

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 603 979

(51) Int. CI.:

C12N 9/20 (2006.01) C12N 15/00 (2006.01)

C12N 5/10 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

26.02.2009 PCT/EP2009/052246 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 11.09.2009 WO09109500

(96) Fecha de presentación y número de la solicitud europea: 26.02.2009 E 09716837 (1)

(97) Fecha y número de publicación de la concesión europea: 31.08.2016 EP 2250259

(54) Título: Polipéptidos con actividad lipásica y polinucleótidos que codifican los mismos

(30) Prioridad:

29.02.2008 EP 08152163 29.02.2008 US 32443 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 02.03.2017

(73) Titular/es:

NOVOZYMES A/S (100.0%) Krogshøjvej 36 2880 Bagsvaerd, DK

(72) Inventor/es:

VIND, JESPER; KNÖTZEL, JÜRGEN CARSTEN FRANZ; BORCH, KIM; **SVENDSEN, ALLAN;** CALLISEN, THOMAS HOENGER; YAVER, DEBBIE; **BJOERNVAD, MADS ESKELUND y** HANSEN, PETER KAMP

(74) Agente/Representante:

TOMAS GIL, Tesifonte Enrique

DESCRIPCIÓN

Polipéptidos con actividad lipásica y polinucleótidos que codifican los mismos

5 Campo de la invención

[0001] La presente invención se refiere a variantes de lipasa con un efecto de lavado mejorado para la generación de olor y a un método para prepararlas.

Particularmente se refiere a variantes de la lipasa Thermomyces lanuginosus.

10 Antecedentes de la invención

[0002] Las lipasas son útiles, por ejemplo, como enzimas de detergente para eliminar manchas de lípido o grasas de ropa y otros tejidos, y como aditivos para masa para pan y otros productos horneados.

Así, una lipasa derivada de *Thermomyces lanuginosus* (sinónimo *Humicola lanuginosa*, EP 258068 y EP 305216) se vende para el detergente usado bajo el nombre de Lipolase® (producto de Novozymes A/S).

La WO 0060063 describe variantes de la lipasa *T. lanuginosus* con un rendimiento de primer lavado particularmente bueno en una solución de detergente.

Las WO 9704079, WO 9707202 y WO 0032758 también revelan variantes de la lipasa T. lanuginosus.

20

30

[0003] En algunas aplicaciones, es de interés minimizar la formación de ácidos grasos de cadena corta generadores de olor.

Así, se sabe que detergentes de lavandería con lipasas pueden dejar a veces olores residuales fijados en tela manchada de leche (EP 430315).

25 El documento WO 02062973 divulga variantes de lipasa donde la generación de olor ha sido reducida por la unión de una extensión C-terminal.

La recientemente publicada WO 07087508 divulga variantes de lipasa donde la generación de olor ha sido reducida por la introducción de mutaciones en una o más regiones identificadas en una lipasa madre.

La WO 07087503 describe polipéptidos con actividad lipásica y que además tienen un RP de al menos 0.8 y un BR de al menos 1.1 en las condiciones de prueba dadas en la especificación.

Resumen de la invención

[0004] En un primer aspecto, la invención se refiere a un polipéptido con actividad lipásica, que es al menos un 80 % idéntico a SEC ID n.º: 2 y es un polipéptido: (a) con al menos una de: (i) una actividad lipásica (LU) relativa a la 35 absorbancia a 280 nm (A280) inferior a 500 LU/A280, donde una unidad de LU (1 LU) se define como la cantidad de enzima capaz de liberar 1 micro mol de ácido butírico por minuto a 30°C a pH 7, y la absorbancia del polipéptido se mide a 280 nm (ii) un riesgo de rendimiento de olor (R) por debajo de 0.5, donde R se calcula como la proporción entre la cantidad de ácido butírico liberado a partir de una muestra lavada de polipéptido y la cantidad de ácido 40 butírico liberado a partir de una muestra lavada de polipéptido de referencia, después ambos valores han sido corregidos para la cantidad de ácido butírico liberado a partir de una muestra lavada no polipeptídica donde el polipéptido de referencia es la parte madura de SEC ID n.º: 2 con las sustituciones T231 R+N233R o (iii) un factor riesgo beneficio (BR) de al menos 1.8, donde BR se define como la media de rendimiento de lavado (RPavg) dividida con el riesgo de rendimiento de olor (R) donde RPava indica la media de rendimiento relativo en comparación con el polipéptido de referencia de mediciones hechas a 0.5 mg ep/L; y (b) que comprende alteraciones de los aminoácidos 45 en las posiciones T231 R +N233R +1255A +P256K y al menos uno de: (i) S58A +V60S +A150G +L227G; o (ii) E210V/G; cuyas posiciones son correspondientes a SEC ID n.º: 2.

[0005] En otros aspectos, la invención se refiere a un polinucleótido aislado que codifica el polipéptido con actividad lipásica, un constructo de ácido nucleico que comprende el polinucleótido, un vector de expresión recombinante que comprende el constructo de ácido nucleico, y una célula huésped transformada que comprende el constructo de ácido nucleico o el vector de expresión recombinante.

[0006] En otro aspecto, la invención se refiere a un método de preparación del polipéptido que incluye las etapas: (a) cultivo de la célula huésped transformada que comprende la construcción de ácido nucleico o el vector de expresión recombinante que comprende el polipéptido bajo condiciones conductivas para la producción del polipéptido; y (b) recuperación del polipéptido.

[0007] En otro aspecto, la invención se refiere a una formulación que comprende el polipéptido.

60

[0008] En otro aspecto, la invención se refiere a un método de reducción de formación de ácidos grasos de cadena corta generadores de olor durante hidrólisis lípidica utilzando el polipéptido.

Breve descripción de las figuras

65

[0009] La Figura 1 muestra el alineamiento de lipasas.

Listados de secuencias

[0010]

5

35

65

- SEC ID n.º: 1 muestra la lipasa que codifica la secuencia de ADN de *Thermomyces lanoginosus*.
- SEC ID n.º: 2 muestra la secuencia de aminoácidos de una lipasa de *Thermomyces lanoginosus*.
- SEC ID n.º: 3 muestra la secuencia de aminoácidos de una lipasa de Absidia reflexa.
- SEC ID n.º: 4 muestra la secuencia de aminoácidos de una lipasa de Absidia corimbifera.
- 10 SEC ID n.º: 5 muestra la secuencia de aminoácidos de una lipasa de *Rhizomucor miehei*.
 - SEC ID n.º: 6 muestra la secuencia de aminoácidos de una lipasa de *Rhizopus oryzae*.
 - SEC ID n.º: 7 muestra la secuencia de aminoácidos de una lipasa de Aspergillus niger.
 - SEC ID n.º: 8 muestra la secuencia de aminoácidos de una lipasa de Aspergillus tubingensis.
 - SEC ID n.º: 9 muestra la secuencia de aminoácidos de una lipasa de Fusarium oxysporrum.
- 15 SEC ID n.º: 10 muestra la secuencia de aminoácidos de una lipasa de Fusarium heterosporum.
 - SEC ID n.º: 11 muestra la secuencia de aminoácidos de una lipasa de Aspergillus oryzae.
 - SEC ID n.º: 12 muestra la secuencia de aminoácidos de una lipasa de *Penicillium camemberti*.
 - SEC ID n.º: 13 muestra la secuencia de aminoácidos de una lipasa de Aspergillus foetidus.
 - SEC ID n.º: 14 muestra la secuencia de aminoácidos de una lipasa de Aspergillus niger.
- 20 SEC ID n.º: 15 muestra la secuencia de aminoácidos de una lipasa de Aspergillus oryzae.
 - SEC ID n.º: 16 muestra la secuencia de aminoácidos de una lipasa de Landerina penisapora.

Descripción detallada de la invención

- 25 [0011] El uso de lipasas para eliminar manchas de lípido y grasa se conoce en la técnica donde las actividades de lipasas que suponen liberar lípidos de cadena corta libres, tal como por ejemplo ácido butírico se asocian a un olor indeseable
 - La hidrólisis del sustrato de la tributirina produce la liberación de ácido butírico.
- Sorprendentemente, se ha descubierto que los polipéptidos de la presente invención tienen una actividad específica baja, medida como LU/A280 con respecto a la tributirina a pH neutro cf. ejemplo 2 y tabla 3.
 - [0012] El factor riesgo beneficio (BR) se calcula por la división del rendimiento de (lavado) relativo (beneficio, RP) con el riesgo de rendimiento de olor (riesgo, R).
 - El rendimiento de lavado se puede medir por un ensayo de tensión mecánica automatizado (AMSA) cf. ejemplo 3 y la generación de olor se puede medir directamente por cromatografía de gases, cf. ejemplo 4 y tabla 3.
 - Un olor reducido afecta al BR y puede conducir a un aumento de BR.
 - Además, se ha descubierto que los polipéptidos de la presente invención tienen una generación de olor reducida y un BR aumentado sobre las lipasas conocidas en la técnica cf. ejemplo 5 y tabla 3.
- 40 [0013] Actividad lipásica (LU): el término "actividad lipásica" como se usa aquí implica una actividad de hidrolasa de éster carboxílico que cataliza la hidrólisis de triacilglicerol bajo la formación de diacilglicerol y un carboxilato.
 - Con motivo de la presente invención, la actividad lipásica se determina según el procedimiento siguiente: un sustrato para lipasa se prepara mediante una emulsión de tributirina (tributirato de glicerina) usando goma arábiga como emulsionante.
- La hidrólisis de tributirina a 30 °C a pH 7 o 9 se sigue en un experimento de valoración del pH estadístico. Una unidad de actividad lipásica (1 LU) se define como la cantidad de enzima capaz de liberar 1 micro mol de ácido butírico por minuto a 30 °C, pH 7.
- [0014] Riesgo de rendimiento de olor (R): el término "riesgo de rendimiento de olor" como se usa aquí implica la proporción entre la cantidad de ácido butírico liberado de una muestra lavada de polipéptido y la cantidad de ácido butírico liberado a partir de una muestra lavada de polipéptido de referencia, después ambos valores han sido corregidos para la cantidad de ácido butírico liberado a partir de una muestra lavada no polipeptídica.
- [0015] Rendimiento relativo (RP): el término "rendimiento relativo" como se usa aquí implica el rendimiento de lavado del polipéptido en comparación con el rendimiento de lavado de un polipéptido de referencia.
 - Con motivo de la presente invención, rendimiento relativo se determina según el procedimiento descrito en el ejemplo 3.
- [0016] Polipéptido de referencia: el término "polipéptido de referencia", "enzima de referencia" o "lipasa de referencia" como se utiliza en este caso significa la parte madura de SEC ID n.º: 2 con las sustituciones T231R +N233R.
 - [0017] Factor riesgo beneficio (BR): el término "factor riesgo beneficio" como se usa aquí significa el rendimiento relativo medio (RP $_{avg}$) comparado con el riesgo de rendimiento de olor (R) y tiene la fórmula siguiente: BR = RP $_{avg}$ /

Nomenclatura para modificaciones de aminoácido

5

35

40

45

50

55

60

[0018] Al describir variantes de lipasa según la invención, la nomenclatura siguiente se usa para facilidad de referencia:

Aminoácido(s) original(es):posición(es):aminoácido(s) sustituido

[0019] Según esta nomenclatura, para el caso de la sustitución de ácido glutámico para glicina en la posición 195 se muestra como G195E.

10 Una deleción de glicina en la misma posición se muestra como G195* y la inserción de un residuo de aminoácido adicional tal como lisina se muestra como G195GK.

Donde una lipasa específica contiene una "deleción" en comparación con otras lipasas y una inserción está hecha en tal posición, esta se indica como *36D para la inserción de un ácido aspártico en la posición 36.

15 [0020] Las mutaciones múltiples se separan por sumas, es decir: R170Y+G195E, mutaciones representantes en posiciones 170 y 195 tirosina de substitución y ácido glutámico para arginina y glicina, respectivamente.

[0021] X231 indica el aminoácido en un polipéptido progenitor que corresponde con la posición 231, cuando se applica el procedimiento de alineamiento descrito.

20 X231R indica que el aminoácido se sustituye con R.

Para SEC ID n.º: 2 X es T y X231 R así indica una sustitución de T en la posición 231 con R.

Donde el aminoácido en una posición (por ejemplo 231) se puede sustituir por otro aminoácido seleccionado a partir de un grupo de aminoácidos, por ejemplo el grupo que consiste en R, P e Y, este será indicado por X231R/P/Y.

25 [0022] En cualquier caso, se utiliza la carta única de IUPAC aceptada o abreviatura de aminoácido de carta triple.

[0023] Identidad: el término "identidad" como se usa aquí implica que la relación entre secuencias de dos aminoácidos entre dos secuencias de nucleótidos se descride mediante el parámetro de "identidad".

30 [0024] Para fines de la presente invención, el alineamiento de dos secuencias de aminoácidos se determina usando el programa de Needle desde el paquete EMBOSS (http://EMBOSS.ORG) versión 2.8.0.

El programa de Needle implementa el algoritmo de alineamiento global descrito en Needleman, S. B. y Wunsch, C.D. (1970) J. Mol. Biol. 48,443-453.

La sustitución matricial usada es BLOSUM62, la penalización de abertura del espacio es 10 y penalización por extensión de espacio es 0.5.

[0025] El grado de identidad entre una secuencia de aminoácidos de la presente invención ("secuencia de invención"; por ejemplo aminoácidos 1 a 269 de SEC ID n.º: 2) y una secuencia de aminoácidos diferente ("diferente") se calcula como el número de coincidencias exactas en un alineamiento de las dos secuencias, dividido por la longitud de la "secuencia de invención" o la longitud de la "secuencia diferente", cualquiera que sea la más corta.

El resultado se expresa en identidad en porcentaje.

[0026] Se produce una correspondencia exacta cuando la "secuencia de invención" y la "secuencia externa" tienen residuos de aminoácidos idénticos en las mismas posiciones del recubrimiento.

La longitud de una secuencia es el número de residuos de aminoácidos en la secuencia (por ejemplo, la longitud de SEC ID n.º: 2 son 269).

[0027] El procedimiento anterior se puede utilizar para el cálculo de identidad al igual que de homología y para el alineamiento

En el contexto de la homología de la presente invención y el alineamiento han sido calculados como se describe abajo.

Homología y alineamiento

[0028] Para fines de la presente invención, el grado de homología se puede determinar adecuadamente mediante programas informáticos conocidos en la técnica, tal como espacio proporcionado en el embalaje de programa GCG (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. y Wunsch, C.D., (1970), Journal of Molecular Biology, 48,443-45), usando espacio con los ajustes siguientes para la comparación de secuencia polipeptídica: penalización por

45), usando espacio con los ajustes siguientes para la comparación de secuencia polipeptídica: penalización por creación de espacio de 3.0 y penalización por extensión de espacio de 0.1.

[0029] En la presente invención, las posiciones correspondientes (u homólogas) en las secuencias de lipasa de Absidia reflexa, Absidia corimbefera, Rhizomucor miehei, delemar Rhizopus, Aspergillus niger, Aspergillus tubigensis, Fusarium oxysporum, Fusarium heterosporum, Aspergillus oryzea, Penicilium camembertii, Aspergillus foetidus, Aspergillus niger, Thermomyces lanoginosus (sinónimo: Humicola lanuginosa) y Landerina penisapora se

definen por el alineamiento mostrado en la figura 1.

[0030] Para encontrar las posiciones homólogas en las secuencias de lipasa no mostradas en el alineamiento, la secuencia de interés se alinea a las secuencias mostradas en la figura 1.

- La nueva secuencia se alinea al alineamiento actual en la figura 1 usando el alineamiento del espacio a la secuencia más homóloga encontrada por el programa de espacio.

 Se proporciona espacio en el embalaje de programa GCG (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-45).
- Los ajustes siguientes se usan para la comparación de secuencia polipeptídica: penalización de creación de espacio de 3.0 y penalización por extensión de espacio de 0.1.

Fuentes de polipéptidos con actividad lipásica

40

de olor (R).

- 15 [0031] Cualquier polipéptido adecuado puede ser utilizado. En algunas formas de realización, el polipéptido puede ser un polipéptido fúngico.
- [0032] El polipéptido puede ser un polipéptido de levadura originado de géneros tales como una Candida, Kluyveromyces, Pichia, Saccharomyces, Schizosaccharomyces o Yarrowia; o más preferiblemente un polipéptido fúngico filamentoso originado de géneros tales como un Acremonium, Aspergillus, Aureobasidium, Cryptococcus, Filobasidium, Fusarium, Humicola, Magnaporte, Mucor, Micelioptora, Neocallimastix, Neurospora, Paecilomices, Penicillium, Piromices, Schizofilum, Talaromyces, Termoascus, Thielavia, Tolipocladium, Thermomyces o Trichoderma.
- 25 [0033] El polipéptido puede además ser un Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces diastaticus, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis o un polipéptido de Saccharomyces oviformis con actividad lipásica.
- [0034] Alternativamente, el polipéptido es un Aspergillu aculeatus, Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Aspergillus turbigensis, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium, torulosum Fusarium trichothecioides, Fusarium venenatum, Humicola insolens, Thermomyces lanoginosus (sinónimo: Humicola lanuginosa), Mucor miehei, Micelioptora termófila, Neurospora crassa, Penicillium purpurogenum, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei o polipéptido de Trichoderma viride.
 - [0035] En algunas formas de realización la invención se refiere a un polipéptido que es una lipasa de Thermomyces.
 - [0036] En algunas formas de realización, la invención se refiere a un polipéptido que es una lipasa de *Thermomyce lanuginosus*.
- [0037] En algunas formas de realización, la invención se refiere a un polipéptido, donde el polipéptido es al menos 45 %, al menos 60 %, al menos 70 %, al menos 80 %, al menos 85 %, al menos 90 %, al menos 95 %, al menos 96 %, al menos 97 %, al menos 98 %, al menos 99 % o 100 % idéntico a SEC ID n.º: 2.

Identificación de alteraciones en polipéptidos con actividad lipásica

- [0038] Las posiciones referidas abajo son las posiciones de los residuos de aminoácidos en SEC ID n.º: 2. El procedimiento descrito en el párrafo "Homología y alineamiento" se utiliza para encontrar la posición correspondiente u homóloga del residuo de aminoácido en una lipasa diferente.
- [0039] En algunas formas de realización, la invención se refiere a un primer polipéptido con actividad lipásica donde dicho polipéptido es un polipéptido con al menos uno de: (a) una actividad lipásica (LU) relativa a la absorbancia a 280 nm (A280) de menos del 500, menos del 450, menos del 400, menos del 350, menos del 300, menos del 250, menos del 200, menos del 150, menos del 100 o menos del 50 LU/A280, donde una unidad de LU (1 LU) se define como la cantidad de enzima capaz de liberar 1 micro mol de ácido butírico por minuto a 30°C a pH 7 y la absorbancia del polipéptido se mide a 280 nm (b) un riesgo de rendimiento de olor (R) menor de 0.5, menor de 0.4, menor de 0.3, menor de 0.2, menor de 0.1 o menor de 0.05, donde R se calcula como la proporción entre el ácido butírico de cantidad liberada a partir de una muestra lavada de polipéptido y la cantidad de ácido butírico liberada a partir de una muestra lavada no polipeptídica; o (c) un factor riesgo beneficio (BR) de al menos 1.8, al menos 1.9, al menos 2.0, al menos 2.5, al menos 3.0, al menos 4.0, al menos 5.0 o al menos 6.0 donde BR se define como la media el rendimiento de lavado (RP_{avg}) dividida con el riesgo de rendimiento

[0040] En algunas formas de realización, la invención se refiere al primer polipéptido donde dicho polipéptido comprende alteraciones de los aminoácidos en las posiciones T231 R +N233R +1255A +P256K y al menos uno de (a) S58A +V60S +A150G +L227G; o (b) E210V/G; cuyas posiciones son correspondientes a SEC ID n.º: 2.

[0041] En algunas formas de realización, la invención se refiere al primer polipéptido que comprende además al menos una de la alteración del aminoácido en las posiciones I86V o T143S.

[0042] En algunas formas de realización, la invención se refiere al primer polipéptido, donde el polipéptido comprende al menos otra alteración seleccionada a partir de una sustitución, una deleción o una adición de al menos un aminoácido en una posición que corresponde a la posición E1; D27; N33; S83; G91; N94; K98; E99; D102; D111; G163; I202; E210; S216; L259 o L269 de SEC ID nº 2.

5

20

35

40

45

50

55

60

[0043] En algunas formas de realización, la invención se refiere al primer polipéptido, donde al menos una alteración es seleccionada desde el grupo consistente en: E1N/*, D27N, N33Q, S83T, G91N, N94R, K98I, E99K, D102A, D111N, G163K, I202L, E210A, S216P, L259F o L269APIA de SEC ID n.º: 2.

[0044] En algunas formas de realización, la invención se refiere a un segundo polipéptido que comprende alteraciones de los aminoácidos en las posiciones T231 R +N233R +1255A +P256K y al menos uno de: (a) S58A +V60S +A150G +L227G; o (b) E210V/G; cuyas posiciones son correspondientes a SEC ID n.º: 2.

[0045] En algunas formas de realización, la invención se refiere al segundo polipéptido que comprende además al menos una de las alteraciones del aminoácido en las posiciones I86V o T143S.

[0046] En algunas formas de realización, la invención se refiere al segundo polipéptido, donde el polipéptido comprende al menos otra alteración seleccionada a partir de una sustitución, una deleción o una adición de al menos un aminoácido en una posición que corresponde con la posición E1; D27; N33; S83; G91; N94; K98; E99; D102; D111; G163; I202; E210; S216; L259 o L269 de SEC ID nº 2.

[0047] En algunas formas de realización, la invención se refiere al segundo polipéptido, donde al menos una alteración es seleccionada del grupo que consiste en: E1N/*, D27N, N33Q, S83T, G91N, N94R, K981; E99K, D102A, D111N, G163K, 1202L, E210A, S216P, L259F o L269APIA de SEC ID n.º: 2.

[0048] En algunas formas de realización, la invención se refiere al primer polipéptido, donde dicho polipéptido comprende alteraciones seleccionadas del grupo que consiste en: (a) T231 R +N233R +L269APIA; (b) S58T +V60K +A150G +T231R +N2331 +D234G; (c) S58T +V60K + I86V + D102A + A150G + L227G + T231R + N233R + P256K; (d) S58N +V60S +186P +T231R +N233R +P256S; (e) S58N +V60S +186T +L227G +T231 R +N233R +P256L.

[0049] En algunas formas de realización, la invención se refiere al primer o el segundo polipéptido, donde dicho polipéptido comprende alteraciones seleccionadas del grupo que consiste en: (a) S58A +V60S + S83T +A150G +L227G +T231R +N233R +1255A +P256K; (b) S58A +V60S + I86V +A150G +L227G +T231R +N233R +1255A +P256K; (c) S58A +V60S + I86V +T143S +A150G +L227G +T231R +N233R +1255A +P256K; (d) S58A +V60S + I86V +T143S +A150G +G163K +S216P +L227G +T231R +N233R +1255A +P256K; (e) E1* +S58A +V60S + I86V +T143S +A150G +L227G +T231R +N233R +1255A +P256K; (f) S58A +V60S + I86V +K981 +E99K +T143S +A150G +L227G +T231R +N233R +I255A +P256K; (g) E1N +S58A +V60S + I86V +K98I +E99K +T143S +A150G +L227G +T231R +N233R +I255A +P256K +L259F; (h) S58A +V60S + 186V +K98I +E99K +D102A +T143S +A150G +L227G +T231R +N233R +I255A +P256K; (i) N33Q +S58A +V60S + I86V +T143S +A150G +L227G +T231R +N233R +I255A +P256K; (j) E1* +S58A +V60S + I86V +K98I +E99K +T143S +A150G +L227G +T231R +N233R +I255A +P256K; (k) E1N +S58A +V60S +I86V +K98I +E99K +T143S +A150G +S216P +L227G +T231R +N233R +I255A +P256K; (I) D27N +S58A +V60S + I86V +G91N +N94R +D111N +T143S +A150G +L227G +T231R +N233R +I255A +P256K; (m) E1N +S58A +V60S + I86V +K98I +E99K +T143S +A150G +E210A +S216P +L227G +T231R +N233R +I255A +P256K; (n) A150G +E210V +T231R +N233R +I255A +P256K; (o) I202L +E210G +T231R +N233R +I255A +P256K; (p) E1N +A18K +V60K +I86V +A150G +E210A +L227G +T231 R +N233R +P256K; (g) E1L +D27K +V60K +I86V +A150G +S216P +L227G +T231R +N233R +P256K; (r) E1N +S58A +V60S +S83T +A150G +L227G +T231R +N233R +I255A +P256K; (s) E1N +S58T +V60K +I86V +D102A +T143S +A150G +L227G +T231R +N233R +I255A +P256K; (t) E1N +S58A +V60S +I86V +K98I +E99K +D102A +T143S +A150G +S216P +L227G +T231R +N233R +I255A +P256K; y (u) S58A +V60S +S83T +A150G +L227G +T231R +N233R +I255A +P256K.

Tabla 1: alteraciones que pueden comprender los polipéptidos

Polipéptido	Mutaciones en SEQ ID N.º: 2
1	T231 R +N233R +L269APIA
2	S58T +V60K +A150G +T231R +N233I +D234G

3	S58T +V60K + 186V + D102A + A150G + L227G + T231R + N233R + P256K
4	S58N +V60S +I86P +T231 R +N233R +P256S
5	S58N +V60S +I86S +L227G +T231 R +N233R +P256S
6	S58N +V60S +I86T +L227G +T231 R +N233R +P256L
7	S58A +V60S + S83T +A150G +L227G +T231R +N233R +I255A +P256K
8	S58A +V60S + 186V +A150G +L227G +T231 R +N233R +I255A +P256K
9	S58A +V60S + I86V +T143S +A150G +L227G +T231 R +N233R +I255A +P256K
10	S58A +V60S + 186V +T143S +A150G +G163K +S216P +L227G +T231R +N233R
	+I255A +P256K
11	E1* +S58A +V60S + I86V +T143S +A150G +L227G +T231R +N233R +I255A +P256K
12	S58A +V60S + 186V +K98I +E99K +T143S +A150G +L227G +T231R +N233R +I255A +P256K
13	E1N, S58A, V60S, I86V, K98I, E99K, T143S, A150G, L227G, T231R, N233R, I255A, P256K, L259F
14	S58A, V60S, 186V, K98I, E99K, D102A, T143S, A150G, L227G, T231R, N233R, I255A, P256K
15	N33Q, S58A, V60S, I86V, T143S, A150G, L227G, T231R, N233R, I255A, P256K
16	E1* +S58A +V60S +I86V +K98I +E99K, T143S +A150G +L227G +T231R+N233R +I255A +P256K
17	E1N +S58A +V60S +I86V +K98I +E99K +T143S +A150G +S216P +L227G +T231R +N233R +I255A +P256K
18	D27N +S58A +V60S +186V +G91 N +N94R +D111N +T143S +A150G +L227G +T231 R +N233R +I255A +P256K
19	E1N +S58A +V60S +I86V +K98I +E99K +T143S +A150G +E210A +S216P +L227G +T231 R +N233R +I255A +P256K
20	A150G +E210V +T231 R +N233R +I255A +P256K
21	
22	+T231R +N233R +P256K
23	E1L +D27K +V60K +I86V +A150G +S216P +L227G +T231R +N233R +P256K
24	E1N +S58A +V60S +S83T +A150G +L227G +T231R +N233R +I255A +P256K
25	E1N +S58T +V60K +I86V +D102A +T143S +A150G +L227G +T231R +N233R +I255A +P256K
26	E1N +S58A +V60S +I86V +K98I +E99K +D102A +T143S +A150G +S216P +L227G +T231 R +N233R +I255A +P256K
27	S58A +V60S +S83T +A150G +L227G +T231R +N233R +I255A +P256K

[0050] En algunas formas de realización, la invención se refiere a un primer polipéptido, donde dicho polipéptido comprende alteraciones seleccionadas del grupo que consiste en: (a) T231 R +N233R +L269APIA; (b) S58T +V60K

+A150G + T231R + N233I + D234G; (c) S58T + V60K + I86V + D102A + A150G + L227G + T231R + N233R + P256K; (d) S58N + V60S + I86P + T231R + N233R + P256S; (e) S58N + V60S + I86S + L227G + T231R + N233R + P256S; y (f) S58N + V60S + I86T + L227G + T231R + N233R + P256L.

- [0051] En algunas formas de realización, la invención se refiere a un primer o un segundo polipéptido, donde dicho polipéptido comprende alteraciones seleccionadas del grupo que consiste en: (a) S58A +V60S + S83T +A150G +L227G +T231R +N233R +1255A +P256K; (b) S58A +V60S + I86V +A150G +L227G +T231R +N233R +1255A +P256K; (c) S58A +V60S + I86V +T143S +A150G +L227G +T231R +N233R +1255A +P256K; (d) S58A +V60S + I86V +T143S +A150G +G163K +S216P +L227G +T231R +N233R +1255A +P256K; (e) E1* +S58A +V60S + I86V +T143S +A150G +L227G +T231R +N233R +1255A +P256K; (f) S58A +V60S + I86V +K981 +E99K +T143S +A150G 10 +L227G +T231R +N233R +1255A +P256K; (g) E1N +S58A +V60S + I86V +K981 +E99K +T143S +A150G +L227G +T231R +N233R +1255A +P256K +L259F; (h) S58A +V60S + I86V +K981 +E99K +D102A +T143S +A150G +L227G +T231R +N233R +1255A +P256K; (i) N33Q +S58A +V60S + I86V +T143S +A150G +L227G +T231R +N233R +1255A +P256K; (j) E1* +S58A +V60S + I86V +K981 +E99K +T143S +A150G +L227G +T231R +N233R +1255A +P256K; (k) E1N +S58A +V60S +186V +K981 +E99K +T143S +A150G +S216P +L227G +T231R +N233R +1255A 15 +P256K; (I) D27N +S58A +V60S + I86V +G91N +N94R +D111N +T143S +A150G +L227G +T231R +N233R +1255A +P256K; (m) E1N +S58A +V60S + I86V +K981 +E99K +T143S +A150G +E210A +S216P +L227G +T231R +N233R +1255A +P256K; (n) A150G +E210V +T231R +N233R +1255A +P256K; (o) I202L +E210G +T231R +N233R +1255A +P256K; (p) E1N +A18K +V60K +186V +A150G +E210A +L227G +T231R +N233R +P256K; (g) E1L +D27K +V60K 20 +186V +A150G +S216P +L227G +T231R +N233R +P256K; (r) E1N +S58A +V60S +S83T +A150G +L227G +T231R +N233R +1255A +P256K; (s) E1N +S58T +V60K +186V +D102A +T143S +A150G +L227G +T231R +N233R +1255A +P256K; (t) E1N +S58A +V60S +186V +K981 +E99K +D102A +T143S +A150G +S216P +L227G +T231R +N233R +1255A +P256K; y (u) S58A +V60S +S83T +A150G +L227G +T231R +N233R +1255A +P256K.
- 25 Polinucleótidos, vector de expresión, célula huésped, producción de polipéptidos

50

55

65

- [0052] En algunas formas de realización, la invención se refiere a un polinucleótido aislado que codifica el polipéptido.
- Tales polinucleótidos pueden hibridar bajo condiciones de astringencia muy bajas, condiciones de astringencia preferiblemente bajas, más preferiblemente condiciones de astringencia media, más preferiblemente condiciones de astringencia altas y de la forma más preferible condiciones de astringencia altas y de la forma más preferible condiciones de astringencia muy altas con nucleótidos (i) 178 a 660 de SEC ID n.º: 1, (ii) la secuencia de ADNc contenida en nucleótidos 178 a 660 de SEC ID n.º: 1, (iii) una subsecuencia de (i) o (ii), o (iv) una cadena complementaria de (i); (ii), o (iii) (J. Sambrook, E.F. Fritsch, and T. Maniatus, 1989, Molecular Cloning, A Laboratory Manual, 2d edición, Cold Spring Harbor, New York).
 - Una subsecuencia de SEC ID n.º: 1 contiene al menos 100 nucleótidos contiguos o preferiblemente al menos 200 nucleótidos contiguos.
 - Además, la subsecuencia puede codificar un fragmento de polipéptido que tiene actividad lipásica.
- [0053] Para sondas largas de al menos 100 nucleótidos en longitud, las condiciones de astringencia muy bajas a muy altas se definen como prehibridación e hibridación a 42°C en 5X SSPE, 0,3 % SDS, 200 ug/ml ADN de esperma de salmón cortado y desnaturalizado y bien un 25 % de formamida para astringencias muy bajas y bajas, un 35 % de formamida para astringencias medias y medio altas o bien un 50 % de formamida para astringencias altas y muy altas, seguidas de procedimientos de hibridación estándar Southern durante 12 a 24 horas óptimamente.
 - [0054] Para sondas largas de al menos 100 nucleótidos en longitud, el material portador se lava finalmente tres veces por cada 15 minutos utilizando 2X SSC, 0.2 % SDS preferiblemente al menos a 45 °C (astringencia muy baja), más preferiblemente al menos a 50 °C (astringencia baja), más preferiblemente al menos a 55 °C (astringencia media), más preferiblemente al menos a 60 °C (astringencia medio alta), aún más preferiblemente al menos a 65 °C (astringencia alta) y de la forma más preferible al menos a 70 °C (astringencia muy alta).
 - [0055] En algunas formas de realización, la invención se refiere a un constructo de ácido nucleico que comprende el polinucleótido operacionalmente vinculado a al menos una secuencia de control que dirige la producción del polipéptido en un huésped de expresión.
 - [0056] En algunas formas de realización, la invención se refiere a un vector de expresión recombinante que comprende el constructo de ácido nucleico.
- [0057] En algunas formas de realización, la invención se refiere a una célula huésped transformada que comprende el constructo de ácido nucleico o el vector de expresión recombinante.
 - [0058] El polinucleótido aislado que codifica el polinucleótido, el constructo de ácido nucleico que comprende el polinucleótido, el vector de expresión recombinante que comprende el constructo de ácidos nucleicos y la célula huésped transformada que comprende el constructo de ácido nucleico o el vector de expresión recombinante todos se pueden obtener por métodos conocidos en la técnica.

[0059] En algunas formas de realización, la invención se refiere a un método de preparación del polipéptido que incluye las etapas: (a) cultivo de la célula huésped transformada que comprende el constructo de ácido nucleico o el vector de expresión recombinante que comprende el constructo de ácido de nucleótido conductivo bajo condiciones conductoras para la producción del polipéptido; y (b) recuperación del polipéptido.

5 El método se puede practicar según los principios conocidos en la técnica.

Usos

[0060] Enzimas de la presente invención pueden ser utilizadas, incluso de uso industrial para eliminar la materia grasa.

[0061] En algunas formas de realización, la invención se refiere a una formulación que comprende el polipéptido. En otras formas de realización, la invención se refiere a una formulación, donde dicha formulación puede ser una formulación sólida o líquida.

15 El polipéptido se puede utilizar en una formulación sólida al igual que en una líquida.

[0062] En algunas formas de realización, la invención se refiere a un método de reducción de la formación de ácidos grasos de cadena corta generadores de olor durante hidrólisis lípidica, utilzando el polipéptido.

20 Ejemplos

[0063] Posteriormente, la presente invención se describe mediante los ejemplos siguientes que no deberían ser interpretados como limitación del ámbito de la invención.

25 [0064] Productos químicos usados como tampones y sustratos fueron productos comerciales de al menos calidad reactiva.

Ejemplo 1 - Producción de variantes de lipasa

30 [0065] Un plásmido que contiene el gen que codifica del polipéptido se construye y se transforma en una célula huésped adecuada, usando métodos estándar de la técnica.

[0066] La fermentación se realiza como una fermentación por lote alimentado, utilizando una temperatura media constante de 34 °C y un volumen de inicio de 1.2 litros.

35 El pH inicial del medio se fija a 6.5.

Una vez el pH ha aumentado a 7.0 este valor se mantiene a través de la adición de 10 % H₃PO₄.

El nivel de oxígeno disuelto en el medio se controla variando el índice de agitación y utilizando un índice de aireación fijo de 1.0 de aire de litro por medio de litro por minuto.

El nivel de adición de alimentación se mantiene a un nivel constante durante toda la fase de lote alimentado.

40

45

50

[0067] El medio de lote contiene jarabe de maltosa como fuente de carbono, urea y extracto de levadura como fuente de nitrógeno y una mezcla de trazas de metales y sales.

La alimentación adicionada continuamente durante la fase de lote alimentado contiene jarabe de maltosa como fuente de carbono mientras que el extracto de levadura y urea se añade para asegurar un suministro de nitrógeno suficiente.

[0068] La purificación del polipéptido se puede realizar usando métodos estándar conocidos en la técnica, por ejemplo, por la filtración del sobrenadante de fermentación y la posterior cromatografía hidrofóbica y cromatografía de intercambio de iones, por ejemplo, como se describe en EP 0 851 913 EP, ejemplo 3.

Ejemplo 2 - Unidad de actividad de lipasa (LU) con respecto a la absorbancia a 280 nm (LU/A280)

[0069] La actividad de la lipasa (LU) se determina como se ha descrito anteriormente en la sección de Actividad lipásica.

La absorbancia de la lipasa a 280 nm se mide (A280).

La actividad específica de un polipéptido se puede expresar como la proporción de LU/A280.

[0070] La LU/A280 relativa se calcula como la LU/A280 del polipéptido dividido por la LU/A280 de una enzima de referencia.

60 En el contexto de la presente invención, la enzima de referencia es la lipasa de SEC ID N.º: 2 con las sustituciones T231 R +N233R.

Ejemplo 3 - Cálculo del rendimiento relativo (RP) de datos obtenidos del ensayo de tensión mecánica automatizada (AMSA)

[0071] Los polipéptidos de la presente invención son evaluados utilizando el ensayo de tensión mecánica automática

65

(AMSA).

Con el AMSA se puede examinar el rendimiento de lavado de una gran cantidad de soluciones de enzima de detergente de volumen pequeño.

La placa AMSA tiene un número de ranuras para las soluciones de prueba y una tapa que comprime firmemente la muestra textil que se va a lavar frente a todas las aberturas de ranura.

Durante el tiempo de lavado, la placa, las soluciones de prueba, el textil y la tapa se agitan enérgicamente para llevar la solución de prueba en contacto con el textil y aplicar la tensión mecánica.

Para otra descripción ver la WO 02/42740 especialmente el párrafo "Special method embodiments" en las páginas 23-24.

Los contenedores, que contienen la solución de prueba de detergente, consisten en agujeros cilíndricos (6 mm diámetro, 10 mm profundidad) en una lámina metálica.

El tejido manchado (material de prueba) se extiende sobre la lámina metálica y se usa como una tapa y sella en los contenedores.

Otra lámina metálica se extiende sobre el tejido manchado para evitar cualquier vertido de cada contenedor.

Las dos placas metálicas con el tejido manchado vibran arriba y abajo a una frecuencia de 30 Hz con una amplitud de 2 mm

Tabla 2: las condiciones experimentales para AMSA

	T	
	Ingrediente	% peso
	Sulfato de éter de alquilo de sodio (Surfac LC70)	12.0
	Alquilbencenosulfonato (LAS)	7.0
	Jabón de sebo/coco 80/20	3.2
	Alcohol etoxilato (Neodol 23-9)	2.4
Solución de prueba	Solución de prueba alquilo óxido de dimetilamina (Empigen OB)	2.0
	Ácido cítrico (sodio)	2.8
	Hidróxido sódico	1.6
	Glicerina	2.3
	Monoetanolamina	2.7
	Monopropilenglicol (MPG)	4.7
	Agua	59.2
Volumen de solución de prueba	160 micro I	
pH	Como es (≈8.3), ajustado con hidróxido sódico y ácio	do cítrico
Tiempo de lavado	20 minutos	
Temperatura	30 °C	
	6 °dH	
Dureza del agua	Proporción de Ca ²⁺ /Mg ²⁺ /NaHCO ₃ : 2:1:4.5	
Concentración		
enzimática en la	0.125, 0.25, 0.50, 0.50 mg ep / I	
solución de prueba		
	Rendimiento: después del lavado de las piezas textil	es (crema de café de cúrcuma) se enjuagan
Secado	inmediatamente en agua corriente y se secan al aire	a 85 °C en 5 min.
Secado	Olor: después del lavado de las piezas textiles (crem	na de cúrcuma) se enjuagan inmediatamente
	en agua corriente y se secan a temperatura ambient	
	Muestra de crema de cúrcuma o muestra de crema de	
Material de prueba	(EMPA221 usado como algodón textil obtenido de E St. Gallen, Switzerland)	

- 20 [0072] Muestras de crema de cúcuma y muestras de crema de café de cúrcuma fueron preparadas mediante la mezcla de 5g de cúrcuma (Santa Maria, Denmark) con 100g de crema (38 % de grasa, Aria, Denamark) y 100g de crema de café (9 % grasa, Aria, Dinamarca) a 50 °C, respectivamente.
 - La mezcla se dejó a esta temperatura durante aproximadamente 20 minutos y se filtro (50 °C) para eliminar cualquier partícula no disuelta.
- La mezcla fue enfriada a 20 °C y las muestras de algodón tejido, EMPA221, fueron sumergidas en la mezcla de crema de cúcuma y después se dejaron secar a temperatura ambiente durante la noche y se congelaron hasta su uso.
 - La preparación de muestras de crema de cúcuma se describe en la WO 06125437.
- 30 [0073] El rendimiento del polipéptido fue medido como la luminosidad del color de las muestras textiles lavadas con ese polipéptido específico.
 - La luminosidad también se puede expresar como la intensidad de la luz reflejada desde la muestra textil cuando se ilumina con luz blanca.
 - Cuando el textil se mancha, la intensidad de la luz reflejada es inferior que la de un textil limpio.
- 35 Por lo tanto, la intensidad de la luz reflejada se puede utilizar para medir el rendimiento de lavado de una variante

polipeptídica.

[0074] Las mediciones de color se realizaron con un escáner de superficie plana profesional (PFU DL2400pro), que se utiliza para capturar una imagen de las muestras textiles lavadas.

5 Los sondeos se realizaron con una resolución de 200 dpi y con una profundidad de color de emisión de 24 bits. Para obtener resultados precisos, el escáner se calibró frecuentemente con un objetivo Kodak reflectante IT8.

[0075] Para extraer un valor para la intensidad de luz desde las imágenes escaneadas, se usó una aplicación de software diseñada especial (analizador de vector de color de Novozymes).

El programa recupera los valores de píxel de 24 bit desde la imagen y los convierte en valores para rojo, (RGB) verde y azul.

El valor de intensidad (Int) se calcula añadiendo los valores de RGB juntos como vectores y luego tomando la longitud del vector resultante:

$$Int = \sqrt{r^2 + g^2 + b^2}$$

15

[0076] El rendimiento de lavado (P) de los polipéptidos fue calculado conforme a la fórmula:

$$P = Int(v) - Int(r),$$

20

donde Int(v) es el valor de intensidad de luz de superficie textil lavada con enzima e Int(r) es el valor de intensidad de luz de superficie textil lavada sin enzima.

[0077] Se da una puntuación de rendimiento relativo como el resultado del AMSA lavado conforme a la definición: puntuaciones de rendimiento relativas (RP) están sumando los rendimientos (P) del polipéptido evaluado frente al polipéptido de referencia:

RP = P(polipéptido de prueba) / P(polipéptido de referencia).

30 [0078] RP_{avg} indica la media de rendimiento relativo en comparación con el polipéptido de referencia de mediciones hecho a 0.5 mg ep/l.

[0079] Se considera un polipéptido para exponer un rendimiento de lavado mejorado, si este se lleva a cabo mejor que la referencia.

En el contexto de la presente invención, la enzima de referencia es la lipasa de SEC ID N.º: 2 con las sustituciones T231 R + N233R.

Ejemplo 4 - Cálculo de factor de riesgo (R) de mediciones de cromatógrafía de gases de microextracción en fase sólida

40

60

[0080] La liberación de ácido butírico desde las muestras lavadas de lipasa se midieron por cromatografía de gases de microextracción en fase sólida (SPME-GC) utilizando el método siguiente.

Cuatro piezas de tejidos (5 mm de diámetro), lavadas en la solución específica en la tabla 2 que contienen 0.5 mg/l de lipasa, fueron transferidas a un frasco de cromatógrafo de gases (GC).

Las muestras fueron incubadas a 30 °C durante 24 h y posteriormente calentadas a 140 °C durante 30 min y almacenadas a 20 °C - 25 °C durante al menos 4 h antes del análisis.

El análisis se realizó en un Varian 3800 GC equipado con una columna Stabilwax- DA w/Integra-Guard (30 m, 0.32 mm ID y 0.25 micro-m df) y una fibra Carboxen de PDMS MEFS (85 micro-m).

Se realizó un muestreo de cada frasco GC a 50 °C durante 8 min con la fibra de MEFS en el espacio de cabeza sobre las piezas textiles y los compuestos probados fueron inyectados posteriormente sobre la columna (temperatura del inyector = 250 °C).

Flujo de columna = 2 ml Helium/min.

Gradiente de temperatura de horno de columna: 0 min = 50° C, 2 min = 50° C, 6 min 45 s = 240° C, 11 min 45 s = 240° C

55 Se realizó la detección utilizando un detector de ionización de llama (FID) y el tiempo de retención para el ácido butírico se identificó utilizando un estándar auténtico.

[0081] El riesgo de rendimiento de olor (R) de un polipéptido es la proporción entre la cantidad de ácido butírico liberado (área de valor máximo) a partir de una muestra lavada de polipéptido y la cantidad de ácido butírico liberado (área de valor máximo) a partir de una muestra lavada de polipéptido de referencia, después de que ambos valores se hayan corregido en cuanto a la cantidad de ácido butírico liberado (área de valor máximo) a partir de una muestra

lavada no polipeptídica (blanca).

El polipéptido de referencia es el polipéptido de SEC ID n.º: 2 con las sustituciones T231 R + N233R.

El riesgo de rendimiento de olor (R) del polipéptido se calcula de acuerdo con la fórmula de abajo:

Olor = ácido butírico medido (área de valor máximo) liberado desde la superficie textil.

$$\alpha_{\text{enzima de prueba}} = Odor_{\text{enzima de prueba}} - Odor_{\text{blanco}}$$

$$\alpha_{\text{enzima de referencia}} = \text{Odor}_{\text{enzima de referencia}} - \text{Odor}_{\text{blanco}}$$

[0082] Se considera un polipéptido para mostrar un olor reducido en comparación con la referencia si el factor R es inferior a 1.

Ejemplo 5 - Factor riesgo beneficio (BR).

[0083] El factor riesgo beneficio que describe el rendimiento de lavado en comparación con el riesgo reducido para olor se define así como:

$$BR = RP_{avg} / R$$

20

25

10

15

5

[0084] Se considera una variante para mostrar el rendimiento de lavado mejorado y el olor reducido, si el factor BR es superior a 1.

Tabla 3: Actividad específica (LU/A280), riesgo de rendimiento de olor (R) y factor riesgo beneficio (BR) para algunos polipéptidos de la invención

Polipéptido	Mutaciones en SEQ ID N.º: 2	LU/A280 Ej.2	R Ej.4	BR Ej.5
REF	T231 R +N233R	4760	1.00	1.00
1	T231 R +N233R +L269APIA	127	0.19	2.77
2	S58T +V60K +A150G +T231R +N233I +D234G	1287	0.51	2.02
3	S58T +V60K + 186V + D102A + A150G + L227G + T231 R + N233R + P256K	358	0.44	2.04
4	S58N +V60S +I86P +T231 R +N233R +P256S	ND	0.5	2
5	S58N +V60S +l86S +L227G +T231 R +N233R +P256S	ND	0.2	2.82
6	S58N +V60S +I86T +L227G +T231 R +N233R +P256L	1576	0.34	2.11
7	S58A +V60S + S83T +A150G +L227G +T231 R +N233R +I255A +P256K	141	0.12	2.88
8	S58A +V60S + 186V +A150G +L227G +T231 R +N233R +I255A +P256K	479	0.20	3.04
9	S58A +V60S + 186V +T143S +A150G +L227G +T231 R +N233R +I255A +P256K	232	0.06	6.20
10	S58A +V60S + 186V +T143S +A150G +G163K +S216P +L227G +T231R +N233R +I255A +P256K	208	0.09	4.54
11	E1* +S58A +V60S + I86V +T143S +A150G +L227G +T231 R +N233R +I255A +P256K	273	0.27	2.87
12	S58A +V60S + 186V +K98I +E99K +T143S +A150G +L227G +T231R +N233R +I255A	143	0.20	3.12
	+P256K			
13	E1N, S58A, V60S, I86V, K98I, E99K, T143S, A150G, L227G, T231R, N233R, I255A, P256K, L259F	ND	0.10	5.20
14	S58A, V60S, 186V, K98I, E99K, D102A, T143S, A150G, L227G, T231R, N233R, I255A, P256K	15	0.16	3.87
15	N33Q, S58A, V60S, I86V, T143S, A150G, L227G, T231 R, N233R,	394	0.09	6.55

	I255A, P256K			
16	E1* +S58A +V60S +I86V +K98I +E99K, T143S +A150G +L227G +T231R +N233R +I255A +P256K	129	0.23	3.02
17	E1N +S58A +V60S +l86V +K98I +E99K +T143S +A150G+S216P+L227G+T231R+N233R +l255A +P256K	123	0.22	3.17
18	D27N +S58A +V60S +I86V +G91 N +N94R +D111N +T143S +A150G +L227G +T231R +N233R +I255A +P256K	946	0.25	2.70
19	E1N +S58A +V60S +I86V +K98I +E99K +T143S +A150G +E210A +S216P +L227G +T231 R +N233R +I255A +P256K	127	0.28	2.83
20	A150G +E210V +T231 R +N233R +1255A +P256K	666	0.45	1.99
21	I202L +E210G +T231R +N233R +I255A +P256K	1062	0.37	2.33
22	E1N +A18K +V60K +I86V +A150G +E210A +L227G +T231 R +N233R +P256K	107	0.30	2.6
23	E1L +D27K +V60K +I86V +A150G +S216P +L227G +T231 R +N233R +P256K	488	0.22	2.8
24	E1N +S58A +V60S +S83T +A150G +L227G +T231 R +N233R +I255A +P256K	98	0.15	2.4
25	E1N +S58T +V60K +I86V +D102A +T143S +A150G +L227G +T231R +N233R +I255A +P256K	144	0.28	2.3
26	E1N +S58A +V60S +186V +K981 +E99K +D102A +T143S +A150G +S216P +L227G +T231R +N233R +I255A +P256K	14	0.31	2.1
27	S58A +V60S +S83T +A150G +L227G +T231R +N233R +I255A +P256K	280	0.18	1.9

Listado de secuencias

<120> POLIPÉPTIDOS CON ACTIVIDAD LIPÁSICA Y POLINUCLEÓTIDOS QUE CODIFICAN LOS MISMOS

```
20 <130> 11180.000

<160> 16

<170> PatentIn version 3.5

25

<210> 1

<211> 873

<212> ADN

<213> Thermomyces lanuginosus

30

<220>

<221> CDS

<222> (1)..(873)
```

<220>

35

<221> sig_péptido

	<222	2>	(1).	. (51))										
5	<220 <221 <222	L> 1	prope (52).	_	ố)										
10	<220 <221 <222	L> r	nat <u>r</u> (67).	_	ido										
	_	agg	agc				_			_		 _	gcc Ala	_	48
15							Glu						cag Gln		96
20													aac Asn 25		144
25													tgc Cys		192
				30					35			40			
30		_		_		_	_	_			_	_	gac Asp		240
35				_	_					_	_	_	aac Asn		288
40													tgg Trp		336
													tcc Ser 105		384
45	_				_				_		 	_	gcc Ala	_	432
50	_			_	_			_	_		 		gac Asp		480
55													act Thr		528

		gga Gly															576
5		ggc Gly	_		_	_				_		_	_		_		624
10	_	cag Gln							_						_		672
15	_	cct Pro	_		_	_	_	_				_			_		720
		tac Tyr 220															768
20		gtg Val	_		_			_	_						_		816
25		att Ile	_	_													864
30		tgt Cys															873
35	<210 <211 <212 <213	L> 2 2> E	291 PRT	nomyc	ces l	lanuç	ginos	sus									
40	<400)> 2	2														
	Met	Arg	Ser -20	Ser	Leu	Val	Leu	Phe	Phe	Val	Ser	Ala	Trp -10	Thr	Ala	Leu	
45	Ala	Ser -5	Pro	Ile	Arg	Arg -1		Val	Ser	Gln	Asp 5	Leu	Phe	Asn	Gln	Phe 10	
50	Asn	Leu	Phe	Ala	Gln 15	Tyr	Ser	Ala	Ala	Ala 20	Tyr	Cys	Gly	Lys	Asn 25	Asn	
55	Asp	Ala	Pro	Ala 30	Gly	Thr	Asn	Ile	Thr 35	Cys	Thr	Gly	Asn	Ala 40	Cys	Pro	
	~ 3					_			_,	_		_	_,	~ 1	_	~	

Glu Val Glu Lys Ala Asp Ala Thr Phe Leu Tyr Ser Phe Glu Asp Ser

			45					50					55			
5	Gly	Val 60	Gly	Asp	Val	Thr	Gly 65	Phe	Leu	Ala	Leu	Asp 70	Asn	Thr	Asn	Lys
10	Leu 75	Ile	Val	Leu	Ser	Phe 80	Arg	Gly	Ser	Arg	Ser 85	Ile	Glu	Asn	Trp	Ile 90
	Gly	Asn	Leu	Asn	Phe 95	Asp	Leu	Lys	Glu	Ile 100	Asn	Asp	Ile	Cys	Ser 105	Gly
15	Cys	Arg	Gly	His 110	Asp	Gly	Phe	Thr	Ser 115	Ser	Trp	Arg	Ser	Val 120	Ala	Asp
20	Thr	Leu	Arg 125	Gln	Lys	Val	Glu	Asp 130	Ala	Val	Arg	Glu	His 135	Pro	Asp	Tyr
25	Arg	Val 140	Val	Phe	Thr	Gly	His 145	Ser	Leu	Gly	Gly	Ala 150	Leu	Ala	Thr	Val
30	Ala 155	Gly	Ala	Asp	Leu	Arg 160	Gly	Asn	Gly	Tyr	Asp 165	Ile	Asp	Val	Phe	Ser 170
	Tyr	Gly	Ala	Pro	Arg 175	Val	Gly	Asn	Arg	Ala 180	Phe	Ala	Glu	Phe	Leu 185	Thr
35	Val	Gln	Thr	Gly 190	Gly	Thr	Leu	Tyr	Arg 195	Ile	Thr	His	Thr	Asn 200	Asp	Ile
40	Val	Pro	Arg 205	Leu	Pro	Pro	Arg	Glu 210	Phe	Gly	Tyr	Ser	His 215	Ser	Ser	Pro
45	Glu	Tyr 220	Trp	Ile	Lys	Ser	Gly 225	Thr	Leu	Val	Pro	Val 230	Thr	Arg	Asn	Asp
50	Ile 235	Val	Lys	Ile	Glu	Gly 240	Ile	Asp	Ala	Thr	Gly 245	Gly	Asn	Asn	Gln	Pro 250
55	Asn	Ile	Pro	Asp	Ile 255	Pro	Ala	His	Leu	Trp 260	Tyr	Phe	Gly	Leu	Ile 265	Gly
	Thr	Cys	Leu													

5	<210 <211 <212 <213	L> 2 2> 1	3 265 PRT Absid	dia 1	cefle	exa										
	<400)> :	3													
10	Ser 1	Ser	Ser	Ser	Thr 5	Gln	Asp	Tyr	Arg	Ile 10	Ala	Ser	Glu	Ala	Glu 15	Ile
15	Lys	Ala	His	Thr 20	Phe	Tyr	Thr	Ala	Leu 25	Ser	Ala	Asn	Ala	Tyr 30	Cys	Arg
20	Thr	Val	Ile 35	Pro	Gly	Gly	Arg	Trp 40	Ser	Cys	Pro	His	Cys 45	Gly	Val	Ala
25	Ser	Asn 50	Leu	Gln	Ile	Thr	Lys 55	Thr	Phe	Ser	Thr	Leu 60	Ile	Thr	Asp	Thr
	Asn 65	Val	Leu	Val	Ala	Val 70	Gly	Glu	Lys	Glu	Lys 75	Thr	Ile	Tyr	Val	Val 80
30	Phe	Arg	Gly	Thr	Ser 85	Ser	Ile	Arg	Asn	Ala 90	Ile	Ala	Asp	Ile	Val 95	Phe
35	Val	Pro	Val	Asn 100	Tyr	Pro	Pro	Val	Asn 105	Gly	Ala	Lys	Val	His 110	Lys	Gly
40	Phe	Leu	Asp 115	Ser	Tyr	Asn	Glu	Val 120	Gln	Asp	Lys	Leu	Val 125	Ala	Glu	Val
45	Lys	Ala 130	Gln	Leu	Asp	Arg	His 135	Pro	Gly	Tyr	Lys	Ile 140	Val	Val	Thr	Gly
	His 145	Ser	Leu	Gly	Gly	Ala 150	Thr	Ala	Val	Leu	Ser 155	Ala	Leu	Asp	Leu	Tyr 160
50	His	His	Gly	His	Ala 165	Asn	Ile	Glu	Ile	Tyr 170	Thr	Gln	Gly	Gln	Pro 175	Arg
55	Ile	Gly	Thr	Pro 180	Ala	Phe	Ala	Asn	Tyr 185	Val	Ile	Gly	Thr	Lys 190	Ile	Pro

	Tyr	Gln	Arg 195	Leu	Val	His	Glu	Arg 200	Asp	Ile	Val	Pro	His 205	Leu	Pro	Pro
5	Gly	Ala 210	Phe	Gly	Phe	Leu	His 215	Ala	Gly	Glu	Glu	Phe 220	Trp	Ile	Met	Lys
10	Asp 225	Ser	Ser	Leu	Arg	Val 230	Cys	Pro	Asn	Gly	Ile 235	Glu	Thr	Asp	Asn	Cys 240
15	Ser	Asn	Ser	Ile	Val 245	Pro	Phe	Thr	Ser	Val 250	Ile	Asp	His	Leu	Ser 255	Tyr
20	Leu	Asp	Met	Asn 260	Thr	Gly	Leu	Cys	Leu 265							
25	<210 <211 <212 <213	L> 2 2> E	l 264 PRT Absid	dia d	coryr	nbif∈	era									
	<400)> 4	1													
30	Ser 1	Ser	Ser	Thr	Gln 5	Asp	Tyr	Arg	Ile	Ala 10	Ser	Glu	Ala	Glu	Ile 15	Lys
35	Ala	His	Thr	Phe 20	Tyr	Thr	Ala	Leu	Ser 25	Ala	Asn	Ala	Tyr	Cys 30	Arg	Thr
	Val	Ile	Pro 35	Gly	Gly	Gln	Trp	Ser 40	Cys	Pro	His	Cys	Asp 45	Val	Ala	Pro
40	Asn	Leu 50	Asn	Ile	Thr	Lys	Thr 55	Phe	Thr	Thr	Leu	Ile 60	Thr	Asp	Thr	Asn
45	Val 65	Leu	Val	Ala	Val	Gly 70	Glu	Asn	Glu	Lys	Thr 75	Ile	Tyr	Val	Val	Phe 80
50	Arg	Gly	Thr	Ser	Ser 85	Ile	Arg	Asn	Ala	Ile 90	Ala	Asp	Ile	Val	Phe 95	Val
55	Pro	Val	Asn	Tyr 100	Pro	Pro	Val	Asn	Gly 105	Ala	Lys	Val	His	Lys 110	Gly	Phe
	Leu	Asp	Ser	Tyr	Asn	Glu	Val	Gln	Asp	Lys	Leu	Val	Ala	Glu	Val	Lys

			115					120					125			
5	Ala	Gln 130	Leu	Asp	Arg	His	Pro 135	Gly	Tyr	Lys	Ile	Val 140	Val	Thr	Gly	His
10	Ser 145	Leu	Gly	Gly	Ala	Thr 150	Ala	Val	Leu	Ser	Ala 155	Leu	Asp	Leu	Tyr	His 160
	His	Gly	His	Asp	Asn 165	Ile	Glu	Ile	Tyr	Thr 170	Gln	Gly	Gln	Pro	Arg 175	Ile
15	Gly	Thr	Pro	Glu 180	Phe	Ala	Asn	Tyr	Val 185	Ile	Gly	Thr	Lys	Ile 190	Pro	Tyr
20	Gln	Arg	Leu 195	Val	Asn	Glu	Arg	Asp 200	Ile	Val	Pro	His	Leu 205	Pro	Pro	Gly
25	Ala	Phe 210	Gly	Phe	Leu	His	Ala 215	Gly	Glu	Glu	Phe	Trp 220	Ile	Met	Lys	Asp
30	Ser 225	Ser	Leu	Arg	Val	Cys 230	Pro	Asn	Gly	Ile	Glu 235	Thr	Asp	Asn	Cys	Ser 240
	Asn	Ser	Ile	Val	Pro 245	Phe	Thr	Ser	Val	Ile 250	Asp	His	Leu	Ser	Tyr 255	Leu
35	Asp	Met	Asn	Thr 260	Gly	Leu	Cys	Leu								
40	<210)> 5	5													
	<211 <212 <213	2> I	269 PRT Rhizo	omuco	or mi	iehei	i									
45)> 5		J	,	- 0110	_									
50	Ser 1	Ile	Asp	Gly	Gly 5	Ile	Arg	Ala	Ala	Thr 10	Ser	Gln	Glu	Ile	Asn 15	Glu
	Leu	Thr	Tyr	Tyr 20	Thr	Thr	Leu	Ser	Ala 25	Asn	Ser	Tyr	Cys	Arg 30	Thr	Val
55	Ile	Pro	Gly 35	Ala	Thr	Trp	Asp	Cys 40	Ile	His	Cys	Asp	Ala 45	Thr	Glu	Asp

5	Leu	Lys 50	Ile	Ile	Lys	Thr	Trp 55	Ser	Thr	Leu	Ile	Tyr 60	Asp	Thr	Asn	Ala
	Met 65	Val	Ala	Arg	Gly	Asp 70	Ser	Glu	Lys	Thr	Ile 75	Tyr	Ile	Val	Phe	Arg 80
10	Gly	Ser	Ser	Ser	Ile 85	Arg	Asn	Trp	Ile	Ala 90	Asp	Leu	Thr	Phe	Val 95	Pro
15	Val	Ser	Tyr	Pro 100	Pro	Val	Ser	Gly	Thr 105	Lys	Val	His	Lys	Gly 110	Phe	Leu
20	Asp	Ser	Tyr 115	Gly	Glu	Val	Gln	Asn 120	Glu	Leu	Val	Ala	Thr 125	Val	Leu	Asp
25	Gln	Phe 130	Lys	Gln	Tyr	Pro	Ser 135	Tyr	Lys	Val	Ala	Val 140	Thr	Gly	His	Ser
	Leu 145	Gly	Gly	Ala	Thr	Ala 150	Leu	Leu	Cys	Ala	Leu 155	Asp	Leu	Tyr	Gln	Arg 160
30	Glu	Glu	Gly	Leu	Ser 165	Ser	Ser	Asn	Leu	Phe 170	Leu	Tyr	Thr	Gln	Gly 175	Gln
35	Pro	Arg	Val	Gly 180	Asp	Pro	Ala	Phe	Ala 185	Asn	Tyr	Val	Val	Ser 190	Thr	Gly
40	Ile	Pro	Tyr 195	Arg	Arg	Thr	Val	Asn 200	Glu	Arg	Asp	Ile	Val 205	Pro	His	Leu
45	Pro	Pro 210	Ala	Ala	Phe	Gly	Phe 215	Leu	His	Ala	Gly	Glu 220	Glu	Tyr	Trp	Ile
	Thr 225	Asp	Asn	Ser	Pro	Glu 230	Thr	Val	Gln	Val	Cys 235	Thr	Ser	Asp	Leu	Glu 240
50	Thr	Ser	Asp	Cys	Ser 245	Asn	Ser	Ile	Val	Pro 250	Phe	Thr	Ser	Val	Leu 255	Asp
55	His	Leu	Ser	Tyr 260	Phe	Gly	Ile	Asn	Thr 265	Gly	Leu	Cys	Thr			

5	<210 <211 <212 <213	1> 2>	6 271 PRT Rhiz	opus	ory	zae										
	<400)>	6													
10	Ser 1	Ala	Ser	Asp	Gly 5	Gly	Lys	Val	Val	Ala 10	Ala	Thr	Thr	Ala	Gln 15	Ile
15	Gln	Glu	ı Phe	Thr 20	Lys	Tyr	Ala	Gly	Ile 25	Ala	Ala	Thr	Ala	Tyr 30	Cys	Arg
20	Ser	Val	. Val 35	Pro	Gly	Asn	Lys	Trp 40	Asp	Cys	Val	Gln	Cys 45	Gln	Lys	Trp
	Val	Pro 50	Asp	Gly	Lys	Ile	Ile 55	Thr	Thr	Phe	Thr	Ser 60	Leu	Leu	Ser	Asp
25	Thr 65	Asn	ı Gly	Tyr	Val	Leu 70	Arg	Ser	Asp	Lys	Gln 75	Lys	Thr	Ile	Tyr	Leu 80
30	Val	Phe	e Arg	Gly	Thr 85	Asn	Ser	Phe	Arg	Ser 90	Ala	Ile	Thr	Asp	Ile 95	Val
35	Phe	Asn	Phe	Ser 100	Asp	Tyr	Lys	Pro	Val 105	Lys	Gly	Ala	Lys	Val 110	His	Ala
40	Gly	Phe	Leu 115			Tyr		Gln 120			Asn				Pro	Val
	Val	Gln 130	ı Glu	Gln	Leu	Thr	Ala 135	His	Pro	Thr	Tyr	Lys 140	Val	Ile	Val	Thr
45	Gly 145	His	s Ser	Leu	Gly	Gly 150	Ala	Gln	Ala	Leu	Leu 155	Ala	Gly	Met	Asp	Leu 160
50	Tyr	Gln	ı Arg	Glu	Pro 165	Arg	Leu	Ser	Pro	Lys 170	Asn	Leu	Ser	Ile	Phe 175	Thr
55	Val	Gly	gly	Pro 180	Arg	Val	Gly	Asn	Pro 185	Thr	Phe	Ala	Tyr	Tyr 190	Val	Glu

	Ser	Thr	Gly 195	Ile	Pro	Phe	Gln	Arg 200	Thr	Val	His	Lys	Arg 205	Asp	Ile	Val
5	Pro	His 210	Val	Pro	Pro	Gln	Ser 215	Phe	Gly	Phe	Leu	His 220	Pro	Gly	Val	Glu
10	Ser 225	Trp	Ile	Lys	Ser	Gly 230	Thr	Ser	Asn	Val	Gln 235	Ile	Cys	Thr	Ser	Glu 240
15	Ile	Glu	Thr	Lys	Asp 245	Cys	Ser	Asn	Ser	Ile 250	Val	Pro	Phe	Thr	Ser 255	Ile
	Leu	Asp	His	Leu 260	Ser	Tyr	Phe	Asp	Ile 265	Asn	Glu	Gly	Ser	Cys 270	Leu	
20	<210 <211 <212 <213	1> 2 2> E	7 267 PRT Aspei	rgill	Lus r	nige:	<u>c</u>									
25	<400)> 7	7													
30	Thr 1	Ala	Gly	His	Ala 5	Leu	Ala	Ala	Ser	Thr 10	Gln	Gly	Ile	Ser	Glu 15	Asp
25	Leu	Tyr	Ser	Arg 20	Leu	Val	Glu	Met	Ala 25	Thr	Ile	Ser	Gln	Ala 30	Ala	Tyr
35	Ala	Asp	Leu 35	Cys	Asn	Ile	Pro	Ser 40	Thr	Ile	Ile	Lys	Gly 45	Glu	Lys	Ile
40	Tyr	Asn 50	Ser	Gln	Thr	Asp	Ile 55	Asn	Gly	Trp	Ile	Leu 60	Arg	Asp	Asp	Ser
45	Ser 65	Lys	Glu	Ile	Ile	Thr 70	Val	Phe	Arg	Gly	Thr 75	Gly	Ser	Asp	Thr	Asn 80
50	Leu	Gln	Leu	Asp	Thr 85	Asn	Tyr	Thr	Leu	Thr 90	Pro	Phe	Asp	Thr	Leu 95	Pro
	Gln	Cys	Asn	Gly 100	Cys	Glu	Val	His	Gly 105	Gly	Tyr	Tyr	Ile	Gly 110	Trp	Val
55	Ser	Val	Gln 115	Asp	Gln	Val	Glu	Ser 120	Leu	Val	Lys	Gln	Gln 125	Val	Ser	Gln

5	Tyr	Pro 130	Asp	Tyr	Ala	Leu	Thr 135	Val	Thr	Gly	His	Ser 140	Leu	Gly	Ala	Ser
10	Leu 145	Ala	Ala	Leu	Thr	Ala 150	Ala	Gln	Leu	Ser	Ala 155	Thr	Tyr	Asp	Asn	Ile 160
	Arg	Leu	Tyr	Thr	Phe 165	Gly	Glu	Pro	Arg	Ser 170	Gly	Asn	Gln	Ala	Phe 175	Ala
15	Ser	Tyr	Met	Asn 180	Asp	Ala	Phe	Gln	Ala 185	Ser	Ser	Pro	Asp	Thr 190	Thr	Gln
20	Tyr	Phe	Arg 195	Val	Thr	His	Ala	Asn 200	Asp	Gly	Ile	Pro	Asn 205	Leu	Pro	Pro
25	Val	Glu 210	Gln	Gly	Tyr	Ala	His 215	Gly	Gly	Val	Glu	Tyr 220	Trp	Ser	Val	Asp
30	Pro 225	Tyr	Ser	Ala	Gln	Asn 230	Thr	Phe	Val	Cys	Thr 235	Gly	Asp	Glu	Val	Gln 240
	Cys	Cys	Glu	Ala	Gln 245	Gly	Gly	Gln	Gly	Val 250	Asn	Asn	Ala	His	Thr 255	Thr
35	Tyr	Phe	Gly	Met 260	Thr	Ser	Gly	Ala	Cys 265	Thr	Trp					
40	<210 <211 <212 <213	L> 2 2> E	266 PRT	rgill	Lus t	cubir	ngens	sis								
45	<400)> (3													
	Thr 1	Ala	Gly	His	Ala 5	Leu	Ala	Ala	Ser	Thr 10	Gln	Gly	Ile	Ser	Glu 15	Asp
50	Leu	Tyr	Ser	Arg 20	Leu	Val	Glu	Met	Ala 25	Thr	Ile	Ser	Gln	Ala 30	Ala	Tyr
55	Ala	Asp	Leu 35	Cys	Asn	Ile	Pro	Ser 40	Thr	Ile	Ile	Lys	Gly 45	Glu	Lys	Ile

5	Tyr	Asn 50	Ser	Gln	Thr	Asp	Ile 55	Asn	Gly	Trp	Ile	Leu 60	Arg	Asp	Asp	Ser
	Ser 65	Lys	Glu	Ile	Ile	Thr 70	Val	Phe	Arg	Gly	Thr 75	Gly	Ser	Asp	Thr	Asn 80
10	Leu	Gln	Leu	Asp	Thr 85	Asn	Tyr	Thr	Leu	Thr 90	Pro	Phe	Asp	Thr	Leu 95	Pro
15	Gln	Cys	Asn	Ser 100	Cys	Glu	Val	His	Gly 105	Gly	Tyr	Tyr	Ile	Gly 110	Trp	Ile
20	Ser	Val	Gln 115	Asp	Gln	Val	Glu	Ser 120	Leu	Val	Gln	Gln	Gln 125	Val	Ser	Gln
25	Phe	Pro 130	Asp	Tyr	Ala	Leu	Thr 135	Val	Thr	Gly	His	Ser 140	Leu	Gly	Ala	Ser
	Leu 145	Ala	Ala	Leu	Thr	Ala 150	Ala	Gln	Leu	Ser	Ala 155	Thr	Tyr	Asp	Asn	Ile 160
30	Arg	Leu	Tyr	Thr	Phe 165	Gly	Glu	Pro	Arg	Ser 170	Asn	Gln	Ala	Phe	Ala 175	Ser
35	Tyr	Met	Asn	Asp 180	Ala	Phe	Gln	Ala	Ser 185	Ser	Pro	Asp	Thr	Thr 190	Gln	Tyr
40	Phe	Arg	Val 195	Thr	His	Ala	Asn	Asp 200	Gly	Ile	Pro	Asn	Leu 205	Pro	Pro	Ala
45	Asp	Glu 210	Gly	Tyr	Ala	His	Gly 215	Val	Val	Glu	Tyr	Trp 220	Ser	Val	Asp	Pro
	Tyr 225	Ser	Ala	Gln	Asn	Thr 230	Phe	Val	Cys	Thr	Gly 235	Asp	Glu	Val	Gln	Cys 240
50	Cys	Glu	Ala	Gln	Gly 245	Gly	Gln	Gly	Val	Asn 250	Asn	Ala	His	Thr	Thr 255	Tyr
55	Phe	Gly	Met	Thr 260	Ser	Gly	His	Cys	Thr 265	Trp						

5	<210 <211 <212 <213	L> 2>	9 276 PRT Fusa:	rium	oxys	sport	am									
	<400)>	9													
10	Ala 1	Val	Gly	Val	Thr 5	Thr	Thr	Asp	Phe	Ser 10	Asn	Phe	Lys	Phe	Tyr 15	Ile
15	Gln	His	Gly	Ala 20	Ala	Ala	Tyr	Cys	Asn 25	Ser	Glu	Ala	Ala	Ala 30	Gly	Ser
	Lys	Ile	Thr 35	Cys	Ser	Asn	Asn	Gly 40	Cys	Pro	Thr	Val	Gln 45	Gly	Asn	Gly
20	Ala	Thr	: Ile	Val	Thr	Ser	Phe 55	Val	Gly	Ser	Lys	Thr 60	Gly	Ile	Gly	Gly
25	Tyr 65	Val	Ala	Thr	Asp	Ser 70	Ala	Arg	Lys	Glu	Ile 75	Val	Val	Ser	Phe	Arg 80
30	Gly	Ser	lle	Asn	Ile 85	Arg	Asn	Trp	Leu	Thr 90	Asn	Leu	Asp	Phe	Gly 95	Gln
35	Glu	Asp	Cys	Ser 100	Leu	Val	Ser	Gly	Cys 105	Gly	Val	His	Ser	Gly 110	Phe	Gln
	Arg	Ala	Trp 115	Asn	Glu	Ile	Ser	Ser 120	Gln	Ala	Thr	Ala	Ala 125	Val	Ala	Ser
40	Ala	Arg	Lys	Ala	Asn	Pro	Ser 135	Phe	Asn	Val	Ile	Ser 140	Thr	Gly	His	Ser
45	Leu 145	Gly	'Gly	Ala	Val	Ala 150	Val	Leu	Ala	Ala	Ala 155	Asn	Leu	Arg	Val	Gly 160
50	Gly	Thr	Pro	Val	Asp 165	Ile	Tyr	Thr	Tyr	Gly 170	Ser	Pro	Arg	Val	Gly 175	Asn
55	Ala	Gln	Leu	Ser 180	Ala	Phe	Val	Ser	Asn 185	Gln	Ala	Gly	Gly	Glu 190	Tyr	Arg
	Val	Thr	His	Ala	Asp	Asp	Pro	Val	Pro	Arg	Leu	Pro	Pro	Leu	Ile	Phe

	195		200	205	
5	Gly Tyr Arg 210	His Thr Thr	Pro Glu Phe Tr 215	rp Leu Ser Gly Gly 220	Gly Gly
10	Asp Lys Val 225	Asp Tyr Thr 230	Ile Ser Asp Va	al Lys Val Cys Glu 235	Gly Ala 240
	Ala Asn Leu	Gly Cys Asn 245	Gly Gly Thr Le	eu Gly Leu Asp Ile 50	Ala Ala 255
15	His Leu His	Tyr Phe Gln 260	Ala Thr Asp Al 265	la Cys Asn Ala Gly 270	_
20	Ser Trp Arg 275	Arg			
25	<210> 10 <211> 273 <212> PRT <213> Fusa:	rium heteros	porum		
30	<400> 10				
	Thr Val Thr 1	Thr Gln Asp 5	Leu Ser Asn Ph	ne Arg Phe Tyr Leu)	Gln His 15
35	Ala Asp Ala	Ala Tyr Cys 20	Asn Phe Asn Th	nr Ala Val Gly Lys 30	Pro Val
40	His Cys Ser 35	Ala Gly Asn	Cys Pro Asp Il	le Glu Lys Asp Ala 45	Ala Ile
45	Val Val Gly 50	Ser Val Val	Gly Thr Lys Th	nr Gly Ile Gly Ala 60	Tyr Val
	Ala Thr Asp 65	Asn Ala Arg 70	Lys Glu Ile Va	al Val Ser Val Arg 75	Gly Ser 80
50	Ile Asn Val	Arg Asn Trp 85	Ile Thr Asn Ph	ne Asn Phe Gly Gln)	Lys Thr 95

	Trp	Glu	Glu 115	Val	Ala	Ala	Asn	Val 120	Lys	Ala	Ala	Val	Ser 125	Ala	Ala	Lys
5	Thr	Ala 130	Asn	Pro	Thr	Phe	Lys 135	Phe	Val	Val	Thr	Gly 140	His	Ser	Leu	Gly
10	Gly 145	Ala	Val	Ala	Thr	Ile 150	Ala	Ala	Ala	Tyr	Leu 155	Arg	Lys	Asp	Gly	Phe 160
15	Pro	Phe	Asp	Leu	Tyr 165	Thr	Tyr	Gly	Ser	Pro 170	Arg	Val	Gly	Asn	Asp 175	Phe
20	Phe	Ala	Asn	Phe 180	Val	Thr	Gln	Gln	Thr 185	Gly	Ala	Glu	Tyr	Arg 190	Val	Thr
25	His	Gly	Asp 195	Asp	Pro	Val	Pro	Arg 200	Leu	Pro	Pro	Ile	Val 205	Phe	Gly	Tyr
25	Arg	His 210	Thr	Ser	Pro	Glu	Tyr 215	Trp	Leu	Asn	Gly	Gly 220	Pro	Leu	Asp	Lys
30	Asp 225	Tyr	Thr	Val	Thr	Glu 230	Ile	Lys	Val	Cys	Glu 235	Gly	Ile	Ala	Asn	Val 240
35	Met	Cys	Asn	Gly	Gly 245	Thr	Ile	Gly	Leu	Asp 250	Ile	Leu	Ala	His	Ile 255	Thr
40	Tyr	Phe	Gln	Ser 260	Met	Ala	Thr	Cys	Ala 265	Pro	Ile	Ala	Ile	Pro 270	Trp	Lys
	Arg															
45	<210 <211 <212	L> 2	11 278 PRT													
50	<213		Aspei 11	rgill	lus d	oryza	ae									
55				Thr	Thr 5	Gln	Leu	Glu	Asp	Phe 10	Lys	Phe	Trp	Val	Gln 15	Tyr
	۵la	۵la	۵la	Thγ	Тτιν	C179	Pro	Asn	Asn	Тτ/γ	Va 1	۵la	T.379	Asn	G1 17	Glu

				20					25					30		
5	Lys	Leu	Asn 35	Cys	Ser	Val	Gly	Asn 40	Cys	Pro	Asp	Val	Glu 45	Ala	Ala	Gly
10	Ser	Thr 50	Val	Lys	Leu	Ser	Phe 55	Ser	Asp	Asp	Thr	Ile 60	Thr	Asp	Thr	Ala
	Gly 65	Phe	Val	Ala	Val	Asp 70	Asn	Thr	Asn	Lys	Ala 75	Ile	Val	Val	Ala	Phe 80
15	Arg	Gly	Ser	Tyr	Ser 85	Ile	Arg	Asn	Trp	Val 90	Thr	Asp	Ala	Thr	Phe 95	Pro
20	Gln	Thr	Asp	Pro 100	Gly	Leu	Cys	Asp	Gly 105	Cys	Lys	Ala	Glu	Leu 110	Gly	Phe
25	Trp	Thr	Ala 115	Trp	Lys	Val	Val	Arg 120	Asp	Arg	Ile	Ile	Lys 125	Thr	Leu	Asp
30	Glu	Leu 130	Lys	Pro	Glu	His	Ser 135	Asp	Tyr	Lys	Ile	Val 140	Val	Val	Gly	His
	Ser 145	Leu	Gly	Ala	Ala	Ile 150	Ala	Ser	Leu	Ala	Ala 155	Ala	Asp	Leu	Arg	Thr 160
35	Lys	Asn	Tyr	_	Ala 165		Leu	Tyr		Tyr 170		Ala	Pro	Arg	Val 175	Ala
40	Asn	Lys	Pro	Leu 180	Ala	Glu	Phe	Ile	Thr 185	Asn	Gln	Gly	Asn	Asn 190	Tyr	Arg
45	Phe	Thr	His 195	Asn	Asp	Asp	Pro	Val 200	Pro	Lys	Leu	Pro	Leu 205	Leu	Thr	Met
50	Gly	Tyr 210	Val	His	Ile	Ser	Pro 215	Glu	Tyr	Tyr	Ile	Thr 220	Ala	Pro	Asp	Asn
	Thr 225	Thr	Val	Thr	Asp	Asn 230	Gln	Val	Thr	Val	Leu 235	Asp	Gly	Tyr	Val	Asn 240
55	Phe	Lys	Gly	Asn	Thr 245	Gly	Thr	Ser	Gly	Gly 250	Leu	Pro	Asp	Leu	Leu 255	Ala

5	Phe	His	Ser	His 260	Val	Trp	Tyr	Phe	Ile 265	His	Ala	Asp	Ala	Cys 270	Lys	Gly
10	Pro	Gly	Leu 275	Pro	Leu	Arg										
15	<210 <211 <212 <213	1> 2 2> 1	12 278 PRT Penio	cilli	ium d	camer	nbert	i								
	<400)> 1	12													
20	Asp 1	Val	Ser	Thr	Ser 5	Glu	Leu	Asp	Gln	Phe 10	Glu	Phe	Trp	Val	Gln 15	Tyr
25	Ala	Ala	Ala	Ser 20	Tyr	Tyr	Glu	Ala	Asp 25	Tyr	Thr	Ala	Gln	Val 30	Gly	Asp
	Lys	Leu	Ser 35	Cys	Ser	Lys	Gly	Asn 40	Cys	Pro	Glu	Val	Glu 45	Ala	Thr	Gly
30	Ala	Thr 50	Val	Ser	Tyr	Asp	Phe 55	Ser	Asp	Ser	Thr	Ile 60	Thr	Asp	Thr	Ala
35	Gly 65	Tyr	Ile	Ala	Val	Asp 70	His	Thr	Asn	Ser	Ala 75	Val	Val	Leu	Ala	Phe 80
40	Arg	Gly	Ser	Tyr	Ser 85	Val	Arg	Asn	Trp	Val 90	Ala	Asp	Ala	Thr	Phe 95	Val
45	His	Thr	Asn	Pro 100	Gly	Leu	Cys	Asp	Gly 105	Cys	Leu	Ala	Glu	Leu 110	Gly	Phe
	Trp	Ser	Ser 115	Trp	Lys	Leu	Val	Arg 120	Asp	Asp	Ile	Ile	Lys 125	Glu	Leu	Lys
50	Glu	Val 130	Val	Ala	Gln	Asn	Pro 135	Asn	Tyr	Glu	Leu	Val 140	Val	Val	Gly	His
55	Ser 145	Leu	Gly	Ala	Ala	Val 150	Ala	Thr	Leu	Ala	Ala 155	Thr	Asp	Leu	Arg	Gly 160

	Lys	Gly	Tyr	Pro	Ser 165	Ala	Lys	Leu	Tyr	Ala 170	Tyr	Ala	Ser	Pro	Arg 175	Val
5	Gly	Asn	Ala	Ala 180	Leu	Ala	Lys	Tyr	Ile 185	Thr	Ala	Gln	Gly	Asn 190	Asn	Phe
10	Arg	Phe	Thr 195	His	Thr	Asn	Asp	Pro 200	Val	Pro	Lys	Leu	Pro 205	Leu	Leu	Ser
15	Met	Gly 210	Tyr	Val	His	Val	Ser 215	Pro	Glu	Tyr	Trp	Ile 220	Thr	Ser	Pro	Asn
20	Asn 225	Ala	Thr	Val	Ser	Thr 230	Ser	Asp	Ile	Lys	Val 235	Ile	Asp	Gly	Asp	Val 240
25	Ser	Phe	Asp	Gly	Asn 245	Thr	Gly	Thr	Gly	Leu 250	Pro	Leu	Leu	Thr	Asp 255	Phe
25	Glu	Ala	His	Ile 260	Trp	Tyr	Phe	Val	Gln 265	Val	Asp	Ala	Gly	Lys 270	Gly	Pro
30	Gly	Leu	Pro 275	Phe	Lys	Arg										
35	<210 <211 <212 <213	1> 2 2> 1	L3 270 PRT Aspei	rgill	lus i	foeti	idus									
40	<400)> 1	L3													
. •	Ser 1	Val	Ser	Thr	Ser 5	Thr	Leu	Asp	Glu	Leu 10	Gln	Leu	Phe	Ala	Gln 15	Trp
45	Ser	Ala	Ala	Ala 20	Tyr	Cys	Ser	Asn	Asn 25	Ile	Asp	Ser	Lys	Asp 30	Ser	Asn
50	Leu	Thr	Cys 35	Thr	Ala	Asn	Ala	Cys 40	Pro	Ser	Val	Glu	Glu 45	Ala	Ser	Thr
55	Thr	Met 50	Leu	Leu	Glu	Phe	Asp 55	Leu	Thr	Asn	Asp	Phe 60	Gly	Gly	Thr	Ala
	Gl v	Phe	T.011	د ا ∆	د ۵	Asn	Asn	Thr	Asn	T.379	Δrα	T.011	Wa 1	Wa 1	Δla	Phe

	65					70					75					80
5	Arg	Gly	Ser	Ser	Thr 85	Ile	Glu	Asn	Trp	Ile 90	Ala	Asn	Leu	Asp	Phe 95	Ile
10	Leu	Glu	Asp	Asn 100	Asp	Asp	Leu	Cys	Thr 105	Gly	Cys	Lys	Val	His 110	Thr	Gly
	Phe	Trp	Lys 115	Ala	Trp	Glu	Ser	Ala 120	Ala	Asp	Glu	Leu	Thr 125	Ser	Lys	Ile
15	Lys	Ser 130	Ala	Met	Ser	Thr	Tyr 135	Ser	Gly	Tyr	Thr	Leu 140	Tyr	Phe	Thr	Gly
20	His 145	Ser	Leu	Gly	Gly	Ala 150	Leu	Ala	Thr	Leu	Gly 155	Ala	Thr	Val	Leu	Arg 160
25	Asn	Asp	Gly	Tyr	Ser 165	Val	Glu	Leu	Tyr	Thr 170	Tyr	Gly	Cys	Pro	Arg 175	Ile
30	Gly	Asn	Tyr	Ala 180	Leu	Ala	Glu	His	Ile 185	Thr	Ser	Gln	Gly	Ser 190	Gly	Ala
	Asn	Phe	Arg 195	Val	Thr	His	Leu	Asn 200	Asp	Ile	Val	Pro	Arg 205	Val	Pro	Pro
35	Met	Asp 210	Phe	Gly	Phe	Ser	Gln 215	Pro	Ser	Pro	Glu	Tyr 220	Trp	Ile	Thr	Ser
40	Gly 225	Asn	Gly	Ala	Ser	Val 230	Thr	Ala	Ser	Asp	Ile 235	Glu	Val	Ile	Glu	Gly 240
45	Ile	Asn	Ser	Thr	Ala 245	Gly	Asn	Ala	Gly	Glu 250	Ala	Thr	Val	Ser	Val 255	Leu
50	Ala	His	Leu	Trp 260	Tyr	Phe	Phe	Ala	Ile 265	Ser	Glu	Cys	Leu	Leu 270		
55	<210 <211 <212 <213	1> 2 2> 1	14 270 PRT Asper	rgill	Lus r	nigen	<u>c</u>									

	<400)> [L 4													
5	Ser 1	Val	Ser	Thr	Ser 5	Thr	Leu	Asp	Glu	Leu 10	Gln	Leu	Phe	Ser	Gln 15	Trp
	Ser	Ala	Ala	Ala 20	Tyr	Cys	Ser	Asn	Asn 25	Ile	Asp	Ser	Asp	Asp 30	Ser	Asn
10	Val	Thr	Cys 35	Thr	Ala	Asp	Ala	Cys 40	Pro	Ser	Val	Glu	Glu 45	Ala	Ser	Thr
15	Lys	Met 50	Leu	Leu	Glu	Phe	Asp 55	Leu	Thr	Asn	Asn	Phe 60	Gly	Gly	Thr	Ala
20	Gly 65	Phe	Leu	Ala	Ala	Asp 70	Asn	Thr	Asn	Lys	Arg 75	Leu	Val	Val	Ala	Phe 80
25	Arg	Gly	Ser	Ser	Thr 85	Ile	Lys	Asn	Trp	Ile 90	Ala	Asp	Leu	Asp	Phe 95	Ile
	Leu	Gln	Asp	Asn 100	Asp	Asp	Leu	Cys	Thr 105	Gly	Cys	Lys	Val	His 110	Thr	Gly
30	Phe	Trp	Lys 115	Ala	Trp	Glu	Ala	Ala 120	Ala	Asp	Asn	Leu	Thr 125	Ser	Lys	Ile
35	Lys	Ser 130	Ala	Met	Ser	Thr	Tyr 135	Ser	Gly	Tyr	Thr	Leu 140	Tyr	Phe	Thr	Gly
40	His 145	Ser	Leu	Gly	Gly	Ala 150	Leu	Ala	Thr	Leu	Gly 155	Ala	Thr	Val	Leu	Arg
45	Asn	Asp	Gly	Tyr	Ser 165	Val	Glu	Leu	Tyr	Thr 170	Tyr	Gly	Cys	Pro	Arg 175	Val
	Gly	Asn	Tyr	Ala 180	Leu	Ala	Glu	His	Ile 185	Thr	Ser	Gln	Gly	Ser 190	Gly	Ala
50	Asn	Phe	Pro	Val	Thr	His	Leu	Asn 200	Asp	Ile	Val	Pro	Arg	Val	Pro	Pro
55	Met	Asp 210		Gly	Phe	Ser	Gln 215		Ser	Pro	Glu	Tyr 220		Ile	Thr	Ser

5	Gly 225	Thr	Gly	Ala	Ser	Val 230	Thr	Ala	Ser	Asp	Ile 235	Glu	Leu	Ile	Glu	Gly 240
	Ile	Asn	Ser	Thr	Ala 245	Gly	Asn	Ala	Gly	Glu 250	Ala	Thr	Val	Asp	Val 255	Leu
10	Ala	His	Leu	Trp 260	Tyr	Phe	Phe	Ala	Ile 265	Ser	Glu	Cys	Leu	Leu 270		
15	<210> 15 <211> 269 <212> PRT <213> Aspergillus oryzae															
20	<400)> [15													
	Asp 1	Val	Ser	Ser	Ser 5	Leu	Leu	Asn	Asn	Leu 10	Asp	Leu	Phe	Ala	Gln 15	Tyr
25	Ser	Ala	Ala	Ala 20	Tyr	Cys	Asp	Glu	Asn 25	Leu	Asn	Ser	Thr	Gly 30	Thr	Lys
30	Leu	Thr	Cys 35	Ser	Val	Gly	Asn	Cys 40	Pro	Leu	Val	Glu	Ala 45	Ala	Ser	Thr
35	Gln	Ser 50	Leu	Asp	Glu	Phe	Asn 55	Glu	Ser	Ser	Ser	Tyr 60	Gly	Asn	Pro	Ala
40	Gly 65	Tyr	Leu	Ala	Ala	Asp 70	Glu	Thr	Asn	Lys	Leu 75	Leu	Val	Leu	Ser	Phe 80
	Arg	Gly	Ser	Ala	Asp 85	Leu	Ala	Asn	Trp	Val 90	Ala	Asn	Leu	Asn	Phe 95	Gly
45	Leu	Glu	Asp	Ala 100	Ser	Asp	Leu	Cys	Ser 105	Gly	Cys	Glu	Val	His 110	Ser	Gly
50	Phe	Trp	Lys 115	Ala	Trp	Ser	Glu	Ile 120	Ala	Asp	Thr	Ile	Thr 125	Ser	Lys	Val
55	Glu	Ser 130	Ala	Leu	Ser	Asp	His 135	Ser	Asp	Tyr	Ser	Leu 140	Val	Leu	Thr	Gly

	His 145	Ser	Tyr	Gly	Ala	Ala 150	Leu	Ala	Ala	Leu	Ala 155	Ala	Thr	Ala	Leu	Arg 160
5	Asn	Ser	Gly	His	Ser 165	Val	Glu	Leu	Tyr	Asn 170	Tyr	Gly	Gln	Pro	Arg 175	Leu
10	Gly	Asn	Glu	Ala 180	Leu	Ala	Thr	Tyr	Ile 185	Thr	Asp	Gln	Asn	Lys 190	Gly	Gly
15	Asn	Tyr	Arg 195	Val	Thr	His	Thr	Asn 200	Asp	Ile	Val	Pro	Lys 205	Leu	Pro	Pro
	Thr	Leu 210	Leu	Gly	Tyr	His	His 215	Phe	Ser	Pro	Glu	Tyr 220	Tyr	Ile	Ser	Ser
20	Ala 225	Asp	Glu	Ala	Thr	Val 230	Thr	Thr	Thr	Asp	Val 235	Thr	Glu	Val	Thr	Gly 240
25	Ile	Asp	Ala	Thr	Gly 245	Gly	Asn	Asp	Gly	Thr 250	Asp	Gly	Thr	Ser	Ile 255	Asp
30	Ala	His	Arg	Trp 260	Tyr	Phe	Ile	Tyr	Ile 265	Ser	Glu	Cys	Ser			
35	<210 <211 <212 <213	L> 2 2> E	l6 251 PRT Lande	erina	a per	nisaŗ	pora									
	<400)> 1	16													
40	Pro 1	Gln	Asp	Ala	Tyr 5	Thr	Ala	Ser	His	Ala 10	Asp	Leu	Val	Lys	Tyr 15	Ala
45	Thr	Tyr	Ala	Gly 20	Leu	Ala	Tyr	Gln	Thr 25	Thr	Asp	Ala	Trp	Pro 30	Ala	Ser
50	Arg	Thr	Val 35	Pro	Lys	Asp	Thr	Thr 40	Leu	Ile	Ser	Ser	Phe 45	Asp	His	Thr
	Leu	Lys 50	Gly	Ser	Ser	Gly	Tyr 55	Ile	Ala	Phe	Asn	Glu 60	Pro	Cys	Lys	Glu
55																
	Ile	Ile	Val	Ala	Tyr	Arg	Gly	Thr	Asp	Ser	Leu	Ile	Asp	Trp	Leu	Thr

	65					70					75					80
5	Asn	Leu	Asn	Phe	Asp 85	Lys	Thr	Ala	Trp	Pro 90	Ala	Asn	Ile	Ser	Asn 95	Ser
10	Leu	Val	His	Glu 100	Gly	Phe	Leu	Asn	Ala 105	Tyr	Leu	Val	Ser	Met 110	Gln	Gln
	Val	Gln	Glu 115	Ala	Val	Asp	Ser	Leu 120	Leu	Ala	Lys	Cys	Pro 125	Asp	Ala	Thr
15	Ile	Ser 130	Phe	Thr	Gly	His	Ser 135	Leu	Gly	Gly	Ala	Leu 140	Ala	Cys	Ile	Ser
20	Met 145	Val	Asp	Thr	Ala	Gln 150	Arg	His	Arg	Gly	Ile 155	Lys	Met	Gln	Met	Phe 160
25	Thr	Tyr	Gly	Gln	Pro 165	Arg	Thr	Gly	Asn	Gln 170	Ala	Phe	Ala	Glu	Tyr 175	Val
30	Glu	Asn	Leu	Gly 180	His	Pro	Val	Phe	Arg 185	Val	Val	Tyr	Arg	His 190	Asp	Ile
30	Val	Pro	Arg 195	Met	Pro	Pro	Met	Asp 200	Leu	Gly	Phe	Gln	His 205	His	Gly	Gln
35	Glu	Val 210	Trp	Tyr	Glu	Gly	Asp 215	Glu	Asn	Ile	Lys	Phe 220	Cys	Lys	Gly	Glu
40	Gly 225	Glu	Asn	Leu	Thr	Cys 230	Glu	Leu	Gly	Val	Pro 235	Phe	Ser	Glu	Leu	Asn 240
45	Ala	Lys	Asp	His	Ser 245	Glu	Tyr	Pro	Gly	Met 250	His					

REIVINDICACIONES

- 1. Polipéptido con actividad lipásica, que es al menos un 80 % idéntico a SEC ID N.º: 2 y es un polipéptido:
 - a) con al menos uno de:

5

10

15

20

25

30

60

i) una actividad lipásica (LU) relativa a la absorbancia a 280 nm (A280) inferior a 500 LU/A280, donde una unidad de LU (1 LU) se define como la cantidad de enzimas capaz de liberar 1 micro mol de ácido butírico por minuto a 30 °C a pH 7 y la absorbancia del polipéptido se mide a 280 nm;

- ii) un riesgo de rendimiento de olor (R) inferior a 0.5, donde R se calcula como la proporción entre la cantidad de ácido butírico liberado a partir de una muestra lavada de polipéptido y la cantidad de ácido butírico liberado a partir de una muestra lavada de polipéptido de referencia, después de que ambos valores se han corregido en cuanto a la cantidad de ácido butírico liberado a partir de una muestra lavada no polipeptídica donde el polipéptido de referencia es la parte madura de SEC ID n.º: 2 con las sustituciones T231 R+N233R o
- iii) un factor riesgo beneficio (BR) de al menos 1.8, donde BR se define como el rendimiento de lavado medio (RP_{avg}) dividido con el riesgo de rendimiento de olor (R) donde RP_{avg} indica el rendimiento relativo medio en comparación con el polipéptido de referencia de mediciones hechas a 0.5 mg ep/L; y
- b) que comprende alteraciones de los aminoácidos en las posiciones T231 R +N233R +1255A +P256K y al menos uno de:
 - i) S58A +V60S +A150G +L227G; o
- ii) E210V/G;

estas posiciones son correspondientes a SEC ID n.º: 2.

- 2. Polipéptido, según la reivindicación 1, que comprende además al menos una de la alteración del aminoácido en las posiciones I86V o T143S.
- 3. Polipéptido, según cualquiera de las reivindicaciones 1-2, donde el polipéptido comprende al menos otra alteración seleccionada a partir de una sustitución, una deleción o una adición de al menos un aminoácido en una posición que corresponde con la posición E1; D27; N33; S83; G91; N94; K98; E99; D102; D111; G163; I202; E210; S216; L259 o L269 de SEC ID N.º: 2.
- 4. Polipéptido, según la reivindicación 3, donde al menos una alteración se selecciona del grupo que consiste en: E1N/*, D27N, N33Q, S83T, G91N, N94R, K98I, E99K, D102A, D111N, G163K, I202L, E210A, S216P, L259F o L269APIA de SEC ID n.º: 2.
- 35 5. Polipéptido, según la reivindicación 1, donde dicho polipéptido comprende alteraciones seleccionadas del grupo que consiste en:
 - a) T231 R +N233R +L269APIA;
 - b) S58T +V60K +A150G +T231 R +N2331 +D234G;
 - c) S58T +V60K + I86V + D102A + A150G + L227G + T231 R + N233R + P256K;
- 40 d) S58N +V60S +186P +T231 R +N233R +P256S;
 - e) S58N +V60S +186S +L227G +T231 R +N233R +P256S; y
 - f) S58N +V60S +186T +L227G +T231 R +N233R +P256L.
- 6. Polipéptido, según la reivindicación 1, donde dicho polipéptido comprende alteraciones seleccionadas del grupo que consiste en:
 - a) S58A +V60S + I83T +A150G +L227G +T231 R +N233R +I255A +P256K:
 - b) S58A +V60S + I86V +A150G +L227G +T231 R +N233R +I255A +P256K;
 - c) S58A +V60S + I86V +T143S +A150G +L227G +T231 R +N233R +I255A +P256K;
 - d) \$58A +V60S + I86V +T143S +A150G +G163K +S216P +L227G +T231R +N233R +1255A +P256K;
- 50 e) E1* +S58A +V60S + I86V +T143S +A150G +L227G +T231R +N233R +1255A +P256K;
 - f) S58A +V60S + I86V +K981 +E99K +T143S +A150G +L227G +T231R +N233R +1255A +P256K;
 - g) E1N +S58A +V60S + I86V +K981 +E99K +T143S +A150G +L227G +T231R +N233R +1255A +P256K +L259F;
 - h) \$58A +V60S + I86V +K981 +E99K +D102A +T143S +A150G +L227G +T231R +N233R +1255A +P256K;
- 55 i) N33Q +S58A +V60S + I86V +T143S +A150G +L227G +T231R +N233R +1255A +P256K:
 - j) E1* +S58A +V60S + I86V +K98I +E99K +T143S +A150G +L227G +T231R +N233R +I255A +P256K;
 - k) E1N +S58A +V60S + I86V +K98I +E99K +T143S +A150G +S216P +L227G +T231 R +N233R +I255A +P256K:
 - l) D27N +S58A +V60S + I86V +G91N +N94R +D111N +T143S +A150G +L227G +T231 R +N233R +I255A +P256K;
 - m) E1N +S58A +V60S + I86V +K98I +E99K +T143S +A150G +E210A +S216P +L227G +T231 R +N233R +I255A +P256K;
 - n) A150G +E210V +T231 R +N233R +I255A +P256K;
 - o) I202L +E210G +T231R +N233R +I255A +P256K;
- 65 p) E1N +A18K +V60K +I86V +A150G +E210A +L227G +T231 R +N233R +P256K;
 - g) E1L +D27K +V60K +I86V +A150G +S216P +L227G +T231R +N233R +P256K;

- r) E1N +S58A +V60S +S83T +A150G +L227G +T231R +N233R +I255A +P256K;
- s) E1N +S58T +V60K +I86V +D102A +T143S +A150G +L227G +T231R +N233R +I255A +P256K;
- t) E1N +S58A +V60S +I86V +K98I +E99K +D102A +T143S +A150G +S216P +L227G +T231 R +N233R +I255A +P256K; y
- u) S58A +V60S +S83T +A150G +L227G +T231 R +N233R +I255A +P256K.
- 7. Polipéptido, según cualquiera de las reivindicaciones anteriores, donde dicho polipéptido es un polipéptido fúngico o un polipéptido de levadura.
- 10 8. Polipéptido, según la reivindicación 6, donde el polipéptido de levadura se origina de géneros *Candida, Kluyveromyces, Pichia, Saccharomyces, Schizosaccharomyces* o *Yarrowia*.
 - 9. Polipéptido, según la reivindicación 7, donde el Saccharomyces es Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces diastaticus, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis o Saccharomyces oviformis.
 - 10. Polipéptido, según la reivindicación 6, donde el polipéptido es un polipéptido fúngico filamentoso originado de géneros Acremonium, Aspergillus, Aureobasidium, Cryptococcus, Filobasidium, Fusarium, Humicola, Magnaporte, Mucor, Myceliophthora, Neocallimastix, Neurospora, Paecilomices, Penicillium, Piromices, Schizofilum, Talaromyces, Termoascus, Thielavia, Tolipocladium, Thermomyces o Trichoderma.
- Polipéptido, según la reivindicación 9, donde el polipéptido fúngico filamentoso es un Aspergillus aculeatus, Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Aspergillus turbigensis, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium, torulosum, Fusarium trichothecioides, Fusarium venenatum, Humicola insolens, Thermomyces lanuginosus (sinónimo: Humicola lanuginosa), Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Penicillium purpurogenum, Trichoderma harzianum,
 Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei o polipéptido Trichoderma viride.
 - 12. Polinucleótido aislado que codifica el polipéptido, según cualquiera de las reivindicaciones 1-11.
- 13. Constructo de ácidos nucleicos que comprende el polinucleótido, según la reivindicación 12, vinculado operacionalmente al menos a una secuencia de control que dirige la producción del polipéptido en un huésped de expresión.
 - 14. Vector de expresión recombinante que comprende el constructo de ácidos nucleicos, según la reivindicación 13.
- 40 15. Célula huésped transformada que comprende el constructo de ácidos nucleicos, según la reivindicación 13, o el vector de expresión recombinante, según la reivindicación 14.
 - 16. Método de la preparación del polipéptido, según cualquiera de las reivindicaciones 1-11, que incluye las etapas:
 a) cultivo de la célula huésped transformada que comprende el constructo de ácido nucleico o el vector de expresión recombinante, que comprende el polipéptido bajo condiciones conductoras para la producción del polipéptido; y
 - b) recuperación del polipéptido.
 - 17. Formulación que comprende el polipéptido, según cualquiera de las reivindicaciones 1-11.
 - 18. Formulación, según la reivindicación 17, donde dicha formulación puede ser una formulación sólida o líquida.
 - 19. Método de reducción de la formación de ácidos grasos de cadena corta generadores de olor durante la hidrólisis lípidica, utilzando los polipéptidos de las reivindicaciones 1-11.

55

45

50

5

15

20

```
SSSTQDYRIASEAEIKAHTFYTALSANA
SIDGGIRAATSORTMAT
ID n.º 1:
ID n.º 2:
ID n.º 3:
ID n.º 4:
           SASDGGKVVAATTAQIQEFTKYAGIAATA
         TAGHALAASTQ GISEDLYSRL VEMATISQAA
ID n.º 5:
ID n.º 6:
              TAGHALAASTO GISEDLYSRL VEMATISOAA
ID n.º 7:
                 AVGVTTTDFSNFKFYIOHGAAA
ID n.º 8:
                   TVTTODLSNFRFYLOHADAA
ID n.º 8:
ID n.º 9:
                   DIPTTQLEDFKFWVQYAAAT
ID n.º 10:
                   DVSTSELDQFEFWVQYAAAS
ID n.º 11:
                   SVSTSTLDELQLFAQWSAAA
ID n.º 12:
                   SVSTSTLDELQLFSQWSAAA
ID n.º 13:
                   DVSSSLLNNLDLFAQYSAAA
ID n.º 14:
                   EVSQDLFNQFNLFAQYSAAA
ID n.º 15:
                  PQDAYTASHADLVKYATYAGLA
ID n.º 1:
         YCRTVIPG
                        GRWSCPHCGVAS NLQITKTFST LITDTNVLVAV
ID n.º 2: YCRTVIPG
                       GQWSCPHCDVAP NLNITKTFTT LITDTNVLVAV
ID n.º 3: YCRTVIPG
ID n.º 4: YCRSVVPG
                       ATWDCIHCDATE DLKIIKTWST LIYDTNAMVAR
                       NKWDCVQCQKWVP DGKIITTFTS LLSDTNGYVLR
ID n.º 5: YADLCNIPST
                                          IIKGEKIYNSQTDINGWILR
ID n.º 6: YADLCNIPST
                                          IIKGEKIYNSQTDINGWILR
ID N.º 7: YC NSEAAA GSKITCSNNGCPTVQGNGATIVTSF VGSKTGIGGYVAT
ID N.º 8: YC NFNTAV GKPVHCSAGNCPDIEKDAAIVVGSV VGTKTGIGAYVAT
ID n.º 9: YCPNNYVAKD GEKLNCSVGNCPDVEAAGSTVKLSFS DDTITDTAGFVAV
ID n.º 10: YYEADYTAQV GDKLSCSKGNCPEVEATGATVSYDFS DSTITDTAGYIAV
ID n.º 11: YCSNNID SK DSNLTCTANACPSVEEASTTMLLEFDLTNDFGGTAGFLAA
ID n.º 12: YCSNNID SD DSNVTCTADACPSVEEASTKMLLEFDLTNNFGGTAGFLAA
ID n.º 13: YCDENLN ST GTKLTCSVGNCPLVEAASTOSLDEFNESSSYGNPAGYLAA
ID n.º 14: YCGKNNDAPA GTNITCTGNACPEVEKADATFLYSFE DSGVGDVTGFLAL
ID n.º 15: YOTTDAWPAS
                                  RTVPKDTTLISSFD HTLKGSSGYIAF
ID N.º 1: GEKEKTIYVV FRGTSSIRNA IADIVFVPVN YPPV
                                                 NGA KVHKGFLDSY
ID N.º 2: GENEKTIYVV FRGTSSIRNA IADIVFVPVN YPPV
                                                 NGA KVHKGFLDSY
ID N.º 3: GDSEKTIYIV FRGSSSIRNW IADLTFVPVS YPPV
                                                 SGT KVHKGFLDSY
ID n.º 4: SDKQKTIYLV FRGTNSFRSA ITDIVFNFSD YKPV KGA KVHAGFLSSY
ID n.º 5: DDSSKEIITV FRGTGSDTNL QLDTNYTLTP FDTLPQCNGC EVHGGYYIGW
ID n.º 6: DDSSKEIITV FRGTGSDTNL QLDTNYTLTP FDTLPQCNSC EVHGGYYIGW
ID n.º 7: DSARKEIVVS FRGSINIRNW LTNLDFG QE DCSL VSGC GVHSGFQRAW
ID n.º 8: DNARKEIVVS VRGSINVRNW ITNFNFG QK TCDL VAGC GVHTGFLDAW
ID n.º 9: DNTNKAIVVA FRGSYSIRNW VTDATFP QT DPGL CDGC KAELGFWTAW
ID n.º 10: DHTNSAVVLA FRGSYSVRNW VADATFV HT NPGL CDGC LAELGFWSSW
ID n.º 11: DNTNKRLVVA FRGSSTIENW IANLDFILED NDDL CTGC KVHTGFWKAW
ID n.º 12: DNTNKRLVVA FRGSSTIKNW IADLDFILQD NDDL CTGC KVHTGFWKAW
ID n.º 13: DETNKLLVLS FRGSADLANW VANLNFGLED ASDL CSGC EVHSGFWKAW
ID n.º 14: DNTNKLIVLS FRGSRSIENW IGNLNFDLKE INDI CSGC RGHDGFTSSW
ID n.º 15: NEPCKEIIVA YRGTDSLIDW LTNLNFDKTA WPAN ISNS LVHEGFLNAY
```

Figura 1

```
NEVQDKLVAE VKAQLDRHPG YKIVVTGHSL GGATAVLSALDLYHHGHA
ID n.º 1:
ID n.º 2:
          NEVODKLVAE VKAQLDRHPG YKIVVTGHSL GGATAVLSALDLYHHGHD
ID n.º 3:
          GEVONELVAT VLDQFKQYPS YKVAVTGHSL GGATALLCALDLYQREEGLS
ID N.º 4: EQVVNDYFPV VQEQLTAHPT YKVIVTGHSL GGAQALLAGMDLYQREPRLS
ID n.º 5: VSVQDQVESL VKQQVSQYPD YALTVTGHSL GASLAALTAAQL SATYD
ID N.º 6: ISVQDQVESL VQQQVSQFPD YALTVTGHSL GASLAALTAAQL SATYD
ID n.º 7: NEISSQATAA VASARKANPS FNVISTGHSL GGAVAVLAAANLRVGGT
ID n.º 8: EEVAANVKAA VSAAKTANPT FKFVVTGHSL GGAVATIAAAYLRKDGF
ID n.º 9: KVVRDRIIKT LDELKPEHSD YKIVVVGHSL GAAIASLAAADLRTKNY
ID {\sf n.^0} 10: KLVRDDIIKE LKEVVAQNPN YELVVVGHSL GAAVATLAATDLRGKGYP
ID n.º 11:
          ESAADELTSK IKSAMSTYSG YTLYFTGHSL GGALATLGATVLRNDGY
ID N.º 12: EAAADNLTSK IKSAMSTYSG YTLYFTGHSL GGALATLGATVLRNDGY
ID n.º 13: SEIADTITSK VESALSDHSD YSLVLTGHSY GAALAALAATALRNSGH
ID n.º 14: RSVADTLRQK VEDAVREHPD YRVVFTGHSL GGALATVAGADLRGNGY
ID n.º 15: LVSMQQVQEA VDSLLAKCPD ATISFTGHSL GGALACISMVDTAQRHRGI
ID n.º 1:
            NIEIYTQG QPRIGTPAFA NYVIGT
                                              KIPYQRLVHERDIVPHL
ID n.º 2:
           NIEIYTQG QPRIGTPEFA NYVIGT
                                              KIPYORLVNERDIVPHL
ID n.º 3: SSNLFLYTOG OPRVGDPAFA NYVVST
                                             GIPYRRTVNERDIVPHL
ID n.º 4: PKNLSIFTVG GPRVGNPTFA YYVEST
                                              GIPFORTVHKRDIVPHV
ID n.º 5:
           NIRLYTFG EPRSGNQAFA SYMNDAFQASSPDTTQYFRVTHANDGIPNL
ID n.º 6:
           NIRLYTFG EPRS NQAFA SYMNDAFQASSPDTTQYFRVTHANDGIPNL
           PVDIYTYG SPRVGNAQLS AFVSNQ AGGEYRVTHADDPVPRL
ID n.º 7:
ID n.º 8:
            PFDLYTYG SPRVGNDFFA NFVTOO
                                              TGAEYRVTHGDDPVPRL
ID n.º 9:
            DAILYAYA APRVANKPLA EFITNO
                                              GNNYRFTHNDDPVPKL
ID n.º 10:
           SAKLYAYA SPRVGNAALA KYITAQ
                                              GNNFRFTHTNDPVPKI.
ID n.º 11: SVELYTYG CPRIGNYALA EHITSO
                                            GSGANFRVTHLNDIVPRV
ID n.º 12: SVELYTYG CPRVGNYALA EHITSQ
                                            GSGANFPVTHLNDIVPRV
ID n.º 13: SVELYNYG QPRLGNEALA TYITDQ
                                            NKGGNYRVTHTNDIVPKL
ID n.º 14: DIDVFSYG APRVGNRAFA EFLTVQ
                                            TGGTLYRITHTNDIVPRL
ID n.º 15:
           KMQMFTYG QPRTGNQAFA EYVENL
                                            GHPVFRVVYRHDTVPRM
                                   DSSLRVCPNGIETDNCSNSIV
ID n.º 1: PPGAFGFLHA GEEFWIMK
ID n.º 2: PPGAFGFLHA GEEFWIMK
                                      DSSLRVCPNGIETDNCSNSIV
ID N.º 3: PPAAFGFLHA GEEYWITD
                                   NSPETVQVCTSDLETSDCSNSIV
ID n.º 4: PPQSFGFLHP GVESWIKS
                                    GTSNVQICTSEIETKDCSNSIV
ID n.º 5: PPVEQGYAHG GVEYWSV DPYSAQNTFVCTGDEVQCCE AQGGQG
ID n.º 6:
          PPADEGYAHG VVEYWSV
                                DPYSAQNTFVCTGDEVQCCE AQGGQG
ID n.º 7:
          PPLIFGYRHT TPEFWLSGGGGDKVDYTISDVKVCEGAANLG CNGGTL
ID n.º 8:
          PPIVFGYRHT SPEYWLNG GPLDKDYTVTEIKVCEGIANVM CNGGTI
ID n.º 9: PLLTMGYVHI SPEYYITA PDNTTVTDNOVTVLDGYVNFK GNTGTS
ID {\sf n.^o} 10: PLLSMGYVHV SPEYWITS PNNATVSTSDIKVIDGDVSFD GNTGTG
ID {\sf n.^0} 11: PPMDFGFSQP SPEYWITS GNGASVTASDIEVIEGINSTA GNAGEA
ID {\sf n.^o} 12: PPMDFGFSQP SPEYWITS GTGASVTASDIELIEGINSTA GNAGEA
ID n.^{\circ} 13: PPTLLGYHHF SPEYYISS ADEATVTTTDVTEVTGIDATG GNDGTD
ID n.^{\circ} 14: PPREFGYSHS SPEYWIKS GTLVPVTRNDIVKIEGIDATG GNNQPN ID n.^{\circ} 15: PPMDLGFQHH GQEVWYEG DENIKFCKGEGENLTCELGVP
ID n.º 1:
         PFT SVIDHLSYLDMNTGL CL
         PFT SVIDHLSYLDMNTGL CL
ID n.º 2:
ID n.º 3:
          PFT
               SVLDHLSYFGINTGL CT
ID n.º 4:
          PFT SILDHLSYFDINEGS CL
ID n.º 5:
          VN
                NAHTTYF GMTSGACTW
ID n.º 6: VN
                 NAHTTYF GMTSGHCTW
```

Figura 1 (cont.)

GL DIAAHLHYF QATDA CNAGGFSWR R	
GL DILAHITYF QSMAT CAPIAIPWK R	
GGLPDLLAFHSHVWYFIHADACKGPGLPLR	
LPLLTDFEAHIWYF VQVDA GKGPGLPFK R	
FSEL NAKDHSEYP GMH	
Microorganismo	SEQ ID n.º.:
Absidia reflexa	3
Absidia corymbifera	4
Rhizmucor miehei	5
Rhizopus delemar (oryzea)	6
Aspergillus niger	7
Aspergillus tubingensis	8
Fusarium oxysporum	9
Fusarium heterosporum	10
Aspergillus oryzae	11
Penicilium camembertii	12
Aspergillus foetidus	13
Aspergillus niger	14
Aspergillus oryzea	15
Aspergilius oryzea	13
Thermomyces lanuginosus	2
	GGLPDLLAFHSHVWYFIHADACKGPGLPLR LPLLTDFEAHIWYF VQVDA GKGPGLPFK R TV SVLAHLWYF FAISE CLL TV DVLAHLWYF FAISE CLL GT SIDAHRWYF IYISE CS IP DIPAHLWYF GLIGT CL FSEL NAKDHSEYP GMH Microorganismo Absidia reflexa Absidia corymbifera Rhizmucor miehei Rhizopus delemar (oryzea) Aspergillus niger Aspergillus tubingensis Fusarium oxysporum Fusarium heterosporum Aspergillus oryzae Penicilium camembertii Aspergillus foetidus Aspergillus niger

Figura 1. Alineamiento de secuencias de lipasa.

Figura 1 (cont.)