

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(1) Número de publicación: 2 600 635

61 Int. Cl.:

B65D 85/804 (2006.01) **A47J 31/06** (2006.01) **A47J 31/36** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 30.03.2012 PCT/PT2012/000010

(87) Fecha y número de publicación internacional: 04.10.2012 WO12134311

(96) Fecha de presentación y número de la solicitud europea: 30.03.2012 E 12720300 (8)

(97) Fecha y número de publicación de la concesión europea: 27.07.2016 EP 2692662

(54) Título: Cápsula y dispositivo para procesar dicha cápsula

(30) Prioridad:

30.03.2011 PT 10559710

Fecha de publicación y mención en BOPI de la traducción de la patente: 10.02.2017

(73) Titular/es:

NOVADELTA-COMÉRCIO E INDUSTRIA DE CAFÉS, S.A. (100.0%) Avenida Infante D. Henrique, 151 A 1900-264 Lisboa, PT

(72) Inventor/es:

NABEIRO, RUI MIGUEL y FREIRE FALCÃO TELES CARAMELO, DANIEL

(74) Agente/Representante:

ARIZTI ACHA, Monica

Cápsula y dispositivo para procesar dicha cápsula **DESCRIPCIÓN**

5

10

Campo de la invención

La presente invención se refiere al campo de las cápsulas para sustancias aromáticas usadas en la preparación de bebidas y, en particular, al campo de las cápsulas para obtener bebidas por extracción, mediante un fluido presurizado que fluye por las mismas, tal como por ejemplo café expreso.

La presente invención se refiere además al campo de los dispositivos para preparar bebidas, en particular mediante extracción, mediante un fluido presurizado que fluye por las cápsulas, tal como por ejemplo máquinas de café expreso y similares.

15

Antecedentes de la invención

Existen varias soluciones conocidas en la técnica anterior referentes a las cápsulas que pertenecen al campo técnico antes mencionado, en general, y a los dispositivos y medios de respectiva abertura, para cruzar por un flujo presurizado, en particular. La solución practicada normalmente se refiere a una determinada forma de ruptura de un material de construcción determinado, por ejemplo un material sintético o metálico, usado en al menos una determinada zona de la cápsula, permitiendo por tanto la entrada del flujo presurizado. La ruptura del material de construcción se lleva a cabo normalmente mediante medios mecánicos que, de manera aislada o conjuntamente con la presión hidráulica aplicada por el flujo, perforan dicho material de construcción, o provocan una ruptura o fallo continuo de una determinada zona de este último, previamente debilitado o provisto de un material destinado al fallo de continuidad.

El documento US 2010/154644 A1 divulga una cápsula que pertenece al campo técnico antes mencionado y presenta al menos dos elementos de cierre retenidos mediante de una unidad desmontable en una respectiva zona adecuada para orientarse hacia el flujo corriente arriba y corriente abajo, por lo que dicha unión puede retirarse mediante la aplicación de cierta fuerza de accionamiento sobre la misma.

Los ejemplos de cápsulas de acuerdo con el campo técnico se divulgan en los documentos EP 1864917 A1 y WO 2008/116818 A1.

35

40

30

Ninguna de estas maneras de abertura de una cápsula ofrece un alto control de proceso respecto al instante de abertura, ni condiciones operativas en las que ocurre, ni respecto a la forma o dimensiones resultantes de la sección de paso de flujo. De hecho, las soluciones conocidas en la técnica anterior no permiten una configuración de paso replicable y un área de paso total disponible para el flujo. Estos aspectos determinan en gran medida el flujo de cruce y tienen por tanto un impacto sustancial en la calidad de la bebida resultante.

Existe por tanto la necesidad de solucionar el problema de una abertura de una cápsula para el paso del flujo mediante otros medios diferentes de los relacionados con alguna manera de ruptura de un material de construcción, con medios simples y un mecanismo más fiable.

45

50

55

60

Breve descripción de la invención

El objetivo de la presente invención es hacer que esté disponible una cápsula que presenta un mayor control de las condiciones de abertura de la cápsula, en general, y del momento de abertura, configuración y dimensiones de la sección de paso, en particular, con el fin de hacer cruzar la al menos una sustancia aromática contenida en la cápsula por un flujo presurizado de un fluido de procesamiento, tal como por ejemplo agua caliente.

En el alcance de la presente invención, por "cápsula" debe entenderse un recipiente que define un volumen interior para recoger una sustancia aromática, presentando al menos una zona orientada hacia el flujo corriente arriba, configurada por ejemplo en la forma de una caja sustancialmente cilíndrica, o en la forma de una placa doble, y producida de un material sustancialmente rígido o sustancialmente flexible, y sustancialmente hermético al gas o no.

El objetivo antes mencionado se soluciona, de acuerdo con un primer aspecto de la invención, mediante una cápsula producida mediante al menos un elemento de construcción que configura un volumen interior y al menos una zona exterior orientada hacia al menos el flujo corriente arriba, por lo que se proporciona al menos un elemento de cierre retenido, preferentemente de una manera sustancialmente hermética, mediante al menos una unión desmontable en un respectivo accesorio de elemento de una sección transversal correspondiente sustancialmente, al menos en dicha zona orientada hacia el flujo corriente arriba.

Además, el elemento de cierre se retiene preferentemente de tal manera que puede retirarse de dicha unión desmontable mediante la aplicación de una fuerza de accionamiento determinada, y en cada caso respectiva, preferentemente ejercida desde el exterior, directamente sobre dicho elemento de cierre, y finalmente, al menos en parte, simultáneamente con una fuerza de retención ejercida en dirección opuesta a dicha fuerza de accionamiento, al menos sobre la zona restante orientada hacia el flujo corriente arriba y/o el flujo corriente abajo. La dimensión de esta fuerza de accionamiento se define preferentemente como una función del tipo de unión desmontable, de los materiales de construcción y/o dimensiones del elemento de cierre y la zona restante orientada hacia el flujo corriente arriba y/o corriente abajo. De acuerdo con este primer aspecto inventivo, el elemento de cierre se retira por tanto de un respectivo accesorio de elemento de manera que está sustancialmente rodeado mediante el flujo presurizado.

De acuerdo con la presente invención, la configuración del accesorio de elemento de cada elemento de cierre define de esta manera precisamente la sección de paso de flujo a través de la cápsula, mientras que el tipo de unión desmontable permite controlar fiablemente el momento de abertura de la misma. Además, el cuerpo del elemento de cierre funciona por tanto como elemento difusor del flujo presurizado, especialmente en el interior de la cápsula, generando una zona de recirculación en su lado orientado hacia el flujo corriente arriba que se refleja ventajosamente en la distribución corriente abajo. En este sentido, algunas realizaciones del elemento de cierre demuestran ser particularmente ventajosas, especialmente como una función de su ubicación en la cápsula y el mecanismo de accionamiento.

20

10

15

De acuerdo con una realización preferente de la invención, la cápsula de acuerdo con la invención presenta de esta manera un elemento de cierre, preferentemente dispuesto sustancialmente centrado en relación con la sección transversal de la cápsula. Como alternativa, la cápsula presenta una pluralidad de elementos de cierre, finalmente dispuestos asimétricamente en relación con la respectiva sección transversal de la cápsula

25

De acuerdo con otra realización preferente, el elemento de cierre se retiene mediante las dos o más uniones desmontables, proporcionadas y a desmontar preferentemente de manera secuencial, mediante la aplicación de una fuerza de accionamiento, en cada caso respectiva, sobre el elemento de cierre y/o fuerza de retención en al menos parte de la zona restante orientada hacia el flujo corriente arriba y/o corriente abajo.

30

35

40

45

50

55

Otro objetivo de la presente invención es proporcionar soluciones ventajosas, simples en términos de construcción y favorables en términos de coste, para el cierre fiable y eficaz de la cápsula, especialmente en términos de su fijación, integridad y preferentemente condición sustancialmente hermética. Otro objetivo relacionado es el de evitar el uso de películas finas, especialmente metálicas, aplicadas sobre la zona orientada hacia el flujo corriente arriba y/o corriente abajo, sin limitar el mantenimiento de condiciones herméticas previamente a una abertura.

El objetivo antes mencionado se soluciona de acuerdo con otro aspecto inventivo, de manera que la retención del al menos un elemento de cierre se lleva a cabo mediante, en cada caso, al menos una unión por fricción y/o mediante un bloqueo positivo en al menos un accesorio de elemento respectivo, preferentemente configurado con un formato sustancialmente correspondiente al del elemento de cierre.

En este caso particular, el elemento de cierre se retiene en un accesorio de elemento correspondiente mediante al menos una unión por fricción, es decir, sustancialmente como resultado de la fuerza de fricción entre elementos directamente adyacentes, o fuerza similar, y/o mediante un bloqueo positivo, llevado a cabo mediante el acoplamiento entre elementos provistos de una forma sustancialmente coincidente. Estas formas de retención se llevan a cabo mediante la introducción del elemento de cierre, preferentemente a una presión previamente definida, al menos parcialmente dentro de un, al menos un, accesorio de elemento correspondiente. En una realización preferente, el elemento de cierre y/o accesorio de elemento respectivo presenta preferentemente un formato sustancialmente cilíndrico. Esto se vuelve particularmente ventajoso cuando el elemento de cierre presenta un perfil al menos aproximadamente cónico o arqueado a lo largo de su dirección longitudinal paralela a la dirección de flujo prevalente.

De acuerdo con otra realización preferente, la unión por bloqueo positivo se lleva a cabo mediante al menos una proyección, que se acopla dentro de una cavidad correspondiente, estando ambas proporcionadas en una cara lateral del elemento de cierre y/o accesorio de elemento, respectivamente. En una realización particular, la proyección de bloqueo se proporciona en al menos un nivel, preferentemente configurado como simétrico, más preferentemente a lo largo de todo el perímetro de la cara lateral del elemento de cierre y/o el accesorio de elemento respectivo.

De acuerdo con otra realización preferente, el elemento de cierre se retiene mediante el asentamiento en un accesorio de elemento correspondiente, preferentemente llevado a cabo mediante un peldaño correspondiente en el elemento de cierre que se asienta sobre una parte del accesorio de elemento, preferentemente sobre un dentado proporcionado en este último.

ES 2 600 635 T3

De acuerdo con otra realización preferente, la proyección o peldaño de bloqueo en unión por bloqueo positivo se configuran de manera que tienen como resultado que son sustancialmente flexibles, en particular cuando se someten a deformación, al menos en una zona periférica de los mismos.

- 5 De acuerdo con otra realización preferente, el elemento de cierre presenta una configuración tubular a lo largo de al menos parte de su extensión longitudinal. Como alternativa, el elemento de cierre presenta ventajosamente una configuración de anillo sustancialmente circular.
- De acuerdo con otra realización preferente, el elemento de cierre se produce en dos partes dispuestas en interacción directa de manera que, mediante la aplicación de una fuerza de accionamiento, al menos una de estas partes se desplaza, liberando por tanto una sección de paso de flujo. En una realización particular, las dos partes se configuran e interactúan de tal manera entre sí que se desplazan a lo largo de una dirección de flujo de fluido prevalente y/o a lo largo de una dirección transversal, liberando por tanto al menos parte del accesorio de elemento como paso de flujo a través de la zona orientada hacia el flujo corriente arriba y/o corriente abajo.

15

- De acuerdo con otra realización preferente, el elemento de cierre se extiende al menos sobre una parte sustancial de la distancia entre la zona de la cápsula orientada hacia el flujo corriente arriba y la zona hacia el flujo corriente abajo.
- 20 De acuerdo con otra realización preferente, el elemento de cierre presenta una dimensión transversal que en cada caso es aproximadamente igual, preferentemente ligeramente superior a la dimensión transversal del accesorio de elemento correspondiente dispuesto en dicha zona enfrente del flujo corriente arriba y/o corriente abajo.
- De acuerdo con otra realización preferente, el elemento de cierre presenta una altura diferente de la altura del accesorio de elemento correspondiente. Por otro lado, la altura del elemento de cierre está preferentemente y previamente dimensionada de manera que el desplazamiento del elemento de cierre, completamente fuera del accesorio de elemento, requiere la aplicación de al menos una cierta fuerza de accionamiento al menos durante un cierto periodo de tiempo.
- 30 De acuerdo con otra realización preferente, el elemento de cierre se produce de un material diferente, preferentemente menos rígido que el material del accesorio de elemento respectivo en el que se retiene, particularmente y preferentemente de un material biodegradable.
- Un objetivo adicional de la presente invención es hacer que esté disponible un dispositivo para procesar una cápsula de acuerdo con la presente invención, en condiciones de un alto grado de eficacia y control de las condiciones en general, y del momento de abertura y configuración de la sección de paso de la cápsula, en particular.
- Este objetivo se soluciona de acuerdo con la invención mediante un dispositivo, para procesar al menos una cápsula de acuerdo con la invención, que comprende al menos una inyección de fluido y/o al menos una descarga de infusión, configuradas y dimensionadas de manera que, al menos durante parte de un movimiento respectivo hacia una posición de extracción, se aplica tal fuerza de accionamiento sobre un respectivo elemento de cierre y/o tal fuerza de retención sobre al menos parte de la zona enfrente de flujo corriente arriba y/o corriente abajo, respectivamente, que la combinación de las mismas es igual o superior a la fuerza de accionamiento necesaria para retirar la al menos una unión desmontable del elemento de cierre. En particular, de acuerdo con una realización preferente, la combinación de estas fuerzas es suficiente para liberar al menos una sección de paso de flujo, a través de un accesorio de elemento respectivo.
- De acuerdo con otro aspecto inventivo de la presente invención, la inyección de fluido y/o descarga de infusión presentan una sección transversal que se corresponde sustancialmente, al menos en esta forma y dimensión exterior, con la sección transversal interior del elemento de cierre retenido en la zona orientada hacia el flujo corriente arriba y/o corriente abajo, respectivamente, por lo que se permite un acoplamiento en encaje positivo entre partes respectivas.
- De acuerdo con una realización preferente, la inyección de fluido presenta al menos una perforación de inyección dispuesta preferentemente de manera asimétrica en relación con la sección transversal respectiva, para dirigir el fluio a lo largo de una dirección determinada dentro de la cápsula.
- De acuerdo con una realización preferente, el flujo de fluido presurizado inyectado dentro de la cápsula ejerce una fuerza hidráulica determinada a través de la inyección de fluido y/o una fuerza hidráulica se genera desde el interior de la cápsula de acuerdo con la invención, preferentemente directamente sobre un respectivo elemento de cierre.

De acuerdo con otra realización preferente del dispositivo de acuerdo con la invención, la fuerza mecánica aplicada es, junto con la fuerza hidráulica, igual o superior a la fuerza de accionamiento necesaria para liberar el elemento de cierre de una respectiva, al menos una, unión desmontable con la zona enfrente del flujo corriente arriba y/o

corriente abajo, preferentemente para liberar al menos una respectiva sección de paso de flujo.

Descripción de las figuras

15

30

35

40

5 La invención se explicará ahora con más detalle basándose en realizaciones preferentes de la misma y en las figuras adjuntas.

Las figuras se corresponden con representaciones únicamente esquemáticas y muestran:

- figuras 1a 1b: vistas de dos realizaciones de un recipiente de acuerdo con la invención, del tipo de cápsula (1) y vaina (1'), respectivamente, incluyendo ambas un elemento de cierre (5) dispuesto en la zona de cápsula (2) enfrente del flujo corriente arriba;
 - figuras 2a 2c: vistas de un primer conjunto de realizaciones de una cápsula de acuerdo con la invención, incluyendo un elemento de cierre (5) representado en cada caso en una posición de cierre;
 - figuras 3a 3c: vistas de un segundo conjunto de realización de una cápsula (1) de acuerdo con la invención, incluyendo un elemento de cierre (5) representado en cada caso retenido en una posición de cierre:
- 20 figuras 4a 4b: vistas a lo largo del plano de corte AA identificado en la Figura 1, de una cápsula de acuerdo con la invención, incluyendo un elemento de cierre (5) retenido de una manera desmontable mediante un bloqueo por fricción;
- figuras 5a 5b: vistas a lo largo del plano de corte AA identificado en la Figura 1, de una cápsula de acuerdo con la invención, incluyendo un elemento de cierre (5) retenido de manera desmontable mediante un bloqueo positivo;
 - figuras 6a 6k: vistas en corte esquemático de varias realizaciones de la configuración del elemento de cierre y retención respectiva, representados en cada caso en la posición de cierre y abertura en una cápsula de acuerdo con la invención;
 - figuras 7a 7c: vistas en corte de una primera realización de un dispositivo (10) de acuerdo con la invención, para el uso de una cápsula (1, 1') de acuerdo con la invención, en las posiciones de cápsula abierta y cerrada, en dos posibles maneras de abertura, respectivamente;
 - figuras 8a 8b: vistas esquemáticas de realizaciones del acoplamiento de la inyección de fluido (11) con una cápsula (1, 1') en un dispositivo de extracción (10) de acuerdo con la invención.

Descripción detallada de la invención

Las Figuras 1a y 1b presentan vistas exteriores de dos recipientes de acuerdo con la invención, proporcionados en una realización del tipo de cápsula (1), Figura 1a, y del tipo de vaina (1'), Figura 1b, incluyendo una vista superior, una vista lateral y una vista inferior (sucesivamente desde la parte superior a inferior del dibujo).

- 45 Ambas cápsulas (1, 1') se construyen mediante al menos un elemento de construcción, definiendo al menos una zona de cápsula (2) enfrente del flujo corriente arriba, y preferentemente, también una zona de cápsula (3) enfrente del flujo corriente abajo. Cada realización de la cápsula (1, 1') de acuerdo con la invención está provista, como un ejemplo, de un elemento de cierre (5e) en la zona (2) orientada corriente arriba y otro (5s) en la zona (3) orientada corriente abajo, retenidos de manera desmontable en un respectivo accesorio de elemento (6e, 6s), y dispuestos en 50 cada caso centrados relativamente respecto a la sección transversal de la cápsula (1, 1'). El accesorio de elemento (6e, 6s) está en este caso diseñado como una abertura de cruce del elemento de construcción que define la zona de cápsula (2, 3) orientada hacia el flujo corriente arriba y/o corriente abajo, respectivamente. Como alternativa, la cápsula (1, 1') de acuerdo con la invención también podría presentar solo un elemento de cierre (5) en la zona (2) orientada corriente arriba, o más de un elemento de cierre (5) en cada zona (2, 3) orientada corriente arriba/corriente 55 abajo, dispuesto simétricamente o no, en relación con el eje de simetría central de esta última. Además, el elemento de cierre (5) podría tener al menos aproximadamente la dimensión de la zona (2, 3) orientada hacia el flujo corriente arriba/corriente abajo.
- Las Figuras 2a 2c y 3a 3c ilustran realizaciones del elemento de cierre en una cápsula (1, 1') de acuerdo con la invención.

Las Figuras 2a y 2c muestran, sucesivamente desde la parte superior a la inferior, una vista superior, una vista transversal (a lo largo del plano de corte AA indicado en las Figuras 1a y 1b) y una vista inferior, de un primer conjunto de realizaciones de una cápsula (1, 1') de acuerdo con la invención. En un primer ejemplo (Figura 2a), se

proporciona solo un elemento de cierre (5) en la zona (2) orientada corriente arriba, por lo que la salida de flujo se lleva a cabo mediante otros medios (no se representan). En la Figura 2b, el elemento de cierre (5e) en el lado orientado corriente arriba (entrada de la cápsula) se proporciona en forma de anillo y está dispuesto de manera que se acopla al elemento de cierre (5s) dispuesto en el lado orientado corriente abajo (salida de la cápsula) y se proporciona como un tipo de pistón. En la Figura 2c, el elemento de cierre (5e, 5s) se proporciona en la forma de una única pieza que lleva a cabo simultáneamente el cierre y la abertura de los lados orientados corriente arriba y corriente abajo.

Las Figuras 3a y 3c muestran, en vistas correspondientes a las de las Figuras 2a a 2c, un segundo conjunto de realizaciones de cápsulas (1, 1') de acuerdo con la invención, esta vez diseñadas para usarse en una cierta posición, por ejemplo volcadas sobre uno de los lados para que el flujo cruce la cápsula a lo largo de una dirección sustancialmente horizontal. La Figura 3a representa una realización en la que el elemento de cierre (5e) corriente arriba se proporciona de una manera no centrada, en una posición relativamente superior respecto a un elemento de cierre (5s) corriente abajo, induciendo de esta manera un patrón de flujo diferente dentro de la cápsula (1, 1'). En el caso de la Figura 3b, ambos elementos de cierre (5e, 5s) se proporcionan sobre un mismo lado de la cápsula, mientras que en el caso de la Figura 3c, estos se proporcionan en lados o zonas sustancialmente adyacentes de la cápsula.

10

15

25

30

35

Las Figuras 4a - 4b y 5a - 5b ilustran realizaciones de la retención desmontable de un elemento de cierre en una cápsula (1, 1') de acuerdo con la invención.

Las Figuras 4a y 4b muestran una realización de la cápsula (1, 1') de acuerdo con la invención, en la que el elemento de cierre (5) se retiene mediante una unión por fricción, representado en la posición inicial de retención y en una siguiente posición retirado de dicha retención, respectivamente. El elemento de cierre (5) está dispuesto preferentemente bajo presión en un accesorio de elemento respectivo, para asegurar condiciones de hermeticidad de la cápsula (1, 1'). En este sentido, la forma, dimensión y presión de encaje del elemento de cierre (5) en una respectiva cavidad (6) se dimensionan previamente, de acuerdo con el tipo de material usado, por lo que la retención se retira con fiabilidad mediante la aplicación de una determinada fuerza de accionamiento (F) aplicada desde el exterior sobre el elemento de cierre (5) (véanse los detalles 01).

Las Figuras 5a y 5b muestran otra realización de una cápsula (1, 1') de acuerdo con la invención, de nuevo en la posición de retención y retirada de la misma, en la que el elemento de cierre (5) se retiene de manera desmontable mediante una unión de bloqueo positiva en el accesorio de elemento (6e, 6s). Con este fin, el elemento de cierre (5) presenta una zona de protuberancia (7), o proyección (7), que se acopla con una cavidad (8) correspondiente proporcionada en el accesorio de elemento (6e, 6s), véase el detalle 01. La proyección (7) está dispuesta preferentemente y simétricamente en al menos un nivel a lo largo del perímetro de la cara lateral del elemento de cierre (5e, 5s), y acoplándose directamente a una cavidad (8) correspondiente proporcionada en la cara lateral del accesorio de elemento (6e, 6s) correspondiente.

40 Las Figuras 6a a 6k muestran representaciones esquemáticas de realizaciones particulares del elemento de cierre (5) y la respectiva retención desmontable en una cápsula (1, 1') de acuerdo con la invención, en cada caso en una primera posición de cierre (A) y en una segunda posición de abertura (B). En los casos representados, la configuración del elemento de cierre (5) y el respectivo accesorio de elemento (6) deberían conducir a una determinada combinación de retención en unión por fricción con la retención en bloqueo positivo. De esa manera, el 45 primer tipo de retención será dominante en algunos casos (Figuras 6a y 6f), mientras que el segundo será dominante en otros (Figuras 6b a 6e). En el caso de la realización representada en la Figura 6b, el elemento de cierre (5) se retiene mediante un elemento en forma de peldaño (7) que se asienta inicialmente en un dentado (8) respectivo proporcionado en el accesorio de elemento (6), mientras que en el caso de la realización representada en la Figura 6c, el bloqueo positivo se produce mediante una proyección (7') proporcionada en el elemento de cierre (5), 50 que se acopla a una cavidad (8) correspondiente proporcionada en la pared del accesorio de elemento (6). En la Figura 6d existe una configuración del elemento de cierre (5) en la que la retirada puede llevarse a cabo mediante la aplicación de una fuerza sustancialmente paralela a la dirección de flujo, finalmente no centrada en relación al elemento de cierre.

Las Figuras 6e a 6h ilustran realizaciones particulares de la configuración y maneras de retención y retirada del elemento de cierre (5), en el que este último se proyecta sobre el plano definido mediante la zona (2, 3) respectiva orientada corriente arriba/corriente abajo. En el caso de las formas representadas en las Figuras 6e y 6f, los elementos de cierre (5) se retienen bajo presión y se retiran mediante la aplicación de una fuerza de accionamiento (F_M) con una dimensión y/o duración tal que los desplaza completamente fuera del respectivo accesorio de elemento (6). En el caso de las realizaciones de las Figuras 6g y 6h, el elemento de cierre (5) presenta una configuración para interactuar ventajosamente con un elemento respectivo en el lateral de la cámara de extracción, o de la máquina de preparación de bebidas. En el caso de las realizaciones 6g y 6h, existen elementos de cierre (5) adicionales que se desplazan mediante la aplicación de una fuerza de accionamiento mecánica (F_M), no a lo largo de la dirección de flujo principal, sino más bien lateralmente, desobstruyendo de esta manera una determinada configuración de paso

para el flujo.

25

30

55

60

En todas las realizaciones anteriores, el elemento de cierre (5) se configura como un cuerpo sustancialmente masivo, que conduce a que el flujo de fluido presurizado se desarrolle a su alrededor una vez retirado de una respectiva retención de bloqueo de paso. Como alternativa, tal como se ilustra a modo de ejemplo en las Figuras 6i y 6j, el elemento de cierre (5) puede configurarse como un cuerpo sustancialmente tubular, al menos a lo largo de parte de su extensión longitudinal.

La Figura 6k representa una realización particularmente preferente de un elemento de cierre (5) de acuerdo con la invención, en la que este último presenta dos posiciones de retención desmontables en un respectivo accesorio de elemento (6) proporcionado en la zona (2, 3) corriente arriba y/o corriente abajo, proporcionando por tanto la liberación de la sección de paso de flujo respectiva en dos momentos sucesivos, mediante la aplicación de dos fuerzas de accionamiento (F) respectivas. De esta manera, dicho elemento de cierre (5) presenta una primera retención, diseñada por ejemplo como una unión de bloqueo positiva (dibujo en el centro) a retirar mediante una primera fuerza de accionamiento (F_m), especialmente mecánica, y una segunda retención, a retirar mediante una determinada fuerza de accionamiento (F_H) complementaria, especialmente hidráulica. En particular, el segundo elemento puede configurarse y producirse para presentar una menor resistencia, necesitando una menor fuerza de accionamiento para retirar una retención respectiva con un elemento de construcción circundante.

20 Las Figuras 7a - 7c y 8a - 8d ilustran realizaciones del dispositivo de extracción (10) de una cápsula (1, 1') de acuerdo con la invención.

Las Figuras 7a a 7c son representaciones en corte del dispositivo (10), configurado como una cámara de infusión, para procesar una cápsula (1, 1') de acuerdo con la invención mediante su cruce por un fluido presurizado, por ejemplo agua caliente. Con el motivo de simplificar los dibujos, solo se representan esquemáticamente las partes de la cámara de infusión (10) que están en contacto directo con la cápsula (1, 1'). La Figura 7a se corresponde con un instante inicial en el que la cápsula (1, 1') se ha insertado en la cámara de infusión (10), mientras que la Figura 7b se corresponde con un instante posterior en el que la cápsula (1, 1') se ha fijado en la cámara de extracción (E) mediante la sujeción mecánica entre una inyección de fluido (11) y una descarga de infusión (12). La Figura 7c se corresponde con una realización en la que el elemento de cierre (5s) en la zona (3) orientada corriente abajo se retira mediante la fuerza de retención mecánica aplicada a la cápsula, eventualmente para la deformación de las paredes laterales de la misma, y expulsando de esta manera el elemento de cierre (5s) a lo largo de la dirección de fluio predominante.

35 De esta manera, tal como se ilustra en la Figura 7b, cuando está en la posición de extracción (E), una inyección de fluido (11) acaba alineándose con un elemento de cierre (5e), en cada caso respectivo, retenido en la zona (2) orientada corriente arriba, y una descarga de infusión (12) acaba alineándose con otro elemento de cierre (5s), en cada caso respectivo, retenido en la zona (3) orientada corriente abajo. De acuerdo con una realización preferente, dicha inyección de fluido (11) se configura como una protuberancia que, con el movimiento hacia la posición de 40 extracción (E), ejerce una determinada fuerza de presión mecánica (F_{Me}) sobre un respectivo elemento de cierre (5e). De manera análoga, también dicha descarga de infusión (12) puede configurarse para ejercer una fuerza de presión (F_{Me}) localizada, preferentemente y directamente sobre un respectivo elemento de cierre (5s). La fuerza de presión mecánica (F_{Me}) se dimensiona previamente de manera que sea igual o superior a la fuerza de accionamiento (F) necesaria para que el elemento de cierre (5e) se retire completamente de un respectivo accesorio de elemento 45 (6e), y de esta manera se libera el paso para el fluido de procesamiento. El mismo principio puede aplicarse en el caso del elemento de cierre (5s) dispuesto en el lado de la cápsula orientado al flujo corriente abajo, mediante una fuerza de accionamiento (F), de valor igual o diferente respecto a la relativa a otro elemento de cierre (5e). Esta configuración de accionamiento de la abertura de entrada del flujo presurizado dentro de la cápsula (1, 1') tiene la ventaja de representar una pérdida de presión mínima en el flujo. 50

Además, el flujo de fluido presurizado inyectado mediante la inyección de fluido (11) ejerce una fuerza de presión hidráulica (F_{H1}), sobre un respectivo elemento de cierre (5e). De esta manera, en otra realización preferente del dispositivo (10) de acuerdo con la invención, el elemento de cierre (5e) se retira solo de un respectivo accesorio de elemento (6e), mediante una acción conjunta de la fuerza de presión mecánica (F_{Me}) y la fuerza de presión hidráulica (F_{H1}), conjuntamente superior a la fuerza de accionamiento (F_{H1}) necesarios para el fin. El mismo principio puede aplicarse en el caso del elemento de cierre (5s) dispuesto en el lado de la cápsula orientado al flujo corriente abajo.

Las Figuras 8a a 8d ilustran diferentes realizaciones de la interacción entre una inyección de fluido (11) y un respectivo elemento de cierre (5e), para optimizar las condiciones de aplicación de una fuerza de accionamiento (F) en este último y teniendo como resultado la abertura de la cápsula (1, 1'), representada en cada caso en el instante previo (vista superior) y posterior (vista inferior) a dicha abertura. En el caso de la Figura 8a, la inyección de fluido (11) se configura, al menos en la parte que se acopla con el elemento de cierre (5e), con una sección transversal sustancialmente circular, cuyo diámetro exterior se corresponde sustancialmente con el diámetro del elemento de cierre (y un ligeramente inferior al del accesorio de elemento (6e) respectivo)). Como alternativa, la inyección de

ES 2 600 635 T3

fluido (11) puede presentar un elemento asimétrico de mayor extensión, al menos en dicha parte de acoplamiento, para acoplarse con una parte particular de dicho elemento de cierre (5e). De acuerdo con una realización preferente de la presente invención (Figura 8c), la inyección de fluido (11) presenta una distribución asimétrica de respectivas aberturas de paso de flujo, para introducir estas últimas a lo largo de un determinado patrón de distribución dentro de la cápsula (1, 1'). La inyección de fluido (11) también puede presentar una sección transversal, por ejemplo una forma hexagonal, sustancialmente correspondiente a la del elemento de cierre (5) o el respectivo accesorio de elemento (6), para transmitir mejor la fuerza de accionamiento mecánica (F_M). De acuerdo con otra realización, el dispositivo de extracción (10) puede presentar más de una inyección de fluido (11), cada una en acoplamiento con un respectivo accesorio de cierre (5e, 5e').

10

REIVINDICACIONES

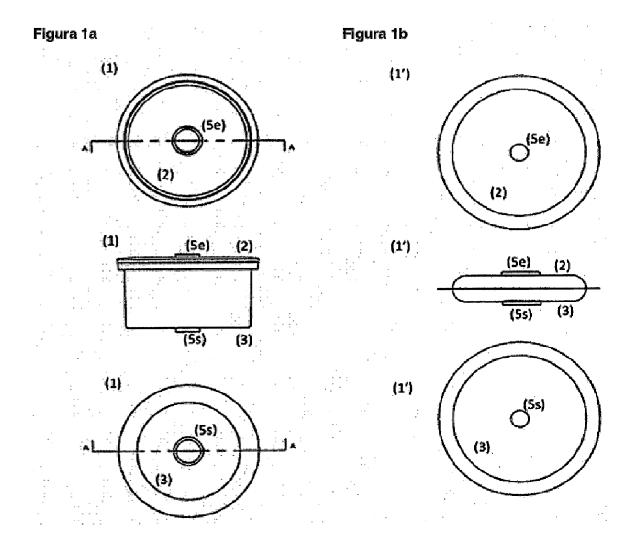
1. Cápsula (1, 1') que contiene al menos una sustancia aromática para producir una bebida mediante su cruce por un flujo de fluido presurizado, construida mediante al menos un elemento de construcción que incluye una zona (2) adecuada para orientarse al menos hacia un flujo de fluido presurizado corriente arriba, por lo que dicha zona (2) presenta al menos un elemento de cierre (5) retenido en un accesorio de elemento (6) respectivo de sección transversal sustancialmente correspondiente, mediante una unión desmontable que puede retirarse para liberar dicho accesorio de elemento (6) para formar un paso de flujo, **caracterizada porque** dicha retención del al menos un elemento de cierre (5e, 5s), en al menos un accesorio de elemento (6e, 6s) respectivo, se lleva a cabo mediante al menos una protuberancia (7), o elemento de bloqueo de tipo macho, proporcionado en una cara lateral del elemento de cierre (5e, 5s), que se bloquea junto con una cavidad (8) correspondiente, o elemento de bloqueo de tipo hembra (8), proporcionado en una cara lateral del accesorio de elemento (6e, 6s) y/o mediante al menos una protuberancia, o elemento de bloqueo de tipo macho, proporcionado en una cara lateral del accesorio de elemento (6e, 6s), que se bloquea junto con una cavidad correspondiente, o elemento de bloqueo de tipo hembra, proporcionado en una cara lateral del elemento de cierre (5e, 5s).

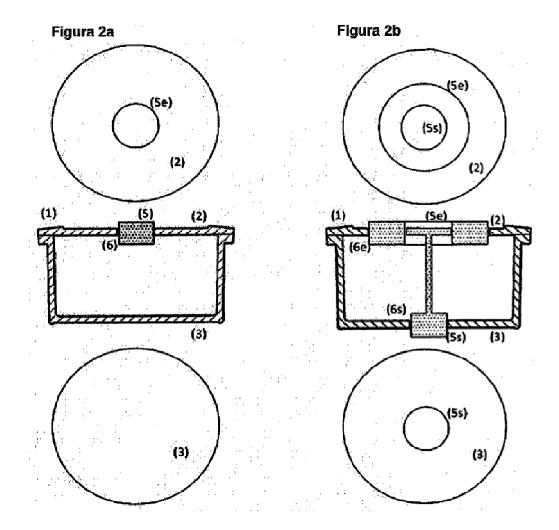
10

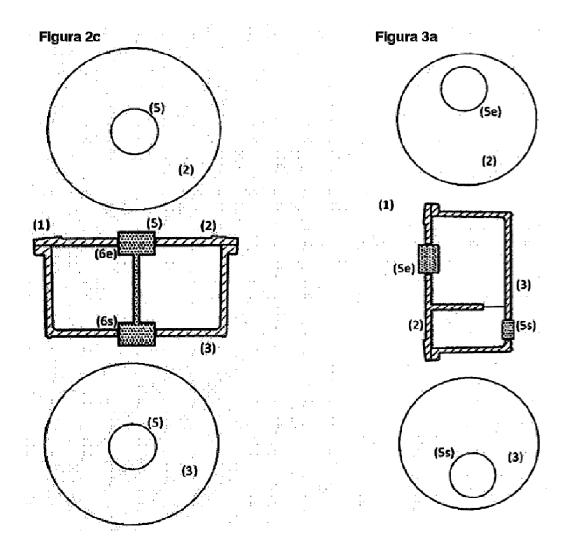
15

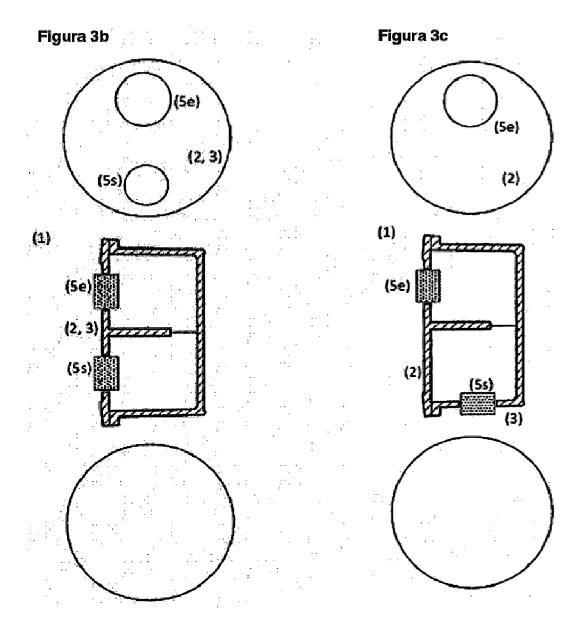
20

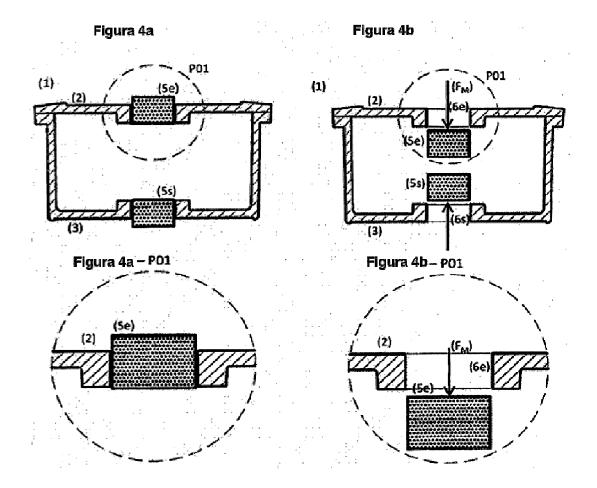
25

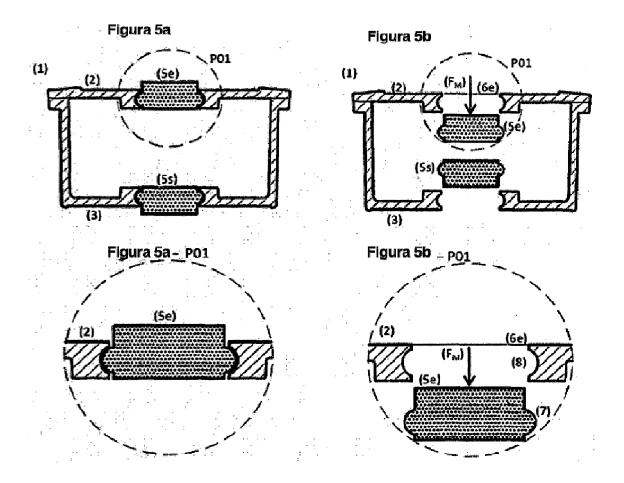

30


- 2. Cápsula de acuerdo con la reivindicación 1, **caracterizada porque** cada elemento de cierre (5) puede retirarse de la unión desmontable mediante la aplicación de una fuerza de accionamiento (F) y/o fuerza de retención determinada, preferentemente y directamente sobre el respectivo elemento de cierre (5), de manera que esté rodeado sustancialmente por el flujo presurizado.
- 3. Cápsula de acuerdo con la reivindicación 2, **caracterizada porque** dicha cápsula está provista de al menos dos elementos de cierre (5e, 5s) dispuestos preferentemente en respectivas zonas (2, 3) adecuadas para orientarse hacia el flujo corriente arriba y corriente abajo, respectivamente.
- 4. Cápsula de acuerdo con cualquiera de las reivindicaciones 1 a 3, **caracterizada porque** al menos un elemento de cierre (5) se retiene en un respectivo accesorio de elemento (6) mediante dos uniones desmontables que pueden retirarse secuencialmente, preferentemente a lo largo de la dirección de flujo, mediante la aplicación de una fuerza de accionamiento (F) respectivamente en cada unión.
- 5. Cápsula de acuerdo con cualquiera de las reivindicaciones 1 a 4, **caracterizada porque** el peldaño (7), o protuberancia (7') está configurado como sustancialmente flexible, en particular a la deformación, más preferentemente al menos en una respectiva zona periférica.
- 6. Cápsula de acuerdo con cualquiera de las reivindicaciones 1 a 5, caracterizada porque el elemento de cierre (5) se proporciona en dos partes de elemento (5a, 5b) en interacción entre sí, pudiendo estas partes de elemento (5a, 5b) desplazarse mediante la aplicación de al menos una fuerza de accionamiento (F), preferentemente a lo largo de la dirección prevalente de flujo, para liberar al menos un paso de flujo a través de zonas (2, 3) adecuadas para orientarse hacia el flujo corriente arriba o corriente abajo.
 - 7. Cápsula de acuerdo con cualquiera de las reivindicaciones 1 a 6, **caracterizada porque** el elemento de cierre (5) está producido de un material diferente, preferentemente menos rígido, que el material del accesorio de elemento (6) en el que se retiene, particularmente y preferentemente de un material biodegradable.
- 8. Dispositivo (10) adecuado para la extracción de una bebida, incluyendo una cápsula (1, 1') de acuerdo con cualquiera de las reivindicaciones 1 a 7, y que comprende al menos una inyección de fluido (11) y/o al menos una descarga de infusión (12), caracterizado porque la inyección de fluido (11) y/o la descarga de infusión (12) están configuradas y dimensionadas de manera que pueden ejercer una fuerza de accionamiento mecánica (FMe, FMs) en un respectivo elemento de cierre (5e, 5s) y/o una fuerza de retención mecánica en al menos parte de las zonas (2, 3)
 adecuadas para orientarse hacia el flujo corriente arriba o corriente abajo, de manera que la combinación de estas es igual o superior a la fuerza de accionamiento (F) necesaria para retirar al menos una respectiva unión desmontable del respectivo elemento de cierre (5e, 5s).
- 9. Dispositivo de acuerdo con la reivindicación 8, **caracterizado porque** la combinación de fuerzas y el periodo de aplicación de las mismas pueden ser suficientes para desplazar el elemento de cierre (5e, 5s) a lo largo de una extensión de manera que se libere al menos una sección de paso de flujo a través de las zonas (2, 3) adecuadas para orientarse hacia el flujo corriente arriba o corriente abajo.
- 10. Dispositivo de acuerdo con las reivindicaciones 8 o 9, **caracterizado porque** el formato o dimensión de la sección transversal de la inyección de fluido (11) y/o la descarga de fluido (12) pueden corresponderse sustancialmente con el formato y dimensión del respectivo elemento de cierre (5e, 5s).
 - 11. Dispositivo de acuerdo con las reivindicaciones 8 a 10, **caracterizado porque** la inyección de fluido (12) está dimensionado al menos en su extensión y provista con una distribución tal de pasos sobre su perímetro, como para


ES 2 600 635 T3


generar una distribución inicial definida previamente, preferentemente y radialmente asimétrica, del flujo de fluido dentro de la cápsula (1, 1').


12. Dispositivo de acuerdo con cualquiera de las reivindicaciones 8 a 11, **caracterizado porque** la fuerza mecánica (F_{Me}, F_{Ms}) puede, junto con la fuerza hidráulica, ser igual o superior a la fuerza de accionamiento (F) necesaria para liberar el elemento de cierre (5e, 5s) de la al menos una unión desmontable con las zonas (2, 3) adecuadas para orientarse hacia el flujo corriente arriba o corriente abajo, preferentemente para liberar al menos una sección de paso de flujo respectiva.



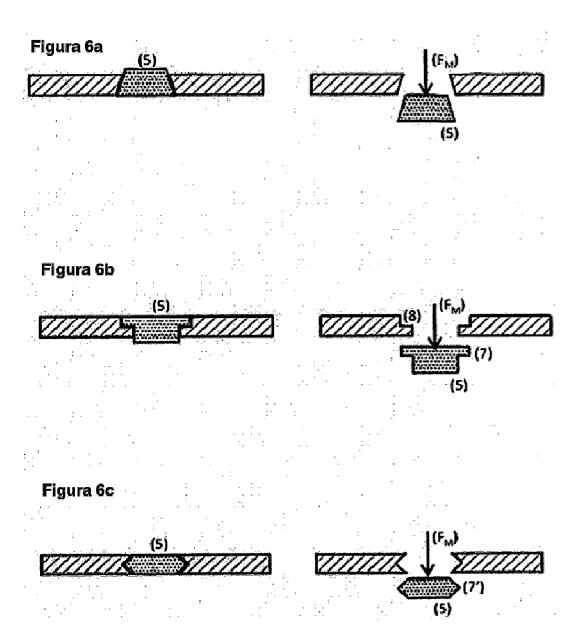
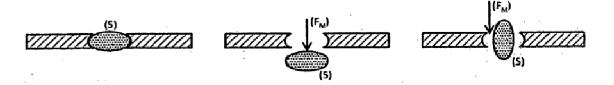
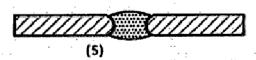




Figura 6d

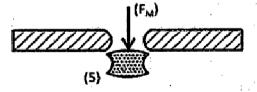
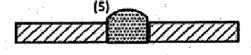



Figura 6f

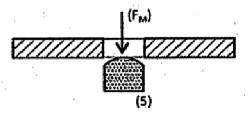
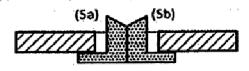
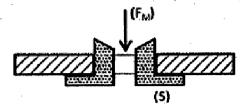




Figura 6g

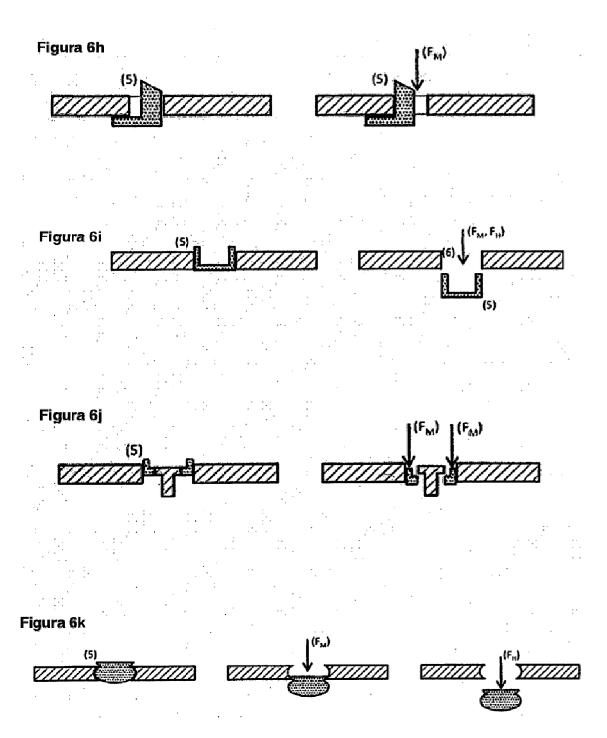


Figura 7a

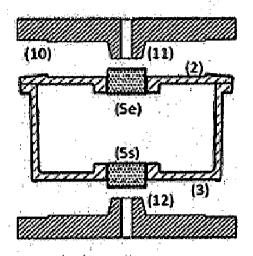


Figura 7b

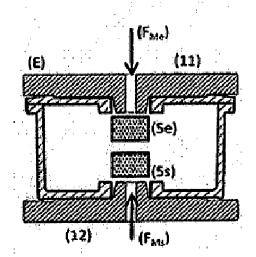


Figura 7c

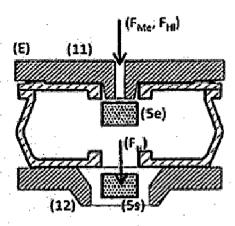
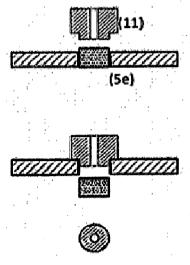
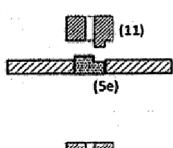




Figura 8a

Figura 8b

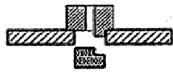


Figura 8c

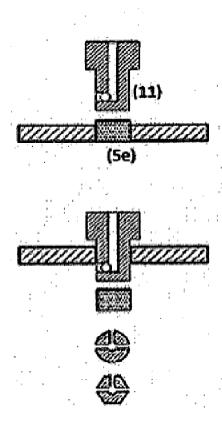
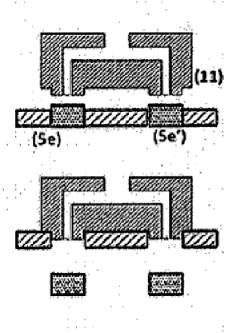



Figura 8d

