

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 608 587

61 Int. Cl.:

A47L 15/44 (2006.01) A47L 15/42 (2006.01) A47L 15/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 06.03.2012 PCT/EP2012/053784

(87) Fecha y número de publicación internacional: 24.01.2013 WO13010682

(96) Fecha de presentación y número de la solicitud europea: 06.03.2012 E 12708003 (4)

(97) Fecha y número de publicación de la concesión europea: 05.10.2016 EP 2693930

(54) Título: Procedimiento y dispositivo para la detección de un cambio de agua en un aparato electrodoméstico que lleva agua, especialmente en un lavavajillas

(30) Prioridad:

20.07.2011 DE 102011079488

Fecha de publicación y mención en BOPI de la traducción de la patente: 12.04.2017

(73) Titular/es:

HENKEL AG&CO. KGAA (100.0%) Henkelstrasse 67 40589 Düsseldorf, DE

(72) Inventor/es:

BENDA, KONSTANTIN; KESSLER, ARND; FILECCIA, SALVATORE; NITSCH, CHRISTIAN; BASTIGKEIT, THORSTEN; JANS, GEROLD y SCHMALZ, ROLAND

(74) Agente/Representante:

ISERN JARA, Marta

DESCRIPCIÓN

Procedimiento y dispositivo para la detección de un cambio de agua en un aparato electrodoméstico que lleva agua, especialmente en un lavavajillas

5

La invención se refiere a un procedimiento y un dispositivo para la detección de un cambio de agua en un aparato electrodoméstico que lleva agua, especialmente en un lavavajillas.

Estado de la técnica

10

65

- Los dispositivos dosificadores automáticos de funcionamiento independiente de un lavavajillas que emiten una pluralidad de preparaciones diferentes al proceso de lavado con una diferencia de tiempo, se conocen por el estado de la técnica.
- Los dispositivos dosificadores de este tipo trabajan de forma relativamente fiable, mientras se hagan funcionar dentro de programas de lavado típicos y estáticos.
- Sin embargo, en el ámbito de los programas de lavavajillas también se han establecido los llamados programas automáticos que pueden adaptar o modificar dinámicamente su secuencia de programa dentro de un programa automático con la ayuda de datos de sensor suministrados, por ejemplo de un sensor de enturbiamiento, para poder proporcionar conforme a la carga de la máquina y la suciedad existente un resultado optimizado en cuanto al consumo de energía, de agua y/o al resultado de lavado, sin que se requiera la intervención del usuario.
- Con los dispositivos dosificadores mencionados al principio es posible en cualquier momento detectar de manera segura el comienzo de un programa de lavado, también de programas automáticos, pero en la emisión de preparaciones especialmente en la sección se abrillantado de un programa de lavado, los dispositivos dosificadores de este tipo se topan con límites, ya que a causa de la adaptación dinámica de programa de lavado de los programas automáticos, por ejemplo una dosificación en una fase de abrillantado después de un tiempo definido tras la detección del comienzo del programa de lavado, puede conducir a una emisión antes del comienzo de la sección de abrillantado en un programa automático. Dado que en tal caso la preparación de abrillantado no está disponible en el programa de abrillantado, porque habitualmente antes de una sección de abrillantado dentro de un programa de lavado se produce un cambio de agua, el resultado de lavado generalmente no es óptimo.
- Por lo tanto, la invención tiene el objetivo de proporcionar un procedimiento y un dispositivo con los que se pueda detectar un cambio de agua, especialmente antes de una sección de abrillantado dentro de un programa de lavado.
 - Este objetivo se consigue mediante un procedimiento según la reivindicación 1 y un dispositivo según la reivindicación 5.
- 40 El procedimiento según la invención para la detección de un cambio de agua en un aparato electrodoméstico que lleva agua, especialmente en un lavavajillas, comprende un sensor para la detección de agua, un sensor para la detección de la temperatura así como una unidad de control para el procesamiento de los datos de sensor, comprendiendo el procedimiento los siguientes pasos
- 45 (a.) la detección de agua en un intervalo de tiempo definido ZI_{w,1} de 2 a 120 seg., preferentemente de 5 a 60 seg., con especial preferencia de 10 a 30 seg., y si después de al menos dos, preferentemente de al menos tres puntos de medición sucesivos dentro de un intervalo de tiempo ZI_{w,1} se detectó la ausencia de agua, se realiza el paso de procedimiento (b.)
- 50 (b.) la detección de agua en un intervalo de tiempo definido Zl_{w,2} de 1 ms a 120 seg., preferentemente de 5 ms a 60 seg., con especial preferencia de 10 ms a 30 seg., y si después de detectar (al menos) una vez la presencia de agua dentro del intervalo de tiempo Zl_{w,2}, se realiza el paso de procedimiento (c.)
- (c.) la detección de la temperatura en un intervalo de tiempo definido ZI_{T,3} de 2 a 120 seg., preferentemente de 5 a 60 seg., con especial preferencia de 10 a 30 seg., realizándose el paso de procedimiento (d.) cuando en al menos dos, preferentemente en al menos tres intervalos de medición de temperatura ZI_{T,4} sucesivos, comprendidos dentro del intervalo de tiempo ZI_{T,3}, la temperatura T₁ al principio del intervalo de medición ZI_{T,3} es superior a la temperatura T₂ al final del intervalo de medición ZI_{T,3},
- 60 (d.) la realización del paso de procedimiento (e.) cuando entre la detección de agua según el paso de procedimiento (b.) y la detección al menos tres veces seguida de un gradiente de temperatura negativo según el paso de procedimiento (c.) han transcurrido menos de dos minutos,
 - (e.) la generación de una señal de control por la unidad de control a causa de un cambio de agua detectado según los pasos de procedimiento (a.) a (d.).

ES 2 608 587 T3

Resulta especialmente preferible que la señal de control detecte después de un cambio de agua detectado la dosificación de una preparación de abrillantador al espacio interior de un lavavajillas. De esta manera, queda garantizado especialmente que al final de un programa automático se dosifica una preparación de abrillantador a la sección de programa de abrillantado.

5

En una forma de realización especialmente preferible del procedimiento según la invención, el procedimiento con los pasos de procedimiento (a.) a (e.) sólo se realiza después de que al menos una primera preparación de detergente de lavavajillas, preferentemente una preparación de detergente de lavavajillas que contiene enzimas, se ha liberado al interior del lavavajillas, produciéndose la liberación de la al menos una primera preparación de detergente de lavavajillas cuando han sido detectadas al menos una temperatura >25°, preferentemente >29°C y la presencia de agua. Una descripción detallada de la detección del comienzo de un programa de lavado se dio a conocer por la solicitante en el documento DE102010002750.2. Por tanto, resulta especialmente ventajoso realizar el procedimiento según la invención sólo cuando se ha emitido ya al menos una preparación de detergente al principio del proceso de lavado.

15

10

En este contexto, resulta especialmente ventajoso que las preparaciones que se dosifican al proceso de lavado se diferencian unas de otras, siendo especialmente ventajoso que las preparaciones dosificadas al principio del proceso de lavado y las preparaciones añadidas después de la detección de un cambio de agua se diferencian unas de otras.

20

En otra forma de realización preferible de la invención, el procedimiento con los pasos de procedimiento (a.) a (e.) se realiza después de que tras la liberación de la primera preparación de detergente de lavavajillas se ha liberado al interior del lavavajillas al menos una segunda preparación de detergente de lavavajillas, preferentemente una preparación de detergente de lavavajillas alcalina.

25

La presente invención se refiere además a un dispositivo para la dosificación de una preparación de abrillantador al espacio interior de un lavavajillas que comprende un sensor para la detección de agua, un sensor para la detección de la temperatura, una unidad de control para el procesamiento de los datos de sensor, estando configurada la unidad de control para la realización del procedimiento según la invención.

30

Preferentemente, el dispositivo dosificador puede posicionarse libremente por un usuario en el espacio interior de un lavavajillas. Además, resulta ventajoso que el dispositivo comprende un cartucho con al menos una cámara en la que está almacenada al menos una preparación de abrillantador.

35 Dispositivo dosificador

El dispositivo dosificador comprende un aparato dosificador con un cartucho que está acoplado de forma separable o inseparable al aparato dosificador y que presenta al menos una cámara con una preparación de detergente de lavavajillas. En el aparato dosificador están integrados especialmente la unidad de control necesaria para la realización del procedimiento según la invención así como al menos un sensor para la detección de agua y un sensor para la detección de la temperatura. Preferentemente, asimismo están dispuestos en o dentro del aparato dosificador un actuador para la liberación de una preparación de detergente de lavavajillas y/o una fuente de energía.

45 Sensores

El dispositivo dosificador presenta preferentemente al menos un sensor para la detección de agua y un sensor para la detección de la temperatura. El sensor de temperatura está realizado especialmente para la detección de una temperatura de agua.

50

40

Además, resulta preferible que el dispositivo dosificador comprende un sensor para detectar la conductividad, por lo que se detecta especialmente la presencia de agua o la pulverización de agua, especialmente en un lavavajillas.

55

En una forma de realización ventajosa de la invención, la unidad de sensor comprende al menos un sensor de conductividad de al menos 2 polos. Preferentemente, al menos dos polos del sensor de conductividad presentan una distancia de 2 a 25 mm, preferentemente de 5 a 15 mm, con especial preferencia de aprox. 12 mm.

60

Como especialmente ventajoso se ha revelado que al menos dos polos de un sensor de conductividad estén envueltos de una silicona electroconductora, siendo preferible que quede formada una superficie sustancialmente plana entre la silicona y una superficie exterior del aparato dosificador. Por las características elastoméricas de la silicona conductora, el sensor se puede estanqueizar de manera sencilla y efectiva con respecto al entorno y encastrarse en una pared de carcasa del aparato dosificador.

65

Para mantener la precisión de medición también durante una multiplicidad de mediciones, resulta ventajoso que después de cada medición de resistencia se produzca un cambio de polo en el sensor de conductividad de 2 polos, de manera que no se puedan formar excesos de carga en el sensor de conductividad.

ES 2 608 587 T3

Resulta especialmente preferible que están previstas al menos dos unidades de sensor para la medición de parámetros diferentes, siendo de manera especialmente preferible una unidad de sensor un sensor de conductividad y otra unidad de sensor un sensor de temperatura.

5 Los sensores están adaptados especialmente para detectar el comienzo, el desarrollo y el final de un programa de lavado. Para ello, se pueden usar las combinaciones de sensores mencionadas - a título de ejemplo y de manera no exhaustiva - en la siguiente tabla.

Sensor 1	Sensor 2	Sensor 3	Sensor 4
Sensor de	Sensor de		
conductividad	temperatura		
Sensor de	Sensor de	Sensor de intensidad	
conductividad	temperatura	luminosa	
Sensor de	Sensor de	Sensor de intensidad	Sensor de
conductividad	temperatura	luminosa	enturbiamiento

Por medio del sensor de conductividad se puede detectar por ejemplo si el sensor de conductividad está humectado de agua, de manera que por tanto se puede detectar por ejemplo si se encuentra agua en el lavavajillas.

El sensor de conductancia o de conductividad se puede componer de un ánodo electroconductor y de un cátodo que desde la carcasa del dispositivo dosificador se asoman al interior del lavavajillas o que de forma electroconductora están en unión con el interior del lavavajillas. Preferentemente, la distancia del ánodo y del cátado está elegida de tal forma que durante el funcionamiento del lavavajillas se pueda formar un puente de agua electroconductor entre el ánodo y el cátado, lo que se puede medir mediante una caída de la resistencia entre el ánodo y el cátodo.

Generalmente, los programas de lavado presentan un desarrollo característico de la temperatura que está determinado entre otras cosas por el calentamiento del agua de lavado y el secado del material a lavar y que se puede detectar a través de un sensor de temperatura.

Para permitir una fabricación y un ensamblaje eficientes del aparato dosificador, sin embargo, también es posible que al menos una unidad de sensor esté dispuesta en o dentro de la unidad de control. Por ejemplo, es posible prever un sensor de temperatura en el aparato dosificador o directamente sobre la platina que lleva la unidad de control, de manera que el sensor de temperatura no tiene contacto directo con el entorno.

Unidad de control

30 Una unidad de control en el sentido de esta solicitud es un dispositivo adecuado para influir en el transporte de material, energía y/o información. Para ello, la unidad de control influye mediante señales de control en actuadores con la ayuda de información, especialmente de señales de medición de la unidad de sensor, que procesa en el sentido del objetivo de control.

Especialmente, la unidad de control puede ser un microprocesador programable. En una forma de realización especialmente preferible de la invención, sobre el microprocesador está almacenada una pluralidad de programas de dosificación.

En una forma de realización preferible, la unidad de control no tiene ninguna unión al control posiblemente presente del aparato electrodoméstico. Por lo tanto, no se intercambian informaciones, especialmente señales eléctricas, ópticas o electromagnéticas, directamente entre la unidad de control y el control del aparato electrodoméstico.

En una forma de realización alternativa de la invención, la unidad de control está acoplada al control existente del aparato electrodoméstico. Preferentemente, este acoplamiento está realizado de forma inalámbrica. Por ejemplo, es posible posicionar un emisor a o dentro de un lavavajillas, preferentemente sobre o en la cámara de dosificación encastrada en la puerta del lavavajillas, que transmite de forma inalámbrica una señal al dispositivo dosificador cuando el control del aparato electrodoméstico provoca la dosificación por ejemplo de un detergente de la cámara de dosificación o de abrillantador. Por lo tanto, es posible que el control del lavavajillas envíe señales de control al dispositivo dosificador para la emisión de determinadas preparaciones y cantidades dosificadas.

También es posible que cuando durante el acoplamiento del control del lavavajillas al control del dispositivo dosificador se produzcan fallos, por ejemplo, una ruptura de señales en la transmisión inalámbrica de señales, esta ruptura de señales sea detectada por el control del dispositivo dosificador y se vuelva a conmutar a un programa de dosificación interno, de manera que a pesar del fallo en la transmisión de señales quede garantizada la dosificación de la preparación del dispositivo dosificador al proceso de lavado. Un procedimiento correspondiente fue descrito por la solicitante en el documento DE102009009194.7.

La emisión de preparaciones del aparato dosificador desde el aparato dosificador se puede realizar de manera secuencial o simultánea. Resulta especialmente preferible dosificar una pluralidad de preparaciones de forma

4

50

55

45

15

25

secuencial en un programa de lavado. Especialmente, resultan preferibles las siguientes secuencias de dosificación

1ª dosificación	2ª dosificación	3º dosificación	4ª dosificación
Preparación detergente	Preparación detergente		
enzimática	alcalina		
Preparación detergente	Abrillantador		
alcalina			
Preparación detergente	Preparación detergente	Abrillantador	
enzimática	alcalina		
Preparación detergente	Preparación detergente	Abrillantador	Preparación desinfectante
enzimática	alcalina		
Preparación detergente	Preparación detergente	Abrillantador	Sustancia aromática
enzimática	alcalina		
Preparación de	Preparación detergente	preparación detergente	Abrillantador
pretratamiento	enzimática	alcalina	

Además, resulta ventajoso que en el programa de prelavado y/o el programa de lavado principal del lavavajillas se libera al menos una preparación que contenga enzimas y/o una preparación alcalina, produciéndose la liberación de la preparación que contiene enzimas preferentemente antes en el tiempo que la liberación de la preparación alcalina. Además, resulta preferible que la dosificación del abrillantador se produzca en el programa de abrillantador del lavavajillas, realizándose la detección del programa de abrillantador por un cambio de agua según el procedimiento según la invención, descrito aquí.

Según otra forma de realización preferible de la invención, se realiza una medición de resistencia discontinua, discreta, en el sensor de conductividad y preferentemente también en el sensor de temperatura. Mediante la medición discontinua, discreta, se reduce especialmente el consumo de energía eléctrica de la unidad de control.

15 A continuación, la invención se describe en detalle con la ayuda de las figuras representadas. Muestran

la figura 1 un dispositivo dosificador en un lavavajillas la figura 2 un diagrama de secuencias de la detección de cambio de agua

30

35

40

45

50

La figura 1 muestra un dispositivo dosificador compuesto por un aparato dosificador 2 posicionable con un cartucho de dos cámaras 1 en la cesta de vajilla 11 estando abierta una puerta de lavavajillas 39 de un lavavajillas 38. En el aparato dosificador 2 están dispuestos una unidad de control, un sensor de temperatura y un sensor de conductividad. Se ve que el aparato dosificador 2 con el cartucho 1 puede posicionarse en principio en cualquier punto dentro de la cesta de lavavajillas 11, siendo ventajoso prever un sistema de dosificación 1, 2 conformado en forma de plato o de copa en un alojamiento de plato o de copa correspondiente de la cesta de vajilla 11.

En la puerta de lavavajillas 39 se encuentra una cámara de dosificación 53 en la que se puede introducir una preparación de detergente de lavavajillas, por ejemplo en forma de una pastilla. En esta forma de realización de la invención resulta ventajoso que estando dispuesto el sistema de dosificación 1, 2 posicionable en la cesta de vajilla 1 inferior o superior (no representado), la emisión de las preparaciones 40a, 40b desde el cartucho 1 al baño de agua de lavado se produce directamente a través de las aberturas de salida dispuestas en el fondo del aparato dosificador, de manera que queda garantizada una disolución rápida y al mismo tiempo una distribución uniforme de las preparaciones de lavado en el programa de lavado. Además, de esta manera, queda garantizado que por el sensor de conductividad que en la posición de funcionamiento representada del aparato dosificador está dispuesto en el fondo del aparato dosificador en el sentido de la fuerza de gravedad se produce durante el funcionamiento del lavavajillas una pulverización directa de agua de lavado al sensor de conductividad por un brazo pulverizador y que la unidad de control y el sensor de conductividad están configurados de tal forma que se realiza una medición de resistencia discontinua, discreta en el sensor de conductividad y preferentemente también en el sensor de temperatura.

La figura 2 muestra un ejemplo de realización del procedimiento según la invención en forma de un diagrama de secuencias, comprendiendo el procedimiento los siguientes pasos

- (a.) la detección de agua en un intervalo de tiempo definido $ZI_{w,1}$ de 2 a 120 seg., preferentemente de 5 a 60 seg., con especial preferencia de 10 a 30 seg., y si después de al menos tres puntos de medición sucesivos dentro del intervalo de tiempo $ZI_{w,1}$ se detectó la ausencia de agua, se realiza el paso de procedimiento (b.)
- (b.) la detección de agua en un intervalo de tiempo definido $ZI_{w,2}$ de 1 ms a 120 seg., preferentemente de 5 ms a 60 seg., con especial preferencia de 10 ms a 30 seg., y si después de detectar una vez la presencia de agua dentro del intervalo de tiempo $ZI_{w,2}$, se realiza el paso de procedimiento (c.)

ES 2 608 587 T3

- (c.) la detección de la temperatura en un intervalo de tiempo definido $ZI_{T,3}$ de 2 a 120 seg., preferentemente de 5 a 60 seg., con especial preferencia de 10 a 30 seg., realizándose el paso de procedimiento (d.) cuando en tres intervalos de medición de temperatura $ZI_{T,4}$ sucesivos, comprendidos dentro del intervalo de tiempo $ZI_{T,3}$, la temperatura T_1 al principio del intervalo de medición $ZI_{T,3}$ es superior a la temperatura T_2 al final del intervalo de medición $ZI_{T,3}$, Para ello, los valores de medición de temperatura T_1 y T_2 se escriben respectivamente en una memoria interna de la unidad de control, al igual que los valores de medición de tiempo t_b al principio del paso de procedimiento (c.) y t_c al final del paso de procedimiento (c.)
- (d.) la realización del paso de procedimiento (e.) cuando entre la detección de agua según el paso de procedimiento (b.) y la detección al menos tres veces seguida de un gradiente de temperatura negativo según el paso de procedimiento (c.) han transcurrido menos de dos minutos, es decir, cuando se cumple la condición t_ct_b<2 min.</p>

5

(e.) la generación de una señal de control por la unidad de control a causa de un cambio de agua detectado según los pasos de procedimiento (a.) a (d.).

REIVINDICACIONES

- 1. Procedimiento para la detección de un cambio de agua en un aparato electrodoméstico que lleva agua, especialmente en un lavavajillas, que comprende
 - un sensor para la detección de agua

5

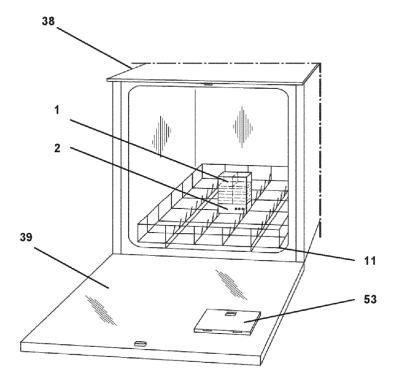
15

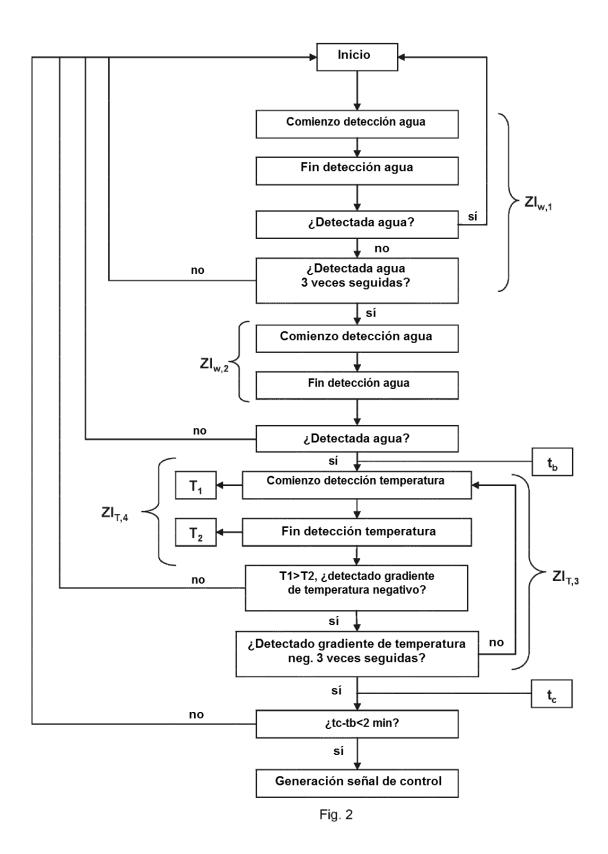
25

40

45

50


60


- un sensor para la detección de la temperatura
- una unidad de control para el procesamiento de los datos de sensor
- 10 comprendiendo el procedimiento los siguientes pasos
 - (a.) la detección de agua en un intervalo de tiempo definido $ZI_{w,1}$ de 2 a 120 seg., preferentemente de 5 a 60 seg., con especial preferencia de 10 a 30 seg. y, si después de al menos dos, preferentemente de al menos tres puntos de medición sucesivos dentro de un intervalo de tiempo $ZI_{w,1}$ se detectó la ausencia de agua, se realiza el paso de procedimiento (b.),
 - (b.) la detección de agua en un intervalo de tiempo definido Zl_{w,2} de 1 ms a 120 seg., preferentemente de 5 ms a 60 seg., con especial preferencia de 10 ms a 30 seg. y, si después de detectar al menos una vez la presencia de agua dentro del intervalo de tiempo Zl_{w,2}, se realiza el paso de procedimiento (c.),
- (c.) la detección de la temperatura en un intervalo de tiempo definido ZI_{T,3} de 2 a 120 seg., preferentemente de 5 a 60 seg., con especial preferencia de 10 a 30 seg., realizándose el paso de procedimiento (d.) cuando en al menos dos, preferentemente en al menos tres intervalos de medición de temperatura ZI_{T,4} sucesivos, comprendidos dentro del intervalo de tiempo ZI_{T,3}, la temperatura T₁ al principio del intervalo de medición ZI_{T,3} es superior a la temperatura T₂ al final del intervalo de medición ZI_{T,3},
 - (d.) la realización del paso de procedimiento (e.) cuando entre la detección de agua según el paso de procedimiento (b.) y la detección al menos tres veces seguida de un gradiente de temperatura negativo según el paso de procedimiento (c.) han transcurrido menos de dos minutos,
 - (e.) la generación de una señal de control por la unidad de control a causa de un cambio de agua detectado según los pasos de procedimiento (a.) a (d.).
- 30 2. Procedimiento según una de las reivindicaciones anteriores, caracterizado por que la señal de control provoca después de un cambio de agua detectado la dosificación de una preparación de abrillantador al espacio interior de un lavavajillas.
- 3. Procedimiento según una de las reivindicaciones anteriores, caracterizado por que el procedimiento con los pasos de procedimiento (a.) a (e.) se realiza después de que al menos una primera preparación de detergente de lavavajillas, preferentemente una preparación de detergente de lavavajillas que contiene enzimas, se ha liberado al interior del lavavajillas, produciéndose la liberación de la al menos una primera preparación de detergente de lavavajillas cuando han sido detectadas al menos una temperatura >25°, preferentemente >29 °C y la presencia de aqua.
 - 4. Procedimiento según una de las reivindicaciones anteriores, caracterizado por que el procedimiento con los pasos de procedimiento (a.) a (e.) se realiza después de que tras la liberación de la primera preparación de detergente de lavavajillas se ha liberado al interior del lavavajillas al menos una segunda preparación de detergente de lavavajillas, preferentemente una preparación de detergente de lavavajillas alcalina.
 - 5. Dispositivo para la dosificación de una preparación de abrillantador al espacio interior de un lavavajillas que comprende
 - o un sensor para la detección de agua,
 - o un sensor para la detección de la temperatura,
 - o una unidad de control para el procesamiento de los datos de sensor,

estando configurada la unidad de control para la realización del procedimiento según una de las reivindicaciones 1 a 4.

- 6. Dispositivo según la reivindicación 5, caracterizado por que el dispositivo puede posicionarse libremente por un usuario en el espacio interior de un lavavajillas.
 - 7. Dispositivo según una de las reivindicaciones 5 a 6, caracterizado por que el dispositivo comprende un cartucho con al menos una cámara en la que está almacenada al menos una preparación de abrillantador.
 - 8. Dispositivo según la reivindicación 7, caracterizado por que el cartucho comprende al menos tres cámaras en las que están almacenadas una preparación que contiene enzimas, una preparación alcalina y una preparación de abrillantador.
- 9. Dispositivo según una de las reivindicaciones 5 a 8, caracterizado por que la unidad de control se puede acoplar especialmente de forma inalámbrica al control existente del aparato electrodoméstico.

7

