

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 599 579

61 Int. Cl.:

C12N 1/21 (2006.01) C12P 7/06 (2006.01) C12P 21/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 10.06.2010 PCT/US2010/038121

(87) Fecha y número de publicación internacional: 23.12.2010 WO10147835

(96) Fecha de presentación y número de la solicitud europea: 10.06.2010 E 10789964 (3)

(97) Fecha y número de publicación de la concesión europea: 20.07.2016 EP 2443228

(54) Título: Zymomonas con utilización de arabinosa mejorada

(30) Prioridad:

18.06.2009 US 218164 P 18.06.2009 US 218166 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **02.02.2017**

(73) Titular/es:

E. I. DU PONT DE NEMOURS AND COMPANY (100.0%)

Chestnut Run Plaza, 974 Center Road, P.O. Box 2915

Wilmington, DE 19805, US

(72) Inventor/es:

YANG, JIANJUN

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Zymomonas con utilización de arabinosa mejorada

Declaración de derechos gubernamentales

La presente invención se realizó con el apoyo del gobierno de Estados Unidos con el n.º de Contrato DE-FC36-07GO17056 otorgado por el Departmento de Energía. El gobierno estadounidense tiene determinados derechos con respecto a la presente invención.

Campo de la invención

10

15

30

35

La invención refiere se refiere a los campos de la microbiología y la fermentación. Más específicamente, se describe el diseño genético de cepas de *Zymomonas* para conferir utilización de arabinosa mejorada, y métodos para elaborar etanol usando las cepas.

Antecedentes de la invención

La producción de etanol mediante microorganismos proporciona una fuente de energía alternativa a los combustibles fósiles y, por lo tanto, un área importante de investigación actual. Es conveniente que los microorganismos que producen etanol, así como otros productos útiles, puedan usar xilosa y arabinosa como fuentes de carbono ya que son azúcares pentosa predominantes en materiales lignocelulósicos hidrolizados, que pueden proporcionar una fuente de sustrato de carbono disponible en abundancia y de bajo costo para que los biocatalizadores lo usen en la fermentación.

Zymomonas mobilis y otros etanológenos bacterianos que no utilizan xilosa y arabinosa de forma natural pueden diseñarse genéticamente para que utilicen estos azúcares. Para proporcionar la utilización de xilosa, las cepas han sido diseñadas genéticamente para que expresen los genes que codifican las siguientes proteínas: 1) xilosa isomerasa, que cataliza la conversión de xilosa en xilulosa; 2) xilulocinasa, que fosforila xilulosa para formar xilulosa 5-fosfato; 3) transcetolasa; y 4) transaldolasa (US 5514583, US 6566107; Zhang et ál. (1995) Science 267:240-243). Para proporcionar la utilización de arabinosa, se han introducido genes adicionales que codifican las siguientes proteínas: 1) L-arabinosa isomerasa para convertir L-arabinosa en L-ribulosa, 2) L-ribulocinasa para convertir L-ribulosa en L-ribulosa-5-fosfato, y 3) L-ribulosa-5-fosfato-4-epimerasa para convertir L-ribulosa-5-fosfato en D-xilulosa (US5843760).

Aunque algunas cepas de *Z mobilis* se han diseñado genéticamente para la utilización de arabinosa, típicamente solo un bajo porcentaje de arabinosa presente en un medio de fermentación es utilizado por estas cepas diseñadas genéticamente. Todavía existe una necesidad de mejorar la utilización de arabinosa en *Zymomonas* y otros etanológenos bacterianos para mejorar la producción de etanol cuando la fermentación se da en un medio que contiene arabinosa.

Compendio de la invención

La presente invención se refiere a cepas de *Zymomonas* y *Zymobacter* que están diseñadas genéticamente para que presenten una capacidad mejorada para utilizar arabinosa mediante la introducción de un gen para la expresión de un simportador de protones de arabinosa, y para producir etanol usando estas cepas. Estas cepas presentan una producción mejorada de etanol cuando se cultivan en un medio que contiene arabinosa.

Por consiguiente, la invención proporciona un microorganismo recombinante del género *Zymomonas* o *Zymobacter* que utiliza arabinosa para producir etanol, dicho microorganismo comprende al menos un gen heterólogo que codifica un simportador de protones de arabinosa, donde dicho simportador es expresado por dicho microorganismo.

- 40 Además, la invención proporciona un proceso para generar un microorganismo recombinante del género *Zymomonas* o *Zymobacter* que tiene mayor utilización de arabinosa que comprende:
 - a) proporcionar una cepa recombinante de *Zymomonas* o *Zymobacter* que utilice arabinosa para producir etanol en condiciones adecuadas; y
- b) introducir al menos un gen que codifique un simportador de protones de arabinosa heterólogo en la cepa de (a) para la expresión de dicho simportador.

En otra realización, la invención proporciona un proceso para producir etanol que comprende:

- a) proporcionar una cepa recombinante de *Zymomonas* o *Zymobacter* que utiliza arabinosa para producir etanol, dicha cepa comprende al menos un gen heterólogo que codifica un simportador de protones de arabinosa, donde dicho simportador es expresado por dicho microorganismo;
- 50 b) cultivar la cepa de (a) en un medio que comprende arabinosa a través del cual la arabinosa es convertida por dicha cepa en etanol.

En otra realización, la invención proporciona un método para mejorar la utilización de arabinosa mediante un microorganismo que utiliza arabinosa que comprende:

- (a) proporcionar un microorganismo que utiliza arabinosa, donde dicho microorganismo se selecciona del grupo que consiste en una cepa recombinante de *Zymomonas* o *Zymobacter* que utiliza arabinosa para producir etanol;
- 5 (b) introducir en el genoma de dicho microorganismo al menos un gen heterólogo que codifica un simportador de protones de arabinosa, donde dicho simportador es expresado por dicho microorganismo; y
 - (c) poner en contacto el microorganismo de (b) con un medio que comprende arabinosa, donde dicho microorganismo metaboliza dicha arabinosa con una mayor velocidad en comparación con dicho microorganismo que no presenta el simportador de protones de arabinosa.

10 Breve descripción de las figuras y descripciones de secuencias

La invención se entenderá mejor a partir de la siguiente descripción detallada, las Figuras y las descripciones de secuencias adjuntas que forman parte de la presente solicitud.

La Figura 1 muestra un diagrama de la vía de fermentación de etanol en *Zymomonas* diseñada genéticamente para la utilización de xilosa y arabinosa, donde glf significa transportador de difusión facilitado por glucosa.

15 La Figura 2 es un dibujo de un mapa de plásmidos de pARA205.

La Figura 3 es un dibujo de un mapa de plásmidos de pARA354.

La Figura 4 muestra gráficas de perfiles de crecimiento y metabolitos de ZW705 (A), ZW705-ara354 (B), y ZW705-ara354A7 (C) en MRM3A5 durante un transcurso de tiempo de 96 horas.

La Figura 5 muestra gráficas de perfiles de crecimiento y metabolitos de ZW705 (A), ZW705-ara354 (B), y ZW705-20 ara354A7 (C) en MRM3A2.5X2.5G5 durante un transcurso de tiempo de 96 horas.

La Figura 6 es un dibujo de un mapa de plásmidos de pARA112.

La Figura 7 es un dibujo de un mapa de plásmidos de pARA113.

30

La Figura 8 muestra gráficas de perfiles de crecimiento y metabolitos de ZW705-ara354A7 (A), ZW705-ara354A7-ara112-2 (B), y ZW705-ara354A7-ara112-3 (C) en MRM3A5 durante un transcurso de tiempo de 96 horas.

La Figura 9 muestra gráficas de perfiles de crecimiento y metabolitos de ZW705-ara354A7 (A), ZW705-ara354A7-ara112-2 (B), y ZW705-ara354A7-ara112-3 (C) en MRM3A2.5X2.5G5 durante un transcurso de tiempo de 96 horas.

La Figura 10 muestra gráficas de perfiles de crecimiento y metabolitos de ZW705-ara354 (A), ZW705-ara354-ara112-1 (B), y ZW705-ara354-ara112-2 (C) en MRM3A5 durante un transcurso de tiempo de 96 horas.

La Figura 11 muestra gráficas de perfiles de crecimiento y metabolitos de ZW705-ara354 (A), ZW705-ara354-ara112-1 (B), y ZW705-ara354-ara112-2 (C) en MRM3A2.5X2.5G5 durante un transcurso de tiempo de 96 horas.

La Figura 12 muestra gráficas de perfiles de crecimiento y metabolitos de ZW801-ara354 (A), ZW801-ara354-ara112-6 (C) en MRM3A5 durante un transcurso de tiempo de 96 horas.

La Figura 13 muestra gráficas de perfiles de crecimiento y metabolitos de ZW801-ara354 (A), ZW801-ara354-ara112-6 (C) en MRM3A2.5X2.5G5 durante un transcurso de tiempo de 96 horas.

Las siguientes secuencias cumplen con los artículos 1.821-1.825 del Título 37 del C.F.R. (Código de Regulaciones Federales) ("Requisitos para las solicitudes de patente que contienen descripciones de secuencias de nucleótidos y/o secuencia de aminoácidos - las regulaciones de secuencia") y son consistentes con la Norma ST.25 (1998) Organización Mundial de la Propiedad Intelectual (OMPI) y los requisitos del listado de secuencias de la EPO y PCT (Normas 5.2 y 49.5(a-bis), y Sección 208 y Anexo C de las Instrucciones Administrativas). Los símbolos y formato utilizado para los datos de secuencias de aminoácidos y nucleótidos cumples con las regulaciones establecidas en el artículo 1.822 del Título 37 del C.F.R.

Tabla 1. SEQ ID NO de región codificante y de proteína para los simportadores de protones de arabinosa codificados por *araE*

Organismo	Región codificante de SEQ ID NO:	Péptido de SEQ ID NO:
E. coli	1	2
Shigella flexneri	3	4

Organismo	Región codificante de SEQ ID NO:	Péptido de SEQ ID NO:
Shigella boydii	5	6
Shigella dysenteriae	7	8
Salmonella typhimurium	9	10
Salmonella enterica	11	12
Klebsiella pneumoniae	13	14
Klebsiella oxytoca	15	16
Enterobacter cancerogenus	17	18
Bacillus amyloliquefaciens	19	20

Las SEQ ID NO:21 y 22 son la secuencia de aminoácidos y región codificante, respectivamente, para el gen araA de *E. coli.*

Las SEQ ID NO:23 y 24 son la secuencia de aminoácidos y región codificante, respectivamente, para el gen araB de *E. coli.*

5 Las SEQ ID NO:25 y 26 son la secuencia de aminoácidos y región codificante, respectivamente, para el gen araD de E. E. Coli.

La SEQ ID NO:27 es la secuencia de nucleótidos del producto de PCR del fragmento de ADN de araB-araA.

Las SEQ ID NO:28 y 29 son las secuencias de nucleótidos de los cebadores para la amplificación de PCR del fragmento de ADN de araB-araA.

10 La SEQ ID NO:30 es la secuencia de nucleótidos del producto de PCR del fragmento de ADN de araD, que incluye RBS y 3' UTR.

Las SEQ ID NO:31 y 32 son las secuencias de nucleótidos de los cebadores para la amplificación de PCR del fragmento de ADN de araD, que incluye RBS y 3' UTR.

La SEQ ID NO:33 es la secuencia de nucleótidos del promotor Pgap de Z. mobilis.

Las SEQ ID NO:34 y 35 son las secuencias de nucleótidos de los cebadores para la amplificación de PCR del fragmento del promotor Pgap.

La SEQ ID NO:36 es la secuencia de nucleótidos del producto de PCR del fragmento de ADN del promotor Pgap.

Las SEQ ID NO:37 y 38 son las secuencias de nucleótidos de los cebadores para la amplificación de PCR del cassette de resistencia a espectinomicina.

20 Las SEQ ID NO:39 y 40 son las secuencias de nucleótidos de los cebadores para la mutagénesis de Pgap para retirar el sitio de Ncol agregado.

La SEQ ID NO:41 es la secuencia de nucleótidos del plásmido pARA205.

Las SEQ ID NO:42 y 43 son las secuencias de nucleótidos de los cebadores para la amplificación de PCR del fragmento de ADN de LDH-L.

25 La SEQ ID NO:44 es la secuencia de nucleótidos del producto de PCR del fragmento de ADN de LDH-L.

Las SEQ ID NO:45 y 46 son las secuencias de nucleótidos de los cebadores para la amplificación de PCR del fragmento de ADN de LDH-R.

La SEQ ID NO:47 es la secuencia de nucleótidos del producto de PCR del fragmento de ADN de LDH-R.

La SEQ ID NO:48 es la secuencia de nucleótidos del producto de PCR del fragmento de ADN de LoxPw-aadA-30 LoxPw.

La SEQ ID NO:49 es la secuencia de nucleótidos del plásmido pARA354.

Las SEQ ID NO:50 y 51 son las secuencias de nucleótidos de los cebadores para la amplificación de PCR para verificar la integración en 5' de P_{qap} -araBAD-aadA.

Las SEQ ID NO:52 y 53 son las secuencias de nucleótidos de los cebadores para la amplificación de PCR para verificar la integración en 3' de P_{qap} -araBAD-aadA.

Las SEQ ID NO:54 y 55 son las secuencias de nucleótidos de los cebadores para la amplificación de PCR del fragmento de ADN de la región codificante de araE.

5 La SEQ ID NO:56 es la secuencia de nucleótidos del producto de PCR del fragmento de ADN de araE.

Las SEQ ID NO:57 y 58 son las secuencias de nucleótidos de los cebadores para la amplificación de PCR del fragmento de ADN de araFGH.

La SEQ ID NO:59 es la secuencia de nucleótidos del producto de PCR del fragmento de ADN de araFGH.

Las SEQ ID NO:60 y 61 son las secuencias de nucleótidos de los cebadores para la amplificación de PCR del fragmento de ADN de *Actinoplanes missouriensis* P_{gi}.

La SEQ ID NO:62 es la secuencia de nucleótidos del promotor GI de *Actinoplanes missouriensis* en el plásmido usado como la plantilla de PCR.

La SEQ ID NO:63 es la secuencia de nucleótidos del producto de PCR del fragmento de ADN de *Actinoplanes missouriensis* Pqi.

15 La SEQ ID NO:64 es la secuencia de nucleótidos del marcador de resistencia a cloranfenicol.

La SEQ ID NO:65 es la secuencia de nucleótidos del plásmido pARA112.

La SEQ ID NO:66 es la secuencia de nucleótidos del plásmido pARA113.

Descripción detallada

20

25

La presente invención describe cepas de *Zymomonas* o *Zymobacter* recombinantes con utilización de arabinosa mejorada que se diseñan genéticamente de manera adicional para que expresen un simportador de protones de arabinosa, y un proceso para diseñar genéticamente las cepas mediante la introducción de un gen que codifica un simportador de protones de arabinosa. En otros aspectos, la presente invención describe procesos para mejorar la utilización de arabinosa y para producir etanol en medio que comprende arabinosa, usando dichas cepas. Las cepas que utilizan arabinosa que expresan un simportador de protones de arabinosa tienen utilización de arabinosa mejorada y son útiles para producir etanol en medio que comprende arabinosa.

El etanol producido por las cepas de la presente con utilización de arabinosa mejorada se puede utilizar como una fuente de energía alternativa a los combustibles fósiles.

Las siguientes abreviaturas y definiciones se utilizarán para la interpretación de la memoria descriptiva y las reivindicaciones.

Como se emplea en esta memoria, se pretende que los términos "comprende", "que comprende", "incluye", "que incluye", "tiene", "que tiene", "contiene" o "que contiene" o cualquier otra variación de estos, cubran una inclusión no exclusiva. Por ejemplo, una composición, una mezcla, un proceso, un método, un artículo o un aparato que comprende una lista de elementos, no se encuentra necesariamente limitado a esos elementos únicamente sino que puede incluir otros elementos que no se enumeran expresamente o que son inherentes a dicha composición, mezcla, proceso, método, artículo o aparato. Adicionalmente, a menos que se indique lo contrario, "o" hace referencia a un o inclusivo y no a un o exclusivo. Por ejemplo, una condición A o B se cumple por cualquiera de los siguientes: A es verdadero (o presente) y B es falso (o no presente), A es falso (o no presente) y B es verdadero (o presente), y ambos A y B son verdaderos (o presentes).

También, los artículos indefinidos "un" y "una" que preceden a un elemento o componente de la invención no pretenden ser restrictivos en cuanto a la cantidad de instancias (es decir, apariciones) del elemento o componente. Por lo tanto, debe interpretarse que "un" o "una" incluyen al menos uno y la forma en singular del elemento o componente también incluye el plural a menos que la cantidad indique obviamente el singular.

"Gen" hace referencia a un fragmento de ácido nucleico que expresa una proteína específica, que puede incluir secuencias reguladoras que preceden (secuencias no codificantes 5') y que siguen (secuencias no codificantes 3') a la secuencia codificante. "Gen natural" o "gen de tipo salvaje" hace referencia a un gen tal como se encuentra naturalmente con sus propias secuencias reguladoras. "Gen quimérico" hace referencia a cualquier gen que no es un gen natural, que comprende secuencias reguladoras y codificantes que no se encuentran juntas de forma natural. Por consiguiente, un gen quimérico puede comprender secuencias reguladoras y secuencias codificantes derivadas de diferentes fuentes o secuencias reguladoras y secuencias codificantes derivadas de la misma fuente, pero organizadas de manera diferente a la que se encuentran de forma natural. "Gen endógeno" se refiere a un gen natural en su ubicación natural dentro del genoma de un organismo. Un gen "foráneo" hace referencia a un gen no encontrado normalmente en el organismo hospedador, pero que se introduce en el organismo hospedador mediante

transferencia génica. Los genes foráneos comprenden genes naturales insertados en un organismo no natural o genes quiméricos.

El término "araE" se refiere a un gen o construcción genética que codifica una proteína simportadora de protones de arabinosa bacteriana que es una transportadora de arabinosa de baja afinidad y alta capacidad con una Km de 1,25 x 10⁻⁴ M. Los genes que codifican la proteína simportadora de protones de arabinosa pueden aislarse de múltiples bacterias y aquellos de bacterias entéricas, tal como Escherichia, Klebsiella, Salmonella y Shigella son particularmente útiles en la presente invención.

El término "utilización de arabinosa" cuando se utiliza en el contexto de un microorganismo se refiere a la capacidad que presente ese microorganismo de utilizar arabinosa para la producción de productos, particularmente etanol.

10 El término "cepa adaptada" se refiere a un microorganismo que se ha seleccionado para cultivarse en una fuente de carbono particular con el fin de mejorar su capacidad de usar esa fuente de carbono para la producción de productos. Una "cepa adaptada de arabinosa" por ejemplo, es una cepa de un microorganismo que se ha seleccionado para cultivarse en altas concentraciones de arabinosa.

El término "construcción genética" se refiere a un fragmento de ácido nucleico que codifica para la expresión de una 15 o más proteínas específicas. En la construcción genética el gen puede ser natural, quimérico o foráneo. Típicamente, una construcción genética comprenderá una "secuencia codificante". Una "secuencia codificante" hace referencia a una secuencia de ADN que codifica una secuencia de aminoácidos específica.

"Promotor" o "regiones de control de iniciación" se refiere a una secuencia de ADN capaz de controlar la expresión de una secuencia codificante o ARN funcional. En general, una secuencia codificante se ubica 3' respecto de una secuencia promotora. Los promotores pueden derivar en su totalidad de un gen natural, o estar compuestos por 20 diferentes elementos derivados de diferentes promotores que se encuentran en la naturaleza, o incluso comprender segmentos de ADN sintéticos. Los expertos en la técnica entienden que diferentes promotores pueden dirigir la expresión de un gen en diferentes tipos de células o tejidos, o en diferentes etapas de desarrollo, o en respuesta a diferentes condiciones ambientales. Los promotores que provocan que un gen se exprese en la mayoría de los tipos de células en la mayoría de los casos, se denominan comúnmente "promotores constitutivos".

25

30

35

50

El término "expresión" como se emplea en esta memoria, se refiere a la transcripción y acumulación estable de ARN sentido (ARNm) o antisentido derivado de un gen. Expresión también puede hacer referencia a la traducción de ARNm en un polipéptido. "Inhibición antisentido" se refiere a la producción de transcripciones de ARN antisentido capaces de suprimir la expresión de la proteína objetivo. "Sobreexpresión" hace referencia a la producción de un producto génico en organismos transgénicos que excede los niveles de producción en organismos normales o no transformados. "Supresión conjunta" se refiere a la producción de fragmentos o transcripciones de ARN sentido capaces de suprimir la expresión de genes endógenos o foráneos idénticos o sustancialmente similares (U.S. 5,231,020).

El término "transformación", como se emplea en esta memoria, se refiere a la transferencia de un fragmento de ácido nucleico en un organismo hospedador que resulta en herencia genéticamente estable. El ácido nucleico transferido puede encontrarse en forma de un plásmido mantenido en la célula hospedadora, o algún ácido nucleico transferido puede integrarse al genoma de la célula hospedadora. Los organismos hospedadores que contienen los fragmentos de ácido nucleico transformados se denominan organismos "transgénicos" o "recombinantes" o "transformados".

40 Los términos "plásmido" y "vector", como se emplea en esta memoria, se refieren a un elemento extracromosómico que a menudo porta genes que no son parte del metabolismo central de la célula, y normalmente tiene forma de moléculas de ADN de cadena doble circular. Dichos elementos pueden ser secuencias que se replican autónomamente, secuencias que integran genomas, secuencias de nucleótidos o fagos, lineales o circulares, de un ADN o ARN de cadena doble o simple, derivadas de cualquier fuente, donde se unió o recombinó una cantidad de 45 secuencias de nucleótidos en una única construcción que es capaz de introducir un fragmento de promotor y secuencia de ADN para un producto génico seleccionado junto con la secuencia no traducida 3' adecuada en una célula.

El término "unido de forma operativa" se refiere a la asociación de secuencias de ácido nucleico en un único fragmento de ácido nucleico de forma que la función de uno se vea afectado por el otro. Por ejemplo, un promotor está unido de forma operativa a una secuencia codificante cuando es capaz de afectar la expresión de esa secuencia codificante (es decir, que la secuencia codificante está bajo el control transcripcional del promotor). Las secuencias codificantes pueden estar unidas de forma operativa a las secuencias reguladoras en orientación sentido o antisentido.

El término "marcador seleccionable" significa un factor identificador, a menudo un gen de resistencia química o antibiótico, que puede seleccionarse en función del efecto del gen marcador, es decir, la resistencia a un antibiótico, 55 donde el efecto se utiliza para monitorear la herencia de un ácido nucleico de interés y/o para identificar una célula u organismo que ha heredado el ácido nucleico de interés.

Como se emplea en esta memoria, el término "degeneración de codones" hace referencia a la naturaleza en el código genético que permite la variación de la secuencia de nucleótidos sin afectar la secuencia de aminoácidos de un polipéptido codificado. El experto en la técnica conoce la "preferencia codónica" exhibida por una célula hospedadora específica en el uso de codones de nucleótidos para especificar un aminoácido dado. Por lo tanto, cuando se sintetiza un gen para mejorar la expresión en una célula hospedadora, es conveniente diseñar el gen de modo que su frecuencia del uso de codones se aproxime a la frecuencia del uso de codones preferida de la célula hospedadora.

El término "optimizado por codones" cuando se refiere a genes o regiones codificantes de moléculas de ácido nucleico para la transformación de varios hospedadores, hace referencia a la alteración de codones en el gen o regiones codificantes de las moléculas de ácido nucleico para que reflejen el uso de codones típico del organismo hospedador sin alterar el polipéptido codificado por el ADN.

El término "fuente de carbono" se refiere a azúcares tales como oligosacáridos y monosacáridos que se pueden utilizar por un microorganismo en un proceso de fermentación ("azúcar fermentable") para producir un producto tal como etanol. Un microorganismo puede tener la capacidad de usar una sola fuente de carbono para la producción de un producto y, como tal, la fuente de carbono se denomina en la presente memoria fuente de carbono "única".

15

25

40

45

50

El término "lignocelulósico" se refiere a una composición que comprende tanto lignina como celulosa. El material lignocelulósico también puede comprender hemicelulosa.

El término "celulósico" hace referencia a una composición que comprende celulosa y componentes adicionales, que incluyen hemicelulosa.

20 El término "sacarificación" se refiere a la producción de azúcares fermentables o fuentes de carbono de polisacáridos.

El término "biomasa pretratada" significa biomasa que se ha sometido a pretratamiento ante de la sacarificación.

"Biomasa" se refiere a cualquier material celulósico o lignocelulósico e incluye materiales que comprenden celulosa, y opcionalmente comprenden además hemicelulosa, lignina, almidón, oligosacáridos y/o monosacáridos. La biomasa también puede comprender componentes adicionales, tal como proteína y/o lípido. La biomasa puede derivar de una sola fuente, o la biomasa puede comprender una mezcla derivada de más de una fuente; por ejemplo, la biomasa podría comprender una mezcla de mazorcas de maíz y forraje de maíz, o una mezcla de pasto y hojas. La biomasa incluye, pero no se limita a, cultivos de bioenergía, residuos agrícolas, desechos sólidos municipales, desechos sólidos industriales, aguas residuales de la fabricación de papel, desechos de jardín, desechos de madera y forestación. Los ejemplos de biomasa incluyen, pero no se limitan a, mazorcas de maíz, residuos de cultivos tal como cáscaras de maíz, forraje de maíz, hierbas, trigo, paja de trigo, paja de cebada, heno, paja de arroz, pasto varilla, desechos de papel, bagazo de caña de azúcar, bagazo o forraje de sorgo, forraje de soja, componentes obtenidos a partir de la molienda de granos, árboles, ramas, raíces, hojas, virutas de madera, aserrín, arbustos y matorrales, vegetales, frutas, flores y estiércol de animales.

35 "Hidrolizado de biomasa" se refiere al producto resultante de la sacarificación de la biomasa. La biomasa también se puede pretratar o preprocesar antes de la sacarificación.

El término "heterólogo" significa no encontrado de forma natural en la ubicación de interés. Por ejemplo, un gen heterólogo hace referencia a un gen que no se encuentra naturalmente en el organismo hospedador, pero que se introduce en el organismo hospedador mediante transferencia génica. Por ejemplo, una molécula de ácido nucleico heteróloga que está presente en un gen quimérico es una molécula de ácido nucleico que no se encuentra asociada de forma natural a los otros segmentos del gen quimérico, tal como las moléculas de ácido nucleico que tienen la región codificante y segmentos de promotor no asociados de forma natural entre sí.

Como se emplea en esta memoria, una "molécula de ácido nucleico aislada" es un polímero de ARN o ADN de cadena doble o simple, que opcionalmente contiene bases de nucleótidos alteradas, no naturales o sintéticas. Una molécula de ácido nucleico aislada en forma de un polímero de ADN puede comprender uno o más segmentos de ADNc. ADN genómico o ADN sintético.

Un fragmento de ácido nucleico puede "hibridarse" con otro fragmento de ácido nucleico, tal como un ADNc, ADN genómico o molécula de ARN, cuando una forma monocatenaria de un fragmento de ácido nucleico puede hibridarse con otro fragmento de ácido nucleico en las condiciones adecuadas de temperatura y fuerza iónica de la solución. Las condiciones de hibridación y lavado son conocidas y se ejemplifican en Sambrook, J., Fritsch, E. F. y Maniatis, T. Molecular Cloning: A Laboratory Manual, 2.ª ed.; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY (1989), particularmente el Capítulo 11 y la Tabla 11.1 en este. Las condiciones de temperatura y fuerza iónica determinan la "rigurosidad" de la hibridación. Las condiciones de rigurosidad pueden ajustarse para seleccionar fragmentos moderadamente similares (tal como secuencias homólogas de organismos con parentezco lejano), a fragmentos altamente similares (tal como genes que duplican enzimas funcionales de organismos con parentezco cercano). Los lavados posteriores a la hibridación determinan las condiciones de rigurosidad. Un conjunto de condiciones preferidas utiliza una serie de lavados comenzando con 6X SSC, SDS al 0,5% a temperatura ambiente

durante 15 min, luego repetir con 2X SSC, SDS al 0,5% a 45°C durante 30 min, y luego repetir dos veces con 0,2X SSC, SDS al 0,5% a 50°C durante 30 min. Un conjunto de condiciones de rigurosidad más preferidas utiliza temperaturas mayores en las que los lavados son idénticos a los anteriores excepto por la temperatura de los dos lavados finales de 30 min en 0,2X SSC, SDS al 0,5% que se aumentó a 60°C. Otro conjunto preferido de condiciones de alta rigurosidad utiliza dos lavados finales en 0,1 X SSC, SDS al 0,1% a 65°C. Un conjunto adicional de condiciones de rigurosidad incluye la hibridación a 0,1 X SSC, SDS al 0,1%, 65°C y lavados con 2X SSC, SDS al 0,1% seguido de 0,1 X SSC, SDS al 0,1%, por ejemplo.

La hibridación requiere que los dos ácidos nucleicos contengan secuencias complementarias aunque, dependiendo de la rigurosidad de la hibridación, son posibles los malapareamientos entre bases. La rigurosidad adecuada para la hibridación de ácidos nucleicos depende de la longitud de los ácidos nucleicos y el grado de complementación, variables que son conocidas en la técnica. Cuanto mayor sea el grado de similitud u homología entre dos secuencias de nucleótidos, mayor será el valor de Tm para los híbridos de ácidos nucleicos que tienen esas secuencias. La estabilidad relativa (que corresponde a mayor Tm) de hibridaciones de ácido nucleico disminuye en el siguiente orden: ARN:ARN, ADN:RNA, ADN:ADN. Para híbridos con una longitud mayor que 100 nucleótidos, se han derivado las ecuaciones para calcular Tm (véase Sambrook et ál., supra, 9.50-9.51). Para la hibridación con ácidos nucleicos más cortos, es decir, oligonucleótidos, la posición de malapareamientos se vuelve más importante, y la longitud del oligonucleótido determina su especificidad (véase Sambrook et ál., supra, 11.7-11.8). En una realización, la longitud para un ácido nucleico hibridable es al menos aproximadamente 10 nucleótidos. Preferiblemente, una longitud mínima para un ácido nucleico hibridable es al menos aproximadamente 15 nucleótidos; más preferiblemente, al menos aproximadamente 20 nucleótidos; y lo más preferiblemente, la longitud es al menos aproximadamente 30 nucleótidos. Además, el experto en la técnica reconocerá que la temperatura y la concentración de sal en solución de lavado pueden ajustarse según sea necesario según factores tal como longitud de la sonda.

15

20

25

35

40

55

60

Una "parte sustancial" de una secuencia de aminoácidos o nucleótidos es esa parte que comprende lo suficiente de la secuencia de aminoácidos de un polipéptido o la secuencia de nucleótidos de un gen para identificar de manera putativa ese polipéptido o gen, ya sea mediante evaluación manual de la secuencia por parte de un experto en la técnica o mediante comparación e identificación de secuencias automatizada por computadora usando algoritmos tal como BLAST (Altschul, S. F., et ál., J. Mol. Biol., 215:403-410 (1993)). En general, una secuencia de diez o más aminoácidos contiguos o treinta o más nucleótidos es necesaria para identificar de manera putativa una secuencia de ácido nucleico o polipéptido como homóloga a una proteína o gen conocido. Además, con respecto a secuencias de nucleótidos, se pueden utilizar sondas de oligonucleótidos específicas del gen que comprenden 20-30 nucleótidos contiguos en métodos que dependen de la secuencia de identificación génica (p. ej., hibridación Southern) y aislamiento (p. ej., hibridación in situ de colonias bacterianas o placas bacteriófagas). Además, los oligonucleótidos cortos de 12-15 bases se pueden utilizar como cebadores de amplificación en PCR con el fin de obtener un fragmento de ácido nucleico particular que comprenda los cebadores. Por consiguiente, una "parte sustancial" de una secuencia de nucleótidos comprende lo suficiente de la secuencia para identificar y/o aislar específicamente un fragmento de ácido nucleico que comprenda la secuencia. La presente memoria descriptiva describe la secuencia de nucleótidos y aminoácidos completa que codifica proteínas fúngicas particulares. El experto en la técnica que cuente con el beneficio de las secuencias indicadas en la presente memoria, ahora puede usar la totalidad o una parte sustancial de las secuencias descritas con propósitos conocidos por los expertos en esta técnica.

El término "complementariedad" se utiliza para describir la relación entre bases de nucleótidos que pueden hibridarse entre sí. Por ejemplo, con respecto al ADN, adenosina es complementaria a timina y citosina es complementaria a quanina.

Los términos "homología" y "homólogo" se utilizan de manera intercambiable en la presente memoria. Se refieren a fragmentos de ácido nucleico en donde los cambios en una o más bases de nucleótidos no afectan la capacidad del ácido nucleico de mediar la expresión génica o de producir un determinado fenotipo. Estos términos también hacen referencia a modificaciones de los fragmentos de ácido nucleico descritos en la presente memoria tal como eliminación o inserción de uno o más nucleótidos que no alteran sustancialmente las propiedades funcionales del fragmento de ácido nucleico resultante con respecto al fragmento inicial no modificado. Se entiende, por lo tanto, tal como lo entenderán los expertos en la técnica, que se puede utilizar otras además de las secuencias de ejemplo específicas en las cepas y métodos de la invención.

Además, el experto en la técnica reconoce que las secuencias de ácido nucleico homólogas descritas en la presente memoria también se definen por su capacidad de hibridarse, en condiciones de rigurosidad moderada (p. ej., 0,5 X SSC, SDS al 0,1%, 60°C) con las secuencias ejemplificadas en la presente memoria, o con cualquier parte de las secuencias de nucleótidos descritas en la presente memoria y que son funcionalmente equivalentes a cualquiera de las secuencias de nucleótidos descritas en la presente memoria.

El término "porcentaje de identidad", tal como se conoce en el técnica, es una relación entre dos o más secuencias de polipéptidos o dos o más secuencia de polinucleótidos, tal como se determina mediante comparación de secuencias. En la técnica, "identidad" también implica el grado de relación de secuencia entre las secuencias de polipéptidos o polinucleótidos, según sea el caso, determinada por la coincidencia entre cadenas de dichas secuencias. La "identidad" y "similitud" pueden calcularse fácilmente mediante métodos conocidos, que incluyen

pero no se limitan a los descritos en: 1.) Computational Molecular Biology (Lesk, A. M., Ed.) Oxford University: NY (1988); 2.) Biocomputing: Informatics and Genome Projects (Smith, D. W., Ed.) Academic: NY (1993); 3.) Computer Analysis of Sequence Data, Parte I (Griffin, A. M., Y Griffin, H. G., Eds.) Humania: NJ (1994); 4.) Sequence Analysis in Molecular Biology (von Heinje, G., Ed.) Academic (1987); y 5.) Sequence Analysis Primer (Gribskov, M. y Devereux, J., Eds.) Stockton: NY (1991).

Los métodos preferidos para determinar la identidad están diseñados para proporcionar la mayor coincidencia entre las secuencias analizadas. Los métodos para determinar la identidad y similitud se codifican en programas informáticos de disponibilidad pública. Se pueden realizar alineaciones de secuencias y cálculos de porcentajes de identidad mediante el uso del programa MegAlign[™] del paquete informático LASERGENE de bioinformática (DNASTAR, Inc., Madison, WI). El alineamiento múltiple de secuencias se realiza usando el "Método Clustal de 10 alineamiento" que abarca diversas variedades del algoritmo que incluye el "Método Clustal V de alineamiento" que corresponde al método de alineamiento denominado Clustal V (descrito por Higgins y Sharp, CABIOS. 5:151-153 (1989); Higgins, D.G. et ál., Comput. Appl. Biosci., 8:189-191 (1992)) y encontrado en el programa MegAlign[™] del paquete informático LASERGENE de bioinformática (DNASTAR Inc.). Para alineamientos múltiples, los valores predeterminados corresponden a PENALIZACIÓN DE HUECO=10 y PENALIZACIÓN DE LONGITUD DE 15 HUECO=10. Los parámetros predeterminados para los alineamientos en pares y el cálculo del porcentaje de identidad de secuencias de proteínas usando el método Clustal son KTUPLE=1, PENALIZACIÓN DE HUECO=3, VENTANA=5 y DIAGONALES GUARDADAS=5. Para los ácidos nucleicos estos parámetros son KTUPLE=2, PENALIZACIÓN DE HUECO=5, VENTANA=4 y DIAGONALES GUARDADAS=4. Después del alineamiento de las secuencias usando el programa Clustal V, es posible obtener un "porcentaje de identidad" al observar la tabla de 20 "distancias de secuencia" en el mismo programa. De manera adicional, el "Método Clustal W de alineamiento" está disponible y corresponde al método de alineamiento denominado Clustal W (descrito por Higgins y Sharp, CABIOS. 5:151-153 (1989); Higgins, D.G. et ál., Comput. Appl. Biosci. 8:189-191 (1992)) y encontrado en el programa v6.1 del paquete informático LASERGENE de bioinformática (DNASTAR Inc.). Los parámetros predeterminados para el alineamiento múltiple (PENALIZACIÓN DE HUECO=10, PENALIZACIÓN DE LONGITUD 25 HUECO=0,2, Retardo de las secuencias divergentes(%)=30, Peso de transición de ADN=0,5, Matriz de peso de proteína=Serie Gonnet, Matriz de peso de ADN=IUB). Después del alineamiento de las secuencias usando el programa Clustal W, es posible obtener un "porcentaje de identidad" al observar la tabla de "distancias de secuencia" en el mismo programa.

Los expertos en la técnica entienden que muchos niveles de identidad de secuencia son útiles en la identificación de polipéptidos, de otras especies, en donde dichos polipéptidos tienen la misma función o actividad o una similar. Los ejemplos útiles de porcentaje de identidad incluyen, pero no se limitan a: 24%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% o 95%, o cualquier porcentaje entero de 24% a 100% puede ser útil en la descripción de la presente invención, tal como 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% o 99%. Los fragmentos de ácido nucleico adecuados no solo tienen las homologías anteriores sino que típicamente codifican un polipéptido que tiene al menos 50 aminoácidos, preferiblemente al menos 100 aminoácidos, más preferiblemente al menos 150 aminoácidos, aun más preferiblemente al menos 200 aminoácidos, y lo más preferiblemente al menos 250 aminoácidos.

El término "software de análisis de secuencias" se refiere a cualquier algoritmo informático o programa de software que es útil para el análisis de secuencias de aminoácidos o nucleótidos. El "software de análisis de secuencias" puede encontrarse comercialmente disponible o puede desarrollarse de forma independiente. Un software de análisis de secuencias típico incluirá, pero no se limita a: 1.) el paquete de programas GCG (Wisconsin Package Versión 9.0, Genetics Computer Group (GCG), Madison, WI); 2.) BLASTP, BLASTN, BLASTX (Altschul et ál., J. Mol. Biol., 215:403-410 (1990)); 3.) DNASTAR (DNASTAR, Inc. Madison, WI); 4.) Sequencher (Gene Codes Corporation, Ann Arbor, MI); y 5.) el programa FASTA que incorpora el algortimo Smith-Waterman (W. R. Pearson, Comput. Methods Genome Res., [Proc. Int. Symp.] (1994), Meeting Date 1992, 111-20. Editor/es: Suhai, Sandor. Plenum: Nueva York, NY). En el contexto de la presente solicitud, se comprenderá que en los casos en que se usa software de análisis de secuencias para el análisis, los resultados del análisis se basarán en los "valores predeterminados" del programa al que se hace referencia, a menos que se especifique lo contrario. Como se emplea en esta memoria, "valores predeterminados" significa cualquier conjunto de valores o parámetros que se carga originalmente con el software cuando se inicia por primera vez.

45

50

Las técnicas de clonación molecular y ADN recombinante estándar utilizadas en la presente memoria son conocidas en la técnica y fueron descritas por Sambrook, J., Fritsch, E. F. y Maniatis, T. Molecular Cloning: A Laboratory Manual, 2.ª ed.; Cold Spring Harbor Laboratory: Cold Spring Harbor, New York, 1989 (de aquí en adelante "Maniatis"); y por Silhavy, T. J., Bennan, M. L. y Enquist, L. W. Experiments with Gene Fusions; Cold Spring Harbor Laboratory: Cold Spring Harbor, Nueva York, 1984; y por Ausubel, F. M. et ál., In Current Protocols in Molecular Biology, publicado por Greene Publishing y Wiley-Interscience, 1987.

La presente invención se refiere a cepas diseñadas genéticamente de *Zymomonas* o *Zymobacter* que utilizan arabinosa que tienen utilización de arabinosa mejorada cuando se fermentan en un medio que contiene arabinosa, y

a procesos para la producción de etanol usando estas cepas. Un desafío para mejorar la producción de etanol mediante la fermentación de un biocatalizador en un medio que incluye un hidrolizado de biomasa, producido típicamente mediante pretratamiento y sacarificación de la biomasa, es obtener una utilización eficaz de arabinosa. La arabinosa es una de las azúcares pentosa predominantes en materiales lignocelulósicos hidrolizados, la otra es xilosa. Los solicitantes han descubierto que la expresión de un simportador de protones de arabinosa conduce a una mayor eficacia en la utilización de arabinosa mediante cepas que utilizan arabinosa y, por lo tanto, a mayores rendimientos de etanol cuando la fermentación se produce en un medio que contiene arabinosa.

Cepa hospedadora que utiliza arabinosa

- Cualquier cepa de Zymomonas o Zymobacter que pueda utilizar arabinosa como una fuente de carbono puede 10 utilizarse como un hospedador para preparar las cepas de la presente invención. Las cepas de Zymomonas, tal como Z. mobilis que han sido diseñadas genéticamente para fermentación de arabinosa en etanol son particularmente útiles. Zymomonas ha sido diseñada genéticamente para utilización de arabinosa mediante la introducción de genes que codifican 1) L-arabinosa isomerasa para convertir L-arabinosa en L-ribulosa, 2) Lribulocinasa para convertir L-ribulosa en L-ribulosa-5-fosfato, y 3) L-ribulosa-5-fosfato-4-epimerasa para convertir L-15 ribulosa-5-fosfato en D-xilulosa (US5843760 y descrito en los Ejemplos 1 y 2 en la presente memoria; véase diagrama en la Figura 1). Las secuencias de ADN que codifican estas enzimas pueden obtenerse a partir de microorganismos que tienen la capacidad de metabolizar la arabinosa. Las fuentes para las regiones codificantes incluyen Klebsiella, Escherichia, Rhizobium, Agrobacterium y Salmonella. Las regiones codificantes de E. coli son particularmente útiles, que son para L-arabinosa isomerasa: región codificante de araA (región codificante SEQ ID NO:21; proteína SEQ ID NO:22), para L-ribulocinasa: región codificante de araB (región codificante SEQ ID NO:23; 20 proteína SEQ ID NO:24), y para L-ribulosa-5-fosfato-4-epimerasa: región codificante de araD (región codificante SEQ ID NO:25; proteína SEQ ID NO:26). Estas proteínas y sus regiones codificantes pueden identificarse fácilmente en otros microorganismos que utilizan arabinosa, tal como los indicados anteriormente, por un experto en la técnica mediante el uso de bioinformática o métodos experimentales tal como se describe más adelante para araE.
- Además, las actividades de transcetolasa y transaldolasa se utilizan en la vía biosintética de arabinosa a etanol (véase la Figura 1). La transcetolasa y transaldolasa son dos enzimas de la vía de la pentosa fosfato que convierten xilulosa 5-fosfato en intermedios que acoplan el metabolismo pentosa a la vía glucolítica de Entner-Douderoff lo que permite el metabolismo de arabinosa o xilosa en etanol. Estas pueden ser actividades endógenas, o las actividades endógenas pueden complementar las actividades introducidas para estas enzimas.
- Típicamente, la Zymomonas que utiliza arabinosa también está diseñada genéticamente para utilización de xilosa. Típicamente, se han introducido cuatro genes en Z mobilis para la expresión de cuatro enzimas que participan en el metabolismo de xilosa (Figura 1) tal como se describe en US 5514583. Estas incluyen genes que codifican transcetolasa y transaldolasa tal como se describió anteriormente, así como también xilosa isomerasa, que cataliza la conversión de xilosa en xilulosa y xilulocinasa, que fosforila xilulosa para formar xilulosa 5-fosfato (véase la Figura 1). Las secuencias de ADN que codifican estas enzimas pueden obtenerse de numerosos microorganismos que son capaces de metabolizar xilosa, tal como bacterias entéricas, y algunas levaduras y hongos. Las fuentes para las regiones codificantes incluyen Xanthomonas, Klebsiella, Escherichia, Rhodobacter, Flavobacterium, Acetobacter, Gluconobacter, Rhizobium, Agrobacterium, Salmonella, Pseudomonads y Zymomonas. Las regiones codificantes de E. coli son particularmente útiles.
- Para la expresión, las secuencias de ADN codificantes para proteínas que utilizan arabinosa y proteínas que utilizan xilosa están unidas de forma operativa a promotores que se expresan en células de *Z. mobilis*, y terminadores de transcripción. Los ejemplos de promotores que se pueden utilizar incluyen los promotores del gen codificador de gliceraldehído-3-fosfato deshidrogenasa de *Z. mobilis* (promotor GAP; Pgap), del gen codificador de enolasa de *Z. mobilis* (promotor ENO; Peno), y del gen codificador de xilosa isomerasa de *Actinoplanes missouriensis* (promotor GI, Pgi). Las regiones codificantes pueden expresarse individualmente a partir de un promotor, típicamente como un gen quimérico, o dos o más regiones codificantes pueden unirse en un operón con expresión a partir del mismo promotor. Los operones y/o genes quiméricos resultantes típicamente se construyen en o se transfieren a un vector para manipulaciones adicionales.
- Los vectores son ampliamente conocidos en la técnica. Para la expresión en *Zymomonas* son particularmente útiles los vectores que pueden replicarse tanto en *E. coli* como en *Zymomonas*, tal como pZB188 que se describe en la patente de EE.UU. n.º 5.514.583. Los vectores pueden incluir plásmidos para la replicación autónoma en una célula, y plásmidos para llevar construcciones que se integrarán al genoma celular. Los plásmido para la integración de ADN pueden incluir transposones, regiones de secuencia de ácido nucleico homólogas al genoma celular objetivo, secuencias de integración dirigidas al sitio u otras secuencias que apoyan la integración. En la recombinación homóloga, las secuencias de ADN que flanquean un sitio de integración objetivo se colocan unidas a un gen de resistencia a espectinomicina, u otro marcador seleccionable, y el gen quimérico conduce la inserción del marcador seleccionable y gen quimérico en el sitio genómico objetivo tal como se describe en el Ejemplo 2 en la presente memoria. Además, el marcador seleccionable puede estar unido mediante sitios de recombinación específicos del sitio, de modo que luego de la expresión de la recombinasa específica del sitio correspondiente, el gen de recombinación pueda extraerse del genoma.

Las cepas que utilizan xilosa que son de uso particular incluyen CP4(pZB5) (US 5514583), ATCC31821/pZBS (US 6566107), 8b (US 20030162271; Mohagheghi et ál., (2004) Biotechnol. Lett. 25; 321-325), y ZW658 con derivados ZW800 y ZW801-4 (publicación de patente de EE.UU., de titularidad conjunta y en tramitación con la presente, #US20080286870; depositado, ATTCC # PTA-7858). También se puede utilizar ZW705, que se describe en la publicación de solicitud de patente de EE.UU., de titularidad conjunta y en tramitación con la presente, #US 20110014670. Las cepas que utilizan arabinosa que se pueden utilizar se describen en US5843760, y también se describen en la presente memoria en los Ejemplos 1 y 2.

Adaptación para utilización de arabinosa

25

35

40

45

50

60

Los solicitantes descubrieron que una cepa de Z. mobilis diseñada genéticamente para utilización de xilosa y arabinosa tal como se describió anteriormente utiliza aproximadamente 33% de arabinosa en un medio donde la 10 arabinosa es la única fuente de carbono (a 50 g/L), y aproximadamente 68% de arabinosa en un medio que incluye azúcares mezclados de 25 g/L de arabinosa, 25 g/L de xilosa y 50 g/L de glucosa en condiciones de cultivo de prueba. En un intento de derivar una cepa con utilización de arabinosa mejorada, los solicitantes adaptaron células de la cepa que utiliza xilosa y arabinosa mediante cultivo en seria en un medio con 50 g/L de arabinosa como la única fuente de carbono tal como se describe en la presente memoria en el Ejemplo 2. Usando este proceso, se 15 obtuvieron cepas aisladas que tenías una mejora sustancial en la utilización de arabinosa en un medio donde la arabinosa es la única fuente de carbono, que son cepas adaptadas a arabinosa. Por ejemplo, una cepa utilizó aproximadamente 83% de arabinosa donde 50 g/L de arabinosa es la única fuente de carbono. En el medio de azúcares mezclados que contenía 25 g/L de arabinosa, 25 g/L de xilosa y 50 g/L de glucosa, hubo una mejora menor: se utilizó aproximadamente 74% de arabinosa. También en el medio de azúcares mezclados, la utilización 20 de arabinosa se retrasó en comparación con la utilización de glucosa y xilosa.

Para obtener cepas con utilización de arabinosa mejorada, las cepas diseñadas genéticamente para la expresión de genes con utilización de arabinosa tal como se describió anteriormente pueden adaptarse mediante cultivo en seria en un medio que contiene arabinosa como la única fuente de carbono en concentraciones entre aproximadamente 20 g/L y 100 g/L, o mayores. La adaptación puede realizarse en concentraciones de arabinosa, pero con cultivo inicial en aproximadamente 20 g/L o más. El cultivo en serie es típicamente para al menos aproximadamente 25 duplicaciones. La adaptación puede realizarse antes o después de introducir un simportador de protones de arabinosa heterólogo, que se describe más adelante, en una cepa que utiliza arabinosa. Además, las células pueden adaptarse tanto antes como después de la introducción de un simportador de protones de arabinosa heterólogo.

30 Descubrimiento para diseñar genéticamente la utilización de arabinosa mejorada

Los solicitantes diseñaron genéticamente cepas de *Zymomonas* que utilizan xilosa y arabinosa para la expresión de los dos sistemas de transporte de arabinosa diferentes presentes en *E. coli.* Los dos sistemas son 1) un transportador ABC que consiste en tres proteínas codificadas por araFGH: proteína de unión a arabinosa periplasmática de 33 kD codificada por araF, ATPasa unida a la membrana de 55 kD codificada por araG, y proteína unida a la membrana de 34 kD codificada por araH; y 2) un simportador de protones de arabinosa que consiste en una proteína: simportador de protones de arabinosa de 52 kD codificado por araE. El transportador ABC es un transportador de arabinosa de alta afinidad y baja capacidad con una Km de 3 x 10⁻⁴ M, mientras el simportador de protones de arabinosa es un transportador de arabinosa de baja afinidad y alta capacidad con una Km of 1,25 x 10⁻⁴ M. Los solicitantes descubrieron que la expresión del transportador ABC en realidad dio como resultado una utilización de arabinosa reducida en medio solamente con arabinosa. La expresión del simportador de protones de arabinosa aumentó la utilización de arabinosa tanto en el medio solamente con arabinosa como en el medio con azúcares mezclados. Por lo tanto, los solicitantes han descubierto que el transportador ABC de *E. coli* no mejora la utilización de arabinosa, mientras el simportador de protones de arabinosa mejora la utilización de arabinosa en *Zymomonas*. Con la expresión del simportador de protones de arabinosa, la utilización de arabinosa aumentó ampliamente tanto en el medio solamente con arabinosa como en el medio con azúcares mezclados.

La expresión de un simportador de protones de arabinosa aumentó la utilización de arabinosa en todas las cepas analizadas. Estas incluyen una cepa de *Z. mobilis* que utiliza arabinosa y xilosa sin adaptación, una cepa de *Z. mobilis* que utiliza arabinosa y xilosa en condiciones de estrés (descrita en la publicación de solicitud de patente de EE.UU., de titularidad conjunta y en tramitación con la presente, #US 20110014670), y una cepa de *Z. mobilis* que utiliza arabinosa y xilosa que ha sido adaptada para utilización de xilosa en condiciones de estrés y también para utilización de arabinosa tal como se describió anteriormente en la presente memoria y en el Ejemplo 2. En cepas sin adaptación de arabinosa, la utilización de arabinosa aumentó en al menos aproximadamente 28% en el medio solamente con arabinosa así como también en el medio con azúcares mezclados. También en una cepa adaptada a arabinosa, la utilización de arabinosa aumentó en al menos aproximadamente 28% en el medio con azúcares mezclados. En el medio solamente con arabinosa el nivel de utilización de arabinosa en la cepa original adaptada a arabinosa sin expresión del simportador de protones de arabinosa ya se encuentra a aproximadamente 80% y, por lo tanto, el aumento en la utilización de arabinosa no puede exceder 20%, y es de aproximadamente 18%.

Por lo tanto, cualquier cepa de *Zymomonas* o *Zymobacter* que sea capaz de utilizar arabinosa, también denominada cepa que utiliza arabinosa, se puede utilizar para crear las cepas de la presente. Son particularmente útiles las

cepas que utilizan adicionalmente xilosa y glucosa. En estas cepas la utilización de arabinosa se mejora en al menos aproximadamente 10% mediante la expresión de un simportador de protones de arabinosa. La utilización de arabinosa puede mejorarse en al menos aproximadamente 10%, 12%, 16%, 18%, 20%, 24%, 28% o más. El % de mejora puede variar dependiendo de las condiciones de cultivo utilizadas que incluyen el tipo de medio y el microorganismo original utilizado para diseñar genéticamente la expresión del simportador de protones de arabinosa, así como también la cepa específica diseñada genéticamente resultante. Los factores que provocan la variación incluyen el nivel de expresión del simportador de protones de arabinosa introducido y el nivel de actividad del transportador resultante, que puede variar entre transformantes.

Expresión de un simportador de protones de arabinosa

25

35

40

45

50

55

En las células diseñadas genéticamente de *Zymomonas* o *Zymobacter* de la presente puede expresarse cualquier simportador de protones de arabinosa para proporcionar utilización de arabinosa mejorada. Las proteínas bacterianas simportadoras de protones de arabinosa y sus secuencias codificantes para la expresión en *Zymomonas* o *Zymobacter* son heterólogas, ya que no se encuentran de forma natural en *Zymomonas* o *Zymobacter*. Los ejemplos de proteínas simportadoras de protones de arabinosa y secuencias codificantes que pueden expresarse incluyen las codificadas por los genes araE de *E. coli* (región codificante SEQ ID NO:1; proteína SEQ ID NO:2), *Shigella flexneri* (región codificante SEQ ID NO:3; proteínaSEQ ID NO:4), *Shigella boydii* (región codificante SEQ ID NO:5; proteína SEQ ID NO:6), *Shigella dysenteriae* (región codificante SEQ ID NO:10), *Salmonella enterica* (región codificante SEQ ID NO:11; proteína SEQ ID NO:12), *Klebsiella pneumoniae* (coding region SEQ ID NO:16), *Enterobacter cancerogenus* (región codificante SEQ ID NO:17; proteína SEQ ID NO:18) y *Bacillus amyloliquefaciens* (región codificante SEQ ID NO:19; proteína SEQ ID NO:20).

Dado que las secuencias de las regiones codificantes del simportador de protones de arabinosa y las proteínas codificadas son ampliamente conocidas, tal como se ejemplifica en las SEQ ID NO indicadas anteriormente en la Tabla 1, un experto en la técnica puede identificar fácilmente simportadores de protones de arabinosa adecuados adicionales en función de la similitud de secuencia usando enfoques de bioinformática. Típicamente, la búsqueda BLAST (descrita anteriormente) de bases de datos de disponibilidad pública con secuencias de aminoácidos del simportador de protones de arabinosa, tal como las proporcionadas en la presente memoria, se utiliza para identificar simportadores de protones de arabinosa adicionales, y sus secuencias codificantes que se pueden utilizar en las cepas de la presente. Estas proteínas pueden tener al menos aproximadamente 80-85%, 85%-90%, 90%-95% o 95%-99% de identidad de secuencia con cualquiera de los simportadores de protones de arabinosa de las SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18 o 20 y al mismto tiempo presentan actividad del simportador de protones de arabinosa. Las identidades se basan en el método de alineamiento Clustal W usando los parámetros predeterminados de PENALIZACIÓN DE HUECO=10, PENALIZACIÓN DE LONGITUD HUECO=0,1, y serie Gonnet 250 de matriz de peso de proteína.

Además de usar la secuencia de región codificante o de proteína y los métodos de bioinformática para identificar simportadores de protones de arabinosa adicionales, se pueden utilizar las secuencias descritas en la presente memoria o las indicadas en la técnica para identificar experimentalmente otros homólogos en la naturaleza. Por ejemplo, cada uno de los fragmentos de ácido nucleico que codifican simportadores de protones de arabinosa descritos en la presente memoria se puede utilizar para aislar los genes que codifican proteínas homólogas. El aislamiento de genes homólogos usando protocolos que dependen de la secuencia es ampliamente conocido en la técnica. Los ejemplos de protocolos que dependen de la secuencia incluyen, pero no se limitan a: 1.) métodos de hibridación de ácido nucleico; 2.) métodos de amplificación de ADN y ARN, tal como se ejemplifica mediante diversos usos de las tecnologías de amplificación de ácido nucleico [por ejemplo, reacción en cadena de la polimerasa (PCR, por sus siglas en inglés), Mullis et ál., patente de EE.UU. 4.683.202; reacción en cadena de la ligasa (LCR, por sus siglas en inglés), Tabor, S. et ál., Proc. Acad. Sci. USA 82:1074 (1985); o amplificación por desplazamiento de hebra (SDA, por sus siglas en inglés), Walker, et ál., Proc. Natl. Acad. Sci. U.S.A., 89:392 (1992)]; y 3.) métodos de construcción de biblioteca y selección mediante complementación.

Por ejemplo, las regiones codificantes para proteínas o polipéptidos similares a las de las secuencias que codifican el simportador de protones de arabinosa descritas en la presente memoria pueden aislarse directamente usando la totalidad o una parte de los fragmentos de ácido nucleico de la presente como sondas de hibridación de ADN para seleccionar bibliotecas a partir de cualquier organismo deseado usando metodología conocida por los expertos en la técnica. Las sondas de oligonucleótidos específicos basadas en las secuencias de ácido nucleico descritas pueden diseñarse y sintetizarse mediante métodos conocidos en la técnica (Maniatis, *supra*). Además, las secuencias enteras se pueden utilizar directamente para sintetizar sondas de ADN mediante métodos conocidos por el experto en la técnica (p. ej., etiquetado de ADN de cebadores aleatorios, traducción de mellas y técnicas de etiquetado de extremos), o cebadores de ARN que utilizan sistemas de transcripción *in vitro* disponibles. Además, pueden diseñarse cebadores específicos y utilizarse para amplificar una parte (o la longitud completa) de las secuencias de la presente. Los productos de amplificación resultantes pueden etiquetarse directamente durante las reacciones de amplificación o etiquetarse después de las reacciones de amplificación, y utilizarse como sondas para aislar fragmentos de ADN de longitud completa en condiciones de rigurosidad adecuada.

Típicamente, en las técnicas de amplificación tipo PCR, los cebadores tienen diferentes secuencias y no son complementarias entre sí. Dependiendo de las condiciones de prueba deseadas, las secuencias de los cebadores deberían diseñarse para proporcionar una replicación eficaz y fiel del ácido nucleico objetivo. Los métodos de diseño de sonda de PCR son comunes y conocidos en la técnica (Thein y Wallace, "The use of oligonucleotides as specific hybridization probes in the Diagnosis of Genetic Disorders", in Human Genetic Diseases: A Practical Approach, K. E. Davis Ed., (1986) pp 33-50, IRL: Hemdon, VA; y Rychlik, W., In Methods in Molecular Biology, White, B. A. Ed., (1993) Vol. 15, pp 31-39, PCR Protocols: Current Methods and Applications. Humania: Totowa, NJ).

Generalmente, dos segmentos cortos de las secuencias descritas se pueden utilizar en los protocolos de reacción en cadena de la polimerasa para amplificar fragmentos de ácido nucleico más largos que codifican genes homólogos de ADN o ARN. La reacción en cadena de la polimerasa también se puede realizar en una biblioteca de fragmentos de ácido nucleico clonados en donde la secuencia de un cebador deriva de los fragmentos de ácido nucleico descritos, y la secuencia del otro cebador se aprovecha de la presencia de los tramos de ácido poliadenílico en el extremo 3' del precursor de ARNm que codifica genes microbianos.

De manera alternativa, la segunda secuencia de cebador puede basarse en las secuencias derivadas del vector de clonación. Por ejemplo, el experto en la técnica puede seguir el protocolo RACE (Frohman et ál., PNAS USA 85:8998 (1988)) para generar ADNc mediante el uso de PCR para amplificar copias de la región entre un solo punto en la transcripción y el extremo 3' o 5'. Los cebadores orientados en las direcciones 3' y 5' pueden diseñarse a partir de las secuencias de la presente. Usando los sistemas RACE 3' o RACE 5' comercialmente disponibles (p. ej., BRL, Gaithersburg, MD), se pueden aislar fragmentos de ADNc 3' o 5' específicos (Ohara et ál., PNAS USA 86:5673 (1989); Loh et ál., Science 243:217 (1989)).

De manera alternativa, las secuencias que codifican el simportador de protones de arabinosa descritas pueden emplearse como agentes de hibridación para la identificación de homólogos. Los componentes básicos de una prueba de hibridación de ácido nucleico incluyen una sonda, una muestra que se sospecha que contiene el gen o fragmento génico de interés y un método de hibridación específico. Típicamente, las sondas son secuencias de ácido nucleico de cadena simple que son complementarias a las secuencias de ácido nucleico que se detectarán. La longitud de la sonda puede variar de 5 bases a decenas de miles de bases, y dependerá de la prueba específica que se realizará. Típicamente, la longitud de una sonda de aproximadamente 15 bases a aproximadamente 30 bases es adecuada. Solo una parte de la molécula de la sonda debe ser complementaria a la secuencia de ácido nucleico que se detectará. Además, la complementariedad entre la sonda y la secuencia objetivo no es necesariamente perfecta. La hibridación no se produce entre moléculas de complementariedad imperfecta con el resultado de que una fracción determinada de las bases en la región hibridada no se empareja con la base complementaria adecuada.

25

35

40

45

50

55

Los métodos de hibridación están bien definidos. Típicamente, la sonda y la muestra deben mezclarse en condiciones que permitirán la hibridación de ácido nucleico. Esto implica que la sonda y la muestra entren en contacto en presencia de una sal orgánica o inorgánica en las condiciones de concentración y temperatura adecuadas. Los ácidos nucleicos de la sonda y la muestra deben estar en contacto por un tiempo lo suficientemente prolongado para que pueda producirse cualquier hibridación posible entre el ácido nucleico de la sonda y la muestra. La concentración de la sonda u objetivo en la mezcla determinará el tiempo necesario para que se produzca la hibridación. Cuanto mayor sea la concentración de la sonda u objetivo, menor será el tiempo de incubación de hibridación necesario. De manera opcional, se puede incluir un agente caotrópico. El agente caotrópico estabiliza los ácidos nucleicos al inhibir la actividad de la nucleasa. Además, el agente caotrópico permite una hibridación sensible y rigurosa de las sondas de oligonucleótidos cortas a temperatura ambiente (Van Ness y Chen, Nucl. Acids Res. 19:5143-5151 (1991)). Los agentes caotrópicos adecuados incluyen cloruro de guanidinio, tiocianato de guanidinio, tiocianato de sodio, tetracloroacetato de litio, perclorato de sodio, tetracloroacetato de rubidio, yoduro de potasio y trifluoroacetato de cesio, entre otros. Típicamente, el agente caotrópico estará presente a una concentración final de aproximadamente 3 M. Si se desea, se puede agregar formamida a la mezcla de hibridación, típicamente 30-50% (v/v).

Se pueden emplear varias soluciones de hibridación. Típicamente, estas comprenden de aproximadamente 20 a 60% en volumen, preferiblemente 30%, de un solvente orgánico polar. Una solución de hibridación común emplea aproximadamente 30-50% v/v de formamida, aproximadamente 0,15 a 1 M de cloruro de sodio, aproximadamente 0,05 a 0,1 M de amortiguadores (p. ej., citrato de sodio, Tris-HCl, PIPES o HEPES (intervalo de pH de aproximadamente 6-9)), aproximadamente 0,05 a 0,2% de detergente (p. ej., dodecilsulfato de sodio), o entre 0,5-20 mM de EDTA, FICOLL (Pharmacia Inc.) (aproximadamente 300-500 kdal), polivinilpirrolidona (aproximadamente 250-500 kdal) y albúmina en suero. En la solución de hibridación típica también se incluirán los ácidos nucleicos portadores no etiquetados de aproximadamente 0,1 a 5 mg/mL, ADN nucelico fragmentado (p. ej., ADN de timo de becerro o esperma de salmón, o ARN de levadura), y opcionalmente de aproximadamente 0,5 a 2% p/vol de glicina. También se pueden incluir otros aditivos, tal como agentes de exclusión de volumen que incluyen una variedad de agentes polares solubles en agua o dilatables (p. ej., polietilenglicol), polímeros aniónicos (p. ej., poliacrilato o polimetilacrilato) y polímeros sacarídicos aniónicos (p. ej., sulfato de dextrano).

60 La hibridación de ácido nucleico se puede adaptar a una variedad de formatos de ensayos. Uno de los más adecuados es el formato de ensayo tipo sándwich. El ensayo tipo sándwich se puede adaptar particularmente a la

hibridación en condiciones no desnaturalizantes. Un componente principal de un ensayo tipo sándwich es un soporte sólido. El soporte sólido se ha adsorbido o unido de forma covalente a su sonda de ácido nucleico inmovilizado que no está etiquetada y es complementaria a una parte de la secuencia.

La expresión del simportador de protones de arabinosa se logra mediante la transformación con una secuencia que codifica un simportador de protones de arabinosa. Tal como se conoce en la técnica, puede haber variaciones en secuencias de ADN que codifican una secuencia de aminoácidos debido a la degeneración del código genético. La secuencia codificante puede estar optimizadas por codones para lograr la máxima expresión en la célula hospedadora de *Zymomonas* o *Zymobacter* objetivo, tal como lo conocen los expertos en la técnica. Típicamente, un gen quimérico que incluye un promotor activo en células de *Zymomonas* que está unido de forma operativa a la región codificante deseada, así como también un terminador de transcripción, se utiliza para la expresión. Se puede utilizar cualquier promotor que sea activo en células de *Zymomonas*, tal como los ejemplos indicados anteriormente para la expresión de proteínas para la utilización de arabinosa. Un gen quimérico construido con un promotor y región codificante de simportador de arabinosa es un gen heterólogo para la expresión en *Zymomonas* o *Zymobacter* ya que la región codificante es de un organismo diferente al descrito anterioremente. Los vectores para la expresión y/o integración son tal como se describieron anteriormente para la expresión de proteínas para la utilización de arabinosa.

Producción mejorada de etanol

15

20

25

30

35

Las cepas de la presente tienen utilización de arabinosa mejorada en medio con arabinosa como la única fuente de carbohidratos y en medio con azúcares mezclados que incluyen arabinosa. Las cepas de la presente también presentan mejor producción de etanol. En comparación con la cepa original antes de la introducción de un gen de expresión del simportador de protones de arabinosa, la producción de la cepa que expresa un simportador de protones de arabinosa se ve aumentada. El aumento en la producción de etanol puede variar dependiendo del medio y las condiciones de cultivo utilizadas en la fermentación así como también el simportador de protones de arabinosa que expresa la cepa utilizada como el biocatalizador. Típicamente, la producción de etanol puede aumentar en al menos aproximadamente 10%, puede aumentar al menos aproximadamente 10%, 12%, 16%, 18%, 20%, 24%, 28% o más.

Fermentación de la cepa que utiliza arabinosa mejorada

Se puede utilizar una cepa diseñada genéticamente que utiliza arabinosa que expresa un simportador de protones de arabinosa y genes u operones para la expresión de L-arabinosa isomerasa, L-ribulocinasa, L-ribulosa-5-fosfato-4-epimerasa, transaldolasa y transcetolasa en la fermentación para producir un producto que sea un producto natural de la cepa, o un producto cuya cepa fue diseñada genéticamente para que produzca. Por ejemplo, *Zymomonas mobilis* y *Zymobacter palmae* son etanológenos naturales. Se prefieren las cepas que también utilizan xilosa y están diseñadas genéticamente además para la expresión de xilosa isomerasa y xilulocinasa. Como ejemplo, se describe la producción de etanol mediante una cepa de *Z. mobilis* de la invención, que utiliza xilosa y arabinosa. Z *mobilis* también utiliza glucosa de forma natural.

Para la producción de etanol, Z. *mobilis* recombinante que utiliza xilosa y arabinosa que expresa un simportador de protones de arabinosa se pone en contacto con un medio que contiene arabinosa. Típicamente, el medio contiene azúcares mezclados que incluyen azúcar, xilosa y glucosa. El medio puede contener hidrolizado de biomasa que incluye estos azúcares que derivan de biomasa lignocelulósica o celulósica tratada.

Cuando la concentración de azúcares mezclados es tan alta que inhibe el crecimiento, el medio incluye sorbitol, manitol, o una mezcla de estos tal como se describe en la publicación de patente de EE.UU., de titularidad conjunta y en tramitación con la presente, #US20080081358 A1. Galactitol o ribitol pueden reemplazarse o combinarse con sorbitol o manitol. La *Z. mobilis* crece en el medio donde ocurre la fermentación y se produce etanol. La fermentación ocurre sin complemento de aire, oxígeno u otros gases (que puede incluir condiciones tal como fermentación anaeróbica, microaeróbica o microaerofílica), durante al menos 24 horas, y puede producirse durante 30 horas o más. El tiempo para alcanzar la máxima producción de etanol es variable, dependiendo de las condiciones de fermentación. Típicamente, si hay inhibidores presentes en el medio, se necesita un período de fermentación mayor. La fermentación puede producirse a temperaturas que se encuentran entre aproximadamente 30° C y aproximadamente 37° C, a un pH de aproximadamente 4,5 a aproximadamente 7,5.

La *Z. mobilis* de la presente puede crecer en medio que contiene azúcares mezclados que incluyen arabinosa en fermentadores de laboratorio, y en fermentación a gran escala, donde se producen cantidades comerciales de etanol. Cuando se desea una producción comercial de etanol, se pueden aplicar diversas metodologías de cultivo. Por ejemplo, la producción a gran escala de las cepas de *Z. mobilis* de la presente pueden producirse mediante metodologías de cultivo continuo o en lotes. Un método clásico de cultivo en lotes es un sistema cerrado donde la composición del medio se establece al comienzo del cultivo y no se somete a alteraciones artificiales durante el proceso de cultivo. Por lo tanto, al comienzo del proceso de cultivo el medio se inocula con el organismo deseado y se deja que se produzca la actividad metabólica o crecimiento sin agregarle nada al sistema. Típicamente, sin embargo, un cultivo "en lotes" es un lote con respecto a la adición de una fuente de carbono y a menudo se intenta controlar factores tales como el pH y la concentración de oxígeno. En los sistemas en lotes, las composiciones de

biomasa y metabolito del sistema cambian de manera constante hasta el momento en que se termina el cultivo. Dentro de los cultivos en lotes, las células moderan a través de una fase latente estática a una fase logarítmica de alto crecimiento y, finalmente, a una fase estacionaria donde la velocidad de crecimiento disminuye o se detiene. Si no se tratan, las células en la fase estacionaria morirán eventualmente. Las células en la fase logarítmica a menudo son responsables de la producción a granel del producto final o intermedio en algunos sistemas. La producción de fase posexponencial o estacionaria puede obtenerse en otros sistemas.

Una variación del sistema en lotes estándar es el sistema de lote alimentado. Los procesos de cultivo de lote alimentado también son adecuados para el crecimiento de las cepas de Z. *mobilis* de la presente y comprenden un sistema en lotes típico con la excepción de que el sustrato se agrega en incrementos a medida que el cultivo evoluciona. Los sistemas de lote alimentado son útiles cuando la represión de catabolitos está apta para inhibir el metabolismo de las células y cuando se desea tener cantidades limitadas de sustrato en el medio. La medición de la concentración real del sustrato en los sistemas de lote alimentado es difícil y, por lo tanto, se calcula en base a los cambios de los factores medibles tales como el pH y la presión parcial de los gases residuales tal como CO₂. Los métodos de cultivo en lote y en lote alimentado son comunes y ampliamente conocidos en la técnica y se pueden encontrar ejemplos en Biotechnology: A Textbook of Industrial Microbiology, Crueger, Crueger, y Brock, Segunda Edición (1989) Sinauer Associates, Inc., Sunderland, MA, o Deshpande, Mukund V., Appl. Biochem. Biotechnol., 36, 227, (1992).

15

20

25

35

40

45

50

55

60

La producción comercial de etanol también puede lograrse con un cultivo continuo. Los cultivos continuos son sistemas abiertos donde un medio de cultivo definido se agrega continuamente a un biorreactor y simultáneamente se retira una cantidad igual de medio acondicionado para su procesamiento. Los cultivos continuos generalmente mantienen las células a una densidad de fase líquida alta constante, donde las células se encuentran principalmente en crecimiento de fase logarítmica. De manera alternativa, el cultivo continuo puede realizarse con células inmovilizadas donde se agrega carbono y nutrientes de manera continua, y se retiran productos valiosos, subproductos o productos residuales de manera continua de la masa celular. La inmovilización celular puede realizarse usando una amplia variedad de soportes sólidos compuestos de materiales naturales y/o sintéticos conocidos por el experto en la técnica.

El cultivo continuo o semicontinuo permite la modulación de un factor o cualquier cantidad de factores que afectan el crecimiento celular o la concentración del producto final. Por ejemplo, un método mantendrá a un nutriente limitante tal como la fuente de carbono o nivel de nitrógeno a una velocidad fija y permitirá la moderación de todos los otros parámetros. En otros sistemas, se puede alterar de manera continua una cantidad de factores que afectan el crecimiento mientras la concentración celular, medida por la turbidez del medio, se mantiene constante. Los sistemas continuos se esfuerzan para mantener condiciones de crecimiento de estado estable y, por lo tanto, la pérdida de células debido a la extracción del medio debe equilibrarse contra la velocidad de crecimiento celular en el cultivo. Los métodos para modular los nutrientes y los factores de crecimiento para los procesos de cultivo continuo así como otras técnicas para maximizar la velocidad de formación del producto son ampliamente conocidas en la técnica de microbiología industrial y Brock, *supra*, detalla una variedad de métodos.

El régimen de fermentación a continuación es particularmente adecuado para la producción de etanol. La cepa de Z. mobilis deseada de la presente invención se cultiva en matraces de agitación en medio semicomplejo a aproximadamente 30°C a aproximadamente 37°C con agitación a aproximadamente 150 rpm en matraces orbitales y luego se transfiere a un fermentador de siembra de 10 L que contiene un medio similar. El cultivo de siembra crece en el fermentador de siembra anaeróbicamente hasta que la OD600 se encuentre entre 3 y 6, momento en el que se transfiere al fermentador de producción donde los parámetros de fermentación se optimizan para la producción de etanol. Los volúmenes de inoculación típicos transferidos del tanque de siembra al tanque de producción oscilan de aproximadamente 2% a aproximadamente 20% v/v. Un medio de fermentación típico contiene componentes de medio mínimos tal como fosfato de potasio (1,0-10,0 g/L), sulfato de amonio (0-2,0 g/L), sulfato de magnesio (0-5,0 q/L), una fuente compleja de nitrógeno tal como extracto de levadura o productos a base de soja (0-10 qL). Una concentración final de sorbitol o mannitol de aproximadamente 5 mM está presente en el medio. Los azúcares mezclados que incluyen arabinosa y al menos un azúcar adicional tal como glucosa (o sacarosa), que proporcionan una fuente de carbono, se agregan de forma continua al recipiente de fermentación tras el agotamiento de la fuente de carbono inicial en lotes (50-200 g/l) para maximizar la titulación y velocidad del etanol. Las velocidades de alimentación de la fuente de carbono se ajustan de forma dinámica para garantizar que el cultivo no esté acumulando glucosa en exceso, lo que podría provocar la acumulación de subproductos tóxicos tal como ácido acético. Con el fin de maximizar el rendimiento del etanol producido a partir de un sustrato utilizado, el crecimiento de la biomasa es restringido por la cantidad de fosfato que se colocó en lotes inicialmente o que es alimentado durante el transcurso de la fermentación. La fermentación se controlla a pH 5,0-6,0 usando solución cáustica (tal como hidróxido de amonio, hidróxido de potasio o hidróxido de sodio) y ácido fosfórico o sulfúrico. La temperatura del fermentador se controla a 30°C-35°C. Para minimizar el espumado, se agregan agentes antiespumantes (de cualquier clase, con base de silicio, con base orgánica, etc) al recipiente según sea necesario. Un antibiótico, para el cual hay un marcador resistente a antibióticos en la cepa, tal como kanamicina, se puede utilizar opcionalmente para minimizar la contaminación.

Además, la fermentación puede darse al mismo tiempo que la sacarificación usando un proceso de SSF (sacarificación y fermentación simultánea). En este proceso, se producen azúcares a partir de la biomasa a medida que son metabolizadas por el biocatalizador de producción.

Cualquier conjunto de condiciones descrito anteriormente y las variaciones adicionales de estas condiciones que son ampliamente conocidas en la técnica, son condiciones adecuadas para la producción de etanol mediante una cepa de *Zymomonas* o *Zymobacter* recombinante que utiliza arabinosa, que está diseñada genéticamente para que exprese un simportador de protones de arabinosa mediante la introducción de una región codificante heteróloga de un simportador de protones de arabinosa.

Ejemplos

La presente invención se define adicionalmente en los siguientes Ejemplos. Debería entenderse que estos Ejemplos, aunque indican realizaciones preferidas de la invención, se proporcionan únicamente a modo ilustrativo. A partir de lo indicado anteriormente y de estos Ejemplos, un experto en la técnica puede determinar las características esenciales de esta invención y puede realizar varios cambios y modificaciones de la invención para adaptarla a los diversos usos y condiciones que se encuentran dentro del alcance de las reivindicaciones adjuntas.

15 Métodos Generales

Las técnicas de clonación molecular y ADN recombinante estándar utilizadas en la presente memoria son conocidas en la técnica y fueron descritas por Sambrook, J., Fritsch, E. F. y Maniatis, T. Molecular Cloning: A Laboratory Manual, 2.ª ed., Cold Spring Harbor Laboratory: Cold Spring Harbor, NY (1989) (de aquí en adelante "Maniatis"); y por Silhavy, T. J., Bennan, M. L. y Enquist, L. W., Experiments with Gene Fusions, Cold Spring Harbor Laboratory: Cold Spring Harbor, NY (1984); y por Ausubel, F. M. et ál., Current Protocols in Molecular Biology, publicado por Greene Publishing Assoc. y Wiley-Interscience, Hoboken, NJ (1987).

Los significados de las abreviaciones son los siguientes: "kb" significa kilobase/s, "pb" significa pares de base, "nt" significa nucleótido/s, "hr" significa hora/s, "min" significa minuto/s, "s" significa segundo/s, "d" significa día/s, "L" significa litro/s, "ml" significa millilitro/s, "µL" significa microlitro/s, "µg" significa microgramo/s, "ng" significa nanogramo/s, "mM" significa millimolar, "µM" significa micromolar, "nm" significa nanómetro/s, "µmol" significa micromol/es, "pmol" significa picomol/es, "Cm" significa cloranfenicol, "Cm^{f"} significa resistente a cloranfenicol, "Cm^{s"} significa sensible a cloranfenicol, "Sp^{f"} significa resistencia a espectinomicina, "UTR" significa región no traducida, "RBS" significa sitio de unión a ribosoma.

Los cebadores fueron sintetizados por Sigma (St. Luis, MO) a menos que se especifique lo contrario.

30 Ejemplo 1

20

25

35

40

45

50

55

Construcción y expresión de operón para proteínas con utilización de arabinosa en Zymomonas

Para diseñar genéticamente *Zymomonas mobilis* para utilización de arabinosa, las regiones codificantes araA, araB y araC de *E.coli* se construyeron en un operón con un promotor de *Z. mobilis* y se expresó en un plásmido en células de *Z. mobilis*. AraB, araA y araD codifican las proteínas L-ribulosa cinasa, L-arabinosa isomerasa y L-ribulosa-5-fosfato-4-epimerasa, respectivamente, que proporcionan una vía de asimilación de arabinoss, junto con actividades de transcetolasa y transaldolasa (véase la Figura 1).

1. Clonación de secuencias codificantes araBAD de E. coli y promotor Pgap de Z. mobilis

Las regiones codificantes araB, araA y araD de E. coli (SEQ ID NO:23, 21 y 25, respectivamente) están presentes en el operón araBAD. Se preparó un fragmento de ADN de araB-araA (araBA; SEQ ID NO:27) usando los cebadores de oligonucleótido ara1 (SEQ ID NO:28) y ara2 (SEQ ID NO:29) que son cebadores directo e inverso, respectivamente. El cebador ara1 agrega los nucleótidos CC antes del codón de inicio ATG de la región codificante araB para crear un sitio Ncol. El cebador ara2 agrega un sitio Xbal después del codón de terminación de la región codificante araA. Se preparó un fragmento de ADN de araD (SEQ ID NO:30) usando los cebadores de oligonucleótido ara3 (SEQ ID NO:31) y cebador ara4 (SEQ ID NO:32) que son cebadores directo e inverso, respectivamente. El cebador ara3 agrega un sitio Xba en el extremo 5' de la secuencia 5' del sitio de unión al ribosoma (RBS, por sus siglas en inglés) con respecto a la región codificante araD. El cebador ara4 agrega un sitio Hindlll después de la región no traducida 3' (UTR) que se encuentra en 3' con respecto a la región codificante araD. Cada par de cebadores se utilizó en una reacción PCR estándar, que incluye 50 µL de mezcla AccuPrime Pfx SuperMix (Invitrogene, Carlsbad, CA), 1 µL de cebadores directo e inverso 10 µM y 2 µL (aprox. 50 a 100 ng) de ADN genómico de E. coli preparado a partir de MG1655 (ATCC# 700926; un cepa de K12) usando un kit de purificación de ADN genómico Wizard (Promega, Madison, WI). Se llevó a cabo una reacción usando los cebadores ara1 y ara2 durante 5 min a 95°C, sequido de 35 ciclos de 30 s a 95°C/30 s a 56°C/3,5 min a 68°C, y finalizó durante 7 min a 68°C. Dio como resultado un fragmento de araB-araA de 3226 pb con un sitio Ncol 5' y un sitio Xbal 3' (SEQ ID NO:27). Se llevó a cabo otra reacción usando los cebadores ara3 y ara4 usando un programa similar, excepto que la extensión de tiempo a 68°C se redujo a 1,5 min. Produjo un fragmento de araD de 889 pb (que incluye la 3' UTR de araD) con un sitio Xbal 5' y un sitio HindIII 3' (SEQ ID NO:30).

El promotor de *E. coli* natural para el operón araBAD es un promotor inducible que no es adecuado para la expresión deseada en *Z. mobilis*. Se utilizó el promotor GAP (Gliceraldehídos-3-fosfato deshidrogenasa) (P_{gap}; SEQ ID NO:33) de *Z. mobilis* ya que es un fuerte promotor constitutivo para la expresión en *Z. mobilis*. Se preparó un fragmento de ADN que contiene el P_{gap} de *Z. mobilis* usando los cebadores de oligonucleótido ara10 y ara11. El cebador ara10 (SEQ ID NO:34) es un cebador directo que agrega un sitio Sacl y Apel en el extremo 5' del fragmento de ADN del promotor. El cebador ara11 (SEQ ID NO:35) es un cebador inverso que cambia los últimos dos nucleótidos del promotor de AC a CC, por lo tanto, agrega un sitio Ncol en el extremo 3' del fragmento de ADN del promotor. Estos dos cebadores se utilizaron en una reacción PCR estándar, tal como se describió anteriormente, usando un plásmido que contiene el P_{gap} como la plantilla de ADN para producir un fragmento de ADN del promotor P_{gap} de 323 pb con sitios Sacl y Spel 5' y un sitio Ncol 3' (SEQ ID NO:36).

Cada uno de estos productos de PCR se clonó en el vector TOPO Blunt Zero (Invitrogen, Calsbad, CA) siguiendo las instrucciones del fabricante. Los plásmidos resultantes pTP-araB-araA, pTP-araD y pTP- $P_{\rm gap}$ se propagaron en las células DH5a de *E. coli* (Invitrogen) y cada una se preparó usando un Kit Qiagen DNA Miniprep. Sus secuencias se confirmaron mediante secuenciamiento de ADN. 2. Ensamblaje de un operón $P_{\rm gap}$ -araBAD en un vector transportador.

Se ensambló un operón P_{gap}-araBAD en un vector transportador de *Zymomonas-E. coli* denominado pZB188aada, que se basa en el vector pZB188 (Zhang et ál. (1995) Science 267:240-243; US 5514583) que incluye un fragmento de ADN genómico de 2582 pb de *Z. mobilis* que contiene una región de replicación que permite que el vector se replique en células de *Zymomonas*. En pZB188aada el cassette de resistencia a tetraciclina (Tc^r-cassette) de pZB188 se reemplazó con un cassette de resistencia a espectinomicina (Spec^r-cassette). El Spec^r-cassette se generó mediante PCR usando el plásmido pHP15578 (Cahoon et ál, (2003) Nature Biotechnology 21: 1082-1087) como la plantilla y los cebadores 1 (SEQ ID NO:32 de CL4236) y 2 (SEQ ID NO:33 de CL4236). El plásmido pHP15578 contiene la secuencia de nucleótidos completa para el Spec^r-cassette y su promotor, que se basa en la secuencia publicada del gen de aadA Tranposon Tn7 (número de acceso GenBank X03043) que codifica la 3' (9)-Onucleotidiltransferasa.

Cebador 1 (SEQ ID NO:37):

10

15

20

25

50

55

CTACTCATTTatcgatGGAGCACAGGATGACGCCT

Cebador 2 (SEQ ID NO:38):

CATCTTACTacgcgtTGGCAGGTCAGCAAGTGCC

Las bases subrayadas del cebador 1 (cebador directo) se hibridan corriente arriba del promotor para el SpeC^r-30 Cassette (a los nts 4-22 del número de acceso GenBank X03043), mientras las letras en minúscula corresponden a un sitio Clal que se agregó en el extremo 5' del cebador. Las bases subrayadas del cebador 2 (cebador inverso) se hibridan aproximadamente 130 bases corriente abajo del codón de terminación para el SpeC -Cassette (a los nts 1002-1020 del número de acceso GenBank X03043), mientras las letras en minúscula corresponden a un sitio AfIIII que se agregó en el extremo 5' del cebador. El Spec^r-cassette generado por PCR de 1048 pb se digirió doblemente 35 con Clal y AfIIII, y el fragmento de ADN resultante se purificó usando el kit de purificación de PCR QIAquick (Qiagen, Cat. n.º 28104) y el protocolo recomendado del vendedor. El plásmido pZB188 (aislado de E. coli SSC110 (dcm., dam⁻) para obtener ADN de plásmido no metilado para cortar con Clal (que es sensible a la metilación dam) se digirió doblemente con Clal y BssHII para retirar el Tc^r-cassette, y el gran vector resultante se purificó mediante electroforesis en gel de agarosa. Este fragmento de ADN y el producto de PCR limpio luego se ligaron entre sí, y la mezcla de reacción de transformación se introdujo en JM110 de E. coli usando células químicamente competentes que se obtuvieron de Stratagene (Cat. n.º 200239). Debe observarse que BssHII y AfIIII generan "extremos pegajosos" compatibles, pero ambos sitios se destruyen cuando están ligados entre sí. Los transformantes se colocaron en placas en medio LB que contenía espectinomicina (100 µg/ml) y se cultivaron a 37°C. Un transformante 45 resistente a espectinomicina que contenía un plásmido con una inserción del tamaño correcto se identificó mediante el análisis de digestión de restricción con Notl y denominaado pZB188/aada.

El fragmento pTP- P_{gap} Spel - Ncol P_{gap} , el fragmento pTP-araB-araA Ncol - Xbal araB-araA y el fragmento pTP-araD Xbal - Notl araD se clonaron en un vector de Notl-Spel pZB188/aada, formando un vector transportador basado en pZB188aada que contenía un operón P_{gap} -araBAD. El plásmido resultante, denominado pARA201, se propagó en DH5a de E. coli y se preparó usando un kit Qiagen DNA Miniprep. Se preparó pARA205 (Figura 2; SEQ ID NO:41) a partir de pARA201 mediante restauración de los nucleótidos en el extremo 3' de P_{gap} desde CC nuevamente hasta los nucleótidos AC originales. Esto se realizó usando un kit de mutagénesis de sitio dirigido QickChange XL (Stratagene, La Jolla, CA). Para esta mutagénesis, el cebador directo ara31 (SEQ ID NO:30) y el cebador inverso ara32 (SEQ ID NO:40) se utilizaron para realizar los cambios siguiendo las instrucciones del fabricante. pARA205 se propagó en DH5a de E. coli y se preparó usando un kit Qiagen DNA Miniprep.

3. Expresión de araBAD en Z. mobilis

Para confirmar que P_{gap} -araBAD es un operón funcional en *Z. mobilis*, se introfujo pARA205 en la cepa ZW801-4 de *Z. mobilis* para su expresión. ZW801-4 es un cepa de *Z. mobilis* que utiliza xilosa. La construcción y caracterización

de las cepas ZW658, ZW800 y ZW801-4 se describió en la publicación de solicitud de patente de EE.UU., de titularidad conjunta y en tramitación con la presente US20080286870 A1. Se construyó ZW658 (ATCC # PTA-7858) mediante la integración de dos operones, $P_{gap}xyIAB$ y $P_{gap}taitkt$, que contienen cuatro genes que utilizan xilosa que codifican la xilosa isomerasa, xilulocinasa, transaldolasa y transcetolasa, dentro del genoma de ZW1 (ATCC #31821) a través de eventos de transposición secuencial, y seguido de la adaptación en medio selectivo que contiene xilosa. ZW800 es un derivado de ZW658 que tiene una inserción de entrecruzamiento doble de un cassette de resistencia a espectinomicina en la secuencia que codifica la enzima glucosa-fructosa oxidorreductasa (GFOR) para inactivar esta actividad. ZW801-4 es un derivado de ZW800 en el cual se ha eliminado el cassette de resistencia a espectinomicina mediante recombinación específica del sitio dejando un codón de terminación en el marco que trunca la proteína de forma prematura.

Las células competentes de ZW801-4 se prepararon mediante cultivo de las células de siembra durante la noche en MRM3G5 (extracto de levadura al 1%, KH₂PO₄ 15 mM, MgSO₄ 4 mM y 50 g/L de glucosa) a 30°C con agitación a 150 rpm, hasta un valor de OD₆₀₀ cercano a 5. Las células se cosecharon y se volvieron a suspender en medio fresco hasta un valor de OD₆₀₀ de 0,05. Se cultivaron adicionalmente en las mismas condiciones hasta la fase logarítmica temprana o media (OD₆₀₀ cercana a 0,5). Las células se cosecharon y se lavaron dos veces con agua helada y luego una vez con glicerol helado al 10%. Las células competentes resultantes se recolectaron y se volvieron a suspender en glicerol helado al 10% hasta un valor de OD₆₀₀ cercano a 100. Dado que la transformación de Z. mobilis requiere ADN no metilado, el plásmido pARA205 se transformó en células competentes SCS110 de *E. coli* (Stratagene). Una colonia de células transformadas se cultivó en 10 mL de LB-Amp100 (caldo LB que contiene 100 mg/L de ampicilina) durante la noche a 37°C. Se preparó ADN a partir del cultiv de 10 mL, usando un kit Qiagen DNA Miniprep.

Aproximadamente 500 ng de ADN de plásmido pARA205 no metilado se mezcló con 50 µL de células competentes ZW801-4 en una cubeta de electroporación 1 MM (VWR, West Chester, PA). El ADN de plásmido se sometió a electroporación en las células a 2,0 KV usando un BT720 Transporater Plus (BTX-Genetronics, San Diego, CA). Las células transformadas se recuperaron en 1 mL de medio MMG5 (50 g/L de glucosa, 10 g/L de extracto de levadura, 5 g/L de triptona, 2,5 g/L de (NH₄)₂SO₄, 0,2 g/L de K₂HPO₄ y 1 mM de MgSO₄) durante 4 horas a 30°C y se cultivaron en placas MMG5-Spec250 (MMG5 con 250 mg/L de espectinomicina y 15 g/L de agar) durante 2 días a 30°C, dentro de un frasco anaeróbico con AnaeroPack (Mitsubishi Gas Chemical, Nueva York, NY). Las colonias individuales se estriaron en una placa MMA5-Spec250 (igual que MMG5-Spec250 pero la glucosa se reemplazó con 50 g/L de arabinosa) y una nueva placa MMG5-Spec250 en duplicado. En las mismas condiciones que se describieron anteriormente, las estrías crecieron bien aunque el crecimiento en la placa MMA5-Spec250 llevó más tiempo. Esto indicó la expresión del operón P_{gap}-araBAD.

Dos estrías de las células transformadas que crecían en la placa MMG5-Spec250 (ZW801-ara205-4 y ZW801-ara205-5) se seleccionaron para un ensayo de crecimiento de 72 horas. En el ensayo, las células de cada estría se cultivaron durante la noche en 2 mL de MRM3G5-Spec250 (MRM3G5 con 250 mg/L de espectinomicina) a 30°C con agitación de 150 rpm. Las células se cosecharon, se lavaron con MRM3A5 (igual que MRM3G5 pero la glucosa se reemplazó con arabinosa), y se volvieron a suspender en MRM3A5-Spec250 (MRM3A5 que contiene 250 mg/L de espectinomicina) para tener una OD_{600} de inicio a 0,1. Se colocaron cuatro mL de la suspensión en un tubo Falcon con tapa de 14 mL y se cultivaron durante 72 horas a 30°C con agitación de 150 rpm. Al finalizar el crecimiento, se midió la OD_{600} . Luego, 1 mL del cultivo se centrifugó a 10.000x g para retirar las células. El sobrenadante se filtró a través de un filtro de tubo de centrífuga Costar Spin-X de 0,22 μ m (Corning Inc, Corning, NY) y se analizó mediante una columna de exclusión iónica BioRad Aminex HPX-A7H (BioRad, Hercules, CA) con H_2SO_4 0,01 N a una velocidad de 0,6 mL/min a 55°C en un sistema de HPLC Agilent 1100 (Agilent Technologies, Santa Clara, CA) para determinar las concentraciones de etanol y azúcar. En paralelo, se cultivó ZW801-4 (sin antibióticos) y se analizó como control. Los resultados proporcionados en la Tabla 2 demuestran que la expresión de araBAD permitió que ZW801-4 de *Z. mobilis* creciera y produjera etanol usando arabinosa como la única fuente de carbono.

Tabla 2 Ensayo de crecimiento de 72 horas para cepas ZW801-ara205 en MRM3A5

Сера	Crecimiento (OD ₆₀₀)	Etanol (g/L)	Arabinosa (g/L)
ZW801-4	0,106	0	51,20
ZW801-ara205-4	1,75	7,22	33,15
ZW801-ara205-5	1,96	10,68	27,16

Ejemplo 2

10

15

20

25

35

45

50

Integración de operón de utilización de arabinosa en el genoma de Z. mobilis y caracterización de las cepas resultantes

Este ejemplo describe la integraión estable del operón P_{gap} -araBAD en dos cepas de Z. mobilis que utilizan xilosa. 1. Construcción del operón P_{gap} -araBAD en un vector suicida.

Para integrar el operón P_{gap}-araBAD dentro del genoma de *Z. mobilis*, se preparó un vector suicida para recombinación homóloga de DCO (entrecruzamiento doble). Además de P_{gap}-araBAD, este vector incluía fragmentos de recombinación homóloga de DCO para dirigir la integración de P_{gap}-araBAD y un gen aadA para proporcionar un marcador selectivo para la resistencia a espectinomicina. Se eligió el locus de IdhA como el sitio de inserción. Dos fragmentos de ADN de IdhA para DCO, LDH-L y LDH-R, se sintetizaron mediante PCR usando el ADN de ZW801-4 de *Z. mobilis* como plantilla. La reacción utilizó la mezcla AccuPrime y siguió el procedimiento de PCR estándar descrito en el Ejemplo 1. El fragmento de ADN LDH-L DNA se sintetizó utilizando el cebador directo ara20 (SEQ ID NO:42) y el cebador inverso ara21 (SEQ ID NO:43). El producto resultante fue un fragmento de ADN de 895 pb que incluye la secuencia 5' con respecto a la región codificante de IdhA y los nucleótidos 1-493 de la región codificante de IdhA, con un sitio Sacl 5' y un sitio Spel 3' (SEQ ID NO:44). El fragmento de ADN LDH-R DNA se sintetizó utilizando el cebador directo ara22 (SEQ ID NO:45) y el cebador inverso ara23 (SEQ ID NO:46). El producto resultante fue un fragmento de 1169 pb que incluye los nucleótidos 494-996 de la región codificante de IdhA y la secuencia 3' con respecto a la región codificante de IdhA, con un sitio EcoRI 5' y un sitio Notl 3' (SEQ ID NO:47).

Se utilizó pBS SK(+) (un plásmido Bluescript plasmid; Stratagene) como un vector suicida ya que los vectores pBS no pueden replicarse en *Zymomonas*. Se construyó pARA354 (SEQ ID NO:49) al clonar el operón P_{gap}-araBAD de pARA205, el fragmento LDH-L y el fragmento LDH-R en pBS SK(+). Además, un fragmento de ADN que contiene el marcador aadA (para resistencia a espectinomicina) unido mediante sitios LoxP de tipo salvaje (fragmento LoxPw-aadA-LoxPw; SEQ ID NO:48) se incluyó en pARA354. pARA354 tiene el operón P_{gap} -araBAD y el fragmento de marcador LoxPw-aadA-LoxPw ubicados entre las secuencias de LDH-L y LDH-R.

20 La Figura 3 muestra un mapa de pARA354 de 10.441 pb. Tiene un origen de f1(+) y un gen de resistencia a ampicilina para la propagación del plásmido en *E. coli.* Dado que LDH-L y LDH-R contenían los primeros 493 pares de bases y los 503 pares de bases restantes de la secuencia codificante de IdhA, respectivamente, se diseñó pARA354 para dirigir la inserción de P_{gap}-araBAD y aadA en la secuencia codificante de IdhA de *Z. mobilis* entre los nucleótidos #493 y #494 mediante recombinación por entrecruzamiento.

25 2. Desarrollo de las cepas de integración de Pqap-araBAD

10

30

60

La cepa ZW705 de *Z. mobilis* es una cepa de *Z. mobilis* diseñada genéticamente, con utilización de xilosa mejorada en condiciones de estrés que derivó de ZW801-4 mediante adaptación en cultivo continuo tal como se describe en la solicitud de patente de EE.UU., de titularidad conjunta y en tramitación con la presente, US 20110014670. Las células de ZW801-4 de *Zymomonas* que utilizan xilosa se cultivaron de forma continua en medio que comprende al menos aproximadamente 50 g/L de xilosa para producir un cultivo que comprende etanol, luego se agregó amoníaco y ácido acético, creando un cultivo de estrés. Las células se cultivaron adicionalmente de forma continua en el cultivo de estrés y se aislaron las células con utilización de xilosa mejorada, incluyendo la cepa ZW705.

Para transformar pARA354 en ambas, las cepas ZW705 y ZW801-4, se sometieron a electroporación 800 ng de ADN de plásmido no metilado en 50 µL de células competentes preparados de cada cepas. La desmetilación de 35 ADN, la preparación de células competentes y la electroporación se realizaron tal como se describe en el Ejemplo 1. Las colonias de células transformadas de cada cepa se cultivaron en una placa MMG5-Spec250 durante 2 días a 30°C dentro de un frasco anaeróbico con un AnaeroPack. Dado que pARA354 no pudo replicarse en Z. mobilis, la resistencia a espectinomicina indicó que estas colonias eran cepas de integración. Las colonias se estriaron en una nueva placa MMG5-Spec250 y una placa MMA5-Spec250, en duplicado, y se cultivaron durante 2 días y 4 días 40 respectivamente. Su crecimiento en la placa MMA5-Spec250 también indicó la integración. Para demostrar adicionalmente la integración, las uniones entre el fragmento P_{gap}-araBAD-aadA y el ADN genómico de *Z. mobilis* se inspeccionaron mediante la reacción PCR de 35 ciclos estándar, que contenía la mezcla PCR Super Mix (Invitrogen), un par de cebadores y las células transformadas analizadas. Un ciclo de PCR incluía 45 segundos de desnaturalización a 95°C, 45 segundos de hibridación a 58°C y 2 minutos de extensión a 72°C. El cebador ara45 45 (SEQ ID NO:50) y cebador ara42 (SEQ ID NO:51) eran un cebador directo ubicado corriente arriba de la secuencia de LDH-L en el ADN genómico de Z. mobilis y un cebador inverso ubicado en el gen araB de pARA354, respectivamente. Este par de cebadores amplificó un fragmento de 1694 pb de todas las colonias inspeccionadas mediante PCR. También se utilizó el cebador ara46 (SEQ ID NO:52) y el cebador ara43 (SEQ ID NO:53) que son un cebador directo ubicado en el gen aadA de pARA354 y un cebador inverso ubicado corriente abajo de la secuencia 50 de LDH-R en el ADN genómico de Z. mobilis, respectivamente. Este par de cebadores amplificó un fragmento de 1521 pb de todas las colonias inspeccionadas mediante PCR. Por lo tanto, el fragmento Pqap-araBAD-aadA se ha integrado en los genomas de ZW801-4 y ZW705 de manera satisfactoria mediante el enfoque de DCO. Dado que la recombinación homóloga de DCO fue una integración específica objetivo, cada colonia que resulta de la integración en ZW801-4 o ZW705 tendría el genotipo idéntico. Una colonia de cada una de las integraciones se cultivó en 5 mL 55 de MRMG5-Spec250 durante la noche a 30°C con agitación de 150 rpm. Las células se recolectaron mediante centrifugación, se volvieron a suspender en 0,5 mL de glicerol al 50%, y luego se almacenaron a -80°C. Las cepas se denominaron ZW705-ara354 y ZW801-ara354.

Para mejorar aun más la función del operón P_{gap}-araBAD integrado, la cepa ZW705-ara354 se sometió a adaptación. Con este propósito, se recolectó un cultivo de ZW705-ara354 durante la noche mediante centrifugación, se lavó con MRM3A5 y se volvió a suspender en MRM3A5-Spec250 con OD₆₀₀ a 0,1. Cuatro mL de esta suspensión se colocaron en un tubo Falcon con tapa de 14 mL y se cultivaron durante 72 horas en un agitador a 30°C y 150 rpm,

hasta que la OD_{600} quedara por encima de 1. Luego, el cultivo se inoculó en un nuevo tubo falcon que contenía 4 mL de MRM3A5-Spec250 fresco para lograr una OD_{600} de partida cercana a 0,1 para una segunda ronda de crecimiento. En total, se completaron 9 rondas sucesivas. Cada ronda llevó la OD_{600} de aproximadamente 0,1 a por encima 1 y tomó 3 a 4 días, excepto la 4.ª ronda que tomó 6 días ya que las células crecían más lentamente. Para caracterizar las cepas adaptadas, la 9.ª ronda se diluyó 100 veces, y se dispersaron 10 μ L de la dilución y se cultivaron en una placa MMA5-Spec250 durante 3 días a 30°C en un frasco anaeróbico con un AnaeroPack. Se seleccionaron colonias individuales (es decir, cepas de adaptación) y se cultivaron durante la noche en 3 mL de MRM3G5-Spec250 en un agitador a 30°C y 150 rpm. Se sometieron al ensayo de crecimiento de 72 horas en MRM3A5-Spec250, tal como se describe en el Ejemplo 1. Se utilizó la cepa ZW705-ara354 como control en el ensayo. Los datos del análisis para 5 cepas de adaptación (ZW705-ara354A4 a A8) se presentan en la Tabla 3, que demuestran que todas las cepas de adaptación tuvieron un mejor rendimiento que ZW705-ara354. ZW705-ara354A7 fue la mejor cepa en términos de crecimiento, producción de etanol y utilización de arabinosa.

Tabla 3. Ensayo de crecimiento de 72 horas para cepas de adaptación de ZW705-ara354 en MRM3A5

10

15

20

25

30

35

40

45

Сера	Crecimiento (OD ₆₀₀)	Etanol (g/L)	Arabinosa (g/L)
ZW705-ara354	1,03	9,10	32,71
ZW705-ara354A4	3,29	19,03	10,31
ZW705-ara354A5	3,71	18,56	10,07
ZW705-ara354A6	3,61	18,47	9,23
ZW705-ara354A7	4,04	19,73	7,36
ZW705-ara354A8	2,96	17,37	12,18

3. Caracterización de perfiles de crecimiento y metabolitos de las cepas de integración de P_{gap} -araBAD, con y sin adaptación.

Las cepas de integración de Pgao-araBAD se caracterizaron adicionalmente por su capacidad de utilizar arabinosa para permitir el crecimiento celular y la producción de etanol en medio que contiene arabinosa como la única fuente de carbono y en medio que contiene azúcares mezclados. Para caracterizar estas cepas en medio que contiene arabinosa como la única fuente de carbono, primero se cultivaron células de ZW705-ara354 y ZW705-ara354A7 durante la noche en 2 mL de MRM3G5-Spec250 en un agitador a 30°C y 150 rpm. Las células se cosecharon, se lavaron con MRM3A5 y se volvieron a suspender en MRM3A5-Spec250 a una OD₆₀₀ de partida de 0.1. Veinte mL de la suspensión se colocaron en un tubo de centrífuga WWR con tapa a rosca de 50 mL y se cultivaron a 30°C con agitación de 150 rpm durante un período de tiempo de 96 horas. Durante el período de tiempo, se midió la OD600 a las 0, 24, 48, 72 y 96 horas, respectivamente. En cada punto de tiempo, se extrajo 1 mL del cultivo y se centrifugó a 10.000x g para retirar las células. El sobrenadante se filtró a través de un filtro de tubo de centrífuga Costar Spin-X de 0,22 µm y se analizó para determinar las concentraciones de azúcar y etanol mediante una columna de exclusión iónica BioRad Aminex HPX-A7H con H₂SO₄ 0,01 N utilizando una velocidad de 0,6 mL/min a 55°C en un sistema de HPLC Agilent 1100. En paralelo, se cultivó ZW705 en medio sin antibióticos y se analizó como control. Los resultados se muestran en la Figura 4. Estos resultados indican que, sin P_{gap}-araBAD, ZW705 no podría metabolizar la arabinosa y no podría crecer cuando la arabinosa es la única fuente de carbono (Figura 4A). Después de la integración of P_{gap}-araBAD, ZW705-ara354 pudo utilizar arabinosa para permitir el crecimiento y producir etanol (Figura 4B). La velocidad máxima de consumo de arabinosa fue 0,2 g/L/hr. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo en 32,8%, a 34 g/L. La adaptación mejoró ampliamente la utilización de arabinosa, el crecimiento celular y la producción de etanol en ZW705-ara354A7. La velocidad máxima de consumo de arabinosa fue 0,73 g/L/hr. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo en 83,4%, a 8,4 g/L.

Para caracterizar las cepas en un medio que contiene azúcares mezclados, se cultivaron ZW705, ZW705-ara354 y ZW705-ara354A7 y se analizaron tal como se describió anteriormente, pero el medio MRM3A5 utilizado en el experimento previo se reemplazó con medio MRM3A2.5X2.5G5 (MRM3 con 25 g/L de arabinosa, 25 g/L de xilosa y 50 g/L de glucosa). Debido al rápido crecimiento en MRM3A2.5X2.5G5, se agregó un punto de tiempo a las 10 horas. El análisis se realizó tal como se describió anteriormente para el experimento usando medio de arabinosa. Los resultados se muestran en la Figura 5. Estos resultados muestran que ZW705 utilizó glucosa y xilosa de forma eficaz para permitir el fuerte crecimiento celular y producción de etanol, pero no pudo metabolizar arabinosa (Figura 5A). Después de la integración of P_{gap}-araBAD, ZW705-ara354 pudo utilizar arabinosa para mejorar el crecimiento celular y la producción de etanol (Figura 5B). La velocidad máxima de consumo de arabinosa fue 0,3 g/L/hr. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo en 67,9%, a 8,8 g/L. En la cepa adaptada ZW705-ara354A7 hubo cierta mejora con respecto a la cepa ZW705-ara354 en utilización de arabinosa, que permitió mejor crecimiento y producción de etanol. La velocidad máxima de consumo de arabinosa fue 0,36 g/L/hr. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo en 74,1%, a 7,1 g/L.

Ejemplo 3

10

15

20

25

30

35

45

Construcciones para la expresión de dos sistemas de transporte de arabinosa de E. coli en Zymomonas

Cada uno de los dos sistemas de transporte de arabinosa que están presentes en *E. coli*, codificado por araE o por araFGH, se expresó en Zymomonas y se analizó la utilización de arabinosa. araE codifica un simportador de protones de arabinosa mientras araFGH codifica tres proteínas que forman un transportador ABC.

1. Construcción del gen quimérico araE y el operón araFGH para la expresión en Zymomonas

Se prepararon fragmentos de ADN de secuencia codificante de araFGH y araE de *E. coli* mediante PCR de 30 ciclos estándar, tal como se describe en el Ejemplo 1, usando el ADN de MG1655 de *E. coli* (una cepa de K12: ATCC #700926) como plantilla. Cada ciclo incluía 45 s de desnaturalización a 94°C, 45 s de hibridación a 60°C y 4 min de extensión a 72°C. Se utilizó un cebador directo ara135 (SEQ ID NO :54) y un cebador inverso ara136 (SEQ ID NO :55) en PCR para sintetizar un fragmento de araE de 1550 pb, que incluye la secuencia codificante de araE (1419 pb) y su 3'UTR (121 bp), agregando un sitio Ncol en el extremo 5' y un sitio EcoRI en el extremo 3' (SEQ ID NO :56). Se utilizó un cebador directo ara137 (SEQ ID NO :57) y un cebador inverso ara138 (SEQ ID NO :58) en PCR para sintetizar un fragmento de araFGH de 3744 pb (SEQ ID NO :59). Este fragmento era idéntico al operón araFGH de *E. coli* pero sin el promotor. Incluía la secuencia codificante de araF, secuencia codificante de araG, secuencia codificante de araH, 3'UTR de araH y regiones intergénicas intactas. Los cebadores agregaron un sitio Ncol 5' y un sitio EcoRI 3'.

El promotor Gl de *Actinoplanes missouriensis* (P_{gi}) se seleccionó para dirigir la expresión de araE y araFGH. Es el promotor del gen de xilosa isomerasa y se ha demostrado que funciona en *Z. mobilis* como un promotor constitutivo débil. Para clonar un P_{gi} de *A. missouriensis*, se diseñó un par de cebadores de oligonucleótido. El cebador ara12 (SEQ ID NO :60) era el cebador directo para PCR de P_{gi} que agregaba un sitio Sacl y Spel en el extremo 5' del promotor. El cebador ara13 (SEQ ID NO :61) era el cebador inverso para PCR de P_{gi} que agregaba un sitio Ncol en el extremo 3' del promotor. Estos dos cebadores se utilizaron en una reacción PCR estándar y se utilizó un plásmido que contiene el promotor Gl de *Actinoplanes missouriensis* (SEQ ID NO:62) como el ADN plantilla. La reacción PCR produjo un fragmento de ADN de P_{gi} de 201 pb (SEQ ID NO:63) con los sitios Sacl y Spel 5' y un sitio Ncol 3' que se clonó en el vector TOPO Blunt Zero (Invitrogen, Calsbad, CA) siguiendo las instrucciones del fabricante. El plásmido resultante pTP-P_{gi} se propagó en DH5a de E. coli y se preparó el ADN de plásmido usando un kit Qiagen DNA Miniprep.

El fragmento Spel - Nool P_{gi} de pTP- P_{gi} y el fragmento de PCR de araE Ncol - EcoRl se combinaron en un vector pZB188/aada junto con un marcador de resistencia a cloranfenicol (CM-R; SEQ ID NO:64) creando pARA112 (Figura 6; SEQ ID NO:65). pARA112 contiene un gen quimérico P_{gi} -araE en el vector transportador de E. colitZymomonasderivado por pZB188. El fragmento Spel - Ncol P_{gi} de pTP- P_{gi} y el fragmento de PCR Ncol - EcoRl araFGH se combinaron en un vector pZB188/aada junto con un marcador de resistencia a cloranfenicol creando pARA113 (Figura 7; SEQ ID NO:66). Los vectores transportadores resultantes se propagaron en DH5a de E. colit y se preparó el ADN de plásmido usando un kit Qiagen DNA Miniprep. El gen P_{gi} -araE y operón P_{gi} -araFGH se confirmaron mediante secuenciamiento.

Ejemplo 4

Expresión de los sistemas de transporte de arabinosa de E. coli en ZW705-ara354A7 de Zymomonas

Se analizaron los efectos de los dos sistemas de transporte de arabinosa de E. coli en células de Zymomonas que utilizan arabinosa mediante la expresión del gen P_{qi}-araE y operón P_{qi}-araFGH construidos.

1. Transformación de ZW705-ara354A con pARA112 y pARA113.

pARA112 que contiene el gen P_{gi}-araE y pARA113 que contiene el operón P_{gi}-araFGH, ambos preparados en el Ejemplo 3, se transformaron en células de ZW705-ara354A7 (preparadas en los Ejemplos 1 y 2). Las células competentes de la cepa ZW705-ara354A7 se prepararon tal como se describió en el Ejemplo 1. Dado que la transformación de *Z. mobilis* requiere ADN no metilado, pARA112 y pARA113 fueron transformados cada uno en células competentes SCS110 de *E. coli* y se preparó el ADN de plásmido no metilado a partir de un cultivo de 10 mL de una sola colonia usando un kit Qiagen DNA Miniprep. Aproximadamente 500 ng de cada ADN de plásmido se mezcló por separado con 50 µL de células competentes ZW705-ara354A7 en una cubeta de electroporación VWR 1 MM y se sometió a electroporación en las células a 2,0 KV usando un BT720 Transporater Plus.

Las células transformadas por pARA112 o pARA113 (ZW705-ara354A7-ara112 y ZW705-ara354A7-ara113) se recuperaron en 1 mL de medio MMG5 durante 4 horas a 30°C y luego se cultivaron en placas MMG5-CM120 (MMG5 con 120 mg/L de cloranfenicol y 15 g/L de agar) durante 2 días a 30°C dentro de un frasco anaeróbico con un AnaeroPack. Las colonias individuales se estriaron en una nueva placa MMG5-CM120 y se dejaron crecer en las mismas condiciones que la última etapa. Las estrías crecieron en las placas que contenían cloranfenicol, lo que indica una transformación satisfactoria. 2. Expresión de Pqi-araE y Pqi-araFGH en las cepas transformadas.

Se seleccionaron varias estrías de las cepas transformadas de las placas MMG5-CM120 para representar ZW705-ara354A7-ara112 y ZW705-ara354A7-ara113. Se inspeccionó la expresión de P_{gi} -araE o P_{gi} -araFGH mediante el ensayo de crecimiento de 72 horas descrito en el Ejemplo 1. En este ensayo, las células de cada estría se cultivaron durante la noche en 2 mL de MRM3G5-CM120 (MRM3G5 con 120 mg/L de cloranfenicol) a 30°C con agitación de 150 rpm. Las células se cosecharon, se lavaron con MRM3A5 y se volvieron a suspender en MRM3A5-CM120 (MRM3A5 que contiene 120 mg/L de cloranfenicol) a una OD_{600} de partida de 0,1. Se cultivaron cuatro mL de la suspensión durante 72 horas a 30°C con agitación de 150 rpm. Al final del crecimiento, se midió la OD_{600} y se analizaron los perfiles de metabolitos usando una columna de exclusión iónica BioRad Aminex HPX-A7H en un sistema de HPLC Agilent 1100 tal como se describió en el Ejemplo 1. Como control, la cepa ZW705-ara354A7 se cultivó y analizó en paralelo con Spec250 reemplazando a CM120. Los resultados para 3 cepas en cada transformación se proporcionan en la Tabla 4.

Tabla 4. Ensayo de crecimiento de 72 horas para ZW705-ara354A7-ara112 y ZW705-ara354A7-ara113 en MRM3A5.

Сера	Crecimiento (OD600)	Etanol (g/L)	Arabinosa (g/L)
ZW705-ara354A7	3,01	18,57	5,98
ZW705-ara354A7-ara112-1	3,28	19,22	0,43
ZW705-ara354A7-ara112-2	3,33	21,38	0,34
ZW705-ara354A7-ara112-3	3,20	19,65	0,40
ZW705-ara354A7-ara113-5	2,51	16,64	11,95
ZW705-ara354A7-ara113-6	2,12	15,65	15,97
ZW705-ara354A7-ara113-7	2,17	15,32	13,91

En comparación con sus originales, todas las cepas ZW705-ara354A7-ara112 utilizaron más arabinosa durante 72 horas de cultivo, lo que permitió un mayor nivel de crecimiento y producción de etanol. De hecho, estas cepas ZW705-ara354A7-ara112 consumieron casi toda la arabinosa disponible en el medio. Esto indica que araE facilitó la utilización de arabinosa en las cepas diseñadas genéticamente. Por otro lado, parece que la expresión de araFGH tuvo un impacto negativo. Dio como resultado menor utilización de arabinosa, un menor nivel de crecimiento y menor producción de etanol en las cepas ZW705-ara354A7-ara113 durante 72 horas de cultivo.

20 3. Caracterización de perfiles de crecimiento y metabolitos de la cepa ZW705-ara354A7-ara112.

10

15

25

30

35

40

45

Dado que las cepas ZW705-ara354A7-ara112 mostraron un metabolismo de arabinosa facilitado, estas cepas se analizaron adicionalmente. La caracterización se realizó siguiendo el procedimiento descrito en el Ejemplo 2.3. Dado que araE se expresó a partir de un vector transportador, el nivel de expresión puede variar entre cepas diferentes. Por lo tanto, se examinaron dos cepas (ZW705-ara354A7-ara112-2 y ZW705-ara354A7-ara112-3) una al lado de la otra Para caracterizar las cepas en el medio de azúcar único (arabinosa), los cultivos de ZW705-ara354A7-ara112-2 y ZW705-ara354A7-ara112-3 cultivados durante la noche se cosecharon, se lavaron con MRM3A5 y se volvieron a suspender en MRM3A5-CM120 hasta una OD600 de partida de 0,1. Veinte mL de las suspensiones se cultivaron a 30°C con agitación de 150 rpm durante un período de tiempo de 96 horas. La OD₆₀₀ se midió a las 0, 6, 12, 24, 48, 72 y 96 horas. En cada punto de tiempo, se analizaron los perfiles de metabolitos usando una columna de exclusión iónica BioRad Aminex HPX-A7H en un sistema de HPLC Agilent 1100. En paralelo, la cepa original de ZW705ara354A7 se cultivó en 250 mg/L de espectinomicina en lugar de 120 mg/L de cloranfenicol y se analizó como control. Los resultados se muestran en la Figura 8. Estos resultados indican que, sin Pai-araE, ZW705-ara354A7 utilizó arabinosa con una velocidad máxima de 0,93 g/L/hr. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo en 80,4%, a 9,81 g/L. Con expresión de araE, ZW705-ara354A7-ara112-2 y ZW705ara354A7-ara112-3 utilizaron arabinosa de forma más eficaz, lo que permitió mayores niveles de crecimiento y producción de etanol. Las velocidades máximas del consumo de arabinosa aumentó a 1,18 g/Uhr y 1,28 g/Uhr en las cepas 112-2 y 112-3, respectivamente. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo en 98%, a 1,02 g/L para ZW705-ara354A7-ara112-2 y en 99,2%, a 0,41 g/L para ZW705-ara354A7-ara112-3. De hecho, ZW705-ara354A7-ara112-2 y ZW705-ara354A7-ara112-3 casi agotaron toda la arabinosa disponible después del cultivo de 72 horas y 48 horas, respectivamente.

Para caracterizar las cepas en un medio que contiene azúcares mezclados, se cultivaron ZW705- ara354A7, ZW705-ara354A7-ara112-2 y ZW705-ara354A7-ara112-3 y analizaron tal como se describió anteriormente pero usando el medio MRM3A2.5X2.5G5. Los resultados se muestran en la Figura 9. Estos resultados muestran que ZW705-ara354A7 agotó de manera eficaz toda la glucosa y xilosa dentro de 24 horas para permitir un fuerte crecimiento y producción de etanol. Su metabolismo de arabinosa fue relativamente más lento e incompleto. La velocidad máxima de consumo de arabinosa fue 0,43 g/L/hr. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo en 62,4%, a 9 g/L. Sin embargo, ZW705-ara354A7-ara112-2 y ZW705-ara354A7-ara112-3 utilizaron arabinosa de forma mucho más eficaz. Las velocidades máximas de consumo de arabinosa

aumentaron a 0,73 g/L/hr y 0,78 g/L/hr, respectivamente. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo en 90,3%, a 2,33 g/L para ZW705-ara354A7-ara112-2 y en 90,1%, a 2,38 g/L para ZW705-ara354A7-ara112-3. En realidad se había reducido cercano a este nivel dentro de 48 horas en ambas cepas. Por lo tanto, la expresión de araE también facilitó la utilización de arabinosa en el medio de azúcares mezclados, lo que contribuyó a la producción de etanol en la Figura 9. La expresión no tuvo un efecto significativo en el metabolismo de glucosa, pero enlenteció el metabolismo de xilosa de modo que a ambas cepas ZW705-ara354A7-ara112 le tomó 48 horas agotar toda la xilosa en el medio mientras que a la cepa ZW705-ara354A7 le tomó solo 24 horas.

Ejemplo 5

15

20

40

10 Expresión de araE en ZW705-ara354 y ZW801-ara354 de Zymomonas

En este ejemplo, se analizan los efectos de la expresión de araE en las cepas ZW705-ara354 y ZW801-ara354 de Z. mobilis no adaptadas que utilizan arabinosa.

1. Transformación de ZW705-ara354 y ZW801-ara354 con pARA112.

Tal como se describe en el Ejemplo 2, ZW705-ara354 y ZW801-ara354 son cepas de Z. mobilis diseñadas genéticamente desarrolladas a partir de ZW705 y ZW801-4 mediante la introducción de P_{gap}-araBAD en el locus de IdhA. ZW705-ara354 es la cepa original de ZW705-ara354A7 que no se adaptó en MRM3A5. Se prepararon células competentes de ambas cepas. El ADN no metilado de pARA112 se sometió a electroporación en las células competentes tal como se describió en los ejemplos previos.

La ZW705-ara354 (ZW705-ara354-ara112) y ZW801-ara354 ((ZW801-ara354-ara112) transformadas por pARA112 se recuperaron en 1 mL de medio MMG5 durante 4 horas a 30°C y luego se cultivaron en placas MMG5-CM120 durante 2 días a 30°C dentro de un frasco anaeróbico con un AnaeroPack. Las colonias individuales se estriaron en una nueva placa MMG5-CM120 y crecieron en las mismas condiciones que la última etapa. Las estrías crecieron en las placas que contenían cloranfenicol, lo que indica una transformación satisfactoria.

2. Expresión de P_{oi}-araE en las cepas transformadas.

Se seleccionaron varias estrías de las cepas transformadas de las placas MMG5-CM120 para representar ZW705-ara354-ara112 y ZW801-ara354-ara112, respectivamente. Se inspeccionó la expresión de Pgi-araE mediante el ensayo de crecimiento de 72 horas en MRM3A5. Los detalles del ensayo son los mismos que en los ejemplos anteriores. Como controles, las cepas ZW705-ara354 y ZW801-ara354 se cultivaron y analizaron en paralelo con 250 mg/L de espectrinomicina reemplazando 120 mg/L de cloranfenicol en el medio de cultivo. Los resultados para 3 cepas de cada transformación se proporcionan en la Tabla 5. En comparación con sus cepas originales, todas las cepas ZW705-ara354-ara112 y ZW801-ara354-ara112 utilizaron significativamente más arabinosa durante 72 horas de cultivo, lo que permitió un mayor nivel de crecimiento y producción de etanol. Por lo tanto, araE también facilitó la utilización de arabinosa en ambas cepas ZW705-ara354-ara112 y ZW801-ara354-ara112.

Tabla 5. Ensayo de crecimiento de	72 horas para ZW705-ara354-ara112	y ZW801-ara354-ara112 en MRM3A5
-----------------------------------	-----------------------------------	---------------------------------

Сера	Crecimiento (OD600)	Etanol (g/L)	Arabinosa (g/L)
ZW705-ara354	1,15	9,56	27,88
ZW705-ara354-ara112-1	1,56	14,18	17,24
ZW705-ara354-ara112-2	1,67	16,71	10,93
ZW705-ara354-ara112-3	1,47	13,76	19,06
ZW801-ara354	1,39	9,65	27,08
ZW801-ara354-ara112-4	1,95	15,01	15,12
ZW801-ara354-ara112-5	2,07	15,51	12,94
ZW801-ara354-ara112-5	2,29	15,79	13,05

35 3. Caracterización de perfiles de crecimiento y metabolitos de las cepas ZW705-ara354-ara112 y ZW801-ara354-ara112

Las cepas ZW705-ara354-ara112 y ZW801-ara354-ara112 se caracterizaron adicionalmente para determinar sus perfiles de crecimiento y metabolitos durante un período de tiempo de 96 horas. La caracterización se realizó siguiendo el mismo procedimiento descrito en el Ejemplo 4.3. ZW705-ara354-ara112-1 y ZW705-ara354-ara112-2 se examinaron y se compararon con su original ZW705-ara354, mientras ZW801-ara354-ara112-5 y ZW801-ara354-

ara112-6 se examinaron y se compararon con su original ZW801-ara354. Las mediciones y análisis se realizaron a los puntos de tiempo de 0, 6, 12, 24, 48, 72 y 96 horas.

La Figura 10 muestra los resultados obtenidos a partir de las cepas ZW705-ara354 y ZW705-ara354-ara112 cultivadas en MRM3A5. Los resultados muestran que, sin Pgi-araE, ZW705-ara354 utilizó poca arabinosa, con una velocidad máxima de 0,25 g/L/hr. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo solamente en 38,19%, a 30,22 g/L. Con expresión de araE, ZW705-ara354-ara112-1 y ZW705-ara354-ara112-2 utilizaron arabinosa de forma más eficaz, lo que permitió mayores niveles de crecimiento y producción de etanol. La velocidad máxima de consumo de arabinosa aumentó a 0,46 g/L/hr y 0,48 g/L/hr, respectivamente. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo en 65,8%, a 16,73 g/L para ZW705-ara354-ara112-1 y en 69,61%, a 14,86 g/L para ZW705-ara354-ara112-2.

La Figura 11 muestra los resultados obtenidos a partir de las cepas ZW705-ara354 y ZW705-ara354-ara112 cultivadas en el medio de azúcares mezclados MRM3A2.5X2.5G5. Los resultados muestran que ZW705-ara354 utilizó de manera eficaz glucosa y xilosa para permitir un fuerte crecimiento y producción de etanol. Su metabolismo de arabinosa fue lento e incompleto. La velocidad máxima de consumo de arabinosa fue 0,29 g/L/hr. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo en 57,32%, a 10,21 g/L. Sin embargo, ZW705-ara354-ara112-1 y ZW705-ara354-ara112-2 utilizaron arabinosa de forma más eficaz. La velocidad máxima de consumo de arabinosa aumentó a 0,32 g/L/hr y 0,35 g/L/hr, respectivamente. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo en 86,33%, a 3,27 g/L para ZW705-ara354-ara112-1 y en 85,2%, a 3,54 g/L para ZW705-ara354-ara112-2. Estos resultados demostraron que la expresión de araE facilitó la utilización de arabinosa en las cepas ZW705-ara354-ara112 tanto en medio de azúcar único (arabinosa) como en el medio de azúcares mezclados. Por lo tanto, el efecto de araE no requirió un antecedente genético adquirido durante la adaptación de ZW705-ara354A7. De manera similar a los resultados en ZW705-ara354A7-ara112, la expresión de araE enlenteció ligeramente el metabolismo de xilosa en ZW705-ara354-ara112 cultivada en el medio de azúcares mezclados.

25 La Figura 12 muestra los resultados obtenidos a partir de las cepas ZW801-ara354 y ZW801-ara354-ara112 cultivadas en MRM3A5. Los resultados indican que, sin Pgi-araE, ZW801-ara354 utilizó poca arabinosa, con una velocidad máxima de 0,25 g/L/hr. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo solamente en 32,99%, a 32,76 g/L. Con expresión de araE, ZW801-ara354-ara112-5 y ZW801-ara354-ara112-6 utilizaron arabinosa de forma más eficaz, lo que permitió mayores niveles de crecimiento y producción de etanol. La 30 velocidad máxima de consumo de arabinosa aumentó a 0,49 g/Uhr y 0,47 g/L/hr, respectivamente. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo en 69,52%, a 14,90 g/L para ZW801ara354-ara112-5 y en 65,92%, a 16,66 g/L para ZW801-ara354-ara112-6. La Figura 13 muestra los resultados obtenidos a partir de las cepas ZW801-ara354 y ZW801-ara354-ara112 cultivadas en el medio de azúcares mezclados MRM3A2.5X2.5G5. Esto muestran que ZW801-ara354 utilizó de manera eficaz glucosa y xilosa para permitir un fuerte crecimiento y producción de etanol. Su metabolismo de arabinosa fue lento e incompleto. La 35 velocidad máxima de consumo de arabinosa fue 0,22 g/Uhr. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo en 45,48%, a 13,04 g/L. Sin embargo, ZW801-ara354-ara112-5 y ZW801-ara354ara112-6 utilizaron arabinosa de forma más eficaz. La velocidad máxima de consumo de arabinosa aumentó a 0,35 q/L/hr y 0.36 q/L/hr, respectivamente. Al final del período de tiempo, la concentración de arabinosa en el medio se redujo en 89,92%, a 2,41 g/L para ZW801-ara354-ara112-5 y en 88,38%, a 2,78 g/L para ZW801-ara354-ara112-6. Estos resultados demostraron adicionalmente que la expresión de araE facilitó la utilización de arabinosa en las 40 cepas ZW801-ara354-ara112 tanto en medio de azúcar único como en el medio de azúcares mezclados. Por lo tanto, el efecto de araE no se limitó a ZW705-ara354 y las cepas derivadas. De manera similar a ZW705-ara354A7ara112 y ZW705-ara354-ara112, la expresión de araÉ enlenteció ligeramente el metabolismo de xilosa en ZW801-45 ara354-ara112 cultivada en el medio de azúcares mezclados.

Listado de secuencias

```
<110> E. I. du Pont de Nemours and Company
```

<120> Zymomonas con utilización de arabinosa mejorada

<130> CL4545PCT

50 <160>66

10

15

<170> PatentIn versión 3.4

<210> 1

<211> 1416

<212> ADN

55 <213> Escherichia coli

<400> 1

atggttacta	tcaatacgga	atctgcttta	acgccacgtt	ctttgcggga	tacgcggcgt	60
atgaatatgt	ttgtttcggt	agctgctgcg	gtcgcaggat	tgttatttgg	tcttgatatc	120
ggcgtaatcg	ccggagcgtt	gccgttcatt	accgatcact	ttgtgctgac	cagtcgtttg	180
caggaatggg	tggttagtag	catgatgctc	ggtgcagcaa	ttggtgcgct	gtttaatggt	240
tggctgtcgt	teegeetggg	gcgtaaatac	agcctgatgg	cgggggccat	cctgtttgta	300
ctcggttcta	tagggtccgc	ttttgcgacc	agcgtagaga	tgttaatcgc	cgctcgtgtg	360
gtgctgggca	ttgctgtcgg	gategegtet	tacaccgctc	ctctgtatct	ttctgaaatg	420
gcaagtgaaa	acgttcgcgg	taagatgatc	agtatgtacc	agttgatggt	cacactcggc	480
atcgtgctgg	cgtttttatc	cgatacagcg	ttcagttata	gcggtaactg	gcgcgcaatg	540
ttgggggttc	ttgctttacc	agcagttctg	ctgattattc	tggtagtett	cctgccaaat	600
agcccgcgct	ggctggcgga	aaaggggcgt	catattgagg	cggaagaagt	attgcgtatg	660
ctgcgcgata	cgtcggaaaa	agcgcgagaa	gaactcaacg	aaattcgtga	aagcctgaag	720
ttaaaacagg	gcggttgggc	actgtttaag	atcaaccgta	acgtccgtcg	tgctgtgttt	780
ctcggtatgt	tgttgcaggc	gatgcagcag	tttaccggta	tgaacatcat	catgtactac	840
gcgccgcgta	tcttcaaaat	ggcgggcttt	acgaccacag	aacaacagat	gattgcgact	900
ctggtcgtag	ggctgacctt	tatgttcgcc	acctttattg	cggtgtttac	ggtagataaa	960
gcagggcgta	aaccggctct	gaaaattggt	ttcagcgtga	tggcgttagg	cactctggtg	1020
ctgggctatt	gcctgatgca	gtttgataac	ggtacggctt	ccagtggctt	gtcctggctc	1080
tctgttggca	tgacgatgat	gtgtattgcc	ggttatgcga	tgagcgccgc	gccagtggtg	1140
tggatcctgt	gctctgaaat	tcagccgctg	aaatgccgcg	atttcggtat	tacctgttcg	1200
accaccacga	actgggtgtc	gaatatgatt	atcggcgcga	ccttcctgac	actgcttgat	1260
agcattggcg	ctgccggtac	gttctggctc	tacactgcgc	tgaacattgc	gtttgtgggc	1320
attactttct	ggctcattcc	ggaaaccaaa	aatgtcacgc	tggaacatat	cgaacgcaaa	1380
ctgatggcag	gcgagaagtt	gagaaatatc	agcate			1416

<210> 2

<211> 472 <211> 472 <212> PRT <213> Escherichia coli

<400> 2

Met 1	Val	Thr	Ile	Asn 5	Thr	Glu	Ser	Ala	Leu 10	Thr	Pro	Arg	Ser	Leu 15	Arg

- Asp Thr Arg Arg Met Asn Met Phe Val Ser Val Ala Ala Val Ala 20 25 30
- Gly Leu Leu Phe Gly Leu Asp Ile Gly Val Ile Ala Gly Ala Leu Pro 35 40 45
- Phe Ile Thr Asp His Phe Val Leu Thr Ser Arg Leu Gln Glu Trp Val 50 55 60
- Val Ser Ser Met Met Leu Gly Ala Ala Ile Gly Ala Leu Phe Asn Gly 65 70 75 80
- Trp Leu Ser Phe Arg Leu Gly Arg Lys Tyr Ser Leu Met Ala Gly Ala 85 90 95
- Ile Leu Phe Val Leu Gly Ser Ile Gly Ser Ala Phe Ala Thr Ser Val
- Glu Met Leu Ile Ala Ala Arg Val Val Leu Gly Ile Ala Val Gly Ile 115 120 125
- Ala Ser Tyr Thr Ala Pro Leu Tyr Leu Ser Glu Met Ala Ser Glu Asn 130 135 140
- Val Arg Gly Lys Met Ile Ser Met Tyr Gln Leu Met Val Thr Leu Gly 145 150 155 160
- Ile Val Leu Ala Phe Leu Ser Asp Thr Ala Phe Ser Tyr Ser Gly Asn 165 170 175
- Trp Arg Ala Met Leu Gly Val Leu Ala Leu Pro Ala Val Leu Leu Ile 180 185 190
- Ile Leu Val Val Phe Leu Pro Asn Ser Pro Arg Trp Leu Ala Glu Lys 195 200 205
- Gly Arg His Ile Glu Ala Glu Glu Val Leu Arg Met Leu Arg Asp Thr 210 215 220

Ser 225	Glu	Lys	Ala	Arg	Glu 230	Glu	Leu	Asn	Glu	Ile 235	Arg	Glu	Ser	Leu	Lys 240
Leu	Lys	Gln	Gly	Gly 245	Trp	Ala	Leu	Phe	Lys 250	Ile	Asn	Arg	Asn	Val 255	Arç
Arg	Ala	Val	Phe 260	Leu	Gly	Met	Leu	Leu 265	Gln	Ala	Met	Gln	Gln 270	Phe	Thr
Gly	Met	Asn 275	Ile	Ile	Met	Tyr	Туг 280	Ala	Pro	Arg	Ile	Phe 285	Lys	Met	Ala
Gly	Phe 290	Thr	Thr	Thr	Glu	Gln 295	Gln	Met	Ile	Ala	Thr 300	Leu	Val	Val	Gly
Leu 305	Thr	Phe	Met	Phe	Ala 310	Thr	Phe	Ile	Ala	Val 315	Phe	Thr	Val	Asp	Lys 320
Ala	Gly	Arg	Lys	Pro 325	Ala	Leu	Lys	Ile	Gly 330	Phe	Ser	Val	Met	Ala 335	Lev
Gly	Thr	Leu	Val 340	Leu	Gly	Tyr	Cys	Leu 345	Met	Gln	Phe	Asp	Asn 350	Gly	Thr
Ala	Ser	Ser 355	Gly	Leu	Ser	Trp	Leu 360	Ser	Val	Gly	Met	Thr 365	Met	Met	Cys
Ile	Ala 370	Gly	Tyr	Ala	Met	Ser 375	Ala	Ala	Pro	Val	Val 380	Trp	Ile	Leu	Cys
Ser 385	Glu	Ile	Gln	Pro	Leu 390	Lys	Cys	Arg	Asp	Phe 395	Gly	Ile	Thr	Cys	Ser 400
Thr	Thr	Thr	Asn	Trp 405	Val	Ser	Asn	Met	Ile 410	Ile	Gly	Ala	Thr	Phe 415	Leu
Thr	Leu	Leu	Asp 420	Ser	Ile	Gly	Ala	Ala 425	Gly	Thr	Phe	Trp	Leu 430	Tyr	Thr
Ala	Leu	Asn 435	Ile	Ala	Phe	Val	Gly 440	Ile	Thr	Phe	Trp	Leu 445	Ile	Pro	Glu
Thr	Lys 450	Asn	Val	Thr	Leu	Glu 455	His	Ile	Glu	Arg	Lys 460	Leu	Met	Ala	Gly
Glu 465	Lys	Leu	Arg	Asn	Ile 470	Gly	Val								

<210> 3

<211> 1416

<212> ADN

^{5 &}lt;213> Shigella flexneri

<400> 3

atggttacta tcaatacgga atctgcttta acgccacgtt ctttgcgtga tacgcggcgt 60 atquatatqt ttqtttcqqt agctqctqcq qtcqcaqqat tqttatttqq tcttqatatc 120 180 ggcgtaatcg ccggagcgtt gccgttcatt accgatcact ttgtgctgac cagtcgtttg caggaatggg tggttagtag catgatgctc ggcgcagcaa ttggtgcgct gtttaatggt 240 tggctgtcgt tccgcctggg gcgtaaatac agcctgatgg cgggggccat cctgtttgta 300 eteggtteta tagggteege ttttgegaee agegtagaga tgttaatege egetegtgtg 360 gtgctgggca ttgctgtcgg gatcgcgtct tacaccgctc ctctgtatct ttctgaaatg 420 gcaagtgaaa acgttegegg taagatgate agtatgtace agttgatggt cacaetegge 480 atcgtgctgg cgtttttatc cgatacagcg ttcagttata gcggtaactg gcgcgcaatg 540 ttgggggtte ttgetttace ageagttetg etgattatte tggtggtett eetgeeaaat 600 660 agecegeget ggetggegga aaaggggegt catattgagg eggaagaagt gttgegtatg ctqcqcqata cqtcqqaaaa aqcqcqaqaa qaactcaacg aaattcqtqa aagcctqaaq 720 ttaaaacagg geggttggge actgtttaag atcaacegta aegteegteg tgetgtgttt 780 ctcggtatgt tgttgcaggc gatgcagcag tttaccggta tgaacatcat catgtactac 840 qcqccqcqta tcttcaaaat qqcqqqcttt acqaccacag aacaacaqat qattqcqact 900 960 ctggtcgtgg gactgacctt tatgttcgcg accttcattg cggtctttac ggtagataaa gcaggtcgta aaccggctct gaaaattggt ttcagcgtga tggcgttagg cactctggtg 1020 ctgggctatt gcctgatgca gtttgataac ggtacggctt ccagtggctt gtcctggctc 1080 tctgttggca tgacgatgat gtgtattgcc ggttatgcga tgagcgccgc gccagtggtg 1140 tggateetgt getetgaaat teageegetg aaatgeegeg attteggtat taeetgtteg 1200 acgacgacaa actgggtgtc gaatatgatt atcggcgcgg ccttcctgac actgcttgat 1260 ageattggcg ctgccggtac gttctggctc tacactgcgc tgaacattgc gtttgtgggt 1320 attactttct ggctcattcc ggaaaccaaa aatgtcacqc tggaacatat cgaacgcaaa 1380 ctgatggcag gcgagaagtt gagaaatatc ggcgtc 1416

<210> 4

<211> 472

<212> PRT

<213> Shigella flexneri

<400> 4

Met Val Thr Ile Asn Thr Glu Ser Ala Leu Thr Pro Arg Ser Leu Arg 1 5 10 15

Asp	Thr	Arg	Arg 20	Met	Asn	Met	Phe	Val 25	Ser	Val	Ala	Ala	Ala 30	Val	Ala
Gly	Leu	Leu 35	Phe	Gly	Leu	Asp	Ile 40	Gly	Val	Ile	Ala	Gly 45	Ala	Leu	Pro
Phe	Ile 50	Thr	Asp	His	Phe	Val 55	Leu	Thr	Ser	Arg	Leu 60	Gln	Glu	Trp	Val
Val 65	Ser	Ser	Met	Met	Leu 70	Gly	Ala	Ala	Ile	Gly 75	Ala	Leu	Phe	Asn	Gly 80
Trp	Leu	Ser	Phe	Arg 85	Leu	Gly	Arg	Lys	Tyr 90	Ser	Leu	Met	Ala	Gly 95	Ala
Ile	Leu	Phe	Val 100	Leu	Gly	Ser	Ile	Gly 105	Ser	Ala	Phe	Ala	Thr 110	Ser	Val
Glu	Met	Leu 115	Ile	Ala	Ala	Arg	Val 120	Val	Leu	Gly	Ile	Ala 125	Val	Gly	Ile
Ala	Ser 130	Tyr	Thr	Ala	Pro	Leu 135	Tyr	Leu	Ser	Glu	Met 140	Ala	Ser	Glu	Asn
Val 145	Arg	Gly	Lys	Met	Ile 150	Ser	Met	Tyr	Gln	Leu 155	Met	Val	Thr	Leu	Gly 160
Ile	Val	Leu	Ala	Phe 165	Leu	Ser	Asp	Thr	Ala 170	Phe	Ser	Tyr	Ser	Gly 175	Asn
Trp	Arg	Ala	Met 180	Leu	Gly	Val	Leu	Ala 185	Leu	Pro	Ala	Val	Leu 190	Leu	Ile
Ile	Leu	Val 195	Val	Phe	Leu	Pro	Asn 200	Ser	Pro	Arg	Trp	Leu 205	Ala	Glu	Lys
Gly	Arg 210	His	Ile	Glu	Ala	Glu 215	Glu	Val	Leu	Arg	Met 220	Leu	Arg	Asp	Thr
Ser 225	Glu	Lys	Ala	Arg	Glu 230	Glu	Leu	Asn	Glu	Ile 235	Arg	Glu	Ser	Leu	Lys 240
Leu	Lys	Gln	Gly	Gly 245	Trp	Ala	Leu	Phe	L ys 250	Ile	Asn	Arg	Asn	Val 255	Arg
Arg	Ala	Val	Phe 260	Leu	Gly	Met	Leu	Leu 265	Gln	Ala	Met	Gln	Gln 270	Phe	Thr
GI v	Mat	Agn	Tle	Tle	Met	Tur	Tvr	Δla	Dro	A ===	Tle	Dhe	T.vo	Mot	81 a

Gly	Phe 290	Thr	Thr	Thr	Glu	Gln 295	Gln	Met	Ile	Ala	Thr 300	Leu	Val	Val	Gly		
Leu 305	Thr	Phe	Met	Phe	Ala 310	Thr	Phe	Ile	Ala	Val 315	Phe	Thr	Val	Asp	Lys 320		
Ala	Gly	Arg	Lys	Pro 325	Ala	Leu	Lys	Ile	Gly 330	Phe	Ser	Val	Met	Ala 335	Leu		
Gly	Thr	Leu	Val 340	Leu	Gly	Tyr	Cys	Leu 345	Met	Gln	Phe	Asp	Asn 350	Gly	Thr		
Ala	Ser	Ser 355	Gly	Leu	Ser	Trp	Leu 360	Ser	Val	Gly	Met	Thr 365	Met	Met	Cys		
Ile	Ala 370	Gly	Tyr	Ala	Met	Ser 375	Ala	Ala	Pro	Val	Val 380	Trp	Ile	Leu	Cys		
Ser 385	Glu	Ile	Gln	Pro	Leu 390	Lys	Cys	Arg	Asp	Phe 395	Gly	Ile	Thr	Cys	Ser 400		
Thr	Thr	Thr	Asn	Trp 405	Val	Ser	Asn	Met	Ile 410	Ile	Gly	Ala	Ala	Phe 415	Leu		
			Asp 420			_		425	_			-	430	-			
		435	Ile				440				_	445					
	450		Val Arg			455		116	GIU	Arg	198 460	Leu	Met	ATA	GIY		
465	ny 3	200	y	7.5	470	J_j	*										
<210 <211 <212 <213	> 1416 > ADN	l	oydii														
<400	> 5																
atg	rttac	cta (tcaa	tacg	ga a	tctg	cttt	a ac	gcca	cgtt	ctt	tgcç	gga	tace	geggegt		60
atga	atat	egt (ttgti	ttcg	gt a	getg	ctgc	g gt	cgca	ggat	tgt	tatt	tgg:	tcti	tgatatc	:	120
ggcg	rtaat	cg d	ccgg	agcg	tt g	ccgt	tcat	t ac	cgat	cact	ttg	rtget	gac	cagt	catttg	:	180
cago	gaato	ggg 1	tggt	tagt	ag c	atga	tgct	c gg	cgca	gcaa	ttg	gtgo	gct	gttt	taatggt	:	240

tggctgtcgt	teegeetggg	gcgtaaatac	agcctgatgg	cgggggccat	cctgtttgta	300
ctcggttcta	tagggtccgc	ttttgcgacc	agcgtagaga	tgttaatcgc	cgctcgtgtg	360
gtgctgggca	ttgctgtcgg	gatcgcgtct	tacaccgctc	ctctgtatct	ttctgaaatg	420
gcaagtgaaa	acgttcgcgg	taagatgatc	agtatgtacc	agttgatggt	cacactcggc	480
atcgtgctgg	cgtttttatc	cgatacagcg	ttcagttata	gcggtaactg	gcgcgcaatg	540
ttgggggttc	ttgctttacc	agcagttctg	ctgattattc	tggtggtctt	cctgccaaat	600
agcccgcgct	ggttggcgga	aaaggggcgt	catattgagg	cggaagaagt	attgcgtatg	660
ctgcgcgata	cgtcggaaaa	agcgcgagaa	gaactcaacg	aaattcgtga	aagcctgaag	720
ttaaaacagg	gcggttgggc	actgtttaag	atcaaccgta	acgtccgtcg	tgctgtgttt	780
ctcggtatgt	tgttgcaggc	gatgcagcag	tttaccggta	tgaacatcat	catgtactac	840
gegeegegta	tcttcaaaat	ggcgggcttt	acgaccacag	aacaacagat	gattgcgact	900
ctggtcgtag	ggctgacctt	tatgttcgcc	acctttattg	cggtgtttac	ggtagataaa	960
gcagggcgta	aaccggctct	gaaaattggt	ttcagcgtga	tggcgttagg	cactctggtg	1020
ctgggctatt	gcctgatgca	gtttgataac	ggtacggctt	ccagtggctt	gtcctggctc	1080
tctgttggca	tgacgatgat	gtgtattgcc	ggttatgcga	tgagcgccgc	gccagtggtg	1140
tggatcctgt	gctctgaaat	tcagccgctg	aaatgccgcg	atttcggtat	tacctgttcg	1200
accaccacga	actgggtgtc	gaatatgatt	atcggcgcga	ccttcctgac	gctgctcgac	1260
agcattggcg	ctgccggtac	gttctggctc	tacactgcgc	tgaacattgc	gtttgtgggc	1320
atcactttct	ggctcattcc	ggaaaccaaa	aatgtcacgc	tggaacatat	cgaacgcaaa	1380
ctgatggcag	gcgagaagtt	gagaaatatc	ggcatc			1416

<210> 6

<211> 472

<212> PRT

<213> Shigella boydii

<400> 6

Met Val Thr Ile Asn Thr Glu Ser Ala Leu Thr Pro Arg Ser Leu Arg
1 5 10 15

Asp Thr Arg Arg Met Asn Met Phe Val Ser Val Ala Ala Ala Val Ala 20 25 30

Gly Leu Phe Gly Leu Asp Ile Gly Val Ile Ala Gly Ala Leu Pro 35 40 45

Phe Ile Thr Asp His Phe Val Leu Thr Ser His Leu Gln Glu Trp Val 50 55 60

Val Ser Ser Met Met Leu Gly Ala Ala Ile Gly Ala Leu Phe Asn Gly

65					70					75					80
Trp	Leu	Ser	Phe	Arg 85	Leu	Gly	Arg	Lys	Tyr 90	Ser	Leu	Met	Ala	Gly 95	Ala
Ile	Leu	Phe	Val 100	Leu	Gly	Ser	Ile	Gly 105	Ser	Ala	Phe	Ala	Thr 110	Ser	Val
Glu	Met	Leu 115	Ile	Ala	Ala	Arg	Val 120	Val	Leu	Gly	Ile	Ala 125	Val	Gly	Ile
Ala	Ser 130	Tyr	Thr	Ala	Pro	Leu 135	Tyr	Leu	Ser	Glu	Met 140	Ala	Ser	Glu	Asn
Val 145	Arg	Gly	Lys	Met	Ile 150	Ser	Met	Tyr	Gln	Leu 155	Met	Val	Thr	Leu	Gly 160
Ile	Val	Leu	Ala	Phe 165	Leu	Ser	Asp	Thr	Ala 170	Phe	Ser	Tyr	Ser	Gly 175	Asn
Trp	Arg	Ala	Met 180	Leu	Gly	Val	Leu	Ala 185	Leu	Pro	Ala	Val	Leu 190	Leu	Ile
Ile	Leu	Val 195	Val	Phe	Leu	Pro	Asn 200	Ser	Pro	Arg	Trp	Leu 205	Ala	Glu	Lys
Gly	Arg 210	His	Ile	Glu	Ala	Glu 215	Glu	Val	Leu	Arg	Met 220	Leu	Arg	Asp	Thr
Ser 225	Glu	Lys	Ala	Arg	Glu 230	Glu	Leu	Asn	Glu	Ile 235	Arg	Glu	Ser	Leu	Lys 240
Leu	Lys	Gln	Gly	Gly 245	Trp	Ala	Leu	Phe	Lys 250	Ile	Asn	Arg	Asn	Val 255	Arg
Arg	Ala	Val	Phe 260	Leu	Gly	Met	Leu	Leu 265	Gln	Ala	Met	Gln	Gln 270	Phe	Thr
Gly	Met	As n 275	Ile	Ile	Met	Tyr	Tyr 280	Ala	Pro	Arg	Ile	Phe 285	Lys	Met	Ala
Gly	Phe 290	Thr	Thr	Thr	Glu	Gln 295	Gln	Met	Ile	Ala	Thr 300	Leu	Val	Val	Gly
Leu 305	Thr	Phe	Met	Phe	Ala 310	Thr	Phe	Ile	Ala	Val 315	Phe	Thr	Val	qeA	Lys 320
Ala	Gly	Arg	Lys	Pro 325	Ala	Leu	Lys	Ile	Gly 330	Phe	Ser	Val	Met	Ala 335	Leu

Gly Thr Leu Val Leu Gly Tyr Cys Leu Met Gln Phe Asp Asn Gly Thr 340 345 350

Ala Ser Ser Gly Leu Ser Trp Leu Ser Val Gly Met Thr Met Met Cys 355 360 365

Ile Ala Gly Tyr Ala Met Ser Ala Ala Pro Val Val Trp Ile Leu Cys 370 375 380

Ser Glu Ile Gln Pro Leu Lys Cys Arg Asp Phe Gly Ile Thr Cys Ser 385 390 395 400

Thr Thr Thr Asn Trp Val Ser Asn Met Ile Ile Gly Ala Thr Phe Leu
405 410 415

Thr Leu Leu Asp Ser Ile Gly Ala Ala Gly Thr Phe Trp Leu Tyr Thr
420 425 430

Ala Leu Asn Ile Ala Phe Val Gly Ile Thr Phe Trp Leu Ile Pro Glu
435 440 445

Thr Lys Asn Val Thr Leu Glu His Ile Glu Arg Lys Leu Met Ala Gly 450 460

Glu Lys Leu Arg Asn Ile Gly Ile 465 470

<210> 7

<211> 1416

<212> ADN

5 <213> Shigella dysenteriae

<400> 7

atggttacta tcaatacgga atctgcttta acgccacgtt ctttgcgtga tacgcggcgt 60 atgaatatgt ttgtttcggt agctgctgcg gtcgcaggat tgttatttgg tcttgatatc 120 ggcgtaatcg ccggagcgtt gccgttcatt accgatcact ttgtgctgac cagtcgtttg 180 caggaatggg tggttagtag catgatgctc ggcgcagcaa ttggtgcgct gtttaatggt 240 tggctgtcgt tecgcetggg gegtaaatac agcetgatgg egggggecat cetgtttgta 300 360 eteggtteta tagggteege ttttgetace agegtagaga tgttaatege egetegtgtg gtgctgggca ttgctgtcgg gatcgcgtct tacaccgctc ctctgtatct ttctgaaatg 420 gcaagtgaaa acgttcgcgg taagatgatc agtatgtacc agttgatggt cacactcggc 480 540 atcgtgctgg cgtttttatc cgatacagcg ttcagttata gcggtaactg gcgcgcaatg 600 ttgggggttc ttgctttacc agcagtcctg ctgattattc tggtggtctt cctgccaaat 660 agcccgcgct ggctggcgga aaaggggcgt catattgagg cggaagaagt gttgcgtatg

ctgcgcgata	cgtcggaaaa	agcgcgagaa	gaactcaacg	aaattcgtga	aagcctgaag	720
ttaaaacaag	gcggttgggc	actgtttaag	atcaaccgta	acgtccgtcg	tgctgtgttt	780
ctcggtatgt	tgttgcaggc	gatgcagcag	tttaccggta	tgaacatcat	catgtactat	840
gcgccgcgta	tcttcaaaat	ggcgggcttt	acgaccacag	aacaacagat	gattgcgact	900
ctggtcgtgg	gactgacctt	tatgttcgcg	accttcattg	cggtctttac	ggtagataaa	960
gcaggtcgta	aaccggctct	gaaaattggt	ttcagcgtga	tggcgttagg	cactctggtg	1020
ctgggctatt	gcctgatgca	gtttgataac	ggtacggctt	ccagtggctt	gtcctggctc	1080
tctgttggca	tgacgatgat	gtgtattgcc	ggttatgcga	tgagcgccgc	gccagtggtg	1140
tggateetgt	gctctgaaat	tcagccgctg	aaatgccacg	atttcggtat	tacctgttcg	1200
acgacgacaa	actgggtgtc	gaatatgatt	atcggcgcga	ccttcctgac	actgcttgat	1260
agcattggcg	ctgccggtac	gttctggctc	tacactgcgc	tgaacattgc	gtttgtgggc	1320
atcactttct	ggctcattcc	ggaaaccaaa	aatgtcacgc	tggaacatat	cgaacgcaaa	1380
ctgatggcag	gcgagaagtt	gagaaatatc	ggcgtc			1416

<210>8

<211> 472

<212> PRT

5 <213> Shigella dysenteriae

<400> 8

Met Val Thr Ile Asn Thr Glu Ser Ala Leu Thr Pro Arg Ser Leu Arg
1 5 10 15

Asp Thr Arg Arg Met Asn Met Phe Val Ser Val Ala Ala Ala Val Ala 20 25 30

Gly Leu Leu Phe Gly Leu Asp Ile Gly Val Ile Ala Gly Ala Leu Pro 35 40 45

Phe Ile Thr Asp His Phe Val Leu Thr Ser Arg Leu Gln Glu Trp Val 50 55 60

Val Ser Ser Met Met Leu Gly Ala Ala Ile Gly Ala Leu Phe Asn Gly 65 70 75 80

Trp Leu Ser Phe Arg Leu Gly Arg Lys Tyr Ser Leu Met Ala Gly Ala 85 90 95

Ile Leu Phe Val Leu Gly Ser Ile Gly Ser Ala Phe Ala Thr Ser Val
100 105 110

Glu Met Leu Ile Ala Ala Arg Val Val Leu Gly Ile Ala Val Gly Ile 115 120 125

Ala	Ser 130	Tyr	Thr	Ala	Pro	Leu 135	Tyr	Leu	Ser	Glu	Met 140	Ala	Ser	Glu	Asn
Val 145	Arg	Gly	Lys	Met	Ile 150	Ser	Met	Tyr	Gln	Leu 155	Met	Val	Thr	Leu	Gly 160
Ile	Val	Leu	Ala	Phe 165	Leu	Ser	Asp	Thr	Ala 170	Phe	Ser	Tyr	Ser	Gly 175	Asn
Trp	Arg	Ala	Met 180	Leu	Gly	Val	Leu	Ala 185	Leu	Pro	Ala	Val	Leu 190	Leu	Ile
Ile	Leu	Val 195	Val	Phe	Leu	Pro	Asn 200	Ser	Pro	Arg	Trp	Leu 205	Ala	Glu	Lys
Gly	Arg 210	His	Ile	Glu	Ala	Glu 215	Glu	Val	Leu	Arg	Met 220	Leu	Arg	Asp	Thr
Ser 225	Glu	Lys	Ala	Arg	Glu 230	Glu	Leu	Asn	Glu	Ile 235	Arg	Glu	Ser	Leu	Lys 240
Leu	Lys	Gln	Gly	Gly 2 4 5	Trp	Ala	Leu	Phe	Lys 250	Ile	Asn	Arg	Asn	Val 255	Arg
Arg	Ala	Val	Phe 260	Leu	Gly	Met	Leu	Leu 265	Gl n	Ala	Met	Gln	Gln 270	Phe	Thr
Gly	Met	Asn 275	Ile	Ile	Met	Tyr	Tyr 280	Ala	Pro	Arg	Ile	Phe 285	Lys	Met	Ala
Gly	Phe 290	Thr	Thr	Thr	Glu	G1n 295	Gln	Met	Ile	Ala	Thr 300	Leu	Val	Val	Gly
Leu 305	Thr	Phe	Met	Phe	Ala 310	Thr	Phe	Ile	Ala	Val 315	Phe	Thr	Val	Asp	Lys 320
Ala	Gly	Arg	Lys	Pro 325	Ala	Leu	Lys	Ile	Gly 330	Phe	Ser	Val	Met	Ala 335	Leu
Gly	Thr	Leu	Val 340	Leu	Gly	Tyr	Cys	Leu 345	Met	G ln	Phe	Asp	Asn 350	Gly	Thr
Ala	Ser	Ser 355	Gly	Leu	Ser	Trp	Leu 360	Ser	Val	Gly	Met	Thr 365	Met	Met	Cys
Ile	Ala 370	Gly	Tyr	Ala	Met	Ser 375	Ala	Ala	Pro	Val	Val 380	Trp	Ile	Leu	Cys

Ser Glu Ile Gln Pro Leu Lys Cys His Asp Phe Gly Ile Thr Cys Ser 385 390 395 400

Thr Thr Thr Asn Trp Val Ser Asn Met Ile Ile Gly Ala Thr Phe Leu
405 410 415

Thr Leu Leu Asp Ser Ile Gly Ala Ala Gly Thr Phe Trp Leu Tyr Thr
420 425 430

Ala Leu Asn Ile Ala Phe Val Gly Ile Thr Phe Trp Leu Ile Pro Glu
435 440 445

Thr Lys Asn Val Thr Leu Glu His Ile Glu Arg Lys Leu Met Ala Gly
450 455 460

Glu Lys Leu Arg Asn Ile Gly Val 465 470

<210>9

<211> 1416

<212> ADN

5 <213> Salmonella typhimurium

<400> 9

atggteteta ttaateatga etetgettta aegeegegtt egettegega eacaegaegt 60 atgaatatgt ttgtttcggt ttctgcagcg gtagcgggac tgttatttgg tctggatatc 120 ggcgttatcg ccggggcgct gccttttatt accgaccatt tcgtactgac cagccggctg 180 caggaatggg tcgtcagcag catgatgctt ggcgcggcaa ttggcgcatt atttaacggc 240 tggctttcat tccggctggg gcgtaagtat agcctgatgg ctggcgcgat tttgttcgtg 300 cteggetege tggggtegge gtttgettee agegtggaag tattgattgg egeeegegtg 360 atactgggcg tagcagtagg gattgcctcc tataccgcgc cgctttatct ctctgaaatg 420 gcaagtgaaa atgttcgcgg caaaatgatc agtatgtatc aactgatggt gacgttaggc 480 attgtgctgg cttttttatc cgatacggca ttcagctaca gcggcaactg gcgcgcgatg 540 ttgggegtge tggegetgee tgeggtgttg eteattatte tggtggtatt eetqeeqaat 600 agtccgcgtt ggctggcgca aaaaggtcgc catattgaag cggaagaggt gctqcqtatq 660 ctgcgcgata cctcggaaaa agcccgtgat gaactgaatg agattcggga aagcctcaaa 720 ctcaagcagg gagggtgggc attatttaaa gctaaccgca atgttcgccg cgccgtgttc 780 ctcggtatgc tgctacaggc aatgcagcag ttcaccggca tgaacatcat tatqtactat 840 gcgccgcgca tttttaaaat ggccggcttt accaccacgg aacagcaaat gatcgccacq 900 ctggtggtcg gactgacttt tatgttcgcg acgtttatcg ccgtctttac ggtcgataag 960 gccgggcgta aaccggcgtt aaaaatcggt ttcagcgtaa tggcgttagg gacattggtg 1020

ttgggctact gcctgatgca	gtttgataac	ggtacggcat	caagcggtct	ctcctggctt	1080
tccgttggga tgacgatgat	gtgtatcgcc	ggttacgcga	tgagcgccgc	tccggtggtg	1140
tggatactgt gttcggaaat	ccagccgctg	aaatgccgtg	attttggcat	tacctgttca	1200
accacgacaa actgggtatc	gaacatgatc	atcggcgcga	cattectgae	actgttggac	1260
agcattggcg cggcaggtac	attctggctc	tacacegege	tgaatatcgc	ttttatcggc	1320
atcactttct ggctgattcc	ggaaaccaaa	aatgtcaccc	tggagcacat	cgaacgcaag	1380
ctgatggcgg gcgagaagct	aagaaatatt	ggcgtg			1416

<210> 10

<211> 472

<212> PRT

5 <213> Salmonella typhimurium

<400> 10

Met Val Ser Ile Asn His Asp Ser Ala Leu Thr Pro Arg Ser Leu Arg 1 5 10 15

Asp Thr Arg Arg Met Asn Met Phe Val Ser Val Ser Ala Ala Val Ala 20 25 30

Gly Leu Phe Gly Leu Asp Ile Gly Val Ile Ala Gly Ala Leu Pro 35 40 45

Phe Ile Thr Asp His Phe Val Leu Thr Ser Arg Leu Gln Glu Trp Val 50 55 60

Val Ser Ser Met Met Leu Gly Ala Ala Ile Gly Ala Leu Phe Asn Gly 65 70 75 80

Trp Leu Ser Phe Arg Leu Gly Arg Lys Tyr Ser Leu Met Ala Gly Ala 85 90 95

Ile Leu Phe Val Leu Gly Ser Leu Gly Ser Ala Phe Ala Ser Ser Val 100 105 110

Glu Val Leu Ile Gly Ala Arg Val Ile Leu Gly Val Ala Val Gly Ile 115 120 125

Ala Ser Tyr Thr Ala Pro Leu Tyr Leu Ser Glu Met Ala Ser Glu Asn 130 135 140

Val Arg Gly Lys Met Ile Ser Met Tyr Gln Leu Met Val Thr Leu Gly 145 150 155

Ile Val Leu Ala Phe Leu Ser Asp Thr Ala Phe Ser Tyr Ser Gly Asn 165 170 175

Trp	Arg	Ala	Met 180	Leu	Gly	Val	Leu	Ala 185	Leu	Pro	Ala	Val	Leu 190	Leu	Ile
Ile	Leu	Val 195	Val	Phe	Leu	Pro	Asn 200	Ser	Pro	Arg	Trp	Leu 205	Ala	Gln	Lys
Gly	Arg 210	His	Ile	Glu	Ala	Glu 215	Glu	Val	Leu	Arg	Met 220	Leu	Arg	Asp	Thr
Ser 225	Glu	Lys	Ala	Arg	Asp 230	Glu	Leu	Asn	Gl u	Ile 235	Arg	Glu	Ser	Leu	Lys 240
Leu	Lys	Gln	Gly	Gly 245	Trp	Ala	Leu	Phe	Lys 250	Ala	Asn	Arg	Asn	Val 255	Arg
Arg	Ala	Val	Phe 260	Leu	Gly	Met	Leu	Leu 265	Gln	Ala	Met	Gln	Gln 270	Phe	Thr
Gly	Met	Asn 275	Ile	Ile	Met	Tyr	Tyr 280	Ala	Pro	Arg	Ile	Phe 285	Lys	Met	Ala
Gly	Phe 290	Thr	Thr	Thr	G1u	Gln 295	Gln	Met	Ile	Ala	Thr 300	Leu	Val	Val	Gly
Leu 305	Thr	Phe	Met	Phe	Ala 310	Thr	Phe	Ile	Ala	Val 315	Phe	Thr	Val	Asp	Lys 320
Ala	Gly	Arg	Lys	Pro 325	Ala	Leu	Lys	Ile	Gly 330	Phe	Ser	Val	Met	Ala 335	Leu
Gly	Thr	Leu	Val 340	Leu	Gly	Tyr	Cys	Leu 345	Met	Gln	Phe	Asp	Asn 350	Gly	Thr
Ala	Ser	Ser 355	Gly	Leu	Ser	Trp	Leu 360	Ser	Val	Gly	Met	Thr 365	Met	Met	Сув
Ile	Ala 370	Gly	Tyr	Ala	Met	Ser 375	Ala	Ala	Pro	Val	Val 380	Trp	Ile	Leu	Cys
Ser 385	Glu	Ile	Gln	Pro	Leu 390	Lys	Cys	Arg	Asp	Phe 395	Gly	Ile	Thr	Cys	Ser 400
Thr	Thr	Thr	Asn	Trp 405	Val	Ser	Asn	Met	Ile 410	Ile	Gly	Ala	Thr	Phe 415	Leu
Thr	Leu	Leu	Asp 420	Ser	Ile	Gly	Ala	Ala 425	Gly	Thr	Phe	Trp	Leu 430	Tyr	Thr

Ala Leu Asn Ile Ala Phe Ile Gly Ile Thr Phe Trp Leu Ile Pro Glu
435 440 445

Thr Lys Asn Val Thr Leu Glu His Ile Glu Arg Lys Leu Met Ala Gly 450 455 460

Glu Lys Leu Arg Asn Ile Gly Val 465 470

<210> 11

<211> 1431

<212> ADN

5 <213> Salmonella enterica

<400> 11

ttgtggcagg aaaatatggt ctctattaat catgactctg ctttaacgcc gcgttcgctt 60 cgcgacacac gacgtatgaa tatgtttgtt tcggtttctg cagcggtagc gggactgtta 120 tttggtetgg atateggegt tategeeggg gegetgeett ttattacega eeatttegta 180 ctgaccagcc ggctgcagga atgggtcgtc agcagtatga tgcttggcgc ggcaattggc 240 gcattattta acggctggct ttcattccgg ctggggcgta agtatagcct gatggctggc 300 gcgattttgt tcgtgctcgg ctcgctgggg tcggcgtttg cttccagcgt ggaagtattg 360 attggcgccc gcgtgatact gggcgtagca gtagggattg cgtcctatac cgcgccgctt 420 tatctctctg aaatggcaag tgaaaatgtt cgcggcaaaa tgatcagtat gtatcaactg 480 atggtgacgt taggcattgt gctggctttt ttatccgata cggcattcag ctacagcggc 540 aactggcgcg cgatgttggg cgtgctggcg ctgcctgcgg tgttgctcat tattctcgtg 600 gtatteetge egaatagtee gegttggetg gegeaaaaag gtegeeatat tgaageggaa 660 gaggtgctgc gtatgctgcg cgatacctcg gaaaaagccc gtgatgaact qaatqaqatt 720 cgggaaagcc tcaaactcaa gcagggcggg tgggcattat ttaaagctaa ccgcaatgtt 780 egeegegeeg tgtteetegg tatgetgeta caggeaatge ageagtteae eggeatgaae 840 atcattatgt actatgcgcc gcgcattttt aaaatggccg gctttaccac cacggaacag 900 caaatgateg ceaegetggt ggteggaetg acetttatgt tegegaegtt tategeegte 960 tttacggtcg ataaggccgg gcgtaaaccg gcgttaaaaa tcggtttcag cgtaatggcg 1020 ttagggacat tggtgttggg ctactgcctg atgcagtttg ataacggtac qqcatcaaqc 1080 ggtctctcct ggctttccgt tgggatgacg atgatgtgta tcgccggtta cgcgatgagc 1140 gccgctccgg tggtgtggat actgtgttcg gaaatccagc cgctgaaatq ccqtqatttt 1200 ggcattacct gttcaaccac gacaaactgg gtatcgaaca tgatcatcgg cgcgacattc 1260 ctgacactgt tggacagtat tggcgcggca ggtacattct ggctctacac cgcgctgaat 1320 ategetttta teggeateae tttetggetg atteeggaaa ccaaaaatgt caccetggag 1380 catategaac geaagetaat ggegggegag aagetaagaa atattggegt g 1431

<211; <212; <213;	PRT		a ente	erica
<400	> 12			
Met 1	Trp	Gln	Glu	As: 5
Pro	Arg	Ser	Leu 20	Ar
Ser	Ala	Ala 35	Val	Al
Ala	Gly 50	Ala	Leu	Pr
Leu 65	Gln	Glu	Trp	۷a
Ala	Leu	Phe	Asn	Gl

5

Met Trp Gln Glu Asn Met Val Ser Ile Asn His Asp Ser Ala Leu Thr

Pro Arg Ser Leu Arg Asp Thr Arg Arg Met Asn Met Phe Val Ser Val 20 25 30

Ser Ala Ala Val Ala Gly Leu Leu Phe Gly Leu Asp Ile Gly Val Ile 35 40 45

Ala Gly Ala Leu Pro Phe Ile Thr Asp His Phe Val Leu Thr Ser Arg
50 55 60

Leu Gln Glu Trp Val Val Ser Ser Met Met Leu Gly Ala Ala Ile Gly 65 70 75 80

Ala Leu Phe Asn Gly Trp Leu Ser Phe Arg Leu Gly Arg Lys Tyr Ser 85 90 95

Leu Met Ala Gly Ala Ile Leu Phe Val Leu Gly Ser Leu Gly Ser Ala
100 105 110

Phe Ala Ser Ser Val Glu Val Leu Ile Gly Ala Arg Val Ile Leu Gly 115 120 125

Val Ala Val Gly Ile Ala Ser Tyr Thr Ala Pro Leu Tyr Leu Ser Glu 130 135 140

Met Ala Ser Glu Asn Val Arg Gly Lys Met Ile Ser Met Tyr Gln Leu 145 150 155 160

Met Val Thr Leu Gly Ile Val Leu Ala Phe Leu Ser Asp Thr Ala Phe
165 170 175

Ser Tyr Ser Gly Asn Trp Arg Ala Met Leu Gly Val Leu Ala Leu Pro 180 185 190

Ala Val Leu Leu Ile Ile Leu Val Val Phe Leu Pro Asn Ser Pro Arg 195 200 205

Trp Leu Ala Gln Lys Gly Arg His Ile Glu Ala Glu Glu Val Leu Arg 210 215 220

	et 25	Leu	Arg	Asp	Thr	Ser 230	Glu	Lys	Ala	Arg	Asp 235	Glu	Leu	Asn	Glu	11e 240
A	rg	Glu	Ser	Leu	Lys 2 4 5	Leu	Lys	Gln	Gly	Gly 250	Trp	Ala	Leu	Phe	Lys 255	Ala
A	sn	Arg	Asn	Val 260	Arg	Arg	Ala	Val	Phe 265	Leu	Gly	Met	Leu	Leu 270	Gln	Ala
M	et	Gln	Gln 275	Phe	Thr	Gly	Met	Asn 280	Ile	Ile	Met	туг	Туг 285	Ala	Pro	Arç
1	le	Phe 290	Lys	Met	Ala	Gly	Phe 295	Thr	Thr	Thr	Glu	Gln 300	Gln	Met	Ile	Ala
	hr 05	Leu	Val	Val	Gly	Leu 310	Thr	Phe	Met	Phe	Ala 315	Thr	Phe	Ile	Ala	Va]
P	he	Thr	Val	Asp	Lys 325	Ala	Gly	Arg	Lys	Pro 330	Ala	Leu	Lys	Ile	Gly 335	Phe
S	er	Val	Met	Ala 340	Leu	Gly	Thr	Leu	Val 345	Leu	Gly	Tyr	Cys	Leu 350	Met	Gln
P)	he	Asp	Asn 355	Gly	Thr	Ala	Ser	Ser 360	Gly	Leu	Ser	Trp	Leu 365	Ser	Val	Gly
M	et	Thr 370	Met	Met	Cys	Ile	Ala 375	Gly	Tyr	Ala	Met	Ser 380	Ala	Ala	Pro	Val
	al 85	Trp	Ile	Leu	Cys	Ser 390	Glu	Ile	Gln	Pro	Leu 395	Lys	Cys	Arg	Asp	Phe 400
G	ly	Ile	Thr	Cys	Ser 405	Thr	Thr	Thr	Asn	Trp 410	Val	Ser	Asn	Met	Ile 415	Ile
G.	ly	Ala	Thr	Phe 420	Leu	Thr	Leu	Leu	Asp 425	Ser	Ile	Gly	Ala	Ala 430	Gly	Thr
P	he	Trp	Leu 435	Tyr	Thr	Ala	Leu	Asn 440	Ile	Ala	Phe	Ile	Gly 445	Ile	Thr	Phe
T	rp	Leu 450	Ile	Pro	Glu	Thr	Lys 455	Asn	Val	Thr	Leu	Glu 460	His	Ile	Glu	Arg
	ys 65	Leu	Met	Ala	Gly	Glu 470	Lys	Leu	Arg	Asn	Ile 475	Gly	Val			
<2 <2	211> 212>	> 13 > 1419 > ADN > Kleb	1	pneui	monia	e										

<400> 13

atgacttcaa	tcagtaacga	ctctgcatta	acgccgcgga	cacaacgtga	cacccggcgg	60
atgaactggt	ttgtttctat	cgctgcggcg	gtagcggggt	tgctctttgg	cctggatatc	120
ggcgtgatat	ccggggcgct	gccctttatt	accgaccact	tcaccttatc	cagccagctt	180
caggagtggg	tggtcagcag	tatgatgttg	ggggcggcga	tcggtgcgct	gtttaacggc	240
tggctgtcgt	teegeetegg	ccgtaaatac	agcctgatgg	cgggggctgt	gctctttgtt	300
gccggctcta	teggeteege	ttttgccgcc	agcgtggagg	tgctgctgat	agcccgcgtg	360
gtgttggggg	tggccgtcgg	gatcgcttcc	tataccgcgc	cgttgtacct	ctccgagatg	420
gccagtgaga	acgtgcgcgg	gaaaatgatc	agtatgtacc	agetgatggt	gaccetegge	480
attgtgctgg	cgtttctttc	cgatactgcc	tttagctaca	gcggtaactg	gcgcgccatg	540
ttaggcgtgc	tggcactgcc	ggcggtgatc	ctgattattc	tggtcgtctt	tttgccgaac	600
agcccgcgct	ggctggcgga	gaaaggacgc	catatcgaag	cggaagaggt	gctgcggatg	660
ctgcgcgata	cctcggaaaa	ggcgcgcgac	gagettaacg	agatccgtga	gagcctgaag	720
ctgaagcagg	gcggctgggc	gttgtttaag	gtcaatcgta	acgtgcgccg	ggcggtgttc	780
cttggcatgc	tgctgcaggc	gatgcagcag	ttcaccggca	tgaacatcat	catgtactac	840
gegeegegta	tctttaaaat	ggcgggcttt	accactaccg	aacagcagat	gatcgccacc	900
ctggtggtgg	gcctgacctt	tatgtttgcc	acctttattg	cggtgttcac	ggtggataaa	960
gcgggtcgta	agccggcgct	aaaaatcggc	tttagcgtga	tggcgctggg	caccctggtg	1020
ctgggctact	gcctgatgca	gttcgacaat	ggcaccgcct	ccagcggtct	ctcctggctt	1080
teegteggea	tgaccatgat	gtgtattgcc	gggtatgcga	tgagcgcggc	gccggtggtg	1140
tggatcctct	gctccgagat	ccagccgctg	aaatgccgcg	acttcggtat	cacctgctcg	1200
accaccacca	actgggtgtc	gaacatgatc	atcggcgcca	ccttcctgac	gctgcttgac	1260
gcgattggcg	ccgccggcac	cttctggctc	tacacggtgc	tcaacgtggc	ctttatcggc	1320
gtcaccttct	ggctgatccc	ggaaaccaag	aatgtcaccc	tcgagcacat	tgagcgcaac	1380
ctgatggcgg	gcgagaagct	gcgcaacatc	ggtaaccgt			1419

<210> 14

<211> 473 <212> PRT <213> Klebsiella pneumoniae

Met Thr Ser Ile Ser Asn Asp Ser Ala Leu Thr Pro Arg Thr Gln Arg 5 10 15

Asp	Thr	Arg	Arg 20	Met	Asn	Trp	Phe	Val 25	Ser	Ile	Ala	Ala	Ala 30	Val	Ala
Gly	Leu	Leu 35	Phe	Gly	Leu	Asp	Ile 40	Gly	Val	Ile	Ser	Gly 45	Ala	Leu	Pro
Phe	Ile 50	Thr	Asp	His	Phe	Thr 55	Leu	Ser	Ser	Gln	Leu 60	Gln	Glu	Trp	Val
Val 65	Ser	Ser	Met	Met	Leu 70	Gly	Ala	Ala	Ile	Gly 75	Ala	Leu	Phe	Asn	80 80
Trp	Leu	Ser	Phe	Arg 85	Leu	Gly	Arg	Lys	Tyr 90	Ser	Leu	Met	Ala	Gly 95	Ala
Val	Leu	Phe	Val 100	Ala	Gly	Ser	Ile	Gly 105	Ser	Ala	Phe	Ala	Ala 110	Ser	Val
Glu	Val	Leu 115	Leu	Ile	Ala	Arg	Val 120	Val	Leu	Gly	Val	Ala 125	Val	Gly	Ile
Ala	Ser 130	Tyr	Thr	Ala	Pro	Leu 135	Tyr	Leu	Ser	Glu	Met 140	Ala	Ser	Glu	Asn
Val 145	Arg	Gly	Lys	Met	Ile 150	Ser	Met	Tyr	Gln	Leu 155	Met	Val	Thr	Leu	Gly 160
Ile	Val	Leu	Ala	Phe 165	Leu	Ser	Asp	Thr	Ala 170	Phe	Ser	туг	Ser	Gly 175	Asn
Trp	Arg	Ala	Met 180	Leu	Gly	Val	Leu	Ala 185	Leu	Pro	Ala	Val	Ile 190	Leu	Ile
Ile	Leu	Val 195	Val	Phe	Leu	Pro	Asn 200	Ser	Pro	Arg	Trp	Leu 205	Ala	Glu	Lys
Gly	Arg 210	His	Ile	Glu	Ala	Glu 215	Glu	Val	Leu	Arg	Met 220	Leu	Arg	Asp	Thr
Ser 225	Glu	Lys	Ala	Arg	Asp 230	Gl u	Leu	Asn	Glu	11e 235	Arg	Glu	Ser	Leu	Lys 240
Leu	Lys	Gln	Gly	Gly 245	Trp	Ala	Leu	Phe	Lys 250	Val	Asn	Arg	Asn	Val 255	Arg
Arg	Ala	Val	Phe 260	Leu	Gly	Met	Leu	Leu 265	Gln	Ala	Met	Gln	Gln 270	Phe	Thr

Gly Met Asn Ile Ile Met Tyr Tyr Ala Pro Arg Ile Phe Lys Met Ala

		275	1				280					285				
Gly	Phe 290		Thr	Thr	Glu	Gln 295	Gln	Met	Ile	Ala	Thr 300	Leu	Val	Val	Gly	
Leu 305	Thr	Phe	Met	Phe	Ala 310	Thr	Phe	Ile	Ala	Val 315	Phe	Thr	Val	Asp	Lys 320	
Ala	Gly	Arg	Lys	Pro 325	Ala	Leu	Lys	Ile	Gly 330	Phe	Ser	Val	Met	Ala 335	Leu	
Gly	Thr	Leu	Val 340	Leu	Gly	Tyr	Cys	Leu 3 4 5	Met	Gln	Phe	Asp	Asn 350	Gly	Thr	
Ala	Ser	Ser 355	Gly	Leu	Ser	Trp	Leu 360	Ser	Val	Gly	Met	Thr 365	Met	Met	Суз	
Ile	Ala 370	Gly	Tyr	Ala	Met	Ser 375	Ala	Ala	Pro	Val	Val 380	Trp	Ile	Leu	Cys	
Ser 385	Glu	Ile	Gln	Pro	Leu 390	Lys	Cys	Arg	Asp	Phe 395	Gly	Ile	Thr	Cys	Ser 400	
Thr	Thr	Thr	Asn	Trp 405	Val	Ser	Asn	Met	Ile 410	Ile	Gly	Ala	Thr	Phe 415	Leu	
Thr	Leu	Leu	Asp 420	Ala	Ile	Gly	Ala	Ala 425	Gly	Thr	Phe	Trp	Leu 430	Tyr	Thr	
Val	Leu	Asn 435	Val	Ala	Phe	Ile	Gly 440	Val	Thr	Phe	Trp	Leu 445	Ile	Pro	Glu	
Thr	Lys 450	Asn	Val	Thr	Leu	Glu 455	His	Ile	Glu	Arg	Asn 460	Leu	Met	Ala	Gly	
Glu 465	Lys	Leu	Arg	Asn	Ile 470	Gly	Asn	Arg								
<210><211><211><212><213>	• 1416 • ADN	1	oxyto	ca												
<400>	15															
atga	cca	ctc	tcag	tcac	ga ci	tcta	caac	c at	gccg	cgta	cgc	agcg	rcga	taco	cggcgc	60
atga	atca	agt	ttgt	ctcc	at to	gccg	ccgc	g gt	ggca	gggt	tgo	tgtt	tgg	cctc	gatatc	120
gggg	rtgai	ttg	ccgg	ggcg	ct g	ccct	ttati	t ac	cgac	catt	ttg	tttt	atc	cago	egectg	180
cago	ragto	ggg ·	tggt	gagc	ag ca	atgai	tgct	g gg	agcc	gcca	tcg	gege	gtt	attt	aacggc	240

tggctctctt	tccgcctcgg	gcgcaaatac	agcctgatgg	tgggcgcggt	gctgttcgtt	300
geeggeteeg	tgggctccgc	gtttgcgacc	agcgtcgaaa	tgctgctggt	ggcaaggatc	360
gttctcgggg	tegeegtggg	gategeetet	tataccgcgc	cgctgtacct	gtcggaaatg	420
gcgagcgaaa	acgtgcgcgg	caagatgatc	agcatgtatc	agctgatggt	gacgctgggt	480
atcgtgatgg	cgtttctctc	cgacaccgcg	ttcagctaca	gcggcaactg	gcgggcgatg	540
cttggcgtac	tggcgctgcc	ggcggtggtg	ctgattattc	tggtgatctt	cctgccgaac	600
agcccgcgct	ggctggcgga	aaaagggcgt	cacgtggaag	cggaagaggt	gctgcggatg	660
ctgcgcgaca	cgtcagaaaa	agecegtgae	gagetcaacg	agatccgcga	aagcctgaag	720
ctgaagcagg	gcggctgggc	gctgtttaag	gtcaaccgca	acgtgcggcg	ggcggtattc	780
ctcggcatgc	tgttgcaggc	gatgcagcag	tttaccggta	tgaatatcat	catgtactac	840
gcgccgcgca	tctttaaaat	ggcgggcttc	accaccaccg	aacagcagat	ggtcgcgacc	900
ctggtggttg	gcctgacctt	tatgttcgcc	acctttatcg	ccgtctttac	cgtcgataag	960
gccggacgta	agccggcgct	gaaaatcggt	tttagcgtga	tggccatcgg	cacgctggtg	1020
ctgggctact	gtctgatgca	gtttgataac	ggcaccgcct	ccagcggtct	ctcctggctg	1080
tcggtgggga	tgaccatgat	gtgtatcgcc	ggctatgcga	tgagcgccgc	gccggtggtg	1140
tggatcctgt	gttcggaaat	tcagccgctg	aagtgccgcg	atttcggcat	cacctgctca	1200
accaccacca	actgggtgtc	gaacatgatt	atcggcgcga	ccttcctgac	gctgctggac	1260
gcgatcggcg	cggcaggaac	cttctggctt	tataccgcgc	tgaacgtcgc	ctttatcggc	1320
gtgacgttct	ggctgatccc	ggaaaccaaa	aacgtcaccc	tggagcatat	tgaacgcagg	1380
ctgatgtccg	gcgagaagct	gcgcaatatc	ggcaat			1416

<210> 16

<211> 472

<212> PRT

<213> Klebsiella oxytoca

<400> 16

Met Thr Thr Leu Ser His Asp Ser Thr Thr Met Pro Arg Thr Gln Arg 1 5 10 15

Asp Thr Arg Arg Met Asn Gln Phe Val Ser Ile Ala Ala Ala Val Ala 20 25 30

Gly Leu Phe Gly Leu Asp Ile Gly Val Ile Ala Gly Ala Leu Pro 35 40 45

Phe Ile Thr Asp His Phe Val Leu Ser Ser Arg Leu Gln Glu Trp Val 50 55 60

Val Ser Ser Met Met Leu Gly Ala Ala Ile Gly Ala Leu Phe Asn Gly

65					70					75					80
Trp	Leu	Ser	Phe	Arg 85	Leu	Gly	Arg	Lys	Tyr 90	Ser	Leu	Met	Val	Gly 95	Ala
Val	Leu	Phe	Val 100	Ala	Gly	Ser	Val	Gly 105		Ala	Phe	Ala	Thr 110	Ser	Val
Glu	Met	Leu 115	Leu	Val	Ala	Arg	Ile 120	Val	Leu	Gly	Val	Al a 125	Val	Gly	Ile
Ala	Ser 130	Tyr	Thr	Ala	Pro	Leu 135	Tyr	Leu	Ser	Glu	Met 140	Ala	Ser	Glu	Asn
Val 145	Arg	Gly	Lys	Met	Ile 150	Ser	Met	Tyr	Gln	Leu 155	Met	Val	Thr	Leu	Gly 160
Ile	Val	Met	Ala	Phe 165	Leu	Ser	Asp	Thr	Ala 170	Phe	Ser	Tyr	Ser	Gly 175	Asn
Trp	Arg	Ala	Met 180	Leu	Gly	Val	Leu	Ala 185	Leu	Pro	Ala	Val	Val 190	Leu	Ile
Ile	Leu	Val 195	Ile	Phe	Leu	Pro	Asn 200	Ser	Pro	Arg	Trp	Leu 205	Ala	Glu	Lys
Gly	Arg 210	His	Val	Glu	Ala	Glu 215	Glu	Val	Leu	Arg	Met 220	Leu	Arg	Asp	Thr
Ser 225	Glu	Lys	Ala	Arg	Asp 230	Glu	Leu	Asn	Glu	Ile 235	Arg	Glu	Ser	Leu	Lys 240
Leu	Lys	Gln	Gly	Gly 245	Trp	Ala	Leu	Phe	Lys 250	Val	Asn	Arg	Asn	Val 255	Arg
Arg	Ala	Val	Phe 260	Leu	Gly	Met	Leu	Leu 265	Gln	Ala	Met	Gln	Gln 270	Phe	Thr
Gly	Met	Asn 275	Ile	Ile	Met	Tyr	Tyr 280	Ala	Pro	Arg	Ile	Phe 285	Lys	Met	Ala
Gly	Phe 290	Thr	Thr	Thr	Glu	G1n 295	Gln	Met	Val	Ala	Thr 300	Leu	Val	Val	Gly
Leu 305	Thr	Phe	Met	Phe	Ala 310	Thr	Phe	Ile	Ala	Val 315	Phe	Thr	Val	Asp	Lys 320
Ala	Gly	Arg	Lys	Pro 325	Ala	Leu	Lys	Ile	Gly 330	Phe	Ser	Val	Met	Ala 335	Ile

Gly	Thr	Leu	Val	Leu	Gly	Tyr	Cys	Leu	Met	Gln	Phe	Asp	Asn	Gly	Thr
			340					345					350		

Ala Ser Ser Gly Leu Ser Trp Leu Ser Val Gly Met Thr Met Met Cys 355 360 365

Ile Ala Gly Tyr Ala Met Ser Ala Ala Pro Val Val Trp Ile Leu Cys 370 380

Ser Glu Ile Gln Pro Leu Lys Cys Arg Asp Phe Gly Ile Thr Cys Ser 385 390 395 400

Thr Thr Thr Asn Trp Val Ser Asn Met Ile Ile Gly Ala Thr Phe Leu 405 410 415

Thr Leu Leu Asp Ala Ile Gly Ala Ala Gly Thr Phe Trp Leu Tyr Thr
420 425 430

Ala Leu Asn Val Ala Phe Ile Gly Val Thr Phe Trp Leu Ile Pro Glu
435 440 445

Thr Lys Asn Val Thr Leu Glu His Ile Glu Arg Arg Leu Met Ser Gly 450 460

Glu Lys Leu Arg Asn Ile Gly Asn 465 470

<210> 17

<211> 1413

<212> ADN

5 <213> Enterobacter cancerogenus

<400> 17

atgacatote toaatgacte tacceteatg cocgeggege tgcgcgacae cegeogeatg 60 aaccagtttg teteegtege ggeggeegta gegggtetge tgtttggget ggatategge 120 gttatcgccg gtgcgctgcc gtttatcacc gatcatttca cgttaagtca tcgcctgcag 180 gagtgggtgg tgagcagcat gatgctgggc gccgcaattg gggcgttgtt caacggctgg 240 ctctcqttcc gcctgggacg aaagtacagc ctgatggtcg gggcgatcct gtttgtggcc 300 ggttcactgg ggtcggcgtt tgccacaagc gttgaggtgc tgttgctctc ccgcgtgctg 360 cttggcgtgg cggtggggat cgcctcctac accgcgccgc tgtatctctc cgaaatggcg 420 agegagaacg tgcgcggcaa gatgatcagc atgtatcagc tgatggtgac gctcggcatc 480 gtgctggcgt ttctttccga tacctggttc agctacaccg gtaactggcg cgccatgctc 540 ggcgtgctgg cgttgcccgc gctgttgctg atggtgctgg tgattttcct gccgaacagc 600 ccgcgctggc tggcgcaaaa aggccgccac gtcgaggcgg aagaagtgct gcgaatgctg 660

cgtgacacct	ctgaaaaagc	gcgtgaagag	ttgaacgaga	tccgcgaaag	cctgaagctg	720
aagcagggcg	gctgggcgct	gtttaaggtc	aaccgcaacg	tgcgccgcgc	cgtgtttctg	780
ggaatgctct	tgcaggcgat	gcagcagttt	acgggcatga	acatcatcat	gtactacgcc	840
ccgcgcatct	ttaaaatggc	gggcttcacc	acgaccgage	agcagatgat	cgccaccctg	900
gtggtcgggc	tgacctttat	gttcgccacc	tttattgccg	tatttaccgt	cgataaagcc	960
ggacgtaaac	cggcgctgaa	aattggcttt	agcgtgatgg	cgctcggtac	gctgatcctc	1020
ggctactgcc	tgatgcagtt	tgatcagggc	acggcatcga	gcgggctttc	ctggctctcc	1080
gtcggtatga	ccatgatgtg	cattgccggt	tatgcaatga	gcgccgcgcc	ggtggtgtgg	1140
atcctgtgct	ctgaaattca	gccgctaaaa	tgccgcgact	ttggtatcac	ctgttccacc	1200
accaccaact	gggtgtcgaa	catgattatc	ggtgcgacct	tcctgacgct	gctggatgcc	1260
attggtgcag	cgggaacatt	ctggctctac	acggtgctga	acgtggcgtt	tattggcgta	1320
acgttctggc	tgatcccaga	aaccaaaggg	gtgacgctgg	agcacattga	acgcaagctg	1380
atggcggggg	agaagttaaa	aaacataggc	gtg			1413

<400> 18

Met Thr Ser Leu Asn Asp Ser Thr Leu Met Pro Ala Ala Leu Arg Asp 1 5 10 15

Thr Arg Arg Met Asn Gln Phe Val Ser Val Ala Ala Ala Val Ala Gly 20 25 30

Leu Leu Phe Gly Leu Asp Ile Gly Val Ile Ala Gly Ala Leu Pro Phe 35 40 45

Ile Thr Asp His Phe Thr Leu Ser His Arg Leu Gln Glu Trp Val Val 50 55 60

Ser Ser Met Met Leu Gly Ala Ala Ile Gly Ala Leu Phe Asn Gly Trp 65 70 75 80

Leu Ser Phe Arg Leu Gly Arg Lys Tyr Ser Leu Met Val Gly Ala Ile 85 90 95

Leu Phe Val Ala Gly Ser Leu Gly Ser Ala Phe Ala Thr Ser Val Glu
100 105 110

Val Leu Leu Ser Arg Val Leu Leu Gly Val Ala Val Gly Ile Ala 115 120 125

<210> 18

<211> 471

<212> PRT

<213> Enterobacter cancerogenus

Ser	Tyr 130	Thr	Ala	Pro	Leu	Tyr 135	Leu	Ser	Glu	Met	Ala 140	Ser	Glu	Asn	Val
Arg 145	Gly	Lys	Met	Ile	Ser 150	Met	Tyr	Gln	Leu	Met 155	Val	Thr	Leu	Gly	Ile 160
Val	Leu	Ala	Phe	Leu 165	Ser	Asp	Thr	Trp	Phe 170	Ser	Tyr	Thr	Gly	Asn 175	Trp
Arg	Ala	Met	Leu 180	Gly	Val	Leu	Ala	Leu 185	Pro	Ala	Leu	Leu	Leu 190	Met	Val
Leu	Val	Ile 195	Phe	Leu	Pro	Asn	Ser 200	Pro	Arg	Trp	Leu	Ala 205	Gln	Lys	Gly
Arg	His 210	Val	Glu	Ala	Glu	Glu 215	Val	Leu	Arg	Met	Leu 220	Arg	Asp	Thr	Ser
Glu 225	Lys	Ala	Arg	Glu	Glu 230	Leu	Asn	Glu	Ile	Arg 235	Glu	Ser	Leu	Lys	Leu 240
Lys	Gln	Gly	Gly	Trp 245	Ala	Leu	Phe	Lys	Val 250	Asn	Arg	Asn	Val	Arg 255	Arg
Ala	Val	Phe	Leu 260	Gly	Met	Leu	Leu	Gln 265	Ala	Met	Gln	Gln	Phe 270	Thr	Gly
Met	Asn	Ile 275	Ile	Met	Tyr	Tyr	Ala 280	Pro	Arg	Ile	Phe	Lys 285	Met	Ala	Gly
Phe	Thr 290	Thr	Thr	Glu	Gln	Gln 295	Met	Ile	Ala	Thr	Leu 300	Val	Val	Gly	Leu
Thr 305	Phe	Met	Phe	Ala	Thr 310	Phe	Ile	Ala	Val	Phe 315	Thr	Val	Asp	Lys	Ala 320
Gly	Arg	Lys	Pro	Ala 325	Leu	Lys	Ile	Gly	Phe 330	Ser	Val	Met	Ala	Leu 335	Gly
Thr	Leu	Ile	Leu 340	Gly	Tyr	Суз	Leu	Met 345	Gln	Phe	Asp	Gln	Gly 350	Thr	Ala
Ser	Ser	Gly 355	Leu	Ser	Trp	Leu	Ser 360	Val	Gly	Met	Thr	Met 365	Met	Cys	Ile
Ala	Gly 370	Tyr	Ala	Met	Ser	Ala 375	Ala	Pro	Val	Val	Trp 380	Ile	Leu	Cys	Ser

Glu Ile Gln Pro Leu Lys Cys Arg Asp Phe Gly Ile Thr Cys Ser Thr 385 390 395 400

Thr Thr Asn Trp Val Ser Asn Met Ile Ile Gly Ala Thr Phe Leu Thr 405 410 415

Leu Leu Asp Ala Ile Gly Ala Ala Gly Thr Phe Trp Leu Tyr Thr Val
420 425 430

Leu Asn Val Ala Phe Ile Gly Val Thr Phe Trp Leu Ile Pro Glu Thr 435 440 445

Lys Gly Val Thr Leu Glu His Ile Glu Arg Lys Leu Met Ala Gly Glu
450 455 460

Lys Leu Lys Asn Ile Gly Val 465 470

<210> 19

<211> 1392

<212> ADN

5 <213> Bacillus amyloliquefaciens

<400> 19

atquaquate acceptace auttopetea autotaceto teacteggea geattecaug 60 tggtttgtca ttctcatctc atgcgcggcc ggactgggag ggcttttgta cggttatgac 120 acggcggtga tttccggcgc tatcggtttc ctgaaagatt tgtaccgctt aagtcctttt 180 atggaagggc tegtgattte aagcattatg ateggeggtg tttteggegt egggatttee 240 ggatttttga gtgaccgttt cggacggaga aagattttga tggcagcggc gctgttgttt 300 geggtgteag eggttgtete tgegetttet caaagtgtgt etteettagt gategeeaqa 360 gtcatcggcg gtctgggaat cggcatgggc tcctcgcttt ctgtcacgta tattaccgaa 420 geogeteege eggecatacg eggeagtetg tetteactgt atcagetgtt tacgatatta 480 gggatatecg geaettattt tattaacett geegteeage agteeggete gtatgaatgg 540 ggagtgcaca ceggetggeg gtggatgete gettaeggea tgatteegte eqteatettt 600 tttatcgtgc tgcttatcgt gccggaaagt ccgcgctggc ttgcgaaagc ggggcgccgg 660 aatgaageee tegeegtget gaegegeatt aaeggegage agaeegegaa aqaaqaaate 720 aaacaaatcg aaacgtcttt acaattagaa aaaatgggtt cattgtctca gctgtttaag 780 ccggggctga gaaaagcgct tgtgatcggg attctgctgg ctttattcaa tcaggtcatc 840 ggcatgaacg caattacgta ttacgggccg gaaattttca aaatgatggg cttcqqacag 900 aatgeggggt ttateaegae atgeategte ggtgtegttg aagtgatttt caccattate 960 geggttettt tagtegataa ggtaggeegg aaaaaaetga tgggggtegg atetgeettt 1020

atggcgctgt	tcatgatctt	aatcggggca	tccttttatt	ttcagctggc	gagcggtccg	1080
gctttagtcg	tcatcatatt	gggattcgtc	gccgctttct	gcgtatcagt	cgggccgatt	1140
acatggatca	tgatttcgga	aatctttccg	aaccacctcc	gcgcacgcgc	cgccggtatt	1200
gcgacgatat	tcttatgggg	ggcgaactgg	gcgatcggcc	agttcgtgcc	gatgatgatc	1260
agcgggttag	ggcttgcgta	caccttctgg	atattcgccg	tcattaatat	tctctgtttc	1320
ttgtttgtcg	tgacgatctg	ccctgagacg	aaaaataaat	cattagaaga	aatagaaaaa	1380
ctctggataa	aa					1392

<210> 20

<211> 464

<212> PRT

5 <213> Bacillus amyloliquefaciens

<400> 20

Met Lys Asn His Pro Ala Pro Ile Gly Ser Asn Val Pro Val Thr Arg 1 5 10 15

Gln His Ser Lys Trp Phe Val Ile Leu Ile Ser Cys Ala Ala Gly Leu 20 25 30

Gly Gly Leu Leu Tyr Gly Tyr Asp Thr Ala Val Ile Ser Gly Ala Ile 35 40 45

Gly Phe Leu Lys Asp Leu Tyr Arg Leu Ser Pro Phe Met Glu Gly Leu 50 55 60

Val Ile Ser Ser Ile Met Ile Gly Gly Val Phe Gly Val Gly Ile Ser 65 70 75 80

Gly Phe Leu Ser Asp Arg Phe Gly Arg Arg Lys Ile Leu Met Ala Ala 85 90 95

Ala Leu Leu Phe Ala Val Ser Ala Val Val Ser Ala Leu Ser Gln Ser 100 105 110

Val Ser Ser Leu Val Ile Ala Arg Val Ile Gly Gly Leu Gly Ile Gly 115 120 125

Met Gly Ser Ser Leu Ser Val Thr Tyr Ile Thr Glu Ala Ala Pro Pro 130 135 140

Ala Ile Arg Gly Ser Leu Ser Ser Leu Tyr Gln Leu Phe Thr Ile Leu 145 150 155 160

Gly Ile Ser Gly Thr Tyr Phe Ile Asn Leu Ala Val Gln Gln Ser Gly
165 170 175

	Ser	Tyr	Glu	Trp 180		Val	His	Thr	Gly 185		Arg	Trp	Met	Leu 190		Туі
	Gly	Met	Ile 195	Pro	Ser	Val	Ile	Phe 200	Phe	Ile	Val	Leu	Leu 205	Ile	Val	Pro
	Glu	Ser 210	Pro	Arg	Trp	Leu	Ala 215	Lys	Ala	Gly	Arg	Arg 220		Glu	Ala	Lev
	Ala 225	Val	Leu	Thr	Arg	11e 230	Asn	Gly	Glu	Gln	Thr 235	Ala	Lys	G1u	Glu	11e 240
	Lys	Gln	Ile	Glu	Thr 245	Ser	Leu	Gln	Leu	Glu 250	Lys	Met	Gly	Ser	Leu 255	
	Gln	Leu	Phe	Lys 260	Pro	Gly	Leu	Arg	Lys 265	Ala	Leu	Val	Ile	Gly 270	Ile	Leu
	Leu	Ala	Leu 275	Phe	Asn	Gln	Val	11e 280	Gly	Met	Asn	Ala	Ile 285	Thr	Tyr	Tyr
	Gly	Pro 290	Glu	Ile	Phe	Lys	Met 295	Met	Gly	Phe	Gly	Gln 300	Asn	Ala	Gly	Phe
	11e 305	Thr	Thr	Суз	Ile	Val 310	Gly	Val	Val	Glu	Val 315	Ile	Phe	Thr	Ile	11e 320
į	Ala	Val	Leu	Leu	Val 325	Asp	Lys	Val	Gly	Arg 330	Lys	Lys	Leu	Met	Gly 335	Val
•	Gly	Ser	Ala	Phe 340	Met	Ala	Leu	Phe	Met 345	Ile	Leu	Ile	Gly	Ala 350	Ser	Phe
•	Tyr	Phe	Gln 355	Leu	Ala	Ser	Gly	Pro 360	Ala	Leu	Val	Val	11e 365	Ile	Leu	Gly
1	Phe	Val 370	Ala	Ala	Phe	Суз	Val 375	Ser	Val	Gly	Pro	Ile 380	Thr	Trp	Ile	Met
	11e 385	Ser	Gl u	Ile	Phe	Pro 390	Asn	His	Leu	Arg	Ala 395	Arg	Ala	Ala	Gly	11e 400
2	Ala	Thr	Ile	Phe	Leu 405	Trp	Gly	Ala	Asn	Trp 410	Ala	Ile	Gly	Gln	Phe 415	Val
1	Pro	Met	Met	Ile 420	Ser	Gly	Leu	Gly	Leu 425	Ala	Tyr	Thr	Phe	Trp	Ile	Phe

Ala Val Ile Asn Ile Leu Cys Phe Leu Phe Val Val Thr Ile Cys Pro 435 440 445

Glu Thr Lys Asn Lys Ser Leu Glu Glu Ile Glu Lys Leu Trp Ile Lys 450 460

<210> 21

<211> 1500

<212> ADN

5 <213> Escherichia coli

<400> 21

60 atgacqattt ttgataatta tgaagtgtgg tttgtcattg gcagccagca tctgtatggc 120 ccggaaaccc tgcgtcaggt cacccaacat gccgagcacg tcgttaatgc gctgaatacg gaagcqaaac tgccctgcaa actggtgttg aaaccgctgg gcaccacgcc ggatgaaatc 180 accoctattt occocoacoc gaattacoac gateottoco ctootctoot ootgocto 240 300 cacaccttct ccccggccaa aatgtggatc aacggcctga ccatgctcaa caaaccgttg ctgcaattcc acacccagtt caacgcggcg ctgccgtggg acagtatcga tatggacttt 360 atgaacetga accagactge acatggeggt egegagtteg getteattgg egegegtatg 420 480 cgtcagcaac atgccgtggt taccggtcac tggcaggata aacaagccca tgagcgtatc ggeteetgga tgegteagge ggtetetaaa caggataece gteatetgaa agtetgeega 540 tttggcgata acatgcgtga agtggcggtc accgatggcg ataaagttgc cgcacagatc 600 660 aagtteggtt teteegteaa taeetgggeg gttggegate tggtgeaggt ggtgaaetee atcaqeqaeq qeqatqttaa egeqetqqte gatgagtaeq aaagetqeta caccatqaeq 720 780 cctgccacae aaatccacgg caaaaaacga cagaacgtgc tggaagcggc gcgtattgag ctggggatga agcgtttcct ggaacaaggt ggcttccacg cgttcaccac cacctttgaa 840 gatttgcacg gtctgaaaca gcttcctggt ctggccgtac agcgtctgat gcagcagggt 900 tacggetttg egggegaagg egaetggaaa aetgeegeee tgettegeat eatgaaggtg 960 1020 atgtcaaccg gtctgcaggg cggcacctcc tttatggagg actacaccta tcacttcgag aaagqtaatg acctggtgct cggctcccat atgctggaag tctgcccqtc qatcgccgca 1080 1140 gaagagaaac egateetega egtteageat eteggtattg gtggtaagga egateetgee 1200 egectgatet teaataceea aaceggeeea gegattgteg eeagettgat tgatetegge qatcqttacc gtctactggt taactgcatc gacacggtqa aaacaccgca ctccctqccg 1260 aaactgeegg tggegaatge getgtggaaa gegeaacegg atetgeeaae tgetteegaa 1320 gegtggatee tegetggtgg egegeaceat accgtettea gecatgeact gaaceteaac 1380 gatatgcgcc aattcgccga gatgcacgac attgaaatca cggtgattga taacgacaca 1440 cgcctgccag cgtttaaaga cgcgctgcgc tggaacgaag tgtattacgg atttcgtcgc 1500

<211> 500

^{10 &}lt;212> PRT

<213> Escherichia coli

<400)>	22
------	----	----

Met Thr Ile Phe Asp Asn Tyr Glu Val Trp Phe Val Ile Gly Ser Gln
1 5 10 15

His Leu Tyr Gly Pro Glu Thr Leu Arg Gln Val Thr Gln His Ala Glu 20 25 30

His Val Val Asn Ala Leu Asn Thr Glu Ala Lys Leu Pro Cys Lys Leu 35 40 45

Val Leu Lys Pro Leu Gly Thr Thr Pro Asp Glu Ile Thr Ala Ile Cys 50 55 60

Arg Asp Ala Asn Tyr Asp Asp Arg Cys Ala Gly Leu Val Val Trp Leu 65 70 75 80

His Thr Phe Ser Pro Ala Lys Met Trp Ile Asn Gly Leu Thr Met Leu 85 90 95

Asn Lys Pro Leu Gln Phe His Thr Gln Phe Asn Ala Ala Leu Pro 100 105 110

Trp Asp Ser Ile Asp Met Asp Phe Met Asn Leu Asn Gln Thr Ala His 115 120 125

Gly Gly Arg Glu Phe Gly Phe Ile Gly Ala Arg Met Arg Gln Gln His 130 135 140

Ala Val Val Thr Gly His Trp Gln Asp Lys Gln Ala His Glu Arg Ile 145 150 155 160

Gly Ser Trp Met Arg Gln Ala Val Ser Lys Gln Asp Thr Arg His Leu 165 170 175

Lys Val Cys Arg Phe Gly Asp Asn Met Arg Glu Val Ala Val Thr Asp 180 185 190

Gly Asp Lys Val Ala Ala Gln Ile Lys Phe Gly Phe Ser Val Asn Thr 195 200 205

Trp Ala Val Gly Asp Leu Val Gln Val Val Asn Ser Ile Ser Asp Gly 210 215 220

Asp Val Asn Ala Leu Val Asp Glu Tyr Glu Ser Cys Tyr Thr Met Thr 225 230 235 240

Pro	Ala	Thr	Gln	Ile 245	His	Gly	Lys	Lys	Arg 250	Gln	Asn	Val	Leu	Glu 255	Ala
Ala	Arg	Ile	Glu 260	Leu	Gly	Met	Lys	Arg 265	Phe	Leu	Glu	Gln	Gly 270	Gly	Phe
His	Ala	Phe 275	Thr	Thr	Thr	Phe	Glu 280	Asp	Leu	His	Gly	Leu 285	Lys	Gln	Leu
Pro	Gly 290	Leu	Ala	Val	Gln	Arg 295	Leu	Met	Gln	Gln	Gly 300	Tyr	Gly	Phe	Ala
Gly 305	Glu	Gly	Asp	Trp	Lys 310	Thr	Ala	Ala	Leu	Leu 315	Arg	Ile	Met	Lys	Val 320
Met	Ser	Thr	Gly	Leu 325	Gln	Gly	Gly	Thr	Ser 330	Phe	Met	Glu	Asp	туг 335	Thr
Tyr	His	Phe	Glu 340	Lys	Gly	Asn	Asp	Leu 345	Val	Leu	Gly	Ser	His 350	Met	Leu
Glu	Val	Cys 355	Pro	Ser	Ile	Ala	Ala 360	Glu	Glu	Lys	Pro	Ile 365	Leu	Asp	Val
Gln	His 370	Leu	Gly	Ile	Gly	Gly 375	Lys	Asp	Asp	Pro	Ala 380	Arg	Leu	Ile	Phe
Asn 385	Thr	Gln	Thr	Gly	Pro 390	Ala	Ile	Val	Ala	Ser 395	Leu	Ile	Asp	Leu	Gly 400
Asp	Arg	Tyr	Arg	Leu 405	Leu	Val	Asn	Cys	Ile 410	Asp	Thr	Val	Lys	Thr 415	Pro
His	Ser	Leu	Pro 420	Lys	Leu	Pro	Val	Ala 425	Asn	Ala	Leu	Trp	Lys 430	Ala	Gln
Pro	Asp	Leu 435	Pro	Thr	Ala	Ser	Glu 440	Ala	Trp	Ile	Leu	Ala 445	Gly	Gly	Ala
His	His 450	Thr	Val	Phe	Ser	His 455	Ala	Leu	Asn	Leu	Asn 460	Asp	Met	Arg	Gln
Phe 465	Ala	Glu	Met	His	Asp 470	Ile	Glu	Ile	Thr	Val 475	Ile	Asp	Asn	Asp	Thr 480
Arg	Leu	Pro	Ala	Phe 485	Lys	Asp	Ala	Leu	Arg 490	Trp	Asn	Glu	Val	Tyr 495	Tyr
Gly	Phe .	Arg 1	Arg 500												

<212> ADN <213> Escherichia coli

<400> 23

atggcgattg	caattggcct	cgattttggc	agtgattctg	tgcgagcttt	ggcggtggac	60
tgcgctaccg	gtgaagagat	cgccaccage	gtagagtggt	atccccgttg	gcagaaaggg	120
caattttgtg	atgccccgaa	taaccagttc	cgtcatcatc	cgcgtgacta	cattgagtca	180
atggaagcgg	cactgaaaac	cgtgcttgca	gagcttagcg	tcgaacagcg	cgcagctgtg	240
gtcgggattg	gcgttgacag	taccggctcg	acgcccgcac	cgattgatgc	cgacggaaac	300
gtgctggcgc	tgcgcccgga	gtttgccgaa	aacccgaacg	cgatgttcgt	attgtggaaa	360
gaccacactg	cggttgaaga	agcggaagag	attacccgtt	tgtgccacgc	gccgggcaac	420
gttgactact	cccgctacat	tggtggtatt	tattccagcg	aatggttctg	ggcaaaaatc	480
ctgcatgtga	ctcgccagga	cagcgccgtg	gcgcaatctg	ccgcatcgtg	gattgagctg	540
tgcgactggg	tgccagctct	gctttccggt	accacccgcc	cgcaggatat	tcgtcgcgga	600
cgttgcagcg	ccgggcataa	atctctgtgg	cacgaaagct	ggggcggcct	gccgccagcc	660
agtttctttg	atgagctgga	cccgatcctc	aatcgccatt	tgccttcccc	gctgttcact	720
gacacttgga	ctgccgatat	teeggtggge	accttatgcc	cggaatgggc	gcagcgtctc	780
ggcctgcctg	aaagcgtggt	gatttccggc	ggcgcgtttg	actgccatat	gggcgcagtt	840
ggcgcaggcg	cacagcctaa	cgcactggta	aaagttatcg	gtacttccac	ctgcgacatt	900
ctgattgccg	acaaacagag	cgttggcgag	cgggcagtta	aaggtatttg	cggtcaggtt	960
gatggcagcg	tggtgcctgg	atttatcggt	ctggaagcag	gccaatcggc	gtttggtgat	1020
atctacgcct	ggtttggtcg	cgtactcggc	tggccgctgg	aacagettge	cgcccagcat	1080
ccggaactga	aaacgcaaat	caacgccagc	cagaaacaac	tgcttccggc	gctgaccgaa	1140
gcatgggcca	aaaatccgtc	tctggatcac	ctgccggtgg	tgctcgactg	gtttaacggc	1200
cgccgcacac	cgaacgctaa	ccaacgcctg	aaaggggtga	ttaccgatct	taacctcgct	1260
accgacgete	cgctgctgtt	cggcggtttg	attgctgcca	ccgcctttgg	cgcacgcgca	1320
atcatggagt	gctttaccga	tcaggggatc	gccgttaata	acgtgatggc	actgggcggc	1380
atcgcgcgga	aaaaccaggt	cattatgcag	gcctgctgcg	acgtgctgaa	tegecegetg	1440
caaattgttg	cctctgacca	gtgctgtgcg	ctcggtgcgg	cgatttttgc	tgccgtcgcc	1500
gcgaaagtgc	acgcagacat	cccatcagct	cagcaaaaaa	tggccagtgc	ggtagagaaa	1560
accetgcaac	cgtgcagcga	gcaggcacaa	cgctttgaac	agctttatcg	ccgctatcag	1620
caatgggcga	tgagcgccga	acaacactat	cttccaactt	ccgccccggc	acaggctgcc	1680
caggccgttg	cgactcta					1698

<210> 24

<211> 566

<212> PRT

<213> Escherichia coli

<4	n	n	۱>	2	4

- Met Ala Ile Ala Ile Gly Leu Asp Phe Gly Ser Asp Ser Val Arg Ala 1 5 10 15
- Leu Ala Val Asp Cys Ala Thr Gly Glu Glu Ile Ala Thr Ser Val Glu 20 25 30
- Trp Tyr Pro Arg Trp Gln Lys Gly Gln Phe Cys Asp Ala Pro Asn Asn 35 40 45
- Gln Phe Arg His His Pro Arg Asp Tyr Ile Glu Ser Met Glu Ala Ala 50 55 60
- Leu Lys Thr Val Leu Ala Glu Leu Ser Val Glu Gln Arg Ala Ala Val 65 70 75 80
- Val Gly Ile Gly Val Asp Ser Thr Gly Ser Thr Pro Ala Pro Ile Asp 85 90 95
- Ala Asp Gly Asn Val Leu Ala Leu Arg Pro Glu Phe Ala Glu Asn Pro 100 105 110
- Asn Ala Met Phe Val Leu Trp Lys Asp His Thr Ala Val Glu Glu Ala 115 120 125
- Glu Glu Ile Thr Arg Leu Cys His Ala Pro Gly Asn Val Asp Tyr Ser 130 135 140
- Arg Tyr Ile Gly Gly Ile Tyr Ser Ser Glu Trp Phe Trp Ala Lys Ile 145 150 155 160
- Leu His Val Thr Arg Gln Asp Ser Ala Val Ala Gln Ser Ala Ala Ser 165 170 175
- Trp Ile Glu Leu Cys Asp Trp Val Pro Ala Leu Leu Ser Gly Thr Thr 180 185 190
- Arg Pro Gln Asp Ile Arg Arg Gly Arg Cys Ser Ala Gly His Lys Ser 195 200 205
- Leu Trp His Glu Ser Trp Gly Gly Leu Pro Pro Ala Ser Phe Phe Asp

	210					215					220				
Glu 225	Leu	Asp	Pro	Ile	Leu 230	Asn	Arg	His	Leu	Pro 235	Ser	Pro	Leu	Phe	Thr 240
Asp	Thr	Trp	Thr	Ala 245	Asp	Ile	Pro	Val	Gly 250	Thr	Leu	Cys	Pro	Glu 255	Trp
Ala	Gln	Arg	Leu 260	Gly	Leu	Pro	Glu	Ser 265	Val	Val	Ile	Ser	Gly 270	Gly	Ala
Phe	Asp	Cys 275	His	Met	Gly	Ala	Val 280	Gly	Ala	Gly	Ala	Gln 285	Pro	Asn	Ala
Leu	Val 290	Lys	Val	Ile	Gly	Thr 295	Ser	Thr	Cys	Asp	Ile 300	Leu	Ile	Ala	Asp
Lys 305	Gln	Ser	Val	Gly	Glu 310	Arg	Ala	Val	Lys	Gly 315	Ile	Cys	Gly	Gln	Val 320
Asp	Gly	Ser	Val	Val 325	Pro	Gly	Phe	Ile	Gly 330	Leu	Glu	Ala	Gly	Gln 335	Ser
Ala	Phe	Gly	Asp 340	Ile	Tyr	Ala	Trp	Phe 345	Gly	Arg	Val	Leu	Gly 350	Trp	Pro
Leu	Glu	Gln 355	Leu	Ala	Ala	Gln	His 360	Pro	Glu	Leu	Lys	Thr 365	Gln	Ile	Asn
Ala	Ser 370	Gln	Lys	Gln	Leu	Leu 375	Pro	Ala	Leu	Thr	Glu 380	Ala	Trp	Ala	Lys
Asn 385	Pro	Ser	Leu	Asp	His 390	Leu	Pro	Val	Val	Leu 395	Asp	Trp	Phe	Asn	Gly 400
Arg	Arg	Thr	Pro	Asn 405	Ala	Asn	Gln	Arg	Leu 410	Lys	Gly	Val	Ile	Thr 415	Asp
Leu	Asn	Leu	Ala 420	Thr	Asp	Ala	Pro	Leu 425	Leu	Phe	Gly	Gly	Leu 430	Ile	Ala
Ala	Thr	Ala 435	Phe	Gly	Ala	Arg	Ala 440	Ile	Met	Glu	Cys	Phe 445	Thr	Asp	G1 n
Gly	11e 450	Ala	Val	Asn	Asn	Val 455	Met	Ala	Leu	Gly	Gly 460	Ile	Ala	Arg	Lys
Asn 465	Gln	Val	Ile	Met	Gln 470	Ala	Cys	Cys	Asp	Val 475	Leu	Asn	Arg	Pro	Leu 480

Gln Ile Val Ala Ser Asp Gln Cys Cys Ala Leu Gly Ala Ala Ile Phe 485 490 495

Ala Ala Val Ala Ala Lys Val His Ala Asp Ile Pro Ser Ala Gln Gln 500 505 510

Lys Met Ala Ser Ala Val Glu Lys Thr Leu Gln Pro Cys Ser Glu Gln 515 520 525

Ala Gln Arg Phe Glu Gln Leu Tyr Arg Arg Tyr Gln Gln Trp Ala Met 530 535 540

Ser Ala Glu Gln His Tyr Leu Pro Thr Ser Ala Pro Ala Gln Ala Ala 545 550 555 560

Gln Ala Val Ala Thr Leu 565

<210> 25

<211>693

<212> ADN

5 <213> Escherichia coli

<400> 25

atgttagaag atctcaaacg ccaggtatta gaagccaacc tggcgctgcc aaaacacaac 60 etggtcacge teacatgggg caacgtcage geegttgate gegagegegg egtetttgtg 120 atcaaacett ceggegtega ttacagegte atgacegetg aegatatggt egtggttage 180 ategaaaceg gtgaagtggt tgaaggtaeg aaaaageeet eeteegaeae geeaacteae 240 eggetgetet ateaggeatt eccetecatt ggeggeattg tgeatacgea etegegeeae 300 gecaccatet gggegeagge gggteagteg attecageaa ceggeaceae ceaegeegae 360 tatttctacg gcaccattcc ctgtacccgc aaaatgaccg acgcagaaat caacggcgaa 420 tatgagtggg aaaccggtaa cgtcatcgta gaaacctttg aaaaacaggg tatcgatgca 480 gegeaaatge ceggegttet ggtecattee caeggeeegt ttgcatgggg caaaaatgee 540 gaagatgcgg tgcataacgc catcgtgctg gaagaggtcg cttatatggg gatattctgc 600 cgtcagttag cgccgcagtt accggatatg cagcaaacgc tgctggataa acactatctg 660 cgtaagcatg gcgcgaaggc atattacggg cag 693

<210> 26

<211> 231

<212> PRT

10

<213> Escherichia coli

<400> 26

Met Leu Glu Asp Leu Lys Arg Gln Val Leu Glu Ala Asn Leu Ala Leu

1				5					10					15	
Pro	Lys	His	Asn 20	Leu	Val	Thr	Leu	Thr 25	Trp	Gly	Asn	Val	Ser 30	Ala	Val
Asp	Arg	Glu 35	Arg	Gly	Val	Phe	Val 40	Ile	Lys	Pro	Ser	Gly 45	Val	Asp	Tyr
Ser	Val 50	Met	Thr	Ala	Asp	Asp 55	Met	Val	Val	Val	Ser 60	Ile	Glu	Thr	Gly
Glu 65	Val	Val	Glu	Gly	Thr 70	Lys	Lys	Pro	Ser	Ser 75	Asp	Thr	Pro	Thr	His 80
Arg	Leu	Leu	Tyr	Gln 85	Ala	Phe	Pro	Ser	Ile 90	Gly	Gly	Ile	Val	His 95	Thr
His	Ser	Arg	His 100	Ala	Thr	Ile	Trp	Ala 105	Gln	Ala	Gly	Gln	Ser 110	Ile	Pro
Ala	Thr	Gly 115	Thr	Thr	His	Ala	Asp 120	Tyr	Phe	Tyr	Gly	Thr 125	Ile	Pro	Cys
Thr	Arg 130	Lys	Met	Thr	Asp	Ala 135	Glu	Ile	Asn	Gly	Glu 140	Tyr	Glu	Trp	Glu
Thr 145	Gly	Asn	Val	Ile	Val 150	Glu	Thr	Phe	Glu	Lys 155	Gln	Gly	Ile	Asp	Ala 160
Ala	Gln	Met	Pro	Gly 165	Val	Leu	Val	His	Ser 170	His	Gly	Pro	Phe	Ala 175	Trp
Gly	Lys	Asn	Ala 180	Glu	Asp	Ala	Val	His 185	Asn	Ala	Ile	Val	Leu 190	Glu	Glu
Val	Ala	Tyr 195	Met	Gly	Ile	Phe	Cys 200	Arg	Gln	Leu	Ala	Pro 205	Gln	Leu	Pro
Asp	Met 210	Gln	Gln	Thr	Leu	Leu 215	Asp	Lys	His	Tyr	Leu 220	Arg	Lys	His	Gly
Ala 225	Lys	Ala	Tyr	Tyr	Gly 230	Gln									
<210><211><211><212><213>	> 3226 > ADN	l	artific	ial											
<220> <223>		nento	de Po	CR de	araA-	-araB									
<400>	> 27														

aaccatggcg	attgcaattg	gcctcgattt	tggcagtgat	tctgtgcgag	ctttggcggt	60
ggactgcgct	accggtgaag	agatcgccac	cagcgtagag	tggtatcccc	gttggcagaa	120
agggcaattt	tgtgatgccc	cgaataacca	gttccgtcat	catccgcgtg	actacattga	180
gtcaatggaa	gcggcactga	aaaccgtgct	tgcagagctt	agcgtcgaac	agcgcgcagc	240
tgtggtcggg	attggcgttg	acagtaccgg	ctcgacgccc	gcaccgattg	atgccgacgg	300
aaacgtgctg	gcgctgcgcc	cggagtttgc	cgaaaacccg	aacgcgatgt	tcgtattgtg	360
gaaagaccac	actgcggttg	aagaagcgga	agagattacc	cgtttgtgcc	acgcgccggg	420
caacgttgac	tactcccgct	acattggtgg	tatttattcc	agcgaatggt	tctgggcaaa	480
aatcctgcat	gtgactcgcc	aggacagcgc	cgtggcgcaa	tctgccgcat	cgtggattga	540
gctgtgcgac	tgggtgccag	ctctgctttc	cggtaccacc	cgcccgcagg	atattcgtcg	600
cggacgttgc	agegeeggge	ataaatctct	gtggcacgaa	agctggggcg	gcctgccgcc	660
agccagtttc	tttgatgagc	tggacccgat	cctcaatcgc	catttgcctt	ccccgctgtt	720
cactgacact	tggactgccg	atattccggt	gggcacctta	tgcccggaat	gggcgcagcg	780
teteggeetg	cctgaaagcg	tggtgatttc	cggcggcgcg	tttgactgcc	atatgggcgc	840
agttggcgca	ggcgcacagc	ctaacgcact	ggtaaaagtt	atcggtactt	ccacctgcga	900
cattctgatt	gccgacaaac	agagcgttgg	cgagcgggca	gttaaaggta	tttgcggtca	960
ggttgatggc	agcgtggtgc	ctggatttat	cggtctggaa	gcaggccaat	cggcgtttgg	1020
tgatatctac	gcctggtttg	gtcgcgtact	cggctggccg	ctggaacagc	ttgccgccca	1080
gcatccggaa	ctgaaaacgc	aaatcaacgc	cagccagaaa	caactgcttc	cggcgctgac	1140
cgaagcatgg	gccaaaaatc	cgtctctgga	tcacctgccg	gtggtgctcg	actggtttaa	1200
eggeegeege	acaccgaacg	ctaaccaacg	cctgaaaggg	gtgattaccg	atcttaacct	1260
cgctaccgac	geteegetge	tgttcggcgg	tttgattgct	gccaccgcct	ttggcgcacg	1320
cgcaatcatg	gagtgcttta	ccgatcaggg	gatcgccgtt	aataacgtga	tggcactggg	1380
cggcatcgcg	cggaaaaacc	aggtcattat	gcaggcctgc	tgcgacgtgc	tgaatcgccc	1440
gctgcaaatt	gttgcctctg	accagtgctg	tgcgctcggt	gcggcgattt	ttgctgccgt	1500
cgccgcgaaa	gtgcacgcag	acatcccatc	agctcagcaa	aaaatggcca	gtgcggtaga	1560
gaaaaccctg	caaccgtgca	gcgagcaggc	acaacgcttt	gaacagcttt	atcgccgcta	1620
tcagcaatgg	gcgatgagcg	ccgaacaaca	ctatcttcca	acttccgccc	cggcacaggc	1680
tgcccaggcc	gttgcgactc	tataaggaca	cgataatgac	gatttttgat	aattatgaag	1740
tgtggtttgt	cattggcagc	cagcatctgt	atggcccgga	aaccctgcgt	caggtcaccc	1800
aacatgccga	gcacgtcgtt	aatgcgctga	atacggaagc	gaaactgccc	tgcaaactgg	1860

```
tgttgaaacc gctgggcacc acgccggatg aaatcaccgc tatttgccgc gacgcgaatt
                                                                     1920
acquegateg ttgcgctggt ctggtggtgt ggctgcacac cttctccccg gccaaaatgt
                                                                     1980
ggatcaacgg cctgaccatg ctcaacaaac cgttgctgca attccacacc cagttcaacg
                                                                    2040
eggegetgee gtgggacagt ategatatgg actttatgaa eetgaaceag actgcacatg
                                                                     2100
geggtegega gtteggette attggegege gtatgegtea geaacatgee gtggttaeeg
                                                                    2160
gtcactggca ggataaacaa gcccatgagc gtatcggctc ctggatgcgt caggcggtct
                                                                    2220
ctaaacagga tacccgtcat ctgaaagtct gccgatttgg cgataacatg cgtgaagtgg
                                                                    2280
eggteacega tggegataaa gttgeegeae agateaagtt eggtttetee gteaatacet
                                                                    2340
gggcggttgg cgatctggtg caggtggtga actccatcag cgacggcgat gttaacgcgc
                                                                    2400
tggtegatga gtacgaaage tgetacaeca tgacgeetge cacacaaate cacggeaaaa
                                                                    2460
aacgacagaa cgtgctggaa gcggcgcgta ttgagctggg gatgaagcgt ttcctggaac
                                                                    2520
aaggtggett ccacgcgttc accaccacct ttgaagattt gcacggtctg aaacagcttc
                                                                    2580
etggtetgge egtacagegt etgatgeage agggttaegg etttgeggge gaaggegaet
                                                                    2640
ggaaaactgc cgccctgctt cgcatcatga aggtgatgtc aaccggtctg cagggcggca
                                                                    2700
cctcctttat ggaggactac acctatcact tcgagaaagg taatgacctg gtgctcqqct
                                                                    2760
eccatatget ggaagtetge eegtegateg eegeagaaga gaaacegate etegaegtte
                                                                    2820
agcatctcgg tattggtggt aaggacgatc ctgcccgcct gatcttcaat acccaaaccq
                                                                    2880
gcccagcgat tgtcgccagc ttgattgatc tcggcgatcg ttaccgtcta ctggttaact
                                                                    2940
gcatcgacac ggtgaaaaca ccgcactccc tgccgaaact gccggtggcg aatgcgctgt
                                                                    3000
ggaaagcgca accggatctg ccaactgctt ccgaagcgtg gatcctcgct ggtggcgcgc
                                                                    3060
accataccgt cttcagccat gcactgaacc tcaacgatat gcgccaattc gccgagatgc
                                                                    3120
acgacattga aatcacggtg attgataacg acacacgcct gccagcgttt aaagacgcgc
                                                                    3180
tgcgctggaa cgaagtgtat tacggatttc gtcgctaagt ctagag
                                                                    3226
```

```
<210> 28
```

5 <213> secuencia artificial

<220>

<223> cebador

<400> 28

aaccatggcg attgcaattg gcctc 25

10 <210> 29

<211> 32

<212> ADN

<213> secuencia artificial

<220>

15 <223> cebador

<400> 29

<211> 25

<212> ADN

32

ctctagactt agcgacgaaa tccgtaatac ac

```
<210> 30
    <211>889
    <212> ADN
5
    <213> secuencia artificial
    <220>
    <223> fragmento de PCR de araD
    <400> 30
                                                                                60
     gtctagagaa ggagtcaaca tgttagaaga tctcaaacgc caggtattag aagccaacct
     ggcgctgcca aaacacaacc tggtcacgct cacatggggc aacgtcagcg ccgttgatcg
                                                                               120
     cgagcgcggc gtctttgtga tcaaaccttc cggcgtcgat tacaqcgtca tgaccgctga
                                                                               180
     cgatatggtc gtggttagca tcgaaaccgg tgaagtggtt gaaggtacga aaaagccctc
                                                                               240
     ctccgacacg ccaactcacc ggctgctcta tcaggcattc ccctccattg gcggcattgt
                                                                               300
     gcatacgcac tegegecacg ceaceatetg ggegeaggeg ggteagtega ttecageaac
                                                                               360
     cggcaccacc cacgccgact atttctacgg caccattccc tgtacccgca aaatgaccga
                                                                               420
     cgcagaaatc aacggcgaat atgagtggga aaccggtaac gtcatcgtag aaacctttga
                                                                               480
     aaaacagggt atcgatgcag cgcaaatgcc cggcgttctg gtccattccc acggcccgtt
                                                                               540
     tgcatggggc aaaaatgccg aagatgcggt gcataacgcc atcgtgctgg aagaggtcgc
                                                                               600
    ttatatgggg atattctgcc gtcagttagc gccgcagtta ccggatatgc agcaaacgct
                                                                               660
    gctggataaa cactatctgc gtaagcatgg cgcgaaggca tattacgggc agtaatgact
                                                                               720
     gtataaaacc acagccaatc aaacgaaacc aggctatact caagcctggt tttttgatgg
                                                                               780
    attttcagcg tggcgcaggc aggttttatc ttaacccgac actggcggga caccccgcaa
                                                                               840
    gggacagaag tctccttctg gctggcgacg gacaacgggc caagcttgg
                                                                               889
10
    <210> 31
    <211> 32
    <212> ADN
    <213> secuencia artificial
    <220>
15
    <223> cebador
    <400> 31
    gtctagagaa ggagtcaaca tgttagaaga tc
                                     32
    <210> 32
    <211> 28
20
    <212> ADN
    <213> secuencia artificial
    <220>
    <223> cebador
    <400> 32
25
    ccaagettgg cccgttgtcc gtcgccag
                               28
    <210> 33
    <211> 303
    <212> ADN
```

	<213> Zymomor	nas mobilis					
	<400> 33						
	tcgatcaaca	acccgaatcc	tatcgtaatg	atgttttgcc	cgatcagcct	caatcgacaa	60
	ttttacgcgt	ttcgatcgaa	gcagggacga	caattggctg	ggaacggtat	actggaataa	120
	atggtcttcg	ttatggtatt	gatgttttg	gtgcatcggc	cccggcgaat	gatctatatg	180
	ctcatttcgg	cttgaccgca	gtcggcatca	cgaacaaggt	gttggccgcg	atcgccggta	240
	agtcggcacg	ttaaaaaata	gctatggaat	ataatagcta	cttaataagt	taggagaata	300
	aac						303
5	<210> 34 <211> 34 <212> ADN <213> secuencia	a artificial					
	<220> <223> cebador						
10	<400> 34						
	gggagctcac tagtt	tcgatc aacaacco	ega atcc 34				
15	<210> 35 <211> 29 <212> ADN <213> secuencia	a artificial					
	<220> <223> cebador						
	<400> 35						
	agccatggtt attctc	ctaa cttattaag	29				
20	<210> 36 <211> 323 <212> ADN <213> secuencia	a artificial					
25	<220> <223> fragment	o de PCR de Pg	gap				
	<400> 36						
	gggagctcac	tagttcgatc	aacaacccga	atcctatcgt	aatgatgttt	tgcccgatca	60
	gcctcaatcg	acaattttac	gcgtttcgat	cgaagcaggg	acgacaattg	gctgggaacg	120
	gtatactgga	ataaatggtc	ttcgttatgg	tattgatgtt	tttggtgcat	cggccccggc	180
	gaatgatcta	tatgctcatt	tcggcttgac	cgcagtcggc	atcacgaaca (aggtgttggc	240
	cgcgatcgcc	ggtaagtcgg	cacgttaaaa	aatagctatg	gaatataata (gctacttaat	300
	aagttaggag	aataaccatg	gct				323
30	<210> 37 <211> 35 <212> ADN <213> secuencia	a artificial					
	<220> <223> cebador						

	grandthin and the control				12
	ctagttcgat caacaacccg aatcctat	cg taatgatgtt	ttgcccgatc	agcctcaatc	6
	<400> 41				
	<220> <223> plásmido construido				
30	<210> 41 <211> 9884 <212> ADN <213> secuencia artificial				
	ggccaattgc aatcgccatg tttattctcc taactt	36			
25	<400> 40				
	<220> <223> oligo de mutagénesis				
20	<210> 40 <211> 36 <212> ADN <213> secuencia artificial				
	aagttaggag aataaacatg gcgattgcaa ttggcc	36			
	<400> 39				
15	<220> <223> oligo de mutagénesis				
	<210> 39 <211> 36 <212> ADN <213> secuencia artificial				
10	catcttacta cgcgttggca ggtcagcaag tgcc	34			
	<400> 38				
	<220> <223> cebador				
5	<210> 38 <211> 34 <212> ADN <213> secuencia artificial				
	ctactcattt atcgatggag cacaggatga cgcct	35			
	<400> 37				

aataaatggt	cttcgttatg	gtattgatgt	ttttggtgca	teggeeeegg	cgaatgatct	180
atatgctcat	ttcggcttga	ccgcagtcgg	catcacgaac	aaggtgttgg	ccgcgatcgc	240
cggtaagtcg	gcacgttaaa	aaatagctat	ggaatataat	agctacttaa	taagttagga	300
gaataaacat	ggcgattgca	attggcctcg	attttggcag	tgattctgtg	cgagctttgg	360
cggtggactg	cgctaccggt	gaagagatcg	ccaccagcgt	agagtggtat	cccgttggc	420
agaaagggca	attttgtgat	gccccgaata	accagttccg	tcatcatccg	cgtgactaca	480
ttgagtcaat	ggaagcggca	ctgaaaaccg	tgcttgcaga	gcttagcgtc	gaacagcgcg	540
cagctgtggt	cgggattggc	gttgacagta	ccggctcgac	gcccgcaccg	attgatgccg	600
acggaaacgt	gctggcgctg	cgcccggagt	ttgccgaaaa	cccgaacgcg	atgttcgtat	660
tgtggaaaga	ccacactgcg	gttgaagaag	cggaagagat	tacccgtttg	tgccacgcgc	720
cgggcaacgt	tgactactcc	cgctacattg	gtggtattta	ttccagcgaa	tggttctggg	780
caaaaatcct	gcatgtgact	cgccaggaca	gcgccgtggc	gcaatctgcc	gcatcgtgga	840
ttgagctgtg	cgactgggtg	ccagetetge	tttccggtac	cacccgcccg	caggatattc	900
gtcgcggacg	ttgcagcgcc	gggcataaat	ctctgtggca	cgaaagctgg	ggcggcctgc	960
cgccagccag	tttctttgat	gagetggaee	cgatcctcaa	tcgccatttg	ccttccccgc	1020
tgttcactga	cacttggact	gccgatattc	cggtgggcac	cttatgcccg	gaatgggcgc	1080
agcgtctcgg	cctgcctgaa	agcgtggtga	tttccggcgg	cgcgtttgac	tgccatatgg	1140
gegeagttgg	egeaggegea	cagcctaacg	cactggtaaa	agttatcggt	acttccacct	1200
gegacattet	gattgccgac	aaacagagcg	ttggcgagcg	ggcagttaaa	ggtatttgcg	1260
gtcaggttga	tggcagcgtg	gtgcctggat	ttatcggtct	ggaagcaggc	caatcggcgt	1320
ttggtgatat	ctacgcctgg	tttggtcgcg	tactcggctg	gccgctggaa	cagcttgccg	1380
cecagcatec	ggaactgaaa	acgcaaatca	acgccagcca	gaaacaactg	cttccggcgc	1440
tgaccgaagc	atgggccaaa	aatccgtctc	tggatcacct	gccggtggtg	ctcgactggt	1500
ttaacggccg	ccgcacaccg	aacgctaacc	aacgcctgaa	aggggtgatt	accgatctta	1560
acctcgctac	cgacgctccg	ctgctgttcg	gcggtttgat	tgctgccacc	gcctttggcg	1620
cacgcgcaat	catggagtgc	tttaccgatc	aggggatcgc	cgttaataac	gtgatggcac	1680
tgggcggcat	cgcgcggaaa	aaccaggtca	ttatgcaggc	ctgctgcgac	gtgctgaatc	1740
gcccgctgca	aattgttgcc	tctgaccagt	gctgtgcgct	cggtgcggcg	atttttgctg	1800
ccgtcgccgc	gaaagtgcac	gcagacatcc	catcagctca	gcaaaaaatg	gccagtgcgg	1860
tagagaaaac	cctgcaaccg	tgcagcgagc	aggcacaacg	ctttgaacag	ctttatcgcc	1920
gctatcagca	atgggcgatg	agcgccgaac	aacactatct	tccaacttcc	gccccggcac	1980
aggctgccca	ggccgttgcg	actctataag	gacacgataa	tgacgatttt	tgataattat	2040

gaagtgtggt	ttgtcattgg	cagccagcat	ctgtatggcc	cggaaaccct	gcgtcaggtc	2100
acccaacatg	ccgagcacgt	cgttaatgcg	ctgaatacgg	aagcgaaact	gccctgcaaa	2160
ctggtgttga	aaccgctggg	caccacgccg	gatgaaatca	ccgctatttg	ccgcgacgcg	2220
aattacgacg	atcgttgcgc	tggtctggtg	gtgtggctgc	acaccttctc	cccggccaaa	2280
atgtggatca	acggcctgac	catgeteaac	aaaccgttgc	tgcaattcca	cacccagttc	2340
aacgeggege	tgccgtggga	cagtatcgat	atggacttta	tgaacctgaa	ccagactgca	2400
catggcggtc	gegagttegg	cttcattggc	gcgcgtatgc	gtcagcaaca	tgccgtggtt	2460
accggtcact	ggcaggataa	acaagcccat	gagcgtatcg	gctcctggat	gcgtcaggcg	2520
gtctctaaac	aggatacccg	tcatctgaaa	gtctgccgat	ttggcgataa	catgcgtgaa	2580
gtggcggtca	ccgatggcga	taaagttgcc	gcacagatca	agttcggttt	ctccgtcaat	2640
acctgggcgg	ttggcgatct	ggtgcaggtg	gtgaactcca	tcagcgacgg	cgatgttaac	2700
gcgctggtcg	atgagtacga	aagctgctac	accatgacgc	ctgccacaca	aatccacggc	2760
aaaaaacgac	agaacgtgct	ggaagcggcg	cgtattgagc	tggggatgaa	gcgtttcctg	2820
gaacaaggtg	gcttccacgc	gttcaccacc	acctttgaag	atttgcacgg	tctgaaacag	2880
cttcctggtc	tggccgtaca	gcgtctgatg	cagcagggtt	acggctttgc	gggcgaaggc	2940
gactggaaaa	ctgccgccct	gcttcgcatc	atgaaggtga	tgtcaaccgg	tctgcagggc	3000
ggcacctcct	ttatggagga	ctacacctat	cacttcgaga	aaggtaatga	cctggtgctc	3060
ggctcccata	tgctggaagt	ctgcccgtcg	atcgccgcag	aagagaaacc	gatectegae	3120
gttcagcatc	tcggtattgg	tggtaaggac	gatectgeec	gcctgatctt	caatacccaa	3180
accggcccag	cgattgtcgc	cagcttgatt	gatctcggcg	atcgttaccg	tctactggtt	3240
aactgcatcg	acacggtgaa	aacaccgcac	tccctgccga	aactgccggt	ggcgaatgcg	3300
ctgtggaaag	cgcaaccgga	tctgccaact	gcttccgaag	cgtggatcct	cgctggtggc	3360
gcgcaccata	ccgtcttcag	ccatgcactg	aacctcaacg	atatgcgcca	attcgccgag	3420
atgcacgaca	ttgaaatcac	ggtgattgat	aacgacacac	gcctgccagc	gtttaaagac	3480
gcgctgcgct	ggaacgaagt	gtattacgga	tttcgtcgct	aagtctagag	aaggagtcaa	3540
catgttagaa	gatctcaaac	gccaggtatt	agaagccaac	ctggcgctgc	caaaacacaa	3600
cctggtcacg	ctcacatggg	gcaacgtcag	cgccgttgat	cgcgagcgcg	gcgtctttgt	3660
gatcaaacct	teeggegteg	attacagcgt	catgaccgct	gacgatatgg	tcgtggttag	3720
catcgaaacc	ggtgaagtgg	ttgaaggtac	gaaaaagccc	tcctccgaca	cgccaactca	3780
ccggctgctc	tatcaggcat	tcccctccat	tggcggcatt	gtgcatacgc	actegegeea	3840
cgccaccatc	tgggcgcagg	cgggtcagtc	gattccagca	accggcacca	cccacgccga	3900
ctatttctac	ggcaccattc	cctgtacccg	caaaatgacc	gacgcagaaa	tcaacggcga	3960
atatgagtgg	gaaaccggta	acgtcatcgt	agaaaccttt	gaaaaacagg	gtatcgatgc	4020

ag	cgcaaatg	cccggcgttc	tggtccattc	ccacggcccg	tttgcatggg	gcaaaaatgc	4080
cg	aagatgcg	gtgcataacg	ccatcgtgct	ggaagaggtc	gcttatatgg	ggatattctg	4140
CC	gtcagtta	gcgccgcagt	taccggatat	gcagcaaacg	ctgctggata	aacactatct	4200
gc	gtaagcat	ggcgcgaagg	catattacgg	gcagtaatga	ctgtataaaa	ccacagccaa	4260
tc	aaacgaaa	ccaggctata	ctcaagcctg	gttttttgat	ggattttcag	cgtggcgcag	4320
gc	aggtttta	tcttaacccg	acactggcgg	gacaccccgc	aagggacaga	agtctccttc	4380
tg	gctggcga	cggacaacgg	gccaagcttg	gaagggcgaa	ttctgcagat	atccatcaca	4440
ct	ggeggeeg	ctaattccgg	atgagcattc	atcaggcggg	caagaatgtg	aataaaggcc	4500
gg	ataaaact	tgtgcttatt	tttctttacg	gtctttaaaa	aggccgtaat	atccagctga	4560
ac	ggtetggt	tataggtaca	ttgagcaact	gactgaaatg	cctcaaaatg	ttctttacga	4620
tg	ccattggg	atatatcaac	ggtggtatat	ccagtgattt	ttttctccat	tttagcttcc	4680
tt	agctcctg	aaaatctcga	taactcaaaa	aatacgcccg	gtagtgatct	tatttcatta	4740
tg	gtgaaagt	tggaacctct	tacgtgccga	tcaacgtctc	attttcgcca	aaagttggcc	4800
ca	gggcttcc	cggtatcaac	agggacacca	ggatttattt	attctgcgaa	gtgatcttcc	4860
gt	cacaggta	tttattcggc	gcaaagtgcg	tcgggtgatg	ctgccaactt	actgatttag	4920
tg	tatgatgg	tgtttttgag	gtgctccagt	ggcttctgtt	tctatcagct	gtccctcctg	4980
tt	cagctact	gacggggtgg	tgcgtaacgg	caaaagcacc	gccggacatc	agcgctagcg	5040
ga	gtgtatac	tggcttacta	tgttggcact	gatgagggtg	tcagtgaagt	gcttcatgtg	5100
gc	aggagaaa	aaaggctgca	ccggtgcgtc	agcagaatat	gtgatacagg	atatattccg	5160
cti	tecteget	cactgactcg	ctacgctcgg	tcgttcgact	gcggcgagcg	gaaatggctt	5220
ac	gaacgggg	cggagatttc	ctggaagatg	ccaggaagat	acttaacagg	gaagtgagag	5280
gg	ccgcggca	aagccgtttt	tccataggct	ccgccccct	gacaagcatc	acgaaatctg	5340
ace	gctcaaat	cagtggtggc	gaaacccgac	aggactataa	agataccagg	cgtttccccc	5400
tg	geggetee	ctcgtgcgct	ctcctgttcc	tgcctttcgg	tttaccggtg	tcattccgct	5460
gt	tatggccg	cgtttgtctc	attccacgcc	tgacactcag	ttccgggtag	gcagttcgct	5520
cc	aagct g ga	ctgtatgcac	gaaccccccg	ttcagtccga	ccgctgcgcc	ttatccggta	5580
act	tatcgtct	tgagtccaac	ccggaaagac	atgcaaaagc	accactggca	gcagccactg	5640
gt	aattgatt	tagaggagtt	agtcttgaag	tcatgcgccg	gttaaggcta	aactgaaagg	5700
aca	aagttttg	gtgactgcgc	tcctccaagc	cagttacctc	ggttcaaaga	gttggtagct	5760
ca	gagaacct	tcgaaaaacc	gccctgcaag	gcggttttt	cgttttcaga	gcaagagatt	5820
ace	gcgcagac	caaaacgatc	tcaagaagat	catcttatta	atcagataaa	atatttctag	5880
ati	ttcagtgc	aatttatctc	ttcaaatgta	gcacctgaag	tcagccccat	acgatataag	5940

ttgtaattct	catgtttgac	agcttatcat	cgatggagca	caggatgacg	cctaacaatt	6000
cattcaagcc	gacaccgctt	cgcggcgcgg	cttaattcag	gagttaaaca	tcatgaggga	6060
agcggtgatc	gccgaagtat	cgactcaact	atcagaggta	gttggcgtca	tegagegeea	6120
tctcgaaccg	acgttgctgg	ccgtacattt	gtacggctcc	gcagtggatg	gcggcctgaa	6180
gccacacagt	gatattgatt	tgctggttac	ggtgactgta	aggcttgatg	aaacaacgcg	6240
gcgagctttg	atcaacgacc	ttttggaaac	tteggettee	cctggagaga	gcgagattct	6300
ccgcgctgta	gaagtcacca	ttgttgtgca	cgacgacatc	atteegtgge	gttatccagc	6360
taagcgcgaa	ctgcaatttg	gagaatggca	gcgcaatgac	attcttgcag	gtatcttcga	6420
gccagccacg	atcgacattg	atctggctat	cttgctgaca	aaagcaagag	aacatagcgt	6480
tgccttggta	ggtccagcgg	cggaggaact	ctttgatccg	gttcctgaac	aggatctatt	6540
tgaggcgcta	aatgaaacct	taacgctatg	gaactcgccg	cccgactggg	ctggcgatga	6600
gcgaaatgta	gtgcttacgt	tgtcccgcat	ttggtacagc	gcagtaaccg	gcaaaatcgc	6660
gccgaaggat	gtegetgeeg	actgggcaat	ggagcgcctg	ccggcccagt	atcagcccgt	6720
catacttgaa	gctaggcagg	cttatcttgg	acaagaagat	cgcttggcct	cgcgcgcaga	6780
tcagttggaa	gaatttgttc	actacgtgaa	aggcgagatc	accaaggtag	tcggcaaata	6840
atgtctaaca	attcgttcaa	gccgacgccg	cttcgcggcg	cggcttaact	caagcgttag	6900
agagctgggg	aagactatgc	gcgatctgtt	gaaggtggtt	ctaagcctcg	tacttgcgat	6960
ggcatcgggg	caggcacttg	ctgacctgcc	aacgcgcctt	tgtagtcttg	gcctgttgtg	7020
tgcatgagca	aatcaatggc	accaccccct	cctttttgag	ctgaatggtc	ataaaattta	7080
taattatcta	tcgtaattcg	gaatctatgt	tcagggtctc	gccattgctt	tttgtctgct	7140
gggtcaagtt	ccatgcctaa	ggtttttaag	acatcagaaa	gaggtattgc	acgcatgcta	7200
tcagcttttc	ttctagctaa	tgacagggct	tectetgete	tatctgctcg	tttttttct	7260
tccacatatc	tegeegettt	gtcagccagc	ggctgtatta	cggaaagtgc	cgatttttgg	7320
gcttttaggc	gttcttttc	tgcccattct	tccttatttg	taaaaattga	gggtgggatg	7380
ggtgcctgaa	tcttgggatc	tagctgtaaa	gttttgttga	tatttccgta	atgtctttgg	7440
actctttgat	gcgttgcttt	tgaacctttt	acgcctctgg	ccagccctag	aggetecata	7500
gaagccgcat	aatccgtctg	gagggcagaa	agggcttttc	gaccatcaaa	ccatctcgat	7560
gcgtttaaac	ggcctgtatc	ggggtctcta	ggcaccataa	agccggttaa	gtggggtgtt	7620
gtttcatcag	catgtagctg	aagagataca	aggttgtttt	ctccaaaggt	ttgttccgcc	7680
cattgctggg	tgattgtttt	ccagtgttcg	agtttttcag	gagtggcctg	ttttgaccat	7740
tctggagaca	taccaaagaa	cagttctatg	gcctgcacac	cgttttttct	aagaggettt	7800
cccgtttctt	tctgaatttt	attcagcata	gatttaacat	ctgctgatgg	gtcagtagag	7860
cctttgagta	tttcgtttag	ttcttttcta	tctgggtcag	cgttttgtgt	ttegeggeet	7920

cgcgtcatat	gcaggctcgc	ggctttaatc	gtgccaactg	ttttatgttt	ttcaaaccta	7980
aagattgcat	agttcggcat	gttttaactg	ctttaatttg	agaaaagacc	agaggaaata	8040
atccagccta	tatttctttc	cctagtageg	aactggaatt	gtttttccga	aggaaaaaag	8100
caattccgta	gtgagtactg	aatttattct	gattcgtctt	gcttttggag	cgtctttttg	8160
cgttctataa	ctgttgtgaa	agctacgcgg	tcgccattga	aaacgaaatt	aggattaata	8220
aaataccatc	cttggcgaac	atgctttgca	atgattttag	ctttttctaa	ttcggctaga	8280
cctcttgcaa	aggtagcttg	agatagtgcc	agttttttt	cttgtgcgtt	aagaaagtcc	8340
tctaaaacga	atttgtctaa	agggacga gg	tctttgctga	tgcctttgtc	ttgaagtatc	8400
caaaccagaa	cgctgaaagc	ttttattcca	gcggctccta	gttcaaaagt	tagcgcgata	8460
ttggtgctaa	ataattttac	aaattcttca	ctatcaacac	gtctgtaagt	cgtcacatga	8520
gtgccttgca	tctcaccagt	ggcttgattg	accagaatgt	tatcatctcg	tcctaatcga	8580
gataactgaa	ccctctgact	tttaactggc	acaaccatac	cttcgatgaa	aggattctcg	8640
tcatatctga	ttggctgctt	tctcaatttt	gtcgccatat	ttgataaacc	tttaatcaaa	8700
aaaaccacat	tttttgatta	tacctattca	tcgaatgagg	caaggtctat	caattttacc	8760
ccttttttg	atagacggtt	taatcaatat	tgatagaccc	cttcacagat	tctgaaaatc	8820
gacttcccta	ttttagggat	attttcacga	ttccctttct	tagttcttcc	tagtggggaa	8880
attcgttgaa	tectgeeteg	gaaaaaccat	gagaaagctg	ttggttatat	acacgggcaa	8940
agccacccta	tttttagcta	ctggggaaag	agataaggca	gggtatttgt	aaaattaaaa	9000
ccggatttt	cgctttacgg	tttgtttagg	cgcaactgtc	ttttaagac	cgcgtttaac	9060
catcaaaaga	tcgttccaat	cttttccgtg	tatcatctgt	tctttaggtg	ggagccagtt	9120
ttcaactttt	tttgttggaa	acgcggcttt	aatcgctccg	actaatagcg	atgctgctct	9180
ttgtcctaca	gcatcccaat	cataggcaat	atggacagaa	gatgcctttt	caacgatttt	9240
tcggagagtt	ttagtaagag	acgttcttac	gccgctggtg	cttaataatt	ttacgccagc	9300
tttaattttt	tctgggctta	aaaagccgac	tactgaaatc	gcgtctatcg	cactttcagc	9360
gatataaaga	tcatactttt	cgtcattttt	tacattgatg	ctgccagtaa	aatgggcttc	9420
gcgactgctt	cccaaggcta	accctttaaa	accactgctt	gttccgcgta	attetgegee	9480
ctgaagtgta	tctttatcgt	catacatcaa	gaaggctaca	ttaccgcgat	catctgttcg	9540
gatagagtca	ggaatattgt	taaatgatat	tcctcgggca	gcgttgggtc	ctggccacgg	9600
gtgcgcatga	tcgtgctcct	gtcgttgagg	acccggctag	gctggcgggg	ttgccttact	9660
ggttagcaga	atgaatcacc	gatacgcgag	cgaacgtgaa	gcgactgctg	ctgcaaaacg	9720
tctgcgacct	gagcaacaac	atgaatggtc	ttcggtttcc	gtgtttcgta	aagtctggaa	9780
acgcggaagt	cccctacgtg	ctgctgaagt	tgcccgcaac	agagagtgga	accaaccggt	9840
gataccacga	tactatgact	gagagtcaac	gccatgggag	ctca		9884

20	<220> <223> fragmento de PCR LDH-L		
	<210> 44 <211> 895 <212> ADN <213> secuencia artificial		
15		35	
	<220> <223> cebador <400> 43		
10	<210> 43 <211> 35 <212> ADN <213> secuencia artificial		
	<400> 42 atgggagete gtttttetat ecceateace tegg	34	
5	<220> <223> cebador		
	<211> 34 <212> ADN <213> secuencia artificial		

gtttttctat ccccatcacc tcggttttgt tgacaaaaa aggtggccac 60 taaattggct ttccgcaccg atgggatgat ttttattctt tgctattctt cgctctttgc 120 180 ccaattcatt aaaagcggaa atcatcacca aagatagaag acgcagcctt caccatttca 240 gattgccctt ctcgggcatt ttctgctgct agaatcctct taaaaatatt aaattccact ctattggtaa tatgtttccc tctttaggga acaaataaag cccttctttg ttctataaaa 300 gttagcttac cgattttaca aaaaataata ccgcttcatt caatcggtaa tacatatctt 360 ttttcttcaa aaaacttttc aagagggtgt ctatgcgcgt cgcaatattc agttccaaaa 420 actatgacca tcattctatt gaaaaagaaa atgaacatta tggccatgac cttgtttttc 480 tgaatgagcg gcttaccaaa gagacagcag aaaaagccaa agacgcagaa gctgtttgta 540 tctttqtgaa tgacgaagcc aatgccgaag tgctggaaat tttggcaggc ttaggcatca 600 agttggttgc tcttcgttgc gccggttata acaatgtcga tctcgatgcg gccaaaaagc 660 tqaatatcaa ggttgtgcgc gtgcctgcct attcgcccta ttcggttgcc gaatatgcag 720 tagggatgtt gctcaccctg aatcggcaaa tttcacgcgg tttgaagcgg gttcgggaaa 780 ataacttctc cttggaaggt ttgattggcc ttgatgtgca tgacaaaaca gtcggcatta 840 teggtgttgg teatateggg agegtetttg cecatattat gacceaetag tegat 895

<210> 45

<211> 33

25

<212> ADN

<213> secuencia artificial

	<220> <223> cebador						
	<400> 45						
	gcgaattcat ggttt	tggtg ccaatgttat	cgc	33			
5	<210> 46 <211> 35 <212> ADN <213> secuence	ia artificial					
10	<220> <223> cebador						
	<400> 46						
	ttaggcggcc gcg	cggctga catacato	ett gegaa	35			
15	<210> 47 <211> 1169 <212> ADN <213> secuence	ia artificial					
	<220> <223> fragmen	to de PCR LDH-	R				
	<400> 47						
	gcgaattcat	ggttttggtg	ccaatgttat	cgcctataaa	ccgcatccag	accccgaatt	60
	ggcgaaaaag	gtcggtttcc	gcttcacctc	tctcgatgaa	gtgatcgaga	ccagcgacat	120
	catttcgctt	cactgteege	tcacgccaga	aaatcatcac	atgattaatg	aagaaacact	180
	ggcaagggca	aaaaaaggct	tttacctcgt	caataccagt	cgcggcggct	tggttgatac	240
	caaggcggtg	attaaatcgc	tgaaagccaa	acatctcggc	ggttatgcgg	cggatgttta	300
	cgaagaggag	gggcctttat	tcttcgaaaa	tcacgctgac	gatattatcg	aagatgatat	360
	tctcgaaagg	ttgatcgctt	tcccgaatgt	ggttttcacg	ggacatcagg	cctttttgac	420
	gaaagaggcc	ttatcaaaca	ttgctcacag	tattctacaa	gatatcagcg	atgccgaagc	480
	tggaaaagaa	atgccggatg	cgcttgttta	gtagacaagc	gacaattaac	cttttgaaga	540
	tcataatgat	caaatttttg	ggttaattcg	gtagttatgg	cataggctat	tacgcgctaa	600
	ttgatatcaa	aaaaaagcat	agccggacat	cataccggct	atgttttta	ttaggaaaaa	660
	atttcctttc	accttgctta	gccatcgccg	cattatttaa	tcaatatgcc	gagtttttct	720
	tgaaatccct	atcttacacc	aaggccaaca	agggaatcat	ccatactcgg	tgtcctatcc	780
	tatgactttt	taaattttct	ccaaatttac	taaaatcacg	ccatctcagc	ggctgctatt	840
20	ttcaaaaagc	gcctctcaaa	accgcttttt	cctgctcaaa	tatcggatcc	caaaattccc	900
	tcaaaaaagg	cagggtattt	tttacaaaat	cgcccctaat	atctctcaat	ccgctgcctt	960
	gttcatatgt	ttttgcaaat	gatttttatt	aaacttttt	aggcgtattt	ttatcaagaa	1020
	aatttaaata	atcacatttt	tattatttta	gatttaagta	ttgatacaag	tgatatctat	1080
	aaatgttttt	ataactttct	ggatcgtaat	cggctggcaa	tcgttttccc	tatattcgca	1140

agatgtatgt cagccgcgcg gccgcctaa

1169

<210>48 <211> 1098 <212> ADN <213> secuencia artificial

5

<223> fragmento de PCR LoxPw-aadA-LoxPw

<400> 48

ataacttegt ataatgtatg etataegaag ttatgeggee geageaeagg atgaegeeta 60 acaattcatt caagccgaca ccgcttcgcg gcgcggctta attcaggagt taaacatcat 120 gagggaagcg gtgatcgccg aagtatcgac tcaactatca gaggtagttg gcgtcatcga 180 240 gcgccatctc gaaccgacgt tgctggccgt acatttgtac ggctccgcag tggatggcgg cctgaagcca cacagtgata ttgatttgct ggttacggtg actgtaaggc ttgatgaaac 300 aacgeggega getttgatea acgaeetttt ggaaaetteg getteeeetg gagagagega 360 gatteteege getgtagaag teaceattgt tgtgeaegae gacateatte egtgqeqtta 420 tccagctaag cgcgaactgc aatttggaga atggcagcgc aatgacattc ttgcaggtat 480 cttcgagcca gccacgatcg acattgatct ggctatcttg ctgacaaaag caagagaaca 540 tagcgttgcc ttggtaggtc cagcggcgga ggaactettt gatccggttc ctgaacagga 600 tctatttgag gcgctaaatg aaaccttaac gctatggaac tcgccgcccg actgggctgg 660 cgatgagcga aatgtagtgc ttacgttgtc ccgcatttgg tacagcgcag taaccggcaa 720 aatcgcgccg aaggatgtcg ctgccgactg ggcaatggag cgcctgccgg cccagtatca 780 gcccgtcata cttgaagcta ggcaggctta tcttggacaa gaagatcgct tggcctcgcg 840 cgcagatcag ttggaagaat ttgttcacta cgtgaaaggc gagatcacca aggtagtcgg 900 960 cgttagagag ctggggaaga ctatgcgcga tctgttgaag gtggttctaa gcctcgtact 1020 tgcgatggca tcggggcagg cacttgctga cctgccttaa ttaaataact tcgtataatg 1080 tatgctatac gaagttat 1098

<210>49 10

<211> 10441

<212> ADN

<213> secuencia artificial

<220>

<223> plásmido construido

15 <400> 49

ctagttcgat	caacaacccg	aatcctatcg	taatgatgtt	ttgcccgatc	agcctcaatc	60
gacaatttta	cgcgtttcga	tcgaagcagg	gacgacaatt	ggctgggaac	ggtatactgg	120
aataaatggt	cttcgttatg	gtattgatgt	ttttggtgca	teggeeeegg	cgaatgatct	180
atatgctcat	ttcggcttga	ccgcagtcgg	catcacgaac	aaggtgttgg	ccgcgatcgc	240
cggtaagtcg	gcacgttaaa	aaatagctat	ggaatataat	agctacttaa	taagttagga	300
gaataaacat	ggcgattgca	attggcctcg	attttggcag	tgattctgtg	cgagctttgg	360
cggtggactg	cgctaccggt	gaagagatcg	ccaccagcgt	agagtggtat	ccccgttggc	420
agaaagggca	attttgtgat	gccccgaata	accagttccg	tcatcatccg	cgtgactaca	480
ttgagtcaat	ggaagcggca	ctgaaaaccg	tgcttgcaga	gcttagcgtc	gaacagcgcg	540
cagctgtggt	cgggattggc	gttgacagta	ccggctcgac	gcccgcaccg	attgatgccg	600
acggaaacgt	gctggcgctg	cgcccggagt	ttgccgaaaa	cccgaacgcg	atgttcgtat	660
tgtggaaaga	ccacactgcg	gttgaagaag	cggaagagat	tacccgtttg	tgccacgcgc	720
cgggcaacgt	tgactactcc	cgctacattg	gtggtattta	ttccagcgaa	tggttctggg	780
caaaaatcct	gcatgtgact	cgccaggaca	gegeegtgge	gcaatctgcc	gcatcgtgga	840
ttgagctgtg	cgactgggtg	ccagctctgc	tttccggtac	cacccgcccg	caggatattc	900
gtcgcggacg	ttgcagcgcc	gggcataaat	ctctgtggca	cgaaagctgg	ggcggcctgc	960
cgccagccag	tttctttgat	gagetggaee	cgatcctcaa	tcgccatttg	ccttccccgc	1020
tgttcactga	cacttggact	gccgatattc	cggtgggcac	cttatgcccg	gaatgggcgc	1080
agegtetegg	cctgcctgaa	agegtggtga	tttccggcgg	cgcgtttgac	tgccatatgg	1140
gcgcagttgg	cgcaggcgca	cagcctaacg	cactggtaaa	agttatcggt	acttccacct	1200
gcgacattct	gattgccgac	aaacagagcg	ttggcgagcg	ggcagttaaa	ggtatttgcg	1260
gtcaggttga	tggcagcgtg	gtgcctggat	ttatcggtct	ggaagcaggc	caatcggcgt	1320
ttggtgatat	ctacgcctgg	tttggtcgcg	tactcggctg	gccgctggaa	cagcttgccg	1380
cccagcatcc	ggaactgaaa	acgcaaatca	acgccagcca	gaaacaactg	cttccggcgc	1440
tgaccgaagc	atgggccaaa	aatccgtctc	tggatcacct	gccggtggtg	ctcgactggt	1500
ttaacggccg	ccgcacaccg	aacgctaacc	aacgcctgaa	aggggtgatt	accgatctta	1560
acctcgctac	cgacgctccg	ctgctgttcg	gcggtttgat	tgctgccacc	gcctttggcg	1620
cacgcgcaat	catggagtgc	tttaccgatc	aggggatcgc	cgttaataac	gtgatggcac	1680
tgggcggcat	cgcgcggaaa	aaccaggtca	ttatgcaggc	ctgctgcgac	gtgctgaatc	1740
gcccgctgca	aattgttgcc	tctgaccagt	gctgtgcgct	cggtgcggcg	atttttgctg	1800
ccgtcgccgc	gaaagtgcac	gcagacatcc	catcagctca	gcaaaaaatg	gccagtgcgg	1860

tagagaaaac	cctgcaaccg	tgcagcgagc	aggcacaacg	ctttgaacag	ctttatcgcc	1920
gctatcagca	atgggcgatg	agcgccgaac	aacactatct	tccaacttcc	gccccggcac	1980
aggctgccca	ggccgttgcg	actctataag	gacacgataa	tgacgatttt	tgataattat	2040
gaagtgtggt	ttgtcattgg	cagccagcat	ctgtatggcc	cggaaaccct	gcgtcaggtc	2100
acccaacatg	ccgagcacgt	cgttaatgcg	ctgaatacgg	aagcgaaact	gccctgcaaa	2160
ctggtgttga	aaccgctggg	caccacgecg	gatgaaatca	ccgctatttg	cegegaegeg	2220
aattacgacg	atcgttgcgc	tggtctggtg	gtgtggctgc	acacettete	cccggccaaa	2280
atgtggatca	acggcctgac	catgctcaac	aaaccgttgc	tgcaattcca	cacccagttc	2340
aacgcggcgc	tgccgtggga	cagtatcgat	atggacttta	tgaacctgaa	ccagactgca	2400
catggcggtc	gcgagttcgg	cttcattggc	gcgcgtatgc	gtcagcaaca	tgccgtggtt	2460
accggtcact	ggcaggataa	acaagcccat	gagcgtatcg	gctcctggat	gcgtcaggcg	2520
gtctctaaac	aggatacccg	tcatctgaaa	gtctgccgat	ttggcgataa	catgcgtgaa	2580
gtggcggtca	ccgatggcga	taaagttgcc	gcacagatca	agttcggttt	ctccgtcaat	2640
acctgggcgg	ttggcgatct	ggtgcaggtg	gtgaactcca	tcagcgacgg	cgatgttaac	2700
gcgctggtcg	atgagtacga	aagctgctac	accatgacgc	ctgccacaca	aatccacggc	2760
aaaaaacgac	agaacgtgct	ggaagcggcg	cgtattgagc	tggggatgaa	gcgtttcctg	2820
gaacaaggtg	gcttccacgc	gttcaccacc	acctttgaag	atttgcacgg	tctgaaacag	2880
cttcctggtc	tggccgtaca	gcgtctgatg	cagcagggtt	acggetttge	gggcgaaggc	2940
gactggaaaa	ctgccgccct	gcttcgcatc	atgaaggtga	tgtcaaccgg	tctgcagggc	3000
ggcacctcct	ttatggagga	ctacacctat	cacttcgaga	aaggtaatga	cctggtgctc	3060
ggctcccata	tgctggaagt	ctgcccgtcg	ategeegeag	aagagaaacc	gatectegae	3120
gttcagcatc	tcggtattgg	tggtaaggac	gatectgeee	gcctgatctt	caatacccaa	3180
accggcccag	cgattgtcgc	cagcttgatt	gateteggeg	atcgttaccg	tctactggtt	3240
aactgcatcg	acacggtgaa	aacaccgcac	tecetgeega	aactgccggt	ggcgaatgcg	3300
ctgtggaaag	cgcaaccgga	tctgccaact	gcttccgaag	cgtggatcct	cgctggtggc	3360
gcgcaccata	ccgtcttcag	ccatgcactg	aacctcaacg	atatgcgcca	attegeegag	3420
atgcacgaca	ttgaaatcac	ggtgattgat	aacgacacac	gcctgccagc	gtttaaagac	3480
gcgctgcgct	ggaacgaagt	gtattacgga	tttcgtcgct	aagtctagag	aaggagtcaa	3540
catgttagaa	gatctcaaac	gccaggtatt	agaagccaac	ctggcgctgc	caaaacacaa	3600
cctggtcacg	ctcacatggg	gcaacgtcag	cgccgttgat	cgcgagcgcg	gcgtctttgt	3660
gatcaaacct	teeggegteg	attacagcgt	catgaccgct	gacgatatgg	tcgtggttag	3720
catcgaaacc	ggtgaagtgg	ttgaaggtac	gaaaaagccc	tectecgaca	cgccaactca	3780
ccggctgctc	tatcaggcat	tccctccat	tggcggcatt	gtgcatacgc	actegegeea	3840

cgccaccatc tgggcgcagg	cgggtcagtc	gattccagca	accggcacca	cccacgccga	3900
ctatttctac ggcaccattc	cctgtacccg	caaaatgacc	gacgcagaaa	tcaacggcga	3960
atatgagtgg gaaaccggta	acgtcatcgt	agaaaccttt	gaaaaacagg	gtatcgatgc	4020
agcgcaaatg cccggcgttc	tggtccattc	ccacggcccg	tttgcatggg	gcaaaaatgc	4080
cgaagatgcg gtgcataacg	ccatcgtgct	ggaagaggtc	gcttatatgg	ggatattctg	4140
ccgtcagtta gcgccgcagt	taccggatat	gcagcaaacg	ctgctggata	aacactatct	4200
gcgtaagcat ggcgcgaagg	catattacgg	gcagtaatga	ctgtataaaa	ccacagccaa	4260
tcaaacgaaa ccaggctata	ctcaagcctg	gttttttgat	ggattttcag	cgtggcgcag	4320
gcaggtttta tcttaacccg	acactggcgg	gacaccccgc	aagggacaga	agtctccttc	4380
tggctggcga cggacaacgg	gccaagcttg	gaagggcgaa	ttcgcgatcg	cataacttcg	4440
tataatgtat gctatacgaa	gttatgcggc	cgcagcacag	gatgacgcct	aacaattcat	4500
tcaagccgac accgcttcgc	ggcgcggctt	aattcaggag	ttaaacatca	tgagggaagc	4560
ggtgatcgcc gaagtatcga	ctcaactatc	agaggtagtt	ggcgtcatcg	agcgccatct	4620
cgaaccgacg ttgctggccg	tacatttgta	cggctccgca	gtggatggcg	gcctgaagcc	4680
acacagtgat attgatttgc	tggttacggt	gactgtaagg	cttgatgaaa	caacgcggcg	4740
agctttgatc aacgaccttt	tggaaacttc	ggcttcccct	ggagagagcg	agattctccg	4800
cgctgtagaa gtcaccattg	ttgtgcacga	cgacatcatt	ccgtggcgtt	atccagctaa	4860
gegegaactg caatttggag	aatggcagcg	caatgacatt	cttgcaggta	tettegagee	4920
agccacgatc gacattgatc	tggctatctt	gctgacaaaa	gcaagagaac	atagcgttgc	4980
cttggtaggt ccagcggcgg	aggaactctt	tgatccggtt	cctgaacagg	atctatttga	5040
ggcgctaaat gaaaccttaa	cgctatggaa	ctcgccgccc	gactgggctg	gcgatgagcg	5100
aaatgtagtg cttacgttgt	cccgcatttg	gtacagcgca	gtaaccggca	aaatcgcgcc	5160
gaaggatgtc gctgccgact	gggcaatgga	gegeetgeeg	gcccagtatc	agcccgtcat	5220
acttgaagct aggcaggctt	atcttggaca	agaagatcgc	ttggcctcgc	gcgcagatca	5280
gttggaagaa tttgttcact	acgtgaaagg	cgagatcacc	aaggtagtcg	gcaaataatg	5340
tctaacaatt cgttcaagcc	gacgccgctt	cgcggcgcgg	cttaactcaa	gcgttagaga	5400
gctggggaag actatgcgcg	atctgttgaa	ggtggttcta	agcctcgtac	ttgcgatggc	5460
atcggggcag gcacttgctg	acctgcctta	attaaataac	ttcgtataat	gtatgctata	5520
cgaagttatg gccggccaat	tcatggtttt	ggtgccaatg	ttatcgccta	taaaccgcat	5580
ccagaccccg aattggcgaa	aaaggtcggt	ttccgcttca	cctctctcga	tgaagtgatc	5640
gagaccagcg acatcatttc	gcttcactgt	ccgctcacgc	cagaaaatca	tcacatgatt	5700
aatgaagaaa cactggcaag	ggcaaaaaaa	ggcttttacc	tcgtcaatac	cagtcgcggc	5760

ggcttggttg	ataccaaggc	ggtgattaaa	tcgctgaaag	ccaaacatct	cggcggttat	5820
gcggcggatg	tttacgaaga	ggaggggcct	ttattcttcg	aaaatcacgc	tgacgatatt	5880
atcgaagatg	atattctcga	aaggttgatc	gctttcccga	atgtggtttt	cacgggacat	5940
caggcctttt	tgacgaaaga	ggccttatca	aacattgete	acagtattct	acaagatatc	6000
agcgatgccg	aagctggaaa	agaaatgccg	gatgcgcttg	tttagtagac	aagcgacaat	6060
taaccttttg	aagatcataa	tgatcaaatt	tttgggttaa	ttcggtagtt	atggcatagg	6120
ctattacgcg	ctaattgata	tcaaaaaaaa	gcatagccgg	acatcatacc	ggctatgttt	6180
tttattagga	aaaaatttcc	tttcaccttg	cttagccatc	gccgcattat	ttaatcaata	6240
tgccgagttt	ttcttgaaat	ccctatctta	caccaaggcc	aacaagggaa	tcatccatac	6300
teggtgteet	atcctatgac	tttttaaatt	ttctccaaat	ttactaaaat	cacgccatct	6360
cageggetge	tattttcaaa	aagegeetet	caaaaccgct	ttttcctgct	caaatatcgg	6420
atcccaaaat	tccctcaaaa	aaggcagggt	atttttaca	aaatcgcccc	taatatetet	6480
caatccgctg	ccttgttcat	atgtttttgc	aaatgatttt	tattaaactt	ttttaggcgt	6540
atttttatca	agaaaattta	aataatcaca	tttttattat	tttagattta	agtattgata	6600
caagtgatat	ctataaatgt	ttttataact	ttctggatcg	taatcggctg	gcaatcgttt	6660
tccctatatt	cgcaagatgt	atgtcagccg	cgcggccgct	ggtacccaat	tcgccctata	6720
gtgagtcgta	ttacgcgcgc	tcactggccg	tcgttttaca	acgtcgtgac	tgggaaaacc	6780
ctggcgttac	ccaacttaat	cgccttgcag	cacatccccc	tttcgccagc	tggcgtaata	6840
gcgaagaggc	ccgcaccgat	cgcccttccc	aacagttgcg	cagcctgaat	ggcgaatggg	6900
acgcgccctg	tagcggcgca	ttaagcgcgg	cgggtgtggt	ggttacgcgc	agcgtgaccg	6960
ctacacttgc	cagcgcccta	gcgcccgctc	ctttcgcttt	cttcccttcc	tttctcgcca	7020
cgttcgccgg	ctttccccgt	caagctctaa	atcgggggct	ccctttaggg	ttccgattta	7080
gtgctttacg	gcacctcgac	cccaaaaaac	ttgattaggg	tgatggttca	cgtagtgggc	7140
catcgccctg	atagacggtt	tttcgccctt	tgacgttgga	gtccacgttc	tttaatagtg	7200
gactcttgtt	ccaaactgga	acaacactca	accctatctc	ggtctattct	tttgatttat	7260
aagggatttt	gccgatttcg	gcctattggt	taaaaaatga	gctgatttaa	caaaaattta	7320
acgcgaattt	taacaaaata	ttaacgctta	caatttaggt	ggcacttttc	ggggaaatgt	7380
gcgcggaacc	cctatttgtt	tatttttcta	aatacattca	aatatgtatc	cgctcatgag	7440
acaataaccc	tgataaatgc	ttcaataata	ttgaaaaagg	aagagtatga	gtattcaaca	7500
tttccgtgtc	gcccttattc	ccttttttgc	ggcattttgc	cttcctgttt	ttgctcaccc	7560
agaaacgctg	gtgaaagtaa	aagatgctga	agatcagttg	ggtgcacgag	tgggttacat	7620
cgaactggat	ctcaacagcg	gtaagatcct	tgagagtttt	cgccccgaag	aacgttttcc	7680
aatgatgagc	acttttaaag	ttctgctatg	tggcgcggta	ttatcccgta	ttgacgccgg	7740

gcaagagcaa	ctcaatcacc	gcatacacta	ttctcagaat	gacttggttg	agtactcacc	7800
		cggatggcat				7860
aaccatgagt	gataacactg	cggccaactt	acttctgaca	acgatcggag	gaccgaagga	7920
gctaaccgct	tttttgcaca	acatggggga	tcatgtaact	cgccttgatc	gttgggaacc	7980
ggagctgaat	gaagccatac	caaacgacga	gcgtgacacc	acgatgcctg	tagcaatggc	8040
aacaacgttg	cgcaaactat	taactggcga	actacttact	ctagcttccc	ggcaacaatt	8100
aatagactgg	atggaggegg	ataaagttgc	aggaccactt	ctgcgctcgg	cccttccggc	8160
tggctggttt	attgctgata	aatctggagc	cggtgagcgt	gggtctcgcg	gtatcattgc	8220
agcactgggg	ccagatggta	agccctcccg	tatcgtagtt	atctacacga	cggggagtca	8280
ggcaactatg	gatgaacgaa	atagacagat	cgctgagata	ggtgcctcac	tgattaagca	8340
ttggtaactg	tcagaccaag	tttactcata	tatactttag	attgatttaa	aacttcattt	8400
ttaatttaaa	aggatctagg	tgaagatcct	ttttgataat	ctcatgacca	aaatccctta	8460
acgtgagttt	tcgttccact	gagcgtcaga	ccccgtagaa	aagatcaaag	gatcttcttg	8520
agatcctttt	tttctgcgcg	taatctgctg	cttgcaaaca	aaaaaaccac	cgctaccagc	8580
ggtggtttgt	ttgccggatc	aagagctacc	aactctttt	ccgaaggtaa	ctggcttcag	8640
cagagcgcag	ataccaaata	ctgtccttct	agtgtagccg	tagttaggcc	accacttcaa	8700
gaactctgta	gcaccgccta	catacctcgc	tctgctaatc	ctgttaccag	tggctgctgc	8760
cagtggcgat	aagtcgtgtc	ttaccgggtt	ggactcaaga	cgatagttac	cggataaggc	8820
gcagcggtcg	ggctgaacgg	ggggttcgtg	cacacagccc	agcttggagc	gaacgaccta	8880
caccgaactg	agatacctac	agcgtgagct	atgagaaagc	gccacgcttc	ccgaagggag	8940
aaaggcggac	aggtatccgg	taagcggcag	ggtcggaaca	ggagagcgca	cgagggagct	9000
tccaggggga	aacgcctggt	atctttatag	tectgteggg	tttcgccacc	tctgacttga	9060
gcgtcgattt	ttgtgatgct	cgtcaggggg	gcggagccta	tggaaaaacg	ccagcaacgc	9120
ggcctttta	cggttcctgg	ccttttgctg	gccttttgct	cacatgttct	ttcctgcgtt	9180
atcccctgat	tctgtggata	accgtattac	cgcctttgag	tgagctgata	ccgctcgccg	9240
cagccgaacg	accgagcgca	gcgagtcagt	gagcgaggaa	gcggaagagc	gcccaatacg	9300
caaaccgcct	ctccccgcgc	gttggccgat	tcattaatgc	agctggcacg	acaggtttcc	9360
cgactggaaa	gcgggcagtg	agcgcaacgc	aattaatgtg	agttagctca	ctcattaggc	9420
accccaggct	ttacacttta	tgcttccggc	tcgtatgttg	tgtggaattg	tgagcggata	9480
acaatttcac	acaggaaaca	gctatgacca	tgattacgcc	aagcgcgcaa	ttaaccctca	9540
ctaaagggaa	caaaagctgg	agctcgtttt	tctatcccca	tcacctcggt	tttgttgaca	9600
aaaaaggtg	gccactaaat	tggctttccg	caccgatggg	atgattttta	ttctttgcta	9660

ttettegete tttgeceaa	t tcattaaaag	cggaaatcat	caccaaagat	agaagacgca	9720
gccttcacca tttcagatt	g cccttctcgg	gcattttctg	ctgctagaat	cctcttaaaa	9780
atattaaatt ccactctat	t ggtaatatgt	ttccctcttt	agggaacaaa	taaagccctt	9840
ctttgttcta taaaagtta	g cttaccgatt	ttacaaaaaa	taataccgct	tcattcaatc	9900
ggtaatacat atcttttt	c ttcaaaaaac	ttttcaagag	ggtgtctatg	cgcgtcgcaa	9960
tattcagttc caaaaacta	t gaccatcatt	ctattgaaaa	agaaaatgaa	cattatggcc	10020
atgaccttgt ttttctgaa	t gagcggctta	ccaaagagac	agcagaaaaa	gccaaagacg	10080
cagaagctgt ttgtatctt	t gtgaatgacg	aagccaatgc	cgaagtgctg	gaaattttgg	10140
caggettagg cateaagtt	g gttgctcttc	gttgcgccgg	ttataacaat	gtcgatctcg	10200
atgcggccaa aaagctgaa	t atcaaggttg	tgcgcgtgcc	tgcctattcg	ccctattcgg	10260
ttgccgaata tgcagtagg	g atgttgctca	ccctgaatcg	gcaaatttca	cgcggtttga	10320
agcgggttcg ggaaaataa	c ttctccttgg	aaggtttgat	tggccttgat	gtgcatgaca	10380
aaacagtcgg cattatcgg	t gttggtcata	tcgggagcgt	ctttgcccat	attatgaccc	10440
a					10441
<210> 50 <211> 20 <212> ADN <213> secuencia artificial					
<220> <223> cebador					
<400> 50					
gccttgggct tttaaagcct 20					
<210> 51 <211> 22 <212> ADN <213> secuencia artificial					
<220> <223> cebador					
<400> 51					
tcaatccacg atgcggcaga tt		22			
<210> 52 <211> 20 <212> ADN <213> secuencia artificial					
<220> <223> cebador					
<400> 52					
ccagtatcag cccgtcatac	2	0			
<210> 53 <211> 26 <212> ADN <213> secuencia artificial					

	<220> <223> cebador						
	<400> 53						
	tctcggagag atag	jaggtca gtcgac		26			
5	<210> 54 <211> 27 <212> ADN <213> secuence	ia artificial					
10	<220> <223> cebador						
	<400> 54						
	aaccatggtt actat	tcaata cggaatc		27			
15	<210> 55 <211> 27 <212> ADN <213> secuence	ia artificial					
	<220> <223> cebador						
	<400> 55						
20	ttgaattcct gatgtg	otgtt accgcaa	27				
	<210> 56 <211> 1550 <212> ADN <213> secuence	ia artificial					
25	<220> <223> fragment	to de PCR de ar	aE				
	<400> 56						
	aaccatggtt	actatcaata	cggaatctgc	tttaacgcca	cgttctttgc	gggatacgcg	60
	gcgtatgaat	atgtttgttt	cggtagctgc	tgcggtcgca	ggattgttat	ttggtcttga	120
	tatcggcgta	ategeeggag	cgttgccgtt	cattaccgat	cactttgtgc	tgaccagtcg	180
	tttgcaggaa	tgggtggtta	gtagcatgat	gctcggtgca	gcaattggtg	cgctgtttaa	240
	tggttggctg	tegtteegee	tggggcgtaa	atacagcctg	atggcggggg	ccatcctgtt	300
	tgtactcggt	tctatagggt	ccgcttttgc	gaccagcgta	gagatgttaa	tegeegeteg	360
	tgtggtgctg	ggcattgctg	tegggatege	gtcttacacc	gctcctctgt	atctttctga	420
	aatggcaagt	gaaaacgttc	gcggtaagat	gatcagtatg	taccagttga	tggtcacact	480
	cggcatcgtg	ctggcgtttt	tatccgatac	agcgttcagt	tatagcggta	actggcgcgc	540
		-++-+++	+	*****		* - * * *	600

```
aaatagcccg cgctggctgg cggaaaaggg gcgtcatatt gaggcggaag aagtattgcg
                                                                        660
 tatgctgcgc gatacgtcgg aaaaagcgcg agaagaactc aacgaaattc gtgaaagcct
                                                                        720
 qaaqttaaaa cagggcggtt gggcactgtt taagatcaac cgtaacgtcc gtcgtgctgt
                                                                        780
 qtttctcqqt atqttqttqc aggcqatqca qcaqtttacc qqtatqaaca tcatcatqta
                                                                        840
                                                                       900
 ctacgcgccg cgtatcttca aaatggcggg ctttacgacc acagaacaac agatgattgc
 gactctggtc gtagggctga cctttatgtt cgccaccttt attgcggtgt ttacggtaga
                                                                       960
                                                                      1020
 taaaqcaqqq cqtaaaccqq ctctqaaaat tqqtttcaqc qtqatqqcqt taqqcactct
                                                                      1080
 qqtqctqqgc tattgcctga tgcagtttga taacggtacg gcttccagtg gcttgtcctg
 qctctctqtt qqcatqacqa tgatqtqtat tqccqqttat qcqatqaqcq ccqcqccaqt
                                                                      1140
 ggtgtggatc ctgtgctctg aaattcagcc gctgaaatgc cgcgatttcg gtattacctg
                                                                      1200
 ttegaccacc acgaactggg tgtegaatat gattategge gegacettee tgacactget
                                                                      1260
 tgatageatt ggcgctgccg gtacgttctg gctctacact gcgctgaaca ttgcgtttgt
                                                                      1320
 gggcattact ttctggctca ttccggaaac caaaaatgtc acgctggaac atatcgaacg
                                                                      1380
 caaactgatg gcaggcgaga agttgagaaa tatcggcgtc tgatttcacg ggccggatgt
                                                                      1440
 qctqtacatc cqqccctttt ttcqttaata gagattqqqc acttqqccqt tqaqqcqttt
                                                                      1500
                                                                      1550
 gtctcgttcc ttattcagcc ttgttgcggt aacacacatc aggaattcaa
<210> 57
<211> 32
<212> ADN
<213> secuencia artificial
<220>
<223> cebador
```

<400> 57

aaccatggcg cacaaattta ctaaagccct gg 32

- <210> 58 10
 - <211>30
 - <212> ADN
 - <213> secuencia artificial
 - <220>
- 15 <223> cebador
 - <400> 58

30 ccgaattcct tctcttttct tattgtgttg

- <210> 59
- <211> 3744
- 20 <212> ADN
 - <213> secuencia artificial

 - <223> fragmento de PCR de araFGH
 - <400> 59

aaccatggcg	cacaaattta	ctaaagccct	ggcagccatt	ggtctggcag	ccgttatgtc	60
acaatccgct	atggcggaga	acctgaagct	cggttttctg	gtgaagcaac	cggaagagcc	120
gtggttccag	accgaatgga	agtttgccga	taaagccggg	aaggatttag	ggtttgaggt	180
tattaagatt	gccgtgccgg	atggcgaaaa	aacattgaac	gcgatcgaca	gcctggctgc	240
cagtggcgca	aaaggtttcg	ttatttgtac	tccggacccc	aaactcggct	ctgccatcgt	300
cgcgaaagcg	cgtggctacg	atatgaaagt	cattgccgtg	gatgaccagt	ttgttaacgc	360
caaaggtaag	ccaatggata	ccgttccgct	ggtgatgatg	gcggcgacta	aaattggcga	420
acgtcagggc	caggaactgt	ataaagagat	gcagaaacgt	ggctgggatg	tcaaagaaag	480
cgcggtgatg	gcgattaccg	ccaacgaact	ggataccgcc	cgccgccgta	ctacgggatc	540
tatggatgcg	ctgaaagcgg	ccggattccc	ggaaaaacaa	atttatcagg	tacctaccaa	600
atctaacgac	atcccggggg	catttgacgc	tgccaactca	atgctggttc	aacatccgga	660
agttaaacat	tggctgatcg	teggtatgaa	cgacagcacc	gtgctgggcg	gcgtacgcgc	720
gacggaaggt	cagggcttta	aagcggccga	tatcatcggc	attggcatta	acggtgtgga	780
tgcggtgagc	gaactgtcta	aagcacaggc	aaccggcttc	tacggttccc	tgctgccaag	840
cccggacgta	catggctata	aatccagcga	aatgctttac	aactgggtag	caaaagacgt	900
tgaaccgcca	aaatttaccg	aagttaccga	cgtggtactg	atcacgcgtg	acaactttaa	960
agaagaactg	gagaaaaaag	gtttaggcgg	taagtaattt	gccggaaaaa	ttcccctctg	1020
catgatgcag	agggggtgtg	aacgaccagt	gattcacgga	gacgttatgc	aacagtctac	1080
cccgtatctc	tcatttcgcg	gcatcggtaa	aacgtttccc	ggcgttaagg	cgctgacgga	1140
tattagtttt	gactgctatg	ccggtcaggt	tcatgcgttg	atgggtgaaa	atggcgcagg	1200
aaaatcaact	ctcttaaaaa	tcctcagcgg	caactatgcg	ccaaccacgg	gttctgtagt	1260
gattaatggg	caggaaatgt	ccttttccga	cacgaccgca	gcacttaacg	cgggcgtggc	1320
gattatttac	caggaactgc	atctcgtgcc	ggaaatgacc	gtcgcggaaa	acatctatct	1380
cggccagctg	ccgcataaag	gcggcattgt	gaatcgctca	ttgctgaatt	atgaggcggg	1440
tttacaactt	aaacatcttg	gtatggatat	tgacccggac	acgccgctga	aatatctctc	1500
cattggtcag	tggcagatgg	ttgaaatcgc	caaagcgctg	gcgcgtaacg	ccaaaattat	1560
cgcctttgat	gagccaacca	gctccctctc	tgcccgtgaa	atcgacaatc	ttttccgcgt	1620
tattcgtgaa	ctgcgaaaag	aggggcgggt	aatcttatac	gtttctcacc	gtatggaaga	1680
aatatttgcc	ctcagcgatg	ccattactgt	ctttaaagat	ggacgttatg	tcaaaacctt	1740
taccgatatg	cagcaggttg	accacgacgc	gctggtgcag	gcgatggtcg	ggcgcgacat	1800
tggcgatatc	tacggctggc	aaccgcgtag	ttatggcgag	gagcgcctac	gtcttgatgc	1860
tgtgaaagca	ccaggcgtgc	gtacgccaat	aagtctggcg	gttcgcagtg	gtgaaattgt	1920

tgggctgttt	ggtctggtag	gggcggggcg	tagcgaatta	atgaaaggca	tgtttggcgg	1980
gacgcaaatc	accgccggtc	aggtttatat	cgaccaacag	ccgatcgata	ttcgtaaacc	2040
gagccacgcc	attgccgcag	gcatgatgct	ctgcccggaa	gatcgcaaag	cggaaggcat	2100
tattcccgtg	cactccgttc	gcgacaatat	caacatcagt	gccagacgta	aacatgtgct	2160
cggcggttgt	gtaatcaaca	acggttggga	agaaaacaat	gccgatcacc	acattcgttc	2220
gctcaacatc	aaaacgccgg	gcgcggagca	actgatcatg	aatctctcag	gcggaaatca	2280
gcaaaaagcc	attctgggcc	gctggttatc	ggaagagatg	aaggtcattt	tgctggatga	2340
acctacgcgc	ggcattgatg	ttggcgctaa	gcacgaaata	tataacgtaa	tttatgcgct	2400
ggcggcgcag	ggcgtggcgg	tgctgtttgc	ctccagcgac	ttacctgaag	tecteggegt	2460
tgccgaccgg	attgtggtga	tgcgggaagg	tgaaatcgcc	ggtgaattgt	tacacgagca	2520
ggcagatgag	cgtcaggcac	tgagccttgc	gatgcctaaa	gtcagccagg	ctgttgcctg	2580
agtaaggaga	gtatgatgtc	ttctgtttct	acatcggggt	ctggcgcacc	taagtcgtca	2640
ttcagcttcg	ggcgtatctg	ggatcagtac	ggcatgctgg	tggtgtttgc	ggtgctcttt	2700
atcgcctgtg	ccatttttgt	cccaaatttt	gccaccttca	ttaatatgaa	agggttgggc	2760
ctggcaattt	ccatgtcggg	gatggtggct	tgtggcatgt	tgttctgcct	cgcttccggt	2820
gactttgacc	tttctgtcgc	ctccgtaatt	gcctgtgcgg	gtgtcaccac	ggcggtggtt	2880
attaacctga	ctgaaagcct	gtggattggc	gtggcagcgg	ggttgttgct	gggcgttctc	2940
tgtggcctgg	tcaatggctt	tgttatcgcc	aaactgaaaa	taaatgctct	gatcacgaca	3000
ttggcaacga	tgcagattgt	tcgaggtctg	gcgtacatca	tttcagacgg	taaagcggtc	3060
ggtatcgaag	atgaaagctt	ctttgccctt	ggttacgcca	actggttcgg	tctgcctgcg	3120
ccaatctggc	tcaccgtcgc	gtgtctgatt	atctttggtt	tgctgctgaa	taaaaccacc	3180
tttggtcgta	acaccctggc	gattggcggg	aacgaagagg	ccgcgcgtct	ggcgggtgta	3240
ccggttgttc	gcaccaaaat	tattatcttt	gttctctcag	gcctggtatc	agcgatagcc	3300
ggaattattc	tggcttcacg	tatgaccagt	gggcagccaa	tgacgtcgat	tggttatgag	3360
ctgattgtta	teteegeetg	cgttttaggt	ggcgtttctc	tgaaaggtgg	catcggaaaa	3420
atctcatatg	tggtggcggg	tatcttaatt	ttaggcaccg	tggaaaacgc	catgaacctg	3480
cttaatattt	ctcctttcgc	gcagtacgtg	gttcgcggct	taatcctgct	ggcagcggtg	3540
atcttcgacc	gttacaagca	aaaagcgaaa	cgcactgtct	gatgcttttt	tctgcaacaa	3600
tttagcgttt	tttcccacca	tagccaaccg	ccataacggt	tggctgttct	tcgttgcaaa	3660
tggcgacccc	cgtcacactg	tctatactta	catgtctgta	aagcgcgttc	tgcgcaacac .	3720
aataagaaaa	gagaaggaat	tegg				3744

<210> 60 <211> 27 <212> ADN

^{5 &}lt;213> secuencia artificial

	<220> <223> cebador	
	<400> 60	
	gggageteae tagtegatet gtgetgt 27	
5	<210> 61 <211> 23 <212> ADN <213> secuencia artificial	
10	<220> <223> cebador	
	<400> 61	
	agccatggtt acctccggga aac 23	
15	<210> 62 <211> 181 <212> ADN <213> Actinoplanes missouriensis	
	<400> 62	
	cgatctgtgc tgtttgccac ggtatgcagc accagcgcga gattatgggc tcgcacgctc	60
	gactgtcgga cgggggcact ggaacgagaa gtcaggcgag ccgtcacgcc cttgacaatg	120
	ccacatectg ageaaataat teaaceaeta aacaaateaa eegegtttee eggaggtaae	180
	c	181
20	<210> 63 <211> 201 <212> ADN <213> secuencia artificial	
	<220> <223> fragmento de PCR Pgi	
25	<400> 63	
	gggageteae tagtegatet gtgetgtttg ceaeggtatg eageaceage gegagattat	60
	gggetegeae getegaetgt eggaeggggg eaetggaaeg agaagteagg egageegtea	120
	cgcccttgac aatgccacat cctgagcaaa taattcaacc actaaacaaa tcaaccgcgt	180
	ttcccggagg taaccatggc t	201
30	<210> 64 <211> 911 <212> ADN <213> secuencia artificial	
	<220> <223> marcador de resistencia a cloranfenicol	
	<400> 64	
	qtqacqqaaq atcacttcgc agaataaata aatcctqqtq tccctqttqa taccqqgaag	60

ccctgggcca	acttttggcg	aaaatgagac	gttgatcggc	acgtaagagg	ttccaacttt	120
caccataatg	aaataagatc	actaccgggc	gtatttttg	agttatcgag	attttcagga	180
gctaaggaag	ctaaaatgga	gaaaaaaatc	actggatata	ccaccgttga	tatatcccaa	240
tggcatcgta	aagaacattt	tgaggcattt	cagtcagttg	ctcaatgtac	ctataaccag	300
accgttcagc	tggatattac	ggcctttta	aagaccgtaa	agaaaaataa	gcacaagttt	360
tateeggeet	ttattcacat	tettgeeege	ctgatgaatg	ctcatccgga	attccgtatg	420
gcaatgaaag	acggtgagct	ggtgatatgg	gatagtgttc	acccttgtta	caccgttttc	480
catgagcaaa	ctgaaacgtt	ttcatcgctc	tggagtgaat	accacgacga	tttccggcag	540
tttctacaca	tatattcgca	agatgtggcg	tgttacggtg	aaaacctggc	ctatttccct	600
aaagggttta	ttgagaatat	gtttttcgtc	tcagccaatc	cctgggtgag	tttcaccagt	660
tttgatttaa	acgtggccaa	tatggacaac	ttcttcgccc	ccgttttcac	catgggcaaa	720
tattatacgc	aaggcgacaa	ggtgctgatg	ccgctggcga	ttcaggttca	tcatgccgtt	780
tgtgatggct	tccatgtcgg	cagaatgctt	aatgaattac	aacagtactg	cgatgagtgg	840
cagggcgggg	cgtaatttt	ttaaggcagt	tattggtgcc	cttaaacgcc	tggttgctac	900
gcctgaataa	g					911

<210> 65

<211> 7224

<212> ADN

5 <213> secuencia artificial

<220>

<223> plásmido construido

<400> 65

ggcttactat gttggcactg atgagggtgt cagtgaagtg cttcatgtgg caggagaaaa 60 120 aaggetgeac eggtgegtea geagaatatg tgatacagga tatatteege tteetegete actgactcgc tacgctcggt cgttcgactg cggcgagcgg aaatggctta cgaacggggc 180 ggagatttcc tggaagatgc caggaagata cttaacaggg aagtgagagg gccgcggcaa 240 ageogttttt ccataggete egececeetg acaageatea egaaatetga egeteaaate 300 agtggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct ggcggctccc 360 tegtgegete teetgtteet geettteggt ttaceggtgt catteegetg ttatggeege 420 gtttgtctca ttccacgcct gacactcagt tccgggtagg cagttcgctc caagctggac 480 tgtatgcacg aaccccccgt tcagtccgac cgctgcgcct tatccggtaa ctatcqtctt 540 gagtccaacc cggaaagaca tgcaaaagca ccactggcag cagccactgg taattgattt 600 agaggagtta gtcttgaagt catgcgccgg ttaaggctaa actgaaagga caagttttgg 660 tgactgcgct cctccaagcc agttacctcg gttcaaagag ttggtagctc agagaacctt 720

cgaaaaaccg	ccctgcaagg	cggtttttc	gttttcagag	caagagatta	cgcgcagacc	780
aaaacgatct	caagaagatc	atcttattaa	tcagataaaa	tatttctaga	tttcagtgca	840
atttatctct	tcaaatgtag	cacctgaagt	cagccccata	cgatataagt	tgtaattctc	900
atgtttgaca	gettateate	gatggagcac	aggatgacgc	ctaacaattc	attcaagccg	960
acaccgcttc	geggegegge	ttaattcagg	agttaaacat	catgagggaa	gcggtgatcg	1020
ccgaagtatc	gactcaacta	tcagaggtag	ttggcgtcat	cgagcgccat	ctcgaaccga	1080
cgttgctggc	cgtacatttg	tacggctccg	cagtggatgg	cggcctgaag	ccacacagtg	1140
atattgattt	gctggttacg	gtgactgtaa	ggcttgatga	aacaacgcgg	cgagctttga	1200
tcaacgacct	tttggaaact	teggetteee	ctggagagag	cgagattctc	cgcgctgtag	1260
aagtcaccat	tgttgtgcac	gacgacatca	ttccgtggcg	ttatccagct	aagcgcgaac	1320
tgcaatttgg	agaatggcag	cgcaatgaca	ttcttgcagg	tatcttcgag	ccagccacga	1380
tcgacattga	tctggctatc	ttgctgacaa	aagcaagaga	acatagcgtt	gccttggtag	1440
gtccagcggc	ggaggaactc	tttgatccgg	ttcctgaaca	ggatctattt	gaggcgctaa	1500
atgaaacctt	aacgctatgg	aactcgccgc	ccgactgggc	tggcgatgag	cgaaatgtag	1560
tgcttacgtt	gtcccgcatt	tggtacagcg	cagtaaccgg	caaaatcgcg	ccgaaggatg	1620
tcgctgccga	ctgggcaatg	gagegeetge	cggcccagta	tcagcccgtc	atacttgaag	1680
ctaggcaggc	ttatcttgga	caagaagatc	gcttggcctc	gcgcgcagat	cagttggaag	1740
aatttgttca	ctacgtgaaa	ggcgagatca	ccaaggtagt	cggcaaataa	tgtctaacaa	1800
ttcgttcaag	ccgacgccgc	ttegeggege	ggcttaactc	aagcgttaga	gagctgggga	1860
agactatgcg	cgatctgttg	aaggtggttc	taagcctcgt	acttgcgatg	gcatcggggc	1920
aggcacttgc	tgacctgcca	acgcgccttt	gtagtcttgg	cctgttgtgt	gcatgagcaa	1980
atcaatggca	ccaccccctc	ctttttgagc	tgaatggtca	taaaatttat	aattatctat	2040
cgtaattcgg	aatctatgtt	cagggtctcg	ccattgcttt	ttgtctgctg	ggtcaagttc	2100
catgcctaag	gtttttaaga	catcagaaag	aggtattgca	cgcatgctat	cagcttttct	2160
tctagctaat	gacagggctt	cctctgctct	atctgctcgt	tttttttctt	ccacatatct	2220
cgccgctttg	tcagccagcg	gctgtattac	ggaaagtgcc	gatttttggg	cttttaggcg	2280
ttcttttct	gcccattctt	ccttatttgt	aaaaattgag	ggtgggatgg	gtgcctgaat	2340
cttgggatct	agctgtaaag	ttttgttgat	atttccgtaa	tgtctttgga	ctctttgatg	2400
cgttgctttt	gaacctttta	cgcctctggc	cagccctaga	ggctccatag	aagccgcata	2460
atccgtctgg	agggcagaaa	gggcttttcg	accatcaaac	catctcgatg	cgtttaaacg	2520
gcctgtatcg	gggtctctag	gcaccataaa	gccggttaag	tggggtgttg	tttcatcagc	2580
atgtagctga	agagatacaa	ggttgtttc	tccaaaggtt	tgttccgccc	attgctgggt	2640
gattgttttc	cagtgttcga	gtttttcagg	agtggcctgt	tttgaccatt	ctggagacat	2700

accaaagaac	agttctatgg	cctgcacacc	gttttttcta	agaggettte	ccgtttcttt	2760
ctgaatttta	ttcagcatag	atttaacatc	tgctgatggg	tcagtagagc	ctttgagtat	2820
ttcgtttagt	tcttttctat	ctgggtcagc	gttttgtgtt	tegeggeete	gcgtcatatg	2880
caggetegeg	gctttaatcg	tgccaactgt	tttatgtttt	tcaaacctaa	agattgcata	2940
gttcggcatg	ttttaactgc	tttaatttga	gaaaagacca	gaggaaataa	tccagcctat	3000
atttctttcc	ctagtagcga	actggaattg	tttttccgaa	ggaaaaaagc	aattccgtag	3060
tgagtactga	atttattctg	attcgtcttg	cttttggagc	gtctttttgc	gttctataac	3120
tgttgtgaaa	gctacgcggt	cgccattgaa	aacgaaatta	ggattaataa	aataccatcc	3180
ttggcgaaca	tgctttgcaa	tgattttagc	tttttctaat	tcggctagac	ctcttgcaaa	3240
ggtagcttga	gatagtgcca	gtttttttc	ttgtgcgtta	agaaagtcct	ctaaaacgaa	3300
tttgtctaaa	gggacgaggt	ctttgctgat	gcctttgtct	tgaagtatcc	aaaccagaac	3360
gctgaaagct	tttattccag	cggctcctag	ttcaaaagtt	agcgcgatat	tggtgctaaa	3420
taattttaca	aattcttcac	tatcaacacg	tctgtaagtc	gtcacatgag	tgccttgcat	3480
ctcaccagtg	gcttgattga	ccagaatgtt	atcatctcgt	cctaatcgag	ataactgaac	3540
cctctgactt	ttaactggca	caaccatacc	ttcgatgaaa	ggattctcgt	catatctgat	3600
tggctgcttt	ctcaattttq	tcgccatatt	tgataaacct	ttaatcaaaa	aaaccacatt	3660
	-	-	_			
		cgaatgaggc				3720
ttttgattat	acctattcat		aaggtctatc	aattttaccc	ctttttttga	3720 3780
ttttgattat	acctattcat	cgaatgaggc	aaggtctatc ttcacagatt	aattttaccc ctgaaaatcg	cttttttga	
ttttgattat tagacggttt tttagggata	acctattcat aatcaatatt ttttcacgat	cgaatgaggc gatagacccc	aaggtctatc ttcacagatt agttcttcct	aattttaccc ctgaaaatcg agtggggaaa	cttttttga acttccctat ttcgttgaat	3780
ttttgattat tagacggttt tttagggata cctgcctcgg	acctattcat aatcaatatt ttttcacgat aaaaaccatg	cgaatgaggc gatagacccc tccctttctt	aaggtctatc ttcacagatt agttcttcct tggttatata	aattttaccc ctgaaaatcg agtggggaaa cacgggcaaa	cttttttga acttccctat ttcgttgaat gccaccctat	3780 3840
ttttgattat tagacggttt tttagggata cctgcctcgg ttttagctac	acctattcat aatcaatatt ttttcacgat aaaaaccatg tggggaaaga	cgaatgaggc gatagacccc tccctttctt agaaagctgt	aaggtctatc ttcacagatt agttcttcct tggttatata ggtatttgta	aattttaccc ctgaaaatcg agtggggaaa cacgggcaaa aaattaaaac	cttttttga acttccctat ttcgttgaat gccaccctat cggattttc	3780 3840 3900
ttttgattat tagacggttt tttagggata cctgcctcgg ttttagctac gctttacggt	acctattcat aatcaatatt ttttcacgat aaaaaccatg tggggaaaga ttgtttaggc	cgaatgaggc gatagacccc tccctttctt agaaagctgt gataaggcag	aaggtctatc ttcacagatt agttcttcct tggttatata ggtatttgta ttttaagacc	aattttaccc ctgaaaatcg agtggggaaa cacgggcaaa aaattaaaac gcgtttaacc	cttttttga acttccctat ttcgttgaat gccaccctat cggattttc atcaaaagat	3780 3840 3900 3960
ttttgattat tagacggttt tttagggata cctgcctcgg ttttagctac gctttacggt cgttccaatc	acctattcat aatcaatatt ttttcacgat aaaaaccatg tggggaaaga ttgtttaggc ttttccgtgt	cgaatgaggc gatagacccc tccctttctt agaaagctgt gataaggcag gcaactgtct	aaggtctatc ttcacagatt agttcttcct tggttatata ggtatttgta ttttaagacc ctttaggtgg	aattttaccc ctgaaaatcg agtggggaaa cacgggcaaa aaattaaaac gcgtttaacc gagccagttt	cttttttga acttccctat ttcgttgaat gccaccctat cggattttc atcaaaagat tcaactttt	3780 3840 3900 3960 4020
ttttgattat tagacggttt tttagggata cctgcctcgg ttttagctac gctttacggt cgttccaatc ttgttggaaa	acctattcat aatcaatatt ttttcacgat aaaaaccatg tggggaaaga ttgtttaggc ttttccgtgt cgcggcttta	cgaatgaggc gatagacccc tccctttctt agaaagctgt gataaggcag gcaactgtct atcatctgtt	aaggtctatc ttcacagatt agttcttcct tggttatata ggtatttgta ttttaagacc ctttaggtgg ctaatagcga	aattttaccc ctgaaaatcg agtggggaaa cacgggcaaa aaattaaaac gcgtttaacc gagccagttt tgctgctctt	cttttttga acttccctat ttcgttgaat gccaccctat cggattttc atcaaaagat tcaactttt	3780 3840 3900 3960 4020 4080
ttttgattat tagacggttt tttagggata cctgcctcgg ttttagctac gctttacggt cgttccaatc ttgttggaaa catcccaatc	acctattcat aatcaatatt ttttcacgat aaaaaccatg tggggaaaga ttgtttaggc ttttccgtgt cgcggcttta ataggcaata	cgaatgaggc gatagacccc tccctttctt agaaagctgt gataaggcag gcaactgtct atcatctgtt atcgctccga	aaggtctatc ttcacagatt agttcttcct tggttatata ggtatttgta ttttaagacc ctttaggtgg ctaatagcga atgccttttc	aattttaccc ctgaaaatcg agtggggaaa cacgggcaaa aaattaaaac gcgtttaacc gagccagttt tgctgctctt aacgattttt	cttttttga acttccctat ttcgttgaat gccaccctat cggattttc atcaaaagat tcaactttt tgtcctacag cggagagttt	3780 3840 3900 3960 4020 4080 4140
ttttgattat tagacggttt tttagggata cctgcctcgg ttttagctac gctttacggt cgttccaatc ttgttggaaa catcccaatc tagtaagaga	acctattcat aatcaatatt ttttcacgat aaaaaccatg tggggaaaga ttgtttaggc ttttccgtgt cgcggcttta ataggcaata cgttcttacg	cgaatgaggc gatagacccc tccctttctt agaaagctgt gataaggcag gcaactgtct atcatctgtt atcgctccga tggacagaag	aaggtctatc ttcacagatt agttcttcct tggttatata ggtatttgta ttttaagacc ctttaggtgg ctaatagcga atgccttttc ttaataatt	aattttaccc ctgaaaatcg agtggggaaa cacgggcaaa aaattaaaac gcgtttaacc gagccagttt tgctgctctt aacgattttt tacgccagct	cttttttga acttccctat ttcgttgaat gccaccctat cggattttc atcaaaagat tcaactttt tgtcctacag cggagagttt ttaattttt	3780 3840 3900 3960 4020 4080 4140 4200
ttttgattat tagacggttt tttagggata cctgcctcgg ttttagctac gctttacggt cgttccaatc ttgttggaaa catcccaatc tagtaagaga ctgggcttaa	acctattcat aatcaatatt ttttcacgat aaaaaccatg tggggaaaga ttgtttaggc ttttccgtgt cgcggcttta ataggcaata cgttcttacg aaagccgact	cgaatgaggc gatagacccc tccctttctt agaaagctgt gataaggcag gcaactgtct atcatctgtt atcgctccga tggacagaag ccgctggtgc	aaggtctatc ttcacagatt agttcttcct tggttatata ggtatttgta ttttaagacc ctttaggtgg ctaatagcga atgccttttc ttaataattt cgtctatcgc	aattttaccc ctgaaaatcg agtggggaaa cacgggcaaa aaattaaaac gcgtttaacc gagccagttt tgctgctctt aacgattttt tacgccagct actttcagcg	cttttttga acttccctat ttcgttgaat gccaccctat cggattttc atcaaaagat tcaactttt tgtcctacag cggagagttt ttaattttt atataaagat	3780 3840 3900 3960 4020 4080 4140 4200 4260
ttttgattat tagacggttt tttagggata cctgcctcgg ttttagctac gctttacggt cgttccaatc ttgttggaaa catcccaatc tagtaagaga ctgggcttaa catacttttc	acctattcat aatcaatatt ttttcacgat aaaaaccatg tggggaaaga ttgtttaggc ttttccgtgt cgcggcttta ataggcaata cgttcttacg aaagccgact gtcattttt	cgaatgaggc gatagacccc tccctttctt agaaagctgt gataaggcag gcaactgtct atcatctgtt atcgctccga tggacagaag ccgctggtgc actgaaatcg	aaggtctatc ttcacagatt agttcttcct tggttatata ggtatttgta ttttaagacc ctttaggtgg ctaatagcga atgcctttc ttaataattt cgtctatcgc tgccagtaaa	aattttaccc ctgaaaatcg agtggggaaa cacgggcaaa aaattaaaac gcgtttaacc gagccagttt tgctgctctt aacgattttt tacgccagct acttcagcg atgggcttcg	cttttttga acttecctat ttcgttgaat gccaccctat cggattttc atcaaaagat tcaactttt tgtcctacag cggagagttt ttaattttt atataaagat cgactgcttc	3780 3840 3900 3960 4020 4080 4140 4200 4260 4320
ttttgattat tagacggttt tttagggata cctgcctcgg ttttagctac gctttacggt cgttccaatc ttgttggaaa catcccaatc tagtaagaga ctgggcttaa catacttttc ccaaggctaa	acctattcat aatcaatatt ttttcacgat aaaaaccatg tggggaaaga ttgtttaggc ttttccgtgt cgcggcttta ataggcaata cgttcttacg aaagccgact gtcattttt	cgaatgaggc gatagacccc tccctttctt agaaagctgt gataaggcag gcaactgtct atcatctgtt atcgctccga tggacagaag ccgctggtgc actgaaatcg acattgatgc	aaggtctatc ttcacagatt agttcttcct tggttatata ggtatttgta ttttaagacc ctttaggtgg ctaatagcga atgcctttc ttaatatt cgtctatcgc tgccagtaaa ttccgcgtaa	aattttaccc ctgaaaatcg agtggggaaa cacgggcaaa aaattaaaac gcgtttaacc gagccagttt tgctgctctt aacgattttt tacgccagct acttcagcg atgggcttcg ttctgcgccc	cttttttga acttecctat ttcgttgaat gccaccctat cggattttc atcaaaagat tcaactttt tgtcctacag cggagagttt ttaattttt atataaagat cgactgcttc tgaagtgtat	3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 4380
ttttgattat tagacggttt tttagggata cctgcctcgg ttttagctac gctttacggt cgttccaatc ttgttggaaa catcccaatc tagtaagaga ctgggcttaa catacttttc ccaaggctaa ctttatcgtc	acctattcat aatcaatatt ttttcacgat aaaaaccatg tggggaaaga ttgtttaggc ttttccgtgt cgcggcttta ataggcaata cgttcttacg aaagccgact gtcattttt ccctttaaaa atacatcaag	cgaatgaggc gatagacccc tccctttctt agaaagctgt gataaggcag gcaactgtct atcatctgtt atcgctccga tggacagaag ccgctggtgc actgaaatcg acattgatgc ccactgcttg	aaggtetate tteacagatt agttetteet tggttatata ggtatttgta ttttaagace etttaggtgg etaatagega atgeettte ttaataatt egtetatege tgeeagtaaa tteegegtaa taeegegate	aattttaccc ctgaaaatcg agtggggaaa cacgggcaaa aaattaaaac gcgtttaacc gagccagttt tgctgctctt aacgattttt tacgccagct actttcagcg atgggcttcg ttctgcgccc atctgttcgg	cttttttga acttccctat ttcgttgaat gccaccctat cggattttc atcaaaagat tcaactttt tgtcctacag cggagagttt ttaattttt atataaagat cgactgcttc tgaagtgtat atagagtcag	3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 4380 4440

agtcaggcga	gccgtcacgc	ccttgacaat	gccacatcct	gagcaaataa	ttcaaccact	4680
aaacaaatca	accgcgtttc	ccggaggtaa	ccatggttac	tatcaatacg	gaatctgctt	4740
taacgccacg	ttctttgcgg	gatacgcggc	gtatgaatat	gtttgtttcg	gtagctgctg	4800
cggtcgcagg	attgttattt	ggtcttgata	tcggcgtaat	cgccggagcg	ttgccgttca	4860
ttaccgatca	ctttgtgctg	accagtcgtt	tgcaggaatg	ggtggttagt	agcatgatgc	4920
teggtgeage	aattggtgcg	ctgtttaatg	gttggctgtc	gttccgcctg	gggcgtaaat	4980
acagcctgat	ggegggggee	atcctgtttg	tactcggttc	tatagggtcc	gcttttgcga	5040
ccagcgtaga	gatgttaatc	gccgctcgtg	tggtgctggg	cattgctgtc	gggatcgcgt	5100
cttacaccgc	tcctctgtat	ctttctgaaa	tggcaagtga	aaacgttcgc	ggtaagatga	5160
tcagtatgta	ccagttgatg	gtcacactcg	gcatcgtgct	ggcgtttta	tccgatacag	5220
cgttcagtta	tagcggtaac	tggcgcgcaa	tgttgggggt	tcttgcttta	ccagcagttc	5280
tgctgattat	tctggtagtc	ttcctgccaa	atagecegeg	ctggctggcg	gaaaaggggc	5340
gtcatattga	ggcggaagaa	gtattgcgta	tgctgcgcga	tacgtcggaa	aaagcgcgag	5400
aagaactcaa	cgaaattcgt	gaaagcctga	agttaaaaca	gggcggttgg	gcactgttta	5460
agatcaaccg	taacgtccgt	cgtgctgtgt	ttctcggtat	gttgttgcag	gcgatgcagc	5520
agtttaccgg	tatgaacatc	atcatgtact	acgcgccgcg	tatcttcaaa	atggcgggct	5580
ttacgaccac	agaacaacag	atgattgcga	ctctggtcgt	agggctgacc	tttatgttcg	5640
ccacctttat	tgcggtgttt	acggtagata	aagcagggcg	taaaccggct	ctgaaaattg	5700
gtttcagcgt	gatggcgtta	ggcactctgg	tgctgggcta	ttgcctgatg	cagtttgata	5760
acggtacggc	ttccagtggc	ttgtcctggc	tctctgttgg	catgacgatg	atgtgtattg	5820
ccggttatgc	gatgagcgcc	gcgccagtgg	tgtggatcct	gtgctctgaa	attcagccgc	5880
tgaaatgccg	cgatttcggt	attacctgtt	cgaccaccac	gaactgggtg	tcgaatatga	5940
ttatcggcgc	gaccttcctg	acactgcttg	atagcattgg	cgctgccggt	acgttctggc	6000
tctacactgc	gctgaacatt	gcgtttgtgg	gcattacttt	ctggctcatt	ccggaaacca	6060
aaaatgtcac	gctggaacat	atcgaacgca	aactgatggc	aggcgagaag	ttgagaaata	6120
teggegtetg	atttcacggg	ccggatgtgc	tgtacatccg	gcccttttt	cgttaataga	6180
gattgggcac	ttggccgttg	aggcgtttgt	ctcgttcctt	attcagcctt	gttgcggtaa	6240
cacacatcag	gaattctgca	gatatccatc	acactggcgg	ccgcgtgacg	gaagatcact	6300
tcgcagaata	aataaatcct	ggtgtccctg	ttgataccgg	gaagccctgg	gccaactttt	6360
ggcgaaaatg	agacgttgat	cggcacgtaa	gaggttccaa	ctttcaccat	aatgaaataa	6420
gatcactacc	gggcgtattt	tttgagttat	cgagattttc	aggagctaag	gaagctaaaa	6480
tggagaaaaa	aatcactgga	tataccaccg	ttgatatatc	ccaatggcat	cgtaaagaac	6540
attttgaggc	atttcagtca	gttgctcaat	gtacctataa	ccagaccgtt	cagctggata	6600

ttacggcctt	tttaaagacc	gtaaagaaaa	ataagcacaa	gttttatccg	gcctttattc	6660
acattcttgc	ccgcctgatg	aatgctcatc	cggaattccg	tatggcaatg	aaagacggtg	6720
agctggtgat	atgggatagt	gttcaccctt	gttacaccgt	tttccatgag	caaactgaaa	6780
cgttttcatc	gctctggagt	gaataccacg	acgatttccg	gcagtttcta	cacatatatt	6840
cgcaagatgt	ggcgtgttac	ggtgaaaacc	tggcctattt	ccctaaaggg	tttattgaga	6900
atatgtttt	cgtctcagcc	aatccctggg	tgagtttcac	cagttttgat	ttaaacgtgg	6960
ccaatatgga	caacttcttc	gccccgttt	tcaccatggg	caaatattat	acgcaaggcg	7020
acaaggtgct	gatgccgctg	gcgattcagg	ttcatcatgc	cgtttgtgat	ggcttccatg	7080
tcggcagaat	gcttaatgaa	ttacaacagt	actgcgatga	gtggcagggc	ggggcgtaat	7140
tttttaagg	cagttattgg	tgcccttaaa	cgcctggttg	ctacgcctga	ataagttaat	7200
taatgcgcta	gcggagtgta	tact				7224

<210> 66

<211> 9418

<212> ADN

5 <213> secuencia artificial

<220>

<223> plásmido construido

<400>66

ctagtcgatc tgtgctgttt gccacggtat gcagcaccag cgcgagatta tgggctcgca 60 cgctcgactg tcggacgggg gcactggaac gagaagtcag gcgagccgtc acgcccttga 120 caatgccaca teetgageaa ataatteaac cactaaacaa ateaacegeg ttteeeggag 180 gtaaccatgg cgcacaaatt tactaaagcc ctggcagcca ttggtctggc agccqttatg 240 tcacaatccg ctatggcgga gaacctgaag ctcggttttc tggtgaagca accggaagag 300 ccgtggttcc agaccgaatg gaagtttgcc gataaagccg ggaaggattt agggtttgag 360 gttattaaga ttgccgtgcc ggatggcgaa aaaacattga acgcgatcga cagcctggct 420 gccagtggcg caaaaggttt cgttatttgt actccggacc ccaaactcgg ctctgccatc 480 gtcgcgaaag cgcgtggcta cgatatgaaa gtcattgccg tggatgacca gtttgttaac 540 gccaaaggta agccaatgga taccgttccg ctggtgatga tggcggcgac taaaattggc 600 gaacgtcagg gccaggaact gtataaagag atgcagaaac gtggctggga tgtcaaagaa 660 agegeggtga tggegattae eqceaacqaa etggataceg eccqeeqeeq tactacqqqa 720 tctatggatg cgctgaaagc ggccggattc ccggaaaaac aaatttatca ggtacctacc 780 aaatctaacg acatcccggg ggcatttgac gctgccaact caatgctggt tcaacatccq 840 gaagttaaac attggctgat cgtcggtatg aacgacagca ccgtgctggg cggcgtacgc 900 gcgacggaag gtcagggctt taaagcggcc gatatcatcg gcattggcat taacggtgtg 960

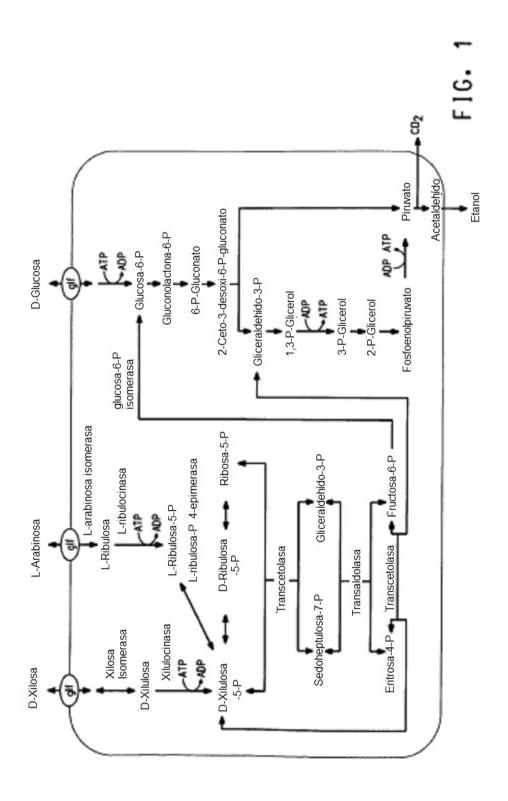
gatgcggtga	gcgaactgtc	taaagcacag	gcaaccggct	tctacggttc	cctgctgcca	1020
agcccggacg	tacatggcta	taaatccagc	gaaatgcttt	acaactgggt	agcaaaagac	1080
gttgaaccgc	caaaatttac	cgaagttacc	gacgtggtac	tgatcacgcg	tgacaacttt	1140
aaagaagaac	tggagaaaaa	aggtttaggc	ggtaagtaat	ttgccggaaa	aattcccctc	1200
tgcatgatgc	agagggggtg	tgaacgacca	gtgattcacg	gagacgttat	gcaacagtct	1260
accccgtatc	tctcatttcg	cggcatcggt	aaaacgtttc	ccggcgttaa	ggcgctgacg	1320
gatattagtt	ttgactgcta	tgccggtcag	gttcatgcgt	tgatgggtga	aaatggcgca	1380
ggaaaatcaa	ctctcttaaa	aatcctcagc	ggcaactatg	cgccaaccac	gggttctgta	1440
gtgattaatg	ggcaggaaat	gtccttttcc	gacacgaccg	cagcacttaa	cgcgggcgtg	1500
gcgattattt	accaggaact	gcatctcgtg	ccggaaatga	ccgtcgcgga	aaacatctat	1560
ctcggccagc	tgccgcataa	aggcggcatt	gtgaatcgct	cattgctgaa	ttatgaggcg	1620
ggtttacaac	ttaaacatct	tggtatggat	attgacccgg	acacgccgct	gaaatatctc	1680
tccattggtc	agtggcagat	ggttgaaatc	gccaaagcgc	tggcgcgtaa	cgccaaaatt	1740
atcgcctttg	atgagccaac	cagctccctc	tctgcccgtg	aaatcgacaa	tcttttccgc	1800
gttattcgtg	aactgcgaaa	agaggggcgg	gtaatcttat	acgtttctca	ccgtatggaa	1860
gaaatatttg	ccctcagcga	tgccattact	gtctttaaag	atggacgtta	tgtcaaaacc	1920
tttaccgata	tgcagcaggt	tgaccacgac	gcgctggtgc	aggcgatggt	cgggcgcgac	1980
attggcgata	tctacggctg	gcaaccgcgt	agttatggcg	aggagcgcct	acgtcttgat	2040
gctgtgaaag	caccaggcgt	gcgtacgcca	ataagtctgg	cggttcgcag	tggtgaaatt	2100
gttgggctgt	ttggtctggt	aggggcgggg	cgtagcgaat	taatgaaagg	catgtttggc	2160
gggacgcaaa	tcaccgccgg	tcaggtttat	atcgaccaac	agccgatcga	tattcgtaaa	2220
ccgagccacg	ccattgccgc	aggcatgatg	ctctgcccgg	aagatcgcaa	ageggaagge	2280
attattcccg	tgcactccgt	tcgcgacaat	atcaacatca	gtgccagacg	taaacatgtg	2340
ctcggcggtt	gtgtaatcaa	caacggttgg	gaagaaaaca	atgccgatca	ccacattcgt	2400
tcgctcaaca	tcaaaacgcc	gggcgcggag	caactgatca	tgaatctctc	aggcggaaat	2460
cagcaaaaag	ccattctggg	ccgctggtta	tcggaagaga	tgaaggtcat	tttgctggat	2520
gaacctacgc	gcggcattga	tgttggcgct	aagcacgaaa	tatataacgt	aatttatgcg	2580
ctggcggcgc	agggcgtggc	ggtgctgttt	gcctccagcg	acttacctga	agtectegge	2640
gttgccgacc	ggattgtggt	gatgcgggaa	ggtgaaatcg	ccggtgaatt	gttacacgag	2700
caggcagatg	agcgtcaggc	actgagcctt	gcgatgccta	aagtcagcca	ggetgttgee	2760
tgagtaagga	gagtatgatg	tettetgttt	ctacatcggg	gtctggcgca	cctaagtcgt	2820
cattcagctt	cgggcgtatc	tgggatcagt	acggcatgct	ggtggtgttt	geggtgetet	2880
ttatcgcctg	tgccatttt	gtcccaaatt	ttgccacctt	cattaatatg	aaagggttgg	2940

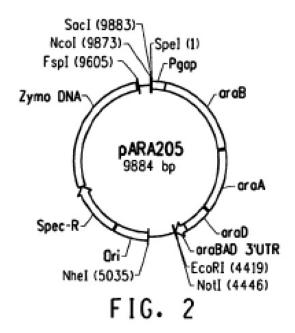
gcctggcaat	ttccatgtcg	gggatggtgg	cttgtggcat	gttgttctgc	ctcgcttccg	3000
gtgactttga	cctttctgtc	gcctccgtaa	ttgcctgtgc	gggtgtcacc	acggcggtgg	3060
ttattaacct	gactgaaagc	ctgtggattg	gcgtggcagc	ggggttgttg	ctgggcgttc	3120
tctgtggcct	ggtcaatggc	tttgttatcg	ccaaactgaa	aataaatgct	ctgatcacga	3180
cattggcaac	gatgcagatt	gttcgaggtc	tggcgtacat	catttcagac	ggtaaagcgg	3240
tcggtatcga	agatgaaagc	ttctttgccc	ttggttacgc	caactggttc	ggtctgcctg	3300
cgccaatctg	gctcaccgtc	gcgtgtctga	ttatctttgg	tttgctgctg	aataaaacca	3360
cctttggtcg	taacaccctg	gcgattggcg	ggaacgaaga	ggccgcgcgt	ctggcgggtg	3420
taccggttgt	tcgcaccaaa	attattatct	ttgttctctc	aggcctggta	tcagcgatag	3480
ccggaattat	tctggcttca	cgtatgacca	gtgggcagcc	aatgacgtcg	attggttatg	3540
agctgattgt	tatctccgcc	tgcgttttag	gtggcgtttc	tctgaaaggt	ggcatcggaa	3600
aaatctcata	tgtggtggcg	ggtatcttaa	ttttaggcac	cgtggaaaac	gccatgaacc	3660
tgcttaatat	ttctcctttc	gcgcagtacg	tggttcgcgg	cttaatcctg	ctggcagcgg	3720
tgatcttcga	ccgttacaag	caaaaagcga	aacgcactgt	ctgatgcttt	tttctgcaac	3780
aatttagcgt	tttttcccac	catagccaac	cgccataacg	gttggctgtt	cttcgttgca	3840
aatggcgacc	cccgtcacac	tgtctatact	tacatgtctg	taaagcgcgt	tctgcgcaac	3900
acaataagaa	aagagaagga	attctgcaga	tatccatcac	actggcggcc	gcgtgacgga	3960
agatcacttc	gcagaataaa	taaatcctgg	tgtccctgtt	gataccggga	agccctgggc	4020
caacttttgg	cgaaaatgag	acgttgatcg	gcacgtaaga	ggttccaact	ttcaccataa	4080
tgaaataaga	tcactaccgg	gcgtatttt	tgagttatcg	agattttcag	gagctaagga	4140
agctaaaatg	gagaaaaaaa	tcactggata	taccaccgtt	gatatatccc	aatggcatcg	4200
taaagaacat	tttgaggcat	ttcagtcagt	tgctcaatgt	acctataacc	agaccgttca	4260
gctggatatt	acggcctttt	taaagaccgt	aaagaaaaat	aagcacaagt	tttatccggc	4320
ctttattcac	attcttgccc	gcctgatgaa	tgctcatccg	gaattccgta	tggcaatgaa	4380
agacggtgag	ctggtgatat	gggatagtgt	tcacccttgt	tacaccgttt	tccatgagca	4440
aactgaaacg	ttttcatcgc	tctggagtga	ataccacgac	gatttccggc	agtttctaca	4500
catatattcg	caagatgtgg	cgtgttacgg	tgaaaacctg	gcctatttcc	ctaaagggtt	4560
tattgagaat	atgtttttcg	tctcagccaa	tccctgggtg	agtttcacca	gttttgattt	4620
aaacgtggcc	aatatggaca	acttcttcgc	ccccgttttc	accatgggca	aatattatac	4680
gcaaggcgac	aaggtgctga	tgccgctggc	gattcaggtt	catcatgccg	tttgtgatgg	4740
cttccatgtc	ggcagaatgc	ttaatgaatt	acaacagtac	tgcgatgagt	ggcagggcgg	4800
ggcgtaattt	ttttaaggca	gttattggtg	cccttaaacg	cctggttgct	acgcctgaat	4860

aagttaatta	atgcgctagc	ggagtgtata	ctggcttact	atgttggcac	tgatgagggt	4920
gtcagtgaag	tgcttcatgt	ggcaggagaa	aaaaggctgc	accggtgcgt	cagcagaata	4980
tgtgatacag	gatatattcc	gcttcctcgc	tcactgactc	gctacgctcg	gtcgttcgac	5040
tgcggcgagc	ggaaatggct	tacgaacggg	gcggagattt	cctggaagat	gccaggaaga	5100
tacttaacag	ggaagtgaga	gggccgcggc	aaagccgttt	ttccataggc	teegeecece	5160
tgacaagcat	cacgaaatct	gacgctcaaa	tcagtggtgg	cgaaacccga	caggactata	5220
aagataccag	gcgtttcccc	ctggcggctc	cctcgtgcgc	tetectgtte	ctgcctttcg	5280
gtttaccggt	gtcattccgc	tgttatggcc	gcgtttgtct	cattccacgc	ctgacactca	5340
gttccgggta	ggcagttcgc	tccaagctgg	actgtatgca	cgaacccccc	gttcagtccg	5400
accgctgcgc	cttatccggt	aactatcgtc	ttgagtccaa	cccggaaaga	catgcaaaag	5460
caccactggc	agcagccact	ggtaattgat	ttagaggagt	tagtcttgaa	gtcatgcgcc	5520
ggttaaggct	aaactgaaag	gacaagtttt	ggtgactgcg	ctcctccaag	ccagttacct	5580
cggttcaaag	agttggtagc	tcagagaacc	ttcgaaaaac	cgccctgcaa	ggcggttttt	5640
tcgttttcag	agcaagagat	tacgcgcaga	ccaaaacgat	ctcaagaaga	tcatcttatt	5700
aatcagataa	aatatttcta	gatttcagtg	caatttatct	cttcaaatgt	agcacctgaa	5760
gtcagcccca	tacgatataa	gttgtaattc	tcatgtttga	cagcttatca	tcgatggagc	5820
acaggatgac	gcctaacaat	tcattcaagc	cgacaccgct	tcgcggcgcg	gcttaattca	5880
ggagttaaac	atcatgaggg	aagcggtgat	cgccgaagta	tcgactcaac	tatcagaggt	5940
agttggcgtc	atcgagcgcc	atctcgaacc	gacgttgctg	gccgtacatt	tgtacggctc	6000
cgcagtggat	ggcggcctga	agccacacag	tgatattgat	ttgctggtta	cggtgactgt	6060
aaggcttgat	gaaacaacgc	ggcgagcttt	gatcaacgac	cttttggaaa	cttcggcttc	6120
ccctggagag	agcgagattc	tccgcgctgt	agaagtcacc	attgttgtgc	acgacgacat	6180
cattccgtgg	cgttatccag	ctaagcgcga	actgcaattt	ggagaatggc	agcgcaatga	6240
cattcttgca	ggtatcttcg	agccagccac	gatcgacatt	gatctggcta	tcttgctgac	6300
aaaagcaaga	gaacatagcg	ttgccttggt	aggtccagcg	gcggaggaac	tctttgatcc	6360
ggttcctgaa	caggatctat	ttgaggcgct	aaatgaaacc	ttaacgctat	ggaactcgcc	6420
gcccgactgg	gctggcgatg	agcgaaatgt	agtgcttacg	ttgtcccgca	tttggtacag	6480
cgcagtaacc	ggcaaaatcg	cgccgaagga	tgtcgctgcc	gactgggcaa	tggagcgcct	6540
gccggcccag	tatcagcccg	tcatacttga	agctaggcag	gcttatcttg	gacaagaaga	6600
tcgcttggcc	tegegegeag	atcagttgga	agaatttgtt	cactacgtga	aaggcgagat	6660
caccaaggta	gtcggcaaat	aatgtctaac	aattcgttca	agccgacgcc	gcttcgcggc	6720
gcggcttaac	tcaagcgtta	gagagctggg	gaagactatg	cgcgatctgt	tgaaggtggt	6780
tctaagcctc	gtacttgcga	tggcatcggg	gcaggcactt	gctgacctgc	caacgcgcct	6840

ttgtagtctt	ggcctgttgt	gtgcatgagc	aaatcaatgg	caccacccc	tcctttttga	6900
gctgaatggt	cataaaattt	ataattatct	atcgtaattc	ggaatctatg	ttcagggtct	6960
cgccattgct	ttttgtctgc	tgggtcaagt	tccatgccta	aggtttttaa	gacatcagaa	7020
agaggtattg	cacgcatgct	atcagctttt	cttctagcta	atgacagggc	ttcctctgct	7080
ctatctgctc	gtttttttc	ttccacatat	ctcgccgctt	tgtcagccag	cggctgtatt	7140
acggaaagtg	ccgatttttg	ggcttttagg	cgttcttttt	ctgcccattc	ttccttattt	7200
gtaaaaattg	agggtgggat	gggtgcctga	atcttgggat	ctagctgtaa	agttttgttg	7260
atatttccgt	aatgtctttg	gactctttga	tgcgttgctt	ttgaaccttt	tacgcctctg	7320
gccagcccta	gaggctccat	agaagccgca	taatccgtct	ggagggcaga	aagggctttt	7380
cgaccatcaa	accatctcga	tgcgtttaaa	cggcctgtat	cggggtctct	aggcaccata	7440
aagccggtta	agtggggtgt	tgtttcatca	gcatgtagct	gaagagatac	aaggttgttt	7500
tctccaaagg	tttgttccgc	ccattgctgg	gtgattgttt	tccagtgttc	gagtttttca	7560
ggagtggcct	gttttgacca	ttctggagac	ataccaaaga	acagttctat	ggcctgcaca	7620
ccgtttttc	taagaggett	tecegtttet	ttctgaattt	tattcagcat	agatttaaca	7680
tctgctgatg	ggtcagtaga	gcctttgagt	atttcgttta	gttctttct	atctgggtca	7740
gcgttttgtg	tttegeggee	tegegteata	tgcaggctcg	cggctttaat	cgtgccaact	7800
gttttatgtt	tttcaaacct	aaagattgca	tagttcggca	tgttttaact	gctttaattt	7860
gagaaaagac	cagaggaaat	aatccagcct	atatttcttt	ccctagtagc	gaactggaat	7920
tgtttttccg	aaggaaaaaa	gcaattccgt	agtgagtact	gaatttattc	tgattcgtct	7980
tgcttttgga	gegtetttt	gcgttctata	actgttgtga	aagctacgcg	gtcgccattg	8040
aaaacgaaat	taggattaat	aaaataccat	ccttggcgaa	catgctttgc	aatgatttta	8100
gctttttcta	atteggetag	acctcttgca	aaggtagctt	gagatagtgc	cagtttttt	8160
tcttgtgcgt	taagaaagtc	ctctaaaacg	aatttgtcta	aagggacgag	gtetttgetg	8220
atgcctttgt	cttgaagtat	ccaaaccaga	acgctgaaag	cttttattcc	agcggctcct	8280
agttcaaaag	ttagcgcgat	attggtgcta	aataatttta	caaattette	actatcaaca	8340
cgtctgtaag	tcgtcacatg	agtgccttgc	atctcaccag	tggcttgatt	gaccagaatg	8400
ttatcatete	gtcctaatcg	agataactga	accetetgae	ttttaactgg	cacaaccata	8460
ccttcgatga	aaggattete	gtcatatctg	attggctgct	ttctcaattt	tgtcgccata	8520
tttgataaac	ctttaatcaa	aaaaaccaca	ttttttgatt	atacctattc	atcgaatgag	8580
gcaaggtcta	tcaattttac	ccctttttt	gatagacggt	ttaatcaata	ttgatagacc	8640
ccttcacaga	ttctgaaaat	cgacttccct	attttaggga	tattttcacg	attecettte	8700
ttagttcttc	ctagtgggga	aattcgttga	atcctgcctc	ggaaaaacca	tgagaaagct	8760

gttggttata	tacacgggca	aagccaccct	atttttagct	actggggaaa	gagataaggc	8820
agggtatttg	taaaattaaa	accggatttt	tcgctttacg	gtttgtttag	gcgcaactgt	8880
ctttttaaga	ccgcgtttaa	ccatcaaaag	atcgttccaa	tcttttccgt	gtatcatctg	8940
ttctttaggt	gggagccagt	tttcaacttt	ttttgttgga	aacgcggctt	taatcgctcc	9000
gactaatagc	gatgctgctc	tttgtcctac	agcatcccaa	tcataggcaa	tatggacaga	9060
agatgccttt	tcaacgattt	ttcggagagt	tttagtaaga	gacgttctta	cgccgctggt	9120
gcttaataat	tttacgccag	ctttaatttt	ttctgggctt	aaaaagccga	ctactgaaat	9180
cgcgtctatc	gcactttcag	cgatataaag	atcatacttt	tcgtcatttt	ttacattgat	9240
gctgccagta	aaatgggctt	cgcgactgct	tcccaaggct	aaccctttaa	aaccactgct	9300
tgttccgcgt	aattctgcgc	cctgaagtgt	atctttatcg	tcatacatca	agaaggctac	9360
attaccgcga	tcatctgttc	ggatagagtc	aggaatattg	ttaaatgata	ttcctcgg	9418


REIVINDICACIONES


- 1. Un microorganismo recombinante del género *Zymomonas* o *Zymobacter* que utiliza arabinosa para producir etanol, dicho microorganismo comprende al menos un gen heterólogo que codifica un simportador de protones de arabinosa, en donde dicho simportador es expresado por dicho microorganismo.
- 5 2. El microorganismo recombinante de la reivindicación 1 en donde el simportador de protones de arabinosa está codificado por la región codificante de un gen araE.
 - 3. El microorganismo recombinante de la reivindicación 1, en donde la utilización de arabinosa se mejora en al menos aproximadamente 10% en comparación con un microorganismo original en donde dicho microorganismo original carece del al menos un gen heterólogo que codifica un simportador de protones de arabinosa.
- 10 4. El microorganismo recombinante de la reivindicación 1, en donde la cepa utiliza adicionalmente xilosa para producir etanol.
 - 5. Un proceso para generar un microorganismo recombinante del género *Zymomonas* o *Zymobacter* que tiene mayor utilización de arabinosa que comprende:
- a) proporcionar una cepa recombinante de *Zymomonas* o *Zymobacter* que utilice arabinosa para producir etanol en condiciones adecuadas; y
 - b) introducir al menos un gen heterólogo que codifique un simportador de protones de arabinosa en la cepa de (a) para la expresión de dicho simportador.
- 6. El proceso según la reivindicación 5, que comprende además adaptar la cepa ya sea antes o después de la etapa (b), o tanto antes como después de la etapa (b), mediante cultivo en serie en medio que contiene arabinosa como la única fuente de carbono mediante el cual se produce una cepa adaptada y en donde dicha cepa ha mejorado adicionalmente la utilización de arabinosa en comparación con la cepa sin adaptación.
 - 7. El proceso según la reivindicación 6, en donde la cepa adaptada utiliza de manera adicional xilosa y glucosa para la producción de etanol en medio de azúcares mezclados que comprende arabinosa, xilosa y glucosa.
 - 8. Un proceso para producir etanol que comprende:

40

- a) proporcionar una cepa recombinante de *Zymomonas* o *Zymobacter* que utiliza arabinosa para producir etanol, dicha cepa comprende al menos un gen heterólogo que codifica un simportador de protones de arabinosa, en donde dicho simportador es expresado por dicha cepa; y
 - b) cultivar la cepa de (a) en un medio que comprende arabinosa a través del cual la arabinosa es convertida en etanol.
- 30 9. El proceso según la reivindicación 8 en donde el simportador de protones de arabinosa está codificado por la región codificante de un gen araE.
 - 10. El proceso según la reivindicación 8, en donde la utilización de arabinosa se mejora en al menos aproximadamente 10% en comparación con un microorganismo original en donde dicho microorganismo original carece de un gen heterólogo que codifica un simportador de protones de arabinosa.
- 35 11. El proceso según la reivindicación 8 en donde la cepa de (a) además es capaz de utilizar xilosa y glucosa para producir etanol.
 - 12. El proceso según la reivindicación 8 en donde la cepa de (a) se ha adaptado mediante cultivo en serie en medio que contiene arabinosa como la única fuente de carbono mediante el cual se produce una cepa adaptada para arabinosa en donde dicha cepa adaptada para arabinosa ha aumentado la producción de etanol en comparación con la cepa de (a) que no ha sido adaptada.
 - 13. El proceso según la reivindicación 8 en donde la conversión de arabinosa en etanol se ve aumentada con respecto a la conversión de arabinosa en etanol mediante una cepa original recombinante sin al menos un gen heterólogo que codifica un simportador de protones de arabinosa.
- 14. El proceso de la reivindicación 8 en donde el medio comprende ya sea una mezcla de azúcares que 45 comprende arabinosa o arabinosa como azúcar único.
 - 15. Un método para mejorar la utilización de arabinosa mediante un microorganismo que utiliza arabinosa que comprende:
 - (a) proporcionar un microorganismo que utiliza arabinosa, donde dicho microorganismo se selecciona del grupo que consiste en una cepa recombinante de *Zymomonas* o *Zymobacter* que utiliza arabinosa para producir etanol;

- (b) introducir en el genoma de dicho microorganismo al menos un gen heterólogo que codifica un simportador de protones de arabinosa, donde dicho simportador es expresado por dicho microorganismo; y
- (c) poner en contacto el microorganismo de (b) con un medio que comprende arabinosa, donde dicho microorganismo metaboliza dicha arabinosa con una mayor velocidad en comparación con dicho microorganismo que no presenta el simportador de protones de arabinosa.

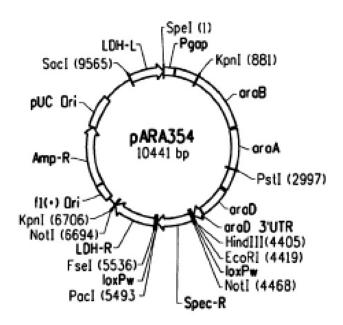
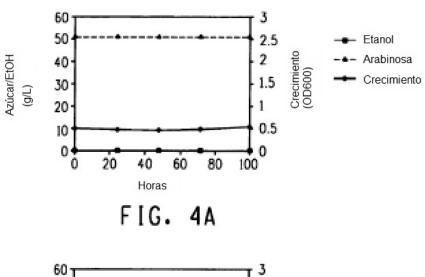
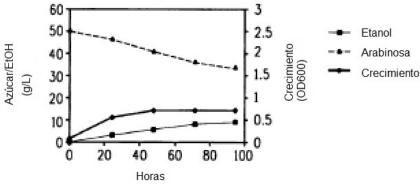




FIG. 3

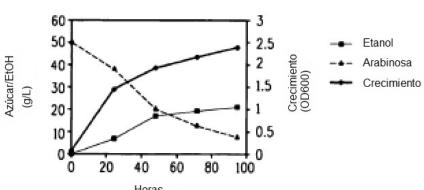
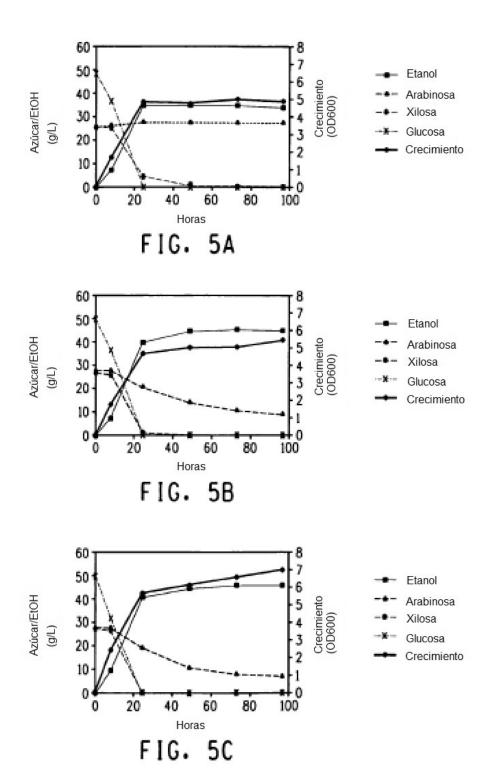



FIG. 4C

FIG. 4B

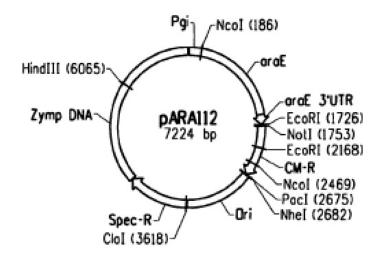
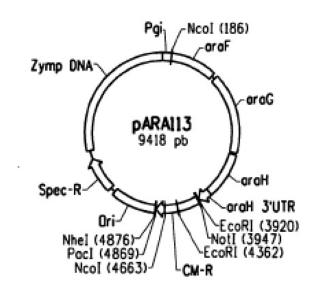
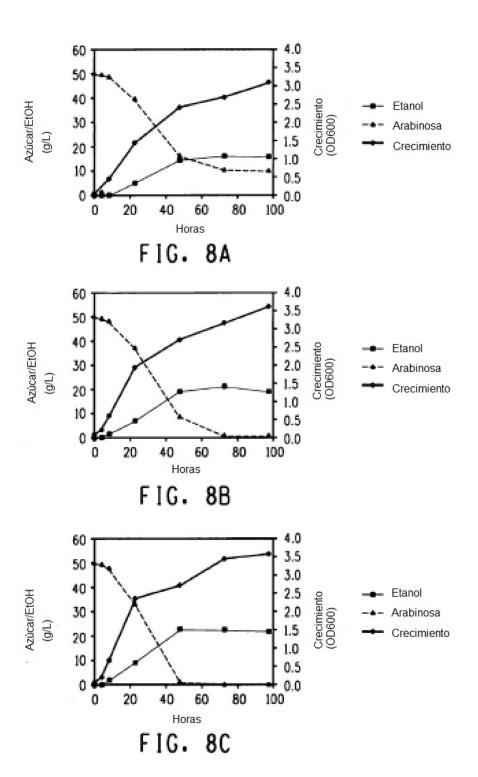
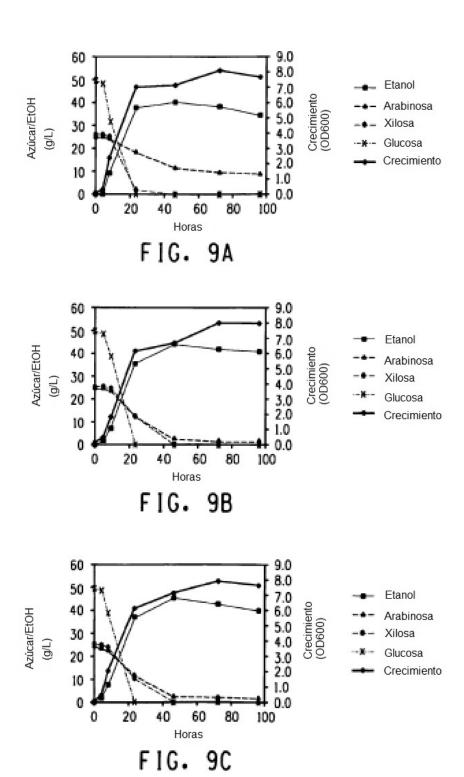
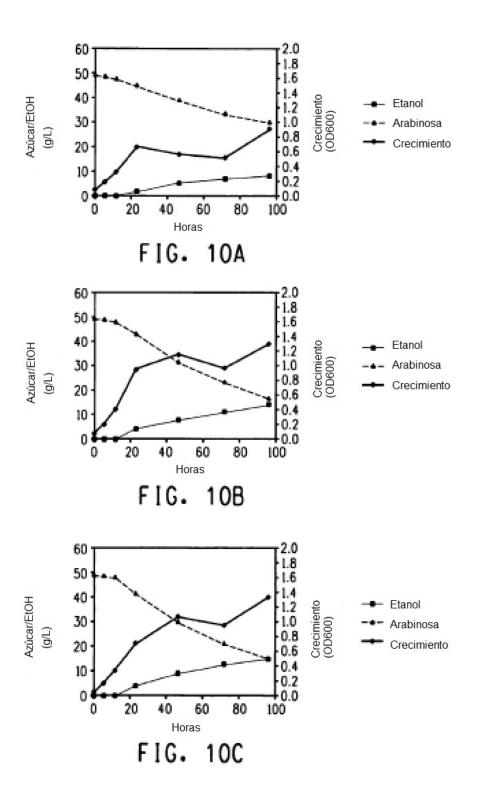
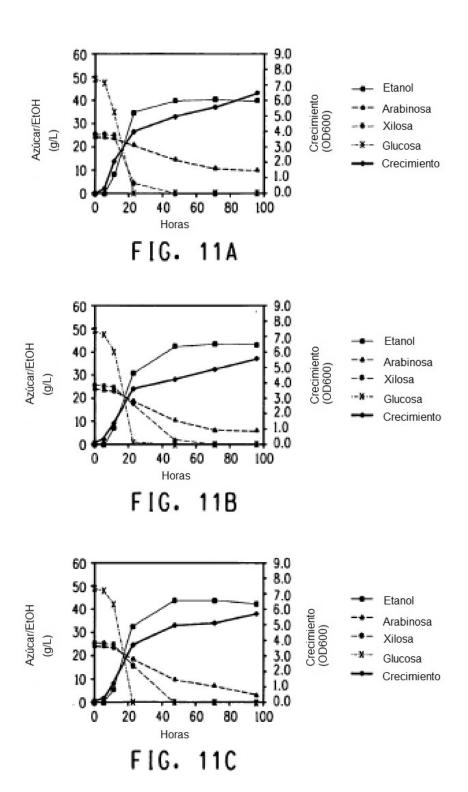
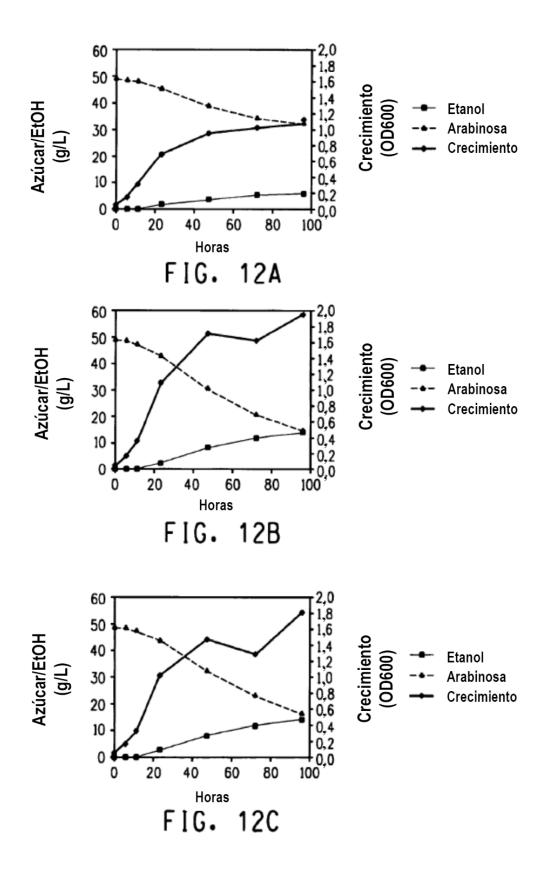


FIG. 6


FIG. 7

