

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 606 532

51 Int. Cl.:

C12N 9/40 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 02.03.2011 E 14195875 (1)
 Fecha y número de publicación de la concesión europea: 14.09.2016 EP 2865751

(54) Título: α-galactosidasa estabilizada y usos de la misma

(30) Prioridad:

02.03.2010 US 309487 P 17.11.2010 WO PCT/IL2010/000956 20.01.2011 US 201161434503 P 20.01.2011 US 201161434499 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 24.03.2017 (73) Titular/es:

PROTALIX LTD. (100.0%) 2 Snunit Street Science Park 2010000 Carmiel, IL

(72) Inventor/es:

SHULMAN, AVIDOR; RUDERFER, ILYA; BEN-MOSHE, TEHILA; SHEKHTER, TALIA; AZULAY, YANIV; SHAALTIEL, YOSEPH Y KIZHNER, TALI

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

α-galactosidasa estabilizada y usos de la misma

5 Campo y Antecedentes de la Invención

10

55

La presente invención, en algunas de sus realizaciones, se refiere a nuevas estructuras de proteína multimérica y, más particularmente, aunque no exclusivamente, a estructuras de proteína multiméricas de α-galactosidasa y a usos de las mismas en el tratamiento de la enfermedad de Fabry.

La enzima lisosómica α-galactosidasa-A (α-GAL o -Gal A; EC 3.2.1.22) cataliza la retirada de galactosa de los oligosacáridos, glucoproteínas y glucolípidos durante el catabolismo de macromoléculas. Los déficits en enzimas lisosómicas conducen a la acumulación de sus sustratos en los tejidos, afecciones conocidas como enfermedades de almacenamiento lisosómico. En los seres humanos, la ausencia de α-galactosidasa-A funcional conduce a la acumulación de glucolípidos que contienen restos de α-galactosa terminales (principalmente globotriaosilceramida, que también recibe el nombre de "trihexósido ceramida", "CTH" o "Gb₃") en los tejidos, lo que conduce a la enfermedad de Fabry. La enfermedad de Fabry es un trastorno recesivo ligado al cromosoma X, descrito por primera vez en 1898, caracterizado por dolor crónico, opacidades oculares, disfunción hepática y renal, lesiones en la piel, deterioro vascular y/o insuficiencia cardíaca. La α-galactosidasa-A humana recombinante tiene la capacidad de restaurar la función enzimática en pacientes. y la terapia de reemplazo enzimático (ERT, del inglés) usando α-GAL

- restaurar la función enzimática en pacientes, y la terapia de reemplazo enzimático (ERT, del inglés) usando α-GAL se aprobó en los Estados Unidos en el año 2003 como un tratamiento para la enfermedad de Fabry. α-GAL se convirtió en la segunda proteína recombinante aprobada para el tratamiento de un trastorno de almacenamiento lisosómico después de la β-glucosidasa, un tratamiento para la enfermedad de Gaucher.
- 25 Las α-GAL endógena y recombinante catalizan la hidrólisis de glucolípidos galactosilados terminales en los lisosomas de células de órganos tales como el hígado, riñones, bazo, corazón, etc. Este sitio natural de acción se caracteriza por su bajo pH, que llega a ser tan bajo como de 4,5. Las enzimas lisosómicas, incluyendo α-GAL, están por tanto diseñadas para ejercer su actividad máxima a estos niveles de pH bajos.
- 30 Los tratamientos actuales de la enfermedad de Fabry con ERT se basan en la α-GAL recombinante procedente de células de mamífero que se considera un tratamiento eficaz limitado. Estos tratamientos únicamente desaceleran el avance de la enfermedad, pero no pueden detenerlo y no ofrecen una solución verdadera y completa. Adicionalmente, en algunos casos, debe interrumpirse la ERT con α-GAL recombinantes comerciales debido al desarrollo de una respuesta inmunogénica al tratamiento y, en algunos casos, el tratamiento no puede iniciarse en vista de los problemas de inmunogenicidad.
- El análisis de la estructura de rayos X revela que la α-GAL humana es una glucoproteína homodimérica estando cada monómero compuesto de dos dominios, el dominio a (β/α)₈ que contiene el sitio activo y el dominio C-terminal que contiene ocho cadenas β antiparalelas en dos láminas en un sándwich P [Garman & Garboczi, J Mol Biol 2004, 337:319-335]. Los dos monómeros están dispuestos en un ensamblaje cabeza a cola y la dimerización es no covalente. Los dos monómeros se empaquetan con una interfaz que extiende la anchura de 75 Å del dímero y oculta 2.200 Å² de área superficial. En la interfaz del dímero, 30 restos de cada monómero contribuyen a la interfaz. Los dos sitios activos del dímero están separados por aproximadamente 50 Å.
- Se resolvió la estructura cristalina de α-Gal para una proteína no ligada, así como para una proteína ligada a galactosa. Estas dos estructuras exhiben pocos cambios entre las estructuras ligada y no ligada. No obstante, el uso de galactosa en lugar del sustrato natural, la globotriaosilceramida (Gb₃), estando esta última caracterizada por cadenas lipídicas largas capaces de interactuar con el dominio hidrófobo de un monómero mientras que la galactosa terminal interacciona con el sitio activo del segundo monómero, puede no demostrar la cooperatividad de sitio activo.
 Adicionalmente, las pruebas bioquímicas sugieren dicha cooperatividad, ilustrando la importancia de la estructura cuaternaria homodimérica [Bishop & Desnick, J Biol Chem 1981, 256:1307-1316]. Por lo tanto, se estudiaron las propiedades cinéticas de la α-Gal humana y se observó la cooperatividad entre los monómeros de la enzima homodimérica, cada uno con un sitio de interacción catalítico. Por lo tanto, se sugirió que la actividad y estabilidad enzimática podían depender de la dimerización.
 - El documento WO 2009/024977, del cesionario del presente documento, enseña conjugados de un sacárido y una biomolécula, unidos entre sí de manera covalente mediante un enlazador no hidrófobo, así como usos médicos que utilizan dichos conjugados.
- 60 La Solicitud de Patente Internacional PCT N.º PCT/IL2010/000956, del cesionario del presente documento, enseña metodologías que utilizan α-galactosidasa, que exhibe una actividad lisosómica a niveles de pH mayores que el pH lisosómico.
- Adicionalmente, la técnica anterior incluye Bendele *et al.* [Toxicological Sciences 1998, 42:152-157], las Patentes de Estados Unidos N.º 5.256804, 5.580757 y 5.766.897, la Solicitud de Patente Internacional PCT/NL2007/050684 (publicada como WO 2008/075957) y Seely & Richey [J ChromatographyA 2001.908: 235-241].

Sumario de la invención

5

10

15

25

30

35

40

De acuerdo con un aspecto de algunas realizaciones de la presente invención, se proporciona una estructura de proteína multimérica que comprende al menos dos monómeros de α-galactosidasa que están ligados de manera covalente entre sí mediante un radical de unión, presentando la estructura de proteína multimérica una característica seleccionada del grupo que consiste en:

- (a) una actividad α-galactosidasa, después de someter la estructura de proteína multimérica a condiciones de plasma humano durante una hora, que es al menos un 10 % superior que una actividad de la α-galactosidasa nativa después de someter la α-galactosidasa nativa a condiciones de plasma humano durante una hora;
- (b) una actividad α -galactosidasa que disminuye después de someter la estructura de la proteína multimérica a condiciones de plasma humano durante una hora, en un porcentaje que es al menos un 10 % menor que el porcentaje que disminuye la actividad de la α -galactosidasa nativa después de someter la α -galactosidasa nativa a condiciones de plasma humano durante una hora;
- (c) una actividad α-galactosidasa que permanece sustancialmente sin cambios después de someter a la estructura de proteína multimérica a condiciones de plasma humano durante una hora;
 - (d) una actividad α-galactosidasa, después de someter la estructura de proteína multimérica a condiciones lisosómicas durante una semana, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa después de someter la α-galactosidasa nativa a condiciones lisosómicas durante una semana;
- 20 (e) una actividad α-galactosidasa que disminuye después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día en un porcentaje que es al menos un 10 % menor que el porcentaje que disminuye la actividad de la α-galactosidasa nativa después de someter la α-galactosidasa nativa a condiciones lisosómicas durante un día:
 - (f) una actividad α-galactosidasa que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día;
 - (g) una actividad α-galactosidasa, inmediatamente después de someter la estructura de proteína multimérica a condiciones lisosómicas, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa inmediatamente después de someter la forma nativa de la proteína a condiciones lisosómicas;
 - (h) una actividad α-galactosidasa, inmediatamente después de someter la estructura de proteína multimérica a una solución acuosa que tiene un pH de 7 y una temperatura de 37 °C, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa inmediatamente después de someter la α-galactosidasa nativa a una solución acuosa que tiene un pH de 7 y una temperatura de 37 °C; y
 - (i) una semivida en circulación en un sistema fisiológico que es al menos un 20 % mayor que la semivida en circulación de la α -galactosidasa nativa.

De acuerdo con un aspecto de algunas realizaciones de la presente invención, se proporciona una estructura de proteína multimérica que comprende al menos dos monómeros de α -galactosidasa que están ligados de manera covalentemente entre sí mediante un radical de unión, en la que el radical de unión no está presente en la α -galactosidasa nativa.

De acuerdo con un aspecto de algunas realizaciones de la presente invención, se proporciona una composición farmacéutica que comprende una estructura de proteína multimérica como se describe en el presente documento y un vehículo farmacéuticamente aceptable.

- De acuerdo con un aspecto de algunas realizaciones de la presente invención, se proporciona un método de tratamiento de la enfermedad de Fabry, comprendiendo el método administrar a un sujeto que lo necesita una cantidad terapéuticamente eficaz de una estructura de proteína multimérica como se describe en el presente documento, tratando de esta manera la enfermedad de Fabry.
- De acuerdo con un aspecto de algunas realizaciones de la presente invención se proporciona un proceso para la preparación de una estructura de proteína multimérica como se describe en el presente documento, comprendiendo el proceso hacer reaccionar la α-galactosidasa con un agente de reticulación que comprende el radical de unión descrito en el presente documento y al menos dos grupos reactivos.
- 55 De acuerdo con algunas realizaciones de la invención, el radical de unión descrito en el presente documento no está presente en la α-galactosidasa nativa.

De acuerdo con algunas realizaciones de la invención, la estructura de la proteína multimérica presenta una característica del grupo que consiste en:

- (a) una actividad α-galactosidasa, después de someter la estructura de proteína multimérica a condiciones de plasma humano durante una hora, que es al menos un 10 % superior que una actividad de la α-galactosidasa nativa después de someter la α-galactosidasa nativa a condiciones de plasma humano durante una hora;
- (b) una actividad α-galactosidasa que disminuye después de someter la estructura de la proteína multimérica a condiciones de plasma humano durante una hora en un porcentaje que es al menos un 10 % menor que el porcentaje que disminuye la actividad de la α-galactosidasa nativa después de someter la α -galactosidasa nativa

3

,

60

a condiciones de plasma humano durante una hora;

- (c) una actividad α-galactosidasa que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones de plasma humano durante una hora;
- (d) una actividad α-galactosidasa, después de someter la estructura de proteína multimérica a condiciones lisosómicas durante una semana, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa después de someter la α-galactosidasa nativa a condiciones lisosómicas durante una semana;
- (e) una actividad α -galactosidasa que disminuye después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día en un porcentaje que es al menos un 10 % menor que el porcentaje que disminuye la actividad de la α -galactosidasa nativa después de someter la α -galactosidasa nativa a condiciones lisosómicas durante un día:
- (f) una actividad α-galactosidasa que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día;
- (g) una actividad α-galactosidasa, inmediatamente después de someter la estructura de proteína multimérica a condiciones lisosómicas, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa inmediatamente después de someter la forma nativa de la proteína a condiciones lisosómicas;
- (h) una actividad α -galactosidasa, inmediatamente después de someter la estructura de proteica multimérica a una solución acuosa que tiene un pH de 7 y una temperatura de 37 °C, que es al menos un 10 % mayor que una actividad de la α -galactosidasa nativa inmediatamente después de someter la α -galactosidasa nativa a una solución acuosa que tiene un pH de 7 y una temperatura de 37 °C; y
- (i) una semivida en circulación en un sistema fisiológico que es mayor que la semivida en circulación de la αgalactosidasa nativa.

De acuerdo con algunas realizaciones de la invención, la actividad α-galactosidasa de la estructura de proteína multimérica que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día, adicionalmente permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante una semana.

De acuerdo con algunas realizaciones de la invención, la semivida en circulación de la estructura de proteína multimérica que es mayor que una semivida en circulación de la α-galactosidasa nativa, es mayor en al menos un 20 % que la semivida en circulación de la α-galactosidasa nativa.

De acuerdo con algunas realizaciones de la invención, la semivida en circulación de la estructura de proteína multimérica que es mayor que una semivida en circulación de la α-galactosidasa nativa, es mayor en al menos un 50 % que la semivida en circulación de la α-galactosidasa nativa.

De acuerdo con algunas realizaciones de la invención, la estructura de proteína multimérica se caracteriza por una actividad α-galactosidasa en un órgano después de la administración de la estructura de proteína multimérica a un vertebrado, seleccionándose el órgano del grupo que consiste en bazo, corazón y riñón.

40 De acuerdo con algunas realizaciones de la invención, la estructura de proteína multimérica comprende dos monómeros de α-galactosidasa, siendo la estructura de proteína una estructura de proteína dimérica.

De acuerdo con algunas realizaciones de la invención, la α-galactosidasa es una α-galactosidasa humana.

De acuerdo algunas realizaciones de la invención, la α -galactosidasa es una α -galactosidasa recombinante de planta.

De acuerdo con algunas realizaciones de la invención, la α -galactosidasa tiene una secuencia de aminoácidos seleccionada del grupo que consiste en SEQ ID Nº 1, SEQ ID Nº 2 y SEQ ID Nº 3.

De acuerdo con algunas realizaciones de la invención, la α-galactosidasa es una α-galactosidasa alcalina.

De acuerdo con algunas realizaciones de la invención, la α-galactosidasa es una α-galactosidasa ácida.

De acuerdo con algunas realizaciones de la invención, el radical de unión comprende un poli(alquilenglicol).

De acuerdo con algunas realizaciones de la invención, el poli(alquilenglicol) comprende al menos dos grupos funcionales, formando cada grupo funcional un enlace covalente con uno de los monómeros de α -galactosidasa.

60 De acuerdo con algunas realizaciones de la invención, los al menos dos grupos funcionales son grupos terminales del poli(alquilenglicol).

De acuerdo con algunas realizaciones de la invención, el al menos un radical de unión tiene una fórmula general:

 $-X_1(CR_1R_2-CR_3R_4-Y)_n-X_2-$

65

5

10

15

20

25

30

35

en la que cada uno de X_1 y X_2 es un grupo funcional que forma un enlace covalente con al menos un monómero de α -galactosidasa;

Y es O, S o NR₅;

5

20

40

55

60

n es un número entero de 1 a 200; y

cada uno de R₃, R₂, R₃, R₄ y R₅ se selecciona independientemente del grupo que consiste en hidrógeno, alquilo, cicloalquilo, alquenilo, alquinilo, alcoxi, hidroxi, oxo, tiol y tioalcoxi.

De acuerdo con algunas realizaciones de la invención, al menos uno de los grupos funcionales forma un enlace amida con un monómero de α-galactosidasa.

10
De acuerdo con algunas realizaciones de la invención, n es un número entero de 5 a 150.

De acuerdo con algunas realizaciones de la invención, n es un número entero de 40 a 70.

15 De acuerdo con algunas realizaciones de la invención, la composición farmacéutica comprende adicionalmente una galactosa.

De acuerdo con algunas realizaciones de la invención, la estructura de proteína multimérica es para su uso como un medicamento.

De acuerdo con algunas realizaciones de la invención, el medicamento es para el tratamiento de la enfermedad de Fabry.

De acuerdo con algunas realizaciones de la invención, la estructura de proteína multimérica es para su uso en el tratamiento de la enfermedad de Fabry.

De acuerdo con algunas realizaciones de la invención, el proceso comprende hacer reaccionar la α -galactosidasa dimérica con el agente de reticulación.

30 De acuerdo con algunas realizaciones de la invención, los grupos reactivos comprenden un grupo saliente.

De acuerdo con algunas realizaciones de la invención, el grupo reactivo reacciona con un grupo amina para formar un enlace amida.

35 De acuerdo con algunas realizaciones de la invención, cada uno de los grupos reactivos puede formar un enlace covalente entre el radical de unión y al menos un monómero de α-galactosidasa

De acuerdo con algunas realizaciones de la invención, la proporción molar entre el agente de reticulación y los monómeros de α -galactosidasa se encuentra en un intervalo de 5:1 a 500:1.

De acuerdo con algunas realizaciones de la invención, la proporción molar se encuentra en un intervalo de 75:1 a 300:1.

A menos que se definan de otra manera, todos los términos técnicos y/o científicos que se usan en el presente documento tienen el mismo significado entendido normalmente por un experto habitual en la materia a la cual pertenece la invención. Aunque en la práctica o ensayo de las realizaciones de la invención pueden usarse métodos y materiales similares o equivalentes a los descritos en el presente documento, a continuación se describen métodos y/o materiales ejemplares. En caso de conflicto, prevalecerá la memoria descriptiva de patente, incluyendo las definiciones. Además, los materiales, métodos y ejemplos son únicamente ilustrativos y no deben considerarse necesariamente limitantes.

Breve descripción de los dibujos

La patente o archivo de solicitud contiene al menos un dibujo a color. Las copias de esta patente o publicación de solicitud de patente con dibujos a color se proporcionarán por la oficina tras solicitarlas y pagar la tasa necesaria.

Algunas realizaciones de la invención se describen en el presente documento, únicamente a modo de ejemplo, con referencia a los dibujos adjuntos. Haciendo referencia específica ahora a los dibujos con detalle, cabe destacar que las particularidades mostradas se ofrecen como ejemplo y con fines de análisis ilustrativo de las realizaciones de la invención. En este sentido, la descripción tomada junto con los dibujos pone de manifiesto a los expertos en la materia cómo pueden llevarse a la práctica las realizaciones de la invención.

En los dibujos:

La FIG. 1 es un gráfico que muestra la actividad de α -GAL Fabrazyme®, α -GAL Replagal® y α -GAL-I humana recombinante vegetal, en función del tiempo de incubación en condiciones lisosómicas simuladas (tampón

fosfato citrato, pH 4,6, 37°C);

- La FIG. 2 es un gráfico que muestra la actividad de α -GAL Fabrazyme®, α -GAL Replagal®, α -GAL-I humana recombinante vegetal y α -GAL-I recombinante vegetal con galactosa (100 mg/ml), en función del tiempo de incubación en condiciones fisiológicas simuladas (pH 7,4, 37 °C);
- La FIG. 3 es un gráfico que muestra la actividad de α -GAL Fabrazyme®, α -GAL Replagal® y α -GAL-I humana recombinante vegetal, en función del tiempo de incubación en plasma humano a 37°C;
 - La FIG. 4 es un gráfico que muestra la actividad de α -GAL Fabrazyme®, α -GAL Replagal®, α -GAL-I humana recombinante vegetal y α -GAL-I recombinante vegetal con galactosa (100 mg/ml), en función del tiempo de incubación en condiciones lisosómicas simuladas (tampón fosfato citrato, pH 4,6, 37 °C);
- La FIG. 5 es un esquema que representa las estructuras moleculares de agentes de reticulación de bis-M-hidroxisuccinimida-poli (etilenglicol) (bis-NHS-PEG) ejemplares;
 - La FIG. 6 es un esquema que representa una proteína dimérica que ha reaccionado con agentes de reticulación de bis-NHS-PEG;
- La FIG. 7 presenta un barrido de un gel de SDS-PAGE que muestra α-GAL-l recombinante vegetal que ha reaccionado con bis-NHS-PEG₅ (carriles 1-3), bis-NHS-PEG₈ (carriles 7-9) y bis-NHS-PEG₄₅ (carriles 4-6), a una relación molar de 50:1 (carriles 1, 4 y 7), 100:1 (carriles 2, 5 y 8) y 200:1 (carriles 3, 6 y 9) de bis-NHS-PEG:α-GAL, así como marcadores de peso molecular (Pm) y patrón de α-GAL-l (Estd) recombinante vegetal que no ha reaccionado (las flechas muestran la banda que comprende un dímero de α-GAL).
- La FIG. 8 presenta un barrido de un gel de isoelectroenfoque que muestra un α -GAL-I recombinante vegetal que ha reaccionado con bis-NHS-PEG $_5$ (carriles 1-3), bis-NHS-PEG $_8$ (carriles 7-9) y bis-NHS-PEG $_45$ (carriles 4-6), a una proporción molar de 50:1 (carriles 1, 4 y 7), 100:1 (carriles 2, 5 y 8) y 200:1 (carriles 3, 6 y 9) de bis-NHS-PEG $_47$ -GAL, así como marcadores (M) de pH y patrón de α -GAL-I (Estd) recombinante vegetal que no ha reaccionado (las flechas muestran valores de pH para varias bandas);
- La FIG. 9 es un espectro de espectroscopia de masas MALDI-TOF de α -GAL-I recombinante vegetal reticulada por bis-NHS-PEG₄₅ (el eje x indica valores m/z, y se muestran los valores m/z de los picos);
 - La FIG. 10 es un espectro de espectroscopia de masas MALDI-TOF de α -GAL-I recombinante vegetal reticulada por bis-NHS-PEG₈ (el eje x indica valores m/z, y se muestran los valores m/z de picos);
- La FIG. 11 presenta una fotografía que muestra el sustrato α-GAL trihexósido de N-dodecanoilnitrobenzoxadiazol-ceramida (Gb₃-NBH) y el producto de reacción de α-GAL lactosil ceramida-nitrobenzoxadiazol 30 (lactosil ceramida-NBH), y visualizado con radiación con luz UV (365 nm), después de cromatografía de capa fina de alto rendimiento, seguido de incubación del sustrato Gb₃-NBD con α-GAL-I humana recombinante vegetal reticulada con bis-NHS-PEG₄₅ (carril izquierdo), α-GAL Replagal® (carril central) y sin α-GAL (carril derecho); Las FIG. 12A, 12B y 12C, son gráficos que muestran la actividad de α-GAL Fabrazyme®, α-GAL Replagal®, α-
- GAL-I humana recombinante vegetal y α-GAL-I humana recombinante vegetal reticulada con bis-NHS-PEG₅ (FIG. 12A), bis-NHS-PEG₈ (FIG. 12B) y bis-NHS-PEG₄₅ (FIG. 12C) a una relación molar de 50:1 ("1" en FIG. 12A, "7" en FIG. 12B y "4" en FIG. 12C), 100:1 ("2" en FIG. 12A, "8" en FIG. 12B y "5" en FIG. 12C) y 200:1 ("3" en FIG. 12, "9" en FIG. 12B y "6" en FIG. 12C) de bis-NHS-PEG:α-GAL en función del tiempo de incubación en condiciones lisosómicas simuladas (tampón fosfato citrato, pH 4,6, 37°C);
- La FIG. 13 es un gráfico que muestra el perfil farmacocinético de α-GAL Replagal®, α-GAL-I humana recombinante vegetal y α-GAL-I humana recombinante vegetal reticulada con bis-NHS-PEG₄₅ en el plasma de ratones con la enfermedad de Fabry; la actividad residual de cada α-GAL se presenta como un porcentaje de la actividad residual máxima de cada α-GAL, en función del tiempo que después de la inyección de las α-GAL. Las FIG. 14A y 14B presentan un gráfico (FIG. 14A) que muestra la actividad de α-GAL Replagal®, α-GAL-I
- humana recombinante vegetal (prh-alfa-GAL-I) y α-GAL-I humana recombinante vegetal reticulada con bis-NHS-PEG₈ (prh-alfa-GAL-I-CL8) o bis-NHS-PEG₄₅ (prh-alfa-GAL-I-CL45) en los bazos de ratones con la enfermedad de Fabry dos horas después de la inyección de α-GAL, y una fotografía de una transferencia de Western (FIG. 14B) que muestra α-GAL Replagal® (carriles 10-12 y 15), α-GAL-I humana recombinante vegetal (carriles 7-9 y 13), y α-GAL-I humana recombinante vegetal reticulada con bis-NHS-PEG₈ (carriles 4-6) o bis-NHS-PEG₄₅ (carriles 1-3 y 14) en los bazos de ratones con la enfermedad de Fabry después de inyección de α-GAL (carriles
- 1-12) o como un patrón que consiste en 50 ng de α -GAL (carriles 13-15); Las FIG. 15A y 15B presentan un gráfico (FIG. 15A) que muestra la actividad de α -GAL Replagal®, α -GAL-I
 - Las FIG. 15A y 15B presentan un grático (FIG. 15A) que muestra la actividad de α-GAL Replagal®, α-GAL-I humana recombinante vegetal (prh-alfa-GAL-I) y α-GAL-I humana recombinante vegetal reticulada con bis-NHS-PEG₈ (prh-alfa-GAL-I-CL8) o bis-NHS-PEG₄₅ (prh-alfa-GAL-I-CL45) en los hígados de ratones con la enfermedad de Fabry 2 horas después de la inyección de α-GAL, y una fotografía de una transferencia de Western (FIG. 15B)
- que muestra α -GAL Replagal® (carriles 10-12 y 15), α -GAL-I humana recombinante vegetal (carriles 7-9 y 13) y α -GAL-I humana recombinante vegetal reticulada con bis-NHS-PEG₈ (carriles 4-6) o bis-NHS-PEG₄₅ (carriles 1-3 y 14) en los hígados de ratones con la enfermedad de Fabry después de inyección de α -GAL (carriles 1- 12) o como un patrón que consiste en 50 ng de α -GAL (carriles 13-15);
- La FIG. 16 es un gráfico que muestra la actividad de α-GAL Replagal®, α-GAL-I humana recombinante vegetal (prh-alfa-GAL-I) y α-GAL-I humana recombinante vegetal reticulada con bis-NHS-PEG₈ (Prh-alfa-GAL-I-) o bis-NHS-PEG₄₅ (prh-alfa-GAL-I-CL45) en los corazones de ratones con la enfermedad de Fabry 2 horas después de la invección de α-GAL;
 - La FIG. 17 es un gráfico que muestra la actividad de α -GAL Replagal®, α -GAL-I humana recombinante vegetal (prh-alfa-GAL-I) y α -GAL-I humana recombinante vegetal reticulada con bis-NHS-PEG₈ (Prh-alfa-GAL-I-CL8) o
- bis-NHS-PEG₄₅ (prh-alfa-GAL-I-CL45) en los riñones de ratones con la enfermedad de Fabry 2 horas después de la inyección de α -GAL;

- La FIG. 18 es un gráfico que muestra la actividad de α -GAL Replagal® y α -GAL-I humana recombinante vegetal (prh-alfa-GAL-I) y α -GAL-I humana recombinante vegetal reticulada con bis-NHS-PEG₄₅ (Prh-alfa-GAL-I-CL45) en los bazos de ratones con la enfermedad de Fabry 2 horas, 24 horas, 3 días y 7 días después de la inyección de α -GAL (como patrón, se muestra α -GAL de tipo silvestre (WT) endógena;
- 5 La FIG. 19 es un gráfico que muestra la actividad de α-GAL Replagal® y α-GAL-l humana recombinante vegetal (prh-alfa-GAL-l), y α-GAL l humana recombinante vegetal reticulada con bis-NHS-PEG₄₅ (Prh-alfa-GAL-l-CL45) en los hígados de ratones con la enfermedad de Fabry 2 horas, 24 horas, 3 días y 7 días después de inyección de α-GAL (como patrón, se muestra α-GAL de tipo silvestre (WT) endógena);
- La FIG. 20 es un gráfico que muestra la actividad de α-GAL Replagal® y α-GAL-l humana recombinante vegetal (prh-alfa-GAL-l), y α-GAL-l humana recombinante vegetal reticulada con bis-NHS-PEG₄₅ (Prh-alfa-GAL-l-CL45) en los corazones de ratones con la enfermedad de Fabry 2 horas, 24 horas, 3 días y 7 días después de la inyección de α-GAL (como patrón, se muestra α-GAL de tipo silvestre (WT) endógena);

15

20

- La FIG. 21 es un gráfico que muestra la actividad de α-GAL Replagal® y α-GAL-I humana recombinante vegetal (prh-alfa-GAL-I), y α-GAL-I humana recombinante vegetal reticulada con bis-NHS-PEG₄₅ (Prh-alfa-GAL-I-CL45) en los riñones de ratones con la enfermedad de Fabry 2 horas, 24 horas, 3 días y 7 días después de la inyección de α-GAL (como patrón, se muestra α-GAL de tipo silvestre (WT) endógena);
- La FIG. 22 presenta una fotografía de una imagen de un gel de SDS-PAGE que muestra la α -GAL humana recombinante de mamífero Replagal® (carril izquierdo), y la α -GAL humana recombinante de mamífero Replagal® que se hizo reaccionar con bis-NHS-PEG₄₅ (carril central), así como marcadores de peso molecular (carril derecho; los pesos moleculares de los marcadores se indican en unidades kDa);
- La FIG. 23 presenta una fotografía de un gel de isoelectroenfoque que muestra α -GAL humana recombinante de mamífero Replagal® (carril izquierdo), y α -GAL humana recombinante de mamífero Replagal® que reaccionó con bis-NHS-PEG₄₅ (carril central), así como marcadores de pH (carril derecho);
- Las FIG. 24A y 24B son espectros de espectroscopia de masas MALDI-TOF de la α -GAL humana recombinante de mamífero Replagal® (FIG. 24A), y α -GAL humana recombinante de mamífero Replagal® reticulada con bis-NHS-PEG₄₅ (el eje x indica valores m/z, y se muestran los valores m/z (en unidades Da) de los picos);
 - La FIG. 25 es una representación gráfica de Michaelis-Menten que muestra la velocidad (V) de la hidrólisis de pnitrofenil- α -D-galactopiranósido (pNP-G) por la α -GAL humana recombinante de mamífero Replagal® (Replagal)
 y la α -GAL humana recombinante de mamífero Replagal® reticulada con bis-NHS-PEG₄₅ (Replagal CL45), en función de la concentración de pNP-G;
 - Las FIG. 26A y 26B son gráficos que muestran la actividad de la α-GAL humana recombinante de mamífero Replagal® (Replagal) y la α-GAL humana recombinante de mamífero Replagal® reticulada por bis-NHS-PEG₄₅ (Replagal-CL45) en función del tiempo de incubación en condiciones lisosómicas simuladas (tampón fosfato citrato, pH 4,6, 37 °C) (FIG. 26A) o en plasma humano a 37 °C (FIG. 26B);
- Las FIG. 27A-27D son gráficos que muestran la actividad de α -GAL Replagal® (R) y α -GAL Replagal® reticulada con bis-NHS-PEG₄₅ (R-CL45) en los bazos (FIG. 27A), hígados (Fig. 27B), corazones (FIG. 27C) y riñones (FIG. 27D) de ratones con la enfermedad de Fabry 2 horas después de la inyección de α -GAL;
 - Las FIG. 28A-28D son gráficos que muestran los niveles de Gb₃ en los corazones (FIG. 28A), riñones (FIG. 28B), hígados (FIG. 28C) y bazos (FIG. 28D) de ratones con la enfermedad de Fabry, en función del tiempo después de la inyección de α-GAL Replagal® o α-GAL Replagal® reticulada con bis-NHS-PEG₄₅ (R-CL45);
- de la inyección de α-GAL Replagal® o α-GAL Replagal® reticulada con bis-NHS-PEG₄₅ (R-CL45);
 Las FIG. 29A y 29B presentan barridos de geles de SDS-PAGE que muestran la α-GAL-II humana recombinante vegetal (FIGS. 29A y 29B, carril 2) y la α-GAL-II humana recombinante vegetal que reaccionó con bis-NHS-PEG₂₁ (FIG. 29A, carril 3), bis-NHS-PEG₄₅ (FIG. 29A, carril 4) o bis-NHS-PEG₆₈ (FIG. 29B, carril 3), así como marcadores de peso molecular (FIG. 29A y 29B, carril 1; los pesos moleculares de los marcadores se indican en unidades KDa);
 - Las FIG. 30A-30C son espectros de espectroscopia de masas MALDI-TOF de α -GAL-II humana recombinante vegetal (FIG. 30A), y α -GAL-II humana recombinante vegetal reticulada con bis-NHS-PEG₂₁ (FIG. 30B) o bis-NHS-PEG₄₅ (FIG. 30C) (el eje x indica valores de m/z y se muestran los valores de m/z (en unidades Da) de los picos);
- Las FIG. 31A-31D son gráficos que muestran la actividad de α-GAL humana recombinante de mamífero Replagal® (Replagal), α-GAL-II humana recombinante vegetal (prh-alfa-GAL-II) y α-GAL-II humana recombinante vegetal reticulada por bis-NHS-PEG₂₁ (prh-alfa-GAL-II-CL21, FIG. 31A y 31C), bis-NHS-PEG₄₅ (prh-alfa-GAL-II-CL45, FIG. 31A-31D) o bis-NHS-PEG₆₈ (prh-alfa-GAL-II-CL68; FIG. 31B y 31D) en función del tiempo de incubación en condiciones lisosómicas simuladas (tampón fosfato citrato, pH 4,6, 37 °C) (FIG. 31A y 31B) o en
- plasma humano a 37 °C (FIG. 31C y 31D) (los datos mostrados en las FIG. 31C y 31D son de experimentos diferentes);
 Las FIG. 32A y 32B son gráficos que muestran los perfiles farmacocinéticos de α-GAL Replagal® (Replagal), α-
- GAL-II humana recombinante vegetal (prh-alfa-GAL-II) y α-GAL-II humana recombinante vegetal reticulada con bis-NHS-PEG₄₅ (prh-alfa-GAL-II-CL45) en el plasma de ratones con la enfermedad de Fabry; la concentración de cada α-GAL se presenta en función del tiempo después de la inyección de α-GAL (las FIG. 32A y 32B presentan los mismos datos a diferentes intervalos);
 - Las FIG. 33A-33L son gráficos que muestran la actividad de α-GAL Replagal® (Replagal), α-GAL-II humana recombinante vegetal (prh-alfa-GAL-II) y α-GAL-II humana recombinante vegetal reticulada con bis-NHS-PEG₄₅ (prh-alfa-GAL-II-CL45, FIG. 33A-33L) o bis-NHS-PEG₂₁ (prh-alfa-GAL-II-CL21; FIG. 33E-33L) en los corazones (FIG. 23A-23E y 23L) riñanas (FIG. 23B-23E y 23L) y bis-nes (FIG. 23C y 23L)
- 65 (FIG. 33A, 33E y 33I), riñones (FIG. 33B, 33F y 33J), hígados (FIG. 33C, 33G y 33K) y bazos (FIG. 33D, 33H y 33L) de ratones con la enfermedad de Fabry 2 horas (FIG. 33A-33H), 7 días (FIG. 33A-33D y 33I-33L), 14 días

- (FIG. 33A-33D) y 28 días (FIG. 33A-33D) después de inyección de α-GAL;
- Las FIG. 34A-34C son gráficos que muestran los parámetros cinéticos $V_{máx}$ (FIG. 34A), K_M (FIG. 34B) y k_{cat} (FIG. 34C) para la α -GAL-II humana recombinante vegetal (prh-alfa-GAL-II) y la α -GAL-II humana recombinante vegetal reticulada con bis-NHS-PEG₄₅ (prh-alfa-GAL-II-CL45) en función del pH;
- La FIG. 35 presenta un barrido de un gel de SDS-PAGE que muestra la α-GAL-I humana recombinante vegetal (prh-alfa-Gal-I) y la α-GAL-I humana recombinante vegetal que ha reaccionado con NHS-PEG protegido terminalmente con metoxi que tiene un peso molecular de 2 KDa (prh-alfa-Gal-I-PEG 2.000), 5 KDa (prh-alfa-Gal-I-PEG 5.000) o 10 KDa (prh-alfa-Gal-I-PEG 10.000), así como marcadores de peso molecular (carril izquierdo; los marcadores de peso molecular se indican en unidades KDa);
- Las FIG. 36A y 36B son gráficos que muestran la actividad de α-GAL humana recombinante de mamífero Fabrazyme® (Fabrazyme), α-GAL humana recombinante de mamífero Replagal® (Replagal), α-GAL-I humana recombinante vegetal que ha reaccionado con NHS-PEG protegido terminalmente con epoxi que tiene un peso molecular de 2 KDa (α-Gal-I-PEG 2.000), 5 KDa (α-Gal-I-PEG 5.000) o 10 KDa (α-Gal-I-PEG 10.000), en función del tiempo de incubación en condiciones lisosómicas simuladas (tampón fosfato citrato, pH 4,6, 37 °C) (FIG. 36A) o en plasma humano a 37 °C (FIG. 36B);
 - La FIG. 37 presenta un barrido de un gel de SDS-PAGE que muestra α -GAL-I recombinante vegetal que ha reaccionado con bis-NHS-PEG₂ (carriles 1-3), bis-NHS-PEG₄ (carriles 4-6), bis-NHS-PEG₆₈ (carriles 7-9), bis-NHS-PEG₁₅₀ (carriles 10-12) y bis-NHS-PEG₄₅ (CL45), a una proporción molar de 50:1 (carriles 1, 4, 7 y 10), 100:1 (carriles 2, 5, 8 y 11) y 200:1 (carriles 3, 6, 9 y 12) de bis-NHS-PEG: α -GAL, así como marcadores de peso molecular (PM):
 - La FIG. 38 presenta un barrido de un gel de SDS-PAGE que muestra α -GAL-I recombinante vegetal que ha reaccionado con bis-COOH-PEG₁₂ (carriles 1-3), bis-COOH-PEG₂₈ (carriles 4-6), bis-COOH-PEG₄₅ (carriles 7-9) y bis-NHS-PEG₄₅ (CL45), a una proporción molar de 50:1 (carriles 1, 4 y 7), 100:1 (carriles 2, 5 y 8) y 200:1 (carriles 3, 6 y 9) de bis-NHS-PEG: α -GAL, así como marcadores de peso molecular (PM) y α -GAL-I recombinante vegetal no reticulada como control (con);
 - La FIG. 39 es un gráfico que muestra la actividad de α -GAL Replagal®, α -GAL-I humana recombinante vegetal (prh- α -GAL-I) y α -GAL-I humana recombinante vegetal reticulada con bis-NHS-PEG₄₅ (prh- α -GAL-I-CLA5), bis-NHS-PEG₄ (prh- α -GAL-I-CL4), bis-NHS-PEG₂ (Prh- α -GAL-I-CL2), bis-COOH-PEG₄₅ (prh- α -GAL-I-CLA45), bis-COOH-PEG₂₈ (prh- α -GAL-I-CLA28) o bis-COOH-PEG₁₂ (prh- α -GAL-1-CLA12) en función del tiempo de incubación en condiciones lisosómicas simuladas (tampón fosfato citrato, pH 4,6, 37 °C);
 - Las FIG. 40A y 40B son gráficos que muestran la actividad de la α -GAL-II humana recombinante vegetal reticulada por bis-NHS-PEG₄₅ en función del tiempo de incubación en condiciones lisosómicas simuladas (tampón fosfato citrato, pH 4,6, 37 °C) (FIG. 40A) o en plasma humano a 37 °C (FIG. 40B). (La FIG. 40B muestra la actividad de la α -GAL recombinante de mamífero Replagal® y α -GAL-II humana recombinante vegetal no reticulada para comparación);
 - La FIG. 41 presenta un barrido de un gel de SDS-PAGE que muestra α-GAL-II recombinante vegetal de 3 lotes diferentes (carriles 1-3) y α-GAL-II recombinante vegetal que ha reaccionado con bis-NHS-PEG₄₅ de 5 lotes diferentes (carriles 4-8), así como marcadores de peso molecular (PM);
- La FIG. 42 presenta un barrido de un gel de isoelectroenfoque que muestra la α-GAL-II recombinante vegetal de 3 lotes diferentes (carriles 1-3) y α-GAL-II recombinante vegetal que ha reaccionado con bis-NHS-PEG₄₅ de 5 lotes diferentes (carriles 4-8), así como marcadores de pH (M);
 - Las FIG. 43A-43F son espectros de espectroscopia de masas MALDI-TOF de α -GAL-II humana recombinante vegetal (FIG. 43A) y α -GAL-II humana vegetal reticulada por bis-NHS-PEG₄₅ de 5 lotes diferentes (FIG. 43B-43F, respectivamente) (el eje x indica valores de m/z, y se muestran los valores de m/z (en unidades Da) de los picos); y
 - La FIG. 44 es un gráfico que muestra la velocidad catalítica (V) de la actividad α -GAL exhibida por la α -GAL-II humana vegetal reticulada con bis-NHS-PEG₄₅ de 5 lotes diferentes, en función de la concentración del sustrato (p-nitrofenil- α -D-galactopiranósido).
- 50 Descripción de realizaciones específicas de la invención

20

25

30

35

45

- La presente invención, en algunas de sus realizaciones, se refiere a nuevas estructuras de proteína multimérica y, más particularmente, aunque no exclusivamente, a estructuras de proteína multimérica de α -galactosidasa y a sus usos en el tratamiento de la enfermedad de Fabry.
- Antes de explicar al menos una realización de la invención con detalle, debe entenderse que la invención no se limita necesariamente en su solicitud a los detalles expuestos en la siguiente descripción o ilustrados por los ejemplos. La invención puede tener otras realizaciones o llevarse a la práctica o realizarse de distintas maneras.
- Los déficits de una proteína lisosómica (por ejemplo, defectos en una proteína lisosómica o ausencia de una proteína lisosómica) pueden causar un daño considerable a la salud de un sujeto (una enfermedad de almacenamiento lisosómico). La terapia de reemplazo enzimático (ERT), en la que se administra a un paciente la proteína deficiente, se ha usado en intentos de tratar enfermedades de almacenamiento lisosómico. Sin embargo, la administración de la proteína deficiente no da como resultado necesariamente un aumento considerable y/o persistente en la actividad de la proteína *in vivo*.

La enfermedad de Fabry es un ejemplo de una enfermedad de almacenamiento lisosómico (heredada) recesiva ligada al cromosoma X que puede causar una amplia gama de síntomas sistémicos. Un déficit de la enzima lisosómica α -galactosidasa A debido a una mutación hace que un glucolípido conocido como globotriaosilceramida (conocido también como Gb₃ o trihexósido de ceramida) se acumule dentro de los vasos sanguíneos, otros tejidos y órganos. Esta acumulación conduce a una alteración de su función adecuada. Se dispone de dos terapias de reemplazo enzimático (ERT) para compensar funcionalmente el déficit de la α -galactosidasa. Tanto la agalsidasa alfa (Replagal®, Shire) como la agalsidasa beta (Fabrazyme®, Genzyme) son formas recombinantes de la enzima α -galactosidasa A humana. Estas enzimas son difíciles de fabricar y, por lo tanto, son caras. Recientemente, la contaminación en la planta de Allston de Genzyme, MA, causó una escasez a nivel mundial de agalsidasa beta, y los suministros a los pacientes se racionaron a un tercio de la dosis recomendada.

Como se muestra en el presente documento, las α -galactosidasas ejercen su actividad máxima a los niveles de pH bajos característicos de los lisosomas, mientras que su actividad a niveles de pH más altos se ve comprometida. Por lo tanto, por ejemplo, la α -galactosidasa usada en ERT tendría poca capacidad de hidrolizar glucolípidos galactosilados terminales en el suero de pacientes con la enfermedad de Fabry.

Además, como se muestra adicionalmente en el presente documento, incluso en condiciones lisosómicas, la actividad de las α -galactosidasas se ve comprometida gradualmente, aunque a una tasa más baja que a niveles de pH más altos.

Motivados por la necesidad de resolver la actividad comprometida de las α -galactosidasas, los autores de la presente invención han investigado formas estabilizadas de α -galactosidasa (α -GAL). Más específicamente, los autores de la presente invención han contemplado que una forma estabilizada de la α -galactosidasa podría exhibir una actividad más duradera en general, incluyendo una actividad más duradera en suero. Por lo tanto, los autores de la presente invención han diseñado y preparado con éxito y llevado a la práctica formas estabilizadas de α -galactosidasa nativa y, de hecho, han demostrado que dichas formas estabilizadas exhiben un comportamiento mejorado en cuanto a una mayor actividad y/o una mayor duración de la actividad en condiciones tanto lisosómicas como en un entorno de suero, lo cual proporciona una actividad mejorada de la proteína *in vivo*.

30 Los autores de la presente invención han demostrado una formación de formas estabilizadas de la α -galactosidasa que exhiben un comportamiento mejorado mediante la reticulación de la α -galactosidasa nativa, a través de la formación de un nuevo enlace covalente entre los monómeros de α -galactosidasa.

Haciendo referencia ahora a los dibujos, las Figuras 1 y 4 muestran la disminución de la actividad enzimática en condiciones lisosómicas para la α -GAL-I humana recombinante vegetal (phr- α -GAL I) y la α -GAL Fabrazyme® y Replagal®. Las Figuras 2 y 3 muestran la disminución de la actividad enzimática en condiciones fisiológicas simuladas o en plasma humano, para las mismas variedades de α -GAL. Las Figuras 2 y 4 muestran que la galactosa disminuye la tasa de disminución de la actividad de la α -GAL.

40 La Figura 5 muestra agentes de reticulación ejemplares de PEG (polietilenglicol), de acuerdo con realizaciones opcionales de la invención. La Figura 6 representa un dímero de α-GAL reticulado de acuerdo con realizaciones opcionales de la invención.

Las Figuras 7-10 y 37 muestran que phr-α-GAL-I reaccionó con agentes de reticulación ejemplares que comprendían radicales de N-hidroxisuccinimida. La Figura 38 muestra que phr-α-GAL-I reaccionó con agentes de reticulación ejemplares que comprendían grupos carboxilo, después de la activación *in situ* con N-hidroxisuccinimida. Las Figuras 7, 37 y 38 muestran que la reacción con el agente de reticulación dio como resultado la aparición de α-GAL principalmente en una forma dimérica en lugar de en una forma monomérica en condiciones desnaturalizantes, lo que indica que la estructura cuaternaria de la α-GAL se mantenía por reticulación covalente. La FIG. 11 muestra que la α-GAL reticulada conservaba su actividad enzimática.

Las Figuras 12A-12C y 39 muestran que la phr α -GAL-I reticulada exhibe una actividad más duradera que la α -GAL no reticulada en condiciones lisosómicas simuladas. El aumento de la estabilidad es más fuerte para los enlazadores PEG₂₈ y PEG₄₅ que para los enlazadores de PEG más cortos. La Figura 13 muestra que la phr- α -GAL-I reticulada exhibe una actividad más duradera que la α -GAL no reticulada en plasma *in vivo*. Las Figuras 14A-21 muestran que la phr- α -GAL-I reticulada exhibe una actividad potenciada *in vivo* en el bazo, hígado, corazón y riñones. La potenciación de la actividad de α -GAL es más fuerte para los enlazadores de PEG₄₅ que para los enlazadores de PEG más cortos. Las Figuras 15A, 15B y 19 muestran que, aunque la phr- α -GAL-I reticulada exhibe una actividad potenciada *in vivo*, la actividad potenciada no está tan concentrada en el hígado como lo está la actividad de α -GAL Replagal®.

Los resultados anteriores indican que la reticulación de la α -GAL-I humana recombinante vegetal da como resultado un dímero con mejor estabilidad, lo que permite un aumento más eficaz de la actividad de α -GAL cuando se administra *in vivo*.

65

55

60

5

10

15

20

25

De manera similar, las Figuras 22-28D muestran que la reticulación de la α -GAL humana recombinante de mamífero da como resultado un dímero ligado de manera covalente (Figuras 22-24B), que exhibe actividad enzimática normal (Figura 25), así como una actividad más duradera en condiciones tanto lisosómicas como en plasma (Figuras 26A-26B) y una mayor actividad *in vivo* en el bazo, hígado, corazón y riñones (Figuras 27A-28D).

5

10

De manera similar, las Figuras 29A-33L muestran que la reticulación de la α -GAL II humana recombinante vegetal da como resultado un dímero ligado de manera covalente (Figuras 29-30), que exhibe una actividad más duradera en condiciones tanto lisosómicas como en plasma (Figuras 31A-31B), y una mayor actividad *in vivo* en plasma y en el bazo, hígado, corazón y riñones (Figuras 32A-33L). Como se muestra en las Figuras 33A-33L, la reticulación con un enlazador de PEG₄₅ fue particularmente eficaz para aumentar la actividad *in vivo*.

Estos resultados indican que los efectos ventajosos de la reticulación son aplicables a una diversidad de proteínas α -GAL.

15

Las Figuras 34A-34C muestran que la reticulación de α -GAL aumenta parámetros de catálisis enzimática de α -GAL, ensancha el intervalo de pH de la actividad de α -GAL y permite la actividad de α -GAL a un pH de aproximadamente 7 o mayor.

20

Las Figuras 35-36B muestran que la PEGilación sin reticulación no tiene efectos significativos sobre la actividad de α -GAL, lo que indica que los efectos ventajosos de la reticulación se deben específicamente a la reticulación, en lugar de a un efecto de la PEGilación.

25

Las Figuras 40-44 muestran que la reticulación de α -GAL de acuerdo con las realizaciones de la invención permite una buena reproducibilidad de la estabilidad (Figuras 40A-40B), grado de reticulación covalente (Figuras 41-43F) y propiedades enzimáticas (Figura 44) de la α -GAL reticulada.

25

Los resultados presentados en el presente documento muestran que las estructuras de proteína multiméricas reticuladas de manera covalente de la α -galactosidasa se caracterizan por una mayor estabilidad y mayor actividad en condiciones fisiológicamente relevantes, en comparación con las formas nativas de la α -galactosidasa.

30

Por lo tanto, la estructura de proteína multimérica unida de manera covalente puede exhibir una actividad que es mayor que la actividad de una forma nativa de la α -galactosidasa, como resultado de que la actividad de la forma nativa se degrada más rápidamente a lo largo del tiempo que la actividad de la estructura de proteína multimérica reticulada, que se estabiliza mediante la reticulación covalente.

35

La estructura de proteína multimérica reticulada de manera covalente puede exhibir una actividad que es mayor que la actividad de la forma nativa de la α -galactosidasa, también debido a una mayor actividad inicial (por ejemplo, debido a diferentes parámetros de actividad), es decir, independientemente de cualquier deterioro de la actividad a lo largo del tiempo.

40

Por lo tanto, de acuerdo con un aspecto de algunas realizaciones de la presente invención se proporciona una estructura de proteína multimérica que comprende al menos dos monómeros de α -galactosidasa que están ligados de manera covalente entre sí a través de un radical de unión. De acuerdo con algunas realizaciones, la estructura de proteína multimérica presenta una estabilidad mayor que la de una α -galactosidasa nativa y/o una actividad inicial mayor que la de una α -galactosidasa nativa, como se describe más adelante con detalle.

45

En el presente documento, el término "monómero" con respecto a la α -galactosidasa se refiere a un polipéptido individual de la α -galactosidasa. El polipéptido puede incluir sustituyentes no peptídicos (por ejemplo, uno o más restos de sacárido).

50

En el presente documento, el término "nativa" con respecto a la α -galactosidasa incluye proteínas que comprenden una secuencia de aminoácidos sustancialmente idéntica (es decir, al menos una homología del 95 %, opcionalmente al menos una homología del 99 % y opcionalmente del 100 %) con una secuencia de aminoácidos de una proteína α -galactosidasa de origen natural. Una α -galactosidasa nativa puede ser una proteína aislada de una fuente natural, o una proteína producida de manera recombinante (por ejemplo, procedente de células de mamífero, células de plantas, células de levadura, células bacterianas o células de insecto).

55

El término "nativa", cuando se usa en referencia a una estructura cuaternaria de α -galactosidasa (por ejemplo, un dímero de α -galactosidasa) comprende adicionalmente una estructura cuaternaria sustancialmente idéntica a la de una proteína de origen natural.

60

En el presente documento, la frase "proteína de origen natural" se refiere a una proteína en una forma que se produce en la naturaleza (por ejemplo, en un organismo), con respecto a la secuencia de aminoácidos de la proteína, así como la estructura cuaternaria de la proteína si la proteína está en una forma multimérica.

Las modificaciones postraduccionales (por ejemplo, glucosilación) de las proteínas α -galactosidasa de origen natural (por ejemplo, en un organismo que expresa la proteína α -galactosidasa de origen natural) pueden estar presentes, ausentes o modificadas en la forma nativa de la α -galactosidasa a la que se hace referencia en el presente documento. Una forma nativa de la α -galactosidasa (por ejemplo, una α -galactosidasa producida de manera recombinante) puede comprender opcionalmente modificaciones postraduccionales diferentes a las de la α -galactosidasa de origen natural, siempre que la forma nativa de la α -galactosidasa conserve una secuencia de aminoácidos y estructura sustancialmente similar a la de la α -galactosidasa de origen natural, como se ha descrito anteriormente en el presente documento.

10 En el presente documento, la forma nativa de una proteína puede referirse a una estructura monomérica (por ejemplo, un monómero de α -galactosidasa) y/o una estructura multimérica (por ejemplo, un dímero de α -galactosidasa). Por ejemplo, una proteína dimérica puede describirse como una forma nativa de α -galactosidasa, y un polipéptido monomérico en una proteína dimérica puede describirse como una forma nativa del monómero de α -galactosidasa.

15

25

40

45

50

- Opcionalmente, la estructura de proteína multimérica descrita en el presente documento es una estructura dimérica, como lo es la forma nativa de la α -galactosidasa.
- Como alternativa, la estructura de proteína multimérica comprende más de dos monómeros de α-galactosidasa. Por ejemplo, la estructura de proteína multimérica puede ser un tetrámero, un hexámero o un octámero que comprende monómeros de α-galactosidasa.
 - Las estructuras de proteína multimérica descritas en el presente documento comprenden enlaces covalentes que unen los monómeros de α -galactosidasa entre sí, y que no existen en la forma nativa de la α -galactosidasa.
 - Opcionalmente, el radical de unión que une los monómeros de α -galactosidasa es un radical que no está presente en una forma nativa de α -galactosidasa (por ejemplo, un radical de unión sintético).
- Por lo tanto, por ejemplo, el radical de unión es opcionalmente un radical que se une de manera covalente a una cadena lateral, a un extremo N o a un extremo C, o un radical relacionado con modificaciones postraduccionales (por ejemplo, un radical de sacárido) de un monómero de α-galactosidasa, así como a una cadena lateral, a un extremo N o a un extremo C, o a un radical relacionado con modificaciones postraduccionales (por ejemplo, un radical de sacárido) de otro monómero de α-galactosidasa. A continuación, se describen con detalle en el presente documento ejemplos de dichos radicales de unión.
 - Como alternativa, el radical de unión forma una parte de los monómeros de α -galactosidasa que se están uniendo (por ejemplo, una parte de una cadena lateral, extremo N o extremo C, o un radical relacionado con modificaciones postraduccionales (por ejemplo, un radical de sacárido) de un monómero de α -galactosidasa, así como de una cadena lateral, un extremo N o un extremo C, o un radical relacionado con modificaciones postraduccionales (por ejemplo, un radical de sacárido) de otro monómero de α -galactosidasa).
 - Por lo tanto, por ejemplo, el radical de unión puede ser un enlace covalente (por ejemplo, un enlace amida) entre un grupo funcional de una cadena lateral, extremo N, extremo C o radical relacionado con modificaciones postraduccionales de un monómero (por ejemplo, una amina) y un grupo funcional complementario de una cadena lateral, extremo N, extremo C o radical relacionado con modificaciones postraduccionales de otro monómero (por ejemplo, carboxilo), donde dicho enlace covalente está ausente de la forma nativa de la α-galactosidasa. También se contemplan otros enlaces covalentes, tales como, por ejemplo, un enlace éster (entre un grupo hidroxi y un carboxilo); un enlace tioéster; un enlace éter (entre dos grupos hidroxi); un enlace tioéter; un enlace anhídrido (entre dos carboxilos); un enlace tioamida; un enlace carbamato o tiocarbamato.
 - Opcionalmente, el radical de unión está desprovisto de un enlace disulfuro. Sin embargo, dentro del alcance de esta realización de la invención se encuentra un radical de unión que incluye un enlace disulfuro en una posición que no forma un enlace entre monómeros (por ejemplo, la escisión de los enlaces disulfuro no escinde la unión entre los monómeros). Una posible ventaja del radical de unión desprovisto de un enlace disulfuro es que no es susceptible de escisión en condiciones reductoras suaves, como lo son los enlaces disulfuro.
 - Opcionalmente, el radical de unión es un radical no peptídico (por ejemplo, el radical de unión no consiste en un enlace amida, un aminoácido, un dipéptido, un tripéptido, un oligopéptido o un polipéptido).
- Como alternativa, el radical de unión puede ser, o puede comprender, un radical peptídico (por ejemplo, un aminoácido, un dipéptido, un oligopéptido o un polipéptido).
 - Opcionalmente, el radical de unión no es simplemente una extensión lineal de cualquiera de los monómeros de α-galactosidasa unidos (es decir, el extremo N y extremo C del radical peptídico no están unidos directamente al

extremo C o extremo N de cualquiera de los monómeros de α -galactosidasa).

5

10

30

35

50

55

60

65

Como alternativa, el radical de unión está formado por unión covalente directa de un extremo N de un monómero de α -galactosidasa con un extremo C de otro monómero de α -galactosidasa, para producir un polipéptido fusionado. Dicho polipéptido no será una forma nativa de α -galactosidasa, aunque puede comprender dos monómeros de α -galactosidasa esencialmente en su forma nativa.

Sin embargo, la unión covalente de los monómeros de α -galactosidasa descritos en el presente documento está preferentemente en una forma distinta de la unión directa de un extremo N a un extremo C.

El radical de unión también se denomina en el presente documento radical de reticulación. En el presente documento, la unión de monómeros de α -galactosidasa mediante un radical de unión se denomina "reticulación".

El radical de reticulación puede ser un enlace covalente, un grupo o átomo químico (por ejemplo, un grupo C(=O)-O-, -O-, -S-, NR-, -N=N-, -NH-C(=O)-NH-, y similar) o un radical puente (compuesto de una cadena de grupos químicos).

Un radical puente puede ser, por ejemplo, un grupo polimérico u oligomérico.

20 El radical puente es un radical multifuncional (por ejemplo, birradical, trirradical, etc.) que está unido a cadenas laterales, radicales relacionados con modificaciones postraduccionales (por ejemplo, radicales de sacárido) y/o extremos (es decir, extremo N, extremo C) de dos o más de los monómeros.

Como se ilustra en el presente documento en la sección de Ejemplos, los radicales de unión relativamente cortos (por ejemplo, PEG₂, PEG₄, PEG₅) pueden ser menos eficaces que los radicales de unión más largos (por ejemplo, PEG₂₈, PEG₄₅) en las reticulaciones entre diferente monómeros de α-galactosidasa.

Por lo tanto, de acuerdo con algunas realizaciones, el radical de unión no es un enlace covalente, un átomo o grupo químico, sino que más bien es un radical puente.

Por lo tanto, de acuerdo con algunas realizaciones, el radical de unión tiene una longitud de al menos 10 átomos, opcionalmente una longitud de al menos 20 átomos, opcionalmente una longitud de al menos 30 átomos, opcionalmente una longitud de al menos 50 átomos, opcionalmente una longitud de al menos 100 átomos y opcionalmente una longitud de al menos 200 átomos.

En el presente documento, la longitud de un radical de unión (cuando se expresa como un número de átomos) se refiere a la longitud de la estructura del radical de unión, es decir, el número de átomos que forman una cadena lineal entre los restos de cada uno de dos monómeros unidos a través del radical de unión.

40 Opcionalmente, el radical de unión está por debajo de un determinado tamaño, para impedir una parte del radical de unión innecesariamente excesiva en la proteína reticulada formada, que podría interferir con la función de la proteína.

Por lo tanto, de acuerdo con algunas realizaciones, cada radical de unión se caracteriza por un peso molecular de menos de 20 KDa, opcionalmente menos de 10 KDa, opcionalmente menos de 5 KDa y opcionalmente menos de 3 KDa

Para facilitar la reticulación, el radical de unión es de manera opcional sustancialmente flexible, siendo los enlaces en la estructura del radical de unión en su mayor parte rotacionalmente libres, por ejemplo, enlaces sencillos que no están acoplados a un doble enlace (por ejemplo, a diferencia de un enlace amida) y no estando la rotación impedida estéricamente. Opcionalmente al menos el 70 %, opcionalmente al menos el 80 % y opcionalmente al menos el 90 % (por ejemplo, el 100 %) de los enlaces en la estructura del radical de unión es rotacionalmente libre.

En algunas realizaciones, el radical de unión comprende una cadena de poli(alquilenglicol).

La frase "poli(alquilenglicol)", como se usa en el presente documento, incluye una familia de polímeros de poliéter que comparte la siguiente fórmula general: $-O-[(CH_2)_m-O-]_{n-}$, en la que m representa el número de grupos metileno presente en cada unidad de alquilenglicol, y n representa el número de unidades de repetición y, por lo tanto, representa el tamaño o la longitud del polímero. Por ejemplo, cuando m = 2, el polímero se denomina polietilenglicol y cuando m = 3, el polímero se denomina polipropilenglicol.

En algunas realizaciones, m es un número entero mayor que 1 (por ejemplo, m = 2, 3, 4, etc.).

Opcionalmente, m varía entre las unidades de la cadena de poli(alquilenglicol). Por ejemplo, una cadena de poli(alquilenglicol) puede comprender tanto unidades de etilenglicol (m = 2) como de propilenglicol (m = 3) unidas

entre sí.

5

10

20

50

55

Opcionalmente, el poli(alquilenglicol) comprende al menos dos grupos funcionales (por ejemplo, como se describe en el presente documento), formando cada grupo funcional un enlace covalente con uno de los monómeros de α -galactosidasa. Los grupos funcionales son opcionalmente grupos terminales del poli(alquilenglicol), de tal manera que toda la longitud del poli(alquilenglicol) se encuentra entre los dos grupos funcionales.

La frase "poli(alquilenglicol)" también incluye análogos del mismo, en los que el átomo de oxígeno se reemplaza por otro heteroátomo tal como, por ejemplo, S, -NH- y similares. Este término incluye adicionalmente derivados de los anteriores en los que se han sustituido uno o más de los grupos metileno que componen el polímero. Los sustituyentes ejemplares en los grupos metileno incluyen, pero sin limitación, alquilo, cicloalquilo, alquenilo, alquinilo, alcoxi, hidroxi, oxo, tiol y tioalcoxi y similares.

- La frase "unidad de alquilenglicol", como se usa en el presente documento, incluye un grupo -(CH₂)_m-O- o un análogo del mismo, como se ha descrito anteriormente en el presente documento, que forma la cadena estructural del poli(alquilenglicol), en el que el (CH₂)_m (o su análogo) está unido a un heteroátomo que pertenece a otra unidad de alquilenglicol o a un radical monomérico de α-galactosidasa (en casos de una unidad terminal), y el O (o un análogo de heteroátomo del mismo) está unido al (CH₂)_m (o su análogo) de otra unidad de alquilenglicol, o a un grupo funcional que forma un enlace con un monómero de α-galactosidasa.
- Una unidad de alquilenglicol puede estar ramificada, de tal manera que está ligada a tres o más unidades de alquilenglicol adyacentes, donde cada una de las 3 o más unidades de alquilenglicol adyacentes son parte de una cadena de poli(alquilenglicol). Dicha unidad ramificada de alquilenglicol está ligada a través del heteroátomo de la misma a una unidad de alquilenglicol adyacente, y cada uno de los heteroátomos de las unidades de alquilenglicol adyacentes restantes está ligado a un átomo de carbono de la unidad de alquilenglicol ramificada. Además, un heteroátomo (por ejemplo, nitrógeno) puede unirse a más de un átomo de carbono de una unidad de alquilenglicol de la que forma parte, formando de este modo una unidad de alquilenglicol ramificada (por ejemplo, [(-CH₂)_m]₂N- y similares).
- 30 En realizaciones ejemplares, al menos el 50 % de las unidades de alquilenglicol son idénticas, por ejemplo, comprenden los mismos heteroátomos y los mismos valores de m unas que otras. Opcionalmente al menos el 70 %, opcionalmente al menos el 90 % y opcionalmente el 100 % de las unidades de alquilenglicol son idénticas. En realizaciones ejemplares, los heteroátomos unidos a las unidades idénticas de alquilenglicol son átomos de oxígeno. En realizaciones ejemplares adicionales, m es 2 para las unidades idénticas.
 - En una realización, el enlazador es un enlazador de cadena lineal, sencilla, siendo preferentemente polietilenglicol (PEG).
- Como se usa en el presente documento, la expresión "poli(etilenglicol)" describe un poli(alquilenglicol), como se define anteriormente en el presente documento, en el que al menos el 50 %, al menos el 70 %, al menos el 90 % y preferentemente el 100 % de las unidades de alquilenglicol son -CH₂CH₂-O-. De manera similar, la frase "unidades de etilenglicol" se define en el presente documento como unidades de -CH₂CH₂-O-.
- De acuerdo con realizaciones opcionales, el radical de unión comprende un poli(etilenglicol) o análogo del mismo, que tienen una fórmula general:

$$-X_1-(CR_1R_2-CR_3R_4-Y)_n-X_2-$$

en la que cada uno de X_1 y X_2 es un grupo funcional (por ejemplo, como se describe en el presente documento) que forma un enlace covalente con al menos un monómero de α -galactosidasa;

Y es O, S o NR₅ (opcionalmente O);

- n es un número entero, opcionalmente de 1 a 200 (opcionalmente de 5 a 150 y opcionalmente de 40 a 70), aunque también se contemplan valores mayores de n; y
- cada uno de R₁, R₂, R₃, R₄ y R₅ se selecciona independientemente del grupo que consiste en hidrógeno, alquilo, cicloalquilo, alquenilo, alquinilo, alcoxi, hidroxi, oxo, tiol y tioalcoxi.

En algunas realizaciones, n es al menos 5, opcionalmente al menos 8, opcionalmente al menos 15 y opcionalmente al menos 25 y opcionalmente al menos 40.

- 60 En algunas realizaciones, n no es más de 200, opcionalmente no más de 150 y opcionalmente no más de 70.
 - El poli(etilenglicol) o análogo del mismo puede comprender opcionalmente un copolímero, por ejemplo, en el que las unidades CR₁R₂-CR₃R₄-Y en la fórmula anterior no son todas idénticas entre sí.
- En algunas realizaciones, al menos el 50 % de las unidades CR_1R_2 - CR_3R_4 -Y son idénticas. Opcionalmente, al menos el 70 %, opcionalmente al menos el 90 % y opcionalmente el 100 % de las unidades CR_1R_2 - CR_3R_4 -Y son

idénticas.

5

10

25

30

35

45

50

55

60

65

Los grupos funcionales pueden formar opcionalmente un enlace tal como, pero sin limitación, un enlace amina, un enlace amida, un enlace éster y/o un enlace éter.

Por ejemplo, el grupo funcional puede comprender opcionalmente un grupo carbonilo que forma un enlace amida con un átomo de nitrógeno en un polipéptido (por ejemplo, en un resto de lisina o extremo N) o un enlace éster con un átomo de oxígeno en un polipéptido (por ejemplo, en un resto de serina, treonina o tirosina).

15 Como alternativa o adicionalmente, el grupo funcional opcionalmente puede comprender un heteroátomo (por ejemplo, N, S, O) que forma un enlace amida, enlace éster o enlace tioéster con un grupo carbonilo en un polipéptido (por ejemplo, en un resto de glutamato o aspartato o en un extremo C).

Como alternativa o de manera adicional, el grupo funcional puede comprender un grupo alquilo o arilo unido a un polipéptido (por ejemplo, a un heteroátomo en el polipéptido).

De manera alternativa o adicional, el grupo funcional puede comprender opcionalmente un átomo de nitrógeno que forma un enlace amina con un grupo alquilo en un monómero de α -galactosidasa, o un monómero de α -galactosidasa que opcionalmente comprende un átomo de nitrógeno que forma un enlace amina con un grupo alquilo en el grupo funcional. Dicho enlace amina puede formarse por aminación reductora (por ejemplo, como se describe más adelante en el presente documento).

En algunas realizaciones, al menos uno de los grupos funcionales forma un enlace amida con un polipéptido (por ejemplo, con un resto de lisina en su interior).

Los grupos funcionales pueden ser idénticos entre sí o diferentes.

En algunas realizaciones, al menos uno de los grupos funcionales está unido a una funcionalidad de un polipéptido (por ejemplo, un grupo amino de un resto de lisina o extremo N), y al menos uno de los grupos funcionales está unido a una funcionalidad diferente de un polipéptido (por ejemplo, un grupo tiol de un resto de cisteína).

De acuerdo con realizaciones opcionales, la estructura de proteína multimérica descrita en el presente documento exhibe una alta estabilidad en condiciones plasmáticas humanas y/o en condiciones lisosómicas.

40 Como se usa en el presente documento, la frase "condiciones plasmáticas humanas" se refiere a plasma humano como medio, a una temperatura de 37 °C.

Como se usa en el presente documento, la frase "condiciones lisosómicas" se refiere a una solución acuosa que tiene un pH de 4,6 como medio (por ejemplo, un tampón fosfato citrato descrito en el presente documento), a una temperatura de 37 °C.

La mejor estabilidad en condiciones lisosómicas es ventajosa debido a que el lisosoma es una diana para la terapia de reemplazo para la α -galactosidasa, ya que los lisosomas son la localización normal de la actividad α -galactosidasa en el cuerpo, y las condiciones lisosómicas (por ejemplo, pH ácido) representan condiciones óptimas para la actividad de la α -galactosidasa.

Sin querer ligarse a ninguna teoría particular, se piensa que la mejor estabilidad en condiciones similares al suero (por ejemplo, las condiciones plasmáticas humanas descritas en el presente documento) es también ventajosa porque la α-galactosidasa estable en la sangre puede actuar sobre metabolitos (por ejemplo, Gb₃) presentes en la sangre como consecuencia de la salida desde las células. Una estructura de proteína multimérica activa en suero podría opcionalmente ser eficaz en la eliminación y prevención de los depósitos de glucoesfingolípidos dentro de las paredes de los vasos sanguíneos que promueven la inflamación [Bodary et al., TCM 17(4): 129-133]. Por ejemplo, en la enfermedad de Fabry, la patogénesis principal resulta de la acumulación de Gb₃ en el endotelio vascular, lo que conduce a una oclusión vascular de los vasos pequeños, isquemia e infarto de estos vasos e isquemia e infarto del riñón, corazón y cerebro [Desnick et al., 2003, Annals of Internal Medicine, 138(4): 338-346]. Adicionalmente, la mayor estabilidad en suero puede anular la necesidad de tráfico lisosómico. ERT puede, por lo tanto, volverse mucho más accesible, ya que pueden emplearse sistemas de hospedadores rentables fuertes, por ejemplo, plantas.

De acuerdo con realizaciones opcionales, la alta estabilidad de la estructura de proteína multimérica en condiciones plasmáticas humanas es tal que la estructura de proteína multimérica exhibe, después de someterse a condiciones

plasmáticas humanas durante una hora, una actividad α -galactosidasa que es al menos un 10 % mayor, opcionalmente un 20 % mayor, opcionalmente el 50 % mayor, y opcionalmente un 100 % mayor, que una actividad α -galactosidasa de la α -galactosidasa nativa después de someter la α -galactosidasa nativa a las condiciones plasmáticas humanas durante una hora.

5

10

De manera alternativa o adicional, la alta estabilidad de la estructura de proteína multimérica en condiciones plasmáticas humanas es tal que la actividad α -galactosidasa de la estructura de proteína multimérica disminuye más lentamente en condiciones plasmáticas humanas que la actividad correspondiente de la α -galactosidasa nativa. Opcionalmente, la estructura de proteína multimérica exhibe una actividad que disminuye después de someter la estructura de proteína a condiciones plasmáticas humanas durante una hora en un porcentaje que es al menos un 10 % menor, opcionalmente un 20 % menor, opcionalmente un 50 % menor y opcionalmente un 80 % menor, que el porcentaje que disminuye la actividad correspondiente de la α -galactosidasa nativa después de someter la α -galactosidasa nativa a condiciones plasmáticas humanas durante una hora.

15 E

Debe entenderse que, en el presente documento, una disminución que es un "10 % menor" que una disminución del 50 % se refiere a una disminución del 45 % (siendo 45 un 10 % menor que 50), y no a una disminución del 40 % (50 %-10 %).

20

De manera alternativa o adicional, la alta estabilidad de la estructura de proteína multimérica en condiciones plasmáticas humanas es tal que la actividad α-galactosidasa de la estructura de proteína multimérica permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones plasmáticas humanas durante una hora, y opcionalmente durante 2, 4 o incluso 6 horas.

25

Como se usa en el presente documento, la frase "sustancialmente sin cambios" se refiere a un nivel (por ejemplo, de actividad) que permanece en un intervalo del 50 % al 150 % del nivel inicial, y opcionalmente un nivel que permanece al menos en un 60 %, opcionalmente al menos en un 70 %, opcionalmente al menos en un 80 % y opcionalmente al menos en un 90 % del nivel inicial.

30

Opcionalmente, la alta estabilidad de la estructura de proteína multimérica en condiciones lisosómicas es tal que la estructura de proteína multimérica exhibe, después de someterse a condiciones lisosómicas durante un periodo de tiempo predeterminado (por ejemplo, un día, dos días, tres días, una semana), una actividad α-galactosidasa que es al menos un 10 % mayor, opcionalmente un 20 % mayor, opcionalmente un 50 % mayor y opcionalmente un 100 % mayor que la actividad de la α-galactosidasa nativa después de someter la α-galactosidasa nativa a las condiciones lisosómicas durante el mismo periodo de tiempo predeterminado.

35

De manera alternativa o adicional, la alta estabilidad de la estructura de proteína multimérica en condiciones lisosómicas es tal que una actividad α-galactosidasa de la estructura de proteína multimérica disminuye más lentamente en condiciones lisosómicas que una actividad correspondiente de la α-galactosidasa nativa. Opcionalmente, la estructura de proteína multimérica exhibe una actividad que disminuye después de someter la estructura de proteína a condiciones lisosómicas durante un periodo de tiempo predeterminado (por ejemplo un día, 2 días, 3 días, una semana), en un porcentaje que es al menos un 10 % menor, opcionalmente un 20 % menor, opcionalmente un 50 % menor y opcionalmente un 80 % menor, que el porcentaje que disminuye la actividad correspondiente de la alfa-galactosidasa nativa después de someter la alfa-galactosidasa nativa a condiciones lisosómicas durante el mismo periodo de tiempo.

45

40

De manera alternativa o adicional, la alta estabilidad de la estructura de proteína multimérica en condiciones lisosómicas es tal que una actividad α-galactosidasa de la estructura de proteína multimérica permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día, durante 2 días, durante 3 días, durante una semana, durante dos semanas y/o durante un mes.

50

Como se ilustra en la sección de Ejemplos del presente documento, además de exhibir más estabilidad a lo largo del tiempo, la estructura de proteína multimérica puede exhibir parámetros de actividad α -galactosidasa que son diferentes de los de la α -galactosidasa nativa.

55

Por lo tanto, de acuerdo con realizaciones opcionales, la estructura de proteína multimérica se caracteriza por exhibir, independientemente de cualquier degradación de actividad a lo largo del tiempo, una actividad α-galactosidasa que es mayor que una actividad α-galactosidasa de una forma nativa de la proteína. Opcionalmente, la actividad es un 10 % mayor y, opcionalmente, un 20 % mayor, que la actividad correspondiente de la forma nativa.

60

Para caracterizar dicha actividad, la actividad se determina preferentemente de manera inmediata (por ejemplo, antes de que haya transcurrido 1 hora, antes de que hayan transcurrido 15 minutos) después de someter la α-galactosidasa nativa o la estructura de proteína multimérica a condiciones (por ejemplo, como se describe en el presente documento) en las cuales la actividad disminuye sustancialmente, de tal manera que la actividad medida reflejará la actividad por sí misma y no un grado de estabilidad.

Opcionalmente, la estructura de proteína multimérica se caracteriza por exhibir una actividad α-galactosidasa en condiciones lisosómicas que es mayor que una actividad correspondiente de la α-galactosidasa nativa.

- De manera alternativa o adicional, la estructura de proteína multimérica se caracteriza por exhibir una actividad α-galactosidasa en condiciones fisiológicas simuladas a un pH neutro que es mayor que una actividad correspondiente de la α-galactosidasa nativa. Las condiciones fisiológicas simuladas comprenden una solución acuosa (por ejemplo, solución salina tamponada con fosfato) a una temperatura de 37 °C. El pH es opcionalmente 7. Como alternativa, el pH es de 7,4.
- La actividad α-galactosidasa descrita en el presente documento es una actividad biológica que es característica de la α-galactosidasa (por ejemplo, una actividad catalítica característica de la α-galactosidasa, tal como hidrólisis de un radical α-galactosil terminal de un sustrato).
- En algunas realizaciones, la actividad catalítica de la α -galactosidasa se caracteriza por una velocidad de catálisis a saturación (es decir, un valor $V_{máx}$).

20

25

30

50

55

60

- De manera alternativa, la actividad α-galactosidasa es una actividad terapéutica (por ejemplo, una actividad enzimática que tiene un efecto terapéutico), tal como una actividad terapéutica en el contexto de la enfermedad de Fabry. Opcionalmente, la actividad terapéutica se determina en animales experimentales (por ejemplo, ratones con enfermedad de Fabry) y, opcionalmente, en pacientes humanos con enfermedad de Fabry.
- Un experto en la materia conocerá técnicas para determinar la actividad α -galactosidasa. Típicamente, la α -galactosidasa (es decir, la forma nativa o una estructura de proteína multimérica descrita en el presente documento) se pone en contacto con un compuesto reconocido en la técnica como sustrato de la α -galactosidasa, y después se determina el grado de actividad de un modo cuantitativo. En la técnica se conocen compuestos que permiten la detección particularmente conveniente de la actividad α -galactosidasa y se encuentran disponibles en el mercado.
- En algunas realizaciones, la actividad α-galactosidasa se determina ensayando la hidrólisis de 4-metilumbeliferil-α-D-galactopiranósido (por ejemplo, como se describe en la sección de Ejemplos del presente documento).
- En algunas realizaciones, la actividad α -galactosidasa se determina ensayando la hidrólisis de p-nitrofenil- α -D-galactopiranósido (por ejemplo, como se describe en la sección de Ejemplos del presente documento).
- Cuando se compara una actividad de una estructura de proteína multimérica descrita en el presente documento con una actividad de la α-galactosidasa nativa, la α-galactosidasa nativa comprende preferentemente monómeros de α-galactosidasa sustancialmente idénticos (por ejemplo, con respecto a la secuencia de aminoácidos y el patrón de glucosilación) a los monómeros de α-galactosidasa de la estructura multimérica.
- De acuerdo con algunas realizaciones, la estructura de proteína multimérica se caracteriza por una semivida en circulación en un sistema fisiológico (por ejemplo, sangre, suero y/o plasma de un ser humano o animal de laboratorio) que es mayor (por ejemplo, al menos un 20 %, al menos un 50 % mayor, al menos un 100 % mayor, al menos un 400 % mayor o al menos un 900 % mayor) que una semivida en circulación de la α-galactosidasa nativa.
- Una semivida en circulación aumentada puede asociarse opcionalmente con una mayor estabilidad *in vitro* (por ejemplo, como se describe en el presente documento), una mayor estabilidad *in vivo* (por ejemplo, resistencia al metabolismo) y/o junto con otros factores (por ejemplo, eliminación renal reducida).
 - Las semividas de circulación pueden determinarse cogiendo muestras (por ejemplo, muestras sanguíneas, muestras tisulares) de sistemas fisiológicos (por ejemplo, seres humanos, animales de laboratorio) a diversos intervalos y determinando el nivel de α-galactosidasa en la muestra, usando técnicas conocidas en este campo.
 - Opcionalmente, la semivida se calcula como una semivida terminal (por ejemplo, como se describe en la sección de Ejemplos), donde la semivida es el tiempo necesario para que una concentración (por ejemplo, una concentración sanguínea) disminuya en un 50 % después de haber alcanzado el seudoequilibrio de distribución. La semivida terminal puede calcularse a partir de una parte lineal terminal de una curva de tiempo frente al log de la concentración, por regresión lineal de la curva de tiempo frente al log de la concentración (véase, por ejemplo, Toutain y Bousquet-Melou [J Vet Pharmacol Ther 2004, 27: 427-39]). Por lo tanto, la semivida terminal es una medida de la disminución de la concentración plasmática de fármaco debida a la eliminación del fármaco y no de la disminución debida a otras razones, y no es necesariamente el tiempo necesario para que la cantidad del fármaco administrado se reduzca a la mitad.
 - La determinación del nivel de α -galactosidasa (por ejemplo, la estructura de proteína multimérica o la α -galactosidasa nativa) puede comprender la detección de la presencia física de α -galactosidasa (por ejemplo, mediante un anticuerpo contra α -galactosidasa) y/o la detección del nivel de una actividad α -galactosidasa (por ejemplo, como se describe en el presente documento).

De acuerdo con algunas realizaciones, la estructura de proteína multimérica se caracteriza por una actividad α -galactosidasa en un órgano (por ejemplo, bazo, corazón, riñón, cerebro, hígado) después de la administración (por ejemplo, administración intravenosa) de la estructura de proteína a un vertebrado (por ejemplo, un ser humano, un ratón), por ejemplo, un vertebrado con un déficit de α -galactosidasa (por ejemplo, un paciente humano con la enfermedad de Fabry, un ratón con la enfermedad de Fabry). Opcionalmente, la actividad α -galactosidasa en el órgano es mayor que la actividad α -galactosidasa de la α -galactosidasa nativa en el órgano, después de una administración equivalente a un vertebrado.

La actividad en un órgano puede ser una función de la captación de la α-galactosidasa y/o la retención de la actividad α-galactosidasa después de la captación.

5

15

25

30

35

40

50

Opcionalmente, la actividad α -galactosidasa en el órgano se determina 2 horas después de la administración, y opcionalmente 24 horas, opcionalmente 3 días, opcionalmente 7 días y opcionalmente 14 días después de la administración.

Un aumento de la actividad de la α -galactosidasa en el hígado en algunos casos puede estar asociada con una menor actividad en otras partes del cuerpo y, por lo tanto, con un efecto biológico reducido de la α -galactosidasa.

Por lo tanto, en algunas realizaciones, la estructura de proteína multimérica se caracteriza por una mayor actividad α-galactosidasa en un órgano distinto del hígado. Como ejemplos de órganos incluyen el bazo, el corazón y los riñones.

En algunas realizaciones, la estructura de proteína multimérica se caracteriza por una mayor actividad α-galactosidasa en un órgano después de la administración (como se describe en el presente documento) que es al menos un 20 % mayor, opcionalmente al menos un 50 % mayor, opcionalmente al menos un 100 % mayor, y opcionalmente al menos un 300 % mayor, que la actividad de la α-galactosidasa nativa después de una administración equivalente. Como se ha indicado anteriormente en el presente documento, los autores de la presente invención han contemplado y preparado satisfactoriamente y llevado a la práctica formas estabilizadas de α-galactosidasa mediante estructuras multiméricas de monómeros de α-galactosidasa reticulados.

Opcionalmente, la α -galactosidasa es una α -galactosidasa humana (por ejemplo, una α -galactosidasa humana recombinante), por ejemplo, para facilitar la biocompatibilidad óptima para la administración a sujetos humanos. La α -galactosidasa humana se encuentra disponible en el mercado, por ejemplo, como Replagal® (agalsidasa alfa, Shire) y Fabrazyme® (agalsidasa beta, Genzyme).

En el presente documento, "α-galactosidasa humana" se refiere a una α-galactosidasa que comprende una secuencia de aminoácidos sustancialmente idéntica (por ejemplo, como se describe anteriormente en el presente documento) a una secuencia de aminoácidos de una proteína α-galactosidasa que se produce de manera natural en seres humanos.

En algunas realizaciones, la α -galactosidasa es una α -galactosidasa recombinante vegetal. Las α -galactosidasas ejemplares incluyen α -galactosidasas humanas recombinantes vegetales.

Como ejemplos de α-GAL se incluyen, sin limitación, α-GAL que tiene una secuencia de aminoácidos seleccionada del grupo que consiste en SEQ ID NO: 1, SEQ ID NO: 2 y SEQ ID NO: 3. Opcionalmente, la α-GAL tiene una secuencia de aminoácidos seleccionada del grupo que consiste en SEQ ID NO: 2 y SEQ ID NO: 3.

Como se usa en el presente documento, " α -galactosidasa" se refiere a cualquier proteína que exhibe una actividad enzimática (por ejemplo, hidrólisis) hacia radicales de galactosa en Gb₃ (por ejemplo, α -galactosidasa A). Opcionalmente, " α -galactosidasa" se refiere a E.C. 3.2.1.22.

La α -galactosidasa de las realizaciones de la invención puede purificarse (por ejemplo, de tejido de plantas o animales) o generarse mediante tecnología de ADN recombinante.

55 Como se describe en el presente documento, la actividad de α-galactosidasa en suero puede ser muy ventajosa, por ejemplo, para reducir niveles de Gb₃ en suero.

Por lo tanto, en algunas realizaciones, la α -galactosidasa es una α -galactosidasa alcalina.

- 60 Como se usa en el presente documento, la frase "α-galactosidasa alcalina" se refiere a α-GAL caracterizada por la capacidad de hidrolizar los radicales de α-galactosa ligados al extremo de oligosacáridos que contienen galactosa en condiciones de pH neutro a básico (por ejemplo, a aproximadamente pH 7-7,5), particularmente a un pH en suero normal (por ejemplo, aproximadamente 7,35-7,45).
- Se apreciará que una α-GAL alcalina de algunas realizaciones de la invención puede ser activa en condiciones de pH neutras a básicas, pero también puede presentar actividad en condiciones de pH ácidas (es decir, a

aproximadamente 4,6).

En una realización específica, la enzima es activa en condiciones de pH de ácido a básico (es decir, aproximadamente pH 4,2-7,5).

En otra realización específica más, la enzima es activa a un pH de aproximadamente 6,5-7,5.

En la Solicitud de Patente US 20070036883, documento WO03/097791 y en PCT/IL2010/000956, se proporcionan ejemplos específicos de α-galactosidasas alcalinas que pueden usarse de acuerdo con las presentes enseñanzas.

10

5

Por lo tanto, la α-galactosidasa alcalina puede ser un miembro de la familia de plantas seleccionada del grupo que consiste en las familias Cucurbitaceae, Lamiaceae, Piperaceae, Solanaceae, Leguminosae, Cruciferae y Gramineae.

De acuerdo con una realización específica, la α-galactosidasa alcalina es de melón.

15

20

P.-R. Gaudreault y JA Webb han descrito en diversas publicaciones (tales como "Alkaline alpha-galactosidase in leaves of Cucurbita pepo", Plant Sci. Lett. 24, 281-288, 1982, "Partial purification and properties of an alkaline alphagalactosidase from mature leaves of Cucurbita pepo", Plant Physiol., 71, 662-668, 1983, y "Alkaline alphagalactosidase activity and galactose metabolism in the family Cucurbitaceae", Plant Science, 45, 71-75, 1986), una nueva α-galactosidasa purificada de plantas jóvenes de Cucurbita pepo, que tiene una actividad óptima en condiciones alcalinas (pH 7,5). Además de la α-galactosidasa alcalina, también pueden indicarse tres formas ácidas de la enzima, y se descubrieron preferencias de sustrato distintas para las formas ácida y alcalina.

25

Se ha observado actividad α-galactosidasa a pH alcalino en otros tejidos de cucurbitáceas, tales como los pedicelos del fruto del pepino, fruto joven de calabaza y fruto joven de melón ("Melons: Biochemical and Physiological Control of Sugar Accumulation", En: Encyclopedia of Agricultural Science, vol. 3, págs. 25-37, Arntzen, C. J., et al., eds. Academic Press, Nueva York, 1994).

Bachmann et al. ("Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptens L.", Plant

30

35

Physiology 105: 1335-1345, 1994) afirman que en las plantas de Ajuga reptens (consuelda común), un translocador de estaquiosa de la familia Lamiaceae no relacionada también contiene una α-galactosidasa alcalina. Esta enzima se caracterizó parcialmente y se descubrió que tenía alta afinidad por estaquiosa. Además, las hojas de la planta Peperomia camptotricha L., de la familia Piperaceae, muestran actividad α-galactosidasa a pH alcalino, lo que sugiere que también contienen una enzima α-galactosidasa alcalina (Madore, M., "Catabolism of raffinose family oligosaccharides by vegetative sink tissues", En: Carbon Partitioning and Source-Sink Interactions in Plants, Madore, M. and Lucas, W. J. (eds.) págs. 204-214, 1995, American Society of Plant Physiologists, Maryland). De manera similar, Gao y Schaffer (Plant Physiol. 1999; 119: 979-88) han descrito una actividad α-galactosidasa con un pH alcalino óptimo en extractos brutos de tejidos de una variedad de especies que incluyen miembros de las familias Cucurbit y Coleus (Lamiaceae).

40

Se proporcionan ejemplos específicos de secuencias de α-galactosidasa alcalina de plantas en las SEQ ID NO: 4, 5 y 13 (Cucumis melo), 6 (T. tetragonioides), 7 y 12 (Cucumis sativus), 8 y 9 (Zea mays), 10 (Oruza sativa), 11 (Pisum sativum) y 14 (Coffea arabica).

45

En algunas realizaciones, la α-galactosidasa es una α-galactosidasa ácida.

Como se usa en el presente documento, "α-galactosidasa ácida" se refiere a una α-galactosidasa caracterizada por una capacidad de hidrolizar radicales de α-galactosidasa unidos al extremo de oligosacáridos que contienen galactosa en condiciones de pH ácidas (por ejemplo, a aproximadamente pH 4,2-5), tales como las que existen en un lisosoma.

50

La α-galactosidasa de realizaciones de la invención puede ser de cualquier fuente humana, animal o vegetal, siempre que después de la administración in vivo no se induzca una reacción inmunológica excesivamente adversa (por ejemplo, planta contra ser humano).

55

Para reducir la reacción inmunológica, puede coadministrarse una preparación de α-galactosidasa no humana (por ejemplo, de α-galactosidasa vegetal) con una α-galactosidasa humana (es decir, α-galactosidasa humana ácida).

60

65

Opcionalmente, la estructura de proteína multimérica comprende adicionalmente al menos un radical de manosa-6fosfato (M6P). El radical (o radicales) de M6P puede ligarse a uno o más de los monómeros de α-galactosidasa de la estructura de proteína multimérica (por ejemplo, mediante un enlazador).

En el documento WO 2009/024977 se describen técnicas y reactivos para introducir radicales que contienen M6P en una biomolécula (por ejemplo, un polipéptido).

Como se ilustra en la sección de Ejemplos del presente documento, una estructura de proteína multimérica descrita en el presente documento puede prepararse convenientemente haciendo reaccionar la α -galactosidasa con un agente de reticulación.

- Por lo tanto, de acuerdo con otro aspecto de las realizaciones de la invención, se proporciona un proceso para la preparación de una estructura de proteína multimérica descrita en el presente documento. El proceso comprende hacer reaccionar la α-galactosidasa para introducir al menos un radical de unión que une de manera covalente al menos dos monómeros de α-galactosidasa.
- Opcionalmente, el radical de unión es un enlace (por ejemplo, un enlace amida, un enlace disulfuro) que une un monómero de α-galactosidasa con otro monómero de α-galactosidasa. Opcionalmente, el enlace se introduce usando condiciones y/o reactivos adecuados. Por ejemplo, en la técnica se conocen reactivos que son adecuados para la formación de un enlace amida a partir de un grupo de ácido carboxílico y un grupo amina.
- Opcionalmente, el radical de unión es un radical que no procede de una parte de la α-galactosidasa. Por ejemplo, el radical de unión puede ser un oligómero, un polímero, un resto de una molécula pequeña (por ejemplo, un aminoácido).
- En algunas realizaciones, el radical de unión se introduce haciendo reaccionar la α-galactosidasa con un agente de reticulación que comprende el radical de unión (por ejemplo, como se describe en el presente documento) y al menos dos grupos reactivos.
 - Opcionalmente, la α -galactosidasa reacciona en condiciones en las que la α -galactosidasa nativa está en una forma dimérica.
 - En algunas realizaciones, el agente de reticulación reacciona con la α -galactosidasa a una proporción molar en un intervalo de 5:1 a 500:1 (agente de reticulación:monómero de α -galactosidasa), opcionalmente en un intervalo de 50:1 a 400:1, y opcionalmente en un intervalo de 75:1 a 300:1 (por ejemplo, aproximadamente 100:1, aproximadamente 200:1).
 - El proceso comprende opcionalmente además purificar la proteína reticulada, por ejemplo, retirando el exceso de agente de reticulación. Pueden usarse métodos de purificación comunes, tales como diálisis y/o ultrafiltración, usando membranas de corte apropiado y/o etapas cromatográficas adicionales, incluyendo cromatografía de exclusión por tamaño, cromatografía de intercambio iónico, cromatografía de afinidad, cromatografía de interacción hidrófoba y similares.
 - El grupo reactivo se selecciona para que sea adecuado para someterse a una reacción química que conduzca a la formación de un enlace con una funcionalidad complementaria en el monómero de α-galactosidasa. Opcionalmente, cada grupo reactivo es capaz de formar un enlace covalente entre el radical de unión descrito en el presente documento y al menos un polipéptido (por ejemplo, para formar un grupo funcional unido al polipéptido, como se describe en el presente documento).
 - Los grupos reactivos de un agente de reticulación pueden ser idénticos o diferentes entre sí.

25

30

35

40

- Como se usa en el presente documento, la frase "grupo reactivo" describe un grupo químico que es capaz de someterse a una reacción química que típicamente conduce a la formación de un enlace. El enlace, de acuerdo con las presentes realizaciones, es preferentemente un enlace covalente (por ejemplo, para cada uno de los grupos reactivos). Las reacciones químicas que conducen a la formación de un enlace incluyen, por ejemplo, sustituciones nucleófilas y electrófilas, reacciones de adición nucleófilas y electrófilas, alquilaciones, reacciones de adición eliminación, reacciones de cicloadición, reacciones de transposición y cualquier otra reacción orgánica conocida que implique un grupo funcional, así como combinaciones de las mismas.
- El grupo reactivo puede comprender opcionalmente una parte no reactiva (por ejemplo, un alquilo) que puede servir, por ejemplo, para unir una parte reactiva del grupo reactivo a un radical de unión (por ejemplo, poli(alquilenglicol) o análogo del mismo) descrito en el presente documento.
 - El grupo reactivo se selecciona preferentemente para permitir su conjugación con la α-galactosidasa. Los grupos reactivos ejemplares incluyen, pero sin limitación, carboxilato (por ejemplo, -CO₂H), tiol (-SH), amina (-NH₂), halo, azida (-N₃), isocianato (-NCO), isotiocianato (-N = C = S), hidroxi (-OH), carbonilo (por ejemplo, aldehído), maleimida, sulfato, fosfato, sulfonilo (por ejemplo, mesilo, tosilo), etc., así como grupos activados, tales como *N*-hidroxisuccinimida (NHS) (por ejemplo, ésteres de NHS), sulfo-*N*-hidroxisuccinimida, anhídrido, haluro de acilo (-C(=O)-halógeno), etc.
- En algunas realizaciones, el grupo reactivo comprende un grupo saliente, tal como un grupo saliente susceptible a la sustitución nucleófila (por ejemplo, halo, sulfato, fosfato, carboxilato, N-hidroxisuccinimida).

Opcionalmente, el grupo reactivo puede estar en una forma activada del mismo.

5

10

15

20

30

Como se usa en el presente documento, la frase "forma activada" describe un derivado de un grupo químico (por ejemplo, un grupo reactivo) que es más reactivo que el grupo químico y que, por lo tanto, es capaz de someterse a una reacción química que conduzca a la formación de un enlace. La forma activada puede comprender un grupo saliente particularmente adecuado, facilitando de este modo las reacciones de sustitución. Por ejemplo, un grupo - C(=O)-NHS (éster de *N*-hidroxisuccinimida o -C(=O)-O-succinimida) es una forma activada bien conocida de - C(=O)OH, ya que la NHS (*N*-hidroxisuccinimida) puede reaccionar con un -C(=O)OH para formar -C(=O)-NHS, que reacciona fácilmente para formar productos característicos de reacciones que implican grupos -C(=O)OH, tales como amidas y ésteres.

El grupo reactivo puede unirse al resto del radical de unión (por ejemplo, un poli(alquilenglicol) o análogo del mismo) a través de grupos, átomos o enlaces diferentes. Estos pueden incluir un enlace éter [por ejemplo, -O-alquilo], un enlace éster [por ejemplo, -OC(=O)-alquilo], un carbamato [por ejemplo OC(=O)-NH-alquilo], etc. Por lo tanto, pueden emplearse una variedad de grupos terminales.

El número de grupos metileno en cada uno de los grupos reactivos anteriores es meramente ejemplar, y puede variarse.

El grupo reactivo también puede comprender el heteroátomo en el extremo de una cadena de poli(alquilenglicol) (por ejemplo, -OH).

En realizaciones ejemplares de la presente invención, el grupo reactivo comprende un carboxilato (por ejemplo, un carboxilato activado tal como un éster de *N*-hidroxisuccinimida).

Opcionalmente, el grupo reactivo reacciona con un grupo amina en la α -galactosidasa (por ejemplo, en un resto de lisina y/o un extremo N) para formar un enlace amida.

En algunas realizaciones, la reacción del grupo reactivo comprende aminación reductora, en la que un grupo amino reacciona con un grupo aldehído para formar una imina y la imina se reduce (por ejemplo, por la adición de un agente reductor, tal como cianoborohidruro de sodio) para formar un enlace amina. El grupo reactivo puede ser un grupo amina que reacciona con un grupo aldehído de la α-galactosidasa (por ejemplo, en un radical de sacárido unido al polipéptido de la proteína) o el grupo reactivo puede ser un grupo aldehído que reacciona con un grupo amina de la α-galactosidasa (por ejemplo, en un resto de lisina). Opcionalmente, un radical de sacárido de α-galactosidasa se oxida con un agente oxidante para formar un grupo aldehído, antes de la reacción del grupo reactivo con la α-galactosidasa. Por ejemplo, puede usarse la reacción de un sacárido con peryodato de sodio para producir un par de grupos aldehído en un radical de sacárido.

En algunas realizaciones, al menos uno de los grupos reactivos se selecciona para que reaccione con una funcionalidad de un monómero de α-galactosidasa (por ejemplo, un grupo amino de un resto de lisina o extremo N) y al menos uno de los grupos reactivos se selecciona para que reaccione con una funcionalidad diferente de un monómero de α-galactosidasa (por ejemplo, un grupo tiol de un resto de cisteína).

Opcionalmente, uno o más polipéptidos descritos en el presente documento se hacen reaccionar con un reactivo de glucosilación para la introducción de uno o más radicales de M6P, para obtener una estructura de proteína multimérica que contenga M6P (por ejemplo, como se describe en el presente documento). Se describen reactivos de glucosilación que contienen M6P adecuados y su uso, por ejemplo, en el documento WO 2009/024977.

Como se usan en el presente documento, los términos "amina" y "amino" se refieren a un grupo –NR'R", en el que R' y R" se seleccionan del grupo que consiste en hidrógeno, alquilo, cicloalquilo, heteroalicíclico (unido a través de un anillo de carbono), arilo y heteroarilo (unido a través de un anillo de carbono). R' y R" están unidos a través de un átomo de carbono de los mismos. Opcionalmente, R' y R" se seleccionan del grupo que consiste en hidrógeno y alquilo que comprende de 1 a 4 átomos de carbono. Opcionalmente, R' y R" son hidrógeno.

Como se usa a lo largo del presente documento, el término "alquilo" se refiere a un hidrato de carbono alifático saturado que incluye grupos de cadena lineal y ramificada. Preferentemente, el grupo alquilo tiene de 1 a 20 átomos de carbono. Cuando en el presente documento se indica un intervalo numérico; por ejemplo, "1-20", esto implica que el grupo, en este caso el grupo alquilo, puede contener 1 átomo de carbono, 2 átomos de carbono, 3 átomos de carbono, etc., hasta e incluyendo 20 átomos de carbono. Más preferentemente, el alquilo es un alquilo de tamaño medio que tiene de 1 a 10 átomos de carbono. Más preferentemente, a menos que se indique otra cosa, el alquilo es un alquilo inferior que tiene de 1 a 4 átomos de carbono. El grupo alquilo puede estar sustituido o no. Cuando está

sustituido, el grupo sustituyente puede ser, por ejemplo, cicloalquilo, alquenilo, alquinilo, arilo, heteroarilo, heteroalicíclico, halo, hidroxi, alcoxi, ariloxi, tiohidroxi, tioalcoxi, tioariloxi, sulfinilo, sulfonilo, ciano, nitro, azida, fosfonilo, fosfinilo, oxo, carbonilo, tiocarbonilo, urea, tiourea, O-carbamilo, N-carbamilo, O-tiocarbamilo, N-tiocarbamilo, C-amido, N-amido, C-carboxi, O-carboxi, sulfonamido y amino, de la manera en que estos términos se definen en el presente documento.

Un grupo "cicloalquilo" se refiere a un anillo compuesto totalmente de carbono, monocíclico o condensado (es decir, anillos que comparten un par adyacente de átomos de carbono), en el que uno o más de los anillos no tienen un sistema de electrones pi completamente conjugado. Son ejemplos, sin limitación, de grupos cicloalquilo ciclopropano, ciclobutano, ciclopentano, ciclopenteno, ciclohexano, ciclohexadieno, cicloheptano, cicloheptatrieno y adamantano. Un grupo cicloalquilo puede estar sustituido o no. Cuando está sustituido, el grupo sustituyente puede ser, por ejemplo, alquilo, alquenilo, alquinilo, arilo, heteroarilo, heteroalicíclico, halo, hidroxi, alcoxi, ariloxi, tioalcoxi, tioariloxi, sulfinilo, sulfonilo, ciano, nitro, azida, fosfonilo, fosfinilo, oxo, carbonilo, tiocarbonilo, urea, tiourea, O-carbamilo, N-carbamilo, O-tiocarbamilo, N-tiocarbamilo, C-amido, N-amido, C-carboxi, O-carboxi, sulfonamido y amino, de la manera en que estos términos se definen en el presente documento.

Un grupo "alquenilo" se refiere a un grupo alquilo que consta de al menos dos átomos de carbono y al menos un doble enlace carbono-carbono.

20 Un grupo "alquinilo" se refiere a un grupo alquilo que consta de al menos dos átomos de carbono y al menos un triple enlace carbono-carbono.

Un grupo "arilo" se refiere a grupos compuestos totalmente de carbono, monocíclicos o policíclicos de anillo condensado (es decir, anillos que comparten pares adyacentes de átomos de carbono) que tienen un sistema de electrón pi completamente conjugado. Son ejemplos, sin limitación, de grupos arilo fenilo, naftalenilo y antracenilo. El grupo arilo puede estar o no sustituido. Cuando está sustituido, el grupo sustituyente puede ser, por ejemplo, alquilo, alquenilo, alquinilo, cicloalquilo, arilo, heteroarilo, heteroalicíclico, halo, hidroxi, alcoxi, ariloxi, tiohidroxi, tioaciloxi, sulfinilo, sulfonilo, ciano, nitro, azida, fosfonilo, fosfinilo, oxo, carbonilo, tiocarbonilo, urea, tiourea, Ocarbamilo, N-carbamilo, O-tiocarbamilo, N-tiocarbamilo, C-amido, N-amido, C-carboxi, O-carboxi, sulfonamido y amino, como se definen estos términos en el presente documento.

Un grupo "heteroarilo" se refiere a un anillo monocíclico o condensado (es decir, anillos que comparten un par de átomos adyacentes) que tiene en el anillo o los anillos uno o más átomos, tales como, por ejemplo, nitrógeno, oxígeno y azufre y, además, tienen un sistema de electrones pi completamente conjugado. Como ejemplos, sin limitación, de grupos heteroarilo se incluyen pirrol, furano, tiofeno, imidazol, oxazol, tiazol, pirazol, piridina, pirimidina, quinolina, isoquinolina y purina. El grupo heteroarilo puede estar o no sustituido. Cuando está sustituido, el grupo sustituyente puede ser, por ejemplo, alquilo, alquenilo, alquinilo, cicloalquilo, arilo, heteroarilo, heteroalicíclico, halo, hidroxi, alcoxi, ariloxi, tiohidroxi, tioalcoxi, tioariloxi, sulfinilo, sulfonilo, ciano, nitro, azida, fosfonilo, fosfinilo, oxo, carbonilo, tiocarbonilo, urea, tiourea, O-carbamilo, N-carbamilo, O-tiocarbamilo, N-tiocarbamilo, C-amido, N-amido, C-carboxi, Sulfonamido y amino, como estos términos se definen en el presente documento.

Un grupo "heteroalicíclico" se refiere a un grupo de anillo monocíclico o condensado que tiene en el anillo o los anillos uno o más átomos tales como nitrógeno, oxígeno y azufre. Los anillos también pueden tener uno o más dobles enlaces. Sin embargo, los anillos no tienen un sistema de electrones pi completamente conjugados. El heteroalicíclico puede estar sustituido o no sustituido. Cuando está sustituido, el grupo sustituido puede ser, por ejemplo, un par de electrones, alquilo, alquenilo, alquinilo, cicloalquilo, arilo, heteroarilo, heteroalicíclico, halo, hidroxi, alcoxi, ariloxi, tiohidroxi, tioalcoxi, tioariloxi, sulfinilo, sulfonilo, ciano, nitro, azida, fosfonilo, fosfinilo, oxo, carbonilo, tiocarbonilo, urea, tiourea, O-carbamilo, N-carbamilo, O-tiocarbamilo, N-tiocarbamilo, C-amido, N-amido, C-carboxi, O-carboxi, sulfonamido y amino, como estos términos se definen en el presente documento. Son ejemplos representativos piperidina, piperazina, tetrahidrofurano, tetrahidropirano, morfolina y similares.

Un grupo "hidroxi" se refiere a un grupo -OH.

5

10

15

25

30

35

40

45

50

55

Un grupo "azida" se refiere a un grupo -N=N⁺=N⁻.

Un grupo "alcoxi" se refiere tanto a un -O-alquilo como a un grupo -O-cicloalquilo, como se define en el presente documento.

Un grupo "ariloxi" se refiere tanto a un -O-arilo como a un grupo -O-heteroarilo, como se define en el presente documento.

Un "éter" se refiere tanto a un alcoxi como a un grupo un ariloxi, en el que el grupo está unido a un grupo alquilo, alquenilo, alquinilo, cicloalquilo, arilo, heteroarilo o heteroalicíclico.

65 Un enlace éter describe un enlace -O-.

	Un	grupo	"tiohidroxi"	0	"tiol"	se	refiere	а	un	grupo	-S⊦	ł.
--	----	-------	--------------	---	--------	----	---------	---	----	-------	-----	----

Un grupo "tioalcoxi" se refiere tanto a un grupo -S-alquilo como a un grupo -S-cicloalquilo, como se define en el presente documento.

5

15

30

45

65

- Un grupo "tioariloxi" se refiere tanto a un grupo -S-arilo como a un grupo -S-heteroarilo, como se define en el presente documento.
- Un "tioéter" se refiere tanto a un grupo tioalcoxi como a un grupo tioariloxi, en el que el grupo está unido a un grupo 10 alquilo, alquenilo, alquinilo, cicloalquilo, arilo, heteroarilo o heteroalicíclico.

Un enlace tioéter describe un enlace -S-.

- Un grupo "disulfuro" se refiere tanto a un grupo -S-tioalcoxi como a un grupo -S-tioariloxi.
- Un enlace disulfuro describe un enlace -S-S-.
 - Un grupo "carbonilo" se refiere a un grupo -C(=O)-R', en el que R' es como se define en el presente documento anteriormente.
- 20 Un grupo "tiocarbonilo" se refiere a un grupo -C(=S)-R', en el que R' es como se define en el presente documento.
 - Un "carboxilo" se refiere tanto a un "C-carboxi" como a un O-carboxi".
- 25 Un grupo "C-carboxi" se refiere a grupos -C(=O)-O-R', donde R' es como se define en el presente documento.
 - Un grupo "O-carboxi" se refiere a un grupo R'C(=O)-O-, donde R' es como se define en el presente documento.
 - Un grupo "oxo" se refiere a un grupo =O.
 - Un "carboxilato" o "carboxilo" incluye grupos tanto C-carboxi como O-carboxi, como se definen en el presente documento.
 - Un grupo "ácido carboxílico" se refiere a un grupo C-carboxi en el que R' es hidrógeno.
- 35
 Un grupo "tiocarboxi" o "tiocarboxilato" se refiere a grupos tanto -C(=S)-O-R' como -O-C(=S)R'.
 - Un "éster" se refiere a un grupo C-carboxi en el que R' no es hidrógeno.
- 40 Un enlace éster se refiere a un enlace -O-C(=O)-.
 - Un enlace tioéster se refiere a un enlace -O-C(=S)- o a un enlace -S-C(=O).
 - Un grupo "halo" se refiere a flúor, cloro, bromo o yodo.
 - Un grupo "sulfinilo" se refiere a un grupo -S(=O)-R', en el que R' es como se define en el presente documento.
 - Un grupo "sulfonilo" se refiere a un grupo -S(=O)₂-R', en el que R' es como se define en el presente documento.
- 50 Un grupo "sulfonato" se refiere a un grupo -S(=O)₂-O-R', en el que R' es como se define en el presente documento.
 - Un grupo "sulfato" se refiere a un grupo -O-S(=O)₂-O-R', en el que R' es como se define en el presente documento.
- Un grupo "sulfonamida" o "sulfonamido" incluye grupos tanto S-sulfonamido como N-sulfonamido, como se define en el presente documento.
 - Un grupo "S-sulfonamido" se refiere a un grupo -S(=O)2-NR'R", en el que R' y R" son como se definen en el presente documento.
- 60 Un grupo "N-sulfonamido" se refiere a un grupo R'S(=0)₂-NR", en el que cada R' y R" es como se define en el presente documento.
 - Un grupo "O-carbamilo" se refiere a un grupo -OC(=O)-NR'R", en el que cada uno de R' y R" es como se define en el presente documento.
 - Un grupo "N-carbamilo" se refiere a un grupo R'OC(=0)-NR"-, en el que cada uno de R' y R" es como se define en el

presente documento.

10

40

Un grupo "carbamilo" o "carbamato" incluye grupos tanto O-carbamilo como N-carbamilo.

- 5 Un enlace carbamato describe un enlace -O-C(=O)-NR'-, en el que R es como se describe en el presente documento.
 - Un grupo "O-tiocarbamilo" se refiere a un grupo -OC(=S)-NR'R", en el que cada uno de R' y R" es como se define en el presente documento.
 - Un grupo "N-tiocarbamilo" se refiere a un grupo R'OC(=S)NR"-, en el que cada uno de R' y R" es como se define en el presente documento.
 - Un grupo "tiocarbamilo" o "tiocarbamato" incluye grupos tanto O-tiocarbamilo como N-tiocarbamilo.
- Un enlace tiocarbamato describe un enlace -O-C(=S)-NR'-, en el que R' es como se describe en el presente documento.
- Un grupo "C-amido" se refiere a un grupo -C(=O)-NR'R", en el que cada uno de R' y R" es como se define en el presente documento.
 - Un grupo "N-amido" se refiere a un grupo R'C(=O)-NR"-, en el que cada uno de R' y R" es como se define en el presente documento.
- 25 Un grupo "amida" incluye grupos tanto C-amido como N-amido.
 - Un enlace amida describe un enlace -NR'-C(=O)-, en el que R' como se define en el presente documento.
- Un enlace amina describe un enlace entre un átomo de nitrógeno en un grupo amina (como se define en el presente documento) y un grupo R' en el grupo amina.
 - Un enlace tioamida describe un enlace -NR'-C(=S)-, en el que R' es como se define en el presente documento.
- Un grupo "urea" se refiere a un grupo -N(R')-C(=O)-NR"R"", en el que cada uno de R' y R" es como se define en el presente documento y R'" se define como R' y R" como se definen en el presente documento.
 - Un grupo "nitro" se refiere a un grupo -NO₂.
 - Un grupo "ciano" se refiere a un grupo -C≡N.
 - El término "fosfonilo" o "fosfonato" describe un grupo -P(=O)(OR')(OR"), siendo R' y R" como se definen anteriormente en el presente documento.
- El término "fosfato" describe un grupo -O-P(=O)(OR')(OR"), siendo cada uno de R' y R" como se definen en el presente documento anteriormente.
 - Un "ácido fosfórico" es un grupo fosfato en el que cada uno de R es hidrógeno.
- El término "fosfinilo" describe un grupo -PR'R", siendo cada uno de R' y R" como se definen anteriormente en el presente documento.
 - El término "tiourea" describe un grupo -N(R')-C(=S)-NR"-, siendo cada uno de R' y R" como se definen anteriormente en el presente documento.
- Como se describe en el presente documento, las estructuras de proteína multimérica descritas en el presente documento pueden exhibir una estabilidad mejorada y una actividad α-galactosidasa más fuerte y/o más duradera en sitios terapéuticamente importantes *in vivo*. Dichas estructuras de proteína multimérica son, por lo tanto, muy beneficiosas para su uso en diversas aplicaciones médicas en las que es deseable la actividad α-galactosidasa, incluyendo aplicaciones terapéuticas y de investigación.
 - Por lo tanto, de acuerdo con algunas realizaciones, la estructura de proteína multimérica descrita en el presente documento es para su uso como un medicamento, por ejemplo, un medicamento para tratar la enfermedad de Fabry.
- De acuerdo con otro aspecto de realizaciones de la invención, se proporciona un método de tratamiento de la enfermedad de Fabry, comprendiendo el método la administración a un sujeto que lo necesite de una cantidad

terapéuticamente eficaz de una estructura de proteína multimérica descrita en el presente documento.

5

10

15

20

25

30

35

40

45

65

De acuerdo con otro aspecto de las realizaciones de la invención, se proporciona una composición farmacéutica que comprende una estructura de proteína multimérica como se describe en el presente documento y un vehículo farmacéuticamente aceptable.

Como se usa en el presente documento, una "composición farmacéutica" se refiere a la preparación de una o más de las estructuras de proteína multimérica descritas en el presente documento, con otros componentes químicos tales como vehículos y excipientes farmacéuticamente aceptables y adecuados. El propósito de una composición farmacéutica es facilitar la administración de un compuesto a un organismo.

En lo sucesivo en el presente documento, la expresión "vehículo farmacéuticamente aceptable" se refiere a un vehículo o a un diluyente que no ocasiona irritación significativa en un organismo y no anula la actividad y propiedades biológicas del compuesto administrado. Son ejemplos, sin limitaciones, de vehículos: propilenglicol, solución salina, emulsiones y mezclas de disolventes orgánicos con agua, así como vehículos sólidos (por ejemplo, en polvo) y gaseosos.

En el presente documento, el término "excipiente" se refiere a una sustancia inerte añadida a una composición farmacéutica para facilitar adicionalmente la administración de un compuesto. Como ejemplos, sin limitación, de excipientes se incluyen carbonato de calcio, fosfato de calcio, diversos azúcares y tipos de almidón, derivados de celulosa, gelatina, aceites vegetales y polietilenglicoles.

La composición farmacéutica comprende opcionalmente un ingrediente adicional que también estabiliza la α-galactosidasa de la estructura de proteína multimérica. Opcionalmente, el ingrediente adicional es galactosa.

Como alternativa, puede usarse un derivado de galactosa (por ejemplo, un glucósido que contenga galactosa) en lugar de galactosa. Opcionalmente, se usa un derivado de galactosa no reductor.

Pueden encontrarse técnicas para la formulación y administración de fármacos en "Remington's Pharmaceutical Sciences", Mack Publishing Co., Easton, PA, última edición.

Las composiciones farmacéuticas de la presente invención pueden fabricarse por procedimientos bien conocidos en la técnica, por ejemplo, por medio de procesos de mezcla, disolución, granulación, elaboración de grageas, levigación, emulsión, encapsulación, atrapamiento o liofilización convencionales.

Las composiciones farmacéuticas para su uso de acuerdo con la presente invención pueden, por lo tanto, formularse de una manera convencional usando uno o más vehículos farmacéuticamente aceptables que comprenden excipientes y agentes auxiliares, que facilitan el procesamiento de la estructura de proteína multimérica en las preparaciones que pueden usarse farmacéuticamente. La formulación apropiada depende de la vía de administración que se seleccione.

Para la inyección o infusión, las estructuras de proteína multimérica de las realizaciones de la invención pueden formularse en soluciones acuosas, preferentemente en tampones fisiológicamente compatibles tales como solución de Hank, solución de Ringer o tampón salino fisiológico con o sin disolventes orgánicos tales como propilenglicol o polietilenglicol.

Para la administración transmucosa, se usan penetrantes en la formulación. Dichos penetrantes son generalmente conocidos en la técnica.

50 Para la administración oral, las estructuras de proteína multimérica de la invención pueden formularse combinando fácilmente las estructuras de proteína multimérica con vehículos farmacéuticamente aceptables bien conocidos en la técnica. Dichos vehículos permiten que las estructuras de proteína multimérica descritas en el presente documento se formulen como comprimidos, píldoras, grageas, cápsulas, líquidos, geles, jarabes, pastas, suspensiones y similares para la ingestión oral por parte de un paciente. Las preparaciones farmacológicas para uso oral pueden prepararse usando un excipiente sólido, triturando opcionalmente la mezcla resultante y procesando la mezcla de 55 gránulos, y después añadiendo auxiliares adecuados, si se desea, para obtener núcleos de comprimidos o grageas. Como excipientes adecuados se incluyen, en particular, cargas tales como azúcares, incluyendo lactosa, sacarosa, manitol o sorbitol; preparaciones de celulosa tales como, por ejemplo, almidón de maíz, almidón de trigo, almidón de arroz, almidón de patata, gelatina, goma de tragacanto, metilcelulosa, hidroxipropilmetilcelulosa, carboximetilcelulosa 60 de sodio; y/o polímeros fisiológicamente aceptables tales como polivinilpirrolidona (PVP). Si se desea, pueden añadirse agentes disgregantes tales como polivinilpirrolidona reticulada, agar o ácido algínico o una sal del mismo tal como alginato de sodio.

Los núcleos de las grageas se proporcionan con recubrimientos adecuados. Para esta finalidad, pueden usarse soluciones de azúcar concentrado que opcionalmente pueden contener goma arábiga, talco, polivinilpirrolidona, gel de carbopol, polietilenglicol, dióxido de titanio, soluciones de laca y disolventes o mezclas de disolventes orgánicos

adecuados. Pueden añadirse colorantes o pigmentos a los recubrimientos de los comprimidos o grageas para ayudar a la identificación o para caracterizar diferentes combinaciones de dosis de la estructura de proteína multimérica activa.

Las composiciones farmacéuticas que pueden usarse por vía oral incluyen cápsulas duras fabricadas de gelatina, así como cápsulas blandas selladas fabricadas de gelatina y un plastificante, tal como glicerol o sorbitol. Las cápsulas duras pueden contener los ingredientes activos en mezcla con cargas tales como lactosa, aglutinantes tales como almidones, lubricantes tales como talco o estearato de magnesio y, opcionalmente, estabilizantes. En las cápsulas blandas, las estructuras de proteína multimérica pueden disolverse o suspenderse en líquidos adecuados, tales como aceites grasos, parafina líquida o polietilenglicoles líquidos. Además, pueden añadirse estabilizantes. Todas las formulaciones para administración oral deben estar en dosificaciones adecuadas para la vía de administración seleccionada.

Para la administración bucal, las composiciones pueden estar en formas de comprimidos o pastillas para chupar formuladas de una manera convencional.

Para la administración por inhalación, las estructuras de proteína multimérica para su uso de acuerdo con las realizaciones de la presente invención se administran convenientemente en forma de una presentación de pulverización en aerosol (que típicamente incluye vehículos en polvo, licuados y/o gaseosos) a partir de un envase presurizado o un nebulizador, con el uso de un propulsor adecuado, por ejemplo, diclorodifluorometano, triclorofluorometano, diclorotetrafluoroetano o dióxido de carbono. En el caso de un aerosol presurizado, la unidad de dosificación puede determinarse proporcionando una válvula para administrar una cantidad medida. Pueden formularse cápsulas y cartuchos de, por ejemplo, gelatina para su uso en un inhalador o insuflador que contengan una mezcla en polvo de las estructuras de proteína multimérica y una base en polvo adecuada tal como, pero sin limitación, lactosa o almidón.

20

25

30

50

55

60

65

Las estructuras de proteína multimérica descritas en el presente documento pueden formularse para administración parenteral, por ejemplo, mediante inyección en embolada o infusión continua. Las formulaciones para inyección o infusión pueden presentarse en forma de dosificación unitaria, por ejemplo, en ampollas o en envases multidosis, opcionalmente, con un conservante añadido. Las composiciones pueden ser suspensiones, soluciones o emulsiones en vehículos oleaginosos o acuosos, y pueden contener agentes de formulación tales como agentes de suspensión, estabilizantes y/o dispersantes.

Las composiciones farmacéuticas para administración parenteral incluyen soluciones acuosas de la preparación de estructura de proteína multimérica en forma soluble en agua. Adicionalmente, las suspensiones de las estructuras de proteína multimérica pueden prepararse como suspensiones y emulsiones de inyección oleaginosas apropiadas (por ejemplo, emulsiones de agua en aceite, aceite en agua o agua en aceite en aceite). Los disolventes o vehículos lipófilos adecuados incluyen ácidos grasos tales como aceite de sésamo, o ésteres de ácidos grasos sintéticos tales como oleato de etilo, triglicéridos o liposomas. Las suspensiones de inyección acuosa pueden contener sustancias que aumentan la viscosidad de la suspensión, tales como carboximetil celulosa sódica, sorbitol o dextrano. Opcionalmente, la suspensión también puede contener estabilizantes o agentes adecuados, que aumentan la solubilidad de las estructuras de proteína multimérica para permitir la preparación de soluciones altamente concentradas.

45 Como alternativa, las estructuras de proteína multimérica pueden estar en forma de polvo para su constitución con un vehículo adecuado, por ejemplo, agua estéril apirógena, antes de su uso.

La estructura de proteína multimérica de las realizaciones de la presente invención también puede formularse en composiciones rectales tales como supositorios o enemas de retención usando, por ejemplo, bases de supositorio convencionales tales como manteca de cacao u otros glicéridos.

Las composiciones farmacéuticas descritas en el presente documento también pueden comprender excipientes o vehículos sólidos adecuados de fase gel. Los ejemplos de dichos vehículos o excipientes incluyen, pero sin limitación, carbonato de calcio, fosfato de calcio, diversos azúcares, almidones, derivados de celulosa, gelatina y polímeros tales como polietilenglicoles.

Las composiciones farmacéuticas adecuadas para su uso en el contexto de la presente invención incluyen composiciones en las cuales los ingredientes activos están incluidos en una cantidad eficaz para conseguir el propósito que se pretende. Más específicamente, una cantidad terapéuticamente eficaz significa una cantidad de estructuras de proteína multimérica eficaz para prevenir, aliviar o mejorar los síntomas de la enfermedad o prolongar la supervivencia del sujeto que se esté tratando.

Para cualquiera de las estructuras de proteína multimérica usadas en los métodos de la invención, la cantidad o dosis terapéuticamente eficaz puede estimarse inicialmente a partir de ensayos de actividad en animales. Por ejemplo, una dosis puede formularse en modelos animales para conseguir un intervalo de concentración en circulación que incluya la Cl₅₀ determinada por ensayos de actividad (por ejemplo, la concentración de las

estructuras de proteína de ensayo que consigue un aumento semi-máximo en una actividad biológica de la estructura de la proteína multimérica). Dicha información puede usarse para determinar de un modo más preciso las dosis útiles en seres humanos.

- 5 Como se demuestra en la sección de Ejemplos que se proporciona a continuación, una cantidad terapéuticamente eficaz para las estructuras de proteína multimérica de las realizaciones de la presente invención puede variar entre aproximadamente 1 μg/kg de peso corporal y aproximadamente 500 mg/kg de peso corporal.
- La toxicidad y eficacia terapéutica de las estructuras de proteína multimérica descritas en el presente documento pueden determinarse mediante procedimientos farmacéuticos convencionales en animales experimentales, por ejemplo, determinando la CE₅₀, la CI₅₀ y la DL₅₀ (dosis letal que causa la muerte en el 50 % de los animales ensayados) para una estructura de proteína dada. Los datos obtenidos a partir de estos ensayos de actividad y estudios en animales pueden usarse en la formulación de una serie de dosificaciones para uso en seres humanos.
- La dosificación puede variar dependiendo de la forma de dosificación empleada y de la vía de administración que se utilice. La formulación exacta, la vía de administración y la dosificación pueden seleccionarse por el médico individual en vista del estado del paciente. (Véase, por ejemplo, Fingl *et al.*, 1975, en "The Pharmacological Basis of Therapeutics", Cap. 1 p.1).
- La cantidad y el intervalo de dosificación pueden ajustarse individualmente para proporcionar niveles en plasma del radical activo que son suficientes para mantener los efectos deseados, denominados concentración mínima eficaz (CME). La CME variará en cada preparación, pero puede estimarse a partir de datos *in vitro*, por ejemplo, la concentración necesaria para conseguir el nivel de actividad deseado *in vitro*. Las dosificaciones necesarias para conseguir la CME dependerán de las características individuales y de la vía de administración. Pueden usarse ensayos de HPLC o bioensayos para determinar las concentraciones plasmáticas.

También pueden determinarse intervalos de dosificación usando el valor de CME. Las preparaciones deben administrarse usando un régimen que mantenga los niveles plasmáticos por encima de la CME durante el 10-90 % del tiempo, preferentemente entre el 30-90 % y más preferentemente entre el 50-90 %.

Dependiendo de la gravedad y de la respuesta de la afección que vaya a tratarse, la dosificación también puede ser una sola administración de una composición de liberación lenta descrita en el presente documento anteriormente, con un ciclo de tratamiento que dura de varios días a varias semanas o hasta que se efectúe la cura o se consiga la disminución de la patología.

La cantidad de una composición a administrar dependerá, por supuesto, del sujeto que vaya a tratarse, de la gravedad de la dolencia, de la forma de administración, del criterio del médico a cargo del tratamiento, etc.

Las composiciones de la presente invención pueden estar presentes, si se desea, en un envase o dispositivo 40 dispensador, tal como un kit aprobado por la FDA (la administración de alimentos y fármacos de Estados Unidos), que puede contener una o más formas de dosificación unitaria que contienen el ingrediente activo. El envase puede comprender, por ejemplo, una lámina de metal o plástico, tal como, pero sin limitación, un blíster o un envase presurizado (para inhalación). El envase o dispositivo dispensador puede ir acompañado de instrucciones para la administración. El envase o dispensador también puede ir acompañado de un aviso asociado en el recipiente en una 45 forma prescrita por la agencia gubernamental que regula la fabricación, uso y venta de agentes farmacéuticos, reflejando dicho aviso la aprobación por parte de la agencia de la forma de las composiciones para administración humana o veterinaria. Dicho aviso, por ejemplo, puede ser una etiqueta aprobada por la administración de alimentos y fármacos de Estados Unidos para fármacos de prescripción o un prospecto aprobado. También pueden prepararse composiciones que comprenden una estructura de proteína multimérica de realizaciones de la invención formuladas 50 en un vehículo farmacéutico compatible, colocarse en un envase apropiado y etiquetarse para el tratamiento de una afección o diagnóstico indicado, como se detalla en el presente documento.

Por lo tanto, de acuerdo con una realización de la presente invención, dependiendo de las estructuras de proteína multimérica seleccionadas, la composición farmacéutica descrita en el presente documento se envasa en un material de envasado y se identifica en forma impresa en o sobre el material de envasado, para su uso en el tratamiento de una afección en la que es beneficiosa la actividad de la estructura de la proteína multimérica, como se describe anteriormente en el presente documento.

Como se usa en el presente documento, el término "aproximadamente" se refiere a ± 10 %.

Las expresiones "comprende", "que comprende", "incluye", "que incluye", "que tiene" y sus conjugados significan "que incluye, pero sin limitación".

La expresión "consiste en" significa "que incluye y limitado a".

65

55

60

30

La palabra "ejemplar" se usa en el presente documento para indicar "que sirve como un ejemplo, caso o ilustración". Cualquier realización descrita como "ejemplar" no debe considerarse necesariamente preferida o ventajosa sobre otras realizaciones y/o excluir la incorporación de características de otras realizaciones.

- La palabra "opcionalmente" se usa en el presente documento para indicar "se proporciona en algunas realizaciones y no se proporciona en otras realizaciones. Cualquier realización particular de la invención puede incluir una pluralidad de características "opcionales" a menos que esto represente un conflicto.
- Como se usa en el presente documento, la forma singular "uno", "una", "una" y "el", "la" incluyen referencias en plural salvo que el contexto indique claramente otra cosa. Por ejemplo, la expresión "un compuesto" o "al menos un compuesto" puede incluir una pluralidad de compuestos, incluyendo sus mezclas.
 - A lo largo de esta solicitud, varias realizaciones de la presente invención pueden presentarse en un formato de intervalo. Debe entenderse que la descripción en formato de intervalo es meramente por comodidad y brevedad y no debe considerarse una limitación inflexible del alcance de la invención. Por consiguiente, debe considerarse que la descripción de un intervalo desvela específicamente todos los posibles subintervalos, así como los valores numéricos individuales dentro de ese intervalo. Por ejemplo, debe considerarse que la descripción de un intervalo tal como de 1 a 6 tiene subintervalos desvelados específicamente tales como de 1 a 3, de 1 a 4, de 1 a 5, de 2 a 4, de 2 a 6, de 3 a 6, etc., así como números individuales dentro de ese intervalo, por ejemplo, 1, 2, 3, 4, 5 y 6. Esto se aplica independientemente de la amplitud del intervalo.
 - Cuando se indica un intervalo numérico en el presente documento, este pretende incluir cualquier número citado (fraccional o integral) dentro del intervalo indicado. Las frases "que varía/varía entre" un primer número indicado y un segundo número indicado y "que varía/varía de" un primer número indicado "a" un segundo número indicado se usan indistintamente en el presente documento y significa que incluyen el primer y segundo números indicados y todos los números fraccionales e integrales entre los mismos.
 - Como se usa en el presente documento, la expresión "método" se refiere a maneras, medios, técnicas y procedimientos para realizar una tarea determinada incluyendo, pero sin limitación, aquellas maneras, medios, técnicas y procedimientos conocidos o fácilmente desarrollados a partir de maneras, medios, técnicos y procedimientos conocidos por los expertos en las técnicas químicas, farmacológicas, biológicas, bioquímicas y médicas.
- Como se usa en el presente documento, el término "tratar" incluye anular, inhibir sustancialmente, ralentizar o invertir la progresión de una afección, mejorar sustancialmente los síntomas clínicos o estéticos de una afección o prevenir sustancialmente la aparición de síntomas clínicos o estéticos de una afección.
- Se aprecia que determinadas características de la invención, que por claridad se describen en el contexto de realizaciones distintas, también pueden proporcionarse en combinación en una sola realización. A la inversa, diversas características de la invención, que por brevedad se describen en el contexto de una sola realización, también pueden proporcionarse por separado o en cualquier subcombinación adecuada o como sea adecuado en cualquier otra realización descrita de la invención. Determinadas características descritas en el contexto de diversas realizaciones no deben considerarse características esenciales de estas realizaciones, a menos que la realización sea inoperativa sin estos elementos.
 - Diversas realizaciones y aspectos de la presente invención como se indican en el presente documento anteriormente y como se reivindican en la sección de reivindicaciones a continuación encuentran apoyo experimental en los siguientes ejemplos.

50 Ejemplos

15

20

25

30

Se hace ahora referencia a los siguientes ejemplos, que junto con las descripciones anteriores ilustran algunas realizaciones de la invención de una manera no limitante.

55 Materiales y métodos

Materiales:

- Se obtuvo bis-*N*-hidroxisuccinimida-poli(etilenglicol) (bis-NHS-PEG) en Iris Biotech GmbH en formas PEG₈ y PEG de 2000 Dalton (PEG₄₅) y en Pierce en forma PEG₅, y se disolvieron en dimetilsulfóxido (DMSO) a una concentración de 25 mg/ml;
 - El ácido cítrico se obtuvo en Sigma;
 - El Azul de Coomassie G250 se obtuvo en Bio-Rad;
 - El dimetilsulfóxido se obtuvo en Sigma;
- 65 La D-(+)-galactosa se obtuvo en Sigma;
 - El plasma humano (K3 EDTA) se obtuvo en Bioreclamation Inc.;

La 4-metilumbeliferona se obtuvo en Sigma;

La 4-metilbeliferil-α-D-galactopiranósido se obtuvo en Sigma;

N-dodecanoil-nitrobenzoxadiazol-ceramida trihexósido (Gb₃-NBD) se obtuvo en Matreya;

El ácido 2-(N-morfolino)etanosulfónico se obtuvo en Merck;

5 La solución salina tamponada con fosfato se obtuvo en Sigma;

El *p*-nitrofenil-α-D-galactopiranósido se obtuvo en Sigma;

La primulina se obtuvo en Sigma; el reactivo de pulverizado de primulina se preparó disolviendo 12,5 mg de primulina en 200 ml de acetona:agua (relación de volumen 8:2);

La piridina se obtuvo en Sigma;

10 El ácido sinapínico se obtuvo en Sigma;

El carbonato de sodio se obtuvo en Sigma:

El fosfato de sodio se obtuvo en Sigma;

El taurocolato de sodio se obtuvo en Sigma;

El ácido trifluoroacético se obtuvo en Sigma.

15

20

25

30

α-GAL-I humana recombinante vegetal:

La α-GAL humana recombinante vegetal (prh-α-GAL) que tiene la SEQ ID NO: 1, se refiere en el presente documento a la α-GAL-I humana recombinante vegetal (prh-α-GAL-I), se preparó como se describe en la Solicitud de Patente Internacional PCT/IL2008/000576 (publicada como documento WO 2008/132743).

El material vegetal transgénico se generó usando plantas de *Nicotiana benthamiana* infiltrada con la construcción genética que contenía el casete de expresión para α-GAL-A, para expresar la proteína α-GAL-A humana. Esto se realizó en una cámara de cultivo en condiciones controladas. Después de esto, se recogió el material vegetal y se realizó la extracción de proteínas solubles de las células vegetales. Después, la prh-α-GAL-A se purificó mediante un proceso de purificación que implicaba métodos convencionales para la purificación de proteínas seguido de una etapa de modificación química para fabricar la proteína reticulada. La presente prh-α-GAL-A se extrajo de material vegetal usando homogeneizadores. Los desechos vegetales se retiraron por centrifugación y la proteína se purificó adicionalmente usando etapas de precipitación con sulfato de amonio y de acidificación. El sobrenadante se filtró y se cargó en una columna hidrófoba, seguido de desalinización y carga en una columna de intercambio catiónico. El conjunto de la columna de intercambio catiónico se concentró.

α-GAL-II humana recombinante vegetal:

- 35 La α-GAL humana recombinante vegetal que comprende una mezcla de α-GAL que tiene la SEQ ID NO: 2 y α-GAL que tiene la SEQ ID NO: 3 (sin los aminoácidos EF N-terminales presentes en la SEQ ID NO: 1), denominada en el presente documento prh-α-GAL-II, se preparó mediante un proceso similar al descrito anteriormente para prh-α-GAL-I, usando una construcción genética diferente.
- El ADNc que codifica la proteína α-galactosidasa humana (EC 3.2.1-22 GenBank: X05790) se optimizó y se sintetizó en GENEART AG (Regensburg, Alemania). El uso de codones sin el péptido líder (péptido señal que se dirige al retículo endoplasmático) se adaptó al sesgo de codones de los genes de *Nicotiana tabaccum*. Durante el proceso de optimización se evitaron los siguientes motivos de secuencia que actúan en cis: cajas internas TATA, sitios chi y sitios de entrada al ribosoma, tramos de secuencias ricos en AT o ricos en GC, elementos de inestabilidad de ARN ("motivos killer"), secuencias de repetición y estructuras secundarias de ARN, sitios donantes (crípticos) y aceptores de corte y empalme y puntos de ramificación. Además, se evitaron regiones de muy alto (> 80 %) o muy bajo (<30 %) contenido de GC.
- La secuencia de nucleótidos del péptido líder de α-galactosidasa humana nativa (péptido señal que se dirige al retículo endoplasmático) de la proteína α-galactosidasa humana de longitud completa (GenBank: X05790) se reemplazó por una secuencia de nucleótidos que codificaba el péptido señal que se dirige al retículo endoplasmático (péptido líder) de 33 aminoácidos de la proteína ABPI de *Arabidopsis*. Este péptido señal proporciona un direccionamiento eficaz de la α-galactosidasa a la ruta secretora y se escinde del polipéptido por la peptidasa señal, una vez que la proteína se ha translocado al interior del retículo endoplasmático. Se añadió una secuencia de nucleótidos que codifica la señal de retención del retículo endoplasmático SEKDEL a la secuencia de ADNc en el extremo 3', lo que permitió la recuperación de la proteína expresada del aparato de Golgi, manteniendo de un modo eficaz la proteína en el retículo endoplasmático.
- La proteína de interés se expresó a partir de un promotor de virus subgenómico fuerte de la proteína de recubrimiento. El sistema se basa en la amplificación transitoria (por agroinfección) de vectores de virus suministrados a una planta por *Agrobacterium*. En la agroinfección, un promotor funcional de planta y el ADNc que codifica un replicón de virus se transfieren como ADN-T desde *Agrobacterium* al interior de células vegetales. El ADN-T se transcribe en la planta por el promotor de plantas para generar ARN de virus biológicamente activo que inicia la autorreplicación.

Para la expresión transitoria se usó un sistema de recombinación de 3 vectores basado en el sistema previamente desarrollado como se describe [Gleba *et al.*, Vaccine 2005, 23: 2042-2048]. En uno de los vectores se insertó ADNc de α-galactosidasa y los otros dos vectores contenían los genes para la construcción de todo el replicón de virus (RdRp e Integrasa), generándose de esta manera el ARN vírico biológicamente activo que puede iniciar la autorreplicación.

Las plantas de *N. benthamiana* se dejaron germinar y se cultivaron en un sustrato mixto comercial (Givaat Ada, IL) complementado con fertilizante de liberación lenta granular (Scott Marysville, OH) en un régimen de luz de un día de duración (16 horas de luz/8 horas de oscuridad) a 24-25 °C.

Las agrobacterias se transformaron con el sistema del vector replicón basado en pICH20866-alfa-GAL usando electroporación (2500 V, 5 milisegundos) [den Dulk-Ra y Hooykaas, Methods Mol Biol 1995, 55: 63-72]. Las plantas se infiltraron con Agrobacterias que contenían los 3 plásmidos ICON por infiltración al vacío con métodos convencionales conocidos en la técnica. En resumen, plantas de *N. benthamiana*, de 5-6 semanas de edad, se infiltraron sumergiendo todos los órganos aéreos de la planta en una suspensión bacteriana y se colocaron en una cámara de vacío. Se aplicó un vacío de menos (-) 0,8 bares durante 1 minuto, seguido de un rápido retorno a presión atmosférica. Las plantas volvieron a llevarse al invernadero durante 5-7 días más en las mismas condiciones de cultivo.

- 20 Se recogieron muestras de hojas de *Nicotiana benthamiana* 5 días después de la infiltración y se extrajeron en tampón de Laemmli para SDS-PAGE, o en tampón de ensayo de actividad (ácido cítrico 20 mM, fosfato de sodio 30 mM, albúmina de suero bovino al 0,1 % y etanol al 0,67 %, pH 4,6) para ensayar la actividad catalítica de la proteína expresada en la planta.
- 25 La proteína α-galactosidasa humana de extractos vegetales se purificó mediante una precipitación diferencial de sulfato de amonio de dos etapas ("precipitación con sal" ("salting out"): 1ª etapa 0,57 M, 2ª etapa 2,27 M), seguido por cromatografía de interacción hidrófoba (resina Phenil 650 M) y cromatografía de intercambio catiónico.
- Se obtuvieron dos secuencias (es decir, SEQ ID NO: 2 y SEQ ID NO: 3), que diferían en la presencia o ausencia de una glicina N terminal, debido a un procesamiento diferente de la secuencia líder.

Ensayo con 4-metilumbeliferil-α-D-galactopiranósido de actividad α-GAL:

5

10

15

50

55

60

65

La actividad α-GAL se midió usando 4-metilumbeliferil-α-D-galactopiranósido como sustrato de hidrólisis. El ensayo se realizó en tampón citrato-fosfato (ácido cítrico 20 mM, fosfato de sodio 30 mM, pH 4,6). Se incubaron 10 μl de una muestra que contenía la α-GAL ensayada con 40 μl de tampón de ensayo que contenía 4-metilumbeliferil-α-D-galactopiranósido 5 mM. La mezcla de reacción se incubó a 37 °C durante 60 minutos. Se transfirieron 10 μl de la mezcla de reacción a una placa negra de 96 pocillos (Greiner), se añadieron 90 μl de solución de detención (carbonato de sodio 2 M) y se midió la fluorescencia a una longitud de onda de excitación de 365 nm y una longitud de onda de emisión de 450 nm. La fluorescencia se tradujo a concentración de producto, y adicionalmente a actividad, usando una curva de calibrado de 4-metilumbeliferona, el producto de reacción.

Ensayo con trihexósido de N-dodecanoil-nitrobenzoxadiazol-ceramida (Gb₃-NBD) de actividad α-GAL

45 El sustrato marcado con fluorescencia trihexósido de N-dodecanoil-nitrobenzoxadiazol-ceramida (Gb₃-NBD) es menos lipófilo que Gb₃, lo que facilita su uso en reacciones enzimáticas *in vitro*.

Se añadieron 10 μ l de Gb₃-NBD 0,1 μ g/ μ l (en agua con etanol al 10 %) y 5 μ l de α -GAL 0,2 mg/ml se añadieron a 85 μ l de tampón citrato-fosfato a un pH de 4,6. La concentración final de α -GAL fue de 10 μ g/ml. La reacción de fondo o no catalizada, sin α -GAL, se componía de 90 μ l de tampón citrato-fosfato a un pH de 4,6 con 10 μ l de Gb₃-NBD 0,1 μ g/ μ l (en agua con etanol al 10 %). Las mezclas de reacción se incubaron durante 60 minutos a 37 °C. Después de la incubación, se añadieron 50 μ l de metanol a la mezcla de reacción y las soluciones se agitaron vorticialmente durante 1 minuto. Después se añadieron 100 μ l de cloroformo y las soluciones volvieron a agitarse vorticialmente durante 1 minuto. El agua y los disolventes orgánicos se retiraron al vacío usando un sistema Speed Vac. Los residuos se disolvieron en 80 μ l de cloroformo:metanol (1:1). Se cargaron 30 μ l de cada muestra en 60 placas de Gel de Sílice HPTLC (cromatografía de capa fina de alto rendimiento) (Merck) usando un sistema Linomat V (CAMAG). Las placas de HPTLC se revelaron usando una solución de cloroformo:metanol: H_2 O a una relación de 100:42:6 como un sistema disolvente. Después, las placas se dejaron secar y el sustrato y las manchas de producto se visualizaron por irradiación con luz UV a una longitud de onda de 365 nm.

Ensayo con p-nitrofenil- α -D-galactopiranósido (p-NP-G) de actividad α -GAL:

Se usó p-nitrofenil-α-D-galactopiranósido como un sustrato de hidrólisis para ensayos de actividad α-GAL. El tampón de ensayo contenía ácido cítrico 20 mM, fosfato de sodio 30 mM, BSA (albúmina de suero bovino) al 0,1 % y etanol al 0,67 % a pH 4,6. El ensayo se realizó en placas ELISA de 96 pocillos (Greiner). Se incubaron 50 μl de muestra con 150 μl de tampón de ensayo y se añadieron 30 μl de sustrato para obtener una concentración final de *p*-

nitrofenil-α-D-galactopiranósido 8 mM. La mezcla de reacción se incubó a 37 °C durante 90 minutos. Después de 90 minutos, se añadieron 100 μl de carbonato de sodio 1,98 M a cada pocillo para finalizar la reacción. La cantidad de producto de reacción se determinó midiendo la absorbancia a 405 nm.

5 Medición de la estabilidad de α-GAL in vitro:

La estabilidad de α-GAL de diversas fuentes se determinó añadiendo α-GAL a una de las siguientes condiciones:

- 1) condiciones lisosómicas simuladas: tampón citrato-fosfato (ácido cítrico 20 mM, fosfato de sodio 30 mM), pH 4,6, 37 °C;
- 2) condiciones fisiológicas simuladas: solución salina tamponada con fosfato (PBS), pH 7.4, 37 °C;
- 3) plasma humano a 37 °C.

10

20

25

35

40

45

50

55

60

65

Se añadió α-GAL a una concentración de 1 μg/ml, según se determina por la actividad de α-GAL en la solución, y la solución se incubó a 37 °C. Se extrajeron muestras de cada solución a puntos de tiempo predeterminados y la actividad α-GAL se midió como se ha descrito anteriormente en el presente documento. El valor de la actividad enzimática inmediatamente después de la adición de α-GAL ensayada a cada entorno se definió como 100 %, y los resultados de actividad adicionales en los puntos de tiempo ensayados se calcularon como porcentaje de esa actividad inicial.

Farmacocinética de α-GAL:

Se colocaron ratones con enfermedad de Fabry individuales (α-Gal-A-/0) en un dispositivo de retención de plexiglás iluminado y se inyectó la enzima en la vena de la cola. Se obtuvieron muestras de sangre en los tiempos indicados después de la inyección mediante sangrado de la cola o sangrado ocular retroorbital, usando tubos de microhematocrito heparinizados. El plasma se diluyó en tampón de actividad 4-metilumbeliferil-α-D-galactopiranósido. Se realizó un ensayo de 4-metilumbeliferil-α-D-galactopiranósido como se ha descrito anteriormente.

30 Se calculó la semivida de eliminación terminal (T_{1/2}) en función de los resultados de la actividad en plasma. La semivida terminal (semivida de eliminación) es el tiempo necesario para que la concentración de plasma disminuya en un 50 % después de haber alcanzado el pseudo-equilibrio de distribución. La semivida terminal se calculó a partir de la porción terminal (logaritmo lineal) de la curva, mediante regresión lineal del tiempo frente a la concentración log [Toutain y Bousquet-Melou, J Vet Pharmacol Ther 2004, 27: 427-39].

Biodistribución de α-GAL:

Ratones con la enfermedad de Fabry (α-Gal-A-/0) recibieron una inyección intravenosa (en la vena de la cola) de α-GAL a una dosis de 2 mg/kg. Se recogieron los tejidos (hígados, riñones, corazones y bazos) 2 horas, 24 horas, 3 días, 7 días, 14 días o 28 días después de la inyección de la enzima. Los niveles de α-GAL en ratones de control normales y en ratones con enfermedad de Fabry a los que se administró solución salina (no tratados) se compararon con los niveles en ratones con enfermedad de Fabry que recibieron α-GAL exógena. Para determinar la actividad α-GAL en tejidos, se colocaron muestras de tejido descongelado en tubos de polipropileno de 2 ml que contenían tampón de lisis (ácido cítrico 28 mM, fosfato sódico dibásico 44 mM, taurocolato de sodio 0,5 %, pH 4,4) como se describe en Oshima *et al.* [PNAS 1997, 94: 2540-2544]. Las muestras se homogeneizaron usando un Tissuelyzer (Retsch MM400) durante 10 minutos. Los residuos se sedimentaron por centrifugación a 4 °C y los sobrenadantes resultantes se sometieron a ensayo con respecto a la actividad de α-GAL mediante un ensayo con 4-metilumbeliferil-α-D-galactopiranósido, como se ha descrito anteriormente. Estas mismas muestras también se sometieron a análisis de transferencia de Western.

Ensayo in vivo con Gb₃:

El criterio de valoración de eficacia de la α-GAL inyectada se midió por ensayo de los niveles de Gb₃ de los tejidos animales, para determinar si los niveles de Gb₃ habían disminuido por la actividad α-GAL.

Para medir la hidrólisis de Gb₃, se extrajeron glicoesfingolípidos neutros de órganos diana (por ejemplo, hígado, riñón, corazón y bazo). Se homogeneizaron muestras de tejido de 100 mg en 1 ml de cloroformo:metanol 2:1 (v/v) y se centrifugaron durante 20 minutos a 13.500 rpm. Se añadieron 62 µl de agua a un homogeneizado de 1 ml para dar una solución de cloroformo:metanol:agua de 20:10:2. Se añadieron 10 µl de piridina al homogeneizado para dar una concentración final de piridina de 1 %. La muestra se agitó durante 24 horas a 48 °C. Los disolventes y el agua se retiraron al vacío usando un sistema SpeedVac. La muestra se resuspendió en 2,5 ml de metanol y después se añadieron 250 µl de KOH 1 M en metanol. Después, la mezcla se agitó durante 2 horas a 37 °C. La reacción de saponificación se detuvo por la adición de 10 µl de ácido acético. Después se añadieron 2,5 ml de cloroformo a la muestra, seguido por la adición de 2,5 ml de agua fría. La muestra se agitó intensamente durante 5 minutos y se dejó reposar durante 5 minutos para permitir la separación de fases. La fase superior, compuesta de metanol y agua, se descartó, y la fase inferior, compuesta de cloroformo y metanol, se evaporó al vacío (SpeedVac), y el

residuo se resuspendió en 300 µl de cloroformo:metanol 1:1 (v/v) para el análisis de los glucoesfingolípidos por HPTLC.

Se realizaron análisis cualitativos y semicuantitativos de glucolípidos tisulares por cromatografía en capa fina de alto rendimiento (HPTLC) (CAMAG, Suiza). El análisis de HPTLC se realizó en 60 placas recubiertas de vidrio con gel de sílice HPTLC (Merck). Las muestras se cargaron en las placas usando un sistema Linomat 5 (CAMAG, Suiza). Las placas se revelaron usando cloroformo-metanol-agua (60:35:4) como sistema disolvente. Los glucoesfingolípidos neutros se detectaron con reactivo de pulverización de primulina. Se identificó Gb₃ usando Gb₃ de eritrocito porcino (Matreya) como patrón, y se cuantificó usando una curva de calibración de trihexósido de *N*-heptadecanoil ceramida (Matreya), un patrón semisintético. Las placas se visualizaron y las manchas relevantes se cuantificaron usando un Scanner III TLC (CAMAG, Suiza) soportado por el programa informático winCATS (CAMAG, Suiza).

SDS-PAGE:

15 Se realizó SDS-PAGE en condiciones reductoras usando un sistema Bio-Rad Criterion™ y gel de acrilamida al 12 % diseñado internamente. El gel se tiñó con tinción Azul de Coomassie G250.

IEF (isoelectroenfoque):

20 Se realizó IEF usando mini-cell Novex® de Invitrogen y geles IEF previamente diseñados que tenían un intervalo de pH de 3-7 (Invitrogen). El gel se tiñó con Azul de Coomassie G250.

Espectrometría de masas (MALDI-TOF):

25 Se realizó MALDI-TOF usando un sistema de espectrómetro de masas MALDI-ToF Bruker Reflex IV (Bruker-Franzen Analytik GmbH, Alemania) y una solución matriz saturada con ácido sinapínico/ácido trifluoroacético (TFA) (TFA/acetonitrilo al 0,1 % (2:1, v/v)).

Ejemplo I

30

35

Estabilidad in vitro de α-GAL recombinante

Se midió la estabilidad *in vitro* de α -GAL recombinante en diversas afecciones como se ha descrito anteriormente en el presente documento en la Sección de Materiales y Métodos. Se ensayaron la α -GAL-I humana recombinante vegetal, así como la α -GAL humana recombinante comercial Fabrazyme® y Replagal®.

Como se muestra en la Figura 1, todos los tipos ensayados de α -GAL exhibieron una pérdida de actividad en condiciones lisosómicas simuladas.

- Además, como se muestra en la Figura 2, todos los tipos ensayados de α-GAL exhibieron una pérdida de actividad en condiciones fisiológicas simuladas. Como se muestra en el presente documento adicionalmente, la presencia de galactosa 100 mg/ml protegió parcialmente la actividad de α-GAL-l recombinante vegetal en dichas condiciones.
- De manera similar, como se muestra en la Figura 3, todos los tipos ensayados de α -GAL exhibieron una pérdida de actividad en plasma humano a 37 °C.
 - Como se muestra en la Figura 4, la presencia de 100 mg/ml de galactosa protegió parcialmente la actividad de α-GAL-l recombinante vegetal en condiciones lisosómicas simuladas.
- Los experimentos de cromatografía de exclusión por tamaño (SEC) a niveles de pH lisosómicos y neutros demostraron cambios en la estructura de la proteína (datos no mostrados), mientras que análisis SDS-PAGE y transferencia de Western no exhibieron ninguna degradación de la secuencia de aminoácidos primaria (datos no mostrados).
- 55 Estos resultados indican que α-GAL pierde actividad en condiciones lisosómicas y condiciones fisiológicas debido a la alteración de la estructura de la proteína α-GAL, y que la galactosa impide parcialmente esta pérdida de actividad.

Ejemplo II

muestran en la Figura 5.

- Reticulación de α-GAL-I humana recombinante vegetal con agentes de bis-N-hidroxisuccinimida-poli(etilenglicol) (bis-NHS-PEG)
 - La α-GAL-I humana recombinante vegetal (prh-α-GAL-I) se reticuló a proporciones molares de 50:1, 100:1 y 200:1 con bis-*N*-hidroxisuccinimida-poli(etilenglicol) (bis-NHS-PEG) de diversos pesos moleculares, concretamente bis-NHS-PEG₅, bis-NHS-PEG₈ o bis-NHS-PEG₄₅ (bis-NHS-PEG con PEG de 2.000 Dalton), cuyas estructuras se

El bis-NHS-PEG puede unirse a la proteína en dos sitios en una proteína (por ejemplo, restos de lisina), formando de este modo la reticulación, o en un sitio en una proteína. En la Figura 6 se representan estas dos formas de unión.

Se añadieron 100 μg de α-GAL-I en 28,5 μl de tampón de ácido 2-(*N*-morfolino)etanosulfónico (MES) (25 mM, pH 6) a 13,5 μl de tampón fosfato (100 mM, pH 8) que contenía galactosa 100 mg/ml.

Se reticuló α -GAL-I con bis-NHS-PEG $_5$ a proporciones molares de reactivo:proteína 1:50, 1:100 y 1:200, añadiendo bis-NHS-PEG $_5$ en 8 μ I de DMSO a la solución de α -GAL-I (27,4 μ g de solución α -GAL-I para una proporción molar de 1:50, 54,8 μ g de solución de α -GAL-I para una proporción molar de 1:100 y 109,7 μ g de solución de α -GAL-I para una proporción molar de 1:200).

La α -GAL-I se reticuló con bis-NHS-PEG₄₅ a proporciones molares de proteína:reactivo de 1:50, 1:100 y 1:200 añadiendo bis-NHS-PEG₄₅ en 8 μ I de DMSO a la solución de α -GAL-I (103 μ g de solución de α -GAL-I para una proporción molar 1:50, 206 μ g de solución de α -GAL-I para una proporción molar de 1:100 y 412 μ g de solución de α -GAL-I para una proporción molar de 1:200). La α -GAL-I se reticuló con bis-NHS-PEG₈ a proporciones molares de proteína:reactivo de 1:50, 1:100 y 1:200, añadiendo bis-NHS-PEG₈ en 11,5 μ I de DMSO a la solución de α -GAL-I (37 μ g de α -GAL-I para una proporción molar de 1:50, 73 μ g de solución de α -GAL-1 para una proporción molar de 1:100 y 146 μ g de solución de α -GAL-I para una proporción molar de 1:200).

20 Después de añadir el agente bis-NHS-PEG a la α-GAL-I, las reacciones se pipetearon y agitaron en un agitador orbital durante 2 horas a temperatura ambiente.

En todas las reacciones, el exceso de reactivo de reticulación bis-NHS-PEG se retiró por diálisis frente a solución salina (límite de 50 KDa).

La producción de dímero aumentó con el aumento de la concentración de proteína y concentración de DMSO, alcanzando hasta un 30 %.

Los productos de reacción se analizaron mediante SDS-PAGE (electroforesis en gel de poliacrilamida con dodecilsulfato sódico), IEF (isoelectroenfoque), transferencia de Western y espectrometría de masas MALDI-TOF, como se ha descrito anteriormente en el presente documento.

Como se muestra en la Figura 7, se observó la prh-α-GAL-I nativa patrón como un monómero (que tenía un peso molecular de 48 KDa) después de la electroforesis en gel, mientras que después de la reacción de prh-α-GAL-I con bis-NHS-PEG, la prh-α-GAL-I apareció principalmente en forma de un dímero (con algo de monómero presente), indicando que los dos monómeros estaban ligados de manera covalente mediante reticulación con bis-NHS-PEG.

Como también se muestra en la Figura 7, se observó una mayor proporción de prh-α-GAL-I monomérica con los agentes de reticulación más cortos, bis-NHS-PEG₅ y bis-NHS-PEG₈, que con el agente de reticulación más largo bis-NHS-PEG₄₅. El bis-NHS-PEG₄₅ produjo una proporción más alta de proteína reticulada. Estos resultados indican que los agentes de reticulación más cortos son menos eficaces para unir covalentemente los monómeros.

Como también se muestra en la Figura 7, para cada uno de los agentes de reticulación ensayados, el peso molecular de la parte monomérica de prh-α-GAL-l aumentó después de la reacción con el agente de reticulación. El aumento en el peso molecular fue mayor cuando se usó una mayor proporción de agente de reticulación con respecto a proteína (por ejemplo, 200:1), y cuando el peso molecular del agente de reticulación fue mayor (por ejemplo, bis-NHS-PEG₄₅). Estos resultados indican que los monómeros de proteína que no dimerizaron por reticulación, estaban unidos de manera covalente con el agente de reticulación bis-NHS-PEG, es decir las proteínas estaban PEGiladas.

Los resultados anteriores indican que el uso de un mayor exceso molar de agente de reticulación con respecto a proteína produce niveles más altos de modificación de α-GAL, incluyendo tanto la reticulación para formar un dímero como la PEGilación de las proteínas. Sin embargo, una proporción molar de 100:1 proporcionó un alto nivel de reticulación, especialmente en las reacciones que utilizaban el reactivo bis-NHS-PEG₄₅, de tal manera que una proporción molar de 200:1 proporcionó únicamente una adición marginal a la eficacia del agente de reticulación.

Como se muestra en la Figura 8, la reacción de prh- α -GAL-1 con bis-NHS-PEG redujo el punto isoeléctrico (pl) de prh- α -GAL-I, confirmando por lo tanto que el bis-NHS-PEG está unido covalentemente a la prh- α -GAL-I. La unión de bis-NHS-PEG con prh- α -GAL-I convierte los grupos amina básicos de restos de lisina en grupos amida neutros, reduciendo de este modo el pl. La reducción del pl era más pronunciada cuando se usaba un exceso molar más alto (por ejemplo, 200:1) de bis-NHS-PEG, confirmando los resultados anteriores obtenidos por SDS-PAGE.

Como se muestra adicionalmente en la Figura 8, el pl se redujo más con bis-NHS-PEG₅ y bis-NHS-PEG₈ que con bis-NHS-PEG₄₅.

65

10

15

25

35

40

45

50

55

Este resultado indica que bis-NHS-PEG $_5$ y bis-NHS-PEG $_8$ tienen más probabilidad que bis-NHS-PEG $_4$ 5 de producir una PEGilación en la que solo un extremo del agente de reticulación esté unido a α -GAL. Un agente de reticulación unido a α -GAL en un solo extremo es más eficaz para reducir el pl porque dicho agente de reticulación comprende un grupo de ácido carboxílico (-CO $_2$ H) en el extremo no unido, además de convertir un grupo amino de lisina en un grupo amida en el extremo unido.

Como se muestra en la Figura 9, la reacción de prh- α -GAL-I con el agente de reticulación bis-NHS-PEG₄₅ aumentó el peso molecular del dímero de prh- α -GAL-I de 97 KDa a 113 KDa, determinado por espectrometría de masas MALDI-TOF. El aumento en el peso molecular indica una adición de aproximadamente 8 moléculas de bis-NHS-PEG₄₅ en el dímero de prh- α -GAL-I.

Como se muestra en la Figura 10, la reacción de prh- α -GAL-I con el agente de reticulación bis-NHS-PEG $_8$ aumentó el peso molecular del dímero de prh- α -GAL-I de 97 KDa a 104 KDa, determinado por espectrometría de masas MALDI-TOF. El aumento en el peso molecular indica una adición de aproximadamente 10 moléculas de bis-NHS-PEG $_8$ en el dímero de prh- α -GAL-I.

Ejemplo III

5

10

15

20

Actividad de α-GAL-I humana recombinante vegetal reticulada

Para determinar si la α -GAL-I recombinante vegetal (prh- α -GAL-I) reticulada descrita en el Ejemplo II conservaba la actividad enzimática, la prh- α -GAL-I reticulada se sometió a ensayo para determinar su actividad enzimática usando el ensayo de 4-metilumbeliferil- α -D-galactopiranósido descrito anteriormente.

Como se muestra en la siguiente Tabla 1, prh-α-GAL-I que reaccionó con el reactivo bis-NHS-PEG, bis-NHS-P

Tabla 1: resultados de actividad de α-GAL I humana recombinante vegetal reticulada

Muestra	Reactivo	Exceso molar	Actividad mg/ml
patrón	-	-	2
1	Bis-NHS-PEG₅	50:1	2,25
2	Bis-NHS-PEG ₅	100:1	1,30
3	Bis-NHS-PEG₅	200:1	1,24
4	Bis-NHS-PEG ₄₅	50:1	2,82
5	Bis-NHS-PEG ₄₅	100:1	2,76
6	Bis-NHS-PEG ₄₅	200:1	3,48
7	Bis-NHS-PEG ₈	50:1	2,18
8	Bis-NHS-PEG ₈	100:1	2,43
9	Bis-NHS-PEG ₈	200:1	1,82

La actividad de la prh- α -GAL-I reticulada con bis-NHS-PEG₄₅ se verificó adicionalmente usando el ensayo de trihexósido de *N*-dodecanoil-NBD-ceramida descrito en el presente documento anteriormente, que ensaya la actividad de α -GAL hacia su sustrato natural, trihexósido de ceramida (Gb₃). La α -GAL humana recombinante de mamífero Replagal® se ensayó con fines comparativos.

Como se muestra en la Figura 11, después de la incubación de la α-GAL-I humana recombinante vegetal reticulada con el sustrato fluorescente, casi todo el sustrato se transformó en el producto, *N*-dodecanoil-nitrobenzoxadiazollactosil ceramida, de forma similar a la reacción catalizada por la α-GAL recombinante de mamífero (Replagal®). Este resultado confirma que la reticulación no alteraba la eficacia hidrolítica enzimática de la prh-α-GAL-I, usando un análogo próximo del sustrato natural.

Ejemplo IV

Estabilidad in vitro de la α-GAL-I humana recombinante vegetal reticulada

- 5 La estabilidad *in vitro* de la α-GAL-I humana recombinante vegetal (prh-α-GAL-I) reticulada, obtenida como se describe en el Ejemplo II, se midió a diversas concentraciones como se describe en el presente documento anteriormente en la Sección de Materiales y Métodos. La estabilidad de las α-GAL humanas recombinantes comerciales Fabrazyme® y Replagal® se midió con fines comparativos.
- Como se muestra en las Figuras 12A-12C, la estabilidad de la α-GAL-l humana recombinante vegetal en condiciones lisosómicas simuladas se potenció reticulando con bis-NHS-PEG₅ (Figura 12A), bis-NHS-PEG₈ (Figura 12B) y bis-NHS-PEG₄₅ (Figura 12C). Como también se muestra en el presente documento, la estabilidad de la ρrh-α-GAL-l reticulada durante el transcurso de una semana se comparaba favorablemente con la estabilidad de la α-GAL humana recombinante comercial. Después de una pequeña disminución en la actividad residual durante las primeras 24 horas, la prh-α-GAL-l reticulada mantuvo la actividad, incluso después de 10 días. La disminución inicial en la actividad, observada durante las 24 primeras horas, puede reflejar la parte de α-GAL-l humana recombinante vegetal que no experimentaba reticulación.
- Como se muestra adicionalmente en las Figuras 12A-12C, prh-α-GAL-l reticulada por bis-NHS-PEG₄₅ mostró la mayor estabilidad en condiciones lisosómicas simuladas.
 - La estabilidad de la α -GAL-I humana recombinante vegetal en plasma humano a 37 $^{\circ}$ C también se potenció reticulando con bis-NHS-PEG₄₅ (datos no mostrados).
- 25 Estos resultados indican que la reticulación de α-GAL como se describe en el presente documento puede aumentar la eficacia de α-GAL *in vivo* aumentando la estabilidad de α-GAL en los lisosomas, permitiéndose de este modo que la α-GAL actúe durante un período de tiempo más prolongado en los lisosomas, y aumentando la estabilidad de la α-GAL en la sangre, aumentando de este modo la semivida en circulación de α-GAL.

30 Ejemplo V

Farmacocinética in vivo y biodistribución de α-GAL-I humana recombinante vegetal reticulada

La farmacocinética y biodistribución de la α-GAL-I humana recombinante vegetal (prh-α-GAL-I) reticulada con bis-NHS-PEG₄₅ o bis-NHS-PEG₈ como se describe en el Ejemplo II se determinó en ratones con la enfermedad de Fabry a los que se inyectaron 2 mg/kg de α-GAL, como se describe en el presente documento anteriormente en la Sección de Materiales y Métodos. La farmacocinética y biodistribución de la α-GAL-I humana recombinante vegetal no reticulada y la α-GAL humana recombinante Replagal® se determinó con fines comparativos. Se recogieron muestras de sangre para análisis farmacocinético 1, 3, 5, 10, 20, 30, 40, 60 y 120 minutos después de la inyección.

40 Para cada tipo de α-GAL, el grupo de tratamiento consistió en seis ratones.

Como se muestra en la Tabla 2 presentada a continuación, la prh- α -GAL-I reticulada con bis-NHS-PEG $_8$ y con bis-NHS-PEG $_{45}$ aumentó la semivida terminal en circulación de la α -GAL-I humana recombinante vegetal, exhibiendo la última un efecto más pronunciado.

Tabla 2: semividas terminales en circulación de la α-GAL recombinante

Table E. Committee Committee on Chediacien de la d'Orte	TOCOTTIBILITATIO
Muestra de α-GAL	t _{1/2} (minutos)
α-GAL humana recombinante de mamífero Replagal [®]	8,1
α-GAL-I humana recombinante vegetal	4,8
α-GAL I humana recombinante vegetal reticulada con bis-NHS-PEG ₈	6,2
α -GAL I humana recombinante vegetal reticulada con bis-NHS-PEG $_{45}$	90

Como se muestra en la Figura 13 y en la Tabla 2, la semivida terminal de prh α -GAL-I reticulada con bis-NHS-PEG₄₅ era considerablemente mayor que la semivida terminal de α -GAL Replagal®.

Como se muestra adicionalmente en la Figura 13, la actividad de α -GAL-I humana recombinante vegetal reticulada con bis-NHS-PEG₄₅ al cabo de 20 minutos fue de aproximadamente 40 % de la actividad a 1 minuto. Adicionalmente, la prh- α -GAL-I reticulada mostró una presencia activa en plasma incluso 4 horas después de la inyección.

Estos resultados indican que la prh- α -GAL-I reticulada permanece activa *in vivo* durante un tiempo relativamente prolongado, lo que permite que la enzima alcance tejidos y órganos adicionales.

55

50

Como se muestra en las Figuras 14A y 14B, los niveles de α -GAL-I recombinante vegetal reticulada con bis-NHS-PEG₈ y bis-NHS-PEG₄₅ en los bazos de ratones con la enfermedad de Fabry 2 horas después de inyección fue considerablemente mayor que los de la α -GAL-I recombinante vegetal no reticulada, así como los de la α -GAL recombinante de mamífero Replagal®. Como adicionalmente se muestra en el presente documento, los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG₈. Los análisis de transferencia de Western (Figura 14B) son coherentes con los resultados de biodistribución obtenidos mediante el ensayo de la actividad enzimática α -GAL (Figura 14A).

Como se muestra en las Figuras 15A y 15B, los niveles de α-GAL-I recombinante vegetal reticulada con bis-NHS-PEG₈ y bis-NHS-PEG₄₅ en los hígados de ratones con la enfermedad de Fabry 2 horas después de la inyección eran considerablemente más altos que los de α-GAL-I recombinante vegetal no reticulada, pero menores que los niveles de α-GAL recombinante de mamífero Replagal® en el hígado. Como se muestra adicionalmente en el presente documento, los niveles de prh-α-GAL-I reticulada con bis-NHS-PEG₄₅ eran ligeramente mayores que los niveles de prh-α-GAL-I reticulada con bis-NHS-PEG₈. Los análisis de transferencia de Western (Figura 15B) son coherentes con los resultados de biodistribución obtenidos ensayando la actividad enzimática de α-GAL (Figura 15A).

Pueden ser terapéuticamente ventajosos niveles más bajos de α -GAL en el hígado, ya que aproximadamente el 95 % de la enzima recuperada en la terapia de reemplazo enzimático se encuentra típicamente en el hígado, y por lo tanto altos niveles de recombinación de α -GAL en el hígado indican niveles más bajos de α -GAL exógena en órganos diana tales como corazón y riñones.

Como se muestra en la Figura 16, los niveles de α -GAL-I recombinante vegetal reticulada con bis-NHS-PEG8 y bis-NHS-PEG45 en los corazones de ratones con la enfermedad de Fabry 2 horas después de la inyección eran mayores que los de la α -GAL-I recombinante vegetal no reticulada. Como se muestra adicionalmente en el presente documento, los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG45 fueron mayores que los niveles

Como se muestra en la Figura 17, los niveles de la α -GAL-I recombinante vegetal reticulada con bis-NHS-PEG₈ y bis-NHS-PEG₄₅ en los riñones de ratones con enfermedad de Fabry 2 horas después de la inyección, eran mayores que los niveles de la α -GAL-I recombinante vegetal no reticulada. Como adicionalmente se muestra en el presente documento, los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG₄₅ fueron mayores que los niveles de prh- α -GAL-I reticulada con bis-NHS-PEG₈, así como los niveles de α -GAL recombinante de mamífero Replagal®.

De manera similar, como se muestra en las Figuras 18-21, los niveles de α-GAL-I recombinante vegetal reticulada con bis-NHS-PEG₄₅ eran mayores que los niveles de la α-GAL-I recombinante vegetal no reticulada en el bazo (Figura 18), hígado (Figura 19), corazón (Figura 20) y riñones (Figura 21) de ratones con enfermedad de Fabry, durante hasta 7 días después de la inyección. Como adicionalmente se muestra en el presente documento, los niveles de α-GAL-I recombinante vegetal reticulada con bis-NHS-PEG₄₅ eran mayores que los niveles de la α-GAL recombinante de mamífero Replagal® en el bazo, corazón y riñones.

Estos resultados indican que α -GAL reticulada con bis-NHS-PEG, particularmente bis-NHS-PEG₄₅, exhibe una captación potenciada en órganos, incluyendo riñones y corazón, que son órganos diana principales en el tratamiento del trastorno de Fabry. Estos resultados coinciden con una semivida en circulación aumentada y una estabilidad aumentada de la α -GAL reticulada.

Ejemplo VI

5

20

25

30

45

50

65

Reticulación de α-GAL humana recombinante de mamífero con bis-N-hidroxisuccinimida-poli(etilenglicol) (bis-NHS-PEG)

Para confirmar los efectos ventajosos de la reticulación descrita en el presente documento anteriormente, se reticuló la α-GAL humana recombinante de mamífero Replagal®, que se produce en la línea de fibrosarcoma humana HT-1080.

Se añadieron 333 μl de tampón fosfato (100 mM, pH 8) con D-(+)-galactosa 100 mg/ml a 3,8 mg de bis-NHS-PEG₄₅ en 151 μl de solución de DMSO (25 mg/ml) y 1,8 mg de α-GAL humana recombinante Replagal® en 130 μl de tampón citrato (25 mM, pH 6). La concentración de α-GAL Replagal® se determinó mediante un ensayo de actividad. La mezcla de reacción se agitó usando un agitador orbital durante 2 horas a temperatura ambiente. El exceso de reactivo de reticulación bis-NHS-PEG₄₅ se retiró por diálisis frente a solución salina usando un concentrador Vivaspin 6 con un límite de 50 KDa. La actividad α-GAL de la α-GAL Replagal® reticulada indicó que la concentración de α-GAL era de 3 mg/ml.

Los productos de reacción se analizaron mediante SDS-PAGE (electroforesis en gel de poliacrilamida con dodecilsulfato sódico), IEF (isoelectroenfoque) y espectrometría de masas MALDI-TOF, como se ha descrito en el presente documento anteriormente.

Como se muestra en la Figura 22, la α -GAL Replagal® nativa patrón se observó como un monómero después de electroforesis en gel, mientras que después de la reacción de α -GAL Replagal® con bis-NHS-PEG $_{45}$, la α -GAL apareció en forma de un dímero, lo que indicaba que los dos monómeros estaban ligados covalentemente por reticulación con bis-NHS-PEG.

Como se muestra en la Figura 23, la reacción de α -GAL Replagal® con bis-NHS-PEG₄₅ redujo el punto isoeléctrico (pl) de α -GAL, confirmando de este modo que bis-NHS-PEG está unido covalentemente a la α -GAL.

Como se muestra en la Figura 24, la reacción de α-GAL Replagal® con el agente de reticulación bis-NHS-PEG₄₅ aumentó el peso molecular del dímero de α-GAL Replagal® de 103,0 KDa a 121,3 KDa, determinado por espectrometría de masas MALDI-TOF. El aumento del peso molecular indica una adición de aproximadamente 9-10 moléculas de bis-NHS-PEG₄₅ al dímero α-GAL, que es similar a los resultados descritos anteriormente en el presente documento para prh-α-GAL-I.

15 Ejemplo VII

5

10

25

30

35

40

45

50

55

Actividad de α-GAL humana recombinante de mamífero reticulada

Para determinar si la reticulación de α-GAL recombinante de mamífero descrita en el Ejemplo VI afectaba a la actividad enzimática, la α-GAL reticulada se ensayó con respecto a su actividad enzimática usando un ensayo de *p*-nitrofenil-α-D-galactopiranósido (PNP-G), de acuerdo con los procedimientos descritos anteriormente en el presente documento.

Como se muestra en la Figura 25 y en la Tabla 3 mostrada a continuación, la α-GAL humana recombinante de mamífero que se reticuló con bis-NHS-PEG₄₅ exhibió parámetros de actividad enzimática que eran muy similares a los de la α-GAL humana recombinante de mamífero nativa. Estos resultados indican que la reticulación no afectaba significativamente a la actividad o a la maquinaria catalítica y mecanismo de la α-GAL humana recombinante de mamífero.

Tabla 3: resultados de actividad de la α-GAL humana recombinante de mamífero reticulada

Muestra	K _M (μM) V _{máx} (μM/minuto)		$k_{\rm cat}$ (segundo ⁻¹)	$k_{\text{cat}}/K_{\text{M}}$ (segundo ⁻¹ * μ M ⁻¹)	
α-GAL Replagal [®]	3212±98	4,20±0,05	67,2±1	0,0209±0,001	
α-GAL Replagal [®] reticulada	3419±162	4,43±0,07	70,9±1	0,0210±0,001	

Ejemplo VIII

Estabilidad in vitro de la α-GAL humana recombinante de mamífero reticulada

La estabilidad *in vitro* de la α-GAL humana recombinante de mamífero Replagal® reticulada, obtenida como se describe en el Ejemplo VI, se midió en diversas condiciones como se describe anteriormente en el presente documento en la Sección de Materiales y Métodos. La estabilidad de α-GAL Replagal® no reticulada se midió con fines comparativos, para evaluar el efecto de la reticulación.

Como se muestra en las Figuras 26A y 26B, la estabilidad de α -GAL humana recombinante de mamífero en condiciones lisosómicas simuladas (Figura 26A) y en plasma humano (Figura 26B) se potenció considerablemente por reticulación con bis-NHS-PEG₄₅. La α -GAL humana recombinante de mamífero reticulada exhibió una mayor estabilidad en condiciones lisosómicas estimuladas que en plasma.

Estos resultados indican que la reticulación de α-GAL como se describe en el presente documento puede estabilizar la α-GAL recombinante de múltiples fuentes y plataformas de expresión.

Ejemplo IX

Farmacocinética in vivo y biodistribución de la α-GAL humana recombinante de mamífero reticulada

La farmacocinética y biodistribución de la α-GAL humana recombinante de mamífero reticulada descrita en el Ejemplo VI se determinó midiendo la actividad α-GAL en el bazo, hígado, corazón y riñones de ratones con enfermedad Fabry 2 horas, 7, 14 y 28 días después de inyección, así como los niveles de Gb₃ en estos órganos, como se describe anteriormente en el presente documento en la Sección de Materiales y Métodos. La biodistribución de la α-GAL humana recombinante de mamífero Replagal® no reticulada se determinó para fines comparativos.

Como se muestra en las Figuras 27A-27D, los niveles de la α-GAL recombinante de mamífero reticulada en los bazos (Figura 27A), hígado (Figura 27B), corazón (Figura 27C) y riñones (Figura 27D) de ratones con enfermedad de Fabry fueron considerablemente superiores que los de la α-GAL recombinante de mamífero no reticulada.

Como se muestra en las Figuras 28A-28D, la α -GAL recombinante de mamífero reticulada disminuyó los niveles de Gb₃ en el corazón (Figura 28A), riñones (Figura 28B), hígado (Figura 28C) y bazo (Figura 28D) de ratones con enfermedad de Fabry, durante el transcurso de 28 días después de inyección. La α -GAL recombinante de mamífero reticulada disminuyó los niveles de Gb₃ en un grado mayor que la α -GAL recombinante no reticulada en el riñón (Figura 28B) y bazo (Figura 28D) de ratones con la enfermedad de Fabry, y a aproximadamente el mismo grado que la α -GAL recombinante de mamífero no reticulada en el corazón (Figura 28A) e hígado (Figura 28C).

Estos resultados indican que la reticulación con bis-NHS-PEG da como resultado una captación considerablemente potenciada de la α-GAL recombinante desde una variedad de fuentes y plataformas de expresión en órganos, incluyendo el riñón y corazón, que son órganos diana principales en el tratamiento del trastorno de Fabry. Adicionalmente, estos resultados indican que la reticulación con bis-NHS-PEG da como resultado una disminución más sustancial de los niveles de Gb₃ en órganos.

Ejemplo X

15

5

10

30

35

40

45

55

60

Reticulación de α-GAL-II humana recombinante vegetal con bis-N-hidroxisuccinimida-poli(etilenglicol) (bis-NHS-PEG)

La α-GAL-II humana recombinante vegetal (prh-α-GAL-II), que carece de los aminoácidos EF presentes en el extremo N de prh-α-GAL-I, se reticuló con bis-NHS-PEG₄₅, bis-NHS-PEG₂₁ o bis-NHS-PEG₆₈ a una proporción molar de 200:1 de bis-NHS-PEG a α-GAL, de acuerdo con el protocolo descrito en el Ejemplo II.

La prh-α-GAL-II conservó su actividad biológica después de la reticulación con bis-NHS-PEG (datos no mostrados).

Los productos de reacción se analizaron por SDS-PAGE (electroforesis en gel de poliacrilamida con dodecil sulfato sódico) y espectrometría de masas MALDI-TOF como se ha descrito anteriormente en el presente documento.

Como se muestra en las Figuras 29A-29B, la prh-α-GAL-II nativa patrón se observó como un monómero después de la electroforesis en gel, mientras que después de la reacción de prh-α-GAL-II con bis-NHS-PEG₄₅ o bis-NHS-PEG₂₁ (Figura 29A), o con bis-NHS-PEG₆₈ (Figura 29B), prh-α-GAL-II apareció principalmente en forma de un dímero (con algún monómero presente), indicando que los dos monómeros estaban ligados de manera covalente por reticulación con un agente de reticulación bis-NHS-PEG.

Como se observa adicionalmente en las Figuras 29A-29B, para cada uno de los agentes de reticulación ensayados, el peso molecular de la parte monomérica de prh-α-GAL-II aumentó después de la reacción con el agente de reticulación. El aumento del peso molecular fue mayor para bis-NHS-PEG₄₅ que para bis-NHS-PEG₂₁ (Figura 29A) y fue más elevado para bis-NHS-PEG₆₈ (compárese la Figura 29A con la Figura 29B). Estos resultados indican que los monómeros que no dimerizaron por reticulación, estaban unidos de manera covalente al agente de reticulación bis-NHS-PEG, es decir, las proteínas estaban PEGiladas.

Como se muestra en las Figuras 30A-30C, la reacción de prh- α -GAL-II con el agente de reticulación bis-NHS-PEG $_{21}$ aumentó el peso molecular del dímero prh- α -GAL-II de 95 KDa (Figura 30A) a 109 KDa (Figura 30B), aunque la reacción de prh- α -GAL-II con el agente de reticulación bis-NHS-PEG $_{45}$ aumentó el peso molecular del dímero prh- α -GAL-II a 114 KDa (Figura 30C), determinado por espectrometría de masas MALDI-TOF. El aumento del peso molecular indica una adición de aproximadamente 13 moléculas de bis-NHS-PEG $_{21}$, o de aproximadamente 9 moléculas de bis-NHS-PEG $_{45}$ al dímero prh- α -GAL-II.

Ejemplo XI

50 Estabilidad in vitro de la α-GAL-II humana recombinante vegetal reticulada

La estabilidad *in vitro* de la α -GAL-II humana recombinante vegetal (prh- α -GAL-II) reticulada obtenida como se describe en el Ejemplo X se midió en diversas condiciones como se describe en el presente documento anteriormente en la Sección de Materiales y Métodos. La estabilidad de la α -GAL humana recombinante comercial Replagal® se midió con fines comparativos.

Como se muestra en las Figuras 31A-31D, la estabilidad de la α-GAL-II humana recombinante vegetal se potenció reticulando con bis-NHS-PEG₆₈ (Figuras 31B y 31D), bis-NHS-PEG₄₅ (Figuras 31A -31D) o bis-NHS-PEG₂₁ (Figuras 31A y 31C), tanto en condiciones lisosómicas simuladas (Figuras 31A y 31B) como en plasma humano (Figuras 31C y 31D). Los diferentes agentes de reticulación potenciaron la estabilidad de prh-α-GAL-II en grados comparables. Como se muestra adicionalmente en el presente documento, la estabilidad de la prh-α-GAL-II reticulada fue mayor que la estabilidad de la α-GAL humana recombinante Replagal®. La prh-α-GAL-II reticulada exhibió una mayor estabilidad en condiciones lisosómicas simuladas, así como en condiciones plasmáticas.

65 Como se muestra adicionalmente en las Figuras 31A-31D, la prh-α-GAL-II no reticulada es considerablemente más estable que la prh-α-GAL-II no reticulada (véanse las Figuras 1 y 3 para comparación), tanto en condiciones

lisosómicas simuladas (Figuras 1 y 31A-31B) como en plasma humano (Figuras 3 y 31C-31D), aunque prh-α-GAL-II aún presenta alguna inestabilidad.

Estos resultados indican que la reticulación de α-GAL como se describe en el presente documento puede estabilizar diferentes tipos de α-GAL.

Ejemplo XII

10

15

25

35

40

45

Farmacocinética y biodistribución in vivo de la α-GAL-II humana recombinante vegetal reticulada

La farmacocinética y biodistribución de α -GAL-II humana recombinante vegetal (prh- α -GAL-II) reticulada con PEG₄₅ y reticulada con PEG₂₁, descrita en el Ejemplo X, se determinó midiendo la actividad α -GAL en plasma y en órganos como se ha descrito anteriormente en el presente documento en la Sección de Materiales y Métodos. La farmacocinética y biodistribución de la α -GAL humana recombinante de mamífero Replagal® no reticulada se determinó con fines comparativos.

Se recogieron muestras de sangre para análisis farmacocinéticos a 1, 5, 10, 30, 60, 120, 240, 480 y 1440 minutos después de inyección de ratones con enfermedad de Fabry con 1 mg/kg de α-GAL.

20 La biodistribución de α-GAL se determinó recogiendo el hígado, riñones, corazón y bazo de ratones con enfermedad de Fabry 2 horas, 7 días, 14 días y 28 días después de la inyección con 2 mg/kg de α-GAL.

Como se muestra en las Figuras 32A y 32B y en la Tabla 4, la reticulación de prh- α -GAL-II con bis-NHS-PEG₄₅ aumentó considerablemente la semivida terminal en circulación de prh- α -GAL-II, dando lugar a una semivida en circulación considerablemente mayor que la de la α -GAL recombinante de mamífero o prh- α -GAL-II no reticulada.

Tabla 4: semivida terminal en circulación de α-GAL recombinante

Artículo de ensayo	t _{1/2} (min)
α-GAL Replagal [®]	13,3
alfa-GAL-II recombinante vegetal	4,8
alfa-GAL-II recombinante vegetal reticulada con bis-NHS-PEG ₄₅	581,6

Como se muestra en las Figuras 33A-33L, la reticulación de prh-α-GAL-II con bis-NHS-PEG₄₅ aumentó la captación de prh-α-GAL-II en corazón (Figura 33A), riñón (Figura 33B), hígado (Figura 33C) y bazo (Figura 33D) de ratones con enfermedad de Fabry, aunque en un menor grado en el hígado.

Como se muestra en las Figuras 33E-33L, la reticulación de prh-α-GAL-II con bis-NHS-PEG₂₁ también aumentó la captación de prh-α-GAL-II en corazón (Figuras 33E y 33I), riñón (Figuras 33F y 33J), hígado (Figuras 33G y 33K) y bazo (Figuras 33H y 33L) de ratones con enfermedad de Fabry, aunque dicho aumento no era siempre evidente después de solo 2 horas.

Como adicionalmente se ha observado en el presente documento, los niveles de prh-α-GAL-II reticulada fueron mayores que los niveles de α-GAL recombinante de mamífero en el corazón (Figuras 33A, 33E y 33I), riñón (Figuras 33B, 33F Y 33J) y bazo (Figuras 33D, 33H y 33L) de ratones con enfermedad de Fabry, y menores que los niveles de α-GAL recombinante de mamífero en el hígado (Figuras 33C, 33G y 33K).

Estos resultados indican que la prh- α -GAL-II reticulada exhibe una actividad considerablemente potenciada de α -GAL en plasma y en diversos órganos, particularmente en órganos distintos de hígado.

Ejemplo XIII

Efecto del pH sobre la actividad de α-GAL humana recombinante vegetal

El pH del entorno tiene un efecto significativo sobre la estabilidad y cinética de enzimas lisosómicas tales como α-GAL. El pH puede afectar a la unión del sustrato con la enzima. El pH también puede afectar a la protonación o desprotonación de grupos catalíticos, tales como grupos carboxilo o amino, que forman parte del sitio activo enzimático y, por lo tanto, afectan al comportamiento cinético de la enzima. La estabilidad de la estructura terciaria o cuaternaria de las enzimas también es dependiente del pH, y afecta a la velocidad de la reacción enzimática, especialmente a valores de pH extremadamente ácidos o alcalinos.

La actividad de α -GAL-II humana recombinante vegetal reticulada con PEG₄₅ y no reticulada se determinó a diversos valores de pH usando un sustrato pNP-G, para examinar la dependencia del pH de la actividad α -GAL, y el efecto de la reticulación en el mismo. Las mediciones se realizaron en soluciones de citrato 20 mM y de fosfato de sodio 30

mM.

5

10

Los parámetros cinéticos que caracterizan la actividad α -GAL a diversos valores de pH se resumen en la Tabla 5 a continuación y en las Figuras 34A-34C.

Como se observa en las Figuras 34A-34C, la reticulación del α -GAL-II aumentó los parámetros de $V_{máx}$ (Figura 34A) y k_{cat} (Figura 34C) y no tuvo un efecto significativo sobre el parámetro K_M (Figura 34B).

Tabla 5: resultados de actividad de la α-GAL-II humana recombinante vegetal (prh-α-GAL-II) no reticulada y α-GAL II humana recombinante vegetal reticulada con PEG₄₅ (prh-α-GAL-II-CL45) a diversos valores de pH.

pH	umana recombinante veç Muestra	<i>K</i> _M (μM)	V _{máx} (μM/minuto)	$k_{\rm cat}$ (segundo ⁻¹)	$k_{\text{cat}}/K_{\text{M}}$ (segundo ⁻¹ * μM^{-1})
2,8	prh-a-GAL-II	15216	0,57	9,04	0,0006
	prh-a-GAL-I I-CL45	13618	0,90	14,37	0,0011
3,2	prh-a-GAL-II	11476	0,55	8,85	0,0008
	prh-a-GAL-I I-CL45	8489	1,34	21,44	0,0025
3,6	prh-a-GAL-TI	11147	1,76	28,16	0,0025
	prh-a-GAL-I I-CL45	4699	2,23	35,68	0,0076
4,04	prh-a-GAL-II	5709	1,98	31,68	0,0055
	prh-a-GAL-I I-CL45	3207	2,74	43,76	0,0136
4,4	prh-a-GAL-II	4596	2,40	38,40	0,0084
	prh-a-GAL-I I-CL45	3122	3,22	51,57	0,0165
4,8	prh-a-GAL-II	4531	2,32	37,12	0,0082
	prh-a-GAL-I I-CL45	3345	2,95	47,23	0,0141
5,29	prh-a-GAL-II	6793	2,06	32,99	0,0049
	prh-a-GAL-I I-CL45	3973	2,78	44,48	0,0112
5,66	prh-a-GAL-II	10396	1,75	28,05	0,0027
	prh-a-GAL-I I-CL45	4883	2,70	43,20	0,0088
6,09	prh-a-GAL-II	11357	1,44	23,04	0,0020
	prh-a-GAL-I I-CL45	8336	1,54	24,59	0,0030
6,4	prh-a-GAL-II	21046	1,32	21,12	0,0010
	prh-a-GAL-I I-CL45	16844	1,46	23,36	0,0014
6,76	prh-a-GAL-II	25188	1,12	17,92	0,0007
	prh-a-GAL-I I-CL45	18313	1,14	18,24	0,0010
7,36	prh-a-GAL-II	-	-	-	-
	prh-a-GAL-I I-CL45	32692	0,52	8,37	0,0003

La potenciación de los parámetros $V_{máx}$ y k_{cat} indica un aumento en la actividad catalítica. Este aumento es particularmente significativo a valores de pH de al menos aproximadamente 7, donde la actividad catalítica de la α -GAL-II no reticulada es insignificante.

 $K_{\rm M}$ es un parámetro cinético asociado con la afinidad enzima/sustrato. La ausencia de un efecto significativo de reticulación sobre los valores de $K_{\rm M}$ indica que la reticulación no tiene un efecto significativo sobre la afinidad de α -GAL con respecto al sustrato pNP-G.

20 Ejemplo XIV

Efecto de la PEGilación sobre la estabilidad de α-GAL

Se determinó el efecto de la PEGilación por sí mismo sobre la estabilidad de α-GAL, para determinar si el efecto estabilizante de los agentes de reticulación de PEG es debido a las propiedades del PEG o es debido a la reticulación.

Se hizo reaccionar α -GAL-I humana recombinante vegetal con PEG protegidos terminalmente con metoxi activado con *N*-hidroxisuccinimida (NHS) con diferentes pesos moleculares (2, 5 y 10 KDa). Dichos reactivos PEG tienen un solo grupo NHS y, por consiguiente, PEGilan la proteína sin formar reticulación. Los productos de reacción se analizaron por SDS-PAGE.

39

15

25

Como se muestra en la Figura 35, los agentes de PEGilación protegidos con metoxi PEGilaron la α -GAL (visible como un aumento en el peso molecular de α -GAL), pero no generaron sustancialmente dímeros de α -GAL, lo que indicaba que α -GAL no estaba reticulada.

5 Como se muestra en las Figuras 36A y 36B, la PEGilación de la α-GAL-I humana recombinante vegetal sin formar reticulación no aumentó sustancialmente la estabilidad de la α-GAL recombinante vegetal, en condiciones lisosómicas simuladas (Figura 36A) o en plasma humano (Figura 36B).

Estos resultados indican que el efecto estabilizante de la reticulación descrita en el presente documento anteriormente no es un resultado de la PEGilación por sí misma.

Ejemplo XV

10

15

20

25

30

Efecto de la longitud de la cadena de PEG sobre la actividad de α-GAL reticulada

Para evaluar el efecto de la longitud de la cadena de los agentes de reticulación PEG sobre la actividad α -GAL, la α -GAL-I humana recombinante vegetal se reticuló con agentes bis-NHS-PEG₂, bis-NHS-PEG₄, bis-NHS-PEG₆₈ y bis-NHS-PEG₁₅₀, usando esencialmente los mismos procedimientos que se han descrito en el Ejemplo II (PEG₆₈ y PEG₁₅₀ tienen longitudes de cadena aproximadas). La α -GAL-I se reticuló a proporciones molares de 50:1, 100:1 y 200:1 de bis-NHS-PEG: α -GAL. Los productos de reacción se analizaron por SDS-PAGE, como se ha descrito anteriormente en el presente documento. También se analizó la α -GAL-I reticulada con bis-NHS-PEG₄₅ como se describe en el Ejemplo II con fines comparativos.

Como se muestra en la Figura 37, el análisis de SDS-PAGE mostró que todos los agentes de bis-NHS-PEG reticularon la α-GAL para dar como resultado un dímero reticulado covalentemente, y que la reticulación era más eficaz cuando se usaba una proporción molar de 200:1.

La actividad enzimática de α-GAL-l reticulada se determinó después como se describe en el Ejemplo III. Los resultados se resumen en la Tabla 6 mostrada a continuación.

Tabla 6: resultados de actividad de la α-GAL-I humana recombinante vegetal reticulada

Reactivo	Proporción molar (reactivo: α-GAL-I)	Actividad α-GAL esperada [mg/ml]	Actividad α-GAL medida [mg/ml]
bis-NHS-PEG ₂	50:1	2	1,159
	100:1	2	1,001
Lucyon	200:1	2	0,970
bis-NHS-PEG ₄	50:1	2	1,399
	100:1	2	1,333
	200:1	2	1,048
bis-NHS-PEG ₆₈	50:1	2	1,822
	100:1	2	2,252
	200:1	2	2,425
bis-NHS-PEG ₁₅₀	50:1	2	1,804
	100:1	2	2,031
	200:1	2	1,825

Como se muestra en la Tabla 6, la reticulación con PEG_2 y PEG_4 redujo moderadamente la actividad α -GAL (aproximadamente un 30-50 %), mientras que la reticulación con cadenas de PEG más largas no afectó significativamente a la actividad α -GAL.

Estos resultados indican que la reticulación con cadenas de PEG más largas que PEG₄ es ventajosa en términos de preservar la actividad de la α-GAL reticulada.

35

Ejemplo XVI

20

25

Reticulación de α-GAL usando agentes bis-COOH-PEG

- 5 Como una alternativa a la reticulación anteriormente descrita de α-GAL usando agentes previamente preparados de bis-NHS-PEG (por ejemplo, disponibles en el mercado), α-GAL se reticuló con agentes bis-COOH-PEG activando los grupos carboxilo (es decir, COOH) *in situ* inmediatamente antes de efectuar la reacción de reticulación.
- Cada uno de bis-COOH-PEG₁₂, bis-COOH-PEG₂₈ y bis-COOH-PEG₄₅ se activaron reaccionando con 1,1 equivalentes molares por grupo carboxilo (es decir, 2,2 equivalentes molares por bis-COOH-PEG) de NHS (*N*-hidroxisuccinimida) y EDC (1-etil-3-(3-dimetilaminopropil)carbodiimida). La mezcla de reacción se agitó después en DMSO durante 30 minutos a temperatura ambiente. Después se hizo reaccionar bis-COOH-PEG activado, que es esencialmente bis-NHS-PEG, con α-GAL-I humana recombinante vegetal a proporciones molares de 50:1, 100:1 y 200:1, como se describe en el Ejemplo II. Los productos de reacción se analizaron por SDS-PAGE, como se describe anteriormente en el presente documento. La α-GAL-I reticulada con bis-NHS-PEG₄₅ como se describe en el Ejemplo II también se analizó con fines comparativos.

Como se muestra en la Figura 38, el análisis de SDS-PAGE mostró que todos los agentes bis-COOH-PEG reticulaban la α-GAL en algún grado, pero que la reticulación era más eficaz cuando se usaba una proporción molar de 200:1.

Después se determinó la actividad enzimática de la α-GAL-I reticulada como se describe en el Ejemplo III. En la Tabla 7 a continuación se resumen los resultados.

Tabla 7: resultados de actividad de α-GAL-I humana recombinante vegetal reticulada

	1	SAL-i flumana recombinante ve	0
Reactivo	Proporción molar (reactivo:	Actividad α-GAL esperada	Actividad α-GAL medida
	α-GAL-I)	[mg/ml)	[mg/ml]
	,	1 3 /	1 3 1
Bis-HOOC-PEG ₁₂	50:1	1,5	1,236
		.,-	1,200
	100:1	1,5	1,304
		·	·
	200:1	1,5	1,404
Bis-HOOC-PEG ₂₈	50:1	1,5	1,326
	100:1	1,5	1,371
	200:1	1,5	1,460
D: HOOG BEG	50.4	4.5	1.040
Bis-HOOC-PEG ₄₅	50:1	1,5	1,349
	100.1	4.5	1.511
	100:1	1,5	1,541
	200.4	4.5	4 600
	200:1	1,5	1,628
1			

Como se muestra en la Tabla 7, la reticulación con cada uno de los agentes ensayados bis-COOH-PEG dio como resultado α -GAL con aproximadamente la actividad esperada.

30 Estos resultados indican que los agentes de reticulación bis-COOH-PEG no reducen la actividad α -GAL en comparación con la reticulación con agentes bis-NHS-PEG.

Estos resultados también confirman los hallazgos anteriormente descritos de que la reticulación con cadenas de PEG más largas que PEG₄ no reduce significativamente la actividad de la α-GAL reticulada.

Ejemplo XVII

35

40

45

Efecto de la longitud y tipo de agentes de reticulación sobre la estabilidad in vitro de α-GAL-I humana recombinante vegetal reticulada

Para caracterizar adicionalmente el efecto de la longitud de la cadena sobre la estabilidad de la α -GAL reticulada y para comparar la estabilidad de la α -GAL reticulada con agentes bis-COOH-PEG (por ejemplo, como se describe en el Ejemplo XVI), con la de α -GAL reticulada con agentes bis-NHS-PEG, se midió la estabilidad *in vitro* de α -GAL-I humana recombinante vegetal (prh- α -GAL-I) reticulada con bis-NHS-PEG2, bis-NHS-PEG4, bis-COOH-PEG12, bis-COOH-PEG45, obtenidos como se describe en los Ejemplos XV y XVI, en diversas condiciones como se describe anteriormente en el presente documento en la Sección de Materiales y Métodos, y se comparó con la estabilidad de prh- α -GAL-I reticulada con bis-NHS-PEG45 como se describe en el Ejemplo II. La estabilidad de α -

GAL humana recombinante comercial Replagal® y prh-GAL-I no reticulada se midió con fines comparativos.

Como se muestra en la Figura 39, la estabilidad de la α-GAL-l humana recombinante vegetal en condiciones lisosómicas simuladas se potenció reticulando con cada uno de los agentes bis-NHS-PEG y bis-COOH-PEG.

5

10

15

Como se muestra adicionalmente en el presente documento, la estabilidad de prh- α -GAL-I reticulado se correlacionó con la longitud de la cadena del agente de reticulación PEG, proporcionando bis-NHS-PEG₄₅ y bis-COOH-PEG₄₅ la mayor estabilidad, y proporcionando bis-NHS-PEG₂ la menor estabilidad. Sin embargo, la reticulación con bis-COOH-PEG₄₅ proporcionó solo marginalmente más estabilidad que la reticulación con bis-COOH-PEG₄₅, lo que sugería que, por encima de una determinada longitud, la estabilidad no se veía afectada por la longitud de la cadena de PEG.

Como se muestra adicionalmente en la Figura 39, la reticulación con bis-NHS-PEG₄₅ proporcionó ligeramente más estabilidad que la reticulación con bis-COOH-PEG₄₅. Esto puede ser el resultado de una activación incompleta del agente bis-COOH-PEG. Sin embargo, la diferencia en la estabilidad fue ligera.

Además, la reticulación con cada uno de los agentes bis-NHS-PEG y bis-COOH-PEG potenció la estabilidad de la α-GAL-l humana recombinante vegetal en plasma humano a 37 °C (datos no mostrados).

20 Estos resultados proporcionan pruebas adicionales de que la reticulación de α-GAL como se describe en el presente documento puede aumentar la eficacia de α-GAL *in vivo* aumentando la estabilidad de α-GAL en lisosomas y en la sangre, y que las cadenas de PEG de aproximadamente 28-45 unidades de longitud son más eficaces estabilizando la α-GAL mediante la reticulación que las cadenas de PEG más cortas.

25 Ejemplo XVIII

Parámetros cinéticos de α-GAL-II humana recombinante vegetal reticulada

Los parámetros cinéticos de α-GAL-II humana recombinante vegetal reticulada, obtenidos como se describe en el Ejemplo X, así como de α-GAL-II humana recombinante vegetal no reticulada, se determinaron usando un sustrato pNP-G y el análisis de Michaelis-Menten para examinar el efecto de la reticulación sobre la misma. Las mediciones se realizaron en una solución de citrato 20 mM, fosfato de sodio 30 mM, albúmina de suero bovino al 0,1 % y etanol al 0,67 %, a un pH de 4,6. Los parámetros cinéticos se calcularon usando valores de contenido de proteína basándose en un ensayo de actividad.

35

Como se muestra en la Tabla 8 a continuación, la reticulación de α -GAL-II dio como resultado propiedades cinéticas mejoradas, en comparación con la α -GAL-II no reticulada. La constante de Michaelis ($K_{\rm M}$) se redujo, indicando una mayor afinidad de la enzima por el sustrato. Además, la $k_{\rm cat}/K_{\rm M}$, que significa la eficiencia catalítica total de la enzima con su sustrato en las condiciones descritas, se potenció para especies reticuladas.

40

Tabla 8: parámetros de Michaelis-Menten de α -GAL-II humana recombinante vegetal no reticulada (prh- α -GAL-II) y α -GAL II humana recombinante vegetal reticulada con bis-NHS-PEG₂₁ (prh- α -GAL-II-CL21), bis-NHS-PEG₄₅ (prh- α -GAL-II-CL45) o bis-NHS-PEG₆₈ (prh- α -GAL-II-CL68)

Muestra	K _m (µM)	V _{máx} (μM/min)	k_{cat} (s ⁻¹)	k _{cat} /K _m (s ⁻¹ μM ⁻¹)
prh-α-GAL-II	4801	4,59	73,49	0,015
prh-α-GAL-II-CL21	2661	4,85	77,55	0,029
prh-α-GAL-II-CL45	2583	4,87	77,87	0,030
prh-α-GAL-II-CL68	2556	4,12	65,97	0,026

45 Ejemplo XIX

Reproducibilidad de la reticulación de α-GAL-II humana recombinante vegetal

La reproducibilidad lote a lote de la reticulación se evaluó después de preparar 5 lotes de α-GAL-II humana recombinante vegetal (prh-α-GAL-II) reticulada con bis-NHS-PEG₄₅ a una proporción de 200:1, usando procedimientos similares a los descritos en el Ejemplo II.

En los lotes 1, 2, 4 y 5, se hizo reaccionar 1 mg de prh- α -GAL-II con 3,98 mg de bis-NHS-PEG.

55 En el lote 3, se hicieron reaccionar 20,5 mg de prh-α-GAL-II con 80,7 mg de bis-NHS-PEG.

La actividad enzimática de prh-α-GAL-II reticulada se determinó como se describe en el Ejemplo III. Los resultados se resumen en la Tabla 9 mostrada a continuación.

Tabla 9: resultados de actividad de α-GAL-II humana recombinante vegetal reticulada de diferentes lotes

Lote n.º	Actividad α-GAL esperada [mg/ml]	Actividad α-GAL medida [mg/ml]
1	1,25	1,38
2	1,25	1,23
3	1,43	1,4
4	1,25	0,85
5	1,25	1,11

5

20

Como se muestra en la Tabla 9, la actividad medida estaba próxima a la actividad esperada en los 5 lotes. En 4 de los 5 lotes, la actividad medida difirió de la actividad esperada aproximadamente un 10 % o menos.

Estos resultados indican que la actividad obtenida de la prh-α-GAL-II reticulada es relativamente predecible y reproducible.

La estabilidad de prh-α-GAL-II reticulada en condiciones lisosómicas y en plasma humano se determinó como se describe anteriormente en el presente documento.

15 Como se muestra en las Figuras 40A y 40B, la estabilidad de prh-α-GAL-II reticulada exhibió una buena reproducibilidad tanto en condiciones lisosómicas simuladas como en plasma humano.

La reticulación también se analizó por análisis SDS-PAGE, análisis IEF (isoelectroenfoque) y espectrometría de masas MALDI-TOF, como se describe anteriormente en el presente documento. Se analizó prh-α-GAL-II no reticulada para la comparación.

Como se muestra en la Figura 41, la prh-α-GAL-II reticulada de los diferentes lotes exhibió el mismo grado de dimerización covalente en análisis SDS-PAGE.

25 Como se muestra en la Figura 42, la prh-α-GAL-II reticulada de los diferentes lotes exhibió los mismos puntos isoeléctricos con análisis IEF.

Como se muestra en las Figuras 43A-43F, las prh- α -GAL-II reticuladas de los lotes 1-5 (FIG. 43B-43F, respectivamente) mostraron, todas ellas, un aumento de aproximadamente 20-21 KDa en la forma de dímero, en comparación con la prh- α -GAL-II no reticulada (FIG. 43A). Dicho aumento corresponde a aproximadamente 10 moléculas de PEG por dímero de α -GAL. Como adicionalmente se muestra en las FIG. 43B-43F, las prh- α -GAL-II reticuladas de los diferentes lotes exhibieron similares proporciones de monómero frente a dímero.

Estos resultados indican adicionalmente la buena reproducibilidad en la reticulación de $\alpha\text{-}GAL$.

35

40

30

Los parámetros cinéticos de la prh-α-GAL-II reticulada se determinaron usando un sustrato pNP-G y el análisis de Michaelis-Menten para examinar la reproducibilidad de la actividad enzimática. Las mediciones se realizaron en una solución de citrato 20 mM, fosfato de sodio 30 mM, albúmina de suero bovino al 0,1 % y etanol al 0,67 %, a un pH de 4,6. Los parámetros cinéticos se calcularon usando valores de contenido de proteína basándose en la densidad óptica a 280 nm.

Como se muestra en la Figura 44, la prh-α-GAL-II reticulada de diferentes lotes exhibió perfiles similares de velocidad catalítica frente a la concentración de sustrato.

45 Como se muestra en la Tabla 10 presentada a continuación, la prh-α-GAL-II reticulada de los diferentes lotes exhibió una buena reproducibilidad de los parámetros V_{máx} y k_{cat}. El parámetro K_m varió más entre lotes, aunque esto puede ser un artefacto de la cuantificación de la proteína.

Los resultados anteriores indican una buena reproducibilidad en las propiedades enzimáticas de α -GAL reticulada.

Tabla 10: parámetros de Michaelis-Menten de la α-GAL II humana recombinante vegetal reticulada con bis-NHS-PEG₄₅ en diferentes lotes

Lote n.º	K _m (µM)	V _{máx} (μM/min)	k _{cat} (s⁻1)	$k_{\rm cat} / K_{\rm m} ({\rm s}^{-1} \mu {\rm M}^{-1})$
1	4939	3,87	61,92	0,0125
2	2215	3,30	52,86	0,0239
3	4470	3,95	63,12	0,0141
4	3285	3,72	59,53	0,018
5	2243	3,91	62,60	0,028

Aunque la invención se ha descrito junto con sus realizaciones específicas, será evidente para los expertos en la materia que pueden realizarse muchas alternativas, modificaciones y variaciones. Las citas o identificación de cualquier referencia en esta solicitud no deben considerarse una admisión de que dicha referencia esté disponible como técnica anterior a la presente invención. En la medida en que se usen los encabezados de sección, no deben considerarse necesariamente limitantes.

- 10 La invención comprende adicionalmente los siguientes puntos:
 - 1. Una estructura de proteína multimérica que comprende al menos dos monómeros de α-galactosidasa que están unidos de forma covalente entre sí a través de un radical de unión, representando la estructura de proteína multimérica una característica seleccionada del grupo que consiste en:
 - (a) una actividad α -galactosidasa después de someter la estructura de proteína multimérica a condiciones plasmáticas humanas durante una hora, que es al menos un 10 % mayor que una actividad de la α -galactosidasa nativa después de someter dicha α -galactosidasa nativa a dichas condiciones plasmáticas humanas durante una hora;
 - (b) una actividad α -galactosidasa que disminuye después de someter la estructura de proteína multimérica a condiciones plasmáticas humanas durante una hora en un porcentaje que es al menos un 10 % menor que el porcentaje que disminuye una actividad de dicha α -galactosidasa nativa después de someter dicha α -galactosidasa nativa a dichas condiciones plasmáticas humanas durante una hora;
 - (c) una actividad α-galactosidasa que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones plasmáticas humanas durante una hora:
 - (d) una actividad α-galactosidasa, después de someter la estructura de proteína multimérica a condiciones lisosómicas durante una semana, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa después de someter dicha α-galactosidasa nativa a dichas condiciones lisosómicas durante una semana:
 - (e) una actividad de α -galactosidasa que disminuye después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día en un porcentaje que es al menos un 10 % menor que el porcentaje que disminuye una actividad de dicha α -galactosidasa nativa después de someter dicha α -galactosidasa nativa a dichas condiciones lisosómicas durante un día;
 - (f) una actividad α-galactosidasa que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día;
 - (g) una actividad α-galactosidasa, inmediatamente después de someter la estructura de proteína multimérica a condiciones lisosómicas, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa inmediatamente después de someter dicha forma nativa de dicha proteína a dichas condiciones lisosómicas;
 - (h) una actividad α -galactosidasa, inmediatamente después de someter la estructura de proteína multimérica a una solución acuosa que tiene un pH de 7 y una temperatura de 37 °C, que es al menos un 10 % mayor que una actividad de la α -galactosidasa nativa inmediatamente después de someter dicha α -galactosidasa nativa a dicha solución acuosa que tiene un pH de 7 y una temperatura de 37 °C; y
 - (i) una semivida en circulación en un sistema fisiológico que es mayor en al menos un 20 % que dicha semivida en circulación de dicha α-galactosidasa nativa.
 - 2. La estructura de proteína multimérica del punto 1, en la que dicha actividad α-galactosidasa de dicha estructura de proteína multimérica que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día, continúa adicionalmente sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante una semana.
 - 3. La estructura de proteína multimérica de cualquiera de los puntos 1 a 2, en la que dicho radical de unión no está presente en α-galactosidasa nativa.

50

15

20

25

30

35

40

- 4. Una estructura de proteína multimérica que comprende al menos dos monómeros de α -galactosidasa ligados por enlace covalente entre sí mediante un radical de unión, en la que dicho radical de unión no está presente en la α -galactosidasa nativa.
- 5. La estructura de proteína multimérica del punto 4, que representa una característica seleccionada del grupo que consiste en:
 - (a) una actividad α -galactosidasa después de someter la estructura de proteína multimérica a condiciones plasmáticas humanas durante una hora, que es al menos un 10 % mayor que una actividad de la α -galactosidasa nativa después de someter dicha α -galactosidasa nativa a dichas condiciones plasmáticas humanas durante una hora;
 - (b) una actividad α -galactosidasa que disminuye después de someter la estructura de proteína multimérica a condiciones plasmáticas humanas durante una hora en un porcentaje que es al menos un 10 % menor que el porcentaje que disminuye una actividad de dicha α -galactosidasa nativa después de someter dicha α -galactosidasa nativa a dichas condiciones plasmáticas humanas durante una hora;
 - (c) una actividad α-galactosidasa que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones plasmáticas humanas durante una hora;
 - (d) una actividad α-galactosidasa, después de someter la estructura de proteína multimérica a condiciones lisosómicas durante una semana, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa después de someter dicha α-galactosidasa nativa a dichas condiciones lisosómicas durante una semana:
 - (e) una actividad α -galactosidasa que disminuye después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día en un porcentaje que es al menos un 10 % menor que el porcentaje que disminuye una actividad de dicha α -galactosidasa nativa después de someter dicha α -galactosidasa nativa a dichas condiciones lisosómicas durante un día;
 - (f) una actividad α-galactosidasa que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día;
 - (g) una actividad α-galactosidasa, inmediatamente después de someter la estructura de proteína multimérica a condiciones lisosómicas, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa inmediatamente después de someter dicha α-galactosidasa nativa a dichas condiciones lisosómicas;
 - (h) una actividad α-galactosidasa, inmediatamente después de someter la estructura de proteína multimérica a una solución acuosa que tiene un pH de 7 y una temperatura de 37 °C, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa inmediatamente después de someter dicha α-galactosidasa nativa a dicha solución acuosa que tiene un pH de 7 y una temperatura de 37 °C; y
 - (i) una semivida en circulación en un sistema fisiológico que es mayor que una semivida en circulación de dicha α-galactosidasa nativa.
 - 6. La estructura de proteína multimérica del punto 5, en la que dicha actividad α-galactosidasa de dicha estructura de proteína multimérica que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día, continua adicionalmente sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante una semana.
- 7. La estructura de proteína multimérica de cualquiera de los puntos 5 y 6, en la que dicha semivida en circulación de la estructura de proteína multimérica que es mayor que una semivida en circulación de dicha α-galactosidasa nativa es mayor en al menos un 20 % que dicha semivida en circulación de dicha α-galactosidasa nativa.
- 8. La estructura de proteína multimérica del punto 7, en el que dicha semivida en circulación de la estructura de proteína multimérica que es mayor que una semivida en circulación de dicha α-galactosidasa nativa es mayor en al menos un 50 % que dicha semivida en circulación de dicha α-galactosidasa nativa.
 - 9. La estructura de proteína multimérica de cualquiera de los puntos 1 a 8, caracterizada por una actividad α-galactosidasa en un órgano después de la administración de dicha estructura de proteína multimérica a un vertebrado, seleccionándose dicho órgano del grupo que consiste en bazo, corazón y riñón.
 - 10. La estructura de proteína multimérica de cualquiera de los puntos 1 a 9, que comprende dos monómeros de α-galactosidasa, siendo la estructura de la proteína una estructura de proteína dimérica.
- 60 11. La estructura de proteína multimérica de cualquiera de los puntos 1 a 10, en la que dicha α-galactosidasa es una α-galactosidasa humana.
 - 12. La estructura de proteína multimérica de cualquiera de los puntos 1 a 11, en la que dicha α-galactosidasa es una α-galactosidasa recombinante vegetal.

65

5

10

15

20

25

30

35

40

45

- 13. La estructura de proteína multimérica de cualquiera de los puntos 1 a 12, en la que dicha α -galactosidasa tiene una secuencia de aminoácidos seleccionada del grupo que consiste en SEQ ID NO: 1, SEQ ID NO: 2 y SEQ ID NO: 3.
- 5 14. La estructura de proteína multimérica de cualquiera de los puntos 1 a 12, en la que dicha α-galactosidasa es una α-galactosidasa alcalina.
 - 15. La estructura de proteína multimérica de cualquiera de los puntos 1 a 12, en la que dicha α-galactosidasa es una α-galactosidasa ácida.
 - 16. La estructura de proteína multimérica de cualquiera de los puntos 1 a 15, en la que dicho radical de unión comprende un poli(alquilenglicol).
- 17. La estructura de proteína multimérica del punto 16, en el que dicho poli(alquilenglicol) comprende al menos dos grupos funcionales, formando cada grupo funcional un enlace covalente con uno de los monómeros de αgalactosidasa.
 - 18. La estructura de proteína multimérica del punto 17, en el que dichos al menos dos grupos funcionales son grupos terminales de dicho poli(alquilenglicol).
 - 19. La estructura de proteína multimérica de cualquiera de los puntos 1 a 15, en el que dicho al menos un radical de unión tiene una fórmula general:

-X₁-(CR₁R₂-CR₃R₄-Y)_n-X₂-

en la que cada uno de X_1 y X_2 es un grupo funcional que forma un enlace covalente con al menos un monómero de α -galactosidasa;

Y es O, S o NR₅;

n es un número entero de 1 a 200; y

- cada uno de R₁, R₂, R₃, R₄ y R₅ se selecciona independientemente del grupo que consiste en hidrógeno, alquilo, cicloalquilo, alquenilo, alquinilo, alcoxi, hidroxi, oxo, tiol y tioalcoxi.
- 20. La estructura de proteína multimérica de cualquiera de los puntos 17 a 19, en la que al menos uno de dichos grupos funcionales forma un enlace amida con un monómero de α-galactosidasa.
- 21. La estructura de proteína multimérica del punto 19, en la que n es un número entero de 5 a 150.
- 22. La estructura de proteína multimérica del punto 19, en el que n es un número entero de 40 a 70.
- 40 23. Una composición farmacéutica que comprende la estructura de proteína multimérica de cualquiera de 1 a 22 y un transportador farmacéuticamente aceptable.
 - 24. La composición farmacéutica del punto 23, que adicionalmente comprende una galactosa.
- 45 25. La estructura de proteína multimérica de cualquiera de los puntos 1 a 22, para su uso como un medicamento.
 - 26. La estructura de proteína multimérica del punto 25, en el que dicho medicamento es para el tratamiento de la enfermedad de Fabry.
- 50 27. La estructura de proteína multimérica de cualquiera de los puntos 1 a 22, para uso en el tratamiento de la enfermedad de Fabry.
 - 28. Un método de tratamiento de la enfermedad de Fabry, comprendiendo el método administrar a un sujeto que lo necesite una cantidad terapéuticamente eficaz de la estructura de proteína multimérica de cualquiera de los puntos 1 a 22. tratándose de esta manera la enfermedad de Fabry.
 - 29. Un proceso de preparación de la estructura de proteína multimérica de cualquiera de los puntos 1 a 22, comprendiendo el proceso hacer reaccionar la α-galactosidasa con un agente de reticulación que comprende dicho radical de unión y al menos dos grupos reactivos.
 - 30. El proceso del punto 29, que comprende hacer reaccionar la α -galactosidasa dimérica con dicho agente de reticulación.
- 31. El proceso de cualquiera de los puntos 29 a 30, en el que dichos grupos reactivos comprenden un grupo saliente.

46

10

20

25

30

35

55

- 32. El proceso de cualquiera de los puntos 29 a 31, en el que dicho grupo reactivo reacciona con un grupo amina para formar un enlace amida.
- 33. El proceso de cualquiera de los puntos 29 a 32, en el que cada uno de dichos grupos reactivos es capaz de formar un enlace covalente entre dicho radical de unión y al menos un monómero de α-galactosidasa.
 - 34. El proceso de cualquiera de los puntos 29 a 33, en el que la proporción molar de dicho agente de reticulación con respecto a los monómeros de dicha α-galactosidasa está en un intervalo de 5:1 a 500:1.
- 10 35. El proceso del punto 34, en el que dicha proporción molar está en un intervalo de 75:1 a 300:1.

LISTADO DE SECUENCIAS

<110> Protalix Ltd. Shulman, Avidor Ruderfer, Ilya Ben-Moshe, Tehila Shekhter, Talia Azulay, Yaniv Shaaltiel, Yoseph Kizhner, Tali

<120> ALFA-GALACTOSIDASA ESTABILIZADA Y USOS DE LA MISMA

<130> W3080 EP/1

20

25

<150> US 61/309.487 <151> 02-03-2010

<150> US 61/434.499 <151> 20-01-2011

<150> PCT/IL2010/000956

<151> 17-11-2010

30 <150> US 61/434.503

<151> 20-01-2011

<160> 14

35 <170> Patent In versión 3.5

<210> 1

<211> 405

<212> PRT

40 <213> Secuencia artificial

<220>

<223> Alfa-GAL humana recombinante vegetal (prh-alfa-GAL)

45 <400> 1

Glu	Phe	Leu	Asp	Asn	Gly	Leu	Ala	Arg	Thr	Pro	Thr	Met	Gly	Trp	Leu
1				5					10					15	

- His Trp Glu Arg Phe Met Cys Asn Leu Asp Cys Gln Glu Glu Pro Asp 20 25 30
- Ser Glu Gly Trp Lys Asp Ala Gly Tyr Glu Tyr Leu Cys Ile Asp Asp 50 55 60
- Cys Trp Met Ala Pro Gln Arg Asp Ser Glu Gly Arg Leu Gln Ala Asp 65 70 75 80
- Pro Gln Arg Phe Pro His Gly Ile Arg Gln Leu Ala Asn Tyr Val His 85 90 95

Ser	· Lys	Gly	Leu 100	Lys	Leu	Gly	Ile	Tyr 105	Ala	Asp	Val	Gly	Asn 110	Lys	Thr
Cya	Ala	Gly 115	Phe	Pro	Gly	Ser	Phe 120	Gly	Tyr	Tyr	Asp	Ile 125	Asp	Ala	Gln
Thr	Phe 130	Ala	Asp	Trp	Gly	Val 135	Asp	Leu	Leu	Lys	Phe 140	Asp	Gly	Cys	Tyr
Cys 145	Asp	Ser	Leu	Glu	Asn 150	Leu	Ala	Asp	Gly	Tyr 155	Lys	His	Met	Ser	Leu 160
Ala	Leu	Asn	Arg	Thr 165	Gly	Arg	Ser	Ile	Val 170	Tyr	Ser	Cys	Glu	Trp 175	Pro
Lev	Tyr	Met	Trp 180	Pro	Phe	Gln	Lys	Pro 185	Asn	Tyr	Thr	Glu	11e 190	Arg	Gln
Туг	Cys	Asn 195	His	Trp	Arg	Aşn	Phe 200	Ala	Asp	Ile	Asp	Asp 205	Ser	Trp	Lys
Ser	11e 210	Lys	Ser	Ile	Leu	Asp 215	Trp	Thr	Ser	Phe	As n 220	Gln	Glu	Arg	Ile
Val 225	Asp	Val	Ala	Gly	Pro 230	Gly	Gly	Trp	Asn	Asp 235	Pro	Asp	Met	Leu	Val 240
Ile	: Gly	Asn	Phe	Gly 245	Leu	Ser	Trp	Asn	Gln 250	Gln	Val	Thr	Gln	Met 255	Ala
Leu	Trp	Ala	11e 260	Met	Ala	Ala	Pro	Leu 265	Phe	Met	Ser	Asn	Asp 270	Leu	Arg
His	Ile	Ser 275	Pro	Gln	Ala	Lys	Ala 280	Leu	Leu	Gln	Asp	Lys 285	Asp	Val	Ile
Ala	11e 290	Asn	Gln	Asp	Pro	Leu 295	Gly	Lys	Gln	Gly	Tyr 300	Gln	Leu	Arg	Gln
Gly 305	Asp	Asn	Phe	Glu	Val 310	Trp	Glu	Arg	Pro	Leu 315	Ser	Gly	Leu	Ala	Trp 320
Ala	. Val	Ala	Met	11e 325	Asn	Arg	Gln	Gl u	11e 330	Gly	Gly	Pro	Arg	Ser 335	Tyr
Thr	Ile	Ala	Val	Ala	Ser	Leu	Glv	Lvs	Glv	Val	Ala	Cvs	Asn	Pro	Ala

					340					345					350		
		Cys	Phe	Ile 355	Thr	Gln	Leu	Leu	Pro 360	Val	Lys	Arg	Lys	Leu 365	Gly	Phe	Tyr
		Glu	Trp 370	Thr	Ser	Arg	Leu	Arg 375	Ser	His	Ile	Asn	Pro 380	Thr	Gly	Thr	Val
		Leu 385	Leu	Gln	Leu	Glu	As n 390	Thr	Met	Gln	Met	Ser 395	Leu	Lys	Asp	Leu	Ser 400
		Glu	Lys	Asp	Glu	Leu 405											
5	<210><211><212><212><213>	404 PRT	ncia a	rtificial													
	<220> <223>		AL hui	mana	recom	binant	te veg	etal (p	rh-alfa	-GAL))						
10	<400>	2															

Leu 1	Asp	Asn	Gly	Leu 5	Ala	Arg	Thr	Pro	Thr 10	Met	Gly	Trp	Leu	His 15	Trp
Glu	Arg	Phe	Met 20	Сув	Asn	Leu	Asp	Cys 25	Gln	Glu	Glu	Pro	Asp 30	Ser	Cys
Ile	Ser	Glu 35	Lys	Leu	Phe	Met	Glu 40	Met	Ala	Glu	Leu	Met 45	Val	Ser	Glu
Gly	Trp 50	Lys	Asp	Ala	Gly	Tyr 55	Glu	Tyr	Leu	Cys	Ile 60	Asp	Asp	Cys	Trp
Met 65	Ala	Pro	Gln	Arg	Asp 70	Ser	Glu	Gly	Arg	Leu 75	Gln	Ala	Asp	Pro	Gln 80
Arg	Phe	Pro	His	Gly 85	Ile	Arg	Gl n	Leu	Ala 90	Asn	Tyr	Val	His	Ser 95	Lys
Gly	Leu	Lys	Leu 100	Gly	Ile	Tyr	Ala	Asp 105	Val	Gly	Asn	Lys	Thr 110	Cys	Ala
Gly	Phe	Pro 115	Gly	Ser	Phe	Gly	Tyr 120	Tyr	Asp	Ile	Asp	Ala 125	Gln	Thr	Phe
Ala	Asp 130	Trp	Gly	Val	Asp	Leu 135	Leu	Lys	Phe	Asp	Gly 140	Cys	Tyr	Cys	Asp

Ser 145	Leu	Glu	Asn	Leu	Ala 150	Asp	Gly	Tyr	Lys	His 155	Met	Ser	Leu	Ala	Le u 160
Asn	Arg	Thr	Gly	Arg 165	Ser	Ile	Val	Tyr	Ser 170	Сув	Glu	Trp	Pro	Leu 175	Tyr
Met	Trp	Pro	Phe 180	Gln	Lys	Pro	Asn	Tyr 185	Thr	Glu	Ile	Arg	Gln 190	Tyr	Cys
Asn	His	Trp 195	Arg	Asn	Phe	Ala	Asp 200	Ile	Asp	Asp	Ser	Trp 205	Lys	Ser	Ile
Lys	Ser 210	Ile	Leu	Asp	Trp	Thr 215	Ser	Phe	Asn	Gln	Glu 220	Arg	Ile	Val	Asp
Val 225	Ala	Gly	Pro	Gly	Gly 230	Trp	Asn	Asp	Pro	Asp 235	Met	Leu	Val	Ile	Gly 240
Asn	Phe	Gly	Leu	Ser 245	Trp	Asn	Gln	Gln	Val 250	Thr	Gln	Met	Ala	Leu 255	Trp
Ala	Ile	Met	Ala 260	Ala	Pro	Leu	Phe	Met 265	Ser	Asn	Asp	Leu	Arg 270	His	Ile
Ser	Pro	Gln 275	Ala	Lys	Ala	Leu	Leu 280	Gln	Asp	Lys	Asp	Val 285	Ile	Ala	Ile
Asn	Gln 290	Asp	Pro	Leu	Gly	Lys 295	Gln	Gly	Tyr	Gln	Leu 300	Arg	Gln	Gly	Asp
Asn 305	Phę	Glu	Val	Trp	Glu 310	Arg	Pro	Leu	Ser	Gly 315	Leu	Ala	Trp	Ala	Val 320
Ala	Met	Ile	Asn	Arg 325	Gln	Glu	Ile	Gly	Gly 330	Pro	Arg	Ser	Tyr	Thr 335	Ile
Ala	Val	Ala	Ser 340	Leu	Gly	Lys	Gly	Val 3 4 5	Ala	Сув	Asn	Pro	Ala 350	Cys	Phe
Ile	Thr	Gln 355	Leu	Leu	Pro	Val	Lys 360	Arg	Lys	Leu	Gly	Phe 365	Tyr	Glu	Trp
Thr	Ser 370	Arg	Leu	Arg	Ser	His 375	Ile	Aşn	Pro	Thr	Gly 380	Thr	Val	Leu	Leu
Gle	T.011	Gl 11	Den	ምb e	Mot	Gln	Mot	Sar	T.A11	T.320	Men	T.A11	T.An	Ser	Glu

	385						3	390				3	395				400
	Lys	Asp G	lu Lec	ı													
5	<210> 3 <211> 40 <212> P <213> S	RT	cia art	ificial													
	<220> <223> A	lfa-GA	L hum	nana re	ecomb	inante	vege	tal (prl	n-alfa-	GAL)							
10	<400> 3						J	\ '		,							
		Gly 1	Leu	Asp	Asn	Gly 5	Leu	Ala	Arg	Thr	Pro 10	Thr	Met	Gly	Trp	Leu 15	His
		Trp	Glu	Arg	Phe 20	Met	Cys	Asn	Leu	Asp 25	Cys	Gln	Glu	Glu	Pro 30	Asp	Ser
		Cys	Ile	Ser 35	Glu	Lys	Leu	Phe	Met 40	Glu	Met	Ala	Glu	Leu 45	Met	Val	Ser
		Glu	Gly 50	Trp	Lys	Asp	Ala	Gly 55	Tyr	Glu	Tyr	Leu	Cys 60	Ile	Asp	Asp	Cys
		Trp 65	Met	Ala	Pro	Gln	Arg 70	Asp	Ser	Glu	Gly	Arg 75	Leu	Gln	Ala	Asp	Pro 80
		Gln	Arg	Phe	Pro	His 85	Gly	Ile	Arg	Gln	Leu 90	Ala	Asn	Tyr	Val	His 95	Ser
		Lys	Gly	Leu	Lys 100	Leu	Gly	Ile	Tyr	Ala 105	Asp	Val	Gly	Asn	Lys 110	Thr	Cys
		Ala	Gly	Phe 115	Pro	Gly	Ser	Phe	Gly 120	Tyr	Туг	Asp	Ile	Asp 125	Ala	Gln	Thr
		Phe	Ala 130	Asp	Trp	Gly	Val	Asp 135	Leu	Leu	Lys	Phe	Asp 140	Gly	Суз	Tyr	Cys
		Asp 145	Ser	Leu	Glu	Asn	L eu 150	Ala	Asp	Gly	Tyr	Lys 155	His	Met	Ser	Leu	Ala 160
		Leu	Asn	Arg	Thr	Gly 165	Arg	Ser	Ile	Val	Tyr 170	Ser	Cys	Glu	Trp	Pro 175	Leu
		Tyr	Met	Trp	Pro 180	Phe	G l n	Lys	Pro	Asn 185	Tyr	Thr	Glu	Ile	Arg 190	Gl n	Tyr

Сув	Asn	His 195	Trp	Arg	Asn	Phe	Ala 200	Asp	Ile	Asp	Asp	Ser 205	Trp	Lys	Ser
Ile	Lys 210	Ser	Ile	Leu	Asp	Trp 215	Thr	Ser	Phe	Asn	Gln 220	Glu	Arg	Ile	Val
Asp 225	Val	Ala	Gly	Pro	Gly 230	Gly	Trp	Asn	Asp	Pro 235	Asp	Met	Leu	Val	11e 240
Gly	Asn	Ph∉	Gly	Leu 245	Ser	Trp	Asn	Gln	Gln 250	Val	Thr	Gln	Met	Ala 255	Leu
Trp	Ala	Ile	Met 260	Ala	Ala	Pro	Leu	Phe 265	Met	Ser	Asn	Asp	Leu 270	Arg	His
Ile	Ser	Pro 275	Gl n	Ala	Lys	Ala	Leu 280	Leu	Gln	Asp	Lys	Asp 285	Val	Ile	Ala
Ile	Asn 290	Gln	Asp	Pro	Leu	Gly 295	Lys	Gln	Gly	Tyr	Gln 300	Leu	Arg	Gln	Gly
Asp 305	Asn	Phe	Glu	Val	Trp 310	Glu	Arg	Pro	Leu	Ser 315	Gly	Leu	Ala	Trp	Ala 320
Val	Ala	Met	Ile	Asn 325	Arg	Gln	Glu	Ile	Gly 330	Gly	Pro	Arg	Ser	Tyr 335	Thr
			340					345	Val				350		
Phe	Ile	Thr 355	Gln	Leu	Leu	Pro	Val 360	Lys	Arg	Lys	Leu	Gly 365	Phe	Tyr	Glu
Trp	Thr 370	Ser	Arg	Leu	Arg	Ser 375	His	Ile	Asn	Pro	Thr 380	Gly	Thr	Val	Lev
Leu 385	Gln	Leu	Glu	Asn	Thr 390	Met	Gln	Met	Ser	Leu 395	Lys	Asp	Leu	Leu	Ser 400
Glu	Lys	Asp	Glu	Leu 405											

<210> 4 <211> 753 5 <212> PRT <213> Cucumis melo

<400> 4

net 1	THE	vai	GIY	5	GIY	116	THE	ше	10	ASP	Ala	ASII	Leu	15	Val
Leu	Gly	Asn	Arg 20	Val	Leu	Ser	Asp	Val 25	His	Asn	Asn	Ile	Thr 30	Leu	Thr
Ala	Ala	Pro 35	Gly	Gly	Gly	Val	Met 40	Asn	Gly	Ala	Phe	Ile 45	Gly	Val	Gln
Ser	Asp 50	Gln	Ile	Gly	Ser	Arg 55	Arg	Val	Phe	Pro	Ile 60	Gly	Lys	Leu	Ile
Gly 65	Leu	Arg	Phe	Leu	С у в 70	Ala	Phe	Arg	Phe	Lys 75	Leu	Trp	Trp	Met	Thr 80
Gln	Arg	Met.	Gly	Суs 85	Ser	Gly	Gln	Glu	Val 90	Pro	Phe	Glu	Thr	Gln 95	Phe
Leu	Val	Val	Glu 100	Thr	Arg	Asp	Gly	Ser 105	Asn	Ile	Ala	Gly	Asn 110	Gly	Glu
Glu	Gly	Asp 115	Ala	Val	Tyr	Thr	Val 120	Phe	Leu	Pro	Ile	Leu 125	Glu	Gly	Asp
Phe	Arg 130	Ala	Val	Leu	Gln	Gly 135	Asn	Asp	Asn	Asn	Glu 140	Ile	Glu	Ile	Cys
Leu 145	Glu	Ser	Gly	Asp	Pro 150	Ser	Val	Asp	Gly	Phe 155	Glu	Gly	Ser	His	Leu 160
Val	Phe	Val	Gly	Ala 165	Gly	Ser	Asp	Pro	Phe 170	Glu	Thr	Ile	Thr	Tyr 175	Ala
Val	Lys	Ser	Val 180	Gl u	Lys	His	Leu	Gln 185	Thr	Phe	Ala	His	Arg 190	Glu	Arg
Lys	Lys	Met 195	Pro	Asp	Ile	Leu	Asn 200	Trp	Phe	Gly	Trp	Cys 205	Thr	Trp	Asp
Ala	Phe 210	Tyr	Thr	Asp	Val	Thr 215	Ser	Asp	Gly	Val	Lys 220	Lys	Gly	Leu	Glu
Ser 225	Phe	Glu	Asn	Gly	Gly 230	Ile	Pro	Pro	Lys	Phe 235	Val	Ile	Ile	Asp	Asp 240
C1**	T-v-v-	Cl n	202	17a 1	21-	Tara	T. com	21-	Th.	200	7 1 a	N am	Crra	Tare	7 l a

				245					250					255	
Asp	Asn	Thr	Ala 260	Asn	Phe	Ala	Asn	Arg 265	Leu	Thr	His	Ile	Lys 270	Gl u	Asn
Tyr	Lys	Phe 275	Gln	Lys	Asp	Gly	Lys 280	Glu	Gly	Glu	Arg	11e 285	Glu	Aşn	Pro
Ala	Leu 290	Gly	Leu	Gln	His	Ile 295	Val	Ser	Tyr	Met	Lys 300	Glu	Lys	His	Ala
Thr 305	Lys	Tyr	Val	Tyr	Val 310	Trp	His	Ala	Ile	Thr 315	Gly	Tyr	Trp	Gly	Gly 320
Val	Ser	Ala	G1y	Val 325	Lys	G1u	Met	Glu	G1n 330	Tyr	Glu	Ser	Lys	Ile 335	Ala
Tyr	Pro	Val	Ala 340	Ser	Pro	Gly	Val	Glu 345	Ser	Asn	Glu	Pro	Cys 350	Asp	Ala
Leu	Asn	Ser 355	Ile	Thr	Lys	Thr	Gly 360	Leu	Gly	Leu	Val	Asn 365	Pro	Gl u	Lys
Val	Phe 370	Asn	Phe	Tyr	Asn	Glu 375	Gln	His	Ser	Tyr	Leu 380	Ala	Ser	Ala	Gly
Val 385	Asp	Gly	Val	Lys	Val 390	Asp	Val	Gln	Aşn	11e 395	Leu	Glu	Thr	Leu	Gly 400
Ala	Gly	His	Gly	Gly 405	Arg	Val	Lys	Leu	Ala 410	Arg	Lys	Tyr	His	Gln 415	Ala
Leu	Glu	Ala	Ser 420	Ile	Ser	Arg	Asn	Phe 425	Gln	Asp	Asn	Gly	Ile 430	Ile	Ser
Суз	Met	Ser 435	His	Asn	Thr	Asp	Gly 440	Leu	Tyr	Ser	Ser	Lys 445	Arg	Asn	Ala
Val	Ile 450	Arg	Ala	Ser	Asp	Asp 455	Phe	Trp	Pro	Arg	Asp 460	Pro	Ala	Ser	His
Thr 465	Ile	His	Ile	Ala	Ser 470	Val	Ala	Tyr	Aşn	Ser 475	Leu	Phe	Leu	Gly	Glu 480
Phe	Met	Gln	Pro	Asp	Trp	Asp	Met	Phe	His	Ser	Leu	His	Pro	Met	Ala

Glu	Tyr	His	Gly 500	Ala	Ala	Arg	Ala	Val 505	Gly	Gly	Cys	Ala	Ile 510	Tyr	Val
Ser	Asp	Lys 515	Pro	Gly	Gln	His	Asp 520	Phe	Asn	Leu	Leu	Lys 525	Lys	Leu	Val
Leu	Pro 530	Asp	Gly	Ser	Ile	Leu 535	Arg	Ala	Lys	Leu	Pro 540	Gly	Arg	Pro	Thr
Lys 545	Asp	Cys	Leu	Phe	Thr 550	Asp	Pro	Ala	Arg	Asp 555	Gly	Lys	Ser	Leu	Leu 560
Lys	Ile	Trp	Asn	Leu 565	Asn	Asp	Leu	Ser	Gly 570	Val	Val	Gly	Val	Phe 575	Asn
Cys	Gln	Gly	Ala 580	Gly	Trp	Cys	Lys	Val 585	Gly	Lys	Lys	Asn	Leu 590	Ile	His
Asp	Glu	Asn 595	Pro	Asp	Thr	Ile	Thr 600	Gly	Val	Ile	Arg	Ala 605	Lys	Asp	Val
Ser	T yr 610	Leu	Trp	Lys	Ile	Ala 615	Gly	Glu	Ser	Trp	Thr 620	Gly	Asp	Ala	Val
I1e 625	Phe	Ser	His	Leu	Ala 630	Gly	Glu	Val	Val	Tyr 635	Leu	Pro	Gln	Asp	Ala 640
Ser	Met	Pro	Ile	Thr 645	Leu	Lys	Pro	Arg	Glu 650	Phe	Asp	Val	Phe	Thr 655	Val
Val	Pro	Val	Lys 660	Glu	Leu	Val	Asn	Asp 665		Lys		Ala	Pro 670	Ile	Gly
Leu	Ile	Lys 675	Met	Phe	Asn	Ser	Gly 680	Gly	Ala	Val	Lys	Gl u 685	Met	Asn	His
Gln	Pro 690	Gly	Ser	Ser	Aşn	Val 695	Ser	Leu	Lys	Val	Arg 700	Gly	Ser	Gly	Pro
Phe 705	Gly	Ala	Tyr	Ser	Ser 710	Ser	Lys	Pro	Lys	Arg 715	Val	Ala	Val	Asp	Ser 720
Glu	Gl u	Val	G l u	Phe 725	Met	Tyr	Asp	Glu	Gl y 730	Gly	Leu	Ile	Thr	Ile 735	Asp
Leu	Lys	Val	Pro	Glu	Lys	Glu	Leu	Tyr 745	Leu	Trp	Asp	Ile	Arg	Ile	Glu

Leu

	<210> 5
	<211> 772
5	<212> PRT
	<213> Cucumis melo

<400> 5

Met 1	Thr	Val	Thr	Pro 5	Lys	Ile	Ser	Val	Asn 10	Asp	Gly	Asn	Leu	Val 15	Val
His	Gly	Lys	Thr 20	Ile	Leu	Thr	Gly	Val 25	Pro	Asp	Asn	Ile	Val 30	Leu	Thr
Pro	Gly	Ser 35	Gly	Leu	Gly	Leu	Val 40	Ala	Gly	Ala	Phe	Ile 45	Gly	Ala	Thr
Ala	Ser 50	Asn	Ser	Lys	Ser	Leu 55	His	Val	Phe	Pro	Val 60	Gly	Val	Leu	Glu
Gly 65	Thr	Arg	Phe	Leu	Cys 70	Cys	Phe	Arg	Phe	Lys 75	Leu	Trp	Trp	Met	Thr 80
Gln	Arg	Met	Gly	Thr 85	Ser	Gly	Arg	Asp	Ile 90	Pro	Phe	Glu	Thr	G1n 95	Phe
Leu	Leu	Met	Glu 100	Ser	Lys	Gly	Aşn	Asp 105	Gly	Glu	Asp	Pro	Asp 110	Asn	Ser
Ser	Thr	Ile 115	Tyr	Thr	Val	Phe	Leu 120	Pro	Leu	Leu	Glu	Gly 125	Gln	Phe	Arg
Ala	Ala 130	Leu	Gln	Gly	Asn	G1u 135	Lys	Asn	Glu	Met	Glu 140	Ile	C ys	Leu	Glu
Ser 145	Gly	Asp	Asn	Thr	Val 150	Glu	Thr	Asn	Gln	Gly 155	Leu	Ser	Leu	Val	Tyr 160
Met	His	Ala	Gly	Thr 165	Asn	Pro	Phe	Glu	Val 170	Ile	Thr	Gln	Ala	Val 175	Lys

Leu Pro Ser Phe Leu Asp Trp Phe Gly Trp Cys Thr Trp Asp Ala Phe 195 200 205

180

Ala Val Glu Lys His Thr Gln Thr Phe Leu His Arg Glu Lys Lys

Tyr	Thr 210	Asp	Val	Thr	Ala	Glu 215	Gly	Val	Val	Glu	Gly 220	Leu	Lys	Ser	Leu
Ser 225	Glu	Gly	Gly	Ala	Pro 230	Pro	Lys	Phe	Leu	11e 235	Ile	Asp	Asp	Gly	Trp 240
Gln	Gln	Ile	Glu	Ala 245	Lys	Pro	Lys	Asp	Ala 250	Asp	Cys	Val	Val	Gln 255	Glu
Gly	Ala	Gln	Phe 260	Ala	Ser	Arg	Leu	Ser 265	Gly	Ile	Lys	Glu	Asn 270	His	Lys
Phe	Gln	Lys 275	Aşn	Gly	Aşn	Asn	Tyr 280	Asp	Gln	Val	Pro	Gly 285	Leu	Lys	Val
Val	Val 290	Asp	Asp	Ala	Lys	Lys 295	Gln	His	Lys	Val	Lys 300	Phe	Val	Tyr	Ala
Trp 305	His	Ala	Leu	Ala	Gly 310	Tyr	Trp	Gly	Gly	Val 315	Lys	Pro	Ala	Ser	Pro 320
Gly	Met	Glu	His	Tyr 325	Asp	Ser	Ala	Leu	A la 330	Tyr	Pro	Val	Gln	Ser 335	Pro
Gly	Met	Leu	Gly 340	Asn	Gln	Pro	Asp	Ile 345	Val	Val	Asp	Ser	Leu 350	Ala	Val
His	Gly	Ile 355	Gly	Leu	Val	His	Pro 360	Lys	Lys	Val	Phe	Asn 365	Phe	Tyr	Asn
Glu	Leu 370	His	Ser	Tyr	Leu	Ala 375	Ser	Cys	Gly	Ile	Asp 380	Gly	Val	Lys	Val
As p 385	Val	Gln	Asn	Ile	Ile 390	Glu	Thr	Leu	Gly	Ala 395	Gly	His	G1y	Gly	Arg 400
Val	Thr	Leu	Thr	A rg 4 05	Ser	Tyr	His	Gln	Ala 410	Leu	Glu	Ala	Ser	Ile 415	Ala
Arg) Nan	Phe	Ser	Asp	Asn	Gly	Cys	Ile 425	Ala	Суз	Met	Cys	His 430	Asn	Thr
	non		420												
Asp	Ser		-	Ser	Ala	Lys	Gln 440		Ala	Val	Val	Arg 445		Ser	Asp

Val 465	Ala	Tyr	Aşn	Ser	Leu 470	Phę	Leu	Gly	Glu	Phe 475	Met	Gln	Pro	Asp	Trp 480
Asp	Met	Phe	His	Ser 485	Leu	His	Pro	Thr	Ala 490	Glu	Туг	His	Gly	Ala 495	Ala
Arg	Ala	Ile	Gly 500	Gly	Cys	Ala	Ile	Tyr 505	Val	Ser	Asp	Lys	Pro 510	Gly	Asn
His	Asn	Phe 515	Asp	Leu	Leu	Lys	Lys 520	Leu	Val	Leu	Pro	Asp 525	Gly	Ser	Val
Leu	Arg 530	Ala	Gln	Leu	Pro	Gly 535	Arg	Pro	Thr	Arg	Asp 540	Ser	Leu	Phe	Asn
Asp 545	Pro	Ala	Arg	Asp	Gly 550	Thr	Ser	Leu	Leu	Lys 555	Ile	Trp	Asn	Met	Asn 560
Lys	Суз	Ser	Gly	Val 565	Val	Gly	Val	Phe	Asn 570	Cys	Gln	Gly	Ala	G1y 575	Trp
Cys	Arg	Ile	Thr 580	Lys	Lys	Thr	Arg	Ile 585	His	Asp	Glu	Ser	Pro 590	Gly	Thr
Leu	Thr	Thr 595	Ser	Val	Arg	Ala	A la 600	Asp	Val	Asp	Ala	11e 605	Ser	Gln	Val
Ala	Gly 610	Ala	Asp	Trp	Lys	Gly 615	Asp	Thr	Ile	Val	Tyr 620	Ala	Tyr	Arg	Ser
G1y 625	Asp	Leu	Ile		Leu 630		Lys	Gly		Ser 635		Pro	Val	Thr	Leu 640
Lys	Val	Leu	Glu	Tyr 645	Asp	Leu	Leu	His	11e 650	Ser	Pro	Leu	Lys	Asp 655	Ile
Ala	Ser	Asn	11 e 660	Ser	Phe	Ala	Pro	Ile 665	Gly	Leu	Leu	Asp	Me t 670	Phe	Asn
Thr	Gly	Gly 675	Ala	Val	Glu	Gln	Val 680	Asn	Val	Gln	Val	Val 685	Glu	Pro	Ile
Pro	Glu 690	Phe	Asp	Gly	Glu	Val 695	Ala	Ser	Glu	Leu	Thr 700	Cys	Ser	Leu	Pro
Aşn	Asp	Arg	Pro	Pro	Thr	Ala	Thr	Ile	Thr	Met	Lys	Ala	Arg	Gly	Cys

705 710 715 720

Asp Lys Val Asp Val Asp Phe Val Tyr Asp Glu Val Thr Gly Leu Val 740 745 750

Thr Phe Glu Ile Pro Ile Pro Thr Glu Glu Met Tyr Arg Trp Asn Ile 755 760 765

Glu Ile Gln Val 770

<210> 6 <211> 767

<212> PRT

5

<213> Tetragonia tetragonioides

<400>6

Met	Thr	Ile	Thr	Pro	Ser	Ile	Ser	Val	Ser	Asn	GLY	Asn	Leu	Val	Val
1				5					10					15	

- His Gly Lys Thr Ile Leu Thr Gly Val Pro Asp Asn Ile Ile Leu Thr 20 25 30
- Pro Gly Ser Gly Ala Gly Leu Ala Ala Gly Ala Phe Ile Gly Ala Thr 35 40 45
- Ala Asp Asp Ser Lys Cys Leu His Val Phe Pro Met Gly Thr Leu Glu 50 55 60
- Gly Leu Arg Phe Met Cys Cys Leu Arg Phe Lys Leu Trp Trp Met Thr 65 70 75 80
- Gln Arg Met Gly Lys Cys Gly Lys Asp Ile Pro Leu Glu Thr Gln Phe 85 90 95
- Met Ile Val Glu Ser Lys Asp Asp Thr Val Glu Gly Glu Pro Asp Asp 100 105 110
- Ser Pro Thr Ile Tyr Thr Val Phe Leu Pro Leu Leu Glu Gly Gln Phe 115 120 125
- Arg Ala Val Leu Gln Gly Thr Glu Lys Asn Glu Ile Glu Ile Cys Leu 130 135 140
- Glu Ser Gly Asp Thr Thr Val Gln Thr Ser Gln Gly Leu His Leu Val

145					150					155					160
Tyr	Met	His	Ala	Gly 165	Thr	Asn	Pro	Tyr	Glu 170	Val	Ile	Asn	Gln	Ala 175	Val
Lys	Ala	Val	Glu 180	Lys	His	Met	Gln	Thr 185	Phe	Arg	His	Arg	Glu 190	Lys	Lys
Arg	Leu	Pro 195	Ser	Phe	Val	Asp	Trp 200	Phe	Gly	Trp	Cys	Thr 205	Trp	Asp	Ala
Phe	Tyr 210	Thr	Asp	Val	Thr	Ala 215	Glu	Gly	Val	Asp	Glu 220	Gly	Leu	Arg	Ser
Leu 225	Ser	Glu	Gly	Gly	Thr 230	Pro	Pro	Arg	Phe	Leu 235	Ile	Ile	Asp	Asp	Gly 240
Trp	Gln	Gln	Ile	Gly 245	Asn	Glu	Ilę	Val	Lys 250	Asp	Glu	Aşn	Cys	Met 255	Val
Gln	Glu	Gly	Ala 260	Gln	Phe	Ala	Aşn	Arg 265	Leu	Thr	Gly	Ile	Lys 270	Glu	Aşn
Ala	Lys	Phe 275	Gln	Lys	Lys	Lys	As n 280	Gly	Glu	Asp	Lys	Asp 285	Gln	Val	Pro
Gly	Leu 290	Lys	His	Val	Val	Glu 295	Glu	Ala	Lys	Gln	Arg 300	His	Asn	Val	Lys
305					310				Gly	315					320
				325				-	Asp 330					335	
			340				_	345	Gln				350		
		355			Ī		360		Val			365	-		
	370					375		_	Leu		380				
G1y 385	val	гÀг	Val	Asp	Val 390	GIN	Asn	ITE	Ile	G1u 395	Thr	Leu	GLY	Ala	Gly 400

His	Gly	Gly	Arg	Val 405	Ser	Leu	Thr	Arg	Ala 410	Tyr	His	Gln	Ala	Leu 415	Glu
Ala	Ser	Ile	Ala 420	Arg	Asn	Phe	Pro	Asp 425	Asn	Gly	Cys	Ile	Ser 430	Cys	Met
Cys	His	Asn 435	Thr	Asp	Gly	Ile	Tyr 440	Ser	Thr	Lys	Gln	Thr 445	Ala	Val	Val
Arg	Ala 450	Ser	Asp	Asp	Phe	Tyr 455	Pro	Arg	Asp	Pro	Ala 460	Ser	His	Thr	Ile
His 465	Ile	Ser	Ser	Val	Ala 470	Tyr	Asn	Ser	Leu	Phe 475	Leu	Gly	Glu	Phe	Met 480
Gln	Pro	Asp	Trp	Asp 485	Met	Phe	His	Ser	Leu 490	His	Pro	Ala	Ala	Asp 495	Tyr
His	Ala	Ala	Ala 500	Arg	Ala	Val	Gly	Gly 505	Суз	Pro	Ile	Tyr	Val 510	Ser	Asp
Lys	Pro	Gly 515	Phe	His	Aşn	Phe	Glu 520	Leu	Leu	Lys	Lys	Leu 525	Val	Leu	Pro
Asp	Gly 530	Ser	Val	Leu	Arg	Ala 535	Arg	Leu	Pro	Gly	Arg 540	Pro	Thr	Arg	Asp
Cys 545	Leu	Phe	Asn	Asp	Pro 550	Ala	Arg	Asp	Gly	Thr 555	Ser	Leu	Leu	Lys	Ile 560
Trp	Asn	Lys	Asn	Asn 565		Ser	Gly	Val	Val 570		Val	Phe	Asn	C ys 575	Gln
Gly	Ala	Gly	Trp 580	Суз	Lys	Ile	Glu	Lys 585	Lys	Ile	Arg	Ile	His 590	Asp	Thr
Ser	Pro	Gly 595	Thr	Leu	Thr	Gly	Ser 600	Val	Arg	Ala	Thr	Asp 605	Val	Asp	Ser
Ile	Ala 610	Glu	Val	Ala	Gly	Gln 615	Gly	Trp	Asn	Gly	Asp 620	Val	Val	Val	Tyr
Leu 625	Tyr	Arg	Ala	Gly	Glu 630	Leu	Val	Суз	Leu	Pro 635	Lys	Gly	Ala	Ser	Leu 640
Pro	Val	Thr	Leu	Lys 645	Val	Arg	Glu	Tyr	Glu 650	Leu	Phe	His	Phe	Cys 655	Pro

Ile Lys Glu Ile Thr Ser Asn Ile Ser Phe Ala Pro Ile Gly Leu Leu 660 665 670

Asp Met Phe Asn Gly Ser Gly Ala Val Asp Gln Phe Asp Val Gln Leu 675 680 685

Thr Ser Glu Asn Arg Thr Glu Leu Ser Asp Gly Glu Lys Arg Ser Pro 690 695 700

Ser Ala Ser Ile Gln Leu Lys Val Arg Gly Cys Gly Arg Phe Gly Ala 705 710 715 720

Tyr Ser Ser Gln Cys Pro Leu Lys Cys Thr Val Gly Gly Ala Asp Ser 725 730 735

Gly Phe Asn Tyr Asp Glu Glu Thr Cys Leu Leu Thr Leu Thr Leu Pro 740 745 750

Val Pro Gln Glu Glu Met Tyr Arg Trp Pro Val Glu Ile Gln Val 755 760 765

<210> 7

<211> 772

<212> PRT

5

<213> Cucumis sativus

<400> 7

Met Thr Val Thr Pro Lys Ile Thr Val Asn Asp Gly Asn Leu Val Val 1 5 10 15

His Gly Lys Thr Ile Leu Thr Gly Val Pro Asp Asn Ile Val Leu Thr 20 25 30

Pro Gly Ser Gly Leu Gly Leu Val Ala Gly Ala Phe Ile Gly Ala Thr 35 40 45

Ala Ser Asn Ser Lys Ser Leu His Val Phe Pro Val Gly Val Leu Glu 50 55 60

Gly Thr Arg Phe Leu Cys Cys Phe Arg Phe Lys Leu Trp Trp Met Thr 65 70 75 80

Gln Arg Met Gly Thr Ser Gly Arg Asp Ile Pro Phe Glu Thr Gln Phe 85 90 95

Leu Leu Met Glu Ser Gln Gly Asn Asp Gly Glu Asp Pro Asp Asn Ser 100 105 110

Ser	Thr	Ile 115	Tyr	Thr	Val	Phe	Leu 120	Pro	Leu	Leu	Glu	Gly 125	Gln	Phę	Arg
Ala	A la 130	Leu	Gln	Gly	Asn	Glu 135	Lys	As n	Glu	Met	Glu 140	Ile	Сув	Leu	Glu
Ser 145	Gly	Asp	Asn	Thr	Val 150	Glu	Thr	Asn	Gln	Gly 155	Leu	Ser	Leu	Val	Туг 160
Met	His	Ala	Gly	Thr 165	Asn	Pro	Phe	Glu	Val 170	Ile	Thr	Gln	Ala	Val 175	Lys
Ala	Val	Glu	Lys 180	His	Thr	Gln	Thr	Phe 185	Leu	His	Arg	Glu	Lys 190	Lys	Lys
Leu	Pro	Ser 195	Phe	Leu	Asp	Trp	Phe 200	Gly	Trp	Cys	Thr	Trp 205	Asp	Ala	Phe
Tyr	Thr 210	Asp	Val	Thr	Ala	Glu 215	Gly	Val	Val	Glu	Gly 220	Leu	Gln	Ser	Leu
Ser 225	Asp	Gly	Gly	Ala	Pro 230	Pro	Lys	Phe	Leu	Ile 235	Ile	Asp	Asp	Gly	Trp 240
Gln	Gln	Ile	Glu	Ala 245	Lys	Pro	Lys	Asp	Ala 250	Asp	Сув	Val	Val	G1n 255	Glu
Gly	Ala	Gln	Phe 260	Ala	Ser	Arg	Leu	Ser 265	Gly	Ile	Lys	Glu	Asn 270	His	Lys
Phe	Gln	Lys 275	Asn	Gly	Asn	Asn	Tyr 280	Asp	Gln	Val	Pro	Gly 285	Leu	Lys	Val
Val	Val 290	Asp	Asp	Ala	Lys	Lys 295	Gln	His	Lys	Val	Lys 300	Phe	Val	Tyr	Ala
Trp 305	His	Ala	Leu	Ala	Gly 310	Tyr	Trp	Gly	Gly	Val 3 1 5	Lys	Pro	Ala	Ser	Pro 320
Gly	Met	Glu	His	Tyr 325	Asp	Ser	Ala	Leu	Ala 330	Tyr	Pro	Val	Gln	Ser 335	Pro
Gly	Met	Leu	Gly 3 4 0	Asn	Gln	Pro	Asp	Ile 345	Val	Val	Asp	Ser	Leu 350	Ala	Val
His	Gly	Ile 355	Gly	Leu	Val	His	Pro 360	Lys	Lys	Val	Phe	Asn 365	Phe	Tyr	Aşn

Glu	Leu 370	His	Ser	Tyr	Leu	Ala 375	Ser	Cys	Gly	Ile	Asp 380	Gly	Val	Lys	Val
Asp 385	Val	Gln	Asn	Ile	Ile 390	Glu	Thr	Leu	Gly	Ala 395	Gly	His	Gly	Gly	Arg 400
Val	Thr	Leu	Thr	Arg 405	Ser	Tyr	His	Gln	Ala 410	Leu	Glu	Ala	Ser	Ile 415	Ala
Arg	Asn	Phe	Ser 420	Asp	Asn	Gly	Cys	Ile 425	Ala	Суз	Met	Cys	His 430	Asn	Thr
Asp	Ser	Leu 435	Tyr	Ser	Ala	Lys	Gln 440	Thr	Ala	Val	Val	Arg 445	Ala	Ser	Asp
Asp	Tyr 450	Tyr	Pro	Arg	Asp	Pro 455	Ala	Ser	His	Thr	Ile 460	His	Ile	Ser	Ser
Val 465	Ala	Tyr	Asn	Ser	Leu 470	Phe	Leu	Gly	Glu	Phe 475	Met	Gln	Pro	Asp	Trp 480
Asp	Met	Phe	His	Ser 485	Leu	His	Pro	Thr	Al a 490	Glu	Tyr	His	Gly	Ala 495	Ala
Arg	Ala	Ile	Gly 500	Gly	Cys	Ala	Ile	Tyr 505	Val	Ser	Asp	Lys	Pro 510	Gly	Asn
His	Asn	Phe 515	Asp	Leu	Leu	Lys	Lys 520	Leu	Val	Leu	Pro	Asp 525	Gly	Ser	Val
Leu	A rg 530	Ala	Gln	Leu	Pro	Gly 535	Arg	Pro	Thr	Arg	Asp 540	Ser	Leu	Phe	Asn
Asp 545	Pro	Ala	Arg	Asp	Gly 550	Thr	Ser	Leu	Leu	Lys 555	Ile	Trp	Asn	Met	Asn 560
Lys	Cys	Ser	Gly	Val 565	Val	Gly	Val	Phe	Asn 570	Cys	Gln	Gly	Ala	Gly 575	Trp
Cys	Arg	Ile	Thr 580	Lys	Lys	Thr	Arg	Ile 585	His	Asp	Glu	Ser	Pro 590	Gly	Thr
Leu	Thr	T hr 595	Ser	Val	Arg	Ala	Ala 600	Asp	Val	Asp	Ala	Ile 605	Ser	Gln	Val
Ala	Gly	Ala	Asp	Trp	Lys	Gly	Asp	Thr	Ile	Val	Tyr	Ala	Tyr	Arg	Ser

	610					615					620				
Gly 625	Asp	Leu	Thr	Arg	Leu 630	Pro	Lys	Gly	Ala	Ser 635	Val	Pro	Val	Thr	Leu 640
Lys	Val	Leu	Glu	Tyr 6 4 5	Asp	Leu	Phe	His	Ile 650	Ser	Pro	Leu	Lys	Asp 655	Ile
Thr	Ser	Asn	Ile 660	Ser	Phe	Ala	Pro	Ile 665	Gly	Leu	Val	Asp	Met 670	Phe	Asn
Ile	Gly	Gly 675	Ala	Val	Glu	Gln	Val 680	Asp	Ile	Gln	Val	Val 685	Glu	Pro	Ile
Pro	G1u 690	Phe	Asp	Gly	Glu	Val 695	Ala	Ser	Glu	Leu	Thr 700	Суз	Ser	Leu	Pro
Asp 705	Asp	Arg	Pro	Pro	Thr 710	Ala	Thr	Ile	Thr	Met 715	Lys	Ala	Arg	Gly	C ys 720
Gly	Arg	Phe	Gly	Leu 725	Tyr	Ser	Ser	Gln	Arg 730	Pro	Leu	Lys	Сув	Ser 735	Val
Asp	Lys	Val	Gly 740	Thr	Asp	Phe	Val	Tyr 745	Asp	Asp	Val	Thr	Gly 750	Leu	Val
Thr	Phe	Glu 755	Ile	Pro	Ile	Pro	Thr 760	Glu	Glu	Met	Tyr	Arg 765	Trp	Asn	Ile
Glu	11e 770	Glu	Val												

<210> 8 <211> 211 5 <212> PRT <213> Zea mays

<400> 8

Pro 1	Phe	Glu	Val	Ile 5	Thr	Ser	Ser	Val	Lys 10	Ala	Val	Glu	Arg	His 15	Leu
Gln	Thr	Phe	Ser 20	His	Arg	Glu	Lys	Lys 25	Lys	Met	Pro	Asp	Ile 30	Leu	Asn
Trp	Phe	Gly 35	Trp	Cys	Thr	Trp	Asp 40	Ala	Phe	Tyr	Thr	Asn 45	Val	Thr	Ala
Gln	Gly	Val	Lys	Gln	Gly	Leu	Gln	Ser	Leu	Glu	Lys	Gly	Gly	Val	Ser
	50					55					60				
Pro 65	Arg	Phe	Val	Ile	Ile 70	Asp	Asp	Gly	Trp	Gln 75	Ser	Val	Ala	Met	Asp 80
Pro	Val	Gly	Ile	Ala 85	Cys	Leu	Ser	Asp	Asn 90	Ser	Ala	Asn	Phe	Ala 95	Asn
Arg	Leu	Thr	His 100	Ile	Arg	Glu	Asn	His 105	Lys	Phe	Gln	Lys	Asn 110	Gly	Arg
Glu	Gly	His 115	Arg	Glu	Asp	Asp	Pro 120	Ala	Lys	Gly	Leu	Ala 125	His	Val	Val
Asn	Glu 130	Ile	Lys	Gly	Lys	His 135	Gln	Leu	Lys	Tyr	Val 140	Tyr	Val	Trp	His
Ala 145	Ile	Thr	Gly	Tyr	Trp 150	Gly	Gly	Val	Arg	Pro 155	Gly	Ala	Ala	Gly	Met 160
Glu	His	Tyr	Gly	Ser 165	Lys	Met	Gln	Arg	Pro 170	Val	Pro	Ser	Pro	Gly 175	Val
Pro	Lys	Asn	Glu 180	Arg	Cys	Glu	Ala	Leu 185	Asp	Ser	Met	Thr	Ala 190	Asn	Gly
Leu	Gly	Leu 195	Val	Asn	Leu	Asp	Arg 200	Ala	Phe	Ser	Phe	Tyr 205	Asp	Glu	Leu
His	Ser 210	Tyr													

<210> 9 <211> 747 <212> PRT <213> Zea mays <400> 9

Met Thr Val Ala Ser Ser Val Arg Leu Ala Gly Gly Asn Leu Thr Val 1 5 10 15

Cys Gly Arg Thr Val Leu Ser Gly Val Pro Asp Ala Val Val Ala Thr 20 25 30

Ser Ala Ala Thr Glu Gly Ala Val Asp Gly Ile Phe Leu Gly Ala Asp 35 40 45

Phe Ala Glu Pro Ala Ala Arg His Val Val Ser Leu Gly Asp Leu Arg

		50					55					60				
	Asp 65	Val	Arg	Phe	Met	A la 70	Cys	Phe	Arg	Phe	Lys 75	Leu	Trp	Trp	Met	Ala 80
•	Gln	Arg	Met	Gly	Glu 85	Lys	Gly	Ser	Asp	Val 90	Pro	Arg	Glu	Thr	Gln 95	Phe
•	Leu	Leu	Val	Glu 100	Ser	Arg	Gly	Val	Gly 105	Asp	Glu	Asp	Ala	Ala 110	Tyr	Val
•	Val	Phe	Leu 115	Pro	Leu	Val	Glu	Gly 120	Ala	Phe	Arg	Ala	Ser 125	Ile	Gln	Gly
•	Gly	Ala 130	Gly	Asp	Ala	Leu	Glu 135	Leu	Cys	Val	Glu	Ser 140	Gly	Asp	Asp	Asp
	Thr 145	Arg	Ala	Ala	Ser	Phe 150	Glu	Arg	Ser	Leu	Phe 155	Val	Gly	Ala	Ala	Glu 160
•	Ser	Asp	Pro	Phe	Ala 165	Ala	Ile	Ser	Gly	Ala 170	Val	Ala	Ala	Ala	Lys 175	Ser
•	Ala	Leu	Arg	Thr 180	Phe	Arg	Val	Arg	Ala 185	Glu	Lys	Lys	Leu	Pro 190	Gly	Ile
•	Val	Asp	Tyr 195	Phe	Gly	Trp	Сув	Thr 200	Trp	Asp	Ala	Phe	Tyr 205	Gln	Asp	Val
•	Thr	Gln 210	Glu	Gly	Val	Glu	Ala 215	Gly	Leu	Arg	Ser	Leu 220	Ile	Ala	Gly	Gly
	Ala 225	Pro	Pro	Lys	Phe	Val 230	Ile	Ile	Asp	Asp	Gly 235	Trp	Gln	Ser	Val	Ala 240
•	Thr	Asp	Thr	Asn	Glu 245	Ser	Ala	Gly	Glu	Asp 250	Lys	Pro	Pro	Leu	Leu 255	Ser
	Arg	Leu	Thr	Gly 260	Ile	Lys	Glu	Asn	Ser 265	Lys	Phe	Gln	Asn	Ala 270	Asp	Asp
•	Pro	Ala	Ala 275	Gly	Ile	Lys	Thr	Val 280	Val	Arg	Leu	Ala	Lys 285	Glu	Glu	Tyr
•	Arg	Leu 290	Lys	Tyr	Val	Tyr	Val 295	Trp	His	Ala	Ile	Thr 300	Gly	Tyr	Trp	Gly

Gly 305	Val	Arg	Pro	Gly	Glu 310	Glu	His	Tyr	Arg	Ser 315	Ser	Met	Gln	Phe	Pro 320
Lys	Val	Ser	Pro	Gly 325	Val	Met	Glu	Asn	Glu 330	Pro	Gly	Met	Lys	Thr 335	Asp
Val	Leu	Thr	Val 340	Gln	Gly	Leu	Gly	Leu 345	Val	His	Pro	Arg	Ala 350	Val	Tyr
Arg	Phe	Tyr 355	Asp	Glu	Leu	His	Ala 360	Tyr	Leu	Ala	Ala	Ala 365	Gly	Val	Asp
Gly	Val 370	Lys	Val	Asp	Val	Gln 375	Cys	Ile	Leu	Glu	Thr 380	Leu	Gly	Ala	Gly
His 385	Gly	Gly	Arg	Val	Gln 390	Leu	Thr	Arg	Gln	Tyr 395	His	Gln	Ala	Leu	Asp 400
Ala	Ser	Val	Ala	Lys 405	Asn	Phe	Pro	Glu	Asn 410	Gly	Ile	Ile	Ala	Cys 415	Met
Ser	His	Asn	Thr 420	Asp	Ala	Leu	Tyr	Cys 425	Ser	Lys	Gln	Thr	Ala 430	Val	Val
Arg	Ala	Ser 435	Asp	Asp	Phe	Cys	Pro 440	Arg	Asp	Pro	Ala	Ser 445	His	Thr	Ile
His	Ile 450	Ala	Ser	Val	Ala	Tyr 455	Asn	Ser	Val	Phe	Leu 460	Gly	Glu	Phe	Met
Leu 465	Pro	Asp	_												
			Trp	Asp	Met 470	Phe	His	Ser	Leu	His 475	Gln	Ala	Gly	Asp	Tyr 480
His	Gly	Ser			470					475				Asp Ser 495	480
			Ala	Arg 485	470	Ile	Ser	Gly	Gly 490	475 Pro	Val	Tyr	Val	Ser	480 Asp
Ala	Pro	Gly	Ala Lys 500	Arg 485 His	470 Ala Asn	Ile Phe	Ser Glu	Gly Leu 505	Gly 490 Leu	475 Pro Lys	Val Lys	Tyr Ile	Val Val 510	Ser 495	480 Asp
Ala	Pro Gly	Gly Ser 515	Ala Lys 500	Arg 485 His	A1a Asn Arg	Ile Phe Ala	Ser Glu Arg 520	Gly Leu 505 Leu	Gly 490 Leu Pro	475 Pro Lys Gly	Val Lys Arg	Tyr Ile Pro 525	Val Val 510	Ser 495 Leu	Asp Pro

G]	Ly	Ala	Ala	Trp	Asn 565	Ser	Val	Glu	Lys	Lys 570	Asn	Thr	Phe	His	G1n 575	Thr
G]	Ly	Thr	Glu	Ala 580	Leu	Thr	Cys	Gly	Val 585	Lys	Gly	Gly	Asp	Val 590	His	Leu
13	Le	Ser	Glu 595	Ala	Ala	Thr	Asp	Thr 600	Glu	Trp	Asp	Gly	Asp 605	Cys	Ala	Met
T	ŗ	Arg 610	His	Ala	Asp	Gly	Asp 615	Leu	Val	Val	Leu	Pro 620	His	Asp	Ala	Ala
	eu 25	Pro	Val	Ser	Leu	Lys 630	Val	Leu	Glu	His	Asp 635	Ile	Leu	Thr	Val	Ser 640
Pı	co	Ile	Lys	Glu	Leu 645	Ala	Pro	Gly	Phe	Arg 650	Phe	Ala	Pro	Ile	Gly 655	Leu
Vē	a l	Asp	Met	Phe 660	Asn	Ser	Gly	Gly	Ala 665	Val	Glu	Gly	Leu	Thr 670	Tyr	His
Le	∍u	Leu	Gly 675	Gly	Asp	Gly	Ser	Thr 680	Leu	Gly	Ser	Glu	Ala 685	Val	Ala	Leu
A	La	Cys 690	Met	Glu	Val	Lys	Gly 695	Cys	Gly	Arg	Phe	Gly 700	Ala	Tyr	Ser	Ser
	a 1)5	Arg	Pro	Arg	Lys	Ser 710	Thr	Leu	Gly	Ser	Ala 715	Gln	Ile	Glu	Leu	Lys 720
T	ŗ	Asp	Ser	Ser	Ser 725	Gly	Leu	Leu	Ile	Leu 730	Gln	Leu	Asp	Ala	Met 735	Pro
Ly	78	Glu	Arg	Val 740	His	Lys	Ile	Val	Ile 745	Glu	Leu					
<210> 10 <211> 753 <212> PRT <213> Oryz		ativa														
<400> 10																
M ₀		Thr	Val	Gly	Ala 5	Gly	Val	Ala	Val	Gln 10	Asp	Gly	Gly	Leu	Val 15	Ala

73

Leu Gly Ala Thr Val Leu Thr Glu Val Arg Asp Asn Val Leu Leu Thr 20 25 30

5

Pro	Ala	Ala 35	Gly	Ala	Gly	Met	Thr 40	Ser	Gly	Thr	Phe	Val 45	Gly	Val	Arg
Ser	Ala 50	Thr	Ala	Gly	Ser	Arg 55	Ser	Val	Phe	Pro	Val 60	Gly	Lys	Leu	Arg
Gly 65	Leu	Arg	Phe	Ile	Cys 70	Thr	Phe	Arg	Phe	Lys 75	Met	Trp	Trp	Met	Thr 80
Gln	Arg	Met	Gly	Thr 85	Ser	Gly	Arg	Asp	Ile 90	Pro	Phe	Glu	Thr	Gln 95	Phe
Leu	Leu	Val	Glu 100	Ala	Ala	Asp	Ala	Asp 105	Gly	Ser	His	Leu	Ala 110	Gly	Asp
Gly	Ala	Ala 115	Ala	Val	Tyr	Thr	Val 120	Phe	Leu	Pro	Ile	Le u 125	Glu	Gly	Pro
Phe	Arg 130	Ala	Val	Leu	Gln	Gly 135	Asn	Ser	Asp	Asp	Glu 140	Leu	Glu	Ile	Cys
Leu 145	Glu	Ser	Gly	Asp	Pro 150	Ala	Val	Glu	Ser	Phe 155	Glu	Gly	Thr	His	Leu 160
Val	Phe	Val	Gly	Ala 165	Gly	Ser	Asp	Pro	Phe 170	Glu	Val	Ile	Thr	Asn 175	Ser
Val	Lys	Ala	Val 180	Glu	Arg	His	Leu	Gln 185	Thr	Phe	Thr	His	Arg 190	Glu	Lys
Lys	Lys	Met 195	Pro	Asp	Met	Leu	Asn 200	Trp	Phe	Gly	Trp	Cys 205	Thr	Trp	Asp
Ala	Phe 210	Tyr	Thr	Asp	Val	Thr 215	Ser	G1u	Gly	Val	Met 220	Glu	Gly	Leu	Gln
Ser 225	Leu	Gly	Lys	Gly	Gly 230	Thr	Gly	Pro	Lys	Phe 235	Val	Ile	Ile	Asp	Asp 240
Gly	Trp	Gln	Ser	Val 245	Ser	Met	Asp	Pro	Ala 250	Gly	Ile	Ala	Ser	Leu 255	Ala
Asp	Asn	Ser	Ala 260	Aşn	Phe	Ala	Aşn	Arg 265	Leu	Thr	His	Ile	Lys 270	Glu	Asn
His	Lys	Phe 275	Gln	Leu	Asn	Gly	Arg 280	Lys	Gly	His	Arg	G1u 285	Glu	Asn	Pro

Ala	As n 290	Gly	Leu	Ala	His	Ile 295	Val	Asn	Glu	Ile	Lys 300	Gly	Lys	His	Gln
Leu 305	Lys	Tyr	Val	Tyr	Val 310	Trp	His	Ala	Ile	Thr 315	Gly	Tyr	Trp	Gly	Gly 320
Val	Arg	Pro	Gly	Ala 325	Asp	Gly	Met	Glu	His 330	Tyr	Glu	Ser	Lys	Met 335	Gln
Tyr	Pro	Val	Ser 340	Ser	Pro	Gly	Val	Gln 345	Lys	Asn	Glu	Pro	Cys 350	Asp	Ala
Leu	Asn	Ser 355	Ile	Thr	Thr	Asn	Gly 360	Leu	Gly	Leu	Val	Asn 365	Pro	Asp	Arg
Val	Phe 370	Ser	Phe	Tyr	Asn	Glu 375	Leu	His	Ala	Tyr	Leu 380	Ala	Ser	Ala	Gly
11e 385	Asp	Gly	Val	Lys	Val 390	Asp	Val	Gln	Aşn	11e 395	Leu	Glu	Thr	Leu	Gly 400
Ala	Gly	His	Gly	Gly 405	Arg	Val	Leu	Leu	Ala 410	Arg	Lys	Tyr	His	Gln 415	Ala
Leu	Glu	Ala	Ser 420	Ile	Ala	Arg	Asn	Phe 425	Arg	Asp	Asn	Gly	Ile 430	Ile	Cys
Суз	Met	Ser 435	His	Asn	Thr	Asp	Asn 440	Leu	Tyr	Ser	Ser	Lys 445	Arg	Ser	Ala
Val	Val 450	Arg	Ala	Ser	Asp	Asp 455	Phe	Trp	Pro	Arg	Asp 460	Pro	Ala	Ser	His
Thr 465	Ile	His	Ile	Ala	Ser 470	Val	Ala	Tyr	Asn	Thr 475	Val	Phe	Leu	Gly	Glu 480
Phe	Met	Gln	Pro	Asp 485	Trp	Asp	Met	Phe	His 490	Ser	Val	His	Pro	Met 495	Ala
Glu	Tyr	His	Ala 500	Ala	Ala	Arg	Ala	Val 505	Gly	Gly	Cys	Ala	Ile 510	Tyr	Val
Ser	Asp	Lys 515	Pro	Gly	Asn	His	Asp 520	Phe	Asn	Leu	Leu	Lys 525	Lys	Leu	Val
Len	Dro	202	G1 17	202	Tle	T Au	A ~~~	21 a	Tare	T.A.	Dro	Clar	A ~~~	Dro	Th∽

	530					535					540				
Arg 545	Asp	Cys	Leu	Phe	Ser 550	Asp	Pro	Ala	Arg	Asp 555	Gly	Lys	Ser	Ile	Leu 560
Lys	Ile	Trp	Asn	Leu 565	Asn	Glu	His	Ser	Gly 570	Val	Ile	Gly	Ala	Phe 575	Asn
Сув	Gln	Gly	Ala 580	Gly	Trp	Cys	Arg	Val 585	Gly	Lys	Lys	Asn	Leu 590	Val	His
Asp	Glu	Gln 595	Pro	Ala	Thr	Val	Thr 600	Gly	Val	Ile	Arg	Ala 605	Gln	Asp	Val
His	His 610	Leu	Ala	Thr	Val	Ala 615	Ala	Asp	Gly	Trp	Asn 620	Gly	Asp	Val	Ile
Val 625	Tyr	Ser	His	Ile	Gly 630	Gly	Glu	Val	Thr	Cys 635	Leu	Pro	Lys	Asn	Ala 640
Ser	Leu	Pro	Val	Thr 645	Leu	Lys	Thr	Arg	Glu 650	Tyr	Glu	Val	Phe	Thr 655	Val
Val	Pro	Leu	Lys 660	Lys	Leu	Asp	Asn	Gly 665	Val	Ser	Phe	Ala	Ala 670	Val	Gly
Leu	Ile	Gly 675	Met	Phe	Asn	Ser	Gly 680	Gly	Ala	Val	Thr	Ala 685	Val	Arg	Tyr
Val	Glu 690	Asp	Ala	Gly	Val	Glu 695	Val	Arg	Val	Arg	Gly 700	Ser	Gly	Thr	Val
Gly 705	Ala	Tyr	Ser	Ser	Ala 710	Lys	Pro	Ala	Arg	Val 715	Val	Val	Asp	Ser	Glu 720
Ala	Ala	Glu	Phe	Ser 725	Tyr	Asp	Asp	Gly	Cys 730	Gly	Leu	Val	Thr	Phe 735	Glu
Leu	Ala	Val	Pro 740	Glu	Gln	Glu	Leu	Tyr 745	Ser	Trp	Thr	Ile	Ser 750	Ile	Glu
Tyr															

5

<210> 11

<400> 11

Met 1	Thr	Val	Thr	Pro 5	Lys	Ile	Ser	Val	Asn 10	Asp	Gly	Asn	Leu	Val 15	Val
His	Gly	Lys	Thr 20	Ile	Leu	Lys	Gly	Val 25	Pro	Glu	Asn	Val	Val 30	Leu	Thr
Pro	Gly	Ser 35	Gly	Asn	Gly	Leu	Leu 40	Thr	Gly	Gly	Ala	Phe 45	Ile	Gly	Ala
Thr	Ala 50	Ser	Asn	Ser	Lys	Ser 55	Leu	His	Val	Phe	Pro 60	Ile	Gly	Ile	Leu
Glu 65	Gly	Leu	Arg	Phe	Val 70	Cys	Cys	Phe	Arg	Phe 75	Lys	Leu	Trp	Trp	Met 80
Thr	Gln	Arg	Met	Gly 85	Thr	Cys	Gly	Arg	Asp 90	Ile	Pro	Leu	Glu	Thr 95	Gln
Phe	Met	Leu	Ile 100	Glu	Ser	Lys	Asp	Ser 105	Glu	Gly	Glu	Glu	Gly 110	Asn	Ser
Pro	Val	Ile 115	Tyr	Thr	Val	Leu	Leu 120	Pro	Leu	Leu	Glu	Gly 125	Pro	Phe	Arg
Ser	Val 130	Leu	Gln	Gly	Asn	Glu 135	Lys	Ser	Glu	Ile	Glu 140	Ile	Cys	Phe	Glu
Ser 145	Gly	Asp	His	Ala	Val 150	Glu	Thr	Asn	Gln	Gly 155	Leu	His	Met	Val	Tyr 160
Met	His	Ala	Gly	Thr 165	Asn	Pro	Phe	Glu	Val 170	Ile	Asn	Gln	Ala	Val 175	Lys
Ala	Val	Glu	Lys 180	His	Met	Gln	Thr	Phe 185	His	His	Arg	Glu	Lys 190	Lys	Arg
Leu	Pro	Ser 195	Phe	Leu	Asp	Met	Phe 200	Gly	Trp	Cys	Thr	Trp 205	Asp	Ala	Phe
Tyr	Thr 210	Asp	Val	Thr	Ala	Glu 215	Gly	Val	Glu	Gln	Gly 220	Leu	Lys	Ser	Leu
Ser 225	Glu	Gly	Gly	Thr	Pro 230	Pro	Arg	Phe	Leu	Ile 235	Ile	Asp	Asp	Gly	Trp

Gln	Gln	Il⊜	Glu	Ser 245	Lys	Ala	Lys	Asp	Pro 250	Gly	Cys	Val	Val	Gln 255	Glu
Gly	Ala	Gln	Phe 260	Ala	Thr	Met	Leu	Thr 265	Gly	Ile	Lys	Glu	Asn 270	Ala	Lys
Phe	Gln	Lys 275	Aşn	Lys	Aşn	Glu	Glu 280	His	Ser	Glu	Pro	Thr 285	Ser	Gly	Leu
Lys	His 290	Leu	Val	Asp	Gly	Val 295	Lys	Lys	His	His	Asn 300	Val	Lys	Asn	Val
Tyr 305	Val	Trp	His	Ala	Leu 310	Ala	Gly	Tyr	Trp	Gly 315	Gly	Val	Lys	Pro	A la 320
Ala	Thr	Gly	Met	Glu 325	His	Tyr	Asp	Thr	Ala 330	Leu	Ala	Tyr	Pro	Val 335	Gln
Ser	Pro	Gly	Val 340	Leu	Gly	Asn	Gln	Pro 345	Asp	Ile	Val	Met	Asp 350	Ser	Leu
Ser	Val	His 355	Gly	Leu	Gly	Leu	V al 360	His	Pro	Lys	Lys	Val 365	Phe	Asn	Phe
Tyr	As n 370	Glu	Leu	His	Ala	Tyr 375	Leu	Ala	Ser	Cys	Gly 380	Val	Asp	Gly	Val
Lys 385	Val	Asp	Val	Gln	Asn 390	Ile	Ile	Glu	Thr	Leu 395	Gly	Ala	Gly	His	Gly 400
Gly	Arg	Val	Ser	Leu 405	Thr	Arg	Ser	Tyr	His 410	His	Ala	Leu	Glu	Ala 415	Ser
Ile	Ala	Arg	Asn 420	Phe	Ser	Asp	Asn	Gly 425	Cys	Ile	Ala	C ys	Met 430	Cys	His
Asn	Thr	Asp 435	Gly	Leu	Tyr	Ser	Ala 440	Lys	Gln	Thr	Ala	Val 445	Val	Arg	Ala
Ser	Asp 450	Asp	Phe	Tyr	Pro	Arg 455	Asp	Pro	Ala	Ser	His 460	Thr	Ile	His	Ile
Ser 465	Ser	Val	Ala	Tyr	Asn 470	Ser	Leu	Phe	Leu	Gly 475	Glu	Phe	Met	Gl n	Pro 480
Asp	Trp	Asp	Met	Phe	His	Ser	Leu	His	Pro	Ala	Ala	Glu	Tyr	His 495	Ala

Ala	Ala	Arg	Ala 500	Ile	Gly	Gly	Cys	Pro 505	Ile	Tyr	Val	Ser	Asp 510	Lys	Pro
Gly	Asn	His 515	Asn	Phe	Asp	Leu	Le u 520	Lys	Lys	Leu	Val	Le u 525	Ser	Asp	Gly
Ser	Val 530	Leu	Arg	Ala	Gln	Leu 535	Pro	Gly	Arg	Pro	Thr 540	Arg	Asp	Ser	Leu
Phe 545	Val	Asp	Pro	Ala	Ar g 550	Asp	Arg	Thr	Ser	Leu 555	Leu	Lys	Ile	Trp	Asn 560
Met	Asn	Lys	Cys	Thr 565	Gly	Val	Val	Gly	Val 570	Phe	Asn	Cys	Gln	Gly 575	Ala
Gly	Trp	Cys	Lys 580	Val	Glu	Lys	Lys	Thr 585	Arg	Ile	His	Asp	Ile 590	Ser	Pro
Gly	Thr	Leu 595	Thr	Ser	Ser	Val	Cys 600	Ala	Ser	Asp	Val	Asp 605	Leu	Ile	Thr
Gln	Val 610	Ala	Gly	Ala	Glu	Trp 615	His	Gly	Glu	Thr	11e 620	Val	Tyr	Ala	Tyr
Arg 625	Ser	Gly	Glu	Val	11e 630	Arg	Leu	Pro	Lys	Gly 635	Val	Ser	Ile	Pro	Val 640
Thr	Leu	Lys	Val	Leu 645	Glu	Phe	Glu	Leu	Phe 650	His	Phe	Сув	Pro	Ile 655	Gln
Glu	Ile	Ser	Ser 660	Ser	Ile	Ser	Phe	Ala 665	Thr	Ile	Gly	Leu	Met 670	Asp	Met
Phe	Asn	Thr 675	Gly	G1y	Ala	Val	Glu 680	Glu	Val	Glu	Ile	His 685	Arg	G1u	Thr
Asp	Asn 690	Lys	Gln	Glu	Leu	Phe 695	Glu	Gly	Glu	Ala	Val 700	Ser	Ser	Glu	Leu
Ile 705	Thr	Ser	Leu	Gly	Pro 710	Asn	Arg	Thr	Thr	Thr 715	Ala	Thr	Ile	Thr	Leu 720
Lys	Val	Arg	Gly	Ser 725	Gly	Lys	Phe	Gly	Val 730	Tyr	Ser	Ser	Gln	Arg 735	Pro
Ile	Lys	Cys	Met 740	Val	Asp	Gly	Thr	Glu 745	Thr	Asp	Phe	Asn	Tyr 750	Asp	Ser

Glu Thr Gly Leu Thr Thr Phe Ile Ile Pro Val Pro Gln Glu Glu Leu 755 760 765

Tyr Lys Trp Leu Ile Glu Ile Gln Val 770 775

<210> 12

<211> 753

<212> PRT

5

<213> Cucumis sativus

<400> 12

Met Thr Val Gly Ala Gly Ile Thr Ile Ser Asp Ala Asn Leu Thr Val 1 5 10 15

Leu Gly Asn Arg Val Leu Ser Asp Val His Asn Asn Ile Thr Leu Thr 20 25 30

Ala Ala Pro Gly Gly Gly Val Met Asn Gly Ala Phe Ile Gly Val Gln
35 40 45

Ser Asp Gln Ile Gly Ser Arg Arg Val Phe Pro Ile Gly Lys Leu Ile 50 55 60

Gly Leu Arg Phe Leu Cys Ala Phe Arg Phe Lys Leu Trp Trp Met Thr 65 70 75 80

Gln Arg Met Gly Cys Ser Gly Gln Glu Ile Pro Phe Glu Thr Gln Phe 85 90 95

Leu Val Val Glu Thr Arg Asp Gly Ser Asn Ile Ala Gly Asn Gly Glu 100 105 110

Glu Gly Asp Ala Val Tyr Thr Val Phe Leu Pro Ile Leu Glu Gly Asp 115 120 125

Phe Arg Ala Val Leu Gln Gly Asn Asp Asn Asn Glu Leu Glu Ile Cys 130 135 140

Leu Glu Ser Gly Asp Pro Ser Val Asp Gly Phe Glu Gly Ser His Leu 145 150 155 160

Val Phe Val Gly Ala Gly Ser Asp Pro Phe Glu Thr Ile Thr Tyr Ala 165 170 175

Val Lys Ser Val Glu Lys His Leu Gln Thr Phe Ala His Arg Glu Arg 180 185 190

Lys	Lys	Met 195	Pro	Asp	Ile	Leu	Asn 200	Trp	Phe	Gly	Trp	Cys 205	Thr	Trp	Asp
Ala	Phe 210	Tyr	Thr	Asp	Val	Thr 215	Ser	Asp	Gly	Val	Lys 220	Lys	Gly	Leu	Glu
Ser 225	Phe	Glu	Asn	Gly	Gly 230	Ile	Pro	Pro	Lys	Phe 235	Val	Ile	Ile	Asp	Asp 240
Gly	Trp	Gln	Ser	Val 245	Ala	Lys	Asp	Ala	Ala 250	Ser	Thr	Asp	Cys	Lys 255	Ala
Asp	Asn	Thr	Ala 260	Asn	Phe	Ala	Asn	Arg 265	Leu	Thr	His	Ile	Lys 270	Glu	Asn
Tyr	Lys	Phe 275	Gln	Lys	Asp	Gly	Lys 280	Glu	Gly	Glu	Arg	Ile 285	Glu	Asn	Pro
Ala	Leu 290	Gly	Leu	Gln	His	Ile 295	Val	Ser	Tyr	Met	Lys 300	Glu	Lys	His	Ala
Thr 305	Lys	Tyr	Val	Tyr	Val 310	Trp	His	Ala	Ile	Thr 315	Gly	Tyr	Trp	Gly	Gly 320
Val	Ser	Ser	Gly	Val 325	Lys	Glu	Met	Glu	Gln 330	Tyr	Glu	Ser	Lys	Ile 335	Ala
Tyr	Pro	Val	Ala 340	Ser	Pro	Gly	Val	Glu 345	Ser	Asn	Glu	Pro	Cys 350	Asp	Ala
Leu	Asn	Ser 355	Ile	Ser	Lys	Thr	Gly 360	Leu	Gly	Leu	Val	Asn 365	Pro	Glu	Lys
Val	Phe 370	Asn	Phe	Tyr	Asn	G1u 375	Gln	His	Ser	Tyr	Leu 380	Ala	Ser	Ala	Gly
Val 385	Asp	Gly	Val	Lys	Val 390	Asp	Val	Gln	Asn	11 e 395	Leu	Glu	Thr	Leu	Gly 400
Ala	Gly	His	Gly	Gly 405	Arg	Val	Lys	Leu	Ala 410	Arg	Lys	Tyr	His	Gln 415	Ala
Leu	Glu	Ala	Ser 420	Ile	Ser	Arg	Aşn	Phe 425	Gln	Asp	Asn	Gly	Ile 430	Ile	Ser
Cvs	Met	Ser	His	Asn	Thr	Asp	Glv	Leu	Tvr	Ser	Ser	Lvs	Ara	Asn	Ala

		435					440					445			
Val	Ile 450	Arg	Ala	Ser	Asp	Asp 455	Phe	Trp	Pro	Arg	Asp 460	Pro	Ala	Ser	His
Thr 465	Ile	His	Ile	Ala	Ser 470	Val	Ala	Tyr	Asn	Ser 475	Leu	Phe	Leu	Gly	Glu 480
Phe	Met	Gln	Pro	Asp 485	Trp	Asp	Met	Phe	His 490	Ser	Leu	His	Pro	Met 495	Ala
Glu	Tyr	His	Gly 500	Ala	Ala	Arg	Ala	Val 505	Gly	Gly	Cys	Ala	Ile 510	Tyr	Val
Ser	Asp	Lys 515	Pro	Gly	Gln	His	Asp 520	Phe	Asn	Leu	Leu	Lys 525	Lys	Leu	Val
Leu	His 530	Asp	Gly	Ser	Ile	Leu 535	Arg	Ala	Lys	Leu	Pro 540	Gly	Arg	Pro	Thr
Lys 545	Asp	Сув	Leu	Phe	Ala 550	Asp	Pro	Ala	Arg	Asp 555	Gly	Lys	Ser	Leu	Leu 560
Lys	Ile	Trp	Asn	Met 565	Asn	Asp	Leu	Ser	Gly 570	Val	Val	Gly	Val	Phe 575	Asn
Cys	Gln	Gly	Ala 580	Gly	Trp	Cys	Lys	Val 585	Gly	Lys	Lys	Asn	Leu 590	Ile	His
Asp	Glu	Asn 595	Pro	Asp	Thr	Ile	Thr 600	Gly	Val	Ile	Arg	Ala 605	Lys	Asp	Val
Ser	Tyr 610	Leu	Trp	Lys	Ile	Ala 615	Gly	Gl u	Ser	Trp	Thr 620	Gly	Asp	Ala	Val
Ile 625	Phe	Ser	His	Leu	Ala 630	Gly	Glu	Val	Val	Tyr 635	Leu	Pro	Gln	Asp	Ala 640
Ser	Met	Pro	Ile	Thr 645	Leu	Lys	Ser	Arg	Glu 650	Phe	Asp	Val	Phe	Thr 655	Val
Val	Pro	Val	Lys 660	Glu	Leu	Ala	Asn	Asp 665	Ile	Lys	Phe	Ala	Pro 670	Ile	Gly
Leu	Met	Lys 675	Met	Phe	Asn	Ser	Gly 680	Gly	Ala	Val	Lys	Glu 685	Met	Asn	His

Gln Pro Gly Ser Ser Asn Val Ser Leu Lys Val Arg Gly Ser Gly Pro 690 695 700

Phe Gly Ala Tyr Ser Ser Lys Pro Lys Arg Val Ala Val Asp Ser 705 710 715 720

Glu Glu Val Glu Phe Ile Tyr Asp Glu Gly Gly Leu Ile Thr Ile Asp 725 730 735

Leu Lys Val Pro Glu Lys Glu Leu Tyr Leu Trp Asp Ile Arg Ile Glu 740 745 750

Leu

<210> 13

<211> 772

<212> PRT

5

<213> Cucumis melo

<400> 13

Met Thr Val Thr Pro Lys Ile Ser Val Asn Asp Gly Asn Leu Val Val 1 5 10 15

His Gly Lys Thr Ile Leu Thr Gly Val Pro Asp Asn Ile Val Leu Thr 20 25 30

Pro Gly Ser Gly Leu Gly Leu Val Ala Gly Ala Phe Ile Gly Ala Thr 35 40 45

Ala Ser Asn Ser Lys Ser Leu His Val Phe Pro Val Gly Val Leu Glu 50 60

Gly Thr Arg Phe Leu Cys Cys Phe Arg Phe Lys Leu Trp Trp Met Thr 65 70 75 80

Gln Arg Met Gly Thr Ser Gly Arg Asp Ile Pro Phe Glu Thr Gln Phe 85 90 95

Leu Leu Met Glu Ser Lys Gly Asn Asp Gly Glu Asp Pro Asp Asn Ser 100 105 110

Ser Thr Ile Tyr Thr Val Phe Leu Pro Leu Leu Glu Gly Gln Phe Arg 115 120 125

Ala Ala Leu Gln Gly Asn Glu Lys Asn Glu Met Glu Ile Cys Leu Glu 130 135 140

Ser 145	Gly	Asp	Asn	Thr	Val 150	Glu	Thr	Aşn	Gln	Gly 155	Leu	Ser	Leu	Val	Tyr 160
Met	His	Ala	Gly	Thr 165	Asn	Pro	Phe	Glu	Val 170	Ile	Thr	Gln	Ala	Val 175	Lys
Ala	Val	Glu	Lys 180	His	Thr	Gln	Thr	Phe 185	Leu	His	Arg	Glu	Lys 190	Lys	Lys
Leu	Pro	Ser 195	Phe	Leu	Asp	Trp	Phe 200	Gly	Trp	Cys	Thr	Trp 205	Asp	Ala	Phe
Tyr	Thr 210	Asp	Ala	Thr	Ala	Glu 215	Gly	Val	Val	Glu	Gly 220	Leu	Lys	Ser	Leu
Ser 225	Glu	Gly	Gly	Ala	Pro 230	Pro	Lys	Phe	Leu	Ile 235	Ile	Asp	Asp	Gly	Trp 240
Gln	Gln	Ile	Glu	Ala 2 4 5	Lys	Pro	Lys	Asp	Ala 250	Asp	Cys	Val	Val	Gln 255	Glu
Gly	Ala	Gln	Phe 260	Ala	Ser	Arg	Leu	Ser 26 5	Gly	Ile	Lys	Glu	Asn 270	His	Lys
Phe	Gln	Lys 275	Asn	Gly	Asn	Aşn	Tyr 280	Asp	Gln	Val	Pro	Gly 285	Leu	Lys	Val
Val	Val 290	Asp	Asp	Ala	Lys	Lys 295	Gln	His	Lys	Val	Lys 300	Phe	Val	Tyr	Ala
Trp 305	His	Ala	Leu	Ala	Gly 310	Tyr	Trp	Gly	Gly	Val 315	Lys	Pro	Ala	Ser	Pro 320
Gly	Met	Glu	His	Tyr 325	Asp	Ser	Ala	Leu	Ala 330	Tyr	Pro	Val	Gln	Ser 335	Pro
Gly	Met	Leu	Gly 340	Asn	Gln	Pro	Asp	Ile 345	Val	Val	Asp	Ser	Leu 350	Ala	Val
His	Gly	Ile 355	Gly	Leu	Val	His	Pro 360	Lys	Lys	Val	Phe	Asn 365	Phe	Tyr	Asn
Glu	Leu 370	His	Ser	Tyr	Leu	Ala 375	Ser	Cys	Gly	Ile	Asp 380	Gly	Val	Lys	Val
Asp															

Val	Thr	Leu	Thr	Arg 405	Ser	Tyr	His	Gln	Ala 410	Leu	Glu	Ala	Ser	Ile 415	Ala
Arg	Asn	Phe	Ser 420	Asp	Asn	Gly	Cys	Ile 425	Ala	Cys	Met	Cys	His 430	Asn	Thr
Asp	Ser	Leu 435	Tyr	Ser	Ala	Lys	Gln 440	Thr	Ala	Val	Val	Arg 445	Ala	Ser	Asp
Asp	Tyr 450	Tyr	Pro	Arg	Asp	Pro 455	Thr	Ser	His	Thr	Ile 460	His	Ile	Ser	Ser
Val 465	Ala	Tyr	Asn	Ser	Le u 4 70	Phe	Leu	Gly	Glu	Phe 475	Met	Gln	Pro	Asp	Trp 480
Asp	Met	Phe	His	Ser 485	Leu	His	Pro	Thr	Ala 490	Glu	Tyr	His	Gly	Ala 495	Ala
Arg	Ala	Ile	Gly 500	Gly	Сув	Ala	Ile	Tyr 505	Val	Ser	Asp	Lys	Pro 510	Gly	Asn
His	Asn	Phe 515	Asp	Leu	Leu	Lys	Lys 520	Leu	Val	Leu	Pro	Asp 525	Gly	Ser	Val
Leu	Arg 530	Ala	Gln	Leu	Pro	Gly 535	Arg	Pro	Thr	Arg	Asp 540	Ser	Leu	Phe	Asn
Asp 545	Pro	Ala	Arg	Asp	Gly 550	Ile	Ser	Leu	Leu	Lys 555	Ile	Trp	Asn	Met	Asn 560
Lys	Сув	Ser	Gly	Val 565	Val	Gly	Val	Phe		_	Gln	_	Ala	Gly 575	_
Cys	Arg	Ile	Thr 580	ГАЗ	Lys	Thr	Arg	I1e 585	His	Asp	Glu	Ser	Pro 590	Gly	Thr
Leu	Thr	Thr 595	Ser	Val	Arg	Ala	Ala 600	Asp	Val	Asp	Ala	Ile 605	Ser	Gln	Val
Ala	Gly 610	Ala	Asp	Trp	Lys	Gly 615	Asp	Thr	Ile	Val	Tyr 620	Ala	Tyr	Arg	Ser
Gly 625	Asp	Leu	Ile	Arg	Leu 630	Pro	Lys	Gly	Ala	Ser 635	Val	Pro	Val	Thr	Leu 640
Lys	Val	Leu	Glu	Tyr 645	Asp	Leu	Leu	His	Ile 650	Ser	Pro	Leu	Lys	Asp 655	Ile

Ala Ser Asn Ile Ser Phe Ala Pro Ile Gly Leu Leu Asp Met Phe Asn 660 665 670

Thr Gly Gly Ala Val Glu Gln Val Asn Val Gln Val Val Glu Pro Ile 675 680 685

Pro Glu Phe Asp Gly Glu Val Ala Ser Glu Leu Thr Cys Ser Leu Pro 690 695 700

Asn Asp Arg Pro Pro Thr Ala Thr Ile Thr Met Lys Ala Arg Gly Cys 705 710 715 720

Arg Arg Phe Gly Leu Tyr Ser Ser Gln Arg Pro Leu Lys Cys Ser Val 725 730 735

Asp Lys Val Asp Val Asp Phe Val Tyr Asp Glu Val Thr Gly Leu Val 740 745 750

Thr Phe Glu Ile Pro Ile Pro Thr Glu Glu Met Tyr Arg Trp Asp Ile 755 760 765

Glu Ile Gln Val 770

<210> 14 <211> 378 <212> PRT

<213> Coffea arabica

<400> 14

5

Met Val Lys Ser Pro Gly Thr Glu Asp Tyr Thr Arg Arg Ser Leu Leu 1 5 10 15

Ala Asn Gly Leu Gly Leu Thr Pro Pro Met Gly Trp Asn Ser Trp Asn 20 25 30

His Phe Arg Cys Asn Leu Asp Glu Lys Leu Ile Arg Glu Thr Ala Asp 35 40 45

Ala Met Val Ser Lys Gly Leu Ala Ala Leu Gly Tyr Lys Tyr Ile Asn 50 60

Leu Asp Asp Cys Trp Ala Glu Leu Asn Arg Asp Ser Gln Gly Asn Leu 65 70 75 80

Val Pro Lys Gly Ser Thr Phe Pro Ser Gly Ile Lys Ala Leu Ala Asp 85 90 95

Tyr	Val	His	Ser 100	Lys	Gly	Leu	Lys	Leu 105	Gly	Ile	Tyr	Ser	Asp 110	Ala	Gly
Thr	Gln	Thr 115	Cys	Ser	Lys	Thr	Met 120	Pro	Gly	Ser	Leu	Gly 125	His	Glu	Glu
G l n	Asp 130	Ala	Lys	Thr	Phe	Ala 135	Ser	Trp	Gly	Val	Asp 140	Tyr	Leu	Lys	Tyr
Asp 145	Asn	Cys	Asn	Asn	Asn 150	Asn	Ile	Ser	Pro	Lys 155	Glu	Arg	Tyr	Pro	Ile 160
Met	Ser	Lys	Ala	Leu 165	Leu	Asn	Ser	Gly	Arg 170	Ser	Ile	Phe	Phe	Ser 175	Leu
Суз	Glu	Trp	Gly 180	Glu	Glu	Asp	Pro	Ala 185	Thr	Trp	Ala	Lys	Glu 190	Val	Gly
Asn	Ser	Trp 195	Arg	Thr	Thr	Gly	Asp 200	Ile	Asp	Asp	Ser	Trp 205	Ser	Ser	Met
Thr	Ser 210	Arg	Ala	Asp	Met	Asn 215	Asp	Lys	Trp	Ala	Ser 220	Tyr	Ala	Gly	Pro
G ly 225	Gly	Trp	Asn	Asp	Pro 230	Asp	Met	Leu	Glu	Val 235	Gly	Asn	Gly	Gly	Met 240
Thr	Thr	Thr	Glu	Tyr 2 4 5	Arg	Ser	His	Phe	Ser 250	Ile	Trp	Ala	Leu	Ala 255	Lys
Ala	Pro	Leu	Leu 260	Ile	Gly	Cys	Asp	11e 265	Arg	Ser	Met	Asp	Gly 270	Ala	Thr
Phe	Gln	Leu 275	Leu	Ser	Asn	Ala	Gl u 280	Val	Ile	Ala	Val	Asn 285	G l n	Asp	Lys
Leu	Gly 290	Val	Gln	Gly	Asn	Lys 295	Val	Lys	Thr	Tyr	Gly 300	Asp	Leu	Glu	Val
Trp 305	Ala	Gly	Pro	Leu	Ser 310	G1y	Lys	Arg	Val	Ala 315	Val	Ala	Leu	Trp	Asn 320
Arg	Gly	Ser	Ser	Thr 325	Ala	Thr	Ile	Thr	Ala 330	Tyr	Trp	Ser	Asp	Val 335	Gly
Leu	Pro	Ser	Thr	Ala	Val	Val	Asn	Ala	Arg	Asp	Leu	Trp	Ala	His	Ser

340 345 350

Thr Glu Lys Ser Val Lys Gly Gln Ile Ser Ala Ala Val Asp Ala His 355 360 365

Asp Ser Lys Met Tyr Val Leu Thr Pro Gln 370

REIVINDICACIONES

1. Una estructura de proteína multimérica que comprende al menos dos monómeros de α-galactosidasa que están unidos de forma covalente entre sí a través de un radical de unión, donde dicho radical de unión no está presente en la α-galactosidasa nativa, siendo la estructura de proteína multimérica para su uso en el tratamiento de la enfermedad de Fabry.

5

10

20

25

35

45

55

- 2. La estructura de proteína multimérica para su uso en la reivindicación 1, donde dicha estructura de proteína multimérica presenta una característica seleccionada del grupo que consiste en:
 - (a) una actividad α -galactosidasa, después de someter la estructura de proteína multimérica a condiciones plasmáticas humanas durante una hora, que es al menos un 10 % mayor que una actividad de la α -galactosidasa nativa después de someter dicha α -galactosidasa nativa a dichas condiciones plasmáticas humanas durante una hora;
- (b) una actividad α-galactosidasa que disminuye después de someter la estructura de proteína multimérica a condiciones plasmáticas humanas durante una hora en un porcentaje que es al menos un 10 % menor que el porcentaje que disminuye una actividad de dicha α-galactosidasa nativa después de someter dicha α-galactosidasa nativa a dichas condiciones plasmáticas humanas durante una hora;
 - (c) una actividad α-galactosidasa que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones plasmáticas humanas durante una hora;
 - (d) una actividad α-galactosidasa, después de someter la estructura de proteína multimérica a condiciones lisosómicas durante una semana, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa después de someter dicha α-galactosidasa nativa a dichas condiciones lisosómicas durante una semana;
 - (e) una actividad de α-galactosidasa que disminuye después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día en un porcentaje que es al menos un 10 % menor que el porcentaje que disminuye una actividad de dicha α-galactosidasa nativa después de someter dicha α-galactosidasa nativa a dichas condiciones lisosómicas durante un día;
 - (f) una actividad α-galactosidasa que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día;
- 30 (g) una actividad α-galactosidasa, inmediatamente después de someter la estructura de proteína multimérica a condiciones lisosómicas, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa inmediatamente después de someter dicha α-galactosidasa nativa a dichas condiciones lisosómicas;
 - (h) una actividad α -galactosidasa, inmediatamente después de someter la estructura de proteína multimérica a una solución acuosa que tiene un pH de 7 y una temperatura de 37 °C, que es al menos un 10 % mayor que una actividad de la α -galactosidasa nativa inmediatamente después de someter dicha α -galactosidasa nativa a dicha solución acuosa que tiene un pH de 7 y una temperatura de 37 °C; y
 - (i) una semivida en circulación en un sistema fisiológico que es mayor que dicha semivida en circulación de dicha α-galactosidasa nativa.
- 40 3. La estructura de proteína multimérica para uso de la reivindicación 2, en la que dicha actividad α-galactosidasa de dicha estructura de proteína multimérica que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día, continúa adicionalmente sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante una semana.
 - 4. La estructura de proteína multimérica para uso de una cualquiera de las reivindicaciones 1 a 3, en la que dicha estructura de proteína multimérica comprende dos monómeros de α-galactosidasa, siendo la estructura de la proteína una estructura de proteína dimérica.
- 50 5. La estructura de proteína multimérica para uso de una cualquiera de las reivindicaciones 1 a 4, en la que dicha α-galactosidasa es una α-galactosidasa generada por tecnología recombinante.
 - 6. La estructura de proteína multimérica para uso de una cualquiera de las reivindicaciones 1 a 5, en la que dicha α-galactosidasa es una α-galactosidasa humana seleccionada del grupo que consiste en agalsidasa alfa y agalsidasa heta
 - 7. La estructura de proteína multimérica para uso de una cualquiera de las reivindicaciones 1 a 5, en la que dicha α-galactosidasa tiene una secuencia de aminoácidos seleccionada del grupo que consiste en la SEQ ID NO: 1, SEQ ID NO: 2 y SEQ ID NO: 3.
 - 8. La estructura de proteína multimérica para uso de una cualquiera de las reivindicaciones 1 a 7, en la que dicho radical de unión tiene una longitud de al menos 20 átomos.
- 9. La estructura de proteína multimérica para uso de una cualquiera de las reivindicaciones 1 a 8, en la que dicho radical de unión comprende un poli(alquilenglicol).

10. Las estructuras de proteína multimérica para uso de una cualquiera de las reivindicaciones 1 a 8, en las que dicho radical de unión tiene la fórmula general:

$$-X_1-(CR_1R_2-CR_3R_4-Y)_n-X_2-$$

5

en la que cada uno de X1 y X2 es un grupo funcional que forma un enlace covalente con al menos un monómero de α-galactosidasa;

Y es O, S o NR₅;

n es un número entero de 1 a 200; y

10

- cada uno de R₁, R₂, R₃, R₄ y R₅ se selecciona independientemente del grupo que consiste en hidrógeno, alquilo, cicloalquilo, alquenilo, alquinilo, alcoxi, hidroxi, oxo, tiol y tioalcoxi.
- 11. La estructura de proteína multimérica para uso de la reivindicación 10, en la que n es al menos 25.
- 15 12. La estructura de proteína multimérica para uso de la reivindicación 10, en la que dicha estructura de proteína multimérica comprende dos monómeros de α-galactosidasa, siendo la estructura de la proteína una estructura de proteína dimérica, en la que dicha α-galactosidasa tiene una secuencia de aminoácidos seleccionada del grupo que consiste en la SEQ ID NO: 1, SEQ ID NO: 2 y SEQ ID NO: 3, cada uno de dichos grupos funcionales forma un enlace amida con un monómero de α-galactosidasa y n es un número entero de 40 a 70.

20

13. La estructura de proteína multimérica para uso de la reivindicación 7, en la que dicha estructura de proteína multimérica comprende dos monómeros de α-galactosidasa, siendo la estructura de la proteína una estructura de proteína dimérica, en la que dicho resto de unión tiene la fórmula:

25

en la que el peso molecular del polietilenglicol en dicho radical de unión es 2 kDa y cada uno de los grupos terminales de dicho radical de unión forma un enlace amida con un monómero de α-galactosidasa.

30

14. Una composición farmacéutica para uso en el tratamiento de la enfermedad de Fabry mediante administración parenteral, comprendiendo la composición la estructura de proteína multimérica de una cualquiera de las reivindicaciones 1 a 13 y un vehículo farmacéuticamente aceptable.

35

15. La composición para uso de la reivindicación 14, en la que dicha administración parenteral es infusión intravenosa.

16. La composición para uso de la reivindicación 14 o 15, en la gue la concentración de dicha estructura de proteína multimérica es 2 mg/ml.

40 17. Una composición farmacéutica para uso en el tratamiento de la enfermedad de Fabry mediante administración parenteral, comprendiendo la composición

(i) una estructura de proteína multimérica que comprende al menos dos monómeros de α-galactosidasa que están unidos covalentemente entre sí a través de un radical de unión; y

45

(ii) un vehículo farmacéuticamente aceptable,

donde dicha estructura de proteína multimérica presenta una característica seleccionada del grupo que consiste en:

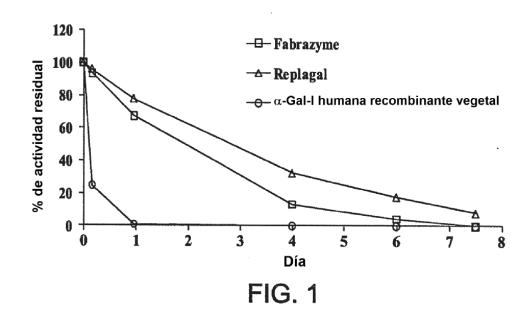
50

(a) una actividad α-galactosidasa, después de someter la estructura de proteína multimérica a condiciones plasmáticas humanas durante una hora, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa después de someter dicha α-galactosidasa nativa a dichas condiciones plasmáticas humanas durante una hora;

(b) una actividad α-galactosidasa que disminuye después de someter la estructura de proteína multimérica a condiciones plasmáticas humanas durante una hora en un porcentaje que es al menos un 10 % menor que el porcentaje que disminuye una actividad de dicha α-galactosidasa nativa después de someter dicha αgalactosidasa nativa a dichas condiciones plasmáticas humanas durante una hora;

55

(c) una actividad α-galactosidasa que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones plasmáticas humanas durante una hora;


- (d) una actividad α-galactosidasa, después de someter la estructura de proteína multimérica a condiciones lisosómicas durante una semana, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa después de someter dicha α-galactosidasa nativa a dichas condiciones lisosómicas durante una semana;
- (e) una actividad α-galactosidasa que disminuye después de someter la estructura de proteína multimérica a

condiciones lisosómicas durante un día en un porcentaje que es al menos un 10 % menor que el porcentaje que disminuye una actividad de dicha α -galactosidasa nativa después de someter dicha α -galactosidasa nativa a dichas condiciones lisosómicas durante un día;

- (f) una actividad α-galactosidasa que permanece sustancialmente sin cambios después de someter la estructura de proteína multimérica a condiciones lisosómicas durante un día;
- (g) una actividad α-galactosidasa, inmediatamente después de someter la estructura de proteína multimérica a condiciones lisosómicas, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa inmediatamente después de someter dicha α-galactosidasa nativa a dichas condiciones lisosómicas;
- (h) una actividad α-galactosidasa, inmediatamente después de someter la estructura de proteína multimérica a una solución acuosa que tiene un pH de 7 y una temperatura de 37 °C, que es al menos un 10 % mayor que una actividad de la α-galactosidasa nativa inmediatamente después de someter dicha α-galactosidasa nativa a dicha solución acuosa que tiene un pH de 7 y una temperatura de 37 °C; y
 - (i) una semivida en circulación en un sistema fisiológico que es mayor en al menos un 20% que dicha semivida en circulación de dicha α-galactosidasa nativa.

15

10

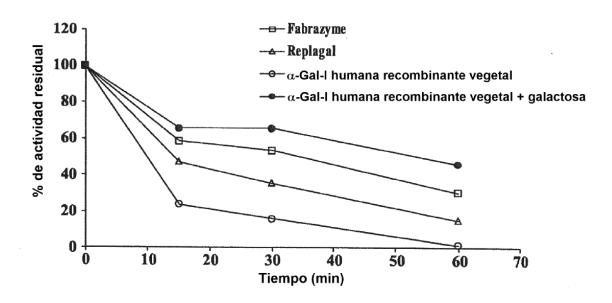
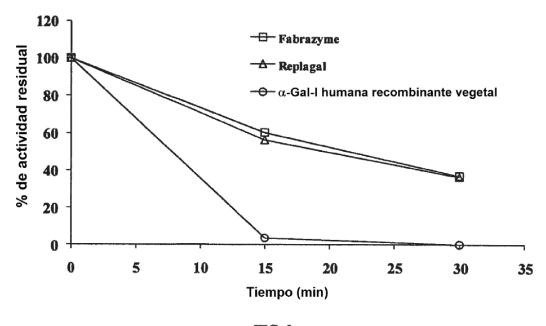
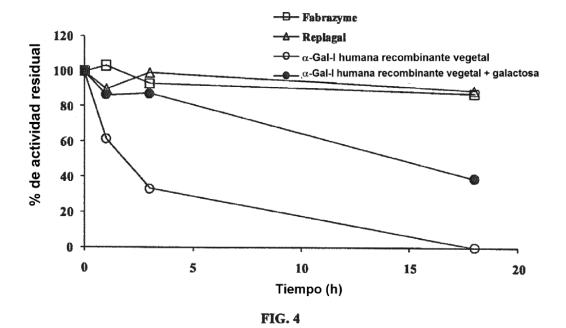




FIG. 2

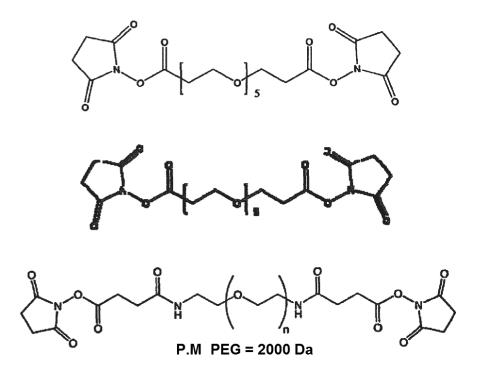
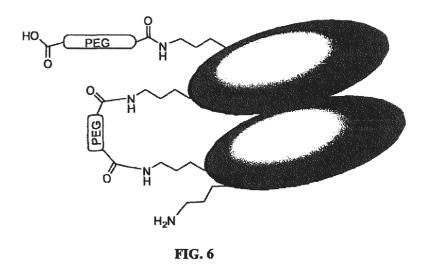




FIG. 5

FIG. 7

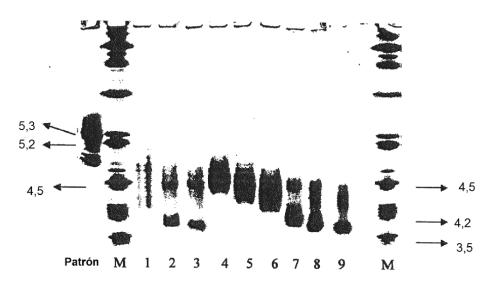


FIG. 8

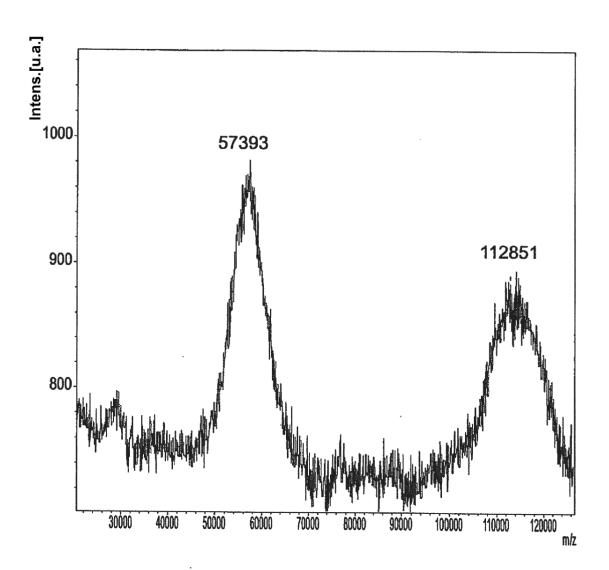


FIG. 9

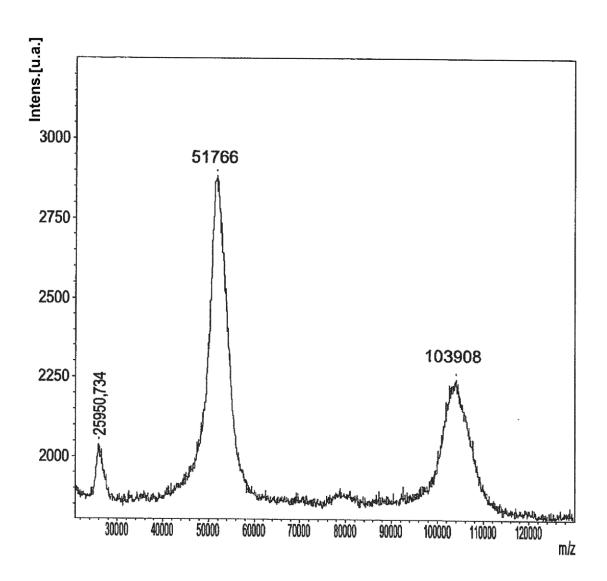


FIG. 10

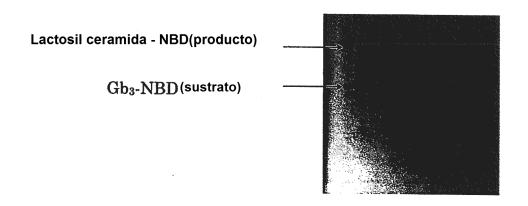


FIG. 11

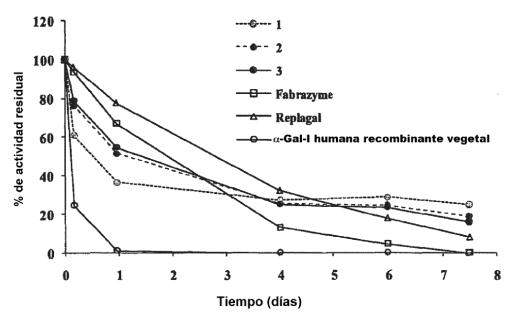


FIG. 12A

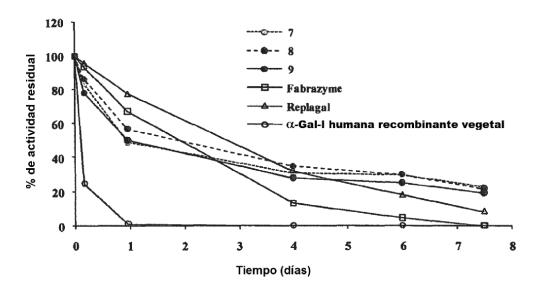


FIG. 12B

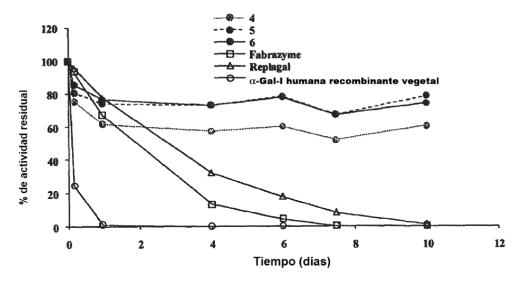
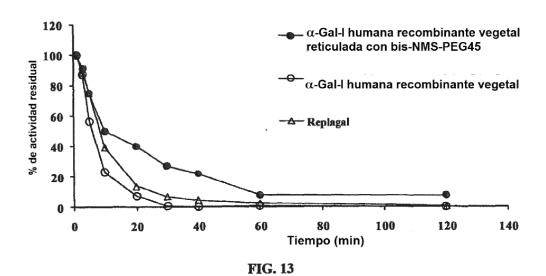



FIG. 12C

100

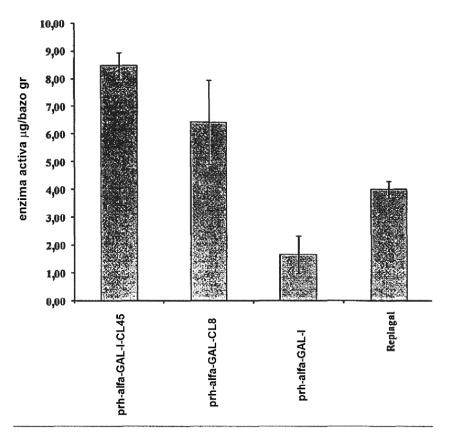


FIG. 14A

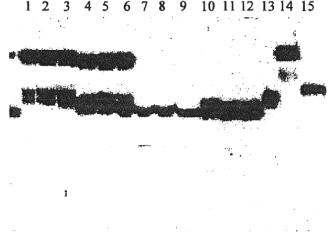
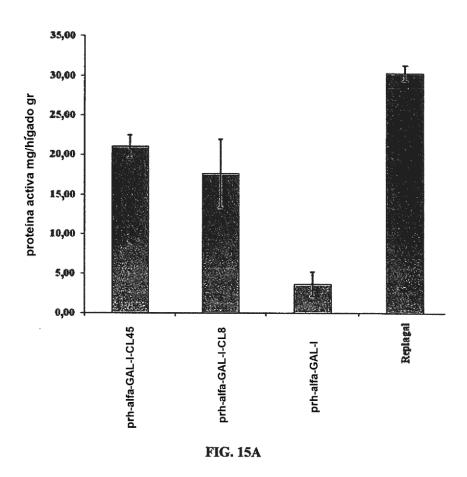
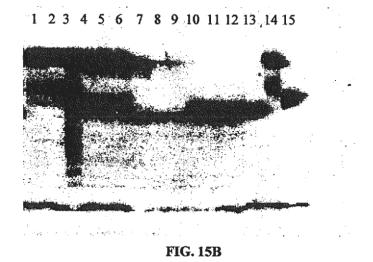
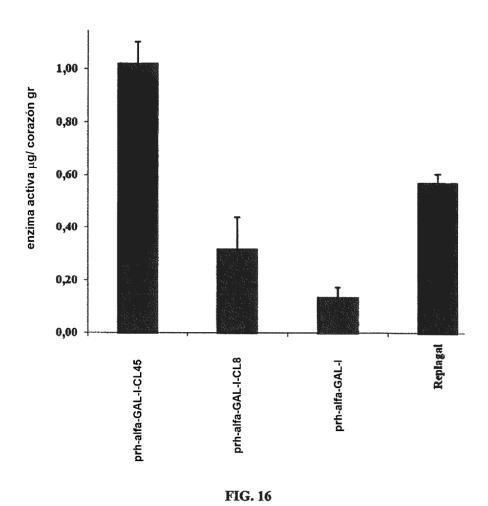
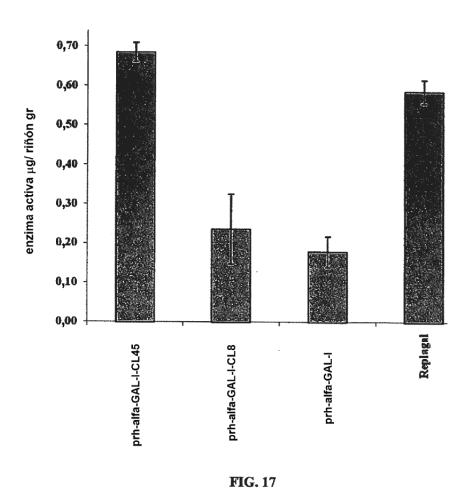






FIG. 14B

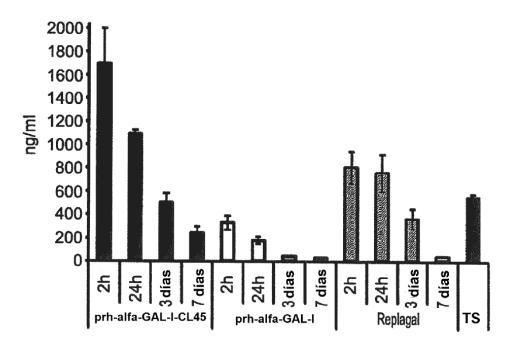
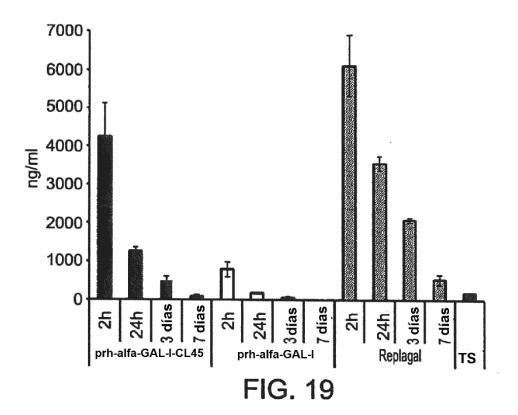



FIG. 18

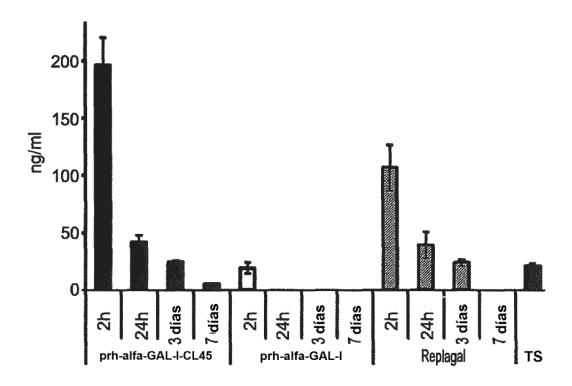


FIG. 20

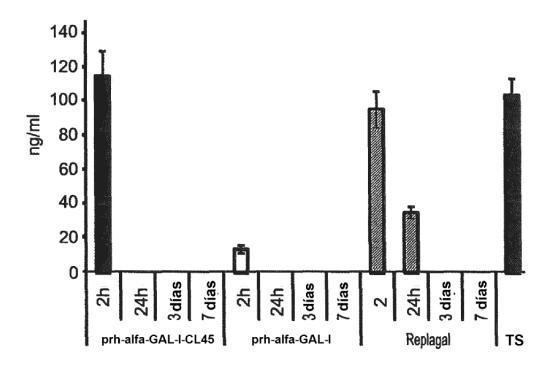
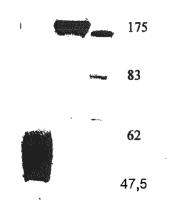



FIG. 21

FIG. 22

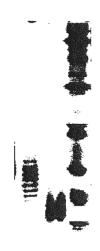
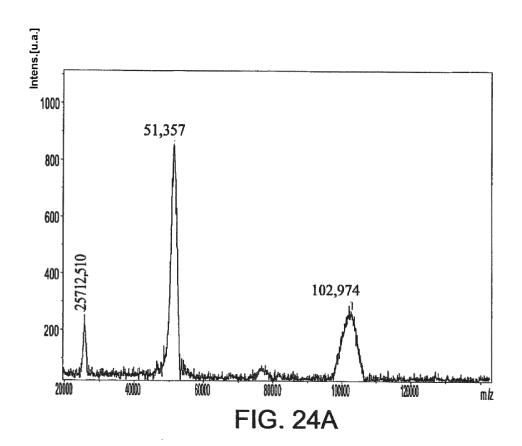



FIG. 23

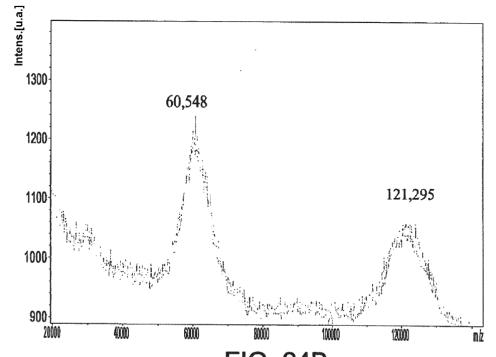


FIG. 24B

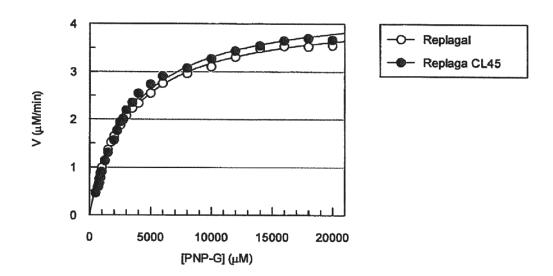
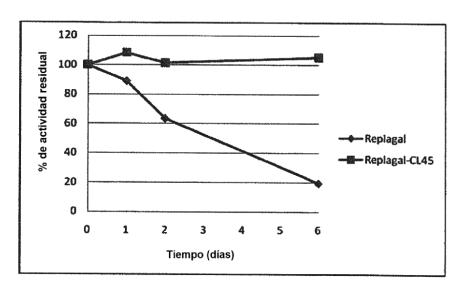



FIG. 25

FIG. 26A

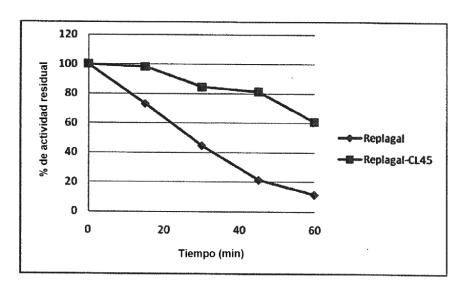


FIG. 26B

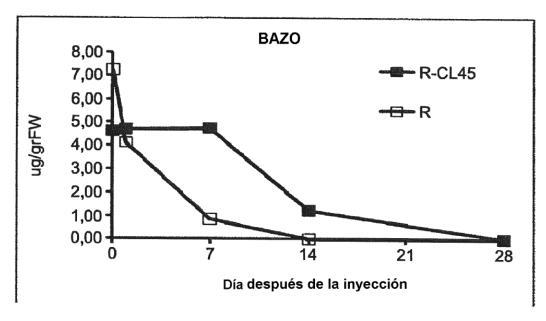


FIG. 27A

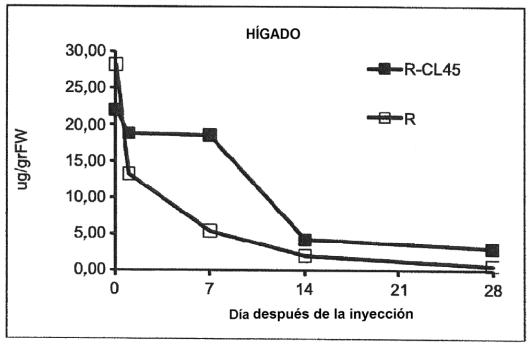


FIG. 27B

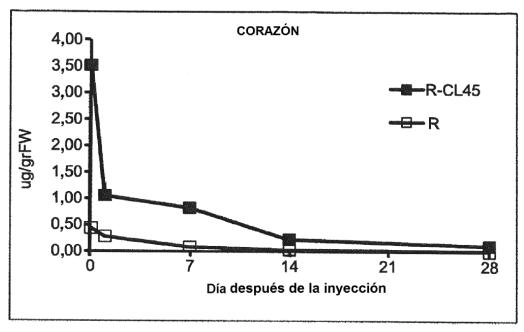


FIG. 27C

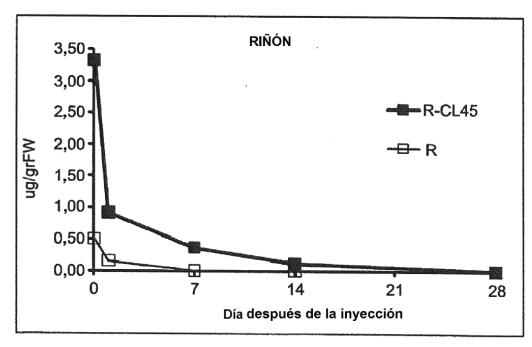


FIG. 27D

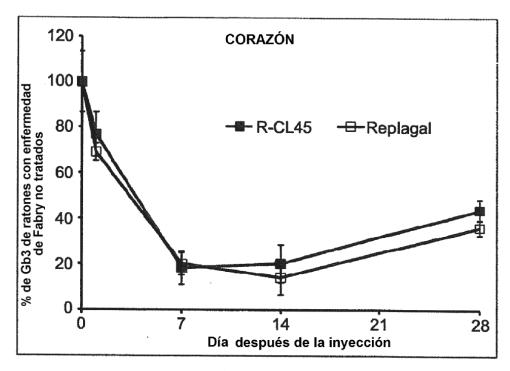


FIG. 28A

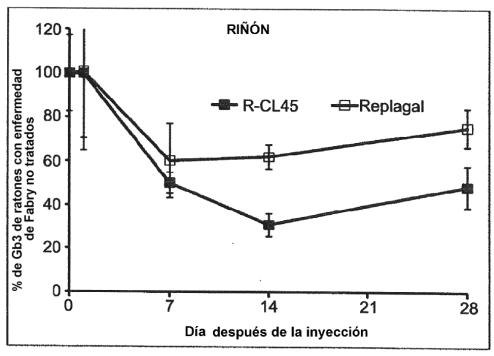


FIG. 28B

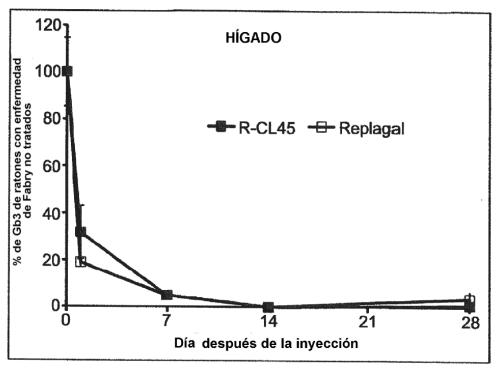
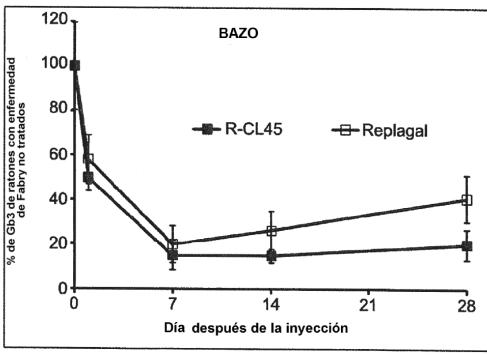
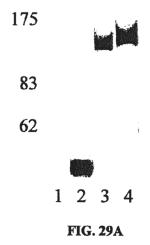
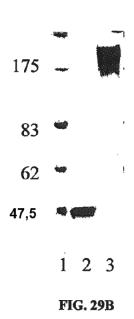
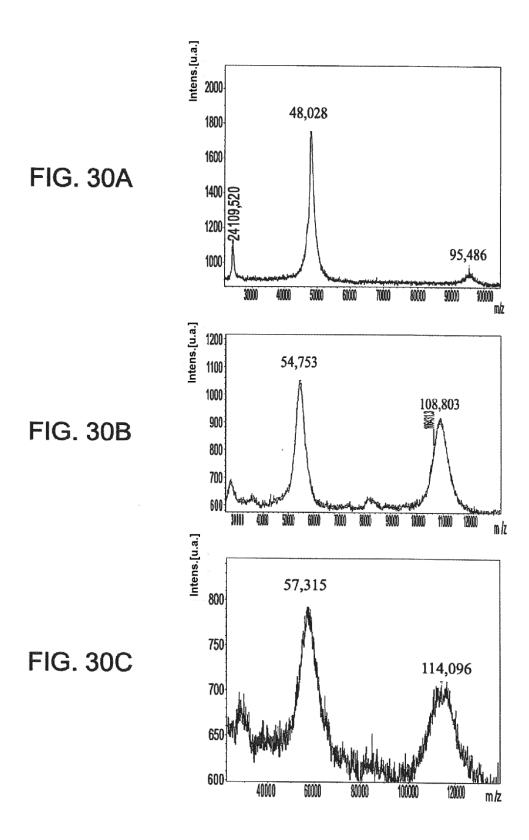
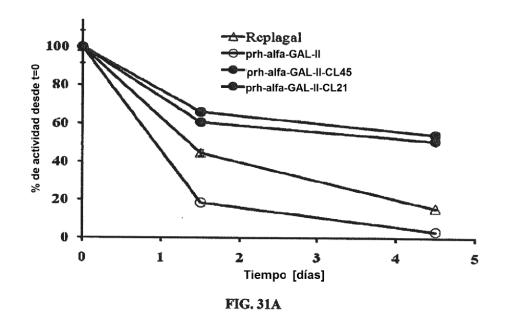
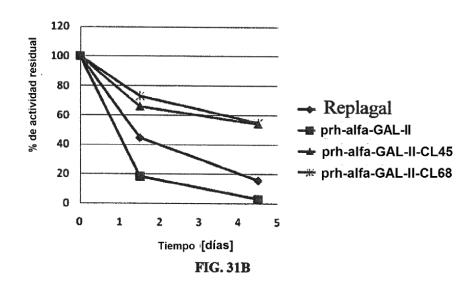
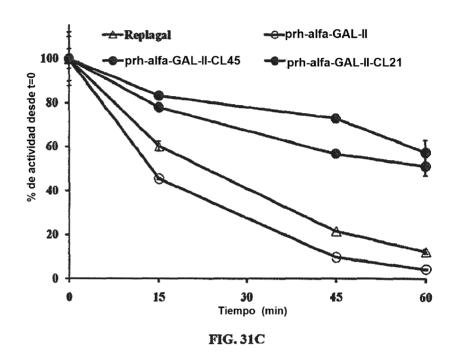
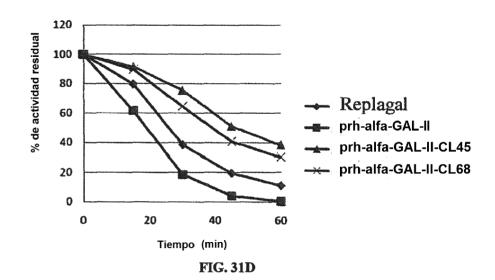


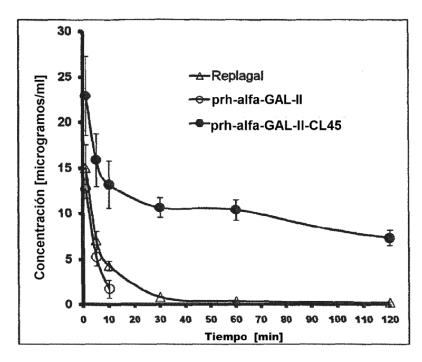
FIG. 28C

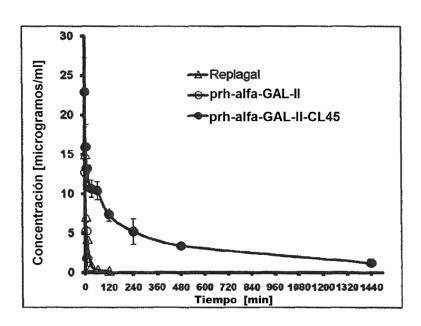






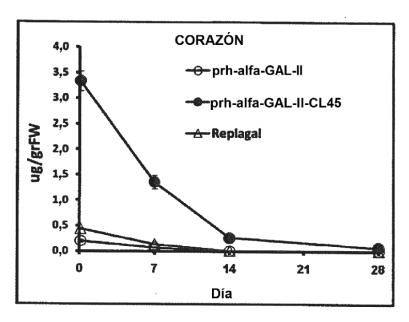

FIG. 28D











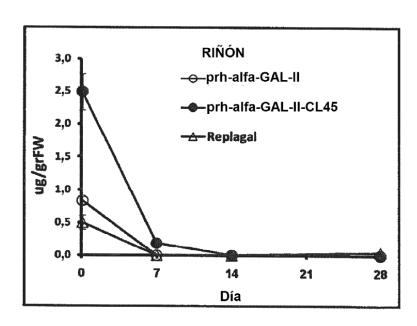
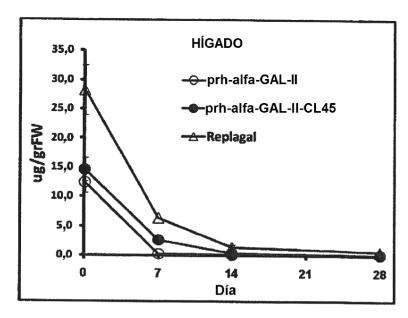
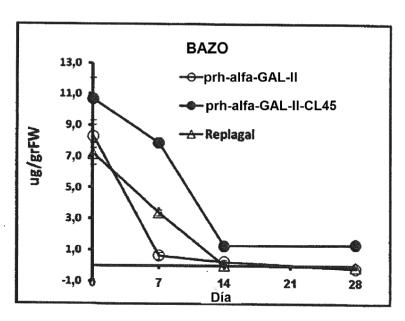
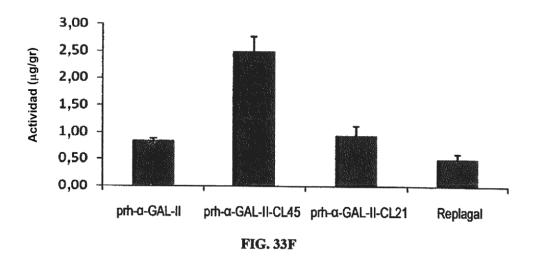
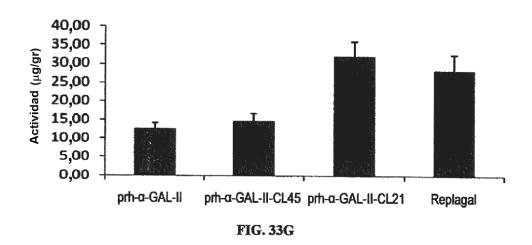

FIG. 32A

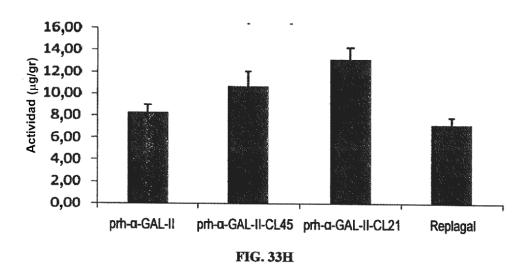
FIG. 32B

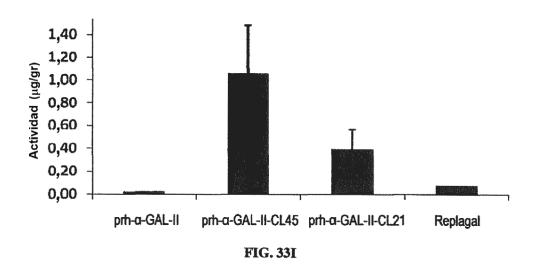
FIG. 33A

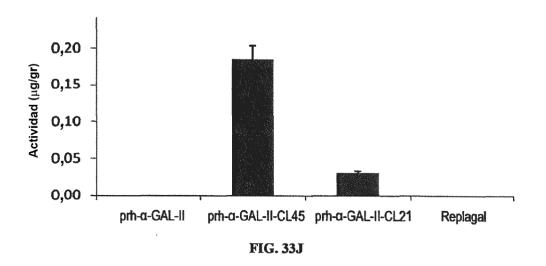
FIG. 33B

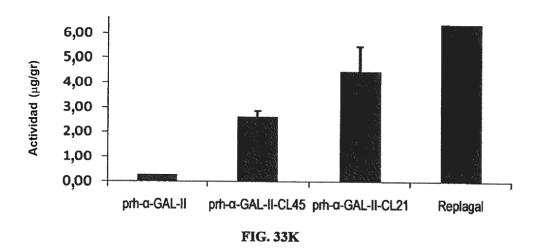




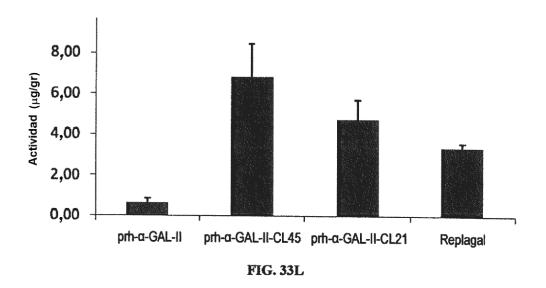

FIG. 33C




FIG. 33D







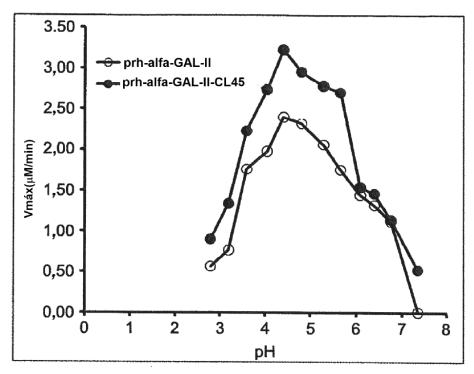
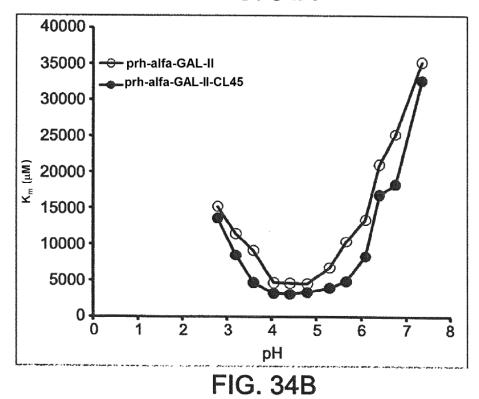



FIG. 34A

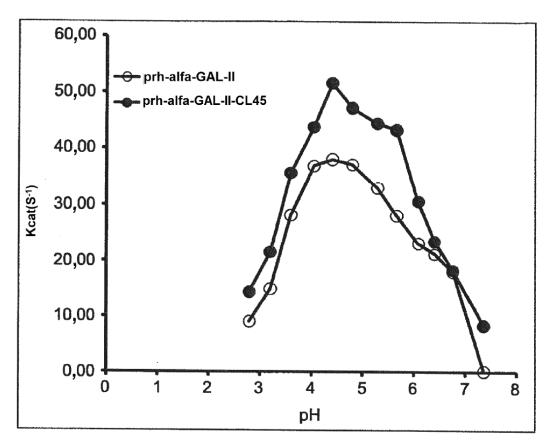
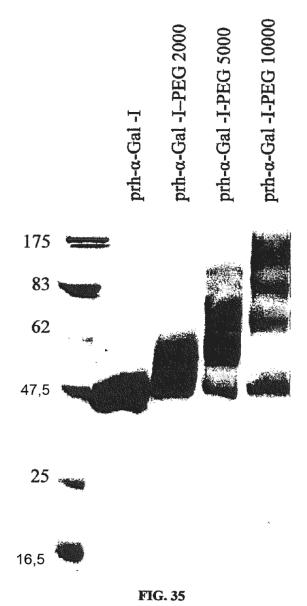
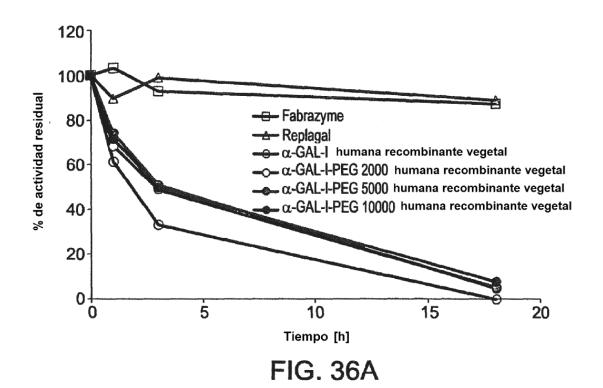
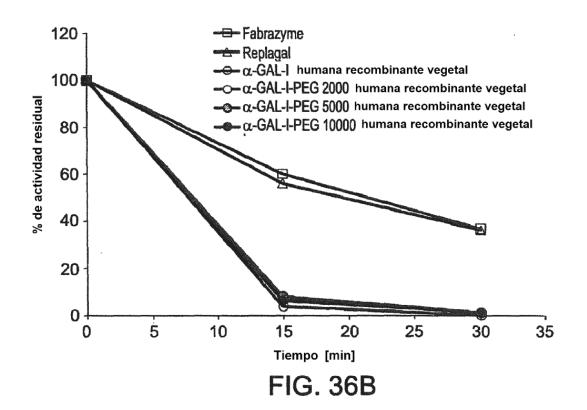





FIG. 34C



FIG. 37

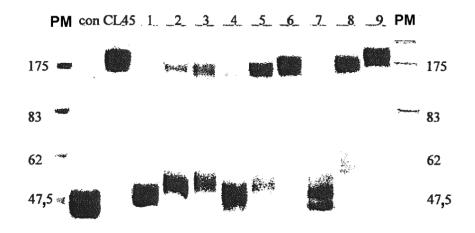
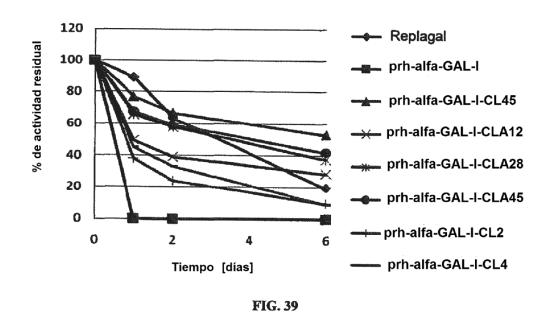
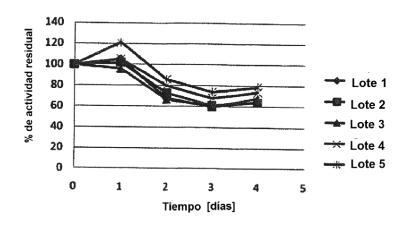
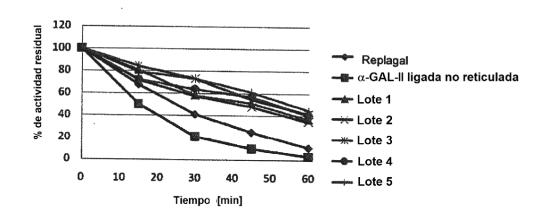
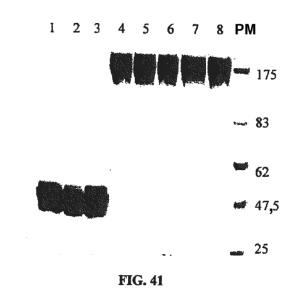
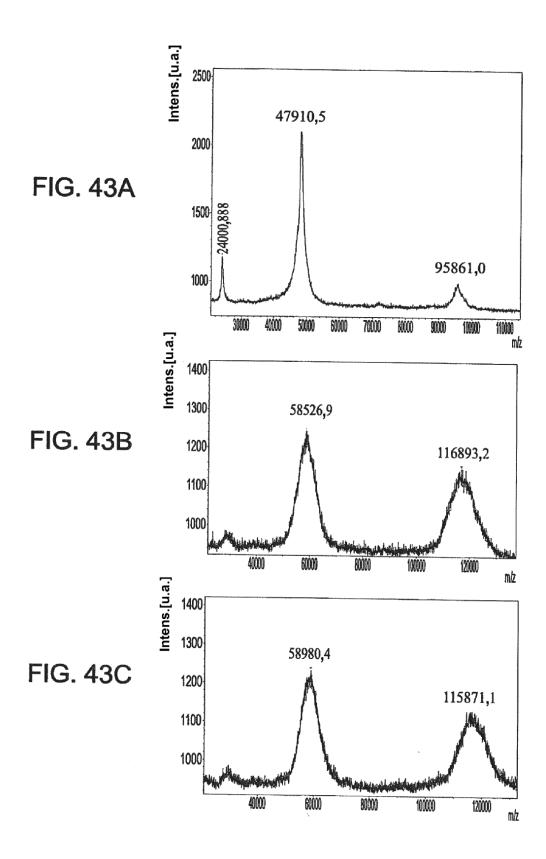
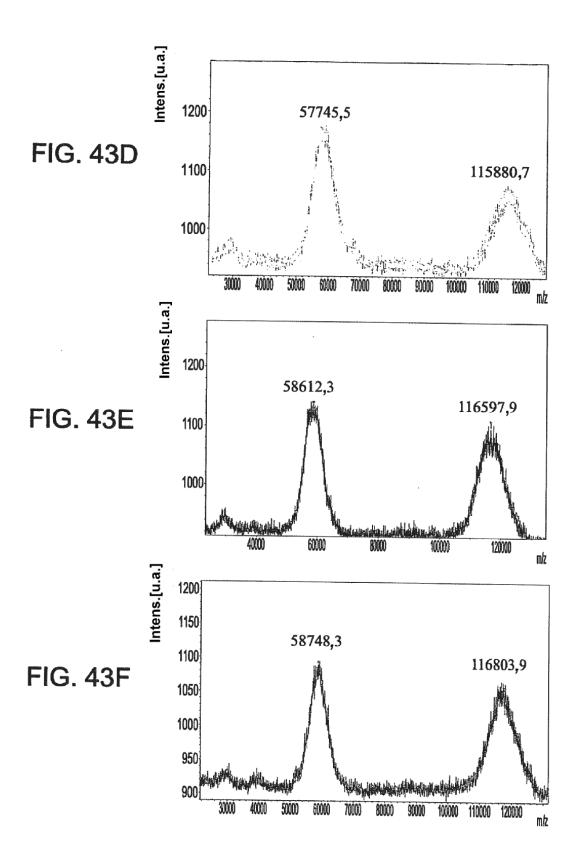
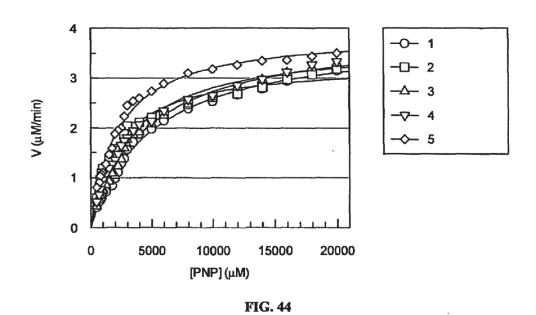




FIG. 38

FIG. 40A


FIG. 40B



M 1 2 3 4 5 6 7 8 M

FIG. 42

