a cabo usando un programa bien conocido, tal como BLAST, FASTA o CLUSTAL W. Cuando se insertan uno o más huecos, el número total de restos de aminoácidos descrito anteriormente es el número de restos calculado contando un hueco como un resto de aminoácido. Cuando el número total de restos de aminoácidos así contados es diferente entre las dos secuencias para comparar, la identidad de secuencia (%) se calcula dividiendo el número de restos de aminoácidos emparejados por el número total de restos de aminoácidos de la secuencia más larga.

10

15

Los 20 tipos de aminoácidos que constituyen proteínas de origen natural pueden clasificarse en grupos, en cada uno de los cuales se comparten propiedades similares, por ejemplo, en aminoácidos neutros con cadenas laterales que tienen baja polaridad (Gly, Ile, Val, Leu, Ala, Met, Pro), aminoácidos neutros que tienen cadenas laterales hidrófilas (Asn, Gln, Thr, Ser, Tyr, Cys), aminoácidos ácidos (Asp, Glu), aminoácidos básicos (Arg, Lys, His) y aminoácidos aromáticos (Phe, Tyr, Trp). Se sabe que, en muchos casos, la sustitución de un aminoácido dentro del mismo grupo no cambia las propiedades del polipéptido. Por lo tanto, en los casos en los que se sustituye un resto de aminoácido en el polipéptido (a) de la presente invención, la probabilidad de que pueda conservarse la actividad inmunoinductora puede aumentarse llevando a cabo la sustitución dentro del mismo grupo, lo cual se prefiere.

20

El polipéptido (c) es un polipéptido que comprende el polipéptido (a) o (b) como una secuencia parcial y tiene una actividad inmunoinductora. Esto es, el polipéptido (c) es un polipéptido en el cual se añaden uno o más aminoácidos o uno o más polipéptidos a uno o ambos extremos del polipéptido (a) o (b) y tiene una actividad inmunoinductora. Dicho polipéptido también puede usarse para la preparación del agente inmunoinductor para su uso de acuerdo con la presente invención.

25

Los polipéptidos descritos anteriormente pueden sintetizarse mediante, por ejemplo, un método de síntesis química tal como el método Fmoc (método del fluorenilmetiloxicarbonilo) o el método tBoc (método del t-butiloxicarbonilo). Además, pueden sintetizarse mediante métodos convencionales usando diversos tipos de sintetizadores de péptidos disponibles comercialmente. Además, el polipéptido de interés puede obtenerse usando técnicas de ingeniería genética conocidas preparando un polinucleótido que codifica el polipéptido e incorporando el polinucleótido dentro de un vector de expresión, seguido de la introducción del vector resultante dentro de una célula anfitriona y permitiendo que la célula anfitriona produzca el polipéptido en ella.

35

40

45

50

30

El polinucleótido que codifica el polipéptido anterior puede prepararse fácilmente mediante una técnica de ingeniería genética conocida o un método convencional usando un sintetizador de ácido nucleico disponible comercialmente. Por ejemplo, el ADN que tiene la secuencia de bases de la SEQ ID NO:1 puede prepararse llevando a cabo una PCR usando un ADN cromosómico o una biblioteca de ADNc de perro como molde y un par de cebadores diseñados de modo que la secuencia de bases de SEQ ID NO:1 pueda amplificarse con ellos. El ADN que tiene la secuencia de bases de la SEQ ID NO:3 puede prepararse de forma similar usando un ADN cromosómico o una biblioteca de ADNc humano como molde. Las condiciones de reacción para la PCR pueden ajustarse apropiadamente y los ejemplos de las condiciones de reacción incluyen, pero no se limitan a, repetir el proceso de reacción de 94 °C durante 30 segundos (desnaturalización), 55 °C durante 30 segundos a 1 minuto (hibridación) y 72 °C durante 2 minutos (elongación) durante, por ejemplo, 30 ciclos, seguidos de reacción a 72 °C durante 7 minutos. Además, el ADN deseado puede aislarse preparando una sonda o cebador apropiados basándose en la información de la secuencia de bases o la secuencia de aminoácidos de las SEQ ID NO:1 o 3 del LISTADO DE SECUENCIAS de la presente descripción y explorando una biblioteca de ADNc de perro, humana o similar usando la sonda o cebador. La biblioteca de ADNc se prepara preferentemente a partir de células, un órgano o un tejido que expresan la proteína de las SEQ ID NO:2 o 4. Las operaciones descritas anteriormente tales como preparación de la sonda o cebador, construcción de la biblioteca de ADNc, exploración de la biblioteca de ADNc y clonación del gen de interés son conocidas por los expertos en la técnica y pueden llevarse a cabo de acuerdo con los métodos descritos en Molecular Cloning, segunda edición, Current Protocols in Molecular Biology; y/o similares. A partir del ADN así obtenido, puede obtenerse ADN que codifica el polipéptido (a). Además, como se conocen los codones que codifican cada aminoácido, la secuencia de bases de un polinucleótido que codifica una secuencia de aminoácidos específica puede especificarse fácilmente. Por lo tanto, como la secuencia de bases de un polinucleótido que codifica el polipéptido (b) o el polipéptido (c) también puede especificarse fácilmente, dicho polinucleótido también puede sintetizarse fácilmente usando un sintetizador de ácido nucleico disponible comercialmente de acuerdo con un método convencional.

55

Las células anfitrionas no se restringen, siempre y cuando las células puedan expresar el polipéptido descrito anteriormente y los ejemplos de células incluyen, pero no se limitan a, células procariotas, tales como *Escherichia coli*; y células eucariotas tales como células cultivadas de mamífero incluyendo células de riñón de mono COS1 y células de ovario de hámster chino CHO; levadura en gemación; levadura en fisión; células de gusano de seda y células de huevos de *Xenopus laevis*.

65

60

En los casos en los que se usan células procariotas como células anfitrionas, se usa un vector de expresión que contiene un origen que posibilita la replicación del vector en una célula procariota, un promotor, un sitio de unión a ribosomas, un sitio de clonación de ADN, un terminador y/o similar. Los ejemplos del vector de expresión para *E. coli*

incluyen el sistema pUC, pBluescriptII, sistema de expresión pET y sistema de expresión pGEX. Incorporando un ADN que codifica el polipéptido anterior dentro de dicho vector de expresión y transformando células anfitrionas procariotas con el vector, seguido de cultivo de los transformantes resultantes, el polipéptido codificado por el ADN puede expresarse en las células anfitrionas procariotas. En tal caso, el polipéptido también puede expresarse como una proteína de fusión con otra proteína.

En los casos en los que se usan células eucariotas como células anfitrionas, se usa un vector de expresión para células eucariotas, que comprende un promotor, sitio de corte y empalme, sitio de adición de poli (A) y/o similar como el vector de expresión. Los ejemplos de dicho vector de expresión incluyen pKA1, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, vector de VEB pRS, pcDNA3, pMSG y pYES2. De forma similar al caso anterior, incorporando un ADN que codifica el polipéptido anterior dentro de dicho vector de expresión y transformando células anfitrionas eucariotas con el vector, seguido de cultivo de los transformantes resultantes, el polipéptido codificado por el ADN puede expresarse en las células anfitrionas eucariotas. En los casos en los que se usa pIND/V5-His, pFLAG- CMV-2, pEGFP-N1, pEGFP-C1 o similar como el vector de expresión, el polipéptido anterior puede expresarse como una proteína de fusión que comprende un marcador tal como un marcador de His, un marcador FLAG, un marcador myc, un marcador HA o GFP

10

15

20

25

30

35

40

45

50

60

Para la introducción del vector de expresión dentro de las células anfitrionas, puede usarse un método bien conocido tal como electroporación, el método del fosfato cálcico, el método de los liposomas o el método de DEAE-dextrano.

El aislamiento y purificación del polipéptido de interés a partir de las células anfitrionas puede llevarse a cabo mediante una combinación de operaciones de separación conocidas. Los ejemplos de las operaciones de separación conocidas incluyen, pero no se limitan a, tratamiento con un desnaturalizante tal como urea o con un tensioactivo; tratamiento con ultrasonido; digestión enzimática; expulsión salina o precipitación fraccionada del disolvente; diálisis, centrifugación, ultrafiltración, filtración en gel, SDS-PAGE; isoelectroenfoque; cromatografía de intercambio iónico; cromatografía hidrófoba; cromatografía de afinidad; y cromatografía de fase inversa.

Los polipéptidos obtenidos mediante los métodos anteriores también incluyen, tal como se ha mencionado anteriormente, aquellos en forma de una proteína de fusión con otra proteína arbitraria. Los ejemplos de dichos polipéptidos incluyen proteínas de fusión con glutatión S-transferasa (GST) y proteínas de fusión con un marcador de His. Dicho polipéptido en forma de una proteína de fusión también se incluye dentro del alcance de la presente invención como el polipéptido (c) descrito anteriormente. Además, en algunos casos, el polipéptido expresado en una célula transformada se modifica de diversas formas en la célula después de la traducción. Dicho polipéptido modificado postraduccionalmente también se incluye dentro del alcance de la presente invención siempre y cuando tenga una actividad inmunoinductora. Los ejemplos de dicha modificación postraduccional incluyen: eliminación de metionina N-terminal; acetilación N-terminal; glucosilación; degradación limitada por una proteasa intracelular; miristoilación; isoprenilación y fosforilación.

Tal como se describe de forma más concreta en los ejemplos que se mencionan más adelante, la administración del polipéptido que tiene una actividad inmunoinductora a un organismo vivo portador de un tumor posibilita la regresión de un tumor ya existente. Por lo tanto, el agente inmunoinductor para su uso de acuerdo con la presente invención puede usarse como como agente terapéutico y/o profiláctico para el cáncer. Además, el polipéptido que tiene una actividad inmunoinductora puede usarse para un método de terapia y/o profilaxis del cáncer mediante inmunoinducción.

Tal como se usa en el presente documento, los términos "tumor" y "cáncer" significan una neoplasia maligna y se usan indistintamente.

En este caso, el cáncer que se va a tratar no se restringe, siempre y cuando el gen que codifica el polipéptido de la SEQ ID NO:KATNAL1 se exprese en el cáncer y el cáncer sea preferentemente cáncer de mama, tumor cerebral, adenocarcinoma perianal, neuroblastoma, mastocitoma, cáncer de hígado, cáncer de próstata, cáncer de pulmón, cáncer de tiroides o leucemia.

El animal objeto es preferentemente un mamífero, más preferentemente un mamífero tal como un primate, un animal de compañía, un animal doméstico o un animal de deporte, en especial, preferentemente un ser humano, perro o gato.

La vía de administración del agente inmunoinductor para su uso de acuerdo con la presente invención a un organismo vivo puede ser, bien administración oral, o bien administración parenteral y es preferentemente administración parenteral tal como administración intramuscular, administración subcutánea, administración intravenosa o administración intraarterial. En los casos en los que el agente inmunoinductor se usa para terapia del cáncer, puede administrarse a un ganglio linfático regional cerca del tumor que se va a tratar, tal como se describe en los ejemplos a continuación, a fin de potenciar su actividad anticancerosa. La dosis puede ser cualquier dosis siempre y cuando la dosis sea eficaz para la inmunoinducción y, por ejemplo, en los casos en los que el agente se usa para terapia y/o profilaxis del cáncer, la dosis puede ser una eficaz para terapia y/o profilaxis del cáncer. La dosis eficaz para terapia y/o profilaxis del cáncer se selecciona apropiadamente dependiendo del tamaño, síntomas y similares del tumor y la dosis eficaz es habitualmente de 0,0001 µg a 1000 µg, preferentemente de 0,001 µg a 1000 µg por animal objeto por día. El

agente puede administrarse una vez, o de forma dividida en varias veces. El agente se administra preferentemente de forma dividida en varias veces, cada varios días a varios meses. Tal como se muestra concretamente en los ejemplos más adelante, el agente inmunoinductor para su uso de acuerdo con la presente invención puede causar regresión de un tumor que ya ha aparecido. Por lo tanto, como el agente también puede ejercer su actividad anticancerosa contra un número pequeño de células cancerosas en un estadio precoz, el desarrollo o recidiva del cáncer pueden prevenirse usando el agente antes del desarrollo del cáncer o después de la terapia para el cáncer. Esto es, el agente inmunoinductor de la presente invención es eficaz tanto para la terapia como para la profilaxis del cáncer.

El agente inmunoinductor para su uso de acuerdo con la presente invención puede contener solamente un polipéptido o puede formularse mezclándose de la forma apropiada con un aditivo tal como un excipiente, diluyente o vehículo farmacéuticamente aceptable adecuado para cada modo de administración. Los métodos y aditivos de formulación que pueden usarse se conocen bien en el campo de la formulación de los productos farmacéuticos y puede usarse cualquiera de los métodos o aditivos. Los ejemplos específicos de los aditivos incluyen, pero no se limitan a, diluyentes tales como soluciones de tampón fisiológicas; vehículos tales como azúcar, lactosa, almidón de maíz, fosfato de calcio, sorbitol y glicina; aglutinantes tales como jarabe, gelatina, goma arábiga, sorbitol, cloruro de polivinilo y tragacanto; y lubricantes tales como estearato de magnesio, polietilenglicol, talco y sílice. Los ejemplos de la formulación incluyen preparaciones orales tales como comprimidos, cápsulas, gránulos, jarabes; y otras formulaciones tales como inhalantes, soluciones para inyección, supositorios y soluciones. Estas formulaciones pueden prepararse mediante métodos de producción conocidos comúnmente.

20

10

15

El agente inmunoinductor para su uso de acuerdo con la presente invención puede usarse en combinación con un inmunopotenciador capaz de potenciar la respuesta inmunitaria en un organismo vivo. El inmunopotenciador puede estar contenido en el agente inmunoinductor de la presente invención o administrarse como una composición separada a un paciente en combinación con el agente inmunoinductor de la presente invención.

25

30

35

40

45

50

Los ejemplos del inmunopotenciador incluyen adyuvantes. Los adyuvantes pueden potenciar la respuesta inmunitaria proporcionando un reservorio de antígeno (extracelularmente o dentro de los macrófagos), activando macrófagos y estimulando grupos específicos de linfocitos, potenciando de esa forma la respuesta inmunitaria y, por tanto, la acción anticancerosa. Por lo tanto, especialmente en los casos en los que el agente inmunoinductor para su uso de acuerdo con la presente invención se usa para terapia y/o profilaxis del cáncer, el agente inmunoinductor comprende preferentemente un adyuvante, además del polipéptido descrito anteriormente, como principio eficaz. Se conocen bien en la técnica numerosos tipos de adyuvantes y puede usarse cualquiera de estos adyuvantes. Los ejemplos específicos de los adyuvantes incluyen MPL (SmithKline Beecham), homólogos de lipopolisacárido Re 595 de Salmonella minnesota obtenidos después de la purificación e hidrólisis ácida del lipopolisacárido; QS21 (SmithKline Beecham), saponina QA-21 pura, purificada a partir de un extracto de Quillja saponaria; DQS21 descrito en la solicitud PCT WO 96/33739 (SmithKline Beecham); QS-7, QS-17, QS-18 y QS-L1 (So y 10 colaboradores, "Molecules and cells", 1997, vol. 7, págs. 178-186); adyuvante incompleto de Freund; adyuvante completo de Freund; vitamina E montanida; alumbre; oligonucleótidos de CpG (véase, por ejemplo, Kreig y 7 colaboradores, Nature, vol. 374, págs. 546-549); poli-I:C y derivados del mismo (p. ej., poly ICLC) y diversas emulsiones de agua en aceite preparadas a partir de aceites biodegradables, tales como escualeno y/o tocoferol. Entre estos, se prefieren el adyuvante incompleto de Freund; montanida; poli-I:C y derivados del mismo; oligonucleótidos de CpG. La proporción de mezcla entre el adyuvante descrito anteriormente y el polipéptido es normalmente de alrededor de 1:10 a 10:1, preferentemente de alrededor de 1:5 a 5:1, más preferentemente de alrededor de 1:1. Sin embargo, el adyuvante no se limita a los ejemplos descritos anteriormente y los adyuvantes conocidos en la técnica distintos de los descritos anteriormente también pueden usarse cuando se administra el agente inmunoinductor de la presente invención (véase, por ejemplo, Goding, "Monoclonal Antibodies: Principles and Practice, 2ª edición", 1986). Los métodos de preparación de mezclas o emulsiones para un polipéptido y un adyuvante son bien conocidos para los expertos en la técnica de la vacunación.

55

Además, adicionalmente a los adyuvantes descritos anteriormente, pueden usarse factores que estimulan la respuesta inmunitaria del sujeto como el inmunopotenciador descrito anteriormente. Por ejemplo, pueden usarse diversas citocinas que tienen una propiedad de estimular linfocitos y/o células presentadoras de antígeno como el inmunopotenciador en combinación con el agente inmunoinductor para su uso de acuerdo con la presente invención. Son conocidas para los expertos en la técnica una serie de dichas citocinas capaces de potenciar la respuesta inmunitaria y los ejemplos de citocinas incluyen, pero no se limitan a, interleucina 12 (IL-12), GM-CSF, IL-18, interferón α , interferón β , interferón pueden usarse como el inmunopotenciador descrito anteriormente y pueden estar contenidos en el agente inmunoinductor para su uso de acuerdo con la presente invención, o pueden prepararse como una composición separada para administrarse al paciente en combinación con el agente inmunoinductor para su uso de acuerdo con la presente invención.

60

Poniendo el polipéptido descrito anteriormente en contacto con células presentadoras de antígeno *in vitro*, puede hacerse que las células presentadoras de antígeno presenten el polipéptido. Esto es, los polipéptidos (a) a (c) descritos anteriormente pueden usarse como agentes para tratar las células presentadoras de antígeno. Los ejemplos de las células presentadoras de antígeno que pueden usarse preferentemente incluyen células dendríticas y linfocitos B que tienen moléculas de MHC de clase I. Se han identificado diversas moléculas de MHC de clase I y son bien conocidas. Las moléculas de MHC del ser humano se llaman HLA. Los ejemplos de moléculas HLA de clase I incluyen

HLA-A, HLA-B y HLA-C, de forma más específica, HLA-A1, HLA-A0201, HLA-A0204, HLA-A0205, HLA-A0206, HLA-A0207, HLA-A11, HLA-A24, HLA-A31, HLA-A6801, HLA-B7, HLA-B8, HLA-B2705, HLA-B37, HLA-Cw0401 y HLA-Cw0602.

Las células dendríticas o linfocitos B que tienen moléculas de MHC de clase I pueden prepararse a partir de sangre periférica mediante un método bien conocido. Por ejemplo, pueden inducirse células dendríticas específicas de tumor induciendo células dendríticas de médula ósea, cordón umbilical o sangre periférica del paciente usando factor estimulante de colonias de granulocitos y macrófagos (GM-CSF, por sus siglas en inglés) e IL-3 (o IL-4) y añadiendo después un péptido relacionado con tumor al sistema de cultivo.

10

15

20

25

30

35

Administrando una cantidad eficaz de dichas células dendríticas, puede inducirse una respuesta deseada para la terapia de un cáncer. Como células, pueden usarse médula ósea o cordón umbilical donados por un individuo sano, o médula ósea, sangre periférica o similar del paciente. Cuando se usan células autólogas del paciente, puede conseguirse una alta seguridad y se espera evitar efectos secundarios graves. La sangre periférica o la médula ósea pueden ser cualquiera de muestra fresca, muestra refrigerada y muestra crioconservada. Al igual que para la sangre periférica, puede cultivarse la sangre total o pueden separarse y cultivarse los componentes leucocitarios, y lo último se es más eficaz y, por tanto, se prefiere. Además, entre los componentes leucocitarios, pueden separarse las células mononucleares. En los casos en los que las células se originan a partir de médula ósea o sangre de cordón umbilical, pueden cultivarse todas las células que constituyen la médula ósea, o pueden separarse de ellas y cultivarse las células mononucleares. La sangre periférica, los componentes leucocitarios de la misma y las células de la médula ósea contienen células mononucleares, citoblastos hematopoyéticos y células dendríticas inmaduras, a partir de las cuales se originan células dendríticas y también células CD4 positivas y similares. El método de producción para la citocina no se restringe y puede emplearse una citocina de origen natural o recombinante o similar, siempre y cuando se hayan confirmado su seguridad y actividad fisiológica. Preferentemente, se usa una preparación con calidad garantizada para uso médico en la cantidad mínima necesaria. La concentración de la(s) citocina(s) que se ha de añadir no se restringe, siempre y cuando se induzcan las células dendríticas a la concentración y, habitualmente, la concentración total de la(s) citocina(s) es preferentemente de alrededor de 10 a 1000 ng/ml, más preferentemente de alrededor de 20 a 500 ng/ml. El cultivo puede llevarse a cabo usando un medio bien conocido usado habitualmente para cultivo de leucocitos. La temperatura de cultivo no se restringe, siempre y cuando la proliferación de leucocitos sea posible a la temperatura, y la más preferida es una temperatura de alrededor de 37 °C, que es la temperatura corporal del ser humano. El entorno atmosférico durante el cultivo no se restringe, siempre y cuando la proliferación de los leucocitos sea posible en el entorno, y el cultivo se lleva a cabo preferentemente en un flujo de CO2.al 5 %. El periodo de cultivo no se restringe, siempre y cuando se induzcan un número necesario de las células, y habitualmente es de 3 días a 2 semanas. Al igual que para los aparatos usados para la separación y cultivo de las células, pueden emplearse aparatos apropiados, preferentemente aquellos cuya seguridad para la aplicación en usos médicos se ha confirmado y cuyas operaciones son estables y simples. En particular, los ejemplos de aparato de cultivo celular incluyen no solo recipientes generales como placas de Petri, recipientes y frascos, sino también recipientes de tipo capa, recipientes multifásicos, frascos rotatorios, frascos de agitación, recipientes de cultivo de tipo bolsa y columnas de fibra hueca.

40

45

50

El propio método que va a usarse para poner el polipéptido descrito anteriormente en contacto con las células presentadoras de antígeno *in vitro* pueden ser de los bien conocidos en la técnica. Por ejemplo, las células presentadoras de antígeno pueden cultivarse en un medio de cultivo que contiene el polipéptido descrito anteriormente. La concentración del péptido en el medio no se restringe, y es habitualmente de alrededor de 1 a 100 μg/ml, preferentemente de alrededor de 5 a 20 μg/ml. La densidad celular durante el cultivo no se restringe y es habitualmente de alrededor de 10³ a 10⁵ células/ml, referentemente de alrededor de 5x10⁴ a 5x10⁶ células/ml. El cultivo se lleva a cabo preferentemente de acuerdo con un método convencional a 37 °C en atmósfera de CO₂ al 5 %. La longitud máxima del péptido que puede presentarse sobre la superficie de las células presentadoras de antígenos es habitualmente de alrededor de 30 restos de aminoácidos. Por lo tanto, en los casos en los que las células presentadoras de antígeno se ponen en contacto con el polipéptido *in vitro*, el polipéptido puede prepararse de modo que su longitud no sea de más de 30 restos de aminoácidos, aunque la longitud no se restringe.

55

Cultivando las células presentadoras de antígeno en coexistencia con el polipéptido descrito anteriormente, el polipéptido se incorpora dentro de las moléculas de MHC de las células presentadoras de antígeno y se presenta sobre la superficie de las células presentadoras de antígeno. Por lo tanto, usando el polipéptido descrito anteriormente, pueden prepararse células presentadoras de antígeno aisladas que contienen el complejo entre el polipéptido y la molécula de MHC. Dichas células presentadoras de antígenos pueden presentar el polipéptido contra los linfocitos T *in vivo* o *in vitro*, para inducir y permitir la proliferación de linfocitos T citotóxicos específicos para el polipéptido.

Poniendo en contacto las células presentadoras de antígeno así preparadas que tienen el complejo entre el polipéptido descrito anteriormente y la molécula de MHC con los linfocitos T *in vitro*, pueden inducirse linfocitos T citotóxicos específicos para el polipéptido y permitir que proliferen. Esto puede llevarse a cabo cocultivando las células presentadoras de antígeno descritas anteriormente y linfocitos T en un medio líquido. Por ejemplo, las células presentadoras de antígeno pueden suspenderse en un medio líquido y colocarse en un recipiente tal como un pocillo de una microplaca, seguido de la adición de linfocitos T al pocillo y después realizar el cultivo. La proporción de mezcla de las células presentadoras de antígeno con respecto a los linfocitos T en el cocultivo no se restringe y es

habitualmente de alrededor de 1:1 a 1:100, preferentemente de alrededor de 1:5 a 1:20 en cuanto al número de células. La densidad de las células presentadoras de antígeno que se van a suspender en el medio líquido no se restringe y es habitualmente de alrededor de 100 a 10.000.000 células/ml, preferentemente de alrededor de 10.000 a 1.000.000 células/ml. El cultivo se lleva a cabo mediante un método convencional a 37 °C en atmósfera de CO₂ al 5 %. El periodo de cultivo no se restringe y habitualmente es de 2 días a 3 semanas, y habitualmente es de 4 días a 2 semanas. El cocultivo se lleva a cabo preferentemente en presencia de una o más interleucinas tales como IL-2, IL-6, IL-7 y/o IL-12. En dichos casos, la concentración de IL-2 o IL-7 es habitualmente de alrededor de 5 a 20 U/ml, la concentración de IL-6 es habitualmente de alrededor de 500 a 2000 U/ml y la concentración de IL-12 es habitualmente de alrededor de 5 a 20 U/ml, pero las concentraciones de las interleucinas no se restringen a éstas. El cocultivo anterior puede repetirse de una a varias veces con adición de células presentadoras de antígenos frescas. Por ejemplo, La operación de eliminar el sobrenadante de cultivo después del cocultivo y añadir una suspensión fresca de células presentadoras de antígeno para seguir llevando a cabo el cocultivo puede repetirse de una a varas veces. Las condiciones para cada cocultivo pueden ser las mismas que las descritas anteriormente.

Mediante el cocultivo descrito anteriormente, se inducen linfocitos T citotóxicos específicos para el polipéptido y se permite que proliferen. Por lo tanto, usando el polipéptido descrito anteriormente, pueden prepararse linfocitos T aislados que se unen de forma selectiva al complejo entre el polipéptido y la molécula de MHC.

10

20

25

30

35

40

45

50

55

60

Tal como se describe en los ejemplos de más adelante, el gen KATNAL1 se expresa de forma específica en células de cáncer de mama, tejidos de cáncer de mama, células de tumor cerebral, tejidos de tumor cerebral, tejidos de adenocarcinoma perianal, células de adenocarcinoma perianal, tejidos de mastocitoma, células de mastocitoma, células de neuroblastoma, células de cáncer de hígado, tejidos de cáncer de hígado, células de cáncer de próstata, tejidos de cáncer de próstata, células de cáncer de pulmón, tejidos de cáncer de pulmón, células de cáncer de tiroides, tejidos de cáncer de tiroides, y células de leucemia. Por lo tanto, se piensa que, en estas especies de cáncer, existe una cantidad de KATNAL1 significativamente mayor que en las células normales. Por lo tanto, cuando las moléculas de MHC presentan una parte del polipéptido KATNAL1 presente en células sobre la superficie de las células cancerosas y los linfocitos T citotóxicos así preparados se administran el organismo vivo, los linfocitos T citotóxicos pueden dañar a las células cancerosas usando el polipéptido presentado como marcador. Como las células presentadoras de antígeno que presentan el polipéptido descrito anteriormente pueden inducir y permitir la proliferación de linfocitos T citotóxicos específicos para el polipéptido también in vivo, las células cancerosas pueden dañarse también administrando las células presentadoras de antígeno a un organismo vivo. Esto es, los linfocitos T citotóxicos y las células presentadoras de antígeno preparadas usando el polipéptido también son eficaces como agentes terapéuticos y/o profilácticos para el cáncer, de forma similar al agente inmunoinductor de la presente invención.

En los casos en los que las células presentadoras de antígeno aisladas o los linfocitos T aislados descritos anteriormente se administran a un organismo vivo, estos se preparan preferentemente tratando las células presentadoras de antígeno o los linfocitos T recogidos del paciente que se va a tratar, usando el polipéptido (a) o (b) descrito anteriormente con el fin de evitar la respuesta inmunitaria en el organismo vivo que ataque a estas células como cuerpos extraños.

El agente terapéutico y/o profiláctico para el cáncer que comprende como principio eficaz las células presentadoras de antígeno o los linfocitos T se administra preferentemente por medio de una vía de administración parenteral, por ejemplo, mediante administración intravenosa o intraarterial. La dosis se selecciona apropiadamente dependiendo de los síntomas, el propósito de la administración y similar y es habitualmente de alrededor de 1 célula a 10.000.000.000.000 células, preferentemente de 1.000.000 células a 1.000.000.000 células, dosis que se administra preferentemente de una vez cada varios días a una vez cada varios meses. La formulación puede ser, por ejemplo, las células suspendidas en tampón salino fisiológico y la formulación puede usarse en combinación con otra(s) preparación/preparaciones y/o citocina(s) anticancerosa(s). Además, también pueden añadirse uno o más aditivos bien conocidos en el campo de la formulación de productos farmacéuticos.

Expresando un polinucleótido que codifica cualquiera de los polipéptidos (a) a (b) en el organismo del animal objeto también puede inducirse la producción de anticuerpos y linfocitos T citotóxicos en el organismo vivo y puede obtenerse un efecto comparable al obtenido en el caso de la administración del polipéptido. Esto es, el agente inmunoinductor para su uso de acuerdo con la presente invención puede ser uno que comprende como principio eficaz un vector recombinante que tiene un polinucleótido que codifica cualquiera de los polinucleótidos (a) a (b), vector recombinante que es capaz de expresar el polipéptido en un organismo vivo. Dicho vector recombinante capaz de expresar un polipéptido antigénico tal como se muestra en los ejemplos que se mencionan posteriormente también se llama vacuna génica.

El vector usado para la producción de la vacuna génica no se restringe siempre y cuando sea un vector capaz de expresar el polipéptido en una célula del animal objeto (preferentemente en una célula de mamífero) y puede ser, bien un vector de plásmido o bien un vector de virus y puede usarse cualquier vector conocido en el campo de las vacunas génicas. El polinucleótido tal como un ADN o ARN que codifica el polipéptido descrito anteriormente puede prepararse fácilmente tal como se ha mencionado anteriormente mediante un método convencional. La incorporación del polinucleótido dentro del vector puede llevarse a cabo usando un método bien conocido para los expertos en la

técnica.

10

30

35

40

45

60

La vía de administración de la vacuna génica es preferentemente una vía parenteral tal como la administración intramuscular, subcutánea, intravenosa o intraarterial. La dosis puede seleccionarse apropiadamente dependiendo del tipo de antígeno y similar y es habitualmente de alrededor de 0,1 µg a 100 mg, preferentemente de alrededor de 1 µg a 10 mg en cuanto a peso de la vacuna génica por kb de peso corporal.

Los ejemplos del método que usa un vector de virus incluyen aquellos en los que se incorpora un polinucleótido que codifica el polipéptido descrito anteriormente dentro de un virus de ARN o un virus de ADN, tal como un retrovirus, adenovirus, virus adenoasociado, herpesvirus, virus variolovacunal, poxvirus, poliovirus o virus Sinbis y después se infecta un animal objeto con el virus resultante. Entre estos métodos, se prefieren especialmente los que usan un retrovirus, adenovirus, virus adenoasociado, virus variolovacunal o similar.

Los ejemplos de otros métodos incluyen un método en el que se administra directamente un plásmido de expresión por vía intramuscular (método de vacuna de ADN) y el método del liposoma, método de lipofectina, método de microinyección, método del fosfato cálcico y método de electroporación. Se prefieren especialmente el método de la vacuna de ADN y el método del liposoma.

Los métodos para fabricar el gen que codifica el polipéptido descrito anteriormente usado en la presente invención actúan realmente como un producto farmacéutico, incluyen métodos *in vivo* en los que el gen se introduce directamente dentro del organismo y métodos *ex vivo* en los que se recogen del animal objeto un tipo determinado de células y el gen se introduce después en las células *ex vivo*, seguido de la devolución de las células al organismo (Nikkei Science, 1994, abril, págs. 20-45; The Pharmaceutical Monthly, 1994, vol. 36, n.º 1, págs. 23-48; Experimental Medicine, edición extraordinaria, 1994, vol.12, n.º 15; y las referencias citadas en estas bibliografías, y similares). Se prefieren más los métodos *in vivo*.

En los casos en los que el gen se administra mediante un método *in vivo*, el gen puede administrarse mediante una vía de administración apropiada dependiendo de la enfermedad que se va a tratar, síntomas y similares. El gen puede administrarse, por ejemplo, mediante administración intravenosa, intraarterial, subcutánea o intramuscular. En los casos en los que el gen se administra mediante un método *in vitro*, el gen puede formularse en una preparación tal como una solución y, en general, se formula en una solución para inyección o similar que contiene ADN que codifica el péptido descrito anteriormente de la presente invención como principio eficaz. También puede añadirse a ésta un excipiente usado comúnmente según sea necesario. En los casos de un liposoma o liposoma de fusión de membrana (virus Sendai (VHJ)-liposoma o similar) que contiene ADN, el liposoma puede formularse dentro de una preparación de liposomas tal como una suspensión, preparación congelada o preparación congelada concentrada mediante centrifugación.

En la presente invención, "la secuencia de bases de la SEQ ID NO:1" incluye no solo la secuencia de bases real de la SEQ ID NO:1, sino también la secuencia complementaria a ésta. Por lo tanto, "el polinucleótido que tiene la secuencia de bases de la SEQ ID NO:1" incluye el polinucleótido monocatenario que tiene la secuencia de bases real de la SEQ ID NO:1, el polinucleótido monocatenario que tiene la secuencia de bases complementaria a éste y el polinucleótido bicatenario compuesto de estos polinucleótidos monocatenarios. Cuando se prepara un polinucleótido que codifica el polipéptido usado en la presente invención, se selecciona apropiadamente cualquiera de estas secuencias de bases y los expertos en la técnica pueden llevar a cabo la selección fácilmente.

Eiemplos

La presente invención se describirá ahora de forma más concreta por medio de ejemplos.

- 50 Ejemplo 1: Obtención de proteína antigénica cancerosa novedosa mediante el método SEREX
 - (1) Preparación de biblioteca de ADNc

Se extrajo ARN total de testículos de un perro mediante el método de ácido-guanidinio-fenolcloroformo y se purificó ARN poli(A) usando el *kit* Oligotex-dT30 mRNA purification Kit (fabricado por Takara Shuzo Co., Ltd.) de acuerdo con el protocolo adjunto al kit.

Usando el ARNm obtenido (5 μg), se sintetizó una biblioteca de ADNc en fago. Para la preparación de una biblioteca de ADNc en fago, se usaron los kits cDNA Synthesis Kit, Zap-cDNA Synthesis Kit y ZAP-cDNA Gigapack III Gold Cloning Kit (fabricado por STRATAGENE) de acuerdo con los protocolos adjuntos a los kits. El tamaño de la biblioteca de ADNc en fago preparada fue de 1 x 10⁶ ufp/ml.

- (2) Exploración de la biblioteca de ADNc con suero
- Usando la biblioteca de ADNc en fago así preparada, se llevó a cabo una inmunoexploración. Más específicamente, la E. coli anfitriona (XL1-Blue MRF') se infectó con la biblioteca de modo que aparecieron 2340 clones en una placa de

agarosa NZY con un tamaño de 90 mm de diámetro x 15 mm y se cultivó a 42 °C durante 3 a 4 horas para permitir que el fago formase placas. La placa se cubrió con una membrana de nitrocelulosa (Hybond C Extra: fabricada por GE Healthcare Bio-Science) impregnada con IPTG (isopropil-β-D-tiogalactósido) a 37 °C durante 4 horas para permitir la inducción y expresión de proteínas y las proteínas se transfirieron a la membrana. Posteriormente, la membrana se recuperó y se sumergió en TBS (Tris-HCl 10 mM, NaCl 150 mM; pH 7,5) complementado con leche deshidratada desgrasada al 0,5 %. La membrana se agitó después a 4 °C durante toda la noche para suprimir reacciones inespecíficas. Este filtro se dejó reaccionar después con suero de perro paciente diluido 500 veces a temperatura ambiente durante 2 o 3 horas.

Al igual que el suero de perro paciente descrito anteriormente, se usó suero de un perro paciente con un tumor perianal. El suero se almacenó a -80 °C y se pretrató inmediatamente antes de su uso. El método del pretratamiento del suero fue de la forma siguiente. Esto es, la *E. coli* anfitriona (XL1-Blue MRF') se infectó con fago λ ZAP Express, que no tiene ningún gen exógeno insertado, y después se cultivó en medio en medio NZY en placa a 37 °C durante toda la noche. Posteriormente, se añadió a la placa tampón NaHCO₃ 0,2 M (pH 8,3) complementado con 0,5 M NaCl y la placa se dejó permanecer a 4 °C durante 15 horas, seguido de la recogida del sobrenadante como extracto de *E. colil*fago. A partir de ahí, el extracto de *E. colil*fago se hizo pasar a través de una columna NHS (fabricada por GE Healthcare Bio-Science) para inmovilizar acto seguido las proteínas procedentes de *E. colil*fago. El suero del perro paciente se hizo pasar y reaccionar con esta columna de proteína inmovilizada para eliminar los anticuerpos que se adsorben sobre *E. coli* y/o fago. La fracción de suero que pasó a través de la columna se diluyó 500 veces con TBS complementado con leche deshidratada desgrasada al 5 % y el diluyente resultante se usó como material para la inmunoexploración.

La membrana sobre la que se transfirieron el suero así tratado y la proteína de fusión descrita anteriormente se lavó 4 veces con TBS-T (Tween 20 al 0,05 %/TBS) y se hizo reaccionar con IgG de cabra antiperro (conjugado Goat anti Dog IgG-h+I HRP: fabricado por BETHYL Laboratories) diluido 5.000 veces con TBS complementado con leche deshidratada desgrasada al 5 % como anticuerpo secundario, a temperatura ambiente durante 1 hora seguido de detección mediante reacción colorimétrica enzimática usando una solución de reacción NBT/BCIP (fabricada por Roche). Las colonias en las posiciones correspondientes a los sitios con reacción colorimétrica positiva se recuperaron de la placa de agarosa NZY que tenía un tamaño de 90 mm de diámetro x 15 mm y se disolvieron en 500 µl de tampón SM (NaCl 100 mM, MgCISO4 10 mM, Tris-HCl 50 mM, gelatina al 0,01 %; pH 7,5). La exploración se repitió como segunda y tercera exploración de la misma manera descrita anteriormente hasta que se obtuvo una única colonia con reacción colorimétrica positiva. El aislamiento del clon positivo único se logró después de explorar 9110 clones de fago reactivos con la IgG del suero.

35 (3) Búsqueda de homología de secuencia del gen del antígeno aislado

25

30

40

45

50

55

60

Para someter al clon positivo único aislado mediante el método descrito anteriormente a análisis de la secuencia de bases, se llevó a cabo una operación de conversión del vector de fago a un vector de plásmido. Más específicamente, se mezclaron 200 μl de una solución preparada de modo que la *E. coli* anfitriona (XL1-Blue MRF') estuviera contenida a una absorbancia de DO₆₀₀ de 1,0 con 100 μl de una solución de fago purificado y después con 1 μl de fago auxiliar ExAssist (fabricado por STRATAGENE) y después se dejó proseguir la reacción a 37°C durante 15 minutos. Esto se siguió de la adición de 3 ml de medio LB a la mezcla de reacción y se realizó el cultivo con la mezcla resultante a 37°C durante 2,5 a 3 horas. El cultivo resultante se incubó inmediatamente en un baño de agua a 70°C durante 20 minutos. El cultivo se centrifugó después a 4°C, 1.000 xg durante 15 minutos y se recuperó el sobrenadante como una solución de fagémido. Posteriormente, se mezclaron 200 μl de una solución preparada de modo que la *E. coli* anfitriona del fagémido (SOLR) estuviera contenida a una absorbancia de DO₆₀₀ de 1,0 con 10 μl de una solución de fago purificado y se dejó proseguir la reacción a 37°C durante 15 minutos. A partir de ahí, se sembraron en placa 50 μl de la mezcla de reacción en medio de agar LB complementado con ampicilina (concentración final: 50 μg/ml), y se realizó el cultivo a 37°C durante toda la noche. Se recuperó una única colonia de SOLR transformada y se cultivó en medio LB complementado con ampicilina (concentración final: 50 μg/ml) a 37°C, seguido de purificación del ADN de plásmido que tenía el inserto de interés usando QIAGEN plasmid Miniprep Kit (fabricado por Qiagen).

El plásmido purificado se sometió a análisis de la secuencia de longitud completa del inserto mediante el método del paseo con cebador usando el cebador de T3 de las SEQ ID NO: 13 y el cebador de T7 de la SEQ ID NO:14. Mediante este análisis de secuencia, se obtuvo el gen de la SEQ ID NO:1. Usando la secuencia de bases y la secuencia de aminoácidos de este gen, se llevó a cabo una búsqueda de homología frente a genes conocidos usando un programa de homología de secuencias BLAST (http://www.nc- bi.nlm.nih.gov/BLAST/). Como resultado, se reveló que el gen obtenido es el gen KATNAL1. La KATNAL1 humana, que es un factor homólogo humano de KATNAL1 de perro, tuvo una identidad de secuencia del 95 % en cuanto a la secuencia de bases y del 98 % en cuanto a la secuencia de aminoácidos; La KATNAL1 de ratón, que es un factor homólogo de ratón, tuvo una identidad de secuencia del 85 % en cuanto a la secuencia de bases y del 94 % en cuanto a la secuencia de aminoácidos; la KATNAL1 bovina, que es un factor homólogo de bovino, tuvo una identidad de secuencia del 91 % en cuanto a la secuencia de bases y del 97 % en cuanto a la secuencia de aminoácidos; la KATNAL1 equina, que es un factor homólogo equino, tuvo una identidad de secuencia del 87 % en cuanto a la secuencia de bases y del 98 % en cuanto a la secuencia del 81 % en cuanto a la secuencia de bases y del 90 % en cuanto a la secuencia de aminoácidos; y la KATNAL1 de pollo, que es un factor homólogo de pollo, tuvo una identidad de secuencia de bases y la secuencia de bases y del 90 % en cuanto a la secuencia de aminoácidos; La secuencia de bases y la secuencia de

aminoácidos de KATNAL1 humana se muestran en la SEQ ID NO:3 y SEQ ID NO:4, respectivamente; La secuencia de bases y la secuencia de aminoácidos de KATNAL1 de ratón se muestran en la SEQ ID NO:5 y SEQ ID NO:6, respectivamente; La secuencia de bases y la secuencia de aminoácidos de KATNAL1 bovina se muestran en la SEQ ID NO:7 y SEQ ID NO:8, respectivamente; La secuencia de bases y la secuencia de aminoácidos de KATNAL1 equina se muestran en la SEQ ID NO:9 y SEQ ID NO:10, respectivamente; y la secuencia de bases y la secuencia de aminoácidos de KATNAL1 de ratón se muestran en la SEQ ID NO:11 y SEQ ID NO:6, 12, respectivamente.

(4) Análisis de la expresión en diversos tejidos

La expresión de los genes obtenidos mediante el método anterior en tejidos normales de perro, ser humano y ratón y 10 en diversas líneas celulares se investigó mediante el método de RT-PCR (transcripción inversa-PCR). La reacción de transcripción inversa se llevó a cabo de la forma siguiente. Esto es, se extrajo ARN total de entre 50 y 100 mg de cada tejido o entre 5 x 106 y 10 x 106 células de cada línea celular, usando el reactivo TRIZOL(fabricado por Invitrogen) de acuerdo con el protocolo descrito en las instrucciones adjuntas. Usando este ARN total, se sintetizó ADNc con el 15 sistema Superscript First-Strand Synthesis System para RT-PCR (fabricado por Invitrogen) de acuerdo con el protocolo descrito en las instrucciones adjuntas. Como ADNc de tejidos humanos normales (cerebro, hipocampo, testículo, colon y placenta), se usaron Gene Pool cDNA (fabricado por Invitrogen), QUICK-Clone cDNA (fabricado por CLONETECH) y Large-Insert cDNA Library (fabricado por CLONETECH). La reacción de PCR se llevó a cabo usando cebadores específicos para el gen obtenido (los cebadores de perro que se muestran en las SEQ ID NO:15 and 16, los 20 cebadores humanos que se muestran en las SEQ ID NO:17 y 18 y los cebadores de ratón que se muestran en las SEQ ID NO:19 y 20) tal como se describe más adelante. Esto es, los reactivos y el tampón adjunto se mezclaron de modo que 0,25 µl de la muestra preparada mediante la reacción de transcripción inversa, 2 µM de cada uno de los cebadores anteriores, 0,2 mM de cada uno de los dNTP, y 0,65 U de polimerasa ExTaq (fabricada por Takara Shuzo Co., Ltd.) estaban contenidos en la mezcla resultante en un volumen final de 25 µl y la reacción se llevó a cabo mediante 30 ciclos de 94 °C durante 30 segundos, 55 °C durante 30 segundos y 72 °C durante 1 minuto usando un termociclador 25 (fabricado por BIO RAD). Como control para la comparación se usaron al mismo tiempo cebadores específicos para GAPDH (los cebadores de GAPDH de perro y ser humano se muestran en las SEQ ID NO:21 y 22; y los cebadores de la GAPDH de ratón se muestran en las SEQ ID NO:23 y 24). Como resultado, tal como se muestra en la fig. 1, el gen de KATNAL1 de perro no se expresó en la mayoría de los tejidos de perro sanos, mientras que el gen se expresó 30 intensamente en los tejidos de tumor de perro. También en cuanto a los genes de KATNAL1 de ratón y ser humano, la expresión no se observó en la mayoría de los tejidos de ratón y humanos normales, mientras que la expresión se detectó en la mayoría de las líneas celulares de cáncer (fig. 2 y 3), al igual que en el caso del gen de KATNAL1 de

35 (5) Análisis cuantitativo de la expresión en diversos tejidos

El gen obtenido mediante el método anterior se sometió a investigación de la expresión en tejidos normales humanos mediante el método de RT-PCR (transcripción inversa-PCR) cuantitativa. Al igual que los ADNc de tejidos normales y tejidos de cáncer humanos, se usó el panel I del Tissue scan Real Time para seguimiento del cáncer (fabricado por 40 ORIGENE). La RT-PCR cuantitativa se llevó a cabo usando el termociclador CFX96 Real Time System - C1000, fabricado por Bio-Rad Laboratories, Inc. La reacción de PCR se llevó a cabo de la forma siguiente usando cebadores específicos para el gen obtenido (que se muestran en las SEQ ID NO:17 and 18). Esto es, se mezclaron 5 µl de la muestra de ADNc, 2 µM de cada uno de los cebadores, y los reactivos y el tampón contenido en la premezcla 2 x SYBR Premix Ex TaqII polymerase (fabricada por Takara Shuzo Co., Ltd.) para preparar una mezcla en un volumen final de 20 µl y la reacción se llevó a cabo mediante 30 ciclos de 94 °C durante 30 segundos, 55°C durante 30 segundos y 72°C 45 durante 1 minuto. Como resultado, el nivel de expresión del gen KATNAL1 en cada uno de cáncer de mama, cáncer de colon, cáncer de tiroides, cáncer de hígado, cáncer de próstata y cáncer de pulmón no fue menos de 5 veces superior al nivel de expresión en su tejido normal correspondiente. Basándose en estos resultados, puede esperarse que no hay ninguna preocupación en absoluto sobre la aparición de efectos secundarios por agentes antitumorales dirigidos a 50 KATNAL1 human en tejidos normales y que el beneficio del efecto farmacológico de los agentes supera ampliamente el riesgo de sus efectos secundarios.

Ejemplo 2: Análisis de la antigenicidad en cáncer de KATNAL1 in vivo

55 (1) Preparación de vector recombinante que expresa KATNAL1 in vivo

60

Basándose en la secuencia de bases de la SEQ ID NO:5, se preparó un vector recombinante que expresa KATNAL1 *in vivo*. La PCR se preparó a partir de la línea celular de cáncer de ratón N2a (adquirida de ATCC), que mostró la expresión del ejemplo 1. Los reactivos y el tampón adjunto se mezclaron de modo que 1 µl del ADNc, 0,4 µM de cada uno de dos tipos de cebadores que tenían los sitios de restricción de *HindIII* y *XbaI* (mostrados en las SEQ ID NO:25 y 26), dNTP 0,2 mM y 1,25 U de polimerasa U PrimeSTAR HS (fabricada por Takara Shuzo Co., Ltd.) estaban contenidos en la mezcla resultante en un volumen final de 50 µl y la PCR se llevó a cabo mediante 30 ciclos de 98°C durante 10 segundos, 55 °C durante 15 segundos y 72 °C durante 4 minuto usando un termociclador (fabricado por BIO RAD). Los dos tipos de cebadores descritos anteriormente fueron los de la amplificación de la región que codifica la longitud total de la secuencia de aminoácidos de la SEQ ID NO:5. Después de la PCR, el ADN amplificado se sometió a electroforesis usando gel de agarosa al 1 % y se purificó un fragmento de ADN de alrededor de 1500 pb

usando el kit QIAquick Gel Extraction Kit (fabricado por QIAGEN).

El fragmento de ADN purificado se ligó en un vector de clonación pCR-Blunt (fabricado por Invitrogen). Se transformó *E. coli* con el producto de ligamiento resultante y después se recuperaron los plásmidos. Se confirmó mediante secuenciación que la secuencia del fragmento génico amplificado era la misma que la secuencia de interés. El plásmido que tenía la secuencia de interés se trató con las enzimas de restricción HindIII y Xbal y se purificó usando QIAquick Gel Extraction Kit, seguido de la inserción de la secuencia génica de interés en un vector de expresión de mamífero pcDNA3.1 (fabricado por Invitrogen) que se había tratado con las enzimas de restricción HindIII y Xbal. El uso de este vector permite la producción de proteína KATNAL1 en células de mamífero.

10

15

20

- A 100 µg del ADN así preparado se añadieron 50 µg de partículas de oro (fabricadas por Bio Rad), 100 µl de espermidina (fabricada por SIGMA) y 100 µl de CaCl₂ 1 M (fabricado por SIGMA) y la mezcla resultante se agitó mediante agitación con formación de vórtice durante toda la noche, seguido de dejar la mezcla permanecer durante 10 minutos a temperatura ambiente (las partículas resultantes se denominan de aquí en adelante como las partículas de oro-ADN). La mezcla se centrifugó después a 3000 rpm durante 1 minuto y se eliminó el sobrenadante, seguido de enjuagado del precipitado 3 veces con etanol al 100 % (fabricado por WAKO). Se añadieron 6 ml de etanol al 100 % a las partículas de oro-ADN y la mezcla resultante se agitó suficientemente mediante agitación con formación de vórtice, seguido de vertido de las partículas de oro-ADN en tubo Tefzel (fabricado por Bio Rad) y permitir a las partículas precipitar sobre la superficie de la pared. El etanol se eliminó mediante secado al aire del tubo Tefzel al cual se habían adherido las partículas de oro-ADN y el tubo se cortó después en trozos que tenían una longitud que es apropiada para una pistola génica.
- (2) efecto antitumoral de KATNAL1 mediante el método de la vacuna de ADN
- El tubo preparado anteriormente se fijó en una pistola génica y la vacuna de ADN se administró por vía transdérmica, mediante aplicación de una presión de 400 psi usando gas helio puro, un total de 3 veces a intervalos de 7 días a la cavidad abdominal de cada uno de 10 individuos de ratones A/J (machos de 7 semanas, adquiridos de Japan SLC) y ratones Balb/c (machos de 7 semanas, adquiridos de Japan SLC) cuyo pelo se había rasurado (esto corresponde a la inoculación de 2 µg/individuo del ADN de plásmido). A partir de ahí, se trasplantó una línea celular N2a de neuroblastoma de ratón o una línea celular CT26 de cáncer de colon a cada ratón en una cantidad de 1 x 10⁶ células para evaluar el efecto antitumoral (modelo profiláctico). Para cada modelo, el ADN de plásmido que no contenía ningún gen KATNAL1 insertado se administró a 10 individuos de ratón para proporcionar un control.
- El efecto antitumoral se evaluó basándose en el tamaño del tumor (eje mayor x eje menor² / 2) y la proporción de 35 ratones vivos. Como resultado de este estudio, en el modelo profiláctico usando la línea celular de neuroblastoma, el tamaño del tumor llegó a ser de 2886 mm³ y 659 mm³ el día 43 en el grupo de control y el grupo al que se administró plásmido de KATNAL1, respectivamente. Por lo tanto, se observó una regresión notable del tumor en el grupo al que se administró plásmido de KATNAL1. Además, como resultado de la observación de la supervivencia en el modelo profiláctico usando la línea celular de neuroblastoma, se encontró que todos los casos murieron hacia el día 76 40 después de la administración en el grupo de control, mientras que el 60 5 de los ratones sobrevivieron en el grupo al que se administró plásmido de KATNAL1. Estos resultados indican un efecto antitumoral significativo en el grupo al que se administró plásmido de KATNAL1 en comparación con el grupo de control. De forma similar, en el modelo profiláctico usando la línea celular de cáncer de colon, el tamaño del tumor llegó a ser de 2598 mm³ y 763 mm³ el día 35 en el grupo de control y el grupo al que se administró plásmido de KATNAL1, respectivamente. Por lo tanto, se 45 observó una regresión notable del tumor en el grupo al que se administró plásmido de KATNAL1. Además, como resultado de la observación de la supervivencia, se encontró que todos los casos murieron hacia el día 50 después de la administración en el grupo de control, mientras que el 50 % de los ratones sobrevivieron en el grupo al que se administró plásmido de KATNAL1. Estos resultados indican un efecto antitumoral significativo en el grupo al que se administró plásmido de KATNAL1 en comparación con el grupo de control.

50

- Ejemplo 3: Preparación de proteína KATNAL1 recombinante humana y evaluación de su capacidad inmunoinductora
- (1) Preparación de proteína KATNAL1 recombinante humana
- Basándose en la secuencia de bases de la SEQ ID NO:3, se preparó una proteína KATNAL1 recombinante humana. Los reactivos y el tampón adjunto se mezclaron de modo que 1 μl del ADNc preparado en el ejemplo 1 cuya expresión pudo confirmarse para ADNc de diversos tejidos y células mediante el método de RT-PCR, 0,4 μM de cada uno de dos tipos de cebadores que tenían los sitios de restricción de *EcoRl y Xhol* (mostrados en las SEQ ID NO:27 y 28), dNTP 0,2 mM y 1,25 U de polimerasa U PrimeSTAR HS (fabricada por Takara Shuzo Co., Ltd.) estaban contenidos en la mezcla resultante en un volumen final de 50 μl y la PCR se llevó a cabo mediante 30 ciclos de 98°C durante 10 segundos, 55 °C durante 15 segundos y 72 °C durante 4 minuto usando un termociclador (fabricado por BIO RAD). Los dos tipos de cebadores descritos anteriormente fueron los de la amplificación de la región que codifica la longitud total de la secuencia de aminoácidos de la SEQ ID NO:4. Después de la PCR, el ADN amplificado se sometió a electroforesis usando gel de agarosa al 1 % y se purificó un fragmento de ADN de alrededor de 1500 pb usando el *kit* QIAquick Gel Extraction Kit (fabricado por QIAGEN).

El fragmento de ADN purificado se ligó en un vector de clonación pCR-Blunt (fabricado por Invitrogen). Se transformó *E. coli* con el producto de ligamiento resultante y después se recuperaron los plásmidos. Se confirmó mediante secuenciación que la secuencia del fragmento génico amplificado era la misma que la secuencia de interés. El plásmido que tenía la secuencia de interés se trató con las enzimas de restricción EcoRI y Xhol y se purificó usando el *kit* QIAquick Gel Extraction Kit, seguido de inserción de la secuencia génica de interés dentro de un vector de expresión para *E. coli*, pET30a (fabricado por Novagen) que se había tratad con las enzimas de restricción EcoRI y Xhol. El uso de este vector permite la producción de una proteína recombinante fusionada con un marcador de His. Se transformó *E. coli* BL21 (DE3) para expresión con este plásmido y se indujo la expresión con IPTG 1 mM, para permitir la expresión de la proteína de interés en *E. coli*.

10

15

(2) Purificación de proteína KATNAL1 recombinante humana

La *E. coli* recombinante así obtenida que expresa la SEQ ID NO:4 se cultivó en medio LB complementado con 100 μg/ml de ampicilina a 37 °C hasta que la absorbancia a 600 nm alcanzó alrededor de 0,7 y después se añadió al cultivo isopropil-β-D-1-tiogalactopiranósido a una concentración final de 1 mM, seguido del cultivo posterior de la *E. coli* recombinante a 37 °C durante 4 horas. Posteriormente, las células bacterianas se recogieron mediante centrifugación a 4.800 rpm durante 10 minutos. El sedimento de las células bacterianas se suspendió en solución salina tamponada con fosfato y se sometió posteriormente a centrifugación a 4.800 rpm durante 10 minutos, para lavar las células bacterianas.

20

40

Las células bacterianas se suspendieron en tampón Tris-HCl 50 mM (pH 8,0) y se sometieron a tratamiento ultrasónico en hielo. El líquido obtenido mediante el tratamiento ultrasónico de *E. coli* se centrifugó a 6000 rpm durante 20 minutos para obtener el sobrenadante como la fracción soluble y el precipitado como la fracción insoluble.

La fracción insoluble se suspendió en tampón Tris-HCl 50 mM (pH 8,0) y después se centrifugó a 6.000 rpm durante 15 minutos. Esta operación se repitió dos veces para la eliminación de proteasas.

El residuo se suspendió en tampón Tris-HCl 50 mM (pH 8,0) complementado con clorhidrato de guanidinio 6 M y cloruro sódico 0,15 M y se dejó permanecer a 4 °C durante 20 horas para desnaturalizar proteína. A partir de ahí, la suspensión se centrifugó a 6000 rpm durante 30 minutos y la fracción soluble obtenida se colocó en una columna de quelato de níquel preparada mediante un método convencional (portador: Chelating Sepharose (marca registrada) Fast Flow (GE Health Care); volumen de columna: 5 ml; tampón de equilibrado: Tampón Tris-HCl 50 mM (pH 8,0) complementado con clorhidrato de guanidinio 6 M y cloruro sódico 0,15 M), seguido de dejar el resultante permanecer a 4 °C durante toda la noche para permitir la adsorción al portador de níquel quelado. El portador de la columna se centrifugó después a 1500 rpm durante 5 minutos y el sobrenadante resultante se recuperó. El portador de la columna se suspendió después en solución salina tamponada con fosfato y se recargó dentro de la columna.

La fracción no adsorbida en la columna se lavó con 10 volúmenes de columna de tampón acetato 0,1 M (pH 4,0) complementado con cloruro sódico 0,5 M e, inmediatamente después, se llevó a cabo la elución con tampón acetato 0,1 M (pH 3,0) complementado con cloruro sódico 0,5 M para obtener una fracción purificada, la cual se usó más tarde como material para un ensayo de administración. La presencia de la proteína de interés en cada fracción eluída se confirmó mediante tinción de Coomassie llevada a cabo de acuerdo con un método convencional.

El tampón de la fracción purificada obtenida mediante el método anterior se reemplazó con un tampón de reacción (Tris-HCl 50 mM, NaCl 100 mM, CaCl₂ 5 mM (pH 8,0)) y la muestra resultante se sometió a escisión del marcador de His con proteasa factor Xa y purificación de la proteína de interés, usando el *kit* Factor Xa Cleavage Capture Kit (fabricado por Novagen) de acuerdo con el protocolo adjunto al kit. Posteriormente, el tampón de 12 ml de la preparación purificada obtenida mediante el método anterior se reemplazó con tampón fosfato fisiológico (fabricado por Nissui Pharmaceutical) usando ultrafiltración NANOSEP 10K OMEGA (fabricado por PALL), y la muestra resultante se sometió a filtración aséptica a través de filtros Acrodisc de 0,22 μm con HT Tuffryn (fabricados por PALL) y usados en el experimento.

(3) inducción de linfocitos T citotóxicos CD8 positivos reactivos con proteína KATNAL1 recombinante humana

Se separó sangre periférica de un individuo sano y la sangre periférica se depositó sobre medio de separación de linfocitos (OrganonTeknika, Durham, NC), seguido de centrifugación del producto resultante a 1,500 rpm a temperatura ambiente durante 20 minutos. Se recubrió una fracción que contenía células mononucleares de sangre periférica (CMNSP) y se la 3 (o más veces) en tampón fosfato frío para obtener CMNSP. Las CMNSP obtenidas se resuspendieron en 20 ml de medio AlM-V (Life Technololgies, Inc., Grand Island, NY, EE.UU:) y se permitió a las células adherirse a un matraz de cultivo (Falcon) a 37 °C en CO₂ al 5 % durante 2 horas. Las células no adherentes se usaron para la preparación de linfocitos T y las células adherentes se usaron para la preparación de células dendríticas.

Por otra parte, las células adherentes se cultivaron en medio AIM-V en presencia de IL-4 (1000 U/ml) y GM-CSF (1000 U/ml). Las células no adherentes obtenidas 6 días más tarde se recogieron y la proteína KATNAL1 recombinante humana se añadió a las células a una concentración de 10 µg/ml, seguido de cultivo de las células a 37 °C en CO₂ al 5

% durante 4 horas. A partir de ahí, el medio se reemplazó con medio AlM-V complementado con IL-4 (1000 U/ml), GM-CSF (1000 U/ml), IL-6 (1000 U/ml, Genzyme, Cambridge, MA), IL-1 β (10 ng/ml, Genzyme, Cambridge, MA) y TNF-α (10 ng/ml, Genzyme, Cambridge, MA) y el cultivo se llevó a cabo durante 2 días adicionales para obtener una población de células no adherentes para usarse como células dendríticas.

5

10

15

20

30

35

Las células dendríticas preparadas se resuspendieron en medio AIM-V a una densidad celular de 1 x 10⁶ células/ml y la proteína KATNAL1 recombinante humana se añadió de nuevo a la suspensión a una concentración de 10 μg/ml. Las células se cultivaron a 37 °C en CO₂ al 5 % durante 4 horas usando una placa de 96 pocillos. Después del cultivo, se llevó a cabo irradiación con rayos X (3000 rad) y las células se lavaron con medio AIM-V, seguido de suspensión en medio AIM-V complementado con suero AB humano al 10 % (Nabi, Miami, FL), IL-6 (1000 U/ml) e IL-12 (10 ng/ml, Genzyme, Cambridge, MA). Las células se colocaron después en una placa de 24 pocillos en una cantidad de 1 x10⁵ células/pocillo. Además, la población de linfocitos T preparada se añadió a cada pocillo en una cantidad de 1 x10⁶ células y se cultivó a 37 °C en CO₂ al 5 %. Cada sobrenadante del cultivo se eliminó 7 días más tarde y las células dendríticas obtenidas de la misma manera que la descrita anteriormente mediante tratamiento con la proteína humana y la posterior irradiación con rayos X se suspendieron en medio AIM-V complementado con suero AB humano al 10 % (Nabi, Miami, FL), IL-7 (10 U/ml, Genzyme, Cambridge, MA) e IL-2 (10 U/ml, Genzyme, Cambridge, MA) (densidad celular, 1 x10⁵ células/ml). La suspensión resultante se añadió a la placa de 24 pocillos en una cantidad de 1 x10⁵ células/pocillo, y las células se cultivaron posteriormente. Después de repetir la misma operación de 4 a 6 veces a intervalos de 7 días, se recobraron linfocitos T estimulados y la inducción de linfocitos T CD8 positivos se confirmó mediante citometría de flujo.

Como control negativo, se usó una proteína que tiene una secuencia que está fuera del alcance de la presente invención (SEQ ID NO:29).

Posteriormente, se estudió si los linfocitos T CD8 positivos estimulados con el presente polipéptido pueden dañar las células tumorales con expresión.

En un tubo de centrífuga de 50 ml, se recogieron 10⁵ células de una línea celular de tumor cerebral maligno, T98G (Stein GH et al., J. Cell Physiol., 99:43-54 (1979); adquirida de ATCC), en la cual se confirmó la expresión y se añadieron a las células 100 μCi de cromo 51, seguido de incubación de la mezcla resultante a 37 °C durante 2 horas. A partir de ahí, las células se lavaron 3 veces con medio AIM-V complementado con suero AB humano al 10 % (Nabi y se colocaron en una placa de 96 pocillos de fondo en V en una cantidad de 10³ células por pocillo. Posteriormente, se añadieron a cada pocillo 10⁵, 5x10⁴, 2,5x10⁴ o 1,25x10⁴ linfocitos T CD8 positivos que se estimularon con la proteína recombinante humana y se suspendieron en medio AIM-V complementado con suero AB humano al 10 % y el cultivo se llevó a cabo a 37 °C en CO2 al 5 % durante 4 horas. A partir de ahí, La cantidad de cromo 51 liberado a partir de las células tumorales dañadas en el sobrenadante del cultivo se midió usando un contador gamma para calcular la actividad citotóxica de los linfocitos T CD8 positivos estimulados con la proteína recombinante humana.

Como resultado, se encontró que los linfocitos T CD8 positivos estimulados con la proteína recombinante humana tenían actividad citotóxica contra T98G. Por otra parte, los linfocitos T CD8 positivos inducidos usando la proteína de control negativo (SEQ ID NO:29) no mostraron actividad citotóxica Por lo tanto, se reveló que la proteína recombinante humana usada en la presente invención tiene capacidad de inducir linfocitos T citotóxicos CD8 positivos que pueden dañar las células tumorales.

La actividad citotóxica significa la actividad citotóxica de linfocitos T citotóxicos CD8 positivos contra T98G determinada mediante: mezclar 10⁵ linfocitos T citotóxicos CD8 positivos estimulados e inducidos tal como se ha descrito anteriormente, con 10³ células de la línea celular de tumor cerebral maligno T98G en la cual se incorporó cromo 51; cultivar la mezcla resultante durante 4 horas; medir la cantidad de cromo 51 liberado al medio después del cultivo; y después realizar el cálculo de acuerdo con la ecuación 1.

50

Ecuación 1: Actividad citotóxica (%)= cantidad de cromo 51 liberado de T98G después de la adición de linfocitos T CD8 positivos (cpm) / cantidad de cromo 51 liberado de las células diana tras la adición de ácido clorhídrico 1 N (cpm) x 100.

55 Aplicabilidad industrial

La presente invención es útil para la terapia y/o profilaxis del cáncer ya que la presente invención proporciona un agente inmunoinductor que contiene un polipéptido que ejerce actividad antitumoral contra diversos cánceres

60 LISTADO DE SECUENCIAS

<110> TORAY INDUSTRIES, INC.

<120> Agente inmunoinductor

65

<130> 12068

	<160>	29																
	<170>	Paten	tln ve	rsión	3.1													
5	<210><211><212><212><213>	1760 ADN	famil	iaris														
0	<220> <221> <222> <223>		(1569))														
5	<400>	1																
		gcc	gece	cag d	ctgca	agggo	ec to	cggg	cctg	gg g	egect	t ct g	acc	ctcc	cag q	gttgo	ctgctg	60
		ccg	ctcg	gtg (ccgaa	accto	gt aq	ggtcl	tetge	aaq	gaag	-	aat Asn	_	-			114
			gac Asp															162
			tca Ser															210
			tgc Cys 40															258
			cgg Arg															306
		_	act Thr	_		_			_	-	_			-				354
			tgt Cys															402
			cct Pro															450
		_	gta Val 120	_		_			-	_			_		-			498
			gta Val															546

135	140	145	150
	Tyr Arg Ala Arg	gga aga gat gat aag Gly Arg Asp Asp Lys 160	
		ggt gaa att cct aaa Gly Glu Ile Pro Lys 180	
		gaa gcc ctg gag aga Glu Ala Leu Glu Arg 195	•
		gat gac ata gca gat Asp Asp Ile Ala Asp 210	
		gtt gtt ctt cca atg Val Val Leu Pro Met 225	
	Gly Ile Arg Arg	cca tgg aag ggt gta Pro Trp Lys Gly Val 240	
		atg cta gct aaa gct Met Leu Ala Lys Ala 260	
		gtt tca tct tct aca Val Ser Ser Ser Thr 275	
		tta gtc cgt ctg ttg Leu Val Arg Leu Leu 290	
		atc ttc atc gat gaa Ile Phe Ile Asp Glu 305	=
	Arg Gly Thr Ser	gat gaa cat gag gca Asp Glu His Glu Ala 320	
		atg gat gga gtt gga Met Asp Gly Val Gly 340	
		gtt atg gta ttg gcc Val Met Val Leu Ala 355	
		ttg aga agg aga tta Leu Arg Arg Arg Leu 370	= =
		aaa gga aga act gag Lys Gly Arg Thr Glu 385	
aag att aat ctt cgt	gaa gtt gaa ctg	gat cct gac att caa	ctg gaa 1314

Lys	Ile	Asn	Leu	Arg 395	Glu	Val	Glu	Leu	Asp 400	Pro	Asp	Ile	Gln	Leu 405	Glu	
				aag Lys												1362
_	-		_	gcc Ala			_	_	_	-		-				1410
			_	gag Glu		_	_					_		_	_	1458
				gga Gly												1506
	_		_	gca Ala 475	_	_		_		_			_	_	_	1554
		tct Ser	_	tga	attt	ctgt	ca ç	getet	ttca	it tt	ctgo	tatt	: ttt	att	ata	1609
aaat	gtga	ag a	aatt	ccct	g ca	attt	tttt	aaa	aaaa	caa	gttt	agaa	ct t	ttca	attgga	1669
gaga	cttt	te d	ctta	aaagg	ja as	aaac	ctaa	a aac	caca	aag	aata	taaa	ata t	agct	gggaa	1729
agaa	igaaa	ag o	ttac	cataç	ig ga	igact	gata	a g								1760

<210> 2

5

<211> 490

<212> PRT

<213> Canis familiaris

<400> 2

Met Asn Leu Ala Glu Ile Cys Asp Asn Ala Lys Lys Gly Arg Glu Tyr 1 5 10 15

Ala Leu Leu Gly Asn Tyr Asp Ser Ser Met Val Tyr Tyr Gln Gly Val 20 25 30

Ile Gln Gln Ile Gln Arg His Cys Gln Ser Val Arg Asp Pro Ala Val 35 40 45

Lys Gly Lys Trp Gln Gln Val Arg Gln Glu Leu Leu Glu Glu Tyr Glu 50 55 60

Gln Val Lys Asn Ile Val Ser Thr Leu Glu Ser Phe Lys Met Asp Lys 65 70 75 80

Pro Pro Asp Phe Pro Val Ser Cys Gln Asp Glu Pro Phe Arg Asp Pro 85 90 95

10

Ala	Val	Trp	Pro 100	Pro	Pro	Val	Pro	Ala 105	Glu	His	Arg	Ala	Pro 110	Pro	Gln
Ile	Arg	Arg 115	Pro	Asn	Arg	Glu	Val 120	Arg	Pro	Leu	Arg	Lys 125	Glu	Met	Pro
Gly	Val 130	Gly	Ala	Arg	Gly	Pro 135	Val	Gly	Arg	Ala	His 140	Pro	Ile	Ser	Lys
Gly 145	Glu	Lys	Pro	Ser	Thr 150	Ser	Arg	Asp	Lys	Asp 155	Tyr	Arg	Ala	Arg	Gly 160
Arg	Asp	Asp	Lys	Gly 165	Arg	Lys	Asn	Met	His 170	Asp	Gly	Ala	Ser	As p 175	Gly
Glu	Ile	Pro	Lys 180	Phe	Asp	Gly	Ala	Gly 185	Tyr	Asp	Lys	Asp	Leu 190	Val	Glu
Ala	Leu	Glu 195	Arg	Asp	Ile	Val	Ser 200	Arg	Aşn	Pro	Ser	11e 205	His	Trp	Asp
Asp	Ile 210	Ala	Asp	Leu	Glu	Glu 215	Ala	Lys	Lys	Leu	Le u 220	Arg	Glu	Ala	Val
Val 225	Leu	Pro	Met	Trp	Met 230	Pro	Asp	Phe	Phe	Lys 235	Gly	Ile	Arg	Arg	Pro 240
Trp	Lys	Gly	Val	Leu 245	Met	Val	Gly	Pro	Pro 250	Gly	Thr	Gly	Lys	Thr 255	Met
Leu	Ala	Lys	Ala 260	Val	Ala	Thr	Glu	Cys 265	Gly	Thr	Thr	Phe	Phe 270	Asn	Val
Ser	Ser	Ser 275	Thr	Leu	Thr	Ser	Lys 280	Tyr	Arg	Gly	Gl u	Ser 285	Glu	Lys	Leu
Val	Arg 290	Leu	Leu	Phe	Glu	Met 295	Ala	Arg	Phe	Tyr	Ala 300	Pro	Thr	Thr	Ile
Phe 305	Ile	Asp	Glu	Ile	Asp 310	Ser	Ile	Суз	Ser	Arg 315	Arg	Gly	Thr	Ser	Asp 320
Glu	His	Glu	Ala	Ser 325	Arg	Arg	Val	Lys	Ser 330	Glu	Leu	Leu	Ile	Gln 335	Met
Asp	Gly	Val	Gly	Gly	Ala	Leu	Glu	Asn	Asp	Asp	Pro	Ser	Lys	Met	Val

				340					345					350		
	Met	Val	Leu 355	Ala	Ala	Thr	Asn	Phe 360	Pro	Trp	Asp	Ile	Asp 365	Glu	Ala	Leu
	Arg	Arg 370	Arg	Leu	Glu	Lys	Arg 375	Ile	Tyr	Ile	Pro	Leu 380	Pro	Thr	Ala	Lys
	Gly 385	Arg	Thr	Glu	Leu	Leu 390	Lys	Ile	Asn	Leu	Arg 395	Glu	Val	Glu	Leu	Asp 400
	Pro	Asp	Ile	Gln	Leu 405	Glu	Asp	Ile	Ala	Glu 410	Lys	Ile	Glu	Gly	Tyr 415	Ser
	Gly	Ala	Asp	Ile 4 20	Thr	Asn	Val	Cys	Arg 425	Asp	Ala	Ser	Leu	Met 430	Ala	Met
	Arg	Arg	Arg 435	Ile	Asn	Gly	Leu	Gly 440	Pro	Glu	Glu	Ile	Arg 445	Ala	Leu	Ser
	Lys	Glu 450	Glu	Leu	Gln	Met	Pro 45 5	Val	Thr	Lys	Gly	Asp 460	Ph∉	Glu	Leu	Ala
	Leu 465	Lys	Lys	Ile	Ala	Lys 47 0	Ser	Val	Ser	Ala	Ala 475	Asp	Leu	Gl u	Lys	Tyr 4 80
	Glu	Lys	Trp	Met	Val 485	Glu	Phe	Gly	Ser	Ala 490						
<210><211><211><212><213>	7536 ADN	sapie	ns													

5

10

<220>

<400> 3

<221> CDS <222> (132)..(1604) <223>

ccttttcacq	gege	tcgcga	gctaac	cggac	tcg	gegg	cgg	cggc	ggcç	ige d	ggeet	gegee	60
ccacccgcac	ccca	tctgga	ccgcat	cgct	gaa	tgtg	ccc	ggad	ctgo	ege d	ettet	gggtc	120
tctgaaagaa		g aat t t Asn I											170
aga gaa ta Arg Glu Ty 15						-			-	-			218
cag ggg gt	g atg	cag ca	ng att	cag	aga	cat	tgc	cag	tca	gtc	aga	gat	266

Gln 30	Gly	Val	Met	Gln	Gln 35	Ile	Gln	Arg	His	Cys 40	Gln	Ser	Val	Arg	Asp 45	
				ggc Gly 50												314
_		_		gtt Val		_		_	_			_	_			362
	-	-		cca Pro	-					-		-	-			410
				gtt Val												4 58
				agg Arg												506
				gta Val 130												554
				gaa Glu												602
_	_		_	gat Asp	_	_			_		_		_		_	650
				atg Met												698
-		_	-	ctt Leu	_	_	-		_					_		746
			Asp	ata Ile 210	Ala			Glu		Ala						794
				ctt Leu												842
				aag Lys												890
				gct Ala												938
				tct Ser												986

gag aag tta gtt cgt ctg ttg ttt gag atg gct aga ttt tat gcc cct Glu Lys Leu Val Arg Leu Leu Phe Glu Met Ala Arg Phe Tyr Ala Pro 290 295 300	1034
acc acg atc ttc att gat gag ata gat tct atc tgc agt cga aga gga Thr Thr Ile Phe Ile Asp Glu Ile Asp Ser Ile Cys Ser Arg Arg Gly 305 310 315	1082
acc tct gat gaa cat gag gca agt cgc agg gtc aag tct gaa ctg ctc Thr Ser Asp Glu His Glu Ala Ser Arg Arg Val Lys Ser Glu Leu Leu 320 325 330	1130
att cag atg gat gga gtt gga ggt tta gaa aat gat g	1178
aaa atg gtt atg gta ttg gct gct act aat ttc ccg tgg gac att gat Lys Met Val Met Val Leu Ala Ala Thr Asn Phe Pro Trp Asp Ile Asp 350 355 360 365	1226
gaa gct ttg cga aga agg tta gaa aaa agg ata tat ata cct ctc cca Glu Ala Leu Arg Arg Arg Leu Glu Lys Arg Ile Tyr Ile Pro Leu Pro 370 375 380	1274
aca gca aaa gga aga gct gag ctt ctg aag atc aac ctt cgt gag gtc Thr Ala Lys Gly Arg Ala Glu Leu Leu Lys Ile Asn Leu Arg Glu Val 385 390 395	1322
gaa tta gat cct gat att caa ctg gaa gat ata gcc gag aag att gag Glu Leu Asp Pro Asp Ile Gln Leu Glu Asp Ile Ala Glu Lys Ile Glu 400 405 410	1370
ggc tat tct ggt gct gac atc act aat gtt tgc agg gat gcc tct tta Gly Tyr Ser Gly Ala Asp Ile Thr Asn Val Cys Arg Asp Ala Ser Leu 415 420 425	1418
atg gca atg aga cgg cgt atc aat ggc tta agt cca gaa gaa atc cgt Met Ala Met Arg Arg Arg Ile Asn Gly Leu Ser Pro Glu Glu Ile Arg 430 435 440	1466
gca ctt tct aaa gag gaa ctt cag atg cct gtt acc aaa gga gac ttt Ala Leu Ser Lys Glu Glu Leu Gln Met Pro Val Thr Lys Gly Asp Phe 450 455 460	1514
gaa ttg gcc cta aag aaa att gct aag tct gtc tct gct gca gac ttg Glu Leu Ala Leu Lys Lys Ile Ala Lys Ser Val Ser Ala Ala Asp Leu 465 470 475	1562
gag aag tat gaa aaa tgg atg gtt gaa ttt gga tct gct tga Glu Lys Tyr Glu Lys Trp Met Val Glu Phe Gly Ser Ala 480 485 490	1604
atttctgtca gctctttaat ttctggtatt tttgttgata aaatacgaag aaattcct	gc 1664
aatttttaaa aaacaagttt ggaatttttt tcagtggagt ggttttcgct taaaggaa	aa 1724
aaaaatctaa aactgcgaag aatactaaat gtagttgaga aataattgat ggcgagag	tt 1784
tgctagtctc cctccccggc tttgtgctgg tattccacgt attcctgcat taatattg	ca 1844
cacccaaacc agtotatcag ggaggotgaa gcaagggogc agtgtgatat tttaggaa	ta 1904
cagaagattt agaaataccc ctatttctca tttgcagttt ttttttccaa ttctgtgc	tc 1964

tgtcaacatg	agggacctat	ctatgtatgt	tgacttttaa	catcaaaatt	ggatttgtgt	2024
caaacattca	ttgttaagag	aagaatgaca	gtatattttg	gaggaaataa	tgaatttact	2084
aattaaacct	ttagaattta	tgacttactg	ttagagtctg	tcatatggtt	agaattttta	2144
cttccgctac	ccctgccatt	tcttctgcta	gctacttcat	aatatcttga	gctttactga	2204
ggaatattct	cacgetetgt	ggtatttgaa	tcattttgcc	aggtcatttc	tctgtcttta	2264
gtattttttg	ctggtgcttc	ttacatttaa	tatggaaagg	tgggaagaat	attactgcat	2324
tagatgtaat	tcttcattct	agacttccaa	gtttgttttc	acttttttgt	gtgtgcgtga	2384
aggagtctgt	gtcacccagg	ctgtgtagtg	cagtggttga	tcttggctca	ctgcaacctc	2444
tgcctcctag	attcaagcaa	tteteetgte	tcagceteec	aagtagetgg	gattacaggt	2504
gcgcaccacc	atgcctggct	gtgttttcac	ttttctttca	acatgttcaa	ccagatatat	2564
agccattatt	tttctcagct	ccagcattgt	ttgatttttc	ttgagtttga	ttttagtatt	2624
tgagataaat	acttttacat	tctaaacaag	tecaetetet	gtggctaacg	caaaacaaat	2684
gaaatcttta	ttgttttcca	aacagctagt	ttaacaaaac	agcatcatac	atagtgaatg	2744
atgttcattg	gaaaattcta	aaatttgtcc	ttgtctaggt	tgagaacttt	tacacacact	2804
aagataaaga	tagaaatctg	acatgeteae	tcaattcagc	aggaattaca	cattagaaag	2864
aagccagaaa	aataaatggc	atatatecaa	tcacaagtaa	atgateetgg	cgttagtttt	2924
tatgattaca	tgtgtctcat	taggcaattt	atgctttaat	ggtcaagctt	ttaaaaattt	2984
gtatttgata	acatcctgaa	ttctcagttt	cgaatagtgc	ctactggttt	aaaactaaaa	3044
ataatacagc	tttttggaca	tttaaccaag	atactaagaa	ggttttttt	aaaaaagag	3104
atttgattat	ttttccctgc	taaaaactgt	aaatgcctta	tgttcttttc	agataactta	3164
agtetgacet	aaactccagt	attcatctga	tgctgtaaat	tgcccttctt	tctgagacac	3224
agattataag	atgccagatc	ataagacatc	atgattttat	tgtaattgaa	ttetteetaa	3284
aaattgagag	gtttcctttt	attaactttt	aaaataaaga	aataagtagt	ttcattacga	3344
ttattttgca	aactattgcc	agtcagaaat	gcacttttt	tttccctgaa	gttttaggag	3404
ccgtcactaa	aacattagtc	ttgtgattgt	taaaacttgt	ttgtaatggg	ttggtgcaaa	3464
agtaattgtg	gtttttccat	tactttcaat	ggcaaaaacc	gcaattactt	ttgcaccagc	3524
ctaacaatag	ttgattagtt	agaccttttc	tgggttttgt	attgattatc	ttggtgtgca	3584
tttaattatt	tttctgaatt	cttcatggat	aatgacatag	taattgtgat	tcttttaata	3644
ccagttaagc	agtatttggc	aacttaaact	teetgggage	ctaactttac	tatgttaagt	3704
gagtcaggtg	tgctttttat	ttcccttgtt	tctcattttg	ccctgtcagt	ggatggtaga	3764
tgctttgtat	atcttaaatc	ccttaaagga	tcttaaagac	atccctcagg	tgttctattt	3824

aacttttatt	ttattttatt	ttatttattt	atttattttg	agactgagtc	ttgctctgtc	3884
geceaggetg	gagtgcagtg	gcatgatctc	ggctcactgc	aacttctgcc	teccaggtte	3944
aagccattct	cctgcctcgg	cctcctgagt	agctgggatt	acagttgccg	ccacacccgg	4004
cttatttttt	tgtattttta	gtagaggcag	agtttcacca	tgttggccag	gctagtctcg	4064
aactcctgac	ctcagatgat	ccgcccacat	tggcctccca	aagtgctggg	attacaggtg	4124
tgatccaccg	cacctggccc	taacttttaa	tatacaacac	acacacacac	acacacacac	4184
acacacacac	acacacacac	acacacacac	acactatttc	agaagacagt	gtgttgcctt	4244
acccagaatg	agtgctagga	ttacaggcgt	gagacagaca	cacatacaca	cacatacaca	4304
cacacagagt	ctttattgca	gaagacagtg	tgttgcctta	taggcgtgag	acacacacac	4364
acacacacac	acacacacac	acacacacag	tctttattgc	agaagacagt	gtgttgcctt	4424
accagaatga	gtgcttggat	tacaggcgtg	agccactgtg	cccagcccta	acttttaatg	4484
tacatcacac	acacactcac	actcacatac	acacacacac	acacactctg	actgtcttta	4544
ttgcagaaga	cagtgtgttg	ccttacccag	aatgagattg	aattgttttg	cttcgttttg	4604
ttttgttatt	cagtgttgcg	gtagcagatg	cattatcaaa	ggaaaaatat	ttggctcctt	4664
taattcctct	gaaaacatga	gtattttgag	ttctgcagca	caatgactgt	aggactaagc	4724
taagtctgct	ttgcagatat	ctgatcagat	agtcccttca	ttctgtagac	gtgtattggt	4784
tggtccaaga	cacagtgagt	aggagetetg	tggaccaaga	caaagctgga	ctagagagta	4844
cagttcaaac	ttggcagttt	ctctaacgac	tctgtatagc	ttctggcttc	tactactgaa	4904
acaagagttt	agatcactga	tggagaggca	tagtaatctg	tttgtgcttt	ggaaaaatat	4964
ataaaagttt	ttttccccta	ttttttgcac	tttaaatctg	ttttgaaatt	agaactgata	5024
tacatttatt	tgaataatgt	gtaactatta	tggatctatt	ttaatgaaca	atttttacca	5084
tttcccaagc	tgcctgttta	ttataagcat	gacatgttta	ctataaacct	tttgccccca	5144
taatttcttt	ttttaaagga	aattaatatt	agtaaaataa	acacctcttt	aatggaagct	5204
gcaaccttct	agtgatccaa	gtagacaata	gatggtggca	tcacagactt	tatctacaca	5264
ctttcgggtc	tgaccactac	ctcccacaat	acctagccat	tttggaaggg	gaaaacatgc	5324
ggtggtctag	ctgtatagct	cagggcttaa	tttcagcttc	tgagattgtg	atgtcatatt	5384
tcactctcaa	aacataggct	gaaagcacga	attactcaaa	aagtaagcaa	accaatacct	5444
ggtgaatcta	tggacagtca	tacacataca	tcaggggaaa	atgtgtgtgt	acaacccaaa	5504
tttacagtat	gattgtcatt	ctttgacttt	gttttgtata	gcctgactct	gttgaacatg	5564
aaattattag	tactctaggt	tttggacagc	ttgagttcat	ttgaattcct	tccttaggaa	5624
taagttttta	tatacactgc	taaatgtgtg	atgagaatca	taaaacacta	accagctgag	5684
gtagctgtga	ttcactttcc	ccccacccta	acttgagata	aaatgaagga	ctaggcaagt	5744

atttcatgtt	gtgtgagtgg	actteggtte	cttcagtatt	gtctaggtta	ttgagtcttt	580
ctttgcctaa	tagtggattc	ccactcttaa	gataactttt	attagtgata	aatcagttta	586
gggtatattc	tgtatgacag	gcataaaatg	ttaagggtga	atgctggcct	tttccaagaa	592
aaggccacct	taacttgtat	gaggaaaaaa	tcctaactat	tctcttttt	gtatcttttt	598
ttccgtaact	gttttgattg	tatattttaa	agaaaccact	taatttgtga	tgcacgtaat	604
atttgtgtga	acctgagaat	atgtcacaat	aggaaaaagc	agaaattata	cttaggggac	610
atgttagggg	ggtaaaaata	tttaagcctc	gaatgtttta	ctgtcatctc	cactaactat	616
ttttacagaa	aaagctaaaa	actctgttgt	aattattgta	agtttactta	tttatacttt	622
taaattaggc	ttttcatact	taaattttt	tgacatttgc	ttttaatatt	tgtttcttaa	628
tgtggaaatt	gtgtatttta	ataatcaaat	tattaggata	atagatatat	ttttaaacat	634
tcacctcatt	aacaaataga	tctttgaatt	tttattaggt	tttttggctc	cagacaactg	640
tttagcttta	atgatatttc	taaattccca	gtgacttatt	aataaaaaca	ggaaaaatat	646
ttaggtaatg	tcataaaatt	tattttacct	ttctcatttt	ctgagaaaat	aaatgaaaaa	652
aaccctagat	attgctttat	taccaacagt	gtgtaggttt	ttgtacatat	ggaaatttga	658
cacaaaaaaa	tagggaattt	gtatagagaa	gtttccctct	tataaaagga	ctcccatttg	664
attgttcgaa	actataaaat	gcacttttac	tttaccatat	ctgaaatgac	aaaatatcgc	670
cctttggaaa	acctgactct	ttgcacgtgt	aattcccaga	gtctacctca	gttaaccagg	676
cttagtttta	ggcaggaatg	aattgaatta	aattcagttc	atcatctatg	cagatttgtt	682
tcttttaagc	acatccttcc	ctcctgctgt	tgccctcctc	ccattaactt	ttctttttaa	688
tcttgaaatt	gtttaaaata	ttccatcttt	ctttctctag	caaagtgttt	gtattccaaa	694
taaggcetet	gtgaaatgtc	tgaattactt	ttcccgtctt	tgttatggtc	agcttcatta	700
tttggatgta	ttgcattcaa	agcagcagtt	ccaaacataa	cacacatcta	ttttcttaga	706
gttttgtaaa	tacaaactaa	cctgatgaca	ttaaaaattg	tggatcctac	atgttcctat	712
gttcattctc	taaaaacctg	agtaacttta	tgaaaacaca	caaacctgga	aaaacatcac	718
atttttgtca	catttttact	gacaaatgta	tattcatatg	atggtacggc	agcagggagt	724
ggcccccagt	taacatggct	gtgagtggac	acagtgtctc	gcaggatcac	tgcatgttat	730
gatggcttgt	aagtgcgttg	ttaagacttt	tgtttcagtg	tttgtctccc	agtatttgaa	736
cctaatttaa	agaaaaagac	gtttccaagt	tgtatttatt	aaatgtgttt	ttccttacct	742
tttgtgctgc	tactttgcta	atctcattag	cttagctgtg	tttgtgcata	ggttatattt	748
nntaataast	ttatagagtg	ttaattataa		20202020	99	753

<210> 4 <211> 490 <212> PRT <213> Homo sapiens

5

<400> 4

1		Asn	Leu	Ala	Glu 5	Ile	Cys	Asp	Asn	Ala 10	Lys	Lys	Gly	Arg	Glu 15	Tyr
A	la	Leu	Leu	Gly 20	Asn	Tyr	Asp	Ser	Ser 25	Met	Val	Tyr	Tyr	Gln 30	Gly	Val
M	let	Gln	Gln 35	Ile	Gln	Arg	His	Cys 40	Gln	Ser	Val	Arg	Asp 45	Pro	Ala	Ile
I	ys	Gly 50	Lys	Trp	Gln	Gln	Val 55	Arg	Gln	Glu	Leu	Leu 60	Glu	Glu	Tyr	Glu
	1n 5	Val	Lys	Ser	Ile	Val 70	Ser	Thr	Leu	Glu	Ser 75	Phe	Lys	Ile	Asp	Lys 80
P	ro	Pro	Asp	Phe	Pro 85	Val	Ser	Cys	Gln	Asp 90	Glu	Pro	Phe	Arg	Asp 95	Pro
A	la	Val	Trp	Pro 100	Pro	Pro	Val	Pro	Ala 105	Glu	His	Arg	Ala	Pro 110	Pro	Gln
I	le	Arg	Arg 115	Pro	Asn	Arg	Glu	Val 120	Arg	Pro	Leu	Arg	Lys 125	Glu	Met	Ala
		130					135					His 140				_
1	45					150					155	Tyr				160
				-	165		_			170		Gly			175	
				180					185			Lys		190		
			195		_			200				Ser	205		_	
		210					215					220				
v	a I	1.4417	PTC.	MAT	1.1.1.	MAT	PTC.	AST	PU6	PU6	I.V.E	Glv	116	ATC	ATC	PTO

225					230					235					240
Trp	Lys	Gly	Val	Leu 245	Met	Val	Gly	Pro	Pro 250	Gly	Thr	Gly	Lys	Thr 255	Met
Leu	Ala	Lys	Ala 260	Val	Ala	Thr	Glu	Cys 265	Gly	Thr	Thr	Phe	Phe 270	Asn	Val
Ser	Ser	Ser 275	Thr	Leu	Thr	Ser	Lys 280	Tyr	Arg	Gly	Glu	Ser 285	Glu	Lys	Leu
Val	Arg 290	Leu	Leu	Phe	Glu	Met 295	Ala	Arg	Phe	Tyr	Ala 300	Pro	Thr	Thr	Ile
Phe 305	Ile	Asp	Glu	Ile	Asp 310	Ser	Ile	Cys	Ser	Arg 315	Arg	Gly	Thr	Ser	Asp 320
Glu	His	Gl u	Ala	Ser 325	Arg	Arg	Val	Lys	Ser 330	Glu	Leu	Leu	Ile	Gln 335	Met
Asp	Gly	Val	Gly 340	Gly	Ala	Leu	Glu	Asn 345	Asp	Asp	Pro	Ser	Lys 350	Met	Val
Met	Val	Leu 355	Ala	Ala	Thr	Asn	Phe 360	Pro	Trp	Asp	Ile	Asp 365	Glu	Ala	Leu
Arg	Arg 370	Arg	Leu	Glu	Lys	Arg 375	Ile	Tyr	Ile	Pro	Leu 380	Pro	Thr	Ala	Lys
Gly 385	Arg	Ala	Glu	Leu	Leu 390	Lys	Ile	Asn	Leu	Arg 395	Glu	Val	Glu	Leu	Asp 400
Pro	Asp	Ile	Gln	Leu 405	Glu	Asp	Ile	Ala	Glu 410	Lys	Ile	Glu	Gly	Tyr 415	Ser
Gly	Ala	Asp	11 e 420	Thr	Asn	Val	Cys	Arg 425	Asp	Ala	Ser	Leu	Met 430	Ala	Met
Arg	Arg	Arg 43 5	Ile	Asn	Gly	Leu	Ser 440	Pro	Glu	Glu	Ile	Arg 44 5	Ala	Leu	Ser
Lys	Glu 450	Gl u	Leu	Gln	Met	Pro 455	Val	Thr	Lys	Gly	Asp 460	Phe	Glu	Leu	Ala
Leu 465	Lys	Lys	Ile	Ala	Lys 470	Ser	Val	Ser	Ala	Ala 475	Asp	Leu	Glu	Lys	Tyr 4 80
		G	lu 1	Lys	Trp	Met	Val 485	Glu	Phe	Gly	, Se	r Al.			

<210><211><211><212><213>	> 617 > ADN	1	culus														
<220><221><222><222><223>	> CDS > (137		603)														
<400>	> 5																
agegeggega cagaetgata aattgggage tactcagatg gtgttaaagt gaetetttgt													60				
	ctgcaggggg ctccggggtg gtcgctggat tgggcgctgt gcgtcgggcg ggggtagcgc												120				
aggtgtctga aagaag atg aat ttg gcg gag att tgt gag aat gcg aag aaa Met Asn Leu Ala Glu Ile Cys Glu Asn Ala Lys Lys 1 5 10												172					
															gtg Val		220
		_				_	_		_	_		_	_		ctg Leu	_	268
															ctc L eu		316
	-	-		-	_	-	-	-		-	_			-	agc Ser 75		364
															gaa Glu		412
		_	-		-	-					-			-	cac His	-	460
															ctg Leu		508
		_			_		_						-	-	cac His	_	556
															aga Arg 155		604
															gca Ala		652

_	_				aag Lys		_	 _			_	_	-	_	700
	-	-	_		agg Arg	-						-			748
					gac Asp 210										796
					atg Met										844
					gtg Val										892
	-	-	_		gcg Ala	-	-	-	_						940
					acc Thr	_		_		_		_			988
					ttg Leu 290										1036
-				-	gaa Glu		-		_	-	-	-		-	1084
					gca Ala										1132
_	_	-		_	gga Gly		_	_		-	-				1180
					gct Ala										1228
					cta Leu 370										1276
					gag Glu										1324
					cac His										1372
					atc Ile								ttg Leu		1420

gcg atg agg cgg cgc atc aat ggc ttg agt ccg gaa gag atc cgg gcc Ala Met Arg Arg Arg Ile Asn Gly Leu Ser Pro Glu Glu Ile Arg Ala 430 435 440	1468
ctg tcc aag gag gag ctg cag atg cct gtc acc aga ggg gac ttg gag Leu Ser Lys Glu Glu Leu Gln Met Pro Val Thr Arg Gly Asp Leu Glu 445 450 450 455	1516
ttg gct ctg aag aaa atc gcc aag tct gtc tca gcg gca gac ctg gag Leu Ala Leu Lys Ile Ala Lys Ser Val Ser Ala Ala Asp Leu Glu 465 470 475	1564
aag tac gaa aag tgg atg gtt gag ttt ggg tct gca tga ttggtcagct Lys Tyr Glu Lys Trp Met Val Glu Phe Gly Ser Ala 480 485	1613
cttccatctc tgggagtttt ctttatgaaa tgtgaagaaa ttcctgaaat taaaaaaaaa	1673
aatctggaag ttttaatcag aggaatcttc acttgaaggc caaaccaaaa cagaaatgcc	1733
agaggtacag agaaatgtag ttgagaaaca aggtatgatc atacagtctg ctggctccag	1793
getaccaaac etcataettg tgtacagaat aagagageea gtggeeeggg etgaaggggt	1853
agetetgtge agggagggee ttgtttacaa ageattggea gagttttett geecatacgt	1913
gcactgactg gtagtttgga attgtcactt tgagtggaat gatcacaagt tcttcaggaa	1973
taatttttaa atototagaa totaataott ootgttagag ttgaaaatgt agttagtaot	2033
cacteetett agettaeeag tteetetgtt agetgeegee ttaeateeae cagggaagag	2093
tetetgaceg actgeteegt tgacatttge cetggeetgt agtetetgtg eeggggeete	2153
teetgettee tttgeaatga tgggaagage eettettagt tageageage etteageett	2213
tgaagtcctc actcttcctt cagtactctc aagtcaatat ggctactgtt ttttctcacc	2273
tecaacactg tgtgettttg tagaatttaa eetgtttagg teggtaatet gagttecaaa	2333
caagactagt ctcctaggcg aatgcaaaag aacctttccc ctcttctgca tgtgagcgag	2393
cattetgeca geaegeatgt etgtatacea eatgeatgea gtgeeegagg aggeeagaga	2453
ggacattggg tcccctggtt ctggaattac agggtgtgtg agccaccgtg tggatgctgg	2513
gaaccaaacc caggtotota caagggcago cagtgttott aacggotgag ccatocotco	2573
aaccccacaa acagaaccta tgaacttgtg catgcagtgg gactagagca gacagctgcc	2633
atgctcgtta gatgcggagt aaccaggaag gaggatctca gacaggggcc gcatgagtgt	2693
ggtcacacgc actgtgccct gatgtccgtt ctctgtgatt aattacacct gcccttctgg	2753
atcaccagge aacctatget teaaaagttt gtetaataat atcetgatte tegageetat	2813
tttaagctat atactatata caccttagag gcacttttaa aaactcctag tatgttgctt	2873
aagatatttg acceptttt ottactaaaa octataaatg catcacgoto ttttcaggag	2933
acataagece gaetetetaa aetettggat teatetgatt aetgtaaatt teeceettte	2993

ttctgagagg	gagtgaaggg	ccccagcagg	ctgaccattg	cacacacage	ggagcatagc	3053
agacatggca	ctgacaggtt	ttgtcgttta	cccctctccc	ccactgaget	gttagcttga	3113
tcctgaagct	cactaccaag	gtetggeece	ttattcagtc	actgactcat	tcctgagacc	3173
gagcaccaag	gtctagctat	cagaattcag	tatttcgact	aacctaacta	acataaccaa	3233
ccagatetta	ccagcacgtt	ctcgctcact	ctaagacaga	geteceeett	tcctcttacg	3293
attaacacct	gcaaagctat	ttactgttgt	ttctgtgtaa	ttcagactca	gccaccttgt	3353
ctcatctctc	tgccttgctt	aataaaggat	ctctttgcat	ttggcttgtg	cttggacgga	3413
ggtgtttgga	tgtggtctgt	gcctaacccg	gggtccagag	gggagcatcc	cacagtgcac	3473
aggteeette	gtaaggatta	taaaatttca	aatcaaaaga	catttgtaat	gggactaatt	3533
ttaaaattag	actgagagac	tetteettee	atgaacaaac	ttgcttttat	ttatttactt	3593
tgaggaagag	tctgactctg	ttgccaatgc	tggtcttcag	ctgtttcagc	ctcccagtag	3653
ctgggactga	ttattgataa	atgcttaaaa	taaacaacta	atgtggaagg	ctgatgcagg	3713
aggatccata	ggaaacagaa	acageceaaa	tgccccccag	ctgctgaaag	tatgatgaaa	3773
atatcacaca	cacacacaca	cacacacaca	cacacacaca	cacgaagagt	ctgaagccag	3833
cttgtgtaga	ctagcaaggc	cctatctcaa	aaatcaaaca	gaaagaaccc	cattcaatcc	3893
tettgttgta	tttcaaaaag	aaggaaggaa	ggaaggaagg	aaggaaggaa	ggaaggaagg	3953
aaggaaggaa	ggaaggaaaa	gaaaaaagaa	aagaaaagaa	aagaaagaag	aaagagaagg	4013
aaggaagacc	gaccttctct	ataaccctgc	tggttggcag	acctttcctg	gctctggcat	4073
tagttacctt	tgcataaacc	cattttttt	ctggagtcct	catgcaccca	cagtacaggc	4133
ctgcgtctac	gctagggtag	gtggtggtct	gtagttagta	agtcacatgt	gegetecete	4193
catccctccc	tcctcacaag	ctgtcagtag	acggcacaga	tctgtaagag	gccggccact	4253
cagatgtctc	teteetgtaa	gacatgctgt	ccacacattg	tcactgccat	ggcggcagga	4313
agcatgttac	tctgcacaca	gtaggaaaca	ggagctctgg	ggcagcagca	caggggctgg	4373
tgtgtgcaca	gttgtttcat	cgtcccatca	tgggcacacc	gtgctggtca	ccctcgctgt	4433
gtagatggtg	ggtggaggct	acgtgacttg	ccaagtagtg	ctggaccctg	aagctgtggc	4493
tggacatttt	ctccagtaac	tgcctctcct	ggctcctgct	actaaagcac	gagtttagtt	4553
tataactgga	gagacagcga	tctgtgtgtt	tggagaagag	aatatacaga	aaggttttcc	4613
cetttgettt	tettttgaaa	cctttgattg	gttttaaatt	gtttaaaatg	agttttaaac	4673
aattaaacag	tttgcttaaa	caatcaaaca	attgtttgtt	taaacacacc	attaaaaatc	4733
aatcgatgaa	agatctattt	cagtgcaccc	actttatcat	ttttgtgcca	cgattatacg	4793
tgtgattatg	caaagcatac	acgcaagtaa	tgcgattact	gtgaaagctt	ccatagtttc	4853
ctttttaaag	aaagtaagat	aatattggtg	agatgtccca	gacaaatgga	agctgtggcc	4913

tectagttae	gcaggttagg	aacaggtgac	atcacaggcc	ttccacccat	gagttccatc	4973
cttcagtaga	gtgaccccag	gcaacacatg	gccatcagaa	atgccagact	gggacateet	5033
gccggggcct	tcacaggaga	gcctgggtca	cagttcagtc	acacagetgt	ctaactttca	5093
gggagttcac	caagtggggt	ggagtaggga	aaccagcacc	cacaagcagt	caagcaggca	5153
cacggaggcc	taaaacaagc	agccgcccag	gagtatgtgt	gagcccagtt	tacagtatta	5213
attgtcgctg	gttatccctg	tgtgtattgt	gactctgtgg	ggagtcattg	cctccttagc	5273
tcttgggtat	ctgagttcat	gaggetteet	tccttagata	cactacagga	tcaggcagga	5333
gtctgcccag	gtaacctcct	ccttgcctca	cttgagaggc	aggcaaagaa	ctgggcctgt	5393
catttgcata	gtggtcttgg	ctctggcctc	cttagtgagg	tcttttttgg	tctcttcata	5453
cacacacaca	cacacacgca	cacaggcccc	caataataat	aatagtacat	ttctactgtt	5513
ttcttattaa	atatagatca	caactagggt	atgactcatg	ctttgggata	aaatgttagg	5573
tgggagtcga	ccttttctaa	gaaaagatct	aactgtggcg	aactggaaga	atctggacta	5633
ttccagcttt	ctagtgtctt	tgttttgttg	cttaatgttt	gcatgtacaa	tgttttaaat	5693
ttgtgacaca	tatgatactt	atgtcaatct	aagagtccac	cacaacagaa	gaaaatagga	5753
ccaagttgaa	ggatgcattg	ggggcaaatt	aaccctcacc	gggaccgcac	tgatattaaa	5813
gttgaaggat	ggggggcggg	ggaggggact	aatcctcatg	gggaccactc	atccacaccg	5873
attatttctg	cagtttattt	acctcataat	tattacatgt	ttacttattt	atgtgtttaa	5933
tttaggcttt	ccttatttat	ttaatttttg	ggtcacttgc	ttttgatatt	atttcttaat	5993
gtggaaactg	agtatttaaa	atattagatc	tgtatggtga	tatgttttta	cacatttact	6053
tagtagtaat	ttgaattttt	accagtttat	tttttttga	aaaatgtagt	tttgatgata	6113
atteteattt	caggtgcctt	attaataaaa	gettattaag	aggaaaaaaa	aaaaaaaaa	6173

<210>6

<211> 488

<212> PRT

<213> Mus musculus

<400> 6

Met Asn Leu Ala Glu Ile Cys Glu Asn Ala Lys Lys Gly Arg Glu Tyr 1 5 10 15

Ala Leu Leu Gly Asn Tyr Asp Ser Ser Met Val Tyr Tyr Gln Gly Val 20 25 30

Ile Gln Gln Ile Gln Arg His Cys Gln Ser Leu Arg Asp Pro Ala Thr $35 \hspace{1cm} 40 \hspace{1cm} 45$

10

5

Lys	A la 50	Lys	Trp	Gln	Gln	Val 55	Arg	Gln	Glu	Leu	Leu 60	Glu	Glu	Tyr	Glu
Gl n 65	Val	Lys	Ser	Ile	Val 70	Ser	Thr	Leu	Glu	Ser 75	Phe	Lys	Met	Asp	Lys 80
Pro	Pro	Asp	Phe	Pro 85	Val	Ser	Суз	Arg	Asp 90	Glu	Pro	Phe	Arg	As p 95	Pro
Ala	Val	Trp	Pro 100	Pro	Pro	Val	Pro	Ala 105	Glu	His	Arg	Ala	Pro 110	Pro	Gln
Ile	Arg	Arg 115	Pro	Asn	Arg	Glu	Val 120	Arg	Pro	Leu	Arg	Lys 125	Asp	Val	Gly
Ala	Gly 130	Ala	Arg	Gly	Leu	Val 135	Gly	Arg	Ala	His	Gln 140	Ile	Ser	Lys	Ser
Asp 145	Lys	Pro	Ala	Ser	Arg 150	Asp	Lys	Asp	Tyr	Arg 155	Ala	Arg	Gly	Arg	Asp 160
Asp	Lys	Ala	Arg	Lys 165	Aşn	Val	Gln	Asp	Gly 170	Ala	Ser	Asp	Ser	Glu 175	Ile
Pro	Lys	Phe	Asp 180	Gly	Ala	Gly	Tyr	Asp 185	Lys	Asp	Leu	Val	Glu 190	Ala	Leu
Glu	Arg	Asp 195	Ile	Val	Ser	Arg	Asn 200	Pro	Ser	Ile	His	Trp 205	Asp	Asp	Ile
Ala	Asp 210		Glu	Glu		Lys 215	_	Leu	Leu	Arg	Glu 220		Val	Val	Leu
Pro 225	Met	Trp	Met	Pro	Asp 230	Phe	Phe	Lys	Gly	Ile 235	Arg	Arg	Pro	Trp	Lys 240
Gly	Val	Leu	Met	Val 245	Gly	Pro	Pro	Gly	Thr 250	Gly	Lys	Thr	Met	Le u 255	Ala
Lys	Ala	Val	Ala 260	Thr	Glu	Cys	Gly	Thr 265	Thr	Phe	Phe	A sn	Val 270	Ser	Ser
Ser	Thr	Leu 275	Thr	Ser	Lys	Tyr	Arg 280	Gly	Glu	Ser	Glu	Lys 285	Leu	Val	Arg
Leu	Leu 290	Phe	Glu	Met	Ala	Arg	Phe	Tyr	Ala	Pro	Thr	Thr	Ile	Phe	Ile

Asp 305	Glu	Ile	Asp	Ser	Ile 310	Cys	Ser	Arg	Arg	Gly 315	Thr	Ser	Asp	Glu	His 320
Glu	Ala	Ser	Arg	Arg 325	Val	Lys	Ser	Glu	Leu 330	Leu	Ile	Gln	Met	Asp 335	Gly
Val	Gly	Gly	Ala 340	Leu	Glu	Asn	Asp	Asp 345	Pro	Ser	Lys	Met	Val 350	Met	Val
Leu	Ala	Ala 355	Thr	Asn	Phe	Pro	Trp 360	Asp	Ile	Asp	Glu	Ala 365	Leu	Arg	Arg
Arg	Leu 370	Glu	Lys	Arg	Ile	Tyr 375	Ile	Pro	Leu	Pro	Thr 380	Ala	Lys	Gly	Arg
Ala 385	Glu	Leu	Leu	Lys	Ile 390	Ser	Leu	Arg	Glu	Val 395	Glu	Leu	Asp	Pro	Asp 400
Val	His	Leu	Glu	Asp 405	Ile	Ala	Asp	Lys	Thr 410	Glu	Gly	Tyr	Ser	Gly 415	Ala
Asp	Ile	Thr	Asn 420	Ile	Cys	Arg	Asp	Ala 425	Ser	Leu	Met	Ala	Met 430	Arg	Arg
Arg	Ile	Asn 435	Gly	Leu	Ser	Pro	Glu 440	Glu	Ile	Arg	Ala	Leu 445	Ser	Lys	Glu
Glu	Leu 450	Gln	Met	Pro	Val	Thr 455	Arg	Gly	Asp	Leu	Glu 460	Leu	Ala	Leu	Lys
Lys 465	Ile	Ala	Lys	Ser	Val 470	Ser	Ala	Ala	Asp	Leu 475	Glu	Lys	Tyr	Glu	Lys 480
Trp	Met	Val	Glu	Phe 485	Gly	Ser	Ala								

<210> 7 <211> 1559 5 <212> ADN <213> Bos taurus <220>

<221> CDS 10 <222> (1)..(1473) <223>

<400> 7

atg aat ttg gct gag att tgt gac aat gca aag aaa gga aga gaa tat

Met Asn Leu Ala Glu Ile Cys Asp Asn Ala Lys Lys Gly Arg Glu Tyr

1 5 10 15

			tat Tyr									96
			aga Arg									144
			cag Gln									192
			gtc Val 70									240
			gtg Val									288
			ccc Pro									336
			cga Arg									384
			gga Gly									432
_	 _		acc Thr 150	_	 -	_	-	-	_	-	_	 480
			agg Arg									528
			gat Asp									576
			atc Ile									624
			gaa Glu									672
			atg Met 230									720
			atg Met									768
			gcc Ala									816

			260					265					270			
	tct Ser															864
-	cgt Arg 290	_	_		_	-	-				_			-		912
	atc Ile	-			_			_	_	_	_				-	960
	cat His															1008
-	gga Gly	-			-	-			-	-				-	-	1056
	gta Val															1104
	agg Arg 370															1152
	aga Arg									_					_	1200
	gat Asp															1248
	gct Ala	_				_	_		_	_			_	_	_	1296
	egg Arg															1344
	gag Glu 450															1392
	aag Lys															1440
	aag Lys									tga	atti	tetgi	tca (getei	tttcat	1493
ttct	ggta	att t	ttgl	tctat	ta aa	aatgi	gaaq	g aaa	ttc	cage	aati	tttt	ttt 1	tttaa	aaacag	1553
gttt	ga															1559

<210> 8
<211> 490
<212> PRT
<213> Bos taurus

<400> 8

Met 1	Asn	Leu	Ala	Glu 5	Ile	Cys	Asp	Asn	Ala 10	Lys	Lys	Gly	Arg	Glu 15	Tyr
•				,										•0	
Ala	Leu	Leu	Gly 20	Asn	Tyr	Asp	Ser	Ser 25	Met	Val	Tyr	Tyr	G1n 30	Gly	Val
Ile	Gln	Gln 35	Ile	Gln	Arg	His	Cys 40	Gln	Ser	Val	Arg	Asp 45	Pro	Ala	Val
Lys	Gly 50	Arg	Trp	Gln	Gln	Val 55	Arg	Gln	Glu	Leu	Leu 60	Glu	Glu	Tyr	Glu
Gln 65	Val	Lys	Ser	Ile	Val 70	Ser	Thr	Leu	Glu	Ser 75	Phe	Lys	Ile	Asp	Arg 80
Pro	Pro	Asp	Phe	Pro 85	Val	Ser	Cys	Gln	Asp 90	Glu	Pro	Phe	Arg	Asp 95	Pro
Ala	Val	Trp	Pro 100	Pro	Pro	Val	Pro	Ala 105	Glu	His	Lys	Ala	Pro 110	Pro	Gln
Ile	Arg	Arg 115	Pro	Asn	Arg	Glu	Val 120	Arg	Pro	Leu	Arg	Lys 125	Glu	Met	Pro
Gly	Gly 130	Gly	Ala	Arg	Gly	Pro 135	Val	Gly	Arg	Ala	His 140	Pro	Ile	Ser	Lys
Ser 145	Glu	Lys	Pro	Ser	Thr 150	Ser	Arg	Asp	Lys	Asp 155	Cys	Arg	Ala	Arg	Gly 160
Arg	Asp	Asp	Lys	Gly 165	Arg	Lys	Asn	Met	Gln 170	Asp	Gly	Thr	Ser	Asp 175	Gly
Glu	Ile	Pro	Lys 180	Phe	Asp	Gly	Ala	Ala 185	Tyr	Asp	Lys	Asp	Leu 190	Val	Glu
Ala	Leu	Glu 195	Arg	Asp	Ile	Val	Ser 200	Arg	Asn	Pro	Ser	Val 205	His	Trp	Asp
Asp	Ile	Ala	Asp	Leu	Glu	Glu 215	Ala	Lys	Lys	Leu	Leu	Arg	Glu	Ala	Val

Val 225	Leu	Pro	Met	Trp	Met 230	Pro	Asp	Phe	Phe	Lys 235	Gly	Ile	Arg	Arg	Pro 240
Trp	Lys	Gly	Val	Leu 245	Met	Val	Gly	Pro	Pro 250	Gly	Thr	Gly	Lys	Thr 255	Met
Leu	Ala	Lys	Ala 260	Val	Ala	Thr	Glu	Cys 265	Gly	Thr	Thr	Phe	Phe 270	Aşn	Val
Ser	Ser	Ser 275	Thr	Leu	Thr	Ser	Lys 280	Tyr	Arg	Gly	Glu	Ser 285	Glu	Lys	Leu
Val	Arg 290	Leu	Leu	Phe	Glu	Met 295	Ala	Arg	Phe	Tyr	Ala 300	Pro	Thr	Thr	Ile
Phe 305	Ile	Asp	Glu	Ile	Asp 310	Ser	Ile	Суз	Ser	Arg 315	Arg	Gly	Thr	Ser	Asp 320
Glu	His	Glu	Ala	Ser 325	Arg	Arg	Val	Lys	Ser 330	Glu	Leu	Leu	Ile	Gln 335	Met
Asp	Gly	Val	Gly 340	Gly	Ala	Leu	Glu	Asn 345	Asp	Asp	Pro	Ser	Lys 350	Met	Val
Met	Val	Leu 355	Ala	Ala	Thr	Aşn	Phe 360	Pro	Trp	Asp	Ile	Asp 365	Glu	Ala	Leu
Arg	Arg 370	Arg	Leu	Glu	Lys	Arg 375	Ile	Tyr	Ile	Pro	Leu 380	Pro	Thr	Ala	Lys
Gly 385	Arg	Thr	Glu	Leu	Leu 390	Lys	Ile	Asn	Leu	Arg 395	Glu	Val	Glu	Leu	Asp 400
Pro	Asp	Ile	Gln	Leu 405	Glu	Asp	Ile	Ala	Glu 410	Lys	Ile	Glu	Gly	Tyr 415	Ser
Gly	Ala	Asp	Ile 420	Thr	Asn	Val	Cys	Arg 425	Asp	Ala	Ser	Leu	Met 430	Ala	Met
Arg	Arg	Arg 435	Ile	Asn	Gly	Leu	Ser 440	Pro	Glu	Glu	Ile	Arg 445	Ala	Leu	Ser
Lys	Glu 450	Glu	Leu	Gln	Met	Pro 455	Val	Thr	Arg	Gly	Asp 460	Phe	Glu	Leu	Ala
Leu 465	Lys	Lys	Ile	Ala	Lys 470	Ser	Val	Ser	Ala	Ala 475	Asp	Leu	Glu	Lys	Tyr 480

Glu Lys Trp Met Val Glu Phe Gly Ser Ala 485 490

5	<210> 9 <211> 22 <212> A <213> E	DN	caballi	ıs											
0	<220> <221> C <222> (1 <223>		13)												
	<400> 9														
		ggc Gly													48
		aga Arg													96
		ege Arg													144
		gac Asp 50													192
		ctg Leu													240
		cgg Arg													288
		tcg Ser													336
	Arg	gcc Ala	Leu	Gly	Gly	Pro	Gly	Arg	Ala	Asn	Tyr	Lys	Ala		384
		gac Asp 130													432
		tct Ser				 			_			_	-	_	 480
		gtg Val													528
		cca Pro													57€

gee g Ala A																624
gcc t Ala S 2	•				-					-	-	-	-	-		672
tgc a Cys A 225	_								_	_		_	_		_	720
gaa g Glu G																768
aaa a Lys I																816
ttt a Phe A	۱rg															864
gct c Ala P 2																912
aaa g Lys G 305																960
cct a Pro I																1008
aga g Arg A																1056
gca a Ala S	Ser															1104
gac t Asp L 3																1152
att c Ile H 385																1200
agg g Arg G																1248
att a Ile A																1296
ggt a Gly L	aag Lys	act Thr	atg Met	cta Leu	gct Ala	aaa Lys	gct Ala	gtc Val	gcc Ala	acg Thr	gaa Glu	tgt Cys	ggc Gly	aca Thr	acg Thr	1344

		435					440					445				
	c ttc e Phe 450															1392
	t gag r Glu 5	_		_	_	_	_		_	_	_	_			-	1440
	c acc o Thr															1488
	a acc y Thr		-	_			-	_	-	_	_	_		-		1536
	c att u Ile															1584
	c aaa r Lys 530															1632
	t gaa p Glu 5															1680
	a aca o Thr															1728
	t gaa 1 Glu															1776
	g ggc u Gly															1824
	a atg u Met 610															1872
	t gcg g Ala 5															1920
	c gaa e Glu															1968
	g gag u Glu	-		-			-	-	-				-	tga		2013
at	ttctg	aca (ggtci	tttca	at ti	tetg	gtatt	ttt	gttt	ata	aaat	gtga	aag a	aatto	cctgca	2073
at	taaaa	aaa a	aaaa	atago	gt t1	tggaa	acttt	teq	gttgç	gaga	gati	ttc	acg t	taaaq	ggaaaa	2133
aa	aaaac	ada 1	taaa:	acca	ca aa	agaat	ataa	a ato	rt.agt	t.ga	оааа	ataac	taa :	aaget	tacot	2193

	agagageetg	aragrereeg	teecetgget	ctgtgetggt	accedegcy	Cicalgeatt	2233
	ggtattgcac	gcccagacca	g				2274
5	<210> 10 <211> 670 <212> PRT <213> Equus caba	allus					
	<400> 10						

Met 1	GLY	ATA	GIU	5 5	GIĀ	Trp	Thr	Arg	Arg 10	ser	ser	Pro	Ser	Arg 15	ALA
Arg	Arg	Arg	Pro 20	Ala	Val	Pro	Ser	Ser 25	Asp	Gln	His	Leu	Glu 30	Thr	Ala
Gln	Arg	Gly 35	Gln	Gln	Arg	Ala	Pro 40	Arg	Asp	Arg	His	Ala 45	Ser	Cys	His
Gly	Asp 50	Glu	Ala	Leu	Pro	Arg 55	Gln	Ala	Glu	Pro	Ala 60	Leu	Aşn	His	Tyr
Thr 65	Leu	Ser	Pro	Ala	Ala 70	Gly	Asp	Arg	Arg	Arg 75	Phe	His	Lys	Glu	Ile 80
Leu	Arg	Arg	Gly	Pro 85	Arg	Cys	Gly	Arg	Gly 90	Arg	Ala	Glu	Asp	Ala 95	Arg
Ala	Ser	Ala	Gly 100	Ilę	Met	Gly	Ilę	Val 105	Val	Gl n	Arg	Leu	Pro 110	Arg	Pro
Arg	Ala	Leu 115	Gly	Gly	Val	Pro	Gly 120	Arg	Ala	Asn	Tyr	Lys 125	Ala	Arg	Arg
Pro	Asp 130	Ser	Trp	Glu	Arg	Pro 135	Ile	Thr	Leu	Ser	Arg 140	Pro	Gly	Glu	Glu
Lys 145	Ser	Leu	Phe	Val	Val 150	Arg	Gly	Leu	Met	Gly 155	Gly	Arg	Asp	Leu	Gly 160
Ser	Val	Arg	Trp	Glu 165	Gly	Glu	Val	Glu	Leu 170	Arg	Arg	Val	Leu	Pro 175	Ala
Leu	Pro	Phe	Gly 180	Arg	Pro	Gly	Tyr	Ser 185	Ala	Gl n	Pro	His	Pro 190	Gly	Trp
Ala	Ala	Ala 195	Arg	Leu	Val	Ser	Gly 200	Met	Ser	Ser	Arg	Pro 205	Gly	Cys	Arg

Ala	Ser 210	Gly	Leu	Arg	Arg	Leu 215	Ser	Pro	Ser	Gln	Val 220	Ala	Ala	Ala	Arg
Cys 225	Arg	Thr	His	Lys	Gly 230	Tyr	Phe	Phe	Lys	Val 235	Arg	Gln	Glu	Leu	Leu 240
Glu	Glu	Tyr	Glu	Gln 245	Val	Lys	Ser	Ile	Val 250	Ser	Thr	Leu	Glu	Ser 255	Phe
Lys	Ile	Asp	Lys 260	Pro	Pro	Asp	Phe	Pro 265	Val	Ser	Ser	Gln	Asp 270	Glu	Pro
Phe	Arg	Asp 275	Pro	Ala	Val	Trp	Pro 280	Pro	Pro	Val	Pro	Ala 285	Glu	His	Arg
Ala	Pro 290	Pro	Gln	Ile	Arg	Arg 295	Pro	Asn	Arg	Glu	Val 300	Arg	Pro	Leu	Arg
Lys 305	Glu	Met	Pro	Gly	Val 310	Gly	Ala	Arg	Gly	Pro 315	Val	Gly	Arg	Ala	His 320
Pro	Ile	Ser	Lys	Ser 325	Glu	Lys	Pro	Ser	Thr 330	Ser	Arg	Asp	Lys	Asp 335	Tyr
Arg	Ala	Lys	Gly 3 4 0	Arg	Asp	Asp	Lys	Gly 345	Arg	Lys	His	Met	Gln 350	Asp	Gly
Ala	Ser	Asp 355	Gly	Glu	Ile	Pro	Lys 360	Phe	Asp	Gly	Ala	Gly 365	Tyr	Asp	Lys
Asp	Leu 370	Val	Glu	Ala	Leu	G1u 375	Arg	Asp	Ile	Val	Ser 380	Arg	Aşn	Pro	Ser
Ile 385	His	Trp	Asp	Asp	11e 390	Ala	Asp	Leu	Glu	Glu 395	Ala	Lys	Lys	Leu	Leu 400
Arg	Glu	Ala	Val	Val 405	Leu	Pro	Met	Trp	Met 410	Pro	Asp	Phe	Phe	Lys 415	Gly
Ile	Arg	Arg	Pro 420	Trp	Lys	Gly	Val	Le u 4 25	Met	Val	Gly	Pro	Pro 430	Gly	Thr
Gly	Lys	Thr 435	Met	Leu	Ala	Lys	Ala 440	Val	Ala	Thr	Glu	Cys 445	Gly	Thr	Thr
Phe	Phe	Aşn	Val	Ser	Ser	Ser	Thr	Leu	Thr	Ser	Lys	Tyr	Arg	Gly	Glu

		450					455					460				
	Ser 465	Glu	Lys	Leu	Val	Arg 470	Leu	Leu	Phe	Glu	Met 475	Ala	Arg	Phe	Tyr	Ala 4 80
	Pro	Thr	Thr	Ile	Phe 485	Ile	Asp	Glu	Ile	Asp 490	Ser	Ile	Cys	Ser	Arg 495	Arg
	Gly	Thr	Ser	Asp 500	Glu	His	Glu	Ala	Ser 505	Arg	Arg	Val	Lys	Ser 510	Glu	Leu
	Leu	Ile	Gln 515	Met	Asp	Gly	Val	Gly 520	Gly	Ala	Leu	Glu	Asn 525	Asp	Asp	Pro
	Ser	Lys 530	Met	Val	Met	Val	Leu 535	Ala	Ala	Thr	Asn	Phe 540	Pro	Trp	Asp	Ile
	Asp 545	Glu	Ala	Leu	Arg	Arg 550	Arg	Leu	Glu	Lys	Arg 555	Ile	Tyr	Ile	Pro	Leu 560
	Pro	Thr	Ala	Lys	Gly 565	Arg	Thr	Glu	Leu	Leu 570	Lys	Ile	Asn	Leu	Arg 575	Glu
	Val	Glu	Val	Asp 580	Pro	Asp	Ile	Gln	Leu 585	Glu	Asp	Ile	Ala	Glu 590	Lys	Ile
	Glu	Gly	Tyr 595	Ser	Gly	Ala	Asp	Ile 600	Thr	Asn	Val	Cys	Arg 605	Asp	Ala	Ser
	Leu	Met 610	Ala	Met	Arg	Arg	Arg 615	Ile	Asn	Gly	Leu	Ser 620	Pro	Glu	Glu	Ile
	Arg 625	Ala	Leu	Ser	Lys	Glu 630	Glu	Leu	Gln	Met	Pro 635	Val	Thr	Arg	Gly	Asp 640
	Phe	Glu	Leu	Ala	Leu 645	Lys	Lys	Ile	Ala	Lys 650	Ser	Val	Ser	Ala	Ala 655	Asp
	Leu	Glu	Lys	Tyr 660	Glu	Lys	Trp	Met	Val 665	Glu	Phe	Gly	Ser	Ala 670		
<210> 2 <211> 2 <212> 2 <213> 3	1784 ADN	gallus	;													
<220>																

10

<221> CDS

<222> (106)..(1575) <223>

<400> 11

egececeett cetegetetg ettgagegea gaaggacege gtececetee eegeteegee	60
ggegeeggga caegeaceee geteeteeca ggtttetgag agaag atg aat ttg gea Met Asn Leu Ala 1	117
gag atc tgc gac aat gcc aaa aag gga aga gac tat gca ctc att ggg Glu Ile Cys Asp Asn Ala Lys Lys Gly Arg Asp Tyr Ala Leu Ile Gly 5 10 15 20	165
aat tat gac tot tot atg gtg tat tac cag ggt gtc atc cag caa atc Asn Tyr Asp Ser Ser Met Val Tyr Tyr Gln Gly Val Ile Gln Gln Ile 25 30 35	213
cag aga cat tgc cag tcg atc aga gat cca gca att aag ggc aaa tgg Gln Arg His Cys Gln Ser Ile Arg Asp Pro Ala Ile Lys Gly Lys Trp 40 45 50	261
caa cag gtt cgg caa gaa tta gtc gaa gaa tat gag caa gtt aag agc Gln Gln Val Arg Gln Glu Leu Val Glu Glu Tyr Glu Gln Val Lys Ser 55 60 65	309
att gtc gac act tta gag agt ttt aaa atg gac aga cct gca gat atc Ile Val Asp Thr Leu Glu Ser Phe Lys Met Asp Arg Pro Ala Asp Ile 70 75 80	357
cct gtg tcc tat caa gat gag cct ttt aga gac cct gct gtt tgg cca Pro Val Ser Tyr Gln Asp Glu Pro Phe Arg Asp Pro Ala Val Trp Pro 85 90 95 100	405
ect eca gtt eca get gaa eae agg gee eea eet eag ata aag egt eee Pro Pro Val Pro Ala Glu His Arg Ala Pro Pro Gln Ile Lys Arg Pro 105 110 115	453
aac cga gga gca aag ccc ttg agg aag gaa tcc ccg ggc ctg cag ccc Asn Arg Gly Ala Lys Pro Leu Arg Lys Glu Ser Pro Gly Leu Gln Pro 120 125 130	501
cgt ggg ccc gtg ggc aga gca cag cca gca gtg agg agc gac aaa cct Arg Gly Pro Val Gly Arg Ala Gln Pro Ala Val Arg Ser Asp Lys Pro 135 140 145	549
gca ggc agc cgt gac agg gag ccg agg gcc aga ggg agg gat gac aag Ala Gly Ser Arg Asp Arg Glu Pro Arg Ala Arg Gly Arg Asp Asp Lys 150 155 160	597
gga aag aaa ata ccc cag gaa ggt gtt gct gat gat gtt cta aga ttt Gly Lys Lys Ile Pro Gln Glu Gly Val Ala Asp Asp Val Leu Arg Phe 165 170 175 180	645
gat gga gcg ggt tat gac aaa gac ttg gtc gaa gct ctt gaa agg gac Asp Gly Ala Gly Tyr Asp Lys Asp Leu Val Glu Ala Leu Glu Arg Asp 185 190 195	693
att gtg tca agg aat cca agc att cac tgg gat gac ata gca gat ttg Ile Val Ser Arg Asn Pro Ser Ile His Trp Asp Asp Ile Ala Asp Leu 200 205 210	741
gaa gaa gcc aag aaa tta tta aga gaa gct gtt gtt ctt cca atg tgg Glu Glu Ala Lys Lys Leu Leu Arg Glu Ala Val Val Leu Pro Met Trp	789

		215					220					225				
					aaa Lys											837
					ggt Gly 250											885
					aca Thr											933
					ggc Gly											981
					tac Tyr											1029
					cgc Arg											1077
					gag Glu 330											1125
					gac Asp											1173
					gat Asp											1221
					cct Pro											1269
					cgg Arg											1317
					aag Lys 410											1365
					gcc Ala											1413
					gag Glu											1461
					ggg Gly											1509
aaa	tct	gtt	tct	gct	gca	gac	ctg	gag	aag	tac	gag	aaa	tgg	atg	gcg	1557

Lys Ser Val Ser Ala Ala Asp Leu Glu Lys Tyr Glu Lys Trp Met Ala 470 475 480	
gag ttt gga tct gct taa tctcaccgac agctttccat tgtaagagtt Glu Phe Gly Ser Ala 485	1605
ttatggctct tgttgttttc acttgcaatg tgagttagaa atctttttaa aggtttaata	1665
aaaggtetge egtteteest gteecacece cacceettee tggtgacaag atettttaaa	1725
ctctatttgc ctttaaaggg actgaacata ataacaagct gaaacggtta aaataaaaa	1784
210> 12	

5

<211> 489 <212> PRT <213> Gallus gallus

<400> 12

Met 1	. Asn	Leu	Ala	Glu 5	Ile	Cys	Asp	Asn	Ala 10	Lys	Lys	Gly	Arg	Asp 15	Tyr
Ala	Leu	Ile	Gly 20	Asn	Tyr	Asp	Ser	Ser 25	Met	Val	Tyr	Tyr	Gln 30	Gly	Val
Ile	Gln	Gln 35	Ile	Gln	Arg	His	Cys 40	Gln	Ser	Ile	Arg	Asp 45	Pro	Ala	Ile
Lys	Gly 50	Lys	Trp	Gln	Gln	Val 55	Arg	Gln	Glu	Leu	Val 60	Glu	Glu	Tyr	Glu
G1r 65	val	Lys	Ser	Ile	Val 70	Asp	Thr	Leu	Glu	Ser 75	Phe	Lys	Met	Asp	Arg 80
Pro	Ala	Asp	Ile	Pro 85	Val	Ser	Tyr	Gln	Asp 90	Glu	Pro	Phe	Arg	Asp 95	Pro
Ala	Val	Trp	Pro 100	Pro	Pro	Val	Pro	Ala 105	Glu	His	Arg	Ala	Pro 110	Pro	Gln
Il€	. Lys	Arg 115	Pro	Asn	Arg	Gly	Ala 120	Lys	Pro	Leu	Arg	Lys 125	Glu	Ser	Pro
Gly	Leu 130	Gln	Pro	Arg	Gly	Pro 135	Val	Gly	Arg	Ala	Gln 140	Pro	Ala	Val	Arg
Ser 145	Asp	Lys	Pro	Ala	Gly 150	Ser	Arg	Asp	Arg	Glu 155	Pro	Arg	Ala	Arg	Gly 160
Arç	Asp	Asp	Lys	Gly 165	Lys	Lys	Ile	Pro	Gln 170	Glu	Gly	Val	Ala	Asp 175	Asp

Val	Leu	Arg	Phe 180	Asp	Gly	Ala	Gly	Tyr 185	Asp	Lys	Asp	Leu	Val 190	Glu	Ala
Leu	Glu	Arg 195	Asp	Ile	Val	Ser	Arg 200	Asn	Pro	Ser	Ile	His 205	Trp	Asp	Asp
Ile	Ala 210	Asp	Leu	Glu	Glu	Ala 215	Lys	Lys	Leu	Leu	A rg 220	Glu	Ala	Val	Val
Leu 225	Pro	Met	Trp	Met	Pro 230	Asp	Phe	Phe	Lys	Gly 235	Ile	Arg	Arg	Pro	Trp 240
Lys	Gly	Val	Leu	Met 245	Val	Gly	Pro	Pro	Gly 250	Thr	Gly	Lys	Thr	Met 255	Leu
Ala	Lys	Ala	Val 260	Ala	Thr	Gl u	Cys	Gly 265	Thr	Thr	Phe	Phe	Asn 270	Val	Ser
Ser	Ser	Thr 275	Leu	Thr	Ser	Lys	Tyr 280	Arg	Gly	Glu	Ser	Gl u 285	Lys	Leu	Val
Arg	Leu 290	Leu	Phe	Glu	Met	Ala 295	Arg	Phe	Tyr	Ala	Pro 300	Ala	Thr	Ile	Phe
11e 305	Asp	Glu	Ile	Asp	Ser 310	Ile	Суз	Ser	Arg	Ar g 315	Gly	Thr	Ser	Asp	Glu 320
Hiş	Glu	Ala	Ser	A rg 325	Arg	Val	Lys	Ser	Glu 330	Leu	Leu	Val	Gln	Met 335	Asp
Gly	Val	Gly	Gly 340	Ala	Leu	Glu	Asn	Asp 345	Asp	Pro	Ser	Lys	Met 350	Val	Met
Val	Leu	Ala 355	Ala	Thr	Asn	Phe	Pro 360	Trp	Asp	Ile	Asp	Glu 365	Ala	Leu	Arg
Arg	Arg 370	Leu	Glu	Lys	Arg	Ile 375	Tyr	Ile	Pro	Leu	Pro 380	Thr	Ala	Lys	Gly
Arg 385	Ala	Glu	Leu	Leu	Lys 390	Ile	Asn	Leu	Arg	Glu 395	Val	Gl u	Leu	Asp	Pro 400
Asp	Ile	Ser	Leu	Glu 405	Glu	Ile	Ala	Glu	Lys 410	Ile	Glu	Gly	Tyr	Ser 415	Gly
Δls) en	Tle	Thr	Zer	V/a 1	Cue	Dra	Den	e l Z	Ser	T.eu	Met	Δls	Met	A **~

Arg Arg Ile Asn Gly Leu Thr Pro Glu Glu Ile Arg Ala Leu Ser Lys 435 440 445

		Glu	Glu 450	Leu	Gln	Met	Pro	Val 455	Thr	Lys	Gly	Asp	Phe 460	Glu	Leu	Ala	Leu
		Lys 465	Lys	Ile	Ser	Lys	Ser 470	Val	Ser	Ala	Ala	Asp 475	Leu	Glu	Lys	Tyr	Glu 480
		Lys	Trp	Met	Ala	Glu 485	Phe	Gly	Ser	Ala							
5	<210> (211>) (211>) (212>) (213>)	20 ADN	al														
10	<220> <223> <400>		or de 1	Г3													
15	<210> <210> <211>	cct cad	ctaaag	199	20	0											
	<212> / <213> /	ADN	al														
20	<220> <223>	cebado	or de T	Γ7													
	<400> taatacg		ctatag	g 19													
25	<210> <211> 2 <211> 2 <212> 2 <213> 2	20 ADN	al														
30	<220> <223>	cebado	or en s	sentido)												
35	<400> gatgaad		gcaa	gtog :	20												
	<210> <211> 2 <211> 2 <212> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3 <213> 3	22 ADN	al														
40	<220> <223>	cebado	or anti	sentid	o												
45	<400> ggtaaca		tctgaa	gtt cc	22												
	<210> <211>																

	<212> ADN <213> Artificial
5	<220> <223> cebador en sentido
	<400> 17 gttcttccaa tgtggatgcc 20
10	<210> 18 <211> 22 <212> ADN <213> Artificial
15	<220> <223> cebador antisentido
20	<400> 18 tcttcagaag ctcagctctt cc 22
_	<210> 19 <211> 20 <212> ADN <213> Artificial
25	<220> <223> cebador antisentido
30	<400> 19 aagatggtgc aagtgacagc 20
35	<210> 20 <211> 20 <212> ADN <213> Artificial
	<220> <223> cebador antisentido
40	<400> 20 tcgatgaaga tcgtggtagg 20
45	<210> 21 <211> 18 <212> ADN <213> Artificial
50	<220> <223> Cebador de GAPDH
50	<400> 21 gggctgcttt taactctg 18
55	<210> 22 <211> 18 <212> ADN <213> Artificial
60	<220> <223> Cebador de GAPDH
	<400> 22 ccaggaaatg agcttgac 18
65	<210> 23 <211> 20

```
<212> ADN
          <213> Artificial
          <220>
 5
          <223> Cebador de gapdh
          <400> 23
          cttcaccacc atggagaagg 20
10
          <210> 24
          <211> 20
          <212> ADN
          <213> Artificial
15
          <220>
          <223> Cebador de gapdh
          <400> 24
          tgaagtcgca ggagacaacc 20
20
          <210> 25
          <211> 29
          <212> ADN
          <213> Artificial
25
          <220>
          <223> cebador en sentido
          <400> 25
30
          atgaatttgg cggagatttg tgagaatgc 29
          <210> 26
          <211> 22
          <212> ADN
35
          <213> Artificial
          <220>
          <223> cebador antisentido
40
          <400> 26
          tcatgcagac ccaaactcaa cc
                                      22
          <210> 27
          <211> 39
45
          <212> ADN
          <213> Artificial
          <220>
          <223> cebador en sentido
50
          <400> 27
          cccggaattc atgaatttgg ctgagatttg tgataatgc 39
          <210> 28
          <211> 38
55
          <212> ADN
          <213> Artificial
          <220>
60
          <223> cebador antisentido
          ccgccgctcg agtcaagcag atccaaattc aaccatcc 38
65
          <210> 29
          <211> 491
```

<212>	PRT	
<213>	Megathura	crenulata

<400> 29

Ile	Leu	Val	Arg	Lys	Asn	Ile	His	Ser	Leu	Ser	His	His	Glu	Ala	Glu
1				5					10					15	

- Glu Leu Arg Asp Ala Leu Tyr Lys Leu Gln Asn Asp Glu Ser His Gly 20 25 30
- Gly Tyr Glu His Ile Ala Gly Phe His Gly Tyr Pro Asn Leu Cys Pro 35 40 45
- Glu Lys Gly Asp Glu Lys Tyr Pro Cys Cys Val His Gly Met Ser Ile 50 55 60
- Phe Pro His Trp His Arg Leu His Thr Ile Gln Phe Glu Arg Ala Leu 65 70 75 80
- Lys Lys His Gly Ser His Leu Gly Ile Pro Tyr Trp Asp Trp Thr Gln 85 90 95
- Thr Ile Ser Ser Leu Pro Thr Phe Phe Ala Asp Ser Gly Asn Asn Asn 100 105 110
- Pro Phe Phe Lys Tyr His Ile Arg Ser Ile Asn Gln Asp Thr Val Arg 115 120 125
- Asp Val Asn Glu Ala Ile Phe Gln Gln Thr Lys Phe Gly Glu Phe Ser 130 135 140

Ser 145	Ile	Phe	Tyr	Leu	Ala 150	Leu	Gln	Ala	Leu	Glu 155	Glu	Asp	Asn	Tyr	Cys 160
Asp	Phe	Glu	Val	Gln 165	Tyr	Glu	Ile	Leu	His 170	Asn	Glu	Val	His	Ala 175	Leu
Ile	Gly	Gly	Ala 180	Glu	Lys	Tyr	Ser	Met 185	Ser	Thr	Leu	Glu	Tyr 190	Ser	Ala
Phe	Asp	Pro 195	Tyr	Phe	Met	Ile	His 200	His	Ala	Ser	Leu	Asp 205	Lys	Ile	Trp
Ile	Ile 210	Trp	Gln	Glu	Leu	Gln 215	Lys	Arg	Arg	Val	Lys 220	Pro	Ala	His	Ala
Gly 225	Ser	Cys	Ala	Gly	Asp 230	Ile	Met	His	Val	Pro 235	Leu	His	Pro	Phe	Asn 240
Tyr	Glu	Ser	Val	Asn 245	Asn	Asp	Asp	Phe	Thr 250	Arg	Glu	Asn	Ser	Leu 255	Pro
Asn	Ala	Val	Val 260	Asp	Ser	His	Arg	Phe 265	Aşn	Tyr	Lys	Tyr	Asp 270	Asn	Leu
Asn	Leu	His 275	Gly	His	Asn	Ile	Gl u 280	Gl u	Leu	Glu	Glu	Val 285	Leu	Arg	Ser
Leu	Arg 290	Leu	Lys	Ser	Arg	Val 295	Phe	Ala	Gly	Phe	Val 300	Leu	Ser	Gly	Ile
Arg 305	Thr	Thr	Ala	Val	Val 310	Lys	Val	Tyr	Ile	Lys 315	Ser	Gly	Thr	Asp	Ser 320
Asp	Asp	Glu	Tyr	Ala 325	Gly	Ser	Phe	Val	Ile 330	Leu	Gly	Gly	Ala	Lys 335	Glu
Met	Pro	Trp	Ala 340	Tyr	Glu	Arg	Leu	Tyr 345	Arg	Phe	Asp	Ile	Thr 350	Glu	Thr
Val	His	Asn 355	Leu	Asn	Leu	Thr	Asp 360	Asp	His	Val	Lys	Phe 365	Arg	Phe	Asp
Leu	Lys 370	Lys	Tyr	Asp	His	Thr 375	Glu	Leu	Asp	Ala	Ser 380	Val	Leu	Pro	Ala
Pro	Ile	Ile	Val	Arg	Arg	Pro	Asn	Asn	Ala	Val	Phe	Asp	Ile	Ile	Glu

385					390					395					400
Ile	Pro	Ile	Gly	Lys 405	Asp	Val	Asn	Leu	Pro 410	Pro	Lys	Val	Val	Val 415	Lys
Arg	Gly	Thr	Lys 420	Ile	Met	Phe	Met	Ser 425	Val	Asp	Glu	Ala	Val 430	Thr	Thr
Pro	Met	Leu 435	Asn	Leu	Gly	Ser	Tyr 440	Thr	Ala	Met	Phe	Lys 445	Cys	Lys	Val
Pro	Pro 450	Phe	Ser	Phe	His	Ala 455	Phe	Glu	Leu	Gly	Lys 460	Met	Tyr	Ser	Val
Glu 465	Ser	Gly	Asp	Tyr	Phe 470	Met	Thr	Ala	Ser	Thr 475	Thr	Glu	Leu	Cys	Asn 480
Asp	Asn	Asn	Leu	Arg 485	Ile	His	Val	His	Val 490	Asp					

REIVINDICACIONES

- 1. Un agente inmunoinductor para su uso en un método de tratamiento médico o veterinario, comprendiendo el agente inmunoinductor como principio(s) eficaz(ces) al menos un polipéptido que tiene actividad inmunoinductora seleccionado de entre los polipéptidos (a) a (b) más adelante y/o un(os) vector(es) recombinante(s) que comprende(n) un(os) polinucleótido(s) que codifica(n) dicho al menos un polipéptido, siendo capaz(ces) dicho(s) vector(es) recombinante(s) de expresar *in vivo* dicho(s) polipéptido(s):
 - (a) un polipéptido que tiene una secuencia de aminoácidos de una cualquiera de las SEQ ID NO:4, 2, 8, 10 y 12;
 - (b) un polipéptido que tiene una identidad de secuencia de no menos del 85 % con el polipéptido (a).
- 2. El agente inmunoinductor para su uso de acuerdo con la reivindicación 1, en el que dicho polipéptido que tiene actividad inmunoinductora es un polipéptido que tiene la secuencia de aminoácidos de las SEQ ID NO:4, 2, 8, 10 o 12.
- 15 3. El agente inmunoinductor para su uso de acuerdo con las reivindicaciones 1 o 2, en donde el método comprende administrar a un paciente
 - (i) el polipéptido o el vector,

10

20

40

45

55

- (ii) un linfocito T citotóxico que se une de forma selectiva a un complejo que comprende al menos uno de dichos polipéptidos incorporado dentro de una molécula de MHC, y/o
- (iii) una célula presentadora de antígeno que presenta sobre su superficie un complejo que comprende al menos uno de dichos polipéptidos incorporado dentro de una molécula de MHC.
- 4. El agente inmunoinductor para su uso de acuerdo con una cualquiera de las reivindicaciones 1-3, que es para usar en el tratamiento o la prevención de cáncer(es).
 - 5. El agente inmunoinductor para su uso de acuerdo con la reivindicación 4, en el que dicho(s) cáncer(es) es/son un(os) cáncer(es) que expresan KATNAL1.
- 30 6. El agente inmunoinductor para su uso de acuerdo con las reivindicaciones 4 o 5, en donde dicho(s) cáncer(es) es/son cáncer de mama, tumor cerebral, adenocarcinoma perianal, neuroblastoma, mastocitoma, cáncer de hígado, cáncer de próstata, cáncer de pulmón, cáncer de tiroides y/o leucemia.
- 7. El agente inmunoinductor para su uso de acuerdo con una cualquiera de las reivindicaciones 1 a 6, que comprende además un inmunopotenciador.
 - 8. El agente inmunoinductor para su uso de acuerdo con la reivindicación 7, en donde dicho inmunopotenciador es al menos uno seleccionado del grupo que consiste en adyuvante incompleto de Freund, montanida, poli-I:C y derivados del mismo, oligonucleótidos de CpG, interleucina 12, interleucina 18, interferón α, interferón β, interferón γ y ligando Flt3.
 - 9. Un método *in vitro* de preparar una célula presentadora de antígeno, comprendiendo el método poner en contacto la célula presentadora de antígeno con dicho al menos un polipéptido seleccionado de entre:
 - (a) un polipéptido que tiene una secuencia de aminoácidos de una cualquiera de las SEQ ID NO:4, 2, 8, 10 y 12; y (b) un polipéptido que tiene una identidad de secuencia de no menos del 85 % con el polipéptido (a).
- 10. Un método *in vitro* de preparar un linfocito T citotóxico, comprendiendo el método:

cocultivar una célula presentadora de antígeno preparada de acuerdo con el método de la reivindicación 9 con al menos un linfocito T y

permitir que prolifere el al menos un linfocito T.

11. Un método *in vitro* de acuerdo con la reivindicación 10, en el que se usa una proporción de célula presentadora de antígeno: linfocito T de 1:1 a 1:100, opcionalmente en el que el cocultivo se lleva a cabo en presencia de IL-2, IL-6, IL-7 y/o IL-12.

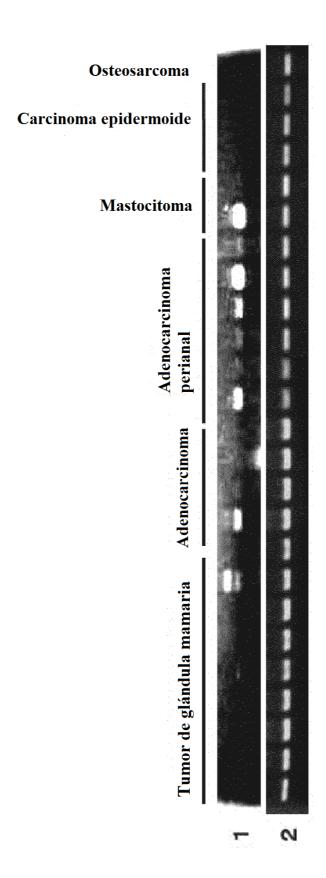


Fig.1

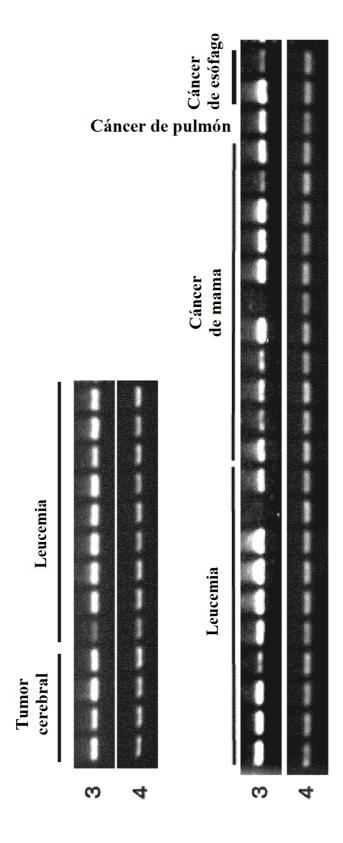


Fig.2

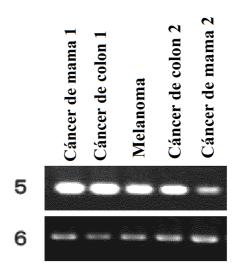


Fig.3