

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 613 408

51 Int. Cl.:

B65B 21/04 (2006.01) B65B 35/50 (2006.01) B65B 35/44 (2006.01) B65B 35/40 (2006.01) B65B 43/42 (2006.01) B65B 59/02 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 21.12.2009 PCT/US2009/068954

(87) Fecha y número de publicación internacional: 08.07.2010 WO2010078106

96 Fecha de presentación y número de la solicitud europea: 21.12.2009 E 09836988 (7)

(97) Fecha y número de publicación de la concesión europea: 14.12.2016 EP 2370318

54 Título: Máquinas de envasar con cargador de tambor sincronizado de recogida dividida

(30) Prioridad:

29.12.2008 US 203841 P

45) Fecha de publicación y mención en BOPI de la traducción de la patente: 24.05.2017

(73) Titular/es:

GRAPHIC PACKAGING INTERNATIONAL, INC. (100.0%) 814 Livingston Court Marietta, GA 30067, US

(72) Inventor/es:

CAIN, DAVID, HARRISON

(74) Agente/Representante:

DURÁN MOYA, Luis Alfonso

DESCRIPCIÓN

Máquinas de envasar con cargador de tambor sincronizado de recogida dividida

5 **SECTOR TÉCNICO**

10

15

20

25

30

35

40

45

50

55

60

65

Esta invención se refiere, en general, a máquinas de envasar artículos en movimiento continuo a alta velocidad, para el envasado de artículos tales como, por ejemplo, latas de bebidas, en cajas de lámina de cartón y, más concretamente, a cargadores de tambor de dichas máquinas de envasar. Además, la presente invención se refiere a un procedimiento para ajustar el perfil compuesto de las caras de carga de un cargador de tambor.

ANTECEDENTES

Las máquinas para envasar artículos que disponen artículos tales como latas de comida y de bebida y botellas, en grupos de unos tamaños y configuraciones deseados y colocan estos grupos de artículos en cajas de cartón o de cartón ondulado, son bien conocidas. En algunos tipos de máquinas de envasar, las operaciones de envasado pueden ser realizadas simultáneamente, mientras que en otras deben ser realizadas de manera secuencial, permitiendo el envasado de grupos de artículos en cajas de cartón a unas velocidades de centenares de cajas por minuto. Por ejemplo, no está fuera de lo común, el caso de máquinas de envasar que funcionan a velocidades de producción de doscientas cajas por minuto, hasta trescientas cajas por minuto y más elevadas. Las máquinas de envasar utilizan una diversidad de técnicas para agrupar los artículos a envasar que dependen, en general, del tipo de máquina y de la clase de caja utilizada. Algunas máquinas, por ejemplo, colocan los artículos en una caja de cartón del tipo de elemento tubular, habitualmente mediante la formación del elemento tubular a partir de una pieza base de cartón, agrupando los artículos, y empujando o deslizando cada grupo de artículos al interior de un elemento tubular abierto que se cierra a continuación por ambos extremos. Por ejemplo, la Patente U.S.A. -A-5.896.728 da a conocer una instalación de alta velocidad de colocación en cajas de cartón en la que los grupos de artículos apilados, desplazados a lo largo de un mecanismo de transporte de los grupos de artículos, son empujados por medio de un mecanismo de carga transversal que tiene una serie de brazos cargadores, en los correspondientes elementos tubulares de cartón alineados, con las aletas de los elementos tubulares de cartón obligadas a abrirse mediante chorros de aire liberados por un mecanismo de emisión de gas que incluye una serie de toberas de chorros de aire para evitar de este modo que las aletas interfieran en la carga de los grupos de artículos. Por otra parte, la Patente U.S.A. -A-7.240.467 muestra una máquina de envasar que tiene un transportador para desplazar artículos a lo largo de una serie de bandas definidas por medio de carriles de guía oblicuos y a continuación a los extremos abiertos de las cajas de cartón. Otras máquinas pueden colocar cajas de cartón del tipo de cesta encima de un grupo de artículos y a continuación cerrar la caja de cartón a lo largo de su lado inferior para completar la operación de envasado. Otras máquinas más pueden conformar los artículos en grupos y luego envolver una pieza base de lámina de cartón alrededor de cada grupo de artículos para formar un envase completo. Estas cajas de cartón de tipo envolvente pueden incluir características que permiten que los extremos opuestos de la caja colaboren para formar un mecanismo de cierre que mantiene la caja de cartón del tipo de envoltura unida alrededor de cada grupo de artículos. Se puede utilizar un pegamento u otros productos químicos para unir las superficies de cartón entre sí en cualquier tipo de caja, tanto solo como en asociación con características mecánicas de cierre de la caja de cartón tales como lengüetas y ranuras.

Cuando se envasan artículos tales como latas de bebidas refrescantes y de cerveza en cajas de cartón, en ocasiones es deseable agrupar los artículos en dos capas en el interior de la caja, con una capa de artículos en posición vertical superpuesta a una capa inferior de artículos en posición vertical. Es habitual separar las capas con una placa divisora de lámina de cartón sobre la que reposa la capa superior. Dicha configuración de envasado se denomina a veces "envasado en doble capa". Las máquinas de envasar para obtener el envasado de artículos en doble capa son conocidas, estando ejemplificada una de dichas máquinas en la Patente U.S.A. número 5.758.474 de Ziegler, que es propiedad común del beneficiario de la presente solicitud y está incorporada totalmente en esta descripción como referencia. Dichas máquinas de envasar pueden comprender, en general, un conjunto de alimentación que dirige progresivamente los artículos en grupos hacia los compartimentos selectores de un tramo selector, que se desplaza de manera sincronizada. El conjunto de alimentación incluye una cinta de alimentación superior y bandas asociadas de alimentación para dirigir la capa inferior de artículos hacia los compartimentos. Una cinta de alimentación separada situada debajo y las bandas de alimentación asociadas, que pueden estar dispuestas a un nivel elevado con respecto a la cinta de alimentación superior y a las bandas, dirige progresivamente la capa superior de artículos hacia los compartimentos selectores, por encima de la capa inferior de artículos ya cargada. De este modo, los artículos están organizados en dos capas superpuestas en los compartimentos selectores y, a continuación, son empujados mediante un conjunto empujador, en ocasiones denominado "cargador de tambor" hacia una caja de cartón abierta, en espera, en el tramo adyacente de cajas de cartón y que se mueve de manera sincronizada. A continuación, las cajas son cerradas para completar el proceso de envasado.

Otro ejemplo de una máquina de envasar en doble capa se da a conocer en la Patente U.S.A.-A-8.074.430 asimismo propiedad del beneficiario de la presente invención, cuyo contenido completo está incorporado en esta descripción como referencia. En este ejemplo, una capa inferior de artículos se desplaza desde sus bandas de

alimentación a los compartimentos de selección adyacentes que se desplazan de manera sincronizada, que los agrupan en una configuración predeterminada. Un carril fijo de empuje arrastra a continuación la capa inferior de artículos desde los compartimentos de selección hacia los compartimentos de latas alineadas que se desplazan de manera sincronizada, lo que libera los compartimentos de selección. Se coloca un panel divisor encima de la capa inferior de artículos en los compartimentos de las latas. A continuación se desplaza una capa superior de artículos desde sus bandas de alimentación hacia los compartimentos de selección liberados, los cuales, de nuevo, agrupan la capa superior de artículos con la misma configuración que la capa inferior de artículos. El tramo de selección sube a continuación hacia arriba a un nivel superior, transportando las capas superiores de artículos hacia arriba hasta una posición por encima de las capas inferiores de artículos en los compartimentos de las latas. Otro carril empujador fijo arrastra a continuación la capa superior de artículos elevados hacia los compartimentos adyacentes de las latas por encima de la capa inferior de artículos ya organizados sobre la misma. Los artículos son organizados de este modo en grupos de dobles capas en el interior de los compartimentos de las latas. Unas varillas empujadoras de un conjunto empujador adyacente o un cargador de tambor se extienden a continuación lateralmente para empujar los grupos de artículos organizados en una doble capa al interior de las cajas de cartón abiertas en un tramo adyacente de las cajas de cartón que se desplaza de manera sincronizada. A continuación se cierran las cajas para completar la operación de envasado.

Los cargadores de tambor de las máquinas de envasar, tales como los descritos anteriormente, pueden adoptar diversas formas. Un tipo de cargador de tambor ejemplificado en la Patente U.S.A nº 5.758.474 antes mencionada comprende, en general, un par de tramos de cadena distanciados entre sí que transportan una serie de conjuntos de brazos de carga. Los conjuntos de brazos de carga están orientados transversalmente con respecto a la dirección descendente de la máquina y son adyacentes y se desplazan sincronizados con los compartimentos de selección o los compartimentos de latas (dependiendo del tipo de máguina de envasado en doble capa que se está utilizando) que contienen artículos agrupados tales como latas de debidas. Las cajas de cartón con los extremos abiertos se desplazan de manera sincronizada con los compartimentos de selección o con los compartimentos de latas en el lado opuesto al cargador de tambor. Los conjuntos de brazos cargadores incluyen brazos de carga que se pueden extender sobre varillas en una dirección transversal hacia los compartimentos de selección o los compartimentos de latas y hacia las cajas de cartón abiertas en sus lados opuestos. Los brazos de carga tienen seguidores de leva y el cargador de tambor incluye superficies de leva que son oblicuas con respecto a la dirección descendente de la máquina de envasar. Cuando los brazos cargadores son desplazados en dirección descendente por medio de sus tramos de cadena, los seguidores de leva de los brazos de carga se acoplan a las superficies oblicuas de las levas que hacen que los brazos cargadores se extiendan en sentido transversal. Los brazos cargadores tienen caras de carga en sus extremos que están dimensionadas y configuradas para acoplarse a un grupo de latas o de botellas en un compartimento de selección o en un compartimento de latas cuando el brazo de carga se extiende para empujar el grupo progresivamente desde el compartimento selector o desde el compartimento de latas hacia los elementos tubulares de las cajas de cartón abiertas en espera. Cuando un brazo de carga está totalmente extendido y se ha completado la transferencia, se inicia el retroceso del brazo y es conducido alrededor del tramo inferior de la cadena donde su seguidor de leva se acopla con otra superficie de leva oblicua para retirar el brazo de carga a su posición de reposo mientras retrocede al extremo superior del cargador de tambor para el ciclo siguiente.

Un problema de los cargadores de tambor de la técnica anterior es que no se pueden cambiar fácilmente para poder cargar artículos tales como latas de bebidas de tamaños diferentes y/o en diferentes cantidades o configuraciones. En general, dicho cambio requiere que la máquina de envasar se haya detenido, que las caras actuales del cargador sean desmontadas de los brazos de carga y que sean acopladas a los brazos de carga unas caras del cargador diferentes, configuradas para el nuevo tamaño de recipiente y/o la nueva configuración. Alternativamente, un conjunto de accesorios y/o prolongadores puede ser acoplado a las caras del cargador para configurar de nuevo las caras para una diferente configuración del recipiente. Este proceso precisa tiempo, tiene como resultado un tiempo excesivo de paro de la máquina y está sometido a errores humanos. Existe la necesidad de un cargador de tambor mejorado que solucione éstos y otros problemas y es para proporcionar dicho cargador de tambor y una máquina de envasar que incluya dicho cargador de tambor que la presente invención está dirigida principalmente.

SUMARIO

5

10

15

20

25

30

35

40

45

50

55

60

La solicitud provisional de Patente U.S.A. número de serie 61/203.841 registrada el 29 de Diciembre de 2008, cuya prioridad se ha reivindicado anteriormente, está incorporada en su totalidad en esta memoria como referencia.

Descrita brevemente, se da a conocer una máquina de envasar de movimiento continuo a alta velocidad con un cargador de tambor mejorado. En la realización preferente y mostrada, la máquina de envasar es una máquina de envasar en doble capa del segundo ejemplo descrito anteriormente y por lo tanto tiene un tramo de latas entre los compartimentos de selección y el tramo de las cajas de cartón, en el que están organizadas dos capas de artículos agrupados. Sin embargo, se debe comprender que el cargador de tambor de esta invención no está limitado a dichas máquinas de envasar, y puede ser aplicado a virtualmente cualquier tipo de máquina de envasar en la que unos grupos de artículos sean empujados hacia cajas de cartón en espera.

El cargador de tambor comprende un par de pistas superiores de cadenas distanciadas y un par de pistas inferiores de cadenas distanciadas que soportan los tramos de cuatro cadenas sinfín. El correspondiente primer par de los

tramos de las cadenas interiores es transportado a lo largo del interior de las pistas de la cadena y el segundo par correspondiente de los tramos exteriores de la cadena es transportado a lo largo del exterior de las pistas de la cadena. Las cadenas de los tramos exteriores se extienden alrededor y son accionadas por ruedas dentadas exteriores sincronizadas y las cadenas del tramo interior se extienden alrededor y son accionadas por ruedas dentadas interiores sincronizadas. Las ruedas dentadas exteriores e interiores son accionadas a la misma velocidad de rotación para desplazar los tramos de cadena interior y exterior en dirección descendente a lo largo de la pista de la cadena superior a la misma velocidad. No obstante, las ruedas dentadas interiores son accionadas a través de una caja de engranajes sincronizados que permite que las ruedas dentadas interiores sean adelantadas o retrasadas en el ángulo de fase deseado con respecto a las ruedas dentadas exteriores. Como consecuencia, las posiciones de los tramos de la cadena interior se avanzan o retrasan asimismo con respecto a los tramos de la cadena exterior. Sin embargo, la fase de los tramos de la cadena interior con respecto a la fase de los tramos de la cadena exterior es ajustable selectivamente por medio del ajuste de la caja de engranajes sincronizada.

10

15

20

35

40

45

50

55

60

65

Los conjuntos del brazo de carga que se extienden transversalmente están fijados a intervalos distanciados a las cadenas y son transportados por la misma en dirección descendente a lo largo de los tramos de la cadena superior (y en una dirección de retorno ascendente a lo largo de las pistas de la cadena interior). Cada conjunto de brazo de carga incluye un primer brazo cargador y un segundo brazo cargador paralelo y adyacente que se extiende transversalmente con respecto a los tramos de cadena y a la dirección descendente de la máquina. El primer brazo de carga está montado de forma deslizante sobre varillas que están fijadas y son transportadas por los tramos de la cadena interior, y el segundo brazo de carga está montado de forma deslizante sobre varillas que están fijadas y son transportadas por los tramos de la cadena exterior. De este modo, el primer y el segundo brazos de carga de cada conjunto de brazos de carga se pueden extender y retrasar en dirección transversal con respecto a las pistas de la cadena y en dirección descendente.

El primer y el segundo brazo de carga transportan seguidores de leva que están acoplados a las superficies oblicuas de las levas del cargador de tambor para hacer que el primer y el segundo brazos de carga se extiendan progresivamente desde una posición retrasada o de reposo a una posición totalmente extendida cuando se desplazan a lo largo de las pistas de la cadena superior en dirección descendente. Los seguidores de leva se acoplan a otras superficies de leva cuando vuelven a lo largo de la pista de la cadena interior para hacer que los brazos de carga retrocedan a sus posiciones de reposo antes de desplazarse hacia atrás alrededor de la pista de la cadena superior para el ciclo siguiente.

Los extremos de cada brazo de carga de un conjunto de un brazo cargador están dotados de la cara de carga correspondiente y las caras de carga tienen generalmente forma de peine con dientes orientados de modo que quedan intercalados cuando las caras del cargador son puestas juntas. De este modo se puede decir que las caras del cargador se solapan. Durante una operación de envasado los brazos de carga de cada conjunto se extienden a medida que se desplazan en dirección descendente, de tal modo que sus caras de carga se acoplan y empujan los artículos agrupados desde los compartimentos adyacentes de las latas (o desde los compartimentos de selección dependiendo de la máquina) hacia las cajas de cartón que se mueven de manera sincronizada sobre un tramo opuesto adyacente de la caja de cartón.

Para ajustar el cargador de tambor para alojar diferentes tamaños de recipientes o recipientes agrupados en configuraciones diferentes, el operador solamente precisa ajustar la caja de engranajes sincronizados para adelantar o retrasar el tramo de la cadena interior en la magnitud deseada. Esto hace que los brazos de carga de cada conjunto de brazo cargador se desplacen juntos más cerca o se distancien, lo que, a su vez desplaza las caras de carga de los brazos más juntas o más distanciadas. El perfil del área superficial combinada o compuesta de las caras del cargador se puede ensanchar de este modo para acoplar y empujar grupos de artículos más anchos, y se puede estrechar para acoplar y empujar grupos de artículos más estrechos, todo ello con un simple y rápido ajuste de fase de la caja de engranajes sincronizada. Las caras del cargador se pueden mover asimismo significativamente distanciadas de manera que cada cara del cargador empuja un grupo separado de recipientes en compartimentos separados de selección. Esto se denomina como una configuración de "recogida dividida". La configuración de recogida dividida de las caras del cargador puede requerir algún ajuste manual de los conjuntos de los brazos de carga y/o de la máquina de envasar dado que las caras del cargador son desplazadas a más distancia mientras que los divisores que definen los compartimentos de selección son desplazados para juntarse más. Dicho de otro modo, en caso de funcionamiento con recogida dividida, las caras del cargador y los divisores no están en fase juntos en la misma dirección, que es el funcionamiento normal automático sincronizado de la máquina. No obstante, con la excepción de la configuración de recogida dividida, no es preciso que el operador detenga la máquina durante un largo periodo de tiempo, como era el caso en el pasado, para cambiar la máquina para diferentes operaciones de envasado que impliquen diferentes agrupaciones y/o tamaños y/o configuraciones de artículos a envasar.

De este modo, se da a conocer una máquina de envasar exclusiva con un cargador de tambor sincronizado de recogida dividida que posee atributos definidos y que representa mejoras definidas con respecto a la técnica anterior. Estos y otros aspectos, características y ventajas del cargador de tambor de esta invención se apreciarán mejor al revisar la descripción detallada expuesta más adelante cuando se toma conjuntamente con las figuras de los dibujos adjuntos, que están descritas brevemente tal como sigue.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

5

20

30

35

40

45

50

55

60

La figura 1 es una vista, en perspectiva, de una máquina de envasar artículos a gran velocidad de manera continua que incluye un cargador de tambor sincronizado de recogida dividida según la presente invención.

La figura 2 es una perspectiva, ampliada, de la parte del cargador de tambor de la máquina de envasar representada en la figura 1.

La figura 3 es una vista superior, en planta, de la parte del cargador de tambor de la máquina de envasar representada en la figura 1.

La figura 4 es una vista superior, en perspectiva, de un cargador de tambor fabricado y funcionando según la presente invención.

La figura 5 es una vista, en perspectiva, ampliada, de una parte del extremo inferior de la parte del cargador de tambor.

La figura 6 es una vista, en perspectiva, menos ampliada, de la parte del extremo inferior del cargador de tambor mostrando el eje de accionamiento sincronizado.

La figura 7 es una vista, en perspectiva, ampliada, que muestra la parte del extremo delantero de un conjunto de un brazo cargador delantero y su cara de carga según la invención.

La figura 8 es una vista, en perspectiva, ampliada, que muestra la parte extrema posterior del conjunto del brazo de carga de la figura 8 mostrando el bloque de casquillos, el seguidor de la leva y la barra de impacto.

Las figuras 9 a 13 muestran varios posibles distanciamientos de las caras del cargador como resultado de las fases correspondientes de los conjuntos de los brazos de carga para diferentes tamaños y configuraciones de las agrupaciones de artículos que están siendo empujados desde los compartimentos de selección hacia las cajas de cartón.

DESCRIPCIÓN DETALLADA

Haciendo referencia a continuación con más detalle a los dibujos, en los que numerales de referencia iguales indican partes iguales en las distintas vistas, la figura 1 representa a modo de ejemplo una máquina de envasar a alta velocidad de movimiento continuo, en este caso una máquina para el envasado de latas de bebidas, que incluye un cargador de tambor según la presente invención. La máquina de envasar latas de bebidas de la realización mostrada es una máquina de envasar de doble capa del tipo que tiene un tramo de selección en pendiente y compartimentos adyacentes para las latas para la organización de capas de grupos de artículos, tal como se ha descrito anteriormente con más detalle. La invención no está limitada a este tipo particular de máquina de envasar, pero puede estar incorporada a otros tipos de máquina de envasar. En general, la máquina de envasar -10-, a modo de ejemplo, tiene un bastidor que soporta una zona de alimentación -11- que tiene una mesa de alimentación y bandas de alimentación definidas entre carriles de guía verticales. Las bandas de alimentación alinean las latas de bebidas y las desplazan progresivamente oblicuamente con respecto a la dirección descendente hacia la sección -12- de selección de la máquina. La sección -12- de selección incluye un tramo móvil de selección que transporta cuñas -8- de selección distanciadas que obligan a las latas de bebidas a formar grupos de un número y una configuración predeterminados en los compartimentos de selección entre las cuñas de selección.

En la máquina de envasar mostrada en la figura 1, está dispuesta una capa inferior de artículos agrupados en los compartimentos de selección y es arrastrada por medio de un carril empujador fijo -5- hacia los correspondientes compartimentos de las latas que se desplazan de manera sincronizada entre los divisores distanciados -14- (solamente uno de los cuales se muestra en la figura 1 para mayor claridad) que se desplazan a lo largo de un tramo de latas -13-. Esto deja libres los compartimentos de selección de modo que pueden ser cargados con una capa superior de artículos agrupados desde la sección de alimentación. Cuando se carga de este modo, el tramo de selección se desplaza hacia arriba a lo largo de una sección -9- en pendiente del tramo de selección para desplazar los artículos a una posición por encima de las partes superiores de la capa inferior de artículos agrupados ya dispuestos en los compartimentos adyacentes de las latas. La capa superior de artículos agrupados es arrastrada a continuación por medio de un carril empujador fijo -6- hacia un compartimento de latas adyacente que se desplaza de manera sincronizada sobre el tramo de latas -13-, de modo que quedan posicionados encima o apilados sobre la capa inferior de artículos agrupados. Esta "doble capa" de artículos agrupados en cada compartimento de latas puede ser organizada de este modo para ser desplazada al elemento tubular abierto correspondiente de la caja de cartón -CT- (figura 3) que está siendo transportada a lo largo del tramo adyacente -15- de las cajas de cartón que se desplazan de manera sincronizada.

65 Los artículos agrupados son desplazados a lo largo del tramo de latas en dirección descendente -17- hacia el extremo inferior de la máquina. El tramo -15- de las cajas de cartón que transporta cajas de cartón -CT- (figura 3)

con los extremos abiertos se desplaza asimismo en dirección descendente de manera sincronizada con el tramo de las latas y con cada caja de cartón, alineado con un grupo de artículos en doble capa en el tramo de las latas. Una tolva -40- puede estar dispuesta, si se desea, entre el tramo -13- de las latas y el tramo -15- de las cajas de cartón para soportar las latas cuando se desplazan desde el tramo de las latas a las cajas de cartón en el tramo de las cajas de cartón.

5

10

15

20

25

30

35

55

60

65

Un cargador de tambor -16- fabricado y funcionando según la presente invención está dispuesto en la parte extrema inferior de la máquina adyacente al tramo de las latas en el lado opuesto al tramo de las cajas de cartón. El cargador de tambor que se describe con más detalle más adelante, tiene una pluralidad de conjuntos de brazos de carga cada uno de los cuales tiene brazos cargadores que tienen caras de carga que se desplazan de manera sincronizada y están alineados transversalmente con los artículos agrupados en los compartimentos de selección en el tramo de latas. Cuando los brazos cargadores se desplazan hacia abajo, se extienden por medio de superficies de leva y seguidores de leva para empujar los grupos correspondientes de latas en sentido lateral fuera del tramo de latas y hacia una caja de cartón abierta en espera en el tramo de las cajas de cartón adyacentes situadas en oposición. Un dispositivo de cierre -25- situado más abajo, cierra los extremos de las cajas de cartón ya envasadas y los brazos de carga retroceden y vuelven al extremo superior del cargador de tambor para otro ciclo.

La figura 2 es una vista, ampliada, del cargador de tambor -16- mostrado, adyacente a un tramo de latas -13- que transporta divisores -14- (de los cuales en esta figura solamente se muestran dos) entre los cuales han sido agrupadas previamente latas de bebidas en una operación ascendente, tal como se ha descrito anteriormente. Mientras que en la figura 2 solamente se muestra para mayor claridad un par de divisores que definen un compartimento de latas, se comprenderá que el tramo de latas transporta una pluralidad de divisores distanciados que definen entre ellos la correspondiente pluralidad de compartimentos de latas en los que están organizadas dobles capas de latas agrupadas. Algunos de los conjuntos de los brazos de carga, indicados en general con -20-, se muestran en diversas posiciones a lo largo de la trayectoria del cargador de tambor. De nuevo, aunque en la figura 2 solamente están representados por claridad unos pocos conjuntos de brazos de carga, se comprenderá que existe un conjunto de brazo cargador que corresponde y está alineado transversalmente con cada compartimento de latas del tramo de las latas. Los brazos de carga en el extremo superior del cargador de tambor se muestran en la figura 2 en sus posiciones retrasadas en las que las caras del cargador están situadas adyacentes a un grupo de latas de bebidas (no mostrado) en el compartimento correspondiente en el tramo -13- de latas. Los brazos de carga en el extremo inferior del cargador de tambor se muestran en sus posiciones extendidas ya que están configurados inmediatamente después de haber empujado un grupo de latas de bebida desde un compartimento de latas adyacente a una caja de cartón abierta, en espera, en el tramo de las cajas de cartón. Asimismo, en la figura 2 se muestran las pistas superiores -18- y -19- de la cadena y las pistas inferiores -21- y -22- de la cadena. Las cadenas interiores -23- (de las cuales solo una es visible) están montadas a lo largo de las partes interiores de las pistas de la cadena superior y están dotadas de clavijas -24- para el objetivo descrito en detalle más adelante. Las cadenas exteriores -26- (de las cuales solo una es visible) están montadas al exterior de las pistas de la cadena superior y están dotadas de las clavijas -27- correspondientes.

40 La figura 3 es una vista superior, en planta, del cargador de tambor -16- de la figura 2 adyacente al tramo de latas -13- que a su vez es adyacente al tramo -15- de cajas de cartón. Las latas de bebidas -C- agrupadas en doble capa están dispuestas entre los divisores -14- en la pista de latas, mostrándose solamente un conjunto de divisores y un grupo de latas en la figura 3 para más claridad. Las cajas de cartón -CT- están dispuestas en el tramo -15- de las cajas de cartón y están alineadas con los respectivos grupos de latas en los compartimentos de latas en la pista de 45 latas y se desplazan de manera sincronizada con ellas en dirección hacia abajo. En la figura 3 solamente se muestran dos cajas de cartón -CT- para mayor claridad, pero se comprenderá que el tramo de cajas de cartón transporta una pluralidad de cajas de cartón una al lado de la otra, alineadas cada una transversalmente con el compartimento correspondiente de latas en el tramo -13- de latas. El extremo abierto de las cajas de cartón -CTestá orientado adyacente a los grupos de latas en los compartimentos de latas correspondientes, de modo que pueden ser empujados desde los compartimentos de latas a las cajas de cartón adyacentes abiertas durante el 50 proceso de carga. Un conjunto de cierre -25- cierra los extremos de las cajas de cartón una vez que los grupos han sido cargados en las mismas.

Los grupos de latas de doble capa son cargados en las cajas de cartón por medio de los conjuntos de los brazos de carga indicados, en general, por -20- en la figura 3. Los brazos de carga -43- y -44- de un conjunto -20- de un brazo de carga se muestran en sus posiciones retrasadas en el extremo superior del cargador de tambor -16- en la figura 3. En esta posición las caras -51- y -52- del cargador fijadas a los extremos de los brazos de carga -43- y -44- están situadas junto a un grupo de latas y se desplazan de manera sincronizada con el mismo en el compartimento adyacente de latas. Al igual que los compartimentos de latas, las cajas de cartón y los conjuntos de los brazos de carga son conducidos de manera sincronizada en dirección descendente, una superficie superior -61- de la leva se acopla al seguidor de la leva del conjunto del brazo de carga posterior (tal como se detalla más adelante) para hacer que los brazos de carga -43- y -44- y sus caras de carga se extiendan progresivamente a través del compartimento adyacente de latas hacia el extremo abierto de la caja de cartón -CT- adyacente, situada en oposición, hasta sus posiciones totalmente extendidas en el extremo inferior del cargador de tambor. La extensión de los brazos de carga empuja lateralmente el grupo de latas -C- en el compartimento de latas al interior de la caja de cartón -CT- abierta para cargar la caja, cuyo extremo abierto es cerrado posteriormente en una estación de cierre situada más abajo,

indicada, en general, con -25-. Los brazos de carga extendidos -43- y -44- se desplazan a continuación alrededor del extremo inferior del cargador de tambor y son transportados a lo largo de las pistas de la cadena interior de nuevo al extremo superior del cargador de tambor para el ciclo siguiente. A medida que retroceden al extremo superior, son desplazados progresivamente en sentido lateral volviendo a sus posiciones retrasadas por medio de las superficies inferiores -62- de la leva sobre la que están montados los conjuntos de seguidores de leva.

A continuación se describirá con más detalle el cargador de tambor -16- de la máquina de envasar -10-, principalmente con respecto a la figura 4. El cargador de tambor -16- comprende un par de pistas distanciadas -18- y -19- de la cadena superior y el correspondiente par de pistas distanciadas -21- y -22- de la cadena interior por debajo de las pistas de la cadena superior. Las pistas de la cadena transportan a lo largo de sus lados enfrentados un par de cadenas inferiores -23- que tienen unas clavijas de fijación -24- que sobresalen lateralmente en cada eslabón de las cadenas. Las pistas de la cadena transportan asimismo a lo largo de sus lados opuestos un par de cadenas exteriores -26- que tienen unas clavijas de fijación -27- salientes que sobresalen lateralmente de cada eslabón de la cadena. Solamente una corta sección de cada cadena y de sus clavijas de fijación asociadas se muestra en la figura 4 para mayor claridad; sin embargo, se comprenderá que las cadenas interior y exterior están configuradas como cadenas sinfín que se extienden en toda la longitud de las pistas superior e inferior de las cadenas y alrededor de las ruedas dentadas correspondientes -31-, -32-, -34-, y -36- en los extremos de las pistas.

Las cadenas exteriores -26- se extienden alrededor y están accionadas por un par de ruedas dentadas exteriores -31- de accionamiento en el extremo inferior del cargador de tambor y se extienden asimismo alrededor de las correspondientes ruedas dentadas libres exteriores -34- en el extremo superior del cargador de tambor. De manera similar, las cadenas interiores -23- se extienden alrededor y están accionadas por medio de un par de ruedas dentadas de accionamiento interiores -32- en el extremo inferior del cargador de tambor y se extienden alrededor de las ruedas dentadas libres interiores -36- en el extremo superior del cargador de tambor. Las ruedas dentadas exteriores de accionamiento -31- son accionadas por el eje de accionamiento -29- del cabezal principal (figura 3) de la máquina de envasar a través de una caja de engranajes -28- y de la correa -30- para desplazar los tramos de cadena de manera sincronizada con el movimiento de las demás secciones de la máquina accionadas por el eje de accionamiento del cabezal, tales como el tramo de selección, el tramo de latas y el tramo de las cajas de cartón.

Las ruedas dentadas interiores son accionadas por medio de una caja de engranajes sincronizada -71- (figura 3) que está acoplada a las ruedas dentadas interiores de accionamiento a través de la rueda dentada de accionamiento -69- y la correspondiente cadena de accionamiento. Tal como se describe con más detalle más adelante, la caja de engranajes sincronizada puede ser ajustada para adelantar o retrasar la posición o fase de las ruedas dentadas motrices interiores con respecto a las ruedas dentadas exteriores de accionamiento. De este modo la fase de las cadenas interiores -23- con respecto a las cadenas exteriores -26- puede ser adelantada o retrasada ajustando de manera apropiada con la caja de engranajes sincronizada -71-.

Siguiendo haciendo referencia a la figura 4, una serie de conjuntos -41- de brazos de carga de los cuales solamente cuatro están representados en la figura 4 para mayor claridad, están fijados a las cadenas interior y exterior -23- y -26- a través de los bloques de patas de sujeción -48- y -49-, que están fijados a las clavijas -27- y -24- respectivamente en las cadenas exterior e interior -26- y -23-. Cuando las cadenas son accionadas, transportan los conjuntos de los brazos de carga en dirección descendente a lo largo de las pistas superiores -18- y -19- de la cadena y los devuelven al extremo superior del cargador de tambor a lo largo de las pistas inferiores -21- y -22- de la cadena en un ciclo continuo. Cada conjunto -41- de brazo cargador comprende un par delantero de carriles de guía -42- fijado por sus extremos a los bloques -49- de las patas de sujeción que encajan en las clavijas de fijación salientes -24- de las cadenas interiores. El par posterior de carriles de guía -45- está fijado por sus extremos a los bloques exteriores -48- de las patas de sujeción que encajan en las clavijas de fijación salientes -27- de las cadenas exteriores. De este modo, los pares delantero y posterior de los carriles de guía son desplazados a lo largo de las pistas -18- y -19- de la cadena superior en la dirección descendente -17- de la máquina de envasar por medio de las cadenas a las que están fijados que, a su vez, son accionados por las ruedas dentadas de accionamiento exteriores e interiores -31- y -32- respectivamente.

Un brazo de carga delantero -43- está fijado de modo deslizante al par delantero de carriles de guía -42- por medio del bloque delantero -47- de los casquillos. De manera similar, el brazo de carga posterior -44- está fijado de modo deslizante al par posterior de carriles de guía -45- por medio de un bloque posterior -46- de casquillos. Cuando en la figura 4, los bloques de casquillos se deslizan hacia la derecha a lo largo de sus carriles de guía respectivos, los brazos de carga -43- y -44- se extienden lateralmente con respecto a la dirección descendente de la máquina de envasar. A la inversa, cuando en la figura 4 los bloques de casquillos se deslizan hacia la izquierda, los brazos de carga retroceden lateralmente con respecto a la dirección descendente de la máquina de envasar. Los brazos de carga de cada conjunto de brazo cargador llevan en sus extremos libres una cara de carga, llevando el brazo de carga delantero una cara delantera -51- del cargador y llevando el brazo de carga posterior la cara posterior -52- del cargador. La cara delantera -51- del cargador está formada con un conjunto de dientes distanciados -53- que se extienden hacia la cara posterior del cargador está formada con un conjunto de dientes distanciados -54- que se extienden hacia la cara delantera -51- del cargador son puestas más próximas entre sí, sus dientes se intercalan o se solapan unos con otros, tal como quizás se aprecia

mejor en la figura 10 para formar un perfil combinado de la cara del cargador con una anchura que es variable dependiendo de la distancia entre los brazos delantero y posterior del cargador y sus caras de carga.

El bloque delantero -46- de casquillos transporta un seguidor de leva -63- dependiente (figura 8), y el bloque posterior -47- de casquillos transporta un seguidor de leva dependiente -64-. El seguidor de leva -64- del bloque posterior de casquillos depende en sentido descendente de una posición por debajo del seguidor de leva -63- del bloque delantero de casquillos cuando los bloques de casquillos se están desplazando a lo largo de las pistas de la cadena superior. La superficie superior -61- de la leva se extiende, tal como se muestra, oblicuamente desde una posición adyacente al extremo superior del cargador -16- hasta una posición adyacente al extremo inferior del cargador. La superficie -61- de la leva está posicionada de tal manera que el seguidor de leva -64- del bloque posterior de casquillos de cada conjunto de brazo de carga se acopla y está montado a lo largo de la superficie -61- de leva cuando los conjuntos del brazo de carga se desplazan desde el extremo superior al extremo inferior del cargador. El seguidor de leva -63- del bloque delantero de los casquillos no se acopla a la superficie superior -61- de la leva sino que en cambio está posicionado por encima del nivel de la superficie superior -61- de la leva.

Al montar el seguidor de leva -64- a lo largo de la superficie -61- de la leva hace que el brazo de carga posterior -44- se extienda lateralmente mientras se desplaza en dirección descendente por medio de las cadenas -26-. Cuando el brazo de carga posterior empieza a extenderse, una barra de empuje o una placa -81- en su extremo posterior se acopla con una placa de impacto -82- en el extremo posterior del brazo de carga delantero -43-. Esto sucede en el punto en que las caras de carga -51- y -52- de los brazos están alineadas entre sí para formar un perfil combinado de la cara de carga. La continua extensión lateral del brazo de carga posterior -44-, hace que a continuación el brazo de carga delantero -43- se extienda a la misma velocidad que el brazo de carga posterior -44- como consecuencia de que la placa de empuje -81 empuja la placa de impacto -82-. Como ambos brazos de carga se extienden lateralmente, sus caras de carga acoplan las latas de bebida agrupadas en doble capa entre los divisores del tramo de latas y las empujan progresivamente hacia las cajas de cartón adyacentes que se desplazan de manera sincronizada en el tramo de las cajas de cartón, tal como se ha descrito anteriormente.

En el extremo inferior del cargador -16-, los brazos de carga extendidos son transportados por medio de sus cadenas alrededor de las ruedas dentadas inferiores. Cuando los conjuntos de los brazos de carga se desplazan alrededor de las ruedas dentadas, el seguidor de la leva que depende del brazo de carga posterior se acopla primero a una guía -67- de la leva del brazo posterior que hace retroceder ligeramente el brazo de carga posterior hasta que su cara de carga -52- es desplazada detrás de la cara de carga -51- del brazo de carga delantero. A continuación, el seguidor dependiente de la leva del brazo de carga delantero se acopla a la guía -66- de la leva del brazo delantero que empieza a hacer retroceder el brazo de carga delantero. Dado que las caras de carga han sido desplazadas una de la otra, pueden cruzar la trayectoria circular alrededor de las ruedas dentadas sin atascos ni interferir una con otra.

Cuando los brazos de carga han cruzado las ruedas dentadas inferiores, son transportados sobre sus cadenas volviendo al extremo superior del cargador a lo largo de las pistas inferiores -21- y -22- de la cadena. Durante este trayecto de retorno los brazos de carga de cada brazo cargador retroceden a sus posiciones totalmente retrasadas como preparación para el siguiente ciclo de carga. Esto se consigue con las superficies inferiores -62- y -65- de la leva que se acoplan y guían los seguidores de las levas de los brazos de carga posterior y delantero. Más concretamente, cuando los conjuntos de los brazos de carga son transportados retrocediendo a lo largo de las pistas inferiores de la cadena, los seguidores de la leva de sus brazos de carga se acoplan a las superficies -62- y -65- de la leva, que hacen que los brazos de carga retrocedan progresivamente a sus posiciones totalmente retrasadas. En el extremo superior del cargador de tambor -16-, los brazos de carga son transportados alrededor de las ruedas dentadas libres retrocediendo hasta las guías superiores de la cadena para el ciclo siguiente. Cuando los brazos de carga cruzan las ruedas dentadas, se mantienen en sus posiciones totalmente retrasadas con sus caras de carga desplazadas unas de otras por medio de los discos de guía -38- de las levas que se acoplan a los seguidores de la leva cuando los brazos de carga retroceden hasta posicionarse para otro ciclo. Se debe tener en cuenta que los discos de guía -38- de la leva son de diámetros diferentes para alojar los seguidores de leva de los conjuntos de los brazos de carga que sobresalen a diferentes distancias de sus respectivos bloques de casquillos.

Tal como se describe con más detalle más adelante, el cargador -16- de tambor de esta invención puede ser ajustado para alojar latas de bebidas u otros artículos de tamaños diferentes y configuraciones de grupos diferentes sin utilizar piezas de recambio. Dicho ajuste se realiza avanzando o retrasando, o, dicho de otro modo, sincronizando las cadenas interiores -23- con respecto a las cadenas exteriores -26- mediante el ajuste apropiado de la caja de engranajes sincronizada -71- que acciona las ruedas dentadas interiores de accionamiento -32-. Dado que el brazo de carga delantero de cada conjunto de brazos cargadores está fijado a las cadenas interiores -23- y es transportado por las mismas, y el brazo de carga posterior está fijado a las cadenas exteriores -26- y es transportado por las mismas, el avance de la fase de las cadenas interiores -23- con respecto a las cadenas exteriores -26- desplaza los brazos de carga de cada conjunto distanciándose más. A la inversa, el retraso de la fase de las cadenas interiores -23- con respecto a las cadenas exteriores -26- desplaza los brazos de carga de cada conjunto para estar más juntas. Cuando los brazos de carga se desplazan aproximándose, sus caras de carga se desplazan asimismo acercándose más y los dientes de las caras de carga se intercalan o se solapan para permitir este movimiento relativo de las caras de carga. De este modo, las caras de carga forman juntas un perfil de la superficie

combinada de la cara de carga con una zona compuesta que es variable y ajustable en función de la separación entre los brazos de carga de los conjuntos cargadores (ver, por ejemplo, las figuras 9 a 13). Los brazos de carga pueden estar sincronizados suficientemente distanciados para separar completamente las caras de carga de cada brazo cargador en una configuración de "recogida dividida" del cargador de tambor, tal como se describe con más detalle más adelante.

Preferentemente, cuando el cargador de tambor está instalado como parte de una máquina de envasar, tal como la mostrada en la figura 1, el eje de accionamiento del cabezal principal de la máquina que acciona el tramo de selección, el tramo de latas y el tramo de las cajas de cartón, está acoplado asimismo y acciona las ruedas dentadas exteriores -31- de accionamiento del cargador de tambor. De este modo, las cadenas exteriores -26- y por consiguiente los brazos de carga posteriores se desplazan de manera sincronizada con el tramo de latas y el tramo de las cajas de cartón. Asimismo, los mecanismos del tramo de latas y del tramo de las cajas de cartón que permiten que estén en fase y por lo tanto ajustados para alojar grupos de latas de bebidas de tamaños y/o configuraciones diferentes son también accionados a través de la caja de engranajes sincronizada -71- que acciona las ruedas dentadas interiores -32- del cargador de tambor. De este modo un sencillo ajuste de la caja de engranajes sincronizada ajusta simultáneamente el tramo de latas, el tramo de las cajas de cartón y el área superficial de la cara de carga del cargador de tambor para un nuevo tamaño de latas de bebida o una nueva configuración del grupo. Más concretamente, el avance de la fase de la de la caja de engranajes sincronizada amplía el espacio entre los divisores del tramo de latas, amplía el espacio entre las patas de sujeción del tramo de las cajas de cartón y ensancha los brazos de carga y sus caras de carga para alojar un tamaño de latas más grande o una configuración más ancha de los grupos de latas. A la inversa, el retraso de la fase de la caja de engranajes sincronizada disminuye el espacio entre divisores, disminuye el espacio entre las patas de sujeción del tramo de las cajas de cartón y disminuye el espacio entre los brazos cargadores y sus caras de carga para alojar un tamaño de latas menor o una configuración de los grupos de latas más reducida. De este modo, se apreciará que el ajuste de toda la máquina de envasar para diferentes tamaños y/o configuraciones de latas de bebidas u otros artículos se convierte en una cuestión de ajuste de la fase de la caja de engranajes sincronizada -71-.

La figura 5 es una vista, ampliada, que muestra claramente la rueda dentada exterior de accionamiento -31-, la rueda dentada interior de accionamiento -32- y los bloques de las patas de sujeción -48- y -49- que, con los carriles de guía delanteros -42- y los carriles de guía posteriores -45- están fijados a sus cadenas. Se muestra una parte de la cadena exterior -26- con sus clavijas de fijación salientes -27- y se muestra como los bloques de las patas de sujeción están fijados a sus cadenas respectivas con los orificios de los bloques de las patas de sujeción recibiendo las clavijas correspondientes de la cadena. Con esta estructura de montaje, si se desea, los carriles de guía se pueden situar fácilmente en diferentes posiciones y distancias de separación sobre las cadenas. Por supuesto, las cadenas se extienden en un bucle continuo a lo largo de las pistas superior e inferior de la cadena y alrededor de las ruedas dentadas correspondientes en los extremos superior e inferior del cargador de tambor. En la figura 5 solamente se muestra una parte de la cadena para mayor claridad.

La figura 6 muestra el conjunto del eje de accionamiento de la sincronización del cargador de tambor. Concretamente, las ruedas dentadas exteriores -31- están montadas sobre un eje -91- que, en funcionamiento, está acoplado al accionamiento del cabezal principal de la máquina de envasar (ver figura 3). Las ruedas dentadas interiores de accionamiento están montadas sobre un eje -92- que es concéntrico exteriormente y puede girar con respecto al eje -91- que se extiende a través del eje -92-. El eje -92- es accionado a través de la rueda dentada de accionamiento -69- mediante la cadena correspondiente acoplada a la caja de engranajes sincronizada -71- (figura 3) que es accionada asimismo por el cabezal principal de accionamiento. Cuando se ajusta la fase de la caja de engranajes, cambia la relación angular entre el eje -91- y el eje -92- y en consecuencia cambia la fase de las ruedas dentadas interiores con respecto a las ruedas dentadas exteriores. A su vez, la fase relativa de las cadenas interiores y las cadenas exteriores y de este modo la separación entre los brazos cargadores de los conjuntos de los brazos de carga se ajusta en consecuencia como resultado de los desplazamientos relativos de las cadenas interiores con respecto a las cadenas exteriores.

Las figuras 7 y 8 muestran detalles del conjunto cargador delantero -41- que transporta el brazo de carga delantero -43-. Haciendo referencia a ambas figuras simultáneamente, el brazo de carga delantero -43-, preferentemente, aunque no necesariamente, está formado con una forma, en general, de una U invertida. La cara delantera -51- del cargador está sujeta con tornillos u otros medios de fijación apropiados al extremo delantero del brazo de carga -43- y está configurada con dientes -53- tal como se ha descrito anteriormente. La parte de debajo del brazo de carga -43- reposa y está montada sobre un rodamiento de rodillos -40- que está fijado de forma que puede girar en el interior del bloque -49- de la pata de fijación que, a su vez, está fijado a una cadena interior con las clavijas de fijación de las cadenas extendiéndose a través de los orificios a lo largo del borde inferior del bloque -49- de la pata de sujeción. De este modo, cuando el brazo de carga -43- se extiende hacia fuera o hacia dentro tal como se indica mediante la flecha doble de la figura 7, se desplaza con una fricción reducida sobre el bloque -49- de la pata de sujeción gracias al rodamiento de rodillos -40-. Un retenedor -35- está fijado al bloque -49- de la pata de fijación e incluye un dedo (visible en la figura 3) que se extiende por encima de la parte superior del brazo de carga -43- para impedir que el brazo de carga salte de la pista cuando está montado en el rodamiento de rodillos -40-.

65

5

10

15

20

25

30

35

40

45

50

55

60

Haciendo referencia a la figura 8, la parte extrema posterior del brazo de carga -43- está fijada con tornillos u otros elementos de sujeción apropiados a un bloque de casquillos -46-. El bloque de casquillos -46- está dotado de un par de casquillos -56- que están montados a lo largo de los carriles de guía -42- cuando el brazo de carga se extiende y se retrae. El seguidor -63- de la leva depende del bloque de casquillos y, tal como se ha descrito anteriormente, actúa para acoplarse a la guía -66- de la leva y a la superficie inferior -62- de la leva para hacer retroceder el brazo de carga delantero cuando se desplaza alrededor de las ruedas dentadas inferiores y retrocede a lo largo de la parte de abajo del cargador de tambor hasta el extremo superior. La barra de impacto -82- está fijada al final del extremo posterior de la barra -43- del cargador y asimismo, tal como se ha descrito anteriormente, está dimensionada y posicionada para ser acoplada por la barra de empuje -81- en el extremo posterior del brazo de carga posterior para extender las barras de empuje y sus caras de empuje simultáneamente al exterior y alineadas para empujar las latas desde el tramo de latas hacia las cajas de cartón en espera en el tramo de las cajas de cartón. El brazo de carga posterior de cada conjunto de brazo cargador está configurado y actúa sustancialmente de la misma manera que el brazo de carga delantero mostrado en las figuras 7 y 8.

10

30

35

40

45

Las figuras 9 a 13 muestran varias posibles separaciones de las caras del cargador para empujar grupos de 15 artículos, en este caso, latas -100- de bebidas de diversos tamaños y configuraciones del grupo desde los compartimentos de las latas entre los divisores del tramo de latas hasta las caias de cartón advacentes en el tramo de las cajas de cartón. Más concretamente, la figura 9 muestra una configuración de recogida dividida de las caras -51- y -52- del cargador para cargar dos grupos adyacentes de latas -100- en compartimentos de latas separados, uno al lado del otro, entre los divisores -14- en el tramo de las latas. En esta configuración, las caras -51- y -52- del 20 cargador están totalmente separadas una de otra y cada cara del cargador empuja un grupo separado de latas de bebida entre divisores separados -14- desde el tramo de las latas. Tal como se ha mencionado anteriormente, la configuración de recogida dividida puede requerir ajustes manuales para el posicionado de los brazos del cargador y/o de los divisores entre los compartimentos de las latas dado que no están en fase en la misma dirección. Más 25 concretamente, en el caso de la configuración de recogida dividida, los divisores de los compartimentos de las latas están ajustados uno hacia el otro para estar más juntos mientras que los brazos de carga y sus caras están ajustados distanciados para estar más alejados unos de otros.

En la figura 10, las caras -51- y -52- del cargador están juntas más próximas con sus dedos intercalados para formar un perfil compuesto de la cara del cargador dimensionado para empujar un grupo de latas de bebida más pequeñas en una configuración de 3 x 2 desde el compartimento de las latas entre los divisores -14- hacia una caja de cartón en espera. La figura 11 muestra una configuración de las caras del cargador para empujar una configuración de 3 x 2 de latas de bebida más grandes en la que las caras del cargador están más separadas con sus dedos parcialmente intercalados. La figura 12 muestra una configuración de las caras del cargador para empujar un grupo de latas de bebida más pequeñas dispuestas en una configuración de 4 x 2. En este caso, las caras del cargador están todavía más separadas con sus dedos aún parcialmente intercalados para formar un perfil compuesto del empujador dimensionado de forma apropiada para la anchura del grupo de latas a empujar. Finalmente, la figura 13 nuestra una configuración de las caras del cargador para empujar un grupo de latas de bebida más grandes dispuestas en una disposición de 4 x 2. En este caso, las caras del cargador están completamente separadas para formar un perfil compuesto de la cara de carga que tiene un área apropiada para la anchura del grupo de las latas de bebida más grandes. Por supuesto, con la posible excepción de la configuración de recogida dividida, todas estas y otras configuraciones de las caras del cargador se obtienen adelantando y retrasando de manera apropiada las cadenas interiores -23- que, a su vez, adelantan o retrasan el conjunto del brazo de carga delantero con respecto al conjunto del brazo de carga posterior. Además, dado que la caja de engranajes sincronizada puede accionar asimismo los divisores delanteros del tramo de latas y las patas de sujeción delanteras de las cajas de cartón del tramo de caias de cartón, la totalidad de estos componentes se ensancha o se estrecha al mismo tiempo. De este modo, un simple ajuste de la fase de la caja de engranajes sincronizada ajusta la máquina de envasar para cargar virtualmente cualquier tamaño y configuración de recipientes en las cajas de cartón en espera.

La invención ha sido descrita en lo que se refiere a las realizaciones preferentes y a las metodologías que los inventores consideran que representan los mejores modos de llevar a cabo la invención. Una amplia diversidad de adiciones y supresiones y de variaciones de las realizaciones mostradas puede ser llevada a cabo por los expertos en la materia sin apartarse del alcance de la invención tal como está expuesta en las reivindicaciones.

REIVINDICACIONES

- 1. Máquina de envasar (10) de movimiento continuo para envasar grupos de de artículos en cajas de cartón (CT) cuando las cajas (CT) se desplazan en dirección descendente (17), comprendiendo la máquina de envasar (10):
- una zona de alimentación (11) para disponer los artículos en bandas y desplazar los artículos en una dirección predeterminada;
- una zona de selección (12) adyacente a la zona de alimentación (11) configurada para recibir los artículos de la zona de alimentación (11) y disponer los artículos en grupos de artículos agrupados en una configuración predeterminada;

5

15

25

30

35

40

45

50

55

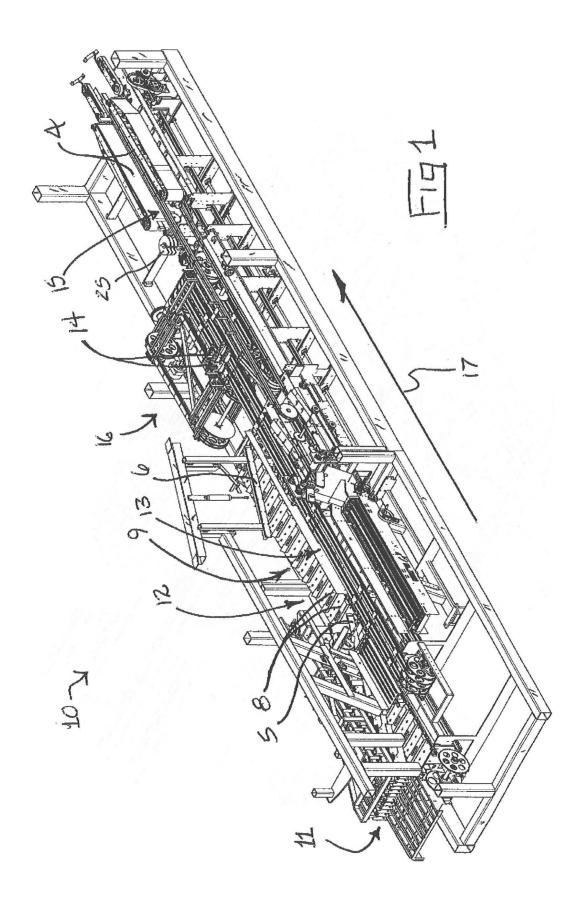
60

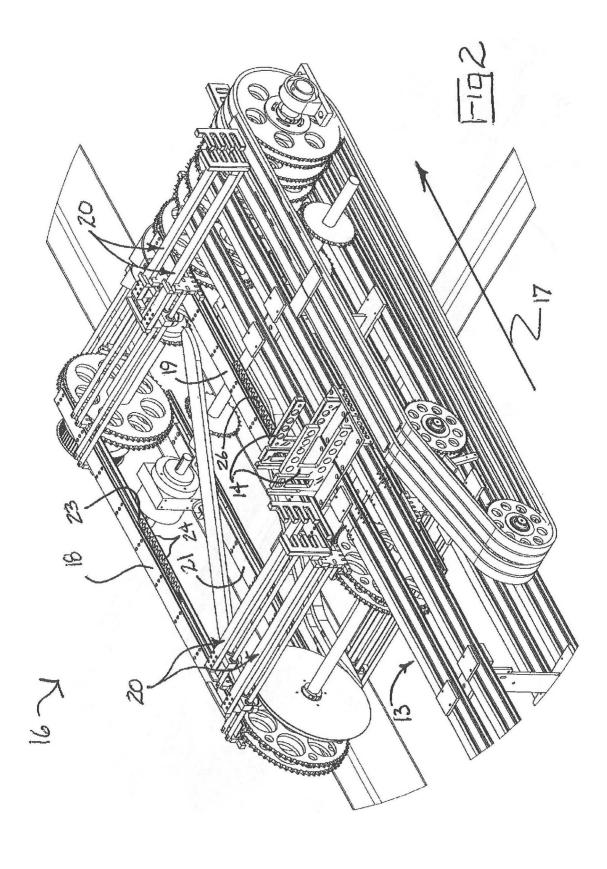
65

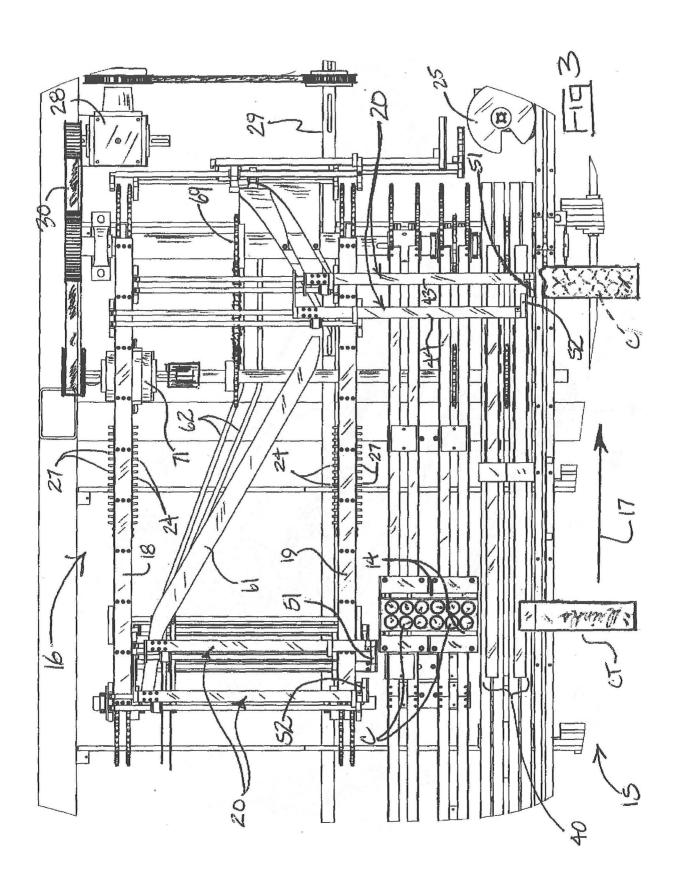
- un tramo de latas (13) adyacente a la zona de selección (12) y que incluye compartimentos de latas definidos entre los divisores (14) para recibir los artículos agrupados de la zona de selección (12) y desplazar los artículos agrupados en dirección descendente (17);
- un tramo de cajas de cartón (15) en un primer lado del tramo (13) de latas, posicionando el tramo (15) de las cajas de cartón con los extremos abiertos de las cajas (CT) para situarlas frente a los compartimentos de latas y desplazar las cajas (CT) de manera sincronizada con los compartimentos de latas en dirección descendente (17); y
- un cargador de tambor (16) en un segundo lado del tramo (13) de latas para empujar los artículos agrupados fuera de los compartimentos de latas y hacia los extremos abiertos de las cajas (CT);
 - caracterizada porque el cargador de tambor (16) incluye conjuntos (20) de brazos de carga alineados y móviles en dirección descendente (17) de manera sincronizada con los correspondientes compartimentos de latas de los compartimentos de latas, teniendo cada conjunto de brazo de carga un brazo cargador delantero (43) que se puede desplazar lateralmente a través de un compartimento de latas de los compartimentos de latas y es transportado en dirección descendente (17), por lo menos, por medio de una primera cadena (23, 26) y un brazo de carga posterior (44) que se puede desplazar lateralmente a través del compartimento de latas y es transportado en dirección descendente (17), por lo menos, por medio de una segunda cadena (23, 26);
 - estando accionada la primera cadena (23, 26) por una primera rueda dentada (34, 36) y estando accionada la segunda cadena (23, 26) por medio de una segunda rueda dentada (34, 36), siendo ajustable en la primera fase rueda dentada (34, 36) con respecto a la segunda rueda dentada (34, 36) para adelantar o retrasar la primera cadena (23, 26) o la segunda cadena (23, 26) con respecto a la primera cadena (23, 26) y, de este modo, ensanchar o estrechar el espacio entre los brazos de carga (43, 44) para alojar diferentes tamaños y configuraciones de artículos agrupados (C) en los compartimentos de latas.
 - 2. Máquina de envasar de movimiento continuo (10), según la reivindicación 1, y que comprende además caras de carga (51, 52) fijadas a un extremo delantero del brazo de carga delantero (43) y al brazo de carga posterior (44), estando las caras de carga (51, 52) configuradas para acoplar los artículos agrupados cuando los artículos agrupados son empujados desde los compartimentos de latas al extremo abierto de las cajas de cartón (CT).
 - 3. Máquina de envasar de movimiento continuo (10), según la reivindicación 2, en la que las caras de carga (51, 52) están configuradas para intercalarse entre sí cuando el brazo de carga delantero (43) y el brazo de carga posterior (44) se desplazan uno junto al otro.
 - 4. Máquina de envasar de movimiento continuo (10), según la reivindicación 3, y en la que las caras de carga (51, 52) tienen, en general, forma de peine con dientes (53, 54) e intersticios dispuestos para intercalarse cuando el brazo de carga delantero (43) y el brazo de carga posterior (44) se desplazan uno junto al otro.
 - 5. Máquina de envasar de movimiento continuo (10), según la reivindicación 1, en la que, por lo menos, una de la primera rueda dentada (34, 36) y la segunda rueda dentada (34, 36) son accionadas por medio de una caja de engranajes ajustable sincronizada (71) para ajustar la fase de la primea rueda dentada (34, 36) o de la segunda rueda dentada (34, 36) con respecto a la primera rueda dentada (34, 36).
 - 6. Máquina de envasar de movimiento continuo (10), según la reivindicación 1, en la que la primera cadena (23, 26) y la segunda cadena (23, 26) son cadenas sinfín que transportan los conjuntos de los brazos de carga (20) de retorno al extremo superior del cargador de tambor (16) después de que los conjuntos de los brazos de carga (20) han empujado los artículos agrupados en la parte abierta de las cajas de cartón (CT) retrocediendo el brazo de carga delantero (43) y el brazo de carga posterior (44) a una posición de reposo cuando los conjuntos de los brazos de carga (20) son conducidos de retorno al extremo superior.
 - 7. Máquina de envasar de movimiento continuo (10), según la reivindicación 1, en la que el brazo de carga delantero (43) es transportado por medio de un primer par de cadenas distanciadas (23, 26) y el brazo de carga posterior (44) es transportado por medio de un segundo par de cadenas distanciadas (23, 26).

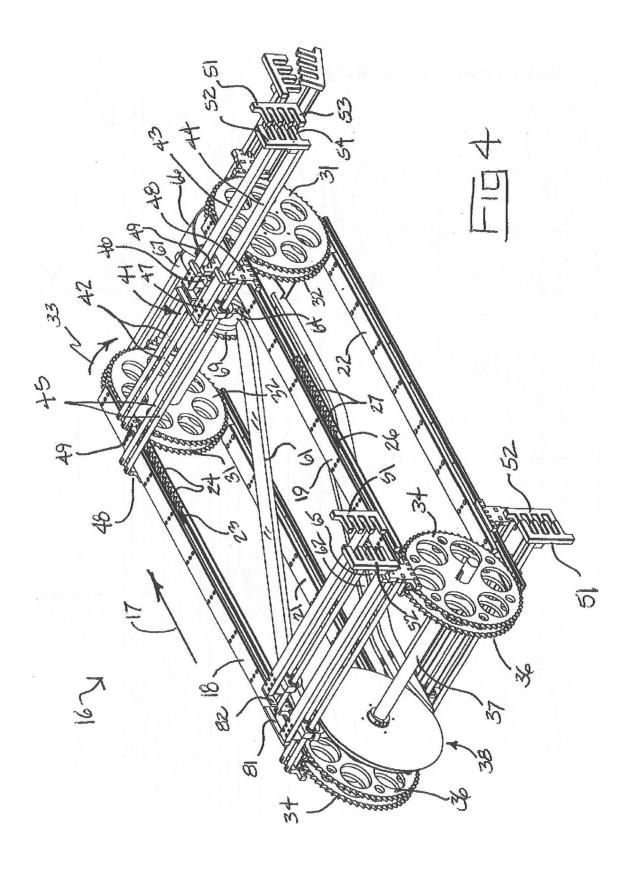
- 8. Máquina de envasar de movimiento continuo (10), según la reivindicación 7, en la que el brazo de carga delantero (43) y el brazo de carga posterior (44) comprenden ambos un bloque de casquillos (46, 47) y en la que cada conjunto de brazos de carga de los conjuntos (20) de brazos cargadores comprende un carril delantero (42) y un carril posterior (45), estando montado el carril delantero (42) entre el primer par de cadenas distanciadas y extendiéndose entre las mismas, y estando montado el carril posterior (45) entre el segundo par de cadenas distanciadas y extendiéndose entre las mismas, deslizándose el bloque de casquillos (46, 47) del brazo de carga delantero (43) sobre el carril delantero (42) y el bloque de casquillos (46, 47) del brazo de carga posterior (44) sobre el carril posterior (45) para permitir la extensión lateral del brazo de carga delantero (43) y del brazo de carga posterior (44).
- 9. Máquina de envasar de movimiento continuo, según la reivindicación 1, comprendiendo además el cargador de tambor (16) superficies de leva dispuestas para acoplar y guiar seguidores de leva sobre los brazos de empuje delantero y posterior para extender dichos brazos de empuje delantero y posterior cuando la pluralidad de conjuntos (20) de brazos de empuje separados se desplazan a lo largo de un primer tramo de las cadenas sinfín.

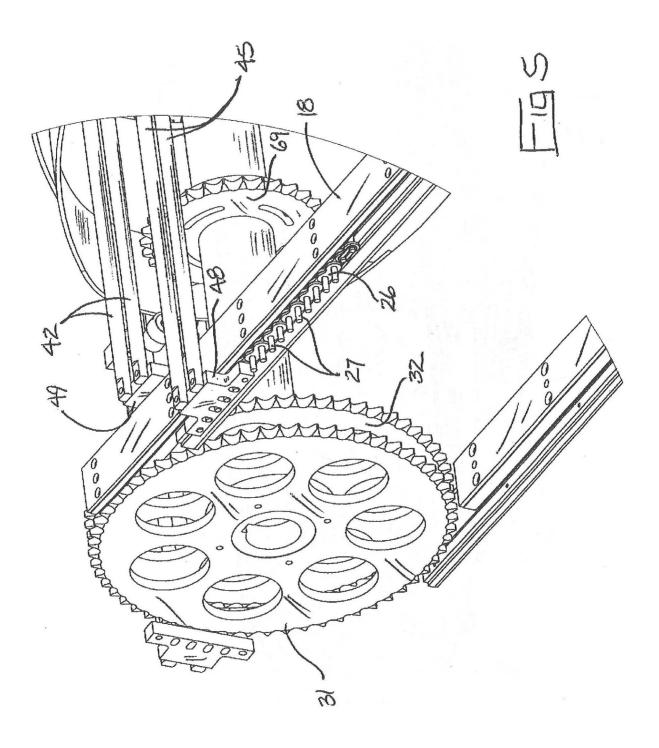
10


15


20


25


35


- 10. Máquina de envasar de movimiento continuo, según la reivindicación 1, comprendiendo además el cargador de tambor (16) superficies de leva dispuestas para acoplar y guiar seguidores de leva sobre los brazos de empuje delantero y posterior (43, 44) para hacer retroceder dichos brazos de empuje delantero y posterior (43, 44) cuando la pluralidad de conjuntos (20) de brazos de empuje separados se desplazan a lo largo de un segundo tramo de las cadenas sinfín (23, 26).
 - 11. Máquina de envasar de movimiento continuo (10), según la reivindicación 8, en la que el bloque de casquillos (46, 47) del brazo de carga delantero (43) y el bloque de casquillos (46, 47) del brazo de carga posterior (44) comprende cada uno un seguidor de leva (63), estando acoplado el seguidor de leva (63) a una superficie de leva (62) para hacer extender y/o retroceder el brazo de carga delantero (43) y/o el brazo de carga posterior (44).
 - 12. Procedimiento para el ajuste del perfil compuesto de las caras de carga (51, 52) de un cargador de tambor (16) para corresponder al perfil de los artículos a cargar, comprendiendo el procedimiento las etapas de:
- 30 (a) configurar los primeros y segundos elementos (51, 52) de la cara de carga para intercalarse entre sí cuando el primer y el segundo elementos de la cara de carga (51, 52) son puestos juntos para definir un perfil compuesto;
 - (b) montar los primeros y segundos elementos (51, 52) de la cara de carga en los extremos de los brazos de carga extensibles (43, 44);
 - (c) variar la distancia entre el primer y el segundo brazos de carga (43, 44) para poner los elementos (51, 52) de la cara de carga juntos o separados hasta que los elementos (51, 52) de la cara de carga definan un perfil compuesto de un tamaño predeterminado,
- 40 13. Procedimiento, según la reivindicación 12, y en el que la etapa (c) comprende montar el primer y el segundo brazos de carga (43, 44) para separar las cadenas sinfín (23, 26) que accionan dichas cadenas (23, 26) para desplazar el primer y el segundo brazos de carga (43, 44), por lo menos, en una dirección descendente (17) y variar la fase de las cadenas sinfín (23, 26) una con respecto a la otra.
- 45 14. Procedimiento, según la reivindicación 12, y en el que la etapa (a) comprende formar el primer y el segundo elementos de la cara de carga (51, 52) con dientes (53, 54) y ranuras, estando configurados los dientes (53, 54) del primer elemento de la cara de carga (51, 52) para desplazarse en el interior de las ranuras del segundo elemento de la cara de carga (51, 52) cuando los elementos de la cara de carga (51, 52) se desplazan juntos.
- 50 15. Procedimiento, según la reivindicación 13, y que comprende además extender el primer y el segundo brazos de carga (43, 44) cuando el primer y el segundo brazos de carga (43, 44) se desplazan en dirección descendente (17) para empujar los artículos adyacentes con los elementos (51, 52) de la cara de carga.

