

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 602 798

51 Int. Cl.:

C07D 471/04 (2006.01)
A61K 31/437 (2006.01)
A61P 3/00 (2006.01)
A61P 9/00 (2006.01)
C07D 519/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 26.12.2012 PCT/IB2012/057727

(87) Fecha y número de publicación internacional: 04.07.2013 WO13098764

(96) Fecha de presentación y número de la solicitud europea: 26.12.2012 E 12824734 (3)

(97) Fecha y número de publicación de la concesión europea: 10.08.2016 EP 2797917

(54) Título: Compuestos diméricos de agonistas de los receptores de FGF (FGFR), proceso para la preparación de los mismos y uso terapéutico de los mismos

(30) Prioridad:

28.12.2011 FR 1162485

Fecha de publicación y mención en BOPI de la traducción de la patente: 22.02.2017

(73) Titular/es:

SANOFI (100.0%) 54, rue La Boétie 75008 Paris, FR

(72) Inventor/es:

CLARY-CECCATO, MARIE-LINE y GUILLO, NATHALIE

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Compuestos diméricos de agonistas de los receptores de FGF (FGFR), proceso para la preparación de los mismos y uso terapéutico de los mismos

El objeto de la presente invención es novedosos compuestos heterocíclicos que son derivados de pirazolopiridina que inducen la dimerización del receptor del factor de crecimiento de fibroblastos (FGFR), al proceso para la preparación de los mismos y a los usos terapéuticos de los mismos. El objeto de la presente invención es en particular novedosos compuestos con una estructura dimérica, como agonistas de FGFR.

Los FGF son una familia de polipéptidos sintetizados por un gran número de células durante el desarrollo embrionario y por las células de los tejidos adultos en diversas afecciones patológicas.

El FGF2 (o b-FGF) es el primero y mejor caracterizado de estos factores de crecimiento. El FGF2 es una proteína de 18 kDalton (kDa) que induce la proliferación, migración y producción de proteasas por numerosas células, y en particular células endoteliales, fibroblastos, células de músculo liso o alternativamente células óseas. El FGF2 interacciona con las células por medio de dos clases de receptores, los receptores tipo tirosina cinasa de receptores de alta afinidad (FGFR) y heparano sulfato proteoglicano de baja afinidad (HSPG) situados en la superficie de las células y en matrices extracelulares. Así, el FGF2 y sus receptores representan dianas muy relevantes para las terapias que se dirigen a activar los procesos de angiogénesis, y de regeneración de células de músculo liso, células óseas y células de los folículos pilosos.

Además, se sabe que las tirosina cinasas de receptores de la superficie celular transmiten información a través de la membrana plasmática, en particular por mecanismos de dimerización de los dominios extracelulares de estos receptores.

20

35

40

45

50

55

Ligandos conocidos capaces de activar estos mecanismos de dimerización son normalmente compuestos naturales, tales como FGF, el PDGF (factor de crecimiento derivado de plaquetas), VEGF (factor de crecimiento endotelial vascular), EPO (eritropoyetina), G-CSF (factor de estimulante de colonias de granulocitos), TPO (trombopoyetina), ciertas citocinas o insulina.

B. Seed (Chemistry and Biology, Noviembre, 1994, 1, 125- 129) plantea el principio general de que sería posible construir agonistas de estos receptores por dimerización de antagonistas. Sin embargo, no existe ningún ejemplo descrito de una molécula de síntesis construida según este concepto. Artículos tales como S A. Qureshi (PNAS, 1999, vol 96, no 21, 12156-12161), B E. Welm (The Journal of cell biology, 2002, vol 157, 4, 703-714), K. Koide (J. Am. Chem. Soc., 2001, 123, 398-408) describen compuestos no peptídicos o inductores químicos de dimerización (CID), actuando estos compuestos sobre los receptores quiméricos y no sobre los receptores naturales. No presentan resultados que muestren que un CID haga posible la activación de la vía de señalización de un receptor natural.

En los vertebrados, existen 22 miembros en la familia de los FGF con un peso molecular que oscila de 17 a 34 kDa y que comparten entre el 13 % y el 71 % de homología. Estos FGF están altamente conservados tanto al nivel génico como al nivel de la secuencia de aminoácidos (D Ornitz. & N. Itoh, Fibroblast growth factors. Genome Biology, 30005.1-3005.12, 2001). Los FGF interaccionan con células por medio de tirosina cinasas de receptores de alta afinidad (FGF-R1, -R2, -R3, -R4). La expresión de los FGF sugiere que tienen una función importante en el desarrollo. Entre la familia de los FGF, el FGF-2 es el FGF que ha sido más ampliamente descrito. Es una proteína de 18 kDa que induce la proliferación, migración y producción de proteasas sobre diferentes tipos de células, tales como células endoteliales, células de músculo liso, fibroblastos, pericitos, osteoblastos o células de los folículos pilosos. Así, las principales áreas terapéuticas en las que está implicado el FGF2 incluyen la fisiología neuronal y cardiovascular, la regeneración nerviosa, la nocicepción, la reparación tisular, la homeostasia y la reparación ósea.

Por lo tanto, el FGF2 y sus receptores representan dianas muy relevantes para las terapias que se dirigen a inducir los procesos de angiogénesis y de arteriogénesis (Khurana, R. & Simons, M. Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease. Trends Cardiovasc Med 13, 116-22, 2003). Cuando se obstruye un vaso sanguíneo, se observa una fase isquémica, que induce una disminución de la circulación arterial en un órgano, conduciendo así a una disminución en la concentración de oxígeno en los tejidos dañados. Se ha mostrado *in vitro* e *in vivo* que varios factores de crecimiento estimulan los procesos de angiogénesis y de arteriogénesis. El FGF2 también induce la neovascularización *in vivo* y también el desarrollo de vasos colaterales después de la ligadura de un vaso en los modelos farmacológicos.

Varios indicios demuestran que el FGF2 también está implicado en la diferenciación de angioblastos en células progenitoras endoteliales y así participa en la revascularización tras la oclusión (Burger, P. E. et al. Fibroblast growth factor receptor-1 is expressed by endothelial progenitor cells. Blood 100, 3527-35, 2002). Así, las estrategias que se dirigen a aumentar la respuesta de las células del árbol vascular son estrategias adecuadas para aumentar la revascularización post-isquémica y en particular cardíaca o de las arterias coronarias (Freedman, S. B. & Isner, J. M. Therapeutic angiogenesis for ischemic cardiovascular disease. J Mol Cell Cardiol 33, 379-93, 2001; Freedman, S. B. & Isner, J. M. Therapeutic angiogenesis for coronary artery disease. Ann Intern Med 136, 54-71, 2002).

En lo que respecta al tratamiento de la isquemia cardíaca, uno de los ensayos clínicos más prometedores es un ensayo en el que el FGF-2 era secuestrado en microesferas de alginato en presencia de heparina (Laham, R. J. et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 100, 1865-71, 1999). Después de 90 días, ninguno de los pacientes tratados con FGF2 mostró síntoma cardíaco isquémico. En comparación, en el grupo control, 3 de los 7 pacientes tenían síntomas persistentes a los 90 días y 2 pacientes recurrieron a cirugía vascular. De forma interesante, el beneficio de la terapia se mantuvo después de 3 años de seguimiento. Además, se llevaron a cabo tres ensayos clínicos sobre la inyección de FGF2 en la arteria coronaria en el tratamiento del estrechamiento de las arterias coronarias (Laham, R. J. et al. Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J Am Coll Cardiol 36, 2132-9, 2000; Simons, M. et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105, 788-93, 2002; Unger, E. F. et al. Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris. Am J Cardiol 85, 1414-9, 2000). El resultado de estos tres ensayos muestra que las perfusiones intra-coronarias de FGF2 son bien toleradas y mejoran significativamente la afección clínica de los pacientes.

En otro ensayo clínico de fase I, los pacientes con enfermedad de las arterias periféricas que conducen a claudicación recibieron inyecciones de FGF2 (Lazarous, D. F. et al. Basic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial. J Am Coll Cardiol 36, 1239- 44, 2000). En este contexto, el FGF2 era bien tolerado en esos pacientes y los datos clínicos sugieren un efecto beneficioso del FGF2, en particular sobre la mejora de la marcha en los pacientes con enfermedad periférica, por ejemplo la enfermedad de Buerger o tromboangeítis obliterante, que afecta las estructuras vasculares distales y que se caracteriza por arteritis distal en las piernas, acompañada de dolor y ulceración.

En otro contexto que requiere una mejora de la angiogénesis, acaba de ser claramente demostrado, en ratas diabéticas, que la vascularización en los páncreas bioartificiales era mucho mayor cuando los páncreas estaban impregnados con microesferas que llevaban el FGF2 (Sakurai, Tomonori; Satake, Akira, Sumi, Shoichiro, Inoue, Kazutomo, Nagata, Natsuki, Tabata, Yasuhiko. The Efficient Prevascularization Induced by Fibroblast Growth Factor 2 With a Collagen-Coated Device Improves the Cell Survival of a Bioartificial Pancreas. Pancreas. 28(3):e70-e79, Abril 2004). Esta revascularización mejora así la supervivencia de los páncreas bioartificiales implantados y, en consecuencia, la supervivencia del injerto. Así, parece que los FGF contribuyen a la mejora de la supervivencia del injerto de páncreas bioartificial en el paciente diabético y, de forma más general, parece que contribuyen a la mejora de la revascularización de los injertos y parece que están implicados en la supervivencia de los injertos.

Además de los efectos inductores de la angiogénesis, el FGF2 protege las células endoteliales frente a los inductores de la apoptosis. Está ahora claramente descrito que el FGF2 es un factor de supervivencia de las células endoteliales (Role of Raf in Vascular Protection from Distinct Apoptotic Stimuli: A Alavi, J.D. Hood, R. Frausto, D. G. Stupack, D.A. Cheresh: Science 4 Julio 2003: Vol. 301. no. 5629, pp. 94-96). El síndrome disneico agudo (ARDS) se caracteriza por problemas cardiovasculares y neuropsiquiátricos. En el contexto de los problemas cardiovasculares, los pacientes presentan daño vascular importante y en particular un alto nivel de inducción de la apoptosis de las células endoteliales. Recientemente, Hamacher et al. han demostrado que los líquidos de lavados broncoalveolares de pacientes que sufren ARDS presentaban actividad pro-apoptósica frente a las células endoteliales microvasculares del pulmón (Tumor necrosis factor-alpha and angiostatin are mediators of endothelial cytotoxicity in bronchoalveolar lavages of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002 Sep 1; 166(5):651-6: Hamacher J, Lucas R, Lijnen HR, Buschke S, Dunant Y, Wendel A, Grau GE, Suter PM, Ricou B.).

La pre-eclampsia es una afección patológica de la placenta que está asociada a una deficiencia en la vascularización (Sherer, D. M. & Abulafia, O. Angiogenesis during implantation, and placental and early embryonic development. Placenta 22, 1-13, 2001). Se cree que estas deficiencias en la vascularización son debidas a una deficiencia en la angiogénesis y conducen a perturbaciones al nivel de la placenta que pueden producir la muerte del feto.

La cicatrización es un proceso de regeneración tisular que no requiere tratamiento en la mayor parte de los casos. Sin embargo, pueden surgir complicaciones, tales como infección o la aparición de una cicatriz queloide, que es una cicatriz patológica caracterizada por un plegamiento de consistencia fibrosa, o por retracciones cutáneas que producen una pérdida de elasticidad de la piel. La fase de cicatrización tiene lugar en 5 etapas: la primera fase es la fase inflamatoria, que es el punto de inicio para la reparación tisular. Esta reacción inflamatoria provoca una vasodilatación y aumenta la permeabilidad de la lesión. La segunda fase es la fase de angiogénesis, que permite el aporte de nutrientes y oxígeno, esenciales para las células. La tercera fase es la fase de migración: el tejido de renovación (y por tanto de granulación) ocupa su lugar: éste es el principio de la producción de la cicatriz. Todas las células del tejido conjuntivo migran hacia el centro de la lesión, en particular los fibroblastos y los queratinocitos. La cuarta fase es la fase de proliferación, que consiste en una proliferación masiva de las células del tejido conjuntivo, y de fibras asociadas al desarrollo de los vasos sanguíneos. La fase final es la fase de maduración, que es la fase más larga: dura de 18 a 24 días. El número de fibroblastos disminuye entonces, así como el número de vasos sanguíneos, para dar lugar al fin de la cicatrización. En el caso de pacientes diabéticos, la cicatrización es un proceso lento y difícil que les expone a heridas crónicas que son extremadamente difíciles de cicatrizar, que se complican a menudo por fenómenos infecciosos que pueden conducir de forma secundaria a amputaciones. Por sus

actividades pleiotrópicas, los FGF participan en la reparación tisular, en particular activando los queratinocitos y los fibroblastos y participando en el fenómeno de la angiogénesis. Así, parece que los FGF desempeñan una función en la mejora de la cicatrización en pacientes sanos o diabéticos, tanto desde el punto de vista de la rapidez de cicatrización como desde el punto de vista de la calidad cicatricial. También se ha descrito claramente que los niveles de factores de crecimiento implicados en los fenómenos de cicatrización, y en particular los FGF, disminuyen muy fuertemente con la edad. Así, en pacientes ancianos, las deficiencias y los retrasos en la cicatrización están ligados a deficiencias de FGF en la piel.

5

10

25

30

35

El glutamato es un trasmisor putativo de las neuronas de los ganglios dorsales y la bradiquinina es una molécula producida durante la inflamación que puede activar y sensibilizar las fibras nociceptivas. En este contexto, el FGF2 podría modular el dolor inflamatorio, aunque no ha sido demostrado *in vivo* ningún efecto regulador del FGF2 sobre las fibras nociceptivas. Sin embargo, se ha demostrado que el FGF2 bloquea completamente la liberación de glutamato estimulada por la bradiquinina *in vitro* (Rydh-Rinder et al. (2001) Regul Pept 102:69-79). Así, los FGF podrían desempeñar una función en la nocicepción y el dolor crónico.

La neuropatía periférica es daño axonal o desmielinizante al nervio periférico motor y/o sensorial que conduce a la desensibilización de los miembros distales. Una de las consecuencias del daño de los nervios puede ser una úlcera perforante, que debe temerse particularmente cuando hay un daño considerable a la sensibilidad profunda ya que, en este caso, el peso del cuerpo tiene una tendencia a sostenerse siempre sobre los mismos puntos de apoyo. Una de las complicaciones secundarias principales de la diabetes es el desarrollo crónico de una neuropatía periférica. En este contexto, se ha demostrado que el FGF2 induce la regeneración axonal que podría ser una terapia de elección en el tratamiento del daño de los nervios periféricos y, por lo tanto, en la neuropatía periférica (Basic fibroblast growth factor isoforms promote axonal elongation and branching of adult sensory neurons in vitro. Klimaschewski L, Nindl W, Feurle J, Kavakebi P, Kostron H. Neuroscience. 2004; 1 26(2):347-53).

Se ha propuesto que el sistema de FGF es un sistema esencial de la regeneración muscular, y de la supervivencia y proliferación de los mioblastos (Neuhaus, P. et al. Reduced mobility of fibroblast growth factor (FGF)-deficient myoblasts might contribute to dystrophic changes in the musculature of FGF2/FGF6/mdx triple-mutant mice. Mol Cell Biol 23, 6037-48, 2003). El FGF2 podría ser explotado con el fin de promover la regeneración muscular, en particular en el caso de sarcopenia, de pérdida de funcionalidad de los músculos lisos en los esfínteres, y también para la supervivencia y progresión de mioblastos trasplantados, y en particular en la distrofia muscular de Duchenne. Los factores de crecimiento como VEGF o FGF2 también parecen mejorar la perfusión del miocardio después de isquemia (Hendel, R. C. et al. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 101, 118-21, 2000). Además, la red vascular es esencial para el desarrollo y la conservación de tejidos. Al promover el aporte de nutrientes, oxígeno y células, los vasos sanguíneos ayudan en el mantenimiento de la integridad funcional y estructural de los tejidos. En este contexto, la angiogénesis y la vasculogénesis hacen posible conservar y perfundir los tejidos después de una isquemia. Los factores de crecimiento angiogénicos tales como el FGF2 promueven así la revascularización para la regeneración de los tejidos. Así, el FGF2, al actuar directamente sobre las células musculares esqueléticas y sobre la angiogénesis, tendría un efecto sobre la regeneración de músculos distróficos o normales (Fibbi, G., D'Alessio, S., Pucci, M., Cerletti, M. & Del Rosso, M. Growth factor-dependent proliferation and invasion of muscle satellite cells require the cell-associated fibrinolytic system. Biol Chem 383, 127-36, 2002).

- 40 Entre los principales factores de crecimiento, ahora se establece claramente que la administración sistémica de FGF2 facilita la reparación ósea después de una fractura (Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2. Kawaguchi H, Nakamura K, Tabata Y, Ikada Y, Aoyama I, Anzai J, Nakamura T, Hiyama Y, Tamura M. J Clin Endocrinol Metab. 2001 Feb;86(2), 875-880). La aplicación local de FGF2 en matrices de gelatina acelera la reparación ósea en primates, lo que sugiere la utilidad clínica del FGF2 en el tratamiento de fracturas.
- La regulación endógena en exceso de FGF7 (o KGF) y de FGF18 parece ser un mecanismo importante para promover la proliferación, migración y protección de folículos pilosos en casos patológicos o tras el tratamiento con un agente citotóxico (Comprehensive Analysis of FGF and FGFR Expression in Skin: FGF18 Is Highly Expressed in Hair Follicles and Capable of Inducing Anagen from Telogen Stage Hair Follicles. Mitsuko Kawano, Akiko Komi-Kuramochi, Masahiro Asada, Masashi Suzuki, Junko Oki, Ju Jiang y Toru Imamura).
- 50 El documento WO 2007/080325 desvela compuestos de agonistas de los receptores de FGF con dos restos que presentan actividad de antagonista de FGF, en particular derivados de imidazo[1,5-a]piridina, para su uso en el tratamiento de enfermedades relacionadas con el FGF, tales como patologías relacionadas con la activación de la angiogénesis. Se diferencia de la presente invención en que no desvela compuestos que comprendan restos de pirazolo[3,4-b]piridina.
- El documento WO 2011/023081 describe compuestos de urea que contienen heteroarilos 5,6-bicíclicos, tales como pirazolo[3,4-b]piridinas, y su uso como inhibidores de proteína cinasa útiles para tratar tumores, artritis reumatoide, enfermedad autoinmunitaria... Estos compuestos se diferencian de la presente materia debido al grupo urea, que no está presente en los compuestos de la presente invención.

El solicitante ha encontrado ahora novedosas moléculas de síntesis capaces de inducir la dimerización de los receptores de los FGF y que pueden ser útiles en numerosos mecanismos en los que están implicados los FGFR, tales como la angiogénesis, o la regeneración de células de músculo liso, óseas o de los folículos pilosos.

El objetivo de la invención es proponer novedosos compuestos de agonistas de los receptores de FGF con una estructura dimérica.

Estos compuestos producen la dimerización de los receptores de FGF, lo que causa su activación y, al final, la activación celular.

Un objeto de la presente invención es compuestos de agonistas de los receptores de FGF que se corresponden con la fórmula general:

 M_1-L-M_2

en la que M₁ y M₂, que pueden ser idénticos o diferentes, representan cada uno, independientemente uno de otro, una unidad de monómero M y L representa un grupo conector que une M₁ y M₂ de forma covalente.

Los agonistas de fórmula M_1 -L- M_2 según la invención comprenden dos unidades de monómero de fórmula general M, llamadas M_1 y M_2 , que pueden ser idénticas o diferentes, elegidas teniendo cada una una actividad de antagonista de los FGFR.

Un objeto de la presente invención es compuestos de agonistas de los receptores de FGF de la fórmula M_1 -L- M_2 como se ha definido anteriormente, caracterizados por que dicha unidad de monómero M_1 y M_2 se corresponde con la fórmula general M que sigue:

$$R_2$$
 R_2
 R_3
 R_1
 R_1
 R_2
 R_3

20 en la que

5

15

- el asterisco * indica el sitio de enlace entre la unidad de monómero M y el conector L, estando situado dicho sitio de enlace de cada unidad de monómero M₁ y M₂ sobre uno de los sustituyentes R o R₂,
- R representa un átomo de hidrógeno (en cuyo caso el sitio de enlace de L con M está situado sobre R₂) o un grupo -CONH*,
- 25 R₁ representa un átomo de hidrógeno o un grupo alquilo (C₁-C₃) lineal,
 - R₂ representa un grupo -CONH₂ (en cuyo caso el sitio de enlace de L con M está situado sobre R) o -CONH*.
 - R₃ representa un grupo -CO₂R₄, donde R₄ representa un átomo de hidrógeno o un grupo alquilo (C₁-C₄) lineal.
- 30 X es un átomo de halógeno elegido de átomos de flúor, cloro y bromo,
 - L representa los siguientes radicales de PEG:

en los que

35

- el asterisco * indica el átomo para el enlace de L con la unidad de monómero M sobre el sustituyente R* o R2*;
 - n representa un número entero de 2 a 6,

en forma de una base o de una sal de adición con un ácido o con una base.

5

15

30

L representa un grupo conector que une M_1 y M_2 de forma covalente de tal modo que la distancia entre las dos unidades de monómero M_1 y M_2 permita la dimerización de dos receptores de FGF. Dicho grupo conector comprende preferentemente de 11 a 20 enlaces. Dicho grupo conector L comprende más particularmente de 12 a 16 enlaces. El término "enlaces" pretende significar solamente los enlaces entre átomos que hacen posible conectar las unidades de monómero M_1 y M_2 .

El grupo conector L se caracteriza por una flexibilidad que permite a cada unidad de monómero del compuesto de fórmula M₁-L-M₂ establecer contacto con los sitios de unión extracelulares de los receptores transmembranarios FGFR.

L se une, en primer lugar, a una unidad de monómero de la fórmula M_1 por un átomo situado sobre uno cualquiera de los sustituyentes R o R_2 y se une, en segundo lugar, a la otra unidad de monómero de fórmula M_2 por un átomo situado sobre uno cualquiera de los sustituyentes R o R_2 , siendo M_1 y M_2 idénticos o diferentes.

En lo mencionado anteriormente, un objeto de la presente invención es también compuestos como se han definido anteriormente, caracterizados por que:

- L conecta las 2 unidades de monómero M₁ y M₂ por el radical R o;
- L conecta las 2 unidades de monómero M₁ y M₂ por el radical R₂ o;
- L conecta las 2 unidades de monómero M₁ y M₂ por el radical R en su posición para o;
- L conecta las 2 unidades de monómero M₁ y M₂ por el radical R en su posición meta.

Estos compuestos de fórmula M₁-L-M₂ pueden existir en forma de bases o en una forma salificada con ácidos o bases, en particular ácidos o bases farmacéuticamente aceptables. Tales sales de adición son parte de la invención. Estas sales se preparan de forma ventajosa con ácidos o bases farmacéuticamente aceptables, pero las sales de otros ácidos o bases útiles, por ejemplo, para la purificación o el aislamiento de los compuestos de la invención, también son parte de la invención.

En el contexto de la presente invención, y a menos que se mencione lo contrario en el texto:

- el término <u>alquilo</u> pretende significar: un grupo alifático basado en hidrocarburo, lineal o ramificado, que comprende de 1 a 6 átomos de carbono;
 - el término halógeno pretende significar: un átomo cloro, flúor, bromo o yodo;
 - el término <u>arilo</u> pretende significar: un grupo aromático cíclico que comprende entre 5 y 10 átomos de carbono, por ejemplo, un grupo fenilo, opcionalmente sustituido con uno o más grupos éster y/o un átomo de halógeno.

Un objeto de la presente invención es particularmente compuestos como se han definido anteriormente, que comprenden la unidad de monómero de la fórmula M en la que R₁ representa un átomo de hidrógeno, en forma de una base o de una sal de adición con un ácido o con una base.

Un objeto de la presente invención es particularmente compuestos como se han definido anteriormente, que comprenden la unidad de monómero de la fórmula M en la que R₃ representa un grupo -CO₂R₄, representando R₄ un átomo de hidrógeno, en forma de una base o de una sal de adición con un ácido o con una base.

Un objeto de la presente invención es particularmente compuestos como se han definido anteriormente, que comprenden la unidad de monómero de la fórmula M en la que X representa un átomo de flúor, en forma de una base o de una sal de adición con un ácido o con una base.

- 40 Un objeto de la presente invención es particularmente compuestos como se han definido anteriormente, que comprenden la unidad de monómero de la fórmula M en la que:
 - R representa un grupo -CONH*, donde el asterisco * indica el sitio de enlace de L, en primer lugar, con la unidad de monómero M₁ y, en segundo lugar, con la unidad de monómero M₂; de forma ventajosa, R está situado en la posición meta o para,
- 45 R₁ representa un átomo de hidrógeno o un grupo alquilo (C₁-C₃) lineal y de forma ventajosa un átomo de hidrógeno,

en forma de una base o de una sal de adición con un ácido o con una base.

Un objeto de la presente invención es particularmente compuestos como se han definido anteriormente, que comprenden la unidad de monómero de la fórmula M en la que:

- R₁ representa un átomo de hidrógeno.
- R₂ representa un grupo -CONH*, donde el asterisco * indica el sitio de enlace de L, en primer lugar, con la unidad de monómero M₁ y, en segundo lugar, con la unidad de monómero M₂,

en forma de una base o de una sal de adición con un ácido o con una base.

5 Un objeto de la invención es particularmente compuestos como se han definido anteriormente, en los que n es un número entero de 3 o 4.

La presente invención también describe compuestos de agonistas de los receptores de FGF de fórmula M_1 -L- M_2 , caracterizados por que dichas unidades de monómero M_1 y M_2 , que son idénticas, se corresponden con la fórmula general M en la que:

- R representa un átomo de hidrógeno (en cuyo caso el sitio de enlace de L con M está situado sobre R₂) o un grupo -CONH*
 - R₁ representa un átomo de hidrógeno,
 - R₂ representa un grupo -CONH₂ (en cuyo caso el sitio de enlace de L con M está situado sobre R) o -CONH*.
- 15 R₃ representa un grupo -CO₂R₄, donde R₄ representa un átomo hidrógeno,
 - X es un átomo de flúor,

30

35

40

en forma de una base o de una sal de adición con un ácido o con una base.

Los subgrupos definidos antes, tomados por separado o en combinación, también forman parte de la invención.

Entre los compuestos de fórmula M₁-L-M₂ que son objeto de la invención, puede hacerse mención en particular de los siguientes compuestos en el orden de los compuestos de la tabla que sigue:

Compuesto N.º 1: ácido 3,3'-{etano-1,2-diilbis[oxipropano-3,1-diilcarbamoil(3-fenil-1*H*-pirazolo[3,4-b]piridina-4,6-diil)]}bis(6-fluorobenzoico);

Compuesto N.º 2: ácido 5-[4-({15-[6-(3-carboxi-4-fluorofenil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il]-15-oxo-4,7,10-trioxa-14-azapentadec-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoico;

25 Compuesto N.º 3: ácido 5-[4-({16-[6-(3-carboxi-4-fluorofenil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il]-16-oxo-3,6,9,12-tetraoxa-15-azahexadec-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoico;

Compuesto N.º 4: ácido 5-[4-({19-[6-(3-carboxi-4-fluorofenil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il]-19-oxo-3,6,9,12,15-pentaoxa-18-azanonadec-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoico;

Compuesto N.º 5: ácido 5-[4-({21-[6-(3-carboxi-4-fluorofenil)-3-fenil-1H-pirazolo[3,4-*b*]piridin-4-il]-21-oxo-4,7,10,13,16-pentaoxa-20-azahenicos-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoico;

Compuesto N.º 6: ácido 5-(4-carbamoil-3-{3-[(15-{3-[4-carbamoil-6-(3-carboxi-4-fluorofenil)-1*H*-pirazolo[3,4-b]piridin-3-il]fenil}-15-oxo-4,7,10-trioxa-14-azapentadec-1-il)carbamoil]fenil}-1*H*-pirazolo[3,4-b]piridin-6-il)-2-fluorobenzoico:

Compuesto N.º 7: ácido 3,3'-{etano-1,2-diilbis[oxietan-2,1-diilcarbamoilbenceno-3,1-diil(4-carbamoil-1*H*-pirazolo[3,4-b]piridina-3,6-diil)]}bis(6-fluorobenzoico);

Compuesto N.º 8: ácido 5-(4-carbamoil-3-{4-[(15-{4-[4-carbamoil-6-(3-carboxi-4-fluorofenil)-1*H*-pirazolo[3,4-b]piridin-3-il]fenil}-15-oxo-4,7,10-trioxa-14-azapentadec-1-il)carbamoil]fenil}-1*H*-pirazolo[3,4-b]piridin-6-il)-2-fluorobenzoico:

Compuesto N.º 9: ácido 3,3'-{etano-1,2-diilbis[oxietan-2,1-diilcarbamoilbenceno-4,1-diil(4-carbamoil-1*H*-pirazolo[3,4-b]piridina-3,6-diil)]}bis(6-fluorobenzoico).

La presente invención también se refiere a un proceso de preparación de dímeros de fórmula M_1 -L- M_2 que comprende la reacción de al menos un reactivo de una unidad de monómero de fórmula M que tiene al menos una función de ácido carboxílico con un reactante de fórmula H_2N -L- NH_2 donde M y L tienen el mismo significado que anteriormente, después de activación

45 En lo que sigue, el término "grupo protector PG" pretende significar un grupo que hace posible, en primer lugar, proteger una función reactiva tal como un hidroxilo o un ácido carboxílico durante una síntesis y, en segundo lugar, regenerar la función reactiva intacta al final de la síntesis. Ejemplos de grupos protectores y también de métodos de

protección y de desprotección se dan en «Protective Groups in Organic Synthesis», Green et al., 4ª Edición (John Wiley & Sons, Inc., Nueva York).

En lo que sigue, el término "grupo saliente" pretende significar un grupo que puede ser fácilmente escindido de una molécula por ruptura de un enlace heterolítico, con salida de un par de electrones. Este grupo puede así ser fácilmente reemplazado con otro grupo durante una reacción de sustitución, por ejemplo. Tales grupos salientes son, por ejemplo, los halógenos o un grupo hidroxilo activado, tal como un mesilo, tosilo, triflato, acetilo, para-nitrofenilo, etc. Ejemplos de grupos salientes y también de métodos para su preparación se dan en «Advanced Organic Chemistry», J. March, 5ª Edición, Wiley Interscience, p. 310-316.

Según la invención, los compuestos de la invención pueden prepararse según los procesos que siguen.

Esquema 1: preparación de los monómeros

5

10

15

20

25

30

35

40

El Esquema 1 ilustra la síntesis de los monómeros de fórmulas (VII) y (IX). El derivado del ácido 6-hidroxi-1Hpirazolo[3,4-b]piridina-4-carboxílico de fórmula (I) protegido con PG1, que es un grupo protector tal como, por ejemplo, Bn o PMB y PG2, que es un grupo Alk o Bn o PMB, se obtiene según o después de la adaptación del proceso descrito por H. Dorn y T. Mueller, Zeitschrift fuer Chemie, 1980, 20(3), 95. El derivado hidroxi de fórmula (I) reacciona con el POCl₃ en un disolvente inerte como DMF mientras que se calienta a de 60 a 100 °C dando el derivado protegido del ácido 6-cloro-1H-pirazolo[3,4-b]piridin-4-carboxílico de fórmula (II) con PG1 y PG2 como se han definido previamente. El compuesto de fórmula (III) se usa en una reacción de acoplamiento organometálico, catalizada con paladio, usando por ejemplo Pd(PPh₃)₄, con tanto ácidos como ésteres arilborónicos en presencia de una base débil, tal como, por ejemplo, carbonato de cesio, en un disolvente inerte tal como DMF, mientras que se calienta a 60-120 °C dando el compuesto de fórmula (III), representando R₃ un éster. El compuesto de fórmula (III) se somete a condiciones de operación que hacen posible desproteger selectivamente el pirazol y el ácido carboxílico en la posición 4, tales como condiciones ácidas con, por ejemplo, ácido sulfúrico concentrado, mientras que se calienta a 40-60 °C o hidrogenólisis con Pd/C dando el compuesto de fórmula (IV). La introducción regioselectiva de un átomo de halógeno en la posición 3 del derivado de 1H-pirazolo[3,4-b]piridina de fórmula (IV) se lleva a cabo mediante una reacción de sustitución electrófila aromática con reactantes tales como, por ejemplo, yodo, NIS, NBS o bromo, opcionalmente en presencia de una base débil tal como NaHCO3 en un disolvente inerte tal como MeOH anhidro o acuoso, dioxano o DCM, a temperatura ambiente, dando el derivado halogenado de fórmula (V). El pirazol del compuesto de fórmula (V) puede protegerse selectivamente con un grupo protector PG3 tal como, por ejemplo, una THP usando DHP en un disolvente tal como DMF a temperatura ambiente en presencia de una cantidad catalítica de un ácido, tal como, por ejemplo, APTS, dando el compuesto de fórmula (VI).

Los compuestos de fórmula **(V)** o **(VI)** pueden someterse a una reacción de acoplamiento organometálica catalizada con paladio usando, por ejemplo, Pd(PPh₃)₄ o Pd(OAc)₂ o PdCl₂(dppf), con tanto ácidos o ésteres arilborónicos como derivados de ariltrialquilestannano en presencia de un ligando tal como, por ejemplo, 2'-diciclohexilfosfino-2,6-dimetoxi-1,1'-bifenil-3-sulfonato de sodio hidratado, opcionalmente en presencia de una base débil, tal como, por ejemplo, carbonato de potasio, en un disolvente inerte tal como DMF, mientras que se calienta a 60-120 °C dando el compuesto de fórmula **(VII)**.

Los ácidos carboxílicos de fórmula (VII) que tienen un sustituyente -CO₂(PG₄), siendo PG₄ un grupo Bn o grupo PMB o grupo terc-butilo, con o sin un grupo protector PG₃, tal como, por ejemplo, THP, pueden activarse en forma de anhídrido con, por ejemplo, Boc₂O o en forma de éster activado con, por ejemplo, PyBop, y pueden entonces reaccionar con amoniaco acuoso o un derivado de amoniaco acuoso, dando las amidas de fórmula (VIII). El tratamiento de los compuestos de fórmula (VIII) en un medio ácido con, por ejemplo, ácido sulfúrico concentrado a temperatura ambiente o bajo condiciones de hidrogenólisis con Pd/C, da los ácidos carboxílicos de fórmula (IX). El

sustituyente de alquilo lineal R₁ se inserta por reacción de sustitución nucleófila bajo las condiciones de reacción muy conocidas para aquellos expertos en la materia.

Esquema 2: preparación de los dímeros

El **Esquema 2** ilustra la preparación de los dímeros de la invención. Los ácidos carboxílicos de fórmulas (**VII**) y (**IX**) se acoplan a una diamina de fórmula H₂N-L-NH₂ después de la activación con, por ejemplo, PyBop en presencia de una base débil, tal como trietilamina en un disolvente tal como THF o DMF, a temperatura ambiente, dando los dímeros de fórmulas (**X**) y (**XI**), respectivamente. La saponificación de los ésteres R₃ en los compuestos de fórmulas (**X**) y (**XI**), respectivamente, da los compuestos de la invención. Cuando el pirazol de los compuestos de fórmulas (**X**) y (**XI**) se protege con un grupo protector PG₃, es necesaria una etapa adicional, tal como un tratamiento en un medio ácido con, por ejemplo, TFA bajo condiciones secas, antes o después de la saponificación de R₃ con el fin de obtener los compuestos de la invención.

En los Esquemas 1 y 2 anteriores, los compuestos de partida, los productos intermedios y los reactantes, cuando no se describe el método para prepararlos, están comercialmente disponibles o se describen en la bibliografía, o pueden prepararse según métodos que se describen allí dentro o que son conocidos para aquellos expertos en la materia.

Según otro de sus aspectos, un objeto de la invención también es los compuestos de fórmulas (II) a (XI) definidas anteriormente. Estos compuestos son útiles como productos intermedios de síntesis para los compuestos de la invención.

Los siguientes ejemplos describen la preparación de ciertos compuestos según invención. Estos ejemplos no son limitantes y simplemente ilustran la presente invención. Los números de los compuestos ejemplificados se refieren a aquellos dados en la tabla en lo sucesivo, que muestra las estructuras químicas y las propiedades físicas de algunos compuestos según la invención.

Se usan las siguientes abreviaturas y fórmulas moleculares:

PTSA = ácido para-toluenosulfónico

25 EtAOc = acetato de etilo

5

10

15

20

Bn = bencilo

Boc₂O = dicarbonato de di-terc-butilo

DCM = diclorometano

DHP = dihidropirano

30 DMF = N,N-dimetilformamida

EtOH = etanol

h = hora(s)

ES 2 602 798 T3

KHSO₄= hidrogenosulfato de potasio

CL-EM = cromatografía de líquidos-espectroscopía de masas

MeOH = metanol

MeTHF = 2-metiltetrahidrofurano

5 min = minuto(s)

ml = mililitro(s)

(m)moles = (mili)mol(es)

NaHCO₃ = hidrogenocarbonato de sodio

NBS = N-bromosuccinimida

10 NIS= *N*-yodosuccinimida

Pd(PPh₃)₄= tetraquis(trifenilfosfina)paladio(0)

PMB = grupo para-metoxibencilo

ppm = partes por millón

PyBop = hexafluorofosfato de benzotriazol-1-iloxitrispirrolidinofosfonio

15 RMN = resonancia magnética nuclear

RT = tiempo de retención

TFA = ácido trifluoroacético

THF = tetrahidrofurano

THP = grupo tetrahidropiranilo

20 En lo que sigue:

- Los espectros de resonancia magnética de protones (RMN ¹H), como se describen más adelante, se registran a 250 MHz o 500 MHz en DMSO-d₆, usando el pico de DMSO-d₆ como referencia. Los desplazamientos químicos δ se expresan en partes por millón (ppm). Las señales observadas se expresan del siguiente modo: s = singlete; d = doblete; t = triplete; m = multiplete o s a = singlete ancho;
- las características de CL-EM, como se describen más adelante, indican sucesivamente el método analítico de la cromatografía de líquidos de alta resolución usada y se detallan más adelante (métodos 1 a 8), el pico de [M+H]⁺ identificado por espectrometría de masas y el tiempo de retención RT del compuesto, expresados en minutos.

* Método 1

Instrumento: Sistema de HPLC de tipo 1100 (Agilent) o Alliance (Waters); espectrómetro de masas de cuadrupolo simple del tipo MSD (Agilent) o ZQ (Waters)

Columna: Waters Symmetry C18 3,5 µm (2,1 x 50 mm)

Disolvente A: H₂O + 0,005 % de TFA; Disolvente B: CH₃CN + 0,005 % de TFA

Caudal: 0,4 ml/min

35 Gradiente A/B: 100/0 (t0 min) a 0/100 (t10 min) a 0/100 (t15 min)

Detección: UV 220 nm

Ionización: modo de electropulverización positiva ESI+

* Método 2 = método 1 con cambio de gradiente

Gradiente A/B: 100/0 (t0 min) a 0/100 (t30 min) a 0/100 (t35 min)

* Método 3

Instrumento: Sistema de HPLC de tipo 1100 (Agilent) o Alliance (Waters); espectrómetro de masas de cuadrupolo simple del tipo MSD (Agilent) o ZQ (Waters)

Columna: Waters X Terra C18 3,5µm (2,1 x 50 mm)

5 Disolvente A: H₂O + AcONH₄ 10 mM, pH7; Disolvente B: CH₃CN

Caudal: 0,4 ml/min

Gradiente A/B: 100/0 (t0 min) a 10/90 (t10 min) a 10/90 (t15 min)

Detección: UV 220 nm

Ionización: modo de electropulverización positiva ESI+

10 * Método 4 = método 3 con cambio de gradiente

Gradiente A/B: 100/0 (t0 min) a 10/90 (t30 min) a 10/90 (t35 min)

* Método 5

Instrumento: Sistema de HPLC de tipo 1100 (Agilent) o Alliance (Waters); espectrómetro de masas de cuadrupolo simple del tipo MSD (Agilent) o ZQ (Waters)

15 Columna: Waters Symmetry C18 3,5 µm (2,1 x 50 mm)

Disolvente A: H₂O + 0,05 % de TFA; Disolvente B: CH₃CN + 0,035 % de TFA

Caudal: 0,5 ml/min

Gradiente A/B: 100/0 (t0 min) a 0/100 (t7 min)

Detección: UV 220 nm

20 Ionización: modo de electropulverización positiva ESI+

* Método 6

Instrumento: Sistema de HPLC de tipo 1100 (Agilent) o Alliance (Waters); espectrómetro de masas de cuadrupolo simple del tipo MSD (Agilent) o ZQ (Waters)

Columna: Phenomenex Luna C18(2)-HST (30 x 2 mm) 2,5 µm; temp. de la columna: 50 °C

25 Disolvente A: H₂O + 0,05 % de TFA; Disolvente B: CH₃CN + 0,035 % de TFA

Caudal: 1 ml/min

Gradiente A/B: 100/0 (t0 min) a 0/100 (t2,5 min) a 0/100 (t3,5 min)

Detección: UV 220 nm

Ionización: modo de electropulverización positiva ESI+

30 * Método 7

Instrumento: Waters UPLC

Columna: BEH C18 (2,1 x 50 mm) 1,7 µm; temp. de la columna: 55 °C

Disolvente A: H_2O + 0,1 % de HCO_2H ; Disolvente B: CH_3CN + 0,08 % de HCO_2H

Caudal: 0,9 ml/min

35 Gradiente A/B: 95/5 (t0 min) a 5/95 (t1,1 min) a 5/95 (t1,7 min)

Detección: 220 nM

Ionización: modo de electropulverización positiva ESI+

* Método 8

5

10

15

Instrumento: Waters UPLC

Columna: Waters XBridge C18 (4,6 x 50 mm) 2,5 µm

Disolvente A: H₂O + 0.1 % de TFA: Disolvente B: CH₃CN + 0.1 % de TFA

Gradiente A/B: 97/3 (t0 min) a 40/60 (t3,5 min) a 2/98 (t4 min) a 2/98 (t5 min)

Detección: 220 nM

Ionización: modo de electropulverización positiva ESI+

Ejemplo 1: sal de lisina del ácido 5-[4-({15-[6-(3-carboxi-4-fluorofenil)-3-fenil-1H-pirazolo[3,4-b]piridin-4-il]-15oxo-4,7,10-trioxa-14-azapentadec-1-il}carbamoil)-3-fenil-1H-pirazolo[3,4-b]piridin-6-il]-2-fluorobenzoico (Compuesto N.º 2)

Etapa 1.1 1-bencil-6-cloro-1H-pirazolo[3,4-b]piridin-4-carboxilato de etilo

Se añade gota a gota tricloruro de fosforilo (74 ml / 0,81 moles) a una disolución de 1-bencil-6-hidroxi-1Hpirazolo[3,4-b]piridin-4-carboxilato de etilo [CAS 74439-45-5] (40,0 g / 0,135 moles) en 450 ml de DMF a 0 °C bajo nitrógeno. El medio de reacción se agita a 80 °C durante 24 horas dando una disolución marrón oscura. Entonces se mezcla en una mezcla de hielo-agua fría, y se extrae con EtOAc. La fase orgánica se lava con agua, se seca con sulfato de sodio, se filtra y se concentra a seguedad. El sólido obtenido se recoge con isopropanol, se filtra, se lava con éter diisopropílico y se seca en estufa dando 30,6 q de un polvo amarillo (rendimiento: 72 %).

CL-EM (método 1): [M+H]⁺ = 316,1, RT= 9,34 min

Etapa 1.2 ácido 1-bencil-6-cloro-1H-pirazolo[3,4-b]piridin-4-carboxílico

Se añade una disolución molar de hidróxido sódico (116 ml / 0,116 moles) a una disolución de 1-bencil-6-cloro-1H-20 pirazolo[3,4-b]piridin-4-carboxilato de etilo (30,5 g / 96,8 mmoles) en 195 ml de THF. La mezcla se agita a temperatura ambiente durante 2 horas y entonces se mezcla en una disolución acuosa saturada de NaHCO3. La fase acuosa se lava con acetato de etilo y entonces se acidifica con una disolución de KHSO₄ (1 M) y se extrae con EtOAc. La fase orgánica se seca sobre sulfato de sodio y entonces se concentra a sequedad. El producto se recoge 25 con éter diisopropílico, se filtra, y entonces se seca a vacío dando 27,3 g de un polvo amarillo pálido (rendimiento: 98 %).

CL-EM (método 1): $[M+H]^{+}$ = 288,1, RT= 7,59 min

Etapa 1.3 1-bencil-6-cloro-1*H*-pirazolo[3,4-b]piridin-4-carboxilato de bencilo

Se añade gota a gota bromuro de bencilo (11 ml / 89 moles) a una suspensión de ácido 1-bencil-6-cloro-1H-30 pirazolo[3,4-b]piridin-4-carboxílico (27,0 g / 93,9 mmoles) y carbonato de potasio (15,6 g / 112 mmoles) en 310 ml de DMF. La mezcla se agita a temperatura ambiente durante 2 horas y entonces se mezcla en una disolución acuosa saturada de hielo-NaHCO₃ frío. El precipitado formado se filtra, se lava minuciosamente con agua y se seca a vacío dando 32,6 g de un polvo amarillo pálido (rendimiento: 92 %).

CL-EM (método 1): $[M+H]^+$ = 378,0, RT= 10,20 min

35 Etapa 1.4 1-bencil-6-[4-fluoro-3-(metoxicarbonil)fenil]-1H-pirazolo[3,4-b]piridin-4-carboxilato de bencilo

Se añade el catalizador Pd(t-BuP)₂ (2,03, 3,97 mmoles) o Pd(PPh₃)₄ (4,58 g / 4,0 mmoles) a una suspensión de 1bencil-6-cloro-1*H*-pirazolo[3,4-b]piridin-4-carboxilato de bencilo (15,0 g / 40 moles), ácido 3-fluoro-3metoxicarbonilfenilborónico (15,7 g / 79 moles) y carbonato de cesio (25,9 g / 0,079 moles) en 125 ml de DMF anhidra bajo argón. La mezcla se agita a 80 °C durante 2 horas bajo argón. La mezcla de reacción se filtra en caliente a través de talco, se mezcla en una disolución acuosa saturada de NaHCO₃ y se extrae con EtOAc. Después de la separación de las dos fases, la fase orgánica se lava con agua, se seca sobre sulfato de sodio y entonces se concentra hasta que aparezcan los primeros cristales. El producto cristalino se filtra, se lava con éter diisopropílico, y entonces se seca a vacío. El filtrado se mezcla en un mezcla de DCM/ciclohexano (50/50) y el precipitado obtenido se filtra y se seca a vacío. Se combinan los dos lotes dando 12,3 g de un polvo amarillo (rendimiento: 62 %).

45

40

CL-EM (método 5): [M+H]⁺ = 496,4, RT= 6,88 min

Etapa 1.5 ácido 1-bencil-6-[4-fluoro-3-(metoxicarbonil)fenil]-1H-pirazolo[3,4-b]piridin-4-carboxílico

Se disuelve 1-bencil-6-[4-fluoro-3-(metoxicarbonil)fenil]-1H-pirazolo[3,4-b]piridin-4-carboxilato de bencilo (12,0 g / 24,2 mmoles) en 100 ml de ácido sulfúrico concentrado. La disolución se calienta a 50 °C durante 1 hora. La mezcla de reacción se mezcla entonces lentamente en hielo-agua fría y se extrae con EtOAc. La fase orgánica se lava con agua y luego con una disolución acuosa saturada de NaCl, se seca sobre sulfato de sodio y se concentra a sequedad dando 6,25 g de un polvo amarillo-anaranjado (rendimiento: 82 %).

CL-EM (método 1): $[M+H]^+$ = 316,2, RT= 6,80 min

5 Etapa 1.6 ácido 1-bencil-6-[4-fluoro-3-(metoxicarbonil)fenil]-3-yodo-1H-pirazolo[3,4-b]piridin-4-carboxílico

Se añaden hidrogenocarbonato de sodio (11,39 g / 0,136 moles) y *N*-yodosuccinimida (30,51 g / 0,136 moles) en porciones a una suspensión de ácido 1-bencil-6-[4-fluoro-3-(metoxicarbonil)fenil]-1*H*-pirazolo[3,4-*b*]piridin-4-carboxílico (14,25 g / 45,2 mmoles) en 410 ml de dioxano. La mezcla de reacción se agita durante 24 h a temperatura ambiente. El medio de reacción se mezcla en una disolución acuosa saturada de NaHCO₃. La fase acuosa se lava con EtOAc y entonces se acidifica a pH= 2-3 usando una disolución de KHSO₄ (1 M), y se extrae con EtOAc. La fase orgánica se lava con agua, con una disolución de tiosulfato de sodio (0,1 M) y con una disolución acuosa saturada de NaCl, se seca sobre sulfato de sodio y entonces se concentra a sequedad dando 13,9 g de un polvo amarillo (rendimiento: 70 %).

CL-EM (método 6): [M+H]⁺ = 442,3, RT= 1,92 min

10

20

25

35

45

50

15 Etapa 1.7 **ácido 6-[4-fluoro-3-(metoxicarbonil)fenil]-3-yodo-1-(tetrahidro-2***H*-piran-2-il)-1*H*-pirazolo[3,4-*b*]piridin-4- carboxílico

Se añaden sucesivamente ácido *para*-toluenosulfónico (38 mg / 0,20 mmoles) y 3,4-dihidro-2*H*-pirano (2,75 ml / 30,1 mmoles) a una disolución de ácido 1-bencil-6-[4-fluoro-3-(metoxicarbonil)fenil]-3-yodo-1*H*-pirazolo[3,4-*b*]piridin-4-carboxílico (4,43 g / 10,0 mmoles) en 50 ml de DCM. La disolución se agita a temperatura ambiente durante 12 horas. El medio de reacción se mezcla en una disolución de KHSO₄ (1 M) y se extrae con EtOAc. La fase orgánica se lava con agua y con una disolución acuosa saturada de NaCl, se seca sobre sulfato de sodio, se filtra y se concentra a sequedad. La goma marrón obtenida se disuelve en 75 ml de DCM y se añade a la resina depuradora TEA (PL-TEA, Polymerlab, Variante, 3,53 mmoles/g) (3,3 g / 11 mmoles). Después de agitar a temperatura ambiente durante 2 h, la resina se filtra y se lava con DCM. Después de secar a vacío, la resina se agita entonces durante 20 minutos en una disolución de trietilamina (2,6 ml/18 mmoles) en 90 ml de DCM y entonces se filtra y se aclara con DCM. El filtrado se acidifica con una disolución de KHSO₄ (1 M). Después de la extracción con EtOAc, la fase orgánica se lava con agua y con una disolución acuosa saturada de NaCl, se seca sobre sulfato de sodio, se filtra y se concentra a sequedad dando 4,3 g de un polvo naranja (rendimiento: 82 %).

CL-EM (método 1): $[M+H]^+$ = 526,8, RT= 8,78 min

30 Etapa 1.8 ácido 6-[4-fluoro-3-(metoxicarbonil)fenil]-3-fenil-1-(tetrahidro-2*H*-piran-2-il)-1*H*-pirazolo[3,4-*b*]piridin-4-carboxílico

Se añaden el ligando 2'-diciclohexilfosfino-2,6-dimetoxi-1,1'-bifenil-3-sulfonato de sodio hidratado (84 mg / 0,17 mmoles) y el catalizador Pd(OAc)₂ (185 mg / 0,83 mmoles) a una disolución de ácido 6-[4-fluoro-3-(metoxicarbonil)fenil]-3-yodo-1-(tetrahidro-2*H*-piran-2-il)-1*H*-pirazolo[3,4-*b*]piridin-4-carboxílico (0,865 g / 1,65 mmoles) y de tributilfenilestannano (1,61 ml / 4,94 mmoles) en 11 ml de DMF anhidra dispuesta en un reactor de microondas bajo argón. El reactor se cierra y la mezcla se calienta durante 20 min a 130 °C en un microondas. El medio de reacción se enfría y se filtra a través de talco, antes de concentrarse a sequedad. Después de la purificación por cromatografía ultrarrápida sobre sílice (DCM/EtOAc: 90/10 a 80/20, luego ciclohexano/EtOH 1 % de TEA: 95/5 a 70/30), se obtienen 525 mg de un polvo naranja (rendimiento: 67 %).

40 CL-EM (método 1): [M+H]⁺ = 476,0, RT= 9,13 min

Etapa 1.9 ácido 6-[4-fluoro-3-(metoxicarbonil)fenil]-3-fenil-1H-pirazolo[3,4-b]piridin-4-carboxílico

Se añaden 10 ml de una disolución de cloruro de hidrógeno anhidro en dioxano (4 M) a una disolución de ácido 6-[4-fluoro-3-(metoxicarbonil)fenil]-3-fenil-1-(tetrahidro-2*H*-piran-2-il)-1*H*-pirazolo[3,4-*b*]piridin-4-carboxílico (2,0 g / 4,20 mmoles) en 35 ml de DCM. La disolución se agita a temperatura ambiente durante 15 minutos y entonces se mezcla en agua y se extrae con EtOAc. La fase orgánica se lava con agua y entonces con una disolución acuosa saturada de NaCl, se seca sobre sulfato de sodio y se concentra a sequedad dando 1,4 g de un polvo amarillo pálido (rendimiento: 86 %).

CL-EM (método 2): [M+H]⁺ = 392,3, RT= 13,6 min

Etapa 1.10. 2-fluoro-5-{4-[(15-{6-[4-fluoro-3-(metoxicarbonil)fenil]-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il}-15-oxo-4,7,10-trioxa-14-azapentadec-1-il)carbamoil]-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il}benzoato de metilo

Se añade PyBop[®] (0,59 g / 1,13 mmoles) a una disolución de ácido 6-[4-fluoro-3-(metoxicarbonil)fenil]-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-carboxílico (370 mg / 0,95 mmoles) y trietilamina (0,33 ml / 2,36 mmoles) en 4,3 ml de THF anhidro a 0 °C bajo argón. Después de agitar a 0 °C durante 30 minutos, se añade 3,3'-[oxibis(etano-2,1-diiloxi)]dipropan-1-amina (0,10 ml / 0,47 mmoles). La disolución se agita a temperatura ambiente durante 1 h y

entonces se mezcla en una disolución de KHSO₄ (1 M) y se extrae con EtOAc. La fase orgánica se lava con agua y con una disolución acuosa saturada de NaCl, se seca sobre sulfato de sodio y se concentra a sequedad dando un polvo blanco que se usa en la siguiente etapa.

CL-EM (método 3): $[M+H]^+$ = 967,2, RT= 8,70 min

5 Etapa 1.11. ácido 5-[4-({15-[6-(3-carboxi-4-fluorofenil)-3-fenil-1*H*-pirazolo[3,4-b]piridin-4-il]-15-oxo-4,7,10-trioxa-14-azapentadec-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-b]piridin-6-il]-2-fluorobenzoico

Se añade hidróxido sódico (1 M, 1,46 ml / 1,46 mmoles) a una suspensión de 2-fluoro-5-{4-[(15-{6-[4-fluoro-3-(metoxicarbonil)fenil]-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il}-15-oxo-4,7,10-trioxa-14-azapentadec-1-il)carbamoil]-3-fenil-1*H*-pirazolo[3,4-b]piridin-6-il}benzoato de metilo (370 mg / 0,42 mmoles) en 4 ml de DCM/MeOH (50/50). La disolución se agita a temperatura ambiente durante 1 hora y entonces se mezcla en una disolución de KHSO₄ (1 M) y se extrae con EtOAc. La fase orgánica se lava con agua y con una disolución acuosa saturada de NaCl, se seca sobre sulfato de sodio y se concentra a sequedad. Después de la purificación por cromatografía ultrarrápida sobre sílice (DCM/EtOH 0,1 % de TEA: 99/1 a 80/20), el sólido obtenido se disuelve en MeOH y se mezcla en una disolución de KHSO₄ (1 M). El precipitado se separa por filtración, se lava con agua y se seca a vacío dando un polvo blanco (rendimiento: 40 % para las Etapas 1.7 y 1.8).

CL-EM (método 3): [M+H]⁺ = 939,2, RT= 5,97 min

10

15

30

35

Etapa 1.12. sal de lisina del ácido 5-[4-({15-[6-(3-carboxi-4-fluorofenil)-3-fenil-1*H*-pirazolo[3,4-b]piridin-4-il]-15-oxo-4,7,10-trioxa-14-azapentadec-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-b]piridin-6-il]-2-fluorobenzoico

Se añade ácido 5-[4-({15-[6-(3-carboxi-4-fluorofenil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il]-15-oxo-4,7,10-trioxa-14-20 azapentadec-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoico (18,8 mg; 0,02 mmoles) a una disolución de lisina (5,8 mg; 0,04 mmoles) en 1 ml de agua. La disolución se agita durante 1 h, se filtra y se liofiliza. El liofilizado se recoge en éter dietílico y la suspensión se agita durante 3 h, se filtra y se seca a vacío dando 23 mg (2 lisina; 93 %) de un polvo blanco.

CL-EM (método 3): [M+H]⁺ = 939,2, RT= 5,96 min

25 RMN ¹H [(CD₃)₂SO, 250 MHz]: δ ppm 8,67 (t, 2 H) 8,47 (dd, 2 H) 8,06 - 8,15 (m, 2 H) 7,70 (s, 2 H) 7,55 - 7,60 (m, 4 H) 7,51 - 9,53 (s a, 8 H) 7,35 - 7,45 (m, 6 H) 7,18 (t, 2 H) 3,44 - 3,49 (m, 4 H) 3,38 - 3,42 (m, 4 H) 3,32 (t, 4 H) 3,25 (t, 2 H) 3,10 (q, 4 H) 2,76 (t, 4 H) 1,31 -1,81 (m, 16 H)

<u>Ejemplo 2:</u> sal de lisina del ácido 5-[4-({16-[6-(3-carboxi-4-fluorofenil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il]-16-oxo-3,6,9,12-tetraoxa-15-azahexadec-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoico (Compuesto N.° 3)

Etapa 2.1 2-fluoro-5-{4-[(16-{6-[4-fluoro-3-(metoxicarbonil)fenil]-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il}-16-oxo-3,6,9,12-tetraoxa-15-azahexadec-1-il)carbamoil]-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il}benzoato de metilo

Se obtiene según el proceso descrito en la Etapa 1.10, usando ácido 6-[4-fluoro-3-(metoxicarbonil)fenil]-3-fenil-1H-pirazolo[3,4-b]piridin-4-carboxílico [descritas en la Etapa 1.9.] y 3,6,9,12-tetraoxatetradecano-1,14-diamina, en forma de un polvo blanco (rendimiento: 66 %).

CL-EM (método 4): $[M+H]^+$ = 983,3, RT=17,81 min

Etapa 2.2 ácido 5-[4-({16-[6-(3-carboxi-4-fluorofenil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il]-16-oxo-3,6,9,12-tetraoxa-15-azahexadec-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoico

Se obtiene según el proceso descrito en la Etapa 1.11, usando 2-fluoro-5-{4-[(16-{6-[4-fluoro-3-(metoxicarbonil)fenil]-40 3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il}-16-oxo-3,6,9,12-tetraoxa-15-azahexadec-1-il)carbamoil]-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il}benzoato de metilo, en forma de un polvo blanco (rendimiento: 81%).

CL-EM (método 3): [M+H]⁺ = 955,2, RT= 10,17 min

Etapa 2.3 sal de lisina del ácido 5-[4-((16-[6-(3-carboxi-4-fluorofenil)-3-fenil-1*H*-pirazolo[3,4-b]piridin-4-il]-16-oxo-3,6,9,12-tetraoxa-15-azahexadec-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-b]piridin-6-il]-2-fluorobenzoico

45 Se obtiene según el proceso descrito en la Etapa 1.12, usando ácido 5-[4-({16-[6-(3-carboxi-4-fluorofenil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il]-16-oxo-3,6,9,12-tetraoxa-15-azahexadec-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoico, en forma de un polvo blanco (rendimiento: 91 %).

CL-EM (método 4): [M+H]+ = 955,2, RT= 10,27 min

RMN 1 H (500 MHz, DMSO- d_{6}) δ ppm 8,82 (t, 2 H) 8,46 (dd, 2 H) 8,07 - 8,13 (m, 2 H) 7,70 (s, 2 H) 7,55 - 7,61 (m, 4 H) 7,35 - 7,46 (m, 6 H) 7,19 (t, 2 H) 3,44 (d, 12 H) 3,34 (t, 4 H) 3,21 (dt, 6 H) 2,75 (t, 4 H) 1,58 - 1,78 (m, 4 H) 1,32 - 1,57 (m, 8 H)

<u>Ejemplo 3:</u> sal de lisina del ácido 5-(4-carbamoil-3-{3-[(15-{3-[4-carbamoil-6-(3-carboxi-4-fluorofenil)-1*H*-pirazolo[3,4-*b*]piridin-3-il]fenil}-15-oxo-4,7,10-trioxa-14-azapentadec-1-il)carbamoil]fenil}-1*H*-pirazolo[3,4-b]piridin-6-il)-2-fluorobenzoico (Compuesto N.º 6)

Etapa 3.1 ácido 3-{3-[(benciloxi)carbonil]fenil}-6-[4-fluoro-3-(metoxicarbonil)fenil]-1-(tetrahidro-2*H*-piran-2-il)-1*H*-pirazolo[3,4-b]piridin-4-carboxílico

Se añaden sucesivamente el ligando 2'-diciclohexilfosfino-2,6-dimetoxi-1,1'-bifenil-3-sulfonato de sodio hidratado (146 mg / 0,3 mmoles) y el catalizador PdCl₂(dppf) (280 mg / 0,36 mmoles), bajo argón, a una suspensión de ácido 6-[4-fluoro-3-(metoxicarbonil)fenil]-3-yodo-1-(tetrahidro-2*H*-piran-2-il)-1*H*-pirazolo[3,4-*b*]piridin-4-carboxílico [descrita en la Etapa 1.7.] (1,5 g / 3 mmoles), 3-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoato de bencilo [880157-10-8] (1,16 g / 3,4 mmoles) y carbonato de potasio (828 mg / 6,0 mmoles) en 9,5 ml de DMF. La mezcla de reacción se calienta a 95 °C durante 1 h. Se mezcla en una disolución acuosa saturada de NaHCO₃ y se extrae con EtOAc. La fase orgánica se lava con agua y con una disolución acuosa saturada de NaCl, se seca sobre sulfato de sodio, se filtra y se concentra a sequedad. Después de la purificación por cromatografía ultrarrápida sobre sílice (DCM/EtOH 0,1 % de TEA: 100/0 a 90/10), se obtienen 1,31 g de un sólido amarillo (sal de trietilamina; rendimiento: 72 %).

CL-EM (método 1): $[M+H]^+$ = 610,2, RT= 10,38 min

20

25

40

Etapa 3.2 5-[3-{3-[(benciloxi)carbonil]fenil}-4-carbamoil-1-(tetrahidro-2*H*-piran-2-il)-1*H*-pirazolo[3,4-b]piridin-6-il]-2-fluorobenzoato de metilo

Se añaden sucesivamente trietilamina (0,57 ml/4,0 mmoles), PyBop[®] (1,26 g / 2,4 mmoles) e hidrogenocarbonato de amonio (192 mg / 2,4 mmoles) a una suspensión de ácido 3-{3-[(benciloxi)carbonil]fenil}-6-[4-fluoro-3-(metoxicarbonil)fenil]-1-(tetrahidro-2H-piran-2-il)-1H-pirazolo[3,4-b]piridin-4-carboxílico (1,2 g / 2,0 mmoles) en 10 ml de MeTHF anhidro bajo nitrógeno. La mezcla se agita a temperatura ambiente durante 2 horas y entonces se mezcla en una disolución acuosa saturada de NaHCO₃ y se extrae con EtOAc. La fase orgánica se lava con agua y con una disolución acuosa saturada de NaCl, se seca sobre sulfato de sodio, se filtra, se concentra a sequedad y se seca en estufa a vacío dando 1.02 q de un polvo beis (rendimiento: 84 %).

CL-EM (método 1): [M+H]⁺ = 609,2, RT= 9,89 min

Etapa 3.3 ácido 3-{4-carbamoil-6-[4-fluoro-3-(metoxicarbonil)fenil]-1H-pirazolo[3,4-b]piridin-3-il}benzoico

30 Se disuelve 5-[3-{3-[(benciloxi)carbonil]fenil}-4-carbamoil-1-(tetrahidro-2*H*-piran-2-il)-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoato de metilo (1,0 g/1,64 mmoles) en 6,8 ml de ácido sulfúrico concentrado. La disolución se agita a temperatura ambiente durante 30 min y entonces se mezcla en hielo-agua fría y se agita durante 30 min. El precipitado obtenido se separa por filtración, se lava con agua y se disuelve en EtOAc/MeTHF (50/50). La disolución se lava con agua y con una disolución acuosa saturada de NaCl, se seca sobre sulfato de sodio, se filtra y se concentra a sequedad. El sólido se recoge con una mezcla de DCM/metanol, se filtra y se seca a vacío dando 0,85 g de un polvo beis (rendimiento: 85 %).

CL-EM (método 1): [M+H]+ = 435,0, RT= 6,43 min

Etapa 3.4 5-[4-carbamoil-3-(3-{[15-(3-{4-carbamoil-6-[4-fluoro-3-(metoxicarbonil)fenil]-1*H*-pirazolo[3,4-*b*]piridin-3-il}fenil)-15-oxo-4,7,10-trioxa-14-azapentadec-1-il]carbamoil}fenil)-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoato de metilo

Se obtiene según el proceso descrito en la Etapa 1.10, usando ácido 3-{4-carbamoil-6-[4-fluoro-3-(metoxicarbonil)fenil]-1*H*-pirazolo[3,4-*b*]piridin-3-il}benzoico y 3,3'-[oxibis(etano-2,1-diiloxi)]dipropan-1-amina. El medio de reacción se mezcla directamente en una disolución de KHSO₄ (1 M) dando, después de la filtración, lavado con agua y con éter diisopropiletílico y luego secado, un polvo blanco (rendimiento: 66 %).

45 CL-EM (método 3): [M+H]⁺ = 1053,2, RT= 7,49 min

Etapa 3.5 ácido 5-(4-carbamoil-3-{3-[(15-{3-[4-carbamoil-6-(3-carboxi-4-fluorofenil)-1*H*-pirazolo[3,4-*b*]piridin-3-il]fenil}-15-oxo-4,7,10-trioxa-14-azapentadec-1-il)carbamoil]fenil}-1*H*-pirazolo[3,4-*b*]piridin-6-il)-2-fluorobenzoico

Se obtiene según el proceso descrito en la Etapa 1.11, usando 5-[4-carbamoil-3-(3-[15-(3-[4-carbamoil-6-[4-fluoro-3-(metoxicarbonil)fenil]-1*H*-pirazolo[3,4-*b*]piridin-3-il}fenil)-15-oxo-4,7,10-trioxa-14-azapentadec-1-il]carbamoil}fenil)-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoato de metilo, en forma de un polvo blanco (rendimiento: 60 %).

CL-EM (método 6): [M+H]⁺ = 1025,5, RT= 1,78 min

Etapa 3.6 sal de lisina del ácido 5-(4-carbamoil-3-{3-[(15-{3-[4-carbamoil-6-(3-carboxi-4-fluorofenil)-1*H*-pirazolo[3,4-b]piridin-3-il]fenil}-15-oxo-4,7,10-trioxa-14-azapentadec-1-il)carbamoil]fenil}-1*H*-pirazolo[3,4-b]piridin-6-il)-2-fluorobenzoico

Se obtiene según el proceso descrito en la Etapa 1.12, usando ácido 5-(4-carbamoil-3-{3-[(15-{3-[4-carbamoil-6-(3-carboxi-4-fluorofenil)-1*H*-pirazolo[3,4-*b*]piridin-3-il]fenil}-15-oxo-4,7,10-trioxa-14-azapentadec-1-il)carbamoil]fenil}-1*H*-pirazolo[3,4-b]piridin-6-il)-2-fluorobenzoico, en forma de un polvo blanco (rendimiento: 64 %).

CL-EM (método 3): $[M+H]^{+}$ = 1025,3, RT= 5,17 min

RMN 1 H (500 MHz, DMSO- d_{6}): δ ppm 8,52 (dd, 2 H), 8,42 (t, 2 H), 8,20 (s, 2 H), 8,11 - 8,18 (m, 4 H), 7,85 (dt, 2 H), 7,78 (s, 2 H), 7,71 - 7,76 (m, 4 H), 7,50 (t, 2 H), 7,23 (t, 2 H), 3,45 - 3,53 (m, 12 H), 3,34 (q, 4 H), 3,22 (t, 1 H), 2,77 (t, 2 H), 1,78 (quin, 4 H), 1,33 - 1,74 (m, 6 H)

<u>Ejemplo 4:</u> sal de lisina del ácido 5-(4-carbamoil-3-{4-[(15-{4-[4-carbamoil-6-(3-carboxi-4-fluorofenil)-1*H*-pirazolo[3,4-*b*]piridin-3-il]fenil}-15-oxo-4,7,10-trioxa-14-azapentadec-1-il)carbamoil]fenil}-1*H*-pirazolo[3,4-*b*]piridin-6-il)-2-fluorobenzoico (Compuesto N.º 8)

Etapa 4.1 ácido 3-{4-[(benciloxi)carbonil]fenil}-6-[4-fluoro-3-(metoxicarbonil)fenil]-1-(tetrahidro-2*H*-piran-2-il)-1*H*-pirazolo[3,4-b]piridin-4-carboxílico

Se obtiene según el proceso descrito en la Etapa 3.1, usando 4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoato de bencilo y ácido 6-[4-fluoro-3-(metoxicarbonil)fenil]-3-yodo-1-(tetrahidro-2*H*-piran-2-il)-1*H*-pirazolo[3,4-*b*]piridin-4-carboxílico [descritas en la Etapa 1.7.], en forma de un sólido amarillo (rendimiento: 66 %).

CL-EM (método 1): [M+H]⁺ = 610,2, RT= 10,48 min

20 Etapa 4.2 5-[3-{4-[(benciloxi)carbonil]fenil}-4-carbamoil-1-(tetrahidro-2*H*-piran-2-il)-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoato de metilo

Se obtiene según el proceso descrito en la Etapa 3.2, usando ácido 3-{4-[(benciloxi)carbonil]fenil}-6-[4-fluoro-3-(metoxicarbonil)fenil]-1-(tetrahidro-2*H*-piran-2-il)-1*H*-pirazolo[3,4-*b*]piridin-4-carboxílico, en forma de un sólido beis (rendimiento: 79 %).

25 CL-EM (método 1): [M+H]⁺ = 609,2, RT= 9,91 min

Etapa 4.3 ácido 4-{4-carbamoil-6-[4-fluoro-3-(metoxicarbonil)fenil]-1*H*-pirazolo[3,4-*b*]piridin-3-il} benzoico

Se obtiene según el proceso descrito en la Etapa 3.3, usando 5-[3-{4-[(benciloxi)carbonil]fenil}-4-carbamoil-1-(tetrahidro-2*H*-piran-2-il)-1*H*-pirazolo[3,4-b]piridin-6-il]-2-fluorobenzoato de metilo, en forma de un sólido amarillo (rendimiento: 85 %).

30 CL-EM (método 1): [M-H]⁺ = 435,0, RT= 6,48 min

Etapa 4.4 5-[4-carbamoil-3-(4-{[15-(4-{4-carbamoil-6-[4-fluoro-3-(metoxicarbonil)fenil]-1*H*-pirazolo[3,4-b]piridin-3-il}fenil)-15-oxo-4,7,10-trioxa-14-azapentadec-1-il]carbamoil}fenil)-1*H*-pirazolo[3,4-b]piridin-6-il]-2-fluorobenzoato de metilo

Se obtiene según el proceso descrito en la Etapa 1.10, usando ácido 4-{4-carbamoil-6-[4-fluoro-3-(metoxicarbonil)fenil]-1*H*-pirazolo[3,4-b]piridin-3-il} benzoico y 3,3'-[oxibis(etano-2,1-diiloxi)]dipropan-1-amina, en forma de un polvo blanco (rendimiento: 55 %).

CL-EM (método 3): $[M-H]^{+}$ = 1053,2, RT= 7,29 min

40 fluorobenzoico

10

15

Se obtiene según el proceso descrito en la Etapa 1.11, usando 5-[4-carbamoil-3-(4-{[15-(4-{4-carbamoil-6-[4-fluoro-3-(metoxicarbonil)fenil]-1*H*-pirazolo[3,4-*b*]piridin-3-il}fenil)-15-oxo-4,7,10-trioxa-14-azapentadec-1-il]carbamoil}fenil)-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoato de metilo, en forma de un polvo blanco (rendimiento: 62 %).

CL-EM (método 3): $[M+H]^+$ = 1025,3, RT= 5,19 min

45 Etapa 4.6 sal de lisina del ácido 5-(4-carbamoil-3-{4-[(15-{4-[4-carbamoil-6-(3-carboxi-4-fluorofenil)-1*H*-pirazolo[3,4-*b*]piridin-3-il]fenil}-15-oxo-4,7,10-trioxa-14-azapentadec-1-il)carbamoil]fenil}-1*H*-pirazolo[3,4-*b*]piridin-6-il)-2-fluorobenzoico (Compuesto N.º 8)

ES 2 602 798 T3

Se obtiene según el proceso descrito en la Etapa 1.11, usando ácido 5-(4-carbamoil-3-{4-[(15-{4-[4-carbamoil-6-(3-carboxi-4-fluorofenil)-1*H*-pirazolo[3,4-*b*]piridin-3-il]fenil}-15-oxo-4,7,10-trioxa-14-azapentadec-1-il)carbamoil]fenil}-1*H*-pirazolo[3,4-*b*]piridin-6-il)-2-fluorobenzoico, en forma de un polvo blanco (rendimiento: 78 %).

CL-EM (método 4): [M+H]⁺ = 1025,3, RT= 8,48 min

- 5 RMN 1 H (500 MHz, DMSO- d_{6}): δ ppm 8,49 (dd, 2 H) 8,43 (t, 2 H) 8,23 (s, 2 H) 8,14 8,18 (m, 2 H) 8,07 8,12 (m, 2 H) 7,82 7,87 (m, 2 H) 7,76 (s, 2 H) 7,70 7,75 (m, 4 H) 7,49 (t, 2 H) 7,19 (t, 2 H) 7,03 (s a, 10 H) 3,50 3,85 (s a, 4 H) 3,43 3,55 (m, 12 H) 3,34 (dd, 4 H) 3,20 (t, 2 H) 2,73 (t, 4 H) 1,78 (quin, 4 H) 1,32 1,73 (m, 12 H)
- La tabla que sigue ilustra las estructuras químicas y las propiedades físicas de algunos ejemplos de compuestos según la invención. En esta tabla, en la columna "sal", "Lys" representa un compuesto en forma de sal de D,L-lisina y la relación entre paréntesis es la relación (base : diácido).

Tabla de ejemplos

		Método de CL-EM	2	8	4	2	&	8	က	4	3
		RT (min)	1,12	5,96	10,27	1,11	3,80	5,17	4,76	8,48	7,33
		[M+H]	895	626	955	666	1027	1025	953	1025	953
		Sal	Lys (2)	Lys (2)	Lys (2)	Lys (2)	Lys (2)	Lys (2)	Lys (2)	Lys (2)	Lys (2)
	R3 X X X X X X X X X X X X X X X X X X X	_	*(CH ₂) ₃ O(CH ₂) ₂ 0(CH ₂) ₃ *	*(CH ₂) ₃ [O(CH ₂) ₂] ₂ O(CH ₂) ₃ *	*(CH ₂) ₂ [O(CH ₂) ₂] ₃ O(CH ₂) ₂ *	*(CH ₂) ₂ [O(CH ₂) ₂] ₄ O(CH ₂) ₂ *	(CH ₂) ₃ [O(CH ₂) ₂] ₄ O(CH ₂) ₃ *	*(CH ₂) ₃ [O(CH ₂) ₂] ₂ O(CH ₂) ₃ *	*(CH ₂) ₂ O(CH ₂) ₂ O(CH	*(CH ₂) ₃ [O(CH ₂) ₂] ₂ O(CH ₂) ₃ *	*(CH ₂) ₂ O(CH ₂) ₂ O(CH
		×	ட	Щ	ட	ட	ட	Щ	Щ	Щ	Щ
o sigue:		R3	-CO ₂ H	-CO ₂ H	-CO ₂ H	-CO ₂ H	-CO ₂ H	-CO ₂ H	-CO ₂ H	-CO ₂ H	-CO ₂ H
general com		R2	-CONH*	-CONH*	-CONH*	-CONH*	-CONH*	-CONH ₂	-CONH ₂	-CONH ₂	-CONH ₂
fórmula		R1	I	н	I	Т	I	I	Н	н	Н
M ₁ -L-M ₂ con M que tiene la fórmula general como sigue:		~	I	I	I	I	I	meta-CON H*	meta-CONH*	para-CONH*	para-CONH*
M ₁ -L-N		°. Ž	-	2	က	4	ß	9	7	ω	6

Los resultados de las pruebas farmacológicas *in vitro* e *in vivo* llevadas a cabo con el fin de determinar las propiedades de los compuestos de la invención se enumeran a continuación;

Compuesto	% de activación con respecto a FGF2 (in vitro)	CE50		
1	84 %	CE50<1nM		
2	84 %	CE50<1nM		
3	75 %	CE50<1nM		
5	124 %	CE50<1nM		
6	50 %	CE50=3nM		
8	20 %	CE50<100nM		
9	60 %	CE50<1nM		

Modelo de angiogénesis in vitro

- Los productos se prueban para su capacidad para producir el reordenamiento de células endoteliales venosas humanas (HUVEC) sobre Matrigel (Becton Dickinson 356230) diluido en colágeno (colágeno de cola de rata, tipo I: Becton dickinson 354236). Después de 24 horas, se observan las células al microscopio con objetivo X4 y se mide la longitud de los pseudo-túbulos por medio de un analizador de imagen (BIOCOM-logiciel Visiolab 2000).
- Para la prueba de angiogénesis *in vitro*, los compuestos de la invención demostraron una actividad específica de entre 10⁻⁶ M y 10⁻¹² M. A modo de ejemplo, los compuestos 1, 2, 3, 5 y 9 son activos a una concentración de 1 nM en el modelo de angiogénesis *in vitro*.

Modelo de angiogénesis de la esponja

15

20

40

El modelo de angiogénesis de la esponja es una adaptación de la técnica de Andrade et al. [Andrade SP, Machado R., Teixeir AS, Belo AV, Tarso AM, Beraldo WT - Sponge-induced angiogenesis in mice and the pharmacological reactivity of the neovasculature quantitated by fluorimetric method, Microvascular Research, 1997, 54: 253-61.]

Los ratones usados son hembras BalbC de Charles River Laboratory, de 7 a 10 semanas de edad. Los animales se anestesian por inyección intraperitoneal de una mezcla de xilazina/ketamina (1 mg/kg de cada una de ellas en NaCl al 0,9 %). Se rasura la espalda del animal y se desinfecta con hexomedina. Se prepara una bolsa de aire de 5 ml subcutánea sobre la espalda del animal con aire estéril. Se hace a continuación una incisión (aproximadamente 1 cm) encima de la espalda del animal con el fin de implantar la esponja en la bolsa. La esponja de celulosa biocompatible (Cellspon, Interchim, 10 mm de diámetro) ha sido previamente esterilizada (autoclave 20 min a 120 °C) y se impregna con 50 µl de disolución estéril que contiene el producto de prueba. Se realiza la sutura insertando dos grapas de 9 mm autoclip de acero inoxidable (Subra). Se desinfecta de nuevo la herida con hexomedina. Los animales se alojan en jaulas individuales durante toda la duración del experimento.

- Los productos de prueba están en disolución en una mezcla de PBS/BSA al 0,1 %: Se ponen en disolución el FGF2 recombinante humano (Peprotech) y los productos de la invención extemporáneamente según la concentración seleccionada. Los dos días siguientes a la implantación de la esponja de celulosa, los productos de prueba en disolución se reinyectan directamente en el implante a través de la piel del animal, después de haber desinfectado el área con hexomedina.
- 30 El octavo día después de la implantación, se sacrifican los ratones con una dosis letal de pentobarbital de sodio (CEVA santé animale, 10 mg/kg), administrada por vía intraperitoneal. Se corta la piel alrededor de la esponja (aproximadamente 1 cm) y se separa la esponja de la piel eliminando el tejido conjuntivo. Se corta la esponja en 3 o 4 trozos y se dispone en un tubo que contiene perlas de cerámica con 1 ml de tampón de lisis RIPA. Se realiza la lisis por medio de dos ciclos de agitación de 20 segundos (FastPrep® FP 120). Después de la congelación de los sobrenadantes a -20 °C, se centrifugan los tubos a 8000 rpm durante 10 minutos y los sobrenadantes se retiran con el fin de ensavar la hemoglobina.

Para ensayar la hemoglobina, se depositan 50 µl de cada muestra en una placa de 96 pocillos, por duplicado. El intervalo se prepara con hemoglobina humana (referencia H7379, Sigma®) en una disolución de 4 mg/ml hasta 0,06 mg/ml en el tampón de lisis RIPA. En todos los pocillos (intervalo + muestras) se depositan 50 µl de reactivo Drabkin (Sigma®). Se incuba la placa durante 15 minutos a temperatura ambiente, en la oscuridad. Los valores de DO se leen en un espectrofotómetro a 405 nm, usando el software Biolise (Tecan, Francia). La concentración de Hb en cada muestra se expresa en mg/ml según la regresión polinómica realizada usando el intervalo.

A modo de ejemplo, el compuesto 2 es activo a una concentración 300 μM inyectada en la esponja en el modelo de angiogénesis *in vivo*.

Los compuestos de la invención presentan una actividad de agonistas de los receptores de FGF. Inducen la dimerización del receptor y, en virtud de su baja toxicidad y sus propiedades farmacológicas y biológicas, los compuestos de la presente invención representan una terapia de elección en afecciones patológicas para las que los FGF tienen un efecto positivo, tales como la revascularización post-isquémica, los procesos de cicatrización y los procesos de reparación y de regeneración neuronal, muscular y ósea.

5

10

15

20

55

Una de las aplicaciones de los compuestos de la invención es el tratamiento que requiere un aumento en la angiogénesis, tal como el tratamiento post-isquémico después de la oclusión de las arterias periféricas o el tratamiento de las consecuencias de la isquemia cardíaca. Los compuestos descritos en la invención pueden ser útiles en el tratamiento de enfermedades asociadas al estrechamiento u obstrucción de las arterias coronarias o de arteritis, y en particular en el tratamiento de angina de pecho o de tromboangeítis obliterante. Además, los compuestos de dicha invención podrían representar un tratamiento de elección para compensar una deficiencia en la angiogénesis en placentas pre-eclámpsicas. Por su actividad antiapoptósica sobre las células endoteliales, los productos de dicha invención podrían proporcionar un tratamiento de elección en la mejora vascular en pacientes que padecen daño vascular, y en particular pacientes que padecen ARDS.

Por sus actividades de agonistas de los receptores de FGF y sus capacidades para inducir la angiogénesis y para activar las células mesenquimatosas implicadas en las fases de cicatrización, los compuestos de la dicha invención representarían una terapia de elección para el tratamiento de la cicatrización, en particular en ancianos o pacientes diabéticos. Los compuestos presentados en la invención podrían representar un tratamiento de elección para la regeneración muscular.

En virtud de la actividad de agonistas de los receptores de FGF, los compuestos de dicha invención representarían un tratamiento de elección en el tratamiento de la nocicepción, en el tratamiento del dolor crónico y en el tratamiento de neuropatía periférica, en particular en pacientes diabéticos.

Por las propiedades de agonista de los receptores de FGF, los compuestos de dicha invención podrían representar un tratamiento de elección en la reparación ósea después de una fractura.

Por su actividad de agonistas sobre los receptores de FGF, los compuestos de dicha invención podrían proporcionar un tratamiento de elección para la reparación y la protección de los folículos pilosos y en la protección y la regulación del crecimiento capilar.

30 Un objeto de la presente invención, según otro de sus aspectos, es, por lo tanto, el uso de un compuesto como se ha definido anteriormente para preparar un medicamento que es útil en el tratamiento de las enfermedades que requieren la activación de los receptores de FGF.

Un objeto de la presente invención es más particularmente un medicamento que comprende un compuesto como se ha definido anteriormente.

Un objeto de la presente invención es particularmente un compuesto como se ha definido anteriormente para su uso como un medicamento.

Según otro de sus aspectos, la presente invención se refiere a un compuesto según la invención para su uso para preparar un medicamento previsto para el tratamiento de enfermedades que requieren la activación de receptores de FGF.

40 Un objeto de la presente invención es más particularmente el uso de un compuesto como se ha definido anteriormente para preparar un medicamento que es útil en el tratamiento de isquemia cardíaca, el tratamiento de enfermedades asociadas al estrechamiento u obstrucción de las arterias o de arteritis, el tratamiento de angina de pecho, el tratamiento de tromboangeítis obliterante, el tratamiento de ateroesclerosis, el tratamiento para inhibir reestenosis después de angioplastia o después de endoarterectomía, el tratamiento de cicatrización, el tratamiento 45 para regeneración muscular, el tratamiento para la supervivencia de mioblastos, el tratamiento para sarcopenia, la pérdida de funcionalidad de los músculos lisos de los esfínteres, el tratamiento de la nocicepción y el tratamiento de dolor crónico, el tratamiento de neuropatía periférica, el tratamiento para mejorar la supervivencia del injerto de páncreas bioartificial en pacientes diabéticos, el tratamiento para conseguir una disminución en el colesterol asociada a una disminución en la adiposidad, el tratamiento para mejorar la revascularización de injertos y la 50 supervivencia de los injertos, el tratamiento de degeneración retiniana, el tratamiento de retinitis pigmentaria, el tratamiento de osteoartritis, el tratamiento de pre-eclampsia, el tratamiento de lesiones vasculares y del síndrome disneico agudo, el tratamiento de protección ósea, o el tratamiento para la protección de los folículos pilosos.

Según otro aspecto, los compuestos de la invención son útiles para el tratamiento de isquemia cardíaca, el tratamiento de enfermedades asociadas al estrechamiento u obstrucción de las arterias o de arteritis, el tratamiento de angina de pecho, el tratamiento de tromboangeítis obliterante, el tratamiento de ateroesclerosis, el tratamiento para inhibir reestenosis después de angioplastia o después de endoarterectomía, el tratamiento de cicatrización, el

tratamiento para regeneración muscular, el tratamiento para la supervivencia de mioblastos, el tratamiento para sarcopenia, la pérdida de funcionalidad de los músculos lisos de los esfínteres, el tratamiento de la nocicepción y el tratamiento de dolor crónico, el tratamiento de neuropatía periférica, el tratamiento para mejorar la supervivencia del injerto de páncreas bioartificial en pacientes diabéticos, el tratamiento para conseguir una disminución en el colesterol asociada a una disminución en la adiposidad, el tratamiento para mejorar la revascularización de injertos y la supervivencia de los injertos, el tratamiento de degeneración retiniana, el tratamiento de retinitis pigmentaria, el tratamiento de osteoartritis, el tratamiento de pre-eclampsia, el tratamiento de lesiones vasculares y del síndrome disneico agudo, el tratamiento de protección ósea, o el tratamiento para la protección de los folículos pilosos.

5

30

Según otro de sus aspectos, la presente invención se refiere a composiciones farmacéuticas que comprenden, como principio activo, un compuesto según la invención. Estas composiciones farmacéuticas contienen una dosis eficaz de al menos un compuesto según la invención, o una sal farmacéuticamente aceptable, y también al menos un excipiente farmacéuticamente aceptable.

Dichos excipientes se eligen, según la forma farmacéutica y el modo de administración deseado, de los excipientes habituales que son conocidos por los expertos en la materia.

- En las composiciones farmacéuticas de la presente invención para administración oral, sublingual, subcutánea, intramuscular, intravenosa, tópica, local, intratraqueal, intranasal, transdérmica o rectal, el principio activo de la fórmula (I) anterior, o su sal, puede administrarse en forma unitaria de administración, como una mezcla con excipientes farmacéuticos convencionales, a animales o a seres humanos para la profilaxis o el tratamiento de los trastornos o enfermedades anteriores.
- Las formas unitarias de administración apropiadas incluyen formas orales, como comprimidos, cápsulas de gel blandas o duras, polvos, gránulos y disoluciones o suspensiones orales, formas de administración sublingual, bucal, intratraqueal, intraocular e intranasal, formas de administración por inhalación, formas de administración tópica, transdérmica, subcutánea, intramuscular o intravenosa, formas de administración rectal, e implantes. Para administración tópica, los compuestos según la invención pueden usarse en cremas, geles, pomadas o lociones.
- A modo de ejemplo, una forma unitaria de administración de un compuesto según la invención en forma de comprimido puede comprender los siguientes constituyentes:

Comp	uesto según la invención	50,0 mg
Manit	ol	223,75 mg
Croso	armelosa sódica	6,0 mg
Almid	ón de maíz	15,0 mg
Hidro	xipropilmetilcelulosa	2,25 mg
Estea	rato de magnesio	3,0 mg

Puede haber casos particulares en los que sean apropiadas dosis más altas o más bajas; tales dosis no se alejan del contexto de la invención. Según la práctica habitual, la dosis apropiada para cada paciente es determinada por el médico según el método de administración y el peso y la respuesta de dicho paciente.

REIVINDICACIONES

1. Compuestos correspondientes a la fórmula general:

 M_1 -L- M_2

en la que M₁ y M₂, que pueden ser idénticos o diferentes, representan cada uno, independientemente uno de otro, 5 una unidad de monómero M y L representa un grupo conector que une M₁ y M₂ de forma covalente, caracterizados por que dicha unidad de monómero se corresponde con la fórmula general M que sigue:

$$R_2$$
 R_2
 R_3
 R_1
 R_3
 R_1
 R_1

en la que

10

15

20

25

- el asterisco * indica el sitio de enlace entre la unidad de monómero y el conector L, estando situado dicho sitio de enlace de cada unidad de monómero M₁ y M₂ sobre uno de los sustituyentes R o R₂,
- R representa un átomo de hidrógeno (en cuyo caso el sitio de enlace de L con M está situado sobre R_2) o un grupo -CONH*,
- R₁ representa un átomo de hidrógeno o un grupo alquilo (C₁-C₃) lineal,
- R_2 representa un grupo -CONH $_2$ (en cuyo caso el sitio de enlace de L con M está situado sobre R) o -CONH * .
- R₃ representa un grupo -CO₂R₄, donde R₄ representa un átomo de hidrógeno o un grupo alquilo (C₁-C₄) lineal.
- X es un átomo de halógeno elegido de átomos de flúor, cloro y bromo,
- L representa los siguientes radicales de PEG:

en los que

- el asterisco * indica el átomo para el enlace de L con la unidad de monómero M sobre el sustituyente R* o R2*:
- n representa un número entero de 2 a 6,

en forma de una base o de una sal de adición con un ácido o con una base.

- 2. Compuestos según la reivindicación 1, caracterizados por que R₁ representa un átomo de hidrógeno, en forma de una base o de una sal de adición con un ácido o con una base.
- 3. Compuestos según cualquiera de las reivindicaciones precedentes, caracterizados por que R₃ representa un grupo -CO₂R₄, representando R₄ un átomo de hidrógeno, en forma de una base o de una sal de adición con un ácido o con una base.
 - 4. Compuestos según una de las reivindicaciones precedentes, caracterizados por que X representa un átomo de flúor, en forma de una base o de una sal de adición con un ácido o con una base.
 - 5. Compuestos según una de las reivindicaciones 1 a 4, caracterizados por que:
- R representa un grupo -CONH*, donde el asterisco * indica el sitio de enlace de L, en primer lugar, con la unidad de monómero M₁ y, en segundo lugar, con la unidad de monómero M₂,

- R_1 representa un átomo de hidrógeno o un grupo alquilo (C_1 - C_3) lineal, en forma de una base o de una sal de adición con un ácido o con una base.
- 6. Compuestos según una de las reivindicaciones 1 a 5, caracterizados por que R está situado en la posición meta o para, en forma de una base o de una sal de adición con un ácido o con una base.
- 5 7. Compuestos según una de las reivindicaciones 1 a 4, caracterizados por que:
 - R representa un átomo de hidrógeno,

20

25

30

35

- R_2 representa un grupo -CONH*, donde el asterisco * indica el sitio de enlace de L, en primer lugar, con la unidad de monómero M_1 y, en segundo lugar, con la unidad de monómero M_2 , en forma de una base o de una sal de adición con un ácido o con una base.
- 10 8. Compuestos según una cualquiera de las reivindicaciones 1 a 7, caracterizados por que n es un número entero de 3 o 4, en forma de una base o de una sal de adición con un ácido o con una base.
 - 9. Compuesto según una cualquiera de las reivindicaciones precedentes, caracterizado por que se elige de:

Compuesto N.º ácido 1: 3,3'-{etano-1,2-diilbis[oxipropano-3,1-diilcarbamoil(3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4,6-diil)]}bis(6-fluorobenzoico);

15 Compuesto N.º ácido 2: 5-[4-({15-[6-(3-carboxi-4-fluorofenil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il]-15-oxo-4,7,10-trioxa-14-azapentadec-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoico;

Compuesto N.º 3: ácido 5-[4-({16-[6-(3-carboxi-4-fluorofenil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il]-16-oxo-3,6,9,12-tetraoxa-15-azahexadec-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoico;

Compuesto N.º 4: ácido 5-[4-({19-[6-(3-carboxi-4-fluorofenil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il]-19-oxo-3,6,9,12,15-pentaoxa-18-azanonadec-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoico;

Compuesto N.º 5: ácido 5-[4-({21-[6-(3-carboxi-4-fluorofenil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-4-il]-21-oxo-4,7,10,13,16-pentaoxa-20-azahenicos-1-il}carbamoil)-3-fenil-1*H*-pirazolo[3,4-*b*]piridin-6-il]-2-fluorobenzoico;

Compuesto N.º 6: ácido 5-(4-carbamoil-3-{3-[(15-{3-[4-carbamoil-6-(3-carboxi-4-fluorofenil)-1*H*-pirazolo[3,4-*b*]piridin-3-il]fenil}-15-oxo-4,7,10-trioxa-14-azapentadec-1-il)carbamoil]fenil}-1*H*-pirazolo[3,4-*b*]piridin-6-il)-2-fluorobenzoico;

Compuesto N.º 7: ácido 3,3'-{etano-1,2-diilbis[oxietan-2,1-diilcarbamoilbenceno-3,1-diil(4-carbamoil-1*H*-pirazolo[3,4-*b*]piridin-3,6-diil)]}bis(6-fluorobenzoico);

Compuesto N.º 8: ácido 5-(4-carbamoil-3-{4-[(15-{4-[4-carbamoil-6-(3-carboxi-4-fluorofenil)-1*H*-pirazolo[3,4-*b*]piridin-3-il]fenil}-15-oxo-4,7,10-trioxa-14-azapentadec-1-il)carbamoil]fenil}-1*H*-pirazolo[3,4-*b*]piridin-6-il)-2-fluorobenzoico:

Compuesto N.º 9: ácido 3,3'-{etano-1,2-diilbis[oxietan-2,1-diilcarbamoilbenceno-4,1-diil(4-carbamoil-1*H*-pirazolo[3,4-*b*]piridin-3,6-diil)]}bis(6-fluorobenzoico).

- 10. Proceso de preparación de compuestos según una cualquiera de las reivindicaciones 1 a 9, que comprende la reacción de al menos un monómero que comprende al menos un grupo ácido carboxílico con un reactante de fórmula H₂N-L-NH₂ después de activación.
- 11. Medicamento, caracterizado por que comprende un compuesto según una cualquiera de las reivindicaciones 1 a 9, o una sal de adición de este compuesto con un ácido o base farmacéuticamente aceptable.
- 12. Compuesto según una cualquiera de las reivindicaciones 1 a 9, para su uso como un medicamento.
- 13. Composición farmacéutica, caracterizada por que comprende un compuesto según una cualquiera de las reivindicaciones 1 a 9, o una sal farmacéuticamente aceptable de este compuesto, y también al menos un excipiente farmacéuticamente aceptable.
 - 14. Compuesto según una cualquiera de las reivindicaciones 1 a 9, para su uso para preparar un medicamento previsto para el tratamiento de enfermedades que requieren la activación de receptores de FGF.
- 15. Compuesto según una cualquiera de las reivindicaciones 1 a 9, para el uso del mismo en el tratamiento de isquemia cardíaca, el tratamiento de enfermedades asociadas al estrechamiento u obstrucción de las arterias o de arteritis, el tratamiento de angina de pecho, el tratamiento de tromboangeítis obliterante, el tratamiento de ateroesclerosis, el tratamiento para inhibir reestenosis después de angioplastia o después de endoarterectomía, el tratamiento de cicatrización, el tratamiento para regeneración muscular, el tratamiento para la supervivencia de mioblastos, el tratamiento para sarcopenia, la pérdida de funcionalidad de los músculos lisos de los esfínteres, el

ES 2 602 798 T3

tratamiento de la nocicepción y el tratamiento de dolor crónico, el tratamiento de neuropatía periférica, el tratamiento para mejorar la supervivencia del injerto de páncreas bioartificial en pacientes diabéticos, el tratamiento para conseguir una disminución en el colesterol asociada a una disminución en la adiposidad, el tratamiento para mejorar la revascularización de injertos y la supervivencia de los injertos, el tratamiento de degeneración retiniana, el tratamiento de retinitis pigmentaria, el tratamiento de osteoartritis, el tratamiento de pre-eclampsia, el tratamiento de lesiones vasculares y del síndrome disneico agudo, el tratamiento de protección ósea, o el tratamiento para la protección de los folículos pilosos.

5