

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 608 553

(51) Int. CI.:

H04L 27/26 H04L 5/00

(2006.01) (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 03.06.2009 E 11157077 (6)
 97 Fecha y número de publicación de la concesión europea: 19.10.2016 EP 2323331

(54) Título: Aparato y método para transmitir y recibir una señal

(30) Prioridad:

06.11.2008 US 112158 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 12.04.2017

(73) Titular/es:

LG ELECTRONICS INC. (100.0%) 20, Yeouido-dong, Yeongdeungpo-gu Seoul 150-721, KR

(72) Inventor/es:

KO, WOO SUK y MOON, SANG CHUL

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Aparato y método para transmitir y recibir una señal

Antecedentes de la invención

10

15

20

25

30

La presente invención se refiere a un método para transmitir y recibir una señal y un aparato para transmitir y recibir una señal y un aparato para transmitir y recibir una señal y un aparato para transmitir y recibir una señal que son capaces de mejorar la eficacia de la transmisión de datos.

Descripción de la técnica relacionada

A medida que se ha desarrollado una tecnología de difusión, los usuarios han recibido una imagen en movimiento de alta definición (HD). Con el desarrollo continuo de un algoritmo de compresión y el alto rendimiento del hardware, se proporcionará un mejor entorno a los usuarios en el futuro. Un sistema de televisión digital (DTV) puede recibir una señal digital de difusión y proporcionar una variedad de servicios suplementarios a los usuarios, así como una señal de vídeo y una señal de audio.

La Difusión de Vídeo Digital (DVB)-C2 es la tercera especificación en unirse a la familia DVB de sistemas de transmisión de segunda generación. Desarrollada en 1994, hoy en día DVB-C está desplegada en más de 50 millones de sintonizadores de cable en todo el mundo. En línea con los otros sistemas DVB de segunda generación, DVB-C2 usa una combinación de códigos de comprobación de paridad de baja densidad (LDPC) y BCH. Esta potente Corrección de Errores sin Canal de Retorno (FEC) proporciona una mejora de alrededor de 5dB de la relación portadora a ruido con respecto a DVB-C. Esquemas adecuados de intercalado de bits optimizan la robustez global del sistema FEC. Extendidas por una cabecera, estas tramas se llaman Conductos de Capa Física (PLP). Uno o más de estos PLP se multiplexan en un segmento de datos. El intercalado bidimensional (en los dominios de tiempo y frecuencia) se aplica a cada segmento, permitiendo al receptor eliminar el impacto de los deterioros de ráfagas y la interferencia selectiva de frecuencia, tal como el ingreso de frecuencia única.

Con el desarrollo de estas tecnologías de difusión digital, aumentó la demanda de un servicio tal como una señal de vídeo y una señal de audio y aumentó gradualmente el tamaño de los datos deseados por los usuarios o el número de canales de difusión. El proyecto DVB "Frame structure channel and modulation for a second generation terrestrial television broadcasting system (DVB-T2)", Difusión de Vídeo Digital [en línea] junio de 2008 (01-06-2008) describe técnicas de codificación de canal de estructura de trama para sistemas de difusión.

Compendio de la invención

Cualquier aparición del término "realización" en la descripción tiene que ser considerado como un "aspecto de la invención", estando la invención definida en las reivindicaciones independientes adjuntas. Por consiguiente, la presente invención se dirige a un método para transmitir y recibir una señal y a un aparato para transmitir y recibir una señal, que obvian sustancialmente uno o más problemas debidos a limitaciones y desventajas de la técnica relacionada.

Un objeto de la presente invención es proporcionar un método de transmisión de una señal de difusión a un receptor según la reivindicación 1.

Otro aspecto de la presente invención proporciona un método de recepción de una señal de difusión según la reivindicación 9.

Aún otro aspecto de la presente invención proporciona un transmisor para transmitir una señal de difusión a un receptor según la reivindicación 5.

Aún otro aspecto de la presente invención proporciona un receptor para recibir una señal de difusión según la reivindicación 10.

Breve descripción de los dibujos

Los dibujos anexos, que se incluyen para proporcionar una comprensión adicional de la invención y que se incorporan en y constituyen una parte de esta solicitud, ilustran una(unas) realización(realizaciones) de la invención y, junto con la descripción, sirven para explicar el principio de la invención. En los dibujos:

- 45 La Fig. 1 es un ejemplo de modulación de amplitud en cuadratura 64 (QAM) usada en la DVB-T europea.
 - La Fig. 2 es un método de Código Binario Reflejado Gray (BRGC).
 - La Fig. 3 es una salida cercana a gaussiana modificando 64-QAM usada en DVB-T.

- La Fig. 4 es la distancia de Hamming entre pares reflejados en el BRGC.
- La Fig. 5 son las características en QAM donde el par reflejado existe para cada eje I y eje Q.
- La Fig. 6 es un método de modificación de QAM usando un par reflejado de BRGC.
- La Fig. 7 es un ejemplo de 64/256/1024/4096-QAM modificada.
- 5 Las Fig. 8 a 9 son un ejemplo de 64-QAM modificada usando un Par Reflejado de BRGC.
 - Las Fig. 10 a 11 son un ejemplo de 256-QAM modificada usando un Par Reflejado de BRGC.
 - Las Fig. 12 a 13 son un ejemplo de 1024-QAM modificada usando un Par Reflejado de BRGC (0~511).
 - Las Fig. 14 a 15 son un ejemplo de 1024-QAM modificada usando un Par Reflejado de BRGC (512~1023).
 - Las Fig. 16 a 17 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (0~511).
- 10 Las Fig. 18 a 19 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (512~1023).
 - Las Fig. 20 a 21 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (1024~1535).
 - Las Fig. 22 a 23 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (1536~2047).
 - Las Fig. 24 a 25 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (2048~2559).
 - Las Fig. 26 a 27 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (2560~3071).
- 15 Las Figs. 28 a 29 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (3072~3583).
 - Las Fig. 30 a 31 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (3584~4095).
 - La Fig. 32 es un ejemplo de una correlación de bits de la QAM modificada donde la 256-QAM se modifica usando BRGC.
 - La Fig. 33 es un ejemplo de transformación de MQAM en una constelación no uniforme.
 - La Fig. 34 es un ejemplo de un sistema de transmisión digital.
- 20 La Fig. 35 es un ejemplo de un procesador de entrada.
 - La Fig. 36 es una información que se puede incluir en Banda Base (BB).
 - La Fig. 37 es un ejemplo de BICM.
 - La Fig. 38 es un ejemplo de codificador acortado/perforado.
 - La Fig. 39 es un ejemplo de aplicación de varias constelaciones.
- La Fig. 40 es otro ejemplo de casos en donde se considera compatibilidad entre sistemas convencionales.
 - La Fig. 41 es una estructura de tramas que comprende un preámbulo para señalización L1 y un símbolo de datos para datos de PLP.
 - La Fig. 42 es un ejemplo de formador de tramas.
 - La Fig. 43 es un ejemplo de inserción de piloto (404) mostrada en la Fig. 4.
- 30 La Fig. 44 es una estructura de SP.
 - La Fig. 45 es una nueva estructura SP o Patrón Piloto (PP) 5'.
 - La Fig. 46 es una estructura PP5' sugerida.
 - La Fig. 47 es una relación entre símbolo de datos y preámbulo.
 - La Fig. 48 es otra relación entre símbolo de datos y preámbulo.
- La Fig. 49 es un ejemplo de perfil de retardo de canal por cable.
 - La Fig. 50 es una estructura de piloto disperso que usa z=56 y z=112.

- La Fig. 51 es un ejemplo de un modulador basado en OFDM.
- La Fig. 52 es un ejemplo de estructura de preámbulo.
- La Fig. 53 es un ejemplo de decodificación de Preámbulo.
- La Fig. 54 es un proceso para diseñar un preámbulo más optimizado.
- 5 La Fig. 55 es otro ejemplo de estructura de preámbulo.
 - La Fig. 56 es otro ejemplo de decodificación de preámbulo.
 - La Fig. 57 es un ejemplo de estructura de preámbulo.
 - La Fig. 58 es un ejemplo de decodificación L1.
 - La Fig. 59 es un ejemplo de procesador analógico.
- 10 La Fig. 60 es un ejemplo de sistema receptor digital.
 - La Fig. 61 es un ejemplo de procesador analógico usado en el receptor.
 - La Fig. 62 es un ejemplo de demodulador.
 - La Fig. 63 es un ejemplo de analizador sintáctico de tramas.
 - La Fig. 64 es un ejemplo de demodulador BICM.
- 15 La Fig. 65 es un ejemplo de decodificación LDPC que usa acortamiento/perforación.
 - La Fig. 66 es un ejemplo de procesador de salida.
 - La Fig. 67 es un ejemplo de tasa de repetición de bloque L1 de 8 MHz.
 - La Fig. 68 es un ejemplo de tasa de repetición de bloque L1 de 8 MHz.
 - La Fig. 69 es una nueva tasa de repetición de bloque L1 de 7,61 MHz.
- 20 La Fig. 70 es un ejemplo de señalización L1 que se transmite en una cabecera de trama.
 - La Fig. 71 es un resultado de simulación de preámbulo y estructura L1.
 - La Fig. 72 es un ejemplo de intercalador de símbolos.
 - La Fig. 73 es un ejemplo de una transmisión de bloque L1.
 - La Fig. 74 es otro ejemplo de señalización L1 transmitida dentro de una cabecera de trama.
- La Fig. 75 es un ejemplo de intercalado/desintercalado de frecuencia o tiempo.

Descripción de las realizaciones preferidas

Se hará ahora referencia en detalle a las realizaciones preferidas de la presente invención, ejemplos de las cuales se ilustran en los dibujos anexos. Siempre que sea posible, se usarán los mismos números de referencia en todos los dibujos para referirse a partes iguales o similares.

- 30 En la siguiente descripción, el término "servicio" es indicativo de cualquiera de los contenidos de difusión que se pueden transmitir/recibir por el aparato de transmisión/recepción de señales.
 - La modulación de amplitud en cuadratura (QAM), usando el Código Binario Reflejado Gray (BRGC) se usa como modulación en un entorno de transmisión de difusión, donde se usa Modulación Codificada Intercalada por Bits (BICM) convencional. La Fig. 1 muestra un ejemplo de 64-QAM usada en DVB-T europea.
- El BRGC se puede hacer usando el método mostrado en la Fig. 2. Un BRGC de n bits se puede hacer añadiendo un código inverso de BRGC de (n-1) bits (es decir, código reflejado) a un respaldo de (n-1) bits, añadiendo ceros a una parte delantera del BRGC original de (n-1) bits y añadiendo unos a una parte delantera del código reflejado. El código BRGC hecho por este método tiene una distancia de Hamming entre códigos adyacentes de uno (1). Además, cuando se aplica un BRGC a QAM, la distancia de Hamming entre un punto y los cuatro puntos que están más estrechamente adyacentes al punto es de uno (1) y la distancia de Hamming entre el punto y otros cuatro puntos que son los segundos más

estrechamente adyacentes al punto es de dos (2). Tales características de distancias de Hamming entre un punto de constelación específico y otros puntos adyacentes se puede denominar como una regla de correlación de Gray en QAM.

Para hacer que un sistema robusto frente al Ruido Blanco Gaussiano Aditivo (AWGN), la distribución de señales transmitidas desde un transmisor se puede hacer cercana a una distribución Gaussiana. Para ser capaz de hacer eso, se pueden modificar las ubicaciones de puntos en la constelación. La Fig. 3 muestra una salida cercana a Gaussiana modificando la 64-QAM usada en DVB-T. Tal constelación se puede denominar QAM No-uniforme (NU-QAM).

5

10

15

20

25

30

35

40

45

50

Para formar una constelación de QAM No uniforme, se puede usar una Función de Distribución Acumulativa (CDF) Gaussiana. En el caso de 64, 256 o 1024 QAM, es decir, 2^N AM, la QAM se puede dividir en dos N-PAM independientes. Dividiendo la CDF Gaussiana en N secciones de idéntica probabilidad y permitiendo que un punto de señal en cada sección represente la sección, se puede hacer una constelación que tiene distribución Gaussiana. En otras palabras, la coordenada xj de una N-PAM no uniforme recientemente definida se puede definir de la siguiente manera:

$$\int_{-\infty}^{x_j} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = p_j, \qquad p_j \in \left\{ \frac{1}{2N}, \frac{3}{2N}, \dots, \frac{2N-1}{2N} \right\}$$
(Ec. 1)

La Fig. 3 es un ejemplo de transformación de 64QAM de DVB-T en NU-64QAM usando los métodos anteriores. La Fig. 3 representa un resultado de la modificación de coordenadas de cada eje I y eje Q usando los métodos anteriores y correlacionando los puntos de constelación anteriores a coordenadas recientemente definidas. En el caso de 32, 128 o 512 QAM, es decir, QAM cruzada, que no es 2^N QAM, modificando Pj adecuadamente, se puede encontrar una nueva coordenada.

Una realización de la presente invención puede modificar la QAM usando BRGC usando características del BRGC. Como se muestra en la Fig. 4, la distancia de Hamming entre el Par Reflejado en BRGC es de uno debido a que se difiere en un bit solamente que se añade a la parte delantera de cada código. La Fig. 5 muestra las características en QAM donde existe un Par Reflejado para cada eje I y eje Q. En esta figura, existe un Par Reflejado en cada lado de la línea negra de puntos.

Usando Pares Reflejados existentes en QAM, se puede reducir una potencia media de una constelación QAM mientras que se mantiene la regla de correlación de Gray en la QAM. En otras palabras, en una constelación donde una potencia promedio se normaliza como 1, se puede aumentar la distancia euclidiana mínima en la constelación. Cuando se aplica esta QAM modificada a sistemas de difusión o comunicación, es posible implementar o bien un sistema más robusto frente al ruido que usa la misma energía que un sistema convencional o bien un sistema con el mismo rendimiento que un sistema convencional, pero que usa menos energía.

La Fig. 6 muestra un método de modificación de QAM que usa un Par Reflejado de BRGC. La Fig. 6a muestra una constelación y la Fig. 6b muestra un diagrama de flujo para modificar la QAM usando un Par Reflejado de BRGC. En primer lugar, es necesario encontrar un punto de destino que tenga la potencia más alta entre los puntos de la constelación. Los puntos candidatos son puntos donde el punto de destino puede moverse y son los puntos colindantes más cercanos al par reflejado del punto de destino. Luego, es necesario encontrar un punto vacío (es decir, un punto que no se toma aún por otros puntos) que tiene la potencia más baja entre los puntos candidatos y se comparan la potencia del punto de destino y la potencia de un punto candidato. Si la potencia del punto candidato es menor, el punto de destino se mueve al punto candidato. Estos procesos se repiten hasta que una potencia media de los puntos en la constelación alcance un mínimo, mientras que se mantiene la regla de correlación de Gray.

La Fig. 7 muestra un ejemplo de 64/256/1024/4096 QAM modificada. Los valores correlacionados de Gray corresponden a las Fig. 8 a 31, respectivamente. Además de estos ejemplos, se pueden realizar otros tipos de QAM modificada que permitan una optimización de potencia idéntica. Esto es debido a que un punto de destino puede moverse a múltiples puntos candidatos. La QAM modificada sugerida se puede aplicar a, no solamente 64/256/1024/4096-QAM, sino también a QAM cruzada, a una QAM de mayor tamaño o a modulaciones que usen otro BRGC distinto de QAM.

La Fig. 32 muestra un ejemplo de correlación de bits de QAM Modificada donde 256-QAM se modifica usando un BRGC. La Fig. 32a y la Fig. 32b muestran la correlación de los Bits Más Significativos (MSB). Los puntos indicados como círculos llenos representan correlaciones de unos y los puntos indicados como círculos en blanco representan correlaciones de ceros. De la misma manera, cada bit se correlaciona según se muestra en las figuras desde (a) hasta (h) en la Fig. 32, hasta que se correlacionan los Bits Menos Significativos (LSB). Como se muestra en la Fig. 32, una QAM Modificada puede permitir la decisión de bits usando solamente los ejes I o Q como una QAM convencional, excepto por un bit que está próximo al MSB (Fig. 32c y Fig. 32d). Usando estas características, se puede hacer un receptor simple modificando parcialmente un receptor para QAM. Se puede implementar un receptor eficiente comprobando ambos valores de I y Q

solamente cuando se determina el bit próximo al MSB y calculando solamente I o Q para el resto de los bits. Este método se puede aplicar a la decisión LLR Aproximada, la LLR Exacta o la Dura.

Usando QAM Modificada o MQAM, que usa las características del BRGC anterior, se puede hacer una constelación no uniforme o NU-MQAM. En la ecuación anterior, donde se usa una CDF Gaussiana, Pj se puede modificar para ajustarse a MQAM. Igual que QAM, en MQAM, se pueden considerar dos PAM que tienen un eje I y eje Q. No obstante, a diferencia de QAM donde son idénticos un número de puntos correspondientes a un valor de cada eje PAM, el número de puntos cambia en MQAM. Si se define como nj un número de puntos que corresponde al valor de orden j de una PAM en una MQAM donde existen un total de M puntos de constelación, entonces Pj se puede definir de la siguiente manera:

5

15

20

25

30

35

40

45

$$\int_{-\infty}^{x_j} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = p_j$$

$$p_j = \frac{\sum_{i=0}^{i=j-1} n_i + \frac{n_j}{2}}{M}, \quad n_0 = 0$$
(Ec. 2)

10 Usando el Pj recientemente definido, MQAM se puede transformar en una constelación No uniforme. Pj se puede definir de la siguiente manera para el ejemplo de 256-MQAM.

$$p_j \in \left\{ \frac{2.5}{256}, \frac{10}{256}, \frac{22}{256}, \frac{36}{256}, \frac{51}{256}, \frac{67}{256}, \frac{84}{256}, \frac{102}{256}, \frac{119.5}{256}, \frac{136.5}{256}, \frac{154}{256}, \frac{172}{256}, \frac{189}{256}, \frac{205}{256}, \frac{234}{256}, \frac{246}{256}, \frac{253.5}{256} \right\}$$

La Fig. 33 es un ejemplo de transformación de MQAM en una constelación No uniforme. La NU-MQAM hecha usando estos métodos puede conservar características de receptores MQAM con coordenadas modificadas de cada PAM. De esta manera, se puede implementar un receptor eficaz. Además, se puede implementar un sistema más robusto frente al ruido que la NU-QAM anterior. Para un sistema de transmisión de difusión más eficaz, es posible la hibridación de MQAM y NU-MQAM. En otras palabras, se puede implementar un sistema más robusto frente al ruido usando MQAM para un entorno donde se usa un código de corrección de errores con tasa de código alta y usando NU-MQAM de otro modo. Para tal caso, un transmisor puede dejar que un receptor tenga información de la tasa de código de un código de corrección de errores usado actualmente y un tipo de modulación usada actualmente de manera que el receptor pueda demodular según la modulación usada actualmente.

La Fig. 34 muestra un ejemplo de un sistema de transmisión digital. Las entradas pueden comprender un número de flujos MPEG-TS o GSE (Encapsulación General de Flujos). Un módulo procesador de entrada 101 puede añadir parámetros de transmisión al flujo de entrada y realizar la planificación para un módulo BICM 102. El módulo BICM 102 puede añadir redundancia e intercalar datos para la corrección de errores del canal de transmisión. Un formador de tramas 103 puede formar tramas añadiendo información de señalización de capa física y pilotos. Un modulador 104 puede realizar modulación sobre símbolos de entrada en métodos eficaces. Un procesador analógico 105 puede realizar diversos procesos para convertir señales digitales de entrada en señales analógicas de salida.

La Fig. 35 muestra un ejemplo de un procesador de entrada. El flujo MPEG-TS o GSE de entrada se puede transformar por el preprocesador de entrada en un total de n flujos que se procesarán independientemente. Cada uno de esos flujos puede ser o bien una trama TS completa, que incluye múltiples componentes de servicio o bien una trama TS mínima, que incluye un componente de servicio (es decir, vídeo o audio). Además, cada uno de esos flujos puede ser un flujo GSE que transmite o bien servicios múltiples o bien un único servicio.

El módulo de interfaz de entrada 202-1 puede asignar un cierto número de bits de entrada igual a la máxima capacidad del campo de datos de una trama en Banda Base (BB). Se puede insertar un relleno para completar la capacidad de bloque de código LDPC/BCH. El módulo de sincronización del flujo de entrada 203-1 puede proporcionar un mecanismo para regenerar, en el receptor, el reloj del Flujo de Transporte (o del Flujo Genérico en paquetes), a fin de garantizar las tasas de bits y el retardo constantes de extremo a extremo.

A fin de permitir que el Flujo de Transporte se recombine sin requerir memoria adicional en el receptor, los Flujos de Transporte de entrada se retardan por los compensadores de retardo 204-1~n considerando los parámetros de intercalado de los PLP de datos en un grupo y el PLP común correspondiente. Los módulos de borrado de paquetes nulos 205-1~n pueden aumentar la eficacia de transmisión extrayendo el paquete nulo insertado para un caso de servicio VBR (tasa variable de bits). Los módulos codificadores de Comprobación de Redundancia Cíclica (CRC) 206-1~n pueden añadir paridad de CRC para aumentar la fiabilidad de transmisión de la trama en BB. Los módulos de inserción de cabecera en BB 207-1~n pueden añadir una cabecera de trama en BB en un principio de la trama en BB. La información que se puede incluir en la cabecera en BB se muestra en la Fig. 36.

Un módulo fusionador/segmentador 208 puede realizar la segmentación de tramas en BB a partir de cada PLP, fusionando tramas de BB a partir de múltiples PLP y programando cada trama en BB dentro de una trama de transmisión.

Por lo tanto, el módulo fusionador/segmentador 208 puede emitir información de señalización de L1 que se refiere a asignación de PLP en una trama. Por último, un módulo codificador de BB 209 puede aleatorizar flujos de bits de entrada para minimizar la correlación entre bits dentro de flujos de bits. Los módulos sombreados en la Fig. 35 son módulos usados cuando el sistema de transmisión usa un único PLP y los otros módulos en la Fig. 35 son módulos usados cuando el dispositivo de transmisión usa múltiples PLP.

La Fig. 37 muestra un ejemplo de módulo de BICM. La Fig. 37a muestra una trayectoria de datos y la Fig. 37b muestra una trayectoria de L1 de un módulo de BICM. Un módulo codificador externo 301 y un módulo codificador interno 303 pueden añadir redundancia a flujos de bits de entrada para la corrección de errores. Un módulo intercalador externo 302 y un módulo intercalador interno 304 pueden intercalar bits para impedir errores de ráfagas. El módulo intercalador externo 302 se puede omitir si la BICM es específicamente para la DVB-C2. Un módulo demultiplexador de bits 305 puede controlar la fiabilidad de cada bit emitido desde el módulo intercalador interno 304. Un módulo correlacionador de símbolos 306 puede correlacionar flujos de bits de entrada con flujos de símbolos. En este momento, es posible usar cualquiera entre una QAM convencional, una MQAM que use el BRGC antes mencionado para mejora de rendimiento, una NU-QAM que use la modulación No uniforme o una NU_MQAM que use el BRGC aplicado a modulación No uniforme para mejora de rendimiento. Para construir un sistema que sea más robusto frente al ruido, se pueden considerar combinaciones de modulaciones que usan MQAM y/o NU-MQAM dependiendo de la tasa de código de corrección de errores y la capacidad de la constelación. En este momento, el módulo correlacionador de Símbolos 306 puede usar una constelación adecuada según la tasa de código y la capacidad de la constelación. La Fig. 39 muestra un ejemplo de tales combinaciones.

El Caso 1 muestra un ejemplo de uso de solamente NU-MQAM a tasa de código baja para una implementación del sistema simplificada. El Caso 2 muestra un ejemplo de uso de constelación optimizada a cada tasa de código. El transmisor puede enviar información acerca de la tasa de código del código de corrección de errores y la capacidad de constelación al receptor de manera que el receptor pueda usar una constelación adecuada. La Fig. 40 muestra otro ejemplo de casos donde se considera compatibilidad entre sistemas convencionales. Además de los ejemplos, son posibles combinaciones adicionales para optimizar el sistema.

El módulo de inserción de Cabecera ModCod 307 mostrado en la Fig. 37 puede tomar información de realimentación de codificación y modulación y modulación y modulación variable (VCM) y añadir información de parámetros usada en la codificación y modulación a un bloque de FEC como cabecera. La cabecera de tipo modulación/tasa de código (ModCod) puede incluir la siguiente información:

- * tipo de FEC (1 bit) LDPC larga o corta
 - * Tasa de código (3 bits)

5

10

15

30

40

45

50

- * Modulación (3 bits) hasta QAM de 64K
- * Identificador de PLP (8 bits)

El módulo intercalador de símbolos 308 puede realizar un intercalado en el dominio de símbolos para obtener efectos adicionales de intercalado. Procesos similares realizados sobre la trayectoria de datos se pueden realizar sobre la trayectoria de señalización de L1 pero con parámetros posiblemente distintos (301-1~308-1). En este punto, se puede usar para el código interno un módulo de código acortado/perforado (303-1).

La Fig. 38 muestra un ejemplo de codificación LDPC que usa acortamiento/perforación. El proceso de acortamiento se puede realizar sobre bloques de entrada que tienen menos bits que un número requerido de bits para la codificación LDPC, ya que se pueden rellenar (301c) muchos bits cero requeridos para la codificación LDPC. Los flujos de bits de entrada rellenados con ceros pueden tener bits de paridad a través de codificación LDPC (302c). En este momento, para los flujos de bits que corresponden a flujos de bits originales, se pueden extraer ceros (303c) y para los flujos de bits de paridad, se puede realizar perforación (304c) las tasas de código. Estos flujos de bits de información y flujos de bits de paridad procesados se pueden multiplexar a secuencias originales y emitir (305c).

La Fig. 41 muestra una estructura de trama que comprende un preámbulo para señalización de L1 y un símbolo de datos para datos de PLP. Se puede ver que el preámbulo y los símbolos de datos se generan cíclicamente, usando una trama como una unidad. Los símbolos de datos comprenden el tipo 0 de PLP, que se transmite usando una modulación/codificación fija y el tipo 1 de PLP, que se transmite usando una modulación/codificación variable. Para el tipo 0 de PLP, información tal como modulación, tipo de FEC y tasa de código de FEC, se transmiten en el preámbulo (ver la Fig. 42 – inserción de cabecera de trama 401). Para el tipo 1 de PLP, se puede transmitir información correspondiente en la cabecera del bloque de FEC de un símbolo de datos (ver la Fig. 37 – inserción de cabecera ModCod 307). Mediante la separación de tipos de PLP, se puede reducir el sobredimensionamiento de ModCod en un 3~4% de una tasa de transmisión total, para el tipo 0 de PLP, que se transmite a una tasa de bit fija. En un receptor, para un PLP de modulación/codificación fija de tipo 0 de PLP, el extractor de cabecera de trama r401 mostrado en la Fig. 63 puede extraer

información sobre Modulación y tasa de código de FEC y proporcionar la información extraída a un módulo de decodificación de BICM. Para el PLP de modulación/codificación variable de tipo 1 de PLP, los módulos de extracción de ModCod r307 y r307-1 mostrados en la Fig. 64 pueden extraer y proporcionar los parámetros necesarios para decodificación de BICM.

- La Fig. 42 muestra un ejemplo de un formador de tramas. Un módulo de inserción de cabecera de trama 401 puede formar una trama a partir de flujos de símbolos de entrada y puede añadir una cabecera de trama en la parte delantera de cada trama transmitida. La cabecera de trama puede incluir la siguiente información:
 - * Número de canales unidos (4 bits)
 - * Intervalo de guarda (2 bits)
- 10 * PAPR (2 bits)

15

- * Patrón piloto (2 bits)
- * Identificación de Sistema Digital (16 bits)
- * Identificación de trama (16 bits)
- * Longitud de trama (16 bits) número de símbolos de Multiplexación Ortogonal por División de Frecuencia (OFDM) por trama
 - * Longitud de supertrama (16 bits) número de tramas por supertrama
 - * número de PLP (8 bits)
 - * para cada PLP

PLP identificación (8 bits)

20 Identificador de enlace de canal (4 bits)

inicio de PLP (9 bits)

tipo de PLP (2 bits) - PLP común u otros

tipo de carga útil de PLP (5 bits)

tipo de MC (1 bit) - modulación y codificación fija/variable

25 Si tipo de MC == modulación y codificación fija

tipo de FEC (1 bit) - LDPC larga o corta

Tasa de código (3 bits)

Modulación (3 bits) - hasta 64K QAM

fin si

30 Número de canales de muesca (2 bits)

para cada muesca

Inicio de muesca (9 bits)

Ancho de muesca (9 bits)

fin para;

35 anchura de PLP (9 bits) – número máximo de bloques de FEC de PLP

tipo de intercalado de tiempo de PLP (2 bits)

fin parar;

* CRC-32 (32 bits)

Se supone un entorno de unión de canales para la información de L1 transmitida en la cabecera de trama y los datos que corresponden a cada segmento de datos se definen como PLP. Por lo tanto, información tal como el identificador de PLP, el identificador de unión de canales y la dirección de inicio de PLP se requieren para cada canal usado en la unión. Una realización de esta invención sugiere transmitir el campo ModCod en la cabecera de trama de FEC si el tipo de PLP soporta modulación/codificación variable y transmitir el campo ModCod en la cabecera de trama si el tipo de PLP soporta modulación/codificación fija para reducir sobrecarga de señalización. Además, si existe una banda de muesca para cada PLP, transmitiendo la dirección de inicio de la muesca y su anchura, puede llegar a ser innecesaria la decodificación de las portadoras correspondientes en el receptor.

La Fig. 43 muestra un ejemplo del Patrón Piloto 5 (PP5) aplicado en un entorno de unión de canales. Como se muestra, si las posiciones de SP son coincidentes con posiciones de piloto de preámbulo, puede darse una estructura de piloto irregular.

15

35

40

45

50

55

La Fig. 43a muestra un ejemplo del módulo de inserción de piloto 404 como se muestra en la Fig. 42. Como se representa en la Fig. 43, si se usa una única banda de frecuencia (por ejemplo, 8 MHz), el ancho de banda disponible es de 7,61 MHz, pero si se unen múltiples bandas de frecuencia, se pueden quitar bandas de guarda, de esta manera, puede aumentar extremadamente la eficacia de la frecuencia. La Fig. 43b es un ejemplo del módulo de inserción de preámbulo 504 como se muestra en la Fig. 51, que se transmite en la parte delantera de la trama e, incluso con unión de canales, el preámbulo tiene una tasa de repetición de 7,61 MHz, que es el ancho de banda del bloque de L1. Esta es una estructura que considera el ancho de banda de un sintonizador que realiza la exploración inicial del canal.

Existen Patrones de Piloto tanto para los Símbolos de Preámbulo como de Datos. Para símbolo de datos, se pueden usar patrones de piloto disperso (SP). El Patrón de Piloto 5 (PP5) y el Patrón de Piloto 7 (PP7) de T2 pueden ser buenos candidatos para la interpolación solamente en frecuencia. El PP5 tiene x = 12, y = 4, z = 48 para Gl = 1/64 y el PP7 tiene x = 24, y = 4, z = 96 para Gl = 1/128. Una interpolación temporal adicional también es posible para una mejor estimación de canal. Los patrones de piloto para el preámbulo pueden cubrir todas las posibles posiciones de piloto para la adquisición inicial de canal. Además, las posiciones de piloto de preámbulo deberían ser coincidentes con las posiciones de SP y se desea un único patrón de piloto tanto para el preámbulo como para el SP. También se podrían usar los pilotos de preámbulo para interpolación de tiempo y cada preámbulo podría tener un patrón de piloto idéntico. Estos requisitos son importantes para la detección C2 en la exploración y necesarios para la estimación del desplazamiento de frecuencia con correlación de secuencia de aleatorización. En un entorno de unión de canales, también se debería mantener la coincidencia en las posiciones de piloto para unión de canales debido a que la estructura de piloto irregular puede degradar el rendimiento de interpolación.

En detalle, si una distancia z entre pilotos dispersos (SP) en un símbolo OFDM es 48 y si una distancia y entre los SP correspondientes a una portadora de SP específica a lo largo del eje de tiempo es 4, una distancia efectiva x después de la interpolación de tiempo llega a ser 12. Esto es cuando una fracción del intervalo de guarda (GI) es 1/64. Si la fracción del GI es 1/128, se pueden usar x = 24, y = 4 y z = 96. Si se usa unión de canales, las posiciones de SP se pueden hacer coincidentes con las posiciones de piloto de preámbulo generando puntos no continuos en la estructura de piloto disperso.

En este momento, las posiciones de piloto de preámbulo pueden ser coincidentes con cada posición de SP de símbolo de datos. Cuando se usa la unión de canales, el segmento de datos en el que se transmite un servicio, se puede determinar con independencia de la granularidad de ancho de banda de 8 MHz. No obstante, para reducir la sobrecarga para el direccionamiento de segmentos de datos, se puede elegir una transmisión que comienza desde la posición de SP y que termina en la posición de SP.

Cuando un receptor recibe tales SP, si es necesario, el módulo de estimación de canal r501 mostrado en la Fig. 62 puede realizar una interpolación de tiempo para obtener los pilotos mostrados en líneas discontinuas en la Fig. 43 y realizar una interpolación de frecuencia. En este momento, para puntos no continuos de los cuales se indican intervalos como 32 en la Fig. 43, se puede implementar o bien realizar interpolaciones a izquierda y derecha por separado o bien realizar interpolaciones solamente en un lado, luego realizar interpolación en el otro lado usando las posiciones de piloto ya interpoladas de las cuales el intervalo es 12, como punto de referencia. En este momento, la anchura del segmento de datos puede variar dentro de 7,61 MHz, de esta manera, un receptor puede minimizar el consumo de energía realizando una estimación de canal y decodificando solamente las subportadoras necesarias.

La Fig. 44 muestra otro ejemplo del PP5 aplicado en el entorno de unión de canales o una estructura de SP para mantener la distancia efectiva x como 12 para evitar la estructura irregular de SP mostrada en la Fig. 43 cuando se usa unión de canales. La Fig. 44a es una estructura de SP para símbolo de datos y la Fig. 44b es una estructura de SP para símbolo de preámbulo.

Como se muestra, si se mantiene coherente la distancia de SP en caso de unión de canales, no habrá ningún problema en la interpolación de frecuencia, pero las posiciones de piloto entre un símbolo de datos y un preámbulo pueden no ser coincidentes. En otras palabras, esta estructura no requiere una estimación de canal adicional para una estructura de SP irregular, no obstante, las posiciones de SP usadas en unión de canales y las posiciones de piloto de preámbulo llegan a

ser diferentes para cada canal.

5

10

15

20

25

30

35

40

45

50

La Fig. 45 muestra una nueva estructura de SP o PP5', para proporcionar una solución a los dos problemas antes mencionados en el entorno de unión de canales. Específicamente, una distancia de piloto de x = 16 puede resolver esos problemas. Para conservar la densidad de pilotos o para mantener la misma sobrecarga, un PP5' puede tener x = 16, y = 3, z = 48 para GI = 1/64 y un PP7' puede tener x = 16, y = 6, z = 96 para GI = 1/128. La capacidad de interpolación solamente de frecuencia se puede mantener aún. Las posiciones de piloto se representan en la Fig. 45 para su comparación con la estructura PP5.

La Fig. 46 muestra un ejemplo de un nuevo Patrón de SP o estructura PP5', en el entorno de unión de canales. Como se muestra en la figura 46, si se usa o bien un canal único o bien unión de canales, se puede proporcionar una distancia de piloto efectiva x = 16. Además, debido a que las posiciones de SP se pueden hacer coincidentes con posiciones de piloto de preámbulo, se puede evitar el deterioro de estimación de canal causado por la irregularidad de SP o por posiciones de SP no coincidentes. En otras palabras, no existe ninguna posición de SP irregular para el interpolador de frecuencia y se proporciona coincidencia entre el preámbulo y las posiciones de SP.

Por consiguiente, los nuevos patrones de SP propuestos pueden ser ventajosos en cuanto a que se puede usar un único patrón de SP para tanto canal único como canal unido; no se puede hacer ninguna estructura piloto irregular y, de esta manera, es posible una buena estimación de canal; tanto las posiciones de preámbulo como de piloto de SP se pueden mantener coincidentes; la densidad de piloto se puede mantener igual que para PP5 y PP7, respectivamente; y también se puede conservar la capacidad de interpolación solamente de frecuencia.

Además, la estructura de preámbulo puede satisfacer los requisitos tales como que las posiciones de piloto de preámbulo deberían cubrir todas las posiciones de SP posibles para la adquisición de canal inicial; el número máximo de portadoras debería ser 3409 (7,61 MHz) para la exploración inicial; se deberían usar exactamente los mismos patrones de piloto y secuencia de aleatorización para detección C2; y no se requiere ningún preámbulo de detección específico como P1 en T2

En términos de relación con la estructura de tramas, la granularidad de la posición del segmento de datos se puede modificar a 16 portadoras en lugar de 12, de esta manera, puede haber menos sobrecarga por direccionamiento de posición y puede no ser esperado ningún otro problema con respecto a la condición del segmento de datos, la condición de ranura nula, etc.

Por lo tanto, en el módulo de estimación de canal r501 de la Fig. 62, se pueden usar pilotos en cada preámbulo cuando se realiza interpolación de tiempo de SP de símbolo de datos. Por lo tanto, se pueden mejorar la adquisición de canal y la estimación de canal en los límites de tramas.

Ahora, con respecto a los requisitos relacionados con el preámbulo y la estructura de piloto, hay consenso en cuanto a que las posiciones de los pilotos de preámbulo y los SP deberían coincidir con independencia de la unión de canales; el número de portadoras totales en el bloque L1 debería ser divisible por la distancia de piloto para evitar una estructura irregular en el borde de la banda; los bloques de L1 se deberían repetir en el dominio de frecuencia; y los bloques de L1 siempre deberían ser decodificables en una posición arbitraria de ventana sintonizadora. Requisitos adicionales serían que las posiciones y patrones de piloto se deberían repetir en un periodo de 8 MHz; el desplazamiento correcto de la frecuencia portadora se debería estimar sin conocimiento de la unión de canales; y la decodificación (reordenamiento) de L1 es imposible antes de que sea compensado el desplazamiento de frecuencia.

La Fig. 47 muestra una relación entre el símbolo de datos y el preámbulo cuando se usan estructuras de preámbulo como se muestran en la Fig. 52 y la Fig. 53. El bloque de L1 se puede repetir en un periodo de 6 MHz. Para decodificación de L1, se deberían encontrar tanto el desplazamiento de frecuencia como el patrón de cambio de preámbulo. La decodificación de L1 no es posible en una posición arbitraria de sintonizador sin información de unión de canales y un receptor no puede diferenciar entre el valor de cambio de preámbulo y el desplazamiento de frecuencia.

De esta manera, un receptor, específicamente para el extractor de cabecera de trama r401 mostrado en la Fig. 63 para realizar decodificación de señal de L1, se necesita obtener la estructura de unión de canales. Debido a que se conoce la cantidad de cambio de preámbulo esperada en las dos regiones sombreadas verticalmente en la Fig. 47, el módulo de sincronización de tiempo/frecuencia r505 en la Fig. 62 puede estimar el desplazamiento de frecuencia portadora. En base a la estimación, la trayectoria de señalización de L1 (r308-1~ r301-1) en la Fig. 64 puede decodificar L1.

La Fig. 48 muestra una relación entre un símbolo de datos y un preámbulo cuando se usa una estructura de preámbulo como se muestra en la Fig. 55. El bloque L1 se puede repetir en un periodo de 8 MHz. Para decodificación de L1, solamente se necesita encontrar el desplazamiento de frecuencia y puede no ser requerido conocimiento de unión de canales. El desplazamiento de frecuencia se puede estimar fácilmente usando la Secuencia Binaria Seudoaleatoria (PRBS) conocida. Como se muestra en la Fig. 48, el preámbulo y los símbolos de datos están alineados, de esta manera, puede llegar a ser innecesaria una búsqueda de sincronización adicional. Por lo tanto, para un receptor, específicamente

para el módulo extractor de cabecera de trama r401 mostrado en la Fig. 63, es posible que solamente se necesite obtener la correlación pico con la secuencia de aleatorización de piloto para realizar decodificación de señal L1. El módulo de sincronización de tiempo/frecuencia r505 en la Fig. 62 puede estimar el desplazamiento de frecuencia portadora a partir de la posición pico.

5 La Fig. 49 muestra un ejemplo de perfil de retardo de canal por cable.

10

20

25

40

45

50

55

Desde el punto de vista del diseño de piloto, el GI actual ya sobreprotege la dispersión de retardo del canal por cable. En el peor caso, el rediseño del modelo de canal puede ser una opción. Para repetir el patrón exactamente cada 8 MHz, la distancia de piloto debería ser un divisor de 3584 portadoras ($z=32\ o\ 56$). Una densidad de piloto de z=32 puede aumentar la sobrecarga de piloto, de esta manera, se puede elegir z=56. Una cobertura de retardo ligeramente menor puede no ser importante en un canal por cable. Por ejemplo, puede ser de 8 μ s para el PP5' y de 4 μ s para el PP7', en comparación con 9,3 μ s (PP5) y 4,7 μ s (PP7). Los retardos significativos se pueden cubrir por ambos patrones de piloto incluso en el peor caso. Para una posición de piloto del preámbulo, no son necesarias más que todas las posiciones de SP en un símbolo de datos.

Si se puede ignorar la trayectoria de retardo de -40 dB, la dispersión de retardo real puede llegar a ser 2,5 μs, 1/64 GI = 7
15 μs o 1/128 GI = 3,5 μs. Esto muestra que el parámetro de distancia de piloto, z = 56, puede ser un valor bastante bueno.

Además, z = 56 puede ser un valor conveniente para estructurar el patrón de piloto que habilita la estructura de preámbulo mostrada en la Fig. 48.

La Fig. 50 muestra una estructura de piloto disperso que usa z = 56 y z = 112 que se construye en el módulo de inserción piloto 404 en la Fig. 42. Se proponen un PP5' (x = 14, y = 4, z = 56) y un PP7' (x = 28, y = 4, z = 112). Se podrían insertar portadoras de borde para el borde de cierre.

Como se muestra en la Fig. 50, los pilotos están alineados a 8 MHz de cada borde de la banda, cada posición de piloto y estructura de piloto se puede repetir cada 8 MHz. De esta manera, esta estructura puede soportar la estructura de preámbulo mostrada en la Fig. 48. Además, se puede usar una estructura de piloto común entre el preámbulo y los símbolos de datos. Por lo tanto, el módulo de estimación de canal r501 en la Fig. 62 puede realizar estimación de canal usando interpolación sobre el preámbulo y los símbolos de datos, debido a que puede no ocurrir ningún patrón de piloto irregular, con independencia de la posición de ventana que se decide por las ubicaciones de segmentos de datos. En este momento, el uso de la interpolación de frecuencia solamente puede ser suficiente para compensar la distorsión de canal a partir de la propagación de retardo. Si se realiza adicionalmente la interpolación de tiempo, se puede realizar una estimación de canal más precisa.

Por consiguiente, en el nuevo patrón de piloto propuesto, la posición y el patrón de piloto se pueden repetir en base a un periodo de 8 MHz. Se puede usar un único patrón de piloto tanto para el preámbulo como para los símbolos de datos. La decodificación de L1 siempre puede ser posible sin conocimiento de la unión de canales. Además, el patrón de piloto propuesto puede no afectar a las partes en común con T2 debido a que se puede usar la misma estrategia de piloto del patrón de piloto disperso; T2 ya usa 8 patrones de piloto diferentes; y puede no ser aumentada ninguna complejidad significativa del receptor por los patrones de piloto modificados. Para una secuencia de aleatorización de piloto, el periodo de la PRBS puede ser de 2047 (secuencia m); la generación de la PRBS se puede reiniciar cada 8 MHz, de la que el periodo es 3584; la tasa de repetición de piloto de 56 también puede ser co-prima con 2047; y puede no ser esperado ningún problema de PAPR.

La Fig. 51 muestra un ejemplo de un modulador basado en OFDM. Los flujos de símbolos de entrada se pueden transformar en el dominio temporal por el módulo de IFFT 501. Si es necesario, la relación de potencia pico a media (PAPR) se puede reducir en el módulo de reducción de PAPR 502. Para métodos de PAPR, se puede usar una extensión de constelación activa (ACE) o la reserva de tono. El módulo de inserción de GI 503 puede copiar una última parte del símbolo OFDM efectivo para rellenar el intervalo de guarda en forma de prefijo cíclico.

El módulo de inserción de preámbulo 504 puede insertar el preámbulo en la parte delantera de cada trama transmitida, de manera que un receptor pueda detectar una señal digital, una trama y adquirir una adquisición de desplazamiento en tiempo/frecuencia. En este momento, la señal de preámbulo puede efectuar señalización de capa física, tal como el tamaño de FFT (3 bits) y tamaño de intervalo de guarda (3 bits). El módulo de inserción de preámbulo 504 se puede omitir si el modulador es específicamente para la DVB-C2.

La Fig. 52 muestra un ejemplo de una estructura de preámbulo para unión de canales, generada en el módulo de inserción de preámbulo 504 en la Fig. 51. Un bloque L1 completo debería ser "siempre decodificable" en cualquier posición arbitraria de ventana sintonizadora de 7,61 MHz y no debería ocurrir ninguna pérdida de señalización de L1 con independencia de la posición de ventana sintonizadora. Como se muestra, los bloques L1 se pueden repetir en el dominio de frecuencia en un periodo de 6 MHz. Los símbolos de datos se pueden unir por canales para cada 8 MHz. Si, para decodificación de L1, un receptor usa un sintonizador tal como el sintonizador r603 representado en la Fig. 61, que usa un ancho de banda de 7,61 MHz, el extractor de cabecera de trama r401 en la Fig. 63 necesita reorganizar el bloque L1

cíclico cambiado recibido (Fig. 53) a su forma original. Esta reorganización es posible debido a que el bloque L1 se repite para cada bloque de 6 MHz. La Fig. 53a se puede reordenar a la Fig. 53b.

La Fig. 54 muestra un proceso para diseñar un preámbulo más optimizado. La estructura de preámbulo de la Fig. 52 solamente usa 6 MHz del ancho de banda total del sintonizador de 7,61 MHz para decodificación de L1. En términos de eficiencia espectral, el ancho de banda de sintonizador de 7,61 MHz no se utiliza totalmente. Por lo tanto, puede haber una optimización adicional en la eficacia espectral.

5

10

15

20

25

30

35

40

45

50

55

La Fig. 55 muestra otro ejemplo de estructura de preámbulo o de estructura de símbolos de preámbulo para una eficacia espectral total, generada en el módulo de inserción de cabecera de trama 401 en la Fig. 42. Igual que el símbolo de datos, los bloques de L1 se pueden repetir en el dominio de frecuencia en un periodo de 8 MHz. Un bloque L1 completo aún es "siempre decodificable" en cualquier posición arbitraria de ventana sintonizadora de 7,61 MHz. Después de la sintonización, los datos de 7,61 MHz se pueden considerar como un código perforado virtualmente. El tener exactamente el mismo ancho de banda tanto para el preámbulo como para los símbolos de datos y exactamente la misma estructura de piloto tanto para el preámbulo como para los símbolos de datos puede maximizar la eficacia espectral. Otras características, tales como la propiedad de cambio cíclico y el no enviar el bloque L1 en el caso de que no se pueda mantener sin cambios ningún segmento de datos. En otras palabras, el ancho de banda de los símbolos de preámbulo puede ser idéntico al ancho de banda de los símbolos de datos o bien, como se muestra en la Fig. 57, el ancho de banda de los símbolos de preámbulo puede ser el ancho de banda del sintonizador (aquí es de 7,61 MHz). El ancho de banda del sintonizador se puede definir como un ancho de banda que corresponde a un número de portadoras activas totales cuando se usa un único canal. Es decir, el ancho de banda del símbolo de preámbulo puede corresponder al número de portadoras activas totales (aquí es de 7,61 MHz).

La Fig. 56 muestra un código perforado virtualmente. Los datos de 7,61 MHz entre el bloque L1 de 8 MHz se pueden considerar como codificados perforados. Cuando un sintonizador r603 mostrado en la Fig. 61 usa un ancho de banda de 7,61 MHz para la decodificación de L1, el extractor de cabecera de trama r401 en la Fig. 63 necesita reorganizar el bloque L1 cíclico cambiado, recibido, a su forma original como se muestra en la Fig. 56. En este momento, la decodificación L1 se realiza usando el ancho de banda entero del sintonizador. Una vez que el bloque L1 se reorganiza, un espectro del bloque L1 reorganizado puede tener una región en blanco dentro del espectro como se muestra en el lado superior derecho de la Fig. 56 debido a que un tamaño original del bloque L1 es de un ancho de banda de 8 MHz.

Una vez que la región en blanco se rellena con ceros o bien después del desintercalado en el dominio de símbolos por el desintercalador de frecuencia r403 en la Fig. 63 o por el desintercalador de símbolos r308-1 en la Fig. 64 o bien después del desintercalado en el dominio de bits por el descorrelacionador r306-1 de símbolos, el multiplexador de bits r305-1 y el desintercalador interno r304-1 en la Fig. 64, el bloque puede tener una forma que parece que está perforada como se muestra en el lado inferior derecho de la Fig. 56.

Este bloque L1 puede decodificarse en el módulo decodificador perforado/acortado r303-1 en la Fig. 64. Usando esta estructura de preámbulo, se puede utilizar todo el ancho de banda del sintonizador, de esta manera se pueden aumentar la eficiencia espectral y la ganancia de codificación. Además, se pueden usar un ancho de banda y una estructura de piloto idénticos para el preámbulo y los símbolos de datos.

Además, si el ancho de banda del preámbulo o el ancho de banda de los símbolos del preámbulo está fijado como un ancho de banda de sintonizador como se muestra en la Fig. 58 (es de 7,61 MHz en el ejemplo), se puede obtener un bloque L1 completo después de la reorganización incluso sin perforación. En otras palabras, para una trama que tiene símbolos de preámbulo, en donde los símbolos de preámbulo tienen al menos un bloque de capa 1 (L1), se puede decir que el bloque L1 tiene 3408 subportadoras activas y las 3408 subportadoras activas corresponden a 7,61 MHz de la banda de Radiofrecuencia (RF) de 8 MHz.

De esta manera, se pueden maximizar la eficiencia espectral y el rendimiento de decodificación de L1. En otras palabras, en un receptor, la decodificación se puede realizar en el módulo decodificador perforado/acortado r303-1 en la Fig. 64, después de realizar solamente desintercalado en el dominio de símbolos.

Por consiguiente, la nueva estructura de preámbulo propuesta puede ser ventajosa en cuanto a que es totalmente compatible con el preámbulo previamente usado, excepto en que el ancho de banda es diferente; los bloques L1 se repiten en un periodo de 8 MHz; el bloque L1 puede ser decodificable siempre con independencia de la posición de la ventana sintonizadora; el ancho de banda completo del sintonizador se puede usar para la decodificación de L1; la máxima eficiencia espectral puede garantizar más ganancia de codificación; el bloque L1 incompleto se puede considerar como codificado perforado; se puede usar una estructura de piloto sencilla e igual tanto para el preámbulo como para los datos; y se puede usar un ancho de banda idéntico tanto para el preámbulo como para los datos.

La Fig. 59 muestra un ejemplo de un procesador analógico. Un módulo DAC 601 puede convertir la entrada de señal digital en señal analógica. Después de que el ancho de banda de frecuencia de transmisión se convierte ascendentemente (602) y se filtra analógicamente (603) se puede transmitir la señal.

La Fig. 60 muestra un ejemplo de un sistema receptor digital. La señal recibida se convierte en señal digital en un módulo de proceso analógico r105. Un demodulador r104 puede convertir la señal en datos en el dominio de frecuencia. Un analizador sintáctico de tramas r103 puede extraer pilotos y cabeceras y permitir la selección de información de servicio que necesita ser decodificada. Un demodulador de BICM r102 puede corregir errores en el canal de transmisión. Un procesador de salida r101 puede restaurar el flujo de servicio y la información de temporización transmitidos originalmente.

La Fig. 61 muestra un ejemplo de un procesador analógico usado en el receptor. Un módulo sintonizador/AGC r603 puede seleccionar el ancho de banda de frecuencia deseado a partir de la señal recibida. Un módulo de conversión descendente r602 puede restaurar la banda base. Un módulo ADC r601 puede convertir la señal analógica en señal digital.

10

15

20

25

30

35

40

45

50

55

La Fig. 62 muestra un ejemplo de demodulador. Un módulo detector de tramas r506 puede detectar el preámbulo, comprobar si existe una señal digital correspondiente y detectar un inicio de una trama. Un módulo de sincronización de tiempo/frecuencia r505 puede efectuar la sincronización en los dominios de tiempo y de frecuencia. En este momento, para la sincronización del dominio del tiempo, se puede usar una correlación de intervalo de guarda. Para la sincronización del dominio de frecuencia, se puede usarse la correlación o se puede estimar el desplazamiento a partir de la información de fase de una subportadora que se transmite en el dominio de frecuencia. Un módulo extractor de preámbulo r504 puede extraer el preámbulo de la parte delantera de la trama detectada. Un módulo extractor de GI r503 puede extraer el intervalo de guarda. Un módulo de FFT r501 puede transformar la señal en el dominio del tiempo en una señal en el dominio de frecuencia. Un módulo de estimación/ecualización de canal r501 puede compensar errores estimando la distorsión en el canal de transmisión usando un símbolo piloto. El módulo de extracción de preámbulo r504 se puede omitir si el demodulador es específicamente para la DVB-C2.

La Fig. 63 muestra un ejemplo de analizador sintáctico de tramas. Un módulo extractor de pilotos r404 puede extraer un símbolo piloto. Un módulo desintercalador de frecuencia r403 puede realizar desintercalado en el dominio de frecuencia. Un fusionador de símbolos de OFDM r402 puede restaurar la trama de datos a partir de flujos de símbolos transmitidos en símbolos de OFDM. Un módulo extractor de cabeceras de trama r401 puede extraer señalización de la capa física a partir de la cabecera de cada trama transmitida y extraer la cabecera. La información extraída se puede usar como parámetros para los siguientes procesos en el receptor.

La Fig. 64 muestra un ejemplo de un demodulador de BICM. La Fig. 64a muestra una trayectoria de datos y la Fig. 64b muestra una trayectoria de señalización de L1. Un desintercalador de símbolos r308 puede realizar desintercalado en el dominio de símbolos. Un extractor de ModCod r307 puede extraer parámetros de ModCod de la parte delantera de cada trama en BB y dejar los parámetros disponibles para los siguientes procesos de demodulación adaptativa/variable y decodificación. Un descorrelacionador de símbolos r306 puede descorrelacionar flujos de símbolos de entrada en flujos de bits de Relación de Verosimilitud Logarítmica (LLR). Los flujos LLR de bits de salida se pueden calcular usando una constelación usada en un correlacionador de símbolos 306 del transmisor como punto de referencia. En este punto, cuando se usa la MQAM o NU-MQAM antes mencionadas, calculando tanto el eje I como el eje Q cuando se calcula el bit más cercano al MSB y calculando o bien el eje I o el eje Q cuando se calculan los bits restantes, se puede implementar un descorrelacionador de símbolos eficaz. Este método se puede aplicar, por ejemplo, a LLR Aproximada, LLR Exacta o Decisión Dura.

Cuando se usa una constelación optimizada según la capacidad de constelación y la tasa de código del código de corrección de errores en el correlacionador de símbolos 306 del transmisor, el descorrelacionador de símbolos r306 del receptor puede obtener una constelación usando la tasa de código y la información de capacidad de constelación transmitida desde el transmisor. El multiplexador de bits r305 del receptor puede realizar una función inversa a la del demultiplexador de bits 305 del transmisor. El desintercalador interno r304 y el desintercalador externo r302 del receptor pueden realizar funciones inversas a las del intercalador interno 304 y el intercalador externo 302 del transmisor, respectivamente, para obtener el flujo de bits en su secuencia original. El desintercalador externo r302 se puede omitir si el demodulador de BICM es específicamente para la DVB-C2.

El decodificador interno r303 y el decodificador externo r301 del receptor pueden realizar, respectivamente, los correspondientes procesos de decodificación para el codificador interno 303 y el codificador externo 301 del transmisor, para corregir errores en el canal de transmisión. Procesos similares, realizados sobre la trayectoria de datos se pueden realizar en la trayectoria de señalización de L1, pero con diferentes parámetros (r308-1~r301-1). En este punto, como se ha explicado en la parte del preámbulo, se puede usar un módulo de código acortado/perforado r303-1 para la decodificación de señal de L1.

La Fig. 65 muestra un ejemplo de decodificación LDPC usando acortamiento/perforación. Un demultiplexador r301 puede emitir por separado una parte de información y una parte de paridad del código sistemático a partir de flujos de bits de entrada. Para la parte de información, se puede realizar un rellenado con ceros (r302a) según un número de flujos de bits de entrada del decodificador LDPC, para la parte de paridad, se pueden generar flujos de bits de entrada para (r303a) del

decodificador LDPC, desperforando la parte perforada. La decodificación LDPC (r304a) se puede realizar sobre los flujos de bits generados y los ceros en la parte de información se pueden extraer y emitir (r305a).

La Fig. 66 muestra un ejemplo de procesador de salida. Un desaleatorizador en BB r209 puede restaurar los flujos de bits aleatorizados (209) en el transmisor. Un Separador r208 puede restaurar las tramas en BB que corresponden a múltiples PLP que se multiplexan y transmiten desde el transmisor según la trayectoria de PLP. Para cada trayectoria de PLP, un extractor de cabecera en BB r207-1 puede extraer la cabecera que se transmite en la parte delantera de la trama en BB. Un decodificador de CRC r206-1~n puede realizar decodificación CRC y dejar tramas en BB fiables disponibles para la selección. Unos módulos de inserción de paquetes nulos r205-1~n pueden restaurar paquetes nulos que fueron extraídos, para una mayor eficacia de transmisión, a su ubicación original. Un módulo de recuperación de retardo r204-1~n puede restaurar un retardo que existe entre cada trayectoria de PLP.

5

10

15

20

30

35

45

50

55

Unos módulos de recuperación de relojes de salida r203-1~n pueden restaurar la temporización original del flujo de servicio a partir de la información de temporización transmitida desde los módulos de sincronización de flujos de entrada 203-1~n. Unos módulos de interfaz de salida r202-1~n pueden restaurar los datos en el paquete TS/GS a partir de flujos de bits de entrada que están segmentados en la trama en BB. Unos módulos de postproceso de salida r201-1~n pueden restaurar múltiples flujos TS/GS en un flujo TS/GS completo, si es necesario. Los bloques sombreados mostrados en la Fig. 66 representan módulos que se pueden usar cuando se procesa un único PLP a la vez y el resto de los bloques representan módulos que se pueden usar cuando se procesan a la vez múltiples PLP.

Los patrones de piloto de preámbulo se diseñaron cuidadosamente para evitar un aumento de PAPR, de esta manera, es necesario considerar si la tasa de repetición de L1 puede aumentar la PAPR. El número de bits de información de L1 varía dinámicamente según la unión de canales, el número de PLP, etc. En detalle, es necesario considerar cosas tales como que el tamaño fijo de bloque de L1 puede introducir una sobrecarga innecesaria; la señalización de L1 se debería proteger más firmemente que los símbolos de datos; y el intercalado de tiempo del bloque L1 puede mejorar la robustez ante el deterioro de canal, tal como la necesidad de ruido impulsivo.

Para una tasa de repetición de bloque L1 de 8 MHz, como se muestra en la Fig. 67, se exhibe una eficacia espectral completa (26,8% de aumento de BW) con perforación virtual, pero la PAPR se puede aumentar dado que el ancho de banda de L1 es el mismo que el de los símbolos de datos. Para la tasa de repetición de 8 MHz, se puede usar intercalado de frecuencia 4K-FFT DVB-T2 para las partes en común y el mismo patrón puede repetirse en un periodo de 8 MHz después del intercalado.

Para una tasa de repetición de bloque L1 de 6 MHz, como se muestra en la Fig. 68, se puede exhibir una eficacia espectral reducida sin perforación virtual. Puede ocurrir un problema similar de PAPR como para el caso de 8 MHz, dado que los anchos de banda de L1 y de los símbolos de datos comparten LCM = 24 MHz. Para la tasa de repetición de 6 MHz, se puede usar el intercalado de frecuencia 4K-FFT DVB-T2 para las partes en común y el mismo patrón se puede repetir en un periodo de 24 MHz después del intercalado.

La Fig. 69 muestra una nueva tasa de repetición de bloque L1 de 7,61 MHz o ancho de banda de sintonizador completo. Se puede obtener una eficacia espectral completa (26,8% de aumento de BW) sin perforación virtual. Puede no haber ningún problema de PAPR dado que los anchos de banda de L1 y de los símbolos de datos comparten LCM≈1704 MHz. Para la tasa de repetición de 7,61 MHz, se puede usar intercalado de frecuencia 4K-FFT DVB-T2 para las partes en común y el mismo patrón puede repetirse en un periodo de 1704 MHz después del intercalado.

La Fig. 70 es un ejemplo de señalización de L1 que se transmite en la cabecera de trama. Cada información en la señalización de L1 se puede transmitir al receptor y se puede usar como un parámetro de decodificación. Especialmente, la información se puede usar en la trayectoria de señales de L1 mostrada en la Fig. 64 y los PLP se pueden transmitir en cada segmento de datos. Se puede obtener una robustez aumentada para cada PLP.

La Fig. 72 es un ejemplo de un intercalador de símbolos 308-1 como se muestra en la trayectoria de señalización de L1 en la Fig. 37 y también puede ser un ejemplo de su desintercalador de símbolos r308-1 correspondiente como se muestra en la trayectoria de señalización de L1 en la Fig. 64. Los bloques con líneas inclinadas representan bloques de L1 y los bloques sólidos representan portadoras de datos. Los bloques de L1 se pueden transmitir no solamente dentro de un único preámbulo, sino que también se pueden transmitir dentro de múltiples bloques de OFDM. Dependiendo del tamaño de un bloque de L1, puede variar el tamaño del bloque de intercalado. En otras palabras, num_L1_sym y L1_span pueden ser diferentes entre sí. Para minimizar una sobrecarga innecesaria, los datos se pueden transmitir dentro del resto de las portadoras de los símbolos de OFDM donde se transmite el bloque de L1. En este punto, se puede garantizar una eficacia espectral completa debido a que el ciclo de repetición del bloque L1 es todavía un ancho de banda completo de sintonizador. En la Fig. 72, los números en los bloques con líneas inclinadas representan el orden de bits dentro de un único bloque de LDPC.

Por consiguiente, cuando los bits se escriben en una memoria de intercalado en la dirección de las filas según un índice de símbolos como se muestra en la Fig. 72 y se leen en la dirección de las columnas según un índice de portadora, se

puede obtener un efecto de intercalado de bloques. En otras palabras, un bloque LDPC se puede intercalar en el dominio de tiempo y en el dominio de frecuencia y luego se puede transmitir. Num_L1_sym puede ser un valor predeterminado, por ejemplo, un número entre 2~4 se puede fijar como un número de símbolos de OFDM. En este punto, para aumentar la granularidad del tamaño del bloque de L1, un código LDPC perforado/acortado que tiene una longitud mínima de la palabra de código se puede usar para la protección de L1.

5

10

15

20

25

30

35

45

50

55

La Fig. 73 es un ejemplo de una transmisión de bloque L1. La Fig. 73 ilustra la Fig. 72 en el dominio de tramas. Como se muestra en la Fig. 73a, los bloques L1 pueden estar abarcando el ancho de banda completo del sintonizador o bien, como se muestra en la Fig. 73b, los bloques L1 se pueden abarcar parcialmente y el resto de las portadoras se pueden usar para portadora de datos. En cualquier caso, se puede ver que la tasa de repetición del bloque L1 puede ser idéntica a un ancho de banda completo de sintonizador. Además, para símbolos de OFDM que usan la señalización de L1 que incluye el preámbulo, solamente se puede realizar intercalado de símbolos mientras que no se permite transmisión de datos en esos símbolos de OFDM. Por consiguiente, para un símbolo de OFDM usado para señalización de L1, un receptor puede decodificar L1 realizando desintercalado sin decodificación de datos. En este punto, el bloque L1 puede transmitir señalización L1 de la trama actual o señalización L1 de una trama posterior. En el lado del receptor, se pueden usar parámetros de L1 decodificados a partir de la trayectoria de decodificación de señalización L1 mostrada en la Fig. 64 para el proceso de decodificación para la trayectoria de datos a partir del analizador sintáctico de tramas de la trama posterior.

En resumen, en un transmisor, el intercalado de bloques de la región L1 se puede realizar escribiendo los bloques en una memoria en la dirección de las filas y leyendo los bloques escritos de la memoria en la dirección de las columnas. En un receptor, el desintercalado de bloques de la región L1 se puede realizar escribiendo bloques en una memoria en la dirección de las columnas y leyendo los bloques escritos de la memoria en la dirección de las filas. Las direcciones de lectura y escritura del transmisor y del receptor se pueden intercambiar.

Cuando se realiza una simulación con suposiciones que se hacen tales como que CR = 1/2 para protección de L1 y para las partes en común de T2; correlación de símbolos 16-QAM; densidad de piloto de 6 en el Preámbulo; número de LDPC corta implica una cantidad requerida de perforaciones/acortamientos, se pueden obtener resultados o conclusiones tales como que solamente un preámbulo para la transmisión de L1 pueden no ser suficientes; el número de símbolos de OFDM depende de la cantidad del tamaño de bloque de L1; se puede usar la palabra de código LDPC más corta (por ejemplo, información de 192 bits) entre el código acortado/perforación para mayor flexibilidad y granularidad fina; y se puede añadir un rellenado si se requiere con sobrecarga despreciable. El resultado se resume en la Fig. 71.

Por consiguiente, para una tasa de repetición de bloque de L1, el ancho de banda completo de sintonizador sin perforación virtual puede ser una buena solución y todavía puede no surgir un problema de PAPR con eficiencia espectral completa. Para señalización de L1, la estructura eficaz de señalización puede permitir una configuración máxima en un entorno de 8 uniones de canales, 32 muescas, 256 segmentos de datos y 256 PLP. Para la estructura de bloque de L1, la señalización flexible de L1 se puede implementar según el tamaño de bloque de L1. El intercalado de tiempo se puede realizar para una mejor robustez para las partes en común de T2. Una menor sobrecarga puede permitir transmisión de datos en un preámbulo.

Se puede realizar intercalado de bloques del bloque L1 para una mejor robustez. El intercalado se puede realizar con un número fijo predefinido de símbolos L1 (num_L1_sym) y un número de portadoras abarcadas por L1 como un parámetro (L1_span). La misma técnica se usa para intercalado de preámbulo P2 en DVB-T2.

Se puede usar un bloque L1 de tamaño variable. El tamaño puede ser adaptable a la cantidad de bits de señalización de L1, provocando una sobrecarga reducida. Se puede obtener eficacia espectral completa sin ningún problema de PAPR. Una repetición de menos de 7,61 MHz puede significar que se puede enviar más redundancia pero sin usar. Puede no surgir ningún problema de PAPR debido a la tasa de repetición de 7,61 MHz para el bloque L1.

La Fig. 74 es otro ejemplo de señalización de L1 transmitida dentro de una cabecera de trama. Esta Fig. 74 es diferente de la Fig. 70 en que el campo L1_span, que tiene 12 bits, está dividido en dos campos. En otras palabras, el campo L1_span está dividido en un campo L1_column que tiene 9 bits y un campo L1_row que tiene 3 bits. El campo L1_column representa el índice de portadora que abarca L1. Debido a que un segmento de datos comienza y termina cada 12 portadoras, que es la densidad de piloto, los 12 bits de sobrecarga se pueden reducir en 3 bits para alcanzar 9 bits.

El campo L1_row representa el número de símbolos de OFDM, donde está abarcando L1 cuando se aplica el intercalado de tiempo. Por consiguiente, el intercalado de tiempo se puede realizar dentro de un área de L1_columnas multiplicadas por L1_filas. Alternativamente, se puede transmitir el tamaño total de bloques L1 de manera que L1_span mostrado en la Fig. 70 se pueda usar cuando no se realiza intercalado temporal. Para tal caso, el tamaño de bloque L1 es de 11.776 x 2 bits en el ejemplo, de esta manera 15 bits es suficiente. Por consiguiente, el campo L1_span puede estar compuesto por 15 bits

La Fig. 75 es un ejemplo de intercalado/desintercalado de frecuencia o de tiempo. La Fig. 75 muestra una parte de una trama de transmisión entera. La Fig. 75 también muestra la unión de múltiples anchos de banda de 8 Mhz. Una trama

puede constar de un preámbulo que transmite bloques L1 y un símbolo de datos que transmite datos. Los diferentes tipos de símbolos de datos representan segmentos de datos para diferentes servicios. Como se muestra en la Fig. 75, el preámbulo transmite bloques L1 cada 7,61 MHz.

Para el preámbulo, un intercalado de frecuencia o tiempo se realiza dentro de los bloques L1 y no se realiza entre los bloques L1. Es decir, para el preámbulo, se puede decir que se realiza intercalado a nivel de bloque L1. Esto permite decodificar los bloques L1 transmitiendo bloques L1 dentro de un ancho de banda de ventana sintonizadora incluso cuando la ventana sintonizadora se ha movido a una ubicación aleatoria dentro de un sistema de unión de canales.

Para decodificar un símbolo de datos en un ancho de banda aleatorio de ventana sintonizadora, no debería ocurrir un intercalado entre segmentos de datos. Es decir, para los segmentos de datos, se puede decir que el intercalado se realiza a nivel de segmento de datos. Por consiguiente, el intercalado de frecuencia y el intercalado de tiempo se deberían realizar dentro de un segmento de datos. Por lo tanto, un intercalador de símbolos 308 en una trayectoria de datos de un módulo de BICM del transmisor, como se muestra en la Fig. 37, puede realizar intercalado de símbolos para cada segmento de datos. Un intercalador de símbolos 308-1 en una trayectoria de señal L1 puede realizar intercalado de símbolos para cada bloque L1.

10

30

- Un intercalador de frecuencia 403 mostrado en la Fig. 42 necesita realizar intercalado sobre el preámbulo y los símbolos de datos por separado. Específicamente, para el preámbulo, el intercalado de frecuencia se puede realizar para cada bloque L1 y para símbolo de datos el intercalado de frecuencia se puede realizar para cada segmento de datos. En este punto, el intercalado de tiempo en la trayectoria de datos o la trayectoria de señal L1 puede no ser realizado considerando el modo de latencia baja.
- Usando los métodos y dispositivos sugeridos, entre otras ventajas, es posible implementar un transmisor digital, un receptor y una estructura de señalización de capa física eficaces.

Transmitiendo información de ModCod en cada cabecera de trama en BB que es necesaria para ACM/VCM y transmitiendo el resto de la señalización de capa física en una cabecera de trama, se puede minimizar la sobrecarga de señalización.

- Se puede implementar QAM modificada para una transmisión más eficaz en términos de energía o un sistema de difusión digital más robusto frente al ruido. El sistema puede incluir un transmisor y receptor para cada ejemplo descrito y las combinaciones de los mismos.
 - Se puede implementar QAM no uniforme mejorada para una transmisión más eficaz en términos de energía o un sistema de difusión digital más robusto frente al ruido. También se describe un método de uso de tasa de código de corrección de errores de NU-MQAM y MQAM. El sistema puede incluir un transmisor y receptor para cada ejemplo descrito y las combinaciones de los mismos.
 - El método sugerido de señalización de L1 puede reducir la sobrecarga en un 3~4%, minimizando la sobrecarga de señalización durante la unión de canales.
- Será evidente para los expertos en la técnica que se pueden hacer diversas modificaciones y variaciones en la presente invención sin apartarse de la invención.

REIVINDICACIONES

1. Un método de transmisión de una señal de difusión a un receptor que decodifica la señal de difusión, que comprende:

realizar codificación exterior en bits de datos para corrección de errores;

5 realizar codificación interior en los bits de datos de codificación exterior para corrección de errores;

realizar codificación exterior en bits de datos de preámbulo para corrección de errores:

realizar codificación interior en los bits de datos de preámbulo de codificación exterior para corrección de errores;

correlacionar los bits de datos de preámbulo codificados a símbolos de datos de preámbulo y los bits de datos codificados a símbolos de datos;

formar al menos un segmento de datos en base a los símbolos de datos;

intercalar en el tiempo los símbolos de datos a nivel de segmento de datos;

formar una trama de señal en base a los símbolos de datos de preámbulo y los símbolos de datos intercalados;

modular la trama de señal formada mediante un método de Multiplexación por División de Frecuencia Ortogonal, OFDM; y

transmitir la trama de señal modulada,

10

15

20

35

en el que un bloque de Capa 1, L1, se repite en los símbolos de datos de preámbulo en el dominio de frecuencia en un mismo ancho de banda, en el que el mismo ancho de banda es de 7,61 MHz y en el que cuando se reordenan dos partes de entre los bloques de L1 repetidos dentro de una ventana de sintonización del receptor, las partes reordenadas configuran un bloque de L1 completo, en el que el bloque de L1 incluye información de señalización de L1 para señalizar el segmento de datos.

2. El método de la reivindicación 1, el método además incluye:

añadir bits de relleno de ceros a los bits de datos de preámbulo para rellenar el número requerido de bits.

- 3. El método de la reivindicación 2, en el que el método además comprende:
- 25 perforar bits de paridad, los bits de paridad que se añaden mediante la codificación interior en los bits de datos de preámbulo de codificación exterior.
 - 4. El método de la reivindicación 3, el método además comprende:

eliminar los bits de relleno de ceros añadidos después de la codificación interior en los bits de datos de preámbulo.

5. Un aparato para transmitir una señal de difusión a un receptor que decodifica la señal de difusión, que comprende:

una primera unidad de código exterior para realizar codificación exterior en bits de datos para corrección de errores;

una primera unidad de código interior para realizar codificación interior en los bits de datos de codificación exterior para corrección de errores;

una segunda unidad de código exterior para realizar codificación exterior en bits de datos de preámbulo para corrección de errores;

una segunda unidad de código interior para realizar codificación interior en los bits de datos de preámbulo de codificación exterior para corrección de errores;

un correlacionador de símbolos para correlacionar los bits de datos de preámbulo codificados a símbolos de datos de preámbulo y los bits de datos codificados a símbolos de datos;

un intercalador en el tiempo para intercalar en el tiempo los símbolos de datos a nivel de segmento de datos, en el que al menos un segmento de datos se forma en base a los símbolos de datos;

un formador de tramas para formar una trama de señal en base a los símbolos de datos de preámbulo y los símbolos de datos intercalados;

una unidad de modulación para modular la trama de señal formada mediante un método de Multiplexación por División de Frecuencia Ortogonal, OFDM; y

5 una unidad de transmisión para transmitir la trama de señal modulada,

10

15

35

en el que un bloque de Capa 1, L1, se repite en los símbolos de datos de preámbulo en el dominio de frecuencia en un mismo ancho de banda, en el que el mismo ancho de banda es de 7,61 MHz y en el que cuando se reordenan dos partes de entre los bloques de L1 repetidos dentro de una ventana de sintonización del receptor, las partes reordenadas configuran un bloque de L1 completo, en el que el bloque de L1 incluye información de señalización de L1 para señalizar el segmento de datos.

- 6. El aparato de la reivindicación 5, en el que la segunda unidad de código interior además añade bits de relleno de ceros a los bits de datos de preámbulo para rellenar el número requerido de bits.
- 7. El aparato de la reivindicación 6, en el que la segunda unidad de código interior además perfora bits de paridad, los bits de paridad que se añaden mediante la codificación interior en los bits de datos de preámbulo de codificación exterior.
- 8. El aparato de la reivindicación 7, en el que la segunda unidad de código interior además elimina los bits de relleno de ceros añadidos después de la codificación interior en los bits de datos de preámbulo.
- 9. Un método de recepción de una señal de difusión en un receptor que tiene un sintonizador para decodificar la señal de difusión, que comprende:
- 20 demodular la señal de difusión usando un método de Multiplexación por División de Frecuencia Ortogonal, OFDM:

obtener una trama de señal a partir de la señal de difusión demodulada, la trama de señal que comprende símbolos de datos de preámbulo y símbolos de datos, en la que los símbolos de datos se incluyen en al menos un segmento de datos;

desintercalar en el tiempo los símbolos de datos a nivel de segmento de datos;

descorrelacionar los símbolos de datos desintercalados en el tiempo a bits de datos;

descorrelacionar los símbolos de datos de preámbulo a bits de datos de preámbulo;

decodificar los bits de datos usando un esquema de decodificación de comprobación de paridad de baja densidad; y

decodificar los bits de datos de preámbulo usando un esquema de decodificación de comprobación de paridad de baja densidad,

en el que un bloque de Capa 1, L1, se repite en los símbolos de datos de preámbulo en el dominio de frecuencia en el mismo ancho de banda, en el que el mismo ancho de banda es de 7,61 MHz y en el que cuando se reordenan dos partes de entre los bloques de L1 repetidos dentro de una ventana de sintonización del receptor, las partes reordenadas configuran un bloque de L1 completo, en el que el bloque de L1 incluye información de señalización de L1 para señalizar el segmento de datos.

10. Un receptor para recibir una señal de difusión, que comprende:

una unidad de demodulación para demodular la señal de difusión usando un método de Multiplexación por División de Frecuencia Ortogonal, OFDM;

una unidad de obtención para obtener una trama de señal a partir de la señal de difusión demodulada, la trama de señal que comprende símbolos de datos de preámbulo y símbolos de datos, en la que los símbolos de datos se incluyen en al menos un segmento de datos;

un desintercalador en el tiempo para desintercalar en el tiempo los símbolos de datos a nivel de segmento de datos;

una primera unidad de descorrelación para descorrelacionar los símbolos de datos desintercalados en el tiempo a bits de datos;

una segunda unidad de descorrelación para descorrelacionar los símbolos de datos de preámbulo a bits de datos de preámbulo;

una primera unidad de decodificación para decodificar los bits de datos usando un esquema de decodificación de comprobación de paridad de baja densidad; y

- 5 una segunda unidad de decodificación para decodificar los bits de datos de preámbulo usando un esquema de decodificación de comprobación de paridad de baja densidad,
- en el que un bloque de Capa 1, L1, se repite en los símbolos de datos de preámbulo en el dominio de frecuencia en un mismo ancho de banda, en el que el mismo ancho de banda es de 7,61 MHz y en el que cuando se reordenan dos partes de entre los bloques de L1 repetidos dentro de una ventana de sintonización del receptor, las partes reordenadas configuran un bloque de L1 completo, en el que el bloque de L1 incluye información de señalización de L1 para señalizar el segmento de datos.

Fig. 1

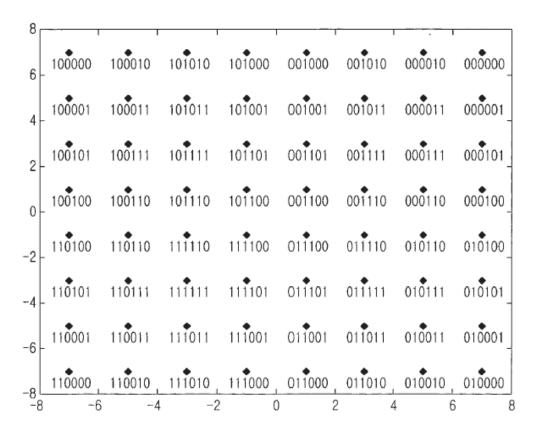


Fig. 2

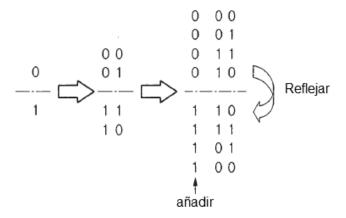
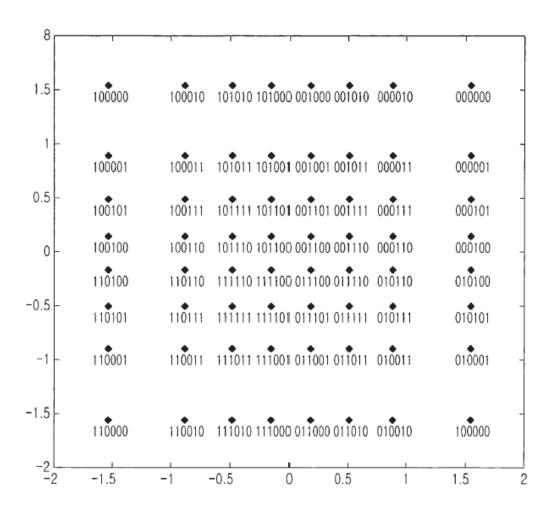



Fig. 3

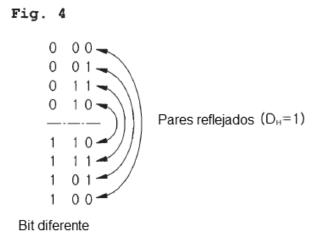


Fig. 5

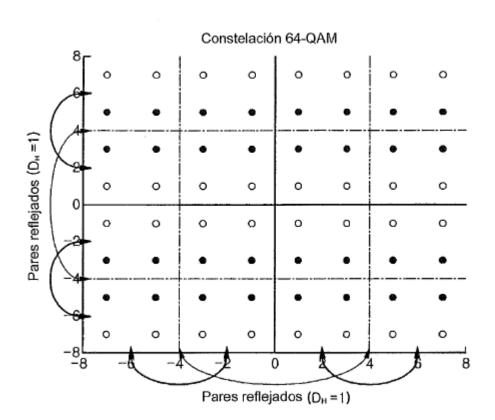
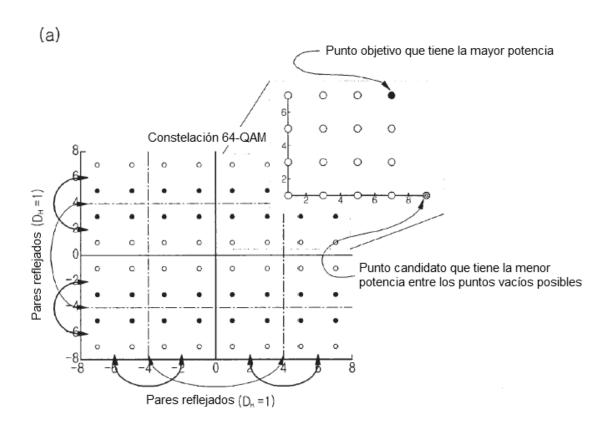



Fig. 6

(b)

* El punto candidato es el punto colindante más cercano del par reflejado del punto objetivo

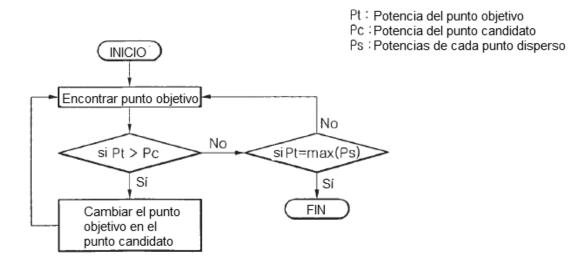


Fig. 7

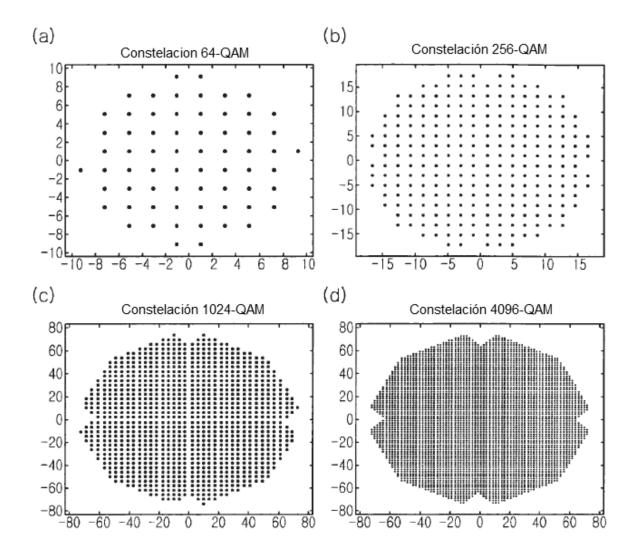


Fig. 8

Dispersión	9 + 11	7 + 5	5 + 7	5 + 5	7 + 1i	7 + 3i	5 + 1	5+3	1+7	1 + 5	3 + 71	3 + 5	+	1+3	3+1i	+	1 - 9i	7 - 5i	5 - 7i	5 - 5i	7 - 1i	7 - 3i	5 - 1i	5 - 3i	1 - 7i	1 - 5i	3 - 7i	3 - 51	1 - 1i	1 - 3i	3 - 1i
Valor	0	1	2	ë	4	2		Z	œ	6	10	11	12	13	14	. 15	16	17	20 T	13	20	- 51	22	23	24	. 25	26	27	28	29	30

Fig. 9

3 - 3	-1 + 9i	-7 + Si	-5 + 7i	-5 + 5	-7 + 1i	-7 + 3i	-5 + 1i	-5 + 3	-1 + 7	-1 + 5i	-3 + 7i	-3 + 5i	-1 + 1i	-1 + 3i	-3 + 1i	-3 + 3i	-9 - ti	-7 - Si	-5 - 7i	-5 - Si	-7 - 1i	-7 - 3i	-5 - 1i	-5 - 3i	-1 - 7i	-1 - 5i	-3 - 7i	-3 - 5i	-1 - 1i	-1 - 3i	-3 - 1i	-3 - 3
:31	32	33	34	35	36	37	38	39	:40 ::	41	42	143	44	45	≡ 94:	47	48	.49	20	51	52	53	54	55	56	22	85	59	09	61	.62	63

Fig. 10

_			_																												
Dispersión	-17 - 1i	-17 - 3i	-3 - 17i	-13 - 13i	-15 - 9i	-17 - 5i	-13 - 9i	-13 - 11i	-9 - 15i	-9 - 13i	-5 - 17i	-11 - 13i	-6 - 6i	-9 - 11i	-11 - 9i	-11 - 11i	-15 - 11	-15 - 3i	-13 - 1i	-13 - 3i	-15 - 7i	-15 - 5i	-13 - 7i	-13 - 5i	-9 - 1i	-9 - 3i	-11 - 1i	-11 - 3i	-9 - 7i	-9 - Si	-11 - 7i
Valor	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	509	210	211	212	213	214	215	216	217	218	219	220	221	222
Dispersión	-1 + 17i	-17 + 3i	-3 + 17i	-13 + 13i	-15 + 9i	-17 + 5i	-13 + 9i	-13 + 11i	-9 + 15i	-9 + 13i	-5 + 17i	-11 + 13i	-9 + 9i	-9 + 11i	-11 + 9i	-11 + 11i	-15 + 1i	-15 + 3i	-13 + 1i	-13 + 3i	-15 + 7i	-15 + 5i	-13 + 7i	-13 + 5i	-9 + 1i	-9 + 3i	-11 + 1i	-11 + 3i	-9 + 7	-9 + 5	-11 + 7i
Valor	128	129	130	131	132	133	134	135	136 ⊞	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158
Dispersión	1 - 17i	17 - 3i	3 - 17	13 - 13	15 - 9	17 - 5i	13 - 9i	13 - 11i	9 - 15	9 - 13i	5 - 17	11 - 13i	i6 - 6	9 - 11i	11 - 9	11 - 11i	15 - 1	15 - 3i	13 - 1i	13 - 3i	15 - 71	15 - 5i	13 - 7i	13 - 51	9 - 1i	9 - 3	11 - 1i	11 - 3	9 - 7i	9 - 5	11 - 7i
Valor	64	9	99	- 29	- 68	69	70	71	72	73	74	75	76	77	-78	79	80	81	82	83	84	85	96	87	88	89	- 30	91	92	63	94
Dispersión	17 + 1i	17 + 3	3+17i	13 + 13i	15 + 9i	17 + 5i	13 + 9i	13 + 11i	9 + 15i	9 + 13i	5 + 17i	11 + 13i	9 + 9	9 + 11i	11 + 9i	11 + 11i	15 + 1i	15 + 3i	13 + 1i	13 + 3i	15 + 7i	15 + 5i	13 + 7i	13 + 5i	9 + 1	9 + 3	11 + 1i	11 + 3	9 + 7i	9 + 5	11 + 71
'Valor	0	1		3	. 4	2	9	7	80	6	10	11	12	E,	14	15	16	12	18	19	20	21	22	23	24	25	26	27	28	29	30

Fig. 11

-11 - 5i	-1 - 15i	-1 - 13i	-3 - 15i	-3 - 13i	-1 - 9i	-1 - 11i	-3 - 9i	-3 - 11i	-7 - 15i	-7 - 13i	-5 - 15	-5 - 13	-7 - 9i	-7 - 11i	-5 - 9i	-5 - 11i	-1 - 1i	-1 - 3i	-3 - 1i	-3 - 3i	-1 - 7i	-1 - 5i	-3 - 7i	-3 - 5i	-7 - 1i	-7 - 3i	-5 - 1i	-5 + 3i	-7 - 7i	-7 - 5i	-5 - 7	-5 - 5
223	224	222	226	227	228	553	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
-11 + 5i	-1 + 15i	-1 + 13i	-3 + 15i	-3 + 13i	-1 + 9i	-1 + 11i	-3 + 9	-3 + 11i	-7 + 15i	-7 + 13i	-5 + 15i	-5 + 13i	-7 + 9i	-7 + 11i	-5 + 9i	-5 + 11i	-1 + 1i	-1+3i	-3 + 1i	-3 + 3i	-1 + 7i	-1 + 5i	-3 + 7i	-3 + 5i	-7 + 1i	-7 + 3i	-5 + 1i	-5 + 3i	-7 + 7i	-7 + Si	-5 + 7i	-5 + 5
159	160	161	162	163	154	165	166	167	168	169	170	121	172	173	124	175	176	137.	178	179	1.80	181	182	183	184	185	186	187	188	189	190	191
11 - 5i	1 - 15i	1 - 13i	3 - 15i	3 - 13i	1 - 9i	1 - 11i	3 - 9į	3 - 11i	7 - 15i	7 - 13i	5 - 15i	5 - 13i	7 - 9i	7 - 11i	5 - 9i	5 - 11i	1 - 1i	1 - 3i	3 - 1i	3 - 3i	1 - 7i	1 - 5i	3 - 7	3 - 5	7 - 1i	7 - 3i	5 - 1i	5 - 3	7 - 7	7 - 5	5 - 7	5 - 5
95	: 96	6	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
11 + 5	1 + 15i	1 + 13i	3 + 15i	3 + 13i	1 + 9	$1 + 11^{i}$	3 + 9i	3 + 11i	7 + 15i	7 + 13	5 + 15	5 + 13	7 + 9	7 + 11i	5 + 9	5 + 11i	1 + 1i	1 + 3i	3 + 1i	3 + 3i	1 + 7	1 + 5i	3 + 7i	3 + 5	7 + 1i	7 + 3i	5 + 1i	5 + 3	7 + 7i	7 + 5i	5 + 7i	5 + 5
31 :::	32	33 ⊞	34 ⊞	35	36	≣ 37 🚊	38	39	40	141	42	≡ 43 ≡	44	45	94	47	48	49	20	51	≡ 55 ≡	53 :	54	₩ 22	26	57	≣ 28 ≡	- 59	- 60	≡ 61 ≡	62 =	63

Fig. 12

Dispersión	1)	- 3	3 - 1i	3 - 3i	7i	1 - 5i	3 - 7	3 - 5i	7 - 1i	7 - 3i	5 - 1i	5 - 3	7 - 7	7 - Si	5 - 71	5 - 5	- 15i	- 13i	- 15i	- 13i	1 - 9i	- 11i	3 - 9i	- 11i	- 15i	- 13i	- 15i	- 13i	7 - 9i	- 11i	i6 - S
	8	.9:	_		2: 1			Н	6 7	7 7			Н		Н	Н	1	5	n	2 3		9 1		1 3	7 7	7 7	5	5		7 7	Н
Valor	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478
Dispersión	1 - 31	1 - 29i	3-31	3 - 29i	1 - 25i	1 - 27i	3 - 25i	3 - 27i	7 - 31	7 - 29	5 - 31i	5 - 29	7 - 25i	7 - 27i	5 - 25	5 - 27	1 - 17	1 - 19	3 - 17i	3 - 19	1 - 23	1 - 21	3 - 23i	3 - 21i	7 - 17i	7 - 19	5 - 17i	5 - 19	7 - 23i	7 - 21	5 - 23i
Valor	384	385	386	387	388	389	390	391	392	868	394	395	396	397	398	399	400	401	402	403	404	405	406	404	408	409	410	411	41.2	413	414
Dispersión	31 - 1i	31 - 3i	29 - 1i	29 - 3i	31 - 7i	31 - 5i	29 - 7i	29 - Si	25 - 1i	25 - 3i	27 - 1	27 - 3i	25 - 7	25 - 5i	27 - 7	27 - 5i	31 - 15i	31 - 13i	29 - 15i	29 - 13i	31 - 9i	31 - 11i	29 - 9i	29 - 11i	25 - 15i	25 - 13i	27 - 15i	27 - 13i	25 - 9i	25 - 11	27 - 9i
Valor	320	921	322	323	⊕24 ⊞	325	326	327	328	329	330 ≡	331	332	333	334	335	336	337	338	:339 ∷	340	341	342	343	344	345	346	347	348	349	350
Dispersión	1 - 33i	33 - 31	3 - 33i	3 - 35i	33 - 7i	33 - 5i	35 - 7i	35 - 5i	7 - 33i	7 - 35	5 - 33	5 - 35	25 - 25i	25 - 27i	27 - 25i	5 - 37i	31 - 17i	33 - 13i	29 - 17i	29 - 19	33 - 9i	33 - 11i	35 - 9i	29 - 21	25 - 17	25 - 19	27 - 17i	27 - 19i	25 - 23	25 - 21)	27 - 23i
Valor	256	257	258	259	260	261	262	263	264	265	266	267	268	592	270	271	272	273	274	275	276	277	278	579	280	281	282	283	284	285	286
Dispersión	1 + 1i	1 + 3i	3 + 1i	3 + 3i	1 + 7i	1 + 5i	3 + 7i	3 + 5i	7 + 1i	7 + 3i	5 + 1i	5 + 3i	7 + 7i	7 + 5i	5 + 7i	5 + 5i	1 + 15i	1 + 13i	3 + 15i	3 + 13i	1 + 9i	1 + 11i	3 + 9i	3 + 111	7 + 15i	7 + 13i	5 + 15	5 + 13i	7 + 9	7 + 11!	5 + 9i
Valor	192	193	194	195	196	197	198	199	200	201	202	203	204	502	506	202	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222
Dispersión	1 + 31i	1 + 29i	3 + 31i	3 + 29i	1 + 25i	1 + 27i	3 + 25i	3 + 27i	7 + 31i	7 + 29i	5 + 31i	5 + 29i	7 + 25i	7 + 27i	5 + 25i	5 + 27i	1 + 17i	1 + 19	3 + 17i	3 + 19	1 + 23i	1 + 21i	3 + 23i	3 + 21i	7 + 17i	7 + 19i	5 + 17i	5 + 19i	7 + 23i	7 + 21i	5 + 23i
Valor	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	121	152	153	154	155	156	157	158
Dispersión	31 + 11	1	29 + 1i	29 + 3i	31 + 7i	+	29 + 7i	29 + 51	25 + 1i	25 + 3i	27 + 1i	27 + 3i	25 + 7i	25 + 5i	27 + 7i	27 + Si	31 + 15i	31 + 13i	29 + 15	29 + 13i	31 + 9i	31 + 11	29 + 9i	29 + 11i	25 + 15i	25 + 13i	27 + 15i	27 + 13i	25 + 9i	25 + 11i	27 + 9i
Valor	64	-65	99	-67	89	69	70	*# 71 #	72	73	#24	75	9/	77	78	79	80	81	82	83	84	85	86	87	88	-89	06	-91-	92	93	94
Dispersión	33 + 1i	33 + 3i	3 + 33	35 + 3	33 + 7i	33 + 5i	35 + 7i	35 + 51	7 + 33i	7 + 35i	5 + 33	5 + 35i	25 + 25i	25 + 27i	27 + 25i	37 + 51	31 + 17i	33 + 13i	29 + 17i	29 + 19i	33 + 9i	33 + 11i	35 + 9i	29 + 21	25 + 17	25 + 19i	27 + 17i	27 + 19i	25 + 23	25 + 21i	27 + 23i
Valor	0	# # #	2	 C	4	 	9	1111	00 00	6	# 10 ⊞	11	₹12 🚆	13	14	15	16		18	≡ 19	20	21	22	23		25	7.0	27	2.8	29	30

Fig. 13

5 - 11i	15 - 1i	15 - 3i	13 - 1i	13 - 3i	15 - 71	15 - 51	13 - 7i	13 - 5i	j - 1j	9 - 3	11 - 1i	11 - 3i	9 - 7i	9 - 5i	11 - 7i	11 - 5i	15 - 15i	15 - 13i	13 - 15i	13 - 13i	15 - 9i	15 - 11i	13 - 9i	13 - 11i	9 - 15i	9 - 13i	11 - 15	11 - 13	16 - 6	9 - 11i	11 - 9i	11 - 11
479	480	481	482	483	484	485	486	487	488	489	490	493	492	493	464	495	496	49.7	498	499	200	501	205	503	504	505	505	202	208	509	510	511
5 - 21i	15 - 31i	15 - 29i	13 - 31i	13 - 29i	15 - 25i	15 - 27i	13 - 25i	13 - 27i	9 - 31i	9 - 29i	11 - 31i	11 - 29i	9 - 25i	9 - 27i	11 - 25i	11 - 27i	15 - 17i	15 - 19i	13 - 17	13 - 19i	15 - 23i	15 - 21i	13 - 23i	13 - 21i	9 - 17i	9 - 19	11 - 17i	11 - 19	9 - 23i	9 - 21	11 - 23i	11 - 21
415	416	417	418		420	421	422	423	454	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447
27 - 11i	17 - 1i	17 - 3i	19 - 1i	19 - 3i	17 - 71	17 - 5	19 - 7i	19 - 5)	23 - 1i	23 - 3i	21 - 11	21 - 3	23 - 7i	23 - 5i	21 - 7i	21 - 51	17 - 15	17 - 13i	19 - 15i	19 - 13i	17 - 9i	17 - 11i	19 - 9i	19 - 11i	23 - 15i	23 - 13i	21 - 15i	21 - 13i	23 - 9i	23 - 11i	21 - 9i	21 - 11
≡351 ≡	352	353	≡354≅	355	356	≡357≡	358	359	360€	361	362	=363=	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383
27 - 21i	17 - 31	17 - 29i	13 - 33i	19 - 29i	17 - 25i	17 - 27i	19 - 25i	19 - 27i	9 - 33i	9 - 35	11 - 33	21 - 29i	23 - 25i	23 - 27i	21 - 25i	21 - 27	17 - 17i	17 - 19i	19 - 17i	19 - 19i	17 - 23i	17 - 21i	19 - 23i	19 - 21i	23 - 17i	23 - 19i	21 - 17i	21 - 19	23 - 23i	23 - 21i	21 - 23i	21 - 21i
287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	365	303	304	305	306	307	308	309	310	31.1	312	313	314	315	316	317	318	319
5 + 11i	15 + 1i	15 + 3i	13 + 1i	13 + 3i	15 + 7i	15 + 5i	13 + 7i	13 + 5i	9 + 1i	9 + 3i	11 + 1i	11 + 3i	9 + 7i	9 + 5i	11 + 7i	11 + 5!	15 + 15	15 + 13	13 + 15i	13 + 13i	15 + 9i	15 + 11i	13 + 9i	13 + 11i	9 + 15i	9 + 13	11 + 15i	11 + 13i	9 + 9	9 + 11i	11 + 9i	11 + 11
223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
5 + 21i	15 + 31i	15 + 29i	13 + 31i	13 + 29i	15 + 25i	15 + 27i	13 + 25i	13 + 27i	9 + 31	9 + 29	11 + 31i	11 + 29i	9 + 25i	9 + 27i	11 + 25i	11 + 27i	15 + 17	15 + 19i	13 + 17i	13 + 19i	15 + 23i	15 + 21i	13 + 23i	13 + 21i	9 + 17i	9 + 19i	11 + 17	11 + 19i	9 + 23i	9 + 21i	11 + 23i	11 + 21i
159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	126	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
27 + 11i	17 + 1i	17 + 3i	19 + 1i	19 + 3i	17 + 7i	17 + 5i	19 + 7i	19 + 5i	23 + 1i	23 + 3i	21 + 1i	21 + 3i	23 + 7i	23 + 5i	21 + 7i	21 + 5i	17 + 15i	17 + 13i	19 + 15i	19 + 13i	17 + 9i	17 + 11i	19 + 9i	19 + 11i	23 + 15i	23 + 13i	21 + 15i	21 + 13i	23 + 9i	23 + 11i	21 + 9i	21 + 11i
95	96	62	≣ 86 ≡	66	100	101	102	103	104	105	106	107	108	109	110	1111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
27 + 21	17 + 31i	17 + 29i	13 + 33i	19 + 29i	17 + 25i	17 + 27i	19 + 25i	19 + 27	9 + 33i	9 + 35i	11 + 33i	21 + 29i	23 + 25i	23 + 27i	21 + 25i	21 + 27i	17 + 17	17 + 19i	19 + 17i	19 + 19	17 + 23i	17 + 21i	19 + 23i	19 + 21i	23 + 17	23 + 19	21 + 17	21 + 19i	23 + 23i	23 + 21i	+	21 + 21i
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47.	48	49.ii	20	51	52	53	54	55	56	57	58	29	09	61	62	63

Fig. 14

_	_	_	_		_	_	_		_	_		_	_				_	_	-	_	_		_		_				$\overline{}$
Dispersión	-1 - 1i	-1 - 3i	-3 - 1i	-3 - 3i	-1 - 7i	-1 - 5i	-3 - 7i	-3 - 5i	7 1i	-7 - 3i	-5 - 1i	-5 - 3i	-7 - 7i	-7 - 5i	-5 - 7	-5 - 5i	-1 - 15	-1 - 13	-3 - 15	-3 - 13	-1 - 9	-1 - 11	-3 - 9i	-3 - 11i	-7 - 15i	-7 - 13i	-5 - 15i	-5 - 13i	-7 - 9i
Valor	096	961	596	696	964	965	996	967	896	696	026	971	972	973	974	975	926	977	978	626	086	981	982	983	984	985	986	987	886
Dispersión	·1 - 31i	-1 - 29i	-3 - 31i	-3 - 29i	-1 - 25i	-1 - 27i	-3 - 25i	-3 - 27i	-7 - 31i	-7 - 29i	-5 - 31i	-5 - 29i	-7 - 25i	-7 - 27i	-5 - 25i	-5 - 27i	-1 - 17	-1 - 19i	-3 - 17i	-3 - 19	-1 - 23i	-1 - 21i	-3 - 23i	-3 - 21i	-7 - 17i	-7 - 19i	-5 - 17	-5 - 19	-7 - 23i
Valor	968	897	868	668	006	901	905	⊞ 606	904	. 506	906	- 206	806	# 606⊪	910	911	1912 ⊞	913	914	#915 #	916	917	918	919	920	921	922	923	#924 ::
Dispersión	-31 - 1i	-31 - 3i	-29 - 1i	-29 - 3i	-31 - 7i	-31 - 5i	-29 - 7i	-29 - 5i	-25 - 1i	-25 - 3i	-27 - 1i	-27 - 3i	-25 - 7i	-25 - 5i	-27 - 7i	-27 - Si	-31 - 15i	-31 - 13i	-29 - 15i	-29 - 13i	-31 - 9i	-31 - 11i	-29 - 9i	-29 - 11i	-25 - 15i	-25 - 13i	-27 - 15i	-27 - 13i	-25 - 9i
Valor	832	833	834	835	9836	837	838	839	840	:841	842	843	844	845	846	847	≅848≡	849	850	■851 ■	852	853	854	855	856	857	828	859	860
Dispersión	-33 - 1i	-33 - 3i	-3 - 33i	-35 - 3i	-33 - 7i	-33 - 5i	-35 - 7i	-35 - 5i	-7 - 33i	-7 - 35i	-5 - 33i	-5 - 35	-25 - 25	-25 - 27i	-27 - 25i	-37 - 5i	-31 - 17i	-33 - 13i	-29 - 17i	-29 - 19i	-33 - 6	-33 - 11i	-35 - 9i	-29 - 21i	-25 - 17i	-25 - 19i	-27 - 17i	-27 - 19i	-25 - 23
Valor	892	769	770	771	772	.773	774	775	1776	222	778	779	780	781	782	783	784	785	786	287	788	789	7.90	791	792	793	794	795	796
Dispersión	-1 + 1i	-1 + 3i	-3 + 1i	-3 + 3i	-1 + 7i	-1 + 5i	-3 + 7i	-3 + 5i	-7 + 1i	-7 + 3i	-5 + 1i	-5 + 3i	-7 + 7i	-7 + 5i	-5 + 7i	-5 + 5	-1 + 15i	-1 + 13i	-3 + 15i	-3 + 13i	-1 + 9i	-1 + 11i	-3 + 9i	-3 + 11i	-7 + 15i	-7 + 13i	-5 + 15i	-5 + 13i	-7 + 9i
Valor	704	705	902	202	708	200	710	711	712	713	714	715	716	7117	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732
Dispersión	-1 + 31	-1 + 29i	-3 + 31i	-3 + 29	-1 + 25i	-1 + 27i	-3 + 25	-3 + 27i	-7 + 31i	-7 + 29i	-5 + 31i	-5 + 29i	-7 + 25i	-7 + 27i	-5 + 25i	-5 + 27	-1 + 17i	-1 + 19i	-3 + 17i	-3 + 19i	-1 + 23i	-1 + 21i	-3 + 23i	-3 + 21i	-7 + 17i	-7 + 19	-5 + 17i	-5 + 19i	-7 + 23i
Valor	640	641	642	643	644	645	646	647	648	649	629	651	652	653	654	655	959	657	658	629	660	661	662	663	664	999	999	299	. 668
Dispersión	-31 + 1i	-31 + 3i	-29 + 1i	-29 + 3i	-31 + 7i	-31 + 5i	-29 + 7i	-29 + 5i	-25 + 1i	-25 + 3i	-27 + 1i	-27 + 3i	-25 + 7i	-25 + 5i	-27 + 7i	-27 + Si	-31 + 15i	-31 + 13i	-29 + 15i	-29 + 13i	-31 + 9i	-31 + 11i	-29 + 9i	-29 + 11i	-25 + 15i	-25 + 13i	-27 + 15i	-27 + 13i	-25 + 9i
Valor	925	577	578	579	580	281	283	583	584	585	286	283	588	589	290	591	265	593	594	595	596	597	598	599	900	109	602	603	604
Dispersión	-1 + 33i	-33 + 3i	-3 + 33i	+3 + 35	-33 + 7i	-33 + 5i	-35 + 7i	-35 + 5i	-7 + 33i	-7 + 35i	-5 + 33i	-5 + 35i	-25 + 25i	-25 + 27i	-27 + 25i	-5 + 37i	-31 + 17i	-33 + 13i	-29 + 17i	-29 + 19i	-33 + 9	-33 + 11i	-35 + 9i	-29 + 21i	-25 + 17i	-25 + 19i	-27 + 17i	-27 + 19i	-25 + 23i
Valor	512	513	514	515	516	517	518	516	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	240

Fig. 15

Dispersión	33 + 31i	33 + 29	35 + 31i	35 + 29i	33 + 25i	33 + 27i	35 + 25i	35 + 27i	39 + 31i	39 + 29i	37 + 31i	37 + 29i	39 + 25i	39 + 27i	37 + 25	37 + 27	33 + 17i	33 + 19i	35 + 17i	35 + 19i	33 + 23i	33 + 21i	35 + 23i	35 + 21i	39 + 17i	39 + 19i	37 + 17i	37 + 19i	39 + 23i	39 + 21i	37 + 23i
Valor	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478
Dispersión	33 + 1i	33 + 3	35 + 1i	35 + 3i	33 + 7i	33 + 5i	35 + 7i	35 + 51	39 + 1i	39 + 3i	37 + 1i	37 + 3i	39 + 7i	39 + 5i	37 + 7i	37 + 5i	33 + 15	33 + 13i	35 + 15i	35 + 13	33 + 9i	33 + 11i	35 + 9i	35 + 11i	39 + 15i	39 + 13i	37 + 15i	37 + 13i	39 + 9i	39 + 11i	37 + 9i
Valor	384	385	386	387	388	389	390	391	392	393	394	395	≅ 968	397	398	86€	400	401	402 ≡	403	404	405	406	407	805	409	410	411	412	413	414
Dispersión	63 + 31i	63 + 29i	61 + 31i	61 + 29i	63 + 25i	63 + 27i	61 + 25i	61 + 27i	57 + 31i	57 + 29i	59 + 31i	59 + 29i	57 + 25i	57 + 27	59 + 25i	59 + 27i	63 + 17	63 + 19i	61 + 17i	61 + 19i	63 + 23i	63 + 21i	61 + 23i	61 + 21i	57 + 17i	57 + 19i	59 + 17i	59 + 19i	57 + 23	57 + 21i	59 + 23i
Valor	320	321	322	323	324	325	326	327	328	329	330	331.	332	333	334	# 335⊭	336	337	338≅	339	340	341	342	343	344	345	346	347	348	349	350
Dispersión	63 + 1i	63 + 3i	61 + 1i	61 + 3i	63 + 7i	63 + 5i	61 + 7i	61 + 5i	57 + 1i	57 + 3	59 + 1i	59 + 3i	57 + 7i	57 + Si	59 + 7i	59 + 5i	63 + 15i	63 + 13i	61 + 15i	61 + 13i	63 + 9i	63 + 11i	61 + 9i	61 + 11i	57 + 15i	57 + 13i	59 + 15i	59 + 13i	57 + 9i	57 + 11i	59 + 9i
Valor	256	257	258	259	260	261	262	263	264	265	992	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286
Dispersión Valor	33 + 33i	33 + 35i	35 + 33	35 + 35	33 + 39i	33 + 37i	35 + 39	35 + 37	39 + 33	39 + 35i	37 + 33i	37 + 35i	39 + 39	39 + 37	37 + 39i	37 + 37i	33 + 47i	33 + 45i	35 + 47i	35 + 45i	33 + 41i	33 + 43i	35 + 41i	35 + 43i	39 + 47	39 + 45i	37 + 47i	37 + 45i	39 + 41i	39 + 43	37 + 41i
Valor	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	506	210	211	212	213	214	215	216	217	218	219	220	221	222
Dispersión Valor	33 + 63i	33 + 61i	29 + 65i	35 + 61i	33 + 57i	33 + 59i	35 + 57i	35 + 59i	25 + 65i	25 + 67i	27 + 65i	37 + 61i	39 + 57i	39 + 59	37 + 57i	37 + 59i	33 + 49	33 + 51i	35 + 49i	35 + 51i	33 + 55i	33 + 53i	35 + 55i	35 + 53i	39 + 49i	39 + 51i	37 + 49	37 + 51i	39 + 55i	39 + 53i	37 + 55i
Valor	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158
Dispersión	63 + 33i	65 + 29i	61 + 33i	61 + 35i	65 + 25i	65 + 27i	67 + 25i	61 + 37i	57 + 33i	57 + 35i	59 + 33i	59 + 35i	57 + 39i	57 + 37i	59 + 39i	59 + 37i	65 + 17i	65 + 19i	67 + 17i	67 + 19i	65 + 23i	65 + 21i	67 + 23i	67 + 21i	71 + 17i	57 + 45i	69 + 17i	69 + 19i	57 + 41i	57 + 43i	59 + 41i
Valor	-64	65	99	19	89	69	≡20 ≡	.71	72	73 :::	- 74	75	9/	22	78	-62	90	81	82	83	84	85	96	87	88	89	- 06	9.1	92	93	94
Dispersión	65 + 1i	65 + 3i	3 + 65i	67 + 3i	65 + 7i	65 + 5i	67 + 7i	67 + 5i	7 + 65i	7 + 67i	5 + 65	5 + 67	71 + 7i	7 + 69i	69 + 7i	69 + 5i	65 + 15i	65 + 13i	67 + 15i	67 + 13i	65 + 9i	65 + 11i	67 + 9i	67 + 11i	71 + 15i	71 + 13i	69 + 15i	69 + 13i	71 + 9i	71 + 11i	69 + 9i
Valor	0	1 3	2 = 2	n	2 4 3	5	≡ 9 ≡	1	8	6	10	11	12	13	14	15	ੂ 16 ੂ	17	≡ 18≡	19	20	21	22	# 23	24	22	56	≣ 27≣	. 58	29	30

Fig. 16

+ 21	+ 31i	+ 29i	+ 31	+ 29i	+ 25i	+ 27i	+ 25i	+ 27i	+ 31i	+ 29i	+ 31	+ 29i	+ 25i	+ 27i	+ 25i	+ 27i	+ 17i	+ 19i	+ 17i	+ 19i	+ 23i	+ 21i	+ 23i	+ 21i	+ 17i	+ 19i	+ 17i	+ 19i	+ 23i	+ 21	+ 23i	+ 21i
37	47	47	45	45	47	47	45	45	41	41	43	43	41	4	43	43	47	47	45	45	47	47	45	54	41	41	43	43	4	41	43	43
479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	464	495	496	462	498	#499	200	501	505	503	204	505	506	202	≅208	509	510	511
111	+ 1	+ 3i	+ 11	+ 3i	+ 7i	+ 5i	+ 7i	+ 5i	+ 1i	+ 3i	+ 1:	+ 3	+ 7i	+ 5i	+ 7i	+ 5	15i	. 13i	· 15i	· 13i	+ 9i	· 11i	+ 9i	+ 11i	· 15i	. 13i	. 15i	. 13i	+ 9i	. 11i	<u>+</u> 9i	11i
37 +	47	47	45	45	47	47	45	45	41	41	43	43	41	41	43	43	47 +	47 +	45 +	45 +	47	47 +	45	45+	41+	41+	43 +	43+	41	41+	43	43+
415	416	417	418	419	420	421	422	423	424	425	426	427	428	459	430	431	432	433	434	435	436	437	438	439	440	44:1	442	443	444	445	446	44.7
21i	311	29i	31i	29i	25i	27i	25i	27i	31i	29i	31i	29	25	27i	25i	27i	17	19	17	19	23	21i	23i	21	17	19i	17	19i	23i	21i	23i	21i
59+	46 +	46+	51+	51+	46+	46+	51 +	51+	55,+	55 +	53 +	53+	55+	55 +	53 +	53+	+ 65	46+	51+	51+	46+	46+	51+	51+	55 +	55 +	53 +	53+	55 +	55 +	53+	53 +
351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383
11	. 1i	<u>:E</u>	. ī.	. 3i	- 7i	<u>.</u>	- 7i	<u>.</u>	- 1i	. 3 <u>i</u>	- 1i	<u>.</u>	. 7i	- Si	- 7i	Si	15i	13i	15i	13i	9i	11i	. 9i	11i	15i	13i	15i	13i	. 9i	11i	<u>.</u>	111
59 +	46 +	46+	51+	51+	46 +	46+	51 +	51 +	55 +	55 +	53+	53+	55 +	55 +	53 +	53+	464	46 +	51+	51+	46+	46 +	51+	51 +	55 +	55 +	53 +	53 +	55 +	55 +	53+	53 +
287	288	1289≘	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319
43i	33i	35i	33i	35i	391	37i	39	37i	33i	35i	33i	35i	39i	37i	39i	37	47i	45i	47i	45i	41i	43i	41i	43i	47i	45i	47	45i	411	43i	411	43i
37 +	47 +	47 +	45 +	45 +	47+	47 +	45 +	45 +	41+	41+	43 +	43+	41 +	41+	43 +	43+	47 +	47 +	45+	45 +	47+	47 +	45+	45 +	41+	41+	43+	43+	41+	41+	43+	43 +
223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
53i	65i	671	65	67i	711	169	57i	i69	65i	67i	65i	67i	571	59:	57i	6 9i	49i	51i	49i	511	55	53;	55	53	49i	51i	49i	511	55	53i	55	53
37 +	17 +	17+	19+	19+	17+	17+	45+	19+	23 +	23 +	21 +	21+	41+	41+	43+	21 +	47+	47+	45+	45 +	47+	47+	45+	45+	41+	41+	43+	43+	41+	41+	43+	43+
159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
21i	33i	35i	33i	35i	39	37i	39!	37i	33i	35i	33i	35i	39i	37i	39i	37i	47i	42i	47i	45i	41i	43i	41i	43	47i	4 5i	47i	45i	41i	43i	411	43
+ 69	46 +	46 +	51 +	51+	46 +	46 +	51 +	51 +	55 +	55 +	53 +	53 +	55 +	55 +	53 +	53 +	46 +	46 +	+	51 +	46 +	46 +	51 +	51 +	55 +	55 +	53 +	53 +	55 +	55 +	53 +	53 +
Н	96	-		66	1,24	-	-	103	104		106	\vdash	108	- 6		111	112	$\overline{}$		115	116	117	118	119	120	121	$\overline{}$	123	124		126	_
11	65i	e7i	e5i	67i	711	+ 69	+ 711	+ 69	65i	67i	e5i	67i	71 i	· 69	71i	i69	+ 49i	51i	49i	+ 51i	55i	53	73i	+ 53i	49i	13i	+ 49	511	i6 +	111	73i	53i
69 + 11	15 + 65	15 +	+	13+	15 +	15 +	13+	13 +	9+6	+	11 +	11 +	9 + 71i	9+6	11 + 71	11 + 69	+ 65	46 +	51 +	51 +	46 +	49 + 53i	13+	51 +	55 + 49	73 + 13i	53 +	53 + 51	73+	73+	+	53 +
31	32	П		32	36			39	40	41	42	43	44	45	46	47		49	20	21	25		54	22	26	. 57	28	29	-60	61	\neg	63

Fig. 17

37 + 21i	47 + 31i	47 + 29i	45 + 31i	45 + 29i	47 + 25i	47 + 27i	45 + 25i	45 + 27i	41 + 31i	41 + 29i	43 + 31	43 + 29i	41 + 25i	41 + 27i	43 + 25i	43 + 27i	47 + 17i	47 + 19	45 + 17i	45 + 19i	47 + 23i	47 + 21i	45 + 23i	45 + 21i	41 + 17i	41 + 19	43 + 17i	43 + 19i	41 + 23i	41 + 21i	43 + 23i	43 + 21i
479	480 4	# 481 4	482 4	483 4	484 4	485 4	486 4	487 4	488 4	489 4	490= 4	491 4	492 4	493	494	495 4	496: 4	497 4	498 4	499	500	501 4	502	503 4	504 4	505:: 4	506. 4	507 4	≡508 □	509 4	510 4	5111 4
37 + 11i	47 + 1i	47 + 3i	45 + 1i	45 + 3i	47 + 71	47 + Si	45 + 71	45 + Si	41 + 1i	41 + 3i	43 + 1i	43 + 3i	41 + 7i	41 + 5i	43 + 7i	43 + 5i	47 + 15i	47 + 13i	45 + 15i	45 + 13i	47 + 9i	47 + 11i	45 + 9i	45 + 11i	41 + 15i	41 + 13i	43 + 15i	43 + 13i	41 + 9i	41 + 11i	43 + 9i	43 + 11i
415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	44.7
59 + 21i	49 + 31i	49 + 29	51 + 31i	51 + 29i	49 + 25i	49 + 27i	51 + 25	51 + 27	55 + 31	55 + 29	53 + 31	53 + 29	55 + 25i	55 + 27i	53 + 25i	53 + 27	49 + 17	49 + 19i	51 + 17i	51 + 19i	49 + 23i	49 + 21i	51 + 23i	51 + 21i	55 + 17i	55 + 19i	53 + 17i	53 + 19i	55 + 23i	55 + 21i	53 + 23i	53 + 21i
351	325	353	354	322	356	357	358	658	360	361	362	363	364	365	996	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383
59 + 11i	49 + 1i	49 + 3i	51 + 11	51 + 3i	49 + 7i	49 + Si	51 + 7i	51 + 5i	55 + 1i	55 + 3i	53 + 1i	53 + 3i	55 + 7i	55 + 5i	53 + 7i	53 + 5i	49 + 15i	49 + 13i	51 + 15i	51 + 13i	49 + 9i	49 + 11i	51 + 9i	51 + 11i	55 + 15i	55 + 13i	53 + 15i	53 + 13i	55 + 9i	55 + 11i	53 + 9i	53 + 11i
287	288	289	290	291	292	293	294	295	.296	297	298	299	300	301	302	303	304	305	306	30.7	308	309	310	311	312	313	314	315	316	317	318	319
37 + 43i	47 + 33i	47 + 35i	45 + 33	45 + 35i	47 + 39i	47 + 37i	45 + 39i	45 + 37i	41 + 33i	41 + 35i	43 + 33i	43 + 35i	41 + 39i	41 + 37	43 + 39i	43 + 37i	47 + 47	47 + 45	45 + 47i	45 + 45i	47 + 41i	47 + 43	45 + 41i	45 + 43i	41 + 47i	41 + 45i	43 + 47i	43 + 45i	41 + 41i	41 + 43i	43 + 41i	43 + 43i
223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	ii 243	244	245	∄ 246	247	248	249	250	251	252	253	254	255
37 + 53i	17 + 65i	17 + 67i	19 + 65i	19 + 67i	17 + 71i	17 + 69i	45 + 57i	19 + 69i	23 + 65i	23 + 67i	21 + 65i	21 + 67i	41 + 57i	41 + 59i	43 + 57i	21 + 69i	47 + 49i	47 + 51i	45 + 49i	45 + 51i	47 + 55i	47 + 53i	45 + 55i	45 + 53i	41 + 49i	41 + 51i	43 + 49i	43 + 51i	41 + 55i	41 + 53i	43 + 55i	43 + 53
159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
69 + 21i	49 + 33i	49 + 35i	51 + 33	51 + 35i	49 + 39	49 + 37	51 + 39	51 + 37i	55 + 33i	55 + 35i	53 + 33	53 + 35i	55 + 39	55 + 37i	53 + 39	53 + 37	49 + 47i	49 + 45i	51 + 47i	51 + 45i	49 + 41i	49 + 43	51 + 41i	51 + 43i	55 + 47i	55 + 45i	53 + 47i	53 + 45	55 + 41	55 + 43	53 + 41	53 + 43
95	96	- 65	98	66	100	101	102	103	104	105	106	107	108	109	110	111	132	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
69 + 11i	15 + 65i	15 + 67i	13 + 65i	13 + 67i	15 + 71i	15 + 69i	13 + 71i	13 + 69i	9 + 65i	9 + 67i	11 + 65i	11 + 67i	9 + 71i	9 + 69	11 + 71i	11 + 69i	49 + 49	49 + 51i	51 + 49i	51 + 51i	49 + 55i	+	13 + 73	51 + 53	55 + 49	73 + 13i	53 + 49	53 + 51i	73 + 9i	73 + 11i	+	53 + 53
31	32	33	34	32	96	37	38	66	40	41	. 42	43	44	45	46	47	48	49	50	51	52	53	54	55	26	57	28	59	.09	61	62	63

Fig. 18

_	_		_	_		_	_	_	_	_	_	_						_				_							
Dispersión	31 + 31	31 + 29	29 + 31i	29 + 29	31 + 25i	+	29 + 25i	29 + 27i	25 + 31i	25 + 29i	27 + 31i	27 + 29i	25 + 25	25 + 27i	27 + 25i	27 + 27i	31 + 17i	31 + 19	29 + 17i	29 + 19	31 + 23i	31 + 21i	29 + 23i	29 + 21i	25 + 17i	25 + 19i	27 + 17i	27 + 19i	25 + 23i
Valor	960	961	962	963	964	965	996	967	968	969	970	971	972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987	988
Dispersión	31 + 1i	31 + 3i	29 + 1i	29 + 3i	31 + 7i	31 + 5	29 + 7	29 + 5	25 + 1i	25 + 3i	27 + 1i	27 + 3i	25 + 7i	25 + 5i	27 + 7i	27 + 5i	31 + 15i	31 + 13	29 + 15	29 + 13	31 + 9i	31 + 11i	29 + 9i	29 + 11i	25 + 15i	25 + 13i	27 + 15i	27 + 13i	25 + 91
Valor	896	897	868	899	006	901	_305	903	904	905	906	- 206	606	⊞606 ⊞	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924
Dispersión	1 + 31i	1 + 29i	3 + 31i	3 + 29i	1 + 25i	1 + 27i	3 + 25i	3 + 27i	7 + 31i	7 + 29i	5 + 31i	5 + 29i	7 + 25i	7 + 27i	5 + 25i	5 + 27i	1 + 17i	1 + 19i	3 + 17i	3 + 19i	1 + 23i	1 + 21i	3 + 23i	3 + 21	7 + 17	7 + 19	5 + 17i	5 + 19	7 + 23i
Valor	"832"	833	834	835	836	837.	"838 _"	839	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	828	859	⊞860⊞
Dispersión	1 + 1i	1+3i	3 + 11	3 + 3	1+7	1 + 5	3 + 7	3 + 5	7 + 1i	7 + 3i	5 + 11	5 + 3	7 + 7	7 + 5	5 + 7	5 + 5	1 + 15i	1+13	3 + 15	3+13i	1 + 9	1 + 11i	3 + 9	3 + 11i	7 + 15i	7 + 13)	5 + 15	5 + 13i	16 + Z
Valor	768	769	770	771	772	773	774	775	276	777	778	779	780	781	782	783	784	785	785	787	788	789	790	164	792	793	794	795	796
Dispersión	31 + 33i	31 + 35i	29 + 33i	29 + 35i	31 + 39	31 + 37i	29 + 39	29 + 37	25 + 33	25 + 35i	27 + 33i	27 + 35i	25 + 39	25 + 37i	27 + 39i	27 + 37i	31 + 47i	31 + 45i	29 + 47i	29 + 45i	31 + 41i	31 + 43i	29 + 41i	29 + 43i	25 + 47i	25 + 45i	27 + 47i	27 + 45i	25 + 41i
Valor	704	705	706	707	708	500	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732
Dispersión	31 + 63i	31 + 61i	29 + 63	29 + 61i	31 + 57	31 + 59i	29 + 57i	29 + 59	25 + 63i	25 + 61i	27 + 63i	27 + 61i	25 + 57i	25 + 59	27 + 57i	27 + 59	31 + 49i	31 + 51i	29 + 49i	29 + 51i	31 + 55	31 + 53	29 + 55	29 + 53i	25 + 49i	25 + 51i	27 + 49i	27 + 51i	25 + 55i
Valor	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	929	657	658	629	099	199	662	663	999	599	999	299	⊞ 668
Dispersión	1 + 33i	1 + 35i	3 + 33	3 + 35i	1 + 39i	1 + 37i	3 + 39	3 + 37	7 + 33i	7 + 35i	5 + 33i	5 + 35i	7 + 39	7 + 37i	5 + 39	5 + 37	1 + 47i	1 + 45i	3 + 47i	3 + 45	1 + 41	1 + 43i	3 + 41i	3 + 43	7 + 47i	7 + 45i	5 + 47i	5 + 45	7 + 411
Valor	576	577	578	579	580	581	585	583	584	585	586	587	588	589	290	591	592	593	594	595	596	597	598	599	600	601	602	603	604
Dispersión	1 + 63i	1 + 61	3 + 63i	3 + 61i	1 + 57i	1 + 59	3 + 57i	3 + 59	7 + 63i	7 + 61i	5 + 63	5 + 61i	7 + 57	7 + 59	5 + 57	5 + 59	1 + 49i	1 + 51	3 + 49	3 + 51	1 + 55	1 + 53i	3 + 55	3 + 53	7 + 49i	7 + 511	5 + 49	+ 51i	7 + 55i
Valor	512	513	514	515	516	517	518	519	520	521	522	523	524	525	-975	527	528	529	530	531	532	533	534	535	536	537	-538	539	E240

Fig. 19

25 + 21i	27 + 23i	27 + 21i	17 + 31i	17 + 29i	19 + 31i	19 + 29i	17 + 25i	17 + 27i	19 + 25i	19 + 27i	23 + 31i	23 + 29i	21 + 31i	21 + 29i	23 + 25i	23 + 27i	21 + 25i	21 + 27i	17 + 17i	17 + 19i	19 + 17i	19 + 19i	17 + 23i	17 + 21i	19 + 23i	19 + 21i	23 + 17i	23 + 19i	21 + 17i	21 + 19i	23 + 23i	23 + 21i	21 + 23i	21 + 21i
686	066	991	992	993	994	366	966	997	866	666	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023
25 + 11i	27 + 9i	27 + 11i	17 + 1i	17 + 3i	19 + 1i	19 + 3i	17 + 7i	17 + 51	19 + 7i	19 + Si	23 + 1i	23 + 3i	21 + 1i	21 + 3i	23 + 7i	23 + 5i	21 + 7i	21 + Si	17 + 15i	17 + 13i	19 + 15i	19 + 13i	17 + 9i	17 + 11i	19 + 9	19 + 11i	23 + 15i	23 + 13i	21 + 15i	21 + 13i	23 + 9i	23 + 11i	21 + 9i	21 + 11i
925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	926	957	958	626
7 + 21i	5 + 23i	5 + 21i	15 + 31i	15 + 29i	13 + 31i	13 + 29i	15 + 25i	15 + 27i	13 + 25i	13 + 27i	9 + 31i	9 + 29i	11 + 31i	11 + 29i	9 + 25i	9 + 27i	11 + 25i	11 + 27i	15 + 17i	15 + 19i	13 + 17i	13 + 19i	15 + 23i	15 + 21i	13 + 23i	13 + 21i	9 + 17i	9 + 19i	11 + 17i	11 + 19i	9 + 23i	9 + 21i	11 + 23i	11 + 21i
861	862	863	864	865	998	867	898	698	870	871	248	873	874	875	928	877	878	# 628°	880	881	885	883	884	885	988	887	888	889	068	891	892	893	894	895
7 + 11i	5 + 9i	5 + 111	15 + 1i	15 + 3i	13 + 1i	13 + 3i	15 + 7i	15 + 5i	13 + 7	13 + 5i	9 + 11	9 + 3	11 + 1i	11 + 3i	12 + 6	9 + 5i	11 + 7i	11 + 5i	15 + 15i	15 + 13i	13 + 15i	13 + 13i	15 + 9i	15 + 11i	13 + 9i	13 + 11i	9 + 15i	9 + 13i	11 + 15i	11 + 13i	9 + 9i	9 + 11i	11 + 9i	11 + 11i
797	798	799	800	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831
25 + 43i	27 + 41i	27 + 43i	17 + 33	17 + 35i	19 + 33i	19 + 35i	17 + 39i	17 + 37i	19 + 39i	19 + 37i	23 + 33i	23 + 35i	21 + 33i	21 + 35i	23 + 39i	23 + 37i	21 + 39i	21 + 37i	17 + 47i	17 + 45i	19 + 47i	19 + 45	17 + 41i	17 + 43	19 + 41i	19 + 43	23 + 47i	23 + 45i	21 + 47	21 + 45i	23 + 41i	23 + 43i	21 + 41i	21 + 43i
733	734	735	736	737	738	739	740	741	742	743	744	745	746	547	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767
25 + 53i	27 + 55i	27 + 53i	17 + 63i	17 + 61i	19 + 63i	19 + 61i	17 + 57i	17 + 59i	19 + 57	19 + 59	23 + 63i	23 + 61i	21 + 63i	21 + 61i	23 + 57i	23 + 59i	21 + 57i	21 + 59i	17 + 49i	17 + 51i	19 + 49i	19 + 51i	17 + 55i	17 + 53i	19 + 55i	19 + 53i	23 + 49i	23 + 51i	21 + 49i	21 + 51i	23 + 55i	23 + 53i	21 + 55i	21 + 53i
699	670	671	672	673	674	675	929	677	678	629	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	969	697	869	669	700	701	702	703
7 + 43i	5 + 41i	5 + 43i	15 + 33i	15 + 35i	13 + 33i	13 + 35i	15 + 39i	15 + 37i	13 + 39i	13 + 37i	9 + 33i	9 + 35i	11 + 33i	11 + 35i	9 + 39	9 + 37	11 + 39i	11 + 37i	15 + 47i	15 + 45i	13 + 47i	13 + 45i	15 + 41i	15 + 43i	13 + 41i	13 + 43i	9 + 47	9 + 45	11 + 47i	11 + 45i	9 + 41i	9 + 43i	11 + 41i	11 + 43i
605	909	607	608	609	610	611	612	613	614	615	616	517	618	619	620	621	622	623	624	625	626	627	628	629	630	531	632	633	634	635	636	637	638	639
7 + 53i	5 + 55i	5 + 53i	15 + 63i	15 + 61i	13 + 63i	13 + 61i	15 + 57i	15 + 59	13 + 57i	13 + 59	9 + 63i	9 + 61i	11 + 63i	11 + 61i	9 + 57i	9 + 59	11 + 57i	11 + 59i	15 + 49i	15 + 51i	13 + 49	13 + 51i	15 + 55	+	13 + 55i	13 + 53i	9 + 49	9 + 51i	11 + 49i	11 + 51i	9 + 55i	9 + 53i	11 + 55i	11 + 53i
541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	267	568	569	\$70	571	572	573	574	575

Fig. 20

ión	31i	29i	31i	29i	25i	27i	25i	27i	31i	29i	31i	29i	25i	27i	25i	27i	171	19i	17i	19i	23i	21i	23i	21i	17i	19i	171	16	23i	21i	23i	21i
Dispersión	33 - 5	33 - 5	35 - 3	35 - 2	33 - 2	33 - 2	35 - 2	35 - 2	39 - 3	39 - 5	37 - 3	37 - 2	39 - 5	39 - 2	37 - 7	37 - 2	33 - 1	33 - 1	35 - 1	35 - 1	33 - 2	33 - 2	32 - 5	35 - 2	39 - 1	39 - 1	37 - 1	37 - 19i	39 - 2	39 - 5	37 - 2	37 - 2
Valor	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503
Dispersión	33 - 1i	33 - 3i	35 - 1i	35 - 3i	33 - 71	33 - 5i	35 - 7i	35 - 5i	39 - 1i	39 - 3i	37 - 1i	37 - 3i	39 - 7i	39 - 51	37 - 7i	37 - 5i	33 - 15i	33 - 13	35 - 15i	35 - 13i	33 - 9i	33 - 11i	35 - 9i	35 - 11i	39 - 15i	39 - 13	37 - 15i	37 - 13i	39 - 9i	39 - 11i	37 - 9i	37 - 11i
Valor	1408	1,409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419.	1420	1421	1422	1423	1424	1,425	1426	1427	1428	1429	1430	1,431	1432	1433	1434	1435	1436	1437	1438	1439
Dispersión	63 - 31i	63 - 29i	61 - 31i	61 - 29i	63 - 25i	63 - 27i	61 - 25i	61 - 27i	57 - 31i	57 - 29i	59 - 31i	59 - 29i	57 - 25i	57 - 27i	59 - 25i	59 - 27i	63 - 17i	63 - 19i	61 - 17i	61 - 19	63 - 23i	63 - 21i	61 - 23i	61 - 21i	57 - 17i	57 - 19i	59 - 17i	59 - 19i	57 - 23i	57 - 21i	59 - 23i	59 - 21i
Valor	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	_	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366	1367	1368	1369	1370	1371	1372	1373	1374	1375
Dispersión	63 - 1i	63 - 3i	61 - 1i	61 - 3i	63 - 71	63 - 5i	61 - 7i	61 - 5i	57 - 1i	57 - 3i	59 - 1i	59 - 31	57 - 71	57 - 5i	59 - 7i	59 - Si	63 - 15i	63 - 13	61 - 15i	61 - 13	63 - 9i	63 - 11i	61 - 9i	61 - 11i	57 - 15i	57 - 13i	59 - 15i	59 - 13i	57 - 9i	57 - 11i	59 - 9i	59 - 111
Valor	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311
Dispersión	33 - 33i	33 - 35i	35 - 33i	35 - 35i	33 - 39	33 - 37	35 - 39i	35 - 37i	39 - 33i	39 - 35i	37 - 33i	37 - 35	39 - 39	39 - 37i	37 - 39	37 - 37	33 - 47i	33 - 45i	35 - 47	35 - 45i	33 - 41i	33 - 43i	35 - 41i	35 - 43i	39 - 47i	39 - 45i	37 - 47i	37 - 45i	39 - 41i	39 - 43i	37 - 41i	37 - 43i
Valor	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	1229	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242	1243	1244	1245	1246	1247
Dispersión	33 - 63i	33 - 61i	29 - 65i	35 - 61i	33 - 57i	33 - 59	35 - 57i	35 - 59i	25 - 65i	25 - 67i	27 - 65i	37 - 61i	39 - 57i	39 - 59i	37 - 57i	37 - 59i	33 - 49	33 - 51i	35 - 49i	35 - 51	33 - 55i	33 - 53i	35 - 55i	35 - 53i	39 - 49i	39 - 51i	37 - 49i	37 - 51i	39 - 55i	39 - 53	37 - 55i	37 - 53i
Valor	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183
Dispersión	63 - 33i	65 - 29	61 - 33i	61 - 35i	65 - 25i	65 - 27i	67 - 25i	61 - 37i	57 - 33i	57 - 35i	59 - 33i	59 - 35i	57 - 39i	57 - 37i	59 - 39	59 - 37i	65 - 17	65 - 19	67 - 17i	67 - 19	65 - 23	65 - 21i	67 - 23	67 - 21i	71 - 17i	57 - 45i	69 - 17i	69 - 19i	57 - 41i	57 - 43i	59 - 41i	69 - 21i
Valor	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1,108	1109	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119
Dispersión	1 - 65i	65 - 3i	3 - 65i	3 - 67i	65 - 7i	65 - 5i	67 - 7i	67 - 5i	7 - 65i	7 - 67i	5 - 65	5 - 67i	7 - 711	7 - 69	69 - 7i	5 - 69	65 - 15i	65 - 13i	67 - 15i	67 - 13i	65 - 9i	65 - 11	67 - 9	67 - 11i	71 - 15i	71 - 13i	69 - 15i	69 - 13i	71 - 9	71 - 11i	69 - 9	69 - 11i
Valor		1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1021	1052	1053	1054	1055

Fig. 21

31	- 29i	. 31i	- 29i	- 25i	. 27i	. 25i	- 27i	. 31i	. 29i	. 31i	- 29i	. 25i	. 27i	- 25i	- 27i	- 17i	- 19i	- 17i	. 19i	- 23i	- 21i	- 23i	- 21i	- 17i	- 19i	17i	- 19i	- 23i	- 21i	. 23i	- 21i
47	47	45	45	47	47	45	45	41	41	43	43	41	41	43	43	47	47	45	45	47	47	45	45 -	41	41	43	43	41	41	43	43
1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535
7 - 1i	7 - 3i	5 - 1i	5 - 3	7 - 7i	7 - Si	5 - 71	5 - 5	- I	- 3	3 - 1i	3 - 3i	1 - 71	Si	3 - 71	3 - 5i	- 15i	- 13i	- 15i	- 13j	i6 - /	- 11i	i6 - 9	- 11i	- 15i	- 13i	- 15i	- 13i		- 11i	i6 - 8	- 11i
47	47	45	45	47	47	45	45	4	41	43	43	41	41	43	43	47	47	45	45	47	47	45	45	41	41	43	43	41	41	43	43
1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471
31i	- 29i	311	. 29i	- 25i	. 27i	- 25i	- 27i	- 31i	. 29i	311	- 29i	25i	- 27i	- 25i	. 27i	. 17i	191	- 17i	. 19i	23i	21 i	23i	21i	17i	19i	17i	19i	23i	21i	23i	21i
49	49 -	51	51	49	49 -	21	51	55	55	53	23	22	55	53	53 -	- 64	49	51	- 13	49	- 64	51 -	- 13	55 -	55 -	53 -	53 -	55 -	55 -	53 -	53 -
1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407
=	3	11	:5	7.	S.	7.	Σi	11	Ξ	ij	.ii	7.	ίΞ	7	ĩĩ	15!	13	15i	13i	j.	111	16	11i	15i	13i	15i	13i	<u>.</u>	11i	<u>.</u>	111
- 65	- 64	51 -	51 -	- 65	- 64	51 -	51 -	- 55	- 22	- 53 -	53 -	- 52	- 22	53 -	53 -	49 -	- 65	51 -	51 -	49 -	- 64	- 12	51 -	55 -	- 22	53 -	53 -	- 52	55 -	53 -	53 -
1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343
33i	35i	33i	35i	39i	37i	39i	37i	33i	35i	33i	35i	39i	37i	39i	37i	47i	45i	47i	45i	41i	43i	41i	43i	47i	45i	47i	45i	41i	43i	41i	43i
47 -	47 -	45 -	45 -	47 -	47 -	45 -	45 -	41 -	41 -	43 -	43 -	41 -	41 -	43 -	43 -	47 -	- 47 -	45 -	45 -	47 -	47 -	45 -	45 -	41 -	41 -	43 -	43 -	41 -	41 -	43 -	43 -
1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279
65i	67i	65i	67i	71i	169	57;	e9i	65	67i	65	67i	57:	59i	57i	169	49i	51i	49i	51;	55	53	55	53i	49i	51i	49	51i	55	53	55i	53i
17-	17 -	19 -	19 -	17 -	17 -	45 -	19 -	23 -	23 -	21 -	21 -	41 -	41 -	43 -	21 -	47 -	47 -	45 -	45 -	47 -	47 -	45 -	45 -	41 -	41 -	43 -	43 -	41 -	41 -	43 -	43 -
1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205	1206	1207	208	1209	1210	1211	212	1213	214	215
Н	-	-	_	-	-	-	-	-	Н			-	-	\vdash			-	-		-			-	-		-	_	i Tagendi	-	=	-
9 - 33	9 - 35	1 - 33	1 - 35	9 - 39	9 - 37	1 - 39	1 - 37	5 - 33	5 - 35	3 - 33	53 - 35	5 - 39	5 - 37	3 - 39	3 - 37	9 - 47	9 - 45	1 - 47	1 - 45i	9 - 41i	9 - 43	1 - 41	1 - 43	5 - 47	5 - 45	3 - 47i	3 - 45i	5 - 41i	5 - 43i	3 - 41	3 - 43i
49	49	51	3 51	49	49	51	51	3 55	55	53		55	3 55	53	53	49	49	51	51	49	49	51	21	55	22	53	53	55	. 55	23	53
1120	1125	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149		1151
- 65i	- 67i	- 65i	- 67i	- 71i	- 69i	- 71i	- 69i	- 65	- 67i	- 65	- 67i	9 - 71i	į69	- 71i	- 69	- 49i	- 51i	- 49i	- 51	- 55i	53	- 73i	53i	- 49i	- 13i	- 49i	- 51i	73i	- 11i	73i	- 53
15	15 .	13	13	15	15	13	13	- 6	- 6	=	11	- 6	- 6	Ξ	Ξ	49	49	51	51	49	49	13	51	55	73 -	53	53	6	73	=	23
1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087

Fig. 22

_	_	_		_	_	_	_	_	_	_			_	_			_	_		_	_	_	_	_	_	_		_	_			_	_		_
Dispersión	31 - 31i	31 - 29i	29 - 31i	29 - 29i	31 - 25i	31 - 27i	29 - 25i	29 - 27i	25 - 31i	25 - 29i	27 - 31i	27 - 29i	25 - 25i	25 - 27i	27 - 25i	27 - 27i	31 - 17i	31 - 19i	29 - 17i	29 - 19i	31 - 23i	31 - 21i	29 - 23i	29 - 21i	25 - 17i	25 - 19i	27 - 17i	27 - 19i	25 - 23i	25 - 21i	27 - 23	27 - 21i	17 - 31i	17 - 29i	19 - 31i
-		—			H			-			_		Щ.	_			-		110		L	1111	. 1	, -	191	Н		===	-		222	-			щ
Valor	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1:996	1997	1998	1:999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Dispersión	31 - 1i	31 - 3i	29 - 1i	29 - 3i	31 - 7i	31 - 5i	29 - 7i	29 - Si	25 - 1i	25 - 3i	27 - 1i	27 - 3i	25 - 7i	25 - 5i	27 - 7i	27 - Si	31 - 15	31 - 13i	29 - 15i	29 - 13i	31 - 9i	31 - 11i	29 - 9i	29 - 11i	25 - 15i	25 - 13i	27 - 15i	27 - 13i	25 - 9	25 - 11i	27 - 9i	27 - 11i	17 - 1i	17 - 3i	19 - 1i
Valor	1920	1921.	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	# 832⊪	1936	1937	1938⊞	1939	1940	1941	1942	1943	1944	1945	1946	1847≡	1948	1949	1950	1951	1952	1953	1954
Dispersión	1 - 31	1 - 29i	3 - 31	3 - 29	1 - 25	1 - 27i	3 - 25i	3 - 27	7 - 31i	7 - 29i	5 - 31i	5 - 29i	7 - 25i	7 - 27i	5 - 25	5 - 27	1 - 17	1-19	3 - 17i	3 - 19i	1 - 23i	1 - 21i	3 - 23i	3 - 21	7 - 17i	7 - 19i	5 - 17i	5 - 19i	7 - 23	7 - 21i	5 - 23	5 - 21i	15 - 31i	15 - 29i	13 - 31i
Valor	:1856:	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890
Dispersión	1 - 1i	1 - 3i	3 - 1i	3 - 3i	1 - 7i	1 - 5	3 - 7i	3 - 5	7 - 1i	7 - 3i	5 - 1i	5 - 3	7 - 7i	7 - 5i	5 - 7i	5 - 5i	1 - 15	1 - 13i	3 - 15i	3 - 13i	1 - 9	1-111	3 - 9i	3 - 11i	7 - 15i	7 - 13i	5 - 15i	5 - 13i	7 - 9	7 - 11i	5 - 9i	5 - 11i	15 - 1i	15 - 3i	13 - 1i
Valor	1792	1793	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810	1811	1812	E1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826
Dispersióm	31 - 33i	31 - 35i	29 - 33i	29 - 35i	31 - 39i	31 - 37i	29 - 39i	29 - 37i	25 - 33i	25 - 35i	27 - 33i	27 - 35i	25 - 39i	25 - 37i	27 - 39i	27 - 37i	31 - 47i	31 - 45i	29 - 47i	29 - 45i	31 - 41i	31 - 43i	29 - 41i	29 - 43i	25 - 47i	25 - 45i	27 - 47i	27 - 45i	25 - 41i	25 - 43i	27 - 41i	27 - 43i	17 - 33i	17 - 35i	19 - 33i
Valor	1728	1729	1730	≡1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742	1743	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759	1760	1761	1762
Dispersión	31 - 63i	31 - 61i	29 - 63i	29 - 61i	31 - 57i	31 - 59i	29 - 57i	29 - 59i	25 - 63i	25 - 61i	27 - 63i	27 - 61i	25 - 57i	25 - 59i	27 - 57i	27 - 59i	31 - 49	31 - 51i	29 - 49i	29 - 51i	31 - 55i	31 - 53i	29 - 55i	29 - 53i	25 - 49i	25 - 51i	27 - 49i	27 - 51i	25 - 55	25 - 53	27 - 55i	27 - 53i	17 - 63i	17 - 61i	19 - 63
Valor	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675	1676	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1588	1689	1690	1691	1692	1693	1694	1695	1696	1697	1698
Dispersión	1 - 33i	1 - 35i	3 - 33	3 - 35i	1 - 39i	1 - 37i	3 - 39i	3 - 37i	7 - 33i	7 - 35i	5 - 33i	5 - 35i	7 - 39i	7 - 37i	5 - 39i	5 - 37i	1 - 47i	1 - 45i	3 - 47i	3 - 45i	1-41	1 - 43	3 - 41i	3 - 43i	7 - 47i	7 - 45i	5 - 47i	5 - 45i	7 - 41i	7 - 43i	5 - 41i	5 - 43i	15 - 33i	15 - 35i	13 - 33i
Valor	1600	1601	1602	1603	1604	1605	1606	1607	1608	€091⊞	1610	1611	1612	1613	1614	1615	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634
Dispersión	1 - 63i	1 - 61i	3 - 63	3 - 61i	1 - 57i	1 - 59i	3 - 57i	3 - 59i	7 - 63i	7 - 61i	5 - 63i	5 - 61i	7 - 57i	7 - 59i	5 - 57	5 - 591	1 - 49	1 - 51	3 - 49i	3 - 51	1 - 55i	1 - 53	3 - 55	3 - 53	7 - 49i	7 - 51	5 - 49	5 - 51	7 - 55i	7 - 53i	5 - 55	5 - 53	15 - 63i	15 - 61i	13 - 63
Valor	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	#1551	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567	1568	1569	1570

Fig. 23

	_	_	_	_	_	_	-	_		_		_				_	_	_		_	_	_	_	_		_		_
19 - 29	17 - 25	17 - 27	19 - 25	19 - 27	23 - 31	23 - 29	21 - 31	١.	23 - 25i	23 - 27i	21 - 25i	21 - 27i	17 - 17	17 - 19	19 - 17	19 - 19	17 - 23	17 - 21i	19 - 23	19 - 21	23 - 17i	23 - 19	21 - 17	21 - 19	23 - 23	23 - 21i	21 - 23	21 - 21
2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047
19 - 3i	17 - 71	17 - 5i	19 - 7i	19 - 5i	23 - 1i	23 - 3i	21 - 11	21 - 3i	23 - 71	23 - 5i	21 - 7i	21 - 5i	17 - 15i	17 - 13i	19 - 15i	19 - 13i	17 - 91	17 - 11i	19 - 9i	11 - 61	23 - 15i	23 - 13i	21 - 15i	21 - 13i	23 - 9i	23 - 11i	21 - 9i	21 - 11i
1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
13 - 29i	15 - 25i	15 - 27i	13 - 25i	13 - 27i	9 - 31	9 - 29	11 - 31i	11 - 29i	9 - 25i	9 - 27i	11 - 25i	11 - 27i	15 - 17	15 - 19i	13 - 17i	13 - 19i	15 - 23i	15 - 21	13 - 23	13 - 21i	9 - 17i	9 - 19i	11 - 17	11 - 19	9 - 23i	9 - 21i	11 - 23i	11 - 21
1891	1892	1893	1894	1895	1896	1897	1.898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919
13 - 3i	15 - 7i	15 - Si	13 - 7i	13 - 5i	9 - 1i	9 - 3	11 - 1i	11 - 3i	9 - 7i	9 - 5i	11 - 7i	11 - 5i	15 - 15	15 - 13	13 - 15i	13 - 13i	15 - 91	15 - 11i	13 - 9i	13 - 11i	9 - 15i	9 - 13i	11 - 15i	11 - 13i	9 - 9i	9 - 11i	11 - 9i	11 - 11i
1827	1828	1829	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847	1848	1849	1850	1851	1.852	1853	1854	1855
19 - 35	17 - 39i	17 - 37i	19 - 39i	19 - 37i	23 - 33i	23 - 35i	21 - 33i	21 - 35i	23 - 39i	23 - 37i	21 - 39i	21 - 37i	17 - 47i	17 - 45i	19 - 47i	19 - 45i	17 - 41i	17 - 43i	19 - 41i	19 - 43i	23 - 47	23 - 45i	21 - 47	21 - 45	23 - 41	23 - 43	21 - 41	21 - 43i
1763	1,764	1765	1766	1767	1768	1769	1770	1771	1772	1,773	1774	1775	1776	1777	1778	11779≡	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791
19 - 61i	17 - 57i	17 - 59	19 - 57	19 - 59i	23 - 63i	23 - 61i	21 - 63i	21 - 61i	23 - 57	23 - 59	21 - 57i	21 - 59	17 - 49	17 - 51i	19 - 49	19 - 51i	17 - 55i	17 - 53i	19 - 55	19 - 53	23 - 49i	23 - 51	21 - 49	21 - 51i	23 - 55	23 - 53	21 - 55i	21 - 53
1699	1,700	1701	1702	1703	1704	1705	1,706	1707	1708	1709	1710	1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	1726	1727
13 - 35	15 - 39i	15 - 37	13 - 39	13 - 37	9 - 33	9 - 35i	11 - 33i	11 - 35i	9 - 39	9 - 37i	11 - 39i	11 - 37	15 - 47	15 - 45i	13 - 47	13 - 45	15 - 41i	15 - 43	13 - 41	13 - 43	9 - 47	9 - 45i	11 - 47i	11 - 45	9 - 41i	9 - 43i	11 - 41	11 - 43
1635	1636	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653	1654	1655	1656	1657	1658	1659	1660	1661	1562	1663
13 - 61i	15 - 57i	15 - 59	13 - 57i	13 - 59	9 - 63	9 - 61	11 - 63i	11 - 61i	9 - 57i	9 - 59i	11 - 57i	11 - 59i	15 - 49i	15 - 51	13 - 49i	13 - 51	15 - 55i	15 - 53i	13 - 55i	13 - 53i	9 - 49	9 - 51i	11 - 49i	11 - 51	9 - 55i	9 - 53	11 - 55i	11 - 53i
1571	1572	1573	1574	1575	1.576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594	1595	1596	1597	1598	1599

Fig. 24

-ju	31	29	31	29	25	27	25	27	311	29	311	29	25	27	25	27	2	6	7	6	23	211	23	21i	7	19	1	6	m	211	ñ	표	31
Dispersión	-33 +	-33 + 5	-35 +	-35 + 2	-33 + 2	-33 + 2	-35 + 2	-35 + 2	-39 + 3	+	-37 + 3	-37 + 2	-39 + 2	-39 + 2	-37 + 2	-37 + 2	-33 + 1	-33 + 1	-35 + 1	-35 + 1	-33 + 2	-33 + 2	-35 + 2	-35 + 2	-39 + 1	-39 + 1	-37 + 1	-37 + 1	-39 + 2	-39 + 2	-37 + 2	-37 + 2	-47 + 3
: Valor	2496	2497	2498	2499	2500	2501	2502	2503	2504	2505	2506	2507	2508	2509	2510	2511	2512	2513	2514	2515	2516	2517	2518	2519	2520	2521	2522	2523	2524	2525	2526	2527	2528
Dispersión	-33 + 1i	-33 + 31	-35 + 1i	-35 + 3i	-33 + 7i	-33 + 5i	-35 + 7i	-35 + 5i	-39 + 11	-39 + 3i	-37 + 1i	-37 + 3i	-39 + 7i	-39 + 5	-37 + 7i	-37 + 5i	-33 + 15	-33 + 13i	-35 + 15i	-35 + 13i	-33 + 9i	-33 + 110	-35 + 9i	-35 + 11i	-39 + 15	-39 + 13	-37 + 15i	-37 + 13i	-39 + 9i	-39 + 11i	-37 + 9i	-37 + 11i	-47 + 1i
Valor	2432	2433	2434	2435	2436	2437	2438	2439	2440	2441	2442	2443	2444	2445	2446	2447	2448	2449	2450	2451	2452	2453	2454	2455	2456	2457	2458	2459	2460	2461	2462	2463	2464
Valor Dispersión	-63 + 31	-63 + 29	-61 + 31	-61 + 29i	-63 + 25i	-63 + 276	-61 + 256	-61 + 276	-57 + 31i	-57 + 29	-59 + 31i	-59 + 29	-57 + 25	-57 + 27	-59 + 25	-59 + 27	-63 + 170	-63 + 19i	-61 + 17i	-61 + 19i	-63 + 23i	-63 + 21	-61 + 23	-61 + 210	-57 + 176	-57 + 19i	-59 + 17i	-59 + 19	-57 + 23	-57 + 216	-59 + 23	-59 + 216	49 + 31
Valor	2368	2369	2370	2371	2372	2373	2374	2375	2376	2377	2378	2379	2380 -57	2381	2382	2383	2384	2385	2386	2387	2388	2389	2390	7391	2392	2393	2394	2395	2396	2397	2398	2399	2400 49
Dispersión	-63 + 1i	-63 + 31	-61 + 11	-61 + 3i	-63 + 7i	-63 + 5i	-61 + 7i	-61 + Si	-57 + 1i	-57 + 3i	-59 + 1i	-59 + 3	-57 + 7i	-57 + 5i	-59 + 7i	-59 + 5	-63 + 150	-63 + 13	-61 + 15i	-61 + 13	-63 + 9i	-63 + 11	-61 + 9i	-61 + 118	-57 + 15i	-57 + 13i	-59 + 15i	-59 + 13	-57 + 9i	-57 + 11i	-59 + 9i	-59 + 11i	-49 + 1i
Valor	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314	2315	2316	2317	2318	2319	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335	2336
Dispersión	-33 + 33i	-33 + 35i	-35 + 33i	-35 + 35i	-33 + 39i	-33 + 37i	-35 + 39i	-35 + 37i	-39 + 33i	-39 + 35i	-37 + 33	-37 + 35i	-39 + 39i	-39 + 37i	-37 + 39i	-37 + 37i	-33 + 47i	-33 + 45i	-35 + 47i	-35 + 45i	-33 + 41i	-33 + 43i	-35 + 41i	-35 + 43i	-39 + 47i	-39 + 45i	-37 + 47i	-37 + 45i	-39 + 41i	-39 + 43i	-37 + 41i	-37 + 43i	-47 + 33i
Valor	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254	2255	2256	2257	2258	2259	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272
Dispersión	-33 + 63i	-33 + 61i	-29 + 65i	-35 + 61i	-33 + 57i	-33 + 59	-35 + 57i	-35 + 59	-25 + 65i	-25 + 67	-27 + 65i	-37 + 61i	-39 + 57i	-39 + 59i	-37 + 57i	-37 + 59i	-33 + 49i	-33 + 51i	-35 + 49i	-35 + 51i	-33 + 55i	-33 + 53i	-35 + 55i	-35 + 53i	-39 + 49i	-39 + 51i	-37 + 49i	-37 + 51i	-39 + 55i	-39 + 53i	-37 + 55i	-37 + 53i	-17 + 65i
Valor	21,76	2177	2178	21.79	2180	2181	2182	2183	2184	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202	2203	2204	2205	2206	2207	2208
Dispersión	-63 + 33i	-65 + 29i	-61 + 33i	-61 + 35i	-65 + 25i	-65 + 27i	-67 + 25i	-61 + 37i	-57 + 33i	-57 + 35i	-59 + 33i	-59 + 35i	-57 + 39i	-57 + 37i	-59 + 39	-59 + 37	-65 + 17i	-65 + 19i	-67 + 17i	-67 + 19i	-65 + 23i	-65 + 21i	-67 + 23i	-67 + 21i	-71 + 17i	-57 + 45i	-69 + 17i	-69 + 19i	-57 + 41	-57 + 43	-59 + 41i	-69 + 21	-49 + 33i
Valor	2112	2113	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132	2133	$\overline{}$	2135	_	_	2138	2139	2140	2141	$\overline{}$	2143	2144
Dispersión	-1 + 65i	-65 + 3i	-3 + 65i	-3 + 67i	-65 + 7i	-65 + Si	-67 + 7i	-67 + 5i	-7 + 65i	-7 + 67i	-5 + 65i	-5 + 67i	-7 + 71i	-7 + 69	-69 + 7i	-5 + 69	-65 + 15i	-65 + 13i	-67 + 15i	-67 + 13i	-65 + 9i	-65 + 11i	-67 + 9i	-67 + 11i	-71 + 15i	-71 + 13i	-69 + 15i	-69 + 13i	-71 + 9i	-71 + 11i	i6 + 69-	-69 + 11i	2080 -15 + 65
Valor	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063	-	2065	2066	2067	2068		2070	2071		_	2074		2076	2027		2079	2080

Fig. 25

+ 29	+ 31	+ 29	+ 25	+ 27	+ 25	+ 27i	+ 31	+ 29	+ 31	+ 29	+ 25i	+ 27	+ 25	+ 27	+ 17	+ 19	+ 17	+ 19	+ 23	+ 21	+ 23	+ 21	+ 17	+ 19	+ 17	+ 19	+ 23	+ 21	+ 23	+ 21
-47	-45	-45	-47	-47	-45	-45	-41	-41	-43	-43	-41	-41	-43	-43	-47	-47	-45	-45	-47	-47	-45	-45	-41	-41	-43	-43	-41	-41	-43	-43
2529	2530	2531	2532	2533	2534	2535	2536	2537	2538	2539	2540	2541	2542	2543	2544	2545	2546	2547	2548	2549	2550	2551	2552	2553	2554	2555	2556	2557	2558	2559
÷	+ 1i	+ 3i	+ 7i	+ Si	+ 7i	+ 5	+ 1i	+ 3	+ 1i	+ 3	+ 7i	+ 5	+ 7i	+ 5i	- 150	. 13	. 15	13	+ 9i	110	+ 9	- 11	- 15i	. 13	. 15i	13	+ 9	111	+ 9	==
-47	-45	-45	-47	-47	-45	-45	-41	-41	-43	-43	-41	-41	-43	-43	-47+	-47+	-45+	-45+	-47	-47+	-45	-45+	-41+	-41+	-43+	-43+	-41	-41+	-43	-43+
2465	2466	2467	2468	2469	2470	2471	2472	2473	2474	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494	2495
29	31	29	25	27	25	27	31	29	316	29	25	27	25	27	170	19	17	19	23	21	23	21	17	19	17	19	23	21	23	21
49+	-51 +	-51 +	-46+	-46+	-51+	-51+	-55 +	+ 55-	-53 +	-53 +	-55 +	+ 55-	-53 +	-53 +	+ 61-	+ 64-	-51+	-51+	+ 64-	-46+	-51 +	-51 +	-52 +	-55 +	-53 +	-53 +	-55 +	-55 +	-53 +	-53+
2401	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431
÷	+ 1i	+ 3i	+ 7i	+ 5i	+ 7i	+ 5i	+ 11	+ 3i	+ 1i	+ 3i	+ 7i	+ 5i	+ 7i	+ 5i	15	13	15	13	+ 9i	116	i6 +	111	15	13	15	13	1 6+	11	+ 9i	11
49	-51	-51	-46	-49-	-51	-51	-52-	-52-	-53 -	1 1	-52-	-52-	-53 -	-53 -	+ 65-	+ 65-	-51+	-51+	-49	-46+	-51	-51+	-55 +	-55 +	-53 +	-53 +	-52-	-52 +	-53	-53+
2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354	2355	2356	2357	2358	2359	2360	2361	2362	2363	2364	2365	2366	2367
35i	33	35i	39	37i	39	37i	33	35i	33	35	39	37i	39	37	47	45i	47	45i	41	43i	41i	43i	47	45i	47 i	45i	41i	43i	41i	43
-47+	45+	-45+	-47+	-47+	-45+	-45+	-41+	-41+	-43+	-43+	-41+	-41+	-43+	-43+	-47+	-47+	-45+	-45+	-47+	-47+	-45+	-45+	-41+	-41+	-43+	-43+	-41+	41+	-43+	-43+
2273	2274	2275	2276	2277	2278	2279	2280	2281	2282	2283	2284	2285	2286	2287	2288	2289	2290	2291	2292	2293	2294	2295	2296	2297	2298	2299	2300	2301	2302	2303
67i	65i	67i	71i	69i	57i	69i	e5i	67i	65 i	67i	57i	59i	57i	69i	49i	511	49	21	55	53i	55i	53	49i	511	49	51i	55i	53i	55	53i
-17 +	-19 +	-19 +	-17 +	-17 +	-45 +	-19 +	-23 +	-23 +	-21 +	-21 +	-41+	-41+	-43 +	-21 +	-47 +	-47 +	-45 +	-45 +	-47 +	-47 +	-45 +	-45 +	-41+	-41+	-43+	-43 +	-41+	-41 +	-43 +	-43 +
209	2210	2211	212	2213	2214	2215	2216	2217	2218	2219	2220	2221	2222	2223	2224	2225	2226	2227	2228	2229	2230	231	2232	233	234	2235	2236	237	2238	2239
1.4		1, 1	-17		. "	_					, .			100			- 1				,,,	2		.CNE	.23			2		
+ 35	+ 33i	+ 35i	+ 39	+ 37	+ 39	+ 37i	+ 33	+ 35	+ 33i	+ 35i	+ 39	+ 37i	+ 39	+ 37i	+ 47	+ 45	+ 47i	+ 45	+ 41	+ 43	+ 41	+ 43	+ 47i	+ 45i	+ 47	+ 45	+ 41	+ 43	+ 41	+ 43
-49	-51	-51	-49	-49	-51	-51	-55	-55	-53	-53	-55	-55	-53	-53	-49	-49	-51	-51	-49	-49	-51	-51	-55	-55	-53	-53	-55	-55 +	-53	-53
2145	2146	2147	2148	2149	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165	2166	2167	2168	2169	2170	2171	2172	2173	2174	2175
67	65	67	. 71i	69	71	69	65i	67i	65	· 67i	+ 71i	69i	71	. 69i	49i	51i	49	· 51i	55i	53	73i	53	49	13	49	· 51i	73i	110	73	23
-15+	-13+	-13+	-15+	-15 +	-13+	-13+	+ 6-	+ 6-	-11+	-11 +	+ 6-	+ 6-	-11 +	-11+	-46+	-46+	-51+	-51+	-46+	-46+	-13+	-51+	-55 +	-73+	-53 +	-53 +	+ 6-	-73+	-11+	-53+
2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2002	2093	2094	2095	2096	2097	2098	- 6602	2100	2101	2102	2103	2104	2105 -	2106	2107	2108	2109	2110	2111

Fig. 26

_	<u></u> 1	·=		·=	iā	i="	12	=		75		75	170	-	1707	27	274	7	1-	<u></u>	:=		Ver.		1-	:=		·=	:==		<u></u>
Dispersión	-31 + 31	-31 + 29	-29 + 31	-29 + 29	-31 + 25	-31 + 27	-29 + 25	-29 + 27	-25 + 31	-25 + 29i	-27 + 31i	-27 + 29i	-25 + 25	-25 + 27	-27 + 25i	-27 + 27	-31 + 17	-31 + 19	-29 + 17	-29 + 19	-31 + 23i	-31 + 21	-29 + 23	-29 + 21	-25 + 17	-25 + 19	-27 + 17	-27 + 19i	-25 + 23	-25 + 21	-27 + 23
Valor	3008	3009	3010	3011	3012	3013	3014	3015	3016	3017	3018	3019	3020	3021	3022	3023	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033	3034	3035	3036	3037	3038
Dispersión	-31 + 1i	-31 + 3i	-29 + 1i	-29 + 3i	-31 + 7i	-31 + 5i	-29 + 7i	-29 + 51	-25 + 1i	-25 + 3i	-27 + 1i	-27 + 3i	-25 + 7i	-25 + 5i	-27 + 7i	-27 + 5i	-31 + 15i	-31 + 13i	-29 + 15i	-29 + 13i	-31 + 9i	-31 + 11i	-29 + 9i	-29 + 11i	-25 + 15i	-25 + 13i	-27 + 15i	-27 + 13i	-25 + 9i	-25 + 11i	-27 + 9i
Valor	2944	2945	2946	2947	2948	2949	2950	2951	2952	2953	2954	2955	2956	2957	2958	2959	2960	2961	2962	2963	2964	2962	2966	2967	2968	2969	2970	2971	2972	2973	2974
Dispersión	-1 + 31i	-1 + 29i	-3 + 31i	-3 + 29	-1 + 25i	-1 + 27i	-3 + 25i	-3 + 27i	-7 + 31i	-7 + 29	-5 + 31	-5 + 29i	-7 + 25i	-7 + 27i	-5 + 25i	-5 + 27i	-1 + 17i	-1 + 19i	-3 + 17i	-3 + 19i	-1 + 23i	-1 + 21i	-3 + 23i	-3 + 21i	-7 + 17i	-7 + 19i	-5 + 17i	-5 + 19i	-7 + 23i	-7 + 21i	-5 + 23i
Valor	2880	2881	2882	2883	2884	2885	2886	2887	2888	2889	2890	2891	2892	2893	2894	2895	2896	2897	2898	2899	2900	2901	2902	2903	2904	2902	2906	2907	2908	5909	2910
Dispersión	-1 + 1i	-1 + 3i	-3 + 1i	-3 + 3i	-1 + 7i	-1 + 5i	-3 + 7i	-3 + 5i	-7 + 1i	-7 + 3i	-5 + 1i	-5 + 3i	-7 + 7i	-7 + 5i	-5 + 7i	-5 + 5i	-1 + 15i	-1 + 13	-3 + 15	-3 + 13i	-1 + 9i	-1 + 11i	-3 + 9i	-3 + 11i	-7 + 15i	-7 + 13i	-5 + 15i	-5 + 13i	-7 + 9i	-7 + 11i	-5 + 9i
Valor	2816	2817	2818	2819	2820	2821	2822	2823	2824	2825	2826	2827	2828	2829	2830	2831	2832	2833	2834	2835	2836	2837	2838	2839	2840	2841	2842	2843	2844	2845	2846
Dispersión	-31 + 33	-31 + 35i	-29 + 33i	-29 + 35i	-31 + 39i	-31 + 37i	-29 + 39i	-29 + 37i	-25 + 33i	-25 + 35i	-27 + 33i	-27 + 35i	-25 + 39i	-25 + 37i	-27 + 39i	-27 + 37i	-31 + 47i	-31 + 45i	-29 + 47	-29 + 45i	-31 + 41i	-31 + 43i	-29 + 41i	-29 + 43i	-25 + 47i	-25 + 45i	-27 + 47i	-27 + 45i	-25 + 41i	-25 + 43i	-27 + 41i
Valor	2752	2753	2754	2755	2756	2757	2758	2759	2760	2761	2762	2763	2764	2765	2766	2767	2768	2769	2770	2771	2772	2773	2774	2775	2776	2777	2778	2779	2780	2781	2782
Dispersión	-31 + 63i	-31 + 61i	-29 + 63i	-29 + 61i	-31 + 57i	-31 + 59i	-29 + 57i	-29 + 59i	-25 + 63i	-25 + 61i	-27 + 63i	-27 + 61i	-25 + 57i	-25 + 59i	-27 + 57i	-27 + 59i	-31 + 49i	-31 + 51i	-29 + 49i	-29 + 51i	-31 + 55i	-31 + 53i	-29 + 55i	-29 + 53i	-25 + 49i	-25 + 51	-27 + 49i	-27 + 51i	-25 + 55i	-25 + 53	-27 + 55i
Valor	2688	5689	2690	2691	2692	2693	2694	2692	2696	2697	2698	2699	2700	2701	2702	2703	2704	2705	2706	2707	2708	2709	2710	2711	2712	2713	2714	2715	2716	2717	2718
Dispersión	-1 + 33i	-1 + 35i	-3 + 33i	-3 + 35i	-1 + 39i	-1 + 37i	-3 + 39i	-3 + 37i	-7 + 33i	-7 + 35i	-5 + 33i	-5 + 35i	-7 + 39i	-7 + 37i	-5 + 39i	-5 + 37i	-1 + 47i	-1 + 45i	-3 + 47i	-3 + 45i	-1 + 41i	-1 + 43i	-3 + 41i	-3 + 43i	-7 + 47i	-7 + 45i	-5 + 47i	-5 + 45i	-7 + 41i	-7 + 43i	-5 + 41i
Valor	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639	2640	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654
Dispersión	-1 + 63i	-1 + 61i	-3 + 63i	-3 + 61i	-1 + 57i	-1 + 59i	-3 + 57i	-3 + 59i	-7 + 63i	-7 + 61i	-5 + 63i	-5 + 61i	-7 + 57i	-7 + 59i	-5 + 57i	-5 + 59i	-1 + 49i	-1 + 51i	-3 + 49i	-3 + 51i	-1 + 55i	-1 + 53i	-3 + 55i	-3 + 53	-7 + 49i	-7 + 51i	-5 + 49i	-5 + 51i	-7 + 55i	-7 + 53i	-5 + 55i
Valor	2560	2561	2562	2563	2564	2565	2566	2567	2568	2569	2570	2571	2572	2573	2574	2575	2576	2577	2578	2579	2580	2581	2582	2583	2584	2585	2586	2587	2588	2589	2590

Fig. 27

21	31	162	31	29i	25	27	25	12	31	29:	31;	29;	25i	27i	25	27i	17i	19	١ĸ	19	23	21i	23	T	ī	ō	Ī.	i ā	im	13	<u></u>	ī
-27 + 2	-17 + 3	-17 + 2	+	-19 + 2	-17 + 2		+	- +	1+	-23 + 2	l +	-21 + 2	-23 + 2	-23 + 2	-21 + 2	-21 + 2	-17 + 1	-17 + 1	-19 + 17	-19+1	-17 + 2	-17 + 2	-19 + 2	-19 + 21	-23 + 17	-23 + 19	-21 + 17	-21 + 19		-23 + 21	-21 + 2	-21 + 21
3039	3040	3041	3042	3043	3044	3045	3046	3047	3048	3049	3050	3051	3052	3053	3054	3055	3056	3057	3058	3059	3060	3061	3062	3063	3064	3065	3066	3067	3068	3069	3070	3071
-27 + 11	-17 + 1i	-17 + 3i	-19 + 1i	-19 + 3i	-17 + 71	+	+	+	-23 + 1i	-23 + 3i	-21 + 1i	-21 + 3i	-23 + 7i	-23 + 5i	-21 + 7i	-21 + 5i	-17 + 15i	-17 + 13i	-19 + 15	-19 + 13i	-17 + 9i	-17 + 11i	-19 + 9i	-19 + 11i	-23 + 15i	-23 + 13i	-21 + 15i	-21 + 13i	-23 + 9i	-23 + 111	-21 + 9i	-21 + 11i
2975	2976	2977	2978	2979	2980	2981	2982	2983	2984	2985	2986	2987	2988	2989	2990	2991	2992	2993	2994	2995	2996	2997	2998	2999	3000	3001	3002	3003	3004	3005	3006	3007
-5 + 21	-15 + 31i	-15 + 29	-13 + 31i	-13 + 29i	-15 + 25i	-15 + 27i	-13 + 25i	+	-9 + 31i	-9 + 29i	-11 + 31i	-11 + 29i	-9 + 25i	-9 + 27i	-11 + 25i	-11 + 27i	-15 + 17i	-15 + 19i	-13 + 17i	-13 + 19i	-15 + 23i	-15 + 21i	-13 + 23i	-13 + 21i	-9 + 17	-9 + 19i	-11 + 17i	-11 + 19i	-9 + 23i	-9 + 21i	-11 + 23i	-11 + 21i
2911	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923	2924	2925	2926	2927	2928	2929	2930	2931	2932	2933	2934	2935	2936	2937	2938	2939	2940	2941	2942	2943
-5 + 11i	-15 + 1i	-15 + 3i	-13 + 1i	-13 + 3	-15 + 7	-15 + 5i	-13 + 7i	-13 + 5i	-9 + 1i	-9 + 3i	-11 + 1i	-11 + 3i	-6 + Ji	-9 + 5i	-11 + 7i	-11 + 5i	-15 + 15i	-15 + 13i	-13 + 15i	-13 + 13i	-15 + 9i	-15 + 11i	-13 + 9i	-13 + 11i	-9 + 15i	-9 + 13i	-11 + 15i	-11 + 13i	16 + 6-	-9 + 11i	-11 + 9i	-11 + 11i
2847	2848	2849	2850	2851	2852	2853	2854	2855	2856	2857	2858	2859	2860	2861	2862	2863	2864	2865	2866	2867	2868	2869	2870	2871	2872	2873	2874	2875	2876	2877	2878	2879
-27 + 43i	-17 + 33i	-17 + 35i	-19 + 33i	-19 + 35i	-17 + 39i	-17 + 37i	-19 + 39i	-19 + 37i	-23 + 33i	-23 + 35i	-21 + 33i	-21 + 35i	-23 + 39i	-23 + 37i	-21 + 39i	-21 + 37i	-17 + 47i	-17 + 45i	-19 + 47	-19 + 45i	-17 + 41i	-17 + 43i	-19 + 41j	-19 + 43	-23 + 47i	-23 + 45i	-21 + 47i	-21 + 45i	-23 + 41i	-23 + 43i	-21 + 41i	-21 + 43i
2283	2784	2785	2786	2787	2788	2789	2790	2791	2792	2793	2794	2795	2796	2797	2798	2799	2800	2801	2802	2803	2804	2805	2806	2807	2808	2809	2810	2811	2812	2813	2814	2815
-27 + 53	-17 + 63i	-17 + 61i	-19 + 63i	-19 + 61i	-17 + 57i	-17 + 59i	-19 + 57i	-19 + 59i	-23 + 63i	-23 + 61i	-21 + 63i	-21 + 61i	-23 + 57i	-23 + 59i	-21 + 57i	-21 + 59i	-17 + 49i	-17 + 51i	-19 + 49i	-19 + 51i	-17 + 55i	-17 + 53i	+[-19 + 53i	-23 + 49i	-23 + 51i	-21 + 49	-21 + 51i	-23 + 55i	-23 + 53i	-21 + 55i	-21 + 53i
2719	2720	2721	2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	2734	2735	2736	2737	2738	2739	2240	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751
-5 + 43i	-15 + 33i	-15 + 35i	-13 + 33	-13 + 35i	-15 + 39i	-15 + 37i	-13 + 39i	-13 + 37i	-9 + 33	-9 + 35i	-11 + 33i	+	-9 + 39i	-9 + 37i	-11 + 39i	-11 + 37i	-15 + 47i	-15 + 45i	-13 + 47i	+1	-15 + 41i	-15 + 43i	-13 + 41i	-13 + 43i	+	-9 + 45i	-11 + 47i	-11 + 45i	-9 + 41i	-9 + 43i	-11 + 41i	-11 + 43
2655	2656	2657	2658	2659	2660	2661	2662	2663	2664	2665	2666	2667	2668	2669	2670	2671	2672	2673	2674	2675	2676	2677	2678	2679	2680	2681	2682	2683	2684	2685	2686	2687
-5 + 53	-15 + 63i	+	+	+	-15 + 57i	-15 + 59i	-13 + 57i	-13 + 59i	-9 + 63i	-9 + 61i	-11 + 63i	-11 + 61i	+	-9 + 59	-11 + 57	-11 + 59	+	-15 + 51	-13 + 49i	+	+	+	-13 + 55i	-13 + 53	-9 + 49	+1	-11 + 49	-11 + 51i	-9 + 55	+	-11 + 55i	-11 + 53i
2591	2592	2593	2594	2595	2596	2597	2598	2599	2600	2601	2602	2603	2604	2605	2606	2607	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	-	2623

Fig. 28

Dispersión	- 31	3 - 29	31i	29i	3 - 25i	3 - 27i	25i	27i	- 31i	- 29i	- 31i	29i	- 25i	- 27i	- 25i	- 27i	3 - 17i	3 - 19i	i - 17i	i - 19i	3 - 23i	3 - 21i	23i	5 - 21i	1-17i	- 19i	7 - 17i	-37 - 19i	- 23i
_	-33	-33	-35	-35	-33	-33	-35	-35	-39	-39	-37	-37	-39	-39	-37	-37	-33	-33	-35	-35	-33	-33	-35	-35	-39	-39	-37		-39
: Valor	3520	3521	3522∺	3523	3524	3525₽	3526	3527	3528	3529	3530	3531	3532	3533	3534≣	3535	3536	3537	3538	3539	3540:::	3541	3542	3543	3544	3545	3546	3547	3548
Dispersión	33 - 11	33 - 3i	35 - 1i	35 - 3i	33 - 7i	33 - 5i	35 - 7i	35 - Si	-39 - 1i	39 - 3i	37 - 1i	37 - 3i	39 - 7i	-39 - Si	37 - 71	37 - 5i	33 - 15	-33 - 13i	-35 - 15i	-35 - 13i	33 - 9i	33 - 11i	-35 - 9i	35 - 11i	-39 - 15i	-39 - 13i	-37 - 15i	-37 - 13i	-39 - 9i
Valor	3456	3457	3458 -	3459 -	3460 -	3461	3462	3463 -	346#	3465	3466	=346∄ -	3468 -	3469	#3470	3471	3472 -	3473 -	3474 -	3475 -	3476	3477 -	3478 -	3479	3480 -	3481 -	3482 -	3483 -	3484
Dispersión	-63 - 31i	-63 - 29i	-61 - 31i	-61 - 29i	-63 - 25i	-63 - 27	-61 - 25i	-61 - 27i	-57 - 31i	57 - 29	-59 - 31i	-59 - 29i ≡	57 - 25	-57 - 271	-59 - 25i	-59 - 27i	-63 - 17	-63 - 19i	-61 - 17i	-61 - 19i	-63 - 23	-63 - 21i	-61 - 23	-61 - 21i	-57 - 17i	-57 - 19i	-59 - 17i	-59 - 19i	-57 - 23i
Valor	3392	3393	3394 -	3395	3396 -	3397	3398	3399	3400	3401	3402	3403	3404	3405	3406	_	3408	3409	3410	3411 -	3412	3413	3414	3415	3416	3417	3418	3419	3420 -
Dispersión	-63 - 1)	-63 - 3i	-61 - 1i	-61 - 3i	-63 - 7i	-63 - Si	-61 - 7i	-61 - 5i	-57 - 1i	-57 - 3i	-59 - 1i	-59 - 3i	-57 - 7i	-57 - Si	-59 - 7i	-59 - 5i	-63 - 15i	-63 - 13i	-61 - 15i	-61 - 13	-63 - 9i	-63 - 11i	-61 - 9i	-61 - 11i	-57 - 15i	-57 - 13i	-59 - 15i	-59 - 13i	-57 - 9i
Valor	3328	3329	3330≡	3331	3332	3333≡	3334	3335	3336	3337	3338	3339≘	3340	3341	3342	3343	3344	3345	3346	3347	3348	3349	3350	3351	3352	3353	3354	3355	3356
Dispersión	.33 - 33i	-33 - 35i	-35 - 33i	-35 - 35i	-33 - 39i	-33 - 37i	-35 - 39i	·35 - 37i	-39 - 33i	-39 - 35i	-37 - 33i	-37 - 35i,	-39 - 39i	-39 - 37i	-37 - 391	-37 - 37i	-33 - 47i	-33 - 45i	-35 - 47i	-35 - 45i	-33 - 41i	-33 - 43i	-35 - 41i	-35 - 4 3i	-39 - 47i	-39 - 45	-37 - 47i	-37 - 45i	-39 - 41i
Valor	3264	3265	:3266::	3267	3268	3269	3270	3271	3272	3273	3274	3275	3276	3277	3278	3279.	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291	3292
Dispersión	-33 - 63i	-33 - 61i	-29 - 65i	-35 - 61i	-33 - 57i	-33 - 59i	-35 - 57i	-35 - 59i	-25 - 65i	-25 - 67i	-27 - 65i	-37 - 61i	-39 - 57i	-39 - 59i	-37 - 57i	-37 - 59i	-33 - 49i	-33 - 51i	-35 - 49i	-35 - 51	-33 - 55i	-33 - 53i	-35 - 55i	-35 - 53i	-39 - 49i	-39 - 51i	-37 - 49i	-37 - 51i	-39 - 55i
Valor	3200	3201	3202	3203	3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215	3216	3217	3218	3219	3220	3221	3222	3223	3224	3225	3226	3227	3228
Dispersión	-63 - 33i	-65 - 29i	-61 - 33i	-61 - 35i	-65 - 25i	-65 - 27	-67 - 25i	-61 - 37	-57 - 33	-57 - 35i	-59 - 33	-59 - 35i	-57 - 39i	-57 - 37	-59 - 39	-59 - 37i	-65 - 17	-65 - 19i	-67 - 17	-67 - 19i	-65 - 23i	-65 - 21i	-67 - 23	-67 - 21	-71 - 17i	-57 - 45i	-69 - 17	-69 - 19i	-57 - 41i
Valor	3136	3137	3138	3139	3140	3141	3142	3143	3144	3145	3146	3147	3148	3149	3150	3151	3152	3153	3154	3155	3156	3157	3158	3159	3160	3161	3162	3163	3164
Dispersión Valor	-65 - 1i	-65 - 3i	-3 - 65i	-67 - 3i	-65 - 7i	-65 - Si	-67 - 7i	-67 - Si	-7 - 65i	-7 - 67i	-5 - 65i	-5 - 67i	-71 - 7i	-7 - 69	-69 - 7i	-69 - Si	-65 - 15	-65 - 13i	-67 - 15i	-67 - 13	-65 - 9i	-65 - 11i	-62 - 9i	-67 - 11i	-71 - 15i	-71 - 13	-69 - 15i	-69 - 13i	-71 - 9i
Valor	3072	3073	3074	3075	3076	3077	3078	3079	3080	3081	3082	3083	3084	3085	3086	3087	3088	3089	3090	3091	3092	3093	3094	3095	3096	3097	3098	3099	3100

Fig. 29

21 i	23i	21 i	31i	29i	31i	29i	25i	27i	25i	27i	31	29i	31i	29i	25i	27i	25i	27i	17	19i	171	19	33	211	23	21i	17	19	171	<u>6</u>	23i	211	23i	21i
-39 - 5	-37 - 2	-37 - 21	-47 -	-47 - 2	-45 - 3	-45 - 2	-47 - 2	-47 - 2	5	-45 - 2	-41 - 3	-41 - 2	-43 - 3	-43 - 2	-41 - 2	-41 - 2	-43 - 2	-43 - 2	-47 - 1	-47 - 3	-45 - 1	-45 - 1	-47 - 23	-47 - 2	-45 - 2	-45 - 21	-41 - 1	-41 - 1	-43 - 1	-43 - 1	-41 - 2	-41 - 2	-43 - 2	-43 - 2
_	-	-	-	_	-	-	-	_	89	-	-	-	-	-		-	_	-	-	_	-	-		_	-			_	80	6	-	Н	$\overline{}$	_
3549	3550	3551	3552	3553	3554	3555	3556	3557	3558	3559	3560	3561	3562	3563	3564	3565	3566	3567	3568	3569	3570	3571	3572	3573	3574	3575	3576	357	357	357	3580	3581	3582	3583
- 11i	- 9i	- 11i	- 1i	- 3i	- 1.i	- 3i	- 7i	- 5i	- 7i	- Si	- 1i	- 3i	- 1i	- 3i	- 7i	- 5i	- 7i	- 5i	- 15i	- 13i	- 15i	- 13i	- 9i	- 11i	- 9i	- 11i	- 15i	- 13i	- 15i	- 13i	- 9i	- 11i	- 9i	- 11
-39	-37	-37	-47	-47	-45	-45	-47	-47	-45	-45	41	-41	-43	-43	-41	-41	-43	-43	-47	-47	-45	-45	-47	-47	-45	-45	-41	-41	-43	-43	-41	-41	-43	43
3485	3486	3487	3488	3489	3490	3491	3492	3493	3494	3495	3496	3497	3498	3499	3500	3501	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519
. 21i	- 23i	- 21i	. 31i	. 29i	31i	. 29i	. 25i	- 27i	. 25i	. 27i	. 31i	. 29i	31	. 29i	25i	. 27i	25	27i	17i	19	17i	19	23i	. 21i	23i	211	17	19i	17	19i	. 23i	21	23	21
-57	-59	-59	- 64-	-46	-51 -	-51 -	-49	-46	-51	-51	-55	-55	-53 -	-53 -	-55-	-55	-53	-53	-46	-46	-51	-51	-49 -	-49 -	-51 -	-51	-52	-55-	-53	-53	-55	-55	-53	-53-
11342tl	3422	3423	3424	3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436	3437	3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450	⊞345II	3452	3453	3454	3455
11i	. 9i	- 11i	- 1i	- 3i	- 1)	- 3i	- 7i	- <u>S</u> i	- 7i	· 5i	<u>-</u> 1;	- 3i	- 1i	- 3i	- 7i	- 5	- 7i	- 5!	15i	13i	15	13	i6 -	11	. i6 -	111	15i	13i	15i	13i	9	=	<u>.</u>	Ξ
-57	-59	-59	49	-49	-51	-51	-49	-49	-51	-51	-55	-55	-53	-53	-55	-55	-53	-53	-49 -	-49 -	-51	-51	-49	-49 -	-51	-51	-55	-55-	-53 -	-53	-55	-55	-53	-53 -
3357	3358	3359	3360	3361	3362	3363	3364	3365	3366	3367	3368	3369	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3380	3381	3382	3383	3384	3385	3386	3387	3388	3389	3390	3391
43	41i	43i	33	32i	33i	35i	39i	37i	39i	37i	33i	35i	33i	35i	39i	37i	391	37i	47i	4Si	47i	45i	41i	43i	41i	43i	47i	45i	47i	45i	41i	43i	411	43
-39 -	-37 -	-37 -	-47 -	-47 -	-45 -	-45 -	-47 -	-47 -	-45 -	-45 -	-41 -	-41 -	-43 -	-43 -	-41	-41 -	-43 -	-43 -	-47 -	-47 -	-45 -	-45 -	-47 -	-47 -	-45	-45	-41 -	-41 -	-43	-43 -	-41 -	-41	-43	-43
3293	3294	3295	3296-	3297	3298	3299	3300	3301	3302	3303	3304	3305	3306	3307	3308	3309	3310	3311	3312	3313	33:14	3315	3316	3817	3318	3319	3320	3321	3322	3323	3324	3325	3326	3327
53i	55i	53i	65	67)	65i	67i	71i 3	169	57i	169	65i	67i	65i	67i	571	591	571	: i69	49i	51i	49i	51i	55i	53i	55i	53	49i	51i	49i	51i	551	53i	55i	53i
-36-	-37 - 5	-37 - 5	-17 - 6	-17 - 6	-19 - 6	-19 - 6	-17 - 7	7	'n	-19 - 6	m	-53 - (-21 - 6	-21 - 6	-41 - 5	-41 - 5		-21 - 6	-47 - 4	-47 - 5	-45 - 4	-45 - 5	-47 - 5	-47 - 5	-45 - 5	-45 - 5	-41 - 4	-41 - 5	-43 - 4	-43 - 5	-41 - 5	-41 - 5	-43 - 5	-43 - 5
		1	1000	-	1-11	1001		7 -1	8 -4		0 -2	*****	- Design	1000	111111		6 -4.	100.00	1111	112	opur-													
3229	3230	3231	3232	3233	3234	3535	3236	3237	3238	3239	3240	3241	3242	3243	3244	3245	3246	3247	3248	3249	3250	3251	3252	3253	3254	3255	3256	3257	3258	3259	3260	326	3262	3263
- 43i	- 41i	- 21i	. 33i	. 35i	. 33i	- 35i	. 39i	- 37i	- 39i	- 37i	33i	- 35i	- 33i	35i	. 39i	- 37i	39i	- 37i	- 47i	- 45i	- 47i	- 45	41i	43	- 411	- 43i	- 47)	- 45i	- 47ř	- 45i	- 41i	43	- 41i	43
-57	-59	-69 - 2	-46	-49	-51		-49	-49	-51	-51	-55	-55	-53	-53 - 35	-55 - 3	-55	-53 - 36	-53	-49	-49	-51 - 47	-51	-49	-49	-51	-51	-55	-55	-53	-53	-55	-55	-53	-53 - 4
3165	3166	3167	3168	3169		3171	3172	3173	3174	_	3176	3177	3178	3179	3180	_	3182	3183	3184	3185	3186	3187	3188	3189	3190	3191	3192	3193	-	3195	3196	3197	3198	_
11;	. 9i	11i	65i	- 67i	- 65i	- 67i	71i	69	- 71i	- 69i	65i	67i	65	67i	71i	169	71i	- 69	- 49	51	- 49	51i	55	- 53	- 73i	- 53i	- 49	13	49j	- 51i	<u>.</u>	- 11	73	53
-71 - 11i	-69 - 9	-69 - 11i	-15 - 65i	-15	-13-	-13	-15 -	-15-	-13 -	-13 -	-9 - 65	-9 - 67	-11 - 65	-11 - 67i	-9 - 71i	-9 - 69	-11 - 71	-11-	-49-	-49	-51	-51	-49-	-49-	-13	-51	-55	-73 -	-53	-53-	-73	-73 -	÷	-53 - 53i
#3101£	3102	$\overline{}$	3104	3105	$\overline{}$	_	3108	_	3110	3111	-	3113	3114	3115	3116	3117	_	3119	3120	3121	3122	3123	\rightarrow	3125	\neg	3127	13128	_	_	3131	3132	\rightarrow	_	3135

Fig. 30

_	-	I :=-	T		T:	T :-	Ī	T -==	T-=			T :=	-	Γ=	T.=	l :-	T	T.E	Γ	T :=	T.=	T:=	T		Г	T:-	T	T	Τ	_	_	_
Dispersión	- 31	- 29i	- 31	-29 - 29	- 25	- 27i	- 25	-29 - 27	- 31	- 29	١.	- 29	- 25	- 27i		- 27	- 17	- 19	- 17	- 19	- 23	- 21i	- 23i	- 21i	- 17i	- 19	- 17i	- 19i	- 23	- 21	- 23	- 21i
Disp	-31	53	-29	-29	-31	-31	-29	-29	-25	-25	-27	-27	-25	-25	-27	-27	-31	-31	-29	-29	-31	-31	-29	-29	-25	-25	-27	-27	-25	-25	-27	-27
Valor	4032	4033	4034	4035	4036	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4047	4048	4049	4050	4051	4052	4053	4054	4055	4056	4057	4058	4059	4060	4061	4062	4063
Dispersión	1 - 1	1 - 3i	9 - 1i	9 - 3	I - 7i	1 - 5	9 - 7	9 - 5	2 - 1i	5 - 3	7 - 1i	7 - 3i	5 - 7i	Si	17 - 7	Si	- 15i	- 13i	- 15i	- 13i	<u>.</u>	- 11i	<u> 9</u>	- 11i	- 15i	- 13i	- 15i	- 13i	<u>-</u> 9	- 11i	. 9i	-27 - 11i
Dis	-31	-3	-59	-29	-31	-31	-29	-29	-25	-25	-27	-27	-55	-25	-27	-27	-31	-31	-29	-29	-31	-31	-29	-29	-25	-25	-27	-27	-25	-25	-27	
Valor	3968	3969	3970	3971=	3972	3973	3974	3975	3976	3977	3978	3979	3980≅	3981	3982	3983	3984	3985	3986	3987	3988	3989	3990	3991	3992	3993	3994	3995	3996	3997	3998	3999
Dispersión	- 31	- 29i	- 31i	- 29i	- 25i	- 27i	- 25i	- 27i	- 31i	- 29	- 31i	- 29i	- 25i	- 27i	- 25i	- 27i	- 17i	- 19i	- 17i	- 19i	- 23i	- 21i	- 23i	- 21i	- 17i	- 19i	- 17i	- 19i	- 23i	- 21)	- 23i	- 21i
	7	7	ć	-3	-	-1	ņ	ņ	-7		5-	ιὑ		-7	ιģ	έ	-1	7	۴-	-3	-1	7	ς	-3	-7	-2	5	5	-7	-7	ι'n	5
Valor	3904	3905	3906	3907	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919	3920	3921	3922	3923	3924	3925	3926	3927	3928	3929	3930	3931	3932	3933	3934	3935
Dispersión	- 1i	- 3i	- 1i	- 3i	- 7i	- 5	- 7i	- 5	- 1i	- 3i	- 1i	- 3i	- 7i	- 5	- 7i	- 5i	15i	13i	15i	13i	i6 -	11)	- 9i	11	15i	13;	- 15i	13i	. 9i	11i	- 9i	111
Dispe	-1	-1	-3	-3	-1	-7	-3	-3	-7	-7	-5	-5	-2	-7	'n	-5	÷	÷	÷.	÷	÷	7	ņ	-3	-7-	-7-	5-	-52	-7	-7-	-5	-5 - 11i
Valor	3840	3841	3842	3843	3844	3845	3846	3847	3848	3849	3850	3851	3852	3853	3854	3855	3856	3857	3858	3859	3860	3861	3862	3863	3864	3865	3866	3867	3868	3869	3870	3871
sión	33i	35i	33i	35i	39i	37i	39i	37i	33i	35i	33i	32i	39i	37i	39;	37i	47i	42i	47;	42i	41i	43i	<u>‡</u>	43	4 <u>7</u> i	42	- 47i	45i	41i	43i	41i	- 43i
Dispersión	-31	-31	-29 -	-29 -	-31	-31	-29 -	-29 -	-22-	-25-	-27 -	-27 -	-25	-25	-27 -	-27 -	-31	-31	-29 -	-29 -	-31	-31	-29 -	-53	-25	-25	-27 -	-27 -	-25	-25	-27 -	-27 -
Valor	3776	3777	3778	3779	3780	3781	3782	3783	3784	3785	3786	3787	3788	3789	3790	1879₫	3792	3793	3794	3795	3796	3797	3798	3799	3800	3801	3802	3803	3804	3805	3806	3807
sión	63	611	63	61	57i	59i	57	59	63i	61	63	611	57	59	57.	59	49	511	49	51	SŠ	53	22	53	49	511	49	21i	55	53	551	53i
Dispersión	-31	-31	-29 -	-29	-31	-31	-29 -	-29 -	-25	-25	-27 -	-27 -	-25	-25	-27 -	-27 -	-31	-31	-29 -	-29 -	-31	-31		-29 -	-22	-25	-27	-27 -	-25 - (-25	. T	-27 -
Valor	3712	3713	3714	8715	3716	3717	3718	3719	_	3721	3722	3723	3724	3725		3727	3728	_	3730	731	3732	3733	\rightarrow	-	736	737	738	-	740	741	-	743
2 2	m	m	m	89			m			m	w	6	6	Ü	3	3	3	37	6	3	3	Ę	9	6	ω,	3	6	37	37	37	37	37
Dispersión	-1 - 33	-1 - 35	- 33	- 35	- 39	- 37i	-3 - 39	- 37	- 33	-7 - 35	- 33	- 35	- 39	-7 - 37i	-5 - 39	- 37i	- 47	- 42	-3 - 47	-3 - 45	-1 - 41i	- 43	-3 - 41i	-3 - 43	-7 - 47i	- 45i	-5 - 47!	-5 - 45i	-7 - 41i	-7 - 43	- 411	-5 - 43i
Disp	Н	_	۳-	÷	7	7	ကု	÷	-	_	ΐ	ı,	7	7	Ϋ́	Ϋ́	7	77	۳	ကု	7	7	ņ	ņ	7	7	ι,	ιζ	7	-	ι'n	Ş
Valor	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663	3664	3665	3998	3667	3668	3669	3670	3671	3672	3673	3674	3675	3676	3677	3678	3679
Dispersión	-1 - 63	-1 - 61i	-3 - 63	61i	57;	· 59i	57	59	63	61	-5 - 63	-5 - 61!	- 57i	59i	57	59	- 49	51;	49	51	П	\neg	22i	\neg	_	21i	\neg	_		T		53
	-1	÷	÷	÷	귀	÷	÷	÷	-7 - 63	-7 - 61	5	5	-	-	-5 - 57	-5 - 59	÷	÷	-3 - 49	-3 - 51	-1 - 55		÷	-3 - 53	-7 - 49i	-7 - 51i	-5 - 49i	-5 - 516	-7 - 55i	-7 - 53	-5 - 55	-5 - 53
Valor	3584	3585	3586	3587	3588	3589	3290	3591	3592	3593	3594	3595	3296 3	3597	3598	3299	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3612	3613	3614	3615

Fig. 31

-17 - 31i	-17 - 29i	-19 - 31i	-19 - 29i	-17 - 25i	-17 - 27i	-19 - 25i	-19 - 27i	-23 - 31i	-23 - 29i	-21 - 31i	-21 - 29i	-23 - 25i	-23 - 27i	-21 - 25i	-21 - 27i	-17 - 17i	-17 - 19i	-19 - 17i	-19 - 19i	-17 - 23i	-17 - 21i	-19 - 23i	-19 - 21i	-23 - 17i	-23 - 19i	-21 - 17i	-21 - 19i	-23 - 23i	-23 - 21i	-21 - 23i	-21 - 21i
4064	4065	4066	4067	4068	4069	4070	4071	4072	4073	4074	4075	4076	4077	4078	4079	4080	4081	4082	4083	4684	4085	4086	4087	4088	4089	4690	4091	4092	4693	4094	4095
-17 - 11	-17 - 3i	-19 - 1i	-19 - 3i	-17 - 71	-17 - 5i	-19 - 7i	-19 - 5i	-23 - 1i	-23 - 3i	-21 - 1i	-21 - 3i	-23 - 7i	-23 - Si	-21 - 7	-21 - 5i	-17 - 15i	-17 - 13i	-19 - 15i	.19 - 13i	-17 - 9i	-17 - 11i	-19 - 9i	-19 - 11i	-23 - 15i	-23 - 13i	-21 - 15i	-21 - 13i	-23 - 9i	-23 - 11i	-21 - 9i	-21 - 11i
4000	4001	4002	4003	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015	4016	4017	4018	4019	4020	4021	4022	4023	4024	4025	4026	4027	4028	4029	4030	4031
-15 - 31i	-15 - 29i	-13 - 31i	-13 - 29i	-15 - 25i	-15 - 27i	-13 - 25i	-13 - 27i	-9 - 31i	-9 - 29i	-11 - 31i	-11 - 29i	-9 - 25i	-9 - 27i	-11 - 25i	-11 - 27i	-15 - 17i	-15 - 19i	-13 - 17i	-13 - 19i	-15 - 23i	-15 - 21i	-13 - 23i	-13 - 21i	-9 - 17i	-9 - 19i	-11 - 17i	-11 - 19i	-9 - 23i	-9 - 21i	-11 - 23i	-11 - 21i
3936	3937	3938	3939	3940	3941	3942	3943	3944	3945	3946	3947	3948	3949	3950	3951	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963	3964	3965	3966	3967
-12 - 1i	-15 - 3)	-13 - 1i	-13 - 3)	-15 - 7i	-15 - 5i	-13 - 7i	-13 - 5i	-9 - 1i	-9 - 3i	-11 - 1i	-11 - 3i	-6 - 7i	-9 - Si	-11 - 7i	-11 - 5i	-15 - 15i	-15 - 13i	-13 - 15	-13 - 13i	-15 - 9i	-15 - 11i	-13 - 9	-13 - 11i	-9 - 15i	-9 - 13i	-11 - 15i	-11 - 13	i6 - 6-	-9 - 11i	-11 - 9i	-11 - 11)
3872	3873	3874	3875	3876	3877	3878	3879	3880	3881	3882	3883	3884	3885	3886	3887	3888	3889	3890	3891	3892	3893	3894	3895	3896	3897	3898	3899	3900	3901	3902	3903
-17 - 33i	-17 - 35i	-19 - 33i	-19 - 35i	-17 - 39i	-17 - 37	-19 - 39i	-19 - 37i	-23 - 33i	-23 - 35i	-21 - 33i	-21 - 35i	-23 - 39i	-23 - 37i	-21 - 39i	-21 - 37i	-17 - 47i	-17 - 45i	-19 - 47i	-19 - 45i	-17 - 41i	-17 - 43i	-19 - 41i	-19 - 43i	-23 - 47i	-23 - 45i	-21 - 47i	-21 - 45i	-23 - 41i	-23 - 43i	-21 - 41i	-21 - 43i
3808	3809	3810	3811	3812	3813	3814	3815	3816	3817	3818	3819	3820	3821	3822	3823	3824	3825	3826	3827	3828	3829	3830	3831	3832	3833	3834	3835	3836	3837	3838	3839
-17 - 63i	-17 - 61i	-19 - 63i	-19 - 61i	-17 - 57i	-17 - 59i	-19 - 57i	-19 - 59i	-23 - 63i	-23 - 61i	-21 - 63i	-21 - 61i	-23 - 57i	-23 - 59i	-21 - 57i	-21 - 59i	-17 - 49i	-17 - 511	-19 - 49i	-19 - 51i	-17 - 55i	-17 - 53i	-19 - 55i	-19 - 53i	-23 - 49i	-23 - 51i	-21 - 49i	-21 - 51i	-23 - 55i	-23 - 53i	-21 - 55i	-21 - 53i
3744	3745	3746	3747	3748	3749	3750	3751	3752	3753	3754	3755	3756	3757	3758	3759	3760	3761	3762-	3763	3764	3765	3766	3767	3768	3769	3770	3771	3772	3773	3774	3775
-15 - 33i	-15 - 35i	-13 - 33i	-13 - 35i	-15 - 39i	-15 - 37i	-13 - 39i	-13 - 37i	-9 - 33i	-9 - 35i	-11 - 33	-11 - 35i	-9 - 39i	-9 - 37i	-11 - 39i	-11 - 37i	-15 - 47i	-15 - 45i	-13 - 47i	-13 - 45i	-15 - 41i	-15 - 43i	-13 - 41i	-13 - 43i	-9 - 47i	-9 - 45i	-11 - 47i	-11 - 45i	-9 - 41i	-9 - 43i	-11 - 41i	-11 - 43i
3680	3681	3682	3683	3684	3685	3686	3687	3688	3689	3690	3691	3692	3693	3694	3695	3698	3697	3698	3699	3700	3701	3702	3703	3704	3705	3706	3707	3708	3709	3710	3711
-15 - 63i	-15 - 61i	-13 - 63	-13 - 61i	-15 - 57i	-15 - 59	-13 - 57i	-13 - 59i	-9 - 63	-9 - 61i	-11 - 63	-11 - 61i	-9 - 57i	-9 - 59i	-11 - 57i	-11 - 59i	-15 - 49i	-15 - 51i	-13 - 49i	-13 - 51i	-15 - 55i	-15 - 53	-13 - 55i	-13 - 53i	-9 - 49i	-9 - 51i	-11 - 49i	-11 - 51i	-9 - 55i	-9 - 53i	-11 - 55i	-11 - 53i
3616	3617	3618::	3619	3620	3621=	3622	3623	3624	3625	3626	3627	3628	3629	3630	3631	3632	3633	3634	3635	3636	3637	3638	3639	3640	3641	3642	3643	3644	3645	3646	3647

Fig. 32

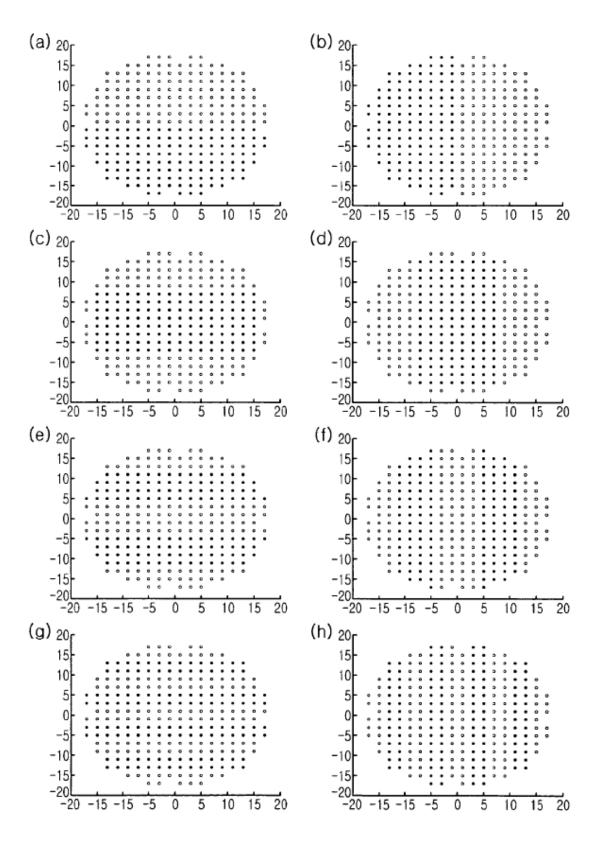


Fig. 33

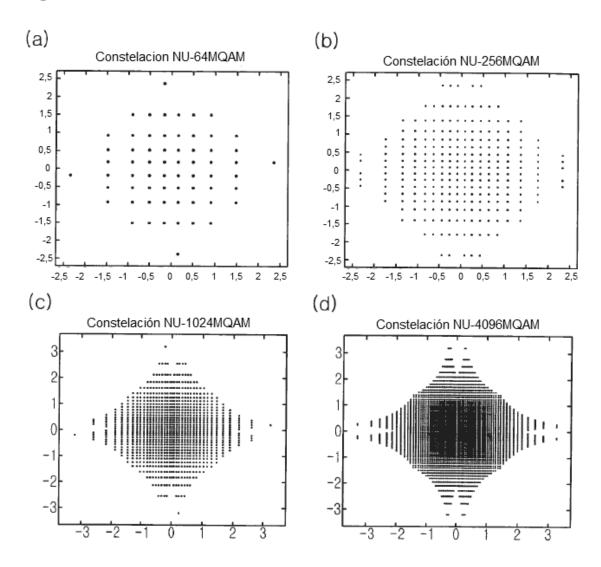


Fig. 34

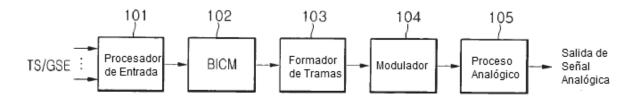


Fig. 35

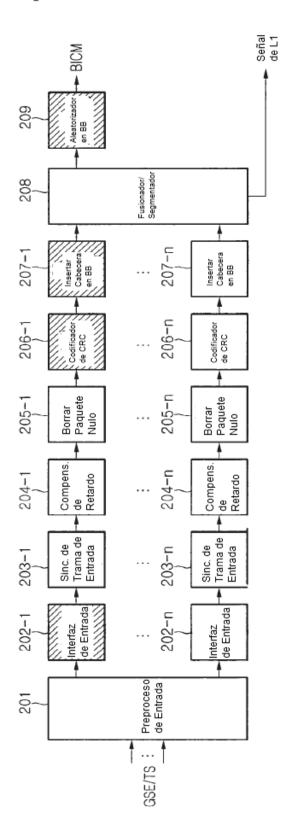


Fig. 36

TS/GS (2 bits)	SIS/MIS (1 bit)	CCM/ACM (1 bit)	ISSYI (1 bit)	NPD (1bit)	EXT (2bits)
00 = GFPS 11 = TS 01 = GCS 10 = GSE	1 = único 0 = múltiple	1 = CCM 0 = ACM	1 = activo 0 = no activo	1= activo 0 = no activo	Reservado para uso futuro

Field	Size (Bytes)	Description
MATYPE	2	Como se describió anteriormente
UPL	2	Longitud de Paquete de Usuario en bits, en la gama [0.65535]
DFL	2	Longitud del Campo de Datos en bits, en la gama [0,53760]
SYNC	1	Una copia del octeto de Sincron. del Paquete de Usuario
SYNCD	2	La distancia en bits desde el comienzo del DATA FIELD hasta el primer UP completo del campo de datos. SYNCD= 0_0 significa que el primer UP está alineado con el comienzo del Campo de Datos. SYNCD= 65535_0 significa que UP no comienza en el DATA FIELD.
CRC-8 MODE	1	El XOR del campo CRC-8 (1 octeto) con el campo MODE (1 octeto). La CRC-8 es el código de detección de error aplicado a los primeros 9 octetos de la BB HEADER. MODE (8 bits) será: Ole Modo Normal Otros valores: reservados para uso futuro

Fig. 37

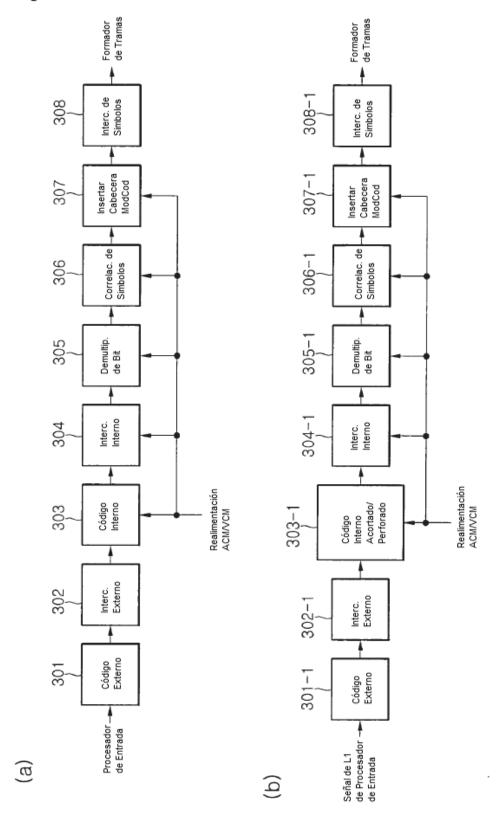


Fig. 38

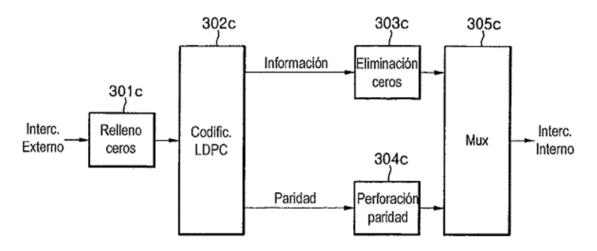


Fig. 39

			Caso 1	Caso 2
Capacidad (bit/s/Hz)			Modulación	Modulación
	1/2	3.0	NU-MQAM	NU-QAM
	2/3	4.0	NU-MQAM	NU-QAM
	3/4	4.5	NU-MQAM	NU-MQAM
6	4/5	4.8	MQAM	MQAM
	5/6	5.0	MQAM	MQAM
	8/9	5.3	MQAM	MQAM
	9/10	5.4	MQAM	MQAM
	1/2	4.0	NU-MQAM	NU-QAM
	2/3	5.3	NU-MQAM	NU-QAM
	3/4	6.0	NU-MQAM	NU-MQAM
8	4/5	6.4	NU-MQAM	NU-MQAM
	5/6	6.7	MQAM	MQAM
	8/9	7.1	MQAM	MQAM
	9/10	7.2	MQAM	MQAM
	1/2	5.0	NU-MQAM	NU-QAM
	2/3	6.7	NU-MQAM	NU-QAM
	3/4	7.5	NU-MQAM	NU-MQAM
10	4/5	8.0	NU-MQAM	NU-MQAM
	5/6	8.3	NU-MQAM	NU-MQAM
	8/9	8.9	MQAM	MQAM
	9/10	9.0	MQAM	MQAM
	1/2	6.0	NU-MQAM	NU-QAM
	2/3	8.0	NU-MQAM	NU-QAM
	3/4	9.0	NU-MQAM	NU-MQAM
12	4/5	9.6	NU-MQAM	NU-MQAM
	5/6	10.0	NU-MQAM	NU-MQAM
	8/9	10.7	MQAM	MQAM
	9/10	10.8	MQAM	MQAM

Fig. 40

			Caso 1	Caso 2	Caso 3
Capacidad (bit/s/Hz)			Modulación	Modulación	Modulación
	1/2	3.0	QAM	QAM	QAM
2	2/3	4.0	QAM	QAM	QAM
	3/4	4.5	QAM	QAM	QAM
	4/5	4.8	QAM	QAM	QAM
	5/6	5.0	QAM	QAM	QAM
	8/9	5.3	QAM	QAM	QAM
	9/10	5.4	QAM	QAM	QAM
	1/2	3.0	QAM	QAM	QAM
	2/3	4.0	QAM	QAM	QAM
	3/4	4.5	QAM	QAM	QAM
4	4/5	4.8	QAM	QAM	QAM
	5/6	5.0	QAM	QAM	QAM
	8/9	5.3	QAM	QAM	QAM
	9/10	5.4	QAM	QAM	QAM
	1/2	3.0	QAM	QAM	QAM
	2/3	4.0	QAM	QAM	QAM
	3/4	4.5	QAM	QAM	QAM
6	4/5	4.8	QAM	QAM	QAM
ĺ	5/6	5.0	QAM	QAM	QAM
	8/9	5.3	QAM	QAM	QAM
	9/10	5.4	QAM	QAM	QAM
	1/2	4.0	QAM	QAM	QAM
	2/3	5.3	QAM	QAM	QAM
[3/4	6.0	QAM	QAM	QAM
8	4/5	6.4	QAM	QAM	QAM
	5/6	6.7	QAM	QAM	QAM
	8/9	7.1	QAM	QAM	QAM
	9/10	7.2	QAM	QAM	QAM
	1/2	5.0	NU-MQAM	NU-QAM	MQAM
	2/3	6.7	NU-MQAM	NU-QAM	MQAM
	3/4	7.5	NU-MQAM	NU-MQAM	MQAM
10	4/5	8.0	NU-MQAM	NU-MQAM	MQAM
[5/6	8.3	NU-MQAM	NU-MQAM	MQAM
	8/9	8.9	MQAM	MQAM	MQAM
	9/10	9.0	MQAM	MQAM	MQAM
	1/2	6.0	NU-MQAM	NU-QAM	MQAM
	2/3	8.0	NU-MQAM	NU-QAM	MQAM
[3/4	9.0	NU-MQAM	NU-MQAM	MQAM
12	4/5	9.6	NU-MQAM	NU-MQAM	MQAM
[5/6	10.0	NU-MQAM	NU-MQAM	MQAM
[8/9	10.7	MQAM	MQAM	MQAM
	9/10	10.8	MQAM	MQAM	MQAM

Fig. 41

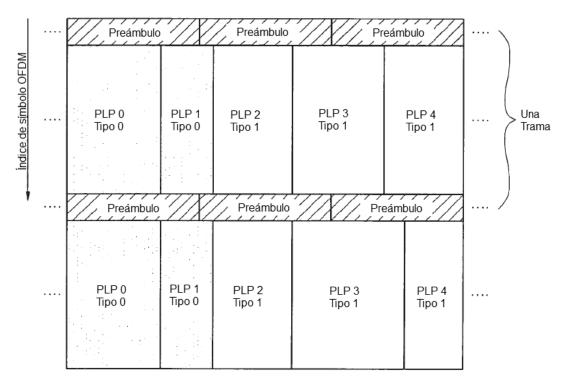


Fig. 42

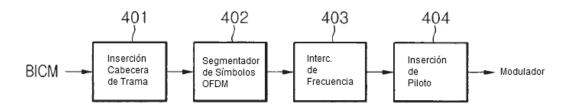


Fig. 43

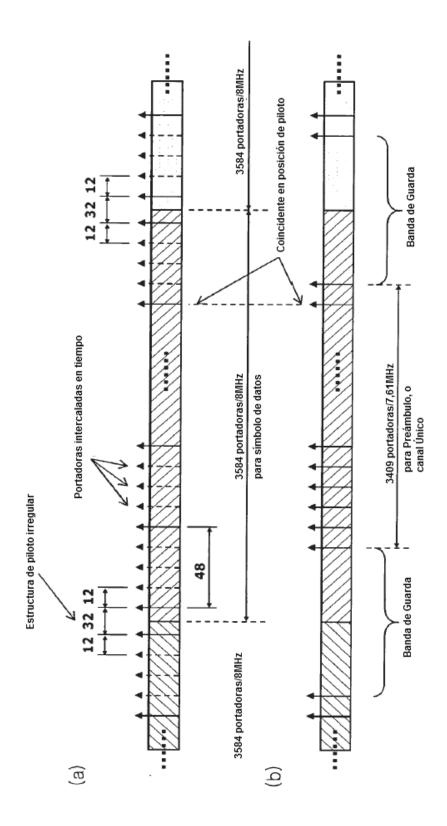


Fig. 44

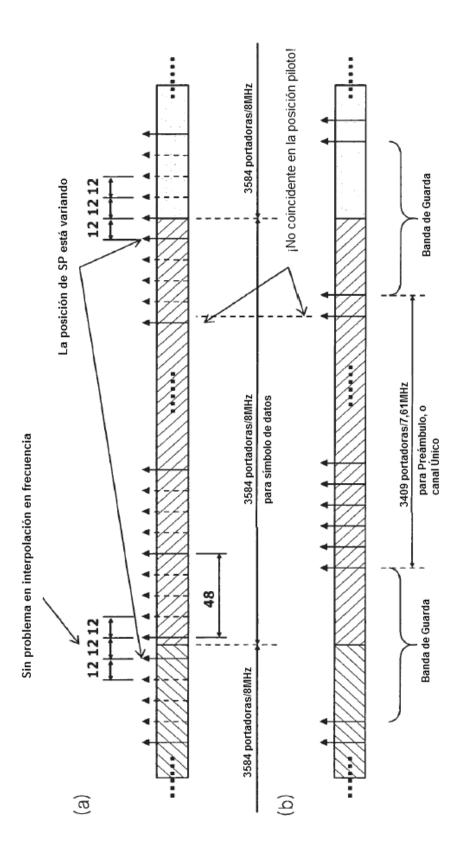


Fig. 45

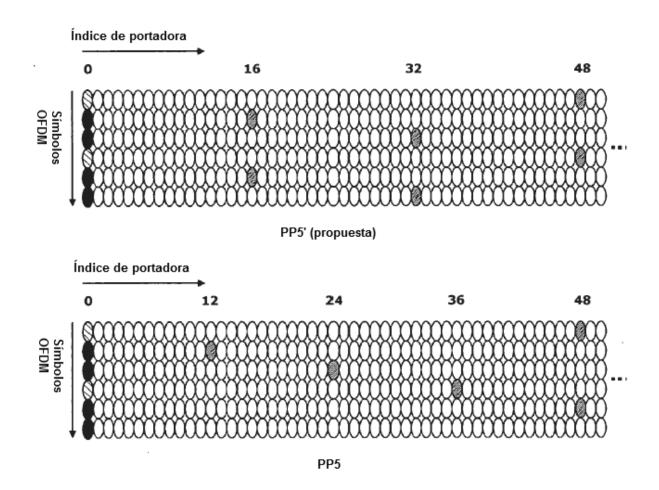


Fig. 46

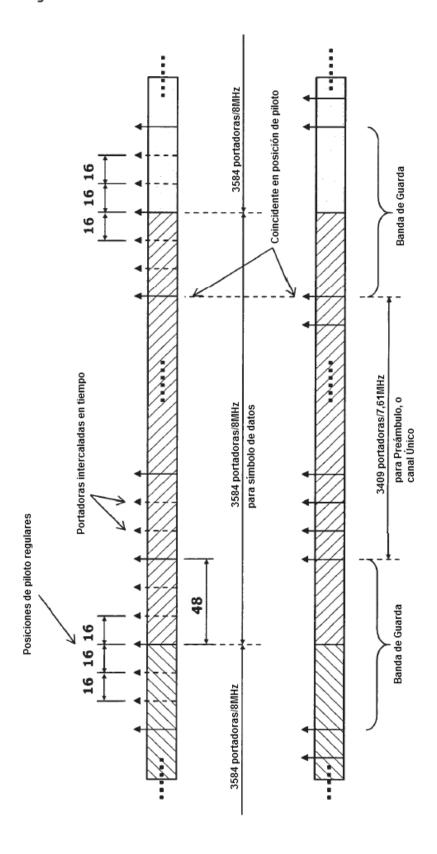


Fig. 47

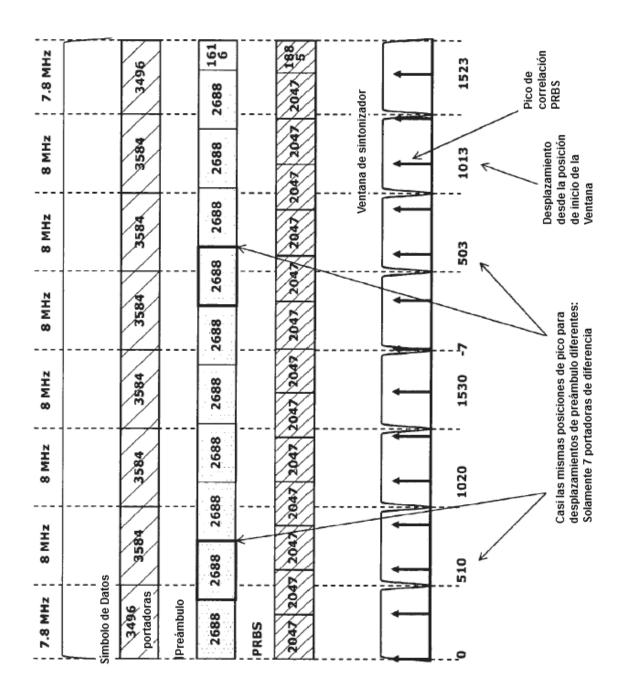


Fig. 48

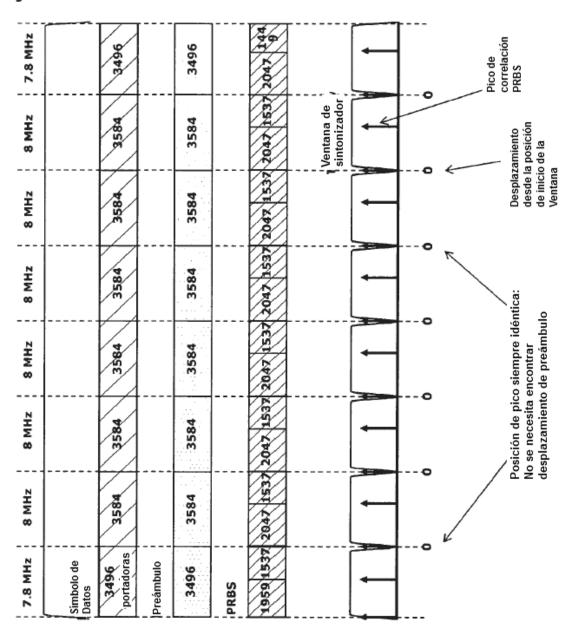


Fig. 49

Retardo (µs)	0.2	0.4	0.8	1.2	2.5	15	Recorrido de
Aten. (dB)	-11	-14	-17	-23	-32	-40	doeprociable

Fig. 50

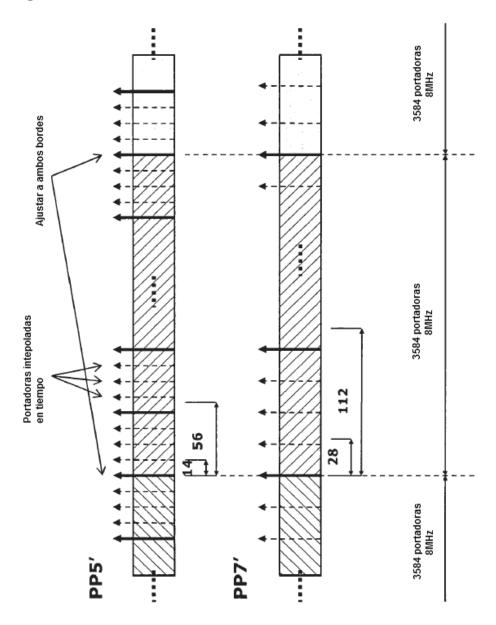


Fig. 51

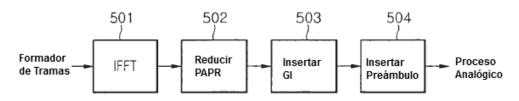


Fig. 52

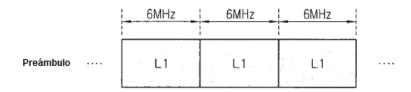


Fig. 53



Fig. 54

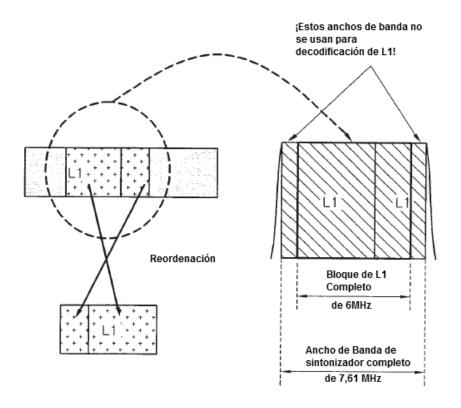


Fig. 55

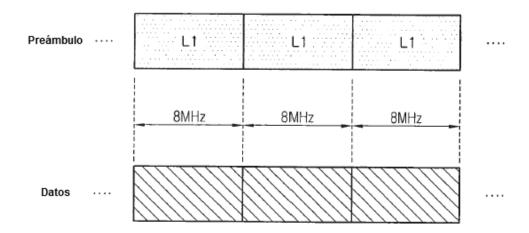
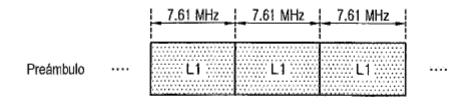



Fig. 56

Fig. 57

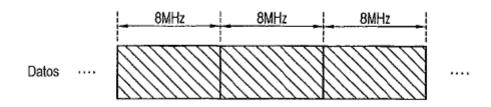


Fig. 58

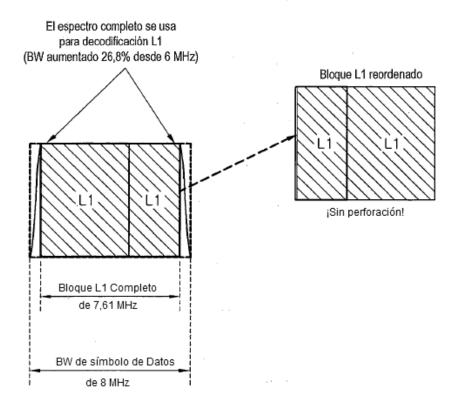


Fig. 59

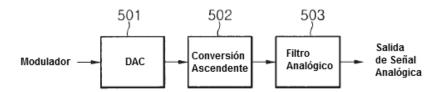


Fig. 60

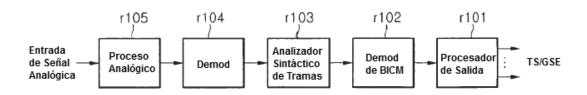


Fig. 61

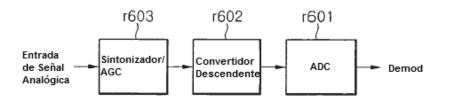


Fig. 62

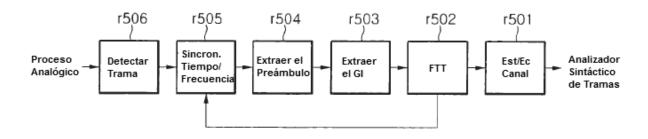


Fig. 63

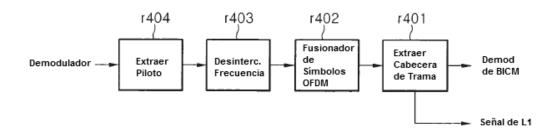


Fig. 64

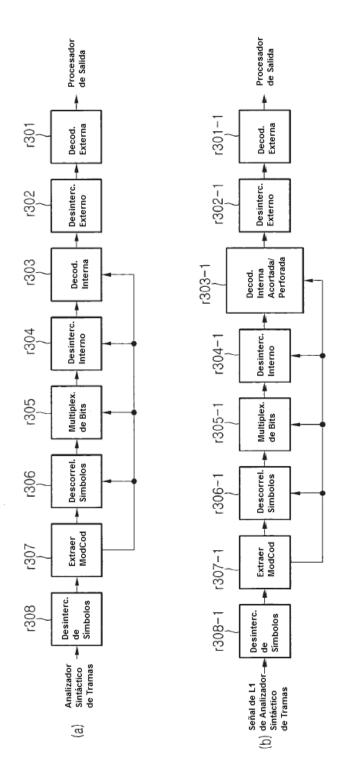


Fig. 65

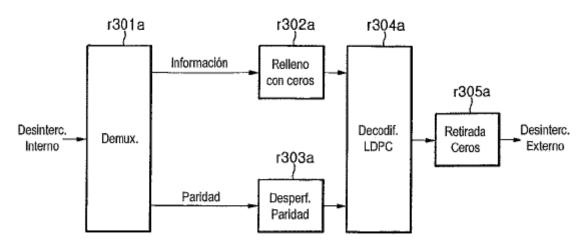


Fig. 66

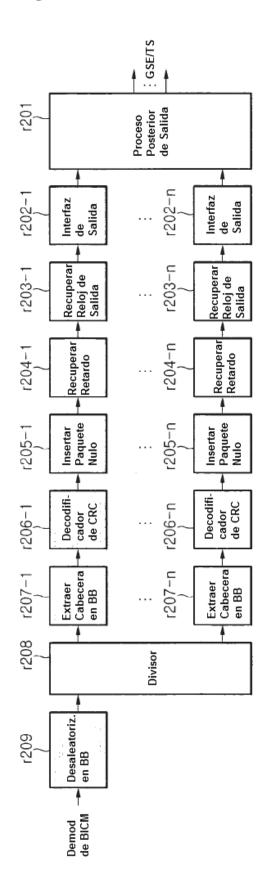


Fig. 67

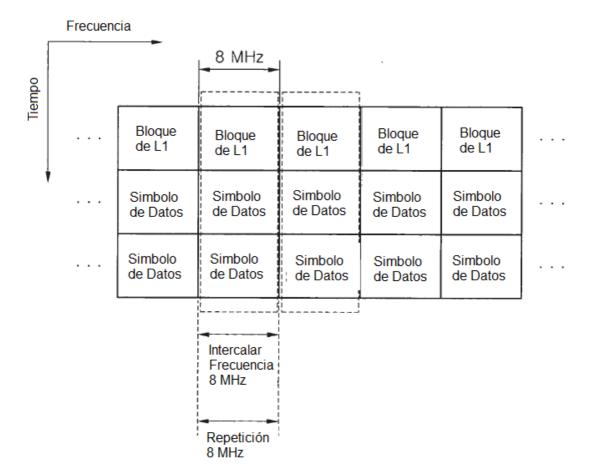


Fig. 68

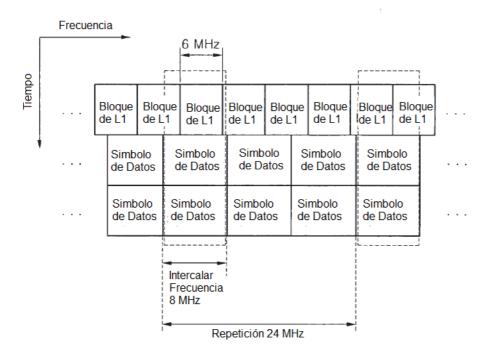


Fig. 69

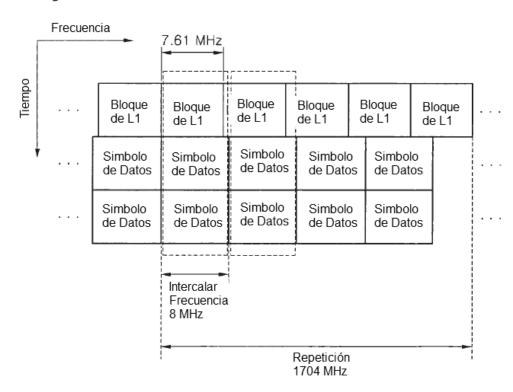


Fig. 70

Campo	Bits	
L1_span	12	número de portadoras expandido por el bloque de L1 dentro de un símbolo OFDM (Máx=7,61 MHz)
num_chbon	3	número de canales unidos
num_dslice	8	número de segmentos de datos
num_plp	8	número de PLP
num_notch	5	número de bandas de ranura
for dslice {		
chbon_index	3	índice de canal unido
dslice_start	9	inicio de segmento de datos dentro de un canal (8 MHz)
dslice_width	9	anchura de segmento de datos
}		
for plp {		
dslice_id	8	ID de datos segmentados
plp_id	8	ID de PLP
pip_type	1	tipo de PLP (común/datos)
plp_payload_type	5	tipo de carga útil de PLP (TS, GS,)
}		
for notch {		
chbon_index	3	índice de canal unido
notch_start	9	inicio de banda de ranura dentro de un canal (8 MHz)
notch_width	9	anchura de banda de ranura
}		
gi	1	modo de intervalo de guarda
sframe_id	16	ID de supertrama
frame_id	16	ID de trama
reserved	0	rfu
crc32	32	CRC 32
Total	11760	

El número de bits de información de L1 varía según diversas configuraciones/condiciones

Fig. 71

11760
23520
5880
3408
6
2840
1.45
2.07

Tamaño máximo

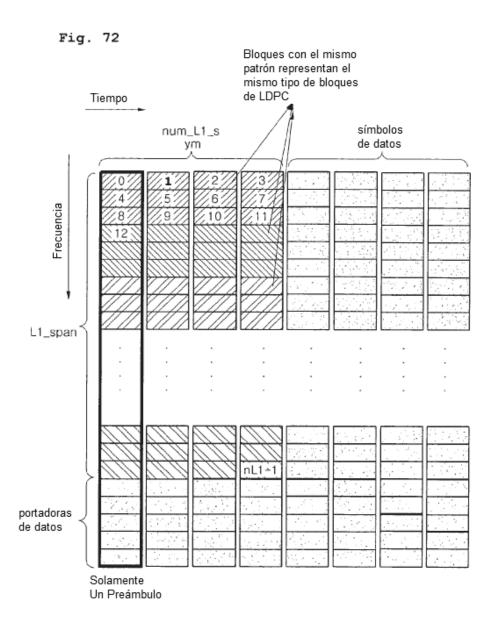


Fig. 73

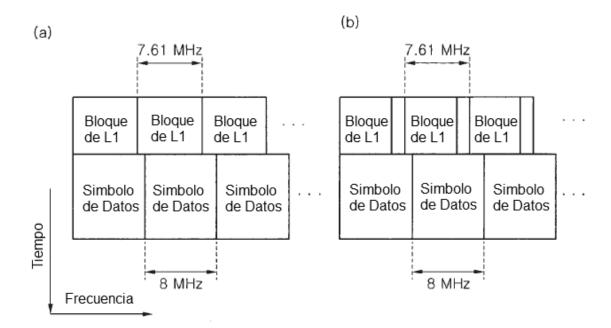
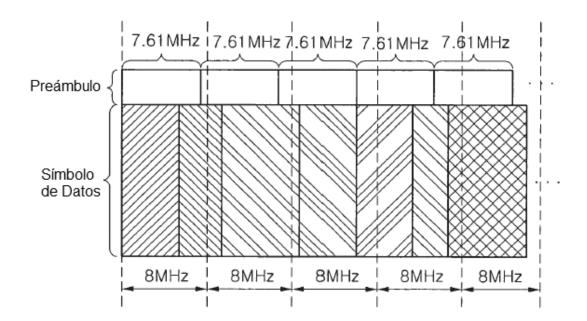



Fig. 74

Campo	Bits	
L1_column	9	número de portadoras expandido por el bloque de L1 dentro de un símbolo OFDM (Máx=7,61 MHz)
L1_row	3	número de símbolos OFDM expandidos por el bloque de L1
num_chbon	3	número de canales unidos
num_plp	8	número de segmentos de datos
num_dslice	8	número de PLP
num_notch	5	número de bandas de ranura
for dslice {		
chbon_index	3	índice de canal unido
dslice_start	9	inicio de segmento de datos dentro de un canal (8 MHz)
dslice_width	9	anchura de segmento de datos
}		
for plp {		
dslice_id	8	ID de datos segmentados
plp_id	8	ID de PLP
plp_type	1	tipo de PLP (común/datos)
plp_payload_type	5	tipo de carga útil de PLP (TS, GS,)
}		
for notch {		
chbon_index	3	índice de canal unido
notch_start	9	inicio de banda de ranura dentro de un canal (8 MHz)
notch_width	9	anchura de banda de ranura
}		
gi	1	modo de intervalo de guarda
sframe_id	16	ID de supertrama
frame_id	16	ID de trama
reserved	16	rfu
crc32	32	CRC 32
Total	11776	

El número de bits de información de L1 varía según diversas configuraciones/condiciones

Fig. 75

