

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 604 337

51 Int. Cl.:

G01S 5/00 (2006.01) H04W 84/18 (2009.01) G01S 5/02 (2006.01) G01S 5/14 (2006.01) H04W 64/00 (2009.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 13.03.2009 PCT/JP2009/054900

(87) Fecha y número de publicación internacional: 25.02.2010 WO10021170

(96) Fecha de presentación y número de la solicitud europea: 13.03.2009 E 09808106 (0)

(97) Fecha y número de publicación de la concesión europea: 19.10.2016 EP 2327996

(54) Título: Sistema de posicionamiento de terminales inalámbrico, método de posicionamiento de terminales inalámbricos, sistema de medición del ambiente, sistema de gestión de instalación, método de medición del ambiente, método de determinación del destino de terminal móvil inalámbrico

(30) Prioridad:

20.08.2008 JP 2008211454

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 06.03.2017 (73) Titular/es:

MITSUBISHI ELECTRIC CORPORATION (100.0%) 7-3, Marunouchi 2-chome, Chiyoda-ku Tokyo 100-8310, JP

(72) Inventor/es:

HIBARA, NAOYUKI; KOIZUMI, YOSHIAKI; NAKATA, MASANORI Y KUSHIRO, NORIYUKI

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Sistema de posicionamiento de terminales inalámbrico, método de posicionamiento de terminales inalámbricos, sistema de medición del ambiente, sistema de gestión de instalación, método de medición del ambiente, método de determinación del destino de terminal móvil inalámbrico

5 Campo técnico

15

20

25

30

35

40

45

50

La presente invención está relacionada con un sistema de posicionamiento de terminal inalámbrico que calcula la posición de un terminal inalámbrico y un método para el cálculo y con una técnica que mide las condiciones ambientales.

Antecedentes de la técnica

En un sistema de red inalámbrica a pequeña escala que se supone que se utiliza principalmente en un edificio y en una casa, tal como un sistema de red de sensores, se ha desarrollado una técnica que mide la posición de un terminal de comunicación inalámbrica con alta precisión.

Dado que una señal GPS (Sistema de Posicionamiento Global) no se puede recibir en el edificio ni en la casa, se conoce un sistema que mide una distancia y una diferencia de distancias entre una pluralidad de terminales para estimar la posición utilizando un tiempo de llegada (TOA) de las ondas de radio desde una estación base cuya posición se conoce, una diferencia de tiempo de llegada (TDOA) de las ondas de radio, y la intensidad de recepción de las ondas de radio.

En el anterior, una suposición es que las coordenadas de la estación de base se conocen por adelantado. Con el fin de ahorrar tiempo y esfuerzo para establecer las coordenadas de la estación base, se propone una técnica de tal manera que "se proporcionan por lo menos (N + 1) estaciones base (N = 1 a 3) y unos servidores de posicionamiento. Se calculan las distancias entre las por lo menos (N + 1) estaciones base. Se obtienen las coordenadas relativas de cada estación base. Se evalúan las coordenadas relativas. Para obtener la posición del terminal se juzga un cambio en el procesamiento de posicionamiento de terminal. La posición del terminal se obtiene utilizando un tiempo de propagación de la señal inalámbrica que se transmite y se recibe entre el terminal y la estación base y las coordenadas relativas entre las estaciones base obtenidas".

Por otro lado, en un sistema de comunicación inalámbrica en el que hay instalados varios terminales en edificios y casas en general, dado que se suprime una salida para que puedan ser impulsados por baterías, se ocasiona una limitación en el alcance de la comunicación de varios metros a varias decenas de metros.

Como resultado de ello, al igual que ZigBee (marca comercial), por ejemplo, se conoce una técnica de multi-salto (*multi-hop*) que permite las comunicaciones en un área más amplia en la que un terminal intermedio de comunicación reenvía datos para los terminales a los que no pueden llegar directamente las ondas de radio.

En los últimos años, en los edificios y las fábricas, se instalan sensores en diversas ubicaciones y se emplea un sistema de medición ambiental que mide las condiciones ambientales, tales como la temperatura, la humedad y la luminosidad, con el fin de controlar apropiadamente el aire acondicionado y los aparatos de iluminación. Por ejemplo, en un sistema de aire acondicionado, un aparato de climatización se controla de tal manera que el valor de medición de un sensor de temperatura instalado en la abertura de suministro de aire y el controlador remoto de la unidad interior del aparato de aire acondicionado se convierte en una temperatura establecida.

Además, con el fin de controlar cuidadosamente el aparato según las exigencias de los residentes y la distribución de la temperatura del espacio y evaluar con precisión las prestaciones energéticas del edificio, es necesario medir las condiciones ambientales en más puntos de medición.

Con el fin de medir las condiciones ambientales en varios puntos de medición, en general, es necesario instalar varios sensores en varios lugares, aumentando el número de sensores que se van a medir. Por lo tanto, el aumento de costes y una gestión complicada suponen un desafío.

En relación con la medición ambiental anterior, como técnica que pretende "mejorar la precisión y la exactitud del diagnóstico de planta y reducir las variaciones en la inspección al hacer que el sensor sea de auto-avance para obtener varios valores de proceso en muchos puntos con el fin de medir las instalaciones en la planta y los valores de proceso de la zona", se propone una técnica de este tipo en la que "un sensor detecta las instalaciones que constituyen una planta o un valor de proceso de una zona determinada. El sensor está provisto de unos medios impulsores que se mueven a una posición deseada en las instalaciones o a una zona determinada para detectar valores de proceso". (Documentación de patente 2)

Bibliografía de patente 1 Patente japonesa sin examinar

Publicación de solicitud nº 2007-248362

Bibliografía de patente 2 Patente japonesa sin examinar

Publicación de solicitud nº 2003-130695

Compendio de la Invención

Problema técnico

Según un método convencional, en un sistema en el que se instalan una serie de terminales de comunicación que tienen una salida baja sobre un área ancha y la comunicación se lleva a cabo mediante el reenvío en el medio a terminales que no pueden realizar una comunicación directa, se necesita instalar una serie de estaciones base para ser un estándar para el posicionamiento, de modo que se cubra el área donde el sistema de red se instala.

En un método que obtiene automáticamente una posición relativa entre estaciones base, como la anterior bibliografía de patente 1, todas las estaciones base necesitan comunicar unas con otras, por lo tanto, es difícil decidir la posición relativa de la estación base en el área más allá de un intervalo de comunicación de una estación base.

El sensor de auto-avance según la bibliografía de patente 2 anterior se mueve a lo largo del ribete y se mueve por un carril que se pone antes. Por lo tanto, se tienen que instalar por adelantado una guía de carril y similares que se van a usar como referencia cuando se controla una posición que se mueve del sensor de auto-avance, lo cual resulta costoso.

La presente invención se hace para resolver los problemas anteriores, y su objeto es obtener un método para posicionar un terminal inalámbrico que puede obtener la posición de cada terminal de comunicación midiendo una distancia entre los terminales de comunicación instalados, sin instalar de manera fija estación base.

Otro objeto es proporcionar un método para medir las condiciones ambientales en varios puntos de medición con un menor coste mediante unos pocos terminales de sensor.

Solución al problema

15

25

30

45

Un sistema de posicionamiento de un terminal inalámbrico según la presente invención tiene un terminal de gestión del posicionamiento que gestiona uno o una pluralidad de terminales inalámbricos y el posicionamiento de los terminales inalámbricos. El terminal de gestión de posicionamiento se ha definido en las reivindicaciones adjuntas.

Un sistema de medición ambiental de un ejemplo mide las condiciones ambientales de un espacio objeto de medición. Se proporciona: un terminal de sensor fijo instalado fijamente en el espacio objeto de medición; un terminal móvil de sensor que se mueve en el espacio objeto de medición; y unos medios de posicionamiento que miden la posición del terminal móvil de sensor. El terminal fijo de sensor mide las condiciones ambientales que rodean el lugar de instalación del propio terminal. El terminal fijo de sensor y el terminal móvil de sensor transmiten o reciben señales para posicionar el terminal móvil de sensor. Los medios de posicionamiento posicionan el terminal móvil de sensor utilizando las señales. El terminal móvil de sensor mide las condiciones ambientales alrededor del propio terminal mientras capta la posición del propio terminal, en el espacio objeto de medición utilizando los resultados de posicionamiento.

35 Efectos ventajosos de la Invención

En el sistema de posicionamiento de un terminal inalámbrico según la presente invención, se seleccionan un terminal que se va a posicionar y un terminal estándar de posicionamiento en orden y se obtiene información de la distancia. Basada en la información de posición, se calcula la posición del terminal inalámbrico.

Por lo tanto, no existe la necesita de instalar una estación base de manera fija. Los terminales inalámbricos miden distancia a cada uno en orden y se recoge la información de la distancia, permitiendo así la obtención de posiciones de terminales inalámbricos instalados sobre un intervalo amplio.

En el sistema de medición ambiental de un ejemplo, el terminal móvil de sensor mide las condiciones ambientales mientras capta la posición del propio terminal para moverse en el espacio objeto de medición. De ese modo, es posible medir las condiciones ambientales de varios puntos de medición sólo con unos pocos terminales móviles de sensor mientras están en movimiento.

Dado que hay disponible un terminal fijo de sensor como un estándar de detección de posición, no es necesario establecer una guía, tal como un carril, para controlar la posición en movimiento del terminal móvil de sensor, lo que es ventajoso en materia de costes.

Breve descripción de los dibujos

50 [Figura 1]

ES 2 604 337 T3

La Figura 1 es un diagrama de configuración de un sistema inalámbrico de posicionamiento de la realización 1

[Figura 2]

La Figura 2 es un diagrama de bloques funcionales de un terminal 100 de gestión de posicionamiento de la realización 1.

[Figura 3]

5

10

15

20

30

35

La Figura 3 es un diagrama de bloques funcionales de un terminal inalámbrico 200 de la realización 1.

[Figura 4]

La Figura 4 es un diagrama ilustrativo de un procedimiento en el que una sección 220 de medición de distancia del terminal inalámbrico 200 realiza la medición de distancia.

[Figura 5

La Figura 5 es un diagrama de configuración de un paquete 500 de petición de datos de hallazgo de alcance.

[Figura 6]

La Figura 6 es un diagrama de configuración de un paquete 600 de respuesta de datos de hallazgo de alcance.

[Figura 7]

La Figura 7 es un diagrama de configuración de una lista 700 de terminales inalámbricos que se almacena en una sección 150 de almacenamiento de información de terminales.

[Figura 8]

La Figura 8 es un diagrama conceptual que muestra un estado en el que se determina en orden la posición de los terminales inalámbricos 200 en el sistema inalámbrico de posicionamiento de la realización 1.

[Figura 9]

La Figura 9 es una secuencia completa de funcionamiento de un sistema inalámbrico de posicionamiento de la realización 1.

25 [Figura 10]

La Figura 10 es un diagrama de flujo que ilustra los detalles de la etapa S901 de la Figura 9.

[Figura 11]

La Figura 11 es un diagrama de bloques funcionales del terminal inalámbrico de la realización 2.

[Figura 12]

La Figura 12 es un diagrama de secuencia de operaciones cuando el terminal inalámbrico 200a recibe un paquete adyacente 1300 de petición de datos del terminal.

[Figura 13]

La Figura 13 es un diagrama de configuración del paquete adyacente 1300 de petición de datos de terminal.

[Figura 14]

La Figura 14 es un diagrama de configuración de un paquete adyacente 1400 de respuesta de datos de terminal.

[Figura 15]

La Figura 15 es un diagrama de flujo del procedimiento de posicionamiento de la realización 2.

[Figura 16]

40 La Figura 16 es un diagrama de configuración del sistema de posicionamiento inalámbrico de la realización 3.

[Figura 17]

La Figura 17 es un diagrama de bloques funcionales de un terminal inalámbrico móvil 300.

[Figura 18]

La FIGURA 18 es una secuencia completa de funcionamiento de un sistema inalámbrico de posicionamiento de la realización 3.

5 [Figura 19]

La Figura 19 es un diagrama de secuencia que muestra el procedimiento en el que se obtienen las posiciones relativas de los terminales inalámbricos 200 de (N + 1) o más y se almacenan en la información 702 de posición.

[Figura 20]

10 La Figura 20 es un diagrama de configuración de un sistema de medición ambiental del ejemplo 15.

[Figura 21]

La Figura 21 es un diagrama de bloques funcionales de un terminal fijo de sensor 101.

[Figura 22]

La Figura 22 es un diagrama de bloques funcionales del terminal móvil 2200 de sensor.

15 [Figura 23]

20

30

La Figura 23 es un diagrama que ilustra un procedimiento para que la sección 2213 de posicionamiento inalámbrico calcule la distancia entre el terminal móvil 2200 de sensor y un terminal fijo 2100 de sensor.

[Figura 24]

La Figura 24 es un diagrama que ilustra un método para que la sección 2213 de posicionamiento inalámbrico calcule la posición del terminal móvil 2200 de sensor.

[Figura 25]

La Figura 25 es un flujo de operaciones para que el terminal móvil 2200 de sensor mida condiciones ambientales.

[Figura 26]

25 La Figura 26 es un diagrama de configuración de un sistema de medición ambiental del ejemplo 16.

[Figura 27]

La Figura 27 es un diagrama de configuración de un sistema de medición ambiental del ejemplo 17.

[Figura 28]

La Figura 28 es un diagrama que ilustra el estado en el que el terminal móvil 2200 de sensor cambia el papel del propio terminal.

[Figura 29]

La Figura 29 es un flujo de operaciones para que un terminal 2902 de objeto de detección de posición mida condiciones ambientales.

[Figura 30]

35 La Figura 30 es un diagrama que muestra el estado en el que se divide un espacio objeto de medición.

[Figura 31]

La Figura 31 es un diagrama de configuración del terminal móvil 2200 de sensor del ejemplo 21.

[Figura 32]

La Figura 32 es un diagrama de configuración de un sistema de gestión de instalaciones del ejemplo 22.

Lista de signos de referencia

ES 2 604 337 T3

terminal de gestión de posicionamiento sección de comunicación sección de gestión de procedimiento de posicionamiento sección de decisión de objeto de posicionamiento sección de cálculo de posición sección de almacenamiento de información de terminal terminal inalámbrico sección de comunicación sección de medición de distancia sección de procesamiento de datos de hallazgo de alcance sección de búsqueda de terminal adyacente sección de procesamiento de datos de terminal adyacente
sección de gestión de procedimiento de posicionamiento sección de decisión de objeto de posicionamiento sección de cálculo de posición sección de almacenamiento de información de terminal terminal inalámbrico sección de comunicación sección de medición de distancia sección de procesamiento de datos de hallazgo de alcance sección de búsqueda de terminal adyacente
sección de decisión de objeto de posicionamiento sección de cálculo de posición sección de almacenamiento de información de terminal terminal inalámbrico sección de comunicación sección de medición de distancia sección de procesamiento de datos de hallazgo de alcance sección de búsqueda de terminal adyacente
sección de cálculo de posición sección de almacenamiento de información de terminal terminal inalámbrico sección de comunicación sección de medición de distancia sección de procesamiento de datos de hallazgo de alcance sección de búsqueda de terminal adyacente
sección de almacenamiento de información de terminal terminal inalámbrico sección de comunicación sección de medición de distancia sección de procesamiento de datos de hallazgo de alcance sección de búsqueda de terminal adyacente
terminal inalámbrico sección de comunicación sección de medición de distancia sección de procesamiento de datos de hallazgo de alcance sección de búsqueda de terminal adyacente
sección de comunicación sección de medición de distancia sección de procesamiento de datos de hallazgo de alcance sección de búsqueda de terminal adyacente
sección de medición de distancia sección de procesamiento de datos de hallazgo de alcance sección de búsqueda de terminal adyacente
sección de procesamiento de datos de hallazgo de alcance sección de búsqueda de terminal adyacente
sección de búsqueda de terminal adyacente
sección de procesamiento de datos de terminal adyacente
terminal inalámbrico móvil
paquete de petición de datos de hallazgo de alcance
identificador de petición de datos de hallazgo de alcance
dirección de terminal de origen de transmisión
dirección de terminal a posicionar
número de terminal de hallazgo de alcance
dirección de terminal objeto de hallazgo de alcance
paquete de respuesta de datos de hallazgo de alcance
identificador de respuesta de datos de hallazgo de alcance
dirección de terminal a posicionar
dirección de terminal de destino de transmisión
número de terminal de hallazgo de alcance
dirección objeto de hallazgo de alcance
información de hallazgo de alcance
lista de terminales inalámbricos
dirección de terminal
información de posición
lista de terminales adyacentes
dirección de terminal
información de distancia
paquete de petición de datos de terminal adyacente
identificador de petición de datos de terminal adyacente
dirección de terminal de origen de transmisión
dirección de terminal de origen de búsqueda

ES 2 604 337 T3

1400	paquete de respuesta de datos de terminal adyacente
1401	identificador de respuesta de datos de terminal adyacente
1402	dirección de terminal de origen de búsqueda
1403	dirección de terminal de destino de transmisión
1404	número de terminal adyacente
1405	dirección de terminal adyacente
2100	terminal fijo de sensor
2100a - 2100c	terminal fijo de sensor
2110	sección de control de terminal
2111	sección de comunicación inalámbrica
2112	sección de medición ambiental
2200	terminal móvil de sensor
2210	sección de control de terminal
2211	sección de comunicación inalámbrica
2212	sección de medición ambiental
2213	sección de posicionamiento inalámbrico
2214	sección de control de auto-posición
2215	sección impulsora
2701	ventana
2702	pasarela
2901	terminal estándar de detección de posición
2902	terminal objeto de detección de posición
3101	punto típico
3201	carro móvil
3202	módulo de control
3203	mesa de apoyo
3204	módulo de sensor
3300	aparato de gestión de instalaciones
3301	sección de gestión de instalaciones
3302	sección de comunicación inalámbrica

Descripción de realizaciones

Realización 1

5

La Figura 1 es un diagrama de configuración de un sistema inalámbrico de posicionamiento de la realización 1.

El sistema inalámbrico de posicionamiento de la realización 1 incluye uno o una pluralidad de terminales de gestión de posicionamiento 100 y terminales inalámbricos 200a a 200j.

El terminal de gestión de posicionamiento 100 gestiona un proceso de posicionamiento que mide las posiciones de los terminales inalámbricos 200a a 200j. Los procedimientos específicos se describen utilizando las Figuras 8 a 10 que se mencionan más adelante.

Los terminales inalámbricos 200a a 200j son un terminal de comunicación que tiene una función de comunicación inalámbrica.

En la siguiente descripción, se añadirán unos subíndices alfabéticos cuando se diferencien los terminales inalámbricos 200a a 200j. En una explicación genérica, se denominan terminal inalámbrico 200. Cada sección de función provista con el terminal inalámbrico 200 es igual.

La Figura 2 es un diagrama de bloques funcionales de un terminal 100 de gestión de posicionamiento de la realización 1.

Un terminal de gestión de posicionamiento 100 incluye una sección de comunicación 110, una sección 120 de gestión de procedimiento de posicionamiento, una sección 130 de decisión de objeto de posicionamiento, una sección 140 de cálculo de posición y una sección 150 de almacenamiento de información de terminal.

La sección de comunicación 110 realiza una comunicación inalámbrica con el terminal inalámbrico 200.

5

10

La sección 150 de almacenamiento de información de terminal contiene una lista 700 de terminales inalámbricos en el sistema inalámbrico de posicionamiento. La lista 700 de terminales inalámbricos se describirá de nuevo en la Figura 7 que se menciona más adelante.

- La sección 140 de cálculo de posición calcula una posición en el espacio de dimensión n-ésima del terminal inalámbrico 200, que son las coordenadas de dimensión n-ésima, a partir de las distancias entre por lo menos (N + 1) terminales inalámbricos 200 (N es la dimensión de la posición que se va a calcular, N = 1 a 3) cuyas posiciones son conocidas y el terminal inalámbrico 200, que será el objeto para decidir la posición.
- En las siguientes explicaciones, el terminal inalámbrico 200, cuya posición es conocida, se conoce como un 20 "terminal estándar de posicionamiento" y el terminal inalámbrico 200 que va a ser un objeto para decidir la posición se conoce como un "terminal que se va a posicionar".
 - Una sección 120 de gestión de procedimiento de posicionamiento y una sección 130 de decisión de objeto de posicionamiento especifican qué terminales inalámbricos 200 van a ser el terminal estándar de posicionamiento y el terminal a posicionar. Los detalles se describen más adelante.
- La sección 120 de gestión de procedimiento de posicionamiento gestiona la comunicación con cada terminal inalámbrico 200 para el posicionamiento, el cálculo de la posición del terminal inalámbrico 200 mediante una sección 140 de cálculo de posición, y el procedimiento como la selección del terminal estándar de posicionamiento y el terminal a posicionar mediante la sección 130 de decisión de objeto de posicionamiento para gestionar la operación de posicionamiento en el sistema inalámbrico de posicionamiento.
- La sección 130 de decisión de objeto de posicionamiento decide el terminal inalámbrico 200 que va a ser un objeto para el próximo posicionamiento y el terminal inalámbrico 200 (terminal estándar de posicionamiento) que va a ser un estándar para el posicionamiento cuando se hace que el terminal inalámbrico 200 sea el terminal a posicionar.
 - En lo que se refiere a una técnica de decisión para decidir qué terminal inalámbrico es el terminal a posicionar y el terminal estándar de posicionamiento, más adelante se darán unas descripciones.
- 35 La Figura 3 es un diagrama de bloques funcionales de un terminal inalámbrico 200 de la realización 1.
 - El terminal inalámbrico 200 incluye una sección de comunicación 210, una sección 220 de medición de distancia y una sección 230 de procesamiento de datos de hallazgo de alcance.
 - La sección de comunicación 210 realiza una comunicación inalámbrica con el terminal 100 de gestión de posicionamiento y otros terminales inalámbricos 200.
- 40 La sección 220 de medición de distancia mide la distancia entre dos terminales inalámbricos 200 con comunicación inalámbrica. El procedimiento para la medición de distancia entre terminales inalámbricos 200 se explicará en la Figura 4 que se menciona más adelante.
- La sección 230 de procesamiento de datos de hallazgo de alcance transmite y recibe paquete de petición de datos de hallazgo de alcance y paquete de respuesta de hallazgo de alcance entre el terminal inalámbrico 200 y el terminal 100 de gestión de posicionamiento a través de la sección de comunicación 210. Además, la sección 230 transmite y recibe de paquete de petición de datos de hallazgo de alcance y paquete de respuesta de hallazgo de alcance, en la Figura 4, que se menciona más adelante.
- La sección 230 de procesamiento de datos de hallazgo de alcance puede entregar paquete de petición de datos de hallazgo de alcance y paquete de respuesta de hallazgo de alcance a través de la sección de comunicación 210 al terminal inalámbrico 200 y al terminal de gestión de posicionamiento 100 al que una comunicación multi-salto no entrega directamente una señal inalámbrica.

La sección de comunicación 110 del terminal de gestión de posicionamiento 100 y la sección de comunicación 210 del terminal inalámbrico 200 realizan comunicación de paquetes con el terminal de gestión de posicionamiento 100 o el terminal inalámbrico 200 al que se entregan directamente las señales inalámbricas.

La sección de comunicación 210 hace posible transferir paquetes al terminal de gestión de posicionamiento 100 y al terminal inalámbrico 200 al que no se entrega directamente señal inalámbrica mediante la retransmisión de paquetes a otros terminales inalámbricos 200 para transmitirlos.

Con el fin de reenviar paquetes al terminal de gestión de posicionamiento 100 y al terminal inalámbrico 200 al que no se entrega directamente señal inalámbrica, la sección de comunicación 110 y la sección de comunicación 210 utilizan un protocolo de red multi-salto, tal como ZigBee.

La Figura 4 es un diagrama ilustrativo de un procedimiento en el que la sección 220 de medición de distancia del terminal inalámbrico 200 realiza la medición de distancia. Aquí se da un ejemplo en el que el terminal inalámbrico 200a mide la distancia desde el terminal inalámbrico 200b. Se darán unas descripciones para cada etapa de la Figura 4 de la siguiente manera.

(S401)

La sección 220a de medición de distancia del terminal inalámbrico 200a transmite un paquete de petición de hallazgo de alcance al terminal inalámbrico 200b a través de la sección de comunicación 210.

Al recibir el paquete de petición de hallazgo de alcance, la sección 220b de medición de distancia del terminal inalámbrico 200b transmite un paquete de respuesta de hallazgo de alcance al terminal inalámbrico 200a después de que haya pasado un tiempo de procesamiento predeterminado.

20 En el momento de la recepción del paquete de respuesta de hallazgo de alcance, la sección 220a de medición de distancia del terminal inalámbrico 200a mide un tiempo de respuesta desde la transmisión del paquete de petición de hallazgo de alcance a la recepción del paquete de respuesta de hallazgo de alcance.

La medición del tiempo desde la transmisión del paquete de petición de hallazgo de alcance a la recepción del paquete de respuesta de hallazgo de alcance se realiza de tal manera que se pone en marcha un temporizador contador cuando se transmite el paquete de petición de hallazgo de alcance, el contador se detiene cuando se recibe el paquete de respuesta de hallazgo de alcance, luego se lee el valor de tiempo.

(S402)

25

30

40

La sección 220a de medición de distancia del terminal inalámbrico 200a resta un tiempo de procesamiento predeterminado del terminal inalámbrico 200b desde la recepción del paquete de petición de hallazgo de alcance hasta la transmisión del paquete de respuesta de hallazgo de alcance basado en el tiempo de respuesta en la etapa S401 para calcular el tiempo de propagación de ondas de radio entre los terminales inalámbricos 200a y 200b.

(S403)

La sección 220a de medición de distancia del terminal inalámbrico 200a obtiene la distancia entre los terminales inalámbricos 200a y 200b al multiplicar el tiempo de propagación de ondas de radio por la velocidad de la luz.

Cuando se transmite una petición de hallazgo de alcance y una respuesta de hallazgo de alcance, la sección de comunicación 210 puede medir una distancia más exacta debido al uso de una señal inalámbrica de impulsos de banda ultra ancha que transmite una señal de impulsos, el tiempo de respuesta se puede medir con precisión.

La Figura 5 es un diagrama de configuración del paquete 500 de petición de datos de hallazgo de alcance. El paquete 500 de petición de datos de hallazgo de alcance es el paquete que se destina a pedir la transmisión de resultados de hallazgo de alcance del terminal inalámbrico 200 que recibe el paquete 500.

El paquete 500 de petición de datos de hallazgo de alcance incluye un identificador 501 de petición de datos de hallazgo de alcance, una dirección 502 de terminal de origen de transmisión, una dirección 503 de terminal a posicionar, un número 504 de terminal de hallazgo de alcance y una dirección 505 de terminal objeto de hallazgo de alcance.

45 En el identificador 501 de petición de datos de hallazgo de alcance, se almacena un identificador que muestra que el paquete pertinente es el paquete de petición de datos de hallazgo de alcance.

En la dirección 502 de terminal de origen de transmisión, se almacena la dirección de terminal de origen de transmisión del paquete pertinente.

En la dirección 503 de terminal a posicionar, se almacena la dirección del terminal a posicionar.

En el número 504 de terminal de hallazgo de alcance, se almacena el número de terminales de objeto de hallazgo de alcance.

En la dirección 505 de terminal objeto de hallazgo de alcance, se almacena la dirección de terminal objeto de hallazgo de alcance tantas veces como el número que aparece en el número 504 del terminal de hallazgo de alcance.

La Figura 6 es un diagrama de configuración del paquete 600 de respuesta de datos de hallazgo de alcance. El paquete 600 de respuesta de datos de hallazgo de alcance es el paquete de respuesta correspondiente al paquete 500 de petición de datos de hallazgo de alcance.

El paquete 600 de respuesta de datos de hallazgo de alcance incluye un identificador 601 de respuesta de datos de hallazgo de alcance, una dirección de terminal a posicionar 602, una dirección 603 de terminal de destino de transmisión, un número 604 de terminal de hallazgo de alcance, una dirección 605 de terminal de objeto de hallazgo de alcance e información 606 de hallazgo de alcance.

En el identificador 601 de respuesta de datos de hallazgo de alcance, se almacena un identificador que muestra que el paquete pertinente es el paquete de respuesta de datos de hallazgo de alcance.

15 En la dirección del terminal a posicionar 602, se almacena la dirección del terminal a posicionar.

5

30

40

En la dirección 603 de terminal de destino de transmisión, se almacena la dirección de terminal de destino de transmisión del paquete pertinente.

En el número 604 de terminal de hallazgo de alcance, se almacena el número de terminales de objeto de hallazgo de alcance.

20 En la dirección 605 de terminal objeto de hallazgo de alcance, se almacena la dirección de terminal objeto de hallazgo de alcance tantas veces como el número que aparece en el número 604 del terminal de hallazgo de alcance.

En la información 606 de hallazgo de alcance, se almacenan los resultados de hallazgo de alcance de cada terminal objeto de hallazgo de alcance.

Cuando el terminal inalámbrico 200 recibe el paquete de petición de hallazgo de alcance, la sección 220 de medición de distancia realiza un hallazgo de alcance entre los terminales inalámbricos 200 designados por la dirección 505 de terminal objeto de hallazgo de alcance del paquete de petición de hallazgo de alcance.

A continuación, la sección 230 de procesamiento de datos de hallazgo de alcance genera el paquete de respuesta de hallazgo de alcance para transmitirlo al origen de transmisión del paquete de petición de hallazgo de alcance sobre la base de los resultados de hallazgo de alcance realizados por la sección 220 de medición de distancia.

La Figura 7 es un diagrama de configuración de una lista 700 de terminales inalámbricos que se almacena en una sección 150 de almacenamiento de información de terminales.

La lista 700 de terminales inalámbricos incluye una dirección 701 de terminal, información 702 de posición y una lista 703 de terminales adyacentes.

La lista 703 de terminales adyacentes incluye una dirección 704 de terminal e información 705 de distancia.

En la dirección 701 de terminal, se almacena la dirección de la lista 700 de terminales inalámbricos. Aquí, la dirección se describe de forma simple compuesta sólo por el número del terminal inalámbrico.

En la información 702 de posición, las coordenadas de posición del terminal inalámbrico 200 se almacenan identificadas por la dirección 701 de terminal. Aquí se muestra un ejemplo en el que se almacenan coordenadas tridimensionales.

En la lista 703 de terminales adyacentes, se almacena una lista de terminales adyacentes identificados por la dirección 701 de terminal.

En la dirección 704 de terminal, se almacena la dirección de terminal adyacente.

En la información 705 de distancia, la distancia entre el terminal adyacente es identificada por la dirección 704 de terminal y el terminal inalámbrico pertinente.

En la información 702 de posición, la lista 703 de terminales adyacentes y la información 705 de distancia, es permisible almacenar lo que es indefinido.

El método de contención no se limita al mismo, si la información anterior se puede contener en plena medida.

La sección de comunicación 110, la sección de gestión procedimiento de posicionamiento 120, la sección 140 de cálculo de posición, la sección 130 de decisión de objeto de posicionamiento, y la sección 150 de almacenamiento de información de terminal propiedad del terminal de gestión de posicionamiento 100 y la sección de comunicación 210, la sección 220 de medición de distancia, y la sección 230 de procesamiento de datos de hallazgo de alcance propiedad del terminal inalámbrico 200 se pueden configurar utilizando LSI (*Large Scale Integration*, Integración a gran escala), ROM (memoria de sólo lectura) y RAM (memoria de acceso aleatorio), en el que se implementa un circuito de transmisión y recepción inalámbricas.

Como alternativa, unos dispositivos de funcionamiento, tales como un microordenador y software que especifica su funcionamiento, pueden configurar unas funciones equivalentes.

Los componentes de un único terminal de gestión de posicionamiento 100 o terminal inalámbrico 200 pueden configurarse distribuyéndose en los terminales, tales como una pluralidad de microordenadores y ordenadores personales. Es el mismo para las realizaciones siguientes.

Se han dado unas descripciones para cada configuración del sistema de posicionamiento inalámbrico según la realización anterior 1.

15 A continuación, se explica el funcionalmente del mismo.

5

45

50

En la explicación de la realización 1 de la siguiente manera, la dirección de terminal del terminal adyacente de cada terminal inalámbrico 200 se supone que está contenida por adelantado en la lista 703 de terminales adyacentes de la sección 150 de almacenamiento de información de terminal del terminal de gestión de posicionamiento 100.

La dirección 701 de terminal del terminal adyacente de cada terminal inalámbrico 200 se configura, por ejemplo, mediante introducción manual por adelantado. Como alternativa, se supone que todos los terminales a instalar dentro de un área con posibilidad de comunicación, por ejemplo, y las direcciones de terminal de todos los terminales inalámbricos 200 excepto el propio terminal pueden configurarse para la lista 703 de terminales advacentes correspondiente a cada terminal inalámbrico 200.

Similarmente, cada terminal inalámbrico 200 se instala considerando la distancia de comunicación, y un terminal inalámbrico predeterminado 200 puede configurarse en la lista 703 de terminales adyacentes.

En la explicación que sigue, se supone que las posiciones de por lo menos (N + 1) terminales inalámbricos 200 se van a configurar en la información 702 de posición de la dirección 701 de terminal correspondiente en la sección 150 de almacenamiento de información de terminal del terminal de gestión de posicionamiento 100.

Como alternativa, las posiciones de (N + 1) o más terminales inalámbricos 200 se deciden por adelantado y cada terminal inalámbrico 200 puede colocarse en esa posición. Entre una pluralidad de los terminales inalámbricos colocados 200, las posiciones de (N + 1) o más terminales puede introducirse y configurarse manualmente.

La Figura 8 es un diagrama conceptual que muestra un estado en el que se determina en orden la posición de cada terminal inalámbrico 200 en el sistema inalámbrico de posicionamiento de la realización 1. El terminal de gestión de posicionamiento 100 se abrevia.

El diagrama superior de la Figura 8 muestra la lista 703c de terminales adyacentes de un terminal inalámbrico determinado 200c cuya dirección 701 de terminal es "3" en el momento de un posicionamiento k-ésimo. También se muestra el terminal a posicionar y el terminal estándar de posicionamiento seleccionado por el terminal de gestión de posicionamiento 100.

El diagrama inferior de la Figura 8 muestra la lista 703d de terminales adyacentes del terminal inalámbrico 200d cuya dirección 701 de terminal es además "4" en el momento del posicionamiento (k + 1)-ésimo. En el diagrama el terminal a posicionar y el terminal estándar de posicionamiento seleccionado por el terminal de gestión de posicionamiento 100 se muestran mediante signos.

En el estado k-ésimo (diagrama superior de la Figura 8), se define la información 702 de posición de los terminales inalámbricos 200b, 200e, 200f y 200i de las direcciones [2], [5], [6] y [9] de terminal (el terminal en patrón de bandas) en la lista 703c de terminales adyacentes del terminal inalámbrico 200c cuya dirección 701 de terminal es "3".

Es decir, al calcular las coordenadas tridimensionales, se ha definido la información de posición de por lo menos 3 +1 = 4 terminales advacentes.

Por lo tanto, la sección 130 de decisión de objeto de posicionamiento del terminal de gestión de posicionamiento 100 selecciona el terminal inalámbrico 200c cuya dirección de terminal es "3" como el terminal a posicionar (un terminal relleno). Los terminales inalámbricos 200b, 200e, 200f y 200i de las direcciones [2], [6] y [9] de terminal se seleccionan como terminales estándar de posicionamiento (el terminal en patrón de bandas).

La sección 120 de gestión de procedimiento de posicionamiento del terminal de posicionamiento 100 obtiene información 705 de distancia entre el terminal a posicionar (el terminal inalámbrico 200c) y los terminales estándar

de posicionamiento (los terminales inalámbricos 200b, 200e, 200f y 200i). La sección 140 de cálculo de posición calcula la posición del terminal a posicionar (el terminal inalámbrico 200c) utilizando la información 705 de distancia.

Similarmente, en el estado (k + 1)-ésimo en el momento de posicionamiento, se define la información 702 de posición de los terminales inalámbricos 200b, 200c, 200e y 200f de las direcciones [2], [3], [5], y [6] de terminal (el terminal en patrón de bandas) en la lista 703d de terminales adyacentes del terminal inalámbrico 200d cuya dirección 701 de terminal es "4".

Por lo tanto, la sección 130 de decisión de objeto de posicionamiento del terminal de gestión de posicionamiento 100 selecciona el terminal inalámbrico 200d cuya dirección 701 de terminal es "4" como el terminal a posicionar (un terminal relleno). Los terminales inalámbricos 200b, 200c, 200e y 200f de las direcciones [2], [3], [5] y [6] de terminal se seleccionan como terminales estándar de posicionamiento (el terminal en patrón de bandas).

La sección 120 de gestión de procedimiento de posicionamiento del terminal de posicionamiento 100 obtiene información 705 de distancia entre el terminal a posicionar (el terminal inalámbrico 200d) y los terminales estándar de posicionamiento (los terminales inalámbricos 200b, 200c, 200e y 200f). La sección 140 de cálculo de posición calcula la posición del terminal a posicionar (el terminal inalámbrico 200d) utilizando la información 705 de distancia.

La Figura 9 es una secuencia completa de funcionamiento de un sistema inalámbrico de posicionamiento de la realización 1.

Se darán unas descripciones para cada etapa de la Figura 9. Aquí, cada operación en el estado del diagrama superior de la Figura 8 se explica como un ejemplo.

(S901)

5

10

- La sección 130 de decisión de objeto de posicionamiento del terminal de gestión de posicionamiento 100 hace referencia a la información de la lista 700 de terminales inalámbricos, contenida por la sección 150 de almacenamiento de información de terminal, para seleccionar el siguiente objeto a posicionar como el terminal a posicionar entre los terminales inalámbricos 200 cuya información 702 de posición está indefinida en la lista 700 de terminales inalámbricos. En el ejemplo de la Figura 8, por ejemplo, se selecciona el terminal inalámbrico 200c.
- La sección 130 de decisión de objeto de posicionamiento selecciona por lo menos (N + 1) terminales estándar de posicionamiento para posicionar el terminal a posicionar entre los terminales inalámbricos 200 cuya información 702 de posición se define en la lista 700 de terminales inalámbricos.

(S902)

La sección 120 de gestión de procedimiento de posicionamiento transmite el paquete 500 de petición de datos de hallazgo de alcance al terminal a posicionar (los terminales inalámbricos 200c) notificado por la sección 130 de decisión de objeto de posicionamiento a través de la sección de comunicación 110.

En la dirección 505 de terminal de objeto de hallazgo de alcance del paquete 500 de petición de datos de hallazgo de alcance, se almacena la dirección de terminal del terminal estándar de posicionamiento (los terminales inalámbricos 200b, 200e, 200f y 200i) notificada por la sección 130 de decisión de objeto de posicionamiento.

35 (S903a a S903d)

La sección 220c de medición de distancia del terminal a posicionar (los terminales inalámbricos 200c) que recibió el paquete 500 de petición de datos de hallazgo de alcance realiza el posicionamiento para que los terminales estándar de posicionamiento (en este caso, los terminales inalámbricos 200b, 200e, 200f y 200i) almacenados en la dirección 505 de terminal objeto de hallazgo de alcance del paquete 500 de petición de datos de hallazgo de alcance.

40 La sección 230c de procesamiento de datos de hallazgo de alcance almacena colectivamente los resultados de posicionamiento de la sección 220c de medición de distancia en el paquete 600 de respuesta de datos de hallazgo de alcance para transmitirlas al terminal de gestión de posicionamiento 100.

(S904)

La sección 140 de cálculo de posición del terminal de gestión de posicionamiento 100 obtiene la información 702 de posición del terminal estándar de posicionamiento seleccionado por la sección 130 de decisión de objeto de posicionamiento y la información 705 de distancia entre el terminal a posicionar y el terminal estándar de posicionamiento seleccionado por la sección 130 de decisión de objeto de posicionamiento.

A continuación, la sección 140 de cálculo de posición calcula la posición del terminal a posicionar (el terminal inalámbrico 200) utilizando la información 702 de posición y la información 705 de distancia.

La posición calculada del terminal a posicionar (el terminal inalámbrico 200) se almacena en la información 702 de posición correspondida por la sección 150 de almacenamiento de información de terminal.

Según el procedimiento anterior (S902 a S904), se decide la posición del terminal a posicionar (el terminal inalámbrico 200) seleccionado por la sección 130 de decisión de objeto.

(S905)

La sección de gestión de procedimiento de posicionamiento 120 juzga si se ha definido o no la información 702 de posición de todos los terminales inalámbricos 200 en la lista 700 de terminales inalámbricos.

Si se ha definido la información 702 de posición de todos los terminales inalámbricos 200, la sección de gestión de procedimiento de posicionamiento 120 concluye el posicionamiento. Si no se ha definido la información 702 de posición de todos los terminales inalámbricos 200, el proceso vuelve a la etapa S901 para repetir el mismo procesamiento.

La Figura 10 es un diagrama de flujo que ilustra los detalles de la etapa S901 de la Figura 9. Se darán unas descripciones para cada etapa de la Figura 10.

(S1001)

La sección 130 de decisión de objeto de posicionamiento del terminal de gestión de posicionamiento 100 selecciona los terminales inalámbricos 200 en orden en la lista 700 de terminales inalámbricos almacenada por la sección 150 de almacenamiento de información de terminal.

(S1002)

15

20

25

35

45

La sección 130 de decisión de objeto de posicionamiento juzga si se ha definido o no la información 702 de posición de los terminales inalámbricos 200 seleccionados en la etapa S1001. Si no se ha definido aún, pasa a la etapa S1003. Si se ha definido, vuelve a la etapa S1001 para seleccionar el siguiente terminal inalámbrico 200. Esta etapa está diseñada para buscar un candidato del terminal a posicionar.

(S1003)

Con respecto al terminal inalámbrico 200 cuya información 702 de posición no se ha definido aún, la sección 130 de decisión de objeto de posicionamiento hace referencia a la lista 703 de terminales adyacentes del terminal inalámbrico 200. Luego, la sección 130 de decisión de objeto de posicionamiento juzga si por lo menos (N + 1) o más terminales inalámbricos 200, cuya información 702 de posición se ha definido, se incluyen en la lista 703 de terminales adyacentes.

Si (N + 1) o más han sido definidos, pasa a la etapa S1004. Si no, vuelve a la etapa S1001 para seleccionar el siguiente terminal inalámbrico 200.

(S1004)

30 La sección 130 de decisión de objeto de posicionamiento selecciona los terminales inalámbricos 200 cuya información 702 de posición no ha sido definida como el terminal a posicionar.

(S1005)

La sección 130 de decisión de objeto de posicionamiento selecciona cualquiera de (N + 1) terminales inalámbricos 200 entre terminales adyacentes del terminal a posicionar seleccionados en la etapa S1004 como el terminal estándar de posicionamiento.

Si no están incluidos (N + 1) o más terminales adyacentes, cuya información 702 de posición se ha definido, se realiza el mismo juicio que S1001 y S1002 para los próximos terminales inalámbricos 200 cuya información 702 de posición se ha definido.

Los detalles de la etapa S901 se explican en los párrafos anteriores.

40 Tal como se describe en la Figura 10, al seleccionar el terminal a posicionar y el terminal estándar de posicionamiento, el terminal a posicionar se puede seleccionar para poder definir la posición sobre la base de los datos de hallazgo de alcance.

La sección 130 de decisión de objeto de posicionamiento informa a la sección 120 de gestión de procedimiento de posicionamiento de las direcciones 701 de terminal del terminal seleccionado a posicionar y el terminal estándar de posicionamiento.

El funcionamiento del sistema de posicionamiento inalámbrico según la realización 1 se explica en los párrafos anteriores.

Como se ha mencionado anteriormente, según la realización 1, la posición de los terminales inalámbricos 200 cuya información 702 de posición no se ha definido se calcula en orden por información 705 de distancia entre los terminales inalámbricos 200 cuya información 702 de posición se ha definido.

De ese modo, puede calcularse la información 702 de posición de todos los terminales inalámbricos 200.

5 Según la realización 1, el terminal de gestión de posicionamiento 100 calcula la información 702 de posición de todos los terminales inalámbricos 200 mientras se selecciona en orden el terminal estándar de posicionamiento y el terminal a posicionar.

Por lo tanto, sin instalar por separado las estaciones base en una amplia área y sin configurar sus posiciones por adelantado, es posible calcular la información 702 de posición de cada terminal inalámbrico 200 sobre la base de información de posición de terminales inalámbricos ya instalados 200.

Según la realización 1, con los terminales inalámbricos 200 incapaces de una comunicación directa entre sí, el terminal de gestión de posicionamiento 100 transmite el paquete 500 de petición de datos de hallazgo de alcance a los terminales inalámbricos 200 seleccionados como el terminal a posicionar mediante una comunicación multi-salto.

El terminal inalámbrico 200 que recibió el paquete 500 de petición de datos de hallazgo de alcance transmite el paquete 600 de respuesta de datos de hallazgo de alcance, que incluye la información de distancia medida 606, al terminal de gestión de posicionamiento 100 nuevamente mediante la comunicación multi-salto.

De ese modo, dado que el terminal de gestión de posicionamiento 100 puede finalizar en orden la información 702 de posición de los terminales inalámbricos 200, la información 702 de posición de todos los terminales inalámbricos 200 puede decidirse en el sistema de posicionamiento inalámbrico en el que los terminales inalámbricos 200 se instalan en una amplia zona.

En la realización 1, la distancia mutua de todos los terminales inalámbricos 200 no se mide sino sólo puede medirse la distancia entre el terminal a posicionar y el terminal estándar de posicionamiento seleccionado por el terminal de gestión de posicionamiento 100. De ese modo, se puede reducir la cantidad de comunicación para hallazgo de alcance.

Es decir, con N terminales inalámbricos 200, se necesita la frecuencia de la comunicación de forma proporcional al cuadrado de N para medir la distancia entre todos los terminales adyacentes. Sin embargo, en la realización 1, la frecuencia de comunicación en proporción a N es suficiente.

De este modo, la cantidad de comunicación puede reducirse drásticamente lo que es necesario para medir las posiciones de varias unidades.

En la realización 1, el terminal de gestión de posicionamiento 100 calcula la información 702 de posición de todos los terminales inalámbricos 200 mientras se selecciona en orden el terminal estándar de posicionamiento y el terminal a posicionar.

Por lo tanto, no hay distinción entre la estación base y el terminal a posicionar como un método convencional de posicionamiento.

Por consiguiente, al proporcionar dispositivos instalados en un intervalo adecuado en un edificio, por ejemplo, con el terminal inalámbrico 200 según la realización 1, es posible obtener la posición de cada dispositivo sin instalar por separado una estación base.

Realización 2

10

20

45

50

La Figura 11 es un diagrama de bloques funcionales del terminal inalámbrico 200 de la realización 2. El terminal inalámbrico 200 de la realización 2 incluye nuevamente la sección 240 de búsqueda de terminal adyacente y la sección 250 de procesamiento de datos de terminales adyacentes además del terminal inalámbrico 200 de la realización 1. El resto de las configuraciones son las mismas en la Figura 3.

La sección 240 de búsqueda de terminales adyacentes obtiene información acerca del terminal adyacente del terminal inalámbrico 200. El procedimiento para obtener información acerca del terminal adyacente se explicará en la Figura 12 que se menciona más adelante.

La sección 250 de procesamiento de datos de terminales adyacentes transmite y recibe el paquete 1300 de petición de datos de terminal adyacente y el paquete 1400 de respuesta de datos de terminal adyacente descritos en las Figuras 13 y 14 que se mencionan más adelante con el terminal de gestión de posicionamiento 100. La sección 250 de procesamiento de datos de terminales adyacentes también transmite y recibe el paquete de búsqueda de terminal adyacente y el paquete de respuesta de búsqueda de terminal adyacente buscar descritos en la Figura 12 que se menciona más adelante.

La sección 250 de procesamiento de datos de terminal adyacente puede entregar el paquete 1300 de petición de datos de terminal adyacente y el paquete 1400 de respuesta de búsqueda de terminal adyacente a través de la sección de comunicación 210 al terminal inalámbrico 200 y al terminal de gestión de posicionamiento 100 al que una comunicación multi-salto no entrega directamente una señal inalámbrica.

- Al recibir el paquete 1300 de petición de datos de terminal adyacente, la sección 250 de procesamiento de datos de terminal adyacente del terminal inalámbrico 200 almacena la dirección del terminal adyacente que obtiene la sección 240 de búsqueda de terminal adyacente en el paquete 1400 de respuesta de datos de terminal adyacente para transmitir los mismos al origen de transmisión del paquete 1300 de petición de datos de terminal adyacente.
- La sección 240 de búsqueda de terminales adyacentes y la sección 250 de procesamiento de datos de terminales adyacentes se pueden configurar utilizando LSI, ROM, RAM y similares, que implementa un circuito de transmisión y recepción inalámbricas.

Como alternativa, unos dispositivos de funcionamiento, tales como un microordenador y software que define su funcionamiento, pueden configurar unas funciones similares.

La Figura 12 es un diagrama de secuencia de operaciones cuando el terminal inalámbrico 200a recibe un paquete adyacente 1300 de petición de datos del terminal.

La sección 250a de procesamiento de datos de terminal adyacente del terminal inalámbrico 200a recibe el paquete 1300 de petición de datos de terminal adyacente descrito en la Figura 13, que se menciona más adelante a través de la sección de comunicación 210.

A continuación, la sección 240a de búsqueda de terminal adyacente transmite el paquete de búsqueda de terminal adyacente mediante transmisión sincrónica.

La sección 250 de procesamiento de datos de terminal adyacente del terminal inalámbrico 200 (aquí, 200b a 200d) que ha recibido el paquete de búsqueda de terminal transmite el paquete de respuesta de búsqueda de terminal adyacente al terminal inalámbrico 200a.

La sección 240 de búsqueda de terminal adyacente del terminal inalámbrico 200a, que es un origen de búsqueda, contiene la dirección de origen de transmisión del paquete de respuesta de búsqueda de terminal adyacente en una memoria, etc.

25

30

De ese modo, el terminal inalámbrico 200a puede obtener información acerca del terminal advacente por sí mismo.

Al recibir el paquete 1300 de petición de datos de terminal adyacente, la sección 240 de búsqueda de terminal adyacente puede corresponder con la información del terminal adyacente obtenida mediante la búsqueda del terminal adyacente, o puede responder a los datos de terminal adyacente va obtenidos.

En el caso de varios terminales adyacentes, la sección 240 de búsqueda de terminal adyacente puede corresponder a la información de terminal adyacente mediante la división de los datos en varios paquetes.

La Figura 13 es un diagrama de configuración del paquete adyacente 1300 de petición de datos de terminal.

El paquete 1300 de petición de datos de terminal adyacente incluye un identificador 1301 de petición de datos de terminal adyacente, una dirección 1302 de terminal de origen de transmisión y una dirección 1303 de terminal de origen de búsqueda.

En el identificador 1301 de petición de datos de terminal adyacente, se almacena un identificador que indica que el paquete pertinente es el paquete de petición de datos de terminal adyacente.

En la dirección 1302 de terminal de origen de transmisión, se almacena la dirección de terminal de origen de transmisión del paquete pertinente.

En la dirección 1303 de terminal de origen de búsqueda, se almacena la dirección del terminal (el terminal inalámbrico 200a en el ejemplo de la Figura 12) que busca el terminal adyacente mediante la recepción del paquete pertinente.

La Figura 14 es un diagrama de configuración de un paquete adyacente 1400 de respuesta de datos de terminal. El paquete 1400 de respuesta de datos de terminal adyacente incluye un identificador 1401 de respuesta de datos de terminal adyacente, una dirección 1402 de terminal de origen de búsqueda, un terminal 1403 de destino de transmisión, el número del terminal adyacente 1404 y una dirección 1405 de terminal adyacente.

En el identificador 1401 de respuesta de datos de terminal adyacente, se almacena un identificador que indica que el paquete pertinente es el paquete de respuesta de datos de terminal adyacente.

En la dirección 1402 de terminal de origen de búsqueda, se almacena la dirección de terminal (el terminal inalámbrico 200a en el ejemplo de la Figura 12) que recoge los resultados de búsqueda del origen de transmisión del paquete pertinente, es decir, el terminal adyacente.

En el terminal 1403 de destino de transmisión, se almacena la dirección de terminal que transmite el terminal de destino de transmisión del paquete pertinente, es decir, el paquete 1300 de petición de datos de terminal adyacente.

En el número 1404 de terminales adyacentes, se almacenada el número de terminales adyacentes (tres en el ejemplo de la Figura 12) de terminal inalámbrico que transmite el paquete pertinente.

En la dirección 1405 de terminal adyacente, se almacenada la dirección de terminal adyacente (los terminales adyacentes 200b a 200d en el ejemplo de la Figura 12) del terminal inalámbrico que transmite el paquete pertinente.

La Figura 15 es un diagrama de flujo del procedimiento de posicionamiento de la realización 2. A continuación, se describirá cada etapa de la Figura 15.

(S1501)

15

40

45

El terminal 100 de gestión de posicionamiento transmite el paquete 1300 de petición de datos de terminal adyacente a todos los terminales inalámbricos 200 para obtener la información de terminal adyacente en cada terminal inalámbrico 200 incluido en el paquete 1400 de respuesta de datos de terminal adyacente.

En la realización 1, se supone que la información del terminal adyacente se ha establecido en la sección 150 de almacenamiento de información de terminal del terminal de gestión de posicionamiento 100 por adelantado antes de la operación de posicionamiento. Sin embargo, la realización 2 es diferente de la realización 1 en que la etapa actual recoge la información de terminal adyacente.

20 (S1502) a (S1505)

El mismo procedimiento con las etapas S901 y S905 se describe en la Figura 9 de la realización 1.

Como se mencionó anteriormente, en la realización 2, cada terminal inalámbrico 200 se adapta para obtener automáticamente la dirección de terminal adyacente a través de la comunicación mutua.

Por lo tanto, después de instalar el terminal inalámbrico 200, puede calcularse automáticamente la información 702 de posición de todos los terminales inalámbricos 200. Por consiguiente, se puede reducir drásticamente la preconfiguración para obtener las posiciones necesarias de los terminales inalámbricos 200 instalados sobre un área amplia.

Realización 3

La Figura 16 es un diagrama de configuración del sistema de posicionamiento inalámbrico de la realización 3.

El sistema de posicionamiento inalámbrico según la realización 3 incluye los terminales móviles inalámbricos 300a a 300c además del sistema de posicionamiento inalámbrico configurado en las realizaciones 1 y 2.

El terminal de gestión de posicionamiento 100 según la realización 3 incluye una configuración similar al terminal de gestión de posicionamiento 100 según las realizaciones 1 y 2.

La sección 150 de almacenamiento de información de terminal del terminal de gestión de posicionamiento 100 según la realización 3 almacena la dirección 701 de terminal, la información 702 de posición, y la lista 703 de terminales adyacentes en cuanto al terminal inalámbrico móvil 300, además de la información que almacena la sección 150 de almacenamiento de información de terminal en las realizaciones 1 y 2.

La sección 130 de decisión de objeto de posicionamiento del terminal de gestión de posicionamiento 100 según la realización 3 selecciona un terminal estándar de posicionamiento para posicionar el terminal inalámbrico móvil 300 a partir de la información de terminal adyacente en cuanto al terminal inalámbrico móvil 300 e información 702 de posición y el terminal inalámbrico 200 además de la sección 130 de decisión de objeto de posicionamiento en las realizaciones 1 y 2.

La sección 120 de gestión de procedimiento de posicionamiento del terminal de gestión de posicionamiento 100 según la realización 3 gestiona el procedimiento para posicionar el terminal inalámbrico móvil 300 además de la sección 120 de gestión de procedimiento de posicionamiento de las realizaciones 1 y 2.

Dado que la sección 140 de cálculo de posición y la sección de comunicación 110 del terminal de posicionamiento 100 de la realización 3 son las mismas que en las realizaciones 1 y 2, se omitirán las descripciones.

La configuración del terminal inalámbrico 200 según la realización 3 es la misma que la del terminal inalámbrico 200 según las realizaciones 1 y 2. Cada componente del terminal inalámbrico 200 es igual.

La Figura 17 es un diagrama de bloques funcionales de un terminal inalámbrico móvil 300.

El terminal inalámbrico móvil 300 tiene la misma configuración que el terminal inalámbrico 200 según la realización 2.

Las funciones de cada componente son las mismas que las explicadas en la realización 2.

5 Como se mencionó anteriormente, se explica cada configuración del sistema de posicionamiento inalámbrico según la realización 3.

A continuación, se darán las descripciones del funcionamiento de las mismas.

La Figura 18 es una secuencia completa de funcionamiento de un sistema inalámbrico de posicionamiento de la realización 3. A continuación, se describirá cada etapa de la Figura 18.

Después de la operación para obtener la información 702 de posición de todos los terminales inalámbricos 200 en las realizaciones 1 y 2, se añade además una operación para calcular la posición del terminal inalámbrico móvil 300 para hacer las operaciones de la realización 3.

(S1800)

15

20

25

El terminal de gestión de posicionamiento 100 realiza el posicionamiento de todos los terminales inalámbricos 200 mediante el método explicado en las realizaciones 1 y 2. A continuación, el terminal de gestión de posicionamiento 100 realiza una operación para calcular la posición del terminal inalámbrico móvil 300 que se explica a continuación.

(S1801)

La sección 120 de gestión de procedimiento de posicionamiento del terminal de gestión de posicionamiento 100 transmite el paquete 1300 de petición de datos de terminal adyacente al terminal inalámbrico móvil 300 que calcula una posición a través de la sección de comunicación 110 para obtener el terminal adyacente del terminal inalámbrico móvil 300. En cuanto a cómo obtener el terminal adyacente, se emplea el método explicado en la realización 2.

(S1802)

La sección 130 de decisión de objeto de posicionamiento del terminal de gestión de posicionamiento 100 selecciona (N + 1) terminales inalámbricos 200 cuyas posiciones se definen como un terminal estándar de posicionamiento entre los terminales adyacentes de los terminales inalámbricos móviles 300 que almacena la sección 150 de almacenamiento de información de terminal.

Cuando se selecciona el terminal estándar de posicionamiento, se puede seleccionar al azar entre (N + 1) o más terminales inalámbricos 200 cuyas posiciones están definidas. Mediante una adecuada función de evaluación puede seleccionarse una combinación de los terminales inalámbricos 200 que tienen la más alta evaluación.

30 (S1803)

La sección 120 de gestión de procedimiento de posicionamiento del terminal de gestión de posicionamiento 100 genera un paquete 500 de petición de datos de hallazgo de alcance cuya dirección 505 de terminal objeto de hallazgo de alcance es la dirección del terminal estándar de posicionamiento seleccionado por la sección 130 de decisión de objeto de posicionamiento, siendo el terminal móvil inalámbrico 300 el terminal a posicionar.

Luego, la sección 120 de gestión de procedimiento de posicionamiento transmite el paquete 500 de petición de datos de hallazgo de alcance a la sección 300 de almacenamiento de información de terminal móvil inalámbrico a través de la sección de comunicación 110.

Después de recibir el paquete 500 de petición de datos de hallazgo de alcance, el terminal inalámbrico móvil 300 realiza el hallazgo de alcance con el terminal inalámbrico 200 especificado por la dirección 505 de terminal objeto de hallazgo de alcance para transmitir el paquete 600 de respuesta de datos de hallazgo de alcance al terminal de posicionamiento 100.

(S1804)

Cuando el terminal de gestión de posicionamiento 100 recibe el paquete 600 de respuesta de datos de hallazgo de alcance, la sección 140 de cálculo de posición calcula la posición del terminal inalámbrico móvil 300.

45 En cuanto al posicionamiento del terminal inalámbrico móvil 300, el terminal de gestión de posicionamiento 100 puede realizar el posicionamiento de cada terminal inalámbrico móvil 300 de manera regular. Como alternativa, desde el terminal inalámbrico móvil 300 se transmite al terminal de gestión de posicionamiento 100 una señal (no se muestra) para solicitar el posicionamiento del propio terminal. Tras la recepción de la señal, el terminal de gestión de posicionamiento 100 puede realizar el posicionamiento del terminal inalámbrico móvil 300.

Además, el usuario puede mandar sobre el terminal de gestión de posicionamiento 100 para que realice el posicionamiento, y el posicionamiento del terminal inalámbrico móvil 300 puede ser realizado según ese mandato.

Como se ha mencionado anteriormente, en la realización 3, se seleccionan (N + 1) o más terminales inalámbricos 200 como terminales estándar de posicionamiento entre los terminales inalámbricos 200 posicionados automáticamente al obtener el terminal adyacente. La distancia entre el terminal estándar de posicionamiento y el terminal inalámbrico móvil 300 se mide para posicionar el terminal inalámbrico móvil 300.

De ese modo, el terminal inalámbrico móvil 300 puede posicionarse sin instalar estaciones base en una amplia área para configurar las posiciones de las estaciones base.

Por lo tanto, puede reducirse drásticamente la preconfiguración necesaria para el posicionamiento del terminal estándar de posicionamiento 300.

Realización 4

5

10

20

30

35

40

En las realizaciones mencionadas 1 a 3, un procedimiento para la sección 140 de cálculo de posición para calcular la posición del terminal a posicionar puede ser de la siguiente manera.

(Método de cálculo de posición 1)

La sección 140 de cálculo de posición obtiene la intersección de un círculo cuyo radio es igual a la información de posición entre el terminal a posicionar y cada terminal estándar de posicionamiento como la posición del terminal a posicionar siendo la posición de cada terminal estándar de posicionamiento el centro.

(Método de cálculo de posición 2)

P_i (i = 1...k) indica la posición de cada terminal estándar de posicionamiento, P_t denota la posición del terminal a posicionar, y d_i (i = 1...k) denota la distancia entre cada terminal estándar de posicionamiento y el terminal a posicionar.

La sección 140 de cálculo de posición calcula la posición del terminal a posicionar cuyo error de distancia se vuelve mínimo mediante el cálculo de P_t que minimiza una función de evaluación ϵ (P_t) de la siguiente manera, por ejemplo, utilizando el método de mínimos cuadrados.

25 [Formula 1]

$$\varepsilon(\mathbf{p}_t) = \sum_{i=1}^k (|\mathbf{p}_i - \mathbf{p}_t| - d_k)^2$$

Realización 5

En la realización 5 de la presente invención, se dan unas descripciones del método de evaluación de la exactitud de medición del terminal a posicionar. La configuración del sistema de posicionamiento inalámbrico y cada terminal son iguales que en las realizaciones 1 a 4.

En la realización 5, cuando el terminal a posicionar tiene (N + 1) terminales adyacentes cuyas posiciones están definidas, la sección 130 de decisión de objeto de posicionamiento del terminal de gestión de posicionamiento 100 evalúa la combinación de los terminales inalámbricos 200 para ser un candidato para terminal estándar de posicionamiento, por ejemplo, según una función de evaluación de la siguiente manera para seleccionar la combinación de los terminales inalámbricos 200 que tienen la mayor evaluación como terminal estándar de posicionamiento.

(Función de evaluación 1): determinante: 1

Por ejemplo, entre los (N + 1) o más terminales adyacentes para los que se ha definido información 702 de posición, en cuanto a una combinación de los terminales inalámbricos 200 que van a ser el terminal estándar de posicionamiento, se hace que la posición del terminal estándar de posicionamiento sea {P₀, P₁,..., P_N}, respectivamente.

Entre ellos, se hace que el siguiente determinante M sea una función de evaluación, cuyo elemento es un vector de diferencia entre $\{P_1,...,P_N\}$ y $\{P_0\}$.

[Formula 2]

$$\mathbf{M} = [\mathbf{p}_1 - \mathbf{p}_0, \cdots, \mathbf{p}_N - \mathbf{p}_0]$$

La sección 130 de decisión de objeto de posicionamiento calcula los valores de la función de evaluación en cuanto a la combinación de todos los terminales inalámbricos 200 que van a ser un candidato de terminal estándar de posicionamiento, para seleccionar la combinación que tiene el mayor valor de la función de evaluación como terminal estándar de posicionamiento.

- 5 En general, cuando los terminales estándar de posicionamiento de tres puntos están en la misma línea recta en el cálculo de la posición en dos dimensiones, y cuando los terminales estándar de posicionamiento de cuatro puntos están en el mismo plano en el cálculo de la posición tridimensional, existe una pluralidad de candidatos de posición de cálculo y la exactitud de medición se deteriora.
- La función de evaluación anterior denota un grado de dispersión de posición respecto al terminal estándar de posicionamiento.

De este modo, mediante la selección de la combinación que tiene un mayor valor de la función de evaluación, el terminal estándar de posicionamiento que tiene relación de posición más dispersada permite la medición de la posición, la posición del terminal estándar de posicionamiento, que tiene como resultado una mejora de la exactitud de la medición.

15 (Función de evaluación 2): determinante: 2

Similarmente, se obtendrá el mismo efecto al hacer que el siguiente determinante M sea la función de evaluación, cuyo elemento es un vector normalizado de diferencia entre {P₁,..., P_N} y {P₀}.

[Formula 3]

$$\mathbf{M} = \left[\frac{\mathbf{p}_1 - \mathbf{p}_0}{|\mathbf{p}_1 - \mathbf{p}_0|}, \dots, \frac{\mathbf{p}_N - \mathbf{p}_0}{|\mathbf{p}_N - \mathbf{p}_0|} \right]$$

(Función de evaluación 3): evaluación de exactitud de posición calculada: 1

 P_i denota la posición del terminal inalámbrico 200 (se hace que el sufijo sea i) cuya información 702 de posición está definida. D_{ij} denota la inalámbrica 705 de distancia con otro terminal inalámbrico 200 (se hace que el sufijo sea i) cuya información 702 de posición está definida. La sección 130 de decisión objeto de posicionamiento calcula el valor de evaluación q_i de la siguiente manera.

[Formula 4]

$$g_i = \frac{1}{N} \sum_{i}^{N} \left(|\mathbf{p}_i - \mathbf{p}_j| - d_{ij} \right)^2$$

N es el número del terminal adyacente cuya información 702 de posición se ha definido, y la información 705 de distancia se ha obtenido entre los terminales adyacentes del terminal inalámbrico i en la sección 150 de almacenamiento de información de terminal del terminal de gestión de posicionamiento 100.

A continuación, entre los terminales adyacentes cuya información 702 de posición se ha definido, la sección 130 de decisión de objeto de posicionamiento selecciona (N + 1) terminales que tienen un menor valor de evaluación g_i con el fin de seleccionar como terminal estándar de posicionamiento.

- El valor de evaluación g_i indica un grado de diferencia entre una distancia calculada por la relación de posición calculada por la sección 140 de cálculo de posición y la información 705 de distancia obtenida de la sección 220 de medición de distancia. Cuanto menor sea el valor de g_i, más corresponde la posición calculada por la sección 140 de cálculo de posición con la información 705 de distancia obtenida por la medición de la sección 220 de medición de distancia.
- Es decir, cuanto menor sea el valor de evaluación g_i, mayor es la exactitud de la posición calculada por la sección 140 de cálculo de posición.

Por consiguiente, mediante el empleo de la combinación del terminal estándar de posicionamiento que tiene el menor valor de evaluación g_i, el terminal a posicionar se puede posicionar con el terminal inalámbrico 200 que tiene una alta exactitud de cálculo de posición que es el terminal estándar de posicionamiento, que tiene como resultado mejorar la exactitud de posicionamiento del terminal a posicionar.

20

(Función de evaluación 4): evaluación de exactitud de posición calculada: 2

Un valor que indica la exactitud de la posición calculada de la siguiente manera se puede utilizar como valor de evaluación g_i, por ejemplo.

[Formula 5]

5

20

25

30

45

$$g_i = \frac{1}{N} \sum_{j}^{N} \left(\frac{|\mathbf{p}_i - \mathbf{p}_j| - d_{ij}}{d_{ij}} \right)^2$$

0

$$g_i = \frac{1}{N} \sum_{j}^{N} \left(\frac{|\mathbf{p}_i - \mathbf{p}_j| - d_{ij}}{|\mathbf{p}_i - \mathbf{p}_j|} \right)^2$$

En general, la información 705 de distancia medida de manera inalámbrica incluye errores. La información 702 de posición, calculada por la información 705 de distancia que incluye errores, también incluye errores.

Cuando se calcula la posición del siguiente terminal inalámbrico 200 utilizando la información 702 de posición que incluye errores, se supone que los errores de posición de cálculo del terminal a posicionar crecen a medida que el proceso avanza.

Por lo tanto, mediante la selección del terminal estándar de posicionamiento capaz de mejorar la exactitud de posicionamiento del terminal a posicionar de la manera anterior (función de evaluación 3) y (función de evaluación 4) para calcular las posiciones en orden, se puede obtener un sistema de posicionamiento inalámbrico que tiene unos pocos errores de posición.

En la realización 5, cuando hay una pluralidad de terminales inalámbricos 200 en los que se define información 702 de posición de los (N + 1) o más terminales adyacentes, la sección 130 de decisión de objeto de posicionamiento puede seleccionar la combinación con la más alta evaluación como el terminal a posicionar y el terminal estándar de posicionamiento mediante la evaluación de las combinaciones de los terminales inalámbricos 200 que podrían ser los terminales estándar de posicionamiento de todos los terminales inalámbricos 200 según la función de evaluación anterior.

De este modo, la combinación de los terminales inalámbricos 200 que tienen la máxima exactitud de posicionamiento del terminal a posicionar se pueden posicionar como terminal estándar de posicionamiento, lo que tiene como resultado la mejora de la exactitud de posicionamiento de todo el sistema de posicionamiento.

Realización 6

En la realización 6 de la presente invención, se darán unas descripciones para un método en el que la información 702 de posición del terminal inalámbrico 200 se calcula como coordenadas relativas en lugar de coordenadas absolutas que se almacenan en la sección 150 de almacenamiento de información de terminal. Las configuraciones del sistema de posicionamiento inalámbrico y cada terminal son iguales que en las realizaciones 1 a 5.

La Figura 19 es un diagrama de secuencia que muestra el procedimiento en el que se obtienen las posiciones relativas de (N + 1) o más terminales inalámbricos 200 y se almacenan en la información 702 de posición. Cada etapa de la Figura 19 se explica de la siguiente manera.

35 (S1901)

La sección 120 de gestión de procedimiento de posicionamiento del terminal de gestión de posicionamiento 100 selecciona k (k es un número entero superior a N + 1) terminales inalámbricos 200 (aquí, k = 4 y los sufijos son de a hasta d) para que sean terminales adyacentes entre sí a partir de la información del terminal adyacente que almacena la sección 150 de almacenamiento de información del terminal.

40 La sección de gestión de procedimiento de posicionamiento 120 transmite el paquete 500 de petición de datos de hallazgo de alcance que incluye las direcciones de los terminales inalámbricos 200b a 200d como direcciones 505 de terminal objeto de hallazgo de alcance al terminal inalámbrico 200a.

Después de recibir el paquete 500 de petición de datos de hallazgo de alcance, el terminal inalámbrico 200a realiza el hallazgo de alcance entre los terminales inalámbricos 200b a 200d para transmitir el paquete 600 de respuesta de datos de hallazgo de alcance al terminal de posicionamiento 100.

(S1902) a (S1903)

El terminal de gestión de posicionamiento 100 transmite el paquete 500 de petición de datos de hallazgo de alcance que incluye las direcciones de los terminales inalámbricos 200b a 200d cuyas distancias no se han definido como direcciones 505 de terminal objeto de hallazgo de alcance a los terminales inalámbricos 200b a 200d para obtener la información de distancia mutua 705 de los terminales inalámbricos 200a a 200d.

(S1904)

5

25

30

50

La sección 140 de cálculo de posición del terminal de gestión de posicionamiento 100 calcula las posiciones relativas de los terminales inalámbricos 200a a 200d a partir de la información de distancia mutua obtenida 705.

Por ejemplo, en el caso de obtener posiciones tridimensionales de los terminales inalámbricos 200a a 200d, la posición del terminal inalámbrico 200a tiene que ser $P_1 = (0, 0, 0)$, del terminal inalámbrico 200b $P_2 = (x_2, 0, 0)$, del terminal inalámbrico 200c $P_3 = (x_3, y_3, 0)$, y las posiciones excepto 200a a 200c entre k terminales inalámbricos 200 se hacen para ser $P_1 = (x_1, y_1, z_1)$ (i = 4, ..., k, x, y, z son desconocidos)

La sección 140 de cálculo de posición puede obtener las posiciones relativas de cada terminal inalámbrico 200, siendo la posición de P₁ un punto de origen mediante la obtención de una posición que hace mínima la diferencia entre una distancia obtenida a partir de la posición calculada y la información de distancia medida 705.

De este modo, al calcular la posición relativa para almacenarla en la información 702 de posición, se puede obtener el terminal inalámbrico 200 cuya (N + 1) o más información 702 de posición ha sido confirmada antes del inicio de operación de cálculo de posición.

De ese modo, sin configuración de las posiciones de (N + 1) o más terminales inalámbricos 200, se pueden obtener las posiciones de todos los terminales inalámbricos 200.

Con el método anterior, posiblemente también se puede obtener la posición relativa, que puede ser un reflejo simétrico o puede someterse por completo a transferencia rotatoria o desplazamiento paralelo contra una posición verdadera, sin embargo, se puede permitir el aporte manual mediante unos medios de aporte (no se muestran) para corregir la simetría- reflejo y la rotación para realizar la corrección.

De ese modo, se obtiene la información 702 de posición, en la se corrige la simetría-reflejo y la posición rotada, y se puede obtener la posición equivalente a la posición verdadera.

La mencionada posición relativa puede calcularse a partir de la información 705 de distancia mutua del terminal inalámbrico 200 mediante la determinación solamente de signos de variables desconocidas del mencionado $P_2 = (x_2, 0, 0)$ y $P_3 = (x_3, y_3, 0)$ por adelantado a la instalación de tal manera que la relación de posiciones en los k terminales inalámbricos predeterminados 200 debería tener signos predeterminados.

De ese modo, se puede obtener la posición equivalente a la posición verdadera sin simetría-reflejo ni rotación del conjunto mediante la instalación solamente de signos de la relación de posición que se hace coincidir con las coordenadas para calcular la posición.

35 Realización 7

En la realización 7 de la presente invención, se dan unas descripciones de un método para recalcular la información de posición calculada 702 después del posicionamiento para corregir y mejorar la exactitud. La configuración del sistema de posicionamiento inalámbrico y cada terminal son iguales que en las realizaciones 1 a 6.

(Método de recálculo 1)

40 La sección 140 de cálculo de posición del terminal de gestión de posicionamiento 100 hace referencia de nuevo a la información 705 de distancia y a la información 702 de posición que almacena la sección 150 de almacenamiento de información de terminal después de completar el posicionamiento para recalcular la posición de cada terminal inalámbrico 200.

Cuando la sección 140 de cálculo de posición recalcula la información de posición, dado que se almacena mucha más información 705 de distancia en la sección 150 de almacenamiento de información de terminal, en comparación con la etapa mencionada a mitad de la operación de posicionamiento, la exactitud de posicionamiento puede mejorarse aún más al utilizar la información 705 de distancia.

(Método de recálculo 2)

Después de completar todos los procedimientos de posicionamiento y una vez concluido el posicionamiento, la sección 140 de cálculo de posición del terminal de gestión de posicionamiento 100 transmite el paquete 500 de

petición de datos de hallazgo de alcance en cuanto a parte o toda la información 705 de distancia entre la información 705 de distancia sin definir para corregir la información 702 de posición al aumentar el número de datos de la información 705 de distancia.

Mediante este método, al aumentar el número de datos de la información 705 de distancia, la exactitud se puede mejorar con más precisión.

En cuanto al terminal adyacente cuya información 705 de distancia está indefinida, se calcula el mencionado valor de evaluación g_i y sólo se añade la información 705 de distancia del terminal adyacente cuyo valor de evaluación g_i es inferior a un valor umbral predeterminado (= la información de posición es alta), y se obtiene la información 705 de distancia indefinida.

Al obtener además la información 705 de distancia del terminal adyacente que tiene un menor valor de evaluación g_i y calcular la posición utilizando la información 705 de distancia, se puede utilizar la información 705 de distancia del terminal inalámbrico 200 cuya posición está medida con más exactitud, lo que tiene como resultado la mejora de la exactitud de posicionamiento del terminal inalámbrico 200.

(Método de recálculo 3)

- 15 En cuanto a la combinación de (N + 1) o más terminales inalámbricos 200, la sección 140 de cálculo de posición del terminal de gestión de posicionamiento 100 calcula el número de terminales inalámbricos 200 que van a ser un terminal adyacente en común de cada terminal inalámbrico 200 incluido en la combinación para cada combinación después de completar todos los procedimientos de posicionamiento y concluir el posicionamiento.
- A continuación, la combinación que tiene el número máximo se selecciona como el terminal estándar de posicionamiento. El terminal inalámbrico 200 para el que la combinación se convierte en el terminal adyacente en común se selecciona como el terminal a posicionar respectivamente. Luego, se calcula la posición de cada terminal a posicionar.

De este modo, la posición del terminal a posicionar se calcula sobre la base de la información 702 de posición del terminal estándar de posicionamiento común, lo que permite evitar el problema anteriormente mencionado de propagación de errores de posición.

Realización 8

25

El valor de evaluación g_i, que muestra la exactitud de posición de cálculo explicada en la realización 5, puede sacarse y presentare para otros terminales inalámbricos a través de interfaces inalámbricas o cableadas como un índice de exactitud de la información 702 de posición (no se muestra).

- Al presentar el índice de exactitud de la información 702 de posición junto con la información 702 de posición, el sistema que utiliza la información 702 de posición obtenida desde el presente sistema de posicionamiento inalámbrico se hace posible el uso de la información 702 de posición con el añadido de la exactitud de posición de cálculo.
- El valor de evaluación g_i, que muestra exactitud, puede ser expuesto en la pantalla (no se muestra) manejada por trabajadores junto con información 702 de posición. Específicamente, es concebible proporcionar unos medios de exposición, tal como un display de cristal líquido y un diodo emisor de luz, en el terminal de gestión de posición 100, por ejemplo, y en los mismos se expone un valor de índice de exactitud.

Realización 9

Como se explicó en la realización 3, cuando existe el terminal inalámbrico móvil 300 en el sistema de posicionamiento inalámbrico, el terminal inalámbrico móvil 300 puede instalarse realmente fijo en el sistema de posicionamiento inalámbrico en lugar de ser móvil.

El terminal inalámbrico fijo 200 instalado adicionalmente en el sistema de posicionamiento inalámbrico puede ser manejado como el terminal inalámbrico móvil 300.

Incluso el terminal inalámbrico 200 se instala adicionalmente, mediante el cálculo de la posición como terminal móvil inalámbrico 300, el terminal inalámbrico añadido 200 busca el terminal adyacente y selecciona el terminal estándar de posición que tiene mayor exactitud de cálculo de posición para realizar el hallazgo de alcance sólo con el terminal estándar de posición.

Por lo tanto, la posición del terminal inalámbrico añadido 200 puede obtenerse automáticamente y se puede reducir la cantidad de comunicación para el hallazgo de alcance.

50 En la realización 3, el terminal inalámbrico móvil 300 y al terminal inalámbrico 200 se configuran como terminales diferentes, sin embargo, pueden tratarse como el mismo terminal inalámbrico 200.

En este caso, en la sección 150 de almacenamiento de información de terminal del terminal de gestión de posicionamiento 100 se almacena un signo que discrimina si el terminal inalámbrico móvil 200 es el terminal inalámbrico móvil 300 o no. La sección 120 de gestión de procedimiento de posicionamiento posiciona cada terminal inalámbrico 200 y el terminal inalámbrico móvil 300 según el signo.

5 El signo para la discriminación anterior puede cambiarse durante el funcionamiento del sistema.

Por ejemplo, el posicionamiento se puede realizar bajo la condición inicial de instalación de que todos los terminales son el terminal inalámbrico 200. A partir de ese momento, parte del terminal inalámbrico 200 se cambia para el terminal inalámbrico móvil 300, y el posicionamiento se puede realizar para el terminal inalámbrico móvil pertinente 300 según sea necesario según el método explicado en la realización 3.

- De este modo, se hace posible un método de posicionamiento en el que se realiza el posicionamiento que incluye, por ejemplo, el terminal inalámbrico fijo e inmóvil 200 y el terminal inalámbrico móvil 300 que no se mueve en el momento de posicionamiento de cada terminal inalámbrico 200 y se mueve a partir de ese momento, y luego sólo el terminal inalámbrico móvil 300 se posiciona por repetición.
- El posicionamiento de muchos más terminales inalámbricos 200 aumenta los candidatos disponibles para el terminal estándar de posicionamiento, por lo tanto, se puede realizar un posicionamiento de alta precisión utilizando un terminal estándar de posicionamiento más exacto y mediante la corrección con la distancia del terminal estándar de posicionamiento de mayor exactitud de cálculo de posición después del posicionamiento.
 - En el caso de que después de que se instala una vez cada terminal inalámbrico 200, se mueve la posición de instalación de sólo una parte del terminal inalámbrico 200, la posición se puede volver a medir con menor cantidad de comunicación mediante el manejo temporal del terminal inalámbrico 200 como terminal inalámbrico móvil 300.

Realización 10

20

25

30

35

40

En las realizaciones 1 a 9 anteriores, el número de terminal estándar de posicionamiento seleccionado por la sección 130 de decisión de objeto de posicionamiento se hace para que sea (N + 1), sin embargo, es posible seleccionar más de (N + 1) terminales estándar de posicionamiento para calcular la posición del terminal a posicionar a partir de la distancia de más de (N + 1) terminales estándar de posicionamiento.

El cálculo de posición mediante la información 705 de distancia a partir de muchos más terminales estándar de posicionamiento mejora la exactitud de posicionamiento del terminal a posicionar.

El valor de evaluación g_i que muestra la mencionada exactitud de cálculo de posición puede utilizarse para seleccionar el número apropiado de terminales estándar de posicionamiento entre más de (N + 1) terminales estándar de posicionamiento.

Por ejemplo, el terminal inalámbrico 200, cuyo valor de evaluación g_i es inferior a un predeterminado valor umbral, puede seleccionarse como el terminal estándar de posicionamiento.

De este modo, ese tipo de selección de terminal estándar de posicionamiento permite la selección de varios terminales inalámbricos 200 que tienen una alta exactitud de cálculo de posición solo como terminal estándar de posicionamiento, que tiene como resultado una mejora de la exactitud de posicionamiento del terminal a posicionar.

Realización 11

En la realización 11 de la presente invención, se darán unas descripciones de un ejemplo de funcionamiento en el que el número de terminales adyacentes cuya posición conocida es pobre y el número de terminales estándar de posicionamiento es escaso. La configuración del sistema de posicionamiento inalámbrico y cada terminal son iguales que en las realizaciones 1 a 10.

La sección 130 de decisión de objeto de posicionamiento reduce la dimensión para seleccionar N terminales estándar de posicionamiento cuando el número de terminales adyacentes es inferior a (N + 1) para todos los terminales inalámbricos de posición indefinida 200 y los terminales inalámbricos móviles 300.

La sección de gestión de procedimiento de posicionamiento 120 realiza el hallazgo de alcance del terminal estándar de posicionamiento y el terminal a posicionar para calcular la posición del terminal a posicionar en el espacio de dimensión (N - 1)-ésima determinado por las posiciones de los N terminales estándar de posicionamiento seleccionados por la sección 130 de decisión de objeto de posicionamiento.

El cálculo es admisible mediante la reducción de la dimensión desde (N - 1). La posición puede calcularse utilizando información de restricción, de tal manera que el terminal se instala en el suelo o en el techo, por ejemplo.

De este modo, en el caso de que el número de terminales adyacentes sea menos de (N + 1), la posición de los terminales inalámbricos 200 y los terminales inalámbricos móviles 300 pueden definirse en la parte en la que los terminales inalámbricos 200 se disponen escasamente mediante el cálculo de la posición con una menor dimensión.

Realización 12

5

10

15

25

40

En las realizaciones mencionadas 1 a 11, la posición se adapta para ser calculada por información de distancia del terminal inalámbrico 200 de posición conocida. Sin embargo, aparte de la distancia, al medir la diferencia de tiempo de llegada de las ondas de radio transmitidas desde el terminal a posicionar en cada terminal estándar de posicionamiento, es posible calcular la posición del terminal a posicionar como un punto de intersección de la línea hiperbólica con la posición de cada terminal estándar de posicionamiento y la diferencia medida de tiempo de propagación de ondas de radio es un parámetro.

Evidentemente, el mismo efecto se puede obtener al decidir el terminal estándar de posicionamiento y el terminal a posicionar mediante la presente invención de manera sucesiva independientemente de un método de posicionamiento para calcular la posición del terminal a posicionar.

Realización 13

En las realizaciones mencionadas 1 a 12, el terminal de gestión de posicionamiento 100 puede incluir la sección 220 de medición de distancia y la sección 230 de procesamiento de datos de hallazgo de alcance, y el mencionado procedimiento de posicionamiento puede ser seguido por el propio terminal de gestión de posicionamiento 100 que se somete al posicionamiento.

Similarmente, el terminal de gestión de posicionamiento 100 puede incluir además la sección 240 de búsqueda de terminales adyacentes y la sección 250 de procesamiento de datos de terminales adyacentes para realizar el posicionamiento como el terminal inalámbrico 200 o el terminal inalámbrico móvil 300 explicado en las realizaciones 2 y 3.

De ese modo, es posible el cálculo automático de posición que incluye el terminal de gestión de posicionamiento 100.

Realización 14

En las realizaciones mencionadas 1 a 13, la sección 220 de medición de distancia calcula la distancia entre los terminales inalámbricos 200 sobre la base del tiempo de retraso de propagación de ondas de radio, sin embargo, pueden utilizarse otros métodos de medición de distancia, tales como la intensidad de recepción de ondas de radio.

Eiemplo 15

La Figura 20 es un diagrama de configuración de un sistema de medición ambiental del Ejemplo 15.

El sistema de medición ambiental según el ejemplo 15 es un sistema que mide las condiciones ambientales de un espacio objeto de medición, que incluye un terminal fijo 2100 de sensor y un terminal móvil 2200 de sensor.

Los terminales fijos 2100 de sensor instalados fijamente en el espacio objeto de medición para medir las condiciones ambientales vecinas del propio terminal.

El terminal móvil 2200 de sensor mide las condiciones ambientales vecinas del propio terminal mientras se mueve en el espacio objeto de medición. Se supone que los puntos de medición, cuyas condiciones ambientales mide el terminal móvil 2200 de sensor, están preconfigurados.

La Figura 21 es un diagrama de bloques funcionales de un terminal fijo de sensor 101.

El terminal fijo 2100 de sensor incluye una sección 2110 de control de terminal, una sección de comunicación inalámbrica 2111, y una sección de medición ambiental 2112.

La sección 2110 de control del terminal obtiene valores de medición de las condiciones ambientales medidas por la sección de medición ambiental 2112 e intercambia datos con otros terminales de sensor a través de la sección de comunicación inalámbrica 2111.

La sección de comunicación inalámbrica 2111 realiza la comunicación inalámbrica con otros terminales de sensor.

La sección de medición ambiental 2112 incluye uno o una pluralidad de sensores, tal como un sensor de temperatura, un sensor de humedad y un sensor de emitancia luminosa, para medir las condiciones ambientales vecinas del propio terminal, tales como la temperatura, la humedad y la emitancia luminosa.

45 El tipo de sensor no se limita al sensor de temperatura, el sensor de humedad y el sensor de emitancia luminosa, sino que se puede utilizar un sensor arbitrario según las condiciones ambientales que se necesiten medir. Por ejemplo, puede utilizarse un sensor que detecta una determinada sustancia química.

La Figura 22 es un diagrama de bloques funcionales del terminal móvil 2200 de sensor.

El terminal móvil 2200 de sensor incluye una sección 2210 de control de terminal, una sección de comunicación inalámbrica 2211, una sección de medición ambiental 2212, una sección de posicionamiento inalámbrico 2213, una sección 2214 de control de auto-posición y una sección de impulso 2215.

La sección 2210 de control del terminal obtiene valores de medición medidos por la sección de medición ambiental 2212 e intercambia datos con otros terminales de sensor a través de la sección de comunicación inalámbrica 2211.

La sección 2210 de control de terminal tiene además el papel de controlar la posición del propio terminal. Por ejemplo, la sección 2210 de control de terminal hace que el terminal móvil 2200 de sensor se mueva a la posición deseada mediante el funcionamiento de la sección 2214 de control de auto-posición, o detecta para gestionar la posición del terminal móvil 2200 de sensor mediante el funcionamiento de la sección de posicionamiento inalámbrico 2213.

La sección de comunicación inalámbrica 2211 realiza la comunicación inalámbrica con otros terminales de sensor.

La configuración y las funciones de la sección de medición ambiental 2212 son las mismas que las de la sección de medición ambiental 2112.

La sección de posicionamiento inalámbrico 2113 detecta la posición del terminal móvil 2200 de sensor utilizando una comunicación inalámbrica. El método de detección se mencionará más adelante.

La sección 2214 de control de auto-posición controla la posición del terminal móvil 2200 de sensor para que sea la posición deseada mediante el funcionamiento apropiado de la sección de impulsión 2215 a partir de una posición de destino y la posición en ese momento del terminal móvil 2200 de sensor.

Como método para controlar que el terminal de sensor esté en la posición deseada, es concebible que este método calcule una desviación entre la posición de destino y la posición en ese momento del terminal móvil 2200 de sensor para cambiar el tiempo de funcionamiento de la unidad de impulso 2215 sobre la base de la desviación, y para dar una orden de salida proporcional a la desviación de la sección de impulso 2215.

Se pretende que la sección de impulso 2215 mueva el terminal móvil 2200 de sensor. La sección de impulso 2215 incluye un motor y UNAS ruedas, por ejemplo, que son capaces de mover el terminal móvil 2200 sensor al hacer rotar las ruedas. La sección de impulso 2215 puede configurarse de modo que un recorrido formado por un mecanismo de oruga y eslabones también mueve el terminal móvil 2200 de sensor.

La sección 2110 de control del terminal, la sección 2210 de control de terminal, la sección de posicionamiento inalámbrico 2213 y la sección 2214 de control de auto-posición se pueden configurar utilizando un equipo físico, tal como un dispositivo de circuito que logra estas funciones o se pueden configurar utilizando dispositivos de operaciones, tal como un microprocesador y una CPU (Unidad Central de Procesamiento) y software que especifica sus operaciones.

La sección de comunicación inalámbrica 2111 y la sección de comunicación inalámbrica 2211 incluyen de manera apropiada una configuración necesaria, tal como una interfaz de comunicación inalámbrica.

En los párrafos anteriores, se explica la configuración del sistema de medición ambiental según el Ejemplo 15.

A continuación, se darán unas descripciones de un método de detección de posición por parte de la sección de posicionamiento inalámbrico 2213.

La Figura 23 es un diagrama que ilustra un procedimiento para que la sección 2213 de posicionamiento inalámbrico calcule la distancia entre el terminal móvil 2200 de sensor y un terminal fijo 2100 de sensor. Cada etapa de la Figura 23 se explica de la siguiente manera.

40 (S401)

10

15

25

30

El terminal móvil 2200 de sensor transmite una señal de petición de hallazgo de alcance a través de la sección de comunicación inalámbrica 2211.

(S402)

Tras la recepción de la señal de petición de hallazgo de alcance, el terminal fijo 2100 de sensor transmite una señal de respuesta de hallazgo de alcance al terminal móvil 2200 de sensor.

(S403)

50

El terminal móvil 2200 de sensor recibe la señal de respuesta de hallazgo de alcance a través de la sección de comunicación inalámbrica 2211. La sección de posicionamiento inalámbrico 2213 mide el tiempo de respuesta desde la transmisión de la señal de petición de hallazgo de alcance a la recepción de la señal de respuesta de hallazgo de alcance.

La sección de posicionamiento inalámbrico 2213 puede medir el tiempo de respuesta con este tipo de método para empezar la medición de tiempo mediante un contador en el momento de transmitir la señal de petición de hallazgo de alcance y leer un valor de medición de tiempo mediante el contador en el momento de recibir la respuesta de hallazgo de alcance.

5 (S404)

La sección de posicionamiento inalámbrico 2213 del terminal móvil 2200 de sensor calcula la distancia entre el terminal móvil 2200 de sensor y el terminal fijo 2100 de sensor multiplicando el tiempo de respuesta medido en la etapa S403 por la velocidad de la onda electromagnética y haciendo referencia a una tabla de correspondencia entre un tiempo de respuesta predeterminado y la distancia.

La Figura 24 es un diagrama que ilustra un método para que la sección 2213 de posicionamiento inalámbrico calcule la posición del terminal móvil 2200 de sensor.

La sección de posicionamiento inalámbrico 2213 realiza un procedimiento para calcular la distancia entre el terminal móvil 2200 de sensor y el terminal fijo 2100 de sensor para una pluralidad de terminales fijos 2100 de sensor (por ejemplo, 100a a 100c en la Figura 24).

A continuación, la sección de posicionamiento inalámbrico 2213 obtiene un círculo cuyo centro es el terminal fijo 2100 de sensor y cuyo radio es la distancia calculada entre los terminales a partir de las distancias entre terminales entre una pluralidad de terminales fijos 2100 de sensor y el terminal móvil 2200 de sensor y las posiciones de cada terminal fijo 2100 de sensor (se supone que se conocen).

La sección de posicionamiento inalámbrico 2213 puede detectar el área en la que estos círculos se intersecan como la posición del terminal móvil 2200 de sensor.

Por lo tanto, con el fin de detectar con alta precisión la posición del terminal móvil 2200 de sensor, es preferible calcular la distancia entre terminales entre tres o más terminales fijos 2100 de sensor.

En lo anterior, se explica un método para detectar la posición del terminal móvil 2200 de sensor.

A continuación, se darán unas descripciones del funcionamiento del terminal móvil 2200 de sensor para medir las condiciones ambientales.

La Figura 25 es un flujo de operaciones cuando el terminal móvil 2200 de sensor mide condiciones ambientales.

Cada etapa de la Figura 25 se explica de la siguiente manera.

(S601)

20

25

La sección 2210 de control de terminal decide un punto de medición en el que se miden las condiciones ambientales a continuación en la lista de puntos de medición preestablecidos. La sección 2210 de control de terminal puede seleccionar el punto de medición según un orden preestablecido, o puede seleccionar el punto de medición más cercano desde la posición en ese momento del terminal móvil 2200 de sensor. El siguiente punto de medición puede seleccionarse por otros métodos.

(S602)

La sección de posicionamiento inalámbrico 2213 detecta la posición del terminal móvil 2200 de sensor mediante los métodos explicados en las Figuras 23 y 24.

(S603)

40

50

La sección 2214 de control de auto-posición realiza una operación de control para mover el terminal móvil 2200 de sensor a un punto de medición específico siendo el punto de medición decidido en la etapa S601 una posición de destino y la posición detectada en la etapa S602 es la posición en ese momento.

La sección 2214 de control de auto-posición decide el tiempo de funcionamiento de la sección de impulso 2215 a partir de la desviación entre la posición de destino y la posición en ese momento, por ejemplo, para mover el terminal móvil 2200 de sensor al punto de medición al hacer que la sección de impulso 2215 funcione durante el tiempo de funcionamiento.

Como alternativa, la sección 2214 de control de auto-posición puede mover el terminal móvil 2200 de sensor al punto de medición mediante la detección y movimiento de la posición en ese momento por la sección de posicionamiento inalámbrico 2213 repetidas veces hasta que la desviación entre la posición del punto de medición y el punto en ese momento es igual o inferior a un umbral predeterminado.

En cuanto al método para controlar la posición del terminal móvil 2200 de sensor, se puede aplicar un método para controlar un robot general autopropulsado.

(S604)

Cuando el terminal móvil 2200 de sensor se mueve al punto de medición, la sección de medición ambiental 2212 mide las condiciones ambientales vecinas al propio terminal.

(S605)

- La sección 2210 de control de terminal juzga si la medición de las condiciones ambientales se ha completado o no para todos los puntos de medición incluidos en la lista de puntos de medición. Cuando hay un punto de medición sin completar, se vuelve a la etapa S601 para repetir el mismo procesamiento. Después de completar la medición en todos los puntos de medición incluidos en la lista de puntos de medición, la medición de las condiciones ambientales se ha completado.
- 10 En los párrafos anteriores, se explica una operación para medir las condiciones ambientales del terminal móvil 2200 de sensor.
 - El terminal fijo 2100 de sensor puede medir las condiciones ambientales vecinas del propio terminal en sincronización con el terminal móvil 2200 de sensor, o puede medir las condiciones ambientales independientes del terminal móvil 2200 de sensor.
- 15 Como se ha mencionado anteriormente, según el Ejemplo 15, dado que el pequeño número de terminales fijos 2100 de sensor y terminales móviles 2200 de sensor están adaptados para medir las condiciones ambientales del espacio objeto de medición, es posible medir las condiciones ambientales en muchos puntos de medición sin aumentar los sensores instalados fijamente.
- Según el Ejemplo 15, la sección de posicionamiento inalámbrico 2213 detecta la posición en ese momento del terminal móvil 2200 de sensor utilizando la señal de comunicación inalámbrica entre el terminal fijo 2100 de sensor y el terminal móvil 2200 de sensor. El terminal móvil 2200 de sensor mide las condiciones ambientales utilizando los resultados de la detección para entender la posición del propio terminal.
 - De ese modo, sin necesidad de instalar otros dispositivos que sean una referencia de la posición en ese momento del terminal móvil 2200 de sensor, tal como un carril y un marcador, puede introducirse un sistema de medición ambiental con menor coste y con facilidad.
 - En general, la posición después de que un robot autopropulsado se mueve tiene un error frente a una posición de destino.
 - En el Ejemplo 15, dado que la posición del terminal móvil 2200 de sensor se detecta de manera inalámbrica, se puede captar correctamente un punto realmente medido al mantener las condiciones ambientales medidas y el punto de detección del terminal móvil 2200 de sensor aun cuando existen errores desde el punto de medición.
 - Es decir, la medición de las condiciones ambientales en una posición distinta de un punto predeterminado de medición tiene como resultado una medición correcta de las condiciones ambientales del área objeto de medición porque la propia relación de correspondencia no es errónea entre la posición y las condiciones ambientales.
- Al realizar una realimentación de la posición detectada para que se mueva al punto de medición, el terminal móvil 2200 de sensor puede ser movido correctamente al punto de medición.

Ejemplo 16

25

30

40

45

La Figura 26 es un diagrama de configuración de un sistema de medición ambiental del Ejemplo 16.

En el Ejemplo 16, el terminal fijo 2100 de sensor se instala en una posición en la que la medición de las condiciones ambientales se necesita para un período de tiempo mayor que en otros puntos de medición. El terminal móvil 2200 de sensor mide las condiciones ambientales en la posición de medición en caso de que no se necesite un período de tiempo mayor aparte de ese.

Por ejemplo, en un sistema de medición ambiental que mide la temperatura en el interior de un edificio, el movimiento de calor cerca de una ventana 2701 y una pasarela 2702 es grande, lo que exige la medición de las condiciones ambientales con un período de tiempo largo. Por el contrario, en la parte del piso distinta a esa, no se necesita una medición con un periodo de tiempo largo.

Por consiguiente, como se muestra en la Figura 26, el terminal fijo 2100 de sensor se instala en una posición vecina de la ventana 2701 o cerca de la pasarela 2702 en la que se necesita un periodo de tiempo largo. El terminal móvil 2200 de sensor mide las condiciones ambientales mientras se mueve en los puntos de medición aparte de esos.

Incluso cuando el terminal fijo 2100 de sensor y el terminal móvil 2200 de sensor miden las condiciones ambientales con sincronización, mientras que el terminal fijo 2100 de sensor mide de forma continua las condiciones ambientales

del mismo lugar, el terminal móvil 2200 de sensor mide las condiciones ambientales de una pluralidad de puntos de medición mientras se mueve.

Como resultado, el terminal fijo 2100 de sensor realiza la medición más frecuentemente del mismo punto de medición.

- Como se mencionó anteriormente, en la realización 16, el terminal fijo 2100 de sensor se instala en una posición en la que la medición se necesita para un período de tiempo mayor que en otros puntos de medición. El terminal móvil 2200 de sensor mide las condiciones ambientales en una posición en la que no se necesita un período de tiempo mayor.
- De este modo, no es necesario instalar el terminal fijo de sensor en todas las posiciones, lo que permite una medición eficaz de las condiciones ambientales, con menor número de terminales. Además, se puede configurar un sistema flexible según las exigencias del sistema.

Eiemplo 17

La Figura 27 es un diagrama de configuración de un sistema de medición ambiental del Ejemplo 17.

El sistema de medición ambiental según la realización 17 incluye cuatro o más terminales móviles 2200 de sensor.

La configuración del terminal móvil 2200 de sensor es la misma que en las realizaciones 15 y 16.

La Figura 28 es un diagrama que ilustra un estado en el que el terminal móvil 2200 de sensor cambia un papel del propio terminal.

En el Ejemplo 17, los terminales móviles 2200 de sensor detectan la posición entre sí para medir las condiciones ambientales durante la conmutación de dos papeles: un papel va a ser un objeto para mover y la detección de posición para moverse al punto de medición y el papel para designar una posición estándar para la detección de posición sin moverse.

En lo sucesivo, al terminal móvil 2200 de sensor que va a representar el papel anterior se le hace referencia como un terminal 2902 objeto de detección de posición y al terminal móvil 2200 de sensor que representa el último papel se le hace referencia como terminal estándar 2901 de detección de posición. La lista de puntos de medición para medir las condiciones ambientales y la posición inicial de cada terminal móvil 2200 de sensor se supone que se establece por adelantado.

La Figura 29 es un flujo de operaciones para que el terminal 2902 objeto de detección de posición mida condiciones ambientales.

Se darán unas descripciones para cada etapa de la Figura 29.

30 (S1001)

20

25

35

45

La etapa actual es la misma que la etapa S601 de la Figura 25.

(S1002)

La sección 2210 de control de terminal decide el terminal 2902 objeto de detección de posición y el terminal estándar 2901 de detección de posición aparte del mismo entre cada terminal móvil 2200 de sensor sobre la base de la posición del punto de medición decidido en la etapa S1001. En lo sucesivo el terminal 2902 objeto de detección de posición mide las condiciones ambientales del punto de medición decidido en la etapa S1001.

La sección 2210 de control del terminal hace que el terminal móvil 2200 de sensor más lejano del punto de medición decidido en la etapa S1001 terminal 2902 objeto de detección de posición, por ejemplo, y hace que los otros terminales móviles 2902 de sensor sean terminales estándar 2901 de detección de posición.

40 (S1003)

La sección de posicionamiento inalámbrico 2213 detecta la posición del terminal 2902 objeto de detección de posición. La detección de posición puede realizarse mediante transmisión y recepción de una señal de hallazgo de alcance entre el terminal 2902 objeto de detección de posición y el terminal estándar 2901 de detección de posición al igual que la detección de posición mediante la sección de posicionamiento inalámbrico 2213 en las realizaciones 15 y 16.

(S1004)

El terminal 2902 objeto de detección de posición se mueve al punto de medición que designa la sección 2214 de control de auto-posición según el mismo procedimiento que en la etapa S603 de la Figura 25.

(S1005)

Igual que la etapa S604 de la Figura 25.

(S1006)

5

15

20

35

45

Igual que la etapa S605 de la Figura 25.

Como se mencionó anteriormente, el sistema de medición ambiental según el Ejemplo 17 incluye cuatro o más terminales móviles 2200 de sensor. Los terminales móviles 2200 de sensor miden las condiciones ambientales del espacio objeto de medición mediante la detección de la posición entre sí para moverse mientras se conmutan los dos papeles del terminal 2902 objeto de detección de posición y el terminal estándar 2901 de detección de posición.

De ese modo, con menos terminales, se pueden medir las condiciones ambientales en varios puntos de medición.

Según el sistema de medición ambiental según el Ejemplo 17, sólo estableciendo el terminal móvil inicial 2200 de sensor, se pueden medir las condiciones ambientales del edificio y la fábrica que incluyen la información de posición. De este modo, el trabajo de establecimiento para la medición ambiental puede reducirse drásticamente.

El sistema de medición ambiental según el Ejemplo 17 está constituido solo por los terminales móviles 2200 de sensor. Sin embargo, la posición del terminal 2902 objeto de detección de posición puede ser detectada haciendo una configuración que incluya uno o dos terminales fijos 2100 de sensor para transmitir y recibir una señal de hallazgo de alcance entre el terminal 2902 objeto de detección de posición y el terminal fijo 2100 de sensor.

De ese modo, puede mejorarse la precisión de detección de posición del terminal 2902 objeto de detección de posición.

Se explica que en el ejemplo 17, hay cuatro o más terminales móviles 2200 de sensor. Sin embargo, si se permite poca precisión para la detección de posición del terminal móvil 2200 de sensor, se puede utilizar el mismo método que el explicado en el Ejemplo 17 incluso cuando hay tres o menos terminales móviles 2200 de sensor.

Ejemplo 18

En el Ejemplo 18, se explicará un ejemplo en el que un método de decisión del punto de medición se cambia en la etapa S1001 de la realización 17. En la realización 18, esas operaciones se realizan de la siguiente manera en la etapa S1001.

25 (S1001)

La sección 2210 de control de terminal calcula la distancia entre una posición del punto de medición en la que la medición de las condiciones ambientales no se ha completado entre la lista de puntos de medición y la posición en ese momento de cada terminal móvil 2200 de sensor.

A continuación, la sección 2210 de control terminal hace un punto de medición en el que por lo menos tres o más de las distancias calculadas son más pequeñas que un valor predeterminado que va a ser el siguiente punto de medición. El valor predeterminado es una distancia comunicable de la sección de comunicación inalámbrica 2211, por ejemplo.

Una decisión del siguiente punto de medición puede evitar el suceso de que el terminal 2902 objeto de detección de posición se mueva más allá de una distancia comunicable con el terminal estándar 2901 de detección de posición que provoque un fallo de detección de posición.

Cuando hay una pluralidad de puntos de medición que satisface la condición anterior, se calcula la posición del centro de gravedad de la posición en ese momento de cada terminal móvil 2200 de sensor. A continuación, se puede decidir el siguiente punto de medición como el punto de medición más cercano al centro de gravedad entre una pluralidad de puntos de medición que satisfacen la condición anterior.

40 De ese modo, pueden medirse las condiciones ambientales a partir del punto próximo al terminal móvil 2200 de sensor, lo que posibilita reducir el tiempo para medir la distancia en movimiento y las condiciones ambientales.

Ejemplo 19

En el Ejemplo 19, se explica un ejemplo en el que se cambia un método para detectar el terminal 2902 objeto de detección de posición y el terminal estándar 2901 de detección de posición en la etapa S1002 del Ejemplo 17. En el ejemplo 19, esas operaciones se realizan de la siguiente manera en la etapa S1002.

(S1002: 1)

La sección 2210 de control de terminal calcula la distancia entre una posición del punto de medición en la que la medición de las condiciones ambientales no se ha completado entre la lista de puntos de medición y la posición en ese momento de cada terminal móvil 2200 de sensor.

A continuación, la sección 2210 de control de terminal selecciona tres o más terminales móviles 2200 de sensor cuya distancia calculada es inferior a un valor predeterminado para hacer que sean los terminales estándar 2901 de detección de posición. Se hace que otros móviles terminales 2200 de sensor sean terminales 2902 objeto de detección de posición.

5 (S1002: 2)

10

25

35

Cuando hay una pluralidad de candidatos de combinación de los terminales estándar de detección de posición 2901, la sección 2210 de control de terminal puede hacer una combinación que tiene una alta precisión de detección de posición con una relación geométrica con cada punto de medición que va a ser terminal estándar de detección de posición 2901 y otros terminales móviles 2200 de sensor que van a ser terminales 2902 objeto de detección de posición.

Para un índice de evaluación de la selección de una combinación que tiene alta precisión de detección de posición, puede utilizarse GDOP (*Geometric Dilution of Precision*, dilución geométrica de precisión) que se utiliza en el campo de GPS (Sistema de Posicionamiento Global).

De ese modo, mejora la precisión de detección de posición del terminal 2902 objeto de detección de posición, consiguiendo la reducción de errores de posición con respecto al punto de medición en el que se miden las condiciones ambientales.

Se puede definir una función de evaluación mediante la combinación de un método para decidir el punto de medición descrito en el Ejemplo 18 y el método para decidir el terminal 2902 objeto de detección de posición y el terminal estándar 2901 de detección de posición del Ejemplo 19.

20 La sección 2210 de control del terminal selecciona un punto de medición que tiene el mayor valor de evaluación de la función de evaluación, el terminal 2902 objeto de detección de posición y el terminal estándar 2901 de detección de posición.

En este caso, además es posible evaluar integralmente la posición del punto de medición y la combinación del terminal objeto de detección de posición 2902 y el terminal estándar 2901 de detección de posición para mejorar la precisión de detección de posición.

Ejemplo 20

En los Ejemplos 15 a 19 anteriores, se supone preestablecida una lista de puntos de medición para medir las condiciones ambientales. En el Ejemplo 20, se explica un ejemplo de funcionamiento en el que la lista de puntos de medición se genera automáticamente.

30 El Ejemplo 20 está constituido por el terminal fijo 2100 de sensor y el terminal móvil 2200 de sensor como en las realizaciones 15 a 19. La configuración de cada terminal es la misma que en los Ejemplos 15 a 19.

La Figura 30 es un diagrama que muestra el estado en el que se divide un espacio objeto de medición.

En el ejemplo 20, el espacio objeto de medición se divide en forma de cuadrícula con un intervalo predeterminado. La lista de puntos de medición está constituida por puntos típicos 3101 de la zona (celda) dividida por cada cuadrícula. Por ejemplo, el típico punto 3101 es el centro de cada celda.

Al hacer que el punto típico 3101 de cada celda sea el punto de medición, no hay necesidad de configurar la lista de puntos de medición por separado, lo que hace que sea más simple el trabajo de preestablecimiento para comenzar la medición de las condiciones ambientales.

Entre las celdas en que se divide la forma de cuadrícula, el punto típico 3101 de la celda que excluye la celda en la que está instalado el terminal fijo 2100 de sensor puede ser el punto de medición. De ese modo, se puede evitar una superposición del punto de medición, lo que permite una medición eficiente de las condiciones ambientales.

En la etapa para decidir el siguiente punto de medición (etapa S601 o S1001) en las realizaciones 15 al 19, se puede definir un intervalo predeterminado entre los puntos de medición en lugar de seleccionar el siguiente punto de medición de una lista preestablecida de puntos de medición.

45 En este caso, la sección 2210 de control de terminal calcula la posición que es desplazada un intervalo predeterminado desde el punto de medición medido en la etapa anterior.

De este modo, se exhibe el mismo efecto que en el Ejemplo 20 al calcular de manera secuencial el siguiente punto de medición en lugar de preestablecer la lista de puntos de medición.

En la etapa (S601 o S1001) para decidir el siguiente punto de medición en los Ejemplos 15 al 19, el siguiente punto de medición se puede definir por una decisión de dirección de movimiento aleatoria y cantidad de movimiento

mediante generación pseudoaleatoria de números y similares para seguir la dirección de movimiento y una cantidad de movimiento.

En este caso, mediante una medición aleatoria mientras se detecta la posición del terminal móvil 2200 de sensor por comunicación móvil, es posible medir minuciosamente de forma autónoma todo el espacio objeto de medición en lugar de preconfigurar la lista de puntos de medición,

Ejemplo 21

5

En el Ejemplo 21, se explica un ejemplo de configuración del terminal móvil 2200 de sensor. Otras configuraciones son las mismas que en las realizaciones 15 a 20.

La Figura 31 es un diagrama de configuración del terminal móvil 2200 de sensor del Ejemplo 21.

10 El terminal móvil 2200 de sensor según la realización 21 incluye un carro móvil 3201, un módulo de control 3202, una mesa de apoyo 3203 y un módulo de sensor 3204.

El carro móvil 3201 incluye unos medios para moverse en un plano de dos dimensiones, por ejemplo, una rueda.

La sección 2210 de control de terminal y la sección de comunicaciones inalámbricas 2211 están incorporadas en el módulo de control 3202.

15 La mesa de apoyo 3203 es un pedestal con forma de barra instalado verticalmente en el carro móvil 3201.

El módulo de sensor 3204 alberga la sección de medición ambiental 2212 y uno o una pluralidad de los mismos se instala a lo largo de la mesa de apoyo 3203.

Al configurar el terminal móvil 2200 de sensor igual en los puntos anteriores, es posible medir simultáneamente las condiciones ambientales en la dirección de la altura, lo que le permite una medición más detallada de las condiciones ambientales.

De la misma manera, al igual que el terminal fijo 2100 de sensor, se puede proporcionar una mesa de apoyo con forma de barra y sobre ella se puede instalar una pluralidad de módulos de sensor. De ese modo, es posible una medición más detallada de las condiciones ambientales para la ubicación de la instalación del terminal fijo 2100 de sensor.

25 Ejemplo 22

20

30

40

La Figura 32 es un diagrama de configuración de un sistema de gestión de instalaciones del Ejemplo 22.

El sistema de gestión de instalaciones según la realización 22 incluye un aparato 3300 de gestión de instalaciones además del sistema de medición ambiental según los Ejemplos 15 a 21.

El aparato 3300 de gestión de instalaciones incluye una sección 3301 de gestión de instalaciones y una sección de comunicación inalámbrica 3302.

En el Ejemplo 22, el aparato 3300 de gestión de instalaciones obtiene datos de medición medidos por el sistema de medición ambiental a través de la sección de comunicación inalámbrica 3302. La sección 3301 de gestión de instalaciones controla los equipos de las instalaciones tal como el aire acondicionado y la iluminación sobre la base de los datos de medición.

Como se ha mencionado anteriormente, según el Ejemplo 22, menos terminales de sensor miden una gran cantidad de condiciones ambientales, lo que permite el control de equipos de instalaciones sobre la base de los resultados de la medición.

De ese modo, los equipos de las instalaciones se pueden controlar de manera más minuciosa, tal que la temperatura y la iluminación se ajustan a los gustos personales y los equipos de las instalaciones se controlan con gran ahorro de energía según una distribución muy fina de la temperatura en el espacio.

Ejemplo 23

En los Ejemplos 15 a 22 anteriores, el terminal fijo 2100 de sensor y el terminal móvil 2200 de sensor pueden utilizar una señal inalámbrica de impulsos de banda ultra ancha que transmite una señal de impulso en el momento de transmitir la señal de petición de hallazgo de alcance y la señal de respuesta de hallazgo de alcance.

De ese modo, el tiempo de respuesta puede medirse con exactitud, lo que permite detectar una distancia entre terminales y una posición de terminal con más exactitud.

ES 2 604 337 T3

En los Ejemplos anteriores 15 a 22, la distancia entre terminales y la posición de terminal pueden calcularse sobre la base de la intensidad de una onda de radio recibida de la comunicación inalámbrica entre el terminal móvil 2200 de sensor y el terminal fijo 2100 de sensor.

Como alternativa, en los Ejemplos 15 a 22 anteriores, la distancia entre terminales y la posición de terminal se pueden detectar utilizando una diferencia de tiempo entre la recepción de la señal de petición de hallazgo de alcance del terminal móvil 2200 de sensor por cada uno de una pluralidad de los terminales fijos 2100 de sensor, es decir, una diferencia del momento de transmisión de ondas de radio.

En los Ejemplos anteriores 15 a 22, se supone que la posición de los terminales fijos 2100 de sensor está preconfigurada, sin embargo, la posición relativa de los terminales fijos 2100 de sensor puede calcularse. Por ejemplo, se pueden utilizar los procedimientos de la siguiente manera.

En primer lugar, la distancia entre los terminales fijos 2100 de sensor se calcula sobre la base de la comunicación inalámbrica con el mismo método que en los puntos anteriores. La posición de los terminales fijos 2100 de sensor se detecta mediante la obtención de la posición relativa entre los terminales fijos 2100 de sensor. Sobre la base de la posición, se puede detectar la posición del terminal móvil 2200 de sensor.

En los Ejemplos anteriores 15 a 22, la posición del terminal móvil 2200 de sensor puede ser detectada mediante la instalación de una pluralidad de terminales móviles 2200 de sensor para utilizar la señal de hallazgo de alcance entre cada terminal móvil 2200 de sensor y el terminal fijo 2100 de sensor.

Ejemplo 24

10

En las realizaciones anteriores 15 a 23, se configura para que la sección de posicionamiento inalámbrico 2213 esté incluida en el terminal móvil 2200 de sensor para detectar la posición del mismo, sin embargo, la presente invención no se limita a la configuración anterior.

Por ejemplo, en lugar del terminal móvil 2200 de sensor, cualquiera de los terminales fijos 2100 de sensor puede incluir la sección de posicionamiento inalámbrico 2213.

En este caso, la información, tal como la intensidad de una onda de radio recibida, el tiempo de propagación de las ondas de radio y una diferencia de tiempo de propagación de ondas de radio, se transmite desde el terminal móvil 2200 de sensor al terminal fijo 2100 de sensor. La sección de posicionamiento inalámbrico 2213 del terminal fijo 2100 de sensor detecta la posición del terminal móvil 2200 de sensor sobre la base de la información.

Como alternativa, en los Ejemplos anteriores 15 a 23, el terminal fijo 2100 de sensor puede medir la intensidad de ondas de radio recibidas, el tiempo de propagación de ondas de radio, y la diferencia de tiempo de propagación de ondas de radio por la comunicación inalámbrica con el terminal móvil 2200 de sensor.

El terminal fijo 2100 de sensor transmite los valores de medición a otros terminales que tienen la sección de posicionamiento inalámbrico 2213. La sección de posicionamiento inalámbrico 2213 del terminal que recibió la información detecta la posición del terminal móvil 2200 de sensor.

En los Ejemplos anteriores 15 a 23, un aparato de gestión central (no se muestra) y similares que tienen una sección de comunicación inalámbrica pueden incluir la misma función aparte del terminal fijo 2100 de sensor y el terminal móvil 2200 de sensor, por ejemplo.

En este caso, el aparato de gestión central y similares pueden estar adaptados para detectar la posición del terminal móvil 2200 de sensor o para transmitir el punto de medición cuyas condiciones ambientales se han de medir junto al terminal móvil 2200.

40

REIVINDICACIONES

- 1. Un sistema de posicionamiento de terminales inalámbricos que incluye una pluralidad de terminales inalámbricos (200a 200j) y un terminal de gestión de posicionamiento (100) que gestiona el posicionamiento de dichos terminales inalámbricos (200a 200j), en donde
- 5 dicho terminal de gestión de posicionamiento (100) incluye:
 - una sección (130) de decisión de objeto de posicionamiento que selecciona un terminal a posicionar que es un objeto de posicionamiento y terminales estándar de posicionamiento del número de N+1 cuyas posiciones se conocen, de dichos terminales inalámbricos (200a 200j), siendo N un número que muestra una dimensión de una posición a calcular;
- una sección de gestión de posicionamiento (120) que requiere información de distancia (705) entre dicho terminal a posicionar y los terminales estándar de posicionamiento;
 - una sección de cálculo de posición (140) que calcula la posición de dicho terminal a posicionar; y
 - una sección de almacenamiento (150) que mantiene una lista (703) de terminales adyacentes que muestra terminal o terminales adyacentes a los que llega cada señal inalámbrica de cada terminal inalámbrico (200a 200j),
- dichos terminales inalámbricos (200a 200j) incluyen
 - una sección de medición de distancia (220) que mide únicamente distancias entre el terminal a posicionar y los terminales estándar de posicionamiento seleccionados por la sección (130) de decisión de objeto de posicionamiento y
- una sección de comunicación (210) que transmite resultados de medición de dicha sección de medición de distancia (220) a dicho terminal de gestión de posicionamiento (100);

en donde

- dicha sección de gestión de posicionamiento requiere información de distancia (705) desde dichos terminales estándar de posicionamiento seleccionados por dicha sección (130) de decisión de objeto de posicionamiento a dicho terminal a posicionar seleccionado por dicha sección (130) de decisión de objeto de posicionamiento,
- dicha sección de cálculo de posición (140) calcula la posición de dicho terminal a posicionar usando la información de distancia (705) e información de posición (702) de dichos terminales estándar de posicionamiento,
 - dicha sección (130) de decisión de objeto de posicionamiento selecciona repetidamente dicho terminal a posicionar y dichos terminales estándar de posicionamiento hasta que dicha sección de cálculo de posición (140) calcula posiciones de todos los terminales inalámbricos (200a 200j),
- dicha sección de gestión de posicionamiento requiere la información de distancia (705) entre dicho terminal a posicionar y dichos terminales estándar de posicionamiento para cada selección repetida, y
 - cada terminal inalámbrico (200a 200j) incluye una sección (240) de búsqueda de terminales adyacentes que busca los terminales adyacentes a los que llegan sus señales inalámbricas,
- dicho terminal de gestión de posicionamiento (100) requiere una lista (703) de terminales adyacentes del terminal inalámbrico (200a 200j) a dicho terminal inalámbrico (200a 200j),
 - dicha sección (240) de búsqueda de terminales adyacentes busca los terminales adyacentes del terminal inalámbrico bajo la solicitud de transmitir la lista resultante de terminales adyacentes a dicho terminal de gestión de posicionamiento (100),
- dicho terminal de gestión de posicionamiento (100) almacena la lista (703) de terminales adyacentes en dicha sección de almacenamiento, y
 - dicha sección (130) de decisión de objeto de posicionamiento selecciona dichos terminales estándar de posicionamiento del número N+1 cuyas posiciones son conocidas de los terminales inalámbricos (200a 200j) contenidos en la lista (703) de terminales adyacentes sobre la base de una función de evaluación usando únicamente la información de posición (702) definida de los terminales inalámbricos contenidos en la lista de terminales adyacentes, o una función de evaluación usando la información de posición (702) definida de los terminales inalámbricos contenidos en la lista adyacente, el número de los terminales adyacentes cuya información de posición ha sido definida y la información de distancia (705) obtenida entre los terminales inalámbricos que serán los candidatos.
 - 2. El sistema de posicionamiento de terminales inalámbricos de la reivindicación 1, en donde

cada terminal inalámbrico obtiene la lista de terminales adyacentes a través de comunicación mutua.

- 3. El sistema de posicionamiento de terminales inalámbricos de cualquiera de las reivindicaciones 1 a 2, en donde
- dicha sección de almacenamiento almacena información de posición (702) de dicho terminal inalámbrico (200a 200j) e información de distancia (705) desde dicho terminal inalámbrico (200a 200j) a dicho terminal adyacente, y

dicha sección (130) de decisión de objeto de posicionamiento calcula un valor de índice de precisión de dicha información de posición (702) sobre la base de dicha información de posición (702) y dicha información de distancia (705).

- 4. El sistema de posicionamiento de terminales inalámbricos de la reivindicación 3, en donde
- dicha sección (130) de decisión de objeto de posicionamiento calcula una distancia entre una posición mostrada por la información de posición (702) de dicho terminal inalámbrico (200a 200j) y una posición mostrada por la información de posición (702) de dicho terminal adyacente del terminal inalámbrico (200a 200j) sobre la base de cada información de posición (702), y
- obtiene información de distancia (705) desde el terminal inalámbrico (200a 200j) a dicho terminal adyacente desde dicha sección de almacenamiento para calcular un valor de índice de precisión de dicha información de posición (702) sobre la base de una diferencia de ambas.
 - 5. El sistema de posicionamiento de terminales inalámbricos de la reivindicación 3 o 4, en donde

- dicha sección (130) de decisión de objeto de posicionamiento selecciona dicho terminal a posicionar o dicho terminal estándar de posicionamiento de modo que el valor de índice de precisión de dicha información de posición (702) se vuelve el más alto.
- 6. El sistema de posicionamiento de terminales inalámbricos de cualquiera de las reivindicaciones 1 a 5, en donde
- dicha sección de gestión de posicionamiento requiere información de distancia (705) entre el terminal inalámbrico (200a 200j) y el terminal adyacente a dicho terminal inalámbrico (200a 200j),
- dicha sección de cálculo de posición (140) calcula una posición relativa del terminal inalámbrico usando la información de distancia (705).
 - 7. El sistema de posicionamiento de terminales inalámbricos de cualquiera de las reivindicaciones 1 a 6, en donde,
- después de que dicha sección de cálculo de posición (140) calcule posiciones de todos dichos terminales inalámbricos (200a 200j), dicha sección de gestión de posicionamiento requiere a cualquiera de dichos terminales inalámbricos (200a-200j) información de distancia (705) desde otros terminales inalámbricos (200a 200j), y
 - dicha sección de cálculo de posición (140) recalcula posiciones de dichos terminales inalámbricos (200a 200j) usando la información de distancia (705).
- 8. El sistema de posicionamiento de terminales inalámbricos de cualquiera de las reivindicaciones 1 a 7, en donde
 - dicho terminal de gestión de posicionamiento (100) incluye una segunda sección de posicionamiento de distancia que mide la distancia desde un terminal adyacente al que llegan señales inalámbricas del terminal pertinente de gestión de posicionamiento, y
- dicha sección de cálculo de posición (140) calcula la posición del terminal de gestión de posicionamiento usando información de distancia (705) medida por dicha segunda sección de medición de distancia (220) e información de posición (702) de dicho terminal estándar de posicionamiento.
 - 9. El sistema de posicionamiento de terminales inalámbricos de cualquiera de las reivindicaciones 1 a 8, en donde
- dicho terminal de gestión de posicionamiento (100) incluye una segunda sección de búsqueda de terminal adyacente que busca el terminal adyacente al que llega su señal inalámbrica, y
 - dicha segunda sección de búsqueda de terminal adyacente almacena la lista (703) de terminales adyacentes obtenida al buscar en dicha sección de almacenamiento.
 - 10. El sistema de posicionamiento de terminales inalámbricos de cualquiera de las reivindicaciones 1 a 9, en donde

ES 2 604 337 T3

dicha sección de medición de distancia (220) mide la distancia entre dichos terminales inalámbricos (200a - 200j) usando un tiempo de propagación de onda de radio de la señal inalámbrica.

- 11. El sistema de posicionamiento de terminales inalámbricos de la reivindicación 10, en donde
- dicha sección de comunicación (110, 210) usa una señal de banda ultraancha que transmite una señal de impulsos para la señal inalámbrica en uso cuando dicha sección de medición de distancia (220) mide la distancia entre dichos terminales inalámbricos (200a 200j).
 - 12. El sistema de posicionamiento de terminales inalámbricos de cualquiera de las reivindicaciones 1 a 11, en donde

dicha sección de comunicación (110, 210) realiza comunicación de múltiples saltos.

FIG. 1

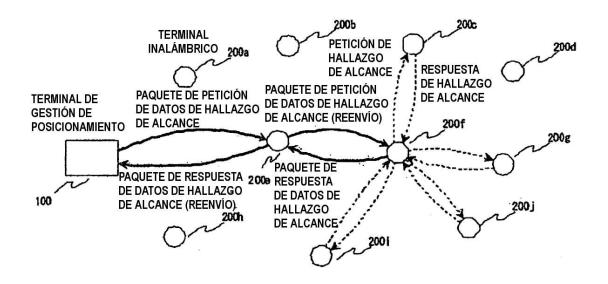


FIG. 2

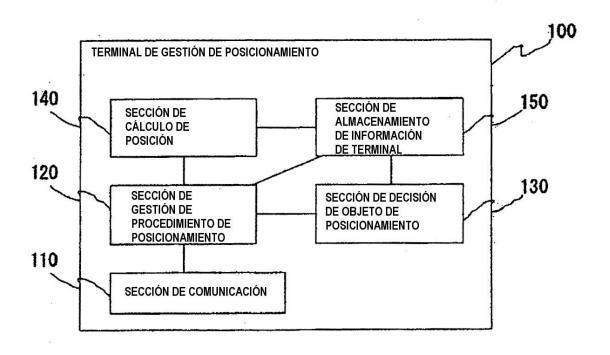


FIG. 3

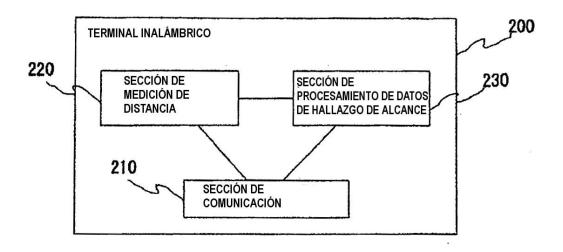
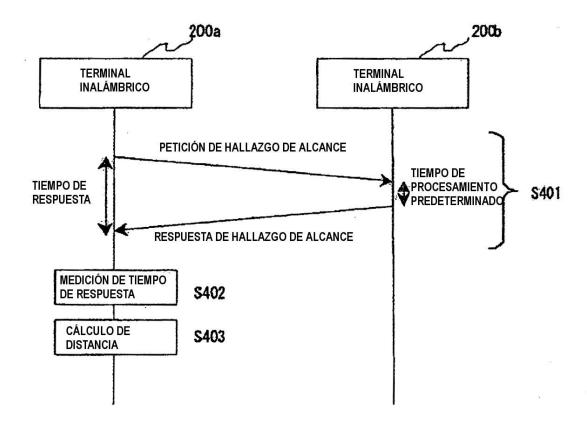



FIG. 4

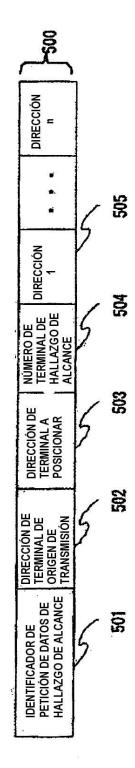


FIG. 5

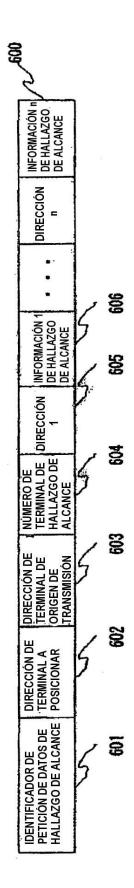


FIG. 6

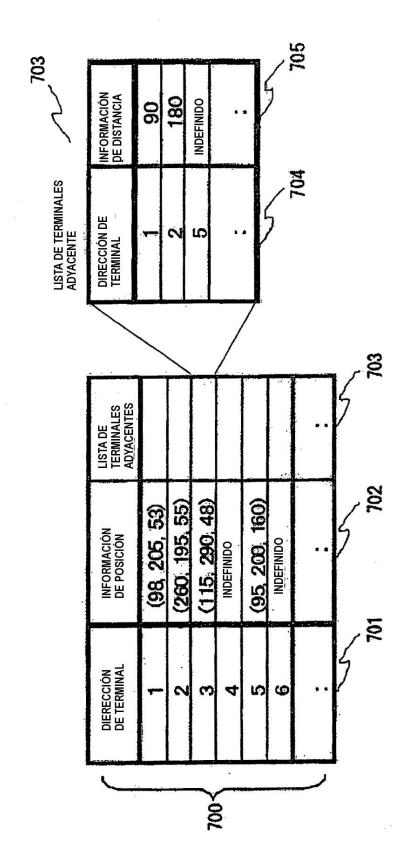
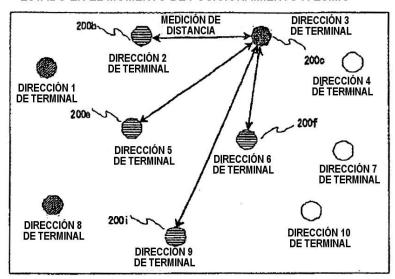
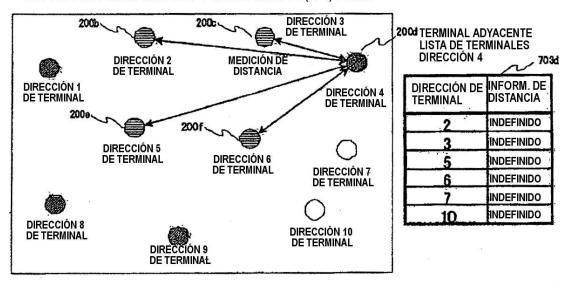



FIG. 7


FIG. 8

<ESTADO EN EL MOMENTO DE POSICIONAMIENTO K-ÉSIMO>

TERMINAL ADYACENTE LISTA DE TERMINALES DIRECCIÓN 3 7030	
DIRECCIÓN DE TERMINAL	INFORM. DE DISTANCIA
2	INDEFINIDO
4	INDEFINIDO
5	INDEFINID
6	INDEFINIDO
7	INDEFINIDO
9.	INDEFINIDO
10	INDEFINIDO

<ESTADO EN EL MOMENTO DE POSICIONAMIENTO (K+1)-ÉSIMO>

TERMINAL DE COMUNICACIÓN INALÁMBRICA CON POSICIÓN INDEFINIDA

TERMINAL DE COMUNICACIÓN INALÁMBRICA CON POSICIÓN DEFINIDA

TERMINAL DE COMUNICACIÓN INALÁMBRICA CON POSICIÓN INDEFINIDA (SELECCIONADO COMO TERMINAL A POSICIONAR)

TERMINAL DE COMUNICACIÓN INALÁMBRICA CON POSICIÓN DEFINIDA (SELECCIONADO COMO TERMINAL A POSICIONAR)

FIG. 9

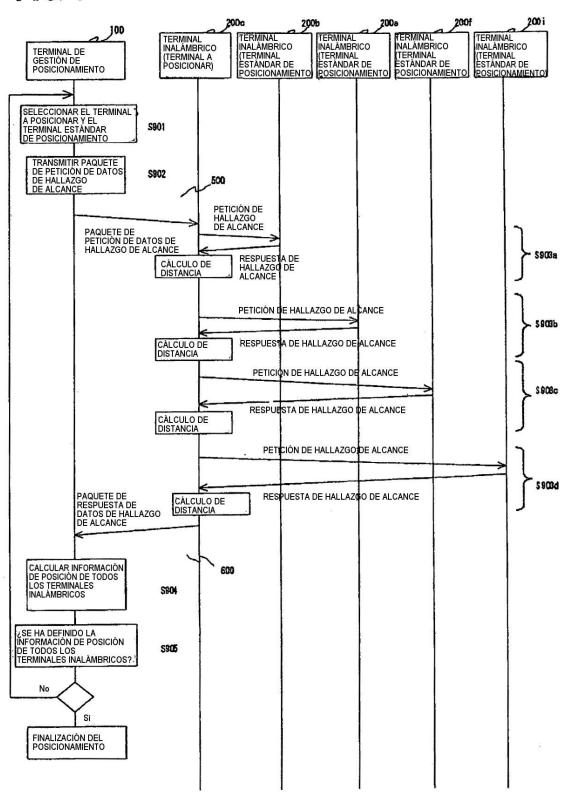


FIG. 10

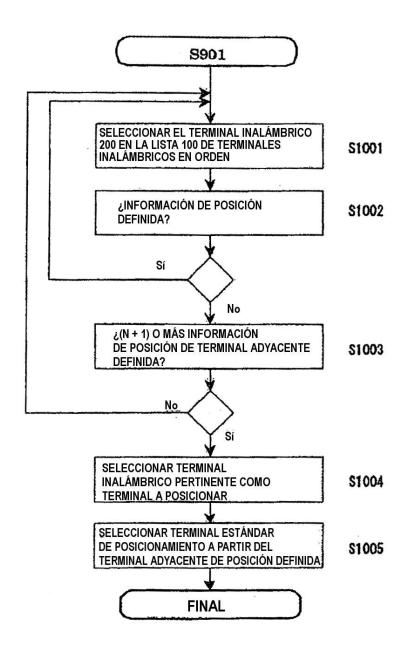


FIG. 11

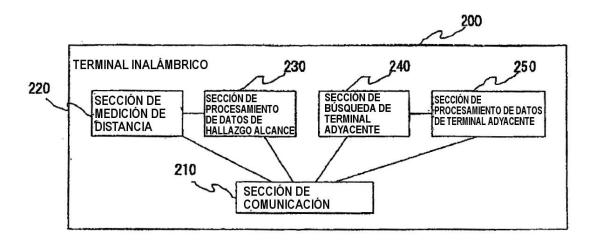


FIG. 12

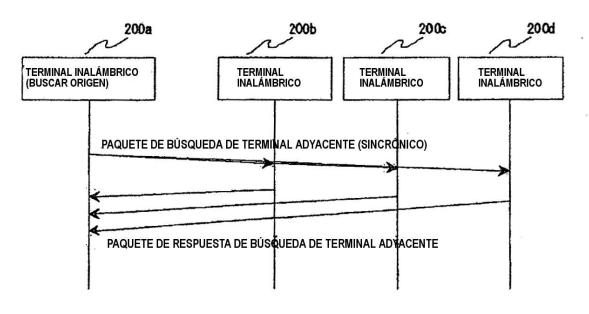
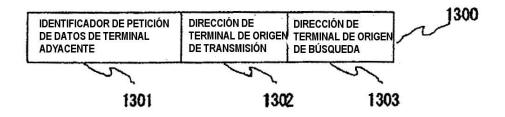



FIG. 13

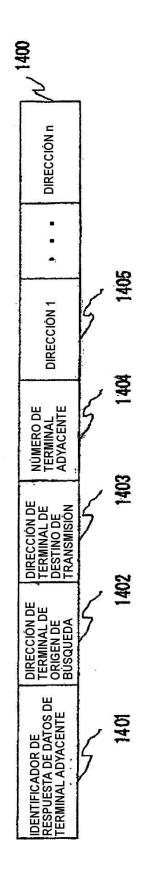
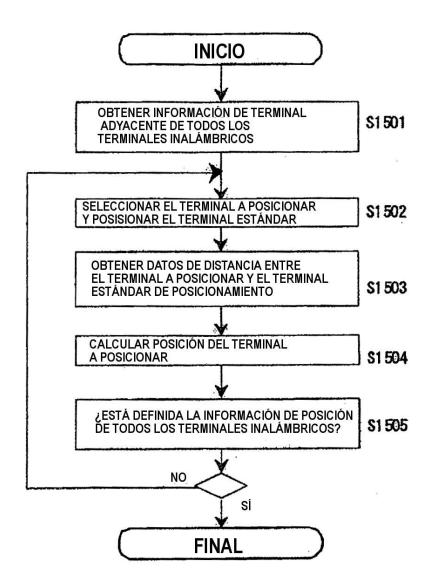



FIG. 1

FIG. 15

FIG. 16

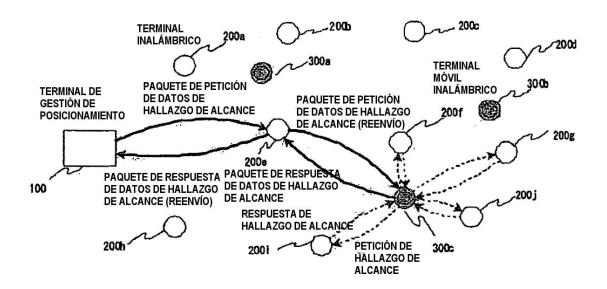


FIG. 17

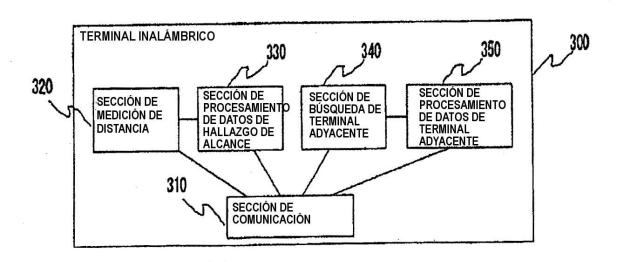


FIG. 18

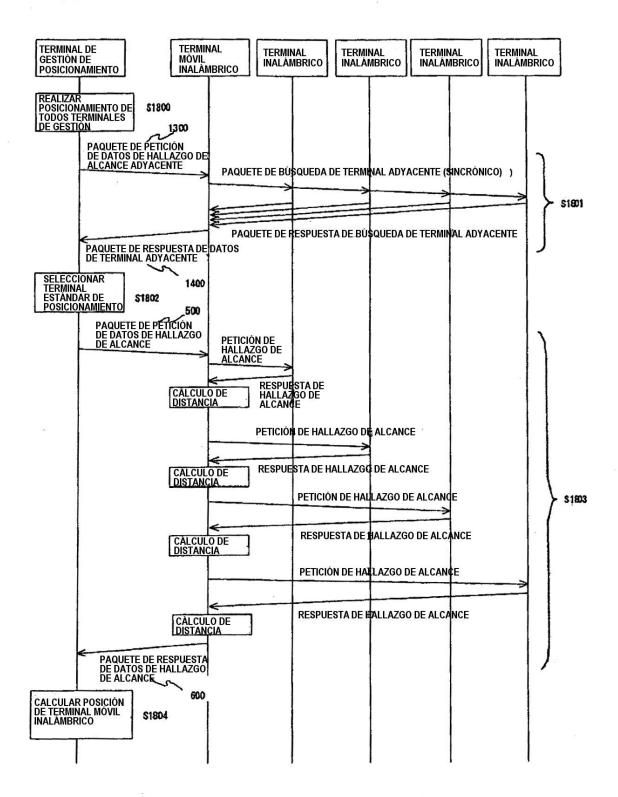


FIG. 19 200a 200d 200b 200c TERMINAL DE GESTIÓN DE POSICIONAMIENTO TERMINAL INALÁMBRICO TERMINAL INALÁMBRICO TERMINAL INALÁMBRICO TERMINAL INALÁMBRICO PAQUETE DE PETICIÓN DE DATOS DE HALLAZGO DE ALCANCE PETICIÓN DE HALLAZGO DE ALCANCE RESPUESTA DE HALLAZGO DE ALCANCE CÁLCULO DE DISTANCIA PETICIÓN DE HALLAZGO DE ALCANCE \$1901 CALCULO DE DISTANCIA RESPUESTA DE HALLAZGO DE ALCANCE CÁLCULO DE DISTANCIA PAQUETE DE RESPUESTA DE DATOS DE HALLAZGO DE ALCANCE 600 **/500** PAQUETE DE PETICIÓN DE DATOS DE HALLAZGO DE ALCANCE CÁLCULO DE DISTANCIA S1902 /600 CÁLCULO DE DISTANCIA PAQUETE DE RESPUESTA DE DATOS DE HALLAZGO DE ALCANCE PAQUETE DE PETICIÓN DE DATOS DE HALLAZGO DE ALCANCE \$1903 600 CÁLCULO DE DISTANCIA PAQUETE DE RESPUESTA DE DATOS DE HALLAZGO DE ALCANCE CALCULAR POSICIÓN RELATIVA \$1904

FIG. 20

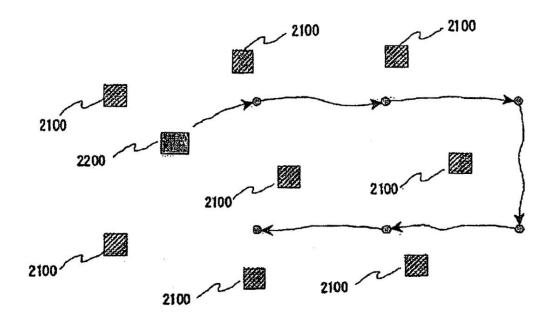


FIG. 21

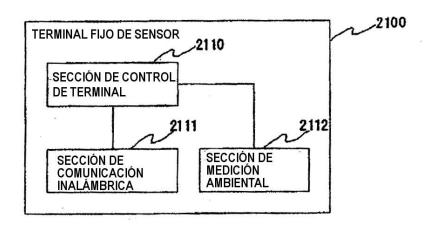


FIG. 22

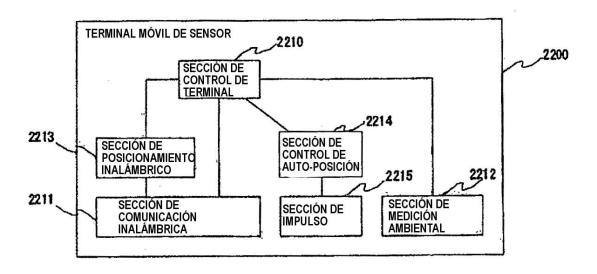


FIG. 23

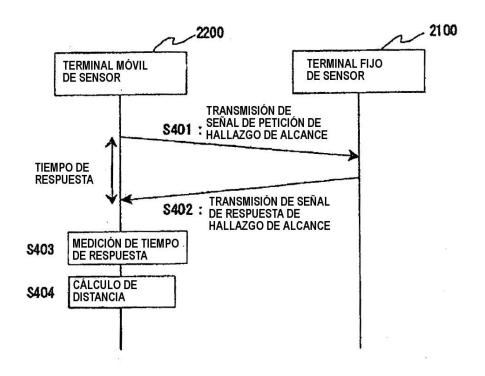


FIG. 24

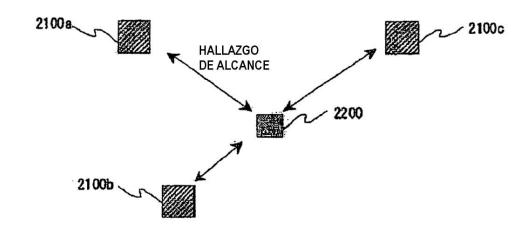


FIG. 25

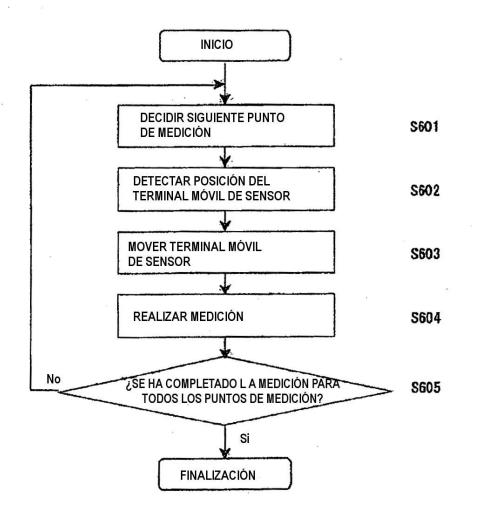


FIG. 26

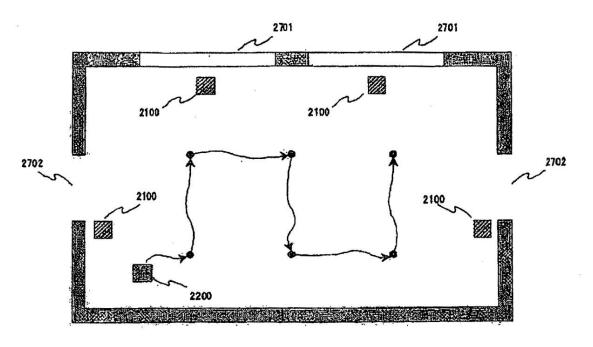


FIG. 27

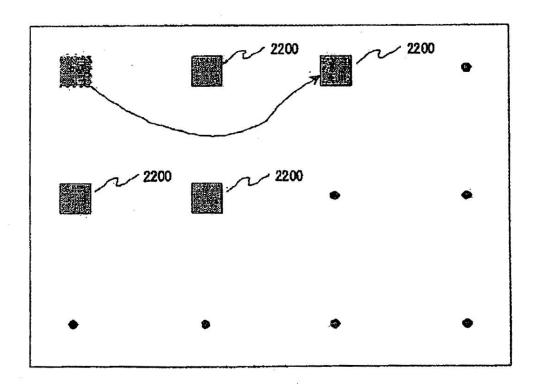


FIG. 28

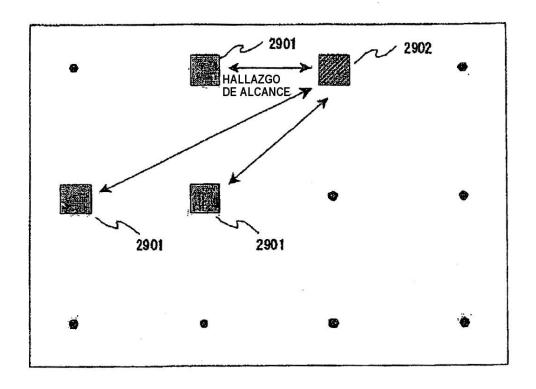


FIG. 29

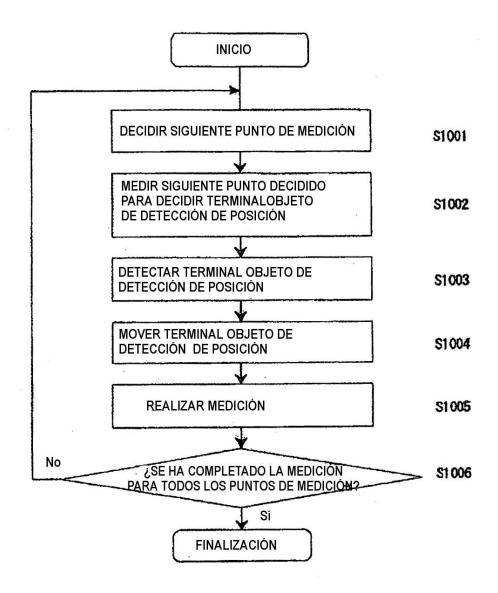


FIG. 30

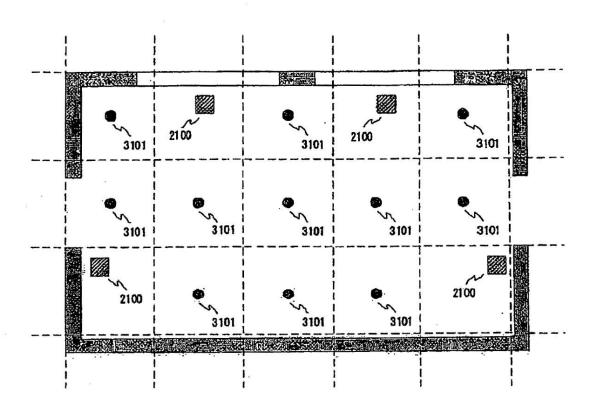


FIG. 31

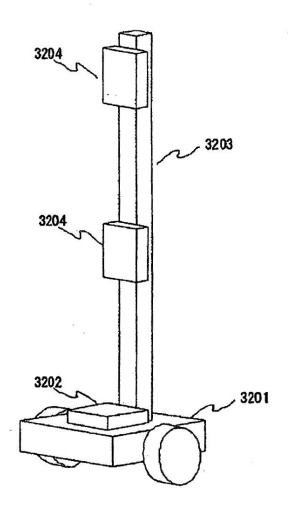
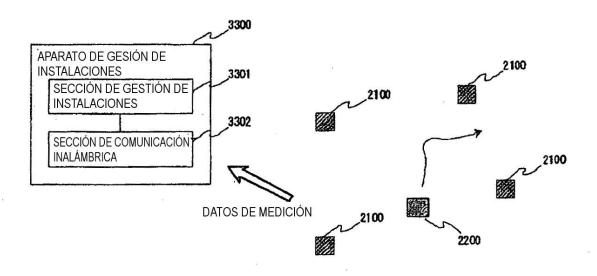



FIG. 32

