

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 603 379

51 Int. CI.:

C12N 15/113 (2010.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 09.10.2007 E 11181596 (5)
 Fecha y número de publicación de la concesión europea: 28.09.2016 EP 2444494

(54) Título: Compuestos antagonistas de ARN para la modulación de PCSK9

(30) Prioridad:

09.10.2006 US 828735 P 17.09.2007 US 972932 P 04.10.2007 US 977409 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 27.02.2017

(73) Titular/es:

ROCHE INNOVATION CENTER COPENHAGEN A/S (100.0%) Fremtidsvej 3 2970 Hørsholm, DK

(72) Inventor/es:

STRAARUP, ELLEN MARIE y NIELSEN, NIELS FISKER

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Compuestos antagonistas de ARN para la modulación de PCSK9

5 Campo de la invención

La presente invención proporciona compuestos, composiciones y métodos para modular la expresión de PCSK9. En particular, la presente invención se refiere a compuestos oligoméricos, tales como compuestos oligonucleotídicos, que son hibridables con ácidos nucleicos diana que codifican PCSK9, y métodos para la preparación de dichos compuestos oligoméricos. Se ha mostrado que los compuestos oligonucleotídicos modulan la expresión de PCSK9, y se desvelan preparaciones farmacéuticas de los mismos y su uso como tratamiento de hipercolesterolemia y trastornos relacionados.

Antecedentes

15

20

30

40

50

55

10

La proproteína convertasa subtilisina/quexina de tipo 9a (PCSK9) es un miembro de la subfamilia de subtilasas proteinasa K. El gen de PCSK9 (NARC-1) se ha identificado como un tercer locus implicado en la hipercolesterolemia dominante autosómica (ADH), caracterizado por altos niveles de lipoproteína de baja densidad (LDL), xantomas y una alta frecuencia de enfermedad cardiaca coronaria. Los otros dos loci son apolipoproteína-B (Apo-B) y el receptor de LDL (LDLR). PCSK9 actúa como un inhibidor natural de la ruta de receptor de LDL, y ambos genes están regulados por agotamiento de contenido celular de colesterol y estatinas mediante proteína de unión a elemento regulador de esterol (SREBP). Los niveles de proteína y ARNm de PCSK9 están regulados por consumo de alimentos, insulina y niveles de colesterol en células (Costet *et al.*, J. Biol. Chem. Enero 2006).

La secuencia de ARNm de NARC1 humano (ADNc), que codifica PCSK9 humana se muestra como SEQ ID NO 2 (NCBI n.º de ref. NM_174936).

La secuencia polipeptídica de PCSK9 humana (naciente) se muestra como SEQ ID NO 1 (NCBI n.º ref. NP_777596). El polipéptido tiene un péptido señal entre los restos 1-30, que se extiende cotraduccionalmente para producir una proproteína (31-692 de SEQ ID No 1), que se escinde posteriormente por una proteasa para producir una proteína madura correspondiente a los aminoácidos 83-692 de SEQ ID NO 1. Un sitio de glucosilación se ha caracterizado en el resto 533.

Park *et al.*, (J. Biol. Chem. 279, pp 50630-50638, 2004) desvelan que la sobreexpresión de PCSK9 redujo la proteína LDLR dando como resultado un aumento del colesterol LDL en plasma, y sugiere que un inhibidor de la función de PCSK9 puede aumentar los niveles de proteínas LDLR y potenciar la eliminación de LDL del plasma.

Rashid *et al.*, (2005, PNAS 102, n.º 15, pp 5374-5379) desvelan que ratones nuligénicos que carecen de PCSK9 manifiestan proteína LDLR aumentada lo que conduce a una eliminación aumentada de lipoproteínas en circulación y niveles de colesterol en plasma reducidos, y sugiere que los inhibidores de PCSK9 pueden ser útiles para el tratamiento de hipercolesterolemia y que puede haber sinergia entre los inhibidores de PCSK9 y estatinas para potenciar los LDLR y reducir el colesterol en plasma.

El documento WO01/57081 desvela la secuencia polinucleotídica de NARC-1 y desvela que pueden diseñarse ácidos nucleicos antisentido usando la secuencia polinucleotídica de NARC-1 y que dichos ácidos nucleicos antisentido pueden comprender nucleótidos o bases modificados, tales como ácidos nucleicos peptídicos.

El documento WO2004/097047, que desvela dos mutantes de PCSK9 que están asociados con ADH, sugiere que pueden usarse antisentido o ARNi de dichos mutantes de PCSK9 para el tratamiento de ADH.

Lalanne Florent *et al.*, J. Lipid Research, vol 46, n.º 6 pp 1312-1319 (2005) y el documento US 2004/009553 se refiere a moléculas de ARNip que reducen la expresión del gen de PCSK9.

Kurreck *et al.*, Nucleic Acid Research 30, pp 1911-1918 (2002) desvela el diseño de oligonucleótidos antisentido que contienen ácidos nucleicos bloqueados.

Objeto de la invención

La invención proporciona soluciones terapéuticas para el tratamiento de hipercolesterolemia y trastornos relacionados, basadas en oligonucleótidos antisentido, dirigidos contra ácidos nucleicos de PCSK9. Los inventores han descubierto que el uso de análogos de nucleótidos que tienen una afinidad potenciada por su compañero de unión complementario, tales como análogos de nucleótidos de ácido nucleico bloqueado (LNA), dentro de oligonucleótidos antisentido que se dirigen hacia ácidos nucleicos diana de PCSK9, proporcionan modulación altamente eficaz, particularmente la regulación negativa, de la expresión de PCSK9 (NARC1).

Sumario de la invención

20

25

30

55

65

La invención proporciona oligonucleótidos antisentido como se define en la reivindicación 1.

- 5 El oligonucleótido antisentido es de entre 10 y 25 nucleobases de longitud que consiste en o comprende una secuencia de nucleobases contiguas de un total de entre 10 y 25 nucleobases, en el que dicha secuencia de nucleobases contiguas es complementaria de una región correspondiente de una SEQ ID NO 2. El oligonucleótido antisentido no es un ARNip.
- La invención proporciona además un conjugado que comprende el oligonucleótido antisentido de acuerdo con la invención, tal como un conjugado que, además de la secuencia de nucleobases del oligonucleótido antisentido comprende al menos un resto no nucleotídico o no polinucleotídico unido covalentemente con el oligonucleótido antisentido de la invención.
- 15 El oligonucleótido antisentido puede consistir en una secuencia de un total de entre 10 y 25 nucleobases, que son complementarias de una secuencia contigua que está presente en SEQ ID NO 2.
 - El oligonucleótido antisentido de acuerdo con la invención, es para su uso como un medicamento como se define en la reivindicación 15.
 - Los oligonucleótidos antisentido de la invención pueden usarse en métodos para modular la expresión de PCSK9 en células o tejidos de mamífero que comprenden poner en contacto dichas células o tejidos de mamífero con uno o más de los compuestos oligoméricos o composiciones de la invención. Típicamente la expresión de PCSK9 se inhibe o se reduce.
 - Los oligonucleótidos antisentido de la invención pueden usarse en métodos para tratar a un mamífero, tal como un ser humano, que se sospecha que tiene o es propenso a una enfermedad o afección, asociada con la expresión de PCSK9, tal como hipercolesterolemia o trastorno relacionado, administrando una cantidad terapéutica o profilácticamente eficaz de uno o más de otros compuestos oligoméricos o composiciones de la invención.
 - Se proporcionan los oligonucleótidos antisentido de la invención que pueden usarse en métodos para la inhibición de la expresión de PCSK9 y para el tratamiento de enfermedades asociadas con actividad de PCSK9, tales como hipercolesterolemia y/o trastornos relacionados.
- La invención proporciona una composición farmacéutica que comprende el oligonucleótido antisentido o conjugado de la invención, y un diluyente, vehículo, sal o adyuvante farmacéuticamente aceptable.
- La invención también proporciona composiciones farmacéuticas que comprenden compuestos oligonucleotídicos antisentido de acuerdo con la invención y compuestos adicionales capaces de modular los niveles de colesterol en suero sanguíneo, tales como moduladores de apolipoproteína B (Apo-B100), en particular oligonucleótidos antisentido (oligómeros) dirigidos a dianas de ácido nucleico de Apo-B.
- Los oligonucleótidos antisentido de la invención pueden usarse en un método para (i) reducir el nivel de colesterol en suero sanguíneo o ii) reducir el nivel de colesterol LDL en suero sanguíneo o iii) para mejorar la relación HDL/LDL, en un paciente, comprendiendo el método la etapa de administrar el oligonucleótido antisentido o el conjugado o la composición farmacéutica de acuerdo con la invención al paciente.
- Los oligonucleótidos antisentido de la invención pueden usarse en un método para reducir los triglicéridos en plasma en un paciente, comprendiendo el método la etapa de administrar el oligonucleótido antisentido o el conjugado o la composición farmacéutica de acuerdo con la invención al paciente de modo que se reduzca el nivel de triglicéridos en suero sanguíneo.
 - Los oligonucleótidos antisentido de la invención pueden usarse en un método para tratar la obesidad en un paciente, comprendiendo el método la etapa de administrar el oligonucleótido antisentido o el conjugado o la composición farmacéutica de acuerdo con la invención al paciente que necesite tratamiento de modo que se reduzca el peso corporal del paciente.
- Los oligonucleótidos antisentido de la invención pueden usarse en un método para tratar hipercolesterolemia, o un trastorno relacionado, en un paciente, comprendiendo el método la etapa de administrar el oligonucleótido antisentido o el conjugado o la composición farmacéutica de acuerdo con la invención al paciente que necesite tratamiento para hipercolesterolemia, o un trastorno relacionado.
 - Los oligonucleótidos antisentido de la invención pueden usarse en un método para tratar la resistencia a insulina en un paciente, comprendiendo el método la etapa de administrar el oligonucleótido antisentido o el conjugado o la composición farmacéutica de acuerdo con la invención al paciente que necesite tratamiento de modo que se aumente la sensibilidad del paciente a insulina.

Los oligonucleótidos antisentido de la invención pueden usarse en un método para tratar la diabetes de tipo II en un paciente, comprendiendo el método la etapa de administrar el oligonucleótido antisentido o el conjugado o la composición farmacéutica de acuerdo con la invención al paciente que padece diabetes de tipo II.

- 5 Los oligonucleótidos antisentido de la invención pueden usarse en un método para tratar un trastorno metabólico tal como síndrome metabólico, diabetes o aterosclerosis, comprendiendo el método la etapa de administrar el oligonucleótido antisentido o el conjugado o la composición farmacéutica de acuerdo con la invención al paciente que lo necesite.
- La invención proporciona el oligonucleótido antisentido o conjugado de acuerdo con la invención para su uso en el tratamiento de una enfermedad o un trastorno seleccionado del grupo que consiste en: hipercolesterolemia o un trastorno relacionado, de acuerdo con la reivindicación 17.

Breve descripción de las figuras

15

20

- La Figura 1 muestra una representación esquemática de la interacción de PCSK9 y el LDLr: PCSK9 altera la expresión del receptor de LDL (LDLr). LDLr se expresa en la superficie vasolateral de hepatocitos e interacciona con apoB-100, permitiendo de este modo la captación de LDL en plasma y posiblemente la de VLDL naciente. La internalización celular de apoB-100 que contiene lipoproteínas requiere la proteína adaptadora ARH (hipercolesterolemia recesiva autosómica). PCSK9 altera la expresión postraduccional de LDLr. Los genes PCSK9 y LDLr están regulados positivamente con bajos niveles de colesterol intracelular, lo que indica que ambos genes son dianas indirectas de inhibidores de HMGCoA reductasa (estatinas) (Lambert et al. 2006, TRENDS in Endocrinology and Metabolism, 17: 79-81).
- Figura 2 Expresión de ARNm de PCSK9 en células Huh-7 24 horas después de la transfección con Lipofectamine y oligonucleótidos LNA compuesto ID n.º: 262 o 338 a 0,04, 0,2, 1, 5, 10 o 25 nM. Los datos están normalizados con respecto a Gapdh y se presentan en relación con el control de simulación.
- Figura 3 Expresión de ARNm de PCSK9 en células Huh-7 24 horas después de la transfección con Lipofectamine y oligonucleótidos LNA compuesto ID n.º: 98 o 101 a 0,04, 0,2, 1,5 o 10 nM. Los datos están normalizados con respecto a Gapdh y se presentan en relación con el control de simulación.
 - Figura 4. Expresión de ARNm de PCSK9 en células Huh-7 24 horas después de la transfección con Lipofectamine y oligonucleótidos de LNA compuesto ID n.º: 9, 16 o 18 a 0,04, 0,2, 1, 5, 10 o 25 nM. Los datos están normalizados con respecto a Gapdh y se presentan en relación con el control de simulación.
 - Figura 5. Resultados *in vitro* en la línea celular de hepatocarcinoma murino Hepa 1-6: Expresión de ARNm de PCSK9 en células Huh-7 24 horas después de la transfección con Lipofectamine y oligonucleótidos de LNA compuesto ID n.º: 262 y 338 a 0,04, 0,2, 1,5, 10 o 25 nM. Los datos están normalizados con respecto a Gapdh y se presentan en relación con el control de simulación.
 - Figura 6. Expresión de ARNm de PCSK9 en células Huh-7 24 horas después de la transfección con Lipofectamine y oligonucleótidos LNA compuesto ID n.º: 98 y 101 a 0,04, 0,2, 1, 5, 10 o 25 nM. Los datos están normalizados con respecto a Gapdh y se presentan en relación con el control de simulación.

45

35

40

Figura 7. Examen *in vivo* de oligonucleótidos LNA en ratones C57BL/6 hembra: expresión de ARNm de PCSK9 en hígado después de dosificar 5, 10 o 15 mg/kg compuesto ID n.º: 98, 101 o 317 días 0, 3, 7, 10 y 14. El día 16 los ratones se sacrificaron y se examinó el hígado mediante qPCR con respecto a expresión de ARNm de PCSK9. Los datos representan la media DT y se presentan en relación con el grupo de solución salina.

- Figura 8. Colesterol total en suero, VLDL+LDL y HDL medido el día de sacrificio 16 en ratones hembra C57BL/6 dosificadas con 10 mg/kg /dosis de compuesto ID n.º: 98 o 101 los días 0, 3, 7, 10 y 14 mediante inyecciones en la vena de la cola.
- Figura 9. Se tomaron muestras de hígado el día de sacrificio 16 y se analizaron con respecto al nivel de proteína de receptor de LDL mediante transferencia de Western como se describe en el Ejemplo 13.
- Figura 10. Ratones hembra NMRI: expresión de ARNm de PCSK9 en hígado después de dosificar 10 mg/kg de compuestos ID N.º: 98 o 101 los días 0, 3, 7, 10 y 14. El día 16 los ratones se sacrificaron y se examinó el hígado mediante qPCR con respecto a expresión de ARNm de PCSK9. Los datos representan la media DT y se presentan en relación con el grupo de solución salina.
 - Figura 11. Colesterol total en suero de muestra de sangre en el momento del sacrificio (día 16).
- Figura 12. Se tomaron muestras de hígado el día de sacrificio 16 y se analizaron con respecto a nivel de proteína de receptor de LDL mediante transferencia de Western como se ha descrito en el Ejemplo 13.

Figura 13. Estudio de eficacia en ratones C57BL/6 macho y hembra, alimentados con una dieta alta en grasas (HFD): expresión de ARNm de PCSK9 en hígado después de dosificar 10 o 15 mg/kg de compuestos ID n.º: 98, 101 o 317 los días 0, 3, 7, 10 y 14. El día 16 los ratones se sacrificaron y se examinó el hígado mediante qPCR con respecto a expresión de ARNm de PCSK9. Se alimentó a ratones hembras con una dieta alta en grasa (HFD) durante 5 meses antes de tratamiento con oligonucleótidos LNA y se alimentó a ratones machos con HFD durante un mes antes del tratamiento. Los datos representan la media DT y se presentan en relación con el grupo de solución salina.

Figura 14. Se tomaron muestras de hígado el día de sacrificio 16 y se analizaron con respecto al nivel de proteína de receptor de LDL mediante transferencia de Western como se describe en el Ejemplo 13.

Figura 15. Oligonucleótidos LNA de 13 unidades ensayados en ratones hembra C57BL/6: expresión de ARNm de PCSK9 en hígado después de dosificar 15 mg/kg de compuestos ID n.º: 9, 16, 18 o 98 los días 0, 2 y 4 y el día 6 los ratones se sacrificaron y se examinó el hígado mediante qPCR con respecto a expresión de ARNm de PCSK9. Los datos están normalizados con respecto a Gapdh y se presentan en relación con el grupo de solución salina de media DT.

Figura 16. La distribución de las diferentes fracciones de lipoproteína HDL, VLDL y LDL en suero.

20 Las lipoproteínas se separaron en geles Sebia y se cuantificaron usando tinción con Sudan Black y

Análisis densitométrico (Molecular Imager FX). Los datos se presentan como media DT, n= 5.

La Figura 17 muestra una alineamiento de secuencias locales de Clustal W entre los ácidos nucleicos codificantes de PCSK9 humano (NM_174936) y de ratón (NM_153565) e ilustra regiones en las que hay suficiente homología de secuencias para diseñar compuestos oligoméricos que son complementarios de los ácidos nucleicos diana de PCSK9 tanto humanos como de ratón (ilustrados por líneas verticales entre los nucleótidos alineados), las áreas sombreadas indican regiones preferidas para dirigir oligonucleótidos (preferentemente en una serie contigua de al menos 12 restos conservados) a actividad PCSK9 tanto humana como de ratón, siendo las regiones subrayadas regiones que se prefieren particularmente.

Casos relacionados

5

10

15

25

30

35

45

50

55

60

Este caso reivindica la prioridad de la solicitud provisional de Estados Unidos 60/828.735 y US 60/972.932.

Además, este caso reivindica la prioridad del documento US 60/977.409.

Descripción de la invención

40 Oligómeros que se dirigen a PCSK9

La presente invención emplea oligonucleótidos antisentido, para su uso en la modulación de la función de moléculas de ácido nucleico que codifican PCSK9 humana, SEQ ID NO 1. El compuesto es complementario de una región correspondiente de SEQ ID NO 2. La PCSK9 de mamífero es PCSK9 humana.

El oligómero típicamente comprende o consiste en una secuencia de nucleobases contiguas.

En una realización, la secuencia de nucleobases del oligonucleótido consiste en la secuencia de nucleobases contiguas.

Subsecuencias y secuencias flanqueantes

En una realización, el compuesto oligomérico comprende al menos una subsecuencia central de al menos 8, tal como al menos 10, tal como al menos 12, tal como al menos 13, tal como al menos 14 nucleobases contiguas, en la que dicha subsecuencia corresponde a una secuencia contigua presente en SEQ ID NO 2.

Las subsecuencias adecuadas pueden seleccionarse de una secuencia que corresponde a una secuencia contigua presente en una de las secuencias de ácido nucleico seleccionadas del grupo que consiste en SEQ ID NO 14, SEQ ID NO 15, SEQ ID NO 16, SEQ ID NO 17, SEQ ID NO 18 y SEQ ID NO 19, o una secuencia seleccionada del grupo de secuencias (antisentido) mostradas en las Tablas 2 y 3 y (el complemento de) las secuencias de las secuencias destacadas (sombreadas) (de complementariedad entre ARNm de PCSK9 humano y de ratón) mostradas en la Figura 17.

Las subsecuencias preferidas comprenden o consisten en al menos 8, tal como al menos 10, tal como al menos 12, tal como al menos 13, tal como al menos 14 nucleobases contiguas que corresponden a una secuencia de nucleótidos equivalente presente en una cualquiera de SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6,

SEQ ID NO 7 o SEQ ID NO 8, más preferentemente SEQ ID NO 3 o SEQ ID NO 4.

El compuesto puede comprender además una secuencia de nucleobases flanqueante 5', o una secuencia flanqueante 3', o una secuencia flanqueante tanto 5' como 3' que son contiguas a dicha subsecuencia, en la que dichas secuencia o secuencias flanqueantes consisten en un total de entre 2 y 22 unidades de nucleobases, que cuando se combinan con dicha subsecuencia, la secuencia de nucleobases contiguas combinadas, es decir que consiste en dicha subsecuencia y dichas secuencia o secuencias flanqueantes, es complementaria de una región correspondiente de SEQ ID NO 2.

- La secuencia o las secuencias flanqueantes pueden consistir en un total de entre 2 y 22 unidades de nucleobases, tales como 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 o 21 nucleobases, o tal como entre 4 y 12 nucleobases o tal como entre 2 y 10 nucleobases, tal como entre 5 y 10 nucleobases, o entre 5 y 8 nucleobases, tal como entre 7 y 9 nucleobases.
- 15 En una realización dicha secuencia flanqueante comprende de al menos 2 unidades de nucleobases que están 5' de dicha subsecuencia.
 - En una realización dicha secuencia flanqueante comprende entre 1 y 6 unidades de nucleobases que están 5' de dicha subsecuencia.
 - En una realización dicha secuencia flanqueante comprende al menos 2 unidades de nucleobases que están 3' de dicha subsecuencia.
- En una realización dicha secuencia flanqueante comprende entre 1 y 6 unidades de nucleobases que están 3' de dicha subsecuencia.

Se prefiere que las secuencias de cada una de las secuencias flanqueantes formen cada una una secuencia contigua.

30 La secuencia de nucleobases contiguas combinada

5

20

35

40

45

50

La secuencia de nucleobases contiguas combinada, es decir que consiste en dicha subsecuencia y, si está presente, dicha secuencia o dichas secuencias flanqueantes, es complementaria de una secuencia correspondiente presente en SEQ ID NO 2.

En una realización, la secuencia flanqueante 3' y/o secuencia flanqueante 5' pueden, de forma independiente, comprender o consistir en entre 1 y 10 nucleobases, tal como 2, 3, 4, 5, 6, 7, 8 o 9 nucleobases, tal como entre 2 y 6 nucleobases, tal como 3 o 4 nucleobases, que pueden ser, en una realización, análogos de nucleótidos, tales como unidades de LNA, o en otra realización una combinación de nucleótidos y análogos de nucleótidos.

Regiones y conjugados de nucleobases

Se reconocerá que el compuesto de la invención que consiste en una secuencia contigua de nucleobases (es decir una secuencia de nucleobases), puede comprender componentes no nucleobases adicionales, tales como los conjugados a los que se hace referencia en el presente documento.

Por lo tanto, en una realización, el compuesto de la invención puede comprender tanto una región polinucleotídica, es decir una región de nucleobases, como una región no de nucleobases adicional. Cuando se hace referencia al compuesto de la invención que consiste en una secuencia de nucleobases, el compuesto puede comprender componentes no de nucleobases, tales como un componente conjugado.

Como alternativa, el compuesto de la invención puede consistir completamente en una región de nucleobases (contiguas).

- En una realización la parte y/o subsecuencia de nucleobases se selecciona de al menos 9, al menos 10, al menos 11, al menos 12, al menos 13, al menos 14 y al menos 15 nucleótidos o análogos de nucleótidos consecutivos, que son preferentemente complementarios del ácido nucleico o los ácidos nucleicos diana.
- En una realización, el compuesto de acuerdo con la invención no consiste en más de 22 nucleobases, tal como no más de 20 nucleobases, tal como no más de 18 nucleobases, tal como 15, 16 o 17 nucleobases, opcionalmente conjugadas con una o más entidades no nucleobases.

Antagonistas de ARN

El ácido nucleico que codifica una PCSK9 de mamífero (diana) puede estar en la orientación con sentido o antisentido, preferentemente en la orientación con sentido, tal como la ARNm de PCSK9 (de equivalente de ADNc).

En una realización preferida, el compuesto puede dirigirse a un ácido nucleico diana que es un transcrito o transcritos de ARN del gen o los genes que codifican las proteínas diana, tales como ARNm o pre ARNm.

El compuesto de la invención es un oligonucleótido antisentido.

5

- Convenientemente, cuando el oligonucleótido antisentido se introduce en la célula que expresa el gen de PCSK9, da como resultado la reducción del nivel de ARNm de PCSK9, dando como resultado la reducción del nivel de expresión de la PCSK9 en la célula.
- Los oligómeros que se dirigen al ARNm de PCSK9 pueden hibridar con cualquier sitio a lo largo del ácido nucleico de ARNm diana, tal como el líder 5' no traducido, exones, intrones y cola 3' no traducida. Sin embargo, se prefiere que los oligómeros que se dirigen al ARNm de PCSK9 hibriden con la forma de ARNm madura del ácido nucleico diana.
- 15 Cuando se diseñan como un inhibidor antisentido, por ejemplo, los oligonucleótidos de la invención se unen con el ácido nucleico diana y modulan la expresión de su proteína afín. Preferentemente, dicha modulación produce una inhibición de la expresión de al menos 10 % o 20 % en comparación con el nivel de expresión normal, más preferentemente al menos una inhibición de 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 % o 95 % en comparación con el nivel de expresión normal. Convenientemente, dicha modulación se ve cuando se usan concentraciones entre 5 y 20 25 nM del compuesto de la invención. En la misma realización o una diferente, la inhibición de la expresión es menor del 100 %, tal como menor del 98 % de inhibición, menor del 95 % de inhibición, menor del 90 % de inhibición, menor del 80 % de inhibición, tal como menor del 70 % de inhibición. La modulación del nivel de expresión se determina midiendo los niveles de proteínas, por ejemplo, mediante los métodos tales como SDS-PAGE seguido de trasferencia de western usando anticuerpos adecuados inducidos contra la proteína diana. Como alternativa, la 25 modulación de los niveles de expresión puede determinarse midiendo los niveles de ARNm, por ejemplo mediante transferencia de northern o RT-PCR cuantitativa. Cuando se mide mediante los niveles de ARNm, el nivel de regulación negativa cuando se usa una dosificación apropiada, tal como concentraciones entre 5 y 25 nM, es, en una realización, típicamente hasta un nivel de entre 10 y 20 % de los niveles normales en ausencia del compuesto de la invención.

30

50

65

nucleobases.

- El compuesto de acuerdo con la invención es un oligonucleótido antisentido.
- El compuesto no es un ARNip.
- 35 En una realización, el compuesto de la invención no comprende ARN (unidades).
- La longitud de un oligómero (o secuencia de nucleobases contiguas) se determinará por la que dé como resultado inhibición de la diana. Para una coincidencia perfecta con la diana, la secuencia de nucleótidos contiguos u oligómero tan pocas como 8 bases pueden ser suficientes, pero generalmente serán más, por ejemplo 10 o 12, y preferentemente entre 12 y 16. El tamaño máximo del oligómero se determinará por factores tales como el coste y la conveniencia de producción, la capacidad de manipular el oligómero e introducirlo en una célula que porte el ARNm diana, y también la afinidad de unión deseada y la especificidad diana. Si es demasiado largo, puede tolerar de forma indeseable un número mayor de desapareamientos, lo que puede conducir a unión inespecífica.
- 45 El compuesto (oligómero o compuesto oligomérico) de la invención consiste en o comprende entre 10 y 25 nucleobases, tales como 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,22, 23 o 24 nucleobases.
 - Son compuestos particularmente preferidos oligonucleótidos antisentido que comprenden de aproximadamente 12 a 25 nucleobases y en una realización son compuestos antisentido que comprenden 13-18 nucleobases tales como 13, 14, 15, 16 o 17 nucleobases. En una realización, el oligómero de acuerdo con la invención consiste en no más de 22 nucleobases. En una realización se prefiere que el compuesto de la invención comprenda menos de 20 nucleobases.
- En una realización, el oligómero de acuerdo con la invención consiste en no más de 22 nucleobases, tal como no más de 20 nucleobases, tal como no más de 18 nucleobases, tal como 15, 16 o 17 nucleobases, opcionalmente conjugadas con una o más entidades no de nucleobases, tal como un conjugado.
 - En una realización, el oligómero o secuencia de nucleobases contiguas tiene una longitud de entre 10 y 22 nucleobases.

60 En una realización, el oligómero o secuencia de nucleobases contiguas tiene una longitud de entre 10 y 18 nucleobases.

En una realización, el oligómero o secuencia de nucleobases contiguas tiene una longitud de entre 10 y 16

En una realización, el oligómero o secuencia de nucleobases contiguas tiene una longitud de entre 12 y 16 nucleobases.

En una realización, el oligómero o secuencia de nucleobases contiguas tiene una longitud de entre 12 y 14 nucleobases.

En una realización, el oligómero o secuencia de nucleobases contiguas tiene una longitud de entre 14 y 16 nucleobases.

10 En una realización, el oligómero o secuencia de nucleobases contiguas tiene una longitud de entre 14 y 18 nucleobases.

En una realización, el oligómero o secuencia de nucleobases contiguas tiene una longitud de 14, 15 o 16 nucleobases.

En una realización, el oligómero o secuencia de nucleobases contiguas tiene una longitud de entre 10 y 14 nucleobases, tales como 10, 11, 12, 13 o 13 nucleobases. Como se desvela en el documento US 60/977.409, dichos oligonucleótidos cortos, es decir "shortmer" son sorprendentemente eficaces en la regulación negativa diana *in vivo*.

20 Secuencias preferidas

5

15

25

30

35

45

50

55

Las secuencias diana de la invención pueden, en una realización no limitante, identificarse de la siguiente manera. En una primera etapa se identifican regiones conservadas en el gen diana. Entre esas regiones conservadas, se excluye normalmente cualquier secuencia con polimorfismos (a no ser que se requiera para un fin específico) ya que estas pueden afectar a la especificidad de unión y/o afinidad de un oligómero diseñado para unirse con una secuencia diana en esta región. Normalmente se excluye cualquier región con secuencias palindrómicas o repetidas. Las regiones restantes se analizan después y se identifican secuencias diana candidatas de longitud adecuada (tales como las longitudes de la secuencia de nucleobases contiguas/oligómero indicadas en el presente documento), por ejemplo, 10-25 nucleobases, más preferentemente 10, 11, 12, 13, 14, 15 o 16 nucleobases. Las secuencias diana que, basándose en análisis informático, probablemente formen estructuras tales como dímeros o estructuras en horquilla normalmente se excluyen.

Preferentemente estas secuencias diana candidatas muestran un alto grado de homología de secuencia en todo el reino animal, o al menos entre animales que probablemente se requieran para ensayos preclínicos. Esto permite el uso de las secuencias oligoméricas identificadas, y los oligómeros correspondientes tales como oligonucleótidos antisentido, para ensayar en modelos animales. Son particularmente útiles secuencias diana que están conservadas en ser humano, chimpancé, perro, rata, ratón y más preferentemente en ser humano y ratón (y/o rata).

Se proporcionar en la Tabla 3, en el presente documento, secuencias de nucleobases adecuadas, tales como secuencias de motivos de los oligómeros de la invención.

En una realización la secuencia de nucleobases contiguas es una secuencia de nucleótidos contiguos presente en una secuencia de ácido nucleico mostrada en la Tabla 3, tal como una secuencia de nucleótidos contiguos seleccionada del grupo que consiste en SEQ ID NO 40 a SEQ ID NO 393; SEQ ID 30 a SEQ ID 39; SEQ ID NO 3, 4 y 5.

Otros oligonucleótidos preferidos incluyen secuencias de 10, 11, 12, 13, 14, 15 y 16 nucleobases continuas (tales como contiguas) seleccionadas de una secuencia del grupo que consiste en SEQ ID NO 40 a SEQ ID NO 393; SEQ ID 30 a SEQ ID 39; SEQ ID NO 3, 4 y 5.

Algunos oligómeros preferidos, y secuencias de nucleobases de la invención se muestran en la Tabla 2.

En una realización la parte de nucleobases (tal como la secuencia de nucleobases contiguas) se selecciona de, o comprende, una de las siguientes secuencias: SEQ ID No 14, SEQ ID No 15, SEQ ID No 16, SEQ ID No 17, SEQ ID No 18 y SEQ ID No 19 o, en una realización una subsecuencia de la misma, tal como una subsecuencia de 10, 11, 12, 13, 14, 15 y 16 nucleobases continuas (tales como contiguas).

En una realización la secuencia de nucleobases contiguas es una secuencia de nucleótidos contiguos presente en una secuencia de ácido nucleico seleccionada del grupo que consiste en: SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, SEQ ID NO 31, SEQ ID NO 31, SEQ ID NO 32, SEQ ID NO 33, SEQ ID NO 34, SEQ ID NO 35, SEQ ID NO 36, SEQ ID NO 37, SEQ ID NO 38 y SEQ ID NO 39, o, en una realización una subsecuencia de la misma, tal como una subsecuencia de 10, 11, 12, 13, 14, 15 y 16 nucleobases continuas (tales como contiguas).

En una realización la nucleobase contigua u oligómero se selecciona del grupo que consiste en: SEQ ID NO 10, SEQ ID NO 20, SEQ ID NO 11, SEQ ID NO 9, SEQ ID NO 21, SEQ ID NO 22, SEQ ID NO 23, SEQ ID NO 24, SEQ

ID NO 25, SEQ ID NO 26, SEQ ID NO 27, SEQ ID NO 28 y SEQ ID NO 29 o, en una realización una subsecuencia de la misma, tal como una subsecuencia de 10, 11, 12, 13, 14, 15 y 16 nucleobases continuas (tales como contiguas). En una realización la parte de nucleobase se selecciona de, o comprende, una de las siguientes secuencias: SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7 y SEQ ID NO 8, (preferentemente SEQ ID NO 3 y SEQ ID NO 4) o, en una realización una subsecuencia de la misma, tal como una subsecuencia de 10, 11, 12, 13, 14, 15 y 16 nucleobases continuas (tales como contiguas).

Otros oligonucleótidos preferidos incluyen secuencias de 10, 11, 12, 13, 14, 15 y 16 nucleobases continuas (tales como contiguas) seleccionadas de una secuencia del grupo que consiste en SEQ ID NO 9, 10 y 11. Un aspecto preferido adicional de la invención se dirige a compuestos que consisten en o comprenden SEQ ID NO 9, 10 u 11.

Se entenderá por el experto en la materia que en una realización cuando se hace referencia a secuencias oligonucleotídicas de gapmer específicas, tales como las proporcionadas en el presente documento (por ejemplo SEQ ID NOS 9, 10 y 11) cuando los enlaces son enlaces fosforotioato, pueden usarse enlaces alternativos, tales como los desvelados en el presente documento, por ejemplo enlaces de fosfato, particularmente para enlaces entre unidades de análogos de nucleótidos, tales como LNA. De forma similar, cuando se hace referencia a secuencias oligonucleotídicas de gapmer específicas, tales como las proporcionadas en el presente documento (por ejemplo SEQ ID NOS 9, 10 y 11), cuando los restos C se anotan como citosina 5'metil modificada, en una realización, una o más de las C presentes en el oligonucleótido pueden ser restos de C no modificados.

20

25

5

10

15

En una realización la secuencia de nucleobases consiste en o comprende una secuencia que es, o corresponde a, una secuencia seleccionada del grupo que consiste en: SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7 y SEQ ID NO 8, o una secuencia contigua de al menos 12, 13, 14, 15 o 16 nucleobases consecutivas presentes en dicha secuencia, en la que los nucleótidos presentes en el compuesto pueden sustituirse con un análogo de nucleótido correspondiente y en el que dicho compuesto puede comprender uno, dos o tres desapareamientos contra dicha secuencia seleccionada.

En una realización el compuesto de acuerdo con la invención consiste en o comprende SEQ ID NO 3 o una secuencia de nucleobases equivalente.

30

En una realización el compuesto de acuerdo con la invención consiste en o comprende SEQ ID NO 4 o una secuencia de nucleobases equivalente.

En una realización el compuesto de acuerdo con la invención consiste en o comprende SEQ ID NO 5 o una secuencia de nucleobases equivalente.

En una realización el compuesto de acuerdo con la invención consiste en o comprende SEQ ID NO 6 o una secuencia de nucleobases equivalente.

40 En una realización el compuesto de acuerdo con la invención consiste en o comprende SEQ ID NO 7 o una secuencia de nucleobases equivalente.

En una realización el compuesto de acuerdo con la invención consiste en o comprende SEQ ID NO 8 o una secuencia de nucleobases equivalente.

45

En una realización el compuesto de acuerdo con la invención consiste en o comprende SEQ ID NO 9.

En una realización el compuesto de acuerdo con la invención consiste en o comprende SEQ ID NO 10.

50 En una realización el compuesto de acuerdo con la invención consiste en o comprende SEQ ID NO 11.

En una realización el compuesto de acuerdo con la invención consiste en o comprende SEQ ID NO 30, SEQ ID NO 31, SEQ ID NO 32, SEQ ID NO 33, SEQ ID NO 34, SEQ ID NO 35, SEQ ID NO 36, SEQ ID NO 37, SEQ ID NO 38, o SEQ ID NO 39.

55

Otros oligómeros de la invención incluyen secuencias de 10, 11, 12, 13, 14, 15 y 16 nucleobases continuas (tales como contiguas) seleccionadas de una de las SEQ ID enumeradas anteriormente o los compuestos ID n.º como se indica en los ejemplos.

- Otros oligómeros de la invención incluyen secuencias de 10, 11, 12, 13, 14, 15 y 16 nucleobases continuas (tales como contiguas) seleccionadas de una secuencia del grupo que consiste en SEQ ID No 14, SEQ ID No 15, SEQ ID No 16, SEQ ID No 17, SEQ ID No 18 y SEQ ID No 19, o una secuencia seleccionada del grupo de secuencias (antisentido) mostradas en la Tabla 2 o en la Tabla 3.
- Otros oligómeros de la invención incluyen secuencias de 10, 11, 12, 13, 14, 15 y 16 nucleobases continuas (tales como contiguas) seleccionadas de una secuencia del grupo que consiste en SEQ ID NO 3, SEQ ID NO 4, SEQ ID

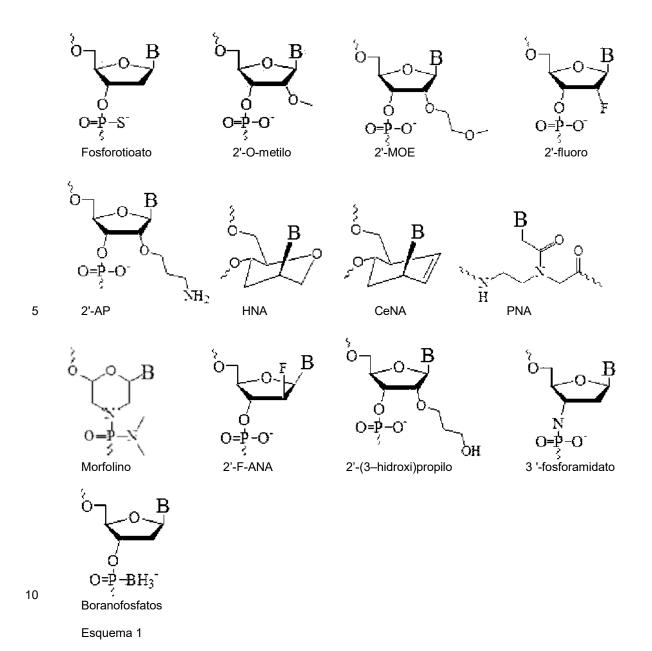
NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, SEQ ID NO 47, SEQ ID NO 49, SEQ ID NO 54, SEQ ID NO 56, SEQ ID NO 118, SEQ ID NO 136 y SEQ ID NO 139.

- Los compuestos preferidos consisten en 10, 11, 12, 13, 14, 15 o 16 nucleobases continuas (tales como contiguas) que corresponden a una secuencia de nucleótidos presente en una secuencia seleccionada del grupo que consiste en SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7 y SEQ ID NO 8, o preferentemente SEQ ID NO 3 y SEQ ID NO 4.
- Se muestran compuestos preferidos adicionales en las Tablas 2 y 3 del documento US 60/828.735 y la Tabla 4 del documento US 60/972.932, que se incorporan específicamente por la presente en la presente memoria descriptiva (como se indica en la lista específica de realizaciones enumerada en el presente documento).
 - Convenientemente, el oligómero de acuerdo con la invención consiste en o comprende una de las secuencias SEQ ID anteriormente mencionadas.

Complementariedad y desapareamientos

El compuesto de la invención consiste en una secuencia de nucleobases (contiguas) que es complementaria de una región correspondiente (contigua) de la SEQ ID NO 2.

- En referencia a los principios por los que el compuesto puede inducir su acción terapéutica, la diana de la presente invención puede ser el ARNm derivado de la secuencia correspondiente presente en el ácido nucleico que codifica el polipéptido de PCSK9, tal como SEQ ID NO 2 o variantes alélicas de origen natural del mismo.
- Se reconocerá que cuando se hace referencia a un motivo de secuencias de nucleótidos preferido o secuencia de nucleótidos, que consiste solamente en nucleótidos, los compuestos de la invención que se definen por esa secuencia pueden comprender un análogo de nucleótido correspondiente en lugar de uno o más de los nucleótidos presentes en dicha secuencia, tales como unidades de LNA u otros análogos de nucleótidos que elevan la T_m de la doble cadena de oligonucleótido/diana, tal como los análogos de nucleótidos descritos posteriormente, particularmente LNA y/o nucleótidos 2' sustituidos (2' modificados).


Análogos de nucleótidos

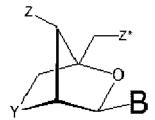
15

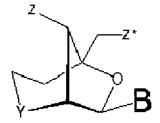

20

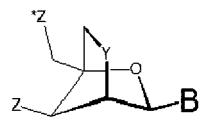
50

- En una realización, al menos una de las nucleobases presentes en el oligómero es una nucleobase modificada seleccionada del grupo que consiste en 5-metilcitosina, isocitosina, pseudoisocitosina, 5-bromouracilo, 5-propiniluracilo, 6-aminopurina, 2-aminopurina, inosina, diaminopurina y 2-cloro-6-aminopurina.
- Se reconocerá que cuando se hace referencia a un motivo de secuencia de nucleótidos o secuencia de nucleótidos preferido, que consiste solamente en nucleótidos, los oligómeros de la invención que se definen por esa secuencia pueden comprender un análogo de nucleótido correspondiente en lugar de uno o más de los nucleótidos presentes en dicha secuencia, tales como unidades de LNA u otros análogos de nucleótidos, que aumentan la estabilidad de doble cadena/T_m de la doble cadena de oligómero/diana (es decir análogos de nucleótidos potenciadores de la afinidad).
- 45 Además, los análogos de nucleótidos pueden potenciar la estabilidad del oligómero in vivo.
 - La incorporación de análogos de nucleótidos potenciadores de la afinidad en la secuencia de nucleobases del oligómero, tales como LNA o azúcares 2'-sustituidos, preferentemente LNA, puede permitir que se reduzca el tamaño del oligonucleótido de unión específica, y también puede reducir el límite superior del tamaño del oligonucleótido antes de que tenga lugar unión no específica o aberrante. Un análogo de nucleótidos potenciador de la afinidad es uno que, cuando se inserta en la secuencia de nucleobases del oligómero da como resultado una T_m aumentada del oligómero cuando se forma en una doble cadena con un ARN complementario (tal como la diana de ARNm), en comparación con un oligómero equivalente que comprende un nucleótido de ADN en lugar del análogo de nucleótido potenciador de la afinidad. Se proporcionan ejemplos de análogos de nucleótidos adecuados y preferidos por el documento WO2007/031091 o se hace referencia a ellos en el mismo.
 - En algunas realizaciones al menos uno de dichos análogos de nucleótidos es 2'-MOE-ARN, tal como 2, 3, 4, 5, 6, 7 u 8 unidades de nucleobases de 2'-MOE-ARN.
- 60 En algunas realizaciones al menos uno de dichos análogos de nucleótidos es 2'-fluoro-ADN, tal como 2, 3, 4, 5, 6, 7 u 8 unidades de nucleobases 2'-fluoro-ADN.
- Se describen ejemplos específicos de análogos de nucleósidos que pueden utilizarse en los oligómeros de la presente invención por ejemplo en Freier y Altmann; Nucl. Acid Res., 1997, 25, 4429-4443 y Uhlmann; Curr. Opinion in Drug Development, 2000, 3(2), 293-213, y en el Esquema 1 y 2.

El término "LNA" se refiere a un análogo de nucleótido bicíclico, conocido como "ácido nucleico bloqueado". Puede referirse a un monómero de LNA o, cuando se usa en el contexto de un "oligonucleótido ULNA" se refiere a un oligonucleótido que contiene uno o más de dichos análogos de nucleótidos bicíclicos. El LNA usado en los compuestos oligonucleotídicos de la invención preferentemente tiene la estructura de la fórmula general

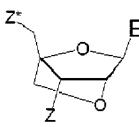



en la que X e Y se seleccionan independientemente entre los grupos -O-, -S-, -N(H)-, N(R)-, -CH₂- o -CH- (si es parte de un doble enlace), -CH₂-O-, -CH₂-S-, -CH₂-N(H)-, -CH₂-N(R)-, -CH₂-CH₂- o -CH₂-CH- (si es parte de un doble enlace), -CH=CH-, en la que R se selecciona de hidrógeno y alquilo C₁₋₄; Z y Z* se seleccionan independientemente de entre un enlace internucleosídico, un grupo terminal o un grupo protector; B constituye un resto de base

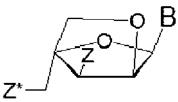

20

25 nucleotídica natural o no natural; y los grupos asimétricos pueden encontrarse en cualquiera de las orientaciones.

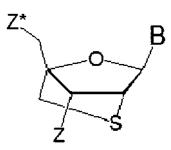
Preferentemente, el LNA usado en el oligómero de la invención comprende al menos una unidad de LNA de acuerdo con cualquiera de las fórmulas



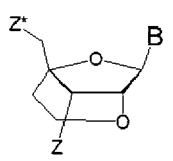
en las que Y es -O-, -S-, -NH-, o N(R^H); Z y Z* se seleccionan independientemente de entre un enlace internucleosídico, un grupo terminal o un grupo protector; B constituye un resto de base nucleotídica natural o no natural; y R^H se selecciona de hidrógeno y alquilo C₁₋₄.


Preferentemente, el ácido nucleico bloqueado (LNA) usado en el compuesto oligomérico, tal como un oligonucleótido antisentido, de la invención comprende al menos un nucleótido que comprende una unidad de ácido nucleico bloqueado (LNA) de acuerdo con cualquiera de las fórmulas mostradas en el Esquema 2 del documento WO2007/031091.

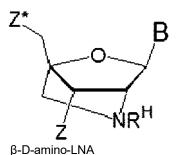
Preferentemente, el LNA usado en el oligómero de la invención comprende enlaces internucleosídicos seleccionados de -O- $P(O)_2$ -O-, -O-P(O,S)-O-, -O- $P(S)_2$ -O-, -S- $P(O)_2$ -O-, -S-P(O,S)-O-, -S-P(O,S)-O-, -O-P(O,S)-O-, -O-P(O,


Se muestran unidades de LNA específicamente preferidas en el Esquema 2:

β-D-oxi-LNA



α-L-oxi-LNA



25 β-D-tio-LNA

20

β-D-ENA

30 Esquema 2

La expresión "tio-LNA" comprende un nucleótido bloqueado en el que al menos una de X o Y en la fórmula general anterior se selecciona de S o -CH₂-S-. Tio-LNA puede estar en configuración tanto beta-D como alfa-L.

La expresión "amino-LNA" comprende un nucleótido bloqueado en el que al menos uno de X o Y en la fórmula general anterior se selecciona de -N(H)-, N(R)-, CH₂-N(H)-, y -CH₂-N(R)- donde R se selecciona de hidrógeno y alquilo C₁₋₄. Amino-LNA puede estar en configuración tanto beta-D como alfa-L.

La expresión "oxi-LNA" comprende un nucleótido bloqueado en el que al menos uno de X o Y en la fórmula general anterior representa -O- o -CH₂-O-. Oxi-LNA puede estar en configuración tanto beta-D como alfa-L.

La expresión "ena-LNA" comprende un nucleótido bloqueado en el que Y en la fórmula general anterior es -CH₂-O- (donde el átomo de oxígeno de -CH₂-O- se une a la posición 2' relativa a la base B).

En una realización preferida LNA se selecciona de beta-D-oxi-LNA, alfa-L-oxi-LNA, beta-D-amino-LNA y beta-D-tio-LNA, en particular beta-D-oxi-LNA.

10

65

Preferentemente, dentro del compuesto de acuerdo con la invención, tal como un oligonucleótido antisentido, que comprende LNA, todos los restos C de LNA son 5'metil-citosina.

- Preferentemente las unidades de LNA del compuesto, tales como un oligonucleótido antisentido, de la invención se seleccionan de uno o más de los siguientes: tio-LNA, amino-LNA, oxi-LNA, ena-LNA y/o alfa-LNA en las configuraciones D-beta o L-alfa o combinaciones de las mismas. Beta-D-oxi-LNA es un LNA preferido para su uso en los compuestos oligoméricos de la invención. Tio-LNA también puede preferirse para su uso en los compuestos oligoméricos de la invención. Amino-LNA también puede preferirse para su uso en los compuestos oligoméricos de la invención. Oxi-LNA también puede preferirse para su uso en los compuestos oligoméricos de la invención. Alfa-LNA también puede preferirse para su uso en los compuestos oligoméricos de la invención. Alfa-LNA también puede preferirse para su uso en los compuestos oligoméricos de la invención.
- El ácido nucleico bloqueado (LNA) usado en el compuesto, tal como un oligonucleótido antisentido, de la invención tiene la estructura de la fórmula general mostrada en el Esquema 1 del documento WO2007/031091. Las expresiones "tio-LNA", "amino-LNA", "oxi-LNA", "ena-LNA", "alfa-L-LNA", "derivados de LNA ", "nucleótido bloqueado " y "nucleobase bloqueada" también se usan como se define en el documento WO2007/031091.
- Convenientemente, cuando la secuencia de nucleobases del oligómero, o la secuencia de nucleobases contiguas, no es completamente complementaria de la región correspondiente de la secuencia diana de PCSK9, en una realización, cuando el oligómero comprende análogos de nucleótidos potenciadores de afinidad, dichos análogos de nucleótidos forman un complemento con su nucleótido correspondiente en la diana de PCSK9.
- El oligómero puede por tanto comprender o consistir en una secuencia sencilla de los nucleótidos naturales, preferentemente 2'-desoxinucleótidos (denominados en general en el presente documento "ADN"), pero también posiblemente ribonucleótidos (denominados en el presente documento en general "ARN"), o podría comprender uno o más (y posiblemente consistir completamente en) "análogos" de nucleótidos.
- Los "análogos" de nucleótidos son variantes de nucleótidos de ADN o ARN naturales en virtud de modificaciones en el azúcar y/o base y/o partes de fosfato. El término "nucleobase" se usará para abarcar nucleótidos naturales (tipo ADN o ARN) así como "análogos" de los mismos. Los análogos podrían en principio ser únicamente "silenciosos" o "equivalentes" a los nucleótidos naturales en el contexto del oligonucleótido, es decir no tener efecto funcional en la manera en que el oligonucleótido actúa con respecto a la expresión de PCSK9. Dichos análogos "equivalentes" pueden no obstante ser útiles si, por ejemplo, son más fáciles o más baratos de fabricar, o son más estables frente a condiciones de almacenamiento o fabricación, o presentan un marcador o una etiqueta. Preferentemente, sin embargo, los análogos tendrán un efecto funcional en la manera en que el oligonucleótido actúa para inhibir la expresión; por ejemplo produciendo afinidad de unión aumentada por la diana y/o resistencia aumentada para nucleasas intracelulares y/o facilidad aumentada de transporte a la célula.
- Los ejemplos de dicha modificación del nucleótido incluyen modificación del resto de azúcar para proporcionar un grupo 2'-sustituyente o para producir una estructura enlazada (ácido nucleico bloqueado) que potencia la afinidad de unión y probablemente también proporcione alguna resistencia a nucleasa aumentada; modificación del enlace internucleotídico de su fosfodiéster normal a uno que es más resistente a ataque de nucleasa, tal como fosforotioato o boranofosfato, siendo estos dos escindibles por RNasa H, también permiten esa vía de inhibición antisentido en la modulación de la expresión de PCSK9.
 - En algunas realizaciones, el oligómero comprende de 3 a 8 análogos de nucleótidos, por ejemplo 6 o 7 análogos de nucleótidos. En las realizaciones con mucho más preferidas, al menos uno de dichos análogos de nucleótidos es un ácido nucleico bloqueado (LNA); por ejemplo al menos 3 o al menos 4, o al menos 5, o al menos 6, o al menos 7, u 8, de los análogos de nucleótidos pueden ser LNA. En algunas realizaciones todos los análogos de nucleótidos pueden ser LNA.

En algunas realizaciones los análogos de nucleótidos presentes dentro del oligómero de la invención en las regiones A y C mencionadas en el presente documento se seleccionan independientemente de, por ejemplo: unidades de 2'-O-alquil-ARN, unidades de 2'-amino-ADN, unidades de 2'-fluoro-ADN, unidades de LNA, unidades de ácido arabino nucleico (ANA), unidades de 2'-fluoro-ANA, unidades de HNA, unidades de INA (ácido nucleico intercalante) y unidades de 2'MOE. También se considera que los análogos de nucleótidos presentes en un oligómero de la invención son todos iguales, aunque permitiendo una variación de bases.

Son análogos de nucleótidos preferidos 2'-O-metoxietil-ARN (2'MOE), monómeros de 2'-fluoro-ADN y LNA y como tal el oligonucleótido de la invención puede comprender análogos de nucleótidos que se seleccionan independientemente de estos tres tipos de análogos, o puede comprender solamente un tipo de análogo seleccionado de los tres tipos.

Los compuestos de acuerdo con la invención son, en una realización, los que consisten en o comprenden una secuencia seleccionada de SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7 y SEQ ID NO 8, o preferentemente SEQ ID NO 3 o SEQ ID NO 4, en los que, en una realización los nucleótidos presentes en el compuesto pueden sustituirse con un análogo de nucleótido correspondiente,

Son compuestos preferidos de acuerdo con la invención los que consisten en o comprenden SEQ ID NO 3 o 4, en los que contienen al menos un análogo de ácido nucleico, en el que en una realización, las unidades de LNA pueden sustituirse con un análogo de nucleótido correspondiente alternativo.

Se prefieren análogos de nucleótidos que aumenten la T_m del oligonucleótido/ácido nucleico diana, en comparación con el nucleótido equivalente.

Preferentemente, el compuesto de acuerdo con la invención comprende al menos un análogo de nucleótido, tal como unidad de ácido nucleico bloqueado (LNA), tal como 4, 5, 6, 7, 8, 9 o 10 análogos de nucleótidos, tales como unidades de ácido nucleico bloqueado (LNA), preferentemente entre 4 y 9 análogos de nucleótidos, tales como unidades de LNA, tales como 6-9 análogos de nucleótidos, tales como unidades de LNA, más preferentemente 6, 7 u 8 análogos de nucleótidos, tales como unidades de LNA.

El término LNA se usa como se define en la solicitud de PCT WO2007/031091.

5

10

15

20

30

35

50

55

60

Preferentemente las unidades de LNA comprenden al menos una unidad o unidades beta-D-oxi-LNA tales como 2, 3, 4, 5, 6, 7, 8, 9 o 10 unidades de beta-D-oxi-LNA. El compuesto de la invención, tal como el oligonucleótido antisentido, puede comprender más de un tipo de unidad de LNA. Convenientemente, el compuesto puede comprender tanto beta-D-oxi-LNA como una o más de las siguientes unidades de LNA: tio-LNA, amino-LNA, oxi-LNA, ena-LNA y/o alfa-LNA en las configuraciones D-beta o L-alfa o combinaciones de las mismas.

Preferentemente, el compuesto, tal como un oligonucleótido antisentido, puede comprender ambos análogos de nucleótidos, tales como unidades de LNA y unidades de ADN. Preferentemente el total combinado de nucleobases, tales como, unidades de LNA y ADN, es entre 10 y 20, tal como 14-20, tal como entre 15 y 18, tal como 15, 16 o 17 unidades de nucleobases, o es un shortmer como se indica en el presente documento. Preferentemente la relación de análogos de nucleótidos con respecto a ADN presente en el compuesto oligomérico de la invención es de entre 0,3 y 1, más preferentemente entre 0,4 y 0,9, tal como entre 0,5 y 0,8.

Preferentemente, el compuesto de la invención, tal como un oligonucleótido antisentido, consiste en un total de 10 - 25, o 12-25 nucleótidos y/o análogos de nucleótidos, en los que dicho compuesto comprende una subsecuencia de al menos 8 nucleótidos o análogos de nucleótidos, localizándose dicha subsecuencia dentro de (es decir correspondiente a) una secuencia seleccionada del grupo que consiste en SEQ ID No 14, SEQ ID No 15, SEQ ID No 16, SEQ ID No 17, SEQ ID No 18 y SEQ ID No 19.

En un aspecto de la invención, los nucleótidos (y/o análogos de nucleótidos) se unen entre sí por medio de un grupo de fosforotioato. Una realización interesante de la invención se dirige a compuestos seleccionados del grupo que consiste en SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7 y SEQ ID NO 8, en el que cada grupo de enlace dentro de cada compuesto es un grupo de fosforotioato. Dichas modificaciones se indican por el subíndice S.

Las tablas indicadas en el presente documento proporcionan secuencias de nucleobases adicionales de compuestos de la invención.

En realizaciones adicionales, el compuesto de la invención, tal como el oligonucleótido antisentido de la invención puede comprender o consistir en 13, 14, 15, 16, 17, 18, 19, 20 o 21 nucleobases.

Preferentemente el compuesto de acuerdo con la invención, tal como un oligonucleótido antisentido, comprende o consiste en 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 o 15 análogos de nucleótidos, tales como unidades de LNA, en particular 4, 5, 6, 7, 8, 9 o 10 análogos de nucleótidos, tales como unidades de LNA, tales como entre 1 y 10

análogos de nucleótidos, tales como unidades de LNA tales como entre 2 y 8 análogos de nucleótidos tales como unidades de LNA.

Reclutamiento de RNAsaH

5

10

20

Es preferible que dicha subsecuencia o secuencia de nucleobases combinadas comprenda una secuencia continua (contigua) de al menos 7 restos de nucleobases, tales como al menos 8 o al menos 9 restos de nucleobases, incluyendo 7, 8 o 9 nucleobases, que, cuando se forman en una doble cadena con el ARN diana complementario correspondiente a cada uno de dichos polinucleótidos que codifican dicha PCSK9 de mamífero sean capaces de reclutar RNasaH, tales como nucleótidos de ADN.

El tamaño de la secuencia contigua que es capaz de reclutar RNAsaH puede ser mayor, tal como 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 o 20 unidades de nucleobases.

La secuencia contigua que es capaz de reclutar RNAsaH puede ser región B como se indica en el contexto de un gapmer como se describe en el presente documento.

El documento EP 1 222 309 proporciona métodos *in vitro* para determinar actividad RNasaH, que puede usarse para determinar la capacidad de reclutar RNasaH. Un compuesto se considera capaz de reclutar RNasaH si, cuando se proporciona con la diana de ARN complementaria, tiene una velocidad inicial, como se mide en pmol/l/min, de al menos 1 %, tal como al menos 5 %, tal como al menos 10 % o menos del 20 % del oligonucleótido solamente de ADN equivalente, sin sustituciones 2', con grupos de enlace de fosforotioato entre todos los nucleótidos en el oligonucleótido, usando la metodología proporcionada por el Ejemplo 91 - 95 del documento EP 1 222 309.

Un compuesto se considera esencialmente incapaz de reclutar RNasaH si, cuando se proporciona con la diana de ARN complementaria, y RNasaH, la velocidad inicial de RNasaH, como se mide en pmol/l/min, es menor del 1 %, tal como menor del 5 %, tal como menor del 10 % o menor del 20 % de la velocidad inicial determinada usando el oligonucleótido de solamente ADN equivalente, sin sustituciones 2', con grupos de enlace de fosforotioato entre todos los nucleótidos en el oligonucleótido, usando la metodología proporcionada por el Ejemplo 91 - 95 del documento EP 1 222 309.

Sin embargo, también se reconoce que los oligonucleótidos antisentido pueden actuar mediante degradación no mediada por RNasaH de ARNm mediada, tal como mediante impedimento estérico de la traducción, u otros métodos.

35

El compuesto de la invención puede comprender una secuencia de nucleobases que comprende tanto nucleótidos como análogos de nucleótidos, y puede estar en forma de un gapmer, un headmer o un mixmer.

Un headmer se define por un tramo contiguo de análogos de nucleótidos en el extremo 5' seguido de un tramo contiguo de ADN o unidades de nucleobases modificadas reconocibles y escindibles por la RNasaH hacia el extremo 3' (tal como al menos 7 de dichas nucleobases), y un tailmer se define por un tramo contiguo de ADN o monómeros modificados reconocibles y escindibles por la RNasaH en el extremo 5' (tal como al menos 7 de dichas nucleobases), seguido de un tramo contiguo de análogos de nucleótidos hacia el extremo 3'. Otras quimeras de acuerdo con la invención, denominadas mixmers que consisten en una composición alternativa de ADN o monómeros modificados reconocibles y escindibles por RNasaH y análogos de nucleótidos. Algunos análogos de nucleótidos también pueden ser capaces de mediar en la unión y escisión de RNasaH. Ya que α-L-LNA recluta actividad RNasaH en un cierto grado, podría requerirse huecos más pequeños de ADN o monómeros modificados reconocibles y escindibles por la RNasaH para la construcción de gapmer, y podría introducirse más flexibilidad en la construcción de mixmer.

50

Gapmers

Preferentemente, el compuesto de la invención es un oligonucleótido antisentido que es un gapmer.

Preferentemente el gapmer comprende una secuencia de (poli)nucleobases de fórmula (5' a 3'), A-B-C (y opcionalmente D), en la que A (región 5') consiste en o comprende al menos un análogo de nucleótido, tal como al menos una unidad de LNA, tal como entre 1 y 6 análogos de nucleótidos, tales como unidades de LNA, preferentemente entre 2 y 5 análogos de nucleótidos, tales como 2-5 unidades de LNA, tales como 3 o 4 análogos de nucleótidos, tales como 3 o 4 unidades de LNA y B (dominio central), preferentemente inmediatamente 3' (es decir contiguo) de A, consiste en o comprende al menos una unidad de azúcar de ADN, tal como 1-12 unidades de ADN, preferentemente entre 4 y 12 unidades de ADN, más preferentemente entre 6 y 10 unidades de ADN, tal como entre 7 y 10 unidades de ADN, más preferentemente 8, 9 o 10 unidades de ADN; y C (región 3') preferentemente inmediatamente 3' de B, consiste en o comprende en al menos un análogo de nucleótido, tal como al menos una unidad de LNA, tal como entre 1 y 6 análogos de nucleótidos, tal como entre 2 y 5 unidades de LNA, más preferentemente 3 o 4 análogos de nucleótidos, tales como 3 o 4 unidades de LNA. Se desvelan diseños de gapmer preferidos en el documento WO2004/046160.

	Los diseños de gapmer preferidos incluyen, cuando:
	A Consiste en 3 o 4 análogos de nucleótidos consecutivos
5	B Consiste en 7 a 10 nucleótidos de ADN consecutivos o nucleobases equivalentes que son capaces de reclutar RNAsaH
	C Consiste en 3 o 4 análogos de nucleótidos consecutivos
10	D Consiste, cuando está presente, en un nucleótido de ADN.
	O cuando
15	A Consiste en 3 análogos de nucleótidos consecutivos
10	B Consiste en 9 nucleótidos de ADN consecutivos o nucleobases equivalentes que son capaces de reclutar RNAsaH
20	C Consiste en 3 análogos de nucleótidos consecutivos
20	D Consiste, cuando está presente, en un nucleótido de ADN.
	O cuando
25	A Consiste en 4 análogos de nucleótidos consecutivos
	B Consiste en 8 nucleótidos de ADN consecutivos o nucleobases equivalentes que son capaces de reclutar RNAsaH
30	C Consiste en 4 análogos de nucleótidos consecutivos
	D Consiste, cuando está presente, en un nucleótido de ADN.
35	O cuando
	A Consiste en 2 análogos de nucleótidos consecutivos
40	B Consiste en 8 nucleótidos de ADN consecutivos o nucleobases equivalentes que son capaces de reclutar RNAsaH
. •	C Consiste en 3 análogos de nucleótidos consecutivos
	D Consiste, cuando está presente, en un nucleótido de ADN.
45	O cuando
	A Consiste en 3 análogos de nucleótidos consecutivos
50	B Consiste en 8 nucleótidos de ADN consecutivos o nucleobases equivalentes que son capaces de reclutar RNAsaH
	C Consiste en 2 análogos de nucleótidos consecutivos
55	D Consiste, cuando está presente, en un nucleótido de ADN.
50	O cuando
	A Consiste en 2 análogos de nucleótidos consecutivos
60	B Consiste en 8 nucleótidos de ADN consecutivos o nucleobases equivalentes que son capaces de reclutar RNAsaH
	C Consiste en 2 análogos de nucleótidos consecutivos
35	D Consiste, cuando está presente, en un nucleótido de ADN

Los nucleótidos de ADN en el dominio central (B) pueden sustituirse con uno o más, o incluso todos los nucleótidos de ADN pueden sustituirse con una nucleobase, incluyendo análogos de nucleótidos que son capaces de reclutar RNAsa H.

5 En las realizaciones anteriores en referencia a diseños de gapmer, la región de hueco 'B' puede ser como alternativa de 7, 8, 9 o 10 nucleótidos de ADN consecutivos o nucleobases equivalentes que son capaces de reclutar RNAsaH.

En un oligonucleótido gapmer, es altamente preferible que cualquier desapareamiento no esté dentro del dominio central (B) anterior, esté al menos dentro de un tramo mínimo de 7 nucleobases continuas del dominio central, tales como 7, 8 o 9 o 10 nucleobases continuas, que preferentemente comprende o consiste en unidades de ADN.

En un oligonucleótido gapmer, se prefiere que cualquier desapareamiento esté localizado hacia el extremo 5' o 3' del gapmer. Por tanto, se prefiere que en un oligonucleótido gapmer que comprende desapareamientos con el ARNm diana, que dichos desapareamientos estén localizados en las regiones 5' (A) y/o 3' (C) y/o dichos desapareamientos estén entre la unidad de nucleótido 5' o 3' de dicho oligonucleótido gapmer y molécula diana.

Preferentemente, el gapmer, de fórmula A-B-C, comprende además una región adicional, D, que consiste en o comprende, preferentemente consiste en, uno o más restos de azúcares de ADN terminales de la región 3' (C) del compuesto oligomérico, tales como entre uno y tres restos de azúcares de ADN, incluyendo entre 1 y 2 restos de azúcares de ADN, más preferentemente 1 resto de azúcar de ADN.

Shortmers

10

15

20

30

35

40

45

50

55

La solicitud provisional de Estados Unidos 60/977409, se refiere a oligonucleótidos "shortmer", que, en una realización particularmente, son compuestos oligoméricos preferidos de acuerdo con la presente invención.

En una realización el oligómero que consiste en una secuencia de nucleobases contiguas de un total de 10, 11, 12, 13 o 14 unidades de nucleobases, en el que la secuencia de nucleobases contiguas es de fórmula (5' - 3'), A-B-C, u opcionalmente A-B-C-D, en la que: A consiste en 1, 2 o 3 unidades de LNA; B consiste en 7, 8 o 9 unidades de nucleobases contiguas que son capaces de reclutar RNAsaH cuando se forman en una doble cadena con una molécula de ARN complementaria (tal como una diana de ARNm); y C consiste en 1, 2 o 3 unidades de LNA. Cuando está presente, D consiste en una única unidad de ADN. En una realización, no hay ninguna región D. En una realización A consiste en 1 unidad de LNA. En una realización A consiste en 2 unidades de LNA. En una realización A consiste en 3 unidades de LNA. En una realización C consiste en 1 unidad de LNA. En una realización C consiste en 2 unidades de LNA. En una realización C consiste en 3 unidades de LNA. En una realización B consiste en 7 unidades de nucleobases. En una realización B consiste en 8 unidades de nucleobases. En una realización B consiste en 9 unidades de nucleobases. En una realización B comprende entre 1 y 9 unidades de ADN, tales como 2, 3, 4, 5, 6, 7 u 8 unidades de ADN. En una realización B consiste en unidades de ADN. En una realización B comprende al menos una unidad de LNA que es la configuración alfa-L, tal como 2, 3, 4, 5, 6, 7, 8 o 9 unidades de LNA en la configuración alfa-L. En una realización B comprende al menos una unidad de alfa-L-oxi LNA o en la que todas las unidades de LNA en la configuración alfa-L son unidades de alfa-L-oxi LNA. En una realización el número de nucleobases en A-B-C se selecciona del grupo que consiste en: 1-8-2, 2-8-1, 2-8-2, 3-8-3, 2-8-3, 3-8-2. En una realización el número de nucleobases en A-B-C se selecciona del grupo que consiste en: 1-9-1, 1-9-2, 2-9-1, 2-9-2, 3-9-2 y 2-9-3. En una realización el número de nucleobases en A-B-C se selecciona del grupo que consiste en: 2-7-1, 1-7-2, 2-7-2, 3-7-3, 2-7-3, 3-7-2, 3-7-4 y 4-7-3. En una realización tanto A como C consisten ambos en dos unidades de LNA cada una, y B consiste en 8 unidades de nucleobases, preferentemente unidades de ADN. En una realización las unidades de LNA de A y C se seleccionan independientemente de oxi-LNA, tio-LNA y amino-LNA, en una de las configuraciones beta-D y alfa-L o combinaciones de las mismas. En una realización las unidades de LNA de A y C son beta-D-oxi-LNA. En una realización los enlaces internucleosídicos se seleccionan independientemente del grupo que consiste en: fosfodiéster, fosforotioato y boranofosfato. En una realización el oligómero comprende al menos un enlace internucleosídico de fosforotioato. En una realización los enlaces internucleosídicos adyacentes a o entre unidades de ADN son enlaces de fosforotioato. En una realización los enlaces entre al menos un par de unidades de LNA consecutivos, tales como 2 unidades de LNA en la región A o C, es un enlace de fosfodiéster. En una realización los enlaces entre unidades de LNA consecutivas tales como 2 unidades de LNA en la región A y C, son enlaces fosfodiéster. En una realización todos los enlaces internucleosídicos son enlaces de fosforotioato.

Los enlaces internucleosídicos adecuados incluyen los enumerados en el documento WO2007/031091, por ejemplo los enlaces internucleosídicos enumerados en el primer párrafo de la página 34 del documento WO2007/031091.

- Pueden preferirse enlaces internucleosídicos que contienen azufre (S) adecuados como se ha proporcionado anteriormente. También se prefieren enlaces internucleotídicos de fosforotioato, particularmente para la región de hueco (B) de gapmer. También pueden usarse enlaces de fosforotioato para las regiones flanqueantes (A y C, y para unir C con D, y D).
- 65 Las regiones A, B y C pueden comprender, sin embargo, enlaces internucleosídicos distintos de fosforotioato, tales como enlaces de fosfodiéster, particularmente, por ejemplo cuando el uso de análogos de nucleótidos protege los

enlaces internucleosídicos dentro de regiones A y C de degradación por endonucleasa, tal como cuando las regiones A y C comprenden nucleobases de LNA.

Los enlaces internucleobases en el oligómero pueden ser fosfodiéster, fosforotioato o boranofosfato para permitir la escisión por RNAsa H de ARN diana. Se prefiere fosforotioato, para resistencia a nucleasa mejorada y otras razones, tales como facilidad de fabricación.

En un aspecto del oligómero de la invención, las nucleobases (nucleótidos y/o análogos de nucleótidos) se unen entre sí por medio de grupos de fosforotioato.

10

En algunas realizaciones la región A comprende al menos un enlace de fosfodiéster entre dos unidades de análogos de nucleótidos, o una unidad de análogo de nucleótido y una unidad de nucleobase de la región B. En algunas realizaciones la región C comprende al menos un enlace de fosfodiéster entre dos unidades de análogos de nucleótidos, o una unidad de análogo de nucleótido y una unidad de nucleobase de la región B.

15

- En algunas realizaciones, la región C comprende al menos un enlace de fosfodiéster entre una unidad de análogo de nucleótido y una unidad de nucleobase de la región D.
- En algunas realizaciones el enlace internucleobase entre el análogo de nucleótidos 3' de la región A y la nucleobase 20 5' de la región B es un fosfodiéster.
 - En algunas realizaciones el enlace internucleobase entre la nucleobase 3' de la región B y el análogo de nucleótido 5' de la región C es un fosfodiéster.
- En algunas realizaciones el enlace internucleobase entre los dos análogos de nucleótidos adyacentes en el extremo 5' de la región A es fosfodiéster.
 - En algunas realizaciones el enlace internucleobase entre los dos análogos de nucleótidos adyacentes en el extremo 3' de la región C es fosfodiéster.

30

- En algunas realizaciones el enlace internucleobase entre los dos análogos de nucleótidos adyacentes en el extremo 3' de la región A es fosfodiéster.
- En algunas realizaciones el enlace internucleobase entre los dos análogos de nucleótidos adyacentes en el extremo 35 5' de la región C es fosfodiéster.
 - En algunas realizaciones la región A tiene una longitud de 4 análogos de nucleótidos y el enlace internucleobase entre los dos análogos de nucleótidos medios de la región A es fosfodiéster.
- 40 En algunas realizaciones la región C tiene una longitud de 4 análogos de nucleótidos y el enlace internucleobase entre los dos análogos de nucleótidos medios de la región C es fosfodiéster.
 - En algunas realizaciones todos los enlaces internucleobase entre análogos de nucleótidos presentes en el compuesto de la invención son fosfodiéster.

45

- En algunas realizaciones, tales como las realizaciones indicadas anteriormente, cuando sea adecuado y no se indique específicamente, todos los enlaces internucleobases restantes son fosfodiéster o fosforotioato, o una mezcla de los mismos.
- 50 En algunas realizaciones todos los grupos de enlace internucleobase son fosforotioato.
 - Cuando se hace referencia a secuencias oligonucleotídicas de gapmer específicas, tales como las proporcionadas en el presente documento se entenderá que, en una realización, cuando los enlaces son enlaces fosforotioato, pueden usarse enlaces alternativos, tales como los desvelados en el presente documento, por ejemplo pueden usarse enlaces fosfato (fosfodiéster), particularmente para enlaces entre unidades de análogos de nucleótidos, tales como LNA. De forma similar, cuando se hace referencia a secuencias polinucleotídicas de gapmer específicas, tales como las proporcionadas en el presente documento, cuando se anotan los restos C como citosina 5'metil modificada, en una realización, una o más de las C presentes en el oligonucleótido pueden ser restos de C no modificados.

60

65

- Método de identificación y preparación de compuestos de la invención:
- Los compuestos de la invención, que modulan la expresión de la diana, pueden identificarse mediante experimentación o mediante diseño racional basándose en la información de secuencia en la diana y conocimientos técnicos sobre cómo diseñar mejor un compuesto oligomérico contra una diana deseada. Las secuencias de estos compuestos son realizaciones preferidas de la invención. De forma similar, los motivos de secuencia en la diana

para los que esos compuestos oligoméricos preferidos son complementarios (denominados "puntos calientes") son sitios preferidos para dirección.

En muchos casos la identificación de un compuesto oligomérico, tal como un oligonucleótido LNA, eficaz en la modulación de la expresión o actividad de PCSK9 *in vivo* o clínicamente se basa en información de secuencia en el gen diana (tal como SEQ ID NO 2). Sin embargo, un experto habitual en la materia apreciará que dichos compuestos oligoméricos también pueden identificarse mediante ensayos empíricos. También están dentro del alcance de la invención compuestos oligoméricos que tienen, por ejemplo, menos homología de secuencia, más o menos nucleótidos modificados, o longitudes mayores o menores, en comparación con los de las realizaciones preferidas, pero que no obstante demuestran respuestas en tratamientos químicos. Los ejemplos proporcionan métodos adecuados para realizar ensayos empíricos.

En una realización preferida, el compuesto de la invención comprende una subsecuencia o una secuencia de nucleobases contiguas que tiene al menos 10. tal como al menos 11. tal como al menos 12. tal como al menos 14. tal como al menos 16, tal como al menos 18, tal como 12, 13, 14, 15, 16, 17 o 18 nucleobases contiguas que son 100 % complementarias con ácidos nucleicos tanto humanos como de ratón, o tanto humanos como de rata, o tanto humanos como de mono, o humanos, de ratón y de mono o humanos, de rata y de mono que codifican PCSK9. En una realización la secuencia de polinucleobases del compuesto es 100 % complementaria con ácidos nucleicos tanto humanos como de ratón, tanto humanos como de rata, o tanto humanos como de mono, o humanos, de ratón y de mono o humanos, de rata y de mono que codifican PCSK9. En una realización, cuando se hace referencia a compuestos de la invención que son 100 % complementarios con más de una especie de mamífero como se ha enumerado anteriormente, pueden existir uno o dos desapareamientos entre 1 o más de las secuencias, aunque se prefiere que no haya desapareamientos. La Figura 17 ilustra un alineamiento entre los ácidos nucleicos humanos y de ratón que codifican los polipéptidos de PCSK9 humanos y de ratón respectivos. La Tabla 1 proporciona polinucleótidos de PCSK9 adecuados y los polipéptidos correspondientes proporcionados por los números de referencia de Genbank del NCBI, ciertas variantes alélicas conocidas y homólogos conocidos de otras especies de mamífero pueden identificarse fácilmente realizando búsquedas de BLÁST usando las secuencias a las que se hace referencia en la Tabla 1.

30

5

10

15

20

25

	rapia r	
	Ácido nucleico (secuencia de ARNm/ADNc)	Polipéptido(deducido)
Ser humano	NM_174936	NP_777596
Ratón	NM_153565	NP_705793.1
Rata	NM_199253	NP_954862.2
Chimpancé	NC_006468 (genómico - ARNm anotado)	XP_001154126
Mono (macaco rhesus)	BV166576	

Table 1

La homología de aminoácidos y polinucleótidos puede determinarse usando algoritmo ClustalW usando ajustes convencionales: véase http://www.ebi.ac.uk/emboss/align/index.html, método: EMBOSS:agua (local): hueco abierto = 10,0, extensión de hueco = 0,5, usando Blosum 62 (proteína), o DNAfull para secuencias de nucleótidos. Como se ilustra en la Figura 17, dichos alineamientos también pueden usarse para identificar regiones de los ácidos nucleicos que codifican PCSK9 de ser humano y una especie de mamífero diferente, tal como mono, ratón y/o rata, en los que hay suficientes tramos de complementariedad de ácido nucleico para permitir el diseño de oligonucleótidos que se dirigen tanto a ácido nucleico diana de PCSK9 humano como a los ácidos nucleicos correspondientes presentes en las diferentes especies de mamífero, tales como regiones de al menos 10, tal como al menos 12, tal como al menos 14, tal como al menos 16, tal como al menos 18, tal como 12, 13, 14, 15, 16, 17 o 18 nucleobases contiguas que son 100 % complementarias tanto con el ácido nucleico que codifica PCSK9 de seres humanos como con el ácido nucleico o los ácidos nucleicos que codifican PCSK9 de las diferentes especies de mamífero.

Definiciones

45

50

35

40

Cuando se determina la "homología" entre los compuestos oligoméricos de la invención (o subsecuencia o secuencia de nucleobases contiguas combinada) y el ácido nucleico que codifica la PCSK9 de mamífero, tal como los desvelados en el presente documento (incluyendo SEQ ID No 2), la determinación de homología puede realizarse por un alineamiento sencillo con la secuencia de nucleobases correspondiente del compuesto de la invención y la región correspondiente del ácido nucleico que codifica la PCSK9 de mamífero (o ácido nucleico diana), y la homología se determina contando el número de bases que se alinean y dividiendo por el número total de bases contiguas en el compuesto de la invención, y multiplicando por 100. En dicha comparación, si existen huecos, es preferible que dichos huecos sean únicamente desapareamientos en lugar de áreas en las que el número de nucleobases dentro del hueco difieren entre la secuencia de nucleobases de la invención y el ácido nucleico diana.

55

Las expresiones "localizado dentro de" y "correspondiente a" / "corresponde a" se refieren a la comparación entre la secuencia de nucleobases del oligómero o secuencia de nucleobases contiguas y la secuencia de nucleótidos equivalente de la diana de ácido nucleico tal como el ARNm que codifica la proteína diana de PCSK9, tal como SEQ ID NO 2, o el complemento inverso de la diana de ácido nucleico. Los análogos de nucleótidos se comparan

directamente con sus nucleótidos equivalentes o correspondientes.

5

15

30

50

55

60

Se pretende que las expresiones "análogo de nucleótido correspondiente" y "nucleótido correspondiente" indiquen que la nucleobase en el análogo de nucleótido y el nucleótido son idénticos. Por ejemplo, cuando la unidad de 2-desoxirribosa del nucleótido se une con una adenina, el "análogo de nucleótido correspondiente" contiene una unidad de pentosa (diferente de 2-desoxirribosa) unida a una adenina.

El término "continuo" en relación con una secuencia de nucleobases, es intercambiable con el término "continuo".

El término "nucleobase" se usa como un término colectivo que abarca tanto nucleótidos como análogos de nucleótidos. Una secuencia de nucleobases es una secuencia que comprende al menos dos nucleótidos o análogos de nucleótidos. En una realización la secuencia de nucleobases puede comprender solamente nucleótidos, tales como unidades de ADN, en una realización alternativa, la secuencia de nucleobases puede comprender solamente análogos de nucleótidos, tales como unidades de LNA.

La expresión "ácido nucleico" se define como una molécula formada por enlace covalente de dos o más nucleótidos.

Las expresiones "ácido nucleico" y "polinucleótido" se usan indistintamente en el presente documento.

Las siguientes expresiones se usan como se definen en el documento WO2007/031091: "nucleótido", "análogo de nucleótido", "localizado dentro de ", "correspondiente a"/ "corresponde a", "análogo de nucleótido correspondiente" y "nucleótido correspondiente", "nucleobase", "ácido nucleico" y "polinucleótido", "compuesto" cuando se usa en el contexto de un "compuesto de la invención", "compuesto oligomérico", "oligonucleótido", "oligonucleótido antisentido", y "oligo", "unidad", "LNA", "al menos uno", "grupo de enlace", "conjugado", "sales farmacéuticamente aceptables", "alquilo C₁₋₄", "gen", "antagonista de ARN", "ARNm", "complementario", "desapareamiento o desapareamientos".

La expresión "ácido nucleico diana", como se usa en el presente documento se refiere al ADN que codifica polipéptido de PCSK9 humano, y ácidos nucleicos de ARN derivados del mismo, preferentemente ARNm, tal como pre-ARNm, aunque preferentemente ARNm maduro. En una realización, por ejemplo cuando se usa en investigación o diagnóstico el "ácido nucleico diana" puede ser un ADNc o un oligonucleótido sintético derivado de las dianas de ácido nucleico de ADN o ARN anteriores. El compuesto oligomérico de acuerdo con la invención es preferentemente capaz de hibridar con el ácido nucleico diana.

- La expresión "variante de origen natural del mismo" se refiere a variantes del polipéptido de PCSK9 de secuencia de ácido nucleico que existen en la naturaleza dentro del grupo taxonómico definido, tal como mamífero, tal como ratón, rata, mono, chimpancé y preferentemente ser humano. Típicamente cuando se hace referencia a "variantes de origen natural" de un polinucleótido la expresión también puede abarcar variantes del ADN genómico que codifica PCSK9 que se encuentra en el locus NARC1, o un locus directamente derivado del locus NARC-1, por ejemplo mediante translocación o duplicación cromosómica, y el ARN, tal como ARNm derivado del mismo. Cuando se hace referencia a una secuencia polipeptídica específica, por ejemplo SEQ ID NO 1, la expresión también incluye formas de origen natural de la proteína que pueden por lo tanto procesarse, por ejemplo mediante modificaciones co o postraduccionales, tales como escisión de péptido señal, escisión proteolítica, glucosilación, etc.
- 45 Se prefiere que el compuesto de acuerdo con la invención sea una molécula lineal o se sintetice como una molécula lineal.

Se pretende que la expresión "grupo de enlace" signifique un grupo capaz de acoplar covalentemente entre sí dos nucleótidos, dos análogos de nucleótidos, y un nucleótido y un análogo de nucleótido, etc. Los ejemplos específicos y preferidos incluyen grupos fosfato y grupos fosforotioato.

En el presente contexto se pretende que el término "conjugado" indique una molécula heterogénea formada por la unión covalente de un compuesto como se describe en el presente documento (es decir un compuesto que comprende una secuencia de análogos de nucleótidos) con uno o más restos no nucleotídicos/ no análogos de nucleótidos o no polinucleotídicos. Los ejemplos de restos no nucleotídicos o no polinucleotídicos incluyen agentes macromoleculares tales como proteínas, cadenas de ácidos grasos, restos de azúcares, glucoproteínas, polímeros o combinaciones de los mismos. Típicamente las proteínas pueden ser anticuerpos para una proteína diana. Los polímeros típicos pueden ser polietilenglicol. Cuando el compuesto de la invención consiste en una secuencia de nucleobases puede, en una realización adicional comprender una parte no nucleobase, tal como los conjugados anteriores.

La expresión "al menos uno" comprende los números enteros mayores que o iguales a 1, tales como 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 y así sucesivamente.

65 En una realización, tal como cuando se hace referencia a las dianas de ácido nucleico o proteínas de los compuestos de la invención, la expresión "al menos uno" incluye las expresiones "al menos dos" y "al menos tres" y

"al menos cuatro", de forma similar la expresión "al menos dos" puede comprender las expresiones "al menos tres" y "al menos cuatro".

Como se usa en el presente documento, la expresión "sales farmacéuticamente aceptables" se refiere a sales que conservan la actividad biológica deseada de los compuestos identificados en el presente documento y muestran efectos toxicológicos no deseados mínimos. Pueden formarse ejemplos no limitantes de dichas sales con aminoácidos orgánicos y sales de adición de bases formadas con cationes metálicos tales como cinc, calcio, bismuto, bario, magnesio, aluminio, cobre, cobalto, níquel, cadmio, sodio, potasio y similares, o con un catión formado de amoniaco, *N,N*-dibenciletilen-diamina, D-glucosamina, tetraetilamonio o etilendiamina; o (c) combinaciones de (a) y (b); por ejemplo, una sal de tanato de cinc o similares.

En el presente contexto, se pretende que la expresión "alquilo C1-4" signifique una cadena de hidrocarburo lineal o ramificada saturada en la que la cadena tiene de uno a cuatro átomos de carbono, tales como metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, sec-butilo y terc-butilo.

Como se usa en el presente documento, el término "gen" significa el gen que incluye exones, intrones, regiones 5' y 3' no codificantes y elementos reguladores y todas las variantes conocidas en la actualidad de los mismos y cualquier variante adicional, que pueda dilucidarse.

Como se usa en el presente documento, la expresión "antagonista de ARN" se refiere a un oligonucleótido que se dirige a cualquier forma de ARN (incluyendo pre-ARNm, ARNm, miARN, ARNip, etc.).

La expresión "trastornos relacionados" cuando se hace referencia a hipercolesterolemia se refiere a una o más de las afecciones seleccionadas del grupo que consiste en: aterosclerosis, hiperlipidemia, desequilibrio de colesterol HDL/LDL, dislipidemias, por ejemplo, hiperlipidemia combinada familiar (FCHL), hiperlipidemia adquirida, hipercolesterolemia resistente a estatina, enfermedad de las arterias coronarias (CAD) y enfermedad cardiaca coronaria (CHD).

En una realización, la expresión "compuesto oligomérico" se refiere a un oligonucleótido que puede inducir un efecto terapéutico deseado en seres humanos mediante, por ejemplo, unión por enlace de hidrógeno con un ácido nucleico diana. También se prevé que los compuestos oligoméricos desvelados en el presente documento pueden tener aplicaciones no terapéuticas, tales como aplicaciones de diagnóstico.

Como se usa en el presente documento, el término "modulación" significa bien un aumento (estimulación) o bien una reducción (inhibición) de la expresión de un gen. En la presente invención, la inhibición es la forma preferida de modulación de la expresión génica y ARNm es una diana preferida.

Como se usa en el presente documento, "hibridación" significa enlace de hidrógeno, que puede ser Watson-Crick, Holstein, enlaces de hidrógeno de Holstein invertidos, etc., entre bases de nucleótidos complementarias. Watson y Crick mostraron hace aproximadamente cincuenta años que el ácido desoxirribonucleico (ADN) está compuesto de dos cadenas que se mantienen unidas en una configuración helicoidal mediante enlaces de hidrógeno formados entre nucleobases complementarias opuestas en las dos cadenas. Las cuatro nucleobases, habitualmente halladas en ADN son guanina (G), adenina (A), timina (T) y citosina (C) de las que la nucleobase G se empareja con C, y la nucleobase A se empareja con T. En ARN la nucleobase timina se reemplaza por la nucleobase uracilo (U), que de forma similar a la nucleobase T se empareja con A. Los grupos químicos en las nucleobases que participan en la formación de dobles cadenas convencionales constituyen la cara de Watson-Crick. Hoogsteen mostró un par de años después que las nucleobases purínicas (G y A) además de su cara Watson-Crick tienen una cara Hoogsteen que puede reconocerse desde el exterior de una doble cadena, y usarse para unir oligonucleótidos de pirimidina mediante enlaces de hidrógeno, formando de este modo una estructura de triple hélice.

Se prefiere en gran medida que los compuestos de la invención sean capaces de hibridar con el ácido nucleico diana, tal como el ARNm.

En una realización preferida, los oligonucleótidos son capaces de hibridar contra el ácido nucleico o los ácidos nucleicos diana, tales como el ARNm o los ARNm de PCSK9 correspondientes, para formar una doble cadena con una T_m de al menos 37 °C, tal como al menos 40 °C, al menos 50 °C, al menos 55 °C o al menos 60 °C. En un aspecto la T_m es de entre 37 °C y 80 °C, tal como entre 50 y 70 °C, o entre 40 y 60 °C, o entre 40 y 70 °C. En una realización, la T_m es menor de 80 °C, tal como menor de 70 °C o menor de 60 °C o menor de 50 °C.

60 Medición de T_m

5

10

15

25

50

65

Se mezcla una solución $3~\mu\text{M}$ del compuesto en fosfato sódico 10~mM/NaCl 100~mM/EDTA 0.1~nM, pH 7.0~con su oligonucleótido de ADN o ARN del complemento a una concentración $3~\mu\text{M}$ en fosfato sódico 10~mM/NaCl 100~mM/EDTA 0.1~nM, pH 7.0~a 90~°C durante un minuto y se permite que se enfríe a temperatura ambiente. La curva de fusión de la doble cadena se determina después midiendo la absorbancia a 260~nm con una velocidad de calentamiento de 1~°C/min en el intervalo de 25~a 95~°C. La T_{m} se mide como el máximo de la primera derivada de la

curva de fusión.

Conjugados

- En una realización de la invención el compuesto oligomérico se une a ligandos/conjugados, que pueden usarse, por ejemplo, para aumentar la captación celular de oligonucleótidos antisentido. El documento WO2007/031091 proporciona ligandos y conjugados adecuados.
- La invención también proporciona un conjugado que comprende el compuesto de acuerdo con la invención como se describe en el presente documento, y al menos un resto no nucleotídico o no polinucleotídico unido covalentemente con dicho compuesto. Por lo tanto, en una realización en la que el compuesto de la invención consiste en un ácido nucleico específico, como se desvela en el presente documento, el compuesto también puede comprender al menos un resto no nucleotídico o no polinucleotídico (por ejemplo que no comprende uno o más nucleótidos o análogos de nucleótidos) unido covalentemente con dicho compuesto.

Aplicaciones

15

20

30

Los compuestos oligoméricos de la presente invención pueden utilizarse, por ejemplo, como reactivos de investigación para diagnóstico, terapia y profilaxis.

Algunos de los beneficios de utilizar LNA, y métodos para preparar y purificar LNA y oligonucleótidos de LNA se desvelan en el documento WO2007/031091.

Los compuestos oligoméricos de la invención, tales como los compuestos oligonucleotídicos que contienen LNA de la presente invención, también pueden utilizarse como reactivos de investigación para diagnóstico, terapia y profilaxis.

En investigación, dichos oligonucleótidos antisentido pueden usarse para inhibir específicamente la síntesis de genes de PCSK9 en células y animales experimentales facilitando de este modo el análisis funcional de la diana o una evaluación de su utilidad como una diana para intervención terapéutica.

En diagnóstico los oligonucleótidos antisentido puede usarse para detectar y cuantificar expresión de PCSK9 en células y tejidos por transferencia de Northern, hibridación *in situ* o técnicas similares.

Para terapia, un animal o un ser humano, que se sospecha que tiene una enfermedad o un trastorno, que puede tratarse modulando la expresión de PCSK9 se trata administrando compuestos antisentido de acuerdo con la presente invención. Se proporciona además el uso en el tratamiento de un animal, en particular ratón y rata y tratamiento de un ser humano, que se sospecha que tiene o es propenso a una enfermedad o afección, asociado con la expresión de PCSK9 administrando una cantidad terapéutica o profilácticamente eficaz de uno o más de los compuestos antisentido o composiciones de la invención.

La composición farmacéutica de acuerdo con la invención puede usarse para tratamiento de afecciones asociadas con niveles anómalos de PCSK9, tales como hipercolesterolemia y trastornos relacionados.

También se proporcionan dosificaciones, formulaciones, vías de administración, composiciones, formas de dosificación, combinaciones con otros agentes terapéuticos, formulaciones profarmacológicas adecuados en el documento WO2007/031091, aunque debería reconocerse que los aspectos del documento WO2007/031091 que son solamente aplicables de forma específica al tratamiento del cáncer pueden no ser apropiados en las composiciones terapéuticas/farmacéuticas y métodos de la presente invención.

La invención también proporciona una composición farmacéutica que comprende un compuesto o un conjugado como se describe en el presente documento o un conjugado, y un diluyente, vehículo o adyuvante farmacéuticamente aceptable. El documento WO2007/031091 proporciona diluyente, vehículo y adyuvantes farmacéuticamente aceptables adecuados y preferidos.

Composiciones farmacéuticas que comprenden más de un principio activo

La composición farmacéutica de acuerdo con la invención puede comprender además otros principios activos, incluyendo los que se indican como útiles para el tratamiento de hipercolesterolemia y/o trastornos relacionados.

Una de dichas clases de compuestos son estatinas. Las estatinas son inhibidores de HMG-CoA reductasa que forman una clase de agentes hipolipidémicos, usados como productos farmacéuticos para reducir los niveles de colesterol en personas en riesgo de enfermedad cardiovascular debido a hipercolesterolemia. Actúan inhibiendo la enzima HMG-CoA reductasa, la enzima que determina la velocidad de síntesis de colesterol. La inhibición de esta enzima en el hígado estimula los receptores de LDL, lo que da como resultado una eliminación aumentada de LDL del torrente sanguíneo y una reducción de los niveles de colesterol en sangre. Los ejemplos de estatinas incluyen

22

50

55

60

Atorvastatin™, Cerivastatin™, Fluvastatin™, Lovastatin™, Mevastatin™, Pravastatin™, Pravastatin™, Rosuvastatin™ y Simvastatin™. El uso combinado del compuesto de la invención y las estatinas puede permitir una reducción de la dosis de las estatinas, superando de este modo los efectos secundarios asociados con la dosificación habitual de estatinas, que incluyen, por ejemplo, mialgias, calambres musculares, síntomas gastrointestinales, trastornos de enzimas hepáticas, miositis, miopatía, rabdomiolisis (la degradación patológica del músculo esquelético) que pueden conducir a insuficiencia renal aguda cuando los productos de degradación muscular dañan los riñones.

Los fibratos, una clase de ácidos carboxílicos anfipáticos es una clase alternativa de compuesto que se combina con frecuencia con el uso de estatina, a pesar de una mayor frecuencia de rabdomiolisis que se ha indicado con el uso combinado de estatinas y fibratos. La composición de acuerdo con la invención puede comprender además por lo tanto fibratos, y opcionalmente estatinas.

La composición de acuerdo con la invención puede comprender además moduladores de apolipoproteína B (Apo-B), particularmente agentes que son capaces de reducir la expresión de la función de Apo-B. Convenientemente, los moduladores de Apo-B pueden ser oligonucleótidos antisentido (por ejemplo oligómeros), tales como los desvelados en los documentos WO 00/97662, WO 03/11887 y WO 2004/44181. Una combinación preferida es con el compuesto ISIS 301012 (ilustrado como SEQ ID NO 13).

La composición de acuerdo con la invención puede comprender además moduladores de la expresión de FABP4, tales como oligonucleótidos antisentido (por ejemplo oligómeros) que se dirigen a FABP4, la composición puede usarse en regulación negativa simultanea de la expresión tanto de FABP4 como de PSCK9, dando como resultado un efecto sinérgico con respecto a colesterol en suero sanguíneo y por lo tanto ventajas cuando se trata la hipercolesterolemia y/o trastornos relacionados. Dichas composiciones que comprenden tanto los compuestos de la invención como moduladores de FABP4, tales como los oligonucleótidos antisentido indicados en el presente documento, también pueden comprender adicionalmente estatinas. La solicitud provisional de Estados Unidos 60/969.016 incorporada por la presente por referencia desvela moduladores de FABP4 adecuados.

También se prevé que la composición puede comprender oligonucleótidos antisentido que comprenden análogos de nucleótidos, tales como los desvelados en el documento WO2007/031081. Los oligonucleótidos de LNA específicos, como se desvela o se destaca que se prefieren en el documento WO2007/031091 son especialmente adecuados para los inventores en la composición farmacéutica de acuerdo con la presente invención.

La invención también proporciona un kit de partes en el que una primera parte comprende el compuesto, el conjugado y/o la composición farmacéutica de acuerdo con la invención y una parte adicional comprende un oligonucleótido antisentido capaz de reducir la expresión de Apo-B o FABP4. Se prevé por lo tanto que el kit de partes pueda usarse en un método de tratamiento, como se indica en el presente documento, en el que el método comprende administrar tanto la primera parte como la parte adicional, bien simultáneamente o bien una después de la otra.

Métodos médicos y uso

5

35

40

45

50

55

60

Las afecciones adicionales que pueden asociarse con niveles anómalos de PCSK9 y que por lo tanto pueden tratarse usando las composiciones, conjugados y compuestos de acuerdo con la invención incluyen trastornos seleccionados del grupo que consiste en: hiperlipoproteinemia, hiperlipoproteinemia familiar de tipo 3 (disbetalipoproteinemia familiar), e hiperalfalipoproteinemia familiar; hiperlipidemia, hiperlipidemia, hiperlipidemia múltiple e hiperlipidemia combinada familiar; hipertrigliceridemia, hipertrigliceridemia familiar y lipoproteína lipasa familiar; hipercolesterolemia, hipercolesterolemia resistente a estatina, hipercolesterolemia familiar, hipercolesterolemia poligénica y apolipoproteína B defectuosa familiar; trastornos cardiovasculares incluyendo aterosclerosis y enfermedad de las arterias coronarias; trombosis; enfermedad vascular periférica y obesidad.

Las afecciones adicionales que pueden asociarse con niveles anómalos de PCSK9, y que por lo tanto pueden tratarse usando las composiciones, conjugados y composiciones de acuerdo con la invención incluyen trastornos seleccionados del grupo que consiste en: enfermedad de von Gierke (enfermedad de almacenamiento de glucógeno, tipo I); lipodistrofias (formas congénitas y adquiridas); síndrome de Cushing; enanismo ateloítico sexual (deficiencia de hormona de crecimiento aislada); diabetes mellitus; hipertiroidismo; hipertensión; anorexia nerviosa; síndrome de Werner; porfiria intermitente aguda; cirrosis biliar primaria; obstrucción extra hepática biliar 5; hepatitis aguda; hepatoma; lupus eritematoso sistémico; gammapatías monoclonales (incluyendo mieloma, mieloma múltiple, macroglobulinemia, y linfoma); endocrinopatías; obesidad; síndrome nefrótico; síndrome metabólico; inflamación; hipotiroidismo; uremia (hiperurecemia); impotencia; enfermedad obstructiva hepática; hipercalcemia idiopática; disglobulinemia; niveles de insulina elevados; síndrome X; contractura de Dupuytren; SIDA; y enfermedad de Alzheimer y demencia.

65 Los compuestos de la invención pueden usarse en métodos para inhibir la unión de partículas de colesterol con endotelio vascular que comprende la etapa de administrar a un individuo una cantidad de un compuesto de la

invención suficiente para la expresión de PCSK9, y como resultado, la invención también proporciona métodos para reducir el riesgo de: (i) oxidación de partículas de colesterol; (ii) unión de monocitos a endotelio vascular; (iii) diferenciación de monocitos en macrófagos; (iv) ingestión por macrófagos de 30 partículas de lípidos oxidados y liberación de citocinas (incluyendo, pero sin limitación IL-I, TNF-alfa, TGF-beta); (v) formación de plaquetas de lesiones fibroadiposas fibrosas e inflamación; (vi) lesiones endoteliales que conducen a coágulos; y (vii) coágulos que conducen a infarto de miocardio o ictus, que también comprende la etapa de administrar a un individuo una cantidad de un compuesto de la invención suficiente para inhibir la expresión de PCSK9.

Los compuestos de la invención pueden usarse en la reducción de la hiperlipidemia asociada con alcoholismo, tabaquismo, uso de anticonceptivos orales, uso de glucocorticoides, uso de agentes bloqueantes beta adrenérgicos o uso de isotretinión (ácido retinoico 13-cis) que comprende la etapa de administrar a un individuo una cantidad de un compuesto de la invención suficiente para inhibir la expresión de PCSK9.

La invención proporciona además uso de un compuesto de la invención en la fabricación de un medicamento para el tratamiento de todas y cada una de las afecciones desveladas en el presente documento.

Indicado en general, un aspecto de la invención se dirige al uso de los compuestos en el tratamiento de un mamífero que padece o es susceptible a afecciones asociadas con niveles anómalos de PCSK9, que comprende administrar al mamífero una cantidad terapéuticamente eficaz de un oligonucleótido dirigido a PCSK9 que comprende una o más unidades de LNA.

Un aspecto interesante de la invención se dirige al uso de un compuesto como se define en el presente documento o como conjugado como se define en el presente documento para la preparación de un medicamento para el tratamiento de una afección de acuerdo con lo anterior.

Los métodos de la invención se emplean preferentemente para el tratamiento o la profilaxis contra enfermedades provocadas por niveles anómalos de PCSK9.

Además, la invención descrita en el presente documento abarca el uso de los compuestos en la prevención o el tratamiento de una enfermedad que comprende una cantidad terapéuticamente eficaz de un compuesto oligonucleotídico modulador de PCSK9, incluyendo pero sin limitación altas dosis del oligómero, a un ser humano que necesite dicha terapia. La invención abarca además el uso de un periodo corto de administración de un compuesto oligonucleotídico modulador de PCSK9.

35 En una realización de la invención el compuesto oligonucleotídico se une a ligandos/conjugados. Es una manera de aumentar la captación celular de oligonucleótidos antisentido.

Los compuestos oligonucleotídicos de la invención también pueden conjugarse con sustancias farmacológicas activas, por ejemplo, aspirina, ibuprofeno, un fármaco sulfa, un antidiabético, un antibacteriano o un antibiótico.

Indicado de manera alternativa, la invención se dirige además al uso de los compuestos en el tratamiento de niveles anómalos de PCSK9, comprendiendo dicho método administrar un compuesto como se define en el presente documento, o un conjugado como se define en el presente documento o una composición farmacéutica como se define en el presente documento a un paciente que lo necesite y que comprende además la administración de un agente quimioterapéutico adicional. Dicha administración adicional puede ser tal que el agente quimioterapéutico adicional se conjugue con el compuesto de la invención, esté presente en la composición farmacéutica, o se administre en una formulación separada.

La invención también se refiere a un compuesto, una composición o un conjugado como se define en el presente documento para su uso como un medicamento.

La invención se refiere además al uso de un compuesto, una composición o un conjugado como se define en el presente documento para la fabricación de un medicamento para el tratamiento de niveles anómalos de PCSK9. Típicamente, dichos niveles anómalos de PCSK9 están en forma de, o provocan, o se caracterizan por, hipercolesterolemia y trastornos relacionados, tales como aterosclerosis o hiperlipidemia. Además, la invención se refiere al uso de los compuestos en el tratamiento de un sujeto que padece una enfermedad o afección seleccionada de hipercolesterolemia y trastornos relacionados, tales como aterosclerosis e hiperlipidemia, comprendiendo el método la etapa de administrar una composición farmacéutica como se define en el presente documento al sujeto que lo necesite. Preferentemente, la composición farmacéutica se administra por vía oral.

Los ejemplos de enfermedades relacionadas también incluyen diferentes tipos de desequilibrio de colesterol HDL/LDL; dislipidemias, por ejemplo hiperlipidemia combinada familiar (FCHL), hiperlipidemia adquirida, hipercolesterolemia resistente a estatina; enfermedad de las arterias coronarias (CAD), enfermedad cardiaca coronaria (CHD), aterosclerosis.

65

5

15

20

25

40

45

50

55

Se reconoce que cuando la composición de acuerdo con la invención también comprende moduladores de la expresión de Apo-B100 o FABP4, tales como oligonucleótidos antisentido que se dirigen a ApoB-100 o FABP4, la composición puede usarse en regulación negativa simultánea de la expresión tanto de PCSK9 como de ApoB-100 (o FABP4), dando como resultado un efecto sinérgico con respecto a colesterol en suero sanguíneo y por lo tanto ventajas cuando se trata la hipercolesterolemia y/o trastornos relacionados. Dichas composiciones que comprenden tanto los compuestos de la invención como moduladores de ApoB o FABP4, tales como los oligonucleótidos antisentido indicados en el presente documento, también pueden comprender además estatinas.

Tabla 2: diseños de compuestos específicos/ oligonucleótidos antisentido de LNA. Obsérvese que los números indicados en los Ejemplos y las Figuras se refieren a los números de ID de compuesto. La Tabla anterior proporciona tanto n.º de ID de compuesto, como la SEQ ID correspondiente usada en el listado de secuencias y el motivo ID, también indicado en el listado de secuencias. Se muestran motivos de secuencias de oligómeros adicionales de acuerdo con la invención en la Tabla 3.

	auluic	males de acuerdo com la invención em la Tal	ла Ј.	
Compuesto ID n.º	Longitud	Secuencia	SEQ ID	SEQ ID de motivo
262	16	5'- G_s $^{\circ m}$ C_s $^{\circ m}$ C_s $^{\circ ts}$ g_s ts c_s ts g_s t_s g_s	10	3
80	14	5'- $G_s^{\circ}A_s^{\circ}G_{so}t_s$ a_s g_s a_s g_s g_s g_s g_s g_s g_s g_s	20	30
338	16	5'- mc _s °A _s °A _s ° g _s t _s t _s a _s c _s a _s a _s a _s a _s g _s mc _s °A _s °A° -3'	11	4
341	16	5'- G _s °A _s °G _s °a _s t _s a _s c _s a _s c _s c _s t _s c _s c _s A _s ° ^m C _s ° ^m C° -3'	9	5
301	16	5'- $T_s^{om}C_s^{om}C_s^{o}$ t _s c _s a _s g _s g _s a _s a _s a _s c _s c _s A _s $G_s^{o}G_s^{o}G_s^{o}$ -3'	21	31
317	16	5'- mc _s °T _s °G _s ° g _s a _s g _s c _s a _s g _s c _s t _s c _s a _s G _s °C _s °A° -3'	22	32
323	16	5'- $^{m}C_{s}^{o}A_{s}^{o}T_{s}^{o}g_{s} g_{s} c_{s} a_{s} g_{s} c_{s} a_{s} g_{s} g_{s} a_{s}$ $A_{s}^{o}G_{s}^{om}C^{o}$ -3',	23	33
98	14	5'- G _s °A _s °T _s ° a _s c _s a _s c _s c _s t _s c _s c _s A _s ° ^m C _s ° ^m C° -3'	24	34
101	14	5'- ^m CsoTs°Gs° ts cs ts gs ts gs as As°Gs° mC° -3'	25	35
9	13	5'- G _s °T _s °s°c _s t _s g _s t _s g _s g _s a _s a _s G _s °C _s °G° -3'	26	36
11	13	$5 \text{ A}_s ^{\circ} \text{T}_s ^{\circ} \text{g}_s \text{ a}_s \text{ g}_s \text{ g}_s \text{ g}_s \text{ t}_s \text{ g}_s \text{ c}_s \text{ c}_s ^{\text{m}} \text{G}_s ^{\text{om}} \text{C}^{\text{o}} -3'$	27	37
16	13	5'- As Ts as as as cs ts cs cs as Gs Gs II C -3'	28	38
18	13	5'-T _s °A _s ° g _s a _s c _s a _s c _s c _s c _s t _s ^m C _s °A _s ^{om} C° -3'	29	39

15 **Ejemplos**

20

25

35

5

10

Ejemplo 1: Síntesis de monómeros

Los componentes básicos de monómeros de LNA y derivados de los mismos se prepararon siguiendo los procedimientos publicados y las referencias citadas en los mismos, véase:

Documento WO 03/095467 A1

- D. S. Pedersen, C. Rosenbohm, T. Koch (2002) Preparation of LNA Phosphoramidites, Synthesis 6, 802-808.
- M. D. Sørensen, L. Kværnø, T. Bryld, A. E. Håkansson, B. Verbeure, G. Gaubert, P. Herdewijn, J. Wengel (2002) α-L-ribo-configured Locked Nucleic Acid (α-I-LNA): Synthesis and Properties, J. Am. Chem. Soc., 124, 2164-2176.
- 30 S. K. Singh, R. Kumar, J. Wengel (1998) Synthesis of Novel Bicyclo[2.2.1] Ribonucleosides: 2'-Amino- and 2'-Thio-LNA Monomeric Nucleosides, J. Org. Chem. 1998, 63, 6078-6079.
 - C. Rosenbohm, S. M. Christensen, M. D. Sørensen, D. S. Pedersen, L. E. Larsen, J. Wengel, T. Koch (2003) Synthesis of 2'-amino-LNA: a new strategy, Org. Biomol. Chem. 1,655-663.
 - D. S. Pedersen, T. Koch (2003) Analogues of LNA (Locked Nucleic Acid). Synthesis of the 2'-Thio-LNA Thymine and 5-Methyl Cytosine Phosphoramidites, Synthesis 4, 578-582.

Ejemplo 2: Síntesis de oligonucleótidos

Se sintetizaron oligonucleótidos usando el enfoque de fosforamidita en un sintetizador Expedite 8900/MOSS (sistema de síntesis de oligonucleótidos múltiple) a una escala de 1 µmol o 15 µmoles. Para síntesis a mayor escala se usó un oligo Pilot de Äkta. Al final de la síntesis (DMT-on), los oligonucleótidos se escindieron del soporte sólido usando amoniaco acuoso durante 1-2 h a temperatura ambiente, y además se desprotegieron durante 4 h a 65 °C. Los oligonucleótidos se purificaron por HPLC de fase inversa (RP-HPLC). Después de la retirada del grupo DMT, los oligonucleótidos se caracterizaron mediante AE-HPLC, RP-HPLC y CGE y la masa molecular se confirmó adicionalmente mediante ESI-MS. Véase posteriormente para más detalles.

10

Preparación del soporte sólido de LNA:

Preparación del succinil hemiéster de LNA

Se disolvieron monómero de 5'-O-Dmt-3'-hidroxi-LNA (500 mg), anhídrido succínico (1,2 eq.) y DMAP (1,2 eq.) en DCM (35 ml). La reacción se agitó a temperatura ambiente durante una noche. Después de extracciones con NaH₂PO₄ 0,1 M pH 5,5 (2x) y salmuera (1x), la capa orgánica se secó adicionalmente con Na₂SO₄ anhídrido filtrado y evaporado. El derivado de hemiéster se obtuvo en rendimiento del 95 % y se usó sin ninguna purificación adicional.

20

Preparación del soporte de LNA

El derivado de hemiéster preparado anteriormente (90 μmoles) se disolvió en una cantidad mínima de DMF, DIEA y pyBOP (90 μmoles) se añadieron y se mezclaron juntos durante 1 min. Esta mezcla preactivada se combinó con LCAA-CPG (500 Å, tamaño de malla de 80-120, 300 mg) en un sintetizador manual y se agitó. Después de 1,5 h a temperatura ambiente, el soporte se separó por filtrado y se lavó con DMF, DCM y MeOH. Después de secar, se determinó que la carga era de 57 μmol/g (véase Tom Brown, Dorcas J. S. Brown. Modern machine-aided methods of oligodeoxyribonucleotide synthesis. En: F. Eckstein, editor. Oligonucleotides and Analogues A Practical Approach. Oxford: IRL Press, 1991: 13-14).

30

35

Elongación del oligonucleótido

El acoplamiento de fosforamiditas (A(bz), G(ibu), 5-metil-C(bz)) o T-β-cianoetil-fosforamidita) se realiza usando una solución de 0,1 M de la amidita protegida por 5'-O-DMT en acetonitrilo y DCI (4,5-dicianoimidazol) en acetonitrilo (0,25 M) como activador. La tiolación se lleva a cabo usando cloruro de xantano (0,01 M en acetonitrilo: piridina 10 %). El resto de los reactivos son los típicamente usados para síntesis de oligonucleótidos. El protocolo proporcionado por el proveedor se optimizó convenientemente.

Purificación mediante RP-HPLC:

40

50

Columna: Xterra RP₁₈ Caudal: 3 ml/min

Tampones: acetato de amonio 0,1 M pH 8 y acetonitrilo

45 Abreviaturas

DMT: Dimetoxitritilo
DCI: 4,5-dicianoimidazol
DMAP: 4-dimetilaminopiridina
DCM: Diclorometano

DMF: Dimetilformamida
TF: Tetrahidrofurano
DIEA: N,N-diisopropiletilamina

PyBOP: Hexafluorofosfato de benzotriazol-1-il-oxi-tris-pirrolidino-fosfonio

55 Bz: Benzoílo Ibu: Isobutirilo

Ejemplo 3: Diseño del compuesto oligonucleotídico

60 Véase Tabla 2 y 3 (posteriores) – Las letras en mayúsculas indican unidades ribonucleotídicas y el subíndice "s" representa unidades ribonucleotídicas 2'-O-metil modificadas.

En una realización de la invención, SEQ ID NO: 3 y 4 contienen al menos 3 nucleótidos de LNA, tales como 6 (7 u 8) nucleótidos de LNA como en SEQ ID NO: 3 y 4.

Ejemplo 4: Estabilidad de compuestos de LNA en plasma humano o de rata

Se ensayó la estabilidad de oligonucleótidos de LNA en plasma de seres humanos o ratas (también podría ser plasma de ratón, de mono o de perro). En 45 µl de plasma se añaden 5 µl de oligonucleótido (a una concentración final de 20 µM). Los oligos se incuban en plasma durante tiempos que varían de 0 h a 96 h a 37 °C (el plasma se ensaya con respecto a actividad nucleasa hasta 96 h y no muestra ninguna diferencia en el patrón de escisión de nucleasa). En el tiempo indicado la muestra se congeló instantáneamente en nitrógeno líquido. Se diluyeron 2 µl (igual a 40 pmoles) de oligonucleótido en plasma añadiendo 15 µl de agua y 3 µl de colorantes de carga 6x (Invitrogen). Como marcador se usa una escalera de 10 pb (Invitrogen 10821-015). A 1 µl de escalera se añade 1 µl de carga 6x y 4 µl de agua. Las muestras se mezclaron, se calentaron a 65 °C durante 10 min y se cargaron en un gel preprocesado (acrilamida al 16 %, UREA 7 M, TBE 1x, preprocesado a 50 W durante 1 h) y se ejecutó a 50-60 W durante 2 ½ h. posteriormente el gel se tiñó con SyBR oro 1x (molecular probes) en TBE 1x durante 15 min. Las bandas se visualizaron usando un detector de imagen fotoestimulable de Biorad.

15 Ejemplo 5: Modelo in vitro: cultivo celular

10

20

25

El efecto de los compuestos antisentido en la expresión de ácido nucleico diana puede ensayarse en cualquiera de una diversidad de tipos celulares siempre que el ácido nucleico diana esté presente a niveles medibles. La diana puede expresarse de forma endógena o mediante transfección transitoria o estable de un ácido nucleico que codifica dicho ácido nucleico.

El nivel de expresión de ácido nucleico diana puede determinarse rutinariamente usando, por ejemplo, análisis de transferencia de Northern, PCR cuantitativa, ensayos de protección de ribonucleasa. Los siguientes tipos celulares se proporcionan para fines ilustrativos, pero pueden usarse rutinariamente otros tipos celulares, siempre que la diana se exprese en el tipo celular elegido.

Se cultivaron células en el medio apropiado como se describe posteriormente y se mantuvieron a 37 °C a 95-98 % de humedad y CO₂ 5 %. Las células se pasaron rutinariamente 2-3 veces por semana.

Huh-7: se obtuvo la línea celular de hígado humano Huh-7 de ATCC y se cultivó en MEM de Eagle (Sigma) con FBS 10 % + Glutamax I + aminoácidos no esenciales + gentamicina.

Ejemplo 6: Modelo in vitro: tratamiento con oligonucleótido antisentido

- Cultivo celular y transfección: se sembraron células Huh-7 y Hepa 1-6 en placas de 6 pocillos a 37 °C (CO₂ 5 %) en medio de cultivo complementado con FBS 10%, Glutamax I y gentamicina. Cuando las células fueron confluyentes a 60-70 %, se transfectaron por duplicado con concentraciones diferentes de oligonucleótidos (0,04 25 nM) usando Lipofectamine 2000 (5 μg/ml). Las transfecciones se llevaron a cago esencialmente como se describe en Dean *et al.* (1994, JBC 269: 16416-16424). Brevemente, las células se incubaron durante 10 min. Con Lipofectamine en OptiMEM seguido de adición de oligonucleótido hasta un volumen total de 0,5 ml de mezcla de transfección por pocillo. Después de 4 horas, se retiró la mezcla de transfección, las células se lavaron y se cultivaron a 37 °C durante aproximadamente 20 horas (análisis de ARNm y análisis de proteínas en el medio de cultivo apropiado). Las células se recogieron después para análisis de proteínas y ARN.
- 45 Ejemplo 7: Modelo in vitro: extracción de ARN y síntesis de ADNc

Aislamiento de ARN total

Se aisló ARN total usando mini kit RNeasy (Qiagen). Las células se lavaron con PBS, y se añadió directamente a los pocillos tampón de lisis celular (RTL, Qiagen) complementado con mercaptoetanol 1 %. Después de algunos minutos, las muestras se procesaron de acuerdo con las instrucciones del fabricante.

Síntesis de primera cadena

- Se realizó síntesis de primera cadena usando kit de transcriptasa inversa OmniScript o transcriptasa inversa M-MLV (esencialmente como se describe por el fabricante (Ambion)) de acuerdo con las instrucciones del fabricante (Qiagen). Cuando se usaron 0,5 μg de transcriptasa inversa OmniScript el ARN total de cada muestra se ajustó a 12 μl y se mezcló con 0,2 μl de poli (dT)₁₂₋₁₈ (0,5 μg/μl) (Life Technologies), 2 μl de mezcla de dNTP (5 mM cada uno), 2 μl de tampón RT 10x, 0,5 μl de inhibidor de RNasa RNAguardTM (33 unidades/ml, Amersham) y 1 μl de transcriptasa inversa OmniScript seguido de incubación a 37 °C durante 60 min. e inactivación por calor a 93 °C durante 5 min.
- Cuando se realizó síntesis de primera cadena usando decámeros aleatorios y transcriptasa inversa M-MLV-(esencialmente como se describe por el fabricante (Ambion)) 0,25 µg se ajustó el ARN total de cada muestra a 10,8 µl en H₂O. Se añadieron 2 µl de decámeros y 2 µl de mezcla de dNTP (2,5 mM cada uno). Las muestras se calentaron a 70 °C durante 3 min. y se enfriaron inmediatamente en agua helada y se añadieron 3,25 µl de una

mezcla que contenía (2 µl de tampón RT 10x; 1 µl de transcriptasa inversa M-MLV; 0,25 µl de inhibidor de RNasa). Se sintetizó ADNc a 42 °C durante 60 min seguido de etapa de inactivación por calentamiento a 95 °C durante 10 min y se enfrió finalmente a 4 °C.

5 Ejemplo 8: Modelo in vitro e in vivo: análisis de inhibición de oligonucleótidos de PCSK9

Expresión por PCR en tiempo real

55

- La modulación antisentido de la expresión de PCSK9 puede ensayarse de una diversidad de maneras conocidas en la técnica. Por ejemplo, los niveles de ARNm de PCSK9 pueden cuantificarse, por ejemplo, mediante análisis de transferencia de Northern, reacción en cadena de la polimerasa (PCR) competitiva, o PCR en tiempo real. En la actualidad se prefiere la PCR cuantitativa en tiempo real. Puede realizarse análisis de ARN en ARN celular total o ARNm.
- Los métodos de aislamiento de ARN y análisis de ARN tales como análisis de transferencia de Northern son rutinarios en la técnica y se enseñan, por ejemplo, en Current Protocols in Molecular Biology, John Wiley and Sons.
- Puede conseguirse convenientemente (PCR) cuantitativa en tiempo real usando el sistema de detección de PCR en tiempo real multicolor iQ disponible en el mercado de BioRAD. La PCR cuantitativa en tiempo real es una técnica bien conocida en este campo y se enseña por ejemplo en Heid *et al.* Real time quantitative PCR, Genome Research (1996), 6: 986-994.

Análisis de PCR cuantitativa en tiempo real de niveles de ARNm de PCSK9

- Para determinar el nivel de ARNm de PCSK9 humano relativo en muestras tratadas y no tratadas, se usó el ADNc generado en análisis de PCR cuantitativa usando un iCycler de Bio-Rad o sistema de PCR en tiempo real rápido 7500 de Applied Biosystems.
- Se añadieron 8 μl de ADNc diluido 10 veces a 52 μl de una mezcla que contenía 29,5 μl de supermezcla de qPCR-UDG Platinum (Invitrogen), 19,2 μl de H₂O y 3,0 μl de una PCSK9 humana 20x o ensayo de expresión génica TaqMan de GAPDH (Applied Biosystems). Cada muestra se analizó por duplicado. Programa de PCR: 95 °C durante 20 segundos seguido de 40 ciclos de 95 °C, 3 segundos, 60 °C, 30 segundos.
- PCSK9 de ratón: la expresión de PCSK9 de ratón se cuantifica usando un ensayo de expresión génica TaqMan de PCSK9 o GAPDH de ratón (Applied Biosystems) a 8 μl de ADNc diluido 10 veces se añaden 52 μl de una mezcla que contiene 29,5 μl de Supermezcla-UDG de qPCR Platinum (Invitrogen), 19,2 μl de H₂O y 3,0 μl de un ensayo de expresión génica TaqMan de PCSK9 o GAPDH de ratón 20x (Applied Biosystems). Cada muestra se analiza por duplicado. Programa de PCR: 95 °C durante 20 segundos seguido de 40 ciclos de 95 °C, 3 segundos, 60 °C, 30 segundos.
 - La expresión de <u>ARNm</u> de PCSK9 se normaliza con respecto a <u>ARNm</u> de Gapdh de ratón que se cuantificó de forma similar usando Q-PCR.
- Se usan diluciones dobles de ADNc sintetizado a partir de la línea celular de hepatocitos humanos no tratada (Huh-7) (diluida 5 veces y que expresa tanto PCSK9 como Gapdh) para preparar curvas patrón para los ensayos. Se determinaron las cantidades relativas de <u>ARNm</u> de PCSK9 a partir del ciclo de umbral calculado usando el software de sistema de detección en tiempo real iCycler iQ.
- Ejemplo 9 Análisis in vitro: respuesta a dosis en cultivo celular (hepatocitos humanos Huh-7)/ inhibición antisentido de expresión de PCSK9 humana
 - De acuerdo con la presente invención, se diseñó una serie de oligonucleótidos para dirigirse a regiones diferentes del ARNm de PCSK9 humana. Véase Tabla 2. Se evaluaron compuestos oligonucleotídicos con respecto a su potencial para anular <u>ARNm</u> de PCSK9 en hepatocitos humanos (células Huh-7) después de captación asistida por lípidos de compuestos ID n.º: 9, 16, 18, 98, 101, 262, 301, 317, 323, 338, 341 (Figuras 1-4). El experimento se realizó como se ha descrito en los Ejemplos 5-8. Los resultados mostraron regulación negativa muy potente (60 a ≥ 80 %) con 25 nM para todos los compuestos.
- Ejemplo 10 Análisis in vitro: respuesta a dosis en cultivo celular (hepatocito murino Hepa 1-6)/ inhibición antisentido de la expresión de PCSK9 murina
- De acuerdo con la presente invención, se diseñó una serie de oligonucleótidos para dirigirse a regiones diferentes del <u>ARNm</u> de PCSK9 murina. (Véase Tabla 2). Los compuestos oligonucleotídicos se evaluaron con respecto a su potencial para anular ARNm de PCSK9 en hepatocitos murinos (Hepa 1-6) después de captación asistida por lípidos de compuestos ID n.º: 98, 101, 262 y 338 (Figuras 5-6). El experimento se realizó como se ha descrito en los Ejemplos 5-8. Los resultados mostraron regulación negativa muy potente (≥ 60 %) con 25 nM para todos los

compuestos.

15

25

30

35

Ejemplo 11 Niveles de colesterol en suero de ratón

Se midió el nivel de colesterol total en suero usando un ensayo colorimétrico Cholesterol CP de ABX Pentra. El colesterol se mide después de hidrólisis enzimática y oxidación. Se añaden 20 μl de agua a 3 μl de suero. Se añaden 240 μl de reactivo y en un periodo de 15 min este contenido de colesterol se mide a una longitud de onda de 500 nM. Las mediciones en cada animal se realizaron por duplicado. Se realizó una curva patrón usando Multi Cal de ABX Diagnostics.

Los niveles de colesterol en las diferentes clases de lipoproteína (VLDL/LDL y HDL) se midieron en suero por ultracentrifugación. El suero se ajustó hasta una densidad de 1,067 g/ml permitiendo separar HDL de las otras lipoproteínas. El colesterol total (ABX Pentra) se mide en cada fracción (superior e inferior) después de centrifugación a aproximadamente 400.000 g durante 4 horas a 15 °C.

Ejemplo 12 Nivel de proteína de receptor de LDL en hígado de ratón

Transferencia de Western

20 Las muestras de hígado se congelaron instantáneamente en nitrógeno líquido y se almacenaron a -80 °C hasta que se analizaron. Se descongelaron 30 mg de tejido y se homogeneizaron en 300 μl de tampón de extracción de proteínas tisulares T-per (Pierce), complementado con cóctel inhibidor de proteasa Halt (Pierce).

La proteína total se midió mediante el kit de ensayo de proteínas BCA (Pierce) usando un patrón de albúmina de acuerdo con el protocolo del fabricante.

Se cargaron 25 µg de proteína total de cada muestra en un gel de Bis-Tris 4-12 % con tampón de muestra LDS 4x (NuPAGE, Invitrogen). El gel se procesó durante dos horas a 130 V en MOPS (Invitrogen). Las bandas proteicas se transfirieron a una membrana de PVDF usando un módulo de transferencia de acuerdo con el protocolo convencional (módulo de transferencia XCell II, Invitrogen). La membrana se bloqueó en leche en polvo desnatada al 5 % en PBS 1x durante una noche. Para inmunodetección, la membrana se incubó durante una noche en una solución de bloqueo con anticuerpos primarios de dilución 1:1000 de anticuerpo policional de cabra anti LDLR de ratón (R&D Systems) y dilución 1:2000 de anticuerpo monoclonal de ratón anti tubulina (NeoMarkers). Esto se siguió de incubación de dos horas en solución de anticuerpo secundario de dilución 1:2000 de HRP/anticuerpo anti cabra y dilución 1:2000 de HRP/anticuerpo anti ratón (Dako). Las bandas de LDLR y tubulina se visualizaron usando kit de quimioluminiscencia ECL+ detección (Amersham) y un sistema de captura de imágenes VersaDoc5000 (Bio-Rad).

Ejemplo 13 Composición de clase de lipoproteínas en suero medida usando geles Sebia

Se usa electroforesis en gel de agarosa en tampón de barbital para separar lipoproteínas según la carga y es uno de los métodos originales para análisis clínico de perfiles de lipoproteínas. Los geles se tiñen habitualmente con un colorante lipófilo tal como Sudan Black. El colorante o los colorantes no distinguirán entre especies de lípidos, por lo tanto el método se limita a proporcionar un "perfil de lipoproteínas general" ya que los colorantes no pueden distinguir entre éster de colesterol y triglicéridos. Sin embargo, el pequeño volumen de muestras, la alta reproducibilidad y la posibilidad de seguir los cambios en los perfiles de lipoproteínas (como porcentaje de lípido/banda) en animales individuales hace a los geles de agarosa una herramienta útil para análisis de lipoproteínas. Se realizan análisis en geles de alta calidad y equipamiento de electroforesis especializado (electroforesis en gel de agarosa de lipoproteína + Lp(a), Sebia, Francia). Se aisló suero de sangre de ratón por centrifugación y las lipoproteínas se separaron en geles Sebia y se cuantificaron usando tinción de Sudan Black seguido de exploración de los geles (Molecular Imager FX) y se analizaron mediante software Quantity One, usando los ajustes de densitometría.

Ejemplo 14 Análisis in vivo: respuesta a dosis de diferentes oligonucleótidos de LNA en ratones hembras C57BL/6.

- De acuerdo con la presente invención, se diseñaron una serie de oligonucleótidos para dirigirse a regiones diferentes del ARNm de PCSK9 murino. Tres de estos oligonucleótidos se evaluaron con respecto a su regulación negativa potencial en ARNm de PCSK9 en hígado, reducción de colesterol en suero y aumento de la proteína de receptor de LDL en hígado.
- Se dosificó a hembras C57BL/6 2,5, 5 o 10 mg/kg i.v. del oligonucleótido o solución salina los días 0, 3, 7, 10 y 14 y se sacrificaron el día 16 después de la primera dosis de tratamiento. Se tomaron muestras del hígado para análisis de expresión de ARNm de PCSK9 mediante qPCR (como se ha descrito en el Ejemplo 8). La expresión de ARNm de PCSK9 se reguló negativamente de una manera dependiente de dosis después de dosificar compuestos ID NO 98 y 101 (Figura 7).

Se tomaron muestras de sangre en el momento del sacrificio para preparación de suero y se midió el colesterol en el suero como se ha descrito en el Ejemplo 11. El compuesto ID NO 98 mostró tendencia de colesterol total en suero reducido y nivel reducido de colesterol VLDL+LDL, aproximadamente 30 % y ningún efecto en colesterol HDL (Figura 8).

5

Se esperaba que la regulación negativa del ARNm de PCSK9 tuviera un efecto en el número de receptores de LDL presentados en la superficie de los hepatocitos. Se usó transferencia de Western para examinar la proteína de receptor de LDL en el hígado (Ejemplo 12). El compuesto ID NO 98 dio como resultado un aumento en la proteína de receptor de LDL de aproximadamente 80 % en comparación con el grupo de solución salina (Figura 9).

10

Ejemplo 15 Análisis in vivo: eficacia de oligonucleótidos de LNA en la regulación negativa de PCSK9 en ratones NMRI hembra.

15

Se examinaron dos oligonucleótidos que se dirigían a diferentes regiones del ARNm de PCSK9 murina con respecto a potencia para regular negativamente la expresión de ARNm de PCSK9, reducir el colesterol total en suero y aumentar el nivel de proteína de receptor de LDL.

Se dosificaron a los ratones hembras NMRI i.v. 10 mg/kg/dosis de oligonucleótido LNA o solución salina los días 0,

20

2, 4 y se sacrificaron el día 6. Se tomaron muestras del hígado para análisis de la expresión de ARNm de PCSK9 mediante qPCR (como se ha descrito en el Ejemplo 8). Se redujo la expresión de ARNm de PCSK9 con aproximadamente 70 % después de la dosificación del compuesto ID NO 98 y aproximadamente 30 % de la dosificación del compuesto ID NO 101 (Figura 10). El efecto de esta regulación negativa se observó en el nivel de proteína de receptor de LDL en el hígado; aproximadamente 50 % y 40 % de aumento después de la dosificación de los compuestos ID NO 98 y 101, respectivamente (Figura 11). Este aumento en el receptor de LDL dio como resultado reducción del colesterol en suero de 55 % y 15 % para los compuestos ID NO 98 y 101, respectivamente (Figura 12).

25

Ejemplo 16 Análisis in vivo: eficacia de oligonucleótidos de LNA para reducir la expresión de ARNm de PCSK9 en C57BL/6 a los que se alimentó con una dieta alta en grasas (HFD) durante 1 o 5 meses antes de la dosificación.

30

35

Se alimentó a ratones hembras C57BL/6 con una dieta alta en grasas (HFD) (60 % de energía grasa) durante 5 meses y se alimentó a machos C57BL/6 con una HFD durante 1 mes antes de dosificar oligonucleótidos de LNA a 10 o 15 mg/kg los días 0, 3, 7, 10, 14 y el día de sacrificio 16. Se tomaron muestras de hígado para análisis de la expresión de ARNm de PCSK9 mediante qPCR (como se ha descrito en el Ejemplo 8). La dosificación de los compuestos ID NO 98 y 317 dio como resultado una regulación negativa de la expresión ARNm de PCSK9 (analizada mediante qPCR como se ha descrito en el Ejemplo 8) de aproximadamente 80 % y 60 %, respectivamente, en ratones hembras y aproximadamente 85 % en ratones macho para ambos compuestos (Figura 13). El nivel de proteína de receptor de LDL medido mediante transferencia de Western (descrito en el Ejemplo 12) aumentó aproximadamente 2-3 veces después de dosificar el compuesto ID NO 98 y 20 % después de dosificar el compuesto ID NO 317 a ratones HFD hembra. En ratones macho 15 mg/kg/dosis del compuesto ID NO 98 dieron como resultado un aumento del nivel de proteína de receptor de LDL de 2,5 veces mientras que el compuesto ID NO 317 tuvo solamente efectos menores en el nivel de proteína de receptor de LDL (Figura 14).

40

Ejemplo 17 Análisis in vivo: eficacia de oligonucleótidos de LNA de 13 unidades para reducir la expresión de ARNm de PCSK9 en ratones NMRI hembra.

45

50

55

Se dosificaron a ratones MNRI hembra 15 mg/kg los días 0, 2 y 4 y se sacrificaron el día 6. Se tomaron muestras del hígado para análisis de la expresión ARNm de PCSK9 mediante qPCR como se ha descrito en el Ejemplo 8. Los oligonucleótidos de 13 unidades; compuestos ID NO 9, 16 y 18 dieron como resultado la reducción de la expresión de ARNm de PCSK9 del 90 %, 70 % y 85 %, respectivamente y el compuesto ID NO 98 de 14 unidades proporcionó 80 % de reducción en ARNm de PCSK9 (Figura 15). La distribución de las diferentes clases de lipoproteínas en suero se determinó después de separación en geles Sebia como se ha descrito en el Ejemplo 13. La distribución entre las diferentes clases (ajustadas al 100 % para cada grupo y presentadas en relación con las otras lipoproteínas en ese grupo) se examinó para los compuestos ID NO 9, 16, 18 y 98. Se observó el mayor efecto para el compuesto ID NO 18 para todas las lipoproteínas (50 % y 65 % de reducción en relación con solución salina para VLDL y LDL, respectivamente, como resultado se aumentó HDL en 60 %) y el compuesto ID NO 98 redujo VLDL en 30 % y en aproximadamente 10 % para LDL en relación con solución salina, y como resultado HDL se aumentó en 20 % (Figura 16).

do LNA.	NOUNON NO	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	22	58	59	09	61	62	63	64	65	99	29	89	69	20	71	72	73	74	22
leótidos antisenti		TCTGTGGAAGCG	CCTATGAGGGTG	CCGAATAAACTC	TAAACTCCAGGC	CGGCCGCTGACC	CCAGGCCTATGA	GGCCTATGAGGG	GTCTGTGGAAGCG	CCCGGCCGCTGAC	ATGAGGGTGCCGC	GCCTATGAGGGTG	CCAGGCCTATGAG	ACTCCAGGCCTAT	TAAACTCCAGGCC	ATAAACTCCAGGC	GCCCCGAGTGTGC	TAGACACCCTCAC	ATGGGGCAACTTC	GAGATACACCTCC	TCCAGGCCTATGA	GGCCCGAGTGTG	CAGGCCTATGAGG	AGATACACCTCCA	CACGTGGGCAGCA	TGTCACACTTGCT	TCCCGGCCGCTGA	TATGAGGGTGCCG	CTATGAGGGTGCC	CCTATGAGGGTGC	GGCCTATGAGGGT	AGGCCTATGAGGG	CTCCAGGCCTATG	TCCGAATAAACTC	CGTCCCGGAAGTT	TAATCAGGGAGCC	TGGGGCAACTTCA
no oligonuc	enceo —	TCTG	CCTA	√9 CCG	TAAA	2992	CCAG	2255	GTCTG)5000	ATGAG	GCCTA	CCAG	ACTCC	TAAAC	ATAAA	2225	TAGAC	ATGG	GAGA-	TCCAC	32255	CAGG	AGAT/	CACGI	TGTC/	TCCC	TATGA	CTATG	CCTAT	2000	AGGC	CTCC/	TCCG,	CGTCC	TAATC	TGGG
rigen a PCSK9, tales cor	Dialias de Anivili Murino	2	2	2	က	4	4	_	_	_	_	_	_	_	_	_	_	_	1	_	2	2	3	3	7	Į.	1	1	1	_	_	1	1	1	_	1	_
tidos antisentido que se di	Dialias de Anivili	2	2	2	2	2	2	8	-	-	_	_	~	_	_	~	-	1	1	-	-	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2
bara síntesis de oligonucleótidos antisentido que se dirigen a PCSK9, tales como oligonucleótidos antisentido LNA التعلق المالية الما	oecuelicia ulalia	CGCTTCCACAGA	CACCCTCATAGG	GAGTTTATTCGG	GCCTGGAGTTTA	GGTCAGCGGCCG	TCATAGGCCTGG	CCCTCATAGGCC	CGCTTCCACAGAC	GTCAGCGGCCGGG	GCGGCACCCTCAT	CACCCTCATAGGC	CTCATAGGCCTGG	ATAGGCCTGGAGT	GGCCTGGAGTTTA	GCCTGGAGTTTAT	GCACACTCGGGGC	GTGAGGGTGTCTA	GAAGTTGCCCCAT	GGAGGTGTATCTC	TCATAGGCCTGGA	CACACTCGGGGCC	CCTCATAGGCCTG	TGGAGGTGTATCT	TGCTGCCCACGTG	AGCAAGTGTGACA	TCAGCGGCCGGGA	CGGCACCCTCATA	GGCACCCTCATAG	GCACCCTCATAGG	ACCCTCATAGGCC	CCCTCATAGGCCT	CATAGGCCTGGAG	GAGTTTATTCGGA	AACTTCCGGGACG	GGCTCCCTGATTA	TGAAGTTGCCCCA
lles de gran interés r	oligo	12	12	12	12	12	12	12	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
Secuencias adicionales de gran interés	diana del sino	1093	1239	1255	1250	1149	1244	1241	1094	1151	1236	1240	1244	1247	1250	1251	1838	2001	856	991	1245	1839	1243	066	1615	1112	1152	1237	1238	1239	1241	1242	1246	1256	1400	2941	855
33	niicio de sino diana	1082	1228	1244	1239	1138	1233	1230	1082	1139	1224	1228	1232	1235	1238	1239	1826	1989	844	626	1233	1827	1231	826	1603	1100	1140	1225	1226	1227	1229	1230	1234	1244	1388	2929	843

92	77	78	79	80	81	82	83	84	85	98	87	88	68	06	91	92	93	94	95	96	26	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114
CATGGGGCAACTT	CGGCCGCTGACCA	CCGGCCGCTGACC	CCGAATAAACTCC	GTCCCACTCTGTG	CAGGTTGGGGGTC	CGGCAGCAGATGG	ACACCCTCACCCC	TCCGGCAGCAGAT	ATACACCTCCACC	CCTGTCTGTGGAA	GCCTGTCTGTGGA	TTCCGAATAAACT	ACTGTGATGACCT	TCGTCCCGGAAGT	TCCCACTCTGTGA	AATAAACTCCAGG	GCTGGGGAGTAGA	TTAATCAGGGAGC	TGTCTGTGGAAGCG	CCTGTCTGTGGAAG	CTGTCACACTTGCT	CGGCCGCTGACCAC	CCCGGCCGCTGACC	TCCCGGCCGCTGAC	ATCCCGGCCGCTGA	ATGAGGGTGCCGCT	TATGAGGGTGCCGC	GCCTATGAGGGTGC	GGCCTATGAGGGTG	CAGGCCTATGAGGG	CCAGGCCTATGAGG	TCCAGGCCTATGAG	CTCCAGGCCTATGA	ACTCCAGGCCTATG	AACTCCAGGCCTAT	AAACTCCAGGCCTA	TAAACTCCAGGCCT	ATAAACTCCAGGCC
-	2	2	2	2	2	2	က	3	ဇ	4	4	4	4	2	9	_	_	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	_	1	1	_	_
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	က	3	3	1	1	1	1	_	1	1		1	1	1	1	1	_	1	_	1	1	_	_
AAGTTGCCCCATG	TGGTCAGCGGCCG	GGTCAGCGGCCGG	GGAGTTTATTCGG	CACAGAGTGGGAC	GACCCCCAACCTG	CCATCTGCTGCCG	GGGGTGAGGGTGT	ATCTGCTGCCGGA	GGTGGAGGTGTAT	TTCCACAGACAGG	TCCACAGACAGGC	AGTTTATTCGGAA	AGGTCATCACAGT	ACTTCCGGGACGA	TCACAGAGTGGGA	CCTGGAGTTTATT	TCTACTCCCCAGC	GCTCCCTGATTAA	CGCTTCCACAGACA	CTTCCACAGACAGG	AGCAAGTGTGACAG	GTGGTCAGCGGCCG	GGTCAGCGGCCGGG	GTCAGCGGCCGGGA	TCAGCGGCCGGGAT	AGCGGCACCCTCAT	GCGCCCCTCATA	GCACCCTCATAGGC	CACCCTCATAGGCC	CCCTCATAGGCCTG	CCTCATAGGCCTGG	CTCATAGGCCTGGA	TCATAGGCCTGGAG	CATAGGCCTGGAGT	ATAGGCCTGGAGTT	TAGGCCTGGAGTTT	AGGCCTGGAGTTTA	GGCCTGGAGTTTAT
13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14
857	1149	1150	1255	1593	1759	2478	1998	2480	988	1097	1098	1257	1446	1401	1592	1252	1422	2942	1095	1097	1113	1149	1151	1152	1153	1236	1237	1240	1241	1243	1244	1245	1246	1247	1248	1249	1250	1251
845	1137	1138	1243	1581	1747	2466	1986	2468	976	1085	1086	1245	1434	1389	1580	1240	1410	2930	1082	1084	1100	1136	1138	1139	1140	1223	1224	1227	1228	1230	1231	1232	1233	1234	1235	1236	1237	1238

115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153
AATAAACTCCAGGC	TTCCGAATAAACTC	TCGTCCCGGAAGTT	GAGTAGAGGCAGGC	GGGGAGTAGAGGCA	GCTGGGGAGTAGAG	ACTGTGATGACCTC	GTCCCACTCTGTGA	CCAGGTTGGGGGTC	GGCCCCGAGTGTGC	ACACCCTCACCCCC	GACACCCTCACCCC	TAGACCCCTCACC	GGGCATGGCAGCA	CGGCAGCAGATGGC	CCGGCAGCAGATGG	GCTCCGGCAGCAGA	TAATCAGGGAGCCC	TTAATCAGGGAGCC	ATGGGGCAACTTCA	CATGGGGCAACTTC	GATACACCTCCACC	AGATACACCTCCAC	GAGATACACCTCCA	CTGTCTGTGGAAGC	GCCTGTCTGTGGAA	ACGTGGGCAGCAGC	TCCTCAGGGAACCA	GCATGGCAGCAGGA	CTCCGGCAGCAGAT	CACGTGGGCAGCAG	CCACGTGGGCAGCA	GGAGCAGCTCAGCA	GAGCAGCTCAGCAG	ATGGGTGCTGGGGG	CCGGCCGCTGACCA	CATCCCGGCCGCTG	CTATGAGGGTGCCG	CCTATGAGGGTGCC
_	_	_	_	_	_	•	_	1	_	ļ	_	_	_	_	_	_	_	-	ļ	1	_	_	-	2	2	2	2	2	2	3	က	3	4	2	ļ	ļ	1	-
_	_	_	_	_	_	1	_	1	_	1	_	_	_	_	_	_	_	_	1	1	_	_	_	1	1	1	1	_	1	1	_	1	1	_	2	2	2	2
GCCTGGAGTTTATT	GAGTTTATTCGGAA	AACTTCCGGGACGA	GCCTGCCTCTACTC	TGCCTCTACTCCCC	CTCTACTCCCCAGC	GAGGTCATCACAGT	TCACAGAGTGGGAC	GACCCCCAACCTGG	GCACACTCGGGGCC	GGGGGTGAGGGTGT	GGGGTGAGGGTGTC	GGTGAGGGTGTCTA	TGCTGCCATGCCCC	GCCATCTGCTGCCG	CCATCTGCTGCCGG	TCTGCTGCCGGAGC	GGGCTCCCTGATTA	GGCTCCCTGATTAA	TGAAGTTGCCCCAT	GAAGTTGCCCCATG	GGTGGAGGTGTATC	GTGGAGGTGTATCT	TGGAGGTGTATCTC	GCTTCCACAGACAG	TTCCACAGACAGGC	GCTGCTGCCCACGT	TGGTTCCCTGAGGA	TCCTGCTGCCATGC	ATCTGCTGCCGGAG	CTGCTGCCCACGTG	TGCTGCCCACGTGG	TGCTGAGCTGCTCC	CTGCTGAGCTGCTC	CCCCCAGCACCCAT	TGGTCAGCGGCCGG	CAGCGGCCGGGATG	CGGCACCCTCATAG	GGCACCCTCATAGG
14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14
1252	1257	1401	1416	1419	1422	1446	1593	1760	1839	1998	1999	2001	2250	2478	2479	2482	2941	2942	856	857	686	066	991	1096	1098	1614	1734	2247	2481	1615	1616	1900	1899	1786	1150	1154	1238	1239
1239	1244	1388	1403	1406	1409	1433	1580	1747	1826	1985	1986	1988	2237	2465	2466	2469	2928	2929	843	844	926	977	826	1083	1085	1601	1721	2234	2468	1602	1603	1887	1886	1773	1137	1141	1225	1226

154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
AGGCCTATGAGGGT	GAATAAACTCCAGG	CGAATAAACTCCAG	TCCGAATAAACTCC	TCCCCAAAGTCCCC	CCCACTCTGTGACA	AGAGAAGTGGATCA	TCAGGGAACCAGGC	ACCAGGTTGGGGGT	ACCCTCACCCCCAA	GGTGGCAGTGGACA	TGGTGGCAGTGGAC	CCTGGGGCATGGCA	TCAAGTTACAAAAG	CCCGGCGGCAGCC	ACATGGGGCAACTT	GTGCCCTTCCCTTG	CCGAATAAACTCCA	CTGGGGAGTAGAGG	TCCCACTCTGTGAC	GTGGGCAGCAGCCT	GAGAAGTGGATCAG	GTCCTCAGGGAACC	CAGGTTGGGGGTCA	CCCTCACCCCCAAA	GGCATGGCAGCAGG	TGGGGCATGGCAGC	TCCGGCAGCAGATG	CAAGTTACAAAAGC	GGGATGCTCTGGGC	CGCTCCAGGTTCCA	GGGCAGCAGCCTGT	CATGGCAGCAGGAA	CATGGGTGCTGGGG	GCATCCCGGCCGCT	GCCACGTGGGCAGC	AGACCCTCACCC	CTGTCTGTGGAAGCG
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	က	7	_	_	_	_
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	က	က	က	_
ACCCTCATAGGCCT	CCTGGAGTTTATTC	CTGGAGTTTATTCG	GGAGTTTATTCGGA	GGGGACTTTGGGGA	TGTCACAGAGTGGG	TGATCCACTTCTCT	GCCTGGTTCCCTGA	ACCCCCAACCTGGT	TTGGGGGTGAGGGT	TGTCCACTGCCACC	GTCCACTGCCACCA	TGCCATGCCCCAGG	CTTTTGTAACTTGA	GGCTGCCCGCCGGG	AAGTTGCCCCATGT	CAAGGGAAGGGCAC	TGGAGTTTATTCGG	CCTCTACTCCCCAG	GTCACAGAGTGGGA	AGGCTGCTGCCCAC	CTGATCCACTTCTC	GGTTCCCTGAGGAC	TGACCCCCAACCTG	TTTGGGGGTGAGGG	CCTGCTGCCATGCC	GCTGCCATGCCCCA	CATCTGCTGCCGGA	GCTTTTGTAACTTG	GCCCAGAGCATCCC	TGGAACCTGGAGCG	ACAGGCTGCTGCCC	TTCCTGCTGCCATG	CCCCAGCACCCATG	AGCGGCCGGGATGC	GCTGCCCACGTGGC	GGGTGAGGGTGTCT	CGCTTCCACAGACAG
14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	15
1242	1253	1254	1256	1496	1591	1696	1731	1761	1996	2099	2100	2253	3448	755	858	1218	1255	1421	1592	1612	1695	1735	1759	1995	2248	2251	2480	3447	803	918	1610	2246	1787	1155	1617	2000	1096
1229	1240	1241	1243	1483	1578	1683	1718	1748	1983	2086	2087	2240	3435	742	845	1205	1242	1408	1579	1599	1682	1722	1746	1982	2235	2238	2467	3434	890	902	1597	2233	1774	1142	1604	1987	1082

192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229
CCTGTCTGTGGAAGC	GCCTGTCTGGGAAG	CCGGCCGCTGACCAC	CCCGGCCGCTGACCA	TCCCGGCCGCTGACC	ATCCCGGCCGCTGAC	CATCCCGGCCGCTGA	TATGAGGGTGCCGCT	CTATGAGGGTGCCGC	GCCTATGAGGGTGCC	GGCCTATGAGGGTGC	AGGCCTATGAGGGTG	CAGGCCTATGAGGGT	CCAGGCCTATGAGGG	TCCAGGCCTATGAGG	CTCCAGGCCTATGAG	ACTCCAGGCCTATGA	AACTCCAGGCCTATG	AAACTCCAGGCCTAT	TAAACTCCAGGCCTA	ATAAACTCCAGGCCT	AATAAACTCCAGGCC	GAATAAACTCCAGGC	CGAATAAACTCCAGG	TTCCGAATAAACTCC	GGAGTAGAGGCAGGC	GGGGAGTAGAGGCAG	TGGGGAGTAGAGGCA	CTGGGGAGTAGAGGC	GCTGGGGAGTAGAGG	GTCCCCAAAGTCCCC	GTCCCACTCTGTGAC	GCCACGTGGGCAGCA	AGAGAAGTGGATCAG	CTCAGGGAACCAGGC	GTCCTCAGGGAACCA	CAGGTTGGGGGTCAG	CCAGGTTGGGGGTCA
_	1	_	~	_	1	_	_	_	1	~	_	_	_	_	_	_	_	_	1	_	1	1	1	1	1	1	1	1	_	1	_	1	1	1	1	_	_
_	1	_	_	_	1	_	_	1	1	_	_				_	_	_	1	1		1		1	1	1	1	1	1		1	_	1	1	1	1	_	_
GCTTCCACAGACAGG	CTTCCACAGACAGGC	GTGGTCAGCGGCCGG	TGGTCAGCGGCCGGG	GGTCAGCGGCCGGGA	GTCAGCGGCCGGGAT	TCAGCGGCCGGGATG	AGCGGCACCCTCATA	GCGGCACCCTCATAG	GGCACCCTCATAGGC	GCACCCTCATAGGCC	CACCCTCATAGGCCT	ACCCTCATAGGCCTG	CCCTCATAGGCCTGG	CCTCATAGGCCTGGA	CTCATAGGCCTGGAG	TCATAGGCCTGGAGT	CATAGGCCTGGAGTT	ATAGGCCTGGAGTTT	TAGGCCTGGAGTTTA	AGGCCTGGAGTTTAT	GGCCTGGAGTTTATT	GCCTGGAGTTTATTC	CCTGGAGTTTATTCG	GGAGTTTATTCGGAA	GCCTGCCTCTACTCC	CTGCCTCTACTCCCC	TGCCTCTACTCCCCA	GCCTCTACTCCCCAG	CCTCTACTCCCCAGC	GGGGACTTTGGGGAC	GTCACAGAGTGGGAC	TGCTGCCCACGTGGC	CTGATCCACTTCTCT	GCCTGGTTCCCTGAG	TGGTTCCCTGAGGAC	CTGACCCCCAACCTG	TGACCCCCAACCTGG
15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
1097	1098	1150	1151	1152	1153	1154	1237	1238	1240	1241	1242	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1257	1417	1419	1420	1421	1422	1497	1593	1617	1696	1732	1735	1759	1760
1083	1084	1136	1137	1138	1139	1140	1223	1224	1226	1227	1228	1229	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1243	1403	1405	1406	1407	1408	1483	1579	1603	1682	1718	1721	1745	1746

230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266
ACCAGGTTGGGGGTC	ATGGGTGCTGGGGGG	TGGAGCAGCTCAGCA	ACCCTCACCCCAAA	CACCCTCACCCCCAA	ACACCCTCACCCCCA	GACACCCTCACCCCC	AGACACCCTCACCCC	TAGACACCCTCACCC	GCATGGCAGCAGGAA	GGCATGGCAGCAGGA	GGGGCATGGCAGCAG	TGGGGCATGGCAGCA	CTGGGGCATGGCAGC	CGGCAGCAGATGGCA	CCGGCAGCAGATGGC	TCCGGCAGCAGATGG	CTCCGGCAGCAGATG	GCTCCGGCAGCAGAT	GGCTCCGGCAGCAGA	TTAATCAGGGAGCCC	TCAAGTTACAAAAGC	CATGGGGCAACTTCA	ACATGGGGCAACTTC	AGATACACCTCCACC	GAGATACACCTCCAC	TGGGCAGCAGCCTGT	ACGTGGGCAGCAGCC	CACGTGGGCAGCAGC	TCCTCAGGGAACCAG	CATGGGTGCTGGGGG	GCAGCTCAGCAGCTC	GAGCAGCTCAGCAGC	GGAGCAGCTCAGCAG	CCACGTGGGCAGCAG	GCTGGTCCTCAGGGA	TGGGTGCTGGGGGGC
1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	1	1	_	_	_	2	2	2	2	2	2	2	2	က	ဇ	3
1	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	1	1	_	_	_	_	1	1	1	_	_	_	_	_	_	
GACCCCCAACCTGGT	CCCCCCAGCACCCAT	TGCTGAGCTGCTCCA	TTTGGGGGTGAGGGT	TTGGGGGTGAGGGTG	TGGGGGTGAGGGTGT	GGGGGTGAGGGTGTC	GGGGTGAGGGTGTCT	GGGTGAGGGTGTCTA	TTCCTGCTGCCATGC	TCCTGCTGCCATGCC	CTGCTGCCATGCCCC	TGCTGCCATGCCCCA	GCTGCCATGCCCCAG	TGCCATCTGCTGCCG	GCCATCTGCTGCCGG	CCATCTGCTGCCGGA	CATCTGCTGCCGGAG	ATCTGCTGCCGGAGC	TCTGCTGCCGGAGCC	GGGCTCCCTGATTAA	GCTTTTGTAACTTGA	TGAAGTTGCCCCATG	GAAGTTGCCCCATGT	GGTGGAGGTGTATCT	GTGGAGGTGTATCTC	ACAGGCTGCTGCCCA	GGCTGCTGCCCACGT	GCTGCTGCCCACGTG	CTGGTTCCCTGAGGA	CCCCCAGCACCCATG	GAGCTGCTGAGCTGC	GCTGCTGAGCTGCTC	CTGCTGAGCTGCTCC	CTGCTGCCCACGTGG	TCCCTGAGGACCAGC	GCCCCCAGCACCCA
15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
1761	1786	1901	1996	1997	1998	1999	2000	2001	2247	2248	2250	2251	2252	2478	2479	2480	2481	2482	2483	2942	3448	857	858	066	991	1611	1614	1615	1734	1787	1897	1899	1900	1616	1739	1785
1747	1772	1887	1982	1983	1984	1985	1986	987	2233	2234	2236	2237	2238	2464	2465	2466	2467	2468	2469	928	434	843	844	926	977	1597	1600	1601	1720	1773	1883	1885	1886	1602	1725	1771

7	m	0	0		2	3	4	10			8	0		_	2	3	4	.0	6		<u></u>	0	0		5	<u> </u>	4	5	.0			0	0		2	m	4
267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	28(287	288	289	29(291	292	293	294	295	296	297	298	299	300	301	302	303	304
cctgccaggtggTG	GCATCCCGGCCGCTG	CCTATGAGGGTGCCG	CCGAATAAACTCCAG	TCCGAATAAACTCCA	TCCCCAAAGTCCCCA	TCCCACTCTGTGACA	GGCAGCAGCCTGTGA	CGTGGCCAGCAGCCT	TCAGGGAACCAGGCC	CCTCAGGGAACCAGG	CACCAGGTTGGGGGT	TGGTGGCAGTGGACA	CATGGCAGCAGGAAG	GGGCATGGCAGCAGG	CCTGGGGCATGGCAG	GCCGGCTCCGGCAGC	CCCCGGCGGGCAGCC	CTGCCAGGTGGGTGC	GGGCAGCAGCCTGTG	GTGGGCAGCAGCCTG	GGTCCTCAGGGAACC	TGGTCCTCAGGGAAC	GCCACCAGGTTGGGG	CAGCTCAGCAGCTCC	AGCTGCAGCCTGTGA	CCGGCTCCGGCAGCA	CAAGTTACAAAAGCA	GGGAGTAGAGGCAGG	AGCAGCTCAGCAGCT	ATGGCAGCAGGAAGC	TGCCAGGTGGGTGCC	CCTGTCTGTGGAAGCG	GCCTGTCTGTGGAAGC	CCCGGCCGCTGACCAC	TCCCGGCCGCTGACCA	ATCCCGGCCGCTGACC	CATCCCGGCCGCTGAC
1	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	2	2	2	2	2	2	2	2	2	2	3	3	က	_	_	_	_	-	_	_
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	က	_	_	_	_	_	_
CACCCACCTGGCAGG	CAGCGGCCGGGATGC	CGGCACCCTCATAGG	CTGGAGTTTATTCGG	TGGAGTTTATTCGGA	TGGGGACTTTGGGGA	TGTCACAGAGTGGGA	TCACAGGCTGCTGCC	AGGCTGCTGCCCACG	GGCCTGGTTCCCTGA	CCTGGTTCCCTGAGG	ACCCCCAACCTGGTG	TGTCCACTGCCACCA	CTTCCTGCTGCCATG	CCTGCTGCCATGCCC	CTGCCATGCCCCAGG	GCTGCCGGAGCCGGC	GECTGCCCGCCGGGG	GCACCCACCTGGCAG	CACAGGCTGCTGCCC	CAGGCTGCTGCCCAC	GGTTCCCTGAGGACC	GTTCCCTGAGGACCA	CCCCAACCTGGTGGC	GGAGCTGCTGAGCTG	TCACAGGCTGCAGCT	TGCTGCCGGAGCCGG	TGCTTTTGTAACTTG	CCTGCCTCTACTCCC	AGCTGCTGAGCTGCT	GCTTCCTGCTGCCAT	GGCACCCACCTGGCA	CGCTTCCACAGACAGG	GCTTCCACAGACAGGC	GTGGTCAGCGGCCGGG	TGGTCAGCGGCCGGGA	GGTCAGCGGCCGGGAT	GTCAGCGGCCGGGATG
15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	16	16	16	16	16	16
1134	1155	1239	1255	1256	1496	1592	1609	1613	1731	1733	1762	2100	2246	2249	2253	2486	756	1133	1610	1612	1736	1737	1764	1896	2129	2485	3447	1418	1898	2245	1132	1097	1098	1151	1152	1153	1154
1120	1141	1225	1241	1242	1482	1578	1595	1599	1717	1719	1748	2086	2232	2235	2239	2472	742	1119	1596	1598	1722	1723	1750	1882	2115	2471	3433	1404	1884	2231	1118	1082	1083	1136	1137	1138	1139

305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342
GCATCCCGGCCGCTGA	CTATGAGGGTGCCGCT	CCTATGAGGGTGCCGC	GCCTATGAGGGTGCCG	GGCCTATGAGGGTGCC	AGGCCTATGAGGGTGC	CAGGCCTATGAGGGTG	CCAGGCCTATGAGGGT	TCCAGGCCTATGAGGG	CTCCAGGCCTATGAGG	ACTCCAGGCCTATGAG	AACTCCAGGCCTATGA	AAACTCCAGGCCTATG	TAAACTCCAGGCCTAT	ATAAACTCCAGGCCTA	AATAAACTCCAGGCCT	GAATAAACTCCAGGCC	CGAATAAACTCCAGGC	CCGAATAAACTCCAGG	TTCCGAATAAACTCCA	GGGAGTAGAGGCAGGC	GGGGAGTAGAGGCAGG	TGGGGAGTAGAGGCAG	CTGGGGAGTAGAGGCA	GCTGGGGAGTAGAGGC	GTCCCCAAAGTCCCCA	GTCCCACTCTGTGACA	GGGCAGCCTGTGA	TGGGCAGCCTGTG	GTGGGCAGCAGCCTGT	ACGTGGGCAGCAGCCT	GCCACGTGGGCAGCAG	CTCAGGGAACCAGGCC	CCTCAGGGAACCAGGC	TCCTCAGGGAACCAGG	GTCCTCAGGGAACCAG	GGTCCTCAGGGAACCA	GCTGGTCCTCAGGGAA
_	l	_	ļ	_	ļ	ļ	_	_	_	_	_	L	_	_	_	_	ļ	Į	1	_	l	l l	l	l l	1	l l	Į.	_	_	Į.	Į.	l	_	_	l l		_
1	1				1			_					_		1	_	_	1	1		1	1	1	1	1	1	1	1	_	1	1	1		1	1		_
TCAGCGGCCGGGATGC	AGCGGCACCCTCATAG	GCGGCACCCTCATAGG	CGGCACCCTCATAGGC	GGCACCCTCATAGGCC	GCACCCTCATAGGCCT	CACCCTCATAGGCCTG	ACCCTCATAGGCCTGG	CCCTCATAGGCCTGGA	CCTCATAGGCCTGGAG	CTCATAGGCCTGGAGT	TCATAGGCCTGGAGTT	CATAGGCCTGGAGTTT	ATAGGCCTGGAGTTTA	TAGGCCTGGAGTTTAT	AGGCCTGGAGTTTATT	GGCCTGGAGTTTATTC	GCCTGGAGTTTATTCG	CCTGGAGTTTATTCGG	TGGAGTTTATTCGGAA	GCCTGCCTCTACTCCC	cctgcctctActcccc	CTGCCTCTACTCCCCA	TGCCTCTACTCCCCAG	GCCTCTACTCCCCAGC	TGGGGACTTTGGGGGAC	TGTCACAGAGTGGGAC	TCACAGGCTGCTGCCC	CACAGGCTGCTGCCCA	ACAGGCTGCTGCCCAC	AGGCTGCTGCCCACGT	CTGCTGCCCACGTGGC	GGCCTGGTTCCCTGAG	GCCTGGTTCCCTGAGG	CCTGGTTCCCTGAGGA	CTGGTTCCCTGAGGAC	TGGTTCCCTGAGGACC	TTCCCTGAGGACCAGC
16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1155	1238	1239	1240	1241	1242	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1257	1418	1419	1420	1421	1422	1497	1593	1610	1611	1612	1614	1617	1732	1733	1734	1735	1736	1739
1140	1223	1224	1225	1226	1227	1228	1229	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1242	1403	1404	1405	1406	1407	1482	1578	1595	1596	1597	1599	1602	1717	1718	1719	1720	1721	1724

343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378
CCAGGTTGGGGGTCAG	ACCAGGTTGGGGGTCA	CACCAGGTTGGGGGTC	CCACCAGGTTGGGGGT	TGGGTGCTGGGGGCA	ATGGGTGCTGGGGGGC	CATGGGTGCTGGGGGG	GCAGCTCAGCAGCTCC	AGCAGCTCAGCAGCTC	GAGCAGCTCAGCAGCT	GGAGCAGCTCAGCAGC	TGGAGCAGCTCAGCAG	CTGGAGCAGCTCAGCA	CACCCTCACCCCAAA	ACACCCTCACCCCCAA	GACACCCTCACCCCCA	AGACACCTCACCCCC	TAGACACCCTCACCCC	CATGGCAGCAGGAAGC	GCATGGCAGCAGGAAG	GGCATGGCAGCAGGAA	GGGCATGGCAGCAGGA	GGGCATGGCAGCAGG	TGGGCATGCCAGCAG	CTGGGGCATGGCAGCA	CCTGGGGCATGGCAGC	CCGGCAGCAGATGGCA	TCCGGCAGCAGATGGC	CTCCGGCAGCAGATGG	GCTCCGGCAGCAGATG	GGCTCCGGCAGCAGAT	CGGCTCCGGCAGCAGA	GCCGGCTCCGGCAGCA	CAAGTTACAAAAGCAA	TCAAGTTACAAAAGCA	ACATGGGGCAACTTCA
~	1	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	1	_	_	_	1	_	_	
_	1	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	1	_	_	_	1	_	_	_
CTGACCCCCAACCTGG	TGACCCCCAACCTGGT	GACCCCCAACCTGGTG	ACCCCCAACCTGGTGG	TGCCCCCAGCACCCA	GCCCCCAGCACCCAT	CCCCCAGCACCCATG	GGAGCTGCTGAGCTGC	GAGCTGCTGAGCTGCT	AGCTGCTGAGCTGCTC	GCTGCTGAGCTGCTCC	CTGCTGAGCTGCTCCA	TGCTGAGCTGCTCCAG	TTTGGGGGTGAGGGTG	TTGGGGGTGAGGGTGT	TGGGGGTGAGGGTGTC	GGGGTGAGGGTGTCT	GGGGTGAGGGTGTCTA	GCTTCCTGCTGCCATG	CTTCCTGCTGCCATGC	TTCCTGCTGCCATGCC	TCCTGCTGCCATGCCC	CCTGCTGCCATGCCCC	CTGCTGCCATGCCCCA	TGCTGCCATGCCCCAG	GCTGCCATGCCCCAGG	TGCCATCTGCTGCCGG	GCCATCTGCTGCCGGA	CCATCTGCTGCCGGAG	CATCTGCTGCCGGAGC	ATCTGCTGCCGGAGCC	TCTGCTGCCGGAGCCG	TGCTGCCGGAGCCGGC	TTGCTTTTGTAACTTG	TGCTTTTGTAACTTGA	TGAAGTTGCCCCATGT
16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1760	1761	1762	1763	1785	1786	1787	1897	1898	1899	1900	1901	1902	1997	1998	1999	2000	2001	2246	2247	2248	2249	2250	2251	2252	2253	2479	2480	2481	2482	2483	2484	2486	3447	3448	858
1745	1746	1747	1748	1770	1771	1772	1882	1883	1884	1885	1886	887	1982	1983	1984	1985	1986	2231	2232	2233	2234	2235	2236	2237	2238	2464	2465	2466	2467	2468	2469	2471	3432	3433	843

379	380	31	382	383	384	385	386	387	388	389	390	391	392	393
		381												
GAGATACACCTCCACC	CACGTGGGCAGCAGCC	CCACGTGGGCAGCAGC	IGGTCCTCAGGGAACC	CTGCCAGGTGGGTGCC	CCTGCCAGGTGGGTGC	TCCGAATAAACTCCAG	CGTGGGCAGCAGCCTG	AGCTGCAGCCTGTGAG	CCGGCTCCGGCAGCAG	CTGGTCCTCAGGGAAC	GCCACCAGGTTGGGGG	GGCCACCAGGTTGGGG	AGCTCAGCAGCTCCTC	CAGCTCAGCAGCTCCT
SATACACO	GTGGGC/	CGTGGG	TCCTCAC	CCAGGTC	GCCAGG	:GAATAA	GGGCAG	TGCAGC	GCTCCG	GTCCTC/	ACCAGG	CACCAG	:TCAGCA(CTCAGC/
GAG	CAC	CCA	766	CTG	CCT	702	CGT	AGC	900	CTG	၁၁၅	299	AGC	CAG
1	2	2	2	_	_	_	_	_	_	2	2	2	2	2
_	_	_	_	2	2	2	2	2	7	2	2	2	2	2
STC	STG	.GG	SCA	SAG	1GG	1GA	4CG	3CT	999	SAG	390	3CC	3CT	STG
IGGAGGTGTATCTC	GCCCAC	16CTGCCCACGTGG	TGAGGAC	ACCTGG	CCTGGC/	TTATTCG	CTGCCC/	GCTGCAC	CGGAGC	TCCCTGAGGACCAG	CCTGGTC	CTGGTG(:TGCTGA(GCTGAG
GGTGGAG	GGCTGCTGCCCACGTG	<u>вствств</u>	GGTTCCCTGAGGACCA	GGCACCCACCTGGCAG	GCACCCACCTGGCAGG	CTGGAGT	:AGGCTG	CTCACAGGCTGCAGCT	CTGCTGCCGGAGCCGG	GTTCCCT(CCCCCAACCTGGTGGC	CCCCAACCTGGTGGCC	GAGGAGCTGCTGAGCT	AGGAGCTGCTGAGCTG
16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	15	16	37	33	34	99	13	59	35	38	34	1765	35	96
991	1615	1616	1737	1133	11;	1256	1613	2129	2485	1738	1764	17(1895	1896
.6	00	01	1722	1118	1119	41	86	14	70	23	49	50	80	81
926	1600	1601	17.	1	11	12	1598	2114	24	17.	17.	17:	1880	1881

LISTADO DE SECUENCIAS

<110> Santaris A/S

5 <120> Compuestos antagonistas de ARN para la modulación de PCSK9

<130> 1034EP2

<160> 393

10

<170> PatentIn versión 3.3

<210> 1

<211>692

15 <212> PRT

<213> Homo sapiens

<400> 1

Met Gly Thr Val Ser Ser Arg Arg Ser Trp Trp Pro Leu Pro Leu Leu 1 5 10 15

Leu Leu Leu Leu Leu Gly Pro Ala Gly Ala Arg Ala Gln Glu 20 25 30

Asp Glu Asp Gly Asp Tyr Glu Glu Leu Val Leu Ala Leu Arg Ser Glu 35 40 45

Glu Asp Gly Leu Ala Glu Ala Pro Glu His Gly Thr Thr Ala Thr Phe 50 55 60

His Arg Cys Ala Lys Asp Pro Trp Arg Leu Pro Gly Thr Tyr Val Val 65 70 75 80

Val Leu Lys Glu Glu Thr His Leu Ser Gln Ser Glu Arg Thr Ala Arg 85 90 95

Arg Leu Gln Ala Gln Ala Ala Arg Arg Gly Tyr Leu Thr Lys Ile Leu 100 105 110

His Val Phe His Gly Leu Leu Pro Gly Phe Leu Val Lys Met Ser Gly 115 120 125

Asp Leu Leu Glu Leu Ala Leu Lys Leu Pro His Val Asp Tyr Ile Glu 130 135 140

Glu Asp Ser Ser Val Phe Ala Gln Ser Ile Pro Trp Asn Leu Glu Arg 145 150 155 160

Ile Thr Pro Pro Arg Tyr Arg Ala Asp Glu Tyr Gln Pro Pro Asp Gly

20

				165					170					175	
Gly	Ser	Leu	Val 180	Glu	Val	Tyr	Leu	Leu 185	Asp	Thr	Ser	Ile	Gln 190	Ser	Asp
His	Arg	Glu 195	Ile	Glu	Gly	Arg	Val 200	Met	Val	Thr	Asp	Phe 205	Glu	Asn	Val
Pro	Glu 210	Glu	Asp	Gly	Thr	Arg 215	Phe	His	Arg	Gln	Ala 220	Ser	Lys	Суз	Asp
Ser 225	His	Gly	Thr	His	Leu 230	Ala	Gly	Val	Val	Ser 235	Gly	Arg	Asp	Ala	G15 24(
Val	Ala	Lys	Gly	Ala 245	Ser	Met	Arg	Ser	Leu 250	Arg	Val	Leu	Aşn	Cys 255	Glr
Gly	Lys	Gly	Thr 260	Val	Ser	Gly	Thr	Leu 265	Ile	Gly	Leu	Glu	Phe 270	Ile	Arq
Lys	Ser	Gln 275	Leu	Val	Gln	Pro	Val 280	Gly	Pro	Leu	Val	Val 285	Leu	Leu	Pro
Leu	A la 290	Gly	Gly	Tyr	Ser	Arg 295	Val	Leu	Asn	Ala	Ala 300	Cys	Gln	Arg	Let
A la 305	Arg	Ala	Gly	Val	Val 310	Leu	Val	Thr	Ala	Ala 315	Gly	Asn	Phe	Arg	As 320
Asp	Ala	Cys	Leu	Tyr 325	Ser	Pro	Ala	Ser	Ala 330	Pro	Glu	Val	Ile	Thr 335	Val
Gly	Ala	Thr	Asn 340	Ala	Gln	Asp	Gln	Pro 345	Val	Thr	Leu	Gly	Thr 350	Leu	Gl ₃
Thr	Asn	Phe 355	Gly	Arg	Cys	Val	Asp 360	Leu	Phe	Ala	Pro	Gly 365	Glu	Asp	Ile
Ile	Gly 370	Ala	Ser	Ser	Asp	Cys 375	Ser	Thr	Cys	Phe	Val 380	Ser	Gln	Ser	Gly
Thr 385	Ser	Gln	Ala	Ala	A la 390	His	Val	Ala	Gly	Ile 395	Ala	Ala	Met	Met	Let 400
Sar	Ale	Glas	Dro	Glu	T.011	Thr	Lon	λle	G111	Lon	Arc-	G1r	Arc.	T.011	т1.

				405					410					415	
His	Phe	Ser	Ala 420	Lys	Asp	Val	Ile	Asn 425	Glu	Ala	Trp	Phe	Pro 430	Glu	Asp
Gln	Arg	Val 435	Leu	Thr	Pro	Asn	Leu 440	Val	Ala	Ala	Leu	Pro 445	Pro	Ser	Thr
His	Gly 450	Ala	Gly	Trp	Gln	Leu 455	Phe	Cys	Arg	Thr	Val 460	Trp	Ser	Ala	His
Ser 465	Gly	Pro	Thr	Arg	Met 470	Ala	Thr	Ala	Val	Ala 475	Arg	Cys	Ala	Pro	Asp 480
Glu	Glu	Leu	Leu	Ser 485	Cys	Ser	Ser	Phe	Ser 490	Arg	Ser	Gly	Lys	Arg 495	Arg
Gly	Glu	Arg	Met 500	Glu	Ala	Gln	Gly	Gly 505	Lys	Leu	Val	Cys	A rg 510	Ala	His
Asn	Ala	Phe 515	Gly	Gly	Glu	Gly	Val 520	Tyr	Ala	Ile	Ala	A rg 525	Cys	Cys	Leu
Leu	Pro 530	Gln	Ala	Asn	Cys	Ser 535	Val	His	Thr	Ala	Pro 540	Pro	Ala	Glu	Ala
Ser 545	Met	Gly	Thr	Arg	Val 550	His	Cys	His	Gln	Gln 555	Gly	Hìs	Val	Leu	Thr 560
Gly	Cys	Ser	Ser	His 565	Trp	Glu	Val	Glu	Asp 570	Lęu	Gly	Thr	His	Lys 575	Pro
Pro	Val	Leu	A rg 580	Pro	Arg	Gly	Gln	Pro 585	Asn	Gln	Cys	Val	Gly 590	His	Arg
Glu	Ala	Ser 595	Ile	His	Ala	Ser	Cys 600	Cys	His	Ala	Pro	Gly 605	Leu	Glu	Cys
Lys	Val 610	Lys	Glu	His	Gly	Ile 615	Pro	Ala	Pro	Gln	Glu 620	Gl n	Val	Thr	Val
Ala 625	Cys	Glu	Glu	Gly	Trp 630	Thr	Leu	Thr	Gly	Cys 635	Ser	Ala	Leu	Pro	G1y 640
Thr	Ser	His	Va1	Leu	Glv	Ala	Tvr	Ala	Val	Asp	Asn	Thr	Cvs	Val	Val

645 650 655

Arg Ser Arg Asp Val Ser Thr Thr Gly Ser Thr Ser Glu Gly Ala Val 660 665 670

Thr Ala Val Ala Ile Cys Cys Arg Ser Arg His Leu Ala Gln Ala Ser 675 680 685

Gln Glu Leu Gln 690

<210> 2

5

<211> 3636

<212> ADN

<213> Homo sapiens

<400> 2

cagegacgte gaggegetea tggttgcagg egggegeege egtteagtte agggtetgag 60 cctggaggag tgagccaggc agtgagactg gctcgggcgg gccgggacgc gtcgttgcag 120 cageggetee cageteecag ecaggattee gegegeeeet teaegegeee tgeteetgaa 180 etteagetee tgeacagtee teeceacege aaggeteaag gegeegeegg egtggacege 240 gcacggcctc taggtctcct cgccaggaca gcaacctctc ccctggccct catgggcacc 300 360 gteageteea ggeggteetg gtggeegetg ceaetgetge tgetgetget getgeteetg 420 ggtcccgcgg gcgcccgtgc gcaggaggac gaggacggcg actacgagga gctggtgcta geettgegtt cegaggagga eggeetggee gaagcaeeeg ageaeggaae cacagceaee 480 ttccaecgct gegccaagga tccgtggagg ttgcctggca cctacgtggt ggtgctgaag 540 600 gaggagacce acetetegea gteagagege actgeeegee geetgeagge eeaggetgee cgccggggat acctcaccaa gatcctgcat gtcttccatg gccttcttcc tggcttcctg 660 720 gtgaagatga gtggcgacct gctggagctg gccttgaagt tgccccatgt cgactacatc gaggaggact cctctgtctt tgcccagagc atcccgtgga acctggagcg gattacccct 780 ccacggtacc gggcggatga ataccagccc cccgacggag gcagcctggt ggaggtgtat 840 900 ctcctagaca ccagcataca gagtgaccac cgggaaatcg agggcagggt catggtcacc gacttcgaga atgtgcccga ggaggacggg acccgcttcc acagacaggc cagcaagtgt 960 gacagteatg gcacccacct ggcaggggtg gtcagcggcc gggatgccgg cgtggccaag 1020 ggtgccagca tgcgcagcct gcgcgtgctc aactgccaag ggaagggcac ggttagcggc 1080 acceteatag geetggagtt tatteggaaa ageeagetgg teeageetgt ggggeeaetg 1140 gtggtgctgc tgcccctggc gggtgggtac agccgcgtcc tcaacgccgc ctgccagcgc 1200

10

ctggcgaggg	ctggggtcgt	gctggtcacc	gctgccggca	acttccggga	cgatgcctgc	1260
ctctactccc	cagectcage	tecegaggte	atcacagttg	gggccaccaa	tgcccaagac	1320
cagccggtga	ccctggggac	tttggggacc	aactttggcc	gctgtgtgga	cctctttgcc	1380
ccaggggagg	acatcattgg	tgcctccagc	gactgcagca	cctgctttgt	gtcacagagt	1440
gggacatcac	aggctgctgc	ccacgtggct	ggcattgcag	ccatgatgct	gtctgccgag	1500
ccggagctca	ccctggccga	gttgaggcag	agactgatcc	acttctctgc	caaagatgtc	1560
atcaatgagg	cctggttccc	tgaggaccag	cgggtactga	cccccaacct	ggtggccgcc	1620
ctgcccccca	gcacccatgg	ggcaggttgg	cagctgtttt	gcaggactgt	atggtcagca	1680
cactegggge	ctacacggat	ggccacagcc	gtcgcccgct	gcgccccaga	tgaggagctg	1740
ctgagctgct	ccagtttctc	caggagtggg	aagcggcggg	gcgagcgcat	ggaggcccaa	1800
gggggcaagc	tggtetgeeg	ggcccacaac	gcttttgggg	gtgagggtgt	ctacgccatt	1860
gccaggtgct	geetgetace	ccaggccaac	tgcagcgtcc	acacagetee	accagetgag	1920
gccagcatgg	ggacccgtgt	ccactgccac	caacagggcc	acgtcctcac	aggetgeage	1980
teecactggg	aggtggagga	ccttggcacc	cacaagcege	ctgtgctgag	gccacgaggt	2040
cagcccaacc	agtgegtggg	ccacagggag	gccagcatcc	acgetteetg	ctgccatgcc	2100
ccaggtctgg	aatgcaaagt	caaggagcat	ggaatcccgg	cccctcagga	gcaggtgacc	2160
gtggeetgeg	aggagggetg	gaccctgact	ggctgcagtg	ccctccctgg	gaceteceae	2220
gteetggggg	cctacgccgt	agacaacacg	tgtgtagtca	ggageeggga	cgtcagcact	2280
acaggcagca	ccagcgaagg	ggccgtgaca	gccgttgcca	tetgetgeeg	gageeggeae	2340
ctggcgcagg	cctcccagga	gctccagtga	cagececate	ccaggatggg	tgtctgggga	2400
gggtcaaggg	ctggggctga	gctttaaaat	ggttccgact	tgtccctctc	teagecetee	2460
atggcctggc	acgaggggat	ggggatgctt	ccgcctttcc	ggggctgctg	geetggeeet	2520
tgagtggggc	agcetecttg	cctggaactc	actcactctg	ggtgcctcct	ccccaggtgg	2580
aggtgccagg	aageteeete	cctcactgtg	gggcatttca	ccattcaaac	aggtcgagct	2640
gtgctcgggt	gctgccagct	gctcccaatg	tgccgatgtc	cgtgggcaga	atgactttta	2700
ttgagctctt	gttccgtgcc	aggcattcaa	teeteaggte	tccaccaagg	aggcaggatt	2760
cttcccatgg	ataggggagg	gggcggtagg	ggctgcaggg	acaaacatcg	ttggggggtg	2820
agtgtgaaag	gtgctgatgg	ccctcatctc	cagctaactg	tggagaagcc	cctgggggct	2880
ccctgattaa	tggaggctta	gctttctgga	tggcatctag	ccagaggctg	gagacaggtg	2940
cgcccctggt	ggtcacaggc	tgtgccttgg	tttcctgagc	cacctttact	ctgctctatg	3000

ccaggetgtg ctagcaacac ccaaaggtgg cctgcgggga gccatcacct aggactgact

3060

	cggcagtgtg	cagtggtgca	tgcactgtct	cagccaaccc	gctccactac	ccggcagggt	3120
	acacattcgc	acccctactt	cacagaggaa	gaaacctgga	accagagggg	gcgtgcctgc	3180
	caageteaca	cagcaggaac	tgagccagaa	acgcagattg	ggctggctct	gaagccaagc	3240
	ctcttcttac	ttcacccggc	tgggctcctc	atttttacgg	gtaacagtga	ggctgggaag	3300
	gggaacacag	accaggaagc	tcggtgagtg	atggcagaac	gatgcctgca	ggcatggaac	3360
	tttttccgtt	atcacccagg	cctgattcac	tggcctggcg	gagatgette	taaggcatgg	3420
	tcgggggaga	gggccaacaa	ctgtccctcc	ttgagcacca	gccccaccca	agcaagcaga	3480
	catttatctt	ttgggtetgt	cctctctgtt	gcctttttac	agccaacttt	tctagacctg	3540
	ttttgctttt	gtaacttgaa	gatatttatt	ctgggttttg	tagcattttt	attaatatgg	3600
	tgacttttta	aaataaaaac	aaacaaacgt	tgtcct			3636
5	<210> 3 <211> 16 <212> ADN <213> artificial						
10	<220> <223> Motivo de se	ecuencia preferio	lo				
10	<400> 3 gcctgtctgt ggaagc		16				
15	<210> 4 <211> 16 <212> ADN <213> Artificial						
20	<220> <223> Motivo de se	ecuencia preferio	lo				
	<400> 4 caagttacaa aagcaa		16				
25	<210> 5 <211> 16 <212> ADN <213> Artificial						
30	<220> <223> Motivo de se	ecuencia preferio	lo				
35	<400> 5 gagatacacc tccacc		16				
	<210> 6 <211> 16 <212> ADN <213> Artificial						
40	<220> <223> Motivo de se	ecuencia preferio	lo				
45	<400> 6 tcctcaggga accagg		16				

```
<210> 7
         <211> 16
         <212> ADN
 5
          <213> Artificial
         <220>
          <223> Motivo de secuencia preferido
10
          <400> 7
         ctggagcagc tcagca
                                                16
          <210>8
         <211> 16
15
         <212> ADN
         <213> Artificial
          <223> Motivo de secuencia preferido
20
         <400> 8
         catggcagca ggaagc
                                                16
          <210>9
25
          <211> 16
          <212> ADN
          <213> Artificial
          <220>
30
         <223> Oligómero de LNA
          <220>
          <221> enlace de fosforotioato
          <222> (1) .. (15)
35
          <221> Nucleobase de LNA
          <222> (1) .. (3)
40
         <220>
         <221> Nucleobase de LNA
          <222> (14) .. (16)
         <220>
45
          <221> citosina 5'-metil modificada
         <222> (15) .. (16)
          <400> 9
         gagatacacc tccacc
                                                16
50
         <210> 10
         <211> 16
          <212> ADN
          <213> Artificial
55
          <223> Oligómero de LNA
         <220>
60
         <221> Enlace de fosforotioato
          <222> (1) .. (15)
         <220>
          <221> Nucleobase de LNA
65
         <222> (1) .. (3)
```

```
<220>
          <221> citosina 5'-metil modificada
          <222> (2)..(3)
 5
          <220>
          <221> Nucleobase de LNA
          <222> (14) .. (16)
          <220>
10
          <221> citosina 5'-metil modificada
          <222> (16) .. (16)
          <400> 10
          gcctgtctgt ggaagc
                                                 16
15
          <210> 11
          <211> 16
          <212> ADN
          <213> Artificial
20
          <220>
          <223> Oligómero de LNA
25
          <221> enlace de fosforotioato
          <222> (1) .. (15)
          <220>
          <221> Nucleobase de LNA
30
          <222> (1) .. (3)
          <221> citosina 5'-metil modificada
          <222> (1) .. (1)
35
          <221> Nucleobase de LNA
          <222> (14) .. (16)
40
          <220>
          <221> citosina 5'-metil modificada
          <222> (14)..(14)
          <400> 11
45
                                                 16
          caagttacaa aagcaa
          <210> 12
          <211> 15
          <212> ADN
50
          <213> artificial
          <220>
          <223> Oligómero de Control
55
          <220>
          <221> Enlace de fosforotioato
          <222> (1) .. (15)
          <220>
60
          <221> Nucleobase de LNA
          <222> (1) .. (3)
          <220>
          <221> citosina 5'-metil modificada
65
          <222> (1) .. (1)
```

```
<220>
          <221> Nucleobase de LNA
          <222> (13)..(15)
 5
          <400> 12
          cgtcagtatg cgaat 15
          <210> 13
          <211> 20
10
          <212> ADN
          <213> Artificial
          <220>
          <223> Compuesto oligonucleotídico antisentido ISIS
15
          <220>
          <221> Enlace de fosforotioato
          <222> (1) .. (19)
          <220>
20
          <221> 2'-O-metil ADN
          <222> (1) .. (5)
          <220>
          <221> citosina 5'-metil modificada
25
          <222> (2)..(3)
          <220>
          <221> citosina 5'-metil modificada
30
          <222> (5) .. (5)
          <221> citosina 5'-metil modificada
          <222> (12)..(12)
35
          <221> citosina 5'-metil modificada
          <222> (15)..(15)
40
          <220>
          <221> 2'-O-metil ADN
          <222> (16)..(20)
          <220>
45
          <221> citosina 5'-metil modificada
          <222> (17)..(17)
          <220>
          <221> citosina 5'-metil modificada
50
          <222> (19) .. (20)
          <400> 13
          gcctcagtct gcttcgcacc
                                                 20
55
          <210> 14
          <211> 16
          <212> ADN
          <213> Homo sapiens
60
          <400> 14
                                                 16
          ggtggaggtg tatctc
          <210> 15
          <211> 17
65
          <212> ADN
          <213> Homo sapiens
```

	<400> 15 cgcttccaca gacaggc	17
5	<210> 16 <211> 23 <212> ADN <213> Homo sapiens	
10	<400> 16 ggcctggttc cctgaggacc agc	23
15	<210> 17 <211> 23 <212> ADN <213> Homo sapiens	
20	<400> 17 gaggagctgc tgagctgctc cag	23
	<210> 18 <211> 23 <212> ADN <213> Homo sapiens	
25	<400> 18 gcttcctgct gccatgcccc agg	23
30	<210> 19 <211> 15 <212> ADN <213> Homo sapiens	
35	<400> 19 ttgcttttgt aactt	15
40	<210> 20 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Oligómero de LNA	
45	<220> <221> Enlace de fosforotioato <222> (1) (14)	
50	<220> <221> Nucleobase de LNA <222> (1) (3)	
55	<220> <221> Nucleobase de LNA <222> (12)(14)	
60	<220> <221> citosina 5'-metil modificada <222> (14)(14)	
60	<400> 20 gagtagaggc aggc	14
65	<210> 21 <211> 16 <212> ADN	

```
<213> Artificial
          <220>
          <223> Oligómero de LNA
 5
          <221> Enlace de fosforotioato
          <222> (1) .. (15)
10
          <221> Nucleobase de LNA
          <222> (1) .. (3)
          <220>
          <221> citosina 5'-metil modificada
15
          <222> (2)..(3)
          <220>
          <221> Nucleobase de LNA
20
          <222> (14) .. (16)
          <400> 21
                                                16
         tcctcaggga accagg
25
          <210> 22
          <211> 16
          <212> ADN
          <213> Artificial
30
          <220>
          <223> Oligómero de LNA
          <220>
          <221> Enlace de fosforotioato
35
          <222> (1) .. (15)
          <220>
          <221> Nucleobase de LNA
          <222> (1) .. (3)
40
          <220>
          <221> citosina 5'-metil modificada
          <222> (1) .. (1)
45
          <220>
          <221> Nucleobase de LNA
          <222> (14) .. (16)
50
          <221> citosina 5'-metil modificada
          <222> (15)..(15)
          <400> 22
                                                16
          ctggagcagc tcagca
55
          <210> 23
          <211> 16
          <212> ADN
          <213> Artificial
60
          <220>
          <223> Oligómero de LNA
          <220>
65
          <221> Enlace de fosforotioato
          <222> (1) .. (15)
```

```
<220>
          <221> Nucleobase de LNA
          <222> (1) .. (3)
 5
          <221> citosina 5'-metil modificada
          <222> (1) .. (1)
10
          <221> Nucleobase de LNA
          <222> (14) .. (16)
          <220>
          <221> citosina 5'-metil modificada
15
          <222> (16) .. (16)
          <400> 23
                                                 16
          catggcagca ggaagc
20
          <210> 24
          <211> 14
          <212> ADN
          <213> Artificial
25
          <220>
          <223> Oligómero de LNA
          <220>
30
          <221> Enlace de fosforotioato
          <222> (1) .. (13)
          <220>
          <221> Nucleobase de LNA
35
          <222> (1) .. (3)
          <220>
          <221> Nucleobase de LNA
          <222> (12)..(14)
40
          <220>
          <221> citosina 5'-metil modificada
          <222> (13)..(14)
45
          <400> 24
          gatacacctc cacc
                                                 14
          <210> 25
          <211> 14
          <212> ADN
50
          <213> Artificial
          <220>
          <223> Oligómero de LNA
55
          <221> Enlace de fosforotioato
          <222> (1) .. (13)
60
          <220>
          <221> Nucleobase de LNA
          <222> (1) .. (3)
          <220>
65
          <221> citosina 5'-metil modificada
          <222> (1) .. (1)
```

```
<220>
          <221> Nucleobase de LNA
          <222> (12)..(14)
 5
          <221> citosina 5'-metil modificada
          <222> (14)..(14)
10
          <400> 25
          ctgtctgtgg aagc
                                                14
          <210> 26
          <211> 13
15
          <212> ADN
          <213> Artificial
          <220>
          <223> Oligómero de LNA
20
          <221> Enlace de fosforotioato
          <222> (1) .. (12)
25
          <220>
          <221> Nucleobase de LNA
          <222> (1) .. (2)
          <220>
30
          <221> Nucleobase de LNA
          <222> (11) .. (13)
          <220>
          <221> citosina 5'-metil modificada
35
          <222> (12)..(12)
          <400> 26
                                                13
         gtctgtggaa gcg
40
          <210> 27
          <211> 13
          <212> ADN
          <213> Artificial
45
          <220>
          <223> Oligómero de LNA
          <220>
          <221> Enlace de fosforotioato
50
          <222> (1) .. (12)
          <220>
          <221> Nucleobase de LNA
          <222> (1) .. (12)
55
          <221> Nucleobase de LNA
          <222> (11) .. (13)
60
          <220>
          <221> citosina 5'-metil modificada
          <222> (11) .. (11)
          <220>
65
          <221> citosina 5'-metil modificada
          <222> (13)..(13)
```

	atgagggtgc cgc	13
5	<210> 28 <211> 13 <212> ADN <213> Artificial	
10	<220> <223> Oligómero de LNA	
15	<220> <221> Enlace de fosforotioato <222> (1) (12)	
	<220> <221> Nucleobase de LNA <222> (1) (2)	
20	<220> <221> Nucleobase de LNA <222> (11) (13)	
25	<220> <221> citosina 5'-metil modificada <222> (13)(13)	
30	<400> 28 ataaactcca ggc	13
35	<210> 29 <211> 13 <212> ADN <213> artificial	
	<220> <223> Oligómero de LNA	
40	<220> <221> Enlace de fosforotioato <222> (1) (12)	
45	<220> <221> Nucleobase de LNA <222> (1) (2)	
50	<220> <221> Nucleobase de LNA <222> (11) (13)	
55	<220> <221> citosina 5'-metil modificada <222> (11) (11)	
55	<220> <221> citosina 5'-metil modificada <222> (13)(13)	
60	<400> 29 tagacaccct cac	13
65	<210> 30 <211> 14 <212> ADN <213> Artificial	

	<220> <223> Motivo de oligómero		
5	<400> 30 gagtagaggc aggc 14		
10	<210> 31 <211> 16 <212> ADN <213> Artificial		
15	<220> <223> Motivo de oligómero		
10	<400> 31 tcctcaggga accagg		16
20	<210> 32 <211> 16 <212> ADN <213> Artificial		
25	<220> <223> Motivo de oligómero		
	<400> 32 ctggagcagc tcagca		16
30	<210> 33 <211> 16 <212> ADN <213> Artificial		
35	<220> <223> Motivo de oligómero		
40	<400> 33 catggcagca ggaagc		16
	<210> 34 <211> 14 <212> ADN <213> Artificial		
45	<220> <223> Motivo de oligómero		
50	<400> 34 gatacacctc cacc	14	
55	<210> 35 <211> 14 <212> ADN <213> Motivo de oligómero		
	<400> 35 ctgtctgtgg aagc		14
60	<210> 36 <211> 13 <212> ADN <213> Artificial		
65	<220> <223> Motivo de oligómero		

	<400> 36 gtctgtggaa gcg	13
5	<210> 37 <211> 13 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligómero	
15	<400> 37 atgagggtgc cgc	13
	<210> 38 <211> 13 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligómero	
25	<400> 38 ataaactcca ggc	13
30	<210> 39 <211> 13 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligómero	
35	<400> 39 tagacaccct cac	13
40	<210> 40 <211> 12 <212> ADN	
<i>1</i> E	<213> Artificial <220> <223> Motivo de oligo	
45	<400> 40 tctgtggaag cg	12
50	<210> 41 <211> 12 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 41 cctatgaggg tg	12
60	<210> 42 <211> 12 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	ccgaataaac tc	12
5	<210> 43 <211> 12 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 43 taaactccag gc	12
	<210> 44 <211> 12 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 44 cggccgctga cc	12
30	<210> 45 <211> 12 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 45 ccaggcctat ga	12
40	<210> 46 <211> 12 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
40	<400> 46 ggcctatgag gg	12
50	<210> 47 <211> 13 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 47 gtctgtggaa gcg	13
60	<210> 48 <211> 13 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	cccggccgct gac	13
5	<210> 49 <211> 13 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 49 atgagggtgc cgc	13
	<210> 50 <211> 13 <212> ADN	
20	<213> Artificial <220> <223> Motivo de oligo	
25	<400> 50 gcctatgagg gtg	13
30	<210> 51 <211> 13 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 51 ccaggcctat gag	13
40	<210> 52 <211> 13 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
40	<400> 52 actccaggcc tat	13
50	<210> 53 <211> 13 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 53 taaactccag gcc	13
60	<210> 54 <211> 13 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 54 ataaactcca ggc	13
5	<210> 55 <211> 13 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 55 gccccgagtg tgc	13
	<210> 56 <211> 13 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 56 tagacaccct cac	13
30	<210> 57 <211> 13 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 57 atggggcaac ttc	13
40	<210> 58 <211> 13 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
40	<400> 58 gagatacacc tcc	13
50	<210> 59 <211> 13 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 59 tccaggccta tga	13
60	<210> 60 <211> 13 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	ggccccgagt gtg	13
5	<210> 61 <211> 13 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 61 caggcctatg agg	13
	<210> 62 <211> 13 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 62 agatacacct cca	13
30	<210> 63 <211> 13 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 63 cacgtgggca gca	13
40	<210> 64 <211> 13 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
	<400> 64 tgtcacactt gct	13
50	<210> 65 <211> 13 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 65 tcccggccgc tga	13
60	<210> 66 <211> 13 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	tatgagggtg ccg	13
5	<210> 67 <211> 13 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 67 ctatgagggt gcc	13
	<210> 68 <211> 13 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 68 cctatgaggg tgc	13
30	<210> 69 <211> 13 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 69 ggcctatgag ggt	13
40	<210> 70 <211> 13 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
40	<400> 70 aggcctatga ggg	13
50	<210> 71 <211> 13 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 71 ctccaggcct atg	13
60	<210> 72 <211> 13 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	tccgaataaa ctc	13
5	<210> 73 <211> 13 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 73 cgtcccggaa gtt	13
	<210> 74 <211> 13 <212> ADN	
20	<213> Artificial <220> <223> Motivo de oligo	
25	<400> 74 taatcaggga gcc	13
30	<210> 75 <211> 13 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 75 tggggcaact tca	13
40	<210> 76 <211> 13 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
.0	<400> 76 catggggcaa ctt	13
50	<210> 77 <211> 13 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 77 cggccgctga cca	13
60	<210> 78 <211> 13 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 78 ccggccgctg acc	13
5	<210> 79 <211> 13 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 79 ccgaataaac tcc	13
	<210> 80 <211> 13 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 80 gtcccactct gtg	13
30	<210> 81 <211> 13 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 81 caggttgggg gtc	13
40	<210> 82 <211> 13 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
40	<400> 82 cggcagcaga tgg	13
50	<210> 83 <211> 13 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 83 acaccctcac ccc	13
60	<210> 84 <211> 13 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 84 tccggcagca gat	13
5	<210> 85 <211> 13 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 85 atacacctcc acc	13
	<210> 86 <211> 13 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 86 cctgtctgtg gaa	13
30	<210> 87 <211> 13 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 87 gcctgtctgt gga	13
40	<210> 88 <211> 13 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
70	<400> 88 ttccgaataa act	13
50	<210> 89 <211> 13 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 89 actgtgatga cct	13
60	<210> 90 <211> 13 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 90 tcgtcccgga agt	13
5	<210> 91 <211> 13 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 91 tcccactctg tga	13
	<210> 92 <211> 13 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 92 aataaactcc agg	13
30	<210> 93 <211> 13 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 93 gctggggagt aga	13
40	<210> 94 <211> 13 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
45	<400> 94 ttaatcaggg agc	13
50	<210> 95 <211> 14 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 95 tgtctgtgga agcg	14
60	<210> 96 <211> 14 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	cctgtctgtg gaag	14
5	<210> 97 <211> 14 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 97 ctgtcacact tgct	14
	<210> 98 <211> 14 <212> ADN	
20	<213> Artificial <220> <223> Motivo de oligo	
25	<400> 98 cggccgctga ccac	14
30	<210> 99 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 99 cccggccgct gacc	14
40	<210> 100 <211> 14 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
40	<400> 100 tcccggccgc tgac	14
50	<210> 101 <211> 14 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 101 atcccggccg ctga	14
60	<210> 102 <211> 14 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 102 atgagggtgc cgct	14
5	<210> 103 <211> 14 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 103 tatgagggtg ccgc	14
15	<210> 104 <211> 14 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 104 gcctatgagg gtgc	14
	<210> 105 <211> 14 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 105 ggcctatgag ggtg	14
40	<210> 106 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 106 caggcctatg aggg	14
50	<210> 107 <211> 14 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
33	<400> 107 ccaggcctat gagg	14
60	<210> 108 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
65	<400> 108	

	tccaggccta tgag	14
5	<210> 109 <211> 14 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
10	<400> 109 ctccaggcct atga	14
15	<210> 110 <211> 14 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 110 actccaggcc tatg	14
25	<210> 111 <211> 14 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
25	<400> 111 aactccaggc ctat	14
35	<210> 112 <211> 14 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 112 aaactccagg ccta	14
50	<210> 113 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 113 taaactccag gcct	14
60	<210> 114 <211> 14 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
30	<400> 114	

	ataaactcca ggcc	14
5	<210> 115 <211> 14 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 115 aataaactcc aggc	14
15	<210> 116 <211> 14 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 116 ttccgaataa actc	14
25	<210> 117 <211> 14 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
	<400> 117 tcgtcccgga agtt	14
35	<210> 118 <211> 14 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 118 gagtagaggc aggc	14
50	<210> 119 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 119 ggggagtaga ggca	14
60	<210> 120 <211> 14 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
00	<400> 120	

	gctggggagt agag	14
5	<210> 121 <211> 14 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 121 actgtgatga cctc	14
15	<210> 122 <211> 14 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 122 gtcccactct gtga	14
25	<210> 123 <211> 14 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
	<400> 123 ccaggttggg ggtc	14
35	<210> 124 <211> 14 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 124 ggccccgagt gtgc	14
50	<210> 125 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 125 acaccetcac cccc	14
60	<210> 126 <211> 14 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
65	<100> 126	

	gacaccetea ecce	14
5	<210> 127 <211> 14 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 127 tagacaccct cacc	14
15	<210> 128 <211> 14 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 128 ggggcatggc agca	14
25	<210> 129 <211> 14 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 129 cggcagcaga tggc	14
	<210> 130 <211> 14 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 130 ccggcagcag atgg	14
50	<210> 131 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 131 gctccggcag caga	14
60	<210> 132 <211> 14 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
65	<400> 132	

	taatcaggga gccc	14
5	<210> 133 <211> 14 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 133 ttaatcaggg agcc	14
15	<210> 134 <211> 14 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 134 atggggcaac ttca	14
25	<210> 135 <211> 14 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 135 catggggcaa cttc	14
	<210> 136 <211> 14 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 136 gatacacctc cacc	14
50	<210> 137 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 137 agatacacct ccac	14
60	<210> 138 <211> 14 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
65	<100> 138	

	gagatacacc tcca	14
5	<210> 139 <211> 14 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
10	<400> 139 ctgtctgtgg aagc	14
15	<210> 140 <211> 14 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 140 gcctgtctgt ggaa	14
25	<210> 141 <211> 14 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
25	<400> 141 acgtgggcag cagc	14
35	<210> 142 <211> 14 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 142 tcctcaggga acca	14
50	<210> 143 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 143 gcatggcagc agga	14
60	<210> 144 <211> 14 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
00	<400> 144	

	ctccggcagc agat	14
5	<210> 145 <211> 14 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
10	<400> 145 cacgtgggca gcag	14
15	<210> 146 <211> 14 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 146 ccacgtgggc agca	14
25	<210> 147 <211> 14 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 147 ggagcagctc agca	14
	<210> 148 <211> 14 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 148 gagcagctca gcag	14
50	<210> 149 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 149 atgggtgctg gggg	14
60	<210> 150 <211> 14 <212> ADN <213> Artificial	
GE	<220> <223> Motivo de oligo	
65	<400> 150	

	ccggccgctg acca	14
5	<210> 151 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
10	<400> 151 catcccggcc gctg	14
15	<210> 152 <211> 14 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 152 ctatgagggt gccg	14
25	<210> 153 <211> 14 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
25	<400> 153 cctatgaggg tgcc	14
35	<210> 154 <211> 14 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 154 aggcctatga gggt	14
50	<210> 155 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 155 gaataaactc cagg	14
60	<210> 156 <211> 14 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
65	<400> 156	

	cgaataaact ccag	14
5	<210> 157 <211> 14 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 157 tccgaataaa ctcc	14
15	<210> 158 <211> 14 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 158 tccccaaagt cccc	14
25	<210> 159 <211> 14 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 159 cccactctgt gaca	14
	<210> 160 <211> 14 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 160 agagaagtgg atca	14
50	<210> 161 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 161 tcagggaacc aggc	14
60	<210> 162 <211> 14 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
55	<400> 162	

	accaggttgg gggt	14
5	<210> 163 <211> 14 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
10	<400> 163 accetcacce ccaa	14
15	<210> 164 <211> 14 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 164 ggtggcagtg gaca	14
25	<210> 165 <211> 14 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
25	<400> 165 tggtggcagt ggac	14
35	<210> 166 <211> 14 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 166 cctggggcat ggca	14
50	<210> 167 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 167 tcaagttaca aaag	14
60	<210> 168 <211> 14 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
55	<400> 168	

	cccggcgggc agcc	14
5	<210> 169 <211> 14 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
10	<400> 169 acatggggca actt	14
15	<210> 170 <211> 14 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 170 gtgcccttcc cttg	14
25	<210> 171 <211> 14 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
25	<400> 171 ccgaataaac tcca	14
35	<210> 172 <211> 14 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 172 ctggggagta gagg	14
50	<210> 173 <211> 14 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 173 tcccactctg tgac	14
60	<210> 174 <211> 14 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
	<400> 174	

	gtgggcagca gcct		14
5	<210> 175 <211> 14 <212> ADN <213> Artificial		
10	<220> <223> Motivo de oligo		
10	<400> 175 gagaagtgga tcag		14
15	<210> 176 <211> 14 <212> ADN <213> Artificial		
20	<220> <223> Motivo de oligo		
	<400> 176 gtcctcaggg aacc		14
25	<210> 177 <211> 14 <212> ADN <213> Artificial		
30	<220> <223> Motivo de oligo		
25	<400> 177 caggttgggg gtca	14	
35	<210> 178 <211> 14 <212> ADN <213> Artificial		
40	<220> <223> Motivo de oligo		
45	<400> 178 ccctcacccc caaa	14	
50	<210> 179 <211> 14 <212> ADN <213> Artificial		
	<220> <223> Motivo de oligo		
55	<400> 179 ggcatggcag cagg	14	
60	<210> 180 <211> 14 <212> ADN <213> Artificial		
65	<220> <223> Motivo de oligo		
00	<400> 180		

	tggggcatgg cagc		14
5	<210> 181 <211> 14 <212> ADN <213> Artificial		
10	<220> <223> Motivo de oligo		
10	<400> 181 tccggcagca gatg	14	
15	<210> 182 <211> 14 <212> ADN <213> Artificial		
20	<220> <223> Motivo de oligo		
	<400> 182 caagttacaa aagc	14	
25	<210> 183 <211> 14 <212> ADN <213> Artificial		
30	<220> <223> Motivo de oligo		
35	<400> 183 gggatgctct gggc		14
	<210> 184 <211> 14 <212> ADN <213> Artificial		
40	<220> <223> Motivo de oligo		
45	<400> 184 cgctccaggt tcca		14
50	<210> 185 <211> 14 <212> ADN <213> Artificial		
	<220> <223> Motivo de oligo		
55	<400> 185 gggcagcagc ctgt		14
60	<210> 186 <211> 14 <212> ADN <213> Artificial		
GE	<220> <223> Motivo de oligo		
65	<100> 186		

	catggcagca ggaa	14
5	<210> 187 <211> 14 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 187 catgggtgct gggg	14
15	<210> 188 <211> 14 <212> ADN	
20	<213> Artificial <220> <223> Motivo de oligo	
	<400> 188 gcatcccggc cgct	14
25	<210> 189 <211> 14 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 189 gccacgtggg cagc	14
	<210> 190 <211> 14 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 190 agacaccetc accc	14
50	<210> 191 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 191 ctgtctgtgg aagcg	15
60	<210> 192 <211> 15 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
55	<400> 192	

	cctgtctgtg gaagc	15
5	<210> 193 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
10	<400> 193 gcctgtctgt ggaag	15
15	<210> 194 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 194 coggccgctg accac	15
25	<210> 195 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
25	<400> 195 cccggccgct gacca	15
35	<210> 196 <211> 15 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 196 tcccggccgc tgacc	15
50	<210> 197 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 197 atcccggccg ctgac	15
60	<210> 198 <211> 15 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
UU	<400> 198	

	catcccggcc gctga	15
5	<210> 199 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 199 tatgagggtg ccgct	15
15	<210> 200 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 200 ctatgagggt gccgc	15
25	<210> 201 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 201 gcctatgagg gtgcc	15
	<210> 202 <211> 15 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 202 ggcctatgag ggtgc	15
50	<210> 203 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 203 aggcctatga gggtg	15
60	<210> 204 <211> 15 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
00	<400> 204	

	caggcctatg agggt	15
5	<210> 205 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 205 ccaggcctat gaggg	15
15	<210> 206 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 206 tccaggccta tgagg	15
25	<210> 207 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 207 ctccaggcct atgag	15
	<210> 208 <211> 15 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 208 actccaggcc tatga	15
50	<210> 209 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 209 aactccaggc ctatg	15
60	<210> 210 <211> 15 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
- -	<400> 210	

	aaactccagg cctat	15
5	<210> 211 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
10	<400> 211 taaactccag gccta	15
15	<210> 212 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 212 ataaactcca ggcct	15
25	<210> 213 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 213 aataaactcc aggcc	15
40	<210> 214 <211> 15 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 214 gaataaactc caggc	15
50	<210> 215 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 215 cgaataaact ccagg	15
60	<210> 216 <211> 15 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
30	<400> 216	

	ttccgaataa actcc	15
5	<210> 217 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
10	<400> 217 ggagtagagg caggc	15
15	<210> 218 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 218 ggggagtaga ggcag	15
25	<210> 219 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
25	<400> 219 tggggagtag aggca	15
35	<210> 220 <211> 15 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 220 ctggggagta gaggc	15
50	<210> 221 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 221 gctggggagt agagg	15
60	<210> 222 <211> 15 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
00	<400> 222	

	gtccccaaag tcccc	15
5	<210> 223 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
. •	<400> 223 gtcccactct gtgac	15
15	<210> 224 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 224 gccacgtggg cagca	15
25	<210> 225 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 225 agagaagtgg atcag	15
	<210> 226 <211> 15 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 226 ctcagggaac caggc	15
50	<210> 227 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 227 gtcctcaggg aacca	15
60	<210> 228 <211> 15 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
55	<400> 228	

	caggttgggg gtcag	15
5	<210> 229 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
10	<400> 229 ccaggttggg ggtca	15
15	<210> 230 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 230 accaggttgg gggtc	15
25	<210> 231 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 231 atgggtgctg ggggg	15
	<210> 232 <211> 15 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 232 tggagcagct cagca	15
50	<210> 233 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 233 accetcacce ccaaa	15
60	<210> 234 <211> 15 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
55	<400> 234	

	cacceteace eccaa	15
5	<210> 235 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 235 acaccctcac cccca	15
15	<210> 236 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
	<400> 236 gacaccetca cecce	15
25	<210> 237 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 237 agacaccctc acccc	15
	<210> 238 <211> 15 <212> ADN <213> Artificial	
40	<220> <223> Motivo de oligo	
45	<400> 238 tagacaccct caccc	15
50	<210> 239 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 239 gcatggcagc aggaa	15
60	<210> 240 <211> 15 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	
00	<400> 240	

	ggcatggcag cagga	15
	<210> 241	
5	<211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 241 ggggcatggc agcag	15
15	<210> 242 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 242 tggggcatgg cagca	15
	<210> 243 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 243 ctggggcatg gcagc	15
40	<210> 244 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 244 cggcagcaga tggca	15
50	<210> 245 <211> 15 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
55	<400> 245 ccggcagcag atggc	15
60	<210> 246 <211> 15 <212> ADN <213> Artificial	
65	<220>	

	<400> 246 tccggcagca gatgg	15
5	<210> 247 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 247 ctccggcagc agatg	15
15	<210> 248 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 248 gctccggcag cagat	15
	<210> 249 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 249 ggctccggca gcaga	15
40	<210> 250 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 250 ttaatcaggg agccc	15
50	<210> 251 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 251 tcaagttaca aaagc	15
60	<210> 252 <211> 15 <212> ADN <213> Artificial	
65	<220>	

	<400> 252 catggggcaa cttca	15
5	<210> 253 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 253 acatggggca acttc	15
15	<210> 254 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 254 agatacacct ccacc	15
	<210> 255 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 255 gagatacacc tccac	15
40	<210> 256 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 256 tgggcagcag cctgt	15
50	<210> 257 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 257 acgtgggcag cagcc	15
60	<210> 258 <211> 15 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 258 cacgtgggca gcagc	15
5	<210> 259 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 259 tcctcaggga accag	15
15	<210> 260 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 260 catgggtgct ggggg	15
	<210> 261 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 261 gcagctcagc agctc	15
40	<210> 262 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 262 gagcagctca gcagc	15
50	<210> 263 <211> 15 <212> ADN <213> Artificial	
EE	<220> <223> Motivo de oligo	
55	<400> 263 ggagcagctc agcag	15
60	<210> 264 <211> 15 <212> ADN <213> Artificial	
65	<220>	

	<400> 264 ccacgtgggc agcag	15
5	<210> 265 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 265 gctggtcctc aggga	15
15	<210> 266 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 266 tgggtgctgg ggggc	15
	<210> 267 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 267 cctgccaggt gggtg	15
40	<210> 268 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 268 gcatcccggc cgctg	15
50	<210> 269 <211> 15 <212> ADN <213> Artificial	
EE	<220> <223> Motivo de oligo	
55	<400> 269 cctatgaggg tgccg	15
60	<210> 270 <211> 15 <212> ADN <213> Artificial	
65	<220>	

	<400> 270 ccgaataaac tccag	15
5	<210> 271 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 271 tccgaataaa ctcca	15
15	<210> 272 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 272 tccccaaagt cccca	15
	<210> 273 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 273 tcccactctg tgaca	15
40	<210> 274 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 274 ggcagcagcc tgtga	15
50	<210> 275 <211> 15 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
55	<400> 275 cgtgggcagc agcct	15
60	<210> 276 <211> 15 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 276 tcagggaacc aggcc	15
5	<210> 277 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 277 cctcagggaa ccagg	15
15	<210> 278 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 278 caccaggttg ggggt	15
	<210> 279 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 279 tggtggcagt ggaca	15
40	<210> 280 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 280 catggcagca ggaag	15
50	<210> 281 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 281 gggcatggca gcagg	15
60	<210> 282 <211> 15 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 282 cctggggcat ggcag	15
5	<210> 283 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 283 gccggctccg gcagc	15
15	<210> 284 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 284 ccccggcggg cagcc	15
	<210> 285 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 285 ctgccaggtg ggtgc	15
40	<210> 286 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 286 gggcagcagc ctgtg	15
50	<210> 287 <211> 15 <212> ADN <213> Artificial	
EE	<220> <223> Motivo de oligo	
55	<400> 287 gtgggcagca gcctg	15
60	<210> 288 <211> 15 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 288 ggtcctcagg gaacc	15
5	<210> 289 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 289 tggtcctcag ggaac	15
15	<210> 290 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 290 gccaccaggt tgggg	15
	<210> 291 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 291 cagetcagea getee	15
40	<210> 292 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 292 agctgcagcc tgtga	15
50	<210> 293 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 293 ccggctccgg cagca	15
60	<210> 294 <211> 15 <212> ADN <213> Artificial	
65	<220>	

	<400> 294 caagttacaa aagca	15
5	<210> 295 <211> 15 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 295 gggagtagag gcagg	15
15	<210> 296 <211> 15 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 296 agcagctcag cagct	15
	<210> 297 <211> 15 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 297 atggcagcag gaagc	15
40	<210> 298 <211> 15 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 298 tgccaggtgg gtgcc	15
50	<210> 299 <211> 16 <212> ADN	
	<213> Artificial <220>	
55	<223> Motivo de oligo <400> 299 cctgtctgtg gaagcg	16
60	<210> 300 <211> 16 <212> ADN <213> Artificial	
65	<220>	

	<400> 300 gcctgtctgt ggaagc	16
5	<210> 301 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 301 cccggccgct gaccac	16
15	<210> 302 <211> 16 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 302 tcccggccgc tgacca	16
	<210> 303 <211> 16 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 303 atcccggccg ctgacc	16
40	<210> 304 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 304 catcccggcc gctgac	16
50	<210> 305 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 305 gcatcccggc cgctga	16
60	<210> 306 <211> 16 <212> ADN <213> Artificial	
65	<220>	

	<400> 306 ctatgagggt gccgct	16	
5	<210> 307 <211> 16 <212> ADN <213> Artificial		
10	<220> <223> Motivo de oligo		
	<400> 307 cctatgaggg tgccgc	16	
15	<210> 308 <211> 16 <212> ADN <213> Artificial		
20	<220> <223> Motivo de oligo		
25	<400> 308 gcctatgagg gtgccg	16	
	<210> 309 <211> 16 <212> ADN <213> Artificial		
30	<220> <223> Motivo de oligo		
35	<400> 309 ggcctatgag ggtgcc	16	
40	<210> 310 <211> 16 <212> ADN <213> Artificial		
	<220> <223> Motivo de oligo		
45	<400> 310 aggcctatga gggtgc		16
50	<210> 311 <211> 16 <212> ADN <213> Artificial		
EE	<220> <223> Motivo de oligo		
55	<400> 311 caggcctatg agggtg	16	
60	<210> 312 <211> 16 <212> ADN <213> Artificial		
65	<220>		

	<400> 312 ccaggcctat gagggt	16
5	<210> 313 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 313 tccaggccta tgaggg	16
15	<210> 314 <211> 16 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 314 ctccaggcct atgagg	16
	<210> 315 <211> 16 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 315 actccaggcc tatgag	16
40	<210> 316 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 316 aactccaggc ctatga	16
50	<210> 317 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 317 aaactccagg cctatg	16
60	<210> 318 <211> 16 <212> ADN <213> Artificial	
65	<220>	

	<400> 318 taaactccag gcctat	16
5	<210> 319 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 319 ataaactcca ggccta	16
15	<210> 320 <211> 16 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 320 aataaactcc aggcct	16
	<210> 321 <211> 16 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 321 gaataaactc caggcc	16
40	<210> 322 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 322 cgaataaact ccaggc	16
50	<210> 323 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
55	<400> 323 ccgaataaac tccagg	16
60	<210> 324 <211> 16 <212> ADN <213> Artificial	
65	<220>	

	<400> 324 ttccgaataa actcca	16
5	<210> 325 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 325 gggagtagag gcaggc	16
15	<210> 326 <211> 16 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 326 ggggagtaga ggcagg	16
	<210> 327 <211> 16 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 327 tggggagtag aggcag	16
40	<210> 328 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 328 ctggggagta gaggca	16
50	<210> 329 <211> 16 <212> ADN <213> Artificial	
E E	<220> <223> Motivo de oligo	
55	<400> 329 gctggggagt agaggc	16
60	<210> 330 <211> 16 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 330 gtccccaaag tcccca	16
5	<210> 331 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 331 gtcccactct gtgaca	16
15	<210> 332 <211> 16 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 332 gggcagcagc ctgtga	16
	<210> 333 <211> 16 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 333 tgggcagcag cctgtg	16
40	<210> 334 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 334 gtgggcagca gcctgt	16
50	<210> 335 <211> 16 <212> ADN <213> Artificial	
E E	<220> <223> Motivo de oligo	
55	<400> 335 acgtgggcag cagcct	16
60	<210> 336 <211> 16 <212> ADN <213> Artificial	
65	<220>	

	<400> 336 gccacgtggg cagcag	16
5	<210> 337 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 337 ctcagggaac caggcc	16
15	<210> 338 <211> 16 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 338 cctcagggaa ccaggc	16
	<210> 339 <211> 16 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 339 tcctcaggga accagg	16
40	<210> 340 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 340 gtcctcaggg aaccag	16
50	<210> 341 <211> 16 <212> ADN <213> Artificial	
E E	<220> <223> Motivo de oligo	
55	<400> 341 ggtcctcagg gaacca	16
60	<210> 342 <211> 16 <212> ADN <213> Artificial	
65	<220>	

	<400> 342 gctggtcctc agggaa	16
5	<210> 343 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 343 ccaggttggg ggtcag	16
15	<210> 344 <211> 16 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 344 accaggttgg gggtca	16
	<210> 345 <211> 16 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 345 caccaggttg ggggtc	16
40	<210> 346 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
45	<400> 346 ccaccaggtt gggggt	16
50	<210> 347 <211> 16 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
55	<400> 347 tgggtgctgg ggggca	16
60	<210> 348 <211> 16 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 348 atgggtgctg gggggc	16
5	<210> 349 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
	<400> 349 catgggtgct gggggg	16
15	<210> 350 <211> 16 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 350 gcagctcagc agctcc	16
	<210> 351 <211> 16 <212> ADN <213> Artificial	
30	<220> <223> Motivo de oligo	
35	<400> 351 agcagctcag cagctc	16
	<210> 352	
40	<211> 16 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
40	<400> 352 gagcagetca gcaget	16
50	<210> 353 <211> 16 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 353 ggagcagctc agcagc	16
60	<210> 354 <211> 16 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 354 tggagcagct cagcag	16
5	<210> 355 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 355 ctggagcagc tcagca	16
	<210> 356 <211> 16 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 356 caccetcace eccaaa	16
30	<210> 357 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 357 acaccctcac ccccaa	16
40	<210> 358 <211> 16 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
40	<400> 358 gacaccctca ccccca	16
50	<210> 359 <211> 16 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 359 agacaccetc accecc	16
60	<210> 360 <211> 16 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 360 tagacaccct cacccc	16
5	<210> 361 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 361 catggcagca ggaagc	16
	<210> 362 <211> 16 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 362 gcatggcagc aggaag	16
30	<210> 363 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 363 ggcatggcag caggaa	16
40	<210> 364 <211> 16 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
45	<400> 364 gggcatggca gcagga	16
50	<210> 365 <211> 16 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 365 ggggcatggc agcagg	16
60	<210> 366 <211> 16 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 366 tggggcatgg cagcag	16
5	<210> 367 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 367 ctggggcatg gcagca	16
	<210> 368 <211> 16 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 368 cctggggcat ggcagc	16
30	<210> 369 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 369 ccggcagcag atggca	16
40	<210> 370 <211> 16 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
43	<400> 370 tccggcagca gatggc	16
50	<210> 371 <211> 16 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 371 ctccggcagc agatgg	16
60	<210> 372 <211> 16 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 372 gctccggcag cagatg	16
5	<210> 373 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 373 ggctccggca gcagat	16
	<210> 374 <211> 16 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 374 cggctccggc agcaga	16
30	<210> 375 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 375 gccggctccg gcagca	16
40	<210> 376 <211> 16 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
43	<400> 376 caagttacaa aagcaa	16
50	<210> 377 <211> 16 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 377 tcaagttaca aaagca	16
60	<210> 378 <211> 16 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	acatggggca acttca	16
5	<210> 379 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 379 gagatacacc tccacc	16
	<210> 380 <211> 16 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 380 cacgtgggca gcagcc	16
30	<210> 381 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 381 ccacgtgggc agcagc	16
40	<210> 382 <211> 16 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
40	<400> 382 tggtcctcag ggaacc	16
50	<210> 383 <211> 16 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
	<400> 383 ctgccaggtg ggtgcc	16
60	<210> 384 <211> 16 <212> ADN <213> Artificial	
65	<220> <223> Motivo de oligo	

	<400> 384 cctgccaggt gggtgc	16
5	<210> 385 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 385 tccgaataaa ctccag	16
	<210> 386 <211> 16 <212> ADN <213> Artificial	
20	<220> <223> Motivo de oligo	
25	<400> 386 cgtgggcagc agcctg	16
30	<210> 387 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
35	<400> 387 agctgcagcc tgtgag	16
40	<210> 388 <211> 16 <212> ADN <213> Artificial	
45	<220> <223> Motivo de oligo	
40	<400> 388 ccggctccgg cagcag	16
50	<210> 389	
30	<211> 16 <212> ADN <213> Artificial	
55	<220> <223> Motivo de oligo	
60	<400> 389 ctggtcctca gggaac	16
	<210> 390 <211> 16 <212> ADN <213> Artificial	
65	<220>	

	<223> Motivo de oligo	
E	<400> 390 gccaccaggt tggggg	16
5	<210> 391 <211> 16 <212> ADN <213> Artificial	
10	<220> <223> Motivo de oligo	
15	<400> 391 ggccaccagg ttgggg	16
20	<210> 392 <211> 16 <212> ADN <213> Artificial	
	<220> <223> Motivo de oligo	
25	<400> 392 agctcagcag ctcctc	16
30	<210> 393 <211> 16 <212> ADN <213> Artificial	
35	<220> <223> Motivo de oligo	
JJ	<400> 393	16

REIVINDICACIONES

- 1. Un oligonucleótido antisentido, capaz de inhibir la expresión de PCSK9 humana, en el que dicho oligonucleótido antisentido es de 10-25 nucleobases de longitud y es complementario de una región correspondiente de SEQ ID NO 2; en el que el oligonucleótido antisentido es un oligonucleótido gapmer de fórmula A-B-C, en el que:
 - A consiste en o comprende 1-6 análogos de nucleótidos, y

5

10

20

35

45

60

65

- B consiste en o comprende entre 4 y 12 nucleobases de ADN consecutivas, y
- C consiste en o comprende 1-6 análogos de nucleótidos; en el que los análogos de nucleótidos de A y C aumentan la T_m de la doble cadena de oligonucleótido/diana.
- 2. El oligonucleótido antisentido de acuerdo con la reivindicación 1, en el que la región B comprende 6 12 nucleótidos de ADN consecutivos.
- 3. El oligonucleótido antisentido de acuerdo con la reivindicación 1 o 2, en el que los análogos de nucleótidos de A y C son unidades de LNA.
 - 4. El oligonucleótido antisentido de acuerdo con la reivindicación 3 en el que las unidades de LNA son unidades de beta-D-oxi LNA.
 - 5. El oligonucleótido antisentido de acuerdo con la reivindicación 3 o 4 que comprende unidades de LNA de 3 8 nucleótidos.
- 6. El oligonucleótido antisentido de acuerdo con una cualquiera de las reivindicaciones 3 5, en el que las regiones 25 A y C consisten en 3 nucleótidos de LNA y la región B consiste en 7, 8, 9 o 10 nucleótidos de ADN consecutivos.
 - 7. El oligonucleótido antisentido de acuerdo con una cualquiera de las reivindicaciones precedentes, en el que dicho oligonucleótido antisentido es de 10 16 nucleobases de longitud.
- 30 8. El oligonucleótido antisentido de acuerdo con una cualquiera de las reivindicaciones precedentes, en el que dicho oligonucleótido antisentido es de 12 14 nucleobases de longitud.
 - 9. El oligonucleótido antisentido de acuerdo con una cualquiera de las reivindicaciones precedentes, en el que cada grupo de enlace internucleosídico es un grupo fosforotioato.
 - 10. El oligonucleótido antisentido, de acuerdo con la reivindicación 1, en el que A (región 5') consiste en 1, 2 o 3 unidades de LNA; B (dominio central) consiste en 6-12 unidades de ADN, y C (región 3') consiste en 1, 2 o 3 unidades de LNA, y en el que cada grupo de enlace internucleosídico es un grupo fosforotioato.
- 40 11. El oligonucleótido antisentido de acuerdo con la reivindicación 10, en el que dicho oligonucleótido antisentido es de 12 14 nucleobases de longitud.
 - 12. Un conjugado que comprende el oligonucleótido antisentido de acuerdo con una cualquiera de las reivindicaciones precedentes y al menos un resto no nucleotídico o no polinucleotídico unido covalentemente con dicho oligonucleótido antisentido.
 - 13. El conjugado de acuerdo con la reivindicación 12, en el que el oligonucleótido antisentido es como se ha definido en una cualquiera de las reivindicaciones 3 11.
- 50 14. El conjugado de acuerdo con la reivindicación 12, en el que el oligonucleótido antisentido es como se ha definido en la reivindicación 11.
- 15. Un oligonucleótido antisentido, o conjugado del mismo, capaz de inhibir la expresión de PCSK9 humana, en el que dicho oligonucleótido antisentido es de 10-25 nucleobases de longitud y es complementario de una región correspondiente de SEQ ID NO 2, para su uso como un medicamento, en el que el oligonucleótido antisentido no es un ARNip.
 - 16. El oligonucleótido antisentido para su uso de acuerdo con la reivindicación 15, en el que el oligonucleótido antisentido es como se ha definido en una cualquiera de las reivindicaciones 1- 11, o un conjugado de acuerdo con las reivindicaciones 12-14.
 - 17. Un oligonucleótido antisentido, o conjugado del mismo, capaz de inhibir la expresión de PCSK9 humana, en el que dicho oligonucleótido antisentido es de 10-25 nucleobases de longitud y es complementario de una región correspondiente de SEQ ID NO 2, para su uso en el tratamiento de hipercolesterolemia o un trastorno relacionado con hipercolesterolemia seleccionado del grupo que consiste en aterosclerosis, hiperlipidemia, desequilibrio de colesterol HDL/LDL, dislipidemias, por ejemplo, hiperlipidemia combinada familiar (FCHL), hiperlipidemia adquirida,

hipercolesterolemia resistente a estatina, enfermedad de las arterias coronarias (CAD) y enfermedad cardiaca coronaria (CHD), y en el que el oligonucleótido antisentido no es un ARNip.

- 18. El oligonucleótido antisentido para su uso de acuerdo con la reivindicación 17, en el que el oligonucleótido antisentido es como se ha definido en una cualquiera de las reivindicaciones 1- 11, o un conjugado de acuerdo con las reivindicaciones 12 14.
 - 19. El oligonucleótido antisentido para su uso de acuerdo con la reivindicación 17 o 18, en el que el oligonucleótido antisentido es para su uso en el tratamiento de hipercolesterolemia.
 - 20. El oligonucleótido antisentido para su uso de acuerdo con la reivindicación 17 o 18, en el que el oligonucleótido antisentido es para su uso en el tratamiento de hipercolesterolemia resistente a estatina.
- 21. El oligonucleótido antisentido para su uso de acuerdo con la reivindicación 17 o 18, en el que el oligonucleótido antisentido es para su uso en el tratamiento de aterosclerosis.

10

30

- 22. El oligonucleótido antisentido para su uso de acuerdo con una cualquiera de las reivindicaciones 15 21, en el que el oligonucleótido antisentido es para su uso en combinación con estatinas.
- 23. Una composición farmacéutica que comprende el oligonucleótido antisentido o un conjugado de acuerdo con una cualquiera de las reivindicaciones 1 22, y un diluyente, vehículo o adyuvante farmacéuticamente aceptable.
- 24. Uso de un oligonucleótido antisentido, o conjugado del mismo, capaz de inhibir la expresión de PCSK9 humana, en el que dicho oligonucleótido antisentido es de 10- 25 nucleobases de longitud y es complementario de una región correspondiente de SEQ ID NO 2, para la fabricación de un medicamento para el tratamiento de hipercolesterolemia o un trastorno relacionado seleccionado del grupo que consiste en aterosclerosis, hiperlipidemia, desequilibrio de colesterol HDL/LDL, dislipidemias, por ejemplo, hiperlipidemia combinada familiar (FCHL), hiperlipidemia adquirida, hipercolesterolemia resistente a estatina, enfermedad de las arterias coronarias (CAD), y enfermedad cardiaca coronaria (CHD), en el que el oligonucleótido antisentido no es un ARNip.
 - 25. El uso de acuerdo con la reivindicación 24, en el que el medicamento es para su uso en combinación con estatinas.

FIGURA 1

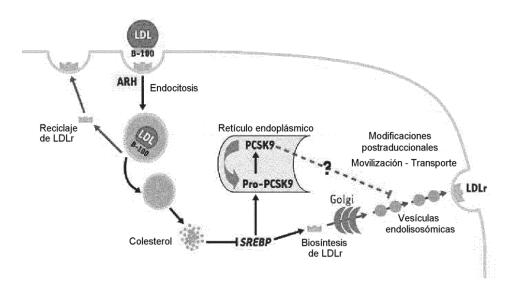


FIGURA 2

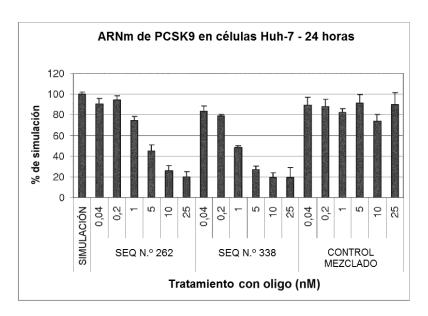


FIGURA 3

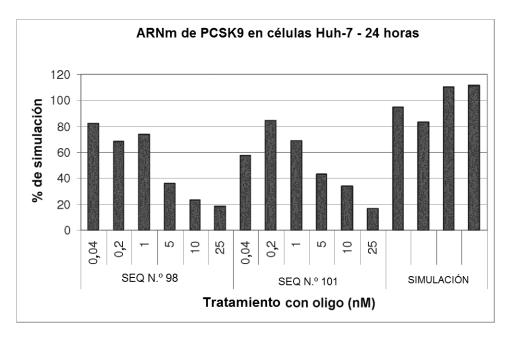


FIGURA 4

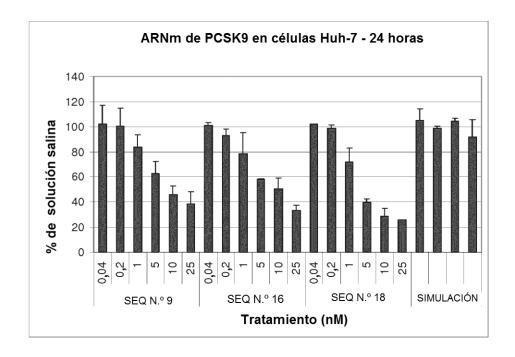
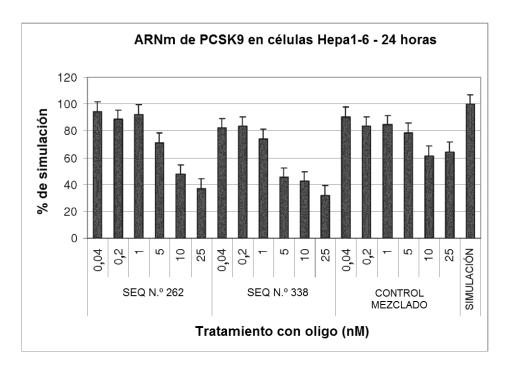
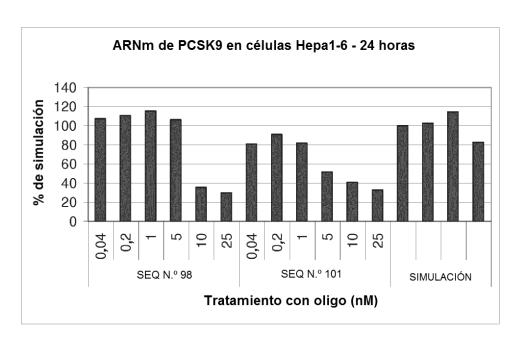




FIGURA 5

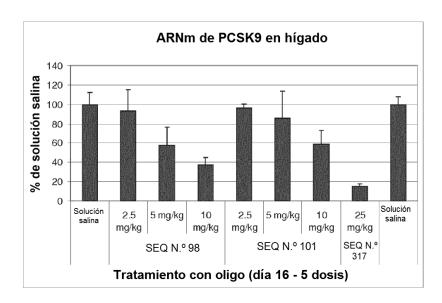
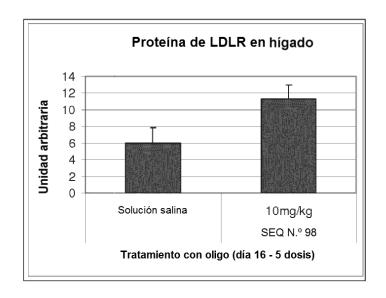



FIGURA 9

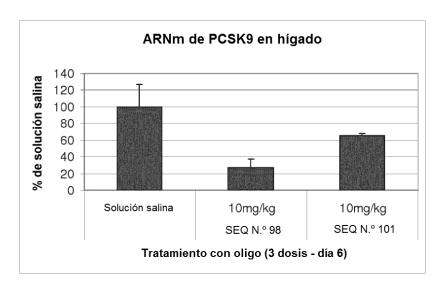


FIGURA 11

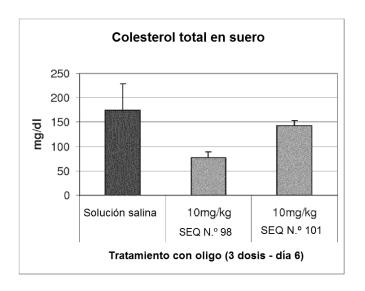


FIGURA 12



FIGURA 13

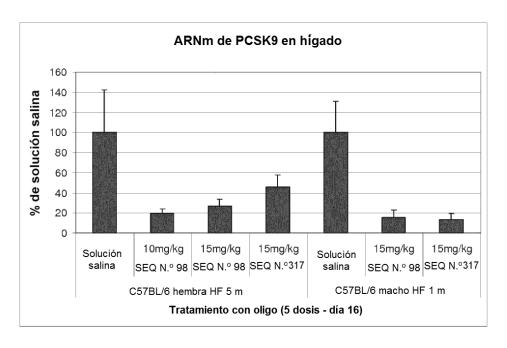


FIGURA 14

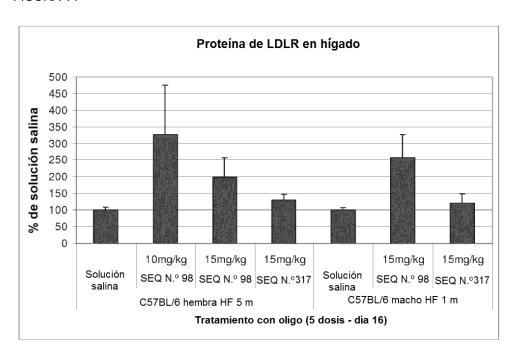


FIGURA 15

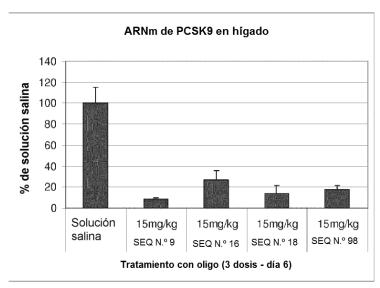
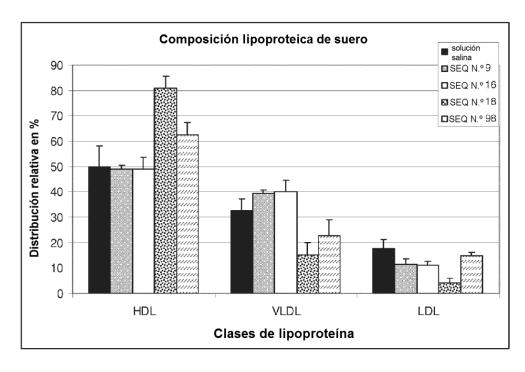



FIGURA 16


```
# Programa: agua
# Fecha de ejecución: viernes 6 de octubre 11:05:47 2006
# Formato de alineamiento: srspair
# Archivo de informe:/ebi/extserv/old-work/water-20061006-11054439127978.output
************
# Secuencias alineadas: 2
# 1: NM_153565.1
# 2: NM_174936.2
# Matriz: EBLOSUM62
# Penalización de hueco: 10,0
# Penalización de extensión: 0,5
# Longitud: 3850
# Identidad: 2557/3850 (66,4%)
# Similitud: 2557/3850 (66,4%)
          547/3850 (14,2%)
# Huecos:
# Puntuación: 14522,0
NM 153565.1
             1 CCACG-CGTCCGGGAGTGGGGATTAAGAGGGGGGGAATGTAACAGGTCCCG
              1 CAGCGACGTC----GAGGCGCTCATG-----GTTGCAGG---CG
NM_174936.2
            50 TTTGCAGCCCAATTAGGATTTGGGGTTTTGTCCTCACTCTGAGCGTCATT
NM 153565.1
                                                        99
            NM_174936.2
NM_153565.1
           100 TGACGCTGTCTGGGGAGGGCGAGGCCG-AAACCTGATCCTTTAGTACCGG
                  NM 174936.2
            62 ----CTGG-AGGAGTGAGCCAGGCAGTGAGACTGGCTCGGGCGGGCCGG
                                                       105
NM_153565.1
            149 GGCCCGTTAATGTTTAATCAGAGAGGATCTTCCGATGGGGCT-CGGGGTG
                                                       197
               1.1.111
                                      NM 174936.2
            106 GACGCGT-----CGTTGCAGCAGCGG---
                                                       126
NM 153565.1
            198 GCGTGATCTCCCGGCCCCCAGGCGTCCAGTA-CCCACACCCCAGAAGGCT
                                                       246
            |||||.||.||| ||||| |||.||.||.|||
127 -----CTCCCAGCTCCCAG----CCAGGATTCCGCGCCC-----
NM_174936.2
NM_153565.1
            296
            NM_174936.2
NM_153565.1
            297 TCTTTCTGAGGCTAGAGGACTGAGCCAGTCCTTGGCTCCCCAGAGACATC
                                                       346
            NM_174936.2
                                                       210
NM_153565.1
            347 ACGGCCCGCAGCCCCGGAGCCAAGTGCCCCGAGTCCCAGGCGTCCATGTC
            NM 174936.2
                                                       256
NM_153565.1
            397 -CTTC-CCGAGGCCGCGCGCACCTCTCCTC--GCCCCGATGGGCACCCAC
                257 TCCTCGCCAGGACAGC---AACCTCTCCCCTGGCCCTCATGGGCACCGTC
NM_174936.2
                                                       303
```

NM_153565.1	443	TGCTCTGCGTGGCTGCGGTGGCCGCTGTTGCCGCCGCTGCT	492
NM_174936.2	304	AGCTCCAGGCGGTCCTGGTGGCCGCTGCCACTGCTGCT	341
NM_153565.1	493	GCTGCTGTTGCTGCTACTGTGCCCCACCGGCGCTGGTGCCCAGGACG	539
NM_174936.2	342	GCTGCTGCTGCTCCTGGGTCCCGCGGGCGCCCGTGCGCAGGAGGACG	391
NM_153565.1	540	AGGATGGAGATTATGAAGAGCTGATGCTCGCCCTCCCGTCCCAGGAGGAT	589
NM_174936.2	392	AGGACGGCGACTACGAGGAGCTGGTGCTAGCCTTGCGTTCCGAGGAGGAC	441
NM_153565.1	590	GGCCTGGCTGATGAGGCCGCACATGTGGCCACCGCCACCTTCCGCCGTTG	639
NM_174936.2	442		491
NM_153565.1	640	CTCCAAGGAGGCCTGGAGGCTGCCAGGAACCTACATTGTGGTGCTGATGG	689
NM_174936.2	492	. . .	541
NM_153565.1	690	AGGAGACCCAGAGGCTACAGATTGAACAAACTGCCCACCGCCTGCAGACC	739
NM_174936.2	542	AGGAGACCCACCTCTCGCAGTCAGAGCGCACTGCCCGCCGCCTGCAGGCC	591
NM_153565.1	740	CGGGCTGCCCGCCGGGGCTATGTCATCAAGGTTCTACATATCTTTTATGA	789
NM_174936.2	592	CAGGCTGCCCGCGGGGATACCTCACCAAGATCCTGCATGTCTTCCATGG	641
ИМ_153565.1	790	CCTCTTCCCTGGCTTCTTGGTGAAGATGAGCAGTGACCTGTTGGGCCTGG	839
NM_174936.2	642	.	691
NM_153565.1	840	CCCTGAAGTTGCCCCATGTGGAGTACATTGAGGAAGACTCCTTTGTCTTC	889
NM_174936.2	692	CCTTGAAGTTGCCCCATGTCGACTACATCGAGGAGGACTCCTCTGTCTTT	741
NM_153565.1	890	GCCCAGAGCATCCCATGGAACCTGGAGCGAATTATCCCAGCATGGCACCA	939
NM_174936.2	742		791
ИМ_153565.1	940	GACAGAGGAAGACCGCTCCCCTGATGGAAGCAGCCAGGTGGAGGTGTATC	989
NM_174936.2	792	GGCGGATGAATACCAGCCCCCGACGGAGGCAGCCTGGTGGAGGTGTATC	841
ΝМ_153565.1	990	TCTTAGATACCAGCATCCAGGGTGCCCATCGGGAGATTGAGGGCAGGGTC	1039
NM_174936.2	842	TCCTAGACACCAGCATACAGAGTGACCACCGGGAAATCGAGGGCAGGGTC	891
NM_153565.1	1040	ACCATCACCGACTTCAACAGCGTGCCGGAGGAGGATGGGACACGCTTCCA	1089
NM_174936.2	892	ATGGTCACCGACTTCGAGAATGTGCCCGAGGAGGACGGGACC <u>CGCTTCCA</u>	941
ИМ_153565.1	1090	CAGACAGGCGAGCAAGTGTGACAGCCACGGCACCCACCTGGCAGGTGTGG	1139
NM_174936.2	942	CAGACAGGCCAGCAAGTGTGACAGTCATGGCACCCACCTGGCAGGGGTGG	991
ИМ_153565.1	1140	TCAGCGGCCGGGATGCTGGTGTGGCCAAGGGCACCAGCCTGCACAGCCTG	1189
NM_174936.2	992	TCAGCGGCCGGGATGCCGGCGTGGCCAAGGGTGCCAGCATGCGCAGCCTG	1041

NM_153565.1	1190	CGTGTGCTCAACTGTCAAGGGAAGGGCACAGTCAGCGGCACCCTCATAGG	1239
NM_174936.2	1042	CGCGTGCTCAACTGCCAAGGGAAGGGCACGGTTAGCGGCACCCTCATAGG	1091
NM_153565.1	1240	CCTGGAGTTTATTCGGAAGAGTCAGCTAATCCAGCCCTCGGGGCCACTCG	1289
NM_174936.2	1092	CCTGGAGTTTATTCGGAAAAGCCAGCTGGTCCAGCCTGTGGGGCCACTGG	1141
NM_153565.1	1290	TGGTTCTGCTGCCCCTGGCCGGTGGGTATAGCCGCATCCTCAACGCTGCC	1339
NM_174936.2	1142	TGGTGCTGCTCCCCTGGCGGGTGGGTACAGCCGCGTCCTCAACGCCGCC	1191
NM_153565.1	1340	TGCCGGCACCTGGCGAGGACTGGGGTGCTGCTGCTGCAGCAGCTGGGAA	1389
NM_174936.2	1192	TGCCAGCGCCTGGCGAGGGCTGGGGTCGTGCTGCCGCTGCCGGCAA	1241
NM_153565.1	1390	CTTCCGGGACGACGCCTGCCTCTACTCCCCAGCTTCTGCTCCAGAGGTCA	1439
NM_174936.2	1242	CTTCCGGGACGATGCCTGCCTCTACTCCCCAGCCTCAGCTCCCGAGGTCA	1291
NM_153565.1	1440	TCACAGTCGGGGCCACGAATGCCCAGGACCAGCCAGTTACCTTGGGGACT	1489
NM_174936.2	1292	TCACAGTTGGGGCCACCAATGCCCAAGACCAGCCGGTGACCCTGGGGACT	1341
NM_153565.1	1490	TTGGGGACTAATTTTGGACGCTGTGTGGATCTCTTTGCCCCCGGGAAGGA	1539
NM_174936.2	1342	TTGGGGACCAACTTTGGCCGCTGTGTGGACCTCTTTGCCCCAGGGGAGGA	1391
NM_153565.1	1540	CATCATCGGAGCGTCCAGTGACTGCAGCACATGCTTCATGTCACAGAGTG	1589
NM_174936.2	1392	CATCATTGGTGCCTCCAGCGACTGCAGCACCTGCTTTGTGTCACAGAGTG	1441
NM_153565.1	1590	GGACCTCACAGGCTGCTGCCCACGTGGCCGGCATTGTGGCTCGGATGCTG	1639
NM_174936.2	1442	GGACATCACAGGCTGCTGCCCACGTGGCTGCCATTGCAGCCATGATGCTG	1491
NM_153565.1	1640	AGCCGGGAGCCCACACTTACCCTGGCCGAGCTGCGGCAGAGGCTGATC	1687
NM_174936.2	1492	TCTGCCGAGCCGGAGCTCACCCTGGCCGAGTTGAGGCAGAGACTGATC	1539
NM_153565.1	1688	CACTTCTCTACCAAAGACGTCATCAACATGGCCTGGTTCCCTGAGGACCA	1737
NM_174936.2	1540	CACTTCTCTGCCAAAGATGTCATCAATGAGGCCTGGTTCCCTGAGGACCA	1589
NM_153565.1	1738	GCAGGTGCTGACCCCCAACCTGGTGGCCACACTGCCCCCCAGCACCCATG	1787
NM_174936.2	1590	GCGGGTACTGACCCCAACCTGGTGGCCGCCCTGCCCCCAGCACCCATG	1639
NM_153565.1	1788	AGACAGGCGGGCAGCTGCTCTGTAGGACGGTGTGGTCGGCACACTCGGGG	1837
NM_174936.2	1640	GGGCAGGTTGGCAGCTGTTTTGCAGGACTGTATGGTCAGCACACTCGGGG	1689
NM_153565.1	1838	CCCACTCGAACAGCTACAGCTACAGCCCGCTGTGCCCCAGAAGAGGAGCT	1887
NM_174936.2	1690	CCTACACGGATGGCCACAGCCGTCGCCCCGCTGCGCCCCAGATGAGGAGCT	1739
NM_153565.1	1888	GCTGAGCTGCTCCAGCTTCTCCAGGAGCGGGAGGCGTCGTGGTGATTGGA	1937
NM_174936.2	1740	GCTGAGCTGCTCCAGTTTCTCCAGGAGTGGGAAGCGGCGGGGCGAGCGCA	1789

NM_153565.1	1938	TTGAGGCCATAGGAGGCCAGCAGGTCTGCAAGGCCCTCAATGCATTTGGG	1987
NM_174936.2	1790	TGGAGGCCCAAGGGGCAAGCTGGTCTGCCGGGCCCACAACGCTTTTGGG	1839
NM_153565.1	1988	GGTGAGGGTGTCTATGCCGTCGCGAGATGCTGCCTGGTTCCCCGTGCCAA	2037
NM_174936.2	1840	GGTGAGGGTGTCTACGCCATTGCCAGGTGCTGCCTGCTACCCCAGGCCAA	1889
NM_153565.1	2038	CTGCAGCATCCACAACACCCCTGCAGCCAGAGCTGGCCTGGAGACCCATG	2087
NM_174936.2	1890	CTGCAGCGTCCACCAGCTGAGGCCAGCATGGGGACCCGTG	1939
NM_153565.1	2088	TCCACTGCCACCAGAAGGACCATGTTCTCACAGGCTGCAGCTTCCATTGG	2137
NM_174936.2	1940	TCCACTGCCACCAACAGGGCCACGTCCTCACAGGCTGCAGCTCCCACTGG	1989
NM_153565.1	2138	GAAGTGGAAGACCTTAGTGTCCGGAGGCAGCCTGCGCTGAGGTCCAGACG	2187
NM_174936.2	1990	GAGGTGGAGGACCTTGGCACCACAAGCCGCCTGTGCTGAGGCCACGAGG	2039
NM_153565.1	2188	TCAGCCTGGCCAGTGCGTTGGCCACCAGGCGGCCAGTGTCTATGCTTCCT	2237
NM_174936.2	2040	TCAGCCCAACCAGTGCGTGGGCCACAGGGAGGCCAGCATCCAC	2089
NM_153565.1	2238	GCTGCCATGCCCCAGGGCTGGAATGCAAAATCAAGGAGCATGGGATCTCA	2287
NM_174936.2	2090	GCTGCCATGCCCCAGGTCTGGAATGCAAAGTCAAGGAGCATGGAATC-CC	2138
NM_153565.1	2288	GGTCCTTCA-GAGCAGGTCACTGTGGCCTGCGAAGCAGGATGGACCCTGA	2336
NM_174936.2	2139	GGCCCTCAGGAGCAGGTGACCGTGGCCTGCGAGGAGGGCTGGACCCTGA	2188
NM_153565.1	2337	CTGGATGCAATGTGCTCCCTGGGGGCATCCCTCACTCTGGGAGCCTACAGC	2386
NM_174936.2	2189	CTGGCTGCAGTGCCCTCCCTGGGACCTCCCACGTCCTGGGGGCCTACGCC	2238
NM_153565.1	2387	GTGGACAACCTGTGTGTGG-CAAGAGTCCATGAC-ACTGCCAGAGCAGAC	2434
NM_174936.2	2239	GTAGACAACACGTGTGTAGTCAGGAG—CCGGGACGTCAGCACTA—CAGGC	2286
NM_153565.1	2435	AGGACCAGTGGAGAAGCCACAGTAGCTGCTGCCATCTGCTGCCGGAGCCG	2484
NM_174936.2	2287	AGCACCAGCGAAGGGGCCGTGACAGCCGTTGCCATCTGCTGCCGGAGCCG	2336
NM_153565.1	2485	GCCTTCAGCAAAGGCCTCCTGGGTTCAGTGACAGCCTCAGGCAGGGA	2531
NM_174936.2	2337	GCACCTGGCGCAGGCCTCCCAGGAGCTCCAGTGACAGCCCCATCCCAGGA	2386
NM_153565.1	2532	T-GGTGCTTGAGGCTGGGTGCAGAGATATGC	2561
NM_174936.2	2387	TGGGTGTCTGGGGAGGGTCAAGGGCTGGG-GCTGAGCTTTAAAATGGTTC	2435
NM_153565.1	2562	CTGCATGGCTCTCTTGTAGCCAAAGG-TGGGGA	2593
NM_174936.2	2436	CGACTTGTCCCTCTCAGCCCTCCATGGCCTGGCACGAGGGGATGGGGA	2485
NM_153565.1	2594	-GATTCTGCGTGGGAGAACTTG-GTG	2617
NM_174936.2	2486	TGCTTCCGCCTTTCCGGGGCTGCTGGCCTTGAGTGGGGCAGCCT	2535

NM_153565.1	2618	TCTCACCCTGGGTACC-CATTCCTGGTG	2644
NM_174936.2	2536	CCTTGCCTGGAACTCACTCTGGGTGCCTCCTCCCCAGGTGGAGGTG	2585
NM_153565.1		TATGGAAGC-ACCTCCTTCACGGTCAGGGGGCCTGTGCTTGGCTTTCTGC	2693
NM_174936.2	2586	CCAGGAAGCTCCCTCACTGTGGGGCATTTCACC	2622
NM_153565.1	2694	CATCAGACATTAAGCTGTAGCTGGCTCTGGCCAGCTGCT-CCAGTG	2738
NM_174936.2	2623	ATTCAAACAGGTCGAGCTGT-GCTCGGGTGCT-GCCAGCTGCTCCCAATG	2670
NM_153565.1	2739	TACCAGAACCTGAGGATGCTCGCTGCA	2765
NM_174936.2		TGCCGATGTCCGTGGCAGAATGACTTTTATTGAGCTCTTGTTCCGTGCC	2720
NM_153565.1	2766	AGGCC-TCAGTTCTCAGGCCTTAGGGTGTATTTGTCTTTCAGGAA	2809
NM_174936.2	2721	AGGCATTCAATCCTCAGGTCTCCACCAAGGAGGCAGGATTCTTCC	2765
NM_153565.1	2810	GATCATAATGGACAGAGATCCTTGGAGGTT-CAAAGACCAAGTACCAG	2856
NM_174936.2	2766	CATGGATAGGGGAGGGGGGGGGGGGACAAACAT	2808
NM_153565.1	2857	ACTGGAAAATTGAGTCTGAAAGCCACAAGGACAGTCAACTCACAGCCAGC	2906
NM_174936.2	2809	CGTTGGGGGGTGAGTGTGAAAGGTGCTGATGGCCCTCATCTCCAGC	2854
NM_153565.1	2907	TCACATTGCAGACACCATTTTGGGCTCCCTGATTAAATGCAGATCAGT	2954
NM_174936.2	2855	TAACTGTGGAGAAGCCCCTGGGGGCTCCCTGATTAATGGAGGCTTAGCTT	2904
NM_153565.1	2955	TCTGCACACCTCCAGGGG-TGGATCCAGCTG	2984
NM_174936.2	2905	TCTGGATGGCATCTAGCCAGAGGCTGGAGACAGGTGCGCCCCTGGTGGTC	2954
NM_153565.1	2985	TAAGGCCATACCTATATCTTCCAGATGTCCTCATCTGCTGC	3025
NM_174936.2	2955	ACAGGCTGTGCCTTGGT-TTCCTGAGCCACCTTTACTCTGCTCTATGC	3001
NM_153565.1	3026	AGGGCTTTGGCCCTGCTC-AGGATAATGTGCTATGAGCCCTCA	3067
NM_174936.2	3002	CAGGCTGTGCTAGCAACACCCAAAGGTGGCCTGCGGGGAGCCATCACCTA	3051
NM_153565.1	3068	TCTGACTC-TCAGTTTGTACTGGAGAACCATACAGGACTTACCGCACC	3114
NM_174936.2	3052	GGACTGACTCGGCAGTGTGCAGTGGTGCATGCAC-TGTCTCAGC	3094
NM_153565.1	3115	TTACCCCATCCACTACCATGTGCACTGACTGGCCTC-ATTTTATG	3158
NM_174936.2	3095	CAACCCGCTCCACTACCCGGCAGGGTACACATTCGCACCCCTACTTCACA	3144
NM_153565.1	3159	AAGGAAGAGAC—AGGACCAGAGAGG——————CGATGTCACACAGC	3196
NM_174936.2	3145	GAGGAAGAAACCTGGAACCAGAGGGGGGGCGTGCCTGCCAAGCTCACACAGC	3194
NM_153565.1	3197	CAGTGATGTCAGGACATAAATTCAGAGT-GGCTGGCCCTGAA	3237
NM_174936.2	3195	AGGAACTGAGCCAGAAACGCAGATTGGGCTGGCTCTGAAGCCAAGCC	3241

3261	TAATGCCAGGCTGGGCAGCGAGAG	.1 3238	им_153565.1
3291	TCTTCTTACTTCACCCGGCTGGGCTCCTCATTTTTACGGGTAACAGTGAG	.2 3242	NM_174936.2
3275	GACAGGCTATGGCT	.1 3262	NM_153565.1
3341	GCTGGGAAGGGGAACACAGACCAGGAAGCTCGGTGAGTGA	.2 3292	NM_174936.2
3312	TGCTCCTGGACCTATACTCCCTTAGC-CCCAGTCCCAC	.1 3276	ΝМ_153565.1
3390	ATGCCTGCAGGCATGGAACTTTT-TCCGTTATCACCCAGGCCTGATTCAC	.2 3342	NM_174936.2
3345	AGATCAGGTGGAGACTGGAGTGACAGAGGGCGA	.1 3313	NM_153565.1
3440	TGGCCTGGCGGAGATGCTTCTAAGGCATGGTCGGGGGAGAGGGCCCAACAA	.2 3391	NM_174936.2
3385	CTGTACCAAGGCCACACCAGCTGACCAGCACACCTCTATC	.1 3346	NM_153565.1
3487	CTGTCCCTCCTTGAGCACCAGCCCACCCAAGCAAGCAGACATTTAT-	.2 3441	NM_174936.2
3426	CTTTTGAGCTCTTCTGTCTTTTTATAGTAAGC-TTCCTCCAC	.1 3386	ИМ_153565.1
3537	CTTTTGGGTCTGTCCTCTGTTGCCTTTTTACAGCCAACTTTTCTAGAC	.2 3488	NM_174936.2
3471	CTGTGTTGCTTTTGTAACTTGATATTTATGCAGGGTTTTGTAGTT	.1 3427	NM_153565.1
3587	$\mathtt{CTGTT}\underline{\mathtt{TTGCTTTTGTAACTT}}\mathtt{GAAGATATTTATTCTGGGTTTTGTAGCATT}$.2 3538	NM_174936.2
3519	TTTATT-ATGTAGTGACTTTTCAGAATAAAAGC-AGCTGATGTGACTGAC	.1 3472	NM_153565.1
3634	TTTATTA ATATGCTCACTTTTTA AAATAA AAACAAACAAACCTTGTC	2 3588	NM 174936 2