

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

1 Número de publicación: 2 607 087

51 Int. CI.:	
A61K 39/00	(2006.01)
A61P 25/16	(2006.01)
A61P 25/28	(2006.01)
A61P 37/00	(2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

Т3

86 Fecha de presentación y número de la solicitud internacion	nal: 15.12.2	011 PCT/EP2011/0)73006
87) Fecha y número de publicación internacional:	21.06.2012	WO12080444	
96) Fecha de presentación y número de la solicitud europea:	15.12.2011	E 11799680 (1)	
(97) Fecha y número de publicación de la concesión europea:	28.09.2016	EP 2651435	

54 Título: Método para suprimir una respuesta inmunitaria

30 Prioridad:

15.12.2010 EP 10195279

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 29.03.2017

Titular/es:
VERENIGING VOOR CHRISTELIJK WETENSCHAPPELIJK ONDERWIJS (100.0%) De Boelelaan 1105 1081 HV Amsterdam, NL
72 Inventor/es:
KOOYK, VAN, YVETTE y UNGER, WENDY
(74) Agente/Representante:
LEHMANN NOVO, María Isabel

Aviso:En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín Europeo de Patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre Concesión de Patentes Europeas).

DESCRIPCIÓN

Método para suprimir una respuesta inmunitaria.

Campo de la invención

- La invención está en el campo de la inmunología molecular, más en particular en el campo del tratamiento médico 5 de pacientes que padecen reacciones inmunitarias no deseadas. La invención se refiere a métodos para el tratamiento de reacciones inmunitarias no deseadas y proporciona medios y métodos para suprimir una respuesta inmunitaria. La presente invención se refiere en particular a linfocitos T reguladores y a métodos de activación, expansión de cultivo, a largo plazo y uso de los mismos en inmunoterapia y para la supresión de respuestas inmunitarias, alergias y enfermedades inflamatorias.
- 10 Antecedentes de la invención

Se cree desde hace tiempo que las células supresoras tienen una función en el avance del cáncer (Dve et al., J. Exp. Med. 154:1033-1042 (1981)). De hecho, la supresión activa por los linfocitos T reguladores tiene una función importante en la regulación por disminución de las respuestas de linfocitos T a antígenos extraños y propios.

- Los linfocitos T son una clase de linfocitos, que tienen receptores de linfocitos T específicos (TCR) que se producen 15 como resultado de reorganización de genes. Los linfocitos T tienen diversas funciones, que son llevadas a cabo por la diferenciación de distintos subconjuntos de linfocitos T, reconocibles por patrones discretos de expresión de genes. Varios subconjuntos de linfocitos T principales son reconocidos basándose en la expresión de receptores, tales como TCR-[alfa]/[beta] y TCR-[gamma]/[delta] y linfocitos citolíticos naturales invariantes. Otros subconjuntos de linfocitos T se definen por moléculas de superficie y citoquinas secretadas por estos.
- 20 Por ejemplo, los linfocitos T cooperadores (células CD4) secretan citoquinas y ayudan a los linfocitos B y linfocitos T citotóxicos a sobrevivir y llevar a cabo funciones efectoras. Los linfocitos T citotóxicos (CTL) en general son células CD8, y están especializadas para matar células diana, tales como células infectadas o células tumorales. Los linfocitos citolíticos naturales (NK) están relacionados con los linfocitos T, pero no tienen TCR, y tienen una duración de vida más corta, aunque comparten algunas funciones con los linfocitos T y pueden secretar citoquinas y matar
- 25 algunos tipos de células diana.

La sangre periférica humana y de ratón contiene una pequeña población de linfocitos T que expresan el fenotipo T regulador ("Treg"), es decir positivos para los antígenos tanto CD4 como CD25 (es decir, los linfocitos T CD4 positivos también son distintivamente CD25 positivos). Caracterizados por primera vez en ratones, donde constituyen 6-10% de los ganglios linfáticos y poblaciones de linfocitos T CD4 positivos esplénicos, esta población

30 de células CD4 positivas y CD25 positivas representan aproximadamente solo 5-10% de las células mononucleares de sangre periférica (PBMC) humanas, o 2-7% de los linfocitos T CD4 positivos, aunque algunos donantes presentan una población más distinta de células CD4 positivas y CD25 positivas. Aproximadamente 1-2% de las PBMC de la sangre periférica humana son células CD4 positivas (CD4+) y CD25 intensamente positivas (CD25+).

Hay varios subconjuntos de linfocitos Treg (Bluestone et al., Nature Rev. Immunol. 3:253 (2003)). Un subconjunto de 35 células reguladoras se desarrolla en el timo. Los linfocitos Treg derivados del timo funcionan por un mecanismo independiente de citoquinas, que implica el contacto de célula con célula (Shevach, Nature Rev. Immunol 2:389 (2002)). Son esenciales para la inducción y mantenimiento de la autotolerancia y para la prevención de la autoinmunidad (Shevach, Annu. Rev. Immunol. 18:423-449 (2000); Stephens et al., 2001; Turns et al., 2001; Thornton et al., 1998; Salomon et al., Immunity 12:431-440 (2000); Sakaguchi et al., Immunol. Rev. 182:18-32 40

(2001)).

Estas células reguladoras profesionales previenen la activación y proliferación de linfocitos T autorreactivos que han escapado de la eliminación tímica o reconocen antígenos extratímicos, por lo tanto son críticos para la homeostasia y regulación inmunitaria, así como para la protección del hospedante contra el desarrollo de autoinmunidad (Suri-Paver et al., J. Immunol. 157:1799-1805 (1996); Asano et al., J. Exp. Med. 184:387-396 (1996); Bonomo et al., J.

- Immunol. 154:6602-6611 (1995); Willerford et al., Immunity 3:521-530 (1995); Takahashi et al., Int. Immunol. 45 10:1969-1980 (1998); Salomon et al., Immunity 12:431-440 (2000); Read et al., J. Exp. Med. 192:295-302 (2000). Por lo tanto, los linfocitos T CD4 positivos CD25 positivos inmunorreguladores a menudo se denominan "células supresoras profesionales".
- Sin embargo, los linfocitos Treg también se pueden generar por la activación de linfocitos T CD4 positivos 50 periféricos, maduros. Los estudios han indicado que los linfocitos Treg derivados periféricamente median sus actividades inhibidoras produciendo citoquinas inmunosupresoras, tales como el factor de crecimiento transformante beta (TGF-[beta]) e IL-10 (Kingsley et al., J. Immunol. 168:1080 (2002); Nakamura et al., J. Exp. Med. 194:629-644 (2001)). Después de activación específica de antígeno, estos linfocitos Treg pueden suprimir de forma no específica la proliferación de linfocitos T CD4 positivos o CD25 positivos (demostrado por separación FACS en ensayos supresores de cocultivo basado en mAc anti-CD3 inmovilizado en dosis baja por Baecher-Allan et al., J. Immunol. 55
- 167(3):1245-1253 (2001)).

Los estudios han mostrado que las células CD4 positivas CD25 positivas son capaces de inhibir la estimulación anti-CD3 de linfocitos T cuando se cocultivan con células presentadoras de antígeno (APC) autólogas, pero solo por contacto directo (Stephens et al., *Eur. J. Immunol.* 31:1247-1254 (2001); Taams et al., *Eur. J. Immunol.* 31:1122-1131 (2001); Thornton et al., *J. Exp. Med.* 188:287-296 (1998)). Sin embargo, en ratones este efecto inhibidor no

- 5 podía superar la estimulación de linfocitos T directa con anticuerpos anti-CD3 o anti-CD3/CD28 inmovilizados (Thornton et al., 1998). En publicaciones previas, linfocitos T CD4 positivos CD25 positivos aislados de sangre periférica requerían la activación previa con el fin de poner de manifiesto sus propiedades supresoras, ya que el cultivo directo de las células reguladoras en general era insuficiente para mediar efectos supresores (Dieckmann et al., *J. Exp. Med.* 193:1303-1310 (2001)).
- 10 Otros también han encontrado que las propiedades inhibidoras de los linfocitos T CD4 positivos CD25 positivos dependen de la activación, pero no son específicos de antígeno (Jonuleit et al., *J. Exp. Med.* 193:1285-1294 (2001); Levings et al., *J. Exp. Med.* 193(11):1295-1302 (2001); Yamagiwa et al., *J. Immunol.* 166:7282-7289 (2001)), y han demostrado la expresión constitutiva de almacenes intracelulares de antígeno 4 de linfocito T citotóxico (CTLA-4) (Jonuleit et al., 2001; Read et al., *J. Exp. Med.* 192:295-302 (2000); Yamagiwa et al., 2001; Takahashi et al., *J. Exp.*
- 15 *Med.* 192:303-310 (2000)). Además, después de la estimulación mediada por receptores de linfocitos T (TCR), los linfocitos T CD4 positivos CD25 positivos suprimen la activación de linfocitos T CD4 positivos CD25 negativos indiferenciados activados por aloantígenos y mitógenos (Jonuleit et al., 2001).

Los linfocitos Treg tanto de ratón como humanos expresan CTLA-4, sin embargo la función de CTLA-4 en la inducción de tolerancia y su capacidad para impartir función inhibidora a los linfocitos T CD4 positivos CD25
 positivos reguladores es controvertida. El CTLA-4 (también conocido como CD152) es un homólogo de CD28 y es un receptor para los ligandos CD80 y CD86. El CTLA-4 inhibe las respuestas de linfocitos T de una forma dependiente del antígeno y de TCR. Los linfocitos T que tienen función de CTLA-4 alterada tienen proliferación de linfocitos T y producción de citoquinas potenciadas. En cambio, la función de CTLA-4 potenciada conduce a la secreción de citoquinas inhibida y avance del ciclo celular alterado tanto in vitro como in vivo. En el ratón, CTLA-4 no es necesario para la función supresora de los linfocitos Treg, a diferencia de su necesidad en seres humanos.

Un estudio reciente ha mostrado que los linfocitos Treg crecen extensamente in vivo (Tang, *J. Immunol.* 171:3348 (2003)), mientras que otros han sugerido que la eficacia de la vacunación terapéutica para el cáncer en ratones se puede potenciar eliminando linfocitos T CD4 positivos CD25 positivos (Sutmuller et al., *J. Exp. Med.* 194:823-832 (2001)). Los estudios han indicado también que la disminución de las células reguladoras conduce a más respuestas

- 30 inmunitarias específicas de tumor y la erradicación de tumores en animales que de otra manera no responden (Onizuka et al., *Cancer Res.* 59:3128-3133 (1999); Shimizu et al., *J. Immunol.* 163:5211-5218 (1999)). Se mostró que cepas de ratones susceptibles hechos deficientes en CD4 positivos CD25 positivos por timectomía neonatal, desarrollaban un amplio espectro de autoinmunidades específicas de órgano que se podían prevenir por infusión de linfocitos T CD4 positivos CD25 positivos a los 10-14 días de edad (Suri-Payer et al., *J. Immunol.* 160:1212-1218
- (1998)). Este estudio también encontró que los linfocitos T CD4 positivos CD25 positivos no podían inhibir la autoinmunidad inducida por clones de linfocitos T específicos de autoantígenos. La transferencia de linfocitos T CD4 positivos CD25 negativos a ratones sin sistema inmunitario, también se informó que conducía al desarrollo de trastornos autoinmunitarios que se podían prevenir por la cotransferencia de linfocitos T CD4 positivos CD25 positivos USA de linfocitos reducidos primero en células CD25 positivas (Sakaguchi et al., *J. Immunol.* 155:1151-1164 (1995)).
 - En lo sucesivo, el factor de transcripción Forkhead box P3 (FoxP3) se relacionó con la generación y función de los Treg que se encuentran de forma natural. Los ratones en los se eliminó la proteína FoxP3 debido a una mutación en el genFoxP3, desarrollaron síndromes autoinmunitarios graves y enfermedades de desgaste (llamados ratones "scurfy"; Brunkow et al., *Nat Genet.* 27:68-73, 2001). Este descubrimiento fundamental permitió atribuir la causa del síndrome IPEX ligado a la cromosoma X (input) descupación policidades de descubrimiento fundamental permitió atribuir la causa del síndrome IPEX ligado a la cromosoma X (input)
- 45 síndrome IPEX ligado al cromosoma X (inmunodesregulación, poliendocrinpatía y enteropatía, ligado al cromosoma X) en seres humanos a una mutación en el gen FoxP3 (Bennett et al. *Nat Genet.* 27: 20-21; 2001). Estudios posteriores también demostraron la presencia de FoxP3 en algunos subconjuntos de Treg adaptativos.

Sin embargo, los datos también indican que la función de las células CD4 positivas CD25 positivas no está limitada a la autotolerancia y prevención de autoinmunidad. Aunque pocos estudios se han dirigido a la función de los linfocitos

- 50 T CD4 positivos CD25 positivos en alorrespuestas o en trasplante, se ha descrito que los linfocitos T CD4 positivos CD25 positivos previenen el rechazo de acinjerto, tanto in vitro como in vivo (Hara et al., *J. Immunol.* 166:3789-3796 (2001); Taylor et al., *J. Exp. Med.* 193:1311-1318 (2001)). La estimulación alogénica de la proliferación de linfocitos T humanos también es bloqueada por los linfocitos T CD4 positivos CD25 positivos (Yamagiwa et al., 2001), mientras que el laboratorio de Wood ha mostrado que los linfocitos T CD4 positivos CD25 positivos Suprimen respuestas de linfocitos mixtas (MLR), pero solo cuando el aloantígeno era presentado por la ruta de alorreconocimiento indirecta, y no la directa (Hara et al., 2001). Es probable que la presentación de antígeno directa
- alorreconocimiento indirecta, y no la directa (Hara et al., 2001). Es probable que la presentación de antígeno directa se produzca entre los linfocitos T reguladores y los linfocitos T respondedores estimulados con anticuerpos anti-CD3/28, ya que las células CD4 positivas 25 positivas separadas están muy reducidas en APC profesionales.
- Se ha mostrado que la ausencia de Treg o reducción de Treg produce el desarrollo de autoinmunidad, tal como diabetes de tipo 1, enfermedad inflamatoria del intestino (IBD), tiroiditis, esclerosis múltiple y lupus eritematosos sistémico (LES). Además, la enfermedad puede ser invertida por la transferencia adoptiva de linfocitos Treg CD4+

CD25+. Además de una deficiencia en el número de Treg, también se ha mostrado que la regulación de linfocitos T en la autoinmunidad fracasa debido a una deficiencia en la función de Treg para inhibir los linfocitos T efectores. Está claro que los defectos en el número y función de linfocitos Treg pueden contribuir a la enfermedad, y las terapias dirigidas a estos defectos tienen el potencial de prevenir y también curar estas enfermedades. Los estudios

- 5 con animales sugieren que un aumento del número de linfocitos Treg en el sitio de la inflamación es probable que sea terapéutico en la autoinmunidad. Esto se puede lograr por transferencia adoptiva de Treg autólogos expandidos in vitro o por el uso de agentes que promueven la proliferación, supervivencia e inducción de linfocitos Treg. La identidad de factores que influyen en el número y función de linfocitos Treg no está claramente identificada en este momento, y puede ser crucial para la aplicación en enfermedades autoinmunitarias.
- 10 Las células presentadoras de antígeno como DC, se sabe que tienen capacidad para diferenciar linfocitos T CD4 indiferenciados en diferentes linajes de linfocitos T, tales como Th1, Th2, Th17 y Treg. Estudios recientes demuestran que una población de DC de intestino, en particular DC CD103+ de la lámina propia, puede promover la conversión de linfocitos T CD4+ indiferenciados en iTreg FoxP3+ por la secreción de ácido retinoico (RA) junto con TGF-β. Las DC expresan diferentes receptores tales como CD80/86 que se pueden unir a CTLA-4 en Treg que
- 15 producen la inducción de la enzima indolamina-2,3-dioxigenasa (IDO) en DC. La IDO convierte el triptófano en metabolitos proapoptóticos que suprimen los linfocitos T efectores. Por otra parte la implicación de MHC de clase II en DC por LAG3 en los Treg suprime la maduración de las APC y reduce su capacidad para activar linfocitos T. Estos descubrimientos demuestran que las DC pueden diferenciar linfocitos T CD4 en Treg. Sin embargo, se sabe todavía poco sobre el mecanismo y las señales que llegan a las DC para dar instrucciones a los linfocitos T CD4 indiferenciados para diferenciarse en Treg.

Los pacientes que padecen enfermedades autoinmunitarias o inflamatorias se beneficiarían mucho de tratamientos en donde se mejoren el número o función de los Treg.

El documento US 2005/201952 describe métodos para tratar una infección de hepatitis vírica en un sujeto, que incluye administrar ácido N-glicolilneuramínico o un derivado del mismo a un sujeto. DELL A; MORRIS H R,
"Glycoprotein structure determination by mass spectrometry", *Science*, vol. 291, no. 5512, 23 de marzo 2001 (2001-03-23), páginas 2351-2356, resume los principios clave de la biosíntesis de N- y O-oligosacáridos, centrándose en la glucosilación animal. Dell et al. describen los diferentes métodos de MS de ionización suave que se usan actualmente en glucobiología, y destaca algunas zonas de glucobiología estructural de mamíferos en las que actualmente la MS tiene una función fundamental. Una de las glucoproteínas descrita es la glicodelina-A (Gd-A)
encontrada en el líquido amniótico, que tiene potentes actividades anticonceptivas e inmunosupresoras, está alfa-2,3-sialada. El documento WO 2005/056047 describe medios para afectar a enfermedades que están asociadas con la acción de sialidasas endógenas por administración de ácido siálico, análogos de ácido sálico o anticuerpo antisialidasa. El documento WO 2005/056047 no menciona el uso de un antígeno sialilado para suprimir una respuesta inmunitaria dirigida específicamente hacia el antígeno.

35 Los autores de la invención han establecido que la captación de antígenos glucosilados específicos por las DC regula el número y función de los Treg. Esto abre nuevas oportunidades para el tratamiento de reacciones inmunitarias no deseadas y conduce a nuevos métodos y medios para el tratamiento de enfermedades autoinmunitarias e inflamatorias.

Resumen de la invención

- 40 Los autores de la invención encontraron que los ácidos siálicos en antígenos propios y no propios tienen una función importante en la inducción de la tolerancia. Como un sistema modelo, los autores de la invención investigaron la alergia alimentaria bien conocida contra al ovoalbúmina (OVA). La ovoalbúmina es el alérgeno principal en el huevo de pollo. Se han estudiado en seres humanos las respuestas de linfocitos T CD4 contra la OVA (Heine et al, *Current Allergy and Asthma reports* 6, 145-152, 2006). Para estudiar las respuestas en ratones, se han generado ratones transgénicos en receptores de linfocitos T que expresan un TCR específico de la OVA en linfocitos T CD4 (ratones
- transgénicos OT-II). Estos ratones se usan ampliamente.

Por lo tanto, se empezó a modificar el modelo de antígeno de OVA con Neu5Ac α 2-3Gal β 1-4Glc, creando sia-alfa-2,3-OVA y se evaluaron las consecuencias funcionales en la activación y diferenciación de linfocitos T CD4⁺ tras cocultivo con DC cargadas con sia-2,3-OVA.

50 Se estableció que dicha antígeno conjugado con sia-alfa-2,3 era capaz de suprimir una respuesta inmunitaria y por lo tanto se podría usar ventajosamente en la supresión de una respuesta inmunitaria en un paciente alérgico a la ovoalbúmina.

Por lo tanto, en un concepto más general, la invención se refiere a un antígeno sia-alfa-2,3-conjugado para usar en la supresión de una respuesta inmunitaria en un paciente que necesite dicho tratamiento.

55 Descripción detallada de la invención

Los ácidos siálicos son los monosacáridos terminales más prevalentes en la superficie de las células de mamíferos. Los ácidos siálicos de mamíferos más comunes son el ácido N-acetilneuramínico (Neu5Ac) y N-glicolilneuramínico

(Neu5Gc). Los seres humanos no pueden sintetizar Neu5Gc debido a una mutación irreversible en el gen que codifica la enzima responsable de la conversión de Neu5Gc en Neu5Ac. Los ácidos siálicos pueden estar unidos $\alpha 2,3$ -, $\alpha 2,6$ - o $\alpha 2,8$ - al glucano subyacente. Los ácidos siálicos se encuentran a menudo en los extremos exteriores de las cadenas de oligosacáridos expuestos en la superficie, unidos a proteínas y lípidos. En esta posición terminal, sirven como ligandos para las lectinas tales como lectinas similares a lg que se unen a ácido siálico (Siglecs).

5

10

Se empezó evaluando si la conjugación del alfa-sia-2,3 a la OVA (en lo sucesivo denominado OVA-sia-2,3) afectaba esencialmente a las respuestas de linfocitos T CD4+ específicas de OVA in vitro. Para ello, los linfocitos T CD4+CD62Lhi CD25- se aislaron de ratones OT-II y se cocultivaron con BMDC que se habían cargado con OVA-sia-2,3 u OVA natural durante 4 h. Seis días después, se analizó la diferenciación de linfocitos T CD4 cooperadores por tinción para evaluar FoxP3 o IFNγ intracelular. Se observó que los linfocitos T CD4+ indiferenciados se convertían en linfocitos T FoxP3+ cuando se cebaban con DC cargadas con OVA-sia-2,3 (figura 1A, paneles superiores).

Las DC cargadas con OVA natural no cebaban los linfocitos T para diferenciarlos en Treg. En cambio, estos linfocitos T se convertían en linfocitos T efectores como se muestra por la tinción de IFNγ (figura 1A, paneles inferiores). Esto se confirmó cuando se examinó el líquido sobrenadante de estos cultivos (figura 1B, panel superior). Además, se detectaron niveles altos de las citoquinas de linfocitos T efectores TNFα e IL-6 en estos cultivos. En cambio, estas estaban prácticamente ausentes en cultivos de linfocitos T cebados con DC con OVA-sia-2,3. Puesto

- 15 Además, se detectaron niveles altos de las citoquinas de linfocitos T efectores TNFα e IL-6 en estos cultivos. En cambio, estas estaban prácticamente ausentes en cultivos de linfocitos T cebados con DC con OVA-sia-2,3. Puesto que la generación de Treg FoxP3+ está estrechamente relacionada con la generación de Th17, se evaluó la presencia de células Th17 analizando la IL17A en el líquido sobrenadante. No se detectaron cantidades significativas de IL17A en el líquido sobrenadante de cocultivos de OVA-sia-2,3-DC-linfocitos T.
- 20 Además, se observó que la cantidad de las citoquinas de Th1 efectores IFNγ y TNFα era todavía significativamente menor cuando los linfocitos T indiferenciados se cebaban con OVA-sia-2,3-DC que con OVA-DC en presencia de estímulos que promueven Th1 o Th17 (figura 1C). Sólo en presencia del agente promotor de Th17 prostaglandina (PGN) se detectaron niveles altos de IL17A en cultivos con OVA-sia-2,3-DC. No se detectaron cantidades significativas de IL10 en los cocultivos de DC-linfocitos T (no se muestran los datos).
- 25 Juntos, estos datos muestran que el cebado de linfocitos T CD4 indiferenciados con DC cargadas con OVA-sia-2,3 promueve la generación nueva de linfocitos T FoxP3+. Además, se previene la generación de linfocitos T efectores, incluso en un entorno que promueve Th1 o Th17. sin embargo, están presentes más linfocitos T que segregan IL17A cuando los linfocitos T CD4+ indiferenciados se ceban con DC cargadas con OVA-sia-2,3 en un medio que favorece Th17.
- 30 Como un control, se llevó a cabo el siguiente experimento. La generación de linfocitos T FoxP3+ en ausencia de linfocitos T efectores tras el cebado de linfocitos T CD4 indiferenciados con DC cargadas con OVA-sia-2,3, podría ser teóricamente el resultado de cantidades bajas de antígeno presentado por las DC en moléculas MHC de clase II. Para abordar esto, se incubaron BMDC con OVA-sia-2,3 con marcaje fluorescente y se evaluaron tanto la unión como la captación en diferentes tiempos de medición. Está claro a partir de la figura 2A y B que la modificación de CN(A) en entre el ente el entre el en
- 35 OVA con sia-2,3 da como resultado una mejor unión y captación por las BMDC comparado con la OVA no modificada. Por lo tanto, aumenta la captación de OVA-sia-2,3 por las BMDC.

A pesar de esta mayor captación, es posible que la OVA-sia-2,3 sea degradada rápidamente tras la internalización. Para descartar esta posibilidad, posteriormente se usaron estas DC cargadas con antígeno en un ensayo de presentación de antígeno con linfocitos T CD4+ específicos de OVA. La OVA natural es presentada bien por las moléculas MHC de clase II como se muestra por la proliferación significativa de linfocitos T (figura 2C). La proliferación de los linfocitos T CD4+ era solo significativamente diferente cuando se usó una dosis alta de OVA conjugado con ácido siálico. Con dosis menores no se detectó diferencia significativa en la proliferación de linfocitos T CD4 inducida por las DC cargadas con OVA natural o sia-2,3-OVA. Estos datos pueden indicar que la OVA-sia-2,3 entra en una ruta de procesamiento y presentación similar a la OVA natural.

- 45 En vista de los datos sobre la captación y presentación de antígeno, se planteó la hipótesis de que la captación de OVA-sia-2,3 produce una cascada de señalización, dando como resultado la modulación del fenotipo de DC. Por lo tanto, se examinó la expresión de transcritos de moléculas coestimuladoras en BMDC tras 6 h de incubación con OVA-sia-2,3 y se comparó con la expresión en BMDC incubadas con OVA natural o BMDC incubadas solo en medio. A partir de la figura 3A está claro que la expresión de CD80 y CD86 es menor en BMDC incubadas con OVA-
- 50 sia-2,3 que con OVA natural, aunque no significativo. Se obtuvieron datos similares para CD40 y MHC de clase II (no se muestran los datos). Además, las moléculas asociadas con la tolerancia no eran expresadas distintivamente o en mayor cantidad por las BMDC cargadas con OVA-sia-2,3. Además, parece que disminuye la expresión de PD-L2 en BMDC cargadas con OVA-sia-2,3.
- El análisis de la expresión de ARNm de citoquinas puso de manifiesto una expresión significativamente menor de niveles de IL1β en DC cargadas con OVA-sia-2,3 (figura 3B). En cambio, la expresión de IL23p19, que se puede asociar con la subunidad p40 de la IL12 para formar IL23, era significativamente elevada en DC cargadas con OVAsia-2,3. El examen adicional del ARNm que codifica las citoquinas antiinflamatorias IL10 o TGFb no puso de manifiesto una diferencia significativa (figura 3B).

Juntos, estos datos indican que la captación de la OVA-sia-2,3 en ausencia de estímulos adicionales no produce la expresión de marcadores tolerogénicos bien conocidos. Por lo tanto, se ha demostrado que un antígeno modificado con sia-2,3 captado por DC modifica la diferenciación de linfocitos T CD4 indiferenciados en Treg. Los datos demuestran que esto no es el resultado de dosis baja de presentación de antígeno, puesto que dosis altas de

- 5 antígeno eran captadas de forma similar al antígeno no modificado o antígenos modificados con sia-2,6. Se ha analizado si la captación de sia-2,3 puede modificar el fenotipo tolerogénico de las DC, pero no se vieron alteraciones importantes en la expresión de CD80/CD86, CD40 o MHC de clase II. Se observó que la expresión de la molécula coestimuladora PDL-2 era menor en DC que habían captado OVA-sia-2,3 comparado con OVA natural. Tras el análisis de la producción de citoquinas por las DC, se observó que el perfil de citoquinas inflamatorias IFNy,
- 10 IL-6 y TNFa) era menor en las DC tras la captación de OVA-sia-2,3, ilustrando una potenciación hacia una característica antiinflamatoria. Cuando se analizaba el perfil de citoquinas antiinflamatorias, se observó poca producción potenciada del TGFb y no se observaron alteraciones en la IL-10 e IL17A.

El descubrimiento de que la alfa-2,3-sialilación del antígeno potencia la diferenciación de linfocitos T reguladores
 FoxP3+ específicos de antígeno, arroja una nueva luz en la forma en que el mecanismo y señales llevan a las DC a
 dar instrucciones a los linfocitos T CD4 indiferenciados para diferenciarse en Treg. También posibilita una nueva
 área entera de tratamiento de enfermedades autoinmunitarias y enfermedades inflamatorias. Por lo tanto, la
 invención se refiere a un antígeno conjugado con sia-alfa-2,3 para usar en la supresión de una respuesta inmunitaria
 en un paciente que necesite dicho tratamiento.

 La expresión antígeno conjugado con sia-alfa-2,3 se refiere a un antígeno tal como una proteína, polipéptido, lípido u
 otra forma, unido covalentemente al ácido siálico Neu5Acα2-3Galβ1-4Glc, creando un antígeno conjugado con siaalfa-2,3.

Dicho antígeno se puede usar eficazmente para el tratamiento de enfermedades autoinmunitarias tales como esclerosis múltiple, artritis reumatoide, diabetes de tipo 1, gastritis y enfermedad inflamatoria del intestino. También se puede usar para el tratamiento de enfermedades inflamatorias, tales como psoriasis, alergia, enfermedad de Alzheimer, enfermedad de Parkinson y trasplante.

En otra realización, la invención se refiere a un método para suprimir una respuesta inmunitaria en un paciente que necesite dicho tratamiento, en donde se administra un antígeno modificado con sial alfa-2,3 a dicho paciente.

Se puede contemplar que la respuesta inmunitaria es incluso suprimida mejor cuando los antígenos específicos de enfermedad son sialilados y administrados a los paciente. Por lo tanto, la invención se refiere también a un antígeno conjugado con sia-alfa-2,3 para usar en la supresión de una respuesta inmunitaria en un paciente que necesite dicho tratamiento, en donde el antígeno es específico de la enfermedad. Se citan varios ejemplos de antígenos específicos de enfermedad que funcionan bien en los métodos de acuerdo con la invención, en la tabla 1.

Tabla 1

25

30

Enfermedad	Antígenos específicos de enfermedad
Esclerosis	Mielina, MOG
múltiple	
Artritis	proteínas citrulinadas; cartílago humano gp39; HSP70, HSP60; colágeno de tipo II
reumatoide	
Diabetes de	preproinsulina; GAD65; IGRP; IA-2; preproIAPP; transportador de zinc 8
tipo 1	
Alergias	Productos Fel d 1 (alergia a gatos) pelaje y caspa de animales; cáliz de cucarachas; lana; excreción de ácaros del polvo, penicilina; sulfonamidas; anestésicos locales salicilatos, apio y apio nabo; maíz; huevos, fruta; calabaza, alubias; guisantes; cacahuetes; soja; leche; mariscos; sésamo; soja; frutos secos; nueces pecanas; almendras; trigo; veneno de picadura de abeja; veneno de la picadura de avispa; picaduras de mosquitos, látex, metal, polen de las plantas (fiebre del heno), hierba, raigrás, fleo de los prados, ambrosía, plántago, ortiga, artemisia vulgaris, chenopodium album, árboles de acedera, abedul, aliso, avellano, carpe, aesculus, sauce, álamo, platanáceas, tilia, olivos, cedro de montaña.

- 35 De esta forma se modificarían antígenos específicos, relacionados con la enfermedad, tales como proteínas o péptidos o como nanopartículas o partículas encapsuladas, y se podría usar el ácido alfa-2,3-silálico como la estructura de glucano que, ex vivo o in vivo, puede dar instrucciones a las APC tales como las DC para iniciar un programa antiinflamatorio y potenciar la inducción de Treg que suprimen las inflamaciones y recuperarse de la enfermedad.
- 40 Leyendas de las figuras

Figura 1: El cebado de linfocitos T CD4 indiferenciados con DC cargadas con OVA-sia-2,3 produce la generación nueva de linfocitos T FoxP3+ y previene la formación de linfocitos T efectores.

A. BMDC inmaduras se incubaron con 50 µg/ml de OVA o OVA-sia-2,3-DC durante 4 horas. Después de lavado exhaustivo, se añadieron linfocitos T CD4 específicos de OVA indiferenciados en una relación 1:10. El día 6 de cultivo, las células se recogieron, se fijaron y se permeabilizaron, y se tiñeron para evaluar CD4 y FoxP3 (panel superior), o después de 6 h de estimulación con PMA/ionomicina/brefeldina A, para el IFNy (panel inferior). Los

- 5 resultados son representativos de cinco experimentos independientes. B, se examinó en los líquidos sobrenadantes de estos cultivos la presencia de citoquinas de linfocitos T efectores (IFNy, TNFa, IL6 e IL17A) así como citoquina antiinflamatoria IL10. C. La cantidad de las citoquinas de linfocitos T efectores IFNy y TNFa también se reducía cuando se añadieron CpG o PGN a cocultivos que contenía DC cargadas con OVA-sia-2,3. Solo en presencia de PGN, las DC cargadas con OVA-sia-2,3 promovían la diferenciación en Th17. Los resultados representados son
- 10 representativos de cuatro experimentos independientes.

15

Figura 2: No hay presentación potenciada en MHC de clase II de OVA-sia-2,3 a pesar de la mayor unión y captación por las DC

El OVA-neo-glucoconjugado OVA-sia-2,3 se marcó de forma fluorescente para evaluar la unión y captación por las BMDC. A, Para evaluar la unión de la neo-glucoproteínas, 10⁵ BMDC se incubaron con 50 µg/ml de antígeno durante 30 min a 4°C. La unión se comparó con la de OVA natural. CTRL indica células incubadas solo con medio, que se usaron como control negativo. La unión se evaluó por citometría de flujo. Se muestran las gráficas de facs representativas. B, además, se determinó la captación por incubación de las BMDC con 50 µg/ml de antígeno a 37°C. La captación de antígeno se determinó en los tiempos de medición indicados usando citometría de flujo y se representa como MFI. Se muestra un experimento representativo de tres. C. Para examinar si la mayor captación de

20 OVA-sia-2,3 también aumentaba la presentación en MHC de clase II, se cocultivaron 2,5x10⁴ BMDC CD11c⁺, pulsadas con las concentraciones indicadas de OVA-sia-2,3 o de OVA natural, con linfocitos T CD4⁺ específicos de OVA. La proliferación se determinó por adición de 3H-timidina durante las últimas 16 h de un periodo de cultivo de tres días.

Figura 3: No hay inducción de una característica tolerogénica en BMDC después de incubación con OVA-sia-2,3

- 25 Para examinar si la incubación de BMDC con OVA-sia-2,3 inducía un fenotipo tolerogénico en las BMDC, se incubaron 10⁵ BMDC con 50 µg/ml de antígeno. Esto se comparó con el fenotipo inducido por incubación de BMDC con OVA natural. Seis horas después, se aisló el ARN y se examinó la expresión de: A. marcadores coestimuladores y B. citoquinas, usando RT-PCR. Se muestra un experimento representativo de tres. El P valor <0,05 se consideró significativamente diferente de las respuestas a la OVA natural.
- Figura 4: El cebado de linfocitos T CD4 indiferenciados con DC esplénicas aisladas ex vivo cargadas con Sia-OVA 30 produce la generación nueva de linfocitos T FoxP3+ con propiedades supresoras

DC esplénicas CD11c⁺ aisladas ex vivo se incubaron con 50 µg/ml de Sia-OVA u OVA natural durante 4 horas. Después de lavado exhaustivo, se añadieron linfocitos T CD62L^{hi}CD4⁺ en una relación 1:10. El día 6 de cultivo, las células se recogieron, se fijaron y se permeabilizaron, y se tiñeron para evaluar CD4 y FoxP3 (A), o después de 6 h

de estimulación con PMA/ionomicina/brefeldina A, para el IFNy (B). Se examinó en los líquidos sobrenadantes de los 35 cultivos la presencia de citoquinas de efectores (IFNy, TNFa, IL6) así como la citoquina antiinflamatoria IL10 (D). Además, añadiendo estos linfocitos T a cocultivos de linfocitos T OT-II marcados con CFSE y DC cargadas con OVA en una relación 1:1, se pudieron evaluar las propiedades supresoras. La proliferación de linfocitos T respondedores se analizó 4 días más tarde usando citometría de flujo (C). Los resultados son representativos de dos experimentos 40 independientes.

Figura 5: La captación del antígeno sialilado produce DC tolerogénicas incluso en presencia de un estímulo proinflamatorio

DC esplénicas aisladas ex vivo se incubaron con 50 µg/ml de Sia-OVA en presencia de 100 ng/ml de LPS. Cuatro horas más tarde, las células se lavaron exhaustivamente y se añadieron linfocitos T CD62L^{hi}CD4⁺ específicos de OVA indiferenciados, en una relación 1:10. El día 6 de cultivo, las células se recogieron, se fijaron y se 45 permeabilizaron, y se tiñeron para evaluar CD4 y FoxP3 (A, panel superior), o después de 6 h de estimulación con PMA/ionomicina/brefeldinaA, para la citoquina de efectores IFNy (A, panel inferior). Además, se examinó en los líquidos sobrenadantes de los cultivos la presencia de citoquinas de efectores (IFNγ, TNFα, IL6) (B).

Figura 6: Inducción nueva de linfocitos T FoxP3⁺ tras inyección intravenosa de Sia-OVA.

- Figura 6A: ratones C57BL/6 a los que se transfirieron linfocitos T OT-II marcados con CFSE y un día después se les 50 inyectó PBS, OVA o Sia-OVA por vía intravenosa. Análisis de linfocitos T OT-II (identificados basándose en receptores de linfocitos T Tg) por dilución de CFSE en bazo (izquierda) y ganglios linfáticos (derecha). Fig. 6B: ratones C57BL/6 a los que se transfirieron linfocitos T OT-II marcados con CFSE y un día después se les inyectó PBS, OVA o Sia-OVA por vía subcutánea. Análisis de los bazos (izquierda) y ganglios linfáticos (derecha). Para
- 55 examinar si Sia-OVA también tenía propiedades tolerogénicas in vivo, se inyectaron en ratones C57BL/6 a los que se había transferido adoptivamente linfocitos OT-II CD4⁺ CD25⁻ marcados con CFSE, 100 µg de Sia-OVA por vía i.v. (A) o s.c. (B). Esto se comparó con inyección de 100 µg de OVA. Los ratones de control recibieron PBS. Cuatro días más tarde, se aislaron el bazo y ganglios axilares y linfáticos inguinales y se tiñeron las suspensiones unicelulares,

para evaluar los TCR Tg (Valfa2, Valfa5), CD4 y se analizó la dilución de CFSE de los linfocitos T CD4 Tg. Además, se cotiñeron las células para evaluar FoxP3 (después de fijación y permeabilización) y se determinó la cantidad de linfocitos T Tg TCR FoxP3+ CFSE+ después de inyección i.v. del antígeno (C). La población de linfocitos T CD4+ transferida adoptivamente contenía 99% de linfocitos T CD25-, indicando que no se transfirieron Treg CD4+ CD25+ que se encuentran de forma natural (D). Se muestra un experimento representativo de dos. El P valor <0,05 se consideró significativamente diferente de las respuestas a la OVA natural.

Figura 7: La invección de Sia-OVA previene la generación de células efectoras in vivo.

- Para examinar la fuerza de la tolerancia inducida por Sia-OVA in vivo, se inyectaron a ratones C57BL/6 100 µg de Sia-OVA por vía i.v. A los ratones de control se les inyectó 100 µg de OVA natural. Una semana más tarde, los ratones se sensibilizaron por inyección de 200 µg de OVA/25 µg de anticuerpo antiCD40 y 50 µg de poli-I:C. Otra semana más tarde, los ratones se sacrificaron, se aislaron los bazos y se evaluó la presencia de linfocitos T FoxP3+, bien después de fijación, permeabilización y tinción de CD4 y FoxP3+ (A. panel izquierdo) o por RT-PCR después de aislamiento del ARN (A, panel derecho). Además, los esplenocitos se volvieron a estimular durante 5 h con OVA 257-264 en presencia de brefledina A, se recogieron las células se fijaron y se permeabilización, y se tiñeron para
- 15 evaluar CD4 e IFNγ (B, panel izquierdo). Además, se analizó la presencia de IFNγ en los líquidos sobrenadantes por ELISA (B, panel derecho). Además, las células del bazo se volvieron a estimular durante 24 h con OVA 265-279; la brefeldina A estaba presente durante las últimas 6 horas. Se recogieron las células, se fijaron y se permeabilizaron y se tiñeron para evaluar CD4 e IFNγ (C), o IL10 (D, panel izquierdo). La presencia de IL10 en los líquidos sobrenadantes del cultivo también se analizó por ELISA en cultivos que no contenía brefeldina A (D, panel derecho).
- 20 Se muestra un experimento representativo de tres. Las respuestas se compraron con ratones no tratados previamente. El P valor <0,05 se consideró significativamente diferente de las respuestas a la OVA natural.

Figura 8: Expresión baja de CD40 en DC cargadas con Sia-OVA

Se incubaron BMDC con Sia-OVA o con OVA natural en ausencia o presencia de LPS. Las DC de control se incubaron con medio o LPS. 24 h más tarde, las células se tiñeron con anticuerpos anti-CD40 y CD11c y se analizó la expresión de CD40 en DC CD11c+ usando citometría de flujo.

Ejemplos

25

45

5

Ejemplo 1: Ratones

Los ratones C57BL/6 se adquirieron en Charles River Laboratories y se usaron a las 8-12 semanas de edad. Los ratones transgénicos para TCR OT-I y OT-II se criaron y se mantuvieron en las instalaciones animales de los autores
 de la invención en condiciones exentas de patógenos específicas. Todos los experimentos fueron aprobados por el Comité de Experimentos en Animales de VUmc.

Ejemplo 2: DC obtenidas de médula ósea

Se cultivaron BMDC como se ha descrito previamente (Lutz et. al. J.I. *Methods* 223, 77-92,1999) con modificaciones menores. Se separaron el fémur y tibia de los ratones, se cortaron ambos extremos y la médula se lavó por barrido con medio Dulbecco modificado por Iscove (IMDM; Gibco, CA, EE.UU.). La suspensión de médula resultante se pasó por una gasa de 100 µm para obtener una suspensión unicelular. Después de lavado, se sembraron 2x10⁶ células por disco de 100 mm (Greiner Bio-One, Alphen aan de Rijn, Países Bajos) en 10 ml de IMDM, complementado con FCS al 10%; L-glutamina 2 mM, penicilina 50 U/ml, estreptomicina 50 ug/ml (BioWhittaker, Walkersville, MD) y β-mercaptoetanol 50 µM (Merck, Damstadt, Alemania) (=IMDMc) y que contenía GM-CSF
40 murino recombinante 30 ng/ml (rmGM-CSF). El día 2, se añadieron 10 ml de medio que contenía rmGM-CSF 30 ng/ml. El día 5 se añadieron otros 30 ng/ml de rmGM-CSF acada placa. A partir del día 6 en adelante, se recogieron las DC no adherentes y se usaron para los posteriores experimentos.

Ejemplo 3: Anticuerpos

El anticuerpo de ratón anti-albúmina de huevo de pollo (OVA) no conjugado (OVA-14) se adquirió en Sigma Aldrich. Los anticuerpos marcados con FITC eran antiCD11c (clon N418) y anti-CD4 (clon GK1.5).

Los anticuerpos marcados con PE eran anti-IL-4 (clon 11 B11), anti-IL-17 (clon eBioTC11-18H10.1), anti-CD40 (clon MR1), anti-CD80 (clon 16-10-A1), anti-CD86 (clon GL-1), anti-MHC clase-II (clon ?,-. Los anticuerpos marcados con APC eran anti-CD11c (clon N418), anti-IFNγ (clon XMG1.2) y anti-FoxP3 (clon FJK-16s). Todos los anticuerpos se adquirieron en e-Bioscience (Bélgica) o BD Biosciences (Bélgica)).

50 Los anticuerpos secundarios usados en este estudio eran anticuerpos de cabra anti-IgG humana y de cabra anti-IgG de ratón marcados con peroxidasa (Jackson, West grove, PA, EE.UU.).

Ejemplo 4: Generación de sia-2,3-OVA

Se conjugó 3'-sialil-lactosa (Neu5Acα2-3Galβ-4Glc; Dextra labs, Reino Unido) con ovoalbúmina (Calbiochem, Darmstadt, Alemania) creando OVA-sia-2,3 usando un reticulador bifuncional (hidrazida del ácido 4-N-

Maleimidofenil-butírico; MPBH; Pierce, Rockford, EE.UU.). En resumen, mediante aminación reductora, el resto de hidrazida del conector se une covalentemente al extremo reductor del hidrato de carbono. Después, las mezclas se incubaron durante 2 h a 70°C. Después de enfriar a T.a., se añadió un 1 ml de isopropanol helado (calidad de HPLC; Riedel de Haan, Seelze, Alemania) y la mezcla se incubó más a -20°C durante 1 h. Posteriormente, los hidratos de

- 5 carbono derivatizados precipitados se sedimentaron y se disolvieron en HCl 1 mM. Se añadió ovoalbúmina a los hidratos de carbono derivatizados en una relación molar 1:10 (OVA:hidrato de carbono) y se llevó a cabo la conjugación durante la noche a 4ºC. El neo-glucoconjugado se separó de los reductores de la reacción usando una columna de desalación PD-10 (Pierce, Rockford, EE.UU.). La concentración de OVA se determinó usando el ensayo de ácido bicinconínico (Pierce, Rockford, III). La potencial contaminación por endotoxinas se determinó usando un kit
- 10 de ensayo de endotoxinas cromogénico LAL (fabricante). Tanto OVA-sia-2,3 como la OVA natural carecían de cualquier endotoxina (figura 1A complementaria).

Además se acopló covalentemente marcador Dylight 549-N-hidroxisuccinimida (NHS) (Thermo Scientific, Rockford, EE.UU.) a la OVA o la OVA-sia-2,3 (Dylight-549-OVA). El marcador libre se separó usando una columna PD-10 (Pierce).

La presencia del sia-2,3 en la OVA se midió por ELISA. En breve, la OVA-sia-2,3 se aplicó como recubrimiento 15 directamente sobre placas de ELISA (NUNC Maxisorb, Rosklide, Dinamarca) y se determinó la unión de la lecitina vegetal de Maackia amurensis (MAA, Vector Laboratories Inc) como se ha descrito {Singh, 2010 90 /id}, los datos se muestran en la figura 1B complementaria.

Ejemplo 5: Ensayos de unión/captación

Se sembraron 5x10⁴ BMDC en placas de fondo redondo de 96 pocillos y se añadió antígeno Dylight 549 (30 µg/ml). 20 Las células se incubaron con antígeno durante 30 min a 4ºC para determinar la unión, o 1, 2 y 4 h a 37ºC para determinar la unión/captación.

Ensayo de presentación de antígeno restringido a MHC de clase I y clase II

- Las BMDC (2,5x10⁴/pocillo) se incubaron con las concentraciones indicadas de antígeno en placas de fondo redondo de 96 pocillos durante cuatro horas. Después de lavado, se añadieron 5x10⁴ linfocitos T CD4+ o CD8+ 25 específicos de OVA purificados, a cada pocillo. Los linfocitos T CD4+ y CD8+ específicos de OVA se aislaron de tejido linfático de ratones OT-I u OT-II, respectivamente. En resumen, se recogieron los ganglios linfáticos v bazos v se obtuvieron suspensiones unicelulares tamizando los bazos y ganglios linfáticos a través de una gasa de 100 µm. Los eritrocitos se redujeron por incubación en tampón de lisis ACK y se aislaron los linfocitos T CD4+ o CD8+ de las
- 30 suspensiones unicelulares usando el kit de aislamiento CD4 o CD8 negativo de ratón Dynal (Invitrogen, CA, EE.UU.) de acuerdo con el protocolo del fabricante. La proliferación se evaluó por incorporación de [3H]-timidina. La [3H]timidina (1 µCi/pocillo; Amersham Biosciences, NJ, EE.UU.) se añadió durante las últimas 16 h de un cultivo de 3 días. Las células se recogieron sobre filtros y se evaluó la incorporación de [3H]-timidina usando un contador microbeta Wallac (Perkin-Elmer, EE.UU.).
- 35 Ejemplo 6: Ensayo de diferenciación de linfocitos cooperadores CD4+ in vitro

Se incubaron 10⁴ BMDC con 30 µg/ml de neo-glucoconjugado o de OVA natural durante 4 h, en placas de fondo redondo de 96 pocillos. Después de lavado, se añadieron 5x10⁴ linfocitos T CD4+CD62L^{hi}CD25- indiferenciados purificados, aislados de ratones OT-II a cada pocillo. El día 2, se añadieron 10 UI de rmIL-2. El día 7, se analizó la expresión de FoxP3 usando el kit de tinción de FoxP3 (e-Bioscience). Además se determinó la frecuencia de linfocitos T IFNq+, IL4+ o IL17A+ por tinción intracelular. Después de esto, los linfocitos T se activaron con PMA y

40 ionomicina (100 ng/ml y 1 µg/ml; Sigma) durante 6 h en presencia de Brefeldina A (Sigma). Las células se tiñeron para evaluar CD4 y se analizaron usando FACScalibur.

Ejemplo 7: Síntesis de ADNc y PCR en tiempo real

Se aisló el ARNm capturando poli(A+)ARN en tubos recubiertos con estreptavidina usando un kit de captura de 45 ARNm (Roche, Basel, Suiza). El ADNc se sintetizó usando el kit de sistema de transcripción inversa (Promega, WI, EE.UU.) siguiendo las instrucciones del fabricante. La reacciones de PCR en tiempo real se llevaron a cabo usando el método SYBR Green en un sistema de detección de secuencias ABI 7900HT (Applied Biosystems).

Ejemplo 8: Análisis in vitro de la inducción de Treg

La carga de DC esplénicas aisladas ex vivo con Sia-OVA in vitro, da lugar a la generación de DC tolerogénicas que inducen la diferenciación de linfocitos T cooperadores CD4+ indiferenciados hacia el linaje de Treq. 50

Se incubaron 10⁴ BMDC con 30 µg/ml de Sia-OVA o de OVA natural durante 4 h en placas de fondo redondo de 96 pocillos. Después de lavado, se añadieron 5x10⁴ linfocitos T CD4⁺CD62L^{hi}CD25⁻ indiferenciados purificados aislados de tejido linfático secundario de ratones Tg OT-II, a cada pocillo. El día 2, se añadieron 10 UI de rmIL-2. El día 7, se analizó la expresión de FoxP3 usando el kit de tinción de FoxP3 (e-Bioscience). Además se determinó la frecuencia de linfocitos T IFNv⁺, IL4⁺ y IL17A⁺ por tinción intracelular. Para esto, los linfocitos T se activaron con PMA y

55

ionomicina (100 ng/ml y 1 µg/ml; Sigma) durante 6 h en presencia de Brefeldina A (Sigma). Las células se cotiñeron para evaluar CD4 y se analizaron usando FACScalibur.

Se observó que también la incubación de linfocitos T CD4⁺ específicos de OVA indiferenciados con DC esplénicas cargadas con Sia-OVA y aisladas ex vivo da lugar a la generación de mayores números de linfocitos T CD4⁺ FoxP3+ comparado con las DC cargadas con OVA natural (figura 4A). Apenas se detectaron linfocitos T que producían IFNy (figura 4B). No se detectaron ni linfocitos T que producían IL-4 ni IL17 en los linfocitos T cebados con DC cargadas con SIA-OVA o con OVA natural (no se muestra).

Se ensayó en los linfocitos T FoxP3⁺ inducidas sus capacidades supresoras. Para esto se añadieron a cocultivos de linfocitos T respondedores OT-II CD4+ indiferenciados y DC cargadas con OVA. Mediante el marcaje de los linfocitos T respondedores con CFSE, se puede analizar su proliferación por citometría de flujo. Solo los linfocitos T cebados con DC cargadas con Sia-OVA suprimían la proliferación de linfocitos T respondedores (figura 4C). Los linfocitos T cebados con DC cargadas con OVA o linfocitos T indiferenciados no afectaban a la proliferación de los linfocitos T respondedores.

Para evaluar la fuerza de la modulación de las DC por la captación de Sia-OVA (y por lo tanto la aplicabilidad de la administración de antígenos sialilados en pacientes con respuestas inmunitarias en curso), se cargaron DC esplénicas aisladas ex vivo con Sia-OVA en presencia de LPS (100 ng/ml). Incluso en esta situación, se detectó la generación de linfocitos T FoxP3⁺. Además, mientras que las DC cargadas con OVA-LPS inducían la producción de IFNγ en linfocitos T reactivos frente a OVA, esto no se observó en cultivos con DC cargadas con Sia-OVA-LPS (figura 5A). El análisis de los líquidos sobrenadantes de los cultivos mostró concentraciones menores de TNFα, IFNγ
 e IL6 que en los líquidos sobrenadantes de linfocitos T y DC-OVA-LPS (figura 5B).

Ejemplo 9: Experimentos in vivo

5

10

Se analizó la potencia de los antígenos sialilados para inducir tolerancia in vivo en diferentes modelos.

Se transfirieron adoptivamente a ratones C57BL/6, linfocitos T OT-II CD4+ marcados con CFSE. Un día después se inyectaron a los ratones 100 µg de OVA-sia o de OVA natural por vía i.v. o s.c. y tres días más tarde, se analizó en los tejidos linfáticos la proliferación de los linfocitos T CD4 específicos de OVA transferidos. Los ratones de control recibieron PBS, que no condujo a la proliferación de los linfocitos T CD4 transferidos (figura 6A). Se observó que la inyección de OVA inducía la proliferación masiva (figura 6A), independientemente del sitio usado para la inyección (i.v. o s.c.). Sin embargo, la inyección i.v. de Sia-OVA produjo la proliferación reducida de los linfocitos T OT-II transferidos. La reducción en la proliferación se observó sistémicamente (bazo y ganglios linfáticos). La inyección de Sia-OVA por vía s.c. no mostró efectos destacados en la proliferación de linfocitos T OT-II en los ganglios linfáticos

Sia-OVA por via s.c. no mostro electos destacados en la promeración de innocitos 1 OT-n en los gangilos inhaticos filtrantes comparado con OVA (figura 6B). Cuando se analiza el fenotipo de los linfocitos T OT-II transferidos se observaba que solo en los ratones a los que se inyectó Sia-OVA, los linfocitos T eran positivos para FoxP3 (Fig 6C). Puesto que los linfocitos T OT-II inyectados eran linfocitos T CD25⁻CD4⁺, carecían, por lo tanto de Treg CD25⁺CD4⁺ que se encuentran de forma natural, estos datos muestran que la inyección de Sia-OVA daba como resultado la inducción nueva de Treg FoxP3+ (Fig 6D).

Además, estos datos sugieren que el receptor para Sia está principalmente presente en las células presentadoras de antígeno, en particular en DC en el bazo.

Puesto que la inyección i.v. de Sia-OVA tenía dichos efectos destacados en la generación de linfocitos T FoxP3⁺ in vivo, se evaluó si estas células podrían prevenir la generación de linfocitos T efectores. Para esto, ratones C57BL/6
se trataron con Sia-OVA antes de inmunización. Este grupo se comparó con ratones tratados con OVA. Los ratones se inmunizaron una semana más tarde por inyección i.v. de 100 µg de OVA mezclada con 25 µg de aCD40 y poli-I:C. Una semana después de inmunización, se recogieron los bazos y se analizó la frecuencia de linfocitos T FoxP3⁺ CD4⁺ por citometría de flujo. Comparado con los ratones de control no tratados previamente, había un aumento significativo del porcentaje de linfocitos T FoxP3⁺ detectados en los bazos de ratones tratados con Sia-OVA pero no

45 con OVA natural. Esto también era significativamente más alto que el porcentaje detectado en bazos de ratones tratados con OVA natural (figura 7A, panel izquierdo) que se confirmó por RT-PCR en los esplenocitos totales (figura 7A panel derecho).

Además, la presencia de linfocitos T efectores CD8 y CD4 se determinó tras la reestimulación in vitro con péptidos OVA (OVA₂₅₇₋₂₆₄ y OVA₂₆₅₋₂₇₉, respectivamente) y tinción intracelular de citoquinas. El porcentaje de linfocitos T CD8 que producen IFNγ se redujo significativamente en los ratones tratados con Sia-OVA comparado con los ratones tratados con OVA (figura 7B, izquierda). Esto se confirmó cuando se midieron los niveles de IFNγ en los líquidos sobrenadantes de cultivos paralelos (figura 7B, derecha). El análisis de la producción de IFNγ por linfocitos T CD4 no mostró diferencias significativas (figura 7C). Esto puede deberse al hecho de que se ha mostrado que los Treg inducidos producen también IFNγ (p. ej., células Tr1). Para ello, se debería realizar en el futuro el análisis simultáneo

55 de IL10 para diferenciar estos Treg que producen IL10 e IFNy de los linfocitos T efectores que producen IFNy.

El análisis de los linfocitos T CD4 que producen IL10 mostró que había un porcentaje significativamente mayor de linfocitos T que secretan IL10 en los bazos de ratones tratados con Sia-OVA. Sin embargo, este no era significativamente diferente del porcentaje que se encontró en los bazos de ratones tratados con OVA natural (figura

7D, izquierda). Estos datos se confirmaron cuando se analizaron los líquidos sobrenadantes de esplenocitos después de cultivo durante la noche (figura 7D, derecha).

Además, los experimentos de los autores de la invención mostraban claramente que cuando se inyectaban DC in vitro cargadas con Sia-OVA en ratones C57BL/6, seguido de una estimulación con OVA+CpG, observaron una fuerte inducción de Treg FoxP3+ y una disminución de la inducción de linfocitos T CD4 efectores. Esto muestra claramente que la inducción de tolerancia in vivo es mediada por DC.

Ejemplo 10: Modulación de DC

Se ha analizado el fenotipo de DC después de la captación de Sia-OVA y comparado con el fenotipo de DC que ingirieron OVA natural. Esto se hizo tanto en ausencia como en presencia de LPS. Se mostró que CD40 es consistentemente menor en DC cargadas con Sia-OVA cuando se compara con DC cargadas con OVA.

Para tener una visión más clara del mecanismo subyacente de inducción de tolerancia por las DC cargadas con Sia-OVA, se llevó a cabo un análisis de micromatrices. Para esto, se incubaron DC con 50 µg/ml de Sia-OVA o de OVA natural y 1 y 6 h más tarde, se recogieron las DC y se extrajo e ARN usando el kit de NucleoSpin. El ADN genómico se separó usando tratamiento con ADNasa. La calidad e integridad del ARN fueron comprobadas por Service XS

15 (Leiden). Basándose en la buena calidad, el ARN se amplificó, se marcó e hibridó en matrices BeadChip (MouseWG-6 v2, Illumina). Se comparó la expresión del gen normalizada de DC con Sia-OVA con las DC con OVA y todas las muestras que mostraron diferencias de más de 10 veces (mayores o menores) están en la tabla 2. Los genes más interesantes parecen AIRE (mayor en DC con Sia-OVA) y el cambio de una ruta de IFN de tipo I. Ambos se han relacionado con la tolerancia y también parecen estar conectados entre sí.

20 Tabla 2

5

10

		OVA-sa2,3	OVA-sa2,3	OVA-sa2,6	OVA-sa2,6
		frente a OVA	frente a OVA	frente a OVA	frente a OVA
		1 h	6 h	1 h	6 h
ILMN_2659408	Rel	1,028345	1,103712	0,103688	11,1404
ILMN_1249750	Reln	0,101298	0,101936	0,999407	102,914
ILMN_2674533	Renbp	99,51158	0,986405	97,55804	0,978967
ILMN_2641270	AA536717	0,098526	10,40813	0,995059	98,62595
ILMN_2605630	AA881470	101,2935	0,977818	98,89889	0,96501
ILMN_2719139	AB124611	98,90014	0,098043	100,2287	0,930972
ILMN_1218537	Abca15	102,7413	1,008956	100,6122	9,991803
ILMN_2663015	Abcb8	1,024122	0,100682	0,099732	100,361
ILMN_2685157	Abcc3	999,247	0,930306	1001,941	0,938589
ILMN_1253491	Abcc9	1,006649	0,959709	1,002382	102,7102
ILMN_2687062	Abr	99,01085	0,997722	98,67048	0,9895
ILMN_2739219	Acad10	1020,163	0,964181	1012,151	0,984681
ILMN_1220016	Acbd5	0,984563	0,991942	0,099628	98,83858
ILMN_2770667	Acin1	0,979681	0,097175	0,946506	99,56963
ILMN_1216022	Aclp7	1,00318	10,64468	10,17214	104,08
ILMN_2745889	Acot2	0,980553	9,743136	0,977466	95,41733
ILMN_1213138	Acy1	97,356	0,952368	99,73741	0,965828
ILMN_3139103	Adam15	0,099838	8,929052	1,004738	87,97479
ILMN_1240629	Adam15	104,2488	0,967151	102,0592	0,094326
ILMN_3134632	Adam22	102,1393	10,06842	100,5282	1,016651
ILMN_3033533	Add1	1,00665	9,572825	1,012456	93,49712
ILMN_2738082	Adipoq	0,993226	0,096595	0,995041	99,89807
ILMN_1215394	Adpgk	10,10091	99,35876	9,956478	0,991647
ILMN_1215901	Agpat2	10,13781	1,05875	97,95148	1,041015
ILMN_2972521	Agtr1a	0,09689	1,010311	0,974424	102,1489
ILMN_2590950	Agtrap	9,612647	103,6355	0,009756	0,102844
ILMN_2916008	Agxt2l2	0,972468	99,42319	0,950237	0,993325
ILMN_1258578	Ahnak	1,038872	9,531327	0,105231	95,0189
ILMN_2684007	AI844366	0,997183	1,013509	1,013799	99,31121
ILMN_1216550	AI851790	0,993945	0,998739	0,989183	100,3487
ILMN_2673099	Al987944	0,98241	1,018939	0,996969	101,1484
ILMN_1213787	Aire	1,026076	0,998319	1,012772	100,1469
ILMN_1235909	Ak2	9,870461	0,109321	97,77247	1,08545
ILMN_1246068	Akap12	100,2487	0,102842	101,4649	1,049984
ILMN_3116504	Akap2	0,100643	1,09025	0,09927	105,2205
ILMN_2627299	Akap9	1,040274	95,7044	0,987936	9,503727

		OVA-sa2.3	OVA-sa2.3	OVA-sa2.6	OVA-sa2.6
		frente a OVA	frente a OVA	frente a OVA	frente a OVA
		1 h	6 h	1 h	6 h
ILMN 2661287	Akp2	0.991037	0.102454	0.97956	98.13207
ILMN 2481458	Akr1 b3	99.68519	0.975054	99.46308	1034.701
ILMN 1214358	Akt1s1	1.017785	103.7958	10.22891	1.061528
II MN 3100276	Aldh1l1	10.07558	0.980369	100.8811	0.984862
ILMN 1224012	Aldob	9.665992	0.985546	97.35459	0.100766
ILMN 2660414	Alg5	99.73186	1.018703	101.2032	0.098715
II MN 2892292	Alg9	1.011797	1,011511	1.016208	102,1624
ILMN 1235966	Alox12b	99 32697	1 023599	100.3686	101 8012
ILMN 2681123	Als2cr2	976.0651	0.960205	1005.91	0.091872
ILMN 2718293	Amelx	99 37019	9,926122	101 5065	0.975022
ILMN 2859778	Ananc4	0.971498	0.977219	1 006495	100 3286
ILMN_2568390	Angoti3	0.977892	0.097669	0.999894	974 3339
ILMN 1253761	Ankrd39	9 849003	96 10191	10 3044	0.95381
ILMN 2592358	Ankrd49	0.970275	0.977431	0.918654	101 763
ILMN 1217993	Ankrd6	1 012684	99 42222	0.974492	0.992855
ILMN 2665496	Ankrd9	102 6115	1 01209	100 6919	1 022893
ILMN 2735877	Anks3	103.0724	0.910252	103.0553	8,992366
ILMN 2685507	Ann32a	0.098381	0.953522	1 016315	94 34225
II MN 1230010	Anxa10	9 946819	101 7208	9 982971	1 031209
II MN 1210115	Anc	0.987325	98 93451	0.961718	0.992878
II MN 2440103	Apg4d	97 58354	0.099454	97 66596	0.986757
ILMN 1232821	Aph1a	102 3822	0,000404	10 24009	100 4748
ILMN 2016782	Anom	0.088538	0,000020	0.97074	86 82716
ILMN 2724868	Applin Apphp2	96 78724	1 000733	92 39066	10 28014
ILMN 1225901	Agn11	0.998861	0.995061	1 005773	96 73764
ILMN 2943165	Aap7	0.097988	0,996017	0.990391	995 3483
ILMN 1237241	Araf	10 37345	96 13192	10 44231	0.096285
ILMN 2649846	Arcn1	103 324	0.963489	10,44201	0,000200
ILMN 2743425	Arfin1	10.03356	0,000400	10,00040	0,030400
ILMN 2613531	Arboan21	1 003831	0.981488	0 980804	96 2602
ILMN 2589999	Arl10c	0.985403	89 7199	0,000004	8 821913
ILMN_3066763	Arl4a	104 433	1 050157	103 2892	1 022906
ILMN 1247625	Arn3b-pending	1 006938	0.971162	1 001264	964 7989
ILMN 2666279	Arrdc.3	1,077088	0.086627	1,058399	897 2452
ILMN 2679609	Art1	0 101671	9 850694	1,000000	101 1813
ILMN 2629591	Asah1	105,1951	0.118185	10.55519	1.141375
ILMN 2663555	Asb3	101.6378	1.13001	9.793706	1.121915
ILMN_3075168	Ash2l	0.969681	0.098741	1 00595	100 8362
ILMN_3006123	Asns	96,1865	1.016376	98,12903	0.968906
ILMN 2776700	Asph	10.012	101.4094	10.22624	0.999028
ILMN 2594584	Asph	100.5377	9.837391	98.59214	0.101903
ILMN 2629103	Atcav	10.20191	0.977784	9.779767	99.57801
ILMN 2620574	Atg16I1	982.569	9.468761	101.9885	0.967669
ILMN 2606567	Atic	97.46479	0.963219	99.36086	1.006792
ILMN 1258206	Atm	99.02622	0.977615	9,747839	1.012082
ILMN_3038944	Atp2b2	1.032362	1011.428	0.980498	0.999334
ILMN 2973897	Atp5	95.48242	1.000159	97.48098	0.994841
ILMN 2680440	Atp6v1 b2	99.90241	0.953126	100.8208	0.9605
ILMN 2755322	Atp6v1e2	101.832	0.994822	99.59874	1.0165
ILMN 1255220	Atp9a	0.100331	10.10136	1.008405	101.7454
ILMN 1229377	AU017455	0.955379	992 8015	0.94251	0.998757
ILMN 2919343	Aven	97.77753	1.005044	99.18759	10.18624
ILMN 2755585	Avpi1	1.012887	1.08022	1.030473	110,9546
ILMN 1251934	Azi2	101.4731	9.879583	99.25178	9,993418
ILMN 1247168	B130032G09Rik	9.890892	10.15862	100.8566	1.005667
ILMN 1257672	B230205M18	1.005101	0.999803	1.014716	97.46832
ILMN 2565428	B230325K09Rik	9.968016	0.983847	9.758051	995.26
ILMN 1235144	B230399H06Rik	101.9651	0.102365	100.7778	1.012485
ILMN 2669708	B3gat2	1011.864	0.98462	1008.746	1.014485
ILMN 3149776	B3gnt8	10,06867	90,3311	103,1875	0,91006

		OVA-sa2.3	OVA-sa2.3	OVA-sa2.6	OVA-sa2.6
		frente a OVA	frente a OVA	frente a OVA	frente a OVA
		1 h	6 h	1 h	6 h
II MN 1216802	Bad	0.102461	0.957779	0.009748	94,21028
II MN 2665609	Bajap211	988,7948	1.024328	976.3332	0.999748
ILMN 2749866	Bap1	9 676667	0.959977	0.973136	95 05828
ILMN 2652385	Baz2a	1 000717	9 973698	0.964416	98 74386
ILMN 2684272	Bheg	1,000717	1 011412	101 3024	90,74300
ILMN 3006534	BC003885	00.0730	1,011412	101,3324	1 02/12
ILMN 3133239	BC003003	99,0739	0.000603	07 07201	1,02412
ILIVIN_3133230	DC010491	99,14100	0,990003	1 005455	1,030400
ILIVIN_2000170	DC040410	0,903074	0,905700	1,000400	90,40001
ILIVIN_2900120	BC040302	0,099021	0,979413	0,992124	100,9466
ILIVIN_2004291	BC055111	99,83961	0,099096	98,75082	0,984474
ILMIN_2993962	BC099439	0,981124	1033,503	0,098784	1,026491
ILMN_2677422	BCI2I14	100,8667	0,98433	102,2935	0,959676
ILMN_2713638	Bcmo1	0,997612	0,993911	0,992652	98,05958
ILMN_2639819	Bet1I	9,780487	0,998096	97,10562	0,100206
ILMN_2681241	Birc5	0,102187	101,0209	0,099758	0,98774
ILMN_2910258	Bnc1	1,050197	0,978384	1,004996	103,3005
ILMN_2846368	Bola2	98,00094	0,937006	97,37207	0,930611
ILMN_1253942	Bop1	93,89475	10,0153	94,85711	1,036676
ILMN_1243635	Brunol4	97,2682	1,007737	98,66806	1,014305
ILMN_1224958	C030015H18	98,21568	0,09935	100,2623	0,989865
ILMN_1259185	C030048B08Rik	101,1684	0,995838	102,8585	10,23537
ILMN 1233652	C130015E15Rik	103,0576	1,014571	99,38498	0,985424
ILMN 2753279	C130023O10Rik	96,23538	10,02187	98,53216	1,002206
ILMN 2754119	C130039O16Rik	0.976549	1.000482	0.997887	986.9044
ILMN 1223290	C130046N05Rik	1.038869	0.100686	1.016037	10044.12
II MN 1228917	C330023M02Rik	0.956375	1.032472	0.945739	1018.341
II MN 2702286	Cacnb3	1 020904	1 150696	1 025121	114 2253
II MN 1241128	Calcoco1	996 5213	0.089271	1,02,0121	0.874231
ILMN 1257323	Car6	1 012838	0.978974	0.989067	1002.46
ILMN 2866175	Card14	9.803762	10 16014	0,000007	1002,40
ILMN 1220811	Caskin1	1 01/175	0.006775	1,000265	08/16722
ILMN 2865030	Cede100	0.060177	9.40414	1,005205	02 6/171
ILMN 2745151	Code123	9,900177	0,40414	0.061661	06 12722
ILIVIN_2745151	Code120	100.0505	0,972197	0,901001	90,12732
ILIVIN_2750755	Code77	100,0595	0,959576	99,43300	0,951075
ILIVIN_207 1430	CodeOob	101,2349	0,904037	90,00300	0,900/00
ILIVIN_2752406		1,007625	0,10722	0,991932	103,0052
ILIVIN_2802179		98,9178	0,982289	97,0845	0,983082
ILMN_2771176		83,83454	0,122139	89,36513	1,25809
ILMN_2863768	Ccnb3	0,992992	0,999488	0,988422	97,21907
ILMN_2669793	Cond1	0,998637	0,101775	0,966321	102,7623
ILMN_3131063	Ccnd3	0,963618	8,522801	0,098333	85,32755
ILMN_2696291	Cd209d	100,111	0,100882	101,6694	0,990543
ILMN_2665757	Cd209e	0,977415	0,100134	0,982201	9,986747
ILMN_3117602	Cd6	1022,289	9,172848	1033,979	0,091576
ILMN_2586179	Cd69	0,969605	1,010149	9,560333	103,03
ILMN_2731282	Cd8a	10,24021	1,014975	10,22786	1016,535
ILMN_1244296	Cdc14b	0,101063	1,001597	1,007298	98,53194
ILMN_2612206	Cdc20	1006,605	0,93934	974,0858	9,245129
ILMN_1250900	Cdk7	101,045	0,982047	985,5148	0,956287
ILMN_2732437	Chrna6	1,018822	1,05132	1,008538	995,2643
ILMN_1235663	Cnot8	101,847	1,01818	102,0317	9,862585
ILMN_2589422	Col6a1	0,97806	0,984973	1,011739	97,71503
ILMN 2671689	Cox7b	100,9042	1,056407	100,3663	1,022861
ILMN 1236346	Cpeb2	1,0092	1,006872	1,004107	101,0207
ILMN 2877900	Cpne5	0,99407	1,018435	1,014962	102,8263
ILMN 2913078	Cps1	9,861924	0,100572	9,963818	101,7166
ILMN 1213549	Creb3l4	0.95467	9995.844	9.819902	0.983614
II MN 1216758	Crem	101.0591	0.992101	100.802	0.970744
ILMN 1233069	Crh	97.64674	0.999484	1010.487	0.986246
ILMN 2907964	Crim2	0.989478	0.929252	0.99025	93.03724

		OVA-sa2.3	OVA-sa2.3	OVA-sa2.6	OVA-sa2.6
		frente a OVA	frente a OVA	frente a OVA	frente a OVA
		1 h	6 h	1 h	6 h
ILMN 2987844	Crk	101.1075	1.011071	101.1205	0.993613
ILMN 2668253	Crkrs	0.965559	1.010495	0.099876	99.35456
ILMN 2728094	Crvba1	100.1304	0.986998	100.073	1.024256
II MN 2613659	Ctdp1	94,92608	9.832516	97,15404	0.958597
ILMN 2858769	Ctps2	1.009855	0.980505	0.99267	98.51342
II MN 1253235	Cuabp2	98,95966	0.932621	97.68206	0.992364
ILMN 2760019	Cxcl13	98.46601	1.022856	98.65985	1.014522
II MN 2659426	Cxcl14	1 001054	0.953478	0.997075	982 147
ILMN_3078306	Cvb561d1	100.5749	0.952014	101.5275	0.945079
II MN 1241818	Cvp2c54	10.05082	0.994231	100.6704	1.033107
ILMN 2525402	D10Bwa1379e	9968 751	0.098971	9781 422	0.995327
ILMN 2691157	Dctn1	0.986458	0.104052	0.095007	108.3556
II MN 2446727	Ddhd1	105.4707	0.900495	103,8381	0.09623
ILMN 1259277	Ddx28	0.097655	9 727763	0.962635	953 9783
ILMN 2692412	Defb2	96,91346	1 010442	97 91363	0.996252
ILMN 1229247	Defb41	0 978942	1,01083	1 014259	100 6946
ILMN 2658961	Daka	0.100532	1.006368	0.1036	996.6944
II MN 3101919	Dakh	0.995508	1 000368	1 027322	96 16117
II MN 2462151	Daka	99 91771	1,008908	100 2425	0.984353
II MN 2015050	Dakz	94 59734	8 56831	9 67789	8 70217
II MN 1222841	Dal1-pending	97 55169	0.989549	99 01643	1 003833
ILMN 1233008	Dhv30	98 64991	0,967717	100 4042	0.009669
ILMN 2611008	Din2b	100 0102	0,307717	100,4042	0,003003
ILMN 2746556		00,9192	0.065588	100,2205	10,00113
ILMN 2627081		102 0234	0,905500	100,0000	1,000026
ILMN 2014010	Drwd	08 03003	0,301470	100,200	0.80503
ILMN 2725428	Dnaib10	103 5862	9,004114	100,2711	1,00103
ILIVIN_2751025	Diajo 10	05.03034	0.057078	05 96794	0.036473
ILIVIN_2751925	Drg2	90,03934	0,957976	95,60764	0,930473
ILIVIN_2077494	Dig2	1,001755	1,032776	0,990074	99,72093
ILMN 2053158	Dusp 12 Dyrk1b	103 1000	0.037680	106.0038	0,970000
ILIVIN_3033136		0 100210	10 24721	100,0030	1041 026
ILIVIN_2372043	E330034FT3RIK	0,100319	0.000976	1,010142	1041,030
ILIVIN_2702506	Edar	9,007255	0,099670	97,12032	05 22070
ILIVIN_2001079	Edaradd	1,011105	1,00212	0,099037	100 947
ILIVIN_2043333	Eudiauu	1,00308	0.000645	0,090737	100,047
ILMN 2061673	Eof1d	100,1992	1,015610	99,00007	0.023327
ILIVIN_3001073	EC220200	997,3330	1,010019	900,0001	0,900043
ILIVIN_2040021	EG320200	97,30242	9,000902	97,40001	1,009572
ILIVIN_2493008	EG330031	99,10159	10,03301	102,1472	1,017641
ILIVIN_1242009	Egilalii Far2	99,06995	0,900074	90,23030	0,09474
ILIVIN_2003043	Egra	98,40926	0,995354	100,3774	0,970772
ILIVIN_2709001		0,993122	0,977201	0,099271	99,0756
ILIVIN_1243394		99,77838	0,978956	102,0176	0,908495
ILIVIN_1204200		99,20024	1,009229	90,08994	1,023/77
ILIVIN_2097304	EIN	0,998608	0,09873	0,100388	98,20773
ILIVIN_2014/52		97,7495	0,939998	103,1008	0,092278
ILIMIN_2757062	ENSMUSG0000033219	103,4994	9,774745	101,3423	1,041206
ILIMIN_1258722	ENSMUSG0000042857	101,8688	9,759741	100,9402	1,000307
ILIVIN_3129160	Epasi Epasi	99,12285	0,098759	99,41097	0,097499
ILMN_2686924	Ephai	98,41166	0,99898	98,07619	10,22057
ILIVIN_2679830	Epstil	9,980848	1,009307	9,849766	98,49
ILIVIN_1250597	ErDD3	101,7993	1,007096	100,7874	1,036176
ILMN_2772035	Erc1	0,947979	1,00777	0,973254	100,2977
ILMN_2992541	Ergic3	10,17137	0,097703	10,27961	95,0453
ILMN_1213296		0,098612	1,008619	0,998532	98,02823
ILMN_1229242	F830016N17Rik	992,1156	0,099309	985,5693	0,099541
ILMN_2826304	Fabp6	103,1885	1,00344	102,212	1,034919
ILMN_3066293	Fancc	1006,906	0,990837	97,96588	1,010898
ILMN_2847136	Fastk	99,51694	0,982594	100,8734	97,22678
ILMN 1226274	Fat4	99,91808	9,778576	102,6167	0,991788

		OVA-sa2.3	OVA-sa2.3	OVA-sa2.6	OVA-sa2.6
		frente a OVA	frente a OVA	frente a OVA	frente a OVA
		1 h	6 h	1 h	6 h
II MN 3038394	FbxI10	1.000968	10.34846	1.003316	101.5194
ILMN 2633301	Fbxl7	0.996523	9.886947	1,002087	101,1812
ILMN 2451855	Fbxo45	0.097758	9 846192	0.977467	97 43176
ILMN 2582084	Fermt2	100 7731	0.997861	103 4975	1 018472
ILMN 1229698	Fad4	0.968829	1 003967	0 994546	98 88624
ILMN 2707356	Faf13	98 5557	0.070335	101 3530	0 080260
ILMN 2832105	Egg	976 712	1 022724	101,0005	0,000200
ILMN 2749690	r yy Ebit	1 027531	1,022724	0.002864	0,302323
ILMN 2674132	Fibn	1,027551	1,002197	0,992004	9755,505
ILMN 1260135	Fine	0.070813	0.085748	0.101860	08 35351
ILIVIN_1200133	Flot1	100 5290	1 000200	0,101009	0.009005
ILIVIN_2702404		100,5209	0.00469	90,07429	0,090905
ILIVIN_2920042	FIIIZ Elvor2	100,0743	0,99400	100 0190	0,90430
ILIVIN_1240190		101,0140	0,000904	100,9109	0,000595
ILIVIN_1240640	Filuci	100,1700	1,004625	104,00	0,099000
ILIVIN_2070517	Fritb	1,004059	0,961594	0,983029	97,38121
ILIVIN_1252110		1,03/743	0,09719	1,031479	93,03900
ILIVIN_1224018		0,900487	0,90007	0,995219	30,20413
ILIVIN_2050498		1,037234	1,00409	1,014846	100,0742
ILIVIN_1251126	Гохра	9,11919	9,4417	9,720849	91,20270
ILIVIN_2659663		9,059801	1,0488	9,851438	1,012678
ILIVIN_2429551		0,102048	0,925808	1,019/04	90,04410
ILMN_2958016	Fundci	1,073253	1,094891	1,055057	109,6586
ILMN_2674979	Fus	9,371913	1,012155	96,29235	1,005847
ILMN_2939666	FZ02	992,6725	9,804943	1041,343	0,992843
ILMN_2774825	G3bp1	97,62113	1,012218	99,58618	1,000295
ILMN_2646380	Gabpb1	0,099944	1,112443	1,01149	1118,014
ILMN_3106849	Gal3st3	1,042885	100,5308	1,040509	99,52122
ILMN_2881155	Gal3st4	10,02421	0,998784	9,969722	99,38768
ILMN_2860649	Gbp6	100,0182	0,99548	95,27171	0,974757
ILMN_2875336	Gcat	100,5076	0,958457	101,5154	9,983476
ILMN_1228316	Gdi1	0,102815	1,027637	1,006134	102,9727
ILMN_1214319	Gemin6	1,011646	0,992227	1,009633	97,57332
ILMN_1236845	Gfod2	0,09598	0,097142	0,98029	97,09654
ILMN_2631363	Git	0,983927	0,97706	0,965454	97,4734
ILMN_2721734	Gjd2	0,102873	1,01547	0,101304	966,5576
ILMN_2685506	Gje1	1,009132	0,990791	0,974513	1011,543
ILMN_2838605	Glis3	990,414	0,009946	990,063	0,996183
ILMN_2729364	Glra2	1,000599	0,994161	99,3303	9,891735
ILMN_1217767	Glrx5	0,094499	9,159094	0,955313	91,33761
ILMN_1248467	Gm1027	99,22358	0,100963	100,0698	0,102133
ILMN_2539428	Gm1070	0,959547	99,624	0,994394	1,012881
ILMN_3029489	Gm129	0,982231	1,020812	1,007998	96,58471
ILMN_1232057	Gm26	0,100459	0,099178	1,03716	101,3112
ILMN_1240736	Gm318	1,014537	0,986561	1,024794	9945,749
ILMN_2598594	Gm443	10,13529	0,994511	99,82462	0,980946
ILMN_2803319	Gm606	101,3642	0,099711	100,6399	1,037138
ILMN_3022025	Gm732	0,958279	9,656418	0,958082	98,94724
ILMN_1229324	Gm757	1,001783	1,018478	1,008558	102,8928
ILMN_2908855	Gnai2	9,832485	0,094289	9,895567	95,49658
ILMN_2733433	Gnai3	1020,027	0,103899	1028,753	0,987284
ILMN_2661635	Gyg	104,6152	1,006181	106,0327	1,023016
ILMN_2742160	H13	96,85991	0,967374	100,4352	0,944166
ILMN_2685581	H2-Q5	1,010285	1,046776	10,058	106,6858
ILMN_1230323	Hbp1	9750,761	0,975145	9891,527	0,992563
ILMN_2637982	Herc1	0,991905	1,005105	0,009839	104,9426
ILMN_2723631	Hint1	99,59557	0,991124	98,94354	0,954837
ILMN 1252995	Hist1h2be	9,861481	9,457645	9,881257	93,87584
ILMN 2677408	Hrmt1l2	0,967371	0,098508	0,975685	1013,349
ILMN 2658501	lfitm3	1,029882	0,104393	1,038346	104,5469
ILMN 2658633	lfna7	1,001601	10,32717	1,025378	100,0743

		OVA-sa2,3	OVA-sa2,3	OVA-sa2,6	OVA-sa2,6
		frente a OVA	frente a OVA	frente a OVA	frente a OVA
		1 h	6 h	1 h	6 h
ILMN 1260493	lft140	102,3462	0,999771	102,3426	0,096394
ILMN_2671767	lft20	1,003421	1,043429	1,001482	102,5302
ILMN 2788283	lft52	1,015203	9,422482	0,993875	92,56936
ILMN 2590585	ll1rapl2	9,950188	0,099529	9,807601	99,61221
ILMN_3155812	ll20rb	0,099269	0,985523	0,999115	98,3642
ILMN 1243066	ll1a	0,10371	0,164311	1,108696	0,016672
ILMN 3155812	ll20rb	0,099269	0,985523	0,999115	98,3642
ILMN 2590585	ll1rapl2	9,950188	0,099529	9,807601	99,61221
ILMN_2695883	Irf6	98,07738	1,018216	99,05107	0,098528
ILMN_2623699	Irf4	10,11834	1,043845	10,07184	10,42105
ILMN_2727022	ltgb1bp3	0,099752	1,0138	10,24586	0,009991
ILMN_2658633	Ifna7	1,001601	10,32717	1,025378	100,0743
ILMN_2711910	lfnb1	97,5166	1,045995	98,0811	1,078197
ILMN_3046362	Traf5	99,48784	1,130779	102,7819	1,093667
ILMN_3087518	Dido1	9,812321	1,018148	97,99077	1,019697
ILMN_1228448	Cd19	0,980663	0,009872	0,979249	9,960054
ILMN_2977690	Tm9sf4	0,992089	10,24256	0,980575	105,3711
ILMN_2505970	Tmc5	98,36548	0,986988	99,20843	0,958709
ILMN_2732649	Tmem107	99,31399	0,98021	101,2245	0,986103
ILMN_2645662	Tmem86a	0,985481	8,866486	0,975585	878,4668
ILMN_2441635	Tomm34	101,2956	1,024865	1022,77	0,102703
ILMN_1227012	Ndufb4	0,985371	0,00103	0,09931	103,154
ILMN_2419998	Soat1	1,003797	8,423494	0,097272	83,96302
ILMN_2607612	Sp2	100,5908	1,00328	102,9451	0,103512
ILMN_1221425	Spaca5	0,973755	0,997833	9,798517	100,9814
ILMN_1248179	Spag11	98,6397	0,098584	96,21745	1,017883
ILMN_1227250	Specc1I	0,963339	1,036285	0,930749	101,1408
ILMN_1227250	Specc1I	0,963339	1,036285	0,930749	101,1408
ILMN_2639777	Sphk2	10,1154	1,011834	10,1043	100,6965
ILMN_2818294	Srpx2	100,8231	0,100387	98,63012	1,016853
ILMN_3023573	Ssbp1	100,3159	1,022076	98,92587	0,998213
ILMN_2783117	Tas2r140	98,39451	1,015511	97,5502	0,963632
ILMN_2463080	Tbx13	10,10685	10,24209	98,87766	101,2983
ILMN_3072487	Tcfap2b	0,985614	9,853532	0,993813	1061,242
ILMN_2650280	Sod2	9,524808	1,131742	9,612056	0,115816
ILMN_1227889	Pias3	1,022192	1,025845	10,27761	1040,663
ILMN_2631014	Pias3	0,999235	1,004021	0,994658	98,45135
ILMN_2770667	Acin1	0,979681	0,097175	0,946506	99,56963
ILMN_1216022	Aclp7	1,00318	10,64468	10,17214	104,08

REIVINDICACIONES

1. Un antígeno conjugado con sia-alfa-2,3 para usar en la supresión de una respuesta inmunitaria no deseada específicamente dirigida contra el antígeno en un paciente que necesite dicho tratamiento.

2. Un antígeno conjugado con sia-alfa-2,3 para usar de acuerdo con la reivindicación 1, en donde el paciente 5 padece una enfermedad autoinmunitaria.

3. Un antígeno conjugado con sia-alfa-2,3 para usar de acuerdo con la reivindicación 2, en donde la enfermedad autoinmunitaria se selecciona del grupo que consiste en esclerosis múltiple, artritis reumatoide, diabetes de tipo 1, gastritis y enfermedad inflamatoria del intestino.

4. Un antígeno conjugado con sia-alfa-2,3 para usar de acuerdo con la reivindicación 1, en donde el paciente 10 padece una enfermedad inflamatoria.

5. Un antígeno conjugado con sia-alfa-2,3 para usar de acuerdo con la reivindicación 4, en donde la enfermedad inflamatoria se selecciona del grupo que consiste en psoriasis, alergia, enfermedad de Alzheimer, enfermedad de Parkinson y trasplante.

6. Un antígeno conjugado con sia-alfa-2,3 para usar de acuerdo con cualquiera de las reivindicaciones 1-5, en donde el antígeno se selecciona del grupo que consiste en los antígenos mencionados en la tabla 1.

ES 2 607 087 T3

Fig. 2C

24

Fig. 4D

Fig. 5A

Fig. 5B

32

Fig. 6C

Fig. 7B

