

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 604 347

51 Int. Cl.:

A61M 5/00 (2006.01) A61M 5/20 (2006.01) A61M 5/142 (2006.01) A61M 5/168 (2006.01)

A61M 5/168

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 21.11.2012 PCT/CN2012/084936

(87) Fecha y número de publicación internacional: 30.05.2013 WO13075622

96 Fecha de presentación y número de la solicitud europea: 21.11.2012 E 12851161 (5)

Fecha y número de publicación de la concesión europea: 14.09.2016 EP 2783718

54 Título: Bomba de jeringa y su sistema de accionamiento

(30) Prioridad:

21.11.2011 CN 201110411448

Fecha de publicación y mención en BOPI de la traducción de la patente: **06.03.2017**

(73) Titular/es:

ZENSUN (SHANGHAI) SCIENCE & TECHNOLOGY, CO., LTD. (100.0%) No. 68 Ju Li Road, Zhangjiang Hi-Tech Park Pudong, Shanghai 201203, CN

(72) Inventor/es:

ZHOU, MINGDONG

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Bomba de jeringa y su sistema de accionamiento

Esta solicitud reivindica la prioridad de la solicitud de patente china número 201110411448.9, presentada en la Oficina de Patentes China el 21 de noviembre de 2011, titulada "DRIVE SYSTEM OF PORTABLE SYRINGE PUMP".

Campo de la invención

5

20

25

30

35

40

50

La presente invención se refiere al campo técnico de los dispositivos médicos, y en particular a una bomba de jeringa y su sistema de accionamiento.

Antecedentes de la invención

Las bombas de jeringa son dispositivos de ayuda a la infusión utilizados comúnmente en las clínicas, que se usan principalmente para la infusión precisa de ciertos medicamentos particulares o medicamentos de alto riesgo, y se pueden usar para hacer que un cierto valor del índice de un paciente se mantenga constante o usar para la administración continua de medicamentos a fin de conseguir un mejor efecto de la administración. Por ejemplo, un dispositivo de suministro de medios de infusión se describe en el documento WO 2008/024814 A2. Los dispositivos crean una condición ventajosa para la administración a pacientes de primeros auxilios, pacientes enfermos críticos, pacientes y niños particulares, y mejoran el rendimiento del personal médico. Sin embargo, se debería prestar atención a un producto tal que influye directamente en la seguridad y eficacia de la administración para los pacientes, si ocurriera un control anormal del caudal de infusión.

Desde 2002 al final de 2010, el *National Center for ADR Monitoring*, China, había recibido 575 *Reports on Suspicious Adverse Event of Medical Device* (Informes sobre casos perjudiciales sospechosos de dispositivos médicos) que se referían a bombas de infusión y bombas de jeringa en conjunto, en los que 216 informes estaban relacionados con bombas de jeringa. Estos casos perjudiciales incluyen principalmente: el control anormal del caudal de infusión, el fallo al bombear fluidos médicos, la detención del sistema, las fugas de las líneas de infusión, y así sucesivamente. Entre estos, hay 216 informes que muestran un caudal anormal de infusión, en los que 61 informes están relacionados con bombas de jeringa (representan el 28% de los informes totales sobre bombas de jeringa).

Un régimen de infusión demasiado rápido puede causar una sobredosis y, así, la aparición de toxicidad, mientras que un régimen de infusión demasiado lento puede causar una dosis de medicamento excesivamente pequeña, que es escasa para el efecto terapéutico. El control impreciso del régimen de la bomba de jeringa puede estar asociado con el software y el tipo, el comportamiento, etc. de los elementos consumibles relacionados (líneas de infusión y jeringas) utilizados. Otra razón muy importante puede ser que el sistema de monitorización diseñado para la bomba de jeringa sea inadecuado, de manera que no se pueda asegurar la precisión del caudal de infusión. Una bomba de jeringa disponible comercialmente tiene, en general, un dispositivo electrónico para detectar la condición de funcionamiento de un motor, en un extremo trasero del motor. Sin embargo, como el funcionamiento del motor requiere poner en marcha una barra empujadora de inyección mediante roscas de accionamiento de un reductor y del eje de salida del reductor, que experimenta una serie de conversiones de movimiento, un funcionamiento normal del motor no puede asegurar completamente un funcionamiento normal de la barra empujadora de inyección o la precisión de la administración y, así, siguen existiendo riesgos de seguridad potenciales.

Sumario de la invención

La presente invención proporciona un sistema de accionamiento de una bomba de jeringa, que puede asegurar la precisión de la administración. La presente invención proporciona también una bomba de jeringa que comprende el sistema de accionamiento descrito anteriormente.

El sistema de accionamiento de la bomba de jeringa según la presente invención comprende:

un manguito exterior, con una pared interior provista de una ranura para lámina resistiva y una ranura para lámina conductora, extendiéndose axialmente ambas ranuras;

una lámina resistiva dispuesta en la ranura para lámina resistiva y una lámina conductora dispuesta en la ranura para lámina conductora:

una barra empujadora de inyección dispuesta de modo deslizable en el manguito exterior, en el que un cierre hermético se mantiene entre la barra empujadora de inyección y la pared interior del manguito exterior, y una cavidad que tiene una abertura está dispuesta en la barra empujadora de inyección, estando la abertura de la cavidad dispuesta en un extremo trasero de la barra empujadora de inyección;

una lámina conductora de contacto elástica dispuesta fijamente sobre la barra empujadora de inyección, estando un extremo de la lámina conductora de contacto elástica en contacto con la lámina conductora y estando el otro extremo en contacto con la lámina resistiva; y

ES 2 604 347 T3

un dispositivo de accionamiento dispuesto en la cavidad y que acciona la barra empujadora de inyección para que se mueva hacia delante y hacia atrás.

Preferiblemente, el dispositivo de accionamiento comprende un motor dispuesto en la cavidad y conectado con el manguito exterior, un reductor conectado con el motor y un tornillo de avance conectado con el reductor; la pared interior de la cavidad está provista de roscas interiores que se extienden axialmente y que coinciden con el tornillo de avance; y la pared interior del manguito exterior está provista de un cuello limitador de rotación que se extiende axialmente, estando la barra empujadora de inyección provista de un pasador de antirrotación que coincide de modo deslizable con el cuello limitador de rotación.

Preferiblemente, unas patas fijas están dispuestas sobre la periferia exterior del motor y unos abultamientos anulares están dispuestos sobre la pared interior del manguito exterior, apoyándose los lados interiores de las patas fijas contra los abultamientos anulares; el sistema de accionamiento comprende también una cubierta interior que se apoya contra los lados exteriores de las patas fijas y una cubierta exterior que cubre la cubierta interior y está conectada fijamente con el manguito exterior, estando un sensor de presión dispuesto entre una parte superior de la cubierta interior y una parte superior de la cubierta exterior.

Preferiblemente, la lámina conductora de contacto elástica comprende una parte de casquillo conductora forrada sobre la periferia exterior de la barra empujadora de inyección y, al menos, dos partes de pin de contacto conductoras conectadas a la parte de casquillo conductora, en la que al menos una de las partes de pin de contacto conductoras contacta con la lámina resistiva y al menos una de las partes de pin de contacto conductoras contacta con la lámina conductora.

20 Preferiblemente, la periferia exterior del manguito exterior tiene una sección transversal de forma cuadrada.

Preferiblemente, un anillo de sellado está dispuesto entre una cabeza del manguito exterior y la barra empujadora de inyección.

Preferiblemente, un codificador para detectar el funcionamiento del motor está en un extremo trasero de dicho motor.

La presente invención proporciona también una bomba de jeringa que comprende cualquiera de los sistemas de accionamiento como se han descrito anteriormente.

En comparación con un sistema de accionamiento de una bomba de jeringa en la técnica anterior, en el sistema de accionamiento según la presente invención, la pared interior del manguito exterior está provista fijamente de la lámina resistiva y la lámina conductora, que se extienden axialmente, la barra empujadora de inyección es deslizable axialmente a lo largo del manguito exterior bajo el accionamiento del dispositivo de accionamiento, y la periferia exterior de la barra empujadora de inyección está provista de la lámina conductora de contacto elástica que permite que la lámina conductora y la lámina resistiva estén en comunicación conductora entre sí, de manera que a medida que se mueve la barra empujadora de inyección, varían continuamente ambas posiciones de contacto entre la lámina conductora de contacto elástica y la lámina resistiva, y varía continuamente, a su vez, la resistencia de la lámina resistiva a la lámina conductora, y la posición de la barra empujadora de inyección se puede conocer midiendo la resistencia entre la lámina resistiva y la lámina conductora. Por consiguiente, la presente invención puede controlar con precisión la cantidad de un fluido médico que infunde la barra empujadora de inyección, midiendo la resistencia entre la lámina resistiva y la lámina conductora.

40 La presente invención proporciona también una bomba de jeringa que comprende el sistema de accionamiento como se ha descrito anteriormente. De modo similar, la bomba de jeringa según la presente invención puede asegurar la precisión de la administración.

Breve descripción de los dibujos

La figura 1 es un diagrama esquemático que muestra una estructura exterior de un sistema de accionamiento según una realización de la presente invención;

la figura 2 es una vista en sección esquemática tomada por la línea A-A en la figura 1;

la figura 3 es un diagrama esquemático que muestra una estructura, en despiece ordenado, del sistema de accionamiento según una realización de la presente invención.

En las figuras 1-3:

50 manguito exterior - 11;

5

30

35

45

lámina resistiva - 12;

lámina conductora - 13:

```
barra empujadora de inyección - 14;
lámina conductora de contacto elástica - 15;
motor - 16;
reductor - 17;
5 tornillo de avance - 18;
cubierta interior - 19;
cubierta exterior - 20;
sensor de presión - 21.
```

Descripción detallada de realizaciones

15

20

25

30

Una realización según la presente invención proporciona específicamente un sistema de accionamiento de una bomba de jeringa, que puede asegurar la precisión de la administración. Esta realización proporciona también una bomba de jeringa que comprende el sistema de accionamiento descrito anteriormente.

La solución técnica en realizaciones de la presente invención ahora se describirá clara y completamente en lo que sigue con referencia a los dibujos, y es evidente que las realizaciones descritas son solamente una parte, no la totalidad, de las realizaciones de la presente invención. Todas las otras realizaciones que el experto en la técnica lleva a cabo a partir de estas realizaciones, sin salirse del espíritu y el alcance de la presente invención, estarían comprendidas dentro del alcance reivindicado de la invención.

Haciendo referencia a las figuras 1-3, el sistema de accionamiento de la bomba de jeringa según la realización comprende un manguito exterior 11, con una de sus paredes interiores que está provista de una ranura para lámina resistiva y una ranura para lámina conductora, extendiéndose axialmente ambas ranuras. Una lámina resistiva 12 está dispuesta en la ranura para lámina resistiva y una lámina conductora 13 está dispuesta en la ranura para lámina conductora.

El sistema de accionamiento comprende también una barra empujadora de inyección 14 dispuesta de modo deslizable en el manguito exterior 11. Un cierre hermético se mantiene entre la barra empujadora de inyección 14 y la pared interior del manguito exterior 11 a fin de impedir que se fugue fluido médico situado entre la barra empujadora de inyección 14 y la pared interior del manguito exterior 11. Una cavidad, que tiene una abertura situada en un extremo trasero de la barra empujadora de inyección 14, está dispuesta en dicha barra empujadora de inyección 14.

Una lámina conductora de contacto 15 elástica está fijada sobre la barra empujadora de inyección 14. Un extremo de la lámina conductora de contacto 15 elástica está en contacto con la lámina conductora 13 y el otro extremo en contacto con la lámina resistiva 12, de manera que se puede formar un bucle cerrado por la lámina resistiva 12, la lámina conductora de contacto 15 elástica y la lámina conductora 13.

El sistema de accionamiento comprende también un dispositivo de accionamiento dispuesto en la cavidad y que acciona la barra empujadora para que se mueva hacia delante y hacia atrás.

Como tal, en el sistema de accionamiento según la realización, la pared interior del manguito exterior 11 está provista fijamente de la lámina resistiva 12 y la lámina conductora 13, que se extienden axialmente, la barra empujadora de inyección 14 es deslizable axialmente a lo largo del manguito exterior 11 bajo el accionamiento del dispositivo de accionamiento, y la periferia exterior de la barra empujadora de inyección 14 está provista de la lámina conductora de contacto 15 elástica que permite que la lámina conductora 13 y la lámina resistiva 12 estén en comunicación conductora entre sí, de manera que a medida que se mueve la barra empujadora de inyección 14, varían continuamente ambas posiciones de contacto entre la lámina conductora de contacto 15 elástica y la lámina conductora 13 y entre la lámina conductora de contacto 15 elástica y la lámina resistiva 12, y varía continuamente, a su vez, la resistencia de la lámina resistiva 12 a la lámina conductora 13, y la posición de la barra empujadora de inyección 14 se puede deducir midiendo la resistencia entre la lámina resistiva 12 y la lámina conductora 13. Por consiguiente, la realización puede controlar con precisión la cantidad de un fluido médico que infunde la barra empujadora de invección 14, midiendo la resistencia entre la lámina resistiva 12 y la lámina conductora 13.

Se debe señalar que el dispositivo de accionamiento descrito anteriormente puede ser un dispositivo de accionamiento que sea capaz de proporcionar una fuerza de accionamiento lineal estable, tal como un motor lineal. Por ejemplo, el dispositivo de accionamiento descrito anteriormente puede estar configurado también como sigue.

50 El dispositivo de accionamiento comprende un motor 16 dispuesto en la cavidad y conectado con el manguito exterior 11, un reductor 17 conectado con el motor 16 y un tornillo de avance 18 conectado con el reductor 17.

Una pared interior de la cavidad del manguito exterior 11 está provista de roscas interiores que se extienden axialmente y que coinciden con el tornillo de avance 18; la pared interior del manguito exterior 11 está provista de un cuello limitador de rotación que se extiende axialmente y la barra empujadora de inyección 14 está provista de un pasador de antirrotación que coincide de modo deslizable con el cuello limitador de rotación.

- Como tal, la cavidad de la barra empujadora de inyección 14 puede actuar como un espacio motor en el que está instalado el motor 16, estando el reductor 17 conectado directamente con el motor 16, estando un eje de salida del reductor 17 conectado con el tornillo de avance 18, y la barra empujadora de inyección 14 está provista de roscas interiores en la misma. Las roscas interiores de la barra empujadora de inyección 14 coinciden con roscas del tornillo de avance 18, y el pasador de antirrotación está dispuesto en el exterior de la barra empujadora de inyección 14 y coincide de modo deslizable con el cuello limitador de rotación en el manguito exterior 11; una cabeza del manguito exterior 11 puede estar provista de un anillo de sellado forrado sobre la barra empujadora de inyección 14, consiguiendo por ello el cierre hermético entre el manguito exterior 11 y la barra empujadora de inyección 14. La barra empujadora de inyección 14 puede deslizar en la cavidad del manguito exterior 11 a lo largo del cuello limitador de rotación.
- El manguito exterior 11 está situado fuera de la barra empujadora de inyección 14 y el cuello limitador de rotación está situado dentro del manguito exterior 11, y coincidiendo con el pasador de antirrotación de la barra empujadora de inyección 14, de manera que cuando gira el tornillo de avance 18, la barra empujadora de inyección 14 no girará con el tornillo de avance 18, sino que deslizará a lo largo del cuello limitador de rotación. Al menos una lámina resistiva 12 está dispuesta sobre una superficie interior del manguito exterior 11 a lo largo de una dirección paralela a la ranura para lámina resistiva, y la lámina resistiva 12 puede estar conectada fijamente con un electrodo fuera del manguito exterior 11 a través de una abertura para electrodo en el manguito exterior 11.

En funcionamiento, cuando el motor 16 acciona de manera efectiva el reductor 17, el eje de salida de dicho reductor 17 permite accionar roscas sobre el tornillo de avance 18 para hacer que la barra empujadora de inyección 14 se mueva hacia delante, de manera que un medicamento en un depósito se infunde periódica y cuantitativamente hacia dentro del cuerpo humano mediante un dispositivo usual de infusión. Cuando el motor 16 acciona en sentido opuesto el reductor 17, las roscas de accionamiento hacen que la barra empujadora de inyección 14 se mueva hacia atrás y vuelva a su posición original, es decir, se reajusta el motor 16.

25

35

40

50

55

En tal configuración, el sistema de accionamiento según la realización es compacto, pequeño, ligero y fácil de usar.

Además, en una implementación preferida de la realización, a fin de controlar eficazmente una fuerza de empuje de la barra empujadora de inyección 14, se puede disponer además un sensor de presión 21, cuya configuración específica se describe como sigue.

Unas patas fijas están dispuestas sobre la periferia exterior del motor 16 y unos abultamientos anulares están dispuestos sobre la pared interior del manguito exterior 11, apoyándose los lados interiores de las patas fijas contra los abultamientos anulares. Se debe señalar que los lados interiores de las patas fijas, como se ha descrito anteriormente, hacen referencia a los lados de las patas fijas que están próximos a la cabeza del manguito exterior 11, de manera que el motor 16 no se puede mover hacia la cabeza del manguito exterior 11. El sistema de accionamiento comprende también una cubierta interior 19 que se apoya contra los lados exteriores de las patas fijas y una cubierta exterior 20 que cubre la cubierta interior 19 y que está conectada fijamente con el manguito exterior 11, con un sensor de presión 21 dispuesto entre una parte superior de la cubierta interior 19 y una parte superior de la cubierta exterior 20.

La cubierta interior 19 se apoya contra los lados exteriores de las patas fijas, como se ha descrito anteriormente, lo que significa que cuando se retira la cubierta exterior 20, la cubierta interior 19 y el motor 16 se pueden desplazar hacia el extremo trasero del manguito exterior 11.

Como tal, cuando el tornillo de avance 18 acciona la barra empujadora de inyección 14 para que se mueva hacia delante, el tornillo de avance 18 aplicará una fuerza de retroceso al reductor 17 y al motor 16, y el motor 16 producirá una fuerza de presión al sensor de presión 21 mediante la cubierta interior 19, lo que permite, a su vez, que el sensor de presión 21 detecte una presión, y se puede controlar así la fuerza de empuje de la barra empujadora de inyección 14.

La lámina conductora de contacto 15 elástica mencionada anteriormente en la realización puede estar configurada específicamente como sigue.

La lámina conductora de contacto 15 elástica pueden comprender particularmente una parte de casquillo conductora forrada sobre la periferia exterior de la barra empujadora de inyección 14 y, al menos, dos partes de pin de contacto conductoras conectadas a la parte de casquillo conductora. Al menos una de las partes de pin de contacto conductoras contacta con la lámina resistiva 12 y al menos una de las partes de pin de contacto conductoras contacta con la lámina conductora 13.

ES 2 604 347 T3

La lámina conductora de contacto 15 elástica está forrada sobre la periferia exterior de la barra empujadora de inyección 14 de manera que se mejora eficazmente la fiabilidad de la conexión entre la lámina conductora de contacto 15 elástica y la barra empujadora de inyección 14.

- Además, a fin de disponer fácilmente la ranura para lámina resistiva y la ranura para lámina conductora en la pared interior del manguito exterior 11, la periferia exterior del manguito exterior 11 según la realización tiene una sección transversal de forma cuadrada, de manera que la ranura para lámina resistiva y la ranura para lámina conductora pueden estar justamente dispuestas en cuatro paredes laterales o dos paredes laterales opuestas del cuadrado.
 - El cierre hermético entre el manguito exterior 11 y la barra empujadora de inyección 14 se puede conseguir disponiendo un anillo de sellado entre la cabeza del manguito exterior 11 y la barra empujadora de inyección 14.
- Además, en el sistema de accionamiento según la realización, un codificador para detectar el funcionamiento del motor 16 puede estar dispuesto en el extremo trasero de dicho motor 16. El codificador detecta la condición de funcionamiento del motor 16, y si dicho motor 16 funciona de modo anormal, se puede proporcionar a tiempo mantenimiento al motor 16.
- La realización proporciona también una bomba de jeringa que comprende el sistema de accionamiento como se ha descrito anteriormente. De modo similar, la bomba de jeringa según la realización puede asegurar la precisión de la administración.
 - Se han descrito con detalle anteriormente una bomba de jeringa y su sistema de accionamiento según la presente invención. Aunque se usan en esta memoria ejemplos específicos para exponer los principios y las realizaciones de la presente invención, la descripción de las realizaciones anteriores se proporciona solamente para facilitar la comprensión del método y del concepto de la presente invención. Se debe señalar que el experto en la técnica puede realizar mejoras y modificaciones, sin salirse de los principios de la presente invención, y tales mejoras y modificaciones están destinadas a estar comprendidas dentro del alcance de la presente invención.

20

REIVINDICACIONES

1. Un sistema de accionamiento de una bomba de jeringa, que comprende:

10

20

35

un manguito exterior (11), que tiene una pared interior provista de una ranura para lámina resistiva y una ranura para lámina conductora, extendiéndose axialmente ambas ranuras;

5 una lámina resistiva (12) dispuesta en la ranura para lámina resistiva y una lámina conductora (13) dispuesta en la ranura para lámina conductora;

una barra empujadora de inyección (14) dispuesta de modo deslizable en el manguito exterior (11), en el que un cierre hermético se mantiene entre la barra empujadora de inyección (14) y la pared interior del manguito exterior (11) mediante un anillo de sellado dispuesto entre una cabeza del manguito exterior (11) y la barra empujadora de inyección (14), y una cavidad que tiene una abertura está dispuesta en la barra empujadora de inyección (14), estando la abertura de la cavidad dispuesta en un extremo trasero de la barra empujadora de inyección (14);

una lámina conductora de contacto (15) elástica dispuesta fijamente sobre la barra empujadora de inyección (14), estando un extremo de la lámina conductora de contacto (15) elástica en contacto con la lámina conductora (13) y estando el otro extremo en contacto con la lámina resistiva (12); y

- un dispositivo de accionamiento dispuesto en la cavidad y que acciona la barra empujadora de inyección (14) para que se mueva hacia delante y hacia atrás.
 - 2. El sistema de accionamiento según la reivindicación 1, en el que el dispositivo de accionamiento comprende un motor (16) dispuesto en la cavidad y conectado con el manguito exterior (11), un reductor (17) conectado con el motor (16) y un tornillo de avance (18) conectado con el reductor (17); la pared interior de la cavidad está provista de roscas interiores que se extienden axialmente y que coinciden con el tornillo de avance (18); y la pared interior del manguito exterior (11) está provista de un cuello limitador de rotación que se extiende axialmente, mientras que la barra empujadora de inyección (14) está provista de un pasador de antirrotación que coincide de modo deslizable con el cuello limitador de rotación.
- 3. El sistema de accionamiento según la reivindicación 2, en el que unas patas fijas están dispuestas sobre la periferia exterior del motor (16) y unos abultamientos anulares están dispuestos sobre la pared interior del manguito exterior (11), apoyándose los lados interiores de las patas fijas contra los abultamientos anulares; el sistema de accionamiento comprende además una cubierta interior (19) que se apoya contra los lados exteriores de las patas fijas y una cubierta exterior (20) que cubre la cubierta interior (19) y está conectada fijamente con el manguito exterior (11), estando un sensor de presión (21) dispuesto entre la parte superior de la cubierta interior (19) y la parte superior de la cubierta exterior (20).
 - 4. El sistema de accionamiento según la reivindicación 1, en el que la lámina conductora de contacto (15) elástica comprende una parte de casquillo conductora forrada sobre la periferia exterior de la barra empujadora de inyección (14) y, al menos, dos partes de pin de contacto conductoras conectadas a la parte de casquillo conductora, contactando, al menos, una de las partes de pin de contacto conductoras con la lámina resistiva (12) y contactando, al menos, una de las partes de pin de contacto conductoras con la lámina conductora (13).
 - 5. El sistema de accionamiento según la reivindicación 1, en el que la periferia exterior del manguito exterior (11) tiene una sección transversal de forma cuadrada.
 - 6. El sistema de accionamiento según la reivindicación 2, en el que un codificador para detectar el funcionamiento del motor (16) está dispuesto en el extremo trasero de dicho motor (16).
- 40 7. Una bomba de jeringa, caracterizada por que comprende el sistema de accionamiento según una cualquiera de las reivindicaciones 1-6.

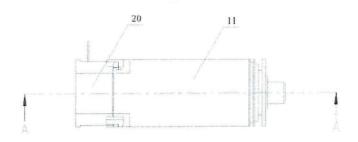


Fig. 1

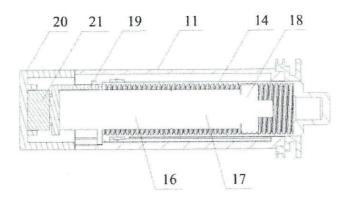


Fig. 2

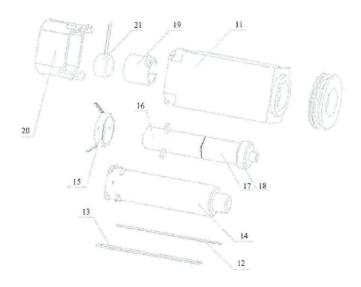


Fig. 3