

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 608 402

(51) Int. CI.:

C12N 9/14 (2006.01) C12N 9/42 (2006.01) C12P 19/02 (2006.01) C12P 19/14 (2006.01) D21C 5/00 D21C 5/02 D06M 16/00 (2006.01) D21H 21/10 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

31.03.2010 PCT/JP2010/055897 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 06.10.2011 WO11121768

(96) Fecha de presentación y número de la solicitud europea: E 10848946 (9) 31.03.2010 (97) Fecha y número de publicación de la concesión europea:

19.10.2016 EP 2554667

(54) Título: Nuevo gen de celulasa

 $\stackrel{ ext{\scriptsize (45)}}{}$ Fecha de publicación y mención en BOPI de la traducción de la patente: 10.04.2017

(73) Titular/es:

MEIJI SEIKA PHARMA CO., LTD. (100.0%) 4-16, Kyobashi 2-chome Chuo-ku, Tokyo 104-8002, JP

(72) Inventor/es:

YOKOYAMA, FUMIKAZU

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Nuevo gen de celulasa

Campo técnico

5

10

15

20

25

30

40

45

La presente invención se refiere a celulasas, más particularmente, celulasas derivadas de <u>Acremonium cellulolyticus</u>, polinucleótidos que codifican las celulasas, un procedimiento de producción de celulasas usando los polinucleótidos, y un uso de las celulasas. El término "polinucleótido", tal como se usa en la presente memoria, incluye ADN y ARN, y modificaciones y quimeras de los mismos, preferentemente ADN.

Antecedentes de la técnica

Celulasa es un término genérico para las enzimas que descomponen celulosa. La celulasa producida por microorganismos está compuesta generalmente por muchos tipos de componentes de celulasa. Los componentes de celulasa se clasifican por su especificidad por el sustrato en tres tipos: celobiohidrolasa, endoglucanasa y β -glucosidasa. Se considera que <u>Aspergillus niger</u>, un hongo filamentoso que produce celulasa, produce cuatro tipos de celobiohidrolasa, quince tipos de endoglucanasas y quince tipos de β -glucosidasas como máximo. Por lo tanto, cuando la celulasa producida por un microorganismo se utiliza industrialmente, se usa como una mezcla de varios componentes de celulasa producidos por el microorganismo.

Un hongo filamentoso <u>Acremonium cellulolyticus</u> se caracteriza por la producción de celulasa que tiene una alta capacidad de sacarificación (literatura no de patentes 1), y se informó de que tiene alta utilidad para uso en piensos o uso en ensilaje (literaturas de patentes 1-3). Los componentes de celulasa contenidos (literaturas de patentes 4-10) han sido estudiados en detalle, y se aclara que muchos tipos de componentes de celulasa son secretados de manera similar a otros hongos filamentosos.

Se considera que varios tipos de componentes enzimáticos específicos en muchos tipos de componentes de celulasa son importantes para un uso limitado determinado. Por lo tanto, si la composición de componentes de celulasa de la celulasa producida por un microorganismo puede ser optimizada según el uso, se espera que pueda obtenerse una celulasa que tenga una actividad más alta. La mejor manera de conseguir esto es sobreexpresando una enzima específica mediante la introducción de su gen de enzima específica, o alterando un gen de la enzima específica, usando técnicas de recombinación de genes.

Sin embargo, sólo se aislaron dos tipos de celobiohidrolasas (literaturas de patente 4 y 5) y un tipo de β -glucosidasa (literatura de patentes 10) en <u>Acremonium cellulolyticus</u> y, de esta manera, no pudo llevarse a cabo una expresión mejorada mediante introducción de genes o expresión suprimida mediante alteración génica con respecto a las otras celulasas.

Bajo estas circunstancias, se ha deseado el aislamiento de genes para enzimas degradantes de polisacáridos, tales como endoglucanasa y β-glucosidasa, para optimizar la composición de los componentes de celulasa producidos por <u>Acremonium cellulolyticus</u>, usando técnicas de recombinación de genes.

Lista de citas

35 Literatura no de patente

[Literatura no de patente 1] Agricultural and Biological Chemistry, Japón, 1987, vol. 51, p. 65

Literatura de patentes

[Literatura de patente 1] Publicación de patente japonesa (Kokai) no examinada Nº 7-264994

[Literatura de patentes 2] Patente japonesa Nº 2531595

[Literatura de patente 3] Publicación de patente japonesa (Kokai) no examinada Nº 7-236431

[Literatura de patente 4] Publicación de patente japonesa (Kokai) no examinada Nº 2001-17180

[Literatura de patente 5] WO97/33982

[Literatura de patentes 6] WO99/011767

[Literatura de patente 7] Publicación de patente japonesa (Kokai) no examinada № 2000-69978

[Literatura de patente 8] Publicación de patente japonesa (Kokai) no examinada Nº 10-066569

[Literatura de patente 9] Publicación de patente japonesa (Kokai) no examinada Nº 2002-101876

[Literatura de patente 10] Publicación de patente japonesa (Kokai) no examinada Nº 2000-298262

Sumario de la invención

Problema técnico

5

10

15

25

30

Un objeto de la presente invención es identificar genes de endoglucanasa y β-glucosidasa mediante el aislamiento de ADN genómico que contiene genes de celulasa, que se clasifican en endoglucanasas o β-glucosidasas, a partir de Acremonium cellulolyticus, y la secuenciación de las secuencias de nucleótidos del mismo.

Solución al problema

Para resolver el problema, los inventores compararon intensamente entre sí las secuencias de aminoácidos de las endoglucanasas y las β -glucosidasas conocidas con el fin de encontrar una región de secuencias de aminoácidos conservada en <u>Acremonium cellulolyticus</u>, y se diseñaron diversos cebadores en base a la información. Se llevó a cabo una PCR usando los diferentes cebadores diseñados de esta manera y ADN genómico o ADNc como plantilla. Como resultado, se obtuvieron fragmentos genéticos de endoglucanasas y β -glucosidasas. Los cebadores se diseñaron en base a los fragmentos genéticos, y la PCR se llevó a cabo para amplificar nueve genes de endoglucanasas y β -glucosidasas. Se secuenciaron secuencias de nucleótidos de los mismos, y se completó la presente invención.

La presente invención se refiere a:

- [1] una proteína seleccionada de entre:
- una proteína que comprende los aminoácidos 1-301 de la SEC ID Nº: 14;
- [2] la proteína de [1], en la que la proteína se deriva a partir de un hongo filamentoso,
- 20 [3] la proteína de [2], en la que el hongo filamentoso es Acremonium cellulolyticus,
 - [4] un nucleótido que comprende una secuencia de nucleótidos que codifica la proteína según cualquiera de [1] a [3],
 - [5] un polinucleótido que es un ADN que comprende la secuencia de nucleótidos de SEC ID Nº: 13,
 - [6] un polinucleótido que es un ADN seleccionado de entre:
 - (i) un ADN que codifica la proteína de [1]
 - (ii) un ADN que comprende los nucleótidos 124-1143 de la SEC ID №: 13;
 - [7] el ADN en el que una secuencia de intrón es retirada del ADN de [6],
 - [8] el ADN de [7], en el que la secuencia de intrón son los nucleótidos 225-275 de la SEC ID Nº: 13,
 - [9] el ADN en la que una secuencia de nucleótidos que codifica una secuencia señal es eliminada del ADN de uno cualquiera de [5] a [8],
 - [10] el ADN de [9], en el que la secuencia de nucleótidos que codifica una secuencia señal son los nucleótidos 124-186 de la SEC ID Nº: 13,
 - [11] un vector de expresión, que comprende el ADN de uno cualquiera de [4] a [10],
 - [12] una célula huésped transformada con el vector de expresión de [11],
 - [13] la célula huésped de [12], en la que la célula huésped es una levadura o un hongo filamentoso,
- [14] la célula huésped de [13], en la que la levadura es un microorganismo que pertenece al género <u>Saccharomyces</u>, <u>Hansenula</u>, o <u>Pichia</u>,
 - [15] la célula huésped de [14], en la que la levadura es Saccharomyces cerevisiae,
 - [16] la célula huésped de [13], en la que el hongo filamentoso es un microorganismo que pertenece al género <u>Humicola, Aspergillus, Trichoderma, Fusarium</u> o <u>Acremonium</u>,
- 40 [17] la célula huésped de [16], en la que el hongo filamentoso es <u>Acremonium cellulolyticus</u>, <u>Humicola insolens</u>, <u>Aspergillus niger</u>, <u>Aspergillus oryzae</u>, <u>Trichoderma viride</u> o <u>Fusarium oxysporum</u>,

- [18] un hongo filamentoso que pertenece al género <u>Acremonium</u>, que es deficiente en un gen que corresponde al ADN de uno cualquiera de [4] a [10] por recombinación homóloga,
- [19] el hongo filamentoso de [18], en el que el hongo filamentoso es Acremonium cellulolyticus,
- [20] un procedimiento de producción de la proteína de una cualquiera de [1] a [3], que comprende:
 - cultivar las células huésped de uno cualquiera de [12] a [17]; y
 - recoger la proteína de las células huésped y/o su cultivo,
- [21] una proteína producida mediante el procedimiento de [20],
- [22] una preparación de celulasa que comprende la proteína de una cualquiera de [1] a [3] y [21],
- [23] un procedimiento de sacarificación de biomasa, que comprende:
 - poner en contacto biomasa que contiene celulosa con la proteína de una cualquiera de [1] a [3] y [21] o la preparación de celulasa de [22],
- [24] un procedimiento de tratamiento de un tejido que contiene celulosa, que comprende:
 - poner en contacto el tejido que contiene celulosa con la proteína de una cualquiera de [1] a [3] y [21] o la preparación de celulasa de [22],
- [25] un procedimiento de destintado de papelote, caracterizado por el uso de la proteína de una cualquiera de [1] a [3] y [21] o la preparación de celulasa de [22], en el procedimiento de tratamiento del papelote junto con un agente de destintado.
- [26] un procedimiento para mejorar un drenaje de agua de la pasta de papel, que comprende:
 - el tratamiento de la pasta de papel con la proteína de una cualquiera de [1] a [3] y [21] o la preparación de celulasa de [22], y
- [27] un procedimiento para mejorar una digestibilidad de un pienso, que comprende:
 - el tratamiento del pienso con la proteína de una cualquiera de [1] a [3] y [21] o la preparación de celulasa de [22].

Efectos ventajosos de la invención

5

10

15

20

30

35

- Según la presente invención, es posible obtener ADNs que son necesarios para producir de manera eficiente endoglucanasas y β-glucosidasas específicas derivadas de <u>Acremonium cellulolyticus</u> como proteínas recombinantes, y para obtener microorganismos recombinantes que pueden expresar de manera eficiente estos componentes de celulasa. Además, las endoglucanasas y las β-glucosidasas específicas pueden producirse de manera eficiente a bajo costo.
 - Según la presente invención, los genes específicos de endoglucanasa y β -glucosidasa pueden ser interrumpidos del genoma de <u>Acremonium cellulolyticus</u>, y como resultado, es posible obtener <u>Acremonium cellulolyticus</u> recombinante que produce celulasa no contiene la endoglucanasa ni la β -glucosidasa, y producir la celulasa que no contiene ni la endoglucanasa ni la β -glucosidasa específicas.
 - Un sustrato a base de celulosa puede ser degradado de manera eficiente a bajo costo seleccionando un grupo de celulasas óptimo de varias celulasas obtenidas en la presente invención, y tratando el sustrato a base de celulosa con el grupo de celulasas.

Breve descripción de los dibujos

- La Fig. 1 es un mapa de restricción del plásmido pACC3.
- La Fig. 2 es un mapa de restricción del plásmido pACC5.
- La Fig. 3 es un mapa de restricción del plásmido pACC6.
- 40 La Fig. 4 es un mapa de restricción del plásmido pACC7.
 - La Fig. 5 es un mapa de restricción del plásmido pACC8.
 - La Fig. 6 es un mapa de restricción del plásmido pACC9.

La Fig. 7 es un mapa de restricción del plásmido pACC10.

La Fig. 8 es un mapa de restricción del plásmido pBGLC.

La Fig. 9 es un mapa de restricción del plásmido pBGLD.

Descripción de realizaciones

5 Endoglucanasa y β-glucosidasa

10

15

20

25

30

35

40

45

La proteína de la presente invención, endoglucanasas y β -glucosidasas, puede comprender una secuencia que corresponde a la parte de proteína madura de una secuencia de aminoácidos seleccionada de entre las SEC ID Nº: 2, 4, 6, 8, 10, 12, 14, 16 y 18, o una secuencia de aminoácidos sustancialmente equivalente a la secuencia de aminoácidos.

La expresión "secuencia de aminoácidos sustancialmente equivalente", tal como se usa en la presente memoria, significa, por ejemplo, una secuencia de aminoácidos en la que hay una modificación por la sustitución, deleción y/o adición de un aminoácido o una pluralidad (preferentemente varios) de aminoácidos, pero la actividad del polipéptido no se ve afectada, o una secuencia de aminoácidos en la que tiene una identidad del 70% o superior, pero la actividad del polipéptido no se ve afectada.

El número de residuos de aminoácidos modificados es preferentemente de 1 a 40, más preferentemente de 1 a varios, todavía más preferentemente de 1 a 8, y más preferentemente de 1 a 4. Los ejemplos de "modificación que no afecta a la actividad", tal como se usa en la presente memoria, incluyen la sustitución conservativa. La expresión "sustitución conservativa" significa que un residuo de aminoácidos o varios residuos de aminoácidos se sustituyen con diferentes aminoácidos que tienen propiedades químicas similares sin un cambio sustancial en la actividad de un polipéptido. Los ejemplos de la sustitución conservativa incluyen una sustitución de un residuo hidrófobo por otro residuo hidrófobo, y una sustitución de un residuo polar por otro residuo polar que tiene la misma carga. Los aminoácidos que tienen propiedades químicas similares y pueden ser sustituidos entre sí de manera conservativa son conocidos por las personas con conocimientos en la materia. Más particularmente, los ejemplos de aminoácidos no polares (hidrófobos) incluyen alanina, valina, isoleucina, leucina, prolina, triptófano, fenilalanina y metionina. Los ejemplos de aminoácidos polares (neutros) incluyen glicina, serina, treonina, tirosina, glutamina, asparagina y cisteína. Los ejemplos de aminoácidos básicos que tienen una carga positiva incluyen arginina, histidina y lisina. Los ejemplos de aminoácidos ácidos que tienen una carga negativa incluyen ácido aspártico y ácido glutámico.

El término "identidad", tal como se usa en la presente memoria, significa un valor calculado por FASTA3 [Science, 227, 1435-1441 (1985); Proc. Natl. Acad. Sci. USA, 85, 2444-2448 (1988); http://www.ddbj.nig.ac.jp/E-mail/homology-j.html], un programa de búsqueda de homología conocido por las personas con conocimientos en la materia, usando parámetros por defecto. Puede ser una identidad de preferentemente el 80% o superior, más preferentemente del 90% o superior, todavía más preferentemente del 95% o superior, y más preferentemente del 99% o superior.

En la proteína de la presente invención, una secuencia de polipéptido que no afecta a la actividad enzimática de la proteína puede ser añadido al terminal N y/o al terminal C del aminoácido correspondiente a su parte madura o un aminoácido sustancialmente equivalente al mismo. Los ejemplos de la secuencia de polipéptidos incluyen una secuencia señal, un marcador de detección (por ejemplo, un marcador FLAG), y un polipéptido para la purificación [por ejemplo, glutatión S-transferasa (GST)].

Genes de endoglucanasa y β-glucosidasa

El polinucleótido de la presente invención, los genes endoglucanasa y β-glucosidasa, puede comprender una secuencia de nucleótidos que codifica la proteína de la presente invención; una secuencia de nucleótidos seleccionada de entre las secuencias de nucleótidos 136-1437 de la SEC ID Nº: 1, nucleótidos 128-1615 de la SEC ID Nº: 3, nucleótidos 169-1598 de la SEC ID Nº: 5, nucleótidos 70-1376 de la SEC ID Nº: 7, nucleótidos 141-974 de la SEC ID Nº: 9, nucleótidos 114-1230 de la SEC ID Nº: 11, nucleótidos 124-1143 de la SEC ID Nº: 13, nucleótidos 238-1887 de la SEC ID Nº: 15, y nucleótidos 66-1765 de la SEC ID Nº: 17; o una secuencia de nucleótidos que puede hibridarse a estos nucleótidos bajo condiciones rigurosas.

La expresión "bajo condiciones rigurosas", tal como se usa en la presente memoria, significa que una membrana después de la hibridación se lava a alta temperatura en una solución de baja concentración de sal, por ejemplo, a 60°C durante 20 minutos en una solución de 2 x SSC (1 x SSC: 15 mmol/l de citrato trisódico y 150 mmol/l de cloruro de sodio) que contiene el 0,5% de SDS.

50 Clonación de genes de endoglucanasa y β-glucosidasa

Los genes de endoglucanasa y β-glucosidasa de la presente invención pueden aislarse a partir de Acremonium

<u>cellulolyticus</u> o su cepa mutante, por ejemplo, mediante el procedimiento siguiente. Debido a que las secuencias de nucleótidos se divulgan en la presente memoria, pueden ser sintetizados químicamente de manera artificial.

El ADN genómico se extrae a partir de micelios <u>Acremonium cellulolyticus</u> mediante un procedimiento convencional. El ADN genómico se digiere con una enzima de restricción apropiada, y se liga con un vector apropiado para preparar una biblioteca de ADN genómico de <u>Acremonium cellulolyticus</u>. Pueden usarse varios vectores, por ejemplo, un vector plásmido, un vector fago, un vector cósmido o un vector BAC, como el vector.

A continuación, pueden prepararse sondas adecuadas en base a las secuencias de nucleótidos de los genes de endoglucanasa y β -glucosidasa descritas en la presente memoria descriptiva, y los fragmentos de ADN que contienen genes de endoglucanasa y β -glucosidasa deseados pueden aislarse de la biblioteca de ADN genómico mediante hibridación. De manera alternativa, un gen deseado puede aislarse mediante la preparación de cebadores capaces de amplificar el gen deseado, en base a las secuencias de nucleótidos de los genes de endoglucanasa y β -glucosidasa descritos en la presente memoria descriptiva, realizando una PCR usando el ADN genómico de <u>Acremonium cellulolyticus</u> como una plantilla, y ligando el fragmento de ADN amplificado con un vector apropiado. Debido a que los genes de endoglucanasa y β -glucosidasa de la presente invención están contenidos en los plásmidos pACC3, pACC5, pACC6, pACC7, pACC8, pACC9, pACC10, pBGLC y pBGLD, estos plásmidos pueden usarse como un ADN plantilla para PCR. Además, los fragmentos de ADN deseados pueden prepararse mediante digestión de los plásmidos con enzimas de restricción apropiadas.

Depósito de microorganismos

5

10

15

20

25

30

45

50

<u>Escherichia coli</u> transformada con pACC3 (<u>Escherichia coli</u> TOP10/pACC3) se depositó internacionalmente en el International Patent Organism Depositary National Institute of Advanced Industrial Science and Technology (Address: AIST Tsukuba Central 6, 1-1, Higashi 1-chome Tukuba-shi, Ibarakiken 305-8566 Japón) el 9 de octubre 2008. El número de depósito internacional es FERM BP-11029.

<u>Escherichia coli</u> transformada con pACC5 (<u>Escherichia coli</u> TOP10/pACC5) se depositó internacionalmente en el International Patent Organism Depositary National Institute of Advanced Industrial Science and Technology (Address: AIST Tsukuba Central 6, 1-1, Higashi 1-chome Tukuba-shi, Ibarakiken 305-8566 Japón) el 9 de octubre 2008. El número de depósito internacional es FERM BP-11030.

<u>Escherichia coli</u> transformada con pACC6 (<u>Escherichia coli</u> TOP10/pACC6) se depositó internacionalmente en el International Patent Organism Depositary National Institute of Advanced Industrial Science and Technology (Address: AIST Tsukuba Central 6, 1-1, Higashi 1-chome Tukuba-shi, Ibarakiken 305-8566 Japón) el 9 de octubre 2008. El número de depósito internacional es FERM BP-11031.

<u>Escherichia coli</u> transformada con pACC7 (<u>Escherichia coli</u> TOP10/pACC7) se depositó internacionalmente en el International Patent Organism Depositary National Institute of Advanced Industrial Science and Technology (Address: AIST Tsukuba Central 6, 1-1, Higashi 1-chome Tukuba-shi, Ibarakiken 305-8566 Japón) el 9 de octubre 2008. El número de depósito internacional es FERM BP-11032.

- 35 <u>Escherichia coli</u> transformada con pACC8 (<u>Escherichia coli</u> TOP10/pACC8) se depositó internacionalmente en el International Patent Organism Depositary National Institute of Advanced Industrial Science and Technology (Address: AIST Tsukuba Central 6, 1-1, Higashi 1-chome Tukuba-shi, Ibarakiken 305-8566 Japón) el 9 de octubre 2008. El número de depósito internacional es FERM BP-11033.
- Escherichia coli transformada con pACC9 (Escherichia coli TOP10/pACC9) se depositó internacionalmente en el International Patent Organism Depositary National Institute of Advanced Industrial Science and Technology (Address: AIST Tsukuba Central 6, 1-1, Higashi 1-chome Tukuba-shi, Ibarakiken 305-8566 Japón) el 9 de octubre 2008. El número de depósito internacional es FERM BP-11034.

Escherichia coli transformada con pACC10 (Escherichia coli TOP10/pACC10) se depositó internacionalmente en el International Patent Organism Depositary National Institute of Advanced Industrial Science and Technology (Address: AIST Tsukuba Central 6, 1-1, Higashi 1-chome Tukuba-shi, Ibarakiken 305-8566 Japón) el 9 de octubre 2008. El número de depósito internacional es FERM BP-11035.

Escherichia coli transformada con pBGLC (Escherichia coli TOP10/pBGLC) se depositó internacionalmente en el International Patent Organism Depositary National Institute of Advanced Industrial Science and Technology (Address: AIST Tsukuba Central 6, 1-1, Higashi 1-chome Tukuba-shi, Ibarakiken 305-8566 Japón) el 9 de octubre 2008. El número de depósito internacional es FERM BP-11036.

Escherichia coli transformada con pBGLD (<u>Escherichia coli</u> TOP10/pBGLD) se depositó internacionalmente en el International Patent Organism Depositary National Institute of Advanced Industrial Science and Technology (Address:

AIST Tsukuba Central 6, 1-1, Higashi 1-chome Tukuba-shi, Ibarakiken 305-8566 Japón) el 9 de octubre 2008. El número de depósito internacional es FERM BP-11037.

Vector de expresión y microorganismo transformado

5

10

15

20

25

35

40

45

Según la presente invención, se proporciona un vector de expresión que comprende un ADN que comprende una secuencia de nucleótidos que codifica la secuencia de aminoácidos de entre SEC ID Nº: 2, 4, 6, 8, 10, 12, 14, 16 o 18, o su secuencia de aminoácidos modificada (en adelante, denominada simplemente secuencia de ADN de la presente invención), en la que el ADN puede replicarse en un microorganismo huésped y puede expresarse una proteína codificada por el ADN. El vector de expresión puede ser construido en base a un vector autorreplicante tal como un plásmido, que existe como un cuerpo extra-cromosómico independiente y no depende de la replicación del cromosoma. El vector de expresión puede ser uno que puede ser incorporado en el genoma de un microorganismo huésped, cuando se transforma con el vector de expresión, y que puede replicarse junto con la replicación del cromosoma. El vector de expresión de la presente invención puede ser construido según los procedimientos y los métodos ampliamente usados en el campo de la ingeniería genética.

El vector de expresión de la presente invención incluye preferentemente no sólo el ADN de la presente invención, sino también una secuencia de ADN capaz de regular la expresión del ADN, un marcador genético para seleccionar un transformante, o similares, para expresar una proteína que tiene una actividad deseada mediante la incorporación del vector de expresión en un microorganismo huésped. Los ejemplos de la secuencia de ADN capaz de regular la expresión incluyen un promotor, un terminador y una secuencia de ADN que codifica un péptido señal. El promotor no está limitado, siempre que muestre una actividad transcripcional en un microorganismo huésped, y puede ser obtenido como una secuencia de ADN que regula la expresión de un gen que codifica una proteína de una especie igual o diferente del microorganismo. El péptido señal no está limitado, siempre que contribuya a la secreción de una proteína en un microorganismo huésped, y puede ser obtenido como una secuencia de ADN que se deriva de un gen que codifica una proteína de una especie igual o diferente del microorganismo. El marcador genético en la presente invención puede seleccionarse apropiadamente según un procedimiento de selección de transformantes, y sus ejemplos incluyen un gen que codifica una resistencia a los medicamentos, y un gen que complementa la auxotrofia.

Según la presente invención, se proporciona un microorganismo transformado con el vector de expresión. El sistema huésped-vector no está limitado, y por ejemplo, puede usarse un sistema que usa Escherichia coli, actinomicetos, levaduras, hongos filamentosos o similares, o un sistema que usa los mismos para expresar una proteína fusionada con otra proteína.

La transformación de un microorganismo con el vector de expresión puede llevarse a cabo según técnicas usadas ampliamente en este campo.

Además, la proteína de la presente invención puede obtenerse cultivando el transformante resultante en un medio apropiado, y aislándolo del cultivo. Por lo tanto, según otra realización de la presente invención, se proporciona un procedimiento de producción de la nueva proteína de la presente invención. El cultivo del transformante y sus condiciones pueden ser esencialmente los mismos que los del microorganismo usado. Después del cultivo del transformante, la proteína de interés puede recuperarse mediante un procedimiento usado ampliamente en este campo.

Según una realización preferente de la presente invención, se proporciona una célula de levadura capaz de expresar la enzima endoglucanasa o β-glucosidasa codificada por la secuencia de ADN de la presente invención. Los ejemplos de la célula de levadura en la presente invención incluyen un microorganismo que pertenece al género <u>Saccharomyces</u>, <u>Hansenula</u> o <u>Pichia</u>, como <u>Saccharomyces</u> cerevisiae.

El hongo filamentoso huésped en la presente invención puede ser un microorganismo que pertenece al género <u>Humicola</u>, <u>Aspergillus</u>, <u>Trichoderma</u>, <u>Fusarium</u> o <u>Acremonium</u>. Los ejemplos preferentes de los mismos incluyen <u>Humicola insolens</u>, <u>Aspergillus niger</u>, <u>Aspergillus oryzae</u>, <u>Trichoderma viride</u>, <u>Fusarium oxysporum</u> o <u>Acremonium cellulolyticus</u>.

Expresión de la endoglucanasa o β-glucosidasa específica puede ser suprimida mediante la incorporación del gen de la presente invención, que se liga con un vector apropiado, en <u>Acremonium cellulolyticus</u> para suprimir la expresión, o mediante la interrupción del gen usando recombinación homóloga para interrumpir su función. La interrupción del gen utilizando recombinación homóloga puede llevarse a cabo según un procedimiento usado ampliamente, y la construcción de vector para la interrupción del gen y la incorporación del mismo en un huésped son evidentes para las personas con conocimientos en la materia.

50 <u>Preparación de celulasa</u>

La proteína de la presente invención puede obtenerse cultivando el transformante resultante en un medio apropiado, y aislándolo del cultivo. El cultivo del transformante y sus condiciones pueden seleccionarse apropiadamente según el microorganismo usado. La recogida y purificación de la proteína de interés a partir del cultivo pueden llevarse a cabo

según un procedimiento convencional.

Preparación de celulasa

Según otra realización de la presente invención, se proporciona una preparación de celulasa que contiene la proteína (celulasa) de la presente invención. La preparación de celulasa de la presente invención puede producirse mezclando la celulasa de la presente invención con un componente generalmente contenido, por ejemplo, un excipiente (por ejemplo, lactosa, cloruro de sodio o sorbitol), un tensioactivo o un conservante. La preparación de celulasa de la presente invención puede prepararse en una forma apropiada, tal como polvo o líquido.

Uso de celulasa

5

10

15

20

25

30

35

40

45

Según la presente invención, se considera que la sacarificación de biomasa puede mejorarse de manera eficiente tratando la biomasa con la enzima celulasa (grupo) o la preparación de celulasa de la presente invención. Según la presente invención, se proporciona un procedimiento para mejorar la sacarificación de biomasa, que comprende la etapa de tratar la biomasa con la enzima celulasa (grupo) o la preparación de celulasa de la presente invención. Los ejemplos de la biomasa que puede ser tratada con la presente invención incluyen la paja de arroz, bagazo, rastrojo de maíz, pulpa de frutas tales como coco, y residuos de madera, y materiales obtenidos tratando previamente, de manera adecuada, los mismos.

Según la presente invención, se proporcionan un procedimiento de aclaramiento del color de un tejido que contiene celulosa coloreada, que comprende la etapa de tratar el tejido que contiene celulosa coloreada con la enzima celulasa (grupo) o preparación de celulasa, y un procedimiento de provisión de una variación localizada en color de un tejido que contiene celulosa coloreada, es decir, un procedimiento de provisión de un aspecto lavado a la piedra al tejido que contiene celulosa coloreada. Este procedimiento comprende la etapa de tratar el tejido que contiene celulosa coloreada con la enzima celulasa (grupo) o la preparación de celulasa de la presente invención.

Según la presente invención, se considera que un grado de drenaje de agua de la pasta de papel puede mejorarse de manera eficiente tratando la pasta de papel con la enzima de endoglucanasa de la presente invención sin una reducción notable de la resistencia. Por lo tanto, según la presente invención, se proporciona un procedimiento para mejorar un refinado de agua de la pasta de papel, que comprende la etapa de tratar la pasta de papel con la enzima endoglucanasa o la preparación de celulasa de la presente invención. Los ejemplos de pulpa que puede ser tratada con la presente invención incluyen pasta de papel de desperdicio, pasta de cartón reciclado, pasta kraft, pasta de sulfito y de tratamiento termomecánico y otra pasta de alto rendimiento.

Además, la digestibilidad de glucano en el pienso puede mejorarse usando la endoglucanasa de la presente invención en el pienso. Por lo tanto, según la presente invención, se proporciona un procedimiento para mejorar una digestibilidad del pienso, que comprende la etapa de tratar el pienso con la enzima endoglucanasa o la preparación de celulasa de la presente invención.

Ejemplos

La presente invención se ilustrará ahora adicionalmente mediante el siguiente ejemplo, pero la misma no se limita en modo alguno a dicho ejemplo.

«Ejemplo 1: Clonación del gen ACC3»

(1-1) Aislamiento del ADN genómico

Acremonium cellulolyticus ACCP-5-1 se cultivó en un medio o unos medios (2% de caldo, 0,5% de extracto de levadura y 2% de glucosa) a 32°C durante 2 días, y se centrifugó para recoger el micelio. El ADN genómico se aisló de los micelios obtenidos según el procedimiento de Horiuchi et al. (H. Horiuchi et al., J. Bacteriol., 170, 272-278, (1988)).

(1-2) Clonación del fragmento del gen ACC3

Se prepararon los siguientes cebadores en base a las secuencias de endoglucanasas conocidas clasificadas en la familia Glucósido Hidrolasa 5

ACC3-F: GGGCGTCTGTRTTYGARTGT (SEC ID Nº: 19)

ACC3-R: AAAATGTAGTCTCCCCACCA (SEC ID Nº: 20)

Se llevó a cabo una PCR usando ACC3-F y ACC3-R como cebadores y el ADN genómico como plantilla, y usando LA Taq polimerasa (Takara Bio). La PCR se llevó a cabo repitiendo 40 veces un ciclo que consiste en una reacción a 94°C durante 30 segundos, hibridación durante 30 segundos, y una reacción a 72°C durante 1 minuto. La temperatura de

hibridación se redujo escalonadamente desde 63°C a 53°C en los primeros 20 ciclos, y se mantuvo a 53°C en los siguientes 20 ciclos. El fragmento de ADN amplificado de 1 kpb se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) según un protocolo asociado al kit para obtener el plásmido TOPO-pACC3-parcial.

El fragmento de ADN insertado clonado en el plásmido TOPO-pACC3-parcial fue secuenciado usando un Kit de secuenciación BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) y un analizador genético ABI PRISM (Applied Biosystems) según los protocolos asociados a los mismos. La secuencia de nucleótidos obtenida se tradujo a la secuencia de aminoácidos, y se realizó una búsqueda de homología usando la secuencia de aminoácidos. La secuencia mostró una identidad del 74% con la de la endoglucanasa EG1 (Q8WZD7) derivada de <u>Talaromyces emersonii</u> y, de esta manera, se consideró que el fragmento de ADN era parte de un gen de endoglucanasa (familia Glucósido Hidrolasa 5).

(1-3) Clonación de longitud completa del gen ACC3 mediante PCR inversa

Se llevó a cabo una PCR inversa según el procedimiento de Triglia et al. (T Triglia et al., Nucleic Acids Research, 16, 8186, (1988)). El ADN genómico de <u>Acremonium cellulolyticus</u> se digirió con Sal I durante la noche, y el ADN circular se preparó usando Mighty Mix (Takara Bio). Se llevó a cabo una PCR usando el ADN circular como plantilla y las siguientes secuencias contenidas en el fragmento del gen ACC3 como cebadores para obtener la región aguas arriba de 5' y la 5 región aguas debajo de 3' del gen ACC3.

ACC3-inv-F: ACTTCCAGACTTTCTGGTCC (SEC ID Nº: 21)

15

20

35

45

ACC3-inv-R: AGGCCGAGAGTAAGTATCTC (SEC ID Nº: 22)

La región aguas arriba de 5' y la región aguas debajo de 3' se secuenciaron según el procedimiento descrito en el Ejemplo 1-2 para determinar la secuencia de nucleótidos completa del gen ACC3.

Se prepararon los siguientes cebadores en base a la secuencia de nucleótidos obtenida mediante la PCR inversa y se llevó a cabo una PCR usando el ADN genómico como plantilla para amplificar el gen ACC3.

pACC3-F: GAAGGATGGTAGATTGTCCG (SEC ID Nº: 23)

pACC3-R: ACCGAGAAGGATTTCTCGCA (SEC ID Nº: 24)

El ADN amplificado se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) para obtener el plásmido pACC3. <u>Escherichia coli</u> TOP10 (Invitrogen) se transformó con el plásmido pACC3 obtenido para obtener <u>Escherichia coli</u> TOP10/pACC3.

(1-4) Preparación de ADNc y análisis de intrón del gen ACC3

Se cultivó <u>Acremonium cellulolyticus</u> ACCP-5-1 en un medio de inducción de celulasa a 32°C durante 2 días, y se centrifugó para recoger el micelio. Los micelios obtenidos se congelaron en nitrógeno líquido, y se molieron con un mortero. El ARN total se aisló de los micelios molidos usando ISOGEN (Nippon Gene) según un protocolo asociado al mismo. Además, el ARNm se purificó a partir del ARN total usando un kit de purificación de ARNm (Pharmacia) según un protocolo asociado al mismo.

Se sintetizó ADNc a partir del ARNm obtenido usando un kit de síntesis de ADNc "Timesaver cDNA Synthesis ki" (Pharmacia) según un protocolo asociado al mismo. Los siguientes cebadores que contenían el codón de iniciación y el codón de parada se prepararon en base a la secuencia del gen ACC3, y la PCR se llevó a cabo usando el ADNc como plantilla para amplificar el gen ACC3 ADNc.

ACC3-N: ATGAAGACCAGCATCATTTCTATC (SEC ID Nº: 25)

ACC3-C: TCATGGGAAATAACTCTCCAGAAT (SEC ID Nº: 26)

El gen ACC3 ADNc se secuenció según el procedimiento descrito en el Ejemplo 1-2, y se comparó con el gen pACC3 para determinar la ubicación de los intrones.

(1-5) Deducción de la secuencia de aminoácidos de ACC3

El gen ACC3 de endoglucanasa aislado a partir de <u>Acremonium cellulolyticus</u> mediante el procedimiento descrito anteriormente consistía en 1302 pb con nucleótidos correspondientes a los nucleótidos 136-1437 de la SEC ID Nº: 1. Se encontró que el gen ACC3 contenía cinco intrones en las posiciones 233-291, 351-425, 579-631, 697-754 y 853-907 de la SEC ID Nº: 1. La secuencia de aminoácidos de ACC3 deducida a partir del marco abierto de lectura (ORF) era la de SEC ID Nº: 2. Se supuso, usando un software de predicción de secuencia de señal SignalP 3.0, que la secuencia de aminoácidos en la posición -27 a -1 de ACC3 era una secuencia de señal.

«Ejemplo 2: Clonación del gen ACC5»

(2-1) Aislamiento de ADN genómico y de ARNm y preparación de ADNc

El ADN genómico de <u>Acremonium cellulolyticus</u> ACCP-5-1 se aisló según el procedimiento descrito en el Ejemplo 1-1. El ADNc de Acremonium cellulolyticus ACCP-5-1 se preparó según el procedimiento descrito en el Ejemplo 1-4.

5 (2-2) Clonación del fragmento del gen ACC5

20

25

35

40

Se prepararon los siguientes cebadores en base a las secuencias de aminoácidos N-terminales de endoglucanasas conocidas clasificadas en la familia Glucósido Hidrolasa 7 y la secuencia de nucleótidos poli A.

ACC5-F: CAGCAGGCCCCCACCCCNGAYAAYYTNGC (SEC ID Nº: 27)

ACC5-R: AATTCGCGGCCGCTAAAAAAAA (SEC ID Nº: 28)

Se llevó a cabo una PCR usando ACC5-F y ACC5-R como cebadores y ADNc como plantilla, y usando LA Taq polimerasa (Takara Bio). La PCR se llevó a cabo repitiendo 40 veces un ciclo que consiste en una reacción a 94°C durante 30 segundos, hibridación durante 30 segundos, y una reacción a 72°C durante 1 minuto. La temperatura de hibridación se redujo escalonadamente desde 63°C a 53°C en los primeros 20 ciclos, y se mantuvo a 53°C en los siguientes 20 ciclos. El fragmento de ADN amplificado de 1,5 kpb se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) según un protocolo asociado al kit para obtener el plásmido TOPO-pACC5-parcial.

El fragmento de ADN insertado clonado en el plásmido TOPO-pACC5-parcial se secuenció, y la secuencia de nucleótidos obtenida se tradujo en la secuencia de aminoácidos, y se llevó a cabo una búsqueda de homología usando la secuencia de aminoácidos. La secuencia mostró una identidad del 60% con la secuencia de endoglucanasa (Q4WCM9) derivada a partir de <u>Aspergillus fumigatus</u> y, de esta manera, se consideró que el fragmento de ADN era parte de un gen de endoglucanasa (familia Glucósido Hidrolasa 7).

(2-3) Clonación de longitud completa del gen ACC5 mediante PCR inversa

Según el procedimiento descrito en el Ejemplo 1-3, la PCR se llevó a cabo usando ADN circular (obtenido mediante digestión con HindIII) como plantilla y las siguientes secuencias contenidas en el fragmento del gen ACC5 como cebadores para obtener la región aguas arriba de 5' y la región aguas abajo de 3' del gen ACC5.

ACC5-inv-F: ATCTCACCTGCAACCTACGA (SEC ID Nº: 29)

ACC5-inv-R: CCTCTTCCGTTCCACATAAA (SEC ID Nº: 30)

La región aguas arriba de 5' y la región aguas abajo de 3' se secuenciaron para determinar la secuencia de nucleótidos completa del gen ACC5.

30 Se prepararon los siguientes cebadores en base a la secuencia de nucleótidos obtenida mediante la PCR inversa y se llevó a cabo una PCR usando ADN genómico como plantilla para amplificar el gen ACC5.

pACC5-F: ATTGCTCCGCATAGGTTCAA (SEC ID Nº: 31)

pACC5-R: TTCAGAGTTAGTGCCTCCAG (SEC ID Nº: 32)

El ADN amplificado se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) para obtener el plásmido pACC5. <u>Escherichia coli</u> TOP10 (Invitrogen) se transformó con el plásmido pACC5 obtenido para obtener <u>Escherichia coli</u> TOP10/pACC5.

(2-4) Análisis de intrones del gen ACC5

Los siguientes cebadores que contenían el codón de iniciación y el codón de parada se prepararon en base a la secuencia del gen ACC5, y la PCR se llevó a cabo usando el ADNc como plantilla para amplificar el gen ACC5 ADNc.

ACC5-N: ATGGCGACTAGACCATTGGCTTTTG (SEC ID Nº: 33)

ACC5-C: CTAAAGGCACTGTGAATAGTACGGA (SEC ID Nº: 34)

La secuencia de nucleótidos del gen ACC5 ADNc se secuenció, y se comparó con el gen pACC5 para determinar la ubicación de los intrones.

(2-5) Deducción de la secuencia de aminoácidos de ACC5

El gen de endoglucanasa ACC5 aislado a partir de <u>Acremonium cellulolyticus</u> mediante el procedimiento descrito anteriormente consistía en 1488 pb con nucleótidos correspondientes a los nucleótidos 128-1615 de la SEC ID Nº: 3. La secuencia de aminoácidos de ACC5 deducida a partir del marco abierto de lectura (ORF) era la de la SEC ID Nº: 4. Se supuso, usando un software de predicción de secuencia de señal SignalP 3.0, que la secuencia de aminoácidos en la posición -20 a -1 de ACC5 era una secuencia de señal.

<< Ejemplo 3: Clonación del gen ACC6 >>

5

10

30

45

50

(3-1) Aislamiento de ADN genómico y preparación de la biblioteca genómica

El ADN genómico de <u>Acremonium cellulolyticus</u> ACCP-5-1 se aisló según el procedimiento descrito en el Ejemplo 1-1. El ADN genómico aislado se digirió parcialmente con Sau3Al. El producto resultante se ligó con los brazos BamHl de un kit de clonación dMBL3 de vector fágico (Stratagene) usando un kit de ligadura, véase. 2 (Takara Shuzo). La mezcla de ligadura se sometió a precipitación con etanol, y el precipitado resultante se disolvió en un tampón TE. Las partículas de fago se formaron usando la solución de mezcla de ligadura y un kit de empaquetado MaxPlax A (Epicenter Technologies), y <u>Escherichia coli</u> XL1-Blue MRA (P2) se infectó con las partículas de fago. Se obtuvo una biblioteca de ADN genómico de 1,1 x 10⁴ fagos mediante este procedimiento.

15 (3-2) Clonación del fragmento del gen ACC6

Se prepararon los siguientes cebadores en base a las secuencias de endoglucanasas conocidas clasificadas en la familia Glucósido Hidrolasa 5.

ACC6-F: GTGAACATCGCCGGCTTYGAYTTYGG (SEC ID Nº: 35)

ACC6-R: CCGTTCCACCGGGCRTARTTRTG (SEC ID Nº: 36)

Se llevó a cabo una PCR usando ACC6-F y ACC6-R como cebadores y el ADN genómico como plantilla, y usando LA Taq polimerasa (Takara Bio). La PCR se llevó a cabo repitiendo 40 veces un ciclo que consiste en una reacción a 94°C durante 30 segundos, hibridación durante 30 segundos, y una reacción a 72°C durante 1 minuto. La temperatura de hibridación se redujo escalonadamente desde 63°C a 53°C en los primeros 20 ciclos, y se mantuvo a 53°C en los siguientes 20 ciclos. El fragmento de ADN amplificado de 300 pb se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) según un protocolo asociado al kit para obtener el plásmido TOPO-pACC6-parcial.

El fragmento de ADN insertado clonado en el plásmido TOPO-pACC6-parcial se secuenció, y la secuencia de nucleótidos obtenida se tradujo a la secuencia de aminoácidos, y se realizó una búsqueda de homología usando la secuencia de aminoácidos. La secuencia mostró una identidad del 61% con la secuencia de endoglucanasa EG3 (Q7Z7X2) derivada de Trichoderma viride y, de esta manera, se consideró que el fragmento de ADN era parte de un gen de endoglucanasa (familia Glucósido Hidrolasa 5). Este fragmento de ADN se amplificó mediante PCR usando el plásmido TOPO-pACC6-parcial como una plantilla en una manera similar, y el producto de PCR obtenido se marcó usando un sistema directo ECL (Amersham Pharmacia Biotech) para obtener una sonda.

(3-3) Cribado mediante hibridación de placas

Las placas de fagos preparadas en el Ejemplo 3-1 se transfirieron a una membrana de transferencia de nylon Hybond N+ (Amersham). La membrana se sometió a desnaturalización alcalina, se lavó con 5 x SSC (SSC: 15 mmol/l de citrato trisódico y 150 mmol/l de cloruro de sodio), y se secó para inmovilizar el ADN en la membrana. Después de la prehibridación (42°C) durante 1 hora, se añadió la sonda marcada con HRP, y la hibridación (42°C) se llevó a cabo durante 4 horas. La sonda se retiró mediante lavado con 0,5 x SSC suplementado con urea 6 M y 0,4% de SDS dos veces, y con 2 x SSC dos veces.

La membrana de nylon después de lavar la sonda se sumergió en una solución de detección durante 1 minuto, y se expuso a Hyperfilm ECL (el mismo fabricante) para obtener un clon positivo. El ADN se preparó a partir del clon positivo según el procedimiento de Maniatis et al. (J. Sambrook, E. F. Fritsch y T. Maniat1s, "Molecular Cloning", Cold Spring Harbor Laboratory Press. 1989) usando LE392 como <u>Escherichia coli</u> anfitrión. LE392 se cultivó en un medio LB-MM (1% de peptona, 0,5% de extracto de levadura, 0,5% cloruro de sodio, 10 mmol/l de sulfato de magnesio y 0,2% de maltosa) durante la noche. LE392 se infectó con una solución de fago derivada de la placa individual, y se cultivó durante la noche en el medio LB-MM. Se añadieron cloruro de sodio y cloroformo al cultivo a concentraciones finales de 1 M y 0,8%, respectivamente, para promover la lisis de <u>Escherichia coli</u>. El cultivo se centrifugó para eliminar el residuo bacteriano, y las partículas de fago se recogieron de un precipitado generado por 10% de PEG 6000. Las partículas de fago se digirieron con proteinasa K en presencia de SDS, y se sometieron a tratamiento con fenol, seguido de precipitación con etanol para recoger el ADN del fago.

El ADN obtenido se analizó mediante transferencia Southern usando un sistema directo ECL. Como resultado de la hibridación usando el fragmento amplificado mediante PCR del Ejemplo 3-2 como sonda, un fragmento Xbal de 2,9 kpb mostró patrones de hibridación comunes al ADN cromosómico. Este fragmento Xbal se clonó en pUC118 para obtener el plásmido pUC-ACC6, y se secuenció la secuencia de nucleótidos del plásmido.

5 (3-4) Clonación de longitud completa del gen ACC6

Se prepararon los siguientes cebadores en base a la secuencia de nucleótidos obtenida a partir de pUC-ACC6, y la PCR se llevó a cabo usando ADN genómico como plantilla para amplificar el gen ACC6.

pACC6-F: CTCTGCATTGAATCCCGAGA (SEC ID Nº: 37)

pACC6-R: GCAACGCTAAAGTGCTCATC (SEC ID Nº: 38)

- El ADN amplificado se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) para obtener el plásmido pACC6. <u>Escherichia coli</u> TOP10 (Invitrogen) se transformó con el plásmido pACC6 obtenido para obtener Escherichia coli TOP10/pACC6.
 - (3-5) Preparación de ADNc y análisis de intrón del gen ACC6
 - El ADNc de <u>Acremonium cellulolyticus</u> ACCP-5-1 se preparó según el procedimiento descrito en el Ejemplo 1-4. Los siguientes cebadores que contenían el codón de iniciación y el codón de parada se prepararon en base a la secuencia del gen ACC6, y la PCR se llevó a cabo usando el ADNc como plantilla para amplificar el gen ACC6 ADNc.

ACC6-N: ATGACAATCATCTCAAAATTCGGT (SEC ID Nº: 39)

ACC6-C: TCAGGATTTCCACTTTGGAACGAA (SEC ID Nº: 40)

La secuencia de nucleótidos del gen ACC6 ADNc se secuenció y se comparó con el gen pACC6 para determinar la ubicación de los intrones.

(3-6) Deducción de la secuencia de aminoácidos de ACC6

El gen de endoglucanasa ACC6 aislado a partir de <u>Acremonium cellulolyticus</u> mediante el procedimiento descrito anteriormente consistía en 1430 pb con nucleótidos correspondiente a los nucleótidos 169-1598 de la SEC ID Nº: 5. Se encontró que el gen ACC6 contenía tres intrones en las posiciones 254-309, 406-461 y 1372-1450 de la SEC ID Nº: 5. La secuencia de aminoácidos de ACC6 deducida a partir del marco abierto de lectura (ORF) era la de SEC ID Nº: 6. Se supuso, usando un software de predicción de secuencia de señal SignalP 3.0, que la secuencia de aminoácidos en la posición -21 a -1 de ACC6 era una secuencia de señal.

«Ejemplo 4: Clonación del gen ACC7»

15

20

25

35

40

45

- (4-1) Aislamiento de ADN genómico y preparación de la biblioteca genómica
- 30 Se preparó una biblioteca de ADN genómico de <u>Acremonium cellulolyticus</u> ACCP-5-1 según el procedimiento descrito en el Ejemplo 3-1.
 - (4-2) Clonación del fragmento del gen ACC7

Se prepararon los siguientes cebadores en base a las secuencias de endoglucanasas conocidas clasificadas en la familia Glucósido Hidrolasa 5.

ACC7-F: CACGCCATGATCGACCCNCAYAAYTAYG (SEC ID Nº: 41)

ACC7-R: ACCAGGGGCCGGCNGYCCACCA (SEC ID Nº: 42)

Se llevó a cabo una PCR usando ACC7-F y ACC7-R como cebadores y el ADN genómico como plantilla, y usando LA Taq polimerasa (Takara Bio). La PCR se llevó a cabo repitiendo 40 veces un ciclo que consiste en una reacción a 94°C durante 30 segundos, hibridación durante 30 segundos, y una reacción a 72°C durante 1 minuto. La temperatura de hibridación se redujo escalonadamente desde 63°C a 53°C en los primeros 20 ciclos, y se mantuvo a 53°C en los siguientes 20 ciclos. El fragmento de ADN amplificado de 670 pb se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) según un protocolo asociado al kit para obtener el plásmido TOPO-pACC7-parcial.

El fragmento de ADN insertado clonado en el plásmido TOPO-pACC7-parcial se secuenció, y la secuencia de nucleótidos obtenida se tradujo en la secuencia de aminoácidos, y se realizó una búsqueda de homología usando la secuencia de

aminoácidos. La secuencia mostró una identidad del 63% con la secuencia de endoglucanasa (Q4WM09) derivada de <u>Aspergillus fumigatus</u> y, de esta manera, se consideró que el fragmento de ADN era parte de un gen de endoglucanasa (familia Glucósido Hidrolasa 5). Este fragmento de ADN se amplificó mediante PCR usando el plásmido TOPO-pACC7-parcial como una plantilla en una manera similar, y el producto de PCR obtenido se marcó usando un sistema directo ECL (Amersham Pharmacia Biotech) para obtener una sonda.

(4-3) Cribado mediante hibridación de placas

5

10

15

30

40

45

La biblioteca de ADN genómico se cribó según el procedimiento descrito en el Ejemplo 3-3 para obtener un clon positivo. El clon positivo obtenido se analizó mediante transferencia Southern, y un fragmento Xbal de 3,7 kpb mostró patrones de hibridación comunes al ADN cromosómico. Este fragmento Xbal se clonó en pUC118 para obtener el plásmido pUC-ACC7, y se secuenció la secuencia de nucleótidos del plásmido.

(4-4) Clonación de longitud completa del gen ACC7

Se prepararon los siguientes cebadores en base a la secuencia de nucleótidos obtenida a partir de pUC-ACC7, y la PCR se llevó a cabo usando ADN genómico como plantilla para amplificar el gen ACC7.

pACC7-F: CAGTCAGTTGTGTAGACACG (SEC ID Nº: 43)

pACC7-R: ACTCAGCTGGGTCTTCATAG (SEC ID Nº: 44)

El ADN amplificado se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) para obtener el plásmido pACC7. Escherichia coli TOP10 (Invitrogen) se transformó con el plásmido pACC7 obtenido para obtener Escherichia coli TOP10/pACC7.

(4-5) Preparación de ADNc y análisis de intrón del gen ACC7

El ADNc de <u>Acremonium cellulolyticus</u> ACCP-5-1 se preparó según el procedimiento descrito en el Ejemplo 1-4. Los siguientes cebadores que contenían el codón de iniciación y el codón de parada se prepararon en base a la secuencia del gen ACC7, y la PCR se llevó a cabo usando el ADNc como plantilla para amplificar el gen ACC7 ADNc.

ACC7-N: ATGAGGTCTACATCAACATTTGTA (SEC ID Nº: 45)

ACC7-C: CTAAGGGGTGTAGGCCTGCAGGAT (SEC ID Nº: 46)

La secuencia de nucleótidos del gen ACC7 ADNc se secuenció, y se comparó con el gen pACC7 para determinar la ubicación de los intrones.

(4-6) Deducción de la secuencia de aminoácidos de ACC7

El gen de endoglucanasa ACC7 aislado a partir de <u>Acremonium cellulolyticus</u> mediante el procedimiento descrito anteriormente consistía en 1307 pb con nucleótidos correspondientes a los nucleótidos 70-1376 de la SEC ID N°: 7. Se encontró que el gen ACC7 contenía dos intrones en las posiciones 451-500 y 765-830 de la SEC ID N°: 7. La secuencia de aminoácidos de ACC7 deducida a partir del marco abierto de lectura (ORF) era la de SEC ID N°: 8. Se supuso, usando un software de predicción de secuencia de señal SignalP 3.0, que la secuencia de aminoácidos en la posición -20 a -1 de ACC7 era una secuencia de señal.

«Ejemplo 5: Clonación del gen ACC8»

35 (5-1) Aislamiento de ADN genómico y preparación de la biblioteca genómica

Se preparó una biblioteca de ADN genómico de <u>Acremonium cellulolyticus</u> ACCP-5-1 según el procedimiento descrito en el Ejemplo 3-1.

(5-2) Clonación del fragmento del gen ACC8

Se prepararon los siguientes cebadores en base a las secuencias de ADN correspondientes a las secuencias de aminoácidos N-terminal y C-terminal de endoglucanasa III derivadas a partir de Penicillium verruculosum.

MSW-N: CAACAGAGTCTATGCGCTCAATACTCGAGCTACACCAGT (SEC ID Nº: 47)

MSW-C: CTAATTGACAGCTGCAGACCAA (SEC ID Nº: 48)

Se llevó a cabo una PCR usando MSW-N y MSW-C como cebadores y el ADN genómico como plantilla, y usando LA Taq polimerasa (Takara Bio). La PCR se llevó a cabo repitiendo 40 veces un ciclo que consiste en una reacción a 94°C durante 30 segundos, hibridación durante 30 segundos, y una reacción a 72°C durante 1 minuto. La temperatura de

hibridación se redujo escalonadamente desde 63°C a 53°C en los primeros 20 ciclos, y se mantuvo a 53°C en los siguientes 20 ciclos. El fragmento de ADN amplificado de 800 pb se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) según un protocolo asociado al kit para obtener el plásmido TOPO-pACC8-parcial.

El fragmento de ADN insertado clonado en el plásmido TOPO-pACC8-parcial se secuenció, y la secuencia de nucleótidos obtenida se tradujo en la secuencia de aminoácidos, y se realizó una búsqueda de homología usando la secuencia de aminoácidos. La secuencia mostró un 60% de identidad con la de endoglucanasa Cell2A (Q8NJY4) derivada de Trichoderma viride y, de esta manera, se consideró que el fragmento de ADN era parte de un gen de endoglucanasa (familia Glucósido Hidrolasa 12). Este fragmento de ADN se amplificó mediante PCR usando el plásmido TOPO-pACC8-parcial como una plantilla de una manera similar, y el producto de PCR obtenido se marcó usando un sistema directo ECL (Amersham Pharmacia Biotech) para obtener una sonda.

(5-3) Cribado mediante hibridación de placas

15

20

30

35

La biblioteca de ADN genómico se cribó según el procedimiento descrito en el Ejemplo 3-3 para obtener un clon positivo. El clon positivo obtenido se analizó mediante transferencia Southern, y un fragmento <u>Sall</u> de aproximadamente 5 kpb mostró patrones de hibridación comunes al ADN cromosómico. Este fragmento <u>Sall</u> se clonó en pUC118 para obtener el plásmido pUC-ACC8, y se secuenció la secuencia de nucleótidos del plásmido.

(5-4) Clonación de longitud completa del gen ACC8

Se prepararon los siguientes cebadores en base a la secuencia de nucleótidos obtenida a partir de pUC-ACC8, y la PCR se llevó a cabo usando ADN genómico como plantilla para amplificar el gen ACC8.

pACC8-F: AAAGACCGCGTGTTAGGATC (SEC ID Nº: 49)

pACC8-R: CGCGTAGGAAATAAGACACC (SEC ID Nº: 50)

El ADN amplificado se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) para obtener el plásmido pACC8. <u>Escherichia coli</u> TOP10 (Invitrogen) se transformó con el plásmido pACC8 obtenido para obtener Escherichia coli TOP10/pACC8.

25 (5-5) Preparación de ADNc y análisis de intrón del gen ACC8

El ADNc de <u>Acremonium cellulolyticus</u> ACCP-5-1 se preparó según el procedimiento descrito en el Ejemplo 1-4. Los siguientes cebadores que contenían el codón de iniciación y el codón de parada se prepararon en base a la secuencia del gen ACC8, y la PCR se llevó a cabo usando el ADNc como plantilla para amplificar el gen ACC8 ADNc.

ACC8-N: ATGAAGCTAACTTTTCTCCTGAAC (SEC ID Nº: 51)

ACC8-C: CTAATTGACAGATGCAGACCAATG (SEC ID Nº: 52)

La secuencia de nucleótidos del gen ACC8 ADNc se secuenció, y se comparó con el gen pACC8 para determinar la ubicación de los intrones.

(5-6) Deducción de la secuencia de aminoácidos de ACC8

El gen de endoglucanasa ACC8 aislado a partir de <u>Acremonium cellulolyticus</u> mediante el procedimiento descrito anteriormente consistía de 834 pb con nucleótidos correspondientes a los nucleótidos 141-974 de la SEC ID Nº: 9. Se encontró que el gen ACC8 contenía dos intrones en las posiciones 551-609 y 831-894 de la SEC ID Nº: 9. La secuencia de aminoácidos de ACC8 deducida a partir del marco abierto de lectura (ORF) era la de la SEC ID Nº: 10. Se supuso, usando un software de predicción de secuencia de señal SignalP 3.0, que la secuencia de aminoácidos en la posición -15 a -1 de ACC8 era una secuencia de señal.

40 << Ejemplo 6: Clonación del gen ACC9 >>

(6-1) Aislamiento del ADN genómico y del ARNm y preparación del ADNc

El ADN genómico de <u>Acremonium cellulolyticus</u> ACCP-5-1 se aisló según el procedimiento descrito en el Ejemplo 1-1. El ADNc de Acremonium cellulolyticus ACCP-5-1 se preparó según el procedimiento descrito en el Ejemplo 1-4.

(6-2) Clonación del fragmento de gen ACC9

45 Se prepararon los siguientes cebadores en base a las secuencias de endoglucanasas conocidas clasificadas en la familia Glucósido Hidrolasa 45.

ACC9-F: CCGGCTGCGGCAARTGYTAYMA (SEC ID Nº: 53)

ACC9-R: AGTACCACTGGTTCTGCACCTTRCANGTNSC (SEC ID Nº: 54)

Se llevó a cabo una PCR usando ACC9-F y ACC9-R como cebadores y genómico como plantilla, y usando LA Taq polimerasa (Takara Bio). La PCR se llevó a cabo repitiendo 40 veces un ciclo que consiste en una reacción a 94°C durante 30 segundos, hibridación durante 30 segundos, y una reacción a 72°C durante 1 minuto. La temperatura de hibridación se redujo escalonadamente desde 63°C a 53°C en los primeros 20 ciclos, y se mantuvo a 53°C en los siguientes 20 ciclos. El fragmento de ADN amplificado de 800 pb se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) según un protocolo asociado al kit para obtener el plásmido TOPO-pACC9-parcial.

El fragmento de ADN insertado clonado en el plásmido TOPO-pACC9-parcial se secuenció, y la secuencia de nucleótidos obtenida se tradujo en la secuencia de aminoácidos, y se realizó una búsqueda de homología usando la secuencia de aminoácidos. La secuencia mostró una identidad del 79% con la de secuencia de endoglucanasa EGV (Q7Z7X0) derivada de <u>Trichoderma viride</u> y, de esta manera, se consideró que el fragmento de ADN era parte de un gen de endoglucanasa (familia Glucósido Hidrolasa 45).

15 (6-3) Clonación de longitud completa del gen ACC9 mediante PCR inversa

Según el procedimiento descrito en el Ejemplo 1-3, se realizó la PCR usando ADN circular (obtenido mediante digestión con <u>Sall</u> o <u>Xbal</u>) como plantilla y las siguientes secuencias contenidas en el fragmento del gen ACC9 como cebadores para obtener la región aguas arriba de 5' y la región aguas abajo de 3' del gen ACC9.

ACC9-inv-F: CGAAGTGTTTGGTGACAACG (SEC ID Nº: 55)

ACC9-inv-R: GTGGTAGCTGTATCCGTAGT (SEC ID Nº: 56)

La región aguas arriba de 5' y la región aguas abajo de 3' se secuenciaron para determinar la secuencia de nucleótidos completa del gen ACC9.

Se prepararon los siguientes cebadores en base a la secuencia de nucleótidos obtenida mediante PCR inversa y se llevó a cabo una PCR usando ADN genómico como plantilla para amplificar el gen ACC9.

pACC9-F: TACATTCCGAAGGCACAGTT (SEC ID Nº: 57)

pACC9-R: CTGAGCTGATTATCCTGACC (SEC ID Nº: 58)

El ADN amplificado se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) para obtener el plásmido pACC9. Escherichia coli TOP10 (Invitrogen) se transformó con el plásmido obtenido pACC9 para obtener Escherichia coli TOP10/pACC9.

30 (6-4) Análisis de intrones del gen ACC9

5

20

25

40

45

Los siguientes cebadores que contenían el codón de iniciación y el codón de parada se prepararon en base a la secuencia del gen ACC9, y se llevó a cabo una PCR usando ADNc como plantilla para amplificar el gen ACC9 ADNc.

ACC9-N: ATGAAGGCTTTCTATCTTTCTCTC (SEC ID Nº: 59)

ACC9-C: TTAGGACGAGCTGACGCACTGGTA (SEC ID Nº: 60)

- La secuencia de nucleótidos del gen ACC9 ADNc se secuenció, y se comparó con el gen pACC9 para determinar la ubicación de los intrones.
 - (6-5) Deducción de la secuencia de aminoácidos de ACC9

El gen de endoglucanasa ACC9 aislado a partir de <u>Acremonium cellulolyticus</u> mediante el procedimiento descrito anteriormente consistía en 1117 pb con nucleótidos correspondientes a los nucleótidos 114-1230 de la SEC ID Nº: 11. Se encontró que el gen ACC9 contenía dos intrones en las posiciones 183-232 y 299-357 de la SEC ID Nº: 11. La secuencia de aminoácidos de ACC9 deducida a partir del marco abierto de lectura (ORF) era la de SEC ID Nº: 12. Se supuso, usando un software de predicción de secuencia de señal SignalP 3.0, que la secuencia de aminoácidos en la posición -16 a -1 de ACC5 era una secuencia de señal.

«Ejemplo 7: Clonación del gen ACC10»

(7-1) Aislamiento del ADN genómico y del ARNm y preparación del ADNc

El ADN genómico de <u>Acremonium cellulolyticus</u> ACCP-5-1 se aisló según el procedimiento descrito en el Ejemplo 1-1. El ADNc del Acremonium cellulolyticus ACCP-5-1 se preparó según el procedimiento descrito en el Ejemplo 1-4.

(7-2) Clonación del fragmento del gen ACC10

5

10

25

30

45

Se prepararon los siguientes cebadores en base a las secuencias de endoglucanasas conocidas clasificadas en la familia Glucósido Hidrolasa 61 y la secuencia de nucleótidos poli A.

ACC10-F: GGTGTACGTGGGCACCAAYGGNMGNGG (SEC ID N°: 61)

ACC10-R: AATTCGCGGCCGCTAAAAAAAA (SEC ID N°: 62)

Se llevó a cabo una PCR usando ACC10-F y ACC10-R como cebadores y ADNc como plantilla, y usando LA Taq polimerasa (Takara Bio). La PCR se llevó a cabo repitiendo 40 veces un ciclo que consiste en una reacción a 94°C durante 30 segundos, hibridación durante 30 segundos, y una reacción a 72°C durante 1 minuto. La temperatura de hibridación se redujo escalonadamente desde 63°C a 53°C en los primeros 20 ciclos, y se mantuvo a 53°C en los siguientes 20 ciclos. El fragmento de ADN amplificado de 300 pb se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) según un protocolo asociado al kit para obtener el plásmido TOPO-pACC10-parcial.

El fragmento de ADN insertado clonado en el plásmido TOPO-pACC10-parcial se secuenció, y la secuencia de nucleótidos obtenida se tradujo en la secuencia de aminoácidos, y se realizó una búsqueda de homología usando la secuencia de aminoácidos. La secuencia mostró una identidad del 65% con la de la secuencia de endoglucanasa EGIV (Q0D0T6) derivada de Aspergillus terreus y, de esta manera, se consideró que el fragmento de ADN era parte de un gen de endoglucanasa (familia Glucósido Hidrolasa 61).

20 (7-3) Clonación de longitud completa del gen ACC10 mediante PCR inversa

Según el procedimiento descrito en el Ejemplo 1-3, la PCR se realizó usando ADN circular (obtenido mediante digestión con HindIII)) como plantilla y las siguientes secuencias contenidas en el fragmento del gen ACC10 como cebadores para obtener la región aguas arriba de 5' y la región aguas abajo de 3' del gen ACC5.

ACC10-inv-F: TTCTGCTACTGCGGTTGCTA (SEC ID Nº: 63)

ACC10-inv-R: GAATAACGTAGGTCGACAAG (SEC ID Nº: 64)

La región aguas arriba de 5' y la región aguas abajo de 3' se secuenciaron para determinar la secuencia de nucleótidos completa del gen ACC10.

Se prepararon los siguientes cebadores en base a la secuencia de nucleótidos obtenida mediante PCR inversa y se llevó a cabo una PCR usando ADN genómico como plantilla para amplificar el gen ACC10.

pACC10-F: CGTTGACCGAAAGCCACTT (SEC ID Nº: 65)

pACC10-R: TGGCCTAAAGCTAAATGATG (SEC ID Nº: 66)

El ADN amplificado se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) para obtener el plásmido pACC10. Escherichia coli TOP10 (Invitrogen) se transformó con el plásmido pACC9 obtenido para obtener Escherichia coli TOP10/pACC10.

35 (7-4) Análisis de intrones del gen ACC10

Los siguientes cebadores que contenían el codón de iniciación y el codón de parada se prepararon en base a la secuencia del gen ACC10, y se llevó a cabo una PCR usando ADNc como plantilla para amplificar el gen ACC10 ADNc.

ACC10-N: ATGCCTTCTACTAAAGTCGCTGCCC (SEC ID Nº: 67)

ACC10-C: TTAAAGGACAGTAGTGGTGATGACG (SEC ID Nº: 68)

40 La secuencia de nucleótidos del gen ACC10 ADNc se secuenció, y se comparó con el gen pACC10 para determinar la ubicación de los intrones.

(7-5) Deducción de la secuencia de aminoácidos de ACC10

El gen de endoglucanasa ACC10 aislado a partir de <u>Acremonium cellulolyticus</u> mediante el procedimiento descrito anteriormente consistía en 1020 pb con nucleótidos correspondientes a los nucleótidos 124-1143 de la SEC ID Nº: 13. Se encontró que el gen ACC10 contenía un intrón en la posición 225-275 de la SEC ID Nº: 13. La secuencia de aminoácidos

de ACC10 deducida a partir del marco abierto de lectura (ORF) era la de SEC ID Nº: 14. Se supuso, usando un software de predicción de secuencia de señal SignalP 3.0, que la secuencia de aminoácidos en la posición -21 a -1 de ACC10 era una secuencia de señal.

«Ejemplo 8: Clonación del gen BGLC»

5 (8-1) Preparación de ADN genómico y el ADNc

El ADN genómico de <u>Acremonium cellulolyticus</u> ACCP-5-1 se aisló según el procedimiento descrito en el Ejemplo 1-1. El ADNc del Acremonium cellulolyticus ACCP-5-1 se preparó según el procedimiento descrito en el Ejemplo 1-4.

(8-2) Clonación del fragmento del gen BGLC

10

15

30

35

Se prepararon los siguientes cebadores en base a las secuencias de β-glucosidasas conocidas clasificadas en la familia Glucósido Hidrolasa 1.

BGLC-F: CCTGGGTGACCCTGTACCAYTGGGAYYT (SEC ID Nº: 69)

BGLC-R: TGGGCAGGAGCAGCCRWWYTCNGT (SEC ID N°: 70)

Se llevó a cabo una PCR usando BGLC-F y BGLC-R como cebadores y el ADN genómico como plantilla, y usando LA Taq polimerasa (Takara Bio). La PCR se llevó a cabo repitiendo 40 veces un ciclo que consiste en una reacción a 94°C durante 30 segundos, hibridación durante 30 segundos, y una reacción a 72°C durante 1 minuto. La temperatura de hibridación se redujo escalonadamente desde 63°C a 53°C en los primeros 20 ciclos, y se mantuvo a 53°C en los siguientes 20 ciclos. El fragmento de ADN amplificado de 1,2 kpb se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) según un protocolo asociado al kit para obtener el plásmido TOPO-pBGLC-parcial.

20 El fragmento de ADN insertado clonado en el plásmido TOPO-pBGLC-parcial se secuenció, y la secuencia de nucleótidos obtenida se tradujo en la secuencia de aminoácidos, y se realizó una búsqueda de homología usando la secuencia de aminoácidos. La secuencia mostró una identidad del 69% con la de β-glucosidasa 1 (Q4WRG4) derivada de <u>Aspergillus fumigatus</u> y, de esta manera, se consideró que el fragmento de ADN era parte de un gen de β-glucosidasa (familia Glucósido Hidrolasa 1).

25 (8-3) Clonación de longitud completa del gen BGLC mediante PCR inversa

Según el procedimiento descrito en el Ejemplo 1-3, la PCR se llevó a cabo usando ADN circular (obtenido mediante digestión con Xbal) como plantilla y las siguientes secuencias contenidas en el fragmento del gen BGLC como cebadores para obtener la región aguas arriba de 5' y la región aguas abajo de 3' del gen BGLC.

BGLC-inv-F: GGAGTTCTTCTACATTTCCC (SEC ID Nº: 71)

BGLC-inv-R: AACAAGGACGGCGTGTCAGT (SEC ID Nº: 72)

La región aguas arriba de 5' y la región aguas abajo de 3' se secuenciaron para determinar la secuencia de nucleótidos completa del gen de BGLC.

Se prepararon los siguientes cebadores en base a la secuencia de nucleótidos obtenida mediante PCR inversa y se llevó a cabo una PCR usando ADN genómico como plantilla para amplificar el gen BGLC.

pBGLC-F: CTCCGTCAAGTGCGAAGTAT (SEC ID Nº: 73)

pBGLC-R: GGCTCGCTAATACTAACTGC (SEC ID Nº: 74)

El ADN amplificado se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) para obtener el plásmido pBGLC. <u>Escherichia coli</u> TOP10 (Invitrogen) se transformó con el plásmido pBGLC obtenido para obtener <u>Escherichia coli</u> TOP10/pBGLC.

40 (8-4) Análisis de intrones del gen BGLC

Los siguientes cebadores que contenían el codón de iniciación y el codón de parada se prepararon en base a la secuencia del gen BGLC, y se llevó a cabo una PCR usando ADNc como plantilla para amplificar el gen BGLC ADNc.

BGLC-N: ATGGGCTCTACATCTCCTGCCCAA (SEC ID N°: 75)

BGLC-C: CTAGTTCCTCGGCTCTATGTATTT (SEC ID Nº: 76)

La secuencia de nucleótidos del gen BGLC ADNc se secuenció, y se comparó con el gen pBGLC para determinar la ubicación de los intrones.

(8-5) Deducción de la secuencia de aminoácidos de BGLC

El gen de β-glucosidasa BGLC aislado a partir de <u>Acremonium cellulolyticus</u> mediante el procedimiento descrito anteriormente consistía en 1650 pb con nucleótidos correspondientes a los nucleótidos 238-1887 de la SEC ID Nº: 15. Se encontró que el gen BGLC contenía tres intrones en las posiciones 784-850, 1138-1205, y 1703-1756 de la SEC ID Nº: 15. La secuencia de aminoácidos de BGLC deducida a partir del marco abierto de lectura (ORF) era la de la SEC ID Nº: 16. Se supuso, usando un software de predicción de secuencia de señal SignalP 3.0, que la secuencia de aminoácidos en la posición -28 a -1 de BGLC era una secuencia de señal.

<< Ejemplo 9: Clonación del gen BGLD >>

5

10

20

25

30

35

40

45

(9-1) Preparación del ADN genómico y el ADNc

El ADN genómico de <u>Acremonium cellulolyticus</u> ACCP-5-1 se aisló según el procedimiento descrito en el Ejemplo 1-1. El ADNc de <u>Acremonium cellulolyticus</u> ACCP-5-1 se preparó según el procedimiento descrito en el Ejemplo 1-4.

(9-2) Clonación del fragmento del gen BGLD

15 Se prepararon los siguientes cebadores en base a las secuencias de β-glucosidasas conocidas clasificadas en la familia Glucósido Hidrolasa 1.

BGLD-F: CACCGCCGCCTACCARRTNGARGG (SEC ID Nº: 77)

BGLD-R: TGGCGGTGTAGTGGTTCATGSCRWARWARTC (SEC ID Nº: 78)

Se llevó a cabo una PCR usando BGLD-F y BGLD-R como cebadores y el ADN genómico como plantilla, y usando LA Taq polimerasa (Takara Bio). La PCR se llevó a cabo repitiendo 40 veces un ciclo que consiste en una reacción a 94°C durante 30 segundos, hibridación durante 30 segundos, y una reacción a 72°C durante 1 minuto. La temperatura de hibridación se redujo escalonadamente desde 63°C a 53°C en los primeros 20 ciclos, y se mantuvo a 53°C en los siguientes 20 ciclos. El fragmento de ADN amplificado de 1 kpb se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) según un protocolo asociado al kit para obtener el plásmido TOPO-pBGLD-parcial.

El fragmento de ADN insertado clonado en el plásmido TOPO-pBGLD-parcial se secuenció, y la secuencia de nucleótidos obtenida se tradujo en la secuencia de aminoácidos, y se realizó una búsqueda de homología usando la secuencia de aminoácidos. La secuencia mostró una identidad del 76% con la de β -glucosidasa 1 (Q8X214) derivada de <u>Talaromyces emersonii</u> y, de esta manera, se consideró que el fragmento de ADN era parte de un gen de β -glucosidasa (familia Glucósido Hidrolasa 1).

(9-3) Clonación de longitud completa del gen BGLC mediante PCR inversa

Según el procedimiento descrito en el Ejemplo 1-3, la PCR se llevó a cabo usando ADN circular (obtenido mediante digestión con Xhol) como plantilla y las siguientes secuencias contenidas en el fragmento de gen BGLD como cebadores para obtener la región aguas arriba de 5' y la región aguas abajo de 3' del gen BGLD.

BGLD-inv-F: CGGTTTCAATATCGGTAAGC (SEC ID Nº: 79)

BGLD-inv-R: GTGTCCAAAGCTCTGGAATG (SEC ID Nº: 80)

La región aguas arriba de 5' y la región aguas abajo de 3' se secuenciaron para determinar la secuencia de nucleótidos completa del gen BGLD.

Se prepararon los siguientes cebadores en base a la secuencia de nucleótidos obtenida mediante PCR inversa y se llevó a cabo una PCR usando ADN genómico como plantilla para amplificar el gen BGLD.

pBGLD-F: TTCTCTCACTTTCCCTTTCC (SEC ID Nº: 81)

pBGLD-R: AATTGATGCTCCTGATGCGG (SEC ID N°: 82)

El ADN amplificado se insertó en un vector plasmídico pCR2.1-TOPO usando un kit de clonación TOPO TA (Invitrogen) para obtener el plásmido pBGLD. <u>Escherichia coli</u> TOP10 (Invitrogen) se transformó con el plásmido pBGLD obtenido para obtener Escherichia coli TOP10/pBGLD.

(9-4) Análisis de intrones del gen BGLD

Los siguientes cebadores que contenían el codón de iniciación y el codón de parada se prepararon en base a la secuencia del gen BGLD, y se llevó a cabo una PCR usando ADNc como plantilla para amplificar el gen BGLD ADNc.

BGLD-N: ATGGGTAGCGTAACTAGTACCAAC (SEC ID Nº: 83)

BGLD-C: CTACTCTTTCGAGATGTATTTGTT (SEC ID Nº: 84)

La secuencia de nucleótidos del gen BGLD ADNc se secuenció, y se comparó con el gen pBGLD para determinar la ubicación de los intrones.

(9-5) Deducción de la secuencia de aminoácidos de BGLD

El gen de β-glucosidasa BGLD aislado a partir de <u>Acremonium cellulolyticus</u> mediante el procedimiento descrito anteriormente consistía en 1700 pb con nucleótidos correspondientes a los nucleótidos 66-1765 de la SEC ID Nº: 17. Se encontró que el gen BGLD contenía cuatro intrones en las posiciones 149-211, 404-460, 934-988 y 1575-1626 de la SEC ID Nº: 17. La secuencia de aminoácidos de BGLD deducida a partir del marco abierto de lectura (ORF) era la de la SEC ID Nº: 18. Se supuso, usando un software de predicción de secuencia de señal SignalP 3.0, que la secuencia de aminoácidos en la posición -33 a -1 de BGLD era una secuencia de señal.

15 Aplicabilidad industrial

5

10

20

La proteína de la presente invención puede ser usada como una preparación de celulasa, y puede ser aplicada al uso de la digestión de un sustrato a base de celulosa.

Texto libre en listado de secuencias

Las secuencias de nucleótidos de las SEC ID Nº: 19 a 84 en la lista de secuencias son secuencias de cebadores sintetizadas artificialmente. Las abreviaturas "N" en la SEC ID Nº: 27 (posiciones 18 y 27), la SEC ID Nº: 41 (posición 18), la SEC ID Nº: 42 (posición 14), la SEC ID Nº: 54 (posiciones 26 y 29), la SEC ID Nº: 61 (posiciones 22 y 25), la SEC ID Nº: 70 (posición 22) y la SEC ID Nº: 77 (posición 19) representan un nucleótido arbitrario.

Listado de secuencias

```
<110> Meiji Seika Kaisha, Ltd.
```

25 <120> Nuevos genes de celulasa aislados

<130> MEJ-855

<160>84

<170> PatentIn versión 3.5

<210> 1

30 <211> 1644

<212> ADN

<213> Acremonium cellulolyticus

<220>

35 <221> sig_peptide

<222> (136)..(216)

<220>

<221> exón

40 <222> (136)..(232)

```
<220>
       <221> CDS
       <222> (136)..(232)
 5
        <220>
       <221> mat_peptide
       <222> join (217..232, 292..350, 426..578, 632..696, 755..852, 908..1434)
10
       <220>
       <221> Intrón
       <222> (233)..(291)
       <220>
15
       <221> exón
       <222> (292)..(350)
       <220>
       <221> CDS
20
       <222> (292)..(350)
       <220>
       <221> Intrón
       <222> (351)..(425)
25
       <220>
       <221> exón
       <222> (426)..(578)
30
       <220>
       <221> CDS
        <222> (426)..(578)
        <220>
35
       <221> Intrón
```

<222> (579)..(631) <220> <221> exón 5 <222> (632)..(696) <220> <221> CDS <222> (632)..(696) 10 <220> <221> Intrón <222> (697)..(754) 15 <220> <221> exón <222> (755)..(852) <220> 20 <221> CDS <222> (755)..(852) <220> <221> Intrón 25 <222> (853)..(907) <220> <221> exón <222> (908)..(1437) 30 <220> <221> CDS <222> (908)..(1437)

35

<400> 1

gaaggatggt agattgtccg gtggttgttc gatccaatat aaaagcatgg caggcgctgt	60
taaaaccgtg actactctca agacagaccg tacatcagat tcatcggaaa atacaagctt	120
gagaatctta tcacg atg aag acc agc atc att tct atc gtt ctg tct acg Met Lys Thr Ser Ile Ile Ser Ile Val Leu Ser Thr -25 -20	171
gca gga ctc act tta ggg gcc ccc tca aag gac acc aag aaa cgt gct Ala Gly Leu Thr Leu Gly Ala Pro Ser Lys Asp Thr Lys Lys Arg Ala -15 -10 -5 -1 1	219
tca agt ttc gaa t gtatgcatat ctagtaaata gattcaagag ttcaatgact Ser Ser Phe Glu 5	272
gatatatgat gcctcgtag gg ttc ggt tca aat gag tcc gga gca gaa ttt Trp Phe Gly Ser Asn Glu Ser Gly Ala Glu Phe 10 15	323
gga agt ggg aat atc cca ggt gtg gag gtatgcagac ttatatcgct Gly Ser Gly Asn Ile Pro Gly Val Glu 20 25	370
tctatcaagc gtgacatcca ggggggaaat tcaacttaac cagatgaatg gctag ggc Gly	428
acc gac tac acc ttt ccc aat aca aca gcg att caa ata ctc atc gac Thr Asp Tyr Thr Phe Pro Asn Thr Thr Ala Ile Gln Ile Leu Ile Asp 30 35 40	476
gcc ggt atg aac atc ttc cgc gtt cca ttc cta atg gag cga atg atc Ala Gly Met Asn Ile Phe Arg Val Pro Phe Leu Met Glu Arg Met Ile 45 50 55	524
ccg act gag atg act gga tct ctt aat acg gct tat ttt gag ggg tac Pro Thr Glu Met Thr Gly Ser Leu Asn Thr Ala Tyr Phe Glu Gly Tyr 60 65 70	572
agc gag gtacggaccc ttatcagtcc cttcaggagt gttttggtcc tgatcggata Ser Glu 75	628
tag gtc att aac tac atc acc ggt caa gga gca cat gca gtg gtt gac Val Ile Asn Tyr Ile Thr Gly Gln Gly Ala His Ala Val Val Asp 80 85 90	676
cct cac aac ttt gga cga ta gtaagagtcc tctcctggtt attttgaaag Pro His Asn Phe Gly Arg Tyr 95	726
actttagaga tacttactct cggcctag t tat gga acc cct atc tca tca aca Tyr Gly Thr Pro Ile Ser Ser Thr 100 105	779
tcc gac ttc cag act ttc tgg tcc acg ctt gcc tcc caa ttc aaa tca Ser Asp Phe Gln Thr Phe Trp Ser Thr Leu Ala Ser Gln Phe Lys Ser 110 115 120	827

	aat gac aag gtc att ttt gac aca a gtaagtatat atatttttt Asn Asp Lys Val Ile Phe Asp Thr 125 130	872
E	tacatctcaa atataaacct cgctgacaca ctcag ac aac gaa tac cac gac Asn Asn Glu Tyr His Asp 135	924
5	atg gat gaa tcc gtc gtc gta gcc cta aac caa gca gca atc gac ggc Met Asp Glu Ser Val Val Val Ala Leu Asn Gln Ala Ala Ile Asp Gly 140 145 150	972
	atc cgc gat gcc ggg gcc aca aca caa tac atc ttc gtc gaa ggc aac Ile Arg Asp Ala Gly Ala Thr Thr Gln Tyr Ile Phe Val Glu Gly Asn 155 160 165	1020
10	tct tac act ggt gcc tgg aca tgg aca aca tac aac acg gcc atg gtg Ser Tyr Thr Gly Ala Trp Thr Trp Thr Thr Tyr Asn Thr Ala Met Val 170 175 180	1068
	aac ctc acc gat cca tct gat cta atc gtc tac gaa atg cat caa tac Asn Leu Thr Asp Pro Ser Asp Leu Ile Val Tyr Glu Met His Gln Tyr 185 190 195 200	1116
15	ctc gac tct gac ggg tct ggt aca tca gac caa tgc gtg agc agc aca Leu Asp Ser Asp Gly Ser Gly Thr Ser Asp Gln Cys Val Ser Ser Thr 205 210 215	1164
	atc ggc cag gaa cgt gtt gta gat gct aca act tgg ttg caa acc aac Ile Gly Gln Glu Arg Val Val Asp Ala Thr Thr Trp Leu Gln Thr Asn 220 225 230	1212
	gga aag cga ggc atc ctc ggc gaa ttc gcg ggt ggc gca aat agt gtt Gly Lys Arg Gly Ile Leu Gly Glu Phe Ala Gly Gly Ala Asn Ser Val 235 240 245	1260
20	tgc gaa gag gcc gtg gag ggg atg ctg aat tat ctg gag cag aat tcc Cys Glu Glu Ala Val Glu Gly Met Leu Asn Tyr Leu Glu Gln Asn Ser 250 255 260	1308
	gac gtc tgg ctc gga gcg agc tgg tgg agt gcg ggc cca tgg tgg ggt Asp Val Trp Leu Gly Ala Ser Trp Trp Ser Ala Gly Pro Trp Trp Gly 265 270 280	1356
25	gac tac att ttc tca atg gaa cca cct agt ggc act gcg tat gtg aat Asp Tyr Ile Phe Ser Met Glu Pro Pro Ser Gly Thr Ala Tyr Val Asn 285 290 295	1404
	tat ctg tcg att ctg gag agt tat ttc cca tga ttttgaggct attcgcaaat Tyr Leu Ser Ile Leu Glu Ser Tyr Phe Pro 300 305	1457
	atgttgatat agggcttgtt agagactagt acaaaagtgg tatagtacgg tggagactat	1517
30	ccgtaccttg ctatatcaac tagaatttct agctagaaaa ccagaaacgg ggagggcctt	1577
	tcgttatttg ttctgtcaac tggtgcactc agtagcccaa aaaaccctgc gagaaatcct	1637
	tctcggt	1644

<210> 2

35 <211> 333

<212> PRT

<213> Acremonium cellulolyticus

<400> 2

5

Met Lys Thr Ser Ile Ile Ser Ile Val Leu Ser Thr Ala Gly Leu Thr -25 -20 Leu Gly Ala Pro Ser Lys Asp Thr Lys Lys Arg Ala Ser Ser Phe Glu -1 1 Trp Phe Gly Ser Asn Glu Ser Gly Ala Glu Phe Gly Ser Gly Asn Ile Pro Gly Val Glu Gly Thr Asp Tyr Thr Phe Pro Asn Thr Thr Ala Ile 30 Gln Ile Leu Ile Asp Ala Gly Met Asn Ile Phe Arg Val Pro Phe Leu Met Glu Arg Met Ile Pro Thr Glu Met Thr Gly Ser Leu Asn Thr Ala Tyr Phe Glu Gly Tyr Ser Glu Val Ile Asn Tyr Ile Thr Gly Gln Gly Ala His Ala Val Val Asp Pro His Asn Phe Gly Arg Tyr Tyr Gly Thr 100 Pro Ile Ser Ser Thr Ser Asp Phe Gln Thr Phe Trp Ser Thr Leu Ala 105 110 Ser Gln Phe Lys Ser Asn Asp Lys Val Ile Phe Asp Thr Asn Asn Glu 120 125 130 Tyr His Asp Met Asp Glu Ser Val Val Val Ala Leu Asn Gln Ala Ala Ile Asp Gly Ile Arg Asp Ala Gly Ala Thr Thr Gln Tyr Ile Phe Val Glu Gly Asn Ser Tyr Thr Gly Ala Trp Thr Trp Thr Thr Tyr Asn Thr 170 Ala Met Val Asn Leu Thr Asp Pro Ser Asp Leu Ile Val Tyr Glu Met His Gln Tyr Leu Asp Ser Asp Gly Ser Gly Thr Ser Asp Gln Cys Val

210

205

200

Ser Ser Thr Ile Gly Gln Glu Arg Val Val Asp Ala Thr Thr Trp Leu Gln Thr Asn Gly Lys Arg Gly Ile Leu Gly Glu Phe Ala Gly Gly Ala 230 235 240 5 Asn Ser Val Cys Glu Glu Ala Val Glu Gly Met Leu Asn Tyr Leu Glu Gln Asn Ser Asp Val Trp Leu Gly Ala Ser Trp Trp Ser Ala Gly Pro 270 Trp Trp Gly Asp Tyr Ile Phe Ser Met Glu Pro Pro Ser Gly Thr Ala 10 Tyr Val Asn Tyr Leu Ser Ile Leu Glu Ser Tyr Phe Pro 295 300 <210>3 15 <211> 1839 <212> ADN <213> Acremonium cellulolyticus <220> 20 <221> sig peptide <222> (128)..(187) <220> <221> exón 25 <222> (128)..(1615) <220> <221> CDS <222> (128)..(1615) 30 <220> <221> mat_peptide <222> (188)..(1612)

35

<400> 3

	att	gctc	ege a	atago	gttca	aa go	ggtat	tataa	a aca	aggct	tac	tgto	ctaat	aa t	tctca	aataac		60
	tgc	tcaaa	atc o	catto	gttt	gt co	cttct	tcgt	aco	ctgc	ggcg	agat	tcaa	att t	tgga	actgat	:	120
5	gtc	taac								ttt Phe								169
		cac His -5					Gln										:	217
		cta Leu															;	265
10		acc Thr															;	313
		ggg Gly																361
15		gga Gly 60																409
		tac Tyr																457
20		caa Gln																505
		tat Tyr																553
25		ggt Gly															•	601
		gaa Glu 140															•	649
30		agc Ser															+	697
		gct Ala																745
		ggc Gly																793

			gca Ala 205		-	_					-	-	_	-			841
_			tgc Cys			_	-	-		-				-	-	-	889
5		Gly	tgc Cys														937
			ggt Gly				_		_	_				_	_		985
10			gtg Val														1033
			tct Ser 285														1081
15			tcg Ser	_						_							1129
	_		gcg Ala	_	_		_	_			_			_			1177
			gag Glu														1225
20			gca Ala														1273
			agt Ser 365														1321
25			act Thr														1369
			ggg Gly						_	_			_	_			1417
30			tca Ser														1465
			tca Ser														1513
			ggt Gly 445		_			_							_	_	1561
35	gcc	tat	ccg	tac	acc	tgt	caa	gta	cag	aat	ccg	tac	tat	tca	cag	tgc	1609

	Ala Ser Pro Tyr Thr Cys Gln Val Gln Asn Pro Tyr Tyr Ser Gln Cys 460 465 470	
	ctt tag acgccgtgcc gacctatttg tatatatgcc aaattttcgt ggcttcacag Leu 475	1665
5	cagaaatcat tcgatttact tcatttcttt tacatataaa tttgaaatat aaatttgact	1725
	tgacaaagac gagcaaaaaa tttcctatat ttgctctaat cagctgttca atctatctga	1785
	gagaaaaaga atagaagtag taacctcatt acgtctggag gcactaactc tgaa	1839
10	<210> 4	
	<211> 495	
	<212> PRT	

<213> Acremonium cellulolyticus

15

<400>4

	Met -20	Ala	Thr	Arg	Pro	Leu -15	Ala	Phe	Ala	Ala	Ile -10	Ala	Ala	Leu	Phe	His -5
	His	Ala	Ala	Ser -1		Gln	Ala	Pro	Thr 5	Pro	Asp	Asn	Leu	Ala 10	Ser	Leu
5	Pro	Thr	Trp 15	Lys	Cys	Thr	Thr	Ser 20	Gly	Gly	Cys	Val	Gln 25	Gln	Ser	Thr
	Ser	Ile 30	Val	Val	Asp	Trp	Val 35	Tyr	His	Trp	Ile	His 40	Thr	Val	Asn	Gly
10	Ser 45	Thr	Ser	Cys	Thr	Thr 50	Ser	Ser	Gly	Leu	Asp 55	Pro	Thr	Leu	Cys	Gly 60
	Thr	Glu	Glu	Glu	Cys 65	Tyr	Thr	Asn	Cys	Glu 70	Ile	Ser	Pro	Ala	Thr 75	Tyr
15	Asp	Gly	Leu	Gly 80	Ile	Lys	Thr	Ser	Gly 85	Asn	Ala	Leu	Thr	Leu 90	Asn	Gln
	Tyr	Val	Thr 95	Ser	Asn	Gly	Thr	Thr 100	Ser	Asn	Ala	Ser	Pro 105	Arg	Val	Tyr
20	Leu	Leu 110	Asp	Pro	Ala	Gly	Lys 115	Asn	Tyr	Glu	Met	Leu 120	Gln	Leu	Leu	Gly
	Gln 125	Glu	Ile	Ser	Phe	Asp 130	Val	Asp	Ala	Ser	Asn 135	Leu	Pro	Суз	Gly	Glu 140
25	Asn	Gly	Ala	Leu	Tyr 145	Leu	Ser	Glu	Met	Asp 150	Ala	Thr	Gly	Gly	Arg 155	Ser
30																

	Gln	туг	Asn	Pro 160	Ala	Gly	Ala	Ser	Tyr 165	Gly	Ser	Gly	Tyr	Cys 170	Asp	Ala
	Gln	Cys	Gly 175	Ser	Ser	Ser	Trp	Phe 180	Asn	Gly	Ser	Ile	A sn 185	Ser	Ala	Gly
5	Leu	Gly 190	Ser	Cys	Cys	Asn	Glu 195	Met	Asp	Leu	Trp	Glu 200	Ala	Asn	Gly	Glu
	Ala 205	Thr	Ala	Leu	Thr	Pro 210	His	Pro	Cys	Ser	Val 215	Asp	Gly	Pro	Tyr	Gly 220
10	Cys	Ser	Gly	Ser	Ala 225	Cys	Gly	Ser	Thr	Gly 230	Val	Cys	Asp	Lys	Asn 235	Gly
	Cys	Gly	Phe	Asn 240	Pro	Tyr	Ala	Leu	Gly 245	Asn	His	Ser	Tyr	Tyr 250	Gly	Pro
1 <i>E</i>	Gly	Leu	Thr 255	Val	Asp	Thr	Ser	Lys 260	Pro	Phe	Thr	Val	Thr 265	Thr	Gln	Phe
15	Val	Thr 270	Asn	Asp	Gly	Thr	Lys 275	Thr	Gly	Thr	Leu	Thr 280	Glu	Ile	Arg	Arg
	Ser 285	Tyr	Thr	Gln	Asn	Gly 290	Lys	Val	Ile	Ala	Asn 295	Ala	Val	Ala	Ser	Ser 300
20	Ser	Ser	Gly	Phe	Ser 305	Gly	Gln	Ser	Ser	Ile 310	Thr	Glu	Ser	Phe	Cys 315	Thr
	Ala	Met	Asp	Ser 320	Glu	Ala	Gly	Thr	Leu 325	Gly	Gly	Leu	Thr	Thr 330	Met	Gly
25	Glu	Ala	Leu 335	Gly	Arg	Gly	Met	Val 340	Leu	Ile	Phe	Ser	Ile 345	Trp	Asn	Asp
	Ala	Gly 350	Gly	Tyr	Met	Asn	Trp 355	Leu	Asp	Ser	Gly	Ser 360	Ser	Gly	Pro	Cys
	Ser 365	Ser	Thr	Ala	Gly	Ile 370	Pro	Ser	Thr	Ile	Gln 375	Ala	Asn	Asp	Pro	Gly 380
30	Thr	Ser	Val	Thr	Phe 385	Ser	Asn	Ile	Lys	Trp 390	Gly	Asp	Ile	Gly	Ser 395	Thr
	Gly	Ser	Gly	Thr 400	Gly	Gly	Ser	Ser	Ser 405	Ser	Ser	Ser	Ser	Thr 410	Ser	Thr
35	Ser	Pro	Lys	Thr	Thr	Ser	Thr	Thr	Thr	Thr	Ser	Ala	Thr	Thr	Lys	Thr

415 420 425 Ser Ala Thr Thr Thr Thr Ser Thr Gly Ala Thr Gln Thr His Tyr 430 435 440 5 Gly Gln Cys Gly Gly Met Tyr Tyr Thr Gly Pro Thr Val Cys Ala Ser 445 450 455 460 Pro Tyr Thr Cys Gln Val Gln Asn Pro Tyr Tyr Ser Gln Cys Leu 465 470 10 <210>5 <211> 1746 <212> ADN <213> Acremonium cellulolyticus 15 <220> <221> sig_peptide <222> (169)..(231) <220> 20 <221> exón <222> (169)..(253) <220> <221> CDS 25 <222> (169)..(253) <220> <221> mat_peptide <222> join (232..253, 310..405, 462..1371, 1451..1595) 30 <220> <221> Intrón

<222> (254)..(309)

<220>

35

<221> exón <222> (310)..(405) <220> 5 <221> CDS <222> (310)..(405) <220> <221> Intrón 10 <222> (406)..(461) <220> <221> exón <222> (462)..(1371) 15 <220> <221> CDS <222> (462)..(1371) 20 <220> <221> Intrón <222> (1372)..(1450) <220> 25 <221> exón <222> (1451)..(1598)

<400> 5

<220>

<221> CDS

<222> (1451)..(1598)

30

	ctctgcattg aat	cccgaga gatgc	acgac tegtetge	ag aaatgggaac gaaaaaccga	60
	taagccaaaa ggt	ttggata ttaaa	gatat ggccatato	ct ccagtcgagt ttcctggaaa	120
5	ttggagacaa gaa	tcacatc ccggt1	ttogt ogotattad	ct tgcgcagc atg aca atc Met Thr Ile -20	177
3		e Gly Ile Gly		ca gtg gcc act gcg gcc la Val Ala Thr Ala Ala -5	225
	act gcg caa ca Thr Ala Gln Gl -1 1			agcttac atatctctga	273
10	accaaacgaa ttg	gcttctc atcati		t ggt ggt atc ggc tgg ys Gly Gly Ile Gly Trp 10	326
				ac tgc gct cct ggg aat yr Cys Ala Pro Gly Asn 25	37 4
15	ccc tac tac tc Pro Tyr Tyr Se 30			gttggtggtt tactctcaat	425
	aatgtccgaa tat	ctcaatc gctca		a ccg gca aca tcc acg ly Pro Ala Thr Ser Thr) 45	478
20				ca gcg agc att acg aca nr Ala Ser Ile Thr Thr 60	526
	agt gtt agc ac Ser Val Ser Th 65	r Thr Thr Thr		cc ggt aag gtg cag ttc	574
	00		70	75	
25	gcc gga gtg aa	c att gcc ggc	70 ttc gac ttt ge		622
25	gcc gga gtg aa Ala Gly Val As 80 aca cag gat ct	c att gcc ggc n Ile Ala Gly a agt cag att	70 ttc gac ttt gg Phe Asp Phe G	75 gc atg gtt acc agc ggc ly Met Val Thr Ser Gly	622 670
25	gcc gga gtg aa Ala Gly Val As 80 aca cag gat ct Thr Gln Asp Le 95 caa atg aag ca	c att gcc ggc n Ile Ala Gly a agt cag att u Ser Gln Ile 100 t ttt gtt aac	70 ttc gac ttt gg Phe Asp Phe G 85 gtc gat gag tc Val Asp Glu Sc gat gat acc tc Asp Asp Thr Pl	75 gc atg gtt acc agc ggc ly Met Val Thr Ser Gly 90 cc gtc gat ggc gtc acg er Val Asp Gly Val Thr	

			aca Thr														814
5			ggt Gly 160														862
3			gcc Ala							_		-	-				910
			tgg Trp														958
10			ggc Gly														1006
			acc Thr														1054
15			cag Gln 240														1102
			gtg Val														1150
			gga Gly														1198
20	_	_	gac Asp		_					_	_	_				_	1246
			ttc Phe														1294
25			ctc Leu 320														1342
			tgc Cys								gtaa	ıgtgt	ac a	tatç	gaato	et	1391
	ccta	tatt	tt ç	gcact	aaaa	a to	cgto	caago	cat	atct	gat	atgo	ctgat	at t	gcct	tgtag	1450
30		La As						eu Gl				r Tı				gt ggc Ly Gly	1499
			gcg Ala														1547
35			cag Gln														1595

	tga atggctggtc caggtcttgt attaggtcgt acgctaaatt cttaagtttt	1648												
	tgggcctata tctgcttgat gcgtaagatg tgggtaatct ataaacctgc aagcctagct													
	agcttaacgc agtaggatga tgagcacttt agcgttgc	1746												
5														
	<210> 6													
	<211> 412													
	<212> PRT													
	<213> Acremonium cellulolyticus													
10														
	<400> 6													

Met	Thr -20	Ile	Ile	Ser	Lys	Phe -15	Gly	Ile	Gly	Val	Leu -10	Ile	Ala	Val	Ala
Thr -5	Ala	Ala	Thr	Ala -1	Gln 1	Gln	Thr	Val	Trp 5	Gly	Gln	Cys	Gly	Gly 10	Ile
Gly	Trp	Thr	Gly 15	Pro	Ser	Thr	Cys	Val 20	Ser	Gly	Ser	Tyr	Cys 25	Ala	Pro
Gly	Asn	Pro 30	Tyr	Tyr	Ser	Gln	Cys 35	Leu	Pro	Gly	Ser	Gly 40	Pro	Ala	Thr
Ser	Thr 45	Val	Thr	Thr	Thr	Ser 50	Arg	Thr	Thr	Thr	Thr 55	Thr	Ala	Ser	Ile
Thr 60	Thr	Ser	Val	Ser	Thr 65	Thr	Thr	Thr	Pro	Thr 70	Ser	Thr	Gly	Lys	Val 75
Gln	Phe	Ala	Gly	Val 80	Asn	Ile	Ala	Gly	Phe 85	Asp	Phe	Gly	Met	Val 90	Thr
Ser	Gly	Thr	Gln 95	Asp	Leu	Ser	Gln	Ile 100	Val	Asp	Glu	Ser	Val 105	Asp	Gly
Val	Thr	Gln 110	Met	Lys	His	Phe	Val 115	Asn	Asp	Asp	Thr	Phe 120	Asn	Ile	Phe
Arg	Leu 125	Pro	Thr	Gly	Trp	Gln 130	Tyr	Leu	Val	Asn	Asn 135	Ala	Leu	Gly	Gly
Gln 140	Leu	Asp	Ala	Thr	Lys 145	Phe	Gly	Gln	Tyr	Asp 150	Lys	Leu	Val	Gln	Gly 155
Cys	Leu	Ser	Thr	Gly 160	Ala	His	Cys	Ile	Val 165	Asp	Ile	His	Asn	Tyr 170	Ala
Arg	Trp	Asn	Gly 175	Ala	Ile	Ile	Gly	Gln 180	Gly	Gly	Pro	Thr	Asp 185	Ala	Gln

		Phe	Val	Asp 190	Leu	Trp	Thr	Gln	Leu 195	Ala	Thr	Lys	Tyr	Lys 200	Ala	Asn	Ser
E		Arg	Ile 205	Val	Phe	Gly	Val	Met 210	Asn	Glu	Pro	His	Asp 215	Leu	Asn	Ile	Thr
5		Thr 220	Trp	Ala	Ala	Thr	Val 225	Gln	Lys	Val	Val	Thr 230	Ala	Ile	Arg	Asn	Ala 235
		Gly	Ala	Thr	Ser	Gln 240	Met	Ile	Leu	Leu	Pro 245	Gly	Thr	Asp	Tyr	Thr 250	Ser
10		Ala	Ala	Asn	Phe 255	Val	Glu	Asn	Gly	Ser 260	Gly	Ala	Ala	Leu	Ala 265	Ala	Val
		Val	Asn	Pro 270	Asp	Gly	Ser	Thr	His 275	Asn	Leu	Ile	Phe	Asp 280	Val	His	Lys
15		Tyr	Leu 285	Asp	Ser	Asp	Asn	Ser 290	Gly	Thr	His	Ser	Glu 295	Cys	Val	Thr	Asn
		As n 300	Val	Asp	Ala	Phe	Ser 305	Ser	Leu	Ala	Thr	Trp 310	Leu	Arg	Ser	Val	Gly 315
20		Arg	Gln	Ala	Leu	Leu 320	Ser	Glu	Thr	Gly	Gly 325	Gly	Asn	Val	Gln	Ser 330	Cys
		Ala	Thr	Tyr	Met 335	Cys	Gln	Gln	Leu	Asp 340	Phe	Leu	Asn	Ala	Asn 345	Ser	Asp
25		Val	Tyr	Leu 350	Gly	Trp	Thr	Ser	Trp 355	Ser	Ala	Gly	Gly	Phe 360	Gln	Ala	Ser
		Trp	Asn 365	Tyr	Ile	Leu	Thr	Glu 370	Val	Pro	Asn	Gly	Asn 375	Thr	Asp	Gln	Tyr
30		Leu 380	Val	Gln	Gln	Cys	Phe 385	Val	Pro	Lys	Trp	Lys 390	Ser				
50	:040: 7																
	<210> 7																
	<211> 15																
	<212> Al																
	<213> A	cremo	nium c	ellulol	yticus												

```
<220>
       <221> sig_peptide
       <222> (70)..(129)
 5
       <220>
       <221> exón
       <222> (70)..(450)
       <220>
10
       <221> CDS
       <222> (70)..(450)
       <220>
       <221> mat_peptide
15
       <222> join (130..450, 501..764, 831..1373)
       <220>
       <221> Intrón
       <222> (451)..(500)
20
       <220>
       <221> exón
       <222> (501)..(764)
25
       <220>
       <221> CDS
       <222> (501)..(764)
       <220>
30
       <221> Intrón
       <222> (765)..(830)
       <220>
       <221> exón
```

35

<222> (831)..(1376)

	<220>
	<221> CDS
	<222> (831)(1376)
5	
	<400> 7

	cagtcagttg tgtagacacg tttactgaat attgaacagc tcccgcgtac tcaatacacc	60
10	ttaacaagc atg agg tct aca tca aca ttt gta gct agt gct ata cta gcg Met Arg Ser Thr Ser Thr Phe Val Ala Ser Ala Ile Leu Ala -20 -15 -10	111
	gtc gct tcc gtt caa gcc cag cag act gga tat ggc cag tgc ggt ggt Val Ala Ser Val Gln Ala Gln Gln Thr Gly Tyr Gly Gln Cys Gly Gly -5 -1 1 5 10	159
15	gag aac tgg act ggt gcc acg acc tgc gtg tct ggt tgg aca tgt acc Glu Asn Trp Thr Gly Ala Thr Thr Cys Val Ser Gly Trp Thr Cys Thr 15 20 25	207
	tat ctt aac gac tgg tac tct caa tgt cta cca gct tcc agc act ctg Tyr Leu Asn Asp Trp Tyr Ser Gln Cys Leu Pro Ala Ser Ser Thr Leu 30 35 40	255
20	act acc acg aca tct tcg aag acc tct act act gct aca acg act tca Thr Thr Thr Ser Ser Lys Thr Ser Thr Thr Ala Thr Thr Thr Ser 45 50 55	303
	aag act aca acc tca tcg acg agt tca ccg acg agt acc gga aaa ttg Lys Thr Thr Thr Ser Ser Thr Ser Ser Pro Thr Ser Thr Gly Lys Leu 60 65 70	351
25	aaa tgg ttc ggt gta gat gaa tca tgt gcc gag ttc gga act gca atg Lys Trp Phe Gly Val Asp Glu Ser Cys Ala Glu Phe Gly Thr Ala Met 75 80 85 90	399

Pro Gly Thr				gcc aat aca Ala Asn Thr		
ggt gtacgtat Gly	tc ttgcata	agtt cgcca	gaaaa agcg	gctaatg gca		gaa 503 Slu
ttc atc agt Phe Ile Ser 110						
cga atg gta Arg Met Val 125	Gln Gly Se		Ala Ala I			
acc aac tac Thr Asn Tyr		_		_		
gcc gtg att Ala Val Ile						
acc gat act Thr Asp Thr 175			Phe Trp S		Ala Thr	
ttc aag agc Phe Lys Ser 190			agtgcat ct	cetetgge e	ttcttcttt	794
cttcaaattc t	atcagtaga	gattgacaa		atc ttt gac [le Phe Asp		
gag tat cac Glu Tyr His	gac atg ga	at gaa acc	ctg gtt t	lle Phe Asp	Thr Asn 200 aac caa	Asn gca 896
gag tat cac Glu Tyr His	gac atg ga Asp Met As 205 ggt att co	at gaa acc sp Glu Thr gt ggc gcc	ctg gtt t Leu Val P 210 gga gcc a Gly Ala T	tt aac ctg Phe Asn Leu	Thr Asn 200 aac caa Asn Gln 215 tat atc Tyr Ile	Asn gca 896 Ala ttt 944
gag tat cac Glu Tyr His gca att gac Ala Ile Asp	gac atg ga Asp Met As 205 ggt att co Gly Ile As	at gaa acc sp Glu Thr gt ggc gcc rg Gly Ala 225 gg act gga	ctg gtt t Leu Val P 210 gga gcc a Gly Ala T	tt aac ctg Phe Asn Leu aca acg caa Thr Thr Gln 230	Thr Asn 200 aac caa Asn Gln 215 tat atc Tyr Ile acg acc	Asn gca 896 Ala ttt 944 Phe aat 992
gag tat cac Glu Tyr His gca att gac Ala Ile Asp 220 gcc gaa ggt Ala Glu Gly	gac atg ga Asp Met As 205 ggt att co Gly Ile As aat agc to Asn Ser Tr	at gaa acc sp Glu Thr gt ggc gcc rg Gly Ala 225 gg act gga rp Thr Gly 240	ctg gtt t Leu Val P 210 gga gcc a Gly Ala T gca tgg a Ala Trp T cct gag a Pro Glu A	tt aac ctg The Asn Leu aca acg caa Thr Thr Gln 230 acc tgg aac Thr Trp Asn 245	Thr Asn 200 aac caa Asn Gln 215 tat atc Tyr Ile acg acc Thr Thr gtc tac	Asn gca 896 Ala ttt 944 Phe aat 992 Asn gaa 1040
gag tat cac Glu Tyr His gca att gac Ala Ile Asp 220 gcc gaa ggt Ala Glu Gly 235 gat tca ctc Asp Ser Leu	gac atg ga Asp Met As 205 ggt att cq Gly Ile As aat agc tq Asn Ser Tr aaa gat ct Lys Asp Le 25 tac ctt ga	at gaa acc sp Glu Thr gt ggc gcc rg Gly Ala 225 gg act gga rp Thr Gly 240 ta agt gat au Ser Asp	ctg gtt t Leu Val P 210 gga gcc a Gly Ala T gca tgg a Ala Trp T cct gag a Pro Glu A 2 gga tct g	tt aac ctg The Asn Leu aca acg caa Thr Thr Gln 230 acc tgg aac Trp Asn 245 aac cta ctt Asn Leu Leu 260	Thr Asn 200 aac caa Asn Gln 215 tat atc Tyr Ile acg acc Thr Thr gtc tac Val Tyr tct gcc	Asn gca 896 Ala ttt 944 Phe aat 992 Asn gaa 1040 Glu 265 tgc 1088
gag tat cac Glu Tyr His gca att gac Ala Ile Asp 220 gcc gaa ggt Ala Glu Gly 235 gat tca ctc Asp Ser Leu 250 atg cac caa Met His Gln gtc tcc tca Val Ser Ser	gac atg ga Asp Met As 205 ggt att cg Gly Ile As aat agc tg Asn Ser Tr aaa gat ct Lys Asp Le 25 tac ctt ga Tyr Leu As 270 aca att gg	at gaa acc sp Glu Thr gt ggc gcc rg Gly Ala 225 gg act gga rp Thr Gly 240 ta agt gat au Ser Asp ac tct gat sp Ser Asp	ctg gtt t Leu Val P 210 gga gcc a Gly Ala T gca tgg a Ala Trp T cct gag a Pro Glu A 2 gga tct g Gly Ser G 275 cgt gta g	tt aac ctg The Asn Leu aca acg caa Thr Thr Gln 230 acc tgg aac Trp Asn 245 acc ttg aac Trp Asn 245 acc ttg aac	Thr Asn 200 aac caa Asn Gln 215 tat atc Tyr Ile acg acc Thr Thr gtc tac Val Tyr tct gcc Ser Ala 280 act gct	Asn gca 896 Ala ttt 944 Phe 942 aat 992 Asn 1040 Glu 265 tgc 1088 Cys 1136

	ccc Pro																	1232
5	gtc Val 330				Asp													1280
ŭ	cca Pro			Pro														1328
	cag Gln		Tyr													tag		1376
10	atag	gctt	ag g	gtta	gggt	t aa	cato	ctct	taa	atcg	tag	caat	caag	ac g	gatta	ctac	c	1436
	atga	cgga	tg c	acca	ctta	t aa	gggc	cttt	tta	agat	gac	ctta	gato	ac a	ıgttç	ggtc	c	1496
	cata	atat	gt a	actt	ctac	a to	aatt	gttt	gat	acct	atg	aaga	ссса	gc t	gagt	:		1551
	<210> 8																	
15	<211> 39	6																
	<212> PF	RT																
	<213> Ac	cremon	ium ce	elluloly	ticus													
	<400> 8																	
20		Met -20	_	Ser	Thr	Ser	Thr -15		Val	Ala	Ser	Ala -10	Ile	Leu	Ala	Val	Ala -5	
		Ser	Val	Gln	Ala -1		Gln	Thr	Gly	Tyr 5	Gly	Gln	Cys	Gly	Gly 10	Glu	Asn	
25		Trp	Thr	Gly 15	Ala	Thr	Thr	Cys	Val 20	Ser	Gly	Trp	Thr	Суз 25	Thr	Tyr	Leu	
		Asn	Asp 30	Trp	Tyr	Ser	Gln	Cys 35	Leu	Pro	Ala	Ser	Ser 40	Thr	Leu	Thr	Thr	
		Thr 45	Thr	Ser	Ser	Lys	Thr 50	Ser	Thr	Thr	Ala	Thr 55	Thr	Thr	Ser	Lys	Thr 60	
30		Thr	Thr	Ser	Ser	Thr 65	Ser	Ser	Pro	Thr	Ser 70	Thr	Gly	Lys	Leu	Lys 75	Trp	
		Phe	Gly	Val	Asp 80	Glu	Ser	Cys	Ala	G1u 85	Phe	Gly	Thr	Ala	Met 90	Pro	Gly	
		Thr	Trp	Gly 95	Val	Asp	Phe	Thr	Phe 100		Asn	Thr	Ala	Thr 105		Gly	Glu	
35		Phe	Ile 110		Gln	Gly	Phe	Asn 115		Phe	Arg	Ile	Pro 120	Phe	Ala	Met	Glu	

Arg 125	Met	Val	Gln	Gly	Ser 130	Ile	Asp	Ala	Ala	Leu 135	Asn	Thr	Ala	Tyr	Leu 140
Thr	Asn	Tyr	Ser	Val 145	Ala	Val	Asn	Tyr	Ile 150	Thr	Ser	Asn	Gly	Ala 155	Tyr
Ala	Val	Ile	Asp 160	Pro	His	Asn	Tyr	Gly 165	Arg	Tyr	Asn	Gly	Ser 170	Ile	Ile
Thr	Asp	Thr 175	Thr	Ala	Phe	Gln	Thr 180	Phe	Trp	Ser	Asn	Leu 185	Ala	Thr	Ala
Phe	Lys 190	Ser	Asn	Ser	Lys	Val 195	Ile	Phe	Asp	Thr	Asn 200	Asn	Glu	Tyr	His
Asp 205	Met	Asp	Glu	Thr	Leu 210	Val	Phe	Asn	Leu	Asn 215	Gln	Ala	Ala	Ile	Asp 220
Gly	Ile	Arg	Gly	Ala 225	Gly	Ala	Thr	Thr	Gln 230	Tyr	Ile	Phe	Ala	Glu 235	Gly
Asn	Ser	Trp	Thr 240	Gly	Ala	Trp	Thr	Trp 245	Asn	Thr	Thr	Asn	Asp 250	Ser	Leu
Lys	Asp	Leu 255	Ser	Asp	Pro	Glu	Asn 260	Leu	Leu	Val	Tyr	G1u 265	Met	His	Gln
Tyr	Leu 270	Asp	Ser	Asp	Gly	Ser 275	Gly	Thr	Asn	Ser	Ala 280	Cys	Val	Ser	Ser
Thr 285	Ile	Gly	Val	Glu	Arg 290	Val	Glu	Gly	Ala	Thr 295	Ala	Trp	Leu	Gln	Ala 300
Asn	Lys	Lys	Leu	Gly 305	Val	Leu	Gly	Glu	Tyr 310	Ala	Gly	Gly	Pro	Asn 315	Ser
Val	Сув	Gln	Ala 320	Ala	Val	Thr	Gly	Met 325	Leu	Asp	His	Leu	Val 330	Ala	Asn
Asn	Asp	Val 335	Trp	Leu	Gly	Ala	Val 340	Trp	Trp	Ala	Ala	Gly 345	Pro	Trp	Trp
Pro	Ser 350	Ser	Thr	Trp	Ala	Ser 355	Ile	Glu	Pro	Pro	Ser 360	Gly	Gln	Ala	Tyr
Val 365	Tyr	Tyr	Asp	Glu	Ile 370	Leu	Gln	Ala	Tyr	Thr 375	Pro				

```
<210>9
       <211> 1090
       <212> ADN
       <213> Acremonium cellulolyticus
 5
       <220>
       <221> sig_peptide
       <222> (141)..(185)
10
       <220>
       <221> exón
       <222> (141)..(550)
       <220>
15
       <221> CDS
       <222> (141)..(550)
       <220>
       <221> mat_peptide
20
       <222> join (186..550, 610..830, 895..971)
       <220>
       <221> Intrón
       <222> (551)..(609)
25
       <220>
       <221> exón
       <222> (610)..(830)
30
       <220>
       <221> CDS
       <222> (610)..(830)
       <220>
```

35

<221> Intrón

	<222> (831)(894)	
	<220>	
	<221> exón	
5	<222> (895)(974)	
	<220>	
	<221> CDS	
	<222> (895)(974)	
10		
	<400> 9	
	aaagaccgcg tgttaggatc ggttgacttg tctataaaag cctcgactcc tacgcttcca	60
	adayaccycy cytragyarc gyrryactry teratadday cercyderce tacyerreed	
15	gagttgtctg ctaggcttct atcatcggac tatcacaact tttaaaccta cacttctaag	120
13	aaaaagaatc tcatttcaag atg aag cta act ttt ctc ctg aac ctg gcc gtt	173
	Met Lys Leu Thr Phe Leu Leu Asn Leu Ala Val -15 -10 -5	
	gcc gca tct gct cag cag agc cta tgc tct caa tac tcg agc tac acc Ala Ala Ser Ala Gln Gln Ser Leu Cys Ser Gln Tyr Ser Ser Tyr Thr	221
	-1 1 5 10	
	agt ggc cag tac tcc gtc aac aac cta tgg ggt gag agc agt ggc	269
	Ser Gly Gln Tyr Ser Val Asn Asn Leu Trp Gly Glu Ser Ser Gly 15 20 25	
	tet gge tee cag tge act tat gte aat tee att tee age tet gge gtt	317
	Ser Gly Ser Gln Cys Thr Tyr Val Asn Ser Ile Ser Ser Ser Gly Val	

	30					35					40					
														gtc Val		365
														gtc Val 75		413
														aat Asn		461
														gat Asp		509
										ctc Leu						550
gtaa	atat	gc c	cccç	tcgt	a tt	tcaa	gtat	gaç	gacat	ctc	ccgo	taat	ca a	agata	tcag	609
			s Ty					n Pr					n II		ga aca y Thr	658
														aac Asn		706
														tca Ser		754
														cag Gln 185		802
	cca Pro	_	_	_	_		_		g gt	aago	cato	g acc	ctt	ctg		850
ttco	tata	iga c	tcct	tgta	ıt ct	gaca	tgat	tgo	tteç	ggta	tcaç			-	ttc Phe	905
														aac Asn		953
	tct Ser	_				tag	acta	ctat	ag t	cttt	cgaa	ıt tç	gcaga	acact	:	1004
ggtt	tcta	ıcg t	gtat	ctgt	c at	ccaq	gttgo	ato	gtgag	gat	ggat	gaad	tt o	ttc	gtgga	1064
cqta	ttgo	rta t	ctta	tttc	c ta	acqco	1									1090

```
<210> 10
```

<211> 236

<212> PRT

<213> Acremonium cellulolyticus

195

210

5 <400> 10

Met Lys Leu Thr Phe Leu Leu Asn Leu Ala Val Ala Ala Ser Ala Gln Gln Ser Leu Cys Ser Gln Tyr Ser Ser Tyr Thr Ser Gly Gln Tyr Ser Val Asn Asn Asn Leu Trp Gly Glu Ser Ser Gly Ser Gly Ser Gln Cys Thr Tyr Val Asn Ser Ile Ser Ser Ser Gly Val Ser Trp Ser Thr Thr Trp Asn Trp Ser Gly Gly Ser Thr Ser Val Lys Ser Tyr Ala Asn Ser 60 Gln Leu Ser Gly Leu Thr Lys Lys Leu Val Ser Asn Leu Gln Ser Ile Pro Thr Ser Val Gln Trp Ser Tyr Ser Asn Thr Asn Ile Val Ala Asp Val Ser Tyr Asp Leu Phe Thr Ala Ala Asp Ile Asn His Val Thr Tyr 100 Ser Gly Asp Tyr Glu Leu Met Ile Trp Leu Gly Lys Tyr Gly Gly Ala Gln Pro Leu Gly Ser Gln Ile Gly Thr Ala Asn Val Gly Gly Ala Thr 135 Trp Gln Leu Trp Tyr Gly Val Asn Gly Ser Gln Lys Thr Tyr Ser Phe Val Ala Ser Ser Gln Thr Thr Ser Trp Asn Gly Asp Ile Leu Gln Phe 170 Phe Lys Tyr Leu Gln Ser Asn Gln Gly Phe Pro Ala Ser Ser Gln Tyr Leu Ile Asp Leu Gln Phe Gly Thr Glu Pro Phe Thr Gly Ser Gln Thr

220

Thr Leu Thr Val Asn His Trp Ser Ala Ser Val Asn

215

```
<210> 11
       <211> 1379
       <212> ADN
       <213> Acremonium cellulolyticus
 5
       <220>
       <221> sig_peptide
       <222> (114)..(161)
10
       <220>
       <221> exón
       <222> (114)..(182)
       <220>
15
       <221> CDS
       <222> (114)..(182)
       <220>
       <221> mat_peptide
20
       <222> join (162..182, 233..298, 358..1227)
       <220>
       <221> Intrón
       <222> (183)..(232)
25
       <220>
       <221> exón
       <222> (233)..(298)
30
       <220>
       <221> CDS
       <222> (233)..(298)
       <220>
```

35

<221> Intrón

	<222> (299)(357)	
	<220>	
	<221> exón	
5	<222> (358)(1230)	
	<220>	
	<221> CDS	
	<222> (358)(1230)	
10		
	<400> 11	
	tacattccga aggcacagtt ccttcttcca ttcattcctt tgcgtttact accgttctct	60
	tototagact atotttgaat tottgttoga gatotttaco acoggttgga aaa atg Met	116
15		
	aag gct ttc tat ctt tct ctc tgg gcg ctg gcg ggt tcg gcg tct gcc Lys Ala Phe Tyr Leu Ser Leu Trp Ala Leu Ala Gly Ser Ala Ser Ala -15 -10 -5 -1 1	164
	tac ctt gca act act act gtaagaaact ggactattac atgggcgaat Tyr Leu Ala Thr Thr Thr 5	212
	ttatgctaat tgtcttatag cgt tac tat gac ggc cag gaa ggt gct tgc ggt Arg Tyr Tyr Asp Gly Gln Glu Gly Ala Cys Gly 10 15	265
	tgt ggt agc agc tcc gga ctc gac tca tgg cag gttagtattc ccaaccgtct	318

	20					25										
tcca	atgad	cag ç	gatta	accta	ag gt	atgt	taad	ato	gaaac		ctc (Leu 1 30				_	372
											ttc Phe					420
			_				_				tac Tyr					468
											gga Gly					516
											ccc Pro					564
											aac Asn 110					612
											ttt Phe					660
_	_					_	_	_			cag Gln	_	_	_	_	708
											act Thr					756
											act Thr					804
	-		_	_	-				_		act Thr 190	_		_	gtt Val	852
											act Thr					900
											gtc Val					948
		_	_	_	_						gca Ala	_				996
		-	-							_	aca Thr	-				1044
											acc Thr 270					1092

					Ser							gga Gly			Gly			1140
F				Thr								ggc Gly		Thr (1188
5			Asn					Gln				tcg Ser		taa				1230
	atca	gcga	gt t	gatc	cggg	a ag	ataa	ctag	tco	actt	gga	caaa	ttct	ct g	aaga	tatto	2	1290
	atct	ttct	tt t	caaa	atct	t tc	tact	tctc	ttt	gaga	cta	ttac	tttt	cg c	ttcg	tgtct	:	1350
10	tctg	tgca	tg g	tcag	gata	a tc	agct	cag										1379
	<210> 12																	
	<211> 33	5																
	<212> PR	RT																
15	<213> Ac	remoni	ium ce	elluloly	ticus													
	<400> 12																	
		Met	Lys -15		Phe	Tyr	Leu	Ser -10		Trp	Ala	a Leu	Ala -5	Gly	Ser	Ala	Ser -1	
20		Ala 1	Tyr	Leu	Ala	Thr 5	Thr	Thr	Arç	туг	Ту: 10	Asp	Gly	Gln	Glu	Gly 15	Ala	
		Cys	Gly	Cys	Gly 20	Ser	Ser	Ser	Gly	25	Asp	Ser	Trp	Gln	Leu 30	. Asp	Val	
		Ser	Thr	Gly 35	Val	Tyr	Thr	: Ala	Ala 40	Gly	Sei	Gln	Ala	Leu 45	Phe	Asp	Thr	
		Asp	Gly 50	Ser	Ser	Trp	Сув	55 55	, Gly	, Gly	Су:	Gly	Lys 60	Суз	Tyr	Asn	Leu	
		Thr 65	Ser	Thr	Gly	Thr	Ser 70	: Ala	а Суз	Asr	Gly	7 Cys 75	Gly	Glu	Gly	Gly	Val 80	
		Ala	Gly	Glu	Ser	Ile 85	Ile	val	. Met	. Val	. Thi	Asn	Leu	Cys	Pro	Tyr 95	Asn	
		Gly	Asn	Glu	Val	_	Сув	Pro	Ser	Val	_	/ Ala	Lys	Asn	Asn 110	Tyr	Gly	
		Tyr	Ser	Tyr 115		Phe	Asp	Ile	120		Glr	ı Ser	Glu	Val 125		Gly	Asp	
		Asn	Val 130		Val	Asn	Phe	Glu 135		Val	. Ala	a Cys	Pro	_	Gln	Ala	Ala	

		Ser 145	Asp	Trp	Glu	Thr	Cys 150	Thr	Cys	Tyr	Gly	Gln 155	Thr	Asp	Thr	Asp	Thr 160
5		Thr	Pro	Ala	Gly	Met 165	Thr	Thr	Ala	Ala	Gly 170	Ser	Ala	Gly	Thr	Val 175	Ala
3		Thr	Ser	Ser	Ala 180	Ser	Ser	Ser	Ser	Thr 185	Ser	Thr	Ser	Thr	Thr 190	Leu	Leu
		Ala	Val	Ser 195	Thr	Ser	Pro	Val	Lys 200	Glu	Val	Ala	Ser	Ser 205	Thr	Ser	Thr
10		Ser	Ser 210	Thr	Ser	Thr	Ser	Thr 215	Val	Lys	Pro	Val	Ser 220	Thr	Val	Val	Ala
		Glu 225	Thr	Ser	Pro	Ala	Ala 230	Val	Val	Glu	Pro	Thr 235	Thr	Thr	Ala	Val	Ser 240
15		Asn	Pro	Gln	Gly	Ala 245	Ala	Thr	Thr	Thr	Thr 250	Thr	Tyr	Val	Thr	Asp 255	Tyr
		Thr	Thr	Val	Thr 260	Glu	Thr	Ser	Thr	Ile 265	Trp	Ala	Thr	Gln	Thr 270	Pro	Ser
20		Ser	Thr	Thr 275	Gly	Ser	Ser	Ser	Ala 280	Val	Gln	Thr	Leu	Tyr 285	Gly	Gln	Cys
		Gly	Gly 290	Ile	Asn	Trp	Thr	Gly 295	Ala	Thr	Thr	Cys	Thr 300	Ser	Gly	Ala	Thr
25		Cys 305	Lys	Val	Gln	Asn	Pro 310	Tyr	Tyr	Tyr	Gln	Cys 315	Val	Ser	Ser	Ser	
	<210> 13																
	<211> 134	1 8															
	<212> AD	N															
	<213> Acr	remon	ium ce	ellulolyt	icus												
30																	
	<220>																
	<221> sig	_peptio	de														
	<222> (12	4)(18	36)														
35	<220>																

```
<221> exón
       <222> (124)..(224)
       <220>
 5
       <221> CDS
       <222> (124)..(224)
       <220>
       <221> mat_peptide
10
       <222> join (187..224, 276..1140)
       <220>
       <221> Intrón
       <222> (225)..(275)
15
       <220>
       <221> exón
       <222> (276)..(1143)
20
       <220>
       <221> CDS
       <222> (276)..(1143)
       <400> 13
```

25

cgttgaccga aagccacttg actcttctct tctgtttctc aacatccacc aagctaccca	60
gctccttgcc tccttacctt ctttacctac aatttctacc tttaacaaga actcgttgac	120
gag atg cet tet act aaa gte get gee ett tet get gtt eta get ttg Met Pro Ser Thr Lys Val Ala Ala Leu Ser Ala Val Leu Ala Leu -20 -15 -10	168
gcc tcc acg gtt gct ggc cat ggt ttt gtg caa aac atc gtt atc gac Ala Ser Thr Val Ala Gly His Gly Phe Val Gln Asn Ile Val Ile Asp -5 -1 1 5 10	216
ggt aaa to gtaagcagtg atgcatccat tattaaacta gacatgctta Gly Lys Ser	264
caaaaaatca g t tac tct gga tac ctt gtg aat cag ttc ccc tac gag Tyr Ser Gly Tyr Leu Val Asn Gln Phe Pro Tyr Glu 15 20 25	312
tcc aac cca cca gct gtt att ggg tgg gca aca act gca acc gac ctg Ser Asn Pro Pro Ala Val Ile Gly Trp Ala Thr Thr Ala Thr Asp Leu 30 35 40	360
gga ttc gtc gct ccc agt gag tac acc aat gca gac att atc tgc cac Gly Phe Val Ala Pro Ser Glu Tyr Thr Asn Ala Asp Ile Ile Cys His 45 50 55	408
aag aac gcc aca cct ggc gcg ctt tct gct cca gtt gct gca ggg ggc Lys Asn Ala Thr Pro Gly Ala Leu Ser Ala Pro Val Ala Ala Gly Gly 60 65 70	456
act gtc gag ctc cag tgg act aca tgg ccc gat agt cat cac ggt cct Thr Val Glu Leu Gln Trp Thr Thr Trp Pro Asp Ser His His Gly Pro 75 80 85	504
gtc atc agc tac ctc gcc aac tgc aat ggc aat tgt tct acc gtg gat Val Ile Ser Tyr Leu Ala Asn Cys Asn Gly Asn Cys Ser Thr Val Asp 90 95 100 105	552
aag act aag cta aac ttt gtc aag att gac caa ggt ggt ttg atc gac Lys Thr Lys Leu Asn Phe Val Lys Ile Asp Gln Gly Gly Leu Ile Asp 110 115 120	600
gat act acc ccc ccg ggt aca tgg gct tcc gac aaa ctt atc gct gcc Asp Thr Thr Pro Pro Gly Thr Trp Ala Ser Asp Lys Leu Ile Ala Ala 125 130 135	648
aac aac agc tgg act gta act atc ccc tcc acc atc gcg cct gga aac Asn Asn Ser Trp Thr Val Thr Ile Pro Ser Thr Ile Ala Pro Gly Asn 140 145 150	696
tac gtt ttg cgc cac gaa atc att gct ctt cat tcc gct gga aac gca Tyr Val Leu Arg His Glu Ile Ile Ala Leu His Ser Ala Gly Asn Ala 155 160 165	744
gac ggt gcc caa aac tac cct caa tgc atc aac ttg gag atc acc ggc Asp Gly Ala Gln Asn Tyr Pro Gln Cys Ile Asn Leu Glu Ile Thr Gly 170 175 180 185	792

										gct Ala 195								840
5										atc Ile								888
J										agc Ser								936
										gct Ala								984
10										acc Thr								1032
										act Thr 275								1080
15										acc Thr								1128
			gtc Val 300		taa	aaco	cctç	ggc a	aaagt	tcat	t go	cgtga	tcto	g tca	acco	etga		1183
	ccto	gttt	cc o	catt	tttt	cc gç	gatco	caagt	ctt	tgaç	jaac	atct	gttt	ag	tgtt	cgag	С	1243
20	aact	ttct	ac o	cattt	ttct	t to	ettte	ctctq	g aac	cctgo	ttt	cgga	ittgt	ac a	atttt	tcaa	С	1303
	ttca	ittt	ta t	gtco	catat	t to	gtgad	catca	a ttt	agct	tta	ggc	a					1348
	<210> 14	1																
	<211> 32	22																
25	<212> PI	RT																
	<213> Ad	cremo	nium c	elluloly	/ticus													
	<400> 14	1																
30		Met	-20		Thr	Lys	val	Ala -15		Leu	Ser	Ala	Val -10		ı Ala	Leu	Ala	
		Ser -5	Thr	· Val	Ala	Gly	His	Gly	Phe	val	Glr 5	Asr	Ile	val	. Ile	Asp	Gly	

Lys	Ser	Tyr	Ser 15	Gly	Tyr	Leu	Val	Asn 20	Gln	Phe	Pro	Tyr	G1u 25	Ser	Asn
Pro	Pro	Ala 30	Val	Ile	Gly	Trp	A la 35	Thr	Thr	Ala	Thr	Asp 40	Leu	Gly	Phe
Val	Ala 45	Pro	Ser	Glu	Tyr	Thr 50	Asn	Ala	Asp	Ile	Ile 55	Суз	His	Lys	Asn
Ala 60	Thr	Pro	Gly	Ala	Leu 65	Ser	Ala	Pro	Val	Ala 70	Ala	Gly	Gly	Thr	Val 75
Glu	Leu	Gln	Trp	Thr 80	Thr	Trp	Pro	Asp	Ser 85	His	His	Gly	Pro	Val 90	Ile
Ser	Tyr	Leu	Ala 95	Asn	Cys	Asn	Gly	Asn 100	Cys	Ser	Thr	Val	Asp 105	Lys	Thr
Lys	Leu	Asn 110	Phe	Val	Lys	Ile	Asp 115	Gln	Gly	Gly	Leu	Ile 120	Asp	Asp	Thr
Thr	Pro 125	Pro	Gly	Thr	Trp	Ala 130	Ser	Asp	Lys	Leu	Ile 135	Ala	Ala	Asn	Asn
Ser 140	Trp	Thr	Val	Thr	Ile 145	Pro	Ser	Thr	Ile	Ala 150	Pro	Gly	Asn	Tyr	Val 155
Leu	Arg	His	Glu	Ile 160	Ile	Ala	Leu	His	Ser 165	Ala	Gly	Asn	Ala	Asp 170	Gly
Ala	Gln	Asn	Tyr 175	Pro	Gln	Cys	Ile	Asn 180	Leu	Glu	Ile	Thr	Gly 185	Ser	Gly
Thr	Ala	Ala 190	Pro	Ser	Gly	Thr	A la 195	Gly	Glu	Lys	Leu	Tyr 200	Thr	Ser	Thr
Asp	Pro 205	Gly	Ile	Leu	Val	Asn 210	Ile	Tyr	Gln	Ser	Leu 215	Ser	Thr	Tyr	Val
Ile 220	Pro	Gly	Pro	Thr	Leu 225	Trp	Ser	Gly	Ala	Ala 230	Asn	Gly	Ala	Val	Ala 235
Thr	Gly	Ser	Ala	Thr 240	Ala	Val	Ala	Thr	Thr 245	Ala	Ala	Ala	Ser	Ala 250	Thr
Ala	Thr	Pro	Thr 255	Thr	Leu	Val	Thr	Ser 260	Val	Ala	Pro	Ala	Ser 265	Ser	Thr

Ser Ala Thr Ala Val Val Thr Thr Val Ala Pro Ala Val Thr Asp Val

270 275 280

Val Thr Val Thr Asp Val Val Thr Val Thr Thr Val Ile Thr Thr Thr 285 290 295

5 Val Leu 300

<210> 15

<211> 2052

<212> ADN

10 <213> Acremonium cellulolyticus

<220>

<221> sig_peptide

<222> (238)..(321)

15

<220>

<221> exón

<222> (238)..(783)

20 <220>

<221> CDS

<222> (238)..(783)

<220>

25 <221> mat_peptide

<222> join (322..783, 851..1137, 1206..1702, 1757..1884)

<220>

<221> Intrón

30 <222> (784)..(850)

<220>

<221> exón

<222> (851)..(1137)

35

<220> <221> CDS <222> (851)..(1137) 5 <220> <221> Intrón <222> (1138)..(1205) <220> 10 <221> exón <222> (1206)..(1702) <220> <221> CDS 15 <222> (1206)..(1702) <220> <221> Intrón <222> (1703)..(1756) 20 <220> <221> exón <222> (1757)..(1887) 25 <220> <221> CDS <222> (1757)..(1887) <400> 15

30

ctc	cgtca	aag	tgcga	aagta	at at	tgta	actt	. cga	agato	ctac	tcaa	atato	cca o	ctttt	tgctaa	60
aacq	gcca	cga	agcca	accaa	aa go	cctc	cacco	g cta	ataaç	ggaa	gcto	cgga	gat 1	tctg	cgttcg	120
tcg	catgo	egg	gagaa	aaggt	tt ca	attt	ttct	tg:	ctagt	cat	aaac	cttc	tt a	acttt	gattt	180
cctt	tttt	tg	taaaa	aaaat	ta to	cttg	ctgto	j aaq	jaaaa	agca	tcac	cagt	ctc a	agcaa	aaa	237
			aca Thr -25													285
			gcg Ala													333
			gga Gly													381
			aag Lys													429
			gaa Glu 40													477
			tct Ser													525
			gtg Val													573
			ctt Leu													621
			ccc Pro													669
			tca Ser 120													717
			gga Gly													765
		_	tca Ser			gtaa	agcat	tt t	agtt	ttet	t c	gatti	ctt	g		813
tcct	atc	gaa	gtgga	aagti	g ga	agcto	gacat	tet	ataç		у Туз				gga Gly 160	868

aac gcc cca gga aga agc agc gtc aat cct caa tct tct gag ggt aac Asn Ala Pro Gly Arg Ser Ser Val Asn Pro Gln Ser Ser Glu Gly Asn 165 170 175	916
tct gcg aca gag ccc tgg ata gtc gga agg gct ctc atc cta agc cac Ser Ala Thr Glu Pro Trp Ile Val Gly Arg Ala Leu Ile Leu Ser His 180 185 190	964
gcg cgc gcg gtc tca ctt tac aac aaa gaa ttc cga tca aca caa aag Ala Arg Ala Val Ser Leu Tyr Asn Lys Glu Phe Arg Ser Thr Gln Lys 195 200 205	1012
gga aga att gga ata tct ctg aat gga gac ttt ttt gaa cct tgg gat Gly Arg Ile Gly Ile Ser Leu Asn Gly Asp Phe Phe Glu Pro Trp Asp 210 215 220	1060
gcc caa gat gag cgt gat cgc gag gca gct gag aga aga atg gaa ttt Ala Gln Asp Glu Arg Asp Arg Glu Ala Ala Glu Arg Arg Met Glu Phe 225 230 235 240	1108
cat att gga tgg ttt gcc aat ccg gtg tg gtacgtgtta ttttcatcta His Ile Gly Trp Phe Ala Asn Pro Val Cys 245 250	1157
tgtgttatta tacacaaaag ctaactctta tcgcgtccac gaaaaaag c ctc gca Leu Ala	1212
cag gac tat cca aag tgt atg aga gag cag ctg aat gac cgt cta ccc Gln Asp Tyr Pro Lys Cys Met Arg Glu Gln Leu Asn Asp Arg Leu Pro 255 260 265	1260
aag ttc aca gac tcc gaa ttt acc ctg ctt cgc gaa gcc gat ata gac Lys Phe Thr Asp Ser Glu Phe Thr Leu Leu Arg Glu Ala Asp Ile Asp 270 275 280	1308
ttc tac gga atg aat tat tac aca tct caa ttc gcc cgc cat cgc gac Phe Tyr Gly Met Asn Tyr Tyr Thr Ser Gln Phe Ala Arg His Arg Asp 285 290 295 300	1356
gaa act cct tcc aag aat gat tat ttg gga aat gta gaa gaa	1404
gag aac aag gac ggc gtg tca gtc ggc gaa ccg tct ggg gtt cat tgg Glu Asn Lys Asp Gly Val Ser Val Gly Glu Pro Ser Gly Val His Trp 320 325 330	1452
ctt cgg tcg acc cca aag ctg ttt aga aag cat ttg act cga att tac Leu Arg Ser Thr Pro Lys Leu Phe Arg Lys His Leu Thr Arg Ile Tyr 335 340 345	1500
cgc aaa tat gga aaa ccc gtc tac gtt act gag aat ggc tgt ccc tgt Arg Lys Tyr Gly Lys Pro Val Tyr Val Thr Glu Asn Gly Cys Pro Cys 350 355 360	1548
cca gga gag gag aag atg acc gtg act gag gca gtg aac gat aca tat Pro Gly Glu Glu Lys Met Thr Val Thr Glu Ala Val Asn Asp Thr Tyr 365 370 375 380	1596
cga atc cgg tat ttc gaa gac cat atc gag gct ctt gcg ctg gca cgc Arg Ile Arg Tyr Phe Glu Asp His Ile Glu Ala Leu Ala Leu Ala Arg 385 390 395	1644
age gaa gat gge tet gae att aag gga tae ttt gee tgg tea etg atg	1692

	Ser	Glu <i>I</i>	_	Sly 8	Ser 1	Asp :	Ile	Lys	Gly 405	Tyr	Phe	Ala '	_	Ser 1	Leu	Met		
		Asn I		g gta	atgti	ttcc	ggg	acto	gct	attc	tgac	tc a	agca	acaa	С			1742
5	tgac	atctt	c tt									gtt (Val i	Arg 1					1791
		Phe 7					Thr					ccg a						1839
10	Leu					Ile 1						gag (Glu 1 455				tag		1887
	tacc	tagga	aa ca	atat	tata	a gad	gtca	aatg	tca	cgag	gct	atata	acct	gt a	gaat	gggaa	a	1947
	ctag	ctcca	ag co	ctcgt	tagat	ct	taga	atac	acg	aaaa	atg	tcaa	aatg	tc a	ctag	ctact	:	2007
	ccgt	aaagt	c go	gggaa	acat	gag	taag	cagt	tag	tatt	agc	gagc	c					2052
15																		
	<210> 16																	
	<211> 48	6																
	<212> PF	RT																
	<213> Ac		ium ce	llulolyt	icus													
20	<400> 16									_								
		Met	Gly	Ser	Thr -25		Pro	Ala	ı Gln	-20		Leu	Pro	Arg	Asp -15		Glu	
		Trp	Gly	Phe	Ala	Thr	Ala	Ser	-5	Gln	Ile	Glu		Ala 1	Val	Asn	Glu	
		Asp 5	Gly	Arg	Gly	Lys	Ser 10	Ile	Trp	Asp	Thr	Phe 15	Cys	His	Leu	Glu	Pro 20	
		Thr	Arg	Thr	Lys	Gly 25	Ala	Ser	Gly	Asp	Val 30	. Ala	Cys	Asp	His	Tyr 35	His	
		Arg	Tyr	Glu	Glu 40	Asp	Phe	Asp	Leu	Leu 45	Ser	Lys	Tyr	Gly	Ala 50	Lys	Ala	
		Tyr	Arg	Phe 55	Ser	Ile	Ser	Trp	Ser 60	Arg	Ile	lle	Pro	Asp 65	Gly	Gly	Arg	
		Gly	Asp 70	Ala	Val	Asn	Glu	75	Gly	Ile	Ala	Phe	Tyr 80	Asn	Arg	Leu	Ile	
		Asp 85	Ser	Leu	Leu	Ser	Arg 90	Gly	, Ile	Val	Pro	Trp 95	Val	Thr	Leu	Tyr	His 100	

Trp	Asp	Leu	Pro	Gln 105	Ser	Leu	His	Asp	Arg 110	Tyr	Gly	Gly	Trp	Leu 115	Asn
Val	Glu	Glu	Ser 120	Gln	Leu	Asp	Phe	Glu 125	Arg	Tyr	Ala	Arg	Ile 130	Cys	Tyr
Glu	Arg	Phe 135	Gly	Asp	Arg	Val	Lys 140	Asn	Trp	Ile	Thr	Leu 145	Asn	Glu	Pro
Trp	Ile 150	Val	Ser	Ile	Phe	Gly 155	Tyr	Ser	Thr	Gly	Gly 160	Asn	Ala	Pro	Gly
Arg 165	Ser	Ser	Val	Asn	Pro 170	Gln	Ser	Ser	Glu	Gly 175	Asn	Ser	Ala	Thr	Glu 180
Pro	Trp	Ile	Val	Gly 185	Arg	Ala	Leu	Ile	Leu 190	Ser	His	Ala	Arg	Ala 195	Val
Ser	Leu	Tyr	Asn 200	Lys	Glu	Phe	Arg	Ser 205	Thr	Gln	Lys	Gly	Arg 210	Ile	Gly
Ile	Ser	Leu 215	Asn	Gly	Asp	Phe	Phe 220	Glu	Pro	Trp	Asp	Ala 225	Gln	Asp	Glu
Arg	Asp 230	Arg	Glu	Ala	Ala	Glu 235	Arg	Arg	Met	Glu	Phe 240	His	Ile	Gly	Trp
Phe 245	Ala	Asn	Pro	Val	Cys 250	Leu	Ala	Gln	Asp	Tyr 255	Pro	Lys	Cys	Met	Arg 260
Glu	Gln	Leu	Asn	Asp 265	Arg	Leu	Pro	Lys	Phe 270	Thr	Asp	Ser	Glu	Phe 275	Thr
Leu	Leu	Arg	Glu 280	Ala	Asp	Ile	Asp	Phe 285	Tyr	Gly	Met	Asn	Tyr 290	Tyr	Thr
Ser	Gln	Phe 295	Ala	Arg	His	Arg	Asp 300	Glu	Thr	Pro	Ser	Lys 305	Asn	Asp	Tyr
Leu	Gly 310	Asn	Val	Glu	Glu	Leu 315	Gln	Glu	Asn	Lys	Asp 320	Gly	Val	Ser	Val
Gly 325	Glu	Pro	Ser	Gly	Val 330	His	Trp	Leu	Arg	Ser 335	Thr	Pro	Lys	Leu	Phe 340
Arg	Lys	His	Leu	Thr 3 4 5	Arg	Ile	Tyr	Arg	Lys 350	Tyr	Gly	Lys	Pro	Val 355	Tyr
Va 1	Thr	G1.) er	G1	Cvc	Dro	Cure	Bro	G1	G1	G1	Ture	Mot	Thr	17a 1

360 365 370 Thr Glu Ala Val Asn Asp Thr Tyr Arg Ile Arg Tyr Phe Glu Asp His 380 5 Ile Glu Ala Leu Ala Leu Ala Arg Ser Glu Asp Gly Ser Asp Ile Lys 395 Gly Tyr Phe Ala Trp Ser Leu Met Asp Asn Leu Glu Trp Ser Asp Gly 405 410 415 Tyr Gly Val Arg Phe Gly Ala Thr Phe Thr Asp Tyr Asn Thr Leu Glu 10 430 Arg Thr Pro Lys Gln Ser Ala Leu Leu Leu Lys Gly Ile Phe Glu Lys 440 445 Tyr Ile Glu Pro Arg Asn 455 15 <210> 17 <211> 1931 <212> ADN 20 <213> Acremonium cellulolyticus <220> <221> sig_peptide <222> (66)..(227) 25 <220> <221> exón <222> (66)..(148) 30 <220> <221> CDS <222> (66)..(148) <220>

35

<221> Intrón

```
<222> (149)..(211)
       <220>
       <221> exón
 5
       <222> (212)..(403)
        <220>
       <221> CDS
       <222> (212)..(403)
10
       <220>
       <221> mat_peptide
       <222> join (228..403, 461..933, 989..1574, 1627..1762)
15
       <220>
       <221> Intrón
       <222> (404)..(460)
       <220>
20
       <221> exón
       <222> (461)..(933)
       <220>
       <221> CDS
25
       <222> (461)..(933)
       <220>
       <221> Intrón
       <222> (934)..(988)
30
       <220>
       <221> exón
       <222> (989)..(1574)
```

35

<220>

	<221> CDS	
	<222> (989)(1574)	
	<220>	
5	<221> Intrón	
	<222> (1575)(1626)	
	<220>	
	<221> exón	
10	<222> (1627)(1765)	
	<220>	
	<221> CDS	
	<222> (1627)(1765)	
15		
	<400> 17	
	tteteteaet tteeetttee ateegettae egagtegeag aateaeatee aacacatete	60
	cgagt atg ggt agc gta act agt acc aac ggc gag act ccc cag tcc aaa Met Gly Ser Val Thr Ser Thr Asn Gly Glu Thr Pro Gln Ser Lys -30 -25 -20	110
	ctg ccg gca gac ttt gtc tgg gga tac gca acg gcc ag gtgagattac Leu Pro Ala Asp Phe Val Trp Gly Tyr Ala Thr Ala Ser -15 -10	158
	tcgctattca tgtgtgtaga agaaacctat ttaccgtctt gttttggttc tag c tac Tyr -5	215
	cag atc gaa gga gcg tat gac gaa gac ggc cga gga cct tcc atc tgg Gln Ile Glu Gly Ala Tyr Asp Glu Asp Gly Arg Gly Pro Ser Ile Trp -1 1 5 10	263
	gat aca ttc agc aag aca cct gga aaa gta gag gat ggc acc aat ggc Asp Thr Phe Ser Lys Thr Pro Gly Lys Val Glu Asp Gly Thr Asn Gly 15 20 25	311
	gac gtg gcc tgc gac tcc tac cac cgt aca cat gag gat att gcg att Asp Val Ala Cys Asp Ser Tyr His Arg Thr His Glu Asp Ile Ala Ile 30 35 40	359
	ctg aag caa tat ggt gcc aag ctg tac cgc ttt tct ctg tcc tg Leu Lys Gln Tyr Gly Ala Lys Leu Tyr Arg Phe Ser Leu Ser Trp 45 50 55	403
	gtatagetee etteggette ttgegeeaga atataaetga eagtattgat aateaag g	461

ccc cga atc Pro Arg Ile 60										509
gga ata gac Gly Ile Asp										557
atc gag ccc Ile Glu Pro				s Trp						605
ttc aag aga Phe Lys Arg 110	Tyr Gly			_	_			_	-	653
tat gcg aac Tyr Ala Asn 125			Ala Ph			Gly				701
aag cat tgg Lys His Trp 140										749
ttc aat atc Phe Asn Ile						_	_	_	-	797
aac ccg gtt Asn Pro Val				u Pro						845
ctt ttg gtg Leu Leu Val 190	Ala His									893
t	cag ggc	gga gaa					g gt	taga	atcga	943
Lys Pro Thr 205		Gly Glu 210	116 01	утте	Thr Leu 215					
Lys Pro Thr	Gln Gly	210		_	215	ag gt	_		gg gcc rp Ala 220	999
Lys Pro Thr 205	Gln Gly aacgcatg gac ccc	210 ac aatca gaa gac	tgege t eca ga	aatatg	215 gaat tca att gaa	ag gt Gl	Ly As	acc	rp Ala 220 cgc	999 1047
Lys Pro Thr 205 aatattcccc	gac ccc Asp Pro 225	210 ac aatca gaa gac Glu Asp atc tcc	tgcgc t cca ga Pro Gl tgg tt	a gac u Asp 230 t gca	gaat tca att gaa Ile Glu gac ccc	ag gt Gl gcc Ala	ccc Pro	acc Thr 235	rp Ala 220 cgc Arg	
Lys Pro Thr 205 aatattcccc gaa ccc tgg Glu Pro Trp	gac ccc Asp Pro 225 ttc gcc Phe Ala 240 gac agc Asp Ser	gaa gac Glu Asp atc tcc Ile Ser	cca ga Pro Gl tgg tt Trp Ph 24	aatatg a gac u Asp 230 t gca e Ala 5	gaat tca att gaa Ile Glu gac ccc Asp Pro	ag gt Gl gcc Ala atc	ccc Pro tac Tyr 250	acc Thr 235 ctt Leu	cgc Arg ggc Gly	1047
Lys Pro Thr 205 aatattcccc gaa ccc tgg Glu Pro Trp aaa ctc gaa Lys Leu Glu aaa tac ccc Lys Tyr Pro	gac ccc Asp Pro 225 ttc gcc Phe Ala 240 gac agc Asp Ser gat gaa	gaa gac Glu Asp atc tcc Ile Ser gtc gtg Val Val	tgcgc t cca ga Pro Gl tgg tt Trp Ph 24 aaa ca Lys Gl 260 ttg at	a gac u Asp 230 t gca e Ala 5 a atc n Ile	gaat tca att gaa Ile Glu gac ccc Asp Pro ggc gac Gly Asp	ag gt Gl gcc Ala atc Ile cgt Arg 265 aac Asn	ccc Pro tac Tyr 250 ctc Leu	acc Thr 235 ctt Leu cca Pro	cgc Arg ggc Gly ccc Pro	1047
Lys Pro Thr 205 aatattcccc gaa ccc tgg Glu Pro Trp aaa ctc gaa Lys Leu Glu aaa tac ccc Lys Tyr Pro 255 ttg aca ccc Leu Thr Pro	gac ccc Asp Pro 225 ttc gcc Phe Ala 240 gac agc Asp Ser gat gaa Asp Glu cac tac	gaa gac Glu Asp atc tcc Ile Ser gtc gtg Val Val gta gcc Val Ala 275 tgc gca	cca ga Pro Gl tgg tt Trp Ph 24 aaa ca Lys Gl 260 ttg at Leu Il	a gac u Asp 230 t gca e Ala 5 a atc n Ile c aag e Lys	gaat tca att gaa Ile Glu gac ccc Asp Pro ggc gac Gly Asp gga agc Gly Ser 280 cgt cac	ag gt Gl gcc Ala atc Ile cgt Arg 265 aac Asn	ccc Pro tac Tyr 250 ctc Leu gac Asp	acc Thr 235 ctt Leu cca Pro	cgc Arg ggc Gly ccc Pro tac Tyr	1047 1095 1143

	Ala	Asp	Pro	Asp	Asp 305	Thr	Ala	Gly	Asn	Leu 310	Asp	His	Leu	Phe	Glu 315	Asp	
		ttc Phe															1335
5		cat His		_				_	_	_				_	_	_	1383
		ggt Gly 350						_	_	_			_	_		_	1431
		gag Glu		_	_				_				_				1479
10		cag Gln															1527
		gac Asp															1574
4.5	gta	agtc	aaa a	acato	cacct	ta tt	cgga	aaaga	a ctt	ctgo	ctaa	tcg	ctcta	att a	ag t	aac Asn	1630
15		gag Glu 415			_					_			_			-	1678
		tac Tyr															1726
20		gga Gly											tag	acaa	attto	cct	1775
	cga	attt	tat q	jtttt	tatat	c ct	tata	cacta	a tgt	aaat	tagt	gato	ccat	cat t	ttt	gtactt	1835
	gtt	gagti	ttt t	gtct	ttgat	ta tt	ctc	ctttq	ggtg	gtgta	agat	ttta	aacaa	aac t	gcaa	atcata	1895
	tca	cgct	cgc t	ttg	gccc	gc at	cago	gagca	a tca	aatt							1931
25 <	210> 1	Ω.															

<210> 18

<211>490

<212> PRT

<213> Acremonium cellulolyticus

30 <400> 18

> Met Gly Ser Val Thr Ser Thr Asn Gly Glu Thr Pro Gln Ser Lys Leu -30 -20

> Pro Ala Asp Phe Val Trp Gly Tyr Ala Thr Ala Ser Tyr Gln Ile Glu -15 -10 -5

Gly -1	Ala 1	Tyr	Asp	Glu	Asp 5	Gly	Arg	Gly	Pro	Ser 10	Ile	Trp	Asp	Thr	Phe 15
Ser	Lys	Thr	Pro	Gly 20	Lys	Val	Glu	Asp	Gly 25	Thr	Asn	Gly	Asp	Val 30	Ala
Cys	Asp	Ser	Tyr 35	His	Arg	Thr	His	Glu 40	Asp	Ile	Ala	Ile	Leu 45	Lys	Gln
Tyr	Gly	Ala 50	Lys	Leu	Tyr	Arg	Phe 55	Ser	Leu	Ser	Trp	Pro 60	Arg	Ile	Ile
Pro	Leu 65	Gly	Gly	Arg	Asn	Asp 70	Pro	Ile	Asn	Gln	Lys 75	Gly	Ile	Asp	Phe
Tyr 80	Ser	Lys	Phe	Ile	Asp 85	Asp	Leu	His	Ala	Ala 90	Gly	Ile	Glu	Pro	Phe 95
Val	Thr	Leu	Tyr	His 100	Trp	Asp	Leu	Pro	Asp 105	Glu	Leu	Phe	Lys	Arg 110	Tyr
Gly	Gly	Pro	Leu 115	Asn	Lys	Asp	Glu	Phe 120	Val	Ala	Asp	Tyr	Ala 125	Asn	Phe
Ala	Arg	Ile 130	Ala	Phe	Gln	Ser	Phe 135	Gly	His	Lys	Val	Lys 140	His	Trp	Val
	145				Trp	150					155				
160					Arg 165					170					175
				180	Pro				185					190	
			195		Asp			200					205		
		210			Ile		215					220			
	225				Glu	230					235				
240					Phe 245					250					255
Asp	ser	Val	Val	Lys	Gln	Ile	Gly	Asp	Arg	Leu	Pro	Pro	Leu	Thr	Pro

						260					265					270	
		Asp	Glu	Val	Ala 275	Leu	Ile	Lys	Gly	Ser 280	Asn	Asp	Phe	Tyr	Gly 285	Met	Asn
5		His	Tyr	Cys 290	Ala	Asn	Tyr	Ile	Arg 295	His	Arg	Glu	Gly	Glu 300	Ala	Asp	Pro
		Asp	Asp 305	Thr	Ala	Gly	Asn	Leu 310	Asp	His	Leu	Phe	Glu 315	Asp	Lys	Phe	Gly
10		Asn 320	Ser	Ile	Gly	Pro	Glu 325	Thr	Asn	Cys	Glu	Trp 330	Leu	Arg	Pro	His	Pro 335
		Leu	Gly	Phe	Arg	Lys 340	Leu	Leu	Lys	Trp	Leu 345	Ser	Asp	Arg	Tyr	Gly 350	Tyr
15		Pro	Lys	Ile	Tyr 355	Val	Thr	Glu	Asn	Gly 360	Thr	Ser	Ile	Lys	Gly 365	Glu	Asn
		Asp	Leu	Pro 370	Leu	Glu	Glu	Leu	Leu 375	Asn	Asp	Glu	Phe	Arg 380	Val	Gln	Tyr
20		Tyr	Arg 385	Asp	Tyr	Val	Gly	Ala 390	Met	Ala	Asp	Ala	Ala 395	Thr	Phe	Asp	Gly
		Val 400	Asn	Val	Lys	Lys	Tyr 405	Met	Ala	Trp	Ser	Leu 410	Met	Asp	Asn	Phe	Glu 415
		Trp	Ser	Glu	Gly	Tyr 420	Gln	Ser	Arg	Phe	Gly 425	Val	Thr	Tyr	Val	Asp 430	Tyr
25		Lys	Asp	Asn	Gln 435	Lys	Arg	Ile	Pro	Lys 440	Lys	Ser	Ala	Leu	Val 445	Ile	Gly
		Glu	Leu	Phe 450	Asn	Lys	Tyr	Ile	Ser 455	Lys	Glu						
30	<210> 19)															
	<211> 20)															
	<212> AE	N															
	<213> S€	ecuenc	ia Artif	icial													

35

<220>

	<223> cebador: ACC3-F
	<400> 19
_	gggcgtctgt rttygartgt 20
5	10405-00
	<210> 20
	<211> 20
	<212> ADN
10	<213> Secuencia Artificial
10	2000
	<220>
	<223> cebador: ACC3-R
	4400> 20
4.5	<400> 20
15	aaaatgtagt ctccccacca 20
	2040× 04
	<210> 21
	<211> 20
20	<212> ADN
20	<213> Secuencia Artificial
	<220>
	<223> cebador: ACC3-inv-F
25	<400> 21
	acttccagac tttctggtcc 20
	<210> 22
	<211> 20
30	<212> ADN
	<213> Secuencia Artificial
	<220>
	<223> cebador: ACC3-inv-R

	<400> 22
	aggccgagag taagtatctc 20
	<210> 23
5	<211> 20
	<212> ADN
	<213> Secuencia Artificial
	<220>
10	<223> cebador: pACC3-F
	<400> 23
	gaaggatggt agattgtccg 20
	gaaggatggt agattgtoog 20
15	<210> 24
	<211> 20
	<212> ADN
	<213> Secuencia Artificial
20	<220>
	<223> cebador: pACC3-R
	<400> 24
	accgagaagg atttctcgca 20
25	
	<210> 25
	<211> 24
	<212> ADN
00	<213> Secuencia Artificial
30	.000
	<220>
	<223> cebador: ACC3-N
	<400> 25
35	atgaagacca gcatcatttc tatc 24

	<210> 26
	<211> 24
	<212> ADN
5	<213> Secuencia Artificial
	<220>
	<223> cebador: ACC3-C
10	<400> 26
	tcatgggaaa taactctcca gaat 24
	<210> 27
	<211> 29
15	<212> ADN
10	<213> Secuencia Artificial
	210° Occupina Aumora
	<220>
	<223> cebador: ACC5-F
20	
	<220>
	<221> misc_feature
	<222> (18)(18)
	<223> "n" representa cualquier base
25	
	<220>
	<221> misc_feature
	<222> (27)(27)
	<223> "n" representa cualquier base
30	
	<400> 27
	cagcaggccc ccaccccnga yaayytngc 29
	<210> 28
35	<211> 23
	_ · · · _ ·

	<212> ADN
	<213> Secuencia Artificial
	<220>
5	<223> cebador: ACC5-R
	<400> 28
	aattcgcggc cgctaaaaaa aaa 23
	040.00
10	<210> 29
	<211> 20
	<212> ADN
	<213> Secuencia Artificial
15	<220>
	<223> cebador: ACC5-inv-F
	4220° 0000001.71000 111V 1
	<400> 29
	atctcacctg caacctacga 20
20	
	<210> 30
	<211> 20
	<212> ADN
	<213> Secuencia Artificial
25	
	<220>
	<223> cebador: ACC5-INV-R
	<400> 30
30	cctcttccgt tccacataaa 20
	<210> 31
	<211> 20
	<212> ADN

<213> Secuencia Artificial

35

	<220>
	<223> cebador: pACC5-F
5	<400> 31
	attgctccgc ataggttcaa 20
	<210> 32
	<211> 20
10	<212> ADN
	<213> Secuencia Artificial
	<220>
4-	<223> cebador: pACC5-R
15	400.00
	<400> 32
	ttcagagtta gtgcctccag 20
	<210> 33
20	<211> 25
	<212> ADN
	~2 12/ ADIN
	<213> Secuencia Artificial
25	<213> Secuencia Artificial
25	<213> Secuencia Artificial <220>
25	<213> Secuencia Artificial <220>
25	<213> Secuencia Artificial <220> <223> cebador: ACC5-N
25	<213> Secuencia Artificial <220> <223> cebador: ACC5-N <400> 33
25 30	<213> Secuencia Artificial <220> <223> cebador: ACC5-N <400> 33
	<213> Secuencia Artificial <220> <223> cebador: ACC5-N <400> 33 atggcgacta gaccattggc ttttg 25
	<213> Secuencia Artificial <220> <223> cebador: ACC5-N <400> 33 atggcgacta gaccattggc ttttg 25 <210> 34
	<213> Secuencia Artificial <220> <223> cebador: ACC5-N <400> 33 atggcgacta gaccattggc ttttg 25 <210> 34 <211> 25

35

<220>

	<223> cebador: ACC5-C
	<400> 34
	ctaaaggcac tgtgaatagt acgga 25
5	
	<210> 35
	<211> 26
	<212> ADN
	<213> Secuencia Artificial
10	
	<220>
	<223> cebador: ACC6-F
	<400> 35
15	gtgaacatcg ccggcttyga yttygg 26
	<210> 36
	<211> 23
	<212> ADN
20	<213> Secuencia Artificial
	<220>
	<223> cebador: ACC6-R
25	<400> 36
	ccgttccacc gggcrtartt rtg 23
	<210> 37
	<211> 20
30	<212> ADN
	<213> Secuencia Artificial
	<220>
	<223> cebador: pACC6-F

	<400> 37
	ctctgcattg aatcccgaga 20
	<210> 38
5	<211> 20
	<212> ADN
	<213> Secuencia Artificial
	<220>
10	<223> cebador: pACC6-R
	<400> 38
	gcaacgctaa agtgctcatc 20
15	<210> 39
	<211> 24
	<212> ADN
	<213> Secuencia Artificial
20	<220>
	<223> cebador: ACC6-N
	<400> 39
	atgacaatca tctcaaaatt cggt 24
25	algacaalca lolcaaaall oggi 24
20	<210> 40
	<211> 24
	<212> ADN
	<213> Secuencia Artificial
30	
	<220>
	<223> cebador: ACC6-C
	<400> 40
35	tcaggatttc cactttggaa cgaa 24

	<210> 41
	<211> 28
	<212> ADN
5	<213> Secuencia Artificial
	<220>
	<223> cebador: ACC7-F
10	<220>
	<221> misc_feature
	<222> (18)(18)
	<223> "n" representa cualquier base
15	<400> 41
15	cacgccatga tcgacccnca yaaytayg 28
	cacyccalga lcgaccolica yaaylayg 20
	<210> 42
	<211> 22
20	<212> ADN
	<213> Secuencia Artificial
	<220>
	<223> cebador: ACC7-R
25	
	<220>
	<221> misc_feature
	<222> (14)(14)
	<223> "n" representa cualquier base
30	
	<400> 42
	accaggggcc ggcngyccac ca 22
	<210> 43
35	<211> 20

	<212> ADN
	<213> Artificial
	132 Artificial
	<220>
5	<223> cebador: pACC7-F
	<400> 43
	cagtcagttg tgtagacacg 20
10	<210> 44
	<211> 20
	<212> ADN
	<213> Artificial
15	<220>
	<223> cebador: pACC7-R
	<400> 44
	actcagctgg gtcttcatag 20
20	
	<210> 45
	<211> 24
	<212> ADN
	<213> Secuencia Artificial
25	
	<220>
	<223> cebador: ACC7-N
	<400> 45
30	atgaggtcta catcaacatt tgta 24
	- 19-19-19-19-19-19-19-19-19-19-19-19-19-1
	<210> 46
	<211> 24
	<212> ADN
35	<213> Secuencia Artificial

	<220>
	<223> cebador: ACC7-C
5	<400>46
	ctaaggggtg taggcctgca ggat 24
	<210> 47
	<211> 39
10	<212> ADN
	<213> Secuencia Artificial
	000
	<220>
	<223> cebador: MSW-N
15	
	<400> 47
	caacagagtc tatgcgctca atactcgagc tacaccagt 39
	<210> 48
20	<211> 22
	<212> ADN
	<213> Secuencia Artificial
	<220>
25	<223> cebador: MSW-C
	<400> 48
	ctaattgaca gctgcagacc aa 22
30	<210> 49
	<211> 20
	<212> ADN
	<213> Secuencia Artificial

35

<220>

	<223> cebador: pACC8-F
	<400> 49
	aaagaccgcg tgttaggatc 20
5	
	<210> 50
	<211> 20
	<212> ADN
	<213> Secuencia Artificial
10	
	<220>
	<223> cebador: pACC8-R
	<400> 50
15	cgcgtaggaa ataagacacc 20
	<210> 51
	<211> 24
	<212> ADN
20	<213> Secuencia Artificial
	<220>
	<223> cebador: ACC8-N
25	<400> 51
	atgaagctaa cttttctcct gaac 24
	<210> 52
	<211> 24
30	<212> ADN
	<213> Secuencia Artificial
	<220>
	<223> cebador: ACC8-C

	<400> 52
	ctaattgaca gatgcagacc aatg 24
	<210> 53
5	<211> 22
	<212> ADN
	<213> Secuencia Artificial
	<220>
10	<223> cebador: ACC9-F
	<400> 53
	ccggctgcgg caartgytay ma 22
15	<210> 54
15	<210> 54 <211> 31
	<212> ADN
	<213> Secuencia Artificial
	1210 Occuencia Artificial
20	<220>
	<223> cebador: ACC9-R
	<220>
	<221> misc_feature
25	<222> (26)(26)
	<223> "n" representa cualquier base
	<220>
	<221> misc_feature
30	<222> (29)(29)
	<223> "n" representa cualquier base
	<400> 54
	agtaccactg gttctgcacc ttrcangtns c 31

	<210> 55
	<211> 20
	<212> ADN
	<213> Secuencia Artificial
5	
	<220>
	<223> cebador: ACC9-inv-F
	<400> 55
10	cgaagtgttt ggtgacaacg 20
	<210> 56
	<211> 20
	<212> ADN
15	<213> Secuencia Artificial
	<220>
	<223> cebador: ACC9-INV-R
20	<400> 56
	gtggtagctg tatccgtagt 20
	<210> 57
	<211> 20
25	<212> ADN
25	<213> Secuencia Artificial
	12 10 Occuencia Artificial
	<220>
	<223> cebador: pACC9-F
30	
	<400> 57
	tacattccga aggcacagtt 20
	<210> 58
35	<211> 20
55	-2117 20

	<212> ADN
	<213> Secuencia Artificial
	<220>
5	<223> cebador: pACC9-R
	<400> 58
	ctgagctgat tatcctgacc 20
10	<210> 59
	<211> 24
	<212> ADN
	<213> Secuencia Artificial
15	<220>
	<223> cebador: ACC9-N
	<400> 59
00	atgaaggctt tctatctttc tctc 24
20	1040), 60
	<210> 60
	<211> 24
	<212> ADN
25	<213> Secuencia Artificial
20	<220>
	<223> cebador: ACC9-C
	12207 CCDAUOI. A000-0
	<400> 60
30	ttaggacgag ctgacgcact ggta 24
	<210> 61
	<211> 27
	<212> ADN
35	<213> Secuencia Artificial

	<220>
	<223> cebador: ACC10-F
5	<220>
	<221> misc_feature
	<222> (22)(22)
	<223> "n" representa cualquier base
10	<220>
	<221> misc_feature
	<222> (25)(25)
	<223> "n" representa cualquier base
15	<400> 61
	ggtgtacgtg ggcaccaayg gnmgngg 27
	<210> 62
	<211> 23
20	<212> ADN
	<213> Secuencia Artificial
	<220>
	<223> cebador: ACC10-R
25	
	<400> 62
	aattcgcggc cgctaaaaaa aaa 23
	<210> 63
30	<211> 20
	<212> ADN
	<213> Secuencia Artificial
	222
	<220>

<223> cebador: ACC10-inv-F

35

	<400> 63
	ttctgctact gcggttgcta 20
5	<210> 64
	<211> 20
	<212> ADN
	<213> Secuencia Artificial
10	<220>
	<223> cebador: ACC10-INV-R
	<400> 64
	gaataacgta ggtcgacaag 20
15	
	<210> 65
	<211> 19
	<212> ADN
	<213> Secuencia Artificial
20	
	<220>
	<223> cebador: pACC10-F
	<400> 65
25	cgttgaccga aagccactt 19
	<210> 66
	<211> 20
	<212> ADN
30	<213> Secuencia Artificial
	<220>
	<223> cebador: pACC10-R

35

<400> 66

tggcctaaag ctaaatgatg 20 <210> 67 <211> 25 5 <212> ADN <213> Secuencia Artificial <220> <223> cebador: ACC10-N 10 <400> 67 atgccttcta ctaaagtcgc tgccc 25 <210>68 15 <211> 25 <212> ADN <213> Secuencia Artificial <220> 20 <223> cebador: ACC10-C <400> 68 ttaaaggaca gtagtggtga tgacg 25 25 <210>69 <211> 28 <212> ADN <213> Secuencia Artificial 30 <220> <223> cebador: BGLC-F <400>69 cctgggtgac cctgtaccay tgggayyt 28

```
<210> 70
       <211> 24
       <212> ADN
       <213> Secuencia Artificial
 5
       <220>
       <223> cebador: BGLC-R
       <220>
10
       <221> misc_feature
       <222> (22)..(22)
       <223> "n" representa cualquier base
       <400> 70
15
       tgggcaggag cagccrwwyt cngt 24
       <210>71
       <211> 20
       <212> ADN
20
       <213> Secuencia Artificial
       <220>
       <223> cebador: BGLC-inv-F
25
       <400> 71
       ggagttcttc tacatttccc 20
       <210>72
       <211> 20
30
       <212> ADN
       <213> Secuencia Artificial
       <220>
       <223> cebador: BGLC-INV-R
```

	<400> 72
	aacaaggacg gcgtgtcagt 20
	<210> 73
5	<211> 20
	<212> ADN
	<213> Secuencia Artificial
	<220>
10	<223> cebador: pBGLC-F
	.400. 70
	<400> 73
	ctccgtcaag tgcgaagtat 20
15	<210> 74
.0	<211> 20
	<212> ADN
	<213> Secuencia Artificial
20	<220>
	<223> cebador: pBGLC-R
	<400> 74
	ggctcgctaa tactaactgc 20
25	
	<210> 75
	<211> 24
	<212> ADN
	<213> Secuencia Artificial
30	
	<220>
	<223> cebador: BGLC-N
	4005 75
0.5	<400> 75
35	atgggctcta catctcctgc ccaa 24

```
<210>76
       <211> 24
       <212> ADN
 5
       <213> Secuencia Artificial
       <220>
       <223> cebador: BGLC-C
10
       <400> 76
       ctagttcctc ggctctatgt attt 24
       <210> 77
       <211> 24
15
       <212> ADN
       <213> Secuencia Artificial
       <220>
       <223> cebador: BGLD-F
20
       <220>
       <221> misc_feature
       <222> (19)..(19)
       <223> "n" representa cualquier base
25
       <400> 77
       caccgccgcc taccarrtng argg 24
       <210> 78
30
       <211>31
       <212> ADN
       <213> Secuencia Artificial
       <220>
```

35

<223> cebador: BGLD-R

	<400> 78
	tggcggtgta gtggttcatg scrwarwart c 31
5	<210> 79
	<211> 20
	<212> ADN
	<213> Secuencia Artificial
10	<220>
	<223> cebador: BGLD-inv-F
	<400> 79
	cggtttcaat atcggtaagc 20
15	oggilloadi aloggidage 20
10	<210> 80
	<211> 20
	<212> ADN
	<213> Secuencia Artificial
20	
	<220>
	<223> cebador: BGLD-inv-R
	<400> 80
25	gtgtccaaag ctctggaatg 20
	<210> 81
	<211> 20
	<212> ADN
30	<213> Secuencia Artificial
	4000
	<220>
	<223> cebador: pBGLD-F

35

<400> 81

ttctctcact ttccctttcc 20 <210> 82 <211> 20 5 <212> ADN <213> Secuencia Artificial <220> <223> cebador: pBGLD-R 10 <400> 82 aattgatgct cctgatgcgg 20 <210>83 15 <211> 24 <212> ADN <213> Secuencia Artificial <220> 20 <223> cebador: BGLD-N <400>83 atgggtagcg taactagtac caac 24 25 <210> 84 <211> 24 <212> ADN <213> Secuencia Artificial 30 <220> <223> cebador: BGLD-C <400> 84 ctactctttc gagatgtatt tgtt 24.

REIVINDICACIONES

- 1. Una proteína que comprende los aminoácidos 1-301 de la SEC ID Nº: 14.
- 2. Proteína según la reivindicación 1, en la que la proteína se deriva de un hongo filamentoso.
- 3. Proteína según la reivindicación 2, en la que el hongo filamentoso es Acremonium cellulolyticus.
- 4. Un polinucleótido que comprende una secuencia de nucleótidos que codifica la proteína según una cualquiera de las reivindicaciones 1 a 3.
 - 5. Polinucleótido según la reivindicación 4, que es un ADN que comprende la secuencia de nucleótidos de la SEC ID Nº: 13.
 - 6. Polinucleótido según la reivindicación 4, que es un ADN seleccionado de entre:
 - (i) un ADN que codifica la proteína según la reivindicación 1; y

10

- (ii) un ADN que comprende los nucleótidos 124-1143 de la SEC ID Nº: 13.
- 7. ADN en el que una secuencia de intrón se elimina del ADN según la reivindicación 6.
- 8. ADN según la reivindicación 7, en el que la secuencia de intrón son los nucleótidos 225-275 de la SEC ID Nº: 13.
- ADN en el que una secuencia de nucleótidos que codifica una secuencia señal es eliminada del ADN según una cualquiera de las reivindicaciones 5-8.
 - 10. ADN según la reivindicación 9, en el que la secuencia de nucleótidos que codifica una secuencia señal son los nucleótidos 124-186 de la SEC ID Nº: 13.
 - 11. Un vector de expresión, que comprende el ADN según una cualquiera de las reivindicaciones 4-10.
 - 12. Una célula huésped transformada con el vector de expresión según la reivindicación 11.
- 20 13. Célula huésped según la reivindicación 12, en la que la célula huésped es una levadura o un hongo filamentoso.
 - 14. Célula huésped según la reivindicación 13, en la que la levadura es un microorganismo perteneciente al género Saccharomyces, Hansenula o Pichia.
 - 15. Célula huésped según la reivindicación 14, en la que la levadura es Saccharomyces cerevisiae.
- 16. Célula huésped según la reivindicación 13, en la que el hongo filamentoso es un microorganismo perteneciente al género *Humicola, Aspergillus, Trichoderma, Fusarium* o *Acremonium*.
 - 17. Célula huésped según la reivindicación 16, en la que el hongo filamentoso es *Acremonium cellulolyticus*, *Humicola insolens*, *Aspergillus niger*, *Aspergillus oryzae*, *Trichoderma viride* o *Fusarium oxysporum*.
 - 18. Un hongo filamentoso perteneciente al género *Acremonium*, que es deficiente en un gen que corresponde al ADN según una cualquiera de las reivindicaciones 4-10 por recombinación homóloga.
- 30 19. Hongo filamentoso según la reivindicación 18, en el que el hongo filamentoso es Acremonium cellulolyticus.
 - 20. Un procedimiento de producción de la proteína según la reivindicación 1, que comprende
 - cultivar las células huésped según una cualquiera de las reivindicaciones 12 a 17; y recoger la proteína de las células huésped y/o su cultivo.
 - 21. Una proteína producida mediante el procedimiento según la reivindicación 20.
- 35 22. Una preparación de celulasa que comprende la proteína según la reivindicación 1 o 21.
 - 23. Un procedimiento de sacarificación de biomasa, que comprende poner en contacto una biomasa que contiene celulosa con la proteína según la reivindicación 1 o 21 o la preparación de celulasa según la reivindicación 22.
 - 24. Un procedimiento de tratamiento de un tejido que contiene celulosa, que comprende
 - poner en contacto el tejido que contiene celulosa con la proteína según la reivindicación 1 o 21 o la preparación de

celulasa según la reivindicación 22.

- 25. Un procedimiento de destintado de papelote, **caracterizado por** el uso de la proteína según la reivindicación 1 o 21 o la preparación de celulasa según la reivindicación 22, en el procedimiento de tratamiento del papelote junto con un agente de destintado.
- 5 26. Un procedimiento para mejorar un drenaje de agua de la pasta de papel, que comprende

tratar la pasta de papel con la proteína según la reivindicación 1 o 21 o la preparación de celulasa según la reivindicación 22.

27. Un procedimiento para mejorar una digestibilidad de un pienso, que comprende

tratar el pienso con la proteína según la reivindicación 1 o 21 o la preparación de celulasa según la reivindicación 22.

10

Figura 1

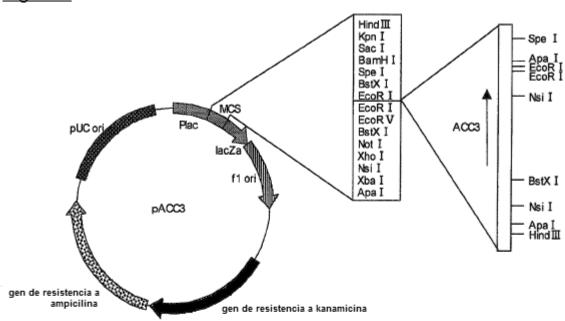


Figura 2

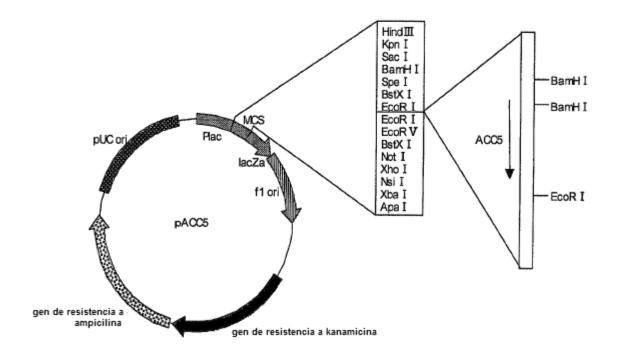


Figura 3

Figura 4

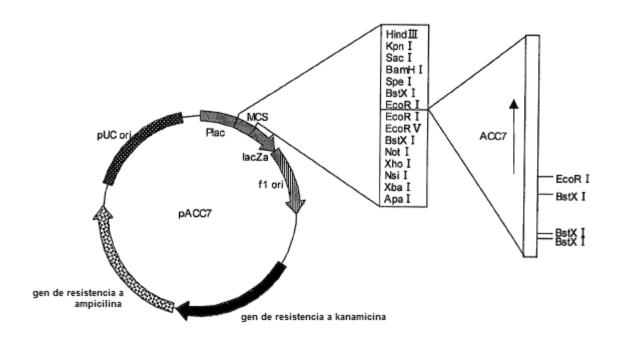


Figura 5

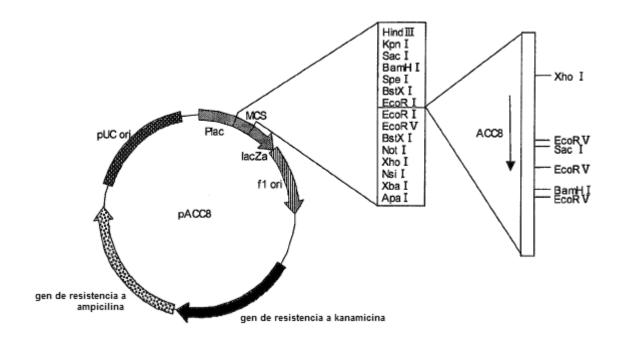


Figura 6

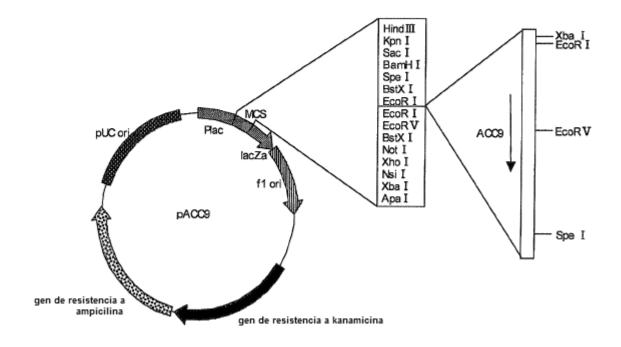


Figura 7



Figura 8

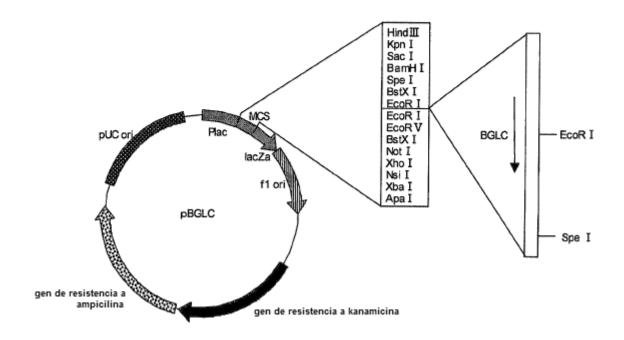
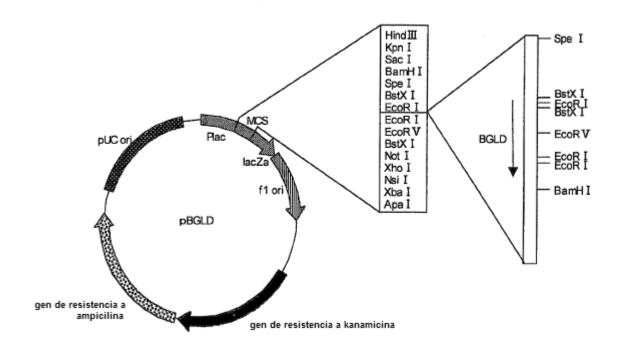



Figura 9

