

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 611 107

(51) Int. CI.:

C07D 231/14 (2006.01) C07D 403/10 (2006.01) C07D 403/14 (2006.01) C07D 405/14 (2006.01) C07D 409/14 C07D 413/10 A61K 31/506 (2006.01) A61P 9/10 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

02.07.2010 PCT/US2010/040880 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 13.01.2011 WO11005674

(96) Fecha de presentación y número de la solicitud europea: E 10731885 (9) 02.07.2010

09.11.2016 (97) Fecha y número de publicación de la concesión europea: EP 2451782

(54) Título: Agentes antihipertensivos de pirazol, de doble acción

(30) Prioridad:

07.07.2009 US 223472 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 04.05.2017

(73) Titular/es:

THERAVANCE BIOPHARMA R&D IP, LLC (100.0%) 901 Gateway Boulevard South San Francisco, CA 94080, US

(72) Inventor/es:

BLAIR, BROOKE; FATHEREE. PAUL. R.: FLEURY, MELISSA; **GENDRON, ROLAND; HUDSON, RYAN;** MCKINNELL, ROBERT, MURRAY y WILSON, MICHAEL

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Agentes antihipertensivos de pirazol, de doble acción

5 ANTECEDENTES Y TRASFONDO DE LA INVENCIÓN

SECTOR DE LA INVENCIÓN

10

15

30

60

65

La presente invención, se refiere a nuevos compuestos, los cuales tienen actividad antagonista de los receptores de la angiotensina II del tipo I (AT₁), y actividad de inhibición de la neprilisina. La presente invención, se refiere así mismo, también, a composiciones farmacéuticas las cuales comprenden tales tipos de compuestos, a los procedimientos, así como también a los productos intermedios o intermediarios para la preparación de dichos compuestos. La presente revelación, se refiere así mismo, también, a los procedimientos para el uso de tales tipos de compuestos, para tratar enfermedades, tales como la consistente en la hipertensión.

ESTADO ACTUAL DEL ARTE ESPECIALIZADO DE LA TÉCNICA

La finalidad de la terapia antihipertensiva, es la de reducir la presión sanguínea y la de prevenir o evitar las complicaciones las cuales se encuentran relacionadas con ésta, tales como las enfermedades consistentes en el infarto de miocardio, en la apoplejía y en la enfermedad renal. Se cree que, en el caso de los pacientes afectados de una hipertensión no complicada (es decir, los cuales no tengan factores de riesgo, una daño en órganos diana, o enfermedad cardiovascular), el hecho de proceder a reducir la presión sanguínea, prevendrá o evitará el desarrollo de comorbilidades cardiovasculares y renales, condiciones que existen, al mismo tiempo, de una forma simultánea, como condición primaria, en el mismo paciente. Para estos pacientes, con un factores de riesgo existentes o comorbilidades, el objetivo terapéutico, es de reducir la progresión de la de la enfermedad comórbida y la de reducir la mortalidad.

Los médicos facultativos, prescriben, de una forma general, terapias farmacológicas para los pacientes cuya presión sanguínea, no puede controlarse de una forma apropiada, mediante modificaciones consistentes en las modificaciones dietéticas y / o en el estilo de vida. De una forma usual, las clases terapéuticas utilizadas, actúan para fomentar la diuresis, la inhibición adrenérgica, o la vasodilatación. Se describe, a menudo, una combinación de fármacos, en dependencia de cuáles son las comorbilidades que se encuentran presentes.

Existen cinco clases comunes de fármacos, los cuales se utilizan para tratar la hipertensión: los diuréticos, los cuales 35 incluyen a la tiazida y a los diuréticos semejantes a la tiazida, tales como los consistentes en la hidroclorotiazida, los diuréticos de asa, tales como los consistentes en la furosamida, y en los diuréticos de ahorro de potasio, tales como el triamtereno; los bloqueantes de los receptores adrenérgios β1, tales como los consistentes en la amlodipina; los inhibidores de la enzima convertidora de la angiotensina (ACE), tales como los consistentes en el captopril, en el benazepril, en el enalapril, en el enaprilat, en el lisinopril, en el quinapril, y en el ramipril; y los antagonistas del 40 receptor AT1, conocidos así mismo, también, como bloqueantes de los receptores de la angitotensina II, del tipo I (ARBs - [de sus siglas, en idioma inglés, correspondientes a angiotensin II type 1 receptor blockers] -), tales como los consistentes en el candesartan cilexetilo, en el eprosartan, en el irbesartan, en el losartan, en el olmesartan medoxomil, en el telmisartan, y en el valsartan. Se administran así mismo, también, combinaciones de estos fármacos, tales como, por ejemplo, las consistentes en los bloqueantes de los canales de calcio (amlodipina) y un 45 inhibidor de ACE (benezepril), o en un diurético (hidroclorotiazida) y un inhibidor de ACE (enalapril). Todos estos fármacos, cuando se utilizan de una forma apropiada, son efectivos en el tratamiento de la hipertensión. Sin embargo, no obstante, ambas, la eficacia y la tolerancia, deben mejorarse de una forma adicional, en los nuevos fármacos los cuales objetivizan como diana a la hipertensión. Aparte de la disponibilidad de muchas opciones de tratamientos, recientes estudios de prospección llevados a cabo por la entidad nacional de estudios de prospección 50 sobre la salud y la nutrición de los Estados Unidos de América (NHANES - [de sus siglas, en idioma inglés, correspondientes a National Health Y Nutrition Examination Survey] -), han demostrado el hecho consistente en que, únicamente un porcentaje de aprox. un 50 % de la totalidad de los pacientes tratados, afectados de hipertensión, consiguen un control apropiado de la presión sanguínea. De una forma adicional, una reducida conformidad por parte de los pacientes, debido a los problemas de tolerancia mediante los tratamientos disponibles, reduce, de una 55 forma adicional, el éxito de los tratamientos.

De una forma adicional, cada una de estas clases de agentes antihipertensivos, tienen ciertos inconvenientes. Los diuréticos, pueden afectar, de una forma adversa, al metabolismo de los lípidos y de la glucosa, y éstos se encuentran asociados con otros efectos secundarios, incluyendo a la hipertensión ortostática, a la hipocalemia, y a la hiperuricemia. Los betabloqueantes, puede provocar fatiga, insomnio, e impotencia; y algunos betabloqueantes, pueden también provocar, así mismo, la reducción del rendimiento cardíaco y la bradicardia, efectos éstos, los cuales pueden ser unos efectos no deseables, en algunos grupos de pacientes. Los bloqueantes de los canales de calcio, se utilizan de una forma extensa, pero, se debate el hecho consistente en qué tanto efectivos son dichos fármacos, para reducir los eventos cardíacos, fatales y no fatales, relativos a otras clases de fármacos. Los inhibidores de ACE, pueden provocar tos, y efectos laterales raros, incluyendo a las erupciones, al angioedema, a la

hipercalemia, y al fallo renal funcional. Los antagonistas del receptor AT₁, son igualmente efectivos, como inhibidores de ACE, pero, sin la alta prevalencia de la tos.

La neprilisina (endopeptidasa neutra, EC 3. 4. 24. 11) (NEP), es una metalopeptidasa Zn²+, unida a la membrana endotelial, la cual se encuentra en muchos tejidos, incluyendo al cerebro, a los riñones, a los pulmones, al tracto gastrointestinal, al corazón, y a la vasculatura periférica. La NEP, es responsable de la degradación y de la inactivación de un gran número de péptidos, tales como los consistentes en los péptidos bradiquinina y angiotensin, circulantes, así como los péptidos natriuréticos, teniendo, el último de ellos, diversos efectos, incluyendo a la vasodilatación y a la diuresis. Así, de este modo, la endopeptidasa neutra (NEP), juega un importante rol interpretativo en la homeostasis de la presión sanguínea. Los inhibidores de la NEP, se han venido estudiando como siendo unos terapéuticos potenciales, y éstos incluyen al tiorfan, al candoxatril y al candoxatrilato. De una forma adicional, se han diseñado también compuestos, los cuales inhiben a la ACE y a la NEP, y que incluyen al omapatrilato (omapratilat), al gempratilato y al sampatrilato. Haciéndolos referencia como inhibidores de la vasopeptidasa, esta clase de compuestos, se encuentran descritos por parte Robl et al. (1999), en Exp. Opin. Ther. Patents 9 (12): 1665 - 1677.

Puede existir una oportunidad para incrementar la eficacia antihipertensiva, cuando se procede a combinar el antagonismo de los receptores AT₁ y los inhibidores de la NEP, tal y como se evidencia mediante las combinaciones de los antagonistas del receptor AT₁ / inhibidores de la NEP, las cuales se encuentran descritas en el documento de patente internacional WO 9 213 564, concedida a Darrow et al (Schering Corporation); en la patente estadounidense US 200 30 144 215, concedida a Ksander et al.; en el compendio presentado por parte de Pu et al., en el Congreso Cardiovascular Canadiense (Canadian Cardiovascular Congress) (celebrado en el mes de octubre del 2004); en el trabajo de Gardiner et al. (2006) materializado mediante el documento de JPET 319: 340 - 348; y en el documento de patente internacional WO 2007 / 045663 (Novartis AG), concedida a Glasspool et al.

Recientemente, en el documento de patente internacional WO 2007 / 056 546 (Novartis AG), concedida a Feng et al., se han descrito complejos de un antagonista del receptor AT1, y un inhibidor de la NEP, en donde, el compuesto antagonista del receptor AT1, se encuentra unido, de una forma no covalente, a un compuesto inhibidor de la NEP, o en donde, el compuesto antagonista, se encuentra vinculado, vía una unión no covalente, al compuesto inhibidor. El documento de patente internacional WO 2008 / 133 896, describe compuestos, los cuales tienen, ambas, actividad agonista al receptor AT1, y actividad de inhibición de la NEP.

A pesar de los avances efectuados en el arte especializado de la técnica, existe no obstante una necesidad, en cuanto al hecho de poder disponer de una monoterapia, la cual sea altamente eficaz, mediante múltiples mecanismos de acción, conduciendo a unos niveles de control de la presión sanguínea, la cual, de una forma usual, pueda lograrse mediante una terapia de combinación. Así, de este modo, si bien es verdad que se conocen varias agentes hipertensivos, y que éstos se administran en varias combinaciones, sería no obstante altamente deseable, el poder proporcionar compuestos, los cuales tuvieran ambas, actividad antagonista de los receptores AT₁, y actividad de inhibición de la NEP, en la misma molécula. Se espera el que, los compuestos los cuales poseen ambas de dichas actividades, sean particularmente útiles, como agentes terapéuticos, debido al hecho de que, éstos, exhibirían actividad antihipertensiva, mediante dos modos de acción independientes, al mismo tiempo que poseerían una farmacocinética en una molécula individual.

De una forma adicional, tales tipos de compuestos de doble acción, según se espera, tendrán utilidad para tratar una gran variedad de otras enfermedades, las cuales pueden tratarse mediante la antagonización del receptor AT₁ y / o inhibiendo la enzima NEP.

RESUMEN DE LA INVENCIÓN

10

15

20

25

30

35

40

60

65

La presente invención, proporciona nuevos compuestos, los cuales, según se ha encontrado, poseen actividad antagonista del receptor AT₁, y actividad de inhibición de la enzima neprilisina (NEP). De una forma correspondientemente en concordancia con ello, se espera el hecho de que, los compuestos de la presente invención, sean de utilidad y ventajosos, como agentes terapéuticos, para tratar las condiciones tales como las consistentes en la hipertensión, y la insuficiencia o fallo cardíaco.

Un aspecto de la presente invención, se refiere a un compuesto de la fórmula I:

$$R^{3}$$
 Z
 N
 R^{4}
 R^{4}
 R^{4}

en donde, Z, es un pirazol, seleccionado de entre:

5

Ar, se selecciona de entre

10

$$(R^2)_{a}$$

$$R^1$$

$$R^1$$

$$R^1$$

$$R^1$$

$$R^1$$

15

R¹, se selecciona de entre -SO2NHC(O)R^{1a}, tetrazolilo, -C(O)OR^{1b}

20

20

25

en donde, R^{1a}, es -alquilo C₁₋₆, -alquilen C₀₋₆-OR, -cicloalquilo C₃₋₇, -alquilen C₀₋₅-NR^{1b}R^{1c}, piridilo, isoxazolilo, metilisoxazolilo, pirrolidinilo, morfolinilo, y fenilo opcionalmente sustituido mediante halo; en donde, cada R^{1b}, se selecciona, de una forma independiente, de entre H y -alquilo C₁₋₆;

a, es 0, 1, ó 2; R², es F;

R³, se selecciona de entre -alquilo C2-5 y -O- alquilo C1-5;

30

 R^4 , se selecciona de entre -CH2-SR 4 , -CH2-N(OH)C(O)H, -CH(R^{4b})C(O)NH(OR 4d), y -CH(R^{4b})C(O)OR 4c ; en donde, R^{4a} , es H \acute{o} -C(O)-alquilo C1-6; R^{4b} , es H \acute{o} -OH; R^{4c} , es H, -alquilo C1-6, -alquilen C0-6-morfolina, -CH2OC(O)O-alquilo C1-6, -CH(CH3)OC(O)O- cicloalquilo C3-7, \acute{o} :

35

40 R^{4d}, es H ó -C(O)-R^{4e}; y R^{4e}, es - alquilo C₁₋₆, -alquil C₁₋₆-NH₂ ó arilo; y

R⁵, se selecciona de entre -alquilo C₁₋₆, -CH₂-furanilo, -CH₂-tiofenilo, bencilo, y bencilo, sustituido mediante uno o más halo, o grupos -CH₃, ó -CF₃;

45 en duna

en donde, cada anillo, en Ar, se encuentra opcionalmente sustituido mediante 1 a 3 sustituyentes, seleccionados, de una forma independiente, de entre -OH, - alquilo C1-6, -alquenilo C2-4, -alquinilo C2-4, -CN, halo, -O- alquilo C1-6, -S- alquilo C1-6, -S(O)- al

50 o

o una sal de éste, farmacéuticamente aceptable.

55

60

65

Otro aspecto de la presente invención, se refiere a composiciones farmacéuticamente aceptables, las cuales comprenden un portador o soporte farmacéuticamente aceptable, y un compuesto de la presente invención. Tales tipos de composiciones, pueden contener, de una forma opcional, otros agentes terapéuticos, tales como los consistentes en los diuréticos, en los bloqueantes de los receptores β1-adrenérgicos, en los bloqueantes de los canales de calcio, en los inhibidores de la enzima conversora de la angiotensina, en los antagonistas de los receptores AT₁, en los inhibidores de la neprilisina, en los agentes antiinflamatorios no esteroideos, en los inhibidores de la renina, en los antagonistas de los receptores de la endotelina, en los inhibidores de la enzima de conversión de la endotelina, en los antagonistas de los receptores de la enzima de conversión de la angiotensina / inhibidores de la neprilisina, en los antagonistas de los receptores de la vasopresina, y en combinaciones de entre éstos. De una forma correspondientemente en concordancia, en todavía otro aspecto de la presente invención, ésta se refiere a una composición farmacéutica, la cual comprende un compuesto de la presente invención, se refiere a una combinación de agentes activos, la cual comprende un compuesto de la presente invención, se refiere a una combinación de agentes activos, la cual comprende un compuesto de la

presente invención, y un segundo agente terapéutico. El compuesto de la presente invención, puede formularse conjuntamente con el agente o los agentes adicionales, o bien éste puede prepararse de una forma separada, con respecto al agente o los agentes adicionales. Cuando el compuesto en cuestión se fórmula de una forma separada, puede entonces procederse a incluir un portador o soporte farmacéuticamente aceptable, con el agente o los agentes adicionales. Así, de este modo, otro aspecto de la presente invención, se refiere a una combinación de composiciones farmacéuticas, comprendiendo, la combinación: una primera composición farmacéutica, la cual comprende un compuesto de la presente invención, y un primer portador o soporte farmacéuticamente aceptable; y una segunda composición farmacéutica, la cual comprende un segundo agente terapéutico, y un segundo portador o soporte, farmacéuticamente aceptable. En otro aspecto de la presente invención, ésta se refiere a un equipo, a modo de "kit", el cual comprende tales tipos de composiciones farmacéuticas, tales como, por ejemplo, en donde, la primera y la segunda composiciones farmacéuticas, son composiciones farmacéuticas separadas.

10

15

20

25

30

35

40

45

50

55

60

65

Los compuestos de la presente invención, poseen ambas, actividad antagonista del receptor AT1 y actividad de inhibición de la enzima NEP, y así, por lo tanto, se espera que, éstos, sean de utilidad como agentes terapéuticos, para tratar pacientes, los cuales sufran de una enfermedad, o de un trastorno o desorden, el cual se mediante la antagonización del receptor AT1, y inhibiendo la enzima NEP. Así, de este modo, en un aspecto de la presente invención, ésta encuentra utilidad en un procedimiento para el tratamiento de pacientes, los cuales sufran de una enfermedad o de un trastorno o desorden, el cual se trata mediante la antagonización del receptor AT1 / o inhibiendo la enzima NEP, procedimiento éste, el cual comprende la administración, a un paciente, de una cantidad terapéuticamente efectiva de un compuesto de la presente invención. En otro aspecto de la presente invención, ésta encuentra utilidad en un procedimiento para el tratamiento de la hipertensión, o de un fallo cardíaco (insuficiencia cardíaca), el cual comprende la administración, a un paciente, de una cantidad terapéuticamente efectiva, de un compuesto de la presente invención. En todavía otro aspecto de la presente invención, ésta encuentra utilidad en un procedimiento para la antagonización de un receptor AT1, en un mamífero, procedimiento éste, el cual comprende la administración, a un mamífero, de una cantidad antagonizante del receptor de la AT1, de un compuesto de la paciente invención.

Los compuestos de la presente invención, los cuales son de un particular interés, incluyen a aquéllos los cuales exhiben una constante inhibitoria (pKi), para la unión de un receptor AT1, el cual es igual o aproximadamente igual a un valor de aprox. 5,0; de una forma particular, aquéllos, los cuales tienen una pKi, la cual sea mayor de, o igual a un valor de aprox. 6,0; en una forma de presentación, aquéllos los cuales tienen una pKi, la cual sea mayor de, o igual a un valor de aprox. 7,0; de una forma particular, aquéllos, los cuales tienen una pKi, la cual sea mayor de, o igual a un valor de aprox. 8,0; y en todavía otra forma de presentación, aquéllos, los cuales tienen una pKi. la cual sea la correspondiente a un valor comprendido dentro de unos márgenes de aprox. 8,0 -10. Los compuestos los cuales son de un interés particular, incluyen a aquéllos, los cuales tienen una concentración inhibitoria de la enzima NEP, (pIC50), la cual es mayor de o igual a un valor de aprox. 5,0; en una forma de presentación, aquéllos los cuales tienen una concentración inhibitoria de la enzima NEP, (pIC50), la cual es mayor de o igual a un valor de aprox. 6,0; de una forma particular, aquéllos cuales tienen una concentración inhibitoria de la enzima NEP, (pIC50), la cual es mayor de o igual a un valor de aprox. 7,0; y de una forma mayormente particular, aquéllos los cuales tienen una concentración inhibitoria de la enzima NEP, (pIC50), correspondiente a un valor comprendido dentro de unos márgenes situados entre aprox. 7,0 - 10. Los compuestos de un interés adicional, incluyen a aquéllos los cuales tienen una concentración inhibitoria de la enzima NEP, (pIC50), para su unión a un receptor AT1 la cual es mayor de o igual a un valor de aprox. 7,5, y que tiene un valor de pIC50 de la encima NEP, la cual es mayor de o igual a un valor de aprox. 7,0.

Puesto que, los compuestos de la presente invención, poseen una actividad antagonista del receptor AT1, y actividad de inhibición de la NEP, tales tipos de compuestos, son también de utilidad como herramientas de investigación. Correspondientemente en concordancia, un aspecto de la invención, se refiere a un procedimiento de utilización de un compuesto de la invención, como una herramienta de investigación, el cual comprende el llevar a cabo un ensayo biológico, utilizando un compuesto de la invención. Los compuestos de la invención, pueden también utilizarse para evaluar nuevos compuestos químicos. Así, de este modo, otro aspecto de la invención, se refiere a un procedimiento para evaluar un compuesto de ensayo, en un ensayo biológico, el cual comprende: (a) realizar un ensayo biológico, con un compuesto de ensayo, para proporcionar un primer valor de ensayo; (b) conducir el ensayo biológico, con un compuesto de la invención, para proporcionar un segundo valor de ensayo; en donde, la etapa (a), se lleva a cabo, bien ya se antes, bien ya sea después, o bien ya sea simultáneamente con la etapa (b); y (c) comparar el primer valor de ensayo de la etapa (a), con el segundo valor de ensayo de la etapa (b). Los ensayos biológicos, incluyen un ensayo de unión de un receptor AT1 y un ensayo de inhibición de la enzima NEP. Todavía otro aspecto de la invención, se refiere a un procedimiento para estudiar un sistema biológico o muestra biológica, procedimiento éste, el cual comprende ambos, un receptor AT1, una enzima NEP, o ambos, comprendiendo, el procedimiento en cuestión: (a) poner en contacto el sistema o muestra biológicos, con un compuesto de la invención; y (b) determinar los efectos provocados por el compuesto, en el sistema o muestras biológicos.

En todavía otro aspecto de la presente invención, ésta se refiere a procesos y a productos intermedios (intermediarios), los cuales son de utilidad para la preparación de los compuestos de la presente invención. De una forma correspondientemente en concordancia con ello, otro aspecto de la presente invención, se refiere a un

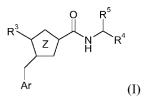
procedimiento para la preparación de compuestos de la invención, procedimiento éste, el cual comprende la etapa de acoplamiento de un compuesto de la fórmula 1, con un compuesto de la fórmula 2:

$$R^3$$
 OH R^5 $+$ H_2N R^{4^+} (1) (2)

10

15

20


5

en donde, Ar*, representa Ar-R¹*, en donde, R¹*, es R¹, o una forma protegida de R¹; y R⁴*, representa R⁴ ó una forma protegida de R⁴; y desproteger el producto, cuando R¹*, es una forma protegida de R¹ y / ó R⁴*, es una forma protegida de R⁴. Otro aspecto de la presente invención, se refiere a un procedimiento para la preparación de una sal farmacéuticamente aceptable de un compuesto de la fórmula I, procedimiento éste, el cual comprende el poner en contacto un compuesto de la fórmula I, en una forma de ácido libre o de base libre, con una base o ácido farmacéuticamente aceptable. En otros de sus aspectos, la presente invención, se refiere a productos preparados mediante uno cualquiera de los procesos o procedimientos, los cuales se describen aquí, en este documento de solicitud de patente, así como nuevos productos intermedios o intermediarios, utilizados en dichos procesos o procedimientos. En un aspecto de la presente invención, se presentan nuevos productos intermedios o intermediarios, los cuales tienen las fórmulas V, VI ó VII, los cuales se encuentran definidos aquí, en este documento de solicitud de patente.

En todavía otro de sus aspectos, la presente invención, se refiere al uso de un compuesto de la fórmula I, ó una sal farmacéuticamente aceptable de éste, para la fabricación de un medicamento, de una forma especial, para la fabricación de un medicamento de utilidad para el tratamiento de la hipertensión o de la insuficiencia cardíaca (fallo cardíaco).

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

30 En un aspecto, la invención, se refiere a un compuesto de la fórmula I:

35

o una sal de éste, farmacéuticamente aceptable.

40

45

De la forma la cual se utiliza aquí, en este documento de solicitud de patente, el término "compuesto de la invención", incluye a todos los compuestos los cuales se encuentran abarcados mediante la fórmula I, tales como las especies personificadas en las fórmulas II, III, IV y V. De una forma adicional, los compuestos de la invención, pueden también contener, así mismo, diversos grupos básicos o ácidos (tales como, por ejemplo, los consistentes en los grupos amino ó carboxilo), y así, por lo tanto, tales tipos de compuestos, pueden existir como una base libre, como un ácido libre, o en varias formas de sal. La totalidad de tales tipos de formas de sal, se encuentran incluidas en el ámbito de la presente invención, a menos de que se indique de otro modo, en las reivindicaciones anexas de este documento de solicitud de patente.

50

De una forma adicional, los compuestos de la presente invención, puede también existir, así mismo, como profármacos. Aquellas personas expertas en el arte especializado de la técnica, reconocerán el hecho de que, la referencia a un "compuesto de la invención", o a un "compuesto de la fórmula l", aquí, en este documento de solicitud de patente, incluye a un compuesto de la fórmula l, así como también a sales farmacéuticamente aceptables de tal tipo de compuesto, a menos de que se encuentre indicado de otro modo.

55

De una forma adicional, los solvatos de los compuestos de la fórmula I, se encuentran incluidos en el ámbito de la presente revelación, en concordancia con la invención.

60

65

Los compuestos de la fórmula I, pueden contener uno o más centros quirales y, así, por lo tanto, estos compuestos, pueden prepararse y utilizarse en varias formas estereoisoméricas. De una forma correspondientemente en concordancia con ello, la presente invención, se refiere, también, una mezclas racémicas, a estereoisómeros puros (tales como los enantiómeros y diastereoisómeros), una mezclas enriquecidas con estereoisómeros, y por el estilo, a menos de que se indique de otro modo. Cuando una estructura química se representa aquí, sin ninguna estereoquímica, se entenderá el hecho de que, mediante tal tipo de estructura, se abarcan todos los posibles estereoisómeros. Así, de este modo, se pretende, por ejemplo, que los términos "compuesto de la fórmula I", incluya

a la totalidad de los posibles estereoisómeros del compuesto. De una forma similar, cuando aquí, en este documento de solicitud de patente, se muestra o se cita un estereoisómero particular, se entenderá el hecho, por parte de aquéllas personas expertas en el arte especializado de la técnica, de que, en las composiciones de la presente invención, pueden encontrarse presentes cantidades menores de otros estereoisómeros, a menos de que se indique de otro modo, con la condición de que, la utilidad de la composición, como un todo, no se elimine, mediante la presencia de tales otros isómeros. Pueden obtenerse enantiómeros individuales, mediante numerosos procedimientos, los cuales se conocen bien, en el arte especializado de la técnica, incluyendo la cromatografía quiral, utilizando una fase o soporte estacionario quiral apropiados, o mediante la conversión química de éstos, en diastereoisómeros, separando los diastereoisómeros mediante medios convencionales, tales como los consistentes en cromatografía o recristalización y, a continuación, regenerando los enantiómeros originales. Adicionalmente, además, allí en donde sean aplicables, se encuentran incluidas, dentro del ámbito de la invención, todas las formas cis – trans o E / Z de isómeros (isómeros geométricos), formas tautoméricas y formas topoisoméricas de los compuestos de la invención, a menos de que se indique de otro modo.

Podría encontrarse presente un posible centro quiral, en el carbono del grupo –CHR⁴R⁵, cuando, R⁵, es un grupo, tal como el consistente en el grupo -alquilo -C₁₋₆, tal como, por ejemplo, -CH₂CH(CH₃)₂. Este centro quiral, se encuentra presente, en el átomo de carbono, indicado mediante el símbolo *:

$$R^{3} \xrightarrow{Z} N \xrightarrow{K}$$

10

15

25

30

35

40

45

50

55

60

65

En una forma de presentación de la presente invención, el átomo de carbono identificado por el símbolo *, tiene la configuración (R). En esta forma de presentación, en concordancia con la presente invención, los compuestos de la fórmula I, tienen la configuración (R), en el átomo de carbono identificado por el símbolo *, ó éstos se encuentran enriquecidos en una forma estereoisomérica, la cual tiene la configuración (R), en este átomo de carbono. En otra forma de presentación, en concordancia con la presente invención, el átomo de carbono, identificado mediante el símbolo *, tiene la configuración (S). En esta forma de presentación, en concordancia con la presente invención, los compuestos de la fórmula I, tienen la configuración (S), en el átomo de carbono identificado por el símbolo *, ó éstos se encuentran enriquecidos en una forma estereoisomérica, la cual tiene la configuración (S), en este átomo de carbono. Se entenderá el hecho de que, un compuesto, puede tener un centro quiral, en este átomo de carbono.

Los compuestos de la presente invención, pueden también tener, así mismo, dos centros quirales, en el grupo CHR^4R^5 , tal como, por ejemplo, cuando R^4 , es -CH(OH)C(O)OH y, R^5 , es bencilo. Estos centros quirales, se encuentran presentes, en los átomos de carbono, mediante los símbolos * y **:

En tales casos, pueden existir cuatro posibles diastereómeros. Así, por ejemplo, ambos átomos de carbono, pueden tener la configuración (R) y, en tal tipo de forma de presentación, los compuestos de la fórmula I, tienen la configuración (R), en los átomos de carbono, identificados mediante los símbolos * y **, o éstos se encuentran enriquecidos en la forma estereoisomérica, la cual tiene la configuración (R, R), en dichos átomos. En otra forma de presentación, en concordancia con la presente invención, ambos átomos de carbono, tienen la configuración (S), y en tal tipo de configuración, los compuestos de la fórmula I, tienen la configuración (S, S), en los átomos de carbono, identificados mediante los símbolos * y **, o éstos se encuentran enriquecidos en una forma estereoisomérica, la cual tiene la configuración (S), en dichos átomos. En todavía otra forma de presentación, en concordancia con la presente invención, el átomo de carbono identificado mediante el símbolo *, puede tener la configuración (S), y los átomos de carbono identificados mediante el símbolo **, pueden tener la configuración (R) y, y en tal tipo de forma de presentación, los compuestos de la fórmula I, tienen la configuración (S, R), en los átomos de carbono identificados mediante los símbolos * y **, o éstos se encuentran enriquecidos en una forma estereoisomérica, la cual tiene la configuración (S, R), en dichos átomos. En todavía otra forma de presentación, en concordancia con la presente invención, el átomo de carbono identificado mediante el símbolo *, puede tener la configuración (R), y el átomo de carbono identificado mediante el símbolo **, puede tener la configuración S y, en tal tipo de forma de presentación, en concordancia con la presente invención, los compuestos de la fórmula I, tienen la configuración (R, S), en los átomos de carbono identificados mediante los símbolos * y **, o éstos se encuentran enriquecidos en una forma estereoisomérica, la cual tiene la configuración (R, S), en estos átomos.

En algunos casos, en concordancia con la presente invención, con objeto de optimizar la actividad terapéutica de los compuestos de la invención, tal como, por ejemplo, en calidad de agentes hipertensivos, puede ser deseable el hecho consistente en que, los átomos de carbono, identificados mediante los símbolos * y / o **, tengan una configuración (R), (S), (R, R), (S, S), (S, R), ó (R, S), particular.

5

10

Los compuestos de la presente invención, así como aquellos compuestos utilizados en su síntesis, pueden también incluir compuestos isotópicamente marcados, a saber, allí en donde, uno o más átomos, se han enriquecido con átomos que tienen una masa atómica diferente de la masa atómica predominantemente encontrada en la naturaleza. Los ejemplos de isótopos que pueden incorporarse en los compuestos de la fórmula I, incluyen, por ejemplo, aunque no de una forma limitativa en cuanto a éstos, a los ²H, ³H, ¹³C, ¹⁴C, ¹⁵N, ¹⁸O, ¹⁷O, ³⁵S, ³⁶Cl, y ¹⁸F.

Los compuestos de la fórmula I, según se ha encontrado, poseen actividad antagonizante del receptor AT₁, y actividad de inhibición de la enzima NEP. Entre otras propiedades, se espera que, tales compuestos, sean de

15

utilidad como agentes terapéuticos, para tratar enfermedades tales como la hipertensión. Procediendo a combinar la actividad dual en un solo compuesto individual, puede lograrse una doble terapia, a saber, actividad antagonista del receptor AT₁ y actividad de inhibición de la enzima NEP, utilizando un componente activo individual. Puesto que, las composiciones farmacéuticas que contienen un componente activo, de una forma típica, son más fáciles de formular, que las composiciones que contienen dos componentes activos, tales tipos de composiciones de componente individual, proporcionan una ventaja significativa sobre las composiciones que contienen dos componentes activos. Adicionalmente, además, se ha encontrado, también, el hecho consistente en que algunos compuestos de la invención, son selectivos para la inhibición del receptor AT₁, por encima del receptor de la angiotensina II del tipo 2 (AT₂), una propiedad que puede tener ventajas terapéuticas.

25

20

La nomenclatura utilizada aquí, en este documento de solicitud de patente, para denominar los compuestos de la invención, se ilustra en los ejemplos que se incluyen aquí, en este documento. Esta nomenclatura, se ha derivado, utilizando el sistema informático "AutoNom software" (MDL, San Leandro, California), el cual se encuentra comercialmente disponible en el mercado.

30

EJEMPLOS REPRESENTATIVOS

35

Los siguientes sustituyentes y valores, pretenden proporcionar ejemplos representativos de varios aspectos y formas de presentación de la invención. Estos valores representativos, pretenden definir e ilustrar, de una forma adicional, tales aspectos y formas de presentación, y no pretenden excluir otras formas de presentación, o limitar el ámbito de la invención. En este sentido, la representación de que se prefiere un valor o sustituyente particular, no pretende, en modo alguno, el excluir otros valores o sustituyentes de la invención, a menos de que ello se indique de una forma específica.

En un aspecto, la invención, se refiere a compuestos de la fórmula I:

40

$$R^{3}$$
 Z
 N
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}

45

Z, presenta un pirazol, seleccionado de entre:

50

Así, de este modo, los compuestos de la presente invención, pueden también representarse como las fórmulas II y III:

Q R⁵

60

55

$$\mathbb{R}^3$$
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4

у

Ar, presenta un grupo arilo, seleccionado de entre:

5

30

40

45

50

55

10
$$(R^2)_{a}$$

$$R^1$$

$$R^1$$

$$R^1$$

$$R^1$$

$$R^1$$

$$R^1$$

$$R^1$$

$$R^1$$

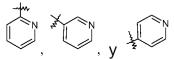
El número entero "a", es 0, 1 ó 2, y el grupo R² es flúor. Las porciones Ar ejemplares, sustituidas por fluoro, incluyen a:

Cada anillo, en la porción Ar, puede encontrarse sustituido con 1 a 3 sustituyentes, independientemente seleccionado de entre -OH-, -alquilo C_{1-6} , -alquenilo C_{2-4} , alquinilo C_{2-4} , -CN, halo, -O-alquilo C_{1-6} , -S-alquilo C_{1-6} , -S(O)-alquilo C_{1-6} , -S(O)₂-alquilo C_{1-4} , -fenilo, -NO₂, -NH₂, -NH-alquilo C_{1-6} y -N-(alquilo C_{1-6})₂, en donde, cada alquilo, alquenilo, y alquinilo, se encuentran opcionalmente sustituidos con 1 a 5 átomos de fluoro.

R¹, se selecciona de entre -SO2NHC(O)R^{1a}, tetrazolilo, -C(O)OR^{1b},

La porción R¹, es -alquilo C₁₋₆, -alquilen C₀₋₆-OR, -cicloalquilo C₃₋₇, -alquilen C₀₋₅-NR^{1b}R^{1b}, piridilo, isoxazolilo, metilisoxazolilo, pirrolidinilo, morfolinilo, y fenil opcionalmente sustituido mediante halo. Cada R^{1b}, se selecciona, de una forma independiente, de entre H y –alquilo C₁₋₆.

En una forma particular de presentación, en concordancia con la presente invención, R¹, es -SO2NHC(O)R¹a, en donde, R¹a, es -alquilo C¹-6. Los ejemplos de esta forma de presentación, en concordancia con la presente invención, incluyen a los -SO2NHC(O)CH³ y SO2NHC(O)CH³. En una forma particular de presentación, en concordancia con la presente invención, R¹, es tetrazolilo, tal como 1H-tetrazol-5-ilo ó 5H-tetrazol-5-ilo.


En una forma particular de presentación, en concordancia con la presente invención, R¹, -SO2NHC(O)R^{1a,} en donde, R¹, -alquilen Co-6-OR. Los ejemplos of esta forma de presentación, en concordancia con la presente invención, incluyen a los -SO2NHC(O)OCH3, -SO2NHC(O)OCH2CH3, -SO2NHC(O)CH2OCH3, -SO2NHC(O)CH2OH, -SO2NHC(O)CH2OH3, -SO2NHC(O)CH2OH3.

En otra forma particular de presentación, en concordancia con la presente invención, R¹, es -SO2NHC(OR¹a, en donde, R¹a, es - cicloalquilo. Los ejemplos de esta forma de presentación, en concordancia con la presente invención, incluyen al -SO2NHC(O)-ciclopropilo C₃-7. En otra forma particular de presentación, en concordancia con la presente invención, R¹, es -SO2NHC(O)R¹a, en donde, R¹a, es -alquilen C₀-5-NR¹bR¹b. Los ejemplos de esta forma de presentación, en concordancia con la presente invención, incluyen a los SO2NHC(O)NH(CH₃), -SO2NHC(O)N(CH₃)2, -SO2NHC(O)NH(CH₃), y -SO2NHC(O)C(CH₃)2NH₂.

En otra forma particular de presentación, en concordancia con la presente invención, R¹, -SO2NHC(O)R^{1a}, en donde, 60 R^{1a}, es piridilo, tal como, por ejemplo, -SO2NHC(O)-2-piridilo, -SO2NHC(O)-3-piridilo, -SO2NHC(O)-4-piridilo. El término "piridilo", significa un compuesto heterocíclico de la fórmula:

5 el cual se encuentra unido a cualquier punto disponible de unión, e incluye a:

10

En otra forma particular de presentación, en concordancia con la presente invención, R^1 , es -SO2NHC(O) R^{1a} , en donde, R^{1a} , es isoxazolilo, tal como, por ejemplo, -SO2NHC(O)-3-isoxazolilo, -SO2NHC(O)-4-isoxazolilo, y -SO2NHC(O)-5-isoxazolilo. El término "isoxazolilo", significa un compuesto heterocíclico de la fórmula:

15

el cual se encuentra unido a cualquier punto disponible de unión, y éste incluye a:

20

25

En una forma particular de presentación, en concordancia con la presente invención, R1, es -SO2NHC(O)R1a, en donde, R^{1a}, es metilisoxazolilo, tal como, por ejemplo -SO₂NHC(O)-3-isoxazolil-5-metilo, ó -SO₂NHC(O)-5-isoxazolil-3-metilo. El término "metilisoxazolilo", significa un compuesto heterocíclico compuesto de la fórmula:

30

el cual se encuentra unido a cualquier punto disponible de unión, y éste incluye a:

35

40

En otra forma particular de presentación, en concordancia con la presente invención, R¹, es -SO2NHC(O)R^{1a}, en donde, R^{1a}, es pirrolidinilo, tal como, por ejemplo, -SO2NHC(O)-1-pirrolidilo, -SO2NHC(O)-2-pirrolidilo, y -SO2NHC(O)-3-pirrolidilo. El término "pirrolidinilo" significa un compuesto heterocíclico de la fórmula:

45

el cual se encuentra unido a cualquier punto disponible de unión, y éste incluye a:

50

55

En una forma particular de presentación, en concordancia con la presente invención, R1, es -SO2NHC(O)R1a, en donde, R^{1a}, es morfolinilo, tal como, por ejemplo, -SO2NHC(O)-4-morfolinilo. El término "morfolinilo", significa un compuesto heterocíclico de la fórmula:

60

el cual se encuentra unido a cualquier punto disponible de unión, y éste incluye a:

En todavía otra forma de presentación, en concordancia con la presente invención, R¹, es -SO2NHC(O)R^{1a}, en donde, R^{1a}, es fenilo, opcionalmente sustituido mediante halo. En una forma de presentación, en concordancia con la presente invención, el grupo fenilo, se encuentra insustituido y, R¹, es -SO2NHC(O)fenilo. En otra forma de presentación, en concordancia con la presente invención, el grupo fenilo, se encuentra sustituido mediante 1 ó 2 átomos de halo. En todavía otra forma de presentación, en concordancia con la presente invención, los átomos de halo, son átomos de flúor. Los Ejemplos de esta forma de presentación, incluyen al -SO2NHC(O)-2-fluorofenilo.

En todavía otra forma particular de presentación, en concordancia con la presente invención, R¹, es tetrazol-5-ilo. En aún todavía otra forma particular de presentación, en concordancia con la presente invención, R¹, es -C(O)OR¹b, en donde, R¹b, es H ó -alquilo C¹-6, por ejemplo, R¹, es -COOH, ó R¹, es -C(O)OCH₃. En aún todavía otra forma de presentación, en concordancia con la presente invención, R¹,

20

15

Y en aún todavía otra forma de presentación, en concordancia con la presente invención, R¹, es

25

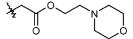
30

R³, se selecciona de entre –alquilo C2-5 y -O-alquilo C1-5. Los ejemplos de –alquilo C2-5, incluyen a -CH2CH3, -(CH2)2CH3, -CH(CH3)2, -(CH2)3CH3, -CH2CH(CH3)2, -C(CH3)3, CH(CH3)-CH2CH3, y -(CH2)4CH3. En una forma de presentación, en concordancia con la presente invención, R³, es propilo, etilo, ó butilo. Los ejemplos de -O-alquilo C1-5, incluyen a -OCH3, -OCH2CH3, y -OCH(CH3)2. En una forma de presentación, en concordancia con la presente invención R³, es etoxi.

R⁴, se selecciona de entre -CH₂-SR^{4a}, -CH₂-N(OH)C(O)H, -CH(R^{4b})C(O)NH(OR^{4d}), y -CH(R^{4b})C(O)OR^{4c}. La porción R^{4a}, es H ó -C(O)- alquilo C₁-6. La porción R^{4b}, es H ó -OH, y la porción R^{4c}, es H ó -alquilo C₁-6. La porción R^{4d}, es H ó -C(O)-R^{4e}, y R^{4e}, es -alquilo C₁-6, - alquil C₁-6-NH₂, ó arilo.

En una forma particular de presentación, en concordancia con la presente invención, R⁴, es -CH₂-SR^{4a}. Los ejemplos de esta forma de presentación, incluyen a -CH₂SH y -CH₂-SC(O)CH₃.

40


45

50

En otra forma de presentación, en concordancia con la presente invención, R^4 , es -CH2N(OH)C(O)H. En una forma particular de presentación, en concordancia con la presente invención, R^4 , es -CH(R^{4b})C(O)NH(OR 4d), en donde, la porción R^{4d} , es H, tal como -CH2C(O)NH(OH) ó -CH(OH)C(O)NH(OH). En otra forma particular de presentación, en concordancia con la presente invención, R^4 , es -CH(R^{4b})C(O)NH(OR 4d), en donde, la porción R^{4d} , es -C(O)- R^{4e} , tal como -CH2C(O)NH-OC(O)CH3, -CH2C(O)NH-OC(O)-fenilo, ó -CH2C(O)NH-OC(O)-CH(NH2)[CH(CH3)2].

En una forma de presentación, en concordancia con la presente invención, R^4 , es -CH(R^{4b})C(O)OR 4c , en donde, R^{4b} y R^{4c} , son ambas H, es decir, R^4 , es -CH2COOH. En otra forma de presentación, en concordancia con la presente invención, R^4 , es -CH(R^{4b})C(O)OR 4c , en donde, R^{4b} , es H, y R^{4c} , es -alquilo C1-6. Tales tipos de ejemplos de R^4 , incluyen a -CH2C(O)OCH3, -CH2C(O)OCH2CH3, -CH2C(O)OCH(CH3)2, -CH2C(O)O(CH2)2CH3, -CH2C(O)O(CH2)4CH3.

En otra forma de presentación, en concordancia con la presente invención, R⁴, es -CH(R^{4b})C(O)OR4c, en donde, R^{4b,} es H, y R^{4c}, es -alquilen Co-6-morfolina, por ejemplo, R⁴, puede ser

55

En otra forma de presentación, en concordancia con la presente invención, R⁴, es -CH(R^{4b})COOR^{4c}, en donde, R^{4b}, es -CH₂OC(O)O-alquilo C₁₋₆ ó -CH(CH₃)OC(O)O- alquilo C₁₋₆. Los ejemplos de tales tipos de grupos R⁴, incluyen a los grupos -CH₂C(O)OCH(CH₃)OC(O)OCH₂CH₃ y -CH₂C(O)OCH(CH₃)OC(O)OCH(CH₃)₂. En otra forma de presentación, en concordancia con la presente invención, R⁴, es -CH(R^{4b})COOR_{4c}, en donde, R^{4b}, es H, y R^{4c}, es -CH(CH₃)OC(O)O-cicloalquilo C₃₋₇. Los ejemplos de tales tipos de grupos R⁴, incluyen al grupo -CH₂C(O)OCH-

(CH₃)-OC(O)O-ciclohexilo. En otra forma de presentación, en concordancia con la presente invención, R^4 , es -CH(R^{4b})C(O)OR 4c , en donde, R^{4b} , es H, y R^{4c} , es:

así, por ejemplo, R⁴, puede ser:

5

10

15

20

25

30

35

40

50

55

CH₃

En otra forma de presentación, en concordancia con la presente invención, R⁴, es -CH(R^{4b})COOR^{4c}, en donde, R^{4b}, es -OH y, R^{4c}, es H ó -alquilo C₁₋₆, cuyos ejemplos incluyen a los grupos -CH(OH)COOH y -CH(OH)COOCH₃.

R⁵, se selecciona de entre -alquilo C₁₋₆, -CH₂-furanilo, -CH₂-tiofenilo, bencilo, y bencilo sustituido mediante uno o más grupos halo, -CH₃, ó -CF₃. En una forma particular de presentación, en concordancia con la presente invención, R⁵, es -alquilo C₁₋₆. Los ejemplos de esta forma de presentación, en concordancia con la presente invención, incluyen a *i*-butilo. En otra forma de presentación, en concordancia con la presente invención, R⁵, es -CH₂-furanilo, tal como -CH₂-furan-2-ilo ó -CH₂-furan-3-ilo. En una forma particular de presentación, en concordancia con la presente invención, R⁵, es -CH₂-tiofenilo, tal como -CH₂-tiofen-3-ilo. En todavía otra forma particular de presentación, en concordancia con la presente invención, R⁵, es bencilo sustituido mediante uno o más grupos halo, -CH₃, ó -CF₃. Los ejemplos de esta forma de presentación, incluyen al 2-bromobencilo, al 2-clorobencilo, al 2-fluorobencilo, al 3-fluorobencilo, al 3-fluorobencilo, al 4-fluorobencilo, al 2-metilbencilo, y al 2-trifluorometilbencilo.

En una forma de presentación, en concordancia con la presente invención, R⁴, es -CH(R^{4b})COOR^{4c}, en donde, R^{4b}, es H, y R⁵, es bencilo, sustituido mediante uno o más grupos halo, -CH₃, ó -CF₃.

En una forma de presentación de la presente invención, el compuesto of fórmula I, es de la especie personalizada en la fórmula II:

en donde, Ar, R³, R⁵, y R⁶, son tal y como éstas se han definido para la fórmula I; ó una sal farmacéuticamente aceptable de éste. En una forma particular de presentación, en concordancia con la presente invención, Ar, es:

 $R^1, es \quad -SO_2NHC(O)CH_3, \quad -SO_2NHC(O)CH_2CH_3, \quad -SO_2NHC(O)OCH_3, \quad -SO_2NHC(O)OCH_2CH_3, \quad -SO_2NHC(O)CH_2CH_3, \quad -SO_2NHC(O)CH_3CH_2, \quad -SO_2NHC(O)CH_3CH_2, \quad -SO_2NHC(O)CH_3, \quad -SO_2NHC$

R³, es propilo, etilo, butilo, ó etoxi;

10

25

60

У

R⁵, es *i*-butilo, -CH₂-furan-2-ilo, -CH₂-tiofen-3-ilo, bencilo, 2-bromobencilo, 2-clorobencilo, 2-fluorobencilo, 3-fluorobencilo, 4-fluorobencilo, 2-metilbencilo, 6-2-trifluorometilbencilo;

o una sal de éste, farmacéuticamente aceptable.

En una forma de presentación, en concordancia con la presente invención, R⁴, se selecciona de entre -CH₂-SR^{4a}, -CH₂-N(OH)C(O)H, -CH(R^{4b})C(O)NH(OR^{4d}), y -CH(R^{4b})C(O)OR^{4c}; en donde, R^{4a}, R^{4c} y R^{4d}, son H; y R^{4b}, es tal y como ésta se define para la fórmula I. En otro aspecto, estas formas de presentación, en concordancia con la presente invención, tienen fórmula II ó III.

En todavía otra forma de presentación, en concordancia con la presente invención, R^4 , se selecciona de entre -CH2-40 SR^{4a} , -CH(R^{4b})C(O)NH(OR^{4d}), y -CH(R^{4b})C(O)OR^{4c}; en donde, R^{4a} , es -C(O)-alquilo C1-6; R^{4c} , es - alquilo C1-6, -alquilen C0-6-morfolina, -CH2OC(O)O-alquilo C1-6, -CH(CH3)OC(O)O-alquilo C1-6, -CH(CH3)OC(O)O-C3-7-cicloalquilo, ó:

la porción R⁴, es -C(O)-R^{4e}; y y R^{4b} y R^{4e}, son tal y como éstas se definen para la fórmula I. En un aspecto de la presente invención, estos compuestos, pueden encontrar una utilidad particular, como profármacos, o como productos intermedios o intermediarios, en los procedimientos sintéticos, los cuales se describen aquí, en este documento de solicitud de patente. En otro aspecto, estas formas de presentación, en concordancia con la presente invención, tienen la fórmula II ó III.

55 En un aspecto, la presente invención, se refiere a compuestos of fórmula IV:

en donde, Ar, R^3 , R^{4b} , R^{4c} , y R^5 , son tal y como éstas se definen para la fórmula I; o una sal de éstos, farmacéuticamente aceptables. En una forma particular de presentación, en concordancia con la presente invención, Z, es:

10 Ar, es:

30

35

 $R^1, \ es \ -SO_2NHC(O)CH_3, \ -SO_2NHC(O)CH_2CH_3, \ -SO_2NHC(O)OCH_3, \ -SO_2NHC(O)OCH_2CH_3, \ -SO_2NHC(O)CH_2CH_3, \ -SO_2NHC(O)CH_3)CH_1, \ -SO_2NHC(O)CH_3)CH_2CH_3, \ -SO_2NHC(O)CH_3)CH_2CH_3, \ -SO_2NHC(O)CH_3)CH_3, \ -SO_2NHC(O)CH_3)CH_3, \ -SO_2NHC(O)CH_3)CH_3, \ -SO_2NHC(O)CH_3)CH_3, \ -SO_2NHC(O)CH_3)CH_3, \ -SO_2NHC(O)CH_3)CH_2CH_3, \ -SO_2NHC(O)CH_3)CH_2CH_3, \ -SO_2NHC(O)CH_3)CH_2CH_3, \ -SO_2NHC(O)CH_3)CH_2CH_3, \ -SO_2NHC(O)CH_3)CH_2CH_3, \ -SO_2NHC(O)CH_3)CH_2CH_3, \ -SO_2NHC(O)CH_3)CH_3, \ -SO_2NHC(O)CH_3)CH_2CH_3, \ -SO_2NHC(O)CH_3)CH_2CH_3, \ -SO_2NHC(O)CH_3)CH_2CH_3, \ -SO_2NHC(O)CH_3)CH_3, \ -SO_2NHC(O)CH_3)CH_3, \ -SO_2NHC(O)CH_3)CH_3, \ -SO_2NHC(O)CH_3, \ -SO_2NH$

45 R³, es propilo, etilo, butilo, ó etoxi;

 R^{4b} , es H ó -OH; y R^{4c} , es H, -CH3, -CH2CH3, -CH(CH3)2, -(CH2)2CH3, -(CH2)3CH3, -(CH2)4CH3, -CH(CH3)OC(O)-OCH2CH3, -CH(CH3)OC(O)OCH(CH3)2, -CH(CH3)OC(O)O-ciclohexilo,

55 y

65

R⁵, es *i*-butilo, -CH₂-furan-2-ilo, -CH₂-tiofen-3-ilo, bencilo, 2-bromobencilo, 2-clorobencilo, 2-fluorobencilo, 3-fluorobencilo, 4-fluorobencilo, 2-metilbencilo, ó 2-trifluorometilbencilo;

o una sal de éstos, farmacéuticamente aceptable.

De una forma adicional, los compuestos de la fórmula I, los cuales son de un interés particular, en concordancia con la presente invención, incluyen a aquéllos los cuales se presentan en los ejemplos los cuales se exponen en los ejemplos los cuales se facilitan más abajo, a continuación, así como a las sales de éstos, farmacéutcamente aceptables.

DEFIINICIONES

Cuando se describen los compuestos, composiciones, procedimientos y procesos de la invención, los términos que siguen a continuación, tienen los siguientes significados, a menos de que se indique de otro modo. Adicionalmente, además, tal y como se utiliza aquí, en este documento, la formas singulares "un" y "una" y "el" (o "la"), incluyen las correspondientes formas del plural, a menos que, el contexto del uso, indique claramente de otro modo. Los términos "que comprende(n)", "que incluye(n)", y "que tiene(n)", pretenden ser inclusivos, y significan que pueden haber elementos adicionales, distintos de los elementos listados. Los términos "que comprende(n)", o "comprendiendo", "que incluye(n)" o "incluyendo", y "que tiene(n)", o "teniendo", pretenden ser inclusivos, y éstos significan que pueden haber elementos adicionales, distintos que los correspondientes a los elementos listados. Todos los números los cuales expresan cantidades de ingredientes, propiedades, tales como las consistentes en el peso molecular, las condiciones de reacción, y así, sucesivamente, los cuales se utilizan aquí, en este documento de solicitud de patente, deberán entenderse como encontrándose modificadas mediante el término "aproximadamente". a menos de que se indique de otra forma. De una forma correspondientemente en concordancia con ello. los números los cuales se exponen aquí, en este documento de solicitud de patente, son aproximaciones, las cuales pueden variar, en dependencia de las propiedades las cuales se pretendan obtener, mediante la presente invención. Por lo menos, y no como como una pretensión para limitar la aplicación de la doctrina de equivalentes al ámbito de las reivindicaciones, cada número, deberá por lo menos interpretarse según los dígitos significativos reportados, y mediante la aplicación de técnicas usuales de redondeo.

20

25

30

35

40

45

10

15

El término "alquilo", significa un hidrocarburo saturado monovalente, el cual puede ser lineal o ramificado. A menos de que se defina de otro modo, tales tipos de grupos alquilo, contienen, de una forma típica, de 1 a 10 átomos de carbono, e incluyen, por ejemplo, a alquilo C_{1-4} , alquilo C_{1-6} , y alquilo C_{1-10} . Los grupos alquilo representativos, incluyen, a título de ejemplo, a metilo, etilo, n-propilo, isopropilo, n-butilo, s-butilo, isobutilo, tert.-butilo, n-pentilo, n-hexilo, n-heptilo, n-octilo, n-nonilo, n-decilo, y por el estilo.

Cuando se pretende indicar un número específico de átomos de carbono, para un término particular utilizado aquí, en este documento, el número de átomos de carbono, se muestra acompañando al término, después de éste, de la forma subscrita. Así, por ejemplo, el término "alquilo C_{1-6} ", significa un grupo alquilo, que tiene de un 1 a 6 átomos de carbono, y el término "cicloalquilo C_{3-7} ", significa un grupo cicloalquilo, que tiene de 3 a 7 átomos de carbono, respectivamente, en donde, los átomos de carbono, se encuentran en cualquier configuración aceptable.

El término "alquileno", significa un grupo hidrocarburo saturado, el cual puede ser lineal o ramificado. A menos de que se defina de otro modo, tales tipos de grupos alquileno, contienen, típicamente, de 0 a 10 átomos de carbono, e incluyen, por ejemplo, a alquileno $C_{0.1^-}$, alquileno $C_{0.2^-}$, alquileno $C_{0.3^-}$, alquileno $C_{0.5^-}$, alquileno $C_{0.6^-}$, alquileno $C_{1.2^-}$, y alquileno $C_{1.12^-}$. Los grupos alquileno representativos, incluyen, por ejemplo, a metileno, etano-1,2-dietilo ("etileno"), propano-1,2-diílo, propan-1,3-diílo, butano-1,4-diílo, pentano-1,5-diílo y por el estilo. Se entenderá el hecho de que, cuando el término alquileno, incluye cero carbonos, tal como -alquilen $C_{0.5^-}$ ó -alquilen $C_{0.6^-}$, tales tipos de términos, pretenden incluir la ausencia de átomos de carbono, es decir que, el grupo alquileno, no se encuentra presente, excepto para un enlace covalente que une a los grupos, separados mediante el término alquileno.

El término "alcoxi", significa un grupo monovalente de la fórmula –O-alquilo, en donde, alquilo, es tal y como se define aquí, en este documento. A menos de que se defina de otro modo, tales tipos de grupos alcoxi, contienen, típicamente, de 1 a 10 átomos de carbono, e incluyen, por ejemplo, a –O-alquilo C₁₋₄, y –O-alquilo C₁₋₅. Los grupos alcoxi representativos, incluyen, a título de ejemplo, a metoxi, etoxi, n-propoxi, isopropoxi, n-butoxi, sec.-butoxi, isobutoxi, tert.-butoxi, y por el estilo.

El término "cicloalquilo", significa un grupo hidrocarburo, saturado, monovalente. A menos de que se defina de otro modo, tales tipos de grupos cicloalquilo, contienen de 3 a 10 átomos de carbono, y éstos, incluyen, por ejemplo, a los grupos cicloalquilo C₃₋₅, cicloalquilo C₃₋₆, y cicloalquilo C₃₋₇. Los grupos cicloalquilo representativos, incluyen, a título de ejemplo, a los grupos ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo y por el estilo. El término "cicloalquileno", significa un grupo arilo, divalente, tal como cicloalquileno C₄₋₈.

55 El término "halo", significa fluoro, cloro, bromo y yodo.

Tal y como se utiliza aquí, en este documento, la frase "que tiene la fórmula", o "que tiene la estructura", no pretende ser limitativa, y ésta se utiliza de la misma forma que la que se utiliza el término "que comprende" o "comprendiendo".

60

El término "opcionalmente sustituido", significa el hecho de que, el grupo en cuestión, puede encontrarse sustituido o éste puede encontrarse insustituido, una o varias veces, tal como de 1 a 3 veces, o de 1 a 5 veces. Así, por ejemplo, un grupo fenilo, el cual se encuentra "opcionalmente sustituido" con 1 a 5 átomos de halo, puede encontrarse insustituido, o éste puede contener 1, 2, 3, 4, ó 5 átomos de halo.

El término "farmacéuticamente aceptable", se refiere a un material que no es biológicamente inaceptable, o que no es inaceptable de otro modo, cuando éste se utiliza en la presente invención. Así, por ejemplo, el término "portador farmacéuticamente aceptable" (o soporte farmacéuticamente aceptable), se refiere a un material que puede incorporarse en una composición, y administrarse a un paciente, sin provocar efectos biológicos inaceptables, o que interactúa de una forma que no es inaceptable, con otros componentes de la composición. Tales tipos de materiales farmacéuticamente aceptables, han cumplido con los patrones Standard requeridos de los test de ensayo toxicológios y de fabricación, e incluyen a aquéllos materiales identificados como ingredientes inactivos apropiados, por parte de la U.S. Food y Drug Administration,-Administración estadounidense de los alimentos y de los fármacos -

10 El término "sal farmacéuticamente aceptable", significa una sal preparada a partir de una base o de un ácido, que es aceptable para la administración a un paciente, tal como un mamífero (como por ejemplo, sales que tienen una seguridad aceptable en mamíferos, para un régimen dado de dosificación). Sin embargo, no obstante, se entenderá el hecho de que, las sales cubiertas por la invención, no necesitan ser sales farmacéuticamente aceptables, tales como las sales de compuestos intermediarios, las cuales no están previstas para la administración a un paciente. Las sales farmacéuticamente aceptables, pueden derivarse de bases inorgánicas u orgánicas, farmacéuticamente 15 aceptables, o de ácidos inorgánicos u orgánicos, farmaceúticamente aceptables. Adicionalmente, además, cuando un compuesto de la fórmula I, contiene ambos, una porción básica, o tal como una amina, piridina o imidazol, y una porción ácida, tal como un ácido carboxílico o tetrazol, pueden encontrarse formados iones híbridos y éstos se incluyen aquí, en este documento de solicitud de patente, mediante el término "sal", tal y como éste se utiliza aquí. 20 Las sales derivadas de bases inorgánicas farmacéuticamente aceptables, incluyen a las sales de amonio, de calcio, de cobre, férricas, ferrosas, de litio, de magnesio, manganésicas, manganosas, de potasio, de sodio, de zinc, y por el estilo. Las sales derivadas de bases orgánicas farmacéuticamente aceptables, incluyen a las aminas primarias, secundarias y terciarias, incluyendo a las aminas sustituidas, las aminas cíclicas, las aminas de origen natural, y por el estilo, tales como la arginina, betaína, cafeína, colina, N,N'-dibenciletilenediamina, dietilamina, 2-dietilaminoetanol, 2-dimetilaminoetanol, etanolamina, etilendiamina, N-etilmorfolina, N-etilpiperidina glucamina, glucosamina, histidina, 25 hidrabamina, isopropilamina, lisina, metilglucamina, morfolina, piperazina, piperadina, resinas de poliamina, procaína, purinas, teobromina, trietilamina, trimetilamina, tripropilamina, trometamina, y por el estilo. Las sales derivadas de ácidos inorgánicos farmacéuticamente aceptables, incluyen a las sales de los ácidos bórico, carbónico, hidrohálico (bromhídrico, clorhídrico, fluorhídrico, ó yodhídrico), nítrico, fosfórico, sulfámico y sulfúrico. Las sales 30 derivadas de los ácidos orgánicos farmacéuticamente aceptables, incluyen a las sales de los ácidos hidroxilalifáticos (como por ejemplo, los ácidos cítrico, glucónico, glicólico, láctico, lactobiónico, málico y tartárico), a los ácidos monocarboxílicos alifáticos, (tales como por ejemplo, los ácidos acético, butírico, fórmico, propiónico y trifluoroacético), a los aminoácidos (tales como por ejemplo, los ácidos aspártico y glutámico), a los ácidos carboxílicos aromáticos (tales como por ejemplo, los ácidos benzóico, p-clorobenzóico, difenilacético, gentísico, 35 hipúrico, y trifenilacético), a los ácidos hidroxilaromáticos (como por ejemplo, los ácidos o-hidroxibenzóico, phidroxibenzóico, 1-hidroxinaftalen-2-carboxílico, y 3-hidroxinaftalen-2-carboxílico), al ácido ascórbico, a los ácidos dicarboxílicos (como por ejemplo, los ácidos fumárico, maléico, oxálico y succínico), a los ácidos glucorónico, mandélico, múcico, nicotínico, orótico, pamóico, pantoténico, sulfónico (tales como por ejemplo, los ácidos bencenesulfónico, alcanforsulfónico, edisílico, entanosulfónnico, isetiónico, metanosulfónico, naftalenosulfónico, 40 nafaleno-1,5-disulfónico, naftaleno-2,6-disulfónico y p-tolueno sulfónico), al ácido xinafóico, y por el estilo.

El término "derivados protegidos de éste", significa un derivado de un compuesto específico, en el cual, uno o más grupos funcionales del compuesto, se encentran protegidos o bloqueados, contra reacciones indeseadas que se experimenten, con un grupo protector o bloqueante. Los grupos funcionales que pueden protegerse, incluyen, a título de ejemplo, a los grupos carboxi, amino, hidroxilo, tiol, carbonilo y por el estilo. Los grupos protectores representativos, para los grupos carboxi, incluyen a los ésteres (tal como un éster p-metoxibencílico), a las amidas y a las hidrazidas; para los grupos amino, los carbamatos (tales como el tert.-butoxicarbonilo) y las amidas; para los grupos hidroxilo, éteres y ésteres; para los grupos tiol, tioéteres y tioésteres; para los grupos carbonilo, acetales y cetales; y por el estilo. Tales tipos de grupos protectores, son bien conocidos por parte de aquéllas personas expertas en el arte especializado de la técnica, y éstos se describen, por ejemplo, por parte de T. W. Greene y G. M. Wuts, en Protective Groups in Organic Synthesis, Third Edition, - Grupos protectores en la síntesis orgánica, Tercera Edición, Wiley, New York, 1999, y en las referencias citadas en dicho estudio.

45

50

55

60

65

Tal y como éste se utiliza aquí, en este documento de solicitud de patente, mediante el término "profármaco", se pretende dar a entender un precursor inactivo (o significativamente menos activo), de un fármaco, el cual se convierte en su forma activa, en el cuerpo, bajo unas condiciones corporales, tales como, por ejemplo, mediante procesos metabólicos normales. Mediante este término, se pretende también incluir a ciertos derivados protegidos, de compuestos de la fórmula I, los cuales puedan realizarse previamente a la etapa final de desprotección. Tales tipos de compuestos, pueden no poseer una actividad farmacológica a las AT₁ y / o NEP, pero, éstos, pueden administrarse oralmente, o parenteralmente, y a continuación de ello, metalbolizarse en el cuerpo, para formar compuestos de la invención, los cuales son farmacéuticamente activos a las AT₁ y / o NEP. Así, de este modo, la totalidad de los derivados y profármacos protegidos de los compuestos de la fórmula I, se encuentran incluidos en el ámbito de la presente revelación de la invención. Los profármacos de los compuestos de la fórmula I, los cuales tienen un grupo carboxilo, sulhidrilo ó hidroxi, libre, puede sintetizarse fácilmente, mediante las técnicas las cuales son conocidas por parte de las personas expertas en el arte especializado de la técnica. Estos derivados de

profármacos, se convierten, a continuación, mediante hidrólisis, o bajo unas condiciones fisiológicas, en los compuestos de carboxilo, de sulfihidrilo y / o hidroxi, libres. Los profármacos ejemplares, incluyen a: los ésteres, incluyendo a los ésteres de alquilo C₁₋₆, y los ésteres de aril-alquilo C₁₋₆, a los ésteres de carbamato, a los hemiésteres, a los ésteres de fosfato, a los nitro-ésteres, a los ésteres de sulfatos, a los sulfóxidos, a las amidas, a los carbamatos, a los compuestos azoicos, a las fosfamidas, a los glicósidos, a los éteres, a los acetales, a los cetales, y a los disulfuros. En una forma de presentación, en concordancia con la presente invención, los compuestos de la formula I, tienen un sulfhidrilo libre, o un carboxilo libre, y el profármaco, es un derivado estérico de éste, es decir, el profármaco, es un tioéster, tal como el consistente en -SC(O)CH₃, ó en un éster, tal como C(O)OCH₃.

10 El término "solvato, significa un complejo o agregado, formado por uno o más moléculas de soluto, como por ejemplo, un compuesto de la fórmula I ó una sal de éste, farmacéuticamente aceptable, y una o más moléculas de un disolvente. Tales tipos de disolventes, de una forma típica, son sólidos cristalinos, que tienen un factor de relación molar, substancialmente fijo, de soluto y disolvente. Los disolventes representativos, incluyen, a título de ejemplo, agua, metanol, etanol, isopropanol, ácido acético y por el estilo. Cuando el disolvente es agua, el solvato formado, 15 es un hidrato.

El término "cantidad terapéuticamente efectiva", significa una cantidad suficiente, como para efectuar un tratamiento, cuando ésta se administra a un paciente en necesidad de ésta, es decir, la cantidad de fármaco necesaria para obtener el efecto terapéutico deseado. Así, por ejemplo, una cantidad terapéuticamente efectiva para tratar la hipertensión, es una cantidad de compuesto necesaria para, por ejemplo, reducir, suprimir, eliminar o prevenir los síntomas de la hipertensión o para tratar la causa subyacente de la hipertensión. En una forma de presentación, en concordancia con la presente invención, una cantidad terapéuticamente efectiva, es aquélla cantidad necesaria para reducir la presión sanguínea, o aquélla cantidad necesaria para mantener la presión sanguínea normal. Por otro lado, el término "cantidad efectiva", significa una cantidad suficiente, como para obtener un resultado deseado, el cual no necesariamente sería un resultado terapéutico. Así, por ejemplo, cuando se estudia un sistema que comprende un receptor AT₁, una "cantidad efectiva", puede ser la cantidad necesaria para antagonizar el receptor.

El término "tratar" o "tratamiento", tal y como se utiliza aquí, en este documento, significa el tratar o el tratamiento de una enfermedad o condición o estado médico (tal como la consistente en la hipertensión), en un paciente, tal como un mamífero (particularmente, un humano), que incluye uno o más de los siguientes significados: (a): prevenir (evitar) que acontezca la enfermedad o condición o estado médico, tal como un tratamiento profiláctico, en un paciente; (b) mejorar la enfermedad o condición médica, tal como mediante la eliminación o provocando la regresión, de la enfermedad o condición o estado físico, en un paciente; (c) suprimir la enfermedad o condición médica, tal como mediante el enlentecimiento o interrupción del desarrollo de la enfermedad o condición o estado en un paciente; o (d), aliviar los síntomas de la enfermedad o condición o estado físico, en un paciente. Así, por ejemplo, el término "tratar la hipertensión", incluiría el prevenir o evitar que ocurra la hipertensión, mejorar la hipertensión, suprimir la hipertensión, y aliviar los síntomas de la hipertensión (tal como, por ejemplo, reducir la presión sanguínea). El término "paciente", pretende incluir a aquéllos mamíferos, tales como los humanos, los cuales se encuentran en necesidad de un tratamiento o prevención de una enfermedad, o los cuales se están actualmente tratando, para la prevención de una enfermedad, o tratamiento de una enfermedad específica o condición o estado médico, así, como a los sujetos sometidos a tests de ensayo, en los cuales, los compuestos de la invención, se estén evaluando o se estén utilizando en un ensayo, tal como por ejemplo, un modelo animal.

La totalidad de cualesquiera otros términos, en su totalidad, utilizados aquí, en este documento, pretenden tener su 45 significado usual, tal y como se entiende por parte de las personas usualmente experimentadas en el arte especializado de la técnica, a la cual éstos pertenecen.

PROCEDIMIENTOS SINTÉTICOS GENERALES

50 Los compuestos de la invención, pueden prepararse a partir de materiales de partida fácilmente obtenibles, utilizando los procedimientos generales que se presentan más abajo, a continuación, en los ejemplos, o mediante la utilización de otros procedimientos, reactivos, y materiales de partida, los cuales se conocen, por parte de aquéllas personas expertas en el arte usual especializado de la técnica. Si bien los procedimientos que se facilitan a continuación, pueden ilustrar una forma particular de presentación de la invención, se entenderá el hecho de que, por supuesto, pueden prepararse otras formas de presentación de la presente invención, de una forma similar, utilizando el mismo procedimiento o procedimientos similares, o mediante la utilización de otros procedimientos, reactivos y materiales de partida, que son conocidos por parte de aquéllas personas expertas en el arte especializado de la técnica. Se apreciará así mismo, también, el hecho de que, allí en donde se facilitan condiciones de procedimientos que son típicas o preferentes (tales como, por ejemplo, las temperaturas de reacción, los tiempos, los factores de relación molar, de los reactivos, disolventes, presiones, etc.), pueden utilizarse también otras condiciones, a menos de que se indique de otra forma. Mientras que, las condiciones óptimas de reacción, variarán, típicamente, en dependencia de varios parámetros, tales como los consistentes en los reactivos particulares, los disolventes y las cantidades utilizadas, aquéllas personas expertas en el arte especializado de la técnica, pueden determinar fácilmente las condiciones de reacción apropiadas, utilizando procedimientos de optimización de rutina.

65

60

55

20

25

30

35

Adicionalmente, además, tal y como resultará evidente, para aquéllas personas expertas en el arte especializado de la técnica, pueden ser necesarios o deseables, grupos convencionales protectores, con objeto de evitar que ciertos grupos funcionales, experimenten reacciones no deseadas. La elección de un grupo protector apropiado, para una grupo funcional particular, así como las condiciones y reactivos apropiados, para la protección y desprotección de tales tipos de grupos funcionales, son bien conocidos, por parte de aquéllas personas expertas en el arte especializado de la técnica. Pueden utilizarse grupos protectores distintos de aquéllos que se ilustran en los procedimientos que se describen aquí, en este documento de solicitud de patente, en el caso en que así se desee. Así, por ejemplo, se describen numerosos grupos protectores, y su introducción y retirada o eliminación, por parte de T. W. Greene y G. M. Wuts, en Protective Groups in Organic Synthesis, - Grupos protectores en la síntesis orgánica -, Tercera Edición, Wiley, New York. De una forma más específica, en los esquemas que se facilitan abajo, a continuación, se utilizan los siguientes esquemas y reacciones:

10

15

20

30

35

40

- P¹, representa un grupo "amino-protector", un término que se utiliza aquí, en este documento, para significar un grupo protector, apropiado para evitar o prevenir reacciones no deseables, en un grupo amino. Los grupos amino-protectores específicos, son el tert.-butoxicarbonilo (BOC), tritilo, (Tr), benciloxicarbonilo (Cbz), 9-fluorenilmetoxicarbonilo (Fmoc), formilo, trimetilsililo (TMS), y tert.-butildimetilsililo (TBDMS). Se utilizan técnicas estándar de protección, para eliminar el grupo protector P¹. Así, por ejemplo, un grupo N-BOC, puede retirarse o eliminarse, utilizado un reactivo ácido, tal como TFA en DCM ó HCl, en 1,4-dioxano, mientras que, un grupo Cbz, puede eliminarse o retirarse, mediante el empleo de condiciones de hidrogenación catalítica, tal como H₂(1 atm.) y PD/C al 10%, en un disolvente alcohólico (H₂/Pd/C")
- P², representa un "grupo carboxi-protector", un término el cual se utiliza aquí, en este documento de solicitud de patente, para significar un grupo protector, apropiado para evitar o prevenir reacciones no deseables, en un grupo carboxi. Los grupos carboxi-protectores apropiados, son metilo, etilo, tert.-butilo, bencilo (Bn), p-metoxibencilo (PMB), 9-fluroenilmetilo (Fm), trimetilsililo (TMS), tert.-butildimetilsililo (TBDMS), y difenilmetil(benzohidrilo, DPM). Se utilizan técnicas y reactivos estándar de desprotección para eliminar o retirar el grupo P², y éstas pueden variar, en dependencia de qué grupo se utiliza. Así, por ejemplo, se utiliza usualmente hidróxido sódico ó hidróxido de litio, cuando P² es metilo, y se utiliza usualmente un ácido tal como el TFA ó el HCl, cuando P² es tert.-butilo, y se utiliza H₂Pd/C, cuando P² es bencilo.
 - P³, representa un grupo "tiol-protector", un término el cual se utiliza aquí, en este documento de solicitud de patente, para significar un grupo protector, apropiado para evitar o prevenir reacciones no deseables, en un grupo tiol. Los grupos tiol-protectores específicos, incluyen a los éteres y a los ésteres, tales como el –C(O)CH₃. Pueden utilizarse técnicas estándar de desprotección y reactivos tales como el NaOH, alquilaminas primarias, e hidrazina, para eliminar o retirar el grupo P³.
 - P⁴, representa un grupo "tetrazol-protector", un término el cual se utiliza aquí, en este documento de solicitud de patente, para significar un grupo protector, apropiado para evitar o prevenir reacciones no deseables, en un grupo tetrazol. Los grupos tetrazol-protectores específicos, incluyen al tritilo, al benzoílo y al difenilmetilo. Se utilizan técnicas estándar de desprotección y reactivos tales como el TFA en DCM ó el HCl en 1,4-dioxano, para retirar o eliminar el grupo P⁴.
- P⁵, representa un grupo "hidroxi-protector", un término el cual se utiliza aquí, en este documento de solicitud de patente, para significar un grupo protector, apropiado para evitar o prevenir reacciones no deseables, en un grupo hidroxilo. Los grupos hidroxilo-protectores específicos, son los alquilos C₁₋₆, los grupos sililo, incluyendo a los grupos alquil C₁₋₆-sililo, tales como el trimetilsililo (TMS), el trietilsililo (TES), y el tert.-butildimetilsililo (TBDMS); ésteres (grupos acilo) incluyendo a los grupos alcanoílo C₁₋₆, tales como el formilo, el acetilo, y el pivaloílo, y los grupos acilo aromáticos, tales como los grupos benzoílo; los grupos arilmetilo, tales como el bencilo (Bn), p-metoxibencilo (PMB), el 9-fluorenilo (Fm) y el difenilmetilo (benzohidrilo, DPM). Se utilizan técnicas estándar de desprotección y reactivos, con objeto de eliminar o retirar el grupo P⁵, y éstos pueden variar, en dependencia de qué grupo se está utilizando. Así, por ejemplo, se utiliza usualmente H₂/Pd/C, cuando P⁵ es bencilo, mientras que, se utiliza usualmente el NaOH, cuando P⁵ es un grupo acilo.
- P⁶, representa un grupo "sulfonamido-protector", un término el cual se utiliza aquí, en este documento de solicitud de patente, para significar un grupo protector, apropiado para evitar o prevenir reacciones no deseables, en un grupo sulfonamida. Los grupos sulfonamido-protectores específicos, incluyen a los grupos tert.-butilo y a los grupos acilo. Los grupos acilo ejemplares, incluyen a los grupos acilo inferiores, alifáticos, tales como el formilo, el acetilo, el fenilacetilo, el butirilo, el isobutirilo, el isovalerilo, el pivonilo, y pivaloílo, y a los grupos aromáticos acilo, tales como el benzoílo y el 4-acetoxibenzoílo. Se utilizan técnicas estándar de protección y reactivos, para eliminar o retirar el grupo P⁶, y éstos pueden variar, en dependencia de qué grupo se esté utilizando. Así, por ejemplo, se utiliza usualmente el HCl, cuando P⁶ es tert.-butilo, mientas que, se utiliza usualmente el NaOH, cuando P⁶ es un grupo acilo.
 - Adicionalmente, además, L, se utiliza para designar un "grupo saliente", un término el cual se utiliza aquí, en este documento de solicitud de patente, para significar un grupo o átomo funcional, el cual puede desplazarse mediante

otro grupo o átomo funcional, en una reacción de sustitución, tal como la consistente en una reacción de sustitución nucleofílica. A título de ejemplo, los grupos salientes representativos, incluyen a los grupos cloro, bromo y yodo; a los grupos éster sulfónicos, tales como los grupos mesilato, triflato, tosilato, brosilato, y nosilato; y a los grupos aciloxi, tales como el acetoxi y el trifluoroacetoxi.

5

Las bases apropiadas para su uso en estos esquemas, incluyen, a título de ilustración, y no limitativo, al carbonato potásico, al carbonato cálcico, al carbonato sódico, la trietilamina, a la piridina, al 1,8-diazobiciclo-[5,4,0]undec-7-eno (DBU), a la N,N-diisopropileilamina (DIPEA), al hidróxido sódico, al hidróxido potásico, al ter.-butóxido potásico, y a los hidruros metálicos.

10

Los diluyentes o disolventes inertes apropiados, para su uso en estos esquemas, incluyen, a título de ilustración, y no limitativo, al tetrahidrofurano (THF), al acetonitrilo (MeCN), a la N,N-dimetilformamida (DMF), al dimetilsulfóxido (DMSO), al tolueno, al diclorometano (DCM), al cloroformo (CHCl₃), al tetracloruro de carbono (CCl₄), al 1,4-dioxano, al metanol, al aqua, y semjantes.

15

20

Los agentes de acoplamiento de ácido carboxílico / amina, incluyen a los hexafluorofosfato de benzotriazol-1-iloxitris(dimetilamino)fosfonio (BOP), hexafluorofosfato de benzotriazol-1-iloxitripirrolidinofosfonio (PyBOP), hexafluorofosfato de O-(7-azabenzotriazol-1-il-N,N,N',N'-tetrametiluronio (HATU), diciclohexilcarbodiimida (DCC), N-(3-dimetilaminopropil)-N'-etilcarbodiimida (EDC), carbonildiimidazol (CDI), y por el estilo. Las reacciones de acoplamiento, se conducen en un diluyente inerte, en presencia de una base, tal como la consistente en DIPEA, y se realizan bajo condiciones convencionales de formación de enlace o unión de amida.

25

Todas las reacciones, se conducen, de una forma típica, a una temperatura que se encuentra comprendida dentro de unos márgenes los cuales se encuentran comprendidos entre los aproximadamente -78°C y los aproximadamente 100°C, tal como, por ejemplo, a la temperatura ambiente. Las reacciones, pueden controlarse mediante la utilización de cromatografía de capa fina (TLC), cromatografía líquida de alto rendimiento (HPLC), y / o LCMS, hasta que éstas se hayan completado. Las reacciones, pueden completarse en minutos, o éstas pueden durar horas, de una forma típica, en un transcurso de tiempo que va desde las 1 y 2 horas, y hasta las 48 horas. Después de haberse completado, luna mezcla resultante, o el producto de reacción resultante, puede tratarse adicionalmente, con objeto de obtener el producto deseado. Así, por ejemplo, luna mezcla de reacción o producto de reacción resultante, puede someterse a uno o más de los siguientes procedimientos: concentrar o repartir (por ejemplo, entre EtOAc y agua, o entre THF en EtOAc al 5%, y ácido fosfórico 1M); extracción (por ejemplo, con EtOAc, CHCl₃, DCM, cloroformo); lavado (por ejemplo, con NaCl acuoso, saturado, NaHCO₃ saturado, Na₂CO₃ (5%), CHCl₃, ó NaOH 1M); secado (por ejemplo, sobre MgSO₄, sobre Na₂SO₄, ó bajo la acción de vacío); filtrado; cristalización (tal como, por ejemplo, en EtOAc y hexano); concentrándose (por ejemplo, bajo la acción de vacío); y / o purificación (por ejemplo, cromatografía en gel de sílice, cromatografía flash (de evaporación instantánea), HPLC de preparación, HPLC en fase inversa, o cristalización).

35

30

A título de ilustración, los compuestos de la fórmula I, así como sus sales, solvatos o profármacos, pueden prepararse procediendo a acoplar un compuesto de la fórmula 1, con un compuesto de la fórmula 2:

45

40

50

Ar*, representa ArR¹*, en donde, ArR¹*, es R¹, o una forma protegida de R¹, tal como, por ejemplo, -tetrazolil-BOC, ó un grupo precursor de R¹, tal como –CN, el cual se convierte, entonces, en tetrazolilo. R⁴*, representa R⁴, o una forma protectora de R⁴. Así, por lo tanto, cuando R¹*, representa R¹, y R⁴*, representa R⁴, la reacción, se encuentra completada, después de la etapa de acoplamiento.

60

55

Por otro lado, cuando R^{1^*} , representa una forma protegida de R^1 , y / o R^{4^*} , representa una forma protegida de R^4 , una subsiguiente etapa global o etapa secuencial de desprotección, tendría como resultado el compuesto no protegido. De una forma similar, cuando R^{1^*} , representa un precursor de R^1 , una etapa subsiguiente de conversión, tendría como resultado el compuesto deseado. Los reactivos y las condiciones para la desprotección, varían, con la naturaleza de los grupos de protección, en el compuesto. Así, de este modo, un procedimiento para la preparación de los compuestos de la presente invención, involucra a los compuestos de acoplamiento (1) y (2), con una etapa opcional de desprotección, cuando R^{1^*} , es una forma protegida de R^1 y / ó R^{4^*} , es una forma protegida de R^4 , formando así, de este modo, un compuesto de la fórmula I, o una sal de éste, farmacéuticamente aceptable.

65

Se cree que, ciertos intermediarios, los cuales se encuentran descritos aquí, en este documento de solicitud de patente, son nuevos, y de una forma correspondientemente en concordancia con ello, se proporcionan tales tipos de

compuestos, como aspectos adicionales de la presente invención, incluyendo, por ejemplo, a los compuestos de las fórmulas V, VI, y VII, o una sal de éstos:

$$R^3$$
 Z
 N
 R^4
 Ar^*
 (V)

en donde, Ar^{*}, es Ar-R^{1*}, Ar, Z, R³, R⁴, y R⁵, son tal y como ésta se definen para la fórmula I, y R^{1*}, es –SO₂NH-P⁶, ó tetrazolil-P⁴; en donde, P⁴, es un grupo protector de tetrazol y, P⁶, es un grupo protector de sulfonamida;

$$R^3$$
 Z
 H
 R^5
 R^4
 (VI)

en donde, Ar, Z, R^3 , y R^5 , son tal y como éstos se definen en la fórmula I; R^{4^*} , es $-CH_2$ -S- P^3 , $-CH_2$ -N(O- P^5)-C(O)H, $-CH(R^{4b})C(O)NH(O-P^5)$, ó $-CH(R^{4b})C(O)O-P^2$; y R^{4b} , es tal y como ésta se ha definido para la fórmula I; en donde, P^2 , es un grupo carboxi-protector, P^3 , es un grupo tiol-protector, P^5 , es un grupo hidroxilo-protector; y

$$\begin{array}{c|c}
R^3 & \overline{Z} & \overline{R}^5 \\
\hline
Ar^* & (VII)
\end{array}$$

en donde, Ar^{*}, es Ar-R^{1*}, Az, Z, R³, y R⁵, son tal y como éstos se definen en la fórmula I; R^{1*}, es -SO₂-NH-P⁶ ó trazolil-P⁴, R^{4*}, es -CH₂-S-P³, -CH₂-N(O-P⁵)-C(O)H, -CH(R^{4b})C(O)NH(O-P⁵), ó -CH(R^{4b})C(O)O-P²; y R^{4b}, es tal y como ésta se ha definido para la fórmula I; en donde, P², es un grupo carboxi-protector, P³, es un grupo tiol-protector, P⁴, es un grupo tetrazol-protector, P⁵, es un grupo hidroxilo-protector; y P⁶, es un grupo sulfonamida-protector; siendo, los varios grupos protectores, de la forma la cual se define en la reivindicación 15. Así, de este modo, otro procedimiento para la preparación de los compuestos de la presente invención, involucran la desprotección de un compuesto de la fórmula V, VI, ó VII.

Otros detalles adicionales referentes a las condiciones específicas de reacción y a otros procedimientos para preparar compuestos representativos de la invención, o intermediarios de éstos, se describen en los ejemplos que se facilitan posteriormente, más abajo, a continuación.

UTILIDAD

45

50

55

60

5

10

15

20

25

Los compuestos de la presente invención, poseen una actividad antagonista de los receptores de la angiotensina II, del tipo 1 (AT₁). En una forma de presentación, en concordancia con la presente invención, los compuestos de la presente invención, son selectivos, para la inhibición del receptor AT₁ sobre el receptor ST₂. Los compuestos de la presente invención, poseen así mismo, también, actividad de inhibición de neprisilina (NEP), es decir que, los compuestos en cuestión, son aptos para inhibir la actividad enzima – substrato. En otra forma de presentación, en concordancia con la presente invención, los compuestos, no exhiben una actividad inhibitoria significativa, en la enzima de conversión de la angiontensina. Los compuestos de la fórmula I, pueden ser fármacos activos, así como también profármacos. Así, de este modo, cuando se procede a discutir la actividad de los compuestos de la presente invención, se entenderá el hecho de que, cualquiera de tales tipos de profármacos, tiene la actividad esperada, una vez metabolizados.

Una medición de la afinidad de un compuesto, para el receptor AT₁, es la constante inhibitoria (K_i), para unirse al receptor AT₁. El valor pK_i, es el logaritmo negativo de base 10, de la constante K_i. Una medición de la capácidoad de un compuesto para inhibir la actividad NEP, es la concentración inhibitoria (IC₅₀), la cual es la concentración de un compuesto, la cual resulta en la inhibición máxima-media, de la conversión de un substrato, mediante la enzima NEP. El valor pIC₅₀, es el logaritmo negativo de base 10, de la IC₅₀. Los compuestos de la presente invención, los cuales tienen ambas, la actividad antagonizante del receptor AT₁, y la actividad inhibitoria de la enzima NEP, son de

un interés particular, incluyendo aquéllas que exhiben un p K_i , en el receptor AT₁, mayor o igual, a aproximadamente un valor de 5,0, y que exhiben un valor de pIC₅₀, para la NEP, mayor o igual a 5,0.

En una forma de presentación, en concordancia con la presente invención, los compuestos de interés, tienen un valor de pK_i, (para unirse) al receptor $AT_1 \ge a$ aproximadamente 6,0, ó un valor de pK_i, al receptor de $AT_1 \ge a$ aproximadamente 8,0. Los compuestos de interés, incluyen, también, a aquéllos que tienen una pIC₅₀, para la NEP $\ge a$ aproximadamente 6,0, ó una pIC₅₀, para la NEP $\ge a$ aproximadamente 7,0. En otra forma de presentación, los compuestos de interés, tienen una pK_i, al receptor AT_1 , correspondiente a un valor comprendido dentro de unos márgenes de aproximadamente 8,0 – 10,0, y una pIC₅₀, para la NEP, correspondiente a un valor comprendido dentro de unos márgenes de aproximadamente 7,0 – 10,0.

10

15

60

65

En otra forma de presentación, en concordancia con la presente invención, los compuestos de interés, tienen una pK_i , para unirse al receptor AT_1 , correspondiente a un valor mayor o igual a aproximadamente 7,5, y un valor de pIC_{50} , para la enzima NEP, correspondiente a un valor mayor o igual a aproximadamente 7,0. En otra forma de presentación, en concordancia con la presente invención, los compuestos de interés, tienen una pK_i correspondiente a un valor mayor o igual a aproximadamente 8 y un valor de pIC_{50} correspondiente a un valor mayor o igual a aproximadamente 8,0.

Deberá tomarse debida nota, en cuanto al hecho de que, en algunos casos, los compuestos de la invención, al mismo tiempo que tienen una actividad dual, éstos pueden poseer, bien ya sea una débil actividad antagonista de los receptores de la AT₁, o bien ya sea una débil actividad de inhibición de la NEP. En tales casos, aquéllas personas expertas en el arte especializado de la técnica, reconocerán el hecho de que, estos compuestos, tienen todavía utilidad, como, principalmente, bien ya sea un inhibidor de NEP, o bien y sea un antagonista de los receptores de la AT₁, respectivamente, o éstos tienen utilidad como herramientas de investigación.

Ensayos ejemplares, para determinar las propiedades de los compuestos de la invención, tales como la unión al receptor AT₁ y / o la actividad de inhibición de la NEP, se describen en los ejemplos, e incluyen, a título de ilustración y no de limitación, ensayos para medir la unión a la AT₁ y l AT₂, y la inhibición de la NEP (descritas en el ensayo 1). 30 Los ensayos secundarios de utilidad, incluyen a ensayos para medir la inhibición de la ACE (también descrita en el ensayo 1) y la inhibición de la aminopeptidasa P (APP) (descrita en Sulpizio et al. (2005) JPET 315: 1306 - 1313). Un ensayo farmacodinámico para asistir en las potencias inhibitorias in vivo, para las ACE, AT1, y NEP, en ratas anestesiadas, es el que se describe en el ensayo 2 (véase así mismo, también, Seymour et al. Hypertension 7, (Supl. I):I - 35 - I - 42, 1985 y Wigle et al. Can. J. Physiol. Pharmacol. 70: 1525 - 1528, 1992), en donde, la inhibición 35 de la AT₁, se mide como un porcentaje de inhibición de la respuesta presora de la angiotensina II, la inhibición de la ACE, se mide como el porcentaje de inhibición de la respuesta presora de la angiotensina I, y la inhibición de la NEP, se mide como un caudal urinario incrementado del 3',5'-monofosfato de guanosina cíclico (cGMP). Los ensayos de utilidad in vivo, incluyen al modelo de la rata espontáneamente hipertensa (SHR), consciente, con un modelo de hipertensión renino-dependiente, el cual es efectivo para medir el bloqueo del receptor de la AT₁ (descrito 40 en el ensayo 3; véase así mismo, también, Intengan et al. (1999) Circulation, - Circulación -, 100 (22): 2267 - 2275 y Badyal et al. (2003) Indian Journal of Pharmacology 35: 349 - 362), y el modelo de la rata consciente, con sal de acetato de desoxicorticosterona (DOCA-salt - [sal de DOCA]-), el cual es un modelo de hipertensión, dependiente del volumen, el cual es de utilidad en la medición de la actividad NEP (descrita en el ensayo 4; véase, así mismo, también, Trapani et al. (1989) J. Cardiovasc. Pharmacol. 14: 419 - 424, Intengan et al. (1999) Hypertension 34 (4): 45 907 - 913, y Badyal et al. (2003), mencionado anteriormente, arriba). Ambos modelos, el modelo SHR y el modelo DOCA-salt (Sal de DOCA), son de utilidad, para evaluar la capácidoad de un compuesto de ensayo, para reducir la presión sanguínea. El modelo de sal de DOCA, es también de utilidad, para medir la capácidoad de un compuesto de ensayo, para evitar o prevenir, o para retardar, un aumento en la presión sanguínea. Se espera que, los compuestos de la invención, antagónicoen los receptores de la AT₁ y / o inhiban la enzima NEP, en cualesquiera de 50 los ensayos descritos aquí, en este documento de solicitud de patente, o en ensayos de una naturaleza similar. Así, de este modo, los ensayos anteriormente mencionados, arriba, son de utilidad, en la determinación de la utilidad terapéutica de los compuestos de la invención, como por ejemplo, su utilidad como agentes antihipertensores. Pueden demostrarse otras propiedades y utilidades de los compuestos de la invención, utilizando varios ensayos in vitro e in vivo, los cuales se conocen bien, por parte de aquéllas personas expertas en el arte especializado de la 55

Se espera que, los compuestos de la invención, sean de utilidad para el tratamiento y / o la prevención de condiciones médicas sensibles al antagonismo del receptor AT₁ y a la inhibición de la NEP. Así, de este modo, se espera que, los pacientes que sufran de una enfermedad o trastorno que se trata mediante la antagonización del receptor AT₁ y / o mediante la inhibición de la enzima NEP, pueda tratarse mediante la administración de una cantidad terapéuticamente efectiva de un compuesto de la invención. Así, por ejemplo, mediante la antagonización del receptor AT₁, y así, de este modo, interfiriendo con la acción de la angiotensina II, o en sus receptores, se espera que, estos compuestos, encuentren utilidad en prevenir o evitar el incremento de la presión sanguínea, producida por la angiotensina II, un potente vasopresor. Adicionalmente, además, mediante la inhibición de la NEP, se espera también que, los compuestos, potencien los efectos biológicos de los péptidos endógenos que se metabolizan

mediante la NEP, tales como los péptidos natriuréticos, la bombesina, las bradiquininas, la calcitonina, las endoteínas, las encefalinas, la neurotensina, la substancia P y el péptido vasoactivo intestinal. Así, por ejemplo, mediante la potenciación de los efectos de los péptidos natriuréticos, se espera que, los compuestos de la invención, sean de utilidad para tratar el glaucoma. Se espera, también, que estos compuestos, tengan otras acciones fisiológicas, como por ejemplo, en los sistemas renal, nervioso central, reproductoivo y gastrointestinal.

Se espera que, los compuestos de la invención, encuentren utilidad en el tratamiento y / prevención de las condiciones o estados médicos, tales como los consistentes en las enfermedades cardiovasculares y en las enfermedades renales. Las enfermedades cardiovasculares de un interés particular, incluyen al fallo cardíaco o insuficiencia cardíaco, tal como el fallo cardíaco congestivo, el fallo cardíaco agudo, el fallo cardíaco crónico, y el fallo cardíaco descompensado, agudo y crónico. Las enfermedades renales de un interés particular, incluyen a la nefropatía diabética, y a la enfermedad renal crónica. La presente invención, encuentra utilidad en un procedimiento para tratar la hipertensión, la cual comprende la administración, a un paciente, de una cantidad terapéuticamente efectiva de un compuesto de la invención. De una forma típica, la cantidad terapéuticamente efectiva, es la cantidad que es suficiente para reducir la presión sanguínea de un paciente. En una forma de presentación, en concordancia con la presente invención, el compuesto, se administra como una forma de dosificación oral.

10

15

20

25

30

35

40

45

50

55

60

65

Otra forma de presentación de la presente invención, encuentra también utilidad en un procedimiento para tratar el fallo cardíaco, el cual comprende la administración, a un paciente, de una cantidad terapéuticamente efectiva de un compuesto de la invención. De una forma típica, la cantidad terapéuticamente efectiva, es la cantidad que es suficiente para reducir la presión sanguínea y / o mejorar las funciones renales. En una forma de presentación, el compuesto, se administra como una forma de dosificación intravenosa. Cuando se utiliza para tratar un fallo cardíaco, el compuesto, puede administrarse en combinación con otros agentes terapéuticos, tales como los consistentes en diuréticos, péptidos natriuréticos, y antagonistas de los receptores de la adenosina.

Se espera que, los compuestos de la invención, sean también de utilidad en una terapia preventiva, como por ejemplo, en la prevención de la progresión de la insuficiencia cardíaca, después de un infarto de miocardio, en la prevención de restenosis arterial, después de una angioplastia, en la prevención del espesamiento de las paredes de los vasos sanguíneos, después de operaciones vasculares, en la prevención de la aterosclerosis, y en la prevención de la angiopatía diabética.

Adicionalmente, además, como inhibidores de la NEP, se espera que, los compuestos de la invención, inhiban la encefalinasa. la cual inhibirá la degradación de las encefalinas endógenas y, así, de este modo, tales tipos de compuestos, pueden encontrar también utilidad como analgésicos. Debido a sus propiedades de inhibición de la NEP, se espera, también, el hecho de que, los compuestos de la invención, sean de utilidad como agentes antitusígenos, y como agentes antidiarrea (tal como, por ejemplo, para el tratamiento de la diarrea acuosa), así como también, que éstos encuentren utilidad, en el tratamiento de los trastornos menstruales, en el trabajo de parto prematuro, en la pre-eclampsia, en la endometriosis, en los trastornos reproductoivos (tales como por ejemplo, la infertilidad masculina y femenina, el síndrome de los ovarios poliquísticos, el fallo de implantes), y en la disfunción sexual masculina y femenina, incluyendo a la disfunción eréctil masculina y al trastorno arousal sexual femenino. De una forma más específica, se espera que, los compuestos de la invención, sean de utilidad en el tratamiento de la disfunción sexual femenina, la cual se define, a menudo, como la dificultad o incapácidoad de un paciente femenino, para encontrar satisfacción en la expresión sexual. Esto cubre una variedad de trastornos sexuales femeninos, incluyendo, a título de ilustración, pero no de limitación, al trastorno del deseo sexual hipoactivo, al trastorno arousal sexual, a los trastornos orgásmicos, y a los trastornos del dolor sexual. Cuando se utiliza para tratar los citados trastornos, especialmente, la disfunción sexual femenina, los compuestos de la invención, pueden combinarse con uno o con más de los siguientes agentes segundarios: inhibidores de PED5, agonistas de la dopamina, agonistas y / o antagonistas del receptor de estrógeno, andrógenos, y estrógenos.

La cantidad de compuesto de la invención administrado por dosis de la cantidad total administrada por día, puede predeterminarse, o éstas puede determinarse, en base a un paciente individual, tomando en consideración numerosos factores, incluyendo la naturaleza o la gravedad de la condición o estado del paciente, la condición que se está tratando, la edad, el peso, y la salud general del paciente, la tolerancia del paciente, a la agente activo, la ruta o vía de administración, las consideraciones farmacológicas, tales como la actividad, la eficacia, la farmacocinética, y los perfiles toxicológicos del compuesto, y cualesquiera agentes secundarios que se estén administrando, y por el estilo. El tratamiento de un paciente que sufre de una enfermedad o condición médica (tal como la hipertensión), puede iniciarse con una dosificación predeterminada o una determinada dosificación, por parte del médico que esté tratando al paciente, y continuará durante un período de tiempo necesario para prevenir, mejorar, suprimir o aliviar los síntomas de la enfermedad o condición médica. Los pacientes que estén experimentando tal tipo de tratamiento, se controlarán, de una forma típica, en una base de rutina, con objeto de determinar la efectividad de la terapia. Así, por ejemplo, en el tratamiento de la hipertensión, pueden utilizarse mediciones de la presión, para determinar la efectividad del tratamiento. Otros indicadores similares, para otras enfermedades y condiciones, descritas aquí, en este documento, son bien conocidas, y son fácilmente asequibles, para el médico que efectúa el tratamiento. Un control continuo, por parte del médico, asegurará el hecho de que, se administrará la cantidad óptima del compuesto de la invención, en cualquier tiempo dado, así, como la facilitación de la determinación de la duración del tratamiento. Esto es de un valor particular, cuando se están también administrando agentes secundarios, así como también, su selección, dosificación, y duración de la terapia, pueden asimismo requerir un ajuste. Así, de este modo, el régimen del tratamiento y la cédula de dosificación, pueden ajustarse durante el transcurso de la terapia, de tal forma que se administre la cantidad más baja de agente activo, que exhiba la efectividad deseada y, adicionalmente, además, que la administración se continúe, únicamente durante el tiempo que sea necesario, para tratar sucesivamente la enfermedad o condición médica.

Puesto que, los compuestos de la invención, poseen actividad antagonista de los receptor AT₁ y / o actividad de inhibición de la enzima NEP, tales tipos de compuestos, son también de utilidad como herramientas de investigación, para investigar o estudiar sistemas biológicos o muestras que tengan receptores AT₁ ó una enzima NEP, como por ejemplo, para el estudio de enfermedades en donde, el receptor AT₁ ó la enzima NEP, juegue un papel interpretativo. Cualquier sistema biológico o muestra apropiados, que tengan receptores AT₁ ó enzima NE, puede emplearse en tales tipos de estudios, los cuales pueden conducirse in vitro o in vivo. Los sistemas o muestras biológicos representativos, apropiados para dichos tipos de estudios, incluyen, pero no de una forma limitativa en cuanto a éstos, a células, extractos celulares, membranas plasmáticas, muestras de tejidos, órganos aislados, mamíferos (tales como los ratones, las ratas, los conejillos de indias, los conejos, los perros, los cerdos, los humanos, y así, sucesivamente) y por el estilo, siendo los mamíferos de un interés particular. En una forma particular de presentación, de la presente invención, la actividad de la enzima NEP, en un mamífero, se inhibe mediante la administración de una cantidad inhibitoria de la NEP, de un compuesto de la presente invención. Los compuestos de la presente invención, pueden también utilizarse como herramientas de trabajo, mediante la conducción de ensayos biológicos, utilizando tales tipos de compuestos.

Cuando se utiliza como una herramienta de investigación, un sistema o muestra biológicos que comprenden un receptor AT₁ y / o una enzima NEP, de una forma típica, se pone en contacto con una cantidad antagonizante del receptor AT₁ ó una cantidad inhibitoria de la enzima NEP, de un compuesto de la presente invención. Después de que el sistema o muestra biológicos se hayan expuesto al compuesto, los efectos de antagonización del receptor AT₁ y / o la inhibición de la enzima NEP, se determinan, utilizando procedimientos y equipos convencionales, tales como los consistentes en la medición de la unión del receptor, en un ensayo de enlace o unión, o procediendo a medir los cambios mediatizados mediante ligandos, en un ensayo funcional. La exposición, abarca el poner en contacto células o tejidos, con el compuesto, administrar el compuesto a un mamífero, como por ejemplo, mediante administración i.p, i.v. ó s.c. y así, sucesivamente. Esta etapa determinante, puede involucrar la medición de una respuesta (un análisis cuantitativo), o puede involucrar la realización de una observación (un análisis cualitativo). La medición de una respuesta, involucra, por ejemplo, determinar los efectos del compuesto en el sistema o muestra biológicos, utilizando procedimientos y equipos convencionales, tales como los ensayos de enlaces de radioligandos, y midiendo los cambios mediatizados mediante ligandos, en ensayos funcionales. Los resultados de los ensavos, pueden utilizarse para determinar el nivel de actividad, así como la cantidad de compuesto necesario. para lograr el resultado deseado, a saber, una cantidad antagonizante del receptor AT₁ y / o una cantidad inhibitoria de la enzima NEP. De una forma típica, la etapa determinación, involucrará la determinación de los efectos del mediatizados por ligandos del receptor AT₁ y / o la determinación de los efectos de inhibición de la enzima NEP.

Adicionalmente, además, los compuestos de la invención, pueden utilizarse como herramientas de investigación, con objeto de evaluar otros compuestos químicos, y así, de este modo, éstos son también de utilidad, en los ensayos de rastreo, para descubrir, por ejemplo, nuevos compuestos que tengan actividad antagonizante de receptor AT₁ y / o actividad inhibidora de la NEP. Así, de este modo, se utiliza un compuesto de la invención, como patrón estándar, en un ensayo, para permitir la comparación de los resultados obtenidos, con un compuesto de ensayo, y con los compuestos de la invención, para identificar aquéllos compuestos de ensayo que tienen una actividad igual, o superior, si es que ésta existe. Así, por ejemplo, los datos de K_i (tal como éstos se determinan, por ejemplo, mediante un ensayo de enlace o unión), para un compuesto de ensayo, o para un grupo de compuestos de ensavo, se compara con los datos de Ki para un compuesto de la invención, para identificar aquéllos compuestos que tienen las propiedades deseadas, como por ejemplo, los compuestos de ensayo que tienen un valor de Ki, aproximadamente igual o superior al del compuesto de la invención, si es que hay alguno. Este aspecto de la invención, incluye, como formas separadas de presentación, a ambos, la generación de datos comparativos (utilizando ensayos apropiados), y el análisis de los datos de tests de ensayo, para identificar los compuestos de interés. Así, de este modo, un compuesto de ensayo, puede evaluarse, mediante un ensayo biológico, mediante un procedimiento que comprende las etapas de: (a) conducir un ensayo biológico, con un compuesto de ensayo, para proporcionar un primer valor de ensayo; (b) conducir el ensayo biológico, con un compuesto de la invención, para proporcionar un segundo valor de ensayo; en donde, la etapa (a), se conduce, bien ya sea antes, bien ya sea después, o bien ya sea simultáneamente con la etapa (b); y (c), comparar el primer valor en ensayo procedente de la etapa (a), con el segundo valor de ensayo procedente de la etapa (b). Los ejemplos biológicos ejemplares, incluyen a un ensayo de enlace o unión del receptor AT₁, y a un ensayo de inhibición de la enzima NEP.

COMPOSICIOINES Y FORMULACIONES FARMACÉUTICAS

10

15

20

25

30

35

40

45

50

55

60

65

Los compuestos de la invención, de una forma típica, se administran, a un paciente, en forma de una composición o formulación farmacéutica. Tales tipos de composiciones farmacéuticas, pueden administrarse, al paciente, mediante

cualquier ruta o vía aceptable de administración, incluyendo, aunque no de una forma limitativa en cuanto a éstas, a las formas de administración oral, rectal, vaginal, nasal, inhalatoria, tópica (incluyendo la vía transdérmica), ocular, y parenteral. Adicionalmente, además, los compuestos de la invención, pueden administrarse, por ejemplo, oralmente, en múltiples dosis por día (tal como por ejemplo, administrándola a razón de dos, tres o cuatro veces al día), en una dosis diaria individual, o en una dosis semanal individual. Se entenderá el hecho de que, cualesquiera formas de la presente invención (a saber, en forma de una base libre, en forma de una base ácida, en forma de una sal farmaceúticamente aceptable, en forma de un solvato farmacéuticamente aceptable, etc.), la cual sea apropiada para una forma particular de administración, puede utilizarse en las composiciones farmacéuticas discutidas aquí, en este documento de solicitud de patente.

10

15

50

55

60

Correspondientemente en concordancia, en una forma de presentación, la invención se refiere a una composición farmacéutica, la cual comprende un portador o soporte farmacéuticamente aceptable, y un compuesto de la invención. Las composiciones, pueden contener otros agentes terapéuticos y / o de formulación, en caso deseado. Cuando se discuten las composiciones, al "compuesto de la invención", se le puede también hacer referencia como el "compuesto activo", para distinguirlo de otros componentes de la formulación, tal como el portador o soporte. Así, de este modo, se entenderá el hecho de que, el término "agente activo", incluye a los compuestos de la fórmula I, así como a las sales, solvatos, y pro-fármacos, farmacéuticamente aceptables, de dicho compuesto.

Las composiciones farmacéuticas de la presente invención, contienen, de una forma típica, una cantidad terapéuticamente efectiva de un compuesto de la invención. Aquéllas personas expertas en el arte especializado de 20 la técnica, reconocerán, no obstante, el hecho de que, una composición farmacéutica, puede contener más de una cantidad terapéuticamente efectiva, tal como en composiciones a granel, o menos de una cantidad terapéuticamente efectiva, tal como en una dosis unitarias individuales, diseñadas para la administración múltiple, para lograr una cantidad terapéuticamente efectiva. De una forma típica, la composición, contendrá una cantidad correspondiente a un rango comprendido dentro de unos márgenes de aproximadamente un 0,01 - 95 %, en peso, de agente activo, 25 incluyendo un rango comprendido dentro de unos márgenes de aproximadamente un 0,01 - 30 %, en peso, como por ejemplo, de aproximadamente un 0,01 - 10 %, en peso, dependiendo, la cantidad real, de la formulación en sí misma, de la ruta o vía de administración, de la frecuencia de dosificación, y así, sucesivamente. En una forma de presentación, en concordancia con la presente invención, una composición apropiada para una forma de 30 dosificación oral, puede contener, por ejemplo, una cantidad de agente activo correspondiente a un rango comprendido dentro de unos márgenes de aproximadamente un 5 - 70 %, en peso, ó una cantidad de agente activo correspondiente a un rango comprendido dentro de unos márgenes de aproximadamente un 10 - 60 %, en peso.

Puede utilizarse cualquier portador o soporte, o excipiente, del tipo convencional, en la composición farmacéutica de 35 la presente invención. La elección de un portador o soporte, o excipiente particular, o combinaciones de los portadores o soportes, o los excipientes, dependerá de la forma o modo de administración que se esté utilizando para tratar un paciente particular, o tipo particular de condición médica, o estado de la enfermedad. En este sentido, la preparación de una composición apropiada, para una forma particular de administración, se encuentra efectivamente dentro de ámbito de los conocimientos de aquéllas personas expertas en los artes especializados de 40 la técnica del sector farmacéutico. Adicionalmente, además, los portadores o soportes, o los excipientes utilizados en tales tipos de composiciones, se encuentran comercialmente disponibles en el mercado. A título de ilustración adicional, las técnicas convencionales de formulación, se encuentra descritas en Remington: The Science y Practice de Pharmacy, 20th Edition, - La ciencia y la práctica de la farmacia, 20ª Edición -, Lippincott Williams & White, Baltimore, Marily (2000); y en H. C. Ansel et al., Pharmaceutical Dosage Forms y Drug Delivery Systems, 7th Edition, 45 - Formas de dosificación farmacéuticas y sistemas de suministro de fármacos, 7ª Edición -, Lippincott Williams & White, Baltimore, Marily (1999).

Los ejemplos representativos de los materiales que pueden servir como portadores o soportes farmacéuticamente aceptables, incluyen, aunque no de una forma limitativa en cuanto a éstos, a los siguientes: azúcares, tales como la lactosa, la glucosa y la sacarosa; almidones, tales como el almidón de maíz y el almidón de patata; celulosa, tal como la celulosa microcristalina, y sus derivados, tales como la carboximetilcelulosa sódica, la etilcelulosa, y el acetato de celulosa; goma tragacanto en polvo; malta; gelatina; talco, excipientes; tales como la manteca de cacao, y ceras para supositorios; aceites, tales como el aceite de cacahuete, el aceite de semilla de algodón, el aceite de cártamo, el aceite de sésamo, el aceite de oliva, el aceite de maíz, y el aceite de semilla de soja; glicoles, tales como el propilenglicol; polioles, tales como la glicerina, el sorbitol, el manitol, y el polietilenglicol; ésteres, tales como el oleato de etilo, y el laurato de etilo; agar; agentes tamponizantes, tales como el hidróxido magnésico y el hidróxido de aluminio; el ácido algínico; el agua exenta de pirógenos; el suero salino isotónico; solución de Ringer; alcohol etílico; soluciones tampón fosfato,; gases propelentes comprimidos, tales como los consistentes en los clorofluorocarbonos y los hidrofluorocarbonos; y otras substancias, no tóxicas, compatibles, empleadas en composiciones farmacéuticas.

Las composiciones farmacéuticas, se preparan, de una forma típica, procediendo una mezclar o batir a fondo e íntimamente, el agente activo, con un portador o soporte farmacéuticamente aceptable y uno o más ingredientes opcionales. Luna mezcla resultante, uniformemente mezclada o batida, puede conformarse, a continuación, o bien

cargarse en tabletas, cápsulas, píldoras, latas (recipientes), cartuchos, dispensadores, y por el estilo, utilizando procedimientos y equipos convencionales.

En aquellas formulaciones, en donde, el compuesto de la invención, contenga un grupo tiol, deberá tenerse una consideración adicional, con objeto de minimizar o eliminar la oxidación del tiol, a una forma de disulfuro. En las formulaciones sólidas, esto puede conseguirse, mediante la reducción del tiempo de secado, reduciendo el contenido de humedad de la formulación, e incluyendo materiales tales como el ácido ascórbico, ascorbato sódico, sulfito sódico, y bisulfito sódico, así como materiales tales como los consistentes en ununa mezcla de lactosa y de celulosa microcristalina. En formulaciones líquidas, la estabilidad del tiol, puede mejorarse, mediante la adición de aminoácidos, antioxidantes, ó una combinación de adetato disódico y ácido ascórbico.

10

15

35

40

45

50

55

60

En una forma de presentación, en concordancia con la presente invención, las composiciones farmacéuticas, son apropiadas para la administración oral. Las composiciones apropiadas para la administración oral, pueden ser en forma de cápsulas, de tabletas, de píldoras, de pastillas, de comprimidos, de grageas, de material en polvo, de gránulos (granulados); en forma de soluciones o suspensiónes, en un líquido acuoso o no acuoso; en forma de emulsiones del tipo aceite en agua o del tipo agua en aceite; en forma de elixires o jarabes; conteniendo, cada uno de ellos, una cantidad predeterminada del agente activo.

Cuando las composición está prevista para la administración oral, en una forma de dosificación sólida (a saber, 20 como cápsulas, tabletas, píldoras, y por el estilo), ésta, comprenderá, de una forma típica, el agente activo y uno o más portadores o soportes farmacéuticamente aceptables, tales como el citrato sódico o del fosfato dicálcico. Las formas de dosificación oral, pueden también comprender: cargas o extensores, tales como los almidones, la celulosa microcristalina, la lactosa, la sacarosa, la glucosa, el manitol, y o / el ácido silícico; ligantes, tales como la carboximetilcelulosa, los alginatos, la gelatina, la polivinilpirrolidona, la sacarosa y / o la acacia; humectantes, tales 25 como el glicerol; agentes desintegrantes, tales como el agar - agar, el carbonato cálcico, el almidón de patata o de tapioca, el ácido algínico, ciertos silicatos, y / o el carbonato sódico; agentes retardantes de luna solución, tales como la parafina; acelerantes de la absorción, tales como los compuestos de amonio cuaternario; agentes hidratantes, tales como el cetilalcohol y / o el monoestearato de glicerol; absorbentes, tales como el caolín y / o la arcilla de bentonita; lubricantes, tales como el talco, el estearato cálcico, el estearato magnésico, los 30 polietilenglicoles sólidos, el lauril-sulfato sódico, y / o mezclas de entre éstos; agentes colorantes; y agentes tamponizantes.

Agentes de liberación, agentes humectantes o hidratantes, agentes de recubrimiento, edulcorantes, saborizantes (condimentos), agentes perfumantes, conservantes y antioxidantes, pueden también encontrarse presentes en las composiciones farmacéuticas. Los agentes de recubrimiento ejemplares, a título de ejemplo, para tabletas, cápsulas, píldoras y por el estilo, incluyen a aquéllas que se utilizan para recubrimientos entéricos, tales como el ftalato-acetato de celulosa, el ftalato-acetato de polivinilo, el ftalato de hidroxipropilmetilcelulosa, los copolímeros de ácido metacrílico – éster del ácido metacrílico, el acetato-trimelitato de celulosa, la carboximetiletilcelulosa, y el acetato-succinato de hidroxipropilmetilcelulosa, y por el estilo. Los ejemplos de antioxidantes farmacéuticamente aceptables, incluyen a: los antioxidantes solubles en agua, tales como el ascórbico, el clorhidrato de cisteína, el bisulfato sódico, el metabisulfito sódico, el sulfito sódico, y por el estilo; los antioxidantes solubles en aceite, tales como el palmitato de ascorbilo, el hidroxianisol butilado, el hidroxitolueno butilado, la lecitina, el galato de propilo, y el alfa-tocoferol; y los agentes quelantes de metales, tales como el ácido cítrico, el ácido etilendiamino-tetraacético, el sorbitol, el ácido tartárico, el ácido fosfórico, y por el estilo.

Las composiciones, pueden también formularse para proporcionar una liberación lenta o controlada del agente activo, utilizando, por ejemplo, hidroxipropilmetilcelulosa, en proporciones variables, u otras matrices de polímeros, liposomas y / o microesferas. Adicionalmente, además, las composiciones farmacéuticas de la invención, pueden contener agentes opacificantes, y éstos pueden formularse de tal forma que, éstos, liberen el agente activo, únicamente, o de una forma preferente, en una determinada porción del tracto gastrointestinal, opcionalmente, en una forma retardada. Los ejemplos de composiciones integradas, las cuales pueden utilizarse, incluyen a las substancias poliméricas y a las ceras. El agente activo, puede también ser en una forma micro-encapsulada, en caso apropiado, de una forma opcional, con uno o más de los excipientes anteriormente descritos anteriormente, arriba.

Las formas de dosificación líquidas apropiadas, para la administración oral, incluyen, a título de ilustración, a las emulsiones, microemulsiones, soluciones suspensiónes, jarabes y elixires, farmacéuticamente aceptables. Las formas de dosificación líquidas, comprenden el agente activo, y un diluyente inerte, tal como, por ejemplo, agua u otros disolventes agentes solubilizantes, y emulsionantes, tal como el alcohol etílico, el alcohol isopropílico, el carbonato de etilo, el acetato de etilo, el alcohol bencílico, el benzoato de etilo, el propilenglicol, el 1,3-butilenglicol, los aceites (como por ejemplo, el aceite de semilla de algodón, el aceite de cacahuete, el aceite de maíz, el aceite de germen (de trigo), el aceite de oliva, el aceite de ricino y el aceite de sésamo), el glicerol, el tetrafuril-alcohol, los polietilenglicoles, y los ésteres de ácidos grados de sorbitán, y las mezclas de entre éstos. Las suspensiónes, pueden contener agentes de suspensión, tales como, por ejemplo, los isoestearil-alcoholes etoxilados, el

polioxietilensorbitol y los ésteres de sorbitán, las celulosa microcristalina, el metahidróxido de aluminio, la bentonita, el agar – agar y la goma de tragacanto, y mezclas de entre éstos.

Cuando está previstas para la administración oral, las composiciones farmacéuticas de la presente invención, pueden envasarse en una forma de dosificación unitaria. El término "forma de dosificación unitaria", se refiere a una unidad físicamente discreta, apropiada para la dosificación a un paciente, es decir, que cada unidad contiene una cantidad predeterminada del agente activo, calculada para producir el deseado efecto terapéutico, bien ya sea sola, o bien ya sea en combinación con una o más unidades adicionales. Así, por ejemplo, tales tipos de formas de dosificación individual, pueden ser cápsulas, tabletas, píldoras, o semejantes.

10

15

20

25

30

35

En otra forma de presentación, en concordancia con la presente invención, las composiciones de la invención, son apropiadas para la administración mediante inhalación, y éstas serán, típicamente, en forma de un aerosol, o en forma de una materia en polvo. Tales tipos de composiciones, se administran, de una forma general, mediante la utilización de dispositivos de suministro que se conocen bien, en el arte especializado de la técnica, tales como los consistentes en un nebulizador, una materia seca en polvo, o un inhalador de dosis medida (dosificada). Los dispositivos nebulizadores, producen una corriente de aire, a alta velocidad, el cual provoca el que la composición se proyecte de una forma pulverizada (a modo de "spray"), como una neblina que se acarrea hacia el interior del tracto respiratorio del paciente. Una formulación ejemplar para un nebulizador, comprende el ingrediente activo, disuelto en un portador o soporte, para formar ununa solución, o micronizado y combinado con un portador o soporte, para formar una suspensión de partículas micronizadas del tamaño susceptible de poderse respirar. Los inhaladores de materia seca en polvo, administran el agente activo, como una materia en polvo que fluye libremente, y que dispensa en la corriente de aire de un paciente, durante la inspiración. Una formulación de materia seca en polvo, ejemplar, comprende el agente activo, mezclado en seco, con un excipiente tal como el consistente en lactosa, almidón, manitol, dextrosas, poli(ácido láctico, poliláctido-co-glicólido, y combinaciones de entre éstos. Los inhaladores de dosis dosificada (medida), descargan una cantidad medida del agente activo, utilizando el gas comprimido propelente. Una formulación ejemplar de dosis dosificada o medida, comprende ununa solución o suspensión del agente activo, en propelente licuado, tal como el consistente en un clorofluorocarbono ó un hidrofluoroalcano. Los componentes opcionales, para tales tipos de formulaciones, incluyen co-disolventes, tales como el etanol o el pentano, y tensioactivos o surfactantes, tales como el trioleato de sorbitán, el ácido oléico, la lecitina, la glicerina, y el laurilsulfato de sodio. Tales tipos de composiciones, se preparan, típicamente, mediante la adición de un hidrofluoroalcano enfriado o presurizado, a un recipiente contenedor apropiado, el cual contienen el agente activo, etanol (en caso de encontrarse éste presente), y el tensioactivo o surfactante (en caso de encontrarse éste presente). Con objeto de preparar una suspensión, el agente activo, se microniza y, a continuación, éste se combina con el propelente. De una forma alternativa, una formulación de una suspensión, puede prepararse procediendo al secado mediante proyección pulverizada (spray), un recubrimiento de tensioactivo o surfactante, sobre partículas micronizadas del agente activo. La formulación, se carga, a continuación, al interior de un recipiente o depósito de aerosol, el cual forma una porción del inhalador.

Los compuestos de la invención, pueden también administrarse parenteralmente (como por ejemplo, mediante 40 inyección subcutánea, intravenosa, intramuscular, o intraperitoneal). Para tal tipo de administración, el agente activo, se proporciona en ununa solución, suspensión o emulsión estéril. Los disolventes ejemplares para preparar tales tipos de formulaciones, incluyen a los productos consistentes en agua, solución salina, alcoholes de bajo peso molecular, tales como el propilenglicol, el polietilenglicol, los aceites, la gelatina, los ésteres de ácidos grasos, tal como el oleato de etilo, y por el estilo. La formulaciones parenterales, pueden también contener uno o más 45 antioxidantes, solubilizantes, estabilizantes, conservantes, agentes humectantes o hidratantes, emulsionantes, y agentes dispersantes. Los tensioactivos o surfactantes, los agentes de adicionales de estabilización adicional, o los agentes para ajustar el valor pH (ácidos, bases o tampones), y los antioxidantes, son particularmente útiles, para proporcionar estabilidad a la formulación, como por ejemplo, para minimizar o evitar la hidrólisis de los enlaces o eslabones de éster y amida, o la dimerización de tioles, los cuales puedan encontrarse presentes en el compuesto. 50 Estas formulaciones, pueden convertirse en estériles, mediante la utilización de un medio inyectable, estéril, un agente esterilizante, filtrado, irradiación, o calor. En una forma particular de presentación, en concordancia con la presente invención, la formulación parenteral, comprende ununa solución acuosa de ciclodextrina, la cual incluye moléculas cíclicas que contienen seis o más unidades de α-D-glucopiranosa, enlazadas, en las posiciones 1,4, mediante eslabones, tal como en amilasa, β-ciclodextrina, ó cicloheptaamilosa. Las ciclodextrinas ejemplares, 55 incluyen a los derivados de la ciclodextrina, tales como las ciclodextrinas de hidroxipropilo y de éteres de sulfobutilo. tales como la hidroxipropil-β-ciclodextrina y la sulfobutil-éter-β-ciclodextrina. Los tampones ejemplares, para tales tipos de formulaciones, incluyen a los tampones a base de ácido carboxílico, tales como las soluciones de citratos, de lactatos, y de maleatos.

Los compuestos de la invención, pueden también administrarse transdermalmente, utilizando sistemas de suministro y excipientes, los cuales son conocidos. Así, por ejemplo, el compuesto, puede mezclarse con mejorantes de permeación, tales como los consistentes en propilenglicol, monolaurato de polietilenglicol, y azacicloalcan-2-onas, e incorporarse en un parche, o un sistema similar de suministro. Pueden utilizarse excipientes adicionales, tales como los consistentes en agentes gelificantes, emulsionantes y tampones, en tales tipos de composiciones transdérmicas, en caso deseado.

En caso deseado, los compuestos de la presente invención, pueden administrarse en combinación con uno o más agentes terapéuticos adicionales, distintos. Así, de este modo, en una forma de presentación, las composiciones farmacéuticas de la invención, contienen otros fármacos, los cuales se co-administran con un compuesto de la invención. Así, por ejemplo, la composición, puede comprender, de una forma adicional, uno o más fármacos (al cual o a los cuales se le(s) hará también referencia, como "agente(s) secundario(s)", seleccionados de entre el grupo consistente en los diuréticos, los bloqueantes del receptor adrenérgico β_1 , los bloquentes de los canales de calcio, los inhibidores de la enzima conversora de angiotensina, los antagonistas del receptor AT1, los inhibidores de neprisilina, los agentes anti-inflamatorios no esferoidales, las prostaglandinas, los agentes anti-lípidos, los agentes anti-diabéticos, los agentes anti-trombóticos, los inhibidores de renina, los antagonistas del receptor de endotelina, los inhibidores de la enzima conversora de endotelina, los antagonistas de aldosterona, los inhibidores de la enzima de conversión de angiotensina / de la neprilisina y combinaciones de entre éstos. Tales tipos de agentes terapéuticos, son bien conocidos, en el arte especializado de la técnica, y aquí, en este documento de solicitud de patente, se describen ejemplos específicos de éstos. Mediante la combinación de un compuesto de la presente invención, con un agente secundario, puede obtenerse una triple terapia, a saber, actividad antagonista del receptor AT₁, actividad de inhibición de la NEP, y actividad asociada con el agente secundario (como, por ejemplo, el bloqueante del receptor adrenérgico AT₁), utilizando únicamente dos componentes activos. Puesto que, las composiciones que contienen dos componentes activos, de una forma típica, son más fáciles de formular, que las composiciones que contienen tres componentes activos, tales tipos de composiciones de dos componentes, proporcionan una ventaja significativa, con respecto las composiciones que contienen tres componentes activos. Correspondientemente en concordancia, en todavía otra forma de presentación de la presente invención, una composición farmacéutica, comprende un compuesto de la invención, un segundo agente activo, y un portador o soporte, farmacéuticamente aceptable. En la composición, pueden también incluirse uno, dos o tres agentes activos. En la terapia de combinación, la cantidad de compuesto de la invención, la cual se administra, así como la cantidad de los agentes secundarios, puede ser inferior que la cantidad que se administra típicamente en monoterapia.

25

30

35

65

10

15

20

Los compuestos de la invención, pueden mezclarse físicamente, con un Segundo agente activo, para formar una composición que contiene ambos agentes; o cada uno de los agentes, puede encontrarse presente, en composiciones separadas y distintas, las cuales se administran, al paciente, de una forma simultánea, o en tiempo separados. Así, por ejemplo, un compuesto de la invención, puede combinarse con un segundo agente activo, utilizando procedimientos y equipos convencionales, para formar una combinación de agentes activos, que comprenden un compuesto de la invención, y un segundo agente activo. Adicionalmente, además, los agentes activos, pueden combinarse con un portador o soporte, farmacéuticamente aceptable, para formar una composición farmacéuticamente aceptable, que comprende un compuesto de la invención, un segundo agente activo, y un portador o soporte farmacéuticamente aceptable. En esta forma de presentación, los componentes de la composición, de una forma típica, se mezclan o se baten, para crear ununa mezcla física. Luna mezcla física, se administra, a continuación, en una cantidad terapéuticamente efectiva, utilizando cualesquiera rutas o vías de administración que se han descrito aquí, en este documento de solicitud de patente.

De una forma alternativa, los agentes activos, pueden permanecer separados y distintos, antes de la administración 40 al paciente. En esta forma de presentación, los agentes, no se mezclan físicamente, conjuntamente, antes de la administración, pero éstos se administran simultáneamente, o en tiempo separados, como composiciones separadas. Tales tipos de composiciones, pueden envasarse separadamente, o pueden envasarse conjuntamente, en un equipo o modo de "kit". Cuando se administra en tiempos separados, el agente secundario, de una forma típica, se administrará en menos de 24 horas, después de la administración del compuesto de la invención, siendo, 45 el momento en que se administre dicho agente secundario, cualquier momento, desde la administración del compuesto de la invención, siendo concurrente con éste, hasta 24 horas post-dosis. A esto se le hace también referencia, como una administración secuencial. Así, de este modo, un compuesto de la invención, puede administrarse oralmente, simultáneamente, o secuencialmente, con otro agente activo, utilizando dos tabletas, con una tableta para cada agente activo, en donde, secuencial, puede significar el que se administre inmediatamente 50 después de la administración del compuesto de la invención, o en algún momento predeterminado, más tarde (como por ejemplo, una hora más tarde, o tres horas más tarde). De una forma alternativa, la combinación, puede administrarse mediante diferentes vías o rutas de administración, a saber, una oralmente, y otra mediante inhalación.

En una forma de presentación, en concordancia con la presente invención, el equipo a modo de "kit", comprende una primera forma de dosificación, que comprende un compuesto de la invención, y por lo menos una forma de dosificación adicional, que comprende uno o más de los agentes secundarios presentados aquí, en este documento, en unas cantidades suficientes como para llevar a cabo los procedimientos de la presente invención. La primera forma de dosificación, y la segunda (o tercera, etc.) forma de dosificación, comprenden, conjuntamente, una cantidad terapéuticamente efectiva de agentes activos, para el tratamiento o la prevención de una enfermedad, o de una condición médica, en un paciente.

El agente o los agentes secundario(s), cuando éste (éstos) se encuentra(n) incluido(s), se encuentra(n) presente(s) en una cantidad terapéuticamente efectiva tal, que éste (éstos) produzca(n) un efecto terapéuticamente beneficiosos, cuando se co-administra(n) con un compuesto de la invención. El agente secundario, puede ser en

forma de una sal farmacéuticamente aceptable, un solvato farmacéuticamente aceptable, un estereoisómero óptimamente puro, y así sucesivamente. El agente secundario, puede ser, también en forma de profármaco, como, por ejemplo, un compuesto que tenga un grupo de ácido carboxílico, el cual se haya esterificado. Así, de este modo, los agentes secundarios listados aquí, en este documento, están previstos para incluir la totalidad de tales tipos de formas, y éstas se encuentran comercialmente disponibles en el mercado, o éstas pueden prepararse utilizando procedimientos y reactivos convencionales.

En una forma de presentación, en concordancia con la presente invención, un compuesto de la invención, se administra en combinación con un diurético. Los diuréticos representativos, incluyen, pero no de una forma limitativa en cuanto a éstos, a: inhibidores de anhidrasa carbónica, tal como la azetalomida y la diclorenamida. Los diuréticos de bucle, los cuales incluyen a los derivados de la sulfonamida, tales como la acetázolamida, ambusida, azosemida, bumetanida, butazolamida, cloraminofenamida, clofenamida, clopamida, clorexolona, disulfamida, etoxolamida, furosemida, mefrusida, metazolamida, piretanida, torsemida, tripamida, y xipamida, así como los diuréticos no sulfonamidícos, tales como el ácido etacrínico, y otros compuestos del ácido fenoxiacético, tal como el ácido tienílico, la indacrinona y el quincarbato; los diuréticos osmóticos, tales como el manitol, los diuréticos ahorradores de potasio, los cuales incluyen a los antagonistas de aldosterona, tales como la espirinolactona, y los inhibidores de los canales de Na⁺, tales como la amilorida y el triamtereno; la tiazida y los diuréticos semejantes a la tiazida, tales como la altiazida, bendroflumetiazida, bencilhidroclorotiazida, benztiazida, butiazida, clorotalidona, clorotiazida, ciclopentiazida, ciclotiazida, epitiazida, etiazida, fenquizona, flumetiazida, hidroclorotiazida, hidroflumetiazida, indapamida, metilclotiazida, meticran, metolazona, paraflutizida, poltiazida, quinetazona, teclotiazida, y triclorometiazida; y combinaciones de entre éstos. En una forma particular de presentación, el diurético, se selecciona de entre la amilorida, bumetanida, clorotiazida, clortalidona, diclorofenamida, ácido etacrínico, furosemida, hidroclorotiazida, hidroflumetiazida, indapamida, metilclotiazida, metolazona, torsemida, triamtereno, y combinaciones de entre éstos. El diurético, se administrará en una cantidad suficiente como para proporcionar aproximadamente 5 - 50 mg por día, de una forma más típica, de 6 - 25 mg por día, siendo, las dosificaciones usuales, las correspondientes a unas cantidades de 6,25 mg, 12,5 mg ó 25 mg por día.

10

15

20

25

30

35

60

65

Los compuestos de la invención, pueden también administrarse en combinación con un bloqueante del receptor adrenérgico β_1 . Los bloqueantes del receptor adrenérgico β_1 , incluyen, aunque no de una forma limitativa en cuanto a éstos, al acebutolol, alprenolol, amosulalol, arotinolol, atenolol, befunolol, betaxolol, bevantolol, bisoprolol, bopindolol, bucimdolol, bucimdolol, bufetolol, bufuralol, bunitrolol, bupranolol, bubridina butofilolol, carazolol, carteolol, carvedilol, celiprolol, cetamolol, cloranolol, dilevalol, epanolol, esmolol, indenolol, labetolol, levobunolol, metipranolol, metipranolol, metoprolol tal como el succinato de metoprolol y el tartrato de metoprolol, moprolol, nadolol, nadoxolol, nebivalol, nipradilol, oxprenolol, penbutolol, pindolol, pindolol, practolol, propranolol, sotalol, sotalol, sufinalol, talindol, tertatolol, tilisolol, timolol, toliprolol, xibenolol, y combinaciones de entre éstos. En una forma particular de presentación, el bloqueante del receptor adrenérgico β_1 , se selecciona de entre atenolol, bisoprolol, metoprolol, propranolol, sotalol, y combinaciones de entre éstos.

En una forma de presentación, en concordancia con la presente invención, un compuesto de la invención, se administra en combinación con un bloqueante de canales de calcio. Los canales de calcio representativos, incluyen, pero no de una forma limitativa en cuanto a éstos, a amlodipina, anipamil, aranipina, barnidipina, benciclan, benidipina, bepridilo, clentiazem, cilnidipina, cinnarizina, diltiazem, efonidipina, elgodipina, etafenona, felodipina, fendilina, flunarizina, gallopamil, isradipina lácidoipina, lercanidipina, lidoflazina, lomerizina, manidipina, mibefradilo, nicardipina, nifedipina, niguldipina, niludipina, nilvadipina, nimodipina, nisoldipina, nitrendipina, nivaldipina, perhexilina, prenilamina, riosidina semotiadilo, terodilina, tiapamil, verapamil, y combinaciones de entre éstos. En una forma particular de presentación, el bloqueante de canales de calcio, se selecciona de entre amlodipina, bepridilo, diltiazem, felodipina, isradipina, lácidoipina, nicardipina, nifedipina, niguldipina, niludipina, nimodipina, nisoldipina, riosidina, verapamil, y combinaciones de entre éstos.

Los compuestos de la presente invención, pueden también administrarse en combinación con un inhibidor de la enzima conversora de angiotensina (ACE). Los inhibidores de ACE, incluyen, aunque no de una forma representativa en cuanto a éstos, al acupril, alacepril, benazepril, benazeprilat, captopril, ceranapril, cilazapril, delapril, enalapril, enalaprilat, fosinopril, fosinoprilat, imidapril, lisinopril, monopril, moveltopril, perindopril, quinapril, quinaprilat, ramipril, ramiprilat, acetato de saralasin, spirapril, temocapril, trandolapril, zofenopril, y combinaciones de entre éstos. En una forma particular de presentación, el inhibidor de ACE, se selecciona de entre: benazepril, enalapril, lisinopril, ramipril, y combinaciones de entre éstos.

En una forma de presentación, un compuesto de la invención, se administra en combinación con un antagonista del receptor AT₁, también conocido como bloqueante(s) del recetor de angiotonsina del tipo 1 (ARBs). Los ARBs representativos, incluyen, aunque no de una forma limitativa en cuanto a éstos, incluyen, al abitesartan, bencilosartan, candesartan, candesartan cilexetil, elisartan, embusartan, enoltasosartan, eprosartan, forasartan, glicilosartan, irbesartan, isoteolina, losartan, medoxomil, milfasartan, olmesartan, opomisartan, pratosartan, ripisartan, sarpisartan, saralasin, sarmesin, tasosartan, telmisartan, valsartan, zolasartan, y combinaciones de entre éstos. En una forma particular de presentación, el ARB, se selecciona de entre los compuestos consistentes en el candesartan, eprosartan, irbesartan, losartan, olmesartan, saprisartan, tasosartan,

telmisartan, valsartan, y combinaciones de entre éstos. Las sales ejemplares, incluyen al mesilato de eprosartan, a la sal potásica de losartan, y al medoxamil-olmesartan. De una forma típica, se ARB, se administrará en una cantidad suficiente como para proporcionar 4 - 600 mg (de compuesto) por dosis, siendo, las dosificaciones ejemplares diarias, la correspondiente a un valor comprendido dentro de unos márgenes de 20 - 320 mg por día.

5

10

15

20

25

30

En otra forma de presentación, en concordancia con la presente invención, un compuesto de la invención, se administra en combinación con un inhibidor de neprilisina (NEP). Los inhibidores de NEP representativos, pero de no una forma limitativa en cuanto a éstos, a: candoxatril; candoxatrilat; dexecadotril (éster bencílico de la ((+)-N-[2-(R)-(acetiltiometil)-3-fenilpropionil]glicina); CGS-24128 (ácido (3-[3-(bifenil-4-il)-2-(fosfonometilamino)-propionamido]propiónico); CGS-24592 (ácido ((S)-3-[3-(bifenil-4-il)-2-(fosfonometilamino)propionamido]propiónico); CGS-25155 (N-[9(R)-(acetiltiometil)-10-oxo-1-azaciclodecan-2(S)-ilcarbonil]-4(R)-hidroxi-L-prolina); bencílico de la derivados del ácido 3-(1-carbamoil-ciclohexil)propiónico, descritos en el documento de patente internacional WO 2006 / 027 680, concedida a Hepworth et al. (Pfizer Inc.); JMV-390-1 (2(R)-bencil-3-(N-hidroxicarbamoil)propionil-Lisoleucil-L-leucina); ecadotril; fosfora-midon; retrotiorfan; RU-42827 (2-(mercaptometil)-N-(4-piridinil)bencenopropionamida); RÚ-44004 (N-(4-morfolinil)-3-fenil-2-(sulfanlmetil)propionamida); SCH-32615 ((S)-N-[N-(1-carboxi-2feniletil)-L-fenilalanil]-β-alanina) y su pro-fármaco SCH-34826 ((S)-N-[N-[1-[[(2,2-dimetil-1,3-dioxolan-4-il)metoxi]carbonil]-2-feniletil]-L-fenilalanil]-β-alanina); sialorfin; SCH-42495 (ester metilico de la (N-[2(S)-(acetilsulfanilmetil)-3-(2-metilfenil)propionil]-L-metionina); spinorfin; SQ-28132 (N-[2-(mercaptometil)-1-oxo-3-fenilpropil]leucina); SQ-28603 (N-[2-(mercaptometil)-1-oxo-3-fenilpropil]-β-alanina); SQ-29072 (ácido (7-[[2-(mercaptometil)-1-oxo-3-fenilpropil]amino]heptanóico); tiorfan y su pro-fármaco racecadotril; UK-69578 (ácido cis-4-[[[1-[2-carboxi-3-(2-metoxietoxi)propil]ciclopentil]carbonil]amino]-ciclohexano-carboxílico); UK-447,841 (ácido propilcarbamoil]-ciclopentilmetil}-4-metoxibutírico); UK-505,749 (ácido (R)-2-metil-3-{1-[3-(2-metilbenzotiazol-6il)propilcarbamoil] ciclopentil}propiónico); ácido 5-bifenil-4-il-4-(3-carboxipropionilamino)-2-metilpentanóico y éster etílico del ácido 5-bifenil-4-il-4-(3-carboxipropionilamino)-2-metilpentanóico (progenitor del ácido AHU-377, y porfármaco del éster AHU – 377; WO 2007 / 056 546); daglutril [ácido (3S,2'R)-3-{1-[2'-(etoxicarbonil)-4'-fenilbutil]ciclopentan-1-carbonilamino}-2,3,4,5-tetrahidro-2-oxo-1H-1-benzazepin-1-acético], descrito en el documento de patente internacional WO 2007 / 106 708, concedida a Khder et al. (Novartis AG); y combinaciones de entre éstos. En una forma particular de presentación, el ihhibidor de NEP, se selecciona de entre candoxatril, candoxatrilat, CGS-24128, fosforamidon, SCH-32615, SCH-34826, SQ-28603, tiorfan, AHU - 377 (progenitor o profármaco) y combinaciones de entre éstos. El inhibidor de NEP, se administrará en una cantidad suficiente como para proporcionar aproximadamente 20 - 800 mg por día, siendo, las cantidades diarias de dosificación, de una forma típica, las correspondientes a unos valores comprendidos dentro de unos márgenes de 50 - 700 mg por día, siendo éstos, de una forma más usual, los correspondientes a un valor comprendido dentro de unos márgenes de 100 600 por día, ó los correspondientes a un valor comprendido dentro de una márgenes de 100 - 300 mg, por día.

35

40

45

50

55

En todavía otra forma de presentación, en concordancia con la presente invención, un compuesto de la invención se administra en combinación con agente anti-inflamatorio no esteroideo (NSAID - [de sus siglas, en idioma inglés, correspondientes a non- esteroidal anti- inflammatory agent] -). Los NSAIDs incluyen, pero de no una forma limitativa en cuanto a éstos, a los: acemetacina, ácido acetilsalicílico, alclofenac, alminoprofeno, amfenac, amiprilosa, amoxiprin, anirolac, apazona, azapropazona, benorilato, benoxaprofeno, bezpiperilona, broperamola, ácido buclóxico, carprofeno, clidanac, diclofenac, diflunisal, diftalona, enolicam, etodolac, etoricoxib, fenbufeno, fenclofenac, ácido fenclózico, fenoprofeno, fentiazac, feprazona, ácido flufenámico, flufenisal, fluprofeno, flurbiprofeno, furofenac, ibufenac, ibuprofeno, indometacina, indoprofeno, isoxepac, isoxicam, cetoprofeno, cetorolac, lofemizol, lomoxicam, meclofenamato, ácido meclofenámico, ácido mefenámico, meloxicam, mesalamina, miroprofeno, mofebutazona, nabumetona, naproxeno, ácido niflúmico, oxaprozin, oxpinac, oxifenbutazona, fenilbutazona, piroxicam, pirprofeno, pranoprofen, salsalato, sudoxicam, sulfasalazina, sulindac, suprofeno, tenoxicam, tiopinac, ácido tiaprofénico, tioxaprofeno, ácido tolfenámico, tolmetin, triflumidato, zidometacina, zomepirac, y combinaciones de entre éstos. En una forma particular de presentación, el NSAID, se selecciona de entre los compuestos consistentes en el etodolac, flurbiprofeno, ibuprofeno, indometacina, cetoprofeno, cetorolac, meloxicam, naproxeno, oxaprozina, piroxicam, y combinaciones de entre éstos.

En todavía otra forma de presentación, en concordancia con la presente invención, un compuesto de la invención, se administra en combinación con un agente anti-lípidos. Los agentes anti-lípidos representativos, incluyen, pero de no una forma limitativa en cuanto a éstos, a las estatinas, tales como la como la atorvastatina, la fluvastatina, la lovastatina, la pravastatina, la rosuvastatina y la simvastatina; las proteínas de transferencia de éster colesterílico (CETPs – [de sus siglas, en idioma inglés, correspondientes a colesterol éster transfer proteins] -); y combinaciones de entre éstos.

En todavía otra forma de presentación, en concordancia con la presente invención, un compuesto de la invención, se administra en combinación con un agente anti-diabético. Los agentes anti-diabéticos representativos, incluyen a fármacos inyectables, así como a fármacos oralmente efectivos, y combinaciones de entre éstos. Los ejemplos de fármacos inyectables, incluyen, pero de no una forma limitativa en cuanto a éstos, a la insulina y a los derivados de la insulina. Los ejemplos de fármacos oralmente efectivos, incluyen, pero de no una forma limitativa en cuanto a éstos, a : biguanidas tales como la metformina; los antagonistas del glucagon; los inhibidores de la α-glucosidasa, tales como la acarbosa y el miglitol; meglitinidas, tales como la repaglinida; las oxadiazolidinedionas; las

sulfonilureas, tales como la cloropropamida, la glimepirida, la glipizida, la gliburida, y la tolazamida; tiazolidinedionas, tales como la pioglitazona y la rosiglitazona; y combinaciones de entre éstos.

En una forma de presentación, en concordancia con la presente invención, un compuesto de la invención se administra en combinación con un agente antitrombótico. Los agentes antitrombóticos representativos, incluyen, aunque no de una forma representativa en cuanto a éstos, a la aspirina, a los agentes antiplaquetarios, a la heparina, y a combinaciones de entre éstos. Los compuestos de la invención, pueden también administrarse en combinación con un inhibidor de renina, cuyos ejemplos, incluyen, aunque no de una forma limitativa en cuanto a éstos, al aliskiren, el enalkiren, el remikiren, y combinaciones de entre éstos. En otra forma de presentación, en concordancia con la presente invención, un compuesto de la invención, se administra en combinación con un antagonista del receptor de la endotelina, incluyendo los ejemplos representativos de éstos, aunque no de una forma limitativa en cuanto a éstos, a los compuestos consistentes en el bosentan, el darusentan, el tezosentan, y combinaciones de entre éstos. Los compuestos de la invención, pueden también administrarse en combinación con un inhibidor de la enzima conversora de la endotelina, incluyendo, los ejemplos representativos de éstos, aunque no de una forma limitativa en cuanto a éstos, al fosforamidón, al CGS 26303, y a combinaciones de entre éstos. En todavía otra forma de presentación, un compuesto de la invención, se administra en combinación con un antagonista de aldosterona, incluyendo, los ejemplos representativos de los antagonistas de aldosterona, aunque no de una forma limitativa en cuanto a éstos, a los compuestos consistentes en la eplerenona, en la espironolactona y a combinaciones de entre éstos.

20

25

30

35

40

10

15

Los agentes terapéuticos combinados, pueden también ser de utilidad, en terapias de combinación adicionales, con compuestos de la invención. Así, por ejemplo, una combinación del inhibidor de ACE enalapril (en la forma de su sal de maleato) y de hidroclorotiazida diurética, la cual se vende, en el mercado, bajo la marca comercial de Vaseretic®, o una combinación del bloqueador de canales de calcio consistente en la amlodipina (en la forma de sal de besilato), y el ARB olmesartan (en la forma de profármaco de medoxomil), o una combinación del bloqueante de canales de calcio y una estatina, pueden utilizarse en su totalidad, con los compuestos de la invención. Los agentes de actuación dual, pueden también ser de utilidad, con los compuestos de la invención. Así, por ejemplo, pueden también encontrarse incluidos los inhibidores de la enzima conversora de angiotensina / de la neprisilina (ACE/NEP), tales como los consistentes en los: AVE-0848 (ácido (4S,7S,12bR)-7-[3-metil-2(S)-sulfanilbutiramido]-6-oxo-1,2,3,4,6,7,8,12b-octahidropirido[2,1-a][2]benzazepin-4-carboxílico); AVE-7688 (ilepatril) y su compuesto progenitor; 2-[2-oxo-3 (S)-[3-fenil-2 (S)-sulfanilpropionamido]-2,3,4,5-tetrahidro-1H-1-benzazepin-1il]acético); CGS-26303 (ácido [N-[2-(bifenil-4-il)-1(S)-(IH-tetrazol-5-il)etil]amino]metilfosfónico); CGS-35601 (N-[1-[4metil-2-(\$)-sulfanilpentanamido|ciclopentilcarbonil|-L-triptófano); fasidotrilo; fasidotrilato; enalaprilato; ER-32935 (ácido (3R,6S,9aR)-6-[3(S)-metil-2(S)-sulfanilpentanamido]-5-oxoperhidrotiazolo[3,2-a]azepin-3-carboxílico; gempatrilato; MDL-101264 (ácido (4S,7S, 12bR)-7-[2(S)-(2-morfolinoacetiltio)-3-fenilpropionamido]-6-oxo-1,2,3,4,6,7,8,12boctahidropirido[2,1-a][2]benzazepin-4-carboxílico); MDL-101287 (ácido [4S-[4 α ,7 α R*),12b β]]-7-[2-(carboximetil)-3-fenilpropionamido]-6-oxo-1,2,3,4,6,7,8,12b-octahidropirido[2,1-a][2]benzazepin-4-carboxílico); omapatrilato; RB-105 (N-[2(S)-(mercaptometil)-3(R)-fenilbutil]-L-alanina); sampatrilato; SA-898 ((2R,4R)-N-[2-(2-hidroxifenil)-3-(3-mercaptometil)topropionil)tiazolidin-4-ilcarbonil]-L-fenilalanina); Sch-50690 (N-[1(S)-carboxi-2-[N2-(metanosulfonil)-L-lisilamino]etil]-L-valil-L-tirosina); y combinaciones de entre éstos. En una forma particular de presentación, en concordancia con la presente invención, el inhibidor de ACE/NEP, se selecciona de entre: AVE-7688, enalaprilato, fasidotrilo, fasidotrilato, omapatrilato, sampatrilato, y combinaciones de entre éstos.

Pueden también ser de ayuda, en una terapia de combinación, otros agentes terapéuticos, tales como los consistentes en los agonistas del receptor adrenérgico α₂, y los antagonistas del receptor de vasopresina. Los ejemplos del receptor adrenérgico α₂, incluyen a la clonidina, a la dexmedetomidina y a la guanfacina. Los ejemplos de los antagonistas del receptor de vasopresina, incluyen al tolvaptan.

Las ilustraciones que se facilitan a continuación, ilustran las composiciones farmacéuticas de la invención.

50

55

Cápsulas de gelatina dura, ejemplares, para la administración oral

Se procede una mezclar, íntimamente, un compuesto de la invención (50 g), 440 g de lactosa secada mediante proyección pulverizada (spray), y 10 g de estearato magnésico). La composición resultante, se carga, a continuación, en las cápsulas de gelatina dura (500 mg de composición por cápsula). De una forma alternativa, se procede una mezclar, de una forma íntima, un compuesto de la invención (20 mg), con almidón (89 mg), con celulosa microcristalina (89 mg), y con estearato magnésico (2 mg). A continuación, se procede a hacer pasar luna mezcla, a través de un tamiz correspondiente a la malla estadounidense nº 45, y ésta se carga en una cápsula de gelatina dura (200 mg de composición por cápsula).

60

65

Formulación ejemplar de cápsulas de gelatina, para la administración oral

Se procede una mezclar, íntimamente, un compuesto de la invención (100 mg), con monooleato de polioxietilensorbitán (50 mg) y almidón en polvo (250 mg). Luna mezcla, se carga, a continuación, en una cápsula de gelatina (300 mg de composición por cápsula). De una forma alternativa, se procede una mezclar, de una forma

íntima, un compuesto de la invención (40 mg), con celulosa microcristalina (Avicel PH 103; 260 mg), y con estearato magnésico (0,8 mg). A continuación, luna mezcla, se carga en una cápsula de gelatina (Tamaño #1, blanca, opaca (300 mg de composición por cápsula).

5 Formulación ejemplar de tabletas para la administración oral

Se procede a hacer pasar un compuesto de la invención (10 mg), almidón (45 mg) y celulosa microcristalina (35 mg), a través de un tamiz correspondiente a la malla estadounidense nº 20, y se procede una mezclar íntimamente. Los gránulos de esta forma producidos, se secan a una temperatura de 50 – 60°C, y hacen pasar a través de un tamiz correspondiente a la malla estadounidense nº 16. A continuación, se procede una mezclar ununa solución de polivinilpirrolidona (4 mg, como ununa solución al 10% en agua estéril, con almidón carboximetilsódico (4,5 mg), estearato magnésico (0,5 mg), y talco (1 mg) y, éstuna mezcla, se hace pasar, a continuación, a través de un tamiz correspondiente a la malla estadounidense nº 16. El almidón carboximetilsódico, el estearato magnésico y el talco, se añaden, a continuación, a los gránulos. Después de haber procedido al mezclado, luna mezcla, se comprime, en una máquina de fabricación de tabletas, para proporcionar una tableta que pesa 100 mg.

De una forma alternativa, se procede una mezclar íntimamente un compuesto de la invención (250 mg) con celulosa microcristalina (400 mg), dióxido de silicio ahumado (10 mg) y ácido esteárico (5 mg). Luna mezcla, se comprime, a continuación, para formar tabletas (665 mg de composición por tableta).

De una forma alternativa, se procede una mezclar íntimamente un compuesto de la invención (400 mg) con almidón de maíz (50 mg), crosclamelosa sódica (25 mg), lactosa (120 mg), y estearato magnésico (5 mg). Se procede, a continuación, a comprimir luna mezcla, para formar una tableta provista de una ranura individual (600 mg de la composición, por tableta).

De una forma alternativa, se procede una mezclar íntimamente un compuesto de la invención (100 mg) con almidón de maíz (100 mg), y con ununa solución acuosa de gelatina (20 mg). A continuación, luna mezcla, se seca y muele, hasta formar un fino material en polvo. Se procede, a continuación, una mezclar celulosa microcristalina (50 mg) y estearato magnésico (5 mg), con la formulación de gelatina, se granula y, luna mezcla resultante, se comprime, para formar tabletas (100 mg de compuesto de la invención, por tableta).

Formulación de una suspensión ejemplar para administración oral:

Se procede a añadir los siguientes ingredientes, para formar una suspensión que contiene 100 mg del compuesto de la invención, por 10 ml de suspensión.

	<u>Ingredientes</u>	Cantidad
	Compuesto de la invención	1,0 g
	Ácido fumárico	0,5 g
40	Cloruro sódico	2,0 g
	Metilparabeno	0,15 g
	Propilparabeno	0,05 g
	Azúcar granulado	25,5 g
	Sorbitol (solución al 70%)	12,85 g
45	Veegum® K (silicato magésico-alumínico	1,0 g
	Agente saborizante (condimento)	0,035 ml
	Colorantes	0,5 mg
	Agua destilada	q.s. hasta 100

50 Formulación líquida ejemplar para la administración oral

Una formulación líquida apropiada, es una formulación con un tampón de base ácido carboxílico, tal como las soluciones tampón de citrato, lactato, y maleato. Así, por ejemplo, se procede una mezclar un compuesto de la presente invención (el cual puede pre-mezclarse con DMSO), con un tampón 100 mM de citrato amónico, el pH, se ajusta a un valor de pH 5, ó éste se mezcla con una solución 100 mM de ácido cítrico y, el pH, se ajusta a un valor pH 2. Tales tipos de soluciones, incluyen excipientes solubilizantes, tales como una ciclodextrina y, así, por ejemplo, luna solución, puede incluir un 10%, en peso, de hidroxipropil-β-ciclodextrina.

Formulación inyectable, ejemplar, para la administración mediante inyección

Se procede una mezclar un compuesto de la invención (0,2 g) con ununa solución tampón 0,4 M de acetato sódico (2,0 ml). El valor pH de luna solución resultante, se ajusta a un valor pH 4, utilizando ácido clorhídrico acuoso 0,5 N, ó hidróxido sódico acuoso 0,5 N, en la cantidad que sea necesaria y, a continuación, se procede a añadir una cantidad de agua suficiente, como para proporcionar un volumen total de 20 ml. Luna mezcla, se filtra, a

31

60

55

10

15

20

25

continuación, con a través de un filtro estéril (0,22 micrómetros), para proporcionar ununa solución estéril, apropiada, para la administración mediante inyección.

Composiciones ejemplares para la administración mediante inhalación

Se procede a micronizar un compuesto de la invención (0,2 mg) y, a continuación, éste se mezcla con lactosa (25 mg). Estuna mezcla, batida, se carga, a continuación, en un cartucho de inhalación, de gelatina. Los contenidos de este cartucho, se administran utilizando un inhalador para materias secas en polvo, por ejemplo.

- De una forma alternativa, se procede a dispensar un compuesto micronizado de la invención (10 g), en ununa solución preparada disolviendo lecitina (0,2 g) en agua desmineralizada (200 ml). La suspensión resultante, se seca mediante proyección pulverizada (spray) y, a continuación, ésta se microniza, para formar una composición micronizada, que comprende partículas que tienen un tamaño medio de partícula de menos de aproximadamente 1 μm. A continuación, la composición micronizada, se carga en cartuchos de inhalación con dosis dosificada, los cuales contienen 1,1,1,2-tetrafluoroetano, en una cantidad suficiente como para proporcionar una cantidad del compuesto de la invención, por dosis, la cual sea suficiente como para proporcionar una cantidad correspondiente a un valor comprendido dentro de unos márgenes que van desde los aproximadamente 10 μg hasta los aproximadamente 500 mg, del compuesto de la invención, cuando éste se administra mediante el inhalador.
- De una forma alternativa, se procede a disolver un compuesto de la invención (25 mg), en suero salino isotónico (125 mg), tamponado con citrato (pH 5). Luna mezcla, se agita y se sonifica (se expone a ultrasonidos), hasta que el compuesto se haya disuelto. Se procede a comprobar el valor pH de luna solución, y éste se ajusta, en caso necesario, a un valor pH de 5, mediante una lenta adición de hidróxido sódico acuoso 1 N. Luna solución, se administra utilizando un dispositivo nebulizador, el cual proporciona una cantidad de compuesto, por dosis, correspondiente a un valor comprendido dentro de unos márgenes que van desde aproximadamente 10 μg hasta aproximadamente 500 μg.

EJEMPLOS

- 30 Las preparaciones y los ejemplos que se facilitan a continuación, se proporcionan con objeto de ilustrar formas específicas de presentación de la presente invención. Estas formas específicas de presentación, no obstante, no pretenden limitar el ámbito de la invención, en modo alguno, a menos de que ello se indique de una forma específica.
- Las abreviaciones que se facilitan a continuación, tienen los siguientes significados, a menos de que se indique de otro modo, y cualesquiera otras abreviaciones que se utilicen aquí, en este documento, y que no se definan aquí, tienen su significado estándar:
 - ACE enzima conversora de la angiotensina
 - AcOH ácido acético
- 40 APP aminopeptidasa P
 - AT1 angiotensina II del tipo 1 (receptor)
 - AT2 angiotensina II del tipo 2 (receptor)
 - BSA albúmina de suero bovino
 - DCM diclorometano ó cloruro de metileno
- 45 DMF N, N-dimetilformamida
 - DMSO dimetilsulfóxido
 - Dnp 2,4-dinitrofenilo
 - DOCA acetato de desoxicorticosterona
 - EDCI clorhidrato de N-(3-dimetilaminopropil)-N'-etilcarbodiimida
- 50 EDTA ácido etilendiaminotetraacético
 - EtOAc acetato de etilo
 - EtOH etanol
 - HATU hexafluorofosfato de N,N,N',N'-etilcarbodiimida
 - HOAt 1-hidroxi-7-azabenzotriazol
- 55 Mca (7-metoxicumarin-4-il)acilo
 - MeCN acetonitrilo
 - MeOH metanol
 - NBS N-bromosuccinimida
 - NEP neprilisina (EC 3,4,24,11)
- 60 PBS solución salina tamponada con fosfato
 - SHR rata espontáneamente hipertensa
 - TFA ácido trifluoroacético
 - THF tetrahidrofurano
 - Tris tris(hidroximetil)aminometano
- 65 Tween-20 monolaurato de poletilenglicol sorbitán

A menos de que se indique de otro modo, todos los materiales, tales como los reactivos, los materiales de partida, y los disolventes, se compraron de procedencia de proveedores comerciales (tales como las firmas Sigma-Aldrich, Fluka Riedel-de Haën, y semejantes), y éstos se utilizaron, sin ninguna purificación adicional.

Las reacciones, se llevaron a cabo bajo atmósfera de nitrógeno, a menos de que se encuentre indicado de otra forma. El progreso de las reacciones, se controló mediante cromatografía de capa fina (TLC), cromatografía líquida, analítica, de alto rendimiento (HPLC analítica), y espectrografía de masas, cuyos detalles, se facilitan en los ejemplos específicos. Los disolventes utilizados en HPLC analítica, eran como sigue: el disolvente A, consistía en 98 % de agua / 2 % de MeCN / 1,0 ml / I de TFA; el disolvente B, consistía en 90 % de MeCN / 10 % de agua / 1,0 ml/I de TFA.

Las reacciones, se procesaron de la forma que se describe de una forma específica en cada ejemplo de preparación: las mezclas usuales de reacción, se purificaron mediante extracción y otros procedimientos de purificación, tales como la cristalización dependiente de la temperatura y del disolvente, y la precipitación. Adicionalmente, además, las mezclas de reacción, se purificaron de una forma rutinaria, mediante HPLC de preparación, de una forma típica, mediante la utilización de paquetes de columna Microsorb C18 y Microsorb BDS, y eluyentes convencionales. La caracterización de los productos de reacción, se llevó a cabo, de una forma rutinaria, mediante espectrometría de ¹H-NMR. Para las mediciones de NMR, se procedió a disolver las muestras, en disolvente deuterado (CD₃OD, CDCl₃, ó DMSO-d₆), y los espectros de ¹H-NMR, se obtuvieron con un instrumento del tipo "Varian Gemini 2000 instrument" (400 MHz), bajo unas condiciones estándar de observación. La identificación de de la espectrometría de masas de los compuestos, se condujo, de una forma típica, utilizando un procedimiento de ionización mediante electroproyección (ESMS), con un instrumento del tipo "Applied Biosystems (Foster City, CA)", modelo "API 150 EX", o un instrumento del tipo "Agilent (Palo Alto, CA)" modelo "1200 LC/MSD"

25 Preparación 1

15

20

Ácido 5-propil-1-[2'-(1-tritil-1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carboxílico

Se procedió a disolver 3-*n*-propilpirazol-5-carboxilato de etilo (1,0 g, 5,5 mmol), 5-(4'-bromometilbifenil-2-il)-1-tritil-1H-tetrazol (3,1 g, 5,5 mmol), y carbonato potásico (1,5 g, 11,0 mmol), en DMF (40,0 ml, 516 mmol) y, la mezcla, se agitó, a la temperatura ambiente, durante el transcurso de toda la noche. El análisis de LCMS, mostró el hecho de que, la reacción se encontraba casi completa, con una mezcla 1 : 1 de mezcla de regioisómeros. A continuación, la mezcla, se concentró parcialmente y, después, ésta se distribuyó entre agua y EtOAc. Subsiguientemente, la capa de EtOAc, se secó sobre Na₂SO₄ y, después ésta, se concentró. Después, los regioisómeros se separaron, mediante cromatografía flash (de evaporación instantánea) (0 - 50% EtOAc / hexanos, carga seca). Las identidades de los Regioisómeros, se confirmaron mediante NOE : éster etílico del ácido 5-propil-1-[2'-(1-tritil-1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carboxílico (1,2 g) y éster etílico del ácido 5-propil-2-[2'-(1-tritil-1H-tetrazol-5-il)bifenil-4-ilmetil]-2Hpirazol-3-carboxílico (1,1 g).

Se procedió, a continuación, a disolver el éster etílico del ácido 5-propil-1-[2'-(1-tritil-1H-tetrazol-5-il)bifenil-4-ilmetil]1Hpirazol-3-carboxílico (400 mg, 607 µmol) en THF (12,0 ml, 148 mmol). Después, se procedió a añadir una solución de LiOH monohidratado (127 mg, 3,04 mmol) en agua (4,0 ml, 222 mmol) y, la mezcla, se agitó, a la temperatura ambiente, durante un transcurso de tiempo de aproximadamente 19 horas. La mezcla, se calentó, a continuación, a una temperatura de 60 °C durante el transcurso de toda la noche. El análisis de LCMS, mostró que, la reacción se había completado, pero que se habían formado así mismo, también, dos compuestos secundarios. A continuación, la mezcla, se distribuyó entre EtOAc y una solución saturada de cloruro amónico. Subsiguientemente, la capa de EtOAc, se secó sobre Na2SO4 y ésta se concentró, para proporcionar el compuesto del epígrafe (340 mg). El análisis de LCMS, mostró el hecho de que, los productos secundarios, ya no se encontraban presentes.

60 EJEMPLO 1

Ácido (2R,3R)-3-(1-((2'-(1H-tetrazol-5-il)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-2-hidroxi-4-fenilbutanoico

5

10

15

20

Se procedió a agitar una solución de ácido 5-propil-1-[2'-(1-tritil-1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carboxílico (475 mg, 753 mmol), HATU (286,3 mg, 753,1 µmol), DIPEA (787,0 ml, 4518 mmol), y DMF (21,3 ml, 274,7 mmol), para preactivar el ácido. A continuación, se procedió a añadir el ácido (2R,3R)-3-amino-2-hidroxi-4-fenilbutírico • HCI (175 mg, 755 µmol) y, la mezcla resultante, se calentó, a una temperatura de 45 °C y ésta se agitó, durante el transcurso de toda la noche. Subsiguientemente, la mezcla se concentró, para proporcionar el producto intermedio (intermediario) protegido, ácido (2R,3R)-2-hidroxi-4-fenil-3-({5-propil-1-[2'-(1-tritil-1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carbonil}amino)butírico, como un residuo, el cual se utilizó directamente en la siguiente etapa. A continuación, el residuo, se disolvió en 1,4-dioxano (10 ml, 100 mmol) y se procedió a añadir 4,0 M de HCl en 1,4-dioxano (10 ml, 40 mmol). Subsiguientemente, la solución resultante, se agitó, durante un transcurso de tiempo de 90 minutos. A continuación, la mezcla se concentró, ésta se redisolvió en agua / MeCN / TFA y después, ésta se purificó, mediante la utilización de cromatografía líquida de fase inversa, para proporcionar el compuesto del epígrafe (176 mg; 96 % pureza). MS m/z: [M+H]⁺ calculado para C31H31N7O4, 566,24; encontrado 566,6.

25 Preparación 2

Ácido (tetrazol-5-il)fenilborónico

Se procedió a combinar el ácido [2-(1-tritiltetrazol-5-il)fenil]borónico (11,5 g, 26,6 mmol), con 1,4-dioxano (41,5 ml, 532,1 mmol) y 4 M de HCl en 1,4-dioxano (13,3 ml, 53,2 mmol). A continuación, la mezcla, se agitó, durante un transcurso de tiempo de 2 horas. Después, se procedió a añadir EtOAc (100 ml). Subsiguientemente, se añadió 10 M NaOH, hasta conseguir un valor pH~9, mediante una agitación constante. A continuación, la capa orgánica, se extrajo, y ésta se descartó. Subsiguientemente, la capa acuosa, se acidificó, a un valor pH~2 con DCM (10 ml). El producto, se precipitó y, éste, se filtró, y se secó, para obtener el compuesto del epígrafe (3,5 g) como una materia sólida, de color blanco.

Preparación 3

Éster etílico del ácido 1-(4-Bromobencil)-5-propil-1H-pirazol-3-carboxílico

40

45

50

Se procedió a disolver el 3-*n*-propilpirazol-5-carboxilato de etilo (8,0 g, 43,0 mmol), bromuro de 4-bromobencilo (11,0 g, 43,0 mmol) y carbonato potásico (5,9 g, 43,0 mmol), en DMF (433 ml, 5590 mmol). A continuación, la suspensión resultante, se agitó, a la temperatura ambiente, durante un transcurso de tiempo de aprox. 48 horas. Después, el material, se concentró, y a continuación, éste se diluyó con NaHCO3 acuoso y éter dietílico. Subdiguientemente, la capa acuosa, se extrajo adicionalmente con éter dietílico. Después, los orgánicos combinados, se secaron sobre MgSO4, y éstos se filtraron y se concentraron. A continuación, el residuo, se purificó mediante la utilización de cromatografía flash (de evaporación instantánea) (1ª, 40 : 1 hexano / EtOAc ; 2ª, 5 : 1 hexano / EtOAc). Subsiguientemente, los dos isómeros, se separaron y se analizaron, mediante NMR y NOE : éster etílico del ácido 1-(4-bromobencil)-5-propil-1H-pirazol-3-carboxílico (5,7 g) y éster etílico del ácido 2-(4-bromobencil)-5-propil-2Hpirazol-3-carboxílico.

Preparación 4

Ácido 5-propil-1-[2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carboxílico

55

Se procedió a rociar brevemente una solución de ácido (tetrazol-5-il)fenilborónico (650 mg, 3,4 mmol), éster etílico del ácido 1-(4-bromobencil)-5-propil-1Hpirazol-3-carboxílico (1,0 g, 2,9 mmol), tetrakis(trifenifosfin)paladio (0) (200 mg, 0,1 mmol), 1,0 M NaOH en agua (9,0 ml, 9,0 mmol) y MeOH (14 ml, 350 mmol) y a cubrirla, mediante nitrógeno, y a calentarla, en el horno microondas, a una temperatura de 90 °C, durante un transcurso de tiempo de 2 horas. A continuación, la mezcla, se concentró, para eliminar el MeOH, y, después, ésta se extrajo con EtOAc. Subsiguientemente, la capa orgánica, se extrajo con NaOH 1 N. A continuación, las capas acuosas combinadas, se acidificaron con 1 N HCl a un valor pH de 3 - 4 y éstas se extrajeron con EtOAc. Después de ello, los orgánicos, se secaron sobre MgSO4, y éstos se filtraron y se concentraron. A continuación, la reacción se repitió dos veces, debido a la restricción del volumen del recipiente de reacción en el horno microondas, y, los residuos, se combinaron, para proporcionar el compuesto del epígrafe (2,2 g), el cual se utilizó, sin ninguna purificación adicional.

EJEMPLO 2

10

15

25

30

35

40

45

Ácido (R)-4-fenil-3-({5-propil-1-[2'-(1H-tetrazol-5-il)-bifenil-4-ilmetil]-1Hpirazol-3-carbonil}amino)butírico

20

Se procedió a agitar una solución del ácido 5-propil-1-[2'-(1H-tetrazol-5-il)-bifenil-4-ilmetil]-1Hpirazol-3-carboxílico (200 mg, 510 µmol), HOAt (77,1 mg, 566,4 µmol), EDCI (108,6 mg, 566,4 µmol), y 2,6-lutidina (357,8 µl, 3,1 mmol) en DCM (6,1 ml, 94,7 mmol), con objeto de preactivar el ácido. Después de un transcurso de tiempo de 30 minutos, la mezcla se enfrió, a una temperatura de 0 °C, y se procedió a añadir clorhidrato del ácido (*R*)-3-amino-4-fenilbutírico (122,2 mg, 566,4 µmol). A continuación, la solución resultante, se calentó lentamente, a la temperatura ambiente y ésta se agitó, durante el transcurso de toda la noche. Subsiguientemente, la mezcla, se concentró, ésta se redisolvió en agua / MeCN / TFA y se purificó, mediante la utilización de cromatografía líquida de fase inversa para proporcionar el compuesto del epígrafe (59 mg; 92 % de pureza). MS *mlz*: [M+H][†] calculado para C₃₁H₃₁N₇O₃, 550,25; encontrado 550,4.

EJEMPLO 3

[0164] f siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, se prepararon los compuestos 3 -1 a 3 - 38, los cuales tenían la siguiente fórmula:

R³
N
N
R
O
R⁴

R⁴ # R R R Fórmula $MS m/z: [M+H]^{\dagger}$ calculado encontrado - CH₂SH C29H28FN7O2S 1 3 - F etoxi bencilo 558,20 558.6 2 3 - F - CH₂SH bencilo C30H30FN7OS 556,22 556,4 propilo 3 3 - F - CH₂SH 522,24 522,6 propilo i-butilo C27H32FN7OS 4 - CH2SH C29H29N7O2S 540,21 540,6 etoxi bencilo 5 - CH2SH 506,23 i-butilo C26H31N7O2S 506,4 etoxi 6 - CH2SH C30H31FN7OS 538,23 propilo bencilo 538,8 504,25 7 - CH2SH i-butilo C27H33N7OS 504,6 propilo 8 3 - F -CH(OH)-COOH C30H28FN7O5 586.21 etoxi bencilo 586.4 9 -CH(OH)-COOH C30H29FN7O5 568,22 568,4 propilo bencilo 10 2 - F -CH(OH)-COOH bencilo C31H30FN7O4 584,23 584,4 propilo 11 2 - F propilo - CH₂SH bencilo C30H30FN7OS 556,22 556,4 12 3 - F - CH(OH)-C(O)OCH3 C32H33N7O4 580,26 580,4 propilo bencilo - CH2- COOH 2-Br-bencilo C31H30BrN7O3 628,16 628,4 13 propilo 14 - CH2-N(OH)-C(O)H bencilo C31H32N8O3 565,26 565,4 propilo -

15	-	propilo	- CH2-C(O)NH(OH)	2-Cl-bencilo	C31H31CIN8O3	599,22	599,6
16	-	propilo	- CH2-C(O)NH(OH)	bencilo	C31H32N8O3	565,26	565,6
17	-	propilo	- CH(OH)-C(O)NH(OH)	bencilo	C31H32N8O4	581,25	581,4
18	2 - F	propilo	- CH2COOH	2-Cl-bencilo	C31H29CIFN7O3	602,20	602,6
19	2 - F	propilo	- CH2COOH	2-CF ₃ -	C32H29F4N7O3	636,23	636,4
				bencilo			
20	3 - F	propilo	- CH2COOH	2-Cl-bencilo	C31H29CIFN7O3	602,20	602,6
21	3 – F	propilo	- CH2COOH	2-CF ₃ -	C32H29F4N7O3	636,23	636,2
				bencilo			
22	•	propilo	- CH(OH)-COOH	2-Cl-bencilo	C31H30CIN7O4	600,21	600,4
23	3 - F	propilo	- CH(OH)-COOH	bencilo	C31H30FN7O4	584,23	584,4
24	2 - F	propilo	- CH(OH)-COOH	bencilo	C31H30FN7O4	584,23	584,4
25	-	propilo	- CH2-N(OH)-C(O)H	bencilo	C28H34N8O3	531,28	531,6
26	3,5-diF	propilo	- CH(OH)-COOH	bencilo	C31H29F2N7O4	602,23	602,6
27	1	propilo	- CH2-C(O)OCH3	bencilo	C32H33N7O3	564,26	564,6
28	-	propilo	- CH2-C(O)OCH3	2-Cl-bencilo	C32H32CIN7O3	598,23	598,4
29	-	propilo	-CH2-C(O)OCH3	2-CH ₃ -	C33H35N7O3	578,28	578,6
				bencilo			
30	3 - F	propilo	- CH2-COOH	bencilo	C31H30FN7O3	568,24	568,6
31	3 - F	etoxi	- CH2-COOH	bencilo	C30H28FN7O4	570,22	570,6
32	-	etoxi	- CH2-COOH	bencilo	C30H29N7O4	552,23	552,4
33	-	propilo	- CH2COOH	2-F-bencilo	C31H30FN7O3	568,24	568,2
34	-	propilo	- CH2COOH	2-Cl-bencilo	C31H30CIN7O3	584,21	584,2
35	-	propilo	- CH2COOH	2-CH ₃ -	C32H33N7O3	564,26	564,6
				bencilo			
36	-	propilo	- CH2COOH	2-CF3-	C32H30F3N7O3	618,24	618,6
				bencilo			
37	3 - F	etilo	- CH(OH)-COOH	bencilo	C30H28FN7O4	570,22	570,2
38	3 - F	etoxi	-CH2SH	<i>i</i> -butilo	C26H30FN7O2S	524,22	524,4

- 1. ((R)-1-bencil-2-mercaptoetil)amida del ácido 5-Etoxi-1-[3-fluoro-2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carboxílico 2. ((R)-1-bencil-2-mercaptoetil)amida del ácido 1-[3-Fluoro-2'-(1 H-tetrazol-5-il)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-
- 5 carboxílico
 3 (/R)-1-mercantometil-3-metilhutil)amida del ácido 1-[3-Fluoro-2'-/1 H-tetrazol-5-il)hifenil-4-ilmetill-5-propil-1-H-
 - 3. ((R)-1-mercaptometil-3-metilbutil)amida del ácido 1-[3-Fluoro-2'-(1 H-tetrazol-5-il)bifenil-4-ilmetil]-5-propil-1H-pirazol-3-carboxílico
 - 4. ((R)-1-bencil-2-mercaptoetil)amida del ácido 5-Etoxi-1-[2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carboxílico
 - 5. ((R)-1-mercaptometil-3-metilbutil)amida del ácido 5-Etoxi-1-[2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carboxílico

10

- 6. ((R)-1-bencil-2-mercaptoetil)amida del ácido 5-Propil-1-[2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carboxílico 7. ((R)-1-mercaptometil-3-metilbutil)amida del ácido 5-Propil-1-[2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carboxílico
- 8. Ácido *(2R,3R)*-3-({5-Etoxi-1-[3-fluoro-2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carbonil}amino)-2-hidroxi-4-15 fenilbutírico
 - 9. Ácido (2R,3R)-3-({5-Etoxi-1-[2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carbonil}amino)-2-hidroxi-4-fenilbutírico
 - 10. Ácido (2R,3R)-3-(1-((2-Fluoro-2'-(1H-tetrazol-5-il)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-2-hidroxi-4-fenilbutanoico ácido
- 20 11. 1-((2-Fluoro-2'-(1H-tetrazol-5-il)bifenil-4-il)metil)-*N*-((R)-1-mercapto-3-fenilpropan-2-il)-5-propil-1-Hpirazol-3-carboxamida
 - 12. Éster metílico del ácido (2R,3R)-2-Hidroxi-4-fenil-3-({5-propil-1-[2'-(1H-tetrazol-5-il)-bifenil-4-ilmetil]-1Hpirazol-3-carbonil}amino)butírico
 - 13. Ácido (R)-4-(2-Bromofenil)-3-({5-propil-1-[2'-(1H-tetrazol-5-il)-bifenil-4-ilmetil]-1Hpirazol-3-carbonil}amino)butírico
- 25 14. [(R)-1-bencil-2-(formilhidroxiamino)etil]amida del ácido 5-Propil-1-[2'-(1H-tetrazol-5-il)-bifenil-4-ilmetil]-1Hpirazol-3-carboxílico
 - 15. [(R)-2-(2-clorofenil)-1-hidroxicarbamoilmetiletil]amida del ácido 5-Propil-1-[2'-(1H-tetrazol-5-il)-bifenil-4-ilmetil]-1H-pirazol-3-carboxílico
 - 16. ((R)-1-hidroxicarbamoilmetil-2-feniletil)amida del ácido 5-Propil-1-[2'-(1H-tetrazol-5-il)-bifenil-4-ilmetil]-1Hpirazol-3-carboxílico
 - 17. 1-((2'-(1H-tetrazol-5-il)bifenil-4-il)metil)-N-((2R,3R)-3-hidroxi-4-(hidroxiamino)-4-oxo-1-fenilbutan-2-il)-5-propil-1H-pirazol-3-carboxamida
 - 18. Ácido (R)-4-(2-Clorofenil)-3-({1-[2-fluoro-2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-butírico

ES 2 611 107 T3

- 19. Ácido (R)-3-({1-[2-Fluoro-2'-(1H-tetrazol-5-il)-bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-4-(2-trifluorometilfenil)butírico
- 20. Ácido (R)-4-(2-clorofenil)-3-(1-((3-fluoro-2'-(1H-tetrazol-5-il)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)butanoico
- 21. Ácido (R)-3-(1-((3-fluoro-2'-(1H-tetrazol-5-il)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-4-(2-(trifluorometil)fenil)butanoico
 - Ácido (2R,3R)-3-(1-((2'-(1H-tetrazol-5-il)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-4-(2-clorofenil)-2-
 - 23. (2R,3R)-3-(1-((3-fluoro-2'-(1-tetrazol-5-il)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-2-hidroxi-4-fenilbuta-
 - 24. Ácido (2R,3R)-3-(1-((2-fluoro-2'-(1H-tetrazol-5-il)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-2-hidroxi-4fenilbutanoico
 - 25. {(R)-1-[(formilhidroxiamino)metil]-3-metilbutil}amida del ácido 5-Propil-1-[2'-(1H-tetrazol-5-il)-bifenil-4-ilmetil]-1Hpirazol-3-carboxílico
- 26. Ácido (2R,3R)-3-(1-((3,5-difluoro-2'-(1H-tetrazol-5-il)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-2-hidroxi-15 4-fenilbutanoico
 - Éster metílico del ácido (R)-4-Fenil-3-({5-propil-1-[2'-(1H-tetrazol-5-il)-bifenil-4-ilmetil]-1Hpirazol-3carbonil}amino)-butírico
 - 28. Éster metílico del ácido (R)-4-(2-Clorofenil)-3-({5-propil-1-[2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3carbonil}amino)butírico
 - 29. Éster metílico del ácido (R)-3-({5-Propil-1-[2'-(1H-tetrazol-5-il)-bifenil-4-ilmetil]-1Hpirazol-3-carbonil}amino)-4-otolil-butírico
 - 30. Ácido (R)-3-({1-[3-Fluoro-2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-4-fenilbutírico
 - 31. Ácido (R)-3-({5-Etoxi-1-[3-fluoro-2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carbonil}amino)-4-fenilbutírico
- 32. Ácido (R)-3-(\{5-Etoxi-1-\frac{1}{2}'-(1H-tetrazol-5-il)bifenil-4-ilmetil\]-1Hpirazol-3-carbonil\amino)-4-fenilbutírico 25
 - 33. Ácido (R)-4-(2-Fluorofenil)-3-({5-propil-1-[2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carbonil}amino)butírico 34. Ácido (R)-4-(2-Clorofenil)-3-({5-propil-1-[2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carbonil}amino)butírico

 - 35. Ácido (R)-3-({5-Propil-1-[2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carbonil} amino)-4-o-tolilbutírico
 - 36. Ácido (R)-3-({5-Propil-1-[2'-(1H-tetrazol-5-il)-bifenil-4-ilmetil]-1Hpirazol-3-carbonil}amino)-4-(2-trifluorometilfenil)butírico
 - 37. Ácido (2R,3R)-3-({5-Etil-1-[3-fluoro-2'-(1H-tetrazol-5-il)-bifenil-4-ilmetil]-1Hpirazol-3-carbonil}amino)-2-hidroxi-4fenilbutírico
 - 38. ((R)-1-mercaptometil-3-metilbutil)amida del ácido 5-Etoxi-1-[3-fluoro-2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3- carboxílico

35

40

45

55

60

30

10

20

Preparación 5

2-Bromo-N-[1-dimetilaminomet-(E)-iliden]bencenosulfonamida

Se procedió a añadir 1,1-Dimetoxi-N,N-dimetilmetanamina (14,6 ml, 104 mmol), a una solución de 2-bromobenceno-1-sulfonamida (20,4 g, 86,4 mmol) en DMF (56 ml, 720 mmol) y, la solución resultante, se agitó, a la temperatura ambiente, durante un transcurso de tiempo de 90 minutos. A continuación, se procedió a enfriar una solución de hidrógenosulfato sódico (1,7 g, 14 mmol) en agua (170 ml, 9,4 mol), a una temperatura de 0 °C y, continuación, ésta se añadió a la mezcla de reacción. Después de ello, el precipitado, se filtró, se lavó con agua, y éste se secó, para proporcionar el compuesto del epígrafe (24,3 g) como una materia sólida, de color blanco.

Preparación 6

50 1-dimetilaminomet-(E)-ilidenamida del ácido 4'-Metilbifenil-2-sulfónico

Se procedió a disolver la 2-Bromo-N-[1-dimetilaminomet-(E)-iliden]-bencenosulfonamida (5,4 g, 18,4 mmol), ácido 4metilfenilborónico (5,0 g. 36,8 mmol) y carbonato potásico (5,1 g. 36,8 mmol), en aqua (19,7 ml, 1090 mmol), EtOH (49,2 ml, 842 mmol) y tolueno (98,3 ml, 923 mmol). A continuación, la mezcla resultante, se agitó, bajo atmósfera de nitrógeno. Después, se procedió a añadir Tetrakis(trifenifosfin)paladio(0) (1,4 g, 1,2 mmol). Subsiguientemente, la mezcla se calentó, a una temperatura de 60 °C, durante un transcurso de tiempo de 115 minutos, a una temperatura de 70 °C, durante un transcurso de tiempo de 30 minutos, y a continuación, ésta se enfrió, a la temperatura ambiente. A continuación, se procedió a añadir agua (100 ml) y EtOAc (100 ml). Después, la mezcla, se lavó con NaCl acuoso, saturado, NaCl, se extrajo con EtOAc, ésta se secó sobre MgSO4, se filtró, y se concentró, para proporcionar una materia sólida de color rojo. A continuación, el producto, se trituró, con 1 : 1 EtOAc : hexano, se filtró, y se lavó con hexano, para proporcionar una materia sólida de color pardo-rojizo. Subsiguientemente, el producto, se trituró, con EtOAc, se filtró, y se lavó con EtOAc, para proporcionar el compuesto del epígrafe (4,6 g), como una materia sólida, de color pardo claro.

Preparación 7

1-Dimetilaminomet-(E)-ilidenamida del ácido 4'-bromometilbifenil-2-sulfónico

Se procedió a disolver **Ia** 1-dimetilaminomet-(E)-ilidenamida del ácido 4'-metilbifenil-2-sulfónico (540,0 mg, 1786 μmol), NBS (318 mg, 1,8 mmol), y peróxido de benzoílo (4,3 mg, 17,8 μmol) en clorobenceno (7,0 ml, 69 mmol) y la solución resultante se calentó, a una temperatura de 100 °C, durante un transcurso de tiempo de 90 minutos. A continuación, la mezcla se enfrió, a la temperatura ambiente, y se procedió a añadir agua. Después, la mezcla, se extrajo con DCM, se lavó con saturado NaHCO3 y NaCl, acuoso, saturado, se extrajo otra vez con DCM, se secó sobre MgS04, se filtró, y ésta se concentró. Subsiguientemente, el producto crudo, se purificó, mediante cromatografía flash (de evaporación instantánea) (40g, 0 – 100 % EtOAc en hexano), y a continuación, se recogió en EtOAc (4,5 ml) y DCM (1,5 ml). A continuación, se procedió a añadir una cantidad adicional de DCM (3,0 ml) y, la mezcla, se calentó, a una temperatura de 60 °C. Después, la mezcla se enfrió, en el congelador, durante el transcurso de toda la noche, y a continuación, ésta se concentró. Subsiguientemente, el material, se recogió en DCM (2 ml), y se procedió a añadir EtOAc (6 ml) y, la solución resultante, se emplazó en el congelador. Se formó un precipitado, y éste se filtró, para proporcionar el compuesto del epígrafe (279 mg) como una materia sólida, de color blanco.

Preparación 8

20

35

40

45

50

55

Ácido 1-(2'-Acetilsulfamoil-bifenil-4-ilmetil)-5-propil-1Hpirazol-3-carboxílico

25 30

Se procedió a disolver el 3-*n*-propilpirazol-5-carboxilato de etilo (1,3 g, 7,2 mmol), 1-dimetilaminomet-(E)-ilidenamida del ácido 4'-bromometil-bifenil-2-sulfónico (6,2 g, 7,2 mmol) y carbonato potásico (2,0 g, 14,3 mmol), en DMF (50 ml, 700 mmol) y, la mezcla resultante se agitó, a la temperatura ambiente, hasta que, la reacción, se encontrase casi completa (mezcla 1 : 1 de regioisómeros). A continuación, se procedió a concentrar parcialmente la mezcla, y después, ésta se repartió entre agua y EtOAc. Subsiguientemente, la capa de EtOAc, se lavó con NaCl, acuoso, saturado, ésta se secó sobre Na2SO4, y se concentró. A continuación el producto crudo, se purificó, mediante cromatografía flash (de evaporación instantánea) (EtOAc / hexano 0 – 50 %, carga seca), para proporcionar el éster etílico del ácido 1-(2'-{[1-dimetil-aminomet-(E)-iliden]sulfamoil}bifenil-4-ilmetil)-5-propil-1Hpirazol-3-carboxílico (1,2 g).

A una solución del éster etílico del ácido 1-(2'-[[1-dimetilaminomet-(E)-iliden]sulfamoil}bifenil-4-ilmetil)-5-propil-1Hpirazol-3-carboxílico (1,2 g, 2,5 mmol) en alcohol isopropílico (15,0 ml, 196 mmol), se le añadieron 12 M de HCl en agua (3,9 ml, 46,6 mmol), y a continuación, la solución resultante, se calentó, a reflujo, durante un transcurso de tiempo de 5 horas. A continuación, la mezcla, se enfrió, a la temperatura ambiente, y ésta se agitó, durante el transcurso de toda la noche. Subsiguientemente, la solución, se ajustó, a un valor pH de 5, mediante la utilización de NaOH 1 N. Después, la suspensión resultante, se filtró. A continuación, el filtrado se concentró, para eliminar el alcohol isopropílico y, la capa acuosa, se extrajo con EtOAc y DCM. Subsiguientemente, los extractos combinados, se secaron sobre MgSO4, y éstos se filtraron y se concentraron.

Se procedió a disolver el residuo (890 mg), en cloruro de metileno (13,1 ml, 204 mmol). A continuación, se procedió a añadir DIPEA (5,2 ml, 29,8 mmol) y anhídrido acético (2,4 ml, 24,9 mmol) y, la solución resultante, se agitó, durante el transcurso de toda la noche. Después, la mezcla, se concentró y, el residuo, se diluyó con alcohol tert-butílico (30 ml, 300 mmol). A continuación, se procedió a añadir LiOH en agua 0,20 M (60 ml, 10 mmol) y, la mezcla, se agitó, durante el transcurso de toda la noche. Subsiguientemente, la mezcla, se concentró, y después, ésta se extrajo con EtOAc. Después, el EtOAc, se extrajo de nuevo con LiOH 1 N. A continuación, las capas acuosas combinadas, se acidificaron con HCl 1 N, a un valor pH de 4 - 5. Subsiguientemente, se procedió a extraer la capa acuosa acidificada, con EtOAc y DCM, para proporcionar el compuesto del epígrafe (1,0 g).

60 EJEMPLO 4

Ácido (2R,3R)-3-(1-((2'-(N-Acetilsulfamoil)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-2-hidroxi-4-fenilbuta-noico

5

10

15

20

Se procedió a agitar una solución de ácido 1-(2'-acetilsulfamoilbifenil-4-ilmetil)-5-propil-1Hpirazol-3-carboxílico (250 mg, 570 µmol), HATU (215 mg, 566 µmol) y DIPEA (592 µl, 3,4 mmol) en DMF (18 ml, 230 mmol), para preactivar el ácido. Después de un transcurso de tiempo de 15 minutos, se procedió a añadir el ácido (2R,3R)-3-amino-2-hidroxi-4-fenilbutírico (110 mg, 566 µmol). A continuación, se procedió a agitar la solución resultante, a una temperatura de 45 °C, durante el transcurso de toda la noche. Subsiguientemente, la mezcla se concentró, ésta se redisolvió en agua / MeCN/TFA y, a continuación, se purificó, mediante la utilización de cromatografía líquida de fase inversa, para proporcionar el compuesto del epígrafe (197 mg, 97 % de pureza). MS m/z: [M+H]⁺ calculado para C32H34N4O7S, 619,22; encontrado 619,6.

Preparación 9

N-t-Butil-2-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)bencenosulfonamida

25

30

35

Se procedió a disolver cloruro de 2-bromobencenosulfonilo (100,9 g, 394,9 mmol) en cloruro de metileno (500 ml, 8,0 mol) y, la solución resultante, se enfrió a una temperatura de 0 °C. A continuación, se procedió a añadir *t*-Butilamina (41,3 ml, 395 mmol) en 3 porciones, en un transcurso de tiempo de aprox. 1 minuto. Subsiguientemente, se procedió a añadir, inmediatamente, DIPEA (75,7 ml, 434 mmol), en 3 porciones, en un transcurso de tiempo de aprox. 1 minuto. A continuación, la mezcla, se calentó, a la temperatura ambiente y ésta se agitó, durante el transcurso de toda la noche. Subsiguientemente, el producto, se lavó con H3PO4 (2x) 1M, con NaHCO3 y con NaCl, acuoso, saturado NaCl, y después, éste se secó sobre MgS04, se filtró, y se concentró, para proporcionar la 2-bromo-N-t-butil-bencenosulfonamida (112 g) como una materia sólida, de color pardo claro.

butil-bencenosulfonamida (112 g) como una materia sólida, de color pardo claro.
Se procedió a mezclar la 2-Bromo-N-t-butil-bencenosulfonamida (10,0 g, 34,2 mmol), con acetato de paladio (0,768 g, 3,42 mmol). A continuación, se procedió a añadir acetato de potasio (13,4 g, 137 mmol), seguido de bis(pinacolato) de diboro (10,4 g, 41,1 mmol) y, después, DMF (265 ml, 3420 mmol). A continuación, la mezcla resultante se agitó, bajo atmósfera de nitrógeno, ésta se calentó a reflujo, durante un transcurso de tiempo de 2 horas, y después, se calentó, a una temperatura de 70 °C, durante un transcurso de tiempo de 48 horas. Subsiguientemente, la mezcla, se vertió sobre hielo, se distribuyó mediante EtOAc (200 ml) y, los orgánicos, se lavaron con NaCl, acuoso, saturado, se secó sobre MgSO4, y ésta se filtró y se concentró. A continuación, el producto se purificó, mediante cromatografía flash (de evaporación instantánea) en hexano : EtOAc 0 – 75 %, para proporcionar el compuesto del epígrafe (6,3 g).

50

Preparación 10

Éster etílico del ácido 5-Propil-1-(2'-sulfamoilbifenil-4-ilmetil)-1Hpirazol-3-carboxílico

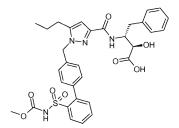
Se procedió a combinar el éster etílico del ácido 1-(4-Bromobencil)-5-propil-1Hpirazol-3-carboxílico (1,2 g, 3,3 mmol) y la N-t-butil-2-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)bencenosulfonamida (1,4 g, 4,0 mmol), con tolueno (70,9 ml, 666,0 mmol) y EtOH (18,5 ml, 316,7 mmol). A continuación, se procedió a disolver carbonato potásico (920 mg, 6,7 mmol), en agua (9,6 ml, 532,8 mmol) y la solución resultante, se añadió a la mezcla, y ésta se agitó. Subsiguientemente, se procedió a añadir Tetrakis(trifenifosfin)paladio (0) (385 mg, 333 µmol), de una forma rápida y, la mezcla, se calentó, a una temperatura de 100 °C, durante un transcurso de tiempo de 30 minutos en el horno de microondas. A continuación, se procedió a añadir EtOAc y agua y, los orgánicos, se extrajeron y se evaporaron. Subsiguientemente, el producto crudo, se disolvió en TFA puro (20 ml, 300 mmol) y éste se agitó, a una temperatura de 50 °C, durante un transcurso de tiempo de 1,5 horas. A continuación, el producto, se secó, bajo la acción del vacío. Después, se procedió a añadir DCM (20 ml) y NaHCO3 saturado (20 ml), y se agitó, se extrajo, y se secó y se evaporó, para proporcionar el compuesto del epígrafe.

Preparación 11

Ácido 1-((2'-(N-(metoxicarbonil)sulfamoil)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxílico

5

10


Se procedió a disolver el éster etílico del ácido 5-Propil-1-(2'-sulfamoilbifenil-4-ilmetil)-1Hpirazol-3-carboxílico (80 mg, 0,2 mmol), en cloruro de metileno (2,0 ml, 30,6 mmol). A continuación, se procedió a añadir cloroformiato de metilo (17,4 μl, 224 μmol), se añadió, conjuntamente con DIPEA (81,5 μl, 468 μmol). Subsiguientemente, la mezcla, se agitó, a la temperatura ambiente, durante un transcurso de tiempo de 2 horas. A continuación, se procedió a añadir LiOH 1 M, en agua (1,5 ml, 1,50 mmol) y THF: EtOH 2: 1 ml y, la mezcla resultante, se agitó, durante un transcurso de tiempo de 2 horas. Subsiguientemente, la reacción, se interrumpió, extinguiéndola con HCl 1 N y, a continuación, se procedió a añadir DCM (4 ml) se añadió. A continuación, los orgánicos, se extrajeron y se secaron, bajo la acción del vacío, para proporcionar el compuesto del epígrafe.

EJEMPLO 5

25

<u>Ácido (2R,3R)-2-hidroxi-3-(1-((2'-(N-(metoxicarbonil)-sulfamoil)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-4-fenilbutanoico</u>

30

35

40

45

Se procedió a agitar una solución del ácido 1-((2'-(N-(metoxicarbonil)sulfamoil)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxílico (40,2 mg, 87,8 μmol), DIPEA (91,8 μl, 527 μmol) y HATU (33,4 mg, 87,8 μmol) en DMF (0,4 ml, 4 mmol), con objeto de preactivar el ácido. Después de un transcurso de tiempo de 1 minuto, se procedió a añadir el ácido (2R,3R)-3-amino-2-hidroxi-4-fenilbutírico (17,1 mg, 87,8 μmol) y, la mezcla, se agitó, durante un transcurso de tiempo de 10 minutos. Después, la reacción, se interrumpió, extinguiéndola, mediante la adición de HCl 1 N y ésta se extrajo con DCM. A continuación, se procedió a añadir la capa orgánica, a AcOH (1ml) y se procedió a la evaporación, bajo la acción del vacío. Subsiguientemente, el material, se purificó, mediante HPLC de preparación, para proporcionar el compuesto del epígrafe (10 mg, 95% pureza). MS m/z: [M+H]⁺ calculado para C₃₂H₃₄N₄O₈S, 635,21; encontrado 635,20.

EJEMPLO 6

50

[0182] Siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, se prepararon los compuestos 6 - 1 a 6 - 28, los cuales tenían las siguientes fórmulas:

55

ES 2 611 107 T3

#	R	R^3	R⁴	R⁵	Fórmula	MS m/z	r: [M+H] ⁺
						calculado	encontrado
1	3 - F	etoxi	- CH2SH	bencilo	C30H31FN4O5S2	611,17	611,4
2	-	etoxi	- CH2SH	bencilo	C30H32N4O5S2	593,18	593,6
3	-	etoxi	- CH(OH)-COOH	bencilo	C31H32N4O8S	621,19	621,6
4	3 - F	etoxi	- CH(OH)-COOH	bencilo	C31H31FN4O8S	639,18	639,4
5	-	propilo	- CH2SH	bencilo	C31H34N4O4S2	591,20	591,6
6	2 - F	propilo	- CH2SH	bencilo	C31H33FN4O4S2	609,19	609,4
7	-	propilo	- CH(OH)-COOH	bencilo	C32H33FN4O7S	637,21	637,6
8	-	propilo	- CH2COOH	2-Br-bencilo	C32H33BrN4O6S	681,13	681,4
9	-	propilo	- CH(OH)-COOH	2-Cl-bencilo	C32H33CIN4O7S	653,18	653,6
10	3 - F	propilo	- CH(OH)-COOH	bencilo	C31H31FN4O7S	623,19	623,2
11	3 - F	butilo	- CH(OH)-COOH	bencilo	C33H35FN4O7S	651,22	651,2
12	-	propilo	- CH(OH)-COOH	bencilo	C34H38N4O7S	647,25	647,2
13	-	propilo	- CH2N(OH)-C(O)H	bencilo	C32H35N5O6S	618,23	618,4
14	3 - F	propilo	- CH(OH)-COOH	bencilo	C32H33FN4O7S	637,21	637,4
15	-	propilo	- CH2N(OH)-C(O)H	i-butilo	C29H37N5O6S	584,25	584,4
16	3 - F	propilo	- CH ₂ C(O)-NH(OH)	bencilo	C32H34FN5O6S	636,22	636,2
17	2 - F	propilo	- CH ₂ C(O)-NH(OH	bencilo	C32H34FN5O6S	636,22	636,2
18	•	propilo	- CH ₂ C(O)-NH(OH)	bencilo	C32H35N5O6S	618,23	618,6
19	3,5-diF-	propilo	- CH(OH)-COOH	bencilo	C32H32F2N4O7S	655,20	655,2
20	3,5-diF-	propilo	- CH ₂ C(O)-NH(OH)	bencilo	C32H33F2N5O6S	654,21	654,6
21	2 - F	propilo	 CH2-C(O) NH(OH) 	<i>i</i> -butilo	C29H36FN5O6S	602,24	602,6
22	-	propilo	- CH2N(OH)-C(O)H	bencilo	C32H35N5O6S	618,23	618,6
23	-	propilo	- CH2N(OH)-C(O)H	<i>i</i> -butilo	C29H37N5O6S	584,25	584,6
24	3 - F	etoxi	- CH2COOH	bencilo	C31H31FN4O7S	623,19	623,6
25	-	propilo	- CH2COOH	2-CF ₃ -bencilo	C33H33F3N4O6S	671,21	671,4
26	•	propilo	- CH2COOH	2-CH ₃ -bencilo	C33H36N4O6S	617,24	617,6
27	•	propilo	- CH2COOH	2-Cl-bencilo	C32H33CIN4O6S	637,18	637,4
28	•	propilo	- CH2COOH	bencilo	C32H34N4O6S	603,22	603,6

- 1. ((R)-1-bencil-2-mercaptoetil)-amida del ácido 1-(2'-Acetilsulfamoil-3-fluorobifenil-4-ilmetil)-5-etoxi-1H-pirazol-3-carboxílico
- 5 2. ((R)-1-bencil-2-mercaptoetil)amida del ácido 1-(2'-Acetilsulfamoil-bifenil-4-ilmetil)-5-etoxi-1Hpirazol-3-carboxílico 3. Ácido (2R,3R)-3-{[1-(2'-Acetilsulfamoilbifenil-4-ilmetil)-5-etoxi-1Hpirazol-3-carbonil]amino}-2-hidroxi-4-fenil-butírico
 - 4. Ácido (2R,3R)-3-{[1-(2'-Acetilsulfamoil-3-fluorobifenil-4-ilmetil)-5-etoxi-1Hpirazol-3-carbonil]amino}-2-hidroxi-4-fenil-butírico
- 5. ((R)-1-bencil-2-mercaptoetil)amida del ácido 1-(2'-Acetilsulfamoilbifenil-4-ilmetil)-5-propil-1Hpirazol-3-carboxílico
 6. ((R)-1-bencil-2-mercaptoetil)-amida del ácido 1-(2'-Acetilsulfamoil-2-fluorobifenil-4-ilmetil)-5-propil-1Hpirazol-3-carboxílico
 - 7. Ácido (2R,3R)-3-{[1-(2'-Acetilsulfamoil-2-fluorobifenil-4-ilmetil)-5-propil-1H-pirazol-3-carbonil]amino}-2-hidroxi-4-fenil-butírico
 - 8. Ácido (R)-3-{[1-(2'-Acetilsulfamoilbifenil-4-ilmetil)-5-propil-1Hpirazol-3-carbonil]amino}-4-(2-bromofenil)-butírico
- 9. Ácido (2R, 3R)-3-{[1-(2'-Acetilsulfamoilbifenil-4-ilmetil)-5-propil-1Hpirazol-3-carbonil]-ámino}-4-(2-clorofenil)-2-hidroxi-butírico

20

- 10. Ácido (2R,3R)-3-{[1-(2'-Acetilsulfamoil-3-fluoro-bifenil-4-ilmetil)-5-etil-1Hpirazol-3-carbonil]amino}-2-hidroxi-4-fenil-butírico
- 11. Ácido (2R,3R)-3-{[1-(2'-Acetilsulfamoil-3-fluorobifenil-4-ilmetil)-5-butil-1Hpirazol-3-carbonil]amino}-2-hidroxi-4-fenil-butírico
- 12. Ácido (2R,3R)-2-Hidroxi-3-{[1-(2'-isobutirilsulfamoilbifenil-4-ilmetil)-5-propil-1Hpirazol-3-carbonil]amino}-4-fenil-butírico
- 13. [(R)-1-bencil-2-(formil-hidroxi-amino)-etil]amida del ácido 1-(2'-Acetilsulfamoil-bifenil-4-ilmetil)-5-propil-1Hpirazol-3-carboxílico
- 25 14. Ácido (2R,3R)-3-(1-((2'-(N-acetilsulfamoil)-3-fluorobifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-2-hidroxi-4-fenilbutanoico
 - 15. {(R)-1-[(formil-hidroxi-amino)-metil]-3-metilbutil}amida del ácido 1-(2'-Acetilsulfamoil-bifenil-4-ilmetil)-5-propil-1H-pirazol-3-carboxílico
 - 16. ((R)-1-Hidroxicarbamoilmetil-2-feniletil)amida del ácido 1-(2'-Acetilsulfamoil-3-fluorobifenil-4-ilmetil)-5-propil-1H-pirazol-3-carboxílico
 - 17. ((R)-1-Hidroxicarbamoilmetil-2-feniletil)amida del ácido 1-(2'-Acetilsulfamoil-2-fluorobifenil-4-ilmetil)-5-propil-1H-pirazol-3-carboxílico

- 18. ((R)-1-Bencil-2-hidroxicarbamoiletil)amida del ácido 1-(2'-Acetilsulfamoilbifenil-4-ilmetil)-5-propil-1H-pirazol-3carboxílico
- 19. Ácido (2R,3R)-3-(1-((2'-(N-acetilsulfamoil)-3,5-difluorobifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-2hidroxi-4-fenilbutanoico
- 20. ((R)-1-Hidroxicarbamoilmetil-2-feniletil)amida del ácido 1-(2'-Acetilsulfamoil-3,5-difluorobifenil-4-ilmetil)-5-propil-1H-pirazol-3-carboxílico
 - 21. (1-Hidroxicarbamoilmetil-3-metilbutil)amida del ácido 1-(2'-Acetilsulfamoil-2-fluorobifenil-4-ilmetil)-5-propil-1Hpirazol-3-carboxílico
 - 23. [(S)-1-Bencil-2-(formilhidroxiamino)etil]amida del ácido 1-(2'-Acetilsulfamoilbifenil-4-ilmetil)-5-propil-1Hpirazol-3carboxílico
 - 23. {(S)-1-[(Formilhidroxiamino)metil]-3-metilbutil}amida del ácido 1-(2'-Acetilsulfamoil-bifenil-4-ilmetil)-5-propil-1Hpirazol-3-carboxílico
 - 24. Ácido (R)-3-{[1-(2'-Acetilsulfamoil-3-fluorobifenil-4-ilmetil)-5-etoxi-1Hpirazol-3-carbonil]amino}-4-fenilbutírico
- 25. Ácido (R)-3-{[1(2,-Acetilsulfamoilbifenil-4-ilmetil)-5-propil-1Hpirazol-3-carbonil]amino}-4-(2-trifluorometilfenil)-15 butírico
 - 26. Ácido (R)-3-{[1-(2'-Acetilsulfamoilbifenil-4-ilmetil)-5-propil-1Hpirazol-3-carbonil]amino}-4-o-tolilbutírico
 - 27. Ácido (R)-3-{[1-(2'-Acetilsulfamoilbifenil-4-ilmetil)-5-propil-1Hpirazol-3-carbonil]amino}-4-(2-clorofenil)butírico 28. Ácido (R)-3-{[1-(2'-Acetilsulfamoilbifenil-4-ilmetil)-5-propil-1Hpirazol-3-carbonil]amino}-4-fenilbutírico

Siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, se prepararon los compuestos 7 - 1 a 7 - 22, los cuales tenían las siguientes fórmulas:

30

25

10

#	R ^{1a}	R ⁴	R⁵	Fórmula	MS m/z:	: [M+H] ⁺
					calculado	encontrado
1	- NH(CH2CH3)	- CH(OH)-COOH	bencilo	C33H37N5O7S	648,24	648,2
2	ciclopropilo	- CH(OH)-COOH	bencilo	C34H36N4O7S 3	645,2	645,2
3	2F-fenilo	- CH(OH)-COOH	bencilo	C37H35FN4O7S	699,22	699,2
4	4-piridilo	- CH(OH)-COOH	bencilo	C36H35N5O7S	682,23	682,2
5	- 3-isoxazolil-5-	- CH(OH)-COOH	bencilo	C35H35N5O8S	686,22	686,2
	metilo					
6	 5-isoxazolilo 	- CH(OH)-COOH	bencilo	C34H33N5O8S	672,21	672,2
7	- OCH2CH3	- CH(OH)-COOH	bencilo	C33H36N4O8S	649,23	649,2
8	- CH2OCH3	- CH(OH)-COOH	bencilo	C33H36N4O8S	649,23	649,2
9	2-piridilo	- CH(OH)-COOH	bencilo	C36H35N5O7S	682,23	682,2
10	etilo	- CH(OH)-COOH	bencilo	C33H36N4O7S	633,23	635,2
11	- NH(CH3)	- CH(OH)-COOH	bencilo	C32H35N5O7S	634,23	634,2
12	fenilo	- CH(OH)-COOH	bencilo	C37H36N4O7S	681,23	681,2
13	- CH(CH3)OH	- CH(OH)-COOH	bencilo	C33H36N4O8S	649,23	649,2
14	- C(CH3)2OH	- CH(OH)-COOH	bencilo	C34H38N4O8S	663,24	663,2
15	- CH2OH	- CH(OH)-COOH	bencilo	C32H34N4O8S	635,21	635,2
16	- CH(CH3)OH	- CH(OH)-COOH	bencilo	C33H36N4O8S	649,23	649,2
17	- (CH2)2-OCH3	- CH(OH)-COOH	bencilo	C34H38N4O8S	663,24	663,2
18	- CH2-OCH3	- CH2COOH	2-Cl-bencilo	C33H35CIN4O7S	667,19	667,2
19	- C(CH3)2NH	- CH(OH)-COOH	bencilo	C34H39N5O7S	662,26	662,4
20	- N(CH3)2	- CH(OH)-COOH	bencilo	C33H37N5O7S	648,24	648,6
21	1-pirrolidilo	- CH(OH)-COOH	bencilo	C35H39N5O7S	674,26	674,6
22	4-morfolinilo	- CH(OH)-COOH	bencilo	C35H39N5O8S	690,25	690,4

35 1. Ácido (2R,3R)-3-(1-((2'-(N-(etilcarbamoil)sulfamoil)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-2-hidroxi-4fenilbutanoico

2.Ácido (2R,3R)-3-({1-[2'-(Ciclopropanecarbonilsulfamoil)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-2hidroxi-4-fenilbutírico

- 3. Ácido (2R,3R)-3-({1-[2'-(2-Fluorobenzoilsulfamoil)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-2-hidroxi-4-fenilbutírico
- 4. Ácido (2R,3R)-2-Hidroxi-4-fenil-3-[(5-propil-1-{2'-[(piridin-4-carbonil)sulfamoil]bifenil-4-ilmetil}-1Hpirazol-3-carbonil)-amino]butírico
- Ácido (2R,3R)-2-Hidroxi-3-[(1-{2'-[(5-metilisoxazol-3-carbonil)sulfamoil]bifenil-4-ilmetil}-5-propil-1Hpirazol-3carbonil)-amino]-4-fenilbutírico
 - 6. Ácido (2R,3R)-2-Hidroxi-3-[(1-{2'-[(isoxazol-5-carbonil)sulfamoil]bifenil-4-ilmetil}-5-propil-1Hpirazol-3-carbonil)-amino]-4-fenilbutírico
 - 7. Ácido (2R, 3R)-3-(1-((2'-(N-(etoxicarbonil)sulfamoil)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-2-hidroxi-4-fenilbutanoico
 - 8. Ácido (2R,3R)-2-Hidroxi-3-({1-[2'-(2-metoxiacetilsulfamoil)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-4-fenilbutírico
 - 9. Ácido (2R,3R)-2-Hidroxi-4-fenil-3-[(5-propil-1-{2'-[(piridin-2-carbonil)sulfamoil]bifenil-4-ilmetil}-1H-pirazol-3-carbonil)-amino]butírico
- 10. Ácido (2R,3R)-2-Hidroxi-4-fenil-3-{[1-(2'-propionilsulfamoilbifenil-4-ilmetil)-5-propil,-1Hpirazol-3-carbonil]amino}butírico
 - 11. Ácido (2R,3R)-2-hidroxi-3-(1-((2'-(N-(metilcarbamoil)sulfamoil)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-4-fenilbutanoico
 - 12. Ácido (2R,3R)-3-{[1-(2'-Benzoilsulfamoilbifenil-4-ilmetil)-5-propil-1Hpirazol-3-carbonil]amino}-2-hidroxi-4-fenil-butírico
 - 13. Ácido (2R,3R)-2-Hidroxi-3-({1-[2'-((S)-2-hidroxipropionilsulfamoil)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}-amino)-4-fenilbutírico
 - 14. Ácido (2R,3R)-2-Hidroxi-3-({1-[2'-(2-hidroxi-2-metilpropionilsulfamoil)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}-amino)-4-fenilbutírico
- 25 15. Ácido (2R,3R)-2-Hidroxi-3-({1-[2'-(2-hidroxiacetilsulfamoil)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-4-fenilbutírico
 - 16. Ácido (2R,3R)-2-Hidroxi-3-({1-[2'-((R)-2-hidroxipropionilsulfamoil)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}-amino)-4-fenilbutírico
 - 17. Ácido (2R,3R)-2-Hidroxi-3-({1-[2'-(3-metoxi-propionilsulfamoil)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}-amino)-4-fenilbutírico
 - 18. Ácido (R)-4-(2-Clorofenil)-3-({1-[2'-(2-metoxiacetilsulfamoil)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-butírico
 - 19. Ácido (2R,3R)-3-({1-[2'-(2-Amino-2-metilpropionilsulfamoil)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-2-hidroxi-4-fenilbutírico
- 35 20. Ácido (2R,3R)-3-(1-((2'-(N-(dimetilcarbamoil)sulfamoil)bifenil-4-il)metil)-5-propil-1Hpirazol-3-carboxamido)-2-hidroxi-4-fenilbutanoico
 - 21. Ácido (2R,3R)-2-Hidroxi-4-fenil-3-[(5-propil-1-{2'-[(pirrolidine-1-carbonil)sulfamoil]bifenil-4-ilmetil}-1Hpirazol-3-carbonil)amino]butírico
 - 22. Ácido (2R,3R)-2-Hidroxi-3-[(1-{2'-[(morfoline-4-carbonil)sulfamoil]bifenil-4-ilmetil}-5-propil-1Hpirazol-3-carbonil)-amino]-4-fenilbutírico

Preparación 12

10

20

30

40

45

50

65

Ácido 1-(2'-t-Butoxicarbonil-3-fluorobifenil-4-metil) -5-propil-1Hpirazol-3-carboxílico

NH + F NN ON NN OH

Se procedió a disolver 3-n-propilpirazol-5-carboxilato de etilo (1,05 g, 5,8 mmol), éster tert.-butílico del ácido 4'-bromometil-3'-fluorobifenil-2-carboxílico (2,0 g, 5,8 mmol), y carbonato potásico (1,6 g, 11,5 mmol), en DMF (10 ml).

A continuación, la mezcla, se agitó, a una temperatura de 65°C, durante un transcurso de tiempo de 16 horas, y a continuación, éste se diluyó con EtOAc. Subsiguientemente, la capa orgánica, se lavó con NaHCO3 saturado y NaCl acuoso, saturado, y ésa se secó sobre Na2SO4. A continuación, el disolvente, se eliminó, bajo la acción del vacío y, el residuo se purificó, mediante cromatografía flash (de evaporación instantánea) (EtOAc en hexano), para proporcionar el éster etílico del ácido 1-(2'-t-Butoxicarbonil-3-fluorobifenil-4-ilmetil)-5-propil-1Hpirazol-3-carboxílico (2,7 g).

Se procedió a diluir el éster etílico del ácido 1-(2'-t-Butoxicarbonil-3-fluorobifenil-4-ilmetil)-5-propil-1Hpirazol-3-carboxílico (758 mg, 1,6 mmol), con MeOH (10 ml, 0,2 mol), y se procedió a añadir LiOH (233 mg, 4,9 mmol). A continuación, la mezcla, se agitó, durante el transcurso de toda la noche y, después, ésta, se concentró, hasta secado. Subsiguientemente, el residuo, se disolvió en DCM y agua y, la capa acuosa, se neutralizó con AcOH. A

continuación, la capa acuosa, se extrajo con DCM y las capas orgánicas combinadas, se lavaron NaCl acuoso, saturado, y éstas se secaron sobre Na2SO4. Subsiguientemente, el producto crudo, se purificó, mediante cromatografía flash (de evaporación instantánea) (EtOAc en hexano), para proporcionar el compuesto del epígrafe (710 mg).

EJEMPLO 8

Ácido 4'-[3-((R)-1-Bencil-2-mercaptoetilcarbamoil)-5-propilpirazol-1-il metil]-3'-fluorobifenil-2-carboxílico

15

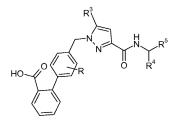
20

25

30

35

Se procedió a disolver el ácido 1-(2'-t-Butoxicarbonil-3-fluorobifenil-4-ilmetil)-5-propil-1Hpirazol-3-carboxí (150 mg, 342 µmol) en DMF (5 ml). A continuación, se procedió a añadir HATU (130 mg, 342 µmol) y, la mezcla, se agitó, durante un transcurso de tiempo de 15 minutos. Subsiguientemente, se procedió a añadir (R)-2-((R)-2-Amino-3fenilpropildisulfanil)-1-benciletilamina•2[HCI] (69,3 mg, 171 µmol), seguido de DIPEA (149 µl, 855 µmol). A continuación, la mezcla, se agitó, a la temperatura ambiente, durante un transcurso de tiempo de 5 minutos y después, ésta se calentó, a una temperatura de 45 °C. Después de un transcurso de tiempo de 5 horas, la mezcla se enfrió, a la temperatura ambiente y, ésta, se repartió entre EtOAc (25 ml) y 10% LiCl (10 ml). A continuación, se procedió a lavar el (compuesto) orgánico y, después, éste se lavó con NaHCO3 (10 ml), saturado, NaCl, acuoso, saturado, se secó sobre MgSO4 y, después, se concentró, para proporcionar un aceite de color pardo. Subsiguientemente, la mezcla, se cromatografió con 1 : 1 EtOAc : hexano, para obtener el dímero intermediario, el cual se disolvió en TFA : DCM en un factor de relación del 30 % (10 ml) y después, ésta se agitó, durante un transcurso de tiempo de 3 horas, a la temperatura ambiente. A continuación, la mezcla, se concentró, bajo la acción de presión reducida y se secó, bajo la acción de un alto vacío. Después de ello, el material, se volvió a disolver, en THF (5 ml), y se procedió a añadir una solución de clorhidrato de tris(2-carboxietill)fosfina (120 mg, 430 µmol) en agua (0,5 ml). A continuación, la mezcla resultante, se agitó, a la temperatura ambiente, durante un transcurso de tiempo de 3 horas, y después, ésta se concentró y se disolvió en AcOH / agua, en un factor de relación de 1 : 1. Después de ello, la solución cruda, se filtró y ésta se cromatografió (aqua / MeCN 1 : 1, con un 0,1 % de TFA) para obtener el compuesto del epígrafe (100 mg). MS m/z: [M+H]⁺ calculado para C30H30FN3O3S, 532,20; encontrado 532,4.


40

EJEMPLO 9

Siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, se prepararon los compuestos 9-1 to 9-7, los cuales tenían las siguientes fórmulas:

50

45

#	R	R^3	R⁴	R⁵	Fórmula	MS m/z:	[M+H] ⁺
						calculado	encontrado
1	3 - F	propilo	- CH2SH	<i>i</i> -butilo	C27H32FN3O3S	498,22	498,6
2	3 - F	etoxi	- CH2SH	bencilo	C29H28FN3O4S	534,18	534,4
3	3 - F	butilo	- CH2SH	<i>i</i> -butilo	C28H34FN3O3S	512,23	512,6
4	3 - F	butilo	- CH2SH	bencilo	C31H32FN3O3S	546,22	546,6
5	-	propilo	- CH(OH)-COOH	bencilo	C31H31N3O6	542,22	542,8
6	-	propilo	- CH2SH	bencilo	C30H31N3O3S	514,21	514,6
7	2,3-diF	propilo	- CH(OH)-COOH	bencilo	C31H29F2N3O6	578,20	578,6

- 1. Ácido 3'-Fluoro-4'-[3-((R)-1-mercaptometil-3-metilbutilcarbamoil)-5-propilpirazol-1-ilmetil]bifenil-2-carboxílico
- 2. Ácido 4'-[3-((R)-1-Bencil-2-mercaptoetilcarbamoil)-5-etoxipirazol-1-ilmetil]-3'-fluorobifenil-2-carboxílico
- 3. Ácido 4'-[5-Butil-3-((R)-1-mercaptometil-3-metilbutilcarbamoil)pirazol-1-ilmetil]-3'-fluorobifenil-2-carboxílico
- 4. 4'-[3-(/R)-1-Bencil-2-mercaptoetilcarbamoil)-5-butilpirazol-1-ilmetil]-3'-fluorobifenil-2-carboxílico
- 5. Ácido 4'-[3-((1R,2R)-1-Bencil-2-carboxi-2-hidroxietilcarbamoil)-5-propilpirazol-1-ilmetil]bifenil-2-carboxílico
- 6. Ácido 4'-[3-((R)-1-Mercaptometil-2-feniletilcarbamoil)-5-propilpirazol-1-ilmetil]bifenil-2-carboxílico
- 7. Ácido 4'-[3-((1R,2R)-1-Bencil-2-carboxi-2-hidroxietilcarbamoil)-5-propilpirazol-1-ilmetil]-2',3'-difluorobifenil-2-carboxílico

10 Preparación 13

Ácido 5-Propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1H-pirazol-3-carboxílico

Se procedió a rociar brevemente y cubrir, una solución de éster etílico del ácido (tetrazol-5-il)fenilborónico ácido (180 mg, 0,97 mmol), 1-(6-bromopiridin-3-ilmetil)-5-propil-1H-pirazol-3-carboxílico (285 mg, 809 mmol), tetrakis-(trifenifosfin)-paladio (0) (50 mg, 40 µmol), NaOH en agua (3,2 ml, 3,2 mmol) y MeOH (4,0 ml, 100 mmol), mediante nitrógeno, y a calentarla, en el horno microondas, a una temperatura de 90 °C, durante un transcurso de tiempo de 2 horas. A continuación, la mezcla, se filtró, para eliminar el Pd (lavado con MeOH). Después de ello, el filtrado se concentró, para eliminar el MeOH, y después de ello, éste se extrajo con EtOAc. Subsiguientemente, la capa orgánica, se extrajo con NaOH 1 N. Las capas acuosas combinadas, se acidificaron con 1 N HCl to pH 3-4 y se extrajo con EtOAc. Los orgánicos, se secaron sobre MgSO4, y éstos se filtraron y se concentraron para proporcionar el compuesto del epígrafe (122 mg), el cual se utilizó, sin ninguna purificación adicional.

EJEMPLO 10

35 <u>Ácido (R)-4-(2-Clorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]-butírico</u>

Se procedió a agitar una solución de ácido 5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1H-pirazol-3-carboxílico (20 mg, 0,05 mmol), HATU (19,5 mg, 0,0514 mmol) y DIPEA (44,7 μl, 257 μmol) en DMF (1,59 ml, 20,5 mmol), con objeto de preactivar el ácido. Después de un transcurso de tiempo de 30 minutos, se procedió a añadir ácido (*R*)-3-amino-4-(2-clorofenil)butanoico • HCl (12,8 mg, 0,0514 mmol)). A continuación, la solución resultante, se agitó, durante el transcurso de toda la noche. Después de ello, la mezcla se concentró, ésta se redisolvió en agua / MeCN / TFA y a continuación, ésta se purificó, mediante la utilización de cromatografía líquida de fase inversa, para proporcionar el compuesto del epígrafe (20,5 mg; 100 % de pureza) como una sal de TFA. MS *mlz*: [M+H]⁺ calculado para C₃₀H₂₉ClN₈O₃, 585,21; encontrado 585,4.

EJEMPLO 11

50

55

<u>Ácido</u> (R)-3-[(5-Propil-1-{6-[2-(1H-tetrazol-5-il)-fenil]-piridin-3-ilmetil}-1Hpirazol-3-carbonil)-amino]-4-(2-trifluorometil-fenil)butírico

5

10

15

Se procedió a agitar una solución de ácido 5-propil-1- $\{6-[2-(1H-tetrazol-5-il)-fenil]piridin-3-ilmetil\}-1Hpirazol-3-carboxílico (20 mg, 0,05 mmol), HATU (19,5 mg, 0,0514 mmol) y DIPEA (44,7 µl, 0,257 mmol) en DMF (1,59 ml, 20,5 mmol), con objeto de preactivar el ácido. Después de un transcurso de tiempo de 30 minutos, se procedió a añadir el ácido (<math>R$)-3-amino-4-(2-trifluorometilfenil)butanoico • HCI (14,6 mg, 51,4 µmol)). A continuación, la solución resultante, se agitó, durante el transcurso de toda la noche. Después de ello, la mezcla se concentró, ésta se redisolvió en agua / MeCN / TFA y, a continuación, ésta se purificó, mediante la utilización de cromatografía líquida de fase inversa, para proporcionar el compuesto del epígrafe (21,1 mg; 100 % de pureza) como una sal de TFA. MS mlz: $[M+H]^{+}$ calculado para C31H29F3N8O3, 619,23; encontrado 619,6.

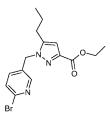
20

EJEMPLO 12

Ácido (R)-4-(2-Fluorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]-butírico

25

30


Se procedió a agitar una solución de ácido 5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carboxílico (40 mg, 103 mmol), HATU (39,0 mg, 0,103 μmol) y DIPEA (89,4 μl, 514 μmol) en DMF (3,2 ml, 41,1 mmol), con objeto de preactivar el ácido. Después de un transcurso de tiempo de 30 minutos, se procedió a añadir el ácido (*R*)-3-amino-4-(2-fluorofenil)butanoico • HCI (24,0 mg, 103 mmol). A continuación, la solución resultante, se agitó, durante el transcurso de toda la noche. Después de ello, la mezcla, se concentró, ésta se redisolvió en agua / MeCN / TFA y después, ésta se purificó, mediante la utilización de cromatografía líquida de fase inversa, para proporcionar el compuesto del epígrafe (15,7 mg; 100 % de pureza), como una sal de TFA. MS *m/z*: [M+H][†] calculado para C₃₀H₂₉FN₈O₃, 569,23; encontrado 569,2.

45

Preparación 14

Éster etílico del ácido 1-(6-Bromopiridin-3-ilmetil)-5-propil-1Hpirazol-3-carboxílico

50

55

60

A una solución de 2-Bromo-5-metilpiridina (3,1 g, 17,4 mmol) tetracloruro de carbono (40 ml, 400 mmol), se le añadió peróxido de benzoílo (230 mg, 950 µmol) y NBS (3,4 g, 19,2 mmol). A continuación, la mezcla resultante, se calentó, a la temperatura de reflujo, durante el transcurso de toda la noche. Después de ello, la mezcla se enfrió, a una temperatura de 0 °C y el NBS, se eliminó, mediante proceso de filtrado. A continuación, el filtrado se concentró, para proporcionar la 2-bromo-5-bromometilpiridina (4,6 g), la cual se utilizó directamente en la siguiente etapa.

65

Se procedió a disolver el 3-*n*-propilpirazol-5-carboxilato de etilo (1,7 g, 9,1 mmol), 2-bromo-5-bromometilpiridina (4,6 g, 9,1 mmol) y carbonato potásico (1,8 g, 12,7 mmol), en DMF (70,0 ml, 904 mmol). A continuación, la suspensión resultante, se agitó, a la temperatura ambiente, durante el transcurso de toda la noche. Después de ello, el material, se diluyó con NaHCO3 acuoso y éter dietílico. Subsiguientemente, la capa acuosa, se extrajo adicionalmente, con

éter dietílico. A continuación, los orgánicos combinados, se secaron sobre MgSO4, y éstos se filtraron y se concentraron. Subsiguientemente, el residuo, se purificó, mediante la utilización de cromatografía flash (de evaporación instantánea) [1ª 30 : 1 hexano / EtOAc; 2ª 10 : 1 hexano / EtOAc]. A continuación, los dos isómeros, se separaron y se analizaron, mediante NMR y NOE : éster etílico del ácido 1-(6-bromopiridin-3-ilmetil)-5-propil-1Hpirazol-3-carboxílico (1,2 g) y éster etílico del ácido 2-(6-bromopiridin-3-ilmetil)-5-propil-2Hpirazol-3-carboxílico.

Preparación 15

10

25

30

35

40

45

65

Ácido 1-[6-(2-Acetilsulfamoilfenil)piridin-3-ilmetil]-5-propil-1Hpirazol-3-carboxílico

A una suspensión de N-*t*-butil-2-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)-bencenosulfonamida (722 mg, 2,1 mmol) y éster etílico del ácido 1-(6-bromopiridin-3-ilmetil)-5-propil-1Hpirazol-3-carboxílico (500 mg, 1,4 mmol) en tolueno (4,0 ml, 37 mmol) se le añadió una solución de carbonato potásico (392 mg, 2,84 mmol) en agua (530 μl, 30 mmol). A continuación, la solución resultante, se roció brevemente con nitrógeno, antes de proceder a añadir tetrakis(trifenifosfin)-paladio (0) (328 mg, 284 μmol). Después de ello, la mezcla, se calentó, en el horno microondas, a una temperatura de 100 °C, durante un transcurso de tiempo de 30 minutos, y a continuación, ésta se enfrió, a la temperatura ambiente. A continuación, se procedió a añadir ácido cítrico acuso, al 1 %, y la mezcla, se extrajo con EtOAc. Subsiguientemente, los orgánicos combinados, se concentraron parcialmente y, éstos, se filtraron a través de Celite® (enjuagado con EtOAc), y se concentraron. Después de ello, el residuo crudo, se diluyó con alcohol *t*-butílico (21,6 ml, 226 mmol), y se procedió a añadir LiOH 0,20 M en agua (42,6 ml, 8,5 mmol). A continuación, la mezcla, se agitó, durante el transcurso de toda la noche, y después, ésta se concentró y se extrajo con EtOAc. Subsiguientemente, se procedió a extraer de nuevo del EtOAc, con LiOH 1 N. Después de ello, se procedió a acidificar las capas acuosas combinadas, con HCl 1 N, a un valor pH de 4 - 5. A continuación, la capa acuosa ácida, se extrajo con EtOAc y DCM, para proporcionar el ácido 1-[6-(2-*t*-butilsulfamoilfenil)piridin-3-ilmetil]-5-propil-1H-

Se procedió a disolver el ácido 1-[6-(2-t-Butilsulfamoilfenil)piridin-3-ilmetil]-5-propil-1Hpirazol-3-carboxílico (480 mg, 1,0 mmol), en TFA (2,8 ml, 36,8 mmol) y éste se calentó, a una temperatura de 40 °C, durante un transcurso de tiempo de 3 horas. A continuación, la mezcla, se diluyó con tolueno y, ésta, se concentró (azeótropo x 3). Subsiguientemente, el residuo, se disolvió en DCM (5,53 ml, 86,2 mmol), y a continuación, se procedió a añadir trietilamina (1,8 ml, 12,6 mmol) y anhídrido acético (992 µl, 10,5 mmol). A continuación, la solución resultante, se agitó, a la temperatura ambiente, durante un transcurso de tiempo de 1 hora. Subsiguientemente, se procedió a añadir cantidades adicionales de trietilamina y de anhídrido acético, con objeto de conducir la reacción. A continuación, se procedió a interrumpir la reacción, extinguiéndola con agua (150 µl) y ésta se secó, mediante azeótropo con tolueno, para proporcionar el compuesto del epígrafe (108 mg), el cual se utilizó, sin ninguna purificación adicional.

EJEMPLO 13

pirazol-3-carboxílico (630 mg).

50 <u>Ácido (2R,3R)-3-({1-[6-(2-Acetilsulfamoilfenil)piridin-3-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-2-hidroxi-4-fenilbutírico</u>

Se procedió a añadir una solución de ácido 1-[6-(2-acetilsulfamoilfenil)piridin-3-ilmetil]-5-propil-1Hpirazol-3-carboxílico (100 mg, 226 µmol) en DMF (7,0 ml, 90 mmol), a HATU (85,9 mg, 226 µmol). A continuación, la mezcla resultante se agitó, durante un transcurso de tiempo de 5 minutos, antes de proceder a la adición del ácido (2R,3R)-

3-amino-2-hidroxi-4-fenilbutírico ácido • HCI (52,4 mg, 226 μmol) y DIPEA (315 μl, 1,8 mmol). Después de ello, la solución resultante, se calentó, a una temperatura de 40 °C, durante el transcurso de toda la noche. Subsiguientemente, la mezcla se concentró, ésta se volvió a disolver en agua / MeCN / TFA y se purificó, mediante la utilización de cromatografía líquida de fase inversa, para proporcionar el compuesto del epígrafe (48 mg; 91 % de pureza) como una sal de TFA. MS *m/z*: [M+H][†] calculado para C₃₁H₃₃N₅O₇S, 620,21; encontrado 620,4.

EJEMPLO 14

Siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, se prepararon los compuestos 14 - 1 a 14 - 15, los cuales tenían la siguiente fórmula:

R N N R

20

#	R¹	R⁴	R⁵	Fórmula	MS <i>m/z</i> : [I	M+H] ⁺
					calculado	Encontrado
1	1H-tetrazol-5-ilo	- CH(OH)-COOH	bencilo	C30H30N8O4	567,24	567,6
2	1H-tetrazol-5-ilo	- CH2SH	bencilo	C29H30N8OS	539,23	539,6
3	- SO2NH-C(O)CH3	- CH2SH	bencilo	C30H33N5O4S2	592,20	592,6
4	1H-tetrazol-5-ilo	- CH2-COOH	2-Br-bencilo	C30H29BrN8O3	629,15	631,4
5	1H-tetrazol-5-ilo	- CH(OH)-COOH	2-Cl- bencilo	C30H29CIN8O4	601,20	601,4
6	1H-tetrazol-5-ilo	- CH2-COOH	bencilo	C30H30N8O3	551,24	551,4
7	1H-tetrazol-5-ilo	- CH2-COOH	<i>i</i> -butilo	C27H32N8O3	517,26	517,4
8	1H-tetrazol-5-ilo	- CH(OH)-COOH	<i>i</i> -butilo	C27H32N8O4	533,25	533,2
9	1H-tetrazol-5-ilo	- CH(OH)-COOH	bencilo	C30H30N8O4	567,24	567,6
10	1H-tetrazol-5-ilo	- CH2-COOH	s)	C28H28N8O3S	557,20	557,2
11	1H-tetrazol-5-ilo	- CH2-COOH		C28H28N8O4	541,22	541,2
12	1H-tetrazol-5-ilo	- CH2-COOH	3-F- bencilo	C30H29FN8O3	569,23	569,2
13	1H-tetrazol-5-ilo	- CH2-COOH	4-F- bencilo	C30H29FN8O3	569,23	569,2
14	- SO2NH-C(O)CH3	- CH2-COOH	2-Cl- bencilo	C31H32CIN5O6S	638,18	638,4
15	- SO ₂ NH-C(O)CH ₃	- CH2-COOH	bencilo	C31H33N5O6S	604,22	605,0

- 1. Ácido (2R,3R)-2-Hidroxi-4-fenil-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)-fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)-amino]butírico (sal de TFA)
- 2. ((\vec{R})-1-bencil-2-mercaptoetil)amida del ácido 5-Propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carboxílico (Sal de TFA)
 - 3. ((R)-1-bencil-2-mercaptoetil)amida del ácido 1-[6-(2-Acetilsulfamoil-fenil)piridin-3-ilmetil]-5-propil-1Hpirazol-3-carboxílico (Sal de TFA)
 - 4. Ácido (R)-4-(2-Bromofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)-fenil]-piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]-butírico (Sal de TFA)
- 5. Ácido (2R,3R)-4-(2-Clorofenil)-2-hidroxi-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)-amino]butírico (Sal de TFA)
 - 6. Ácido (R)-4-Fenil-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)-fenil]-piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]-butírico (Sal de TFA)
 - 7. Ácido (R)-5-Metil-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)-fenil]-piridin-3-ilmetil}-1Hpirazol-3-carbonil)-amino]-hexanoico (Sal de TFA)
 - 8. Ácido (2R,3R)-2-Hidroxi-5-metil-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)-amino]hexanoico (Sal de TFA)
 - 9. Ácido (2S,3R)-2-Hidroxi-4-fenil-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)-amino]butírico (Sal de TFA)

- 10. Ácido (R)-3-[(5-Propil-1-{6-[2-(1H-tetrazol-5-il)-fenil]-piridin-3-ilmetil}-1Hpirazol-3-carbonil)-amino]-4-tiofen-3-ilbutírico (Sal de TFA)
- 11. Ácido (R)-4-Furan-2-il-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]-butírico (Sal de TFA)
- 12. Ácido (R)-4-(3-FÍuorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)-amino]-butírico (Sal de TFA)
 - 13. (R)-4-(4-Fluorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]-butírico (Sal de TFA)
 - 14. Ácido (R)-3-({1-[6-(2-Acetilsulfamoilfenil)-piridin-3-ilmetil]-5-propil-1Hpirazol-3-carbonil}-amino)-4-(2-clorofenil)-butírico (Sal de TFA)
 - 15. Ácido (R)-3-({1-[6-(2-Acetilsulfamoilfenil)-piridin-3-ilmetil]-5-propil-1Hpirazol-3-carbonil}-amino)-4-fenilbutírico (Sal de TFA)

15

10

Siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, se prepararon los compuestos 15 - 1 a 15 - 4, los cuales tenían la siguiente fórmula:

20

25

30

35

#	R ¹	R⁴	R⁵	Fórmula	MS <i>m/z</i> : [I	M+H] [†]
					calculado	encontrado
1	1H-tetrazol-5-ilo	- CH(OH)-COOH	bencilo	C30H30N8O4	567,24	567,6
2	1H-tetrazol-5-ilo	- CH2-COOH	2-CI-bencilo	C30H29CIN8O3	585,21	585,4
2			bonoilo	Ca4HaaNto78	620.21	620.6

2-Cl-bencilo

C₃₁H₃₂CIN₅O₆S

638,18

638.4

1. Ácido (2R,3R)-2-Hidroxi-4-fenil-3-[(5-propil-1-{5-[2-(1H-tetrazol-5-il)fenil]piridin-2-ilmetil}-1Hpirazol-3-carbonil)-amino]butírico (Sal de TFA)

- CH2-COOH

- 2. Ácido (R)-4-(2-Clorofenil)-3-[(5-propil-1-{5-[2-(1H-tetrazol-5-il)fenil]piridin-2-ilmetil}-1Hpirazol-3-carbonil)amino]-butírico (Sal de TFA)
- 3. Ácido (2R,3R)-3-({1-[5-(2-Acetilsulfamoilfenil)piridin-2-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-2-hidroxi-4-fenilbutírico (Sal de TFA)
- 40 4. Ácido (R)-3-({1-[5-(2-Ácetilsulfamoilfenil)piridin-2-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-4-(2-clorofenil)-butírico (Sal de TFA)

EJEMPLO 16

- SO2NH-C(O)CH3

50

45

Siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, se prepararon los compuestos 16 - 1 a 16-7, los cuales tenían la siguiente fórmula:

#	R ¹	R ³	R⁴	R⁵	Fórmula	MS m/z	: [M+H] ⁺
						calculado	encontrado
1	0 N 3 3 4 0 N N N N N N N N N N N N N N N N N N	propilo	- CH2SH	bencilo	C31H31N5O3S	554,22	554,4
2	0 N N N N N N N N N N N N N N N N N N N	propilo	- CH(OH)-COOH	bencilo	C32H31N5O6	582,23	582,4
3	N-N Year	propilo	- CH(OH)-COOH	bencilo	C31H31N7O5	582,24	582,6
4	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	propilo	-CH2-COOH	bencilo	C31H31N7O4	566,24	567,0
5	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	propilo	-CH2-COOH	2-CI-bencilo	C31H30CIN7O4	600,21	600,6
6	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	propilo	- CH(OH)-COOH	2-Cl-bencilo	C31H30CIN7O5	616,20	616,6
7	N-N N H	propilo	- CH(OH)-COOH	bencilo	C30H29N7O6	584,22	584,6

- 1. ((R)-1-bencil-2-mercaptoetil)amida del ácido 1-[2'-(5-Oxo-2,5-dihidro-[1,2,4]oxadiazol-3-il)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carboxílico
- 5 2. Ácido (2R,3R)-2-Hidroxi-3-({1-[2'-(5-oxo-2,5-dihidro-[1,2,4]oxadiazol-3-il)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-4-fenilbutírico
 - 3. Ácido (2R,3R)-2-Hidroxi-3-({1-[2'-(5-oxo-4,5-dihidrotetrazol-1-il)-bifenil-4-ilmetil]-5-propil-1H-pirazol-3-carbonil}-amino)-4-fenilbutírico
 - 4. Ácido (R)-3-({1-[2'-(5-Oxo-4,5-dihidrotetrazol-1-il)bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-4-fenil-butírico
 - 5. Ácido (R)-4-(2-Clorofenil)-3-({1-[2'-(5-oxo-4,5-dihidrotetrazol-1-il)-bifenil-4-ilmetil]-5-propil-1Hpirazol-3-carbonil}-amino)butírico
 - 6. Ácido (2R,3R)-4-(2-Clorofenil)-2-hidroxi-3-({1-[2'-(5-oxo-4,5-dihidrotetrazol-1-il)bifenil-4-ilmetil]-5-propil-1H-pirazol-3-carbonil}amino)butírico
- 15 7. Ácido (2R,3R)-3-({5-Etoxi-1-[2'-(5-oxo-4,5-dihidrotetrazol-1-il)-bifenil-4-ilmetil]-1Hpirazol-3-carbonil}amino)-2-hidroxi-4-fenilbutírico

20 Siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, se prepararon los compuestos 17 - 1 a 17 - 6, los cuales tenían la siguiente fórmula:

#	R ¹	R⁴	R⁵	Fórmula	MS <i>m/z</i> : [N	Л+Н] ⁺
					calculado	encontrado
1	1H-tetrazol-5-ilo	- CH2-COOH	bencilo	C29H29N9O3	552,24	552,3
2	1H-tetrazol-5-ilo	- CH2-COOH	2-Cl-bencilo	C29H28CIN9O3	586,20	586,2
3	1H-tetrazol-5-ilo	- CH(OH)-COOH	bencilo	C29H29N9O4	568,23	568,8
4	- SO2NH-C(O)CH3	- CH2-COOH	bencilo	C30H32N6O6S	605,21	605,8
5	- SO2NH-C(O)CH3	- CH(OH)-COOH	bencilo	C30H32N6O7S	621,21	621,8
6	- SO2NH-C(O)CH3	- CH2-COOH	2-Cl-bencilo	C30H31CIN6O6S	639,17	639,4

- 1. Ácido (R)-4-Fenil-3-[(5-propil-1-{5-[2-(1H-tetrazol-5-il)fenil]pirazin-2-ilmetil}-1Hpirazol-3-carbonil)amino]-butírico (Sal de TFA)
- 2. Ácido (R)-4-(2-Clorofenil)-3-[(5-propil-1-{5-[2-(1H-tetrazol-5-il)fenil]pirazin-2-ilmetil}-1Hpirazol-3-carbonil)-amino]-butírico (Sal de TFA)
- 3. Ácido (2R,3R)-3-(1-((5-(2-(1H-tetrazol-5-il)fenil)pirazin-2-il)metil)-5-propil-1Hpirazol-3-carboxamido)-2-hidroxi-4-fenilbutanoico (Sal de TFA)
- 4. Ácido (R)-3-({1-[5-(2-Acétilsulfamoilfenil)pirazin-2-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-4-fenilbutírico (Sal de TFA)
 - 5. (2R,3R)-3-({1-[5-(2-Acetilsulfamoilfenil)pirazin-2-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-2-hidroxi-4-fenil-butírico (Sal de TFA)
 - 6. Ácido (R)-3-({1-[5-(2-Acetilsulfamoil-fenil)-pirazin-2-ilmetil]-5-propil-1Hpirazol-3-carbonil}amino)-4-(2-cloro-fenil)-butírico (Sal de TFA)

Siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, se preparó el compuesto 18, el cual tenía la siguiente fórmula:

30

35

40

45

25

15

#	R ¹	R⁴	R⁵	Fórmula	MS <i>m</i> / <i>z</i> : [M+H] ⁺	
					calculado	encontrado
1	tetrazol	- CH2-COOH	2-Cl-bencilo	C29H28CIN9O3	586,20	586,6

1. Ácido (R)-4-(2-Clorofenil)-3-[(5-propil-1-{2-[2-(1H-tetrazol-5-il)fenil]pirimidin-5-ilmetil}-1Hpirazol-3-carbonil)-amino]-butírico (Sal de TFA)

EJEMPLO 19

Siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, se prepararon los compuestos 19 - 1 a 19 - 3, los cuales tenían la siguiente fórmula:

50

Estos compuestos, son profármacos del compuesto del Ejemplo 3 - 16.

#	$R^{ ext{ iny d}}$	Fórmula	MS <i>m</i> / <i>z</i> : [M+H] ⁺	
			calculado	encontrado
1	- C(O)CH3	C33H34N8O4	607,27	607,4
2	- C(O)-fenilo	C38H36N8O4	669,29	669,5
3	- C(O)-CH(NH2)[CH(CH3)2]	C36H41N9O4	664,33	664,4

- 1. [(R)-1-(Acetoxicarbamoilmetil)-2-feniletil]amida del ácido 5-Propil-1-[2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1H-pirazol-3-carboxílico
- 2. [(R)-1-(benzoiloxicarbamoil-metil)-2-feniletil]amida del ácido 5-Propil-1-[2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1H-pirazol-3-carboxílico
- 3. {(R)-1-[((R)-2-amino-3-metil-butiriloxicarbamoil)metil]-2-feniletil}amida del ácido 5-Propil-1-[2'-(1H-tetrazol-5-il)bifenil-4-ilmetil]-1Hpirazol-3-carboxílico

10

Siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, se prepararon los compuestos 20 - 1 a 20 - 11, los cuales tenían la siguiente fórmula:

15

20

35

25 Estos compuestos, son profármacos del compuesto del Ejemplo 10

#	$R^{ ext{\tiny 4C}}$	Fórmula	MS m/z	z: [M+H] ⁺
			calculado	encontrado
1	- CH2CH3	C32H33CIN8O3	613,24	613,2
2	- CH(CH3)2	C33H35CIN8O3	627,25	627,7
3	- (CH2)3CH3	C34H37CIN8O3	641,27	641,6
4	- (CH2)4CH3	C35H39CIN8O3	655,28	655,2
5	- (CH ₂) ₂ CH ₃	C33H35CIN8O3	627,25	627,4
6	" * *	C36H40CIN9O4	698,29	698,6
7	NA CH3	C35H33CIN8O6	697,22	697,2
8	- CH(CH3)OC(O)O-ciclohexilo	C39H43CIN8O6	755,30	755,4
9	- CH(CH3)OC(O)OCH2CH3	C35H37CN8O6	701,25	701,6
10	- CH(CH3)OC(O)OCH(CH3)2	C36H39CIN8O6	715,27	715,6
11	- CH3	C31H31CIN8O3	599,22	599,4

- 1. Éster etílico del ácido (R)-4-(2-Clorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)
- 30 2. Éster isopropílico del ácideo (R)-4-(2-Clorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1H-pirazol-3- carbonil)amino]butírico (Sal de TFA)
 - 3. Éster butílico del ácido (R)-4-(2-Clorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)
 - 4. Éster pentílico del ácido (R)-4-(2-Clorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)
 - 5. Éster pentílico del ácido *(R)*-4-(2-Clorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)

ES 2 611 107 T3

- 6. Éster 2-morfolin-4-il-etílico del ácido (R)-4-(2-Clorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1H-pirazol-3-carbonil)amino]butírico (Sal de TFA)
- 7. Éster 5-metil-2-oxo-[1,3]dioxol-4-ilmetíco del ácido (R)-4-(2-Clorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]-piridin-3-ilmetíl}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)
- 8. Éster 1-ciclohexiloxicarboniloxi-etílico del ácido (R)-4-(2-Clorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)
 - 9. Éster 1-etoxicarboniloxi-etílico del ácido (R)-4-(2-Clorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-il-metil}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)
 - 10. Éster 1-isopropoxicarboniloxi-etílico del ácido (R)-4-(2-Clorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)
 - 11. Éster metílico del ácido (R)-4-(2-Clorofeniì)-3-[(5-propíl-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)

EJEMPLO 21

15

10

Siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, se prepararon los compuestos 21 - 1 a 21 - 6, los cuales tenían la siguiente fórmula:

20

25

Estos compuestos, son profármacos del compuesto del Ejemplo 12.

#	R ^{4c}	Fórmula	MS <i>m/z</i> : [M+H] [†]	
			calculado	encontrado
1	- CH2CH3	C32H33FN8O3	597,27	597,6
2	- (CH2)2CH3	C33H35FN8O3	611,28	611,4
3	- (CH2)3CH3	C34H37FN8O3	625,30	625,6
4	- (CH2)4CH3	C35H39FN8O3	639,31	639,6
5	- CH(CH3)2	C33H35FN8O3	611,28	611,6
6	- CH3	C31H31FN8O3	583,25	583,4

30

- 1. Éster etílico del ácido (R)-4-(2-Fluorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)
- 2. Éster propílico del ácido (R)-4-(2-Fluorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)
- 35 3. Éster butílico del ácido (R)-4-(2-Fluorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbon-il)amino]butírico (Sal de TFA)
 - 4. Éster pentílico del ácido (*R*)-4-(2-Fluorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)
- 5. Éster isopropílico del ácido *(R)*-4-(2-Fluorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)
 - 6. Éster metílico del ácido (*R*)-4-(2-Fluorofenil)-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)

EJEMPLO 22

45

Siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, se prepararon los compuestos 22 - 1 a 22 - 6, los cuales tenían la siguiente fórmula:

5

10

Estos compuestos, son profármacos del compuesto del Ejemplo 14 -6.

MS m/z: [M+H] Fórmula calculado encontrado - CH(CH3)2 C33H36N8O3 593,29 593,2 2 - (CH2)3CH3 C34H38N8O3 607,31 607,2 3 621,2 - (CH2)4CH3 C35H40N8O3 621,32 4 - CH₂CH₃ C32H34N8O3 579,28 579,6 5 C33H36N8O3 593,29 593,2 - (CH2)2CH3 6 - CH3 C31H32N8O3 565,26 565,6

15 1. Éster isopropílico del ácido (R)-4-Fenil-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)amino]butírico (Sal de TFA)

2. Éster butílico del ácido (R)-4-Fenil-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)-amino]butírico (Sal de TFA)

3. Éster pentílico del ácido (R)-4-Fenil-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)-amino]butírico (Sal de TFA)

4. Éster etílico del ácido (R)-4-Fenil-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)-amino]butírico (Sal de TFA)

5. Éster propílico del ácido (R)-4-Fenil-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)-amino]butírico (Sal de TFA)

25 6. Éster metílico del ácido (R)-4-Fenil-3-[(5-propil-1-{6-[2-(1H-tetrazol-5-il)fenil]piridin-3-ilmetil}-1Hpirazol-3-carbonil)-amino]butírico (Sal de TFA)

EJEMPLO 23

30 Siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, pueden también prepararse, así mismo, los compuesto 23 - 1 a 23 - 4, los cuales tienen la siguiente fórmula:

35

20

$$\mathbb{R}^{1}$$

40

#	R ¹	R⁴	R⁵
1	tetrazol	- CH(OH)-COOH	bencilo
2	tetrazol	- CH2-COOH	bencilo
3	- SO2NHC(O)CH3	- CH(OH)-COOH	bencilo
4	- SO2NHC(O)OCH3	- CH(OH)-COOH	bencilo

45 <u>EJEMPLO 24</u>

Siguiendo los procedimientos los cuales se han descrito en los procedimientos facilitados anteriormente, arriba, en este documento de solicitud de patente, y sustituyendo los apropiados materiales de partida y reactivos, pueden también prepararse, así mismo, los compuestos 24 - 1 a 24 - 4, los cuales tienen la siguiente fórmula:

$$\mathbb{R}^{1}$$

10

5

#	R ¹	R⁴	R⁵
1	tetrazol	- CH2-COOH	2-Cl-bencilo
2	tetrazol	- CH2-COOH	2-CF ₃ -bencilo
3	tetrazol	- CH2-COOH	2-F-bencilo
4	tetrazol	- CH(OH)-COOH	bencilo
5	- SO2NHC(O)CH3	- CH(OH)-COOH	bencilo

ENSAYO 1

Ensayos de unión de los radioligandos AT₁ y AT₂

15

Estos ensayos in vitro, se utilizaron para valorar la capacidad de los compuestos de ensayo, para unirse a los receptores AT_1 y AT_2 .

Preparación de membranas a partir de células que expresan los receptores AT₁ ó AT₂ humanos

20

Se procedió a cultivar líneas de células derivados del ovario de hamsters chinos (CHO-K1), que expresaban, de una forma estable, los receptores AT_1 ó AT_2 humanos, clonados, respectivamente, en medio F12 de HAMS, suplementado con un 10% de suero bovino fetal, 10 μ g / ml de penicilina / estreptomicina, y 500 g / ml de geniticina, en una incubadora humidificada con CO_2 al 5%, a una temperatura de 37 °C. Las células que expresaban el receptor AT_2 , se cultivaron mediante la presencia adicional de 10 nM de PD123,319 (antagonista de AT_2). Cuando los cultivos habían alcanzado una confluencia del 80-95 %, las células, se lavaron cuidadosamente en PBS, y se recogieron con 5 mM de EDTA. Las células, se granularon mediante centrifugación, y se congelaron de forma instantánea, en MeOH - hielo seco, y éstas se almacenaron a una temperatura de - 80°C, hasta su utilización posterior.

Tris del ti de la de D 35 se co

30

40

45

Para la preparación de las membranas, los gránulos de células, se volvieron a suspender en tampón de lisis (25 mM Tris / HCl pH 7,5 a una temperatura de 4 °C, 1 mM EDTA, y una tableta de cóctel completo de inhibidor de proteasa del tipo "Complete Proteasa Inhibitor Coktail Tablets" con 2 mM EDTA por 50 ml de tampón (Roche, cat.# 1697498, de la firma Roche Molecular Biochemicals, Indianapolis, IN)) y se homogeneizaron, con un homogeneizador de hielo de Dounce (10 carreras) sobre hielo. El homogeneizado, se centrifugó a 1000 x g, el sobrenadante se recolectó, y se centrifugó a 20.000 x g. El gránulo final, se resuspendió en un tampón membranario (75 mM Tris / HCl pH 7,5, 12,5 mM MgCl₂, 0,3 mM EDTA, 1 mM EGTA, 250 mM sacarosa, a una temperatura de 4 °C) y se homogeneizó, mediante extrusión, mediante una aguja de calibre 20G. La concentración de proteína de la suspensión membranaria, se determinó mediante el procedimiento que se describe por parte de Bradford (1976) en Anal Biochem. 72:248-54. Las membranas, se congelaron instantáneamente en MeOH - hielo seco, y éstas se almacenaron a una temperatura de - 80°C, hasta su posterior utilización.

Ensayo de unión de ligandos para determinar las afinidades de compuestos, para los receptores de angiotensina AT₁ y AT₂, humanos

50

55

Se procedió a realizar ensayos de enlace o unión, en palcas de filtro del tipo Acrowell, de 96 hoyos (Pall Inc., cat.# 5020) en un volumen de ensayo total de 100 μl con 0,2 μg de proteína membranaria para membranas que contenían el receptor AT₁ humano, ó 0,2 μg de proteína membranaria para membranas que contenían el receptor AT₂ humano, en tampón de ensayo (50 mM Tris / HCl pH 7,5 a una temperatura de 20 °C, 5 mM MgCl₂, 25 μM EDTA, 0,025% BSA). Se procedió a realizar estudios de unión o enlace de saturación, para la determinación de los valores de K₄ del ligando, utilizando angiotensina II marcada con Europium, N-terminal ([Eu]AngII, H-(Eu-N¹)-Ahx-Asp-Arg-Val-Tir-IIe-His-Pro-Phe-OH; PerkinElmer, Boston, MA) a razón de 8 concentraciones diferentes, correspondientes a un valor comprendido dentro de unos márgenes que iban desde un valor 0,1 nM hasta un valor 30 nM. Se realizaron ensayos de desplazamiento, para la determinación de los valores de pK₁ de los compuestos de ensayo, con [Eu]AngII, a 2 nM, y 11 concentraciones diferentes de fármaco, correspondientes a un valor comprendido dentro de unos márgenes que iban desde un valor 0,1 pM hasta un valor 10 μM. Los fármacos, se disolvieron hasta una concentración de 1mM, en DMSO, y desde allí, se diluyeron en serie, en un tampón de ensayo. Se procedió a determinar la unión no específica, en presencia de 10 μM de angiotensina II, no marcada. Los ensayos, se incubaron, durante un transcurso de tiempo de 120 minutos, en la oscuridad, a la temperatura ambiente, o a una

temperatura de 37 °C, y se procedió a determinar las reacciones de unión, mediante filtrado rápido a través de palcas de filtro del tipo Acrowell, seguido de tres lavados con 200 µl de tampón de lavado, enfriado mediante hielo (50 mM Tris / HCl pH 7,5 a una temperatura de 4°C, 5 mM MgCl₂) mediante la utilización de un distribuidor de filtrado múltiple de la marca Waters. Las placas, se golpearon suavemente, en seco, y éstas se incubaron con 50 µl de solución realzante DELFIA (PerkinElmer cat.# 4001-0010) a la temperatura ambiente, durante un transcurso de tiempo de 5 minutos, en un agitador vibratorio. La [Eu]AngII unida en el filtro, se cuantificó inmediatamente, en un lector de placa de fusión (PerkinElmer), utilizando fluorescencia resuelta en el tiempo (TRF). Los datos de unión, se analizaron en un análisis de regresión no lineal, con un paquete software informático, del tipo "GraphPad Prism Software package" (GraphPad Software, Inc., San Diego, CA), utilizando un modelo de 3 parámetros, para la competición de un sitio. El valor de fondo (mínimo de la curva de fondos), se fijó al valor para la unión o enlace no específico, según se determina en presencia de 10 µM de angiotensina II. Los valores de ki, para los fármacos, se calcularon partir de valores observados de IC50 y el valor de Kd de [Eu]AngII, en concordancia con la ecuación de Cheng-Prusoff, la cual se describe, por parte de Cheng et al. (1973), en Biochem Pharmacol. 22(23): 3099 - 108. Las selectividades de los compuestos de ensayo, para el receptor AT₁ por encima del receptor AT₂, se calcularon como el factor de relación AT₂K_i / AT₁K_i. Las afinidades de los compuestos de ensayo, se expresaron como los logaritmos decimales de los valores de K_i (pK_i).

En este ensayo, un mayor valor de pK_i, indica el hecho de que, el compuesto de ensayo, tiene una mayor afinidad de enlace o unión, para el receptor sometido a test de ensayo.

ENSAYO 2

10

15

20

25

30

35

40

45

50

55

60

65

Ensayos in vitro, para la cuantificación de potencias del inhibidor (IC_{50}) NEP de humanos y de ratas, y en ACE humana

La actividades inhibitorias de los compuestos, en NEP humana y de la rata, y la ACE humana, se determinó, mediante la utilización de los ensayos in vitro, los cuales se describen abajo, a continuación.

Extracción de la actividad NEP a partir de riñones de ratas

La NEP de la rata (Rat NEP), se preparó a partir de riñones de atas adultas de la raza Sprague Dawley. Se procedió a lavar los riñones enteros, en PBS frío, y éstos se cultivaron en un tampón de lisis, enfriado con agua – hielo (1% Triton X-114, 150 mM NaCl, 50 mM Tris pH 7,5; Bordier (1981) J. Biol. Chem. 256: 1604 - 1607) en un factor de relación correspondiente a 5 ml de tampón, por cada gramo de riñón. Las muestras, se homogeneizaron utilizando un molinillo de tejido, de politrón, sostenido con la mano, sobre hielo. Los homogeneizados, se centrifugaron a 1000 x g, en un rotor de cangilón, oscilante, durante un transcurso de tiempo de 5 minutos, a una temperatura de 3°C. El gránulo, se resuspendió en 20 ml de tampón de lisis enfriado con hielo, y se incubó, sobre hielo, durante un transcurso de tiempo de 30 minutos. La muestras (de 15 – 20 ml), se depositaron, a continuación, sobre 25 ml de tampón colchón, enfriado con hielo (6 % peso / volumen de sacarosa, 50 mM pH 7,5 Tris, 150 mM NaCl, 0,06 %, Triton X-114), se calentaron a una temperatura de 37 °C, durante un transcurso de tiempo de 3 - 5 minutos y se centrifugaron, a 1000 x g en un rotor de canjilón oscilante, a la temperatura ambiente, durante un transcurso de tiempo de 3 minutos. Las dos capas superiores, se aspiraron, dejando un precipitado aceitoso, viscoso, que contenía la fracción de membranas enriquecida. Se añadió glicerina, a un concentración del 50 %, y las muestras, se almacenaron, a una temperatura de - 20°C. Las concentraciones de proteína, se cuantificaron, utilizando un sistema de detección de BCA, como un patrón estándar.

Ensayos de inhibición de enzimas

La NEP recombinante humana y la ACE recombinante humana, se obtuvieron comercialmente, en el mercado (R&D Systems, Minneapolis, MN, números de catálogo 1182 - ZN y 929 - ZN, respectivamente). Se utilizó el sustrato de péptido fluorogénico Mca - BK2 (Mca - Arg - Pro - Pro - Gly - Phe - Ser - Ala - Phe - Lys (Dnp) - OH; Johnson et al. (2000) Anal. Biochem. 286: 112 - 118), para los ensayos de NEP y ACE humanas, y se utilizó el Mca - RRL (Mca - Darg - Arg - Leu - (Dnp) - OH; Medeiros et al. (1997) Braz. J. Med. Biol. Res. 30: 1157 - 1162), para el ensayo de la rat NEP (NEP de la rata) (ambos de procedencia de la firma Anaspec, San Jose, CA).

Los ensayos, se realizaron en placas opacas de 384 hoyos, a la temperatura ambiente, utilizando péptidos fluorogénicos respectivos, a una concentración 10 μ M, en un tampón de ensayo (50 mM Tris/HCl, a una temperatura de 25 °C, 100 mM NaCl, 0,01 % Tween - 20, 1 μ M Zn, 0,025 % BSA). La NEP humana y la ACE humana, se utilizaron a unas concentraciones que dieron como resultado una proteólisis cuantitativa de 5 μ M de Mca - BK2, en un transcurso de tiempo de 20 minutos a la temperatura ambiente. La preparación de la enzima NEP, se utilizó a una concentración, la cual proporcionó una proteólisis cuantitativa de 3 μ M de Mca - RRL, en un transcurso de tiempo de 20 minutos, a la temperatura ambiente.

Los ensayos, se llevaron a cabo en placas opacas, blancas, de 384 pozos, a la temperatura ambiente, mediante la utilización de los respectivos péptidos fluorogénicos, auan concentración de 10 µM, en un ensayo tampón (50 mM

Tris / HCl, a una temperatura de 25 °C, 100 mM NaCl, 0,01 % Tween - 20, 1 μ M Zn, 0,025 % BSA). Las NEP y ACE humanas, se utilizaron a unas concentraciones, las cuales proporcionaban una proteósis cuantitativa de 3 μ M de Mca - RRL, en un transcurso de tiempo de 20 minutos, a la temperatura ambiente.

Los compuestos, se diluyeron a 12 concentraciones, las cuales correspondían a unos valores comprendidos dentro de unos márgenes que iban desde los 10 μM a los 20 pM, en el Tampón de ensayo. Los ensayos, se iniciaron, mediante la adicción de 25 μl de enzima, a 12, 5 μl del compuesto de ensayo, a cada una de las 12 concentraciones. Se dejó que, los compuestos, se equilibraran, con la enzima, durante un transcurso de tiempo de 10 minutos, antes de que se añadieran 12,5 μl de substratos fluorogénicos, con objeto de iniciar la reacción. Las reacciones, se determinaron mediante la adición de 10 μl de ácido acético glacial al 3,6 %, después de un transcurso de tiempo de 30 minutos de incubación.

Para los compuestos de ensayo, los cuales contienen sulfhidrilo, dichos compuestos de ensayo, puede diluirse en tampón de ensayo, los cuales contengan una concentración 400 µM de clorhidrato de tris(2-carboxil)fosfina, (de la firma Thermo Scientific, Rockford, IL) (TCEP). Los compuestos de ensayo40 m, se incuban, a continuación, durante un transcurso de tiempo de 40 minutos, a la temperatura ambiente (con objeto de permitir la segmentación del dímero), antes de proceder a añadir la enzima. Se deja, a continuación, que los compuestos se equilibren, con la enzima, durante un transcurso de tiempo de 30 minutos, antes de proceder a añadir los substratos fluorogénicos. Las reacciones, de terminan de la misma forma la cual se ha indicado anteriormente, arriba.

15

20

25

Las placas, se leyeron en un fluorómetro, con longitudes de onda de excitación y de emisión, ajustadas a 320 nm y 405 nm, respectivamente. Los datos en bruto (unidades de fluorescencia relativa), se normalizaron a un % (porcentaje) de actividad, procedente de las lecturas altas medias (no inhibición, 100 % de actividad de la enzima), y de lecturas bajas medias (inhibición completa, la más alta concentración de inhibidor, 0% de actividad enzimática), mediante la utilización de inhibidores estándar de la NEP y de la ACE, respetivamente. La progresión no lineal de los datos normalizados, se realizó, mediante la utilización de un modelo de competición de un sitio, (GraphPad Software, Inc., San Diego, CA). Los datos, se reportaron como valores de pIC $_{50}$.

Los compuestos ejemplares de la invención, se sometieron a tests de ensayo, en este ensayo, o en ensayos similares, y se encontró que, éstos, tenían unos valores de pK₁ para el receptor AT₁ y unos valores de pIC₅₀, para la enzima NEP, correspondientes a los datos los cuales se encuentran representados en la tabla la cual se facilita a continuación.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ej.	AT_1	NEP	Ej.	AT₁	NEP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pIC_{50}			pIC_{50}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		≥ 8,0			≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		≥ 8,0	≥ 5,0		≥ 8,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 1	≥ 8,0		7 - 3	≥ 8,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 2	≥ 8,0	≥ 7,0		≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 3	≥ 7,0	≥ 7,0	7 - 5	≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 4	≥ 8,0	≥ 7,0	7 - 6	≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 5	≥ 7,0	≥ 7,0	7 - 7	≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 6	≥ 8,0	≥ 7,0		≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 7	≥ 8,0		7 - 9	≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 8	≥ 7,0	≥ 6,0	7 - 10	≥ 8,0	≥ 7,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 9	≥ 7,0		7 - 11	≥ 8,0	≥ 7,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		≥ 8,0	≥ 6,0	7 - 12	≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 11	≥ 8,0	≥ 7,0		≥ 8,0	≥ 7,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 12	≥ 8,0	≥ 5,0*	7 - 14	≥ 8,0	≥ 7,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 13	≥ 8,0	≥ 6,0	7 - 15	≥ 8,0	≥ 7,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 14	≥ 8,0	≥ 7,0		≥ 8,0	≥ 7,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 15	≥ 8,0	≥ 7,0	7 - 17	≥ 8,0	≥ 7,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 16	≥ 8,0	≥ 7,0	7 - 18	≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 17			7 - 19	≥ 8,0	≥ 6,0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 18	≥ 8,0		7 - 20	≥ 8,0	≥ 7,0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 19			7 - 21		≥ 7,0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 20	≥ 7,0	≥ 6,0	7 - 22	≥ 7,0	≥ 7,0
$3-22$ $\geq 7,0$	3 - 21	≥ 7,0		8	≥ 7,0	≥ 7,0
$3-23 \ge 8,0 \ge 7,0$ $9-2 \ge 7,0 \ge 7$	3 - 22	≥ 7,0	≥ 7,0	9 - 1	≥ 7,0	≥ 7,0
	3 - 23	≥ 8,0	≥ 7,0	9 - 2		
	3 - 24	≥ 8,0	≥ 6,0	9 - 3	≥ 7,0	≥ 7,0
$3 - 25 \ge 8,0 \ge 7,0$ $9 - 4 \ge 7,0 \ge 7$			≥ 7,0	9 - 4	≥ 7,0	
				9 - 5		

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 27	> 0 0	> = 0*	I	0 6	> 7.0	> 7.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 27	≥ 8,0	≥ 5,0*		9 - 6	≥ 7,0	≥ 7,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 31					≥ 8,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					13		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						≥ 8,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			≥ 5,0		14 - 2	≥ 8,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						≥ 8,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 37					≥ 8,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						≥ 8,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						≥ 8,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 2	≥ 8,0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 3					≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 5	≥ 8,0	≥ 7,0			≥ 8,0	≥ 7,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 6	≥ 8,0	≥ 7,0		14 - 14	≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		≥ 8,0	≥ 7,0		14 - 15	≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		≥ 8,0	≥ 6,0		15 - 1	≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 9	≥ 8,0	≥ 7,0		15 - 2	≥ 7,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		≥ 7,0	≥ 7,0		15 - 3	≥ 7,0	≥ 7,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 11	≥ 8,0	≥ 6,0		15 - 4	≥ 7,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 12	≥ 8,0	≥ 6,0		16 - 1	≥ 8,0	≥ 7,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 13	≥ 8,0	≥ 7,0		16 - 2	≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 14		≥ 7,0		16 - 3	≥ 8,0	≥ 7,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 15		≥ 7,0			≥ 8,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 16	≥ 8,0	≥ 7,0		16 - 5	≥ 8,0	≥ 6,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 17	≥ 8,0			16 - 6	≥ 7,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 18		≥ 7,0			≥ 8,0	≥ 7,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 19	≥ 8,0	≥ 7.0		15 - 1	≥ 8,0	≥ 6,0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 20	≥ 8,0	≥ 7,0			≥ 8,0	≥ 6,0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 21		≥ 7,0			≥ 8,0	≥ 7,0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 22		≥ 7,0		17 - 4	≥ 8,0	≥ 6,0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 23	≥ 8,0	≥ 7,0			≥ 7,0	≥ 7,0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 24	≥ 8,0	≥ 5,0				≥ 6,0
$\begin{array}{c cccc} 6-26 & \geq 8,0 & \geq 6,0 \\ 6-27 & \geq 8,0 & \geq 6,0 \end{array}$	6 - 25						
6 - 27 ≥ 8,0 ≥ 6,0	6 - 26						,
	6 - 27						
	6 - 28	≥ 8,0	≥ 5,0				

^{*} Estos compuestos, son profármacos y, así, por lo tanto, éstos pueden no exhibir activad NEP, en un ensayo in vitro.

5 ENSAYO 2

Ensayo farmacodinámico (PD) para las actividades ACE, AT1, y NPE, en ratas anestesiadas

Se procedió a anestesiar ratas macho, normotensivas, de la raza Sprague Dawley, con 120 mg/kg (i.p.) de inactina. 10 Una vez anestesiadas, la vena yugular, la arteria carótida (tubo PE 50), y la vejiga (catéter urinario de silicona URI-1), se entuban, y se realiza una traqueotomía (Aguja de Teflón, del tamaño patrón 14), para facilitar la respiración instantánea. A los animales, se les otorga, a continuación, un período de estabilización de 60 minutos, y se mantienen continuamente infusionados con 5ml / kg / hora de solución salina (0,9 %), desde el principio hasta el final, con objeto de mantenerlos hidratados y asegurar la producción de orina. Se mantiene la temperatura corporal desde el principio hasta el final del experimento, mediante la utilización de una almohadilla de calentamiento. Al final 15 de los 60 minutos del período de tiempo de estabilización, los animales, se dosifican intravenosamente (i.v.), con dos dosis de angiotensina (Ang I, 1,0 μg / kg, para la actividad de inhibidor de ACE; Ang II, 0,1 μg / kg, para la actividad antagonista del receptor AT₁,), con 15 minutos de separación. A los 15 minutos post-segunda dosis de angiotensina (Angl ó Angll), los animales, se trataron con vehículo o compuesto de ensayo. Después de un transcurso de tiempo 20 de 5 minutos, los animales, se tratan adicionalmente con una inyección de bolo i.v. de péptido natriurético atrial (ANP; 30 µg / kg). La recolección de orina (en tubos del tipo Eppendorf, pre-pesados), se inicia inmediatamente después del tratamiento de ANP, y se continúa, durante un transcurso de tiempo de 60 minutos. Después de unos transcursos de tiempo de 30 y 60 minutos, en la recolección de orina, los animales se re-estimulan con angiotensina (Angl ó Angll). Se procede a realizar mediciones de la presión sanguínea, utilizando el sistema Notocord (Kalamazoo, MI). Las muestras de orina, se congelan a una temperatura de – 20 °C, hasta que éstas se utilizan para el ensayo de cGMP. Las concentraciones de cGMP de la orina, se determinan mediante un inmunoensayo enzimático, utilizando un equipo comercial, a modo de "kit", (Assay Designs, Ann Arbor, Michigan, Cat. No. 901 - 013). Se procede a determinar el volumen de la orina, de una forma gravimétrica. El caudal urinario de cGMP, se calcula como producto del caudal de orina y de la concentración de cGMP en la orina. La inhibición de ACE ó el antagonismo de AT1, se valora mediante la cuantificación del % (porcentaje) de inhibición de la respuesta presora a la Angl ó la Angll, respectivamente. La inhibición de la NEP, se valora mediante la cuantificación de la potenciación de elevación inducida por ANP, en el caudal o volumen urinario de cGMP.

ENSAYO 3

10

20

25

30

35

40

45

50

15 Evaluación in vivo de los efectos antihipertensivos en el modelo de SHR conscientes, de la hipertensión

A las ratas espontáneamente hipertensas (SHR, de 14 - 20 semanas de edad, se las deja aclimatar durante un transcurso de tiempo mínimo de 48 horas, después de su llegada al lugar del test de ensayo. Siete días previos al ensayo, los animales, o bien se emplazan en una dieta restrictiva baja en sal, con comida que contiene un 0,1 % de sodio, para SHRs con ingesta de sodio reducida (SD-SHR), o bien se emplazan en una dieta normal para SHRs, con ingesta de sodio reducida (SR-SHR). Dos días previos a su sometimiento al test de ensayo, los animales, se implementan quirúrgicamente con catéteres, en el interior de la arteria carótida, y en la vena yugular (tubo de polietileno PE50), conectados vía un tubo de polietileno PE10, a un tubo de silicona seleccionado (de un tamaño 0,020 de DI (diámetro interior) x 0,037 DE (diámetro exterior x 0,008 de pared), para la medición de la presión sanguínea, y el suministro del compuesto de ensayo, respectivamente. A los animales, se les deja recuperar, con un cuidado post-operatorio apropiado. En el día del experimento, los animales, se emplazan en sus jaulas, y los catéteres, se conectan vía un eslabón giratorio, a un transductor de presión calibrado. Después de un transcurso de tiempo de 1 hora de aclimatación, se toma una medición de línea de base, durante un transcurso de tiempo de por lo menos cinco minutos. Los animales, se dosifican, a continuación, i.v., con vehículo o con compuesto de ensayo, en dosis acumulativas ascendentes, cada 60 minutos, seguido de 0,3 ml de un suero salino, para aclarar el catéter, después de cada dosis. Los datos, se registran continuamente, durante toda la duración del estudio, utilizando un software informático del tipo Notocord (Kalamazoo, MI), y éstos se almacena como señales digitales electrónicas. En algunos estudios, los efectos de una dosis intravenosa u oral, individual (gavaje), se controlan durante un transcurso de tiempo de por lo menos 6 horas, después de la dosificación. Los parámetros medidos, son la presión sanguínea (sistólica, diastólica, y presión arterial media), y la frecuencia cardíaca.

ENSAYO 4

Evaluación in vivo de los efectos antihipertensivos en el modelo de ratas de sal DOCA conscientes, de la hipertensión

A las ratas CD (machos adultos, de 200 – 300 gramos, de procedencia de los laboratorios Charles River Laboratory, USA), se las deja aclimatar durante un transcurso de tiempo mínimo de 48 horas, después de su llegada al lugar del test de ensayo, antes de que éstas se sometan a una dieta alta en sal. Una semana después del inicio de la dieta alta en sal se procedió a implantar, subcutáneamente, un gránulo de sal DOCA (100 mg, 21 días de tiempo de liberación, de la firma Innovative Research of America, Sarasota, FL), y se procedió a realizar una nefrectomía unilateral. En los días 16 ó 17 post-implantación del gránulo de sal DOCA, los animales, se implementan quirúrgicamente con catéteres, en el interior de la arteria carótida, y en la vena yugular (tubo de polietileno PE50, el cual a su vez, se conectaba, vía un tubo de polietileno PE10, a un tubo de silicona seleccionado (de un tamaño 0,020 de DI (diámetro interior) x 0,037 DE (diámetro exterior x 0,008 de pared), para la medición de la presión sanguínea, y el suministro del compuesto de ensayo, respectivamente. A los animales, se les deja recuperar, con un cuidado post-operatorio apropiado.

En el día del experimento, cada animal, se emplaza en su jaula, y se conecta vía un eslabón giratorio, a un transductor de presión calibrado. Después de un transcurso de tiempo de 1 hora de aclimatación, se toma una medición de línea de base, durante un transcurso de tiempo de por lo menos cinco minutos. Los animales, se dosifican, a continuación, i.v., con vehículo o con compuesto de ensayo, en dosis acumulativas ascendentes, cada 60 minutos, seguido de 0,3 ml de un suero salino, para lavar el catéter, después de cada dosis. En algunos estudios, los efectos de la dosis individual, intravenosa u oral (gavaje), se ensaya y se controla, durante un transcurso de tiempo de por menos 6 horas, después de la dosificación. Los datos, se registran continuamente, durante toda la duración del estudio, utilizando un software informático del tipo Notocord (Kalamazoo, MI), y se almacenan como señales digitales electrónicas. Los parámetros medidos, son la presión sanguínea (sistólica, diastólica, y presión arterial media), y la frecuencia cardíaca. Para una dosis acumulativa e individual, el porcentaje de cambio, en la presión arterial media (MAP, mmHg) ó la frecuencia cardíaca (HR, bmp), se determinan de la forma que se ha descrito para el ensayo 3.

REIVINDICACIONES

1.- Un compuesto de la fórmula I:

5

$$R^3$$
 Z N R^5 R^4

10

en donde, Z, es un pirazol, seleccionado de entre:

15

20 Ar, se selecciona de entre

25

$$(R^2)_a \xrightarrow{\text{tw}} R^1 \xrightarrow{\text{tw}}$$

R¹, se selecciona de entre -SO₂NHC(O)R^{1a}, tetrazolilo, -C(O)OR^{1b}

30

35

en donde, R^{1a}, es -alquilo C₁₋₆, -alquilen C₀₋₆-OR, -cicloalquilo C₃₋₇, -alquilen C₀₋₅-NR^{1b}R^{1c}, piridilo, isoxazolilo, metilisoxazolilo, pirrolidinilo, morfolinilo, y fenilo opcionalmente sustituido mediante halo; en donde, cada R^{1b}, se selecciona, de una forma independiente, de entre H y -alquilo C1-6;

a, es 0, 1, ó 2; R², es F; 40

R³, se selecciona de entre -alquilo C₂₋₅ y -O- alquilo C₁₋₅;

45

alquilo C1-6, -CH(CH3)OC(O)O- alquilo C1-6, -CH(CH3)OC(O)O- cicloalquilo C3-7, ó:

50

R^{4d}, es H ó -C(O)-R^{4e}; y R^{4e}, es - alquilo C₁₋₆, -alquil C₁₋₆-NH₂ ó arilo; y

55

R⁵, se selecciona de entre -alquilo C₁₋₆, -CH₂-furanilo, -CH₂-tiofenilo, bencilo, y bencilo, sustituido mediante uno o más halo, o grupos -CH3, ó -CF3;

60

en donde, cada anillo, en Ar, se encuentra opcionalmente sustituido mediante 1 a 3 sustituyentes, seleccionados, de una forma independiente, de entre -OH, - alquilo C1-6, -alquenilo C2-4, -alquinilo C2-4, -CN, halo, -O-alquilo C1-6, -Salquilo C1-6, -S(O)- alquilo C1-6, -S(O)2- alquilo C1-4, -fenilo, -NO2, -NH2, -NH-alquilo C1-6 y -N(alquilo C1-6)2, en donde, cada alquilo, alquenilo y alquinilo, se encuentra opcionalmente sustituido mediante 1 a 5 átomos de flúor;

o una sal de éste, farmacéuticamente aceptable.

2.- El compuestos de la reivindicación 1, en donde, Z, es:

3.- El compuesto de la reivindicación 1, en donde, Ar, es:

5

10

15

20

25

65

$$R^1$$
, R^1 ,

4.- El compuesto de la reivindicación 1, en donde, R¹, es -SO2NHC(O)CH3, -SO2NHC(O)CH2CH3, -SO2NHC(O)OCH3, -SO2NHC(O)OCH2CH3, -SO2NHC(O-CH2-OCH3, -SO2NHC(O)CH2OH, -SO2NHC(O)CH2(CH3)OH, -SO2NHC(O)C(CH3)2OH, -SO2NHC(O)CH2OCH3, -SO2-NHC(O)(CH2)2OCH3, -SO2NHC(O)-ciclopropilo, -SO2NHC(O)NH(CH3), -SO2NHC(O)N(CH3)2, -SO2NHC(O)NH-(CH2CH3), -SO2NHC(O)C(CH3)2NH2, -SO2NHC(O)-2-piridilo, -SO2NHC(O)-4-piridilo, -SO2NHC(O)-5-isoxazolilo, -SO2 NHC(O)-3-isoxazolil-5-metilo, -SO2NHC(O)-1-pirrolidilo, -SO2NHC(O)-4-morfolinilo, -SO2NHC(O)fenilo, -SO2-NHC(O)-2-fluorofenilo, 1H-tetrazol-5-ilo, -COOH, -C(O)OCH3,

- 45 5.- El compuesto de la reivindicación 1, en donde, R³, es propilo, etilo, butilo, ó etoxi;
 - 6.- El compuesto de la reivindicación 1, en donde, R^{4} , es -CH2SH, -CH2N(OH)C(O)H, -CH2C(O)NH(OH), -CH(OH)C(O)NH(OH), -CH(OH)COOH, ó -CH2COOH.
- 7.- El compuesto de la reivindicación 1, en donde, R^4 , es -CH₂-S-C(0)CH₃, -CH₂C(0)NH-OC(0)CH₃, -CH₂C(0)NH-OC(0)-CH(NH₂)[CH(CH₃)₂], -CH(OH)C(0)OCH₃, -CH₂C(0)OCH₃, -CH₂C(0)OCH₃, -CH₂C(0)OCH₃, -CH₂C(0)OCH₃, -CH₂C(0)O(CH₂)₃CH₃, -CH₂C(0)O(CH₂)₄CH₃, -CH₂C(0)OCH(CH₃)₅OC(0)OCH(CH₃)OC(0)OCH(CH₃)₆OC(0)OCH(CH₃)OC(0)OCH(CH

8.- El compuesto de la reivindicación 1, en donde, R⁵, es *i*-butilo, -CH₂-furan-2-ilo, -CH₂-tiofen-3-ilo, bencilo, 2-bromobencilo, 2-clorobencilo, 2-fluorobencilo, 3-fluorobencilo, 4-fluorobencilo, 2-metilbencilo, ó 2-trifluorometilbencilo.

9.- El compuesto de la reivindicación 1, el cual tiene la fórmula II:

en donde, Ar, es:

 $R^1, es \quad -SO_2NHC(O)CH_3, \quad -SO_2NHC(O)CH_2CH_3, \quad -SO_2NHC(O)OCH_3, \quad -SO_2NHC(O)OCH_2CH_3, \quad -SO_2NHC(O)CH_2CH_3, \quad -SO_2NHC(O)CH_3CH_2, \quad -SO_2NHC(O)CH_3CH_2, \quad -SO_2NHC(O)CH_3, \quad -SO_2NHC(O)C$

R³, es propilo, etilo, butilo, ó etoxi;

60 R⁵, es *i*-butilo, -CH₂-furan-2-ilo, -CH₂-tiofen-3-ilo, bencilo, 2-bromobencilo, 2-clorobencilo, 2-fluorobencilo, 3-fluorobencilo, 4-fluorobencilo, 2-metilbencilo, 6 2-trifluorometilbencilo;

10.- El compuesto de la reivindicación 1, el cual tiene la fórmula IV:

65

У

30

35

45

10 11.- El compuesto de la reivindicación 10, en donde, Z, es:

Ar, es:

5

R¹, es -SO2NHC(O)CH3, -SO2NHC(O)CH2CH3, -SO2NHC(O)OCH3, -SO2NHC(O)OCH2CH3, -SO2NHC(O-CH2-OCH3, -SO2NHC(O)CH2OH, -SO2NHC(O)CH(CH3)OH, -SO2NHC(O)C(CH3)2OH, -SO2NHC(O)CH2OCH3, -SO2NHC(O)CH2OCH3, -SO2NHC(O)CH2)2OCH3, -SO2NHC(O)-ciclopropilo, -SO2NHC(O)NH(CH3), -SO2NHC(O)N(CH3)2, -SO2NHC(O)NH-(CH2CH3), -SO2NHC(O)C(CH3)2NH2, -SO2NHC(O)-2-piridilo, -SO2NHC(O)-4-piridilo, -SO2NHC(O)-5-isoxazolilo, -SO2 NHC(O)-3-isoxazolil-5-metilo, -SO2NHC(O)-1-pirrolidilo, -SO2NHC(O)-4-morfolinilo, -SO2NHC(O)fenilo, -SO2NHC(O)-2-fluorofenilo, 1H-tetrazol-5-ilo, -COOH, -C(O)OCH3,

R³, es propilo, etilo, butilo, ó etoxi;

 R^{4b} , es H ó -OH; y R^{4c} , es H, -CH3, -CH2CH3, -CH(CH3)2, -(CH2)2CH3, -(CH2)3CH3, -(CH2)4CH3, -CH(CH3)OC(O)-0CH2CH3, -CH(CH3)OC(O)OCH(CH3)2, -CH(CH3)OC(O)O-ciclohexilo,

У

- R⁵, es *i*-butilo, -CH₂-furan-2-ilo, -CH₂-tiofen-3-ilo, bencilo, 2-bromobencilo, 2-clorobencilo, 2-fluorobencilo, 3-fluorobencilo, 4-fluorobencilo, 2-metilbencilo, ó 2-trifluorometilbencilo.
- 12.- Una composición farmacéutica, la cual comprende un compuesto según se reivindica en una cualquiera de las reivindicaciones 1 a 11, y un portador farmacéuticamente aceptable, y que, de una forma opcional, comprende, adicionalmente, un segundo agente terapéutico, seleccionado de entre el grupo consistente en los diuréticos, en los bloqueantes de los receptores β1-adrenérgicos, en los bloqueantes de los canales de calcio, en los inhibidores de la enzima conversora de la angiotensina, en los antagonistas de los receptores AT₁, en los inhibidores de la neprilisina, en los agentes antiinflamatorios no esteroideos, en las prostaglandinas, en los agentes antilípidos, en los agentes antiidiabéticos, en los agentes antitrombóticos, en los inhibidores de la renina, en los antagonistas de los receptores de la endotelina, en los inhibidores de la enzima de conversión de la endotelina, en los antagonistas de la aldosterona, en los inhibidores de la enzima de conversión de la angiotensina / inhibidores de la neprilisina, en los antagonistas de los receptores de la vasopresina, y en combinaciones de entre éstos.
- 15 13.- Un procedimiento para la preparación de un compuesto, según se reivindica en una cualquiera de las reivindicaciones 1 a 11, el cual comprende:
 - (a) Acoplar un compuesto de la fórmula 1, con un compuesto de la fórmula 2:

$$R^3$$
OH
 H_2N
 R^5
 R^4
 R^4
 R^5
 R^4

para producir un compuesto de la fórmula:

5

10

20

25

45

50

55

60

en donde, Ar^* , representa $Ar-R^{1^*}$, en donde, R^{1^*} , es R^1 , o una forma protegida de R^1 ; y R^{4^*} , representa R^4 ó una forma protegida de R^4 ; y Ar, R^1 , R^3 , R^4 , R^5 y Z; tienen los significados dados en la reivindicación 1; y

- 40 (b) cuando R^{1*}, es una forma protegida de R¹ y / ó R^{4*} es una forma protegida de R⁴, desproteger el producto de la etapa (a), para producir un compuesto de la fórmula I.
 - 14.- Un producto intermedio de utilidad en la síntesis de un compuesto según se reivindica en una cualquiera de las reivindicaciones 1 a 11, seleccionado de entre el grupo el cual comprende:

en donde, Ar^{*}, es Ar-R^{1*}; R^{1*}, es -SO₂-NH-P⁶ ó trazolil-P⁴, R^{4*}, es -CH₂-S-P³, -CH₂-N(O-P⁵)-C(O)H, -CH(R^{4b})-C(O)NH(O-P⁵), ó -CH(R^{4b})C(O)O-P²; P², es un grupo carboxi-protector, seleccionado de entre metilo, etilo, *t*-butilo, bencilo, *p*-metoxibencilo, 9-fluorenilmetilo, trimetilsililo, *t*-butildimetilsililo, y difenilmetilo; P³, es un grupo tiol-protector, seleccionado de entre éteres y ésteres; P⁴, es un grupo tetrazol-protector, seleccionado de entre tritilo y difenilmeilo; P⁵, es un grupo hidroxilo-protector, seleccionado de entre alquilo C₁₋₆, grupos sililo, ésteres, y arilmetilo; y P⁶, es un grupo sulfonamida-protector, seleccionado de entre los grupos *t*-butilo y acilo; y Ar, R³, R⁴, R⁵, R^{4b} y Z, tienen los significados proporcionados en la reivindicación 1: ó una sal de éste.

- 15.- Un compuesto, según se reivindica en un cualquiera de las reivindicaciones 1 a 11, para su uso en terapia.
- 16.- Un compuesto, según se reivindica en la reivindicación 15, para su uso en el tratamiento de la hipertensión o en la insuficiencia cardíaca.