



OFICINA ESPAÑOLA DE PATENTES Y MARCAS

**ESPAÑA** 



11 Número de publicación: 2 616 912

51 Int. Cl.:

A61K 39/106 (2006.01) A61K 39/108 (2006.01) A61P 31/04 (2006.01)

(12)

### TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 16.09.2010 PCT/SE2010/050996

(87) Fecha y número de publicación internacional: 24.03.2011 WO2011034495

(96) Fecha de presentación y número de la solicitud europea: 16.09.2010 E 10817520 (9)

(97) Fecha y número de publicación de la concesión europea: 23.11.2016 EP 2477649

(54) Título: Vacuna contra la diarrea debida a E. coli enterotoxigénica (ETEC) y el cólera

(30) Prioridad:

16.09.2009 US 272351 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 14.06.2017

(73) Titular/es:

MSD WELLCOME TRUST HILLEMAN LABORATORIES PVT LTD. (100.0%) 2nd Floor, Nanotechnology BuildingJamia HamdardHamdard Nagar New Delhi 110062, IN

(72) Inventor/es:

HOLMGREN, JAN y LEBENS, MICHAEL

(74) Agente/Representante:

**DEL VALLE VALIENTE, Sonia** 

### **DESCRIPCIÓN**

Vacuna contra la diarrea debida a E. coli enterotoxigénica (ETEC) y el cólera

#### 5 Campo técnico de la invención

La presente invención se refiere al campo de vacunas, en particular a vacunas contra la diarrea debida a *E. coli* enterotoxigénica (ETEC) y el cólera.

#### 10 Antecedentes de la invención

15

55

60

65

El cólera sigue siendo un problema sanitario principal en grandes partes del mundo. Esto también es cierto para ETEC, que es la principal causa de enfermedad diarreica en países en desarrollo así como en las personas que viajan a estos países. En muchos países en desarrollo, las medidas sanitarias y de agua eficaces para el control del cólera y otras infecciones entéricas son actualmente imposibles, y en este contexto, las vacunas desempeñan un papel importante. Sin embargo, para poder hacerlo, tienen que ser eficaces, de fácil acceso y, por encima de todo, económicas. También existe la necesidad médica y un mercado comercial sustancial para el uso de vacunas frente al cólera y, especialmente, ETEC en viajeros.

- Un enfoque ha sido el desarrollo de vacunas de células completas inactivadas orales. Dukoral™ es una vacuna de células oral (OCV) con una eficacia demostrada de hasta el 90% contra el cólera y también una eficacia significativa contra diarrea inducida por *Escherichia coli* enterotoxigénica (ETEC). Comprende 3 cepas diferentes de *V. cholerae* en cuatro formulaciones diferentes (dos inactivadas por calor y dos inactivadas con formalina) y además, subunidad de toxina colérica B producida de manera recombinante (rCTB). El componente de rCTB contribuye significativamente a la eficacia contra el cólera y es exclusivamente responsable de la protección observada contra la diarrea debida a ETEC debido a su capacidad para inducir anticuerpos de neutralización cruzada contra la toxina termolábil (LT) de *E. coli* similar a la toxina colérica (CT). Sin embargo, rCTB es lábil a los ácidos y, por tanto, la vacuna (que tiene que proporcionarse en dos dosis) debe administrarse con un tampón bicarbonato.
- A pesar de que Dukoral™ es la única OCV autorizada internacionalmente, actualmente están comercializándose copias de esta vacuna con o sin el componente de CTB en países en desarrollo: Vietnam, India y China. La OCV producida en Vietnam e India (que carece del componente de CTB) contiene los mismos 4 componentes bacterianos que Dukoral más una quinta cepa de *V. cholerae* inactivada con formalina del serogrupo O139.
- La inmunidad protectora contra el cólera provocada por las OCV se basa principalmente, si no exclusivamente, en la producción por la mucosa de anticuerpos contra lipopolisacárido O1 de la pared celular (LPS O1) y para la vacuna Dukoral que contiene CTB, también anticuerpos antitoxina en el intestino.
- A partir de lo anterior es evidente que el presente estado de la técnica para la producción de vacuna contra el cólera/ETEC dista mucho de ser sencillo y, aunque ya es eficaz, una contribución real para hacer que una vacuna contra el cólera fuese más accesible sería racionalizar la composición de la formulación a varios niveles.
- La necesidad de incluir varias cepas diferentes de *Vibrio cholerae* en vacunas de células completas inactivadas tales como Dukoral™ surge de la necesidad de representar varias variantes antigénicas diferentes de *Vibrio cholerae* en la vacuna. Todas las cepas protectoras en las vacunas que se usan actualmente son del serogrupo O1, que hasta 1993 era el único de más de 200 serogrupos identificados conocidos que provocan cólera epidémico y es todavía el serogrupo dominante. Sin embargo, el serogrupo O1 tiene dos variantes denominadas serotipos Ogawa e Inaba que difieren en la metilación del azúcar terminal del antígeno O del lipopolisacárido de superficie (LPS). Se sabe que se produce cambio de serotipo, en el que el organismo de serotipo Ogawa puede dar lugar a organismos Inaba. Sin embargo, el cambio inverso es poco común.

Aunque la inmunización con especialmente el serotipo Inaba pero también Ogawa, puede dar lugar a anticuerpos que reaccionan de manera cruzada con los otros serotipos, también da lugar a anticuerpos específicos de serotipo que contribuyen significativamente a la protección. Por tanto, una vacuna eficaz debe inducir no sólo anticuerpos de reacción cruzada, sino también anticuerpos específicos de serotipo contra las variantes de serotipo tanto Inaba como Ogawa.

Se sabe que el cambio de serotipo está relacionado con una mutación en un único gen (wbeT). Cualquier mutación que inactive este gen da como resultado un cambio del serotipo Ogawa al Inaba. Las mutaciones que pueden revertir un acontecimiento de este tipo son previsiblemente mucho más infrecuentes, aunque un cambio del serotipo Inaba al Ogawa puede lograrse fácilmente mediante la provisión del gen relevante in trans. El gen implicado (wbeT, también denominado rfbT) codifica para una metil transferasa que metila el residuo de perosamina terminal en la unidad de repetición del polisacárido del antígeno O. Las mutaciones en este gen que conducen al serotipo Inaba son casi invariablemente inserciones, deleciones o cambios de base que introducen un codón sin sentido.

También se ha documentado que se produce en la naturaleza una tercera variante O1 conocida como Hikojima.

Hikojima se caracteriza porque expresa los determinantes tanto Ogawa como Inaba sobre su superficie y se aglutina con antisueros específicos para ambos tipos. El fenotipo Hikojima es extremadamente poco común y en la bibliografía se considera que es una forma de transición inestable.

- 5 Chiang y Mekalonos (Infection and Immunity, vol. 68, n.º 11, 1 de enero de 2000 (01-01-2000), páginas 6391-6397, XP008153886, ISSN: 0019-9567, DOI: 10.1128/1A1.68.11) notifican la construcción de un candidato a vacuna contra *Vibrio cholerae* usando administración de transposones y excisión mediada por recombinasa FLP. Un candidato a vacuna Inaba+ móvil, Peru-2, se convirtió en Ogawa+ no móvil mediante manipulación.
- Rijpkema *et al.* (Journal of Medical Microbiology, vol. 53, n.º 11, 1 de noviembre de 2004 (01-11-2004), páginas 1105-1107, XP055048436, ISSN: 0022-2615, DOI: 10.1099/jmm.0.45744-0) notifican el análisis de mutaciones de *WbeT* en aislados clínicos de *Vibrio cholerae*.
- Kanungo *et al.* (Vaccine, vol. 27, n.º 49, 16 de noviembre de 2009 (16-11-2009), páginas 6887-6893, XP026722082, ISSN: 0264-410X, DOI: 10.1016/J.Vaccine.2009.09.008) notifican un ensayo aleatorizado controlado por placebo de una vacuna contra el cólera, oral, de células completas, inactivadas, bivalente, reformulada, realizado entre adultos y niños en Calcuta, India.
- Sanchez y Holmgren (Current Opinion in Immunology, vol. 17, n.º 4, 1 de agosto de 2005 (01-08-2005), páginas 388-398, XP027787152, ISSN: 0952-7915) revisan factores de virulencia, patogénesis y protección de la vacuna en diarrea debida a ETEC y cólera.
  - Con esto en mente, los inventores han propuesto diseñar mediante ingeniería genética una única cepa de vacuna de *V. cholerae* que reemplazaría eficazmente a las tres cepas usadas actualmente.
  - Por tanto, un objeto de la invención es proporcionar una vacuna eficaz contra la diarrea debida a ETEC y/o el cólera, con una formulación simplificada y con menores costes de producción y que también produce idealmente inmunidad protectora tras una única administración.

### 30 Sumario de la invención

25

35

65

La presente invención describe la construcción, el método de producción, la formulación y el uso preventivo médico de una vacuna novedosa contra el cólera y/o ETEC. No todos los aspectos dados a conocer en el presente documento son parte de la invención que se reivindica en el presente documento. El tema reivindicado se limita a lo especificado en las reivindicaciones adjuntas.

A lo largo de este texto, en línea con la práctica científica establecida, la designación "wbeT" (en cursiva) indica el gen, mientras que la designación "WbeT" (en cursiva) indica una proteína codificada por un gen wbeT.

- 40 En un primer aspecto, se proporciona una vacuna que comprende una célula de *Vibrio cholerae* O1, caracterizada porque dicha célula comprende antígenos O1 de los serotipos tanto Ogawa como Inaba, en la que la vacuna comprende múltiples células de *Vibrio cholerae* O1 que comprenden antígenos O1 de los serotipos tanto Ogawa como Inaba, y en la que, en promedio, el 10-90% de los antígenos O1 de dichas células son del serotipo Ogawa.
- Más preferiblemente, el 10-70% del antígeno O1 expresado por las células es del serotipo Ogawa. Aún más preferiblemente, el 10-50% del antígeno O1 expresado por las células es del serotipo Ogawa. Todavía más preferiblemente, el 10-40% del antígeno O1 expresado por las células es del serotipo Ogawa. Lo más preferiblemente, el 10-30% del antígeno O1 expresado por las células es del serotipo Ogawa.
- La célula de la vacuna puede comprender además una o más proteínas de factor de colonización (CF) de ETEC, tales como CFA/I, CS2 o CS5, en la que dicha(s) proteína(s) de CF se expresa(n) o bien como fimbrias únicas, dobles o bien híbridas.
- Preferiblemente, dicha vacuna no contiene ninguna célula completa inmunológicamente activa adicional además de células de *Vibrio cholerae* O1 que comprenden antígenos O1 de los serotipos tanto Ogawa como Inaba.
  - Preferiblemente, la vacuna es para administración oral. Preferiblemente, la célula en la vacuna está inactivada con formalina.
- Preferiblemente, la célula es una célula genéticamente modificada, preferiblemente una célula genéticamente modificada según el séptimo u octavo aspecto de la invención (véase a continuación).
  - En un segundo aspecto, se proporciona una vacuna según el primer aspecto, para su uso en inmunización preventiva, preferiblemente para su uso en inmunización preventiva contra el cólera y/o infección por *Escherichia coli* enterotoxigénica (ETEC).

En un tercer aspecto (no parte de la invención reivindicada), se describe un método para inducir inmunidad preventiva, que comprende administrar una vacuna según el primer aspecto a un sujeto que va a inmunizarse. Preferiblemente, la inmunidad preventiva es contra el cólera y/o infección por *Escherichia coli* enterotoxigénica (ETEC). También preferiblemente, la administración se realiza por vía oral.

5

10

En un cuarto aspecto (no parte de la invención reivindicada como tal), se da a conocer un constructo de ADN, que comprende ADN que codifica para un proteína *WbeT* que tiene al menos el 70% de identidad de secuencia con SEQ ID NO: 6 (más preferiblemente al menos el 80% de identidad, incluso más preferiblemente al menos el 90% de identidad, aún más preferiblemente al menos el 95% de identidad y lo más preferiblemente al menos el 99% de identidad) acoplado operativamente a un promotor adecuado para inducir expresión de proteínas en una célula huésped de *Vibrio cholerae* O1, caracterizado porque la proteína *WbeT* codificada comprende modificaciones de secuencia en relación con SEQ ID NO: 6 que reducen la actividad enzimática de la proteína codificada en relación con la actividad enzimática de una proteína con una secuencia idéntica a SEQ ID NO: 6.

15 Pi

Preferiblemente, las modificaciones de secuencia comprenden una sustitución del residuo de serina en la posición 158 de SEQ ID NO: 6, más preferiblemente una sustitución del residuo de serina en la posición 158 de SEQ ID NO: 6 por glicina, prolina, treonina, fenilalanina o triptófano

20

En un quinto aspecto (no parte de la invención reivindicada como tal), se da a conocer un constructo de ADN, que comprende ADN que codifica para un proteína *WbeT* que tiene al menos el 70% de identidad de secuencia con SEQ ID NO: 6 (más preferiblemente al menos el 80% de identidad, incluso más preferiblemente al menos el 90% de identidad, aún más preferiblemente al menos el 95% de identidad y lo más preferiblemente al menos el 99% de identidad) acoplado operativamente a un promotor adecuado para inducir expresión de proteínas en una célula huésped de *Vibrio cholerae* O1, caracterizado porque el promotor es adecuado para inducir la expresión de la proteína *WbeT* codificada en una célula huésped de *Vibrio cholerae* O1, inicialmente de fenotipo Inaba (es decir, célula huésped que es Inaba antes de la transformación mediante el constructo de ADN) hasta un nivel de expresión de proteína *WbeT* transgénica tal que permite la expresión simultánea de antígenos tanto Inaba como Ogawa por la célula huésped.

30

25

Preferiblemente, el promotor de los aspectos anteriores es un promotor inducible, tal como un promotor tac o lac.

Preferiblemente, el constructo de ADN de los aspectos anteriores es un vector de plásmido que puede provocar replicación en una célula huésped o un vector que puede provocar integración cromosómica en una célula huésped.

35

Preferiblemente, el constructo de ADN según los aspectos anteriores comprende además un marcador seleccionable, más preferiblemente un marcador seleccionable positivo tal como un marcador seleccionable metabólico o gen de resistencia a antibióticos.

40

En un sexto aspecto (no parte de la invención reivindicada como tal), se describe un constructo de ADN para la recombinación homóloga en un huésped de *Vibrio cholerae* O1, caracterizado porque el constructo está adaptado para modificar el gen *wbeT* endógeno del huésped por medio de recombinación homóloga. Preferiblemente, el constructo de ADN según el sexto aspecto comprende además un marcador seleccionable, más preferiblemente un marcador seleccionable positivo tal como marcador seleccionable metabólico o gen de resistencia a antibióticos.

45

En un séptimo aspecto (no parte de la invención reivindicada como tal), se da a conocer una célula de *Vibrio cholerae* O1 que expresa simultáneamente los antígenos tanto Inaba como Ogawa, caracterizada porque

a. el gen wbeT endógeno de la célula huésped o la proteína codificada del mismo está inactivo/a;

50

b. la célula comprende un constructo de ADN recombinante que induce la expresión de la actividad enzimática de *WbeT*; y en el que

c. el nivel de actividad enzimática de WbeT transgénica es tal que la célula expresa simultáneamente antígenos Inaba y Ogawa.

55

Preferiblemente, el constructo de ADN recombinante de los aspectos anteriores es un constructo de ADN según los aspectos cuarto a quinto.

60

En un octavo aspecto, se proporciona una célula de *Vibrio cholerae* O1 que expresa simultáneamente antígenos tanto Inaba como Ogawa, caracterizada porque

a. la célula comprende un gen wbeT endógeno; y

65

b. la célula comprende un constructo de ADN recombinante que puede modular el nivel de expresión del gen wbeT endógeno o la actividad enzimática del producto del mismo; y en el que

c. el nivel modulado de actividad enzimática de *WbeT* es tal que la célula expresa simultáneamente antígenos Inaba y Ogawa, en el que el 10-90% del antígeno O1 expresado por la célula es del serotipo Ogawa.

5 Preferiblemente, el constructo de ADN recombinante del aspecto anterior es un constructo de ADN según el sexto aspecto.

Preferiblemente, el 10-90% del antígeno O1 expresado por la célula de los aspectos anteriores es del serotipo Ogawa. Más preferiblemente, el 10-70% del antígeno O1 expresado por la célula de los aspectos anteriores es del serotipo Ogawa. Aún más preferiblemente, el 10-50% del antígeno O1 expresado por la célula de los aspectos anteriores es del serotipo Ogawa. Todavía más preferiblemente, el 10-40% del antígeno O1 expresado por la célula de los aspectos anteriores es del serotipo Ogawa. Lo más preferiblemente, el 10-30% del antígeno O1 expresado por la célula de los aspectos anteriores es del serotipo Ogawa.

Preferiblemente, la célula de los aspectos anteriores expresa además una o más proteínas de factor de colonización (CF) de ETEC, tales como CFA/I, CS2 o CS5, en la que dicha(s) proteína(s) de CF se expresa(n) o bien como fimbrias únicas, dobles o bien híbridas.

En un noveno aspecto, se proporciona un método para fabricar una vacuna, que comprende las etapas de:

proporcionar una célula de *Vibrio cholerae* O1 que comprende antígenos O1 de los serotipos tanto Ogawa como Inaba; e

inactivar dicha célula.

Preferiblemente, la inactivación se realiza mediante tratamiento con formalina o mediante tratamiento térmico.

Preferiblemente, la célula es una célula según los aspectos séptimo u octavo.

30 En un décimo aspecto (no parte de la invención reivindicada), la presente descripción también describe un kit para su uso en la vacunación formulado como una composición unitaria, por lo cual la composición se presenta en una parte del kit e instrucciones para su uso en otra parte.

### Descripción detallada de la invención

Vacuna que comprende células con antígenos O1 de los serotipos tanto Ogawa como Inaba

Aunque *V. cholerae* del serogrupo O139 también puede provocar cólera, >98% de todos los casos de cólera a nivel mundial están provocados por *V. cholerae* O1. El serogrupo O1 tiene dos subtipos/serotipos, Ogawa e Inaba. El cambio de serotipo del subtipo Ogawa al Inaba se produce a una frecuencia relativamente alta mientras que la conversión recíproca es poco común. La base del cambio de serotipo es una mutación en la ruta de síntesis de LPS que conduce a un cambio en la estructura del antígeno O1. Una vacuna eficaz necesita incluir las cepas tanto Ogawa como Inaba en su composición puesto que sus LPS son serológicamente distintos con epítopos tanto compartidos como distintos que contribuyen a la protección.

Se da a conocer una vacuna que comprende células de *Vibrio cholerae* O1 que expresan antígenos O1 de los serotipos tanto Ogawa como Inaba, y tiene la ventaja de simplificar la producción porque obvia la necesidad de usar células distintas para cada uno de los fenotipos en la producción de la vacuna. Al permitir el uso de un único tipo de célula, la producción de la vacuna también se simplifica, puesto que solamente se necesita un tipo de tratamiento de inactivación.

La inmunización con la vacuna de la invención basada en cepas individuales de *V. cholerae* que expresan diferentes cantidades de los serotipos tanto Ogawa como Inaba da lugar a anticuerpos de reacción cruzada así como específicos de tipo en antígenos tanto Ogawa como Inaba (véase el ejemplo 1).

En promedio, el 10-90% de los antígenos O1 de las células son del serotipo Ogawa. El antígeno Inaba está presente preferiblemente en una mayor cantidad (lo que quiere decir más del 50%) que el antígeno Ogawa, puesto que el antígeno Inaba puede provocar un determinado nivel de protección de serotipo cruzado contra Ogawa, mientras que el antígeno Ogawa sólo puede provocar protección contra sí mismo.

La eficacia de la vacuna frente a ETEC puede mejorarse adicionalmente mediante la incorporación de la característica de que las células expresen además una o más proteínas de factor de colonización (CF) de ETEC, tales como CFA/I, CS2 o CS5, en la que dicha(s) proteína(s) de CF se expresa(n) o bien como fimbrias únicas, dobles o bien híbridas (véanse los detalles a continuación).

Es preferible que la vacuna anterior no contenga ninguna célula completa inmunológicamente activa adicional

5

50

10

20

25

35

40

45

55

55

60

además de células de *Vibrio cholerae* O1 que comprenden antígenos O1 de los serotipos tanto Ogawa como Inaba. Sin embargo, la vacuna anterior puede comprender además CTB recombinante de manera similar a Dukoral<sup>TM</sup>.

La vacuna es preferiblemente para administración oral, pero también puede administrarse mediante inyección.

Preferiblemente, la vacuna comprende células de *Vibrio cholerae* O1 que comprenden antígenos O1 de los serotipos tanto Ogawa como Inaba que están inactivados con formalina.

Preferiblemente, la vacuna comprende células de *Vibrio cholerae* O1 genéticamente modificadas, preferiblemente células de *Vibrio cholerae* O1 genéticamente modificadas tales como se describe a continuación.

La vacuna de la invención puede ser una composición de vacuna que comprende uno o más excipientes, portadores, diluyentes y adyuvantes farmacéuticamente aceptables.

Los expertos en la técnica conocen bien la formulación de composiciones de vacuna según la invención. Los portadores y/o diluyentes farmacéuticamente aceptables adecuados incluyen todos y cada uno de disolventes, medios de dispersión, cargas, portadores sólidos, disoluciones acuosas, recubrimientos, agentes antibacterianos y antifúngicos, agentes retardantes de la absorción e isotónicos convencionales, y similares. El uso de tales medios y agentes para sustancias farmacéuticamente activas se conoce bien en la técnica, y se describe, a modo de ejemplo, en Remington's Pharmaceutical Sciences, 18ª Edición, Mack Publishing Company, Pensilvania, EE.UU. Salvo en la medida en que cualquier agente o medio convencional sea incompatible con el principio activo, se contempla el uso del mismo en las composiciones farmacéuticas de la presente invención. También pueden incorporarse principios activos complementarios en las composiciones.

La composición de vacuna para uso oral puede comprender preferiblemente 10<sup>8</sup>-10<sup>14</sup> células/ml, más preferiblemente 10<sup>10</sup>-10<sup>12</sup> célula por ml y lo más preferiblemente 10<sup>11</sup> células/ml aproximadamente.

La composición de vacuna para uso oral puede formularse como un producto alimenticio, una bebida o un complemento alimenticio (cuando se usa para inmunizar animales).

30 La composición de vacuna puede comprender un adyuvante conocido en la técnica, o puede carecer de cualquier adyuvante.

Uso de la vacuna

10

15

20

40

45

50

55

60

65

La presente invención da a conocer el uso de la vacuna anterior en inmunización preventiva, preferiblemente contra el cólera y/o infección por *Escherichia coli* enterotóxica (ETEC). Preferiblemente, la vacuna se administra por vía oral o por vía sublingual.

La administración también puede realizarse mediante invección.

La vacuna se usa preferiblemente para inmunizar seres humanos y otros mamíferos, tales como mascotas (gatos, perros y similares) o animales de granja (tales como vacas, caballos, ovejas, cabras, cerdos y similares).

Preferiblemente, la vacuna se administra por vía oral a 10<sup>8</sup>-10<sup>14</sup> células por dosis, más preferiblemente 10<sup>10</sup>-10<sup>12</sup> células por dosis y lo más preferiblemente 10<sup>11</sup> células por dosis aproximadamente.

El protocolo de inmunización puede consistir en una única administración o puede comprender dos o más administraciones. En una realización preferida, el protocolo de inmunización inicial para inducir inmunidad protectora comprende una primera administración y una segunda administración, separadas en el tiempo por al menos 7 días pero por no más de aproximadamente 2 meses. Tras el protocolo de inmunización inicial, puede mantenerse la inmunidad protectora tanto como se desee mediante administraciones de refuerzo que se producen con intervalos de menos de 3 años, preferiblemente intervalos de menos de 2 años. Puede ser preferible que una administración de refuerzo no tenga lugar antes de que haya transcurrido al menos 1 año desde la primera administración.

### Método de producción de una vacuna

Se da a conocer un método para fabricar una vacuna, que comprende las etapas de:

- a. proporcionar una célula de *Vibrio cholerae* O1 que comprende antígenos O1 de los serotipos tanto Ogawa como Inaba; y
- b. inactivar dicha célula, tal como mediante tratamiento con formalina o mediante tratamiento térmico.
- Preferiblemente, la inactivación se realiza mediante tratamiento con formalina. Preferiblemente la célula es una célula genéticamente modificada, preferiblemente tal como se describe a continuación.

Además de tener de la ventaja de permitir el uso de un único método de inactivación, la vacuna puede fabricarse usando protocolos convencionales conocidos, por ejemplo, de la producción de Dukoral™.

Células genéticamente modificadas útiles para la fabricación de vacunas y constructos de ADN para obtener tales células

Las células de Vibrio cholerae que comprenden antígenos O1 de los serotipos tanto Ogawa como Inaba comprendidas en la vacuna, podrían obtenerse, en principio, de una cepa que se produce de manera natural que tiene un fenotipo Hikojima. Sin embargo, hasta donde conocen los inventores, tales cepas son muy poco comunes y no están disponibles actualmente tales cepas para el público. En la bibliografía, también se han descrito tales cepas naturales como inestables. lo que las hace menos prometedoras para la producción industrial de vacunas.

Por tanto, los inventores han derivado células de V. cholerae que expresan antígenos O1 de los serotipos tanto Ogawa como Inaba por medio de ingeniería genética y han obtenido cepas novedosas con fenotipo Hikojima estable. Las células derivadas de esta manera también tienen la ventaja de que puede usarse cualquier cepa deseada (tal como una cepa de vacuna conocida y bien caracterizada) como punto de partida, simplificando sustancialmente la producción y racionalizando los experimentos necesarios para la producción con BPF y la aprobación reguladora.

- 20 Los inventores demuestran en el presente documento que el parámetro clave para obtener el fenotipo Hikojima deseado es obtener un nivel adecuado de la actividad enzimática de WbeT. Por adecuado en este contexto quiere decirse que el nivel de actividad enzimática de WbeT de la célula no es tan bajo que las células tengan un fenotipo Inaba esencialmente puro y no es tan alto que las células tengan un fenotipo Ogawa esencialmente puro.
- 25 En el contexto de la presente invención, el 10-90% de los antígenos O1 en las células son del tipo Ogawa (siendo el resto por consiguiente del tipo Inaba). Más preferiblemente, el 10-80% de los antígenos O1 en las células son del tipo Ogawa, aún más preferiblemente el 10-50%, todavía más preferiblemente el 10-40% y lo más preferiblemente el 20-30%.
- 30 Tal como se muestra en los ejemplos a continuación, puede obtenerse un fenotipo Hikojima adecuado tal como se describió anteriormente de manera resumida mediante varias estrategias distintas que utilizan tecnología de ADN recombinante:
  - a) una proteína WbeT mutante que tiene actividad enzimática baja puede expresarse a altos niveles en un huésped que tiene el fenotipo Inaba;
  - b) una proteína WbeT que tiene actividad enzimática alta puede expresarse a bajos niveles en un huésped Inaba; o
  - c) el gen wbeT endógeno de un huésped Ogawa puede mutarse, por ejemplo, por medio de recombinación homóloga para hacer que la proteína resultante tenga una actividad adecuadamente reducida.
    - d) El gen wbeT endógeno de un huésped Inaba puede reemplazarse o modificarse, por ejemplo, por medio de recombinación homóloga para hacer que la proteína producida por el gen tenga una actividad adecuadamente aumentada.

La presente divulgación da a conocer células obtenidas mediante cada una de las estrategias anteriores, así como constructos de ADN adecuados para obtener células mediante cada una de las estrategias anteriores. Sin embargo, tal como se especifica en las reivindicaciones adjuntas, sólo determinadas realizaciones de células son parte de la invención reivindicada en el presente documento como tal.

A partir de las enseñanzas en el presente documento, es evidente para el experto en la técnica que conseguir el nivel deseado de expresión de WbeT mediante las estrategias descritas anteriormente de manera resumida puede realizarse de muchas maneras diferentes. Por ejemplo, los niveles de expresión de un transgén WbeT pueden modularse usando un promotor inducible (tal como cat. lac o tac) mediante el cual el nivel de expresión puede modularse durante el cultivo de las células huésped ajustando el nivel del inductor al que las células huésped están expuestas.

Alternativamente, también se conocen varios promotores inespecíficos débiles y fuertes y pueden usarse junto con una proteína WbeT adecuadamente modificada. Puede usarse un promotor débil para inducir de manera inespecífica un nivel muy bajo de expresión de una proteína WbeT altamente activa (tal como de tipo natural; SEQ ID NO: 6). En cambio, puede usarse un promotor inespecífico fuerte para inducir un nivel alto de expresión de una proteína WbeT que tiene una baja actividad (tal como una proteína WbeT mutada, preferiblemente tal como se describe a continuación).

Tanto plásmidos como transgenes wbeT integrados cromosómicamente pueden usarse en las células para lograr el

7

55

5

10

15

35

40

45

50

60

fenotipo deseado.

Muchas mutaciones diferentes de la proteína *WbeT* pueden dar como resultado potencialmente una proteína adecuadamente activa, y tales variantes mutadas puede obtenerlas fácilmente el experto en la técnica usando métodos bien conocidos en la técnica mediante mera experimentación de rutina, basándose en las enseñanzas en el presente documento. Tanto si se obtiene una célula del fenotipo deseado expresando la proteína *WbeT* mutada o no, puede analizarse fácilmente por el experto en la técnica, usando, por ejemplo, los métodos dados a conocer en el ejemplo 5. Los inventores han identificado serina 158 en la proteína *WbeT* (SEQ ID NO: 6) como residuo adecuado para modular la actividad. Por tanto, las mutaciones comprenden preferiblemente una sustitución en la serina 158, más preferiblemente sustitución de serina 158 por glicina, prolina, valina, leucina, alanina, treonina, metionina, triptófano, arginina o fenilalanina. Lo más preferiblemente, la serina 158 se sustituye por glicina, prolina, treonina, fenilalanina o triptófano.

Proteína(s) de factor de colonización (CF) de ETEC

15

20

10

5

Tal como resulta evidente a partir de lo anterior, la vacuna de la invención (o más bien las células en las que se basa la vacuna) también puede comprender otras características potenciadas además de la expresión combinada de antígenos O1 del serotipo tanto Inaba como Ogawa. En particular, las células pueden expresar una o más proteínas de factor de colonización (CF) de ETEC, tales como CFA/I, CS2 o CS5, en las que dicha(s) proteína(s) de CF se expresa(n) o bien como fimbrias únicas, dobles o bien híbridas, tal como se demuestra en el ejemplo 7. La inclusión de tales proteínas de CF en las células de la vacuna es especialmente útil para inducir inmunidad protectora contra ETEC.

La expresión "que comprende" tal como se usa en el presente documento debe entenderse que incluye, pero no se limita a, los puntos establecidos.

La invención se ilustra adicionalmente mediante los siguientes ejemplos, que han de entenderse como no limitativos.

Ejemplo 1. Preparación y pruebas de una vacuna que comprende células de *Vibrio cholerae* que comprenden antígenos O1 de los serotipos tanto Ogawa como Inaba

Se sometió a prueba si una vacuna que comprende bacterias de *V. cholerae* de la cepa JS1569 (Inaba) que se habían modificado genéticamente para expresar antígenos O1 de los serotipos tanto Ogawa como Inaba daría lugar a una respuesta de anticuerpos con una proporción diferente de anticuerpos que reaccionan con LPS de Ogawa e Inaba en ELISA en comparación con la respuesta de anticuerpos tras la inmunización con la cepa Inaba JS1569 original.

Las bacterias del ejemplo 2 (véase a continuación) se inactivaron con formalina y se usaron para la inmunización. Se realizó la inactivación con formalina de bacterias y las inmunizaciones orales y los métodos de ensayo tal como se describió anteriormente (Nygren E, Li BL, Holmgren J, Attridge SR. Infect Immun. Agosto de 2009; 77(8):3475-84). Resumidamente, se inmunizaron ratones Balb/c en 3 rondas a intervalos de 2 semanas con dos dosis diarias de 3x10<sup>8</sup> células inactivadas con formalina (junto con un adyuvante para la cepa WbeT), y una semana tras la última inmunización se sacrificaron los ratones y se recogió suero y se sometió a prueba para obtener los títulos de anticuerpo IgG/IgM combinados en placas de ELISA recubiertas con LPS o bien de Inaba o bien de Ogawa.

45

35

40

Los resultados se presentan en la tabla a continuación y muestran en contraposición a la cepa Inaba JS1569 original que dio lugar a una respuesta de anticuerpos con un título anti-Inaba ligeramente más alto que anti-Ogawa, la vacuna Wbe S158S de tipo natural/JS1569 dio lugar a una respuesta de anticuerpos con un título anti-Ogawa mucho más alto que anti-Inaba, aunque todavía dio lugar a una modesta formación de anticuerpos anti-Inaba específicos:

50

55

| Suero inmunológico                        | Títulos de Inaba/Ogawa (razón) |
|-------------------------------------------|--------------------------------|
| Frente a JS1569                           | 10290/5060 (2:1)               |
| El mismo absorbido con Ogawa              | 2940/160 (18:1)                |
| Frente a Wbe S158S de tipo natural/JS1569 | 36000/365000 (1:10)            |
| El mismo absorbido con Inaba              | 1600/49000 (1:30)              |
| El mismo absorbido con Ogawa              | 1700/2500 (1:1,5)              |

Estos hallazgos se confirmaron cuando se administraron inmunizaciones por vía subcutánea sin adyuvante. En una marcada diferencia con respecto a la inmunización con la cepa Inaba JS1569 original y más similar a la inmunización con la cepa de referencia Ogawa A457, la inmunización con JS1569 WbeT dio lugar a suero inmunológico con una fuerte proporción de anticuerpos específicos de Ogawa, tal como se muestra en la tabla a continuación.

| Suero inmunológico | Título de Inaba | Título de Ogawa | Razón       | de |
|--------------------|-----------------|-----------------|-------------|----|
|                    |                 |                 | Inaba/Ogawa |    |

| JS1569 Inaba                    | 480 | 260  | 1,8:1 |
|---------------------------------|-----|------|-------|
| JS1569 abs con Ogawa A457       | 180 | 60   | 3:1   |
| JS1569 abs con 1569 <i>WbeT</i> | 240 | 60   | 4:1   |
| A457 Ogawa                      | 660 | 1940 | 1:1,9 |
| A457 abs con Inaba 1569         | 240 | 1020 | 1:4,3 |
| A457 abs con JS1569 WbeT        | 180 | 40   | 1,8:1 |
| JS1569 WbeT                     | 420 | 1580 | 1:3,8 |
| WbeT abs con Ogawa A457         | 150 | 60   | 2,5:1 |
| WbeT abs con Inaba JS1569       | 180 | 920  | 1:5,1 |
| WbeT abs con JS1569 WbeT        | 120 | 100  | 1,2:1 |

Ejemplo 2: Células de Vibrio cholerae genéticamente modificadas que expresan antígenos O1 de los serotipos tanto Ogawa como Inaba mediante la expresión de proteína WbeT mutada: expresión basada en plásmidos de proteína WbeT mutada

En una única entrada en GenBank del gen *wbeT* de una cepa Hikojima hay una mutación que convierte una serina en prolina en la posición 158 de la proteína (S158P) aunque la misma mutación se ha descrito en una cepa identificada como perteneciente al serotipo Inaba (números de registro de GenBank FJ619106 y DQ401028, respectivamente). Habiendo amplificado el gen *wbeT* de tipo natural a partir de la cepa O1 El Tor Ogawa VX44945 con los cebadores wbeT1 EcoRI (SEQ ID NO: 1 5'-CCCGGTCTCGAATTC CTGCATCTGCAAGTTGATTCTGTATG-3') y wbeT2 HindIII (SEQ ID NO: 2 5'-CCCGGTCTCAAGCTTATAGTGAACTCTTCGGAAATGTCTG-3'), se digirió con Eco31I y se clonó en un vector de expresión derivado de pAF1 () en el que el gen clonado se colocó bajo el control del promotor tac de síntesis potente que se había digerido con EcoRI y HindIII. La secuencia del gen se confirmó mediante secuenciación de ADN del plásmido con los cebadores wbe1 (SEQ ID NO: 3 5'-CTGCATCTGCAAGTTGATTCTGTATG-3') y wbe2 (SEQ ID NO: 4 5'-ATAGTGAACTCTTCGGAAATGTCTG-3').

La secuencia de ADN del gen *wbeT* de tipo natural se muestra en SEQ ID NO: 5 mientras que la proteína de tipo natural se muestra en SEQ ID NO: 6.

20 La secuencia completa del plásmido (pML-wbeTtac) que expresa wbeT de tipo natural se muestra en SEQ ID NO: 7.

Para construir la biblioteca de mutantes de wbeT que porta mutaciones en la posición de aminoácido 158 del sintetizaron los oligonucleótidos wbeT m3 (SEQ ID NO: 9 GCGCGCCAGAACTTGGCTATTTTTAACC-3') wbeT m1 (SEQ ID NO: 5'-GGGGGTTCGAAGTTTATGAGTTTGATAATAGGGTGNNBTCATTATATTTTCAAAAAAAATACA GACATAGCAGATAAGGTTAAAAATAGCCAAGTTCTGGCGCGC-3'). Los dos oligonucleótidos se mezclaron en cantidades equimolares y se permitió que hibridaran a temperatura ambiente durante la noche. Se preparó ADN bicatenario de longitud completa mediante extensión del cebador corto wbeT m3 usando ADN polimerasa de T4 en presencia de trifosfatos de desoxirribonucleótido en exceso. El fragmento resultante se digirió con Bsp119I y Van91I y se ligó en pML-wbeTtac (SEQ ID NO: 7) digerido con las mismas enzimas. El ADN ligado se usó para transformar la cepa de E. coli electrocompetente obtenida comercialmente DH12S (Invitrogen). Tras la incubación sin selección con antibiótico, se extendió una pequeña alícuota de las células sobre una plaga de agar LB selectivo complementado con ampicilina (100 μg/ml). El resto de las células se diluyó hasta 25 ml con caldo LB nuevo. Se añadió ampicilina hasta una concentración final de 100 μg/ml y se hizo crecer el cultivo durante la noche a 37ºC para obtener una biblioteca de clones.

Se complementaron alícuotas del cultivo resultante con glicerol hasta una concentración final del 17% y se almacenaron a -70°C. Se usaron otras alícuotas para preparar ADN de plásmido.

Se recogieron las colonias obtenidas sobre la placa de agar LB sobre una nueva placa y se cultivaron las colonias para preparar ADN de plásmido. Los plásmidos se secuenciaron para determinar si los genes *wbeT* portaban mutaciones. Los mutantes de *wbeT* obtenidos a partir de la biblioteca son los siguientes: S158G, S158P, S158V, S158I, S158L, S158A, S158T, S158M, S158W, S158R, S158C y S158F. Adicionalmente, se aislaron el gen de tipo natural y un gen con la señal de terminación TGA en la posición 158.

Se aislaron los diferentes plásmidos y usaron para transformar la clásica cepa Inaba O1 JS1569. Esta cepa tiene un gen *wbeT* mutante cambiándose la glicina (GGA) en la posición 219 de la proteína a un codón de terminación (TGA) dando como resultado un producto truncado e inactivo (SEQ ID NO: 10 y SEQ ID NO: 11).

Hay otros polimorfismos que no parecen tener ninguna importancia.

5

10

15

25

30

35

45

55

Las diferentes cepas generadas por la introducción de los diferentes plásmidos recombinantes expresaron diferentes niveles del antígeno Ogawa cuando se hicieron crecer en condiciones inductoras (en presencia de IPTG 1 mM). El fenotipo se evaluó basándose en ensayos de aglutinación y en algunos casos usando ELISA de inhibición (véase el ejemplo 5 para la descripción de materiales y métodos). El gen de tipo natural dio lugar a un cambio de serotipo casi

total mientras que otros (tales como S158P y S158G) dieron aglutinación leve pero detectable con antisuero específico de Ogawa así como aglutinación con un antisuero específico de Inaba (y, por tanto, confirieron un serotipo Hikojima). Algunos mutantes no tenían actividad detectable con antisuero específico de Ogawa (S158I y S158C) y aún otros dieron aglutinación intermedia (S158T, S158F y S158W).

5

10

Los resultados demuestran inequívocamente que las mutaciones, y específicamente mutaciones en la posición 158 del producto del gen *wbeT*, dan como resultado proteínas con actividad enzimática alterada. En la actualidad no hay ningún ensayo fiable para determinar cuantitativa y directamente los niveles de actividad enzimática de estos mutantes en comparación con el tipo natural, pero el resultado final relevante puede evaluarse fácilmente como en el ejemplo 5. En resumen, todos excepto S158C y S158I pudieron complementar el fenotipo Inaba de la cepa huésped en cierta medida.

15

Ejemplo 3: Células de *Vibrio cholerae* genéticamente modificadas que expresan antígenos O1 de los serotipos tanto Ogawa como Inaba mediante la expresión de proteína *WbeT* mutada: inserción cromosómica de *wbeT* mutante

Se sustituyó el gen *wbeT* cromosómico truncado en la cepa JS1569 por los genes mutantes generados en el ejemplo 2. Se amplificaron los genes mutados relevantes con los cebadores wbeT1 BlgII (SEQ ID NO: 1) y wbeT2 BgIII (SEQ ID NO: 2). Se digirieron los fragmentos ampliados con BgIII y se ligaron en el vector suicida pMT-SUICIDE (SEQ ID NO: 12) que se había digerido con BamHI. Éste es un vector suicida basado en R6K pequeño construido en este laboratorio por M. Lebens que porta el gen de resistencia a cloranfenicol y el origen de transferencia (oriT) del plásmido de amplio intervalo del huésped RP4 que permite que el plásmido se transfiera de manera conjugativa a la cepa de *V. cholerae* con la ayuda de un plásmido auxiliar (pNJ5000; Grinter NJ, Gene. Enero-febrero de 1983; 21(1-2):133-43).

En los clones que se generaron, ambos genes *wbeT* (S158G y el tipo natural) se insertaron con los genes clonados en la orientación contraria al gen *cat*. La secuencia de tal vector se ejemplifica por SEQ ID NO: 13 (que porta el gen *wbeT* de tipo natural; el constructo para S158G es idéntico salvo por los nucleótidos que codifican para el residuo 158 de *WbeT*).

Los plásmidos resultantes se aparearon en la cepa JS1569 y se seleccionaron basándose en la resistencia a cloranfenicol y rifampicina. Puesto que el plásmido no tiene contraselección para la pérdida del plásmido, su inserción en el cromosoma mediante recombinación homóloga da como resultado copias en tándem del gen *wbeT* separadas por el plásmido. Según dónde se produjo la recombinación, los clones tenían diferentes fenotipos (véase el ejemplo 5).

35

La cepa que había recibido el gen de tipo natural (1342) tenía un fenotipo Hikojima claro. El ELISA de inhibición mostró que se expresaba solamente el 15% del LPS de Ogawa presente en la superficie de la cepa que recibió el mutante S158G. Esta última cepa (1356) era en efecto una cepa Ogawa que se aglutinaba fuertemente con antisuero específico de Ogawa, pero nada en absoluto con el antisuero específico de Inaba.

40

65

Sin embargo, las cepas eran muy estables; retenían sus serotipos de LPS y permanecían resistentes a cloranfenicol incluso en ausencia de selección, lo que indicaba que el plásmido no se perdía fácilmente.

La PCR y secuenciación usando los cebadores wbe1 y 2 (SEQ ID NO: 3 y 4, respectivamente) mostraron que había dos genes en las cepas que variaban en los sitos de variación entre el gen presente en el huésped y el que se había introducido. La amplificación y secuenciación con los cebadores wbeTfor 87> (SEQ ID NO 14: 5'-CGGTGCAAACGTTGGAACTTTCTG-3') y wbeT rev 51< (SEQ ID NO 15: 5'-GGAAAACAATGCCATCCAAATTCGC-3') que sólo permiten la amplificación si hay copias en tándem del gen wbeT ampliaron con éxito el extremo 3' del gen proximal (a partir del aminoácido 87) y el extremo 5' del gen distal hasta el aminoácido 51 y el plásmido entremedias. La secuenciación usando el cebador wbeTfor 87> mostró que en la cepa 1342 el gen wbeT adyacente al promotor nativo era el gen del huésped truncado. El gen distal tenía la secuencia de tipo natural pero no el promotor. Esta disposición condujo al fenotipo Hikojima puesto que el gen de tipo natural estaba expresándose a niveles extremadamente bajos a partir de un promotor críptico.

En la cepa Ogawa 1356 la disposición era diferente. La recombinación había dado como resultado que se expresara el gen *wbeT* nativo a partir del promotor nativo y que el gen S158G mutante se colocara distalmente y, por tanto, que no hubiera ningún promotor reconocible en absoluto. Ambas copias del gen parecen haber perdido el codón de terminación en la posición 219, pero esta mutación no tuvo ninguna influencia aparente sobre el fenotipo.

60 <u>Ejemplo 4: Células de Vibrio cholerae genéticamente modificadas que expresan antígenos O1 de los serotipos tanto</u>
Ogawa como Inaba expresando niveles bajos de proteína WbeT nativa

Junto con los experimentos sobre *wbeT* mutante descritos en el ejemplo 2, se indicó que un plásmido de control que porta *wbeT* de tipo natural pudo complementar parcialmente el gen mutante en la cepa JS1569 incluso cuando no se inducía. Esto dio como resultado un serotipo Hikojima incluso en presencia del gen de tipo natural demostrando que el fenotipo también puede lograrse limitando los niveles de expresión; en este caso, manteniendo el promotor *tac* 

reprimido y permitiendo únicamente una expresión de avance que se produce en ausencia de inductor.

En el ejemplo 3, el clon 1342 tenía un gen de tipo natural integrado cromosómicamente expresado a partir de un promotor críptico, que dio como resultado un serotipo Hikojima. Estos resultados confirman que la expresión del gen de tipo natural a niveles muy bajos puede dar como resultado el serotipo Hikojima.

### Ejemplo 5: Caracterización del fenotipo de células de Vibrio cholerae genéticamente modificadas

Se hicieron crecer bacterias de *V. cholerae* de la cepa JS1569 (Inaba) que se habían modificado para contener plásmidos que codifican para o bien la proteína metilasa *WbeT* de tipo natural (cepa JS1569/S158S) o un gen *wbeT* mutado que codifica para la proteína *WbeT* con una mutación en la posición 158 de S a G (JS1569/S158G) o de S a A (JS1569/S158A) sobre placas de agar LB, y se sometieron a prueba colonias individuales para determinar la aglutinación por anticuerpos específicos para los antígenos O Inaba y Ogawa, respectivamente.

Estos anticuerpos se obtuvieron tras inmunizar en primer lugar conejos con LPS de Ogawa y de Inaba purificado, respectivamente y después absorber extensamente los sueros con bacterias inactivadas con formalina del serotipo heterólogo para retirar anticuerpos de reacción cruzada. Tras la absorción, el antisuero específico de Ogawa dio una fuerte aglutinación de células de *V. cholerae* de referencia del serotipo Ogawa pero no pudo aglutinar células Inaba y viceversa para el suero específico de Inaba.

Se realizaron pruebas de aglutinación mediante un método convencional. Resumidamente, se suspendió una única colonia de una placa nueva de la cepa sometida a prueba en 50-100 µl de tampón de solución salina fisiológica, y se colocaron 10 µl de la suspensión sobre un portaobjetos de microscopio. Entonces, se añadieron 10 µl de antisuero específico adecuadamente diluido y se mezcló con las células inclinando el portaobjetos hacia atrás y hacia delante durante hasta 5 minutos hasta que la aglutinación era claramente visible. Se comparó cada ensayo con controles negativos y positivos que consistían en células de las cepas lnaba y Ogawa de referencia.

Adicionalmente, se realizó un control para determinar la aglutinación espontánea en el que el suero se reemplazó por tampón para cada cepa sometida a prueba. Los resultados se muestran en la tabla a continuación y muestran que la cepa JS1569/S158S que contiene plásmido que codifica para la proteína *WbeT* de tipo natural había cambiado completamente el serotipo de Inaba a Ogawa, la cepa JS1569/S158G con una mutación *WbeT* 158S a G expresaba una fuerte reactividad frente a Ogawa pero también reactividad detectable frente a Inaba, y JS1569/S158A con una mutación *WbeT* 158S a A sólo tenía reactividad frente a Ogawa marginal.

| Сера           | Plásmido que codifica para | Aglutinación con      | Aglutinación con      |
|----------------|----------------------------|-----------------------|-----------------------|
|                | WbeT                       | anticuerpo anti-Ogawa | anticuerpo anti-Inaba |
| JS1569 Inaba   | Ninguno                    | -                     | +++                   |
| Cairo 50 Ogawa | Ninguno                    | +++                   | -                     |
| A457 Ogawa     | Ninguno                    | +++                   | -                     |
| JS1569/S158S   | WbeTS158S de tipo natural  | +++                   | (+)                   |
| JS1569/S158G   | WbeTS158G                  | ++                    | ++                    |
| JS1569/S158A   | WbeTS158A                  | (+)                   | +++                   |

35

40

45

50

55

5

10

20

25

30

Estos resultados se confirmaron cuando se sometieron a prueba bacterias inactivas con formalina de las mismas cepas para determinar la aglutinación con los mismos sueros. También se confirmaron y se extendieron cuando las bacterias inactivadas con formalina se sometieron a prueba para determinar su expresión cuantitativa de antígenos Inaba y Ogawa sobre la superficie bacteriana usando un método de ELISA de inhibición. El método se realizó tal como sigue a continuación: se recubrieron placas Greiner Bio-one de alta unión con LPS de Ogawa incubando durante la noche con 100 μl por pocillo de una disolución de 5 μg/ml de LPS de Ogawa purificado en PBS. Empezando con 200 microlitros de bacterias inactivadas con formalina de DO<sub>600</sub> 1,00; se hicieron siete diluciones de cinco veces en serie (hasta 1:15625) en PBS con un octavo tubo de blanco que no contenía células. Se mezclaron entre sí 150 microlitros de cada dilución con una cantidad igual de suero anti-Ogawa adecuadamente diluido en PBS, BSA al 0,2%. Se incubaron las muestras a temperatura ambiente durante 1 hora sin agitación. Las placas recubiertas se lavaron dos veces con PBS y se bloquearon con 200 µl/pocillo de PBS, BSA al 0,1% durante 30 minutos a 37ºC. Las células se retiraron de las suspensiones mediante centrifugación durante 5 minutos a 20.000 x g y se añadieron 100 microlitros de los sobrenadantes a la(s) placa(s) bloqueada(s). Se incluyó un blanco que contenía PBS. BSA al 0.1% sin células ni suero anti-Ogawa en todas las placas y se ejecutaron todas las muestras por duplicado. Se incubaron las placas durante 1 hora a temperatura ambiente y entonces se lavaron tres veces con PBS, Tween 20 al 0,05%. Se añadieron 100 microlitros de anticuerpo de cabra anti-lgG de conejo adecuadamente diluido en PBS, BSA al 0,1%, Tween 20 al 0,05% a cada pocillo y se incubó durante 1 hora a temperatura ambiente. Se lavó la placa tres veces con PBS, Tween 20 al 0,05% antes de añadir la disolución de sustrato de ortofenilendiamina (OPD) al 0,1% y H<sub>2</sub>O<sub>2</sub> al 0,012% en citrato 0,1 M pH 4,5. Se leyó la absorbancia a 490 nm tras

Se extrapoló la dilución bacteriana que dio como resultado el 50% de inhibición y también la inhibición en porcentaje

de la absorbancia a la dilución bacteriana de 1:25 con los resultados mostrados en la tabla a continuación. Los resultados muestran que la cepa JS1569/S158S que contenía un gen *wbeT* que codifica para *WbeT* de tipo natural podía inhibir eficazmente el suero anti-Ogawa específico, mientras que las cepas que contenían genes *wbeT* con mutaciones individuales también podían inhibir el suero anti-Ogawa con actividad intermedia (JS1569/S158G) o simplemente detectable (JS1569/S158A):

5

10

15

20

30

35

50

| Сера         | Dilución para el 50% de inhibición | % de inhibición a la dilución 1:25 |
|--------------|------------------------------------|------------------------------------|
| JS1569 Inaba | << 1:1                             | 0                                  |
| A457 Ogawa   | 1:60                               | 65                                 |
| JS1569/S158G | 1:70                               | 70                                 |
| JS1569/S158S | 1:1                                | 20                                 |

Basándose en los plásmidos que codifican para WbeT y S158G, respectivamente, se obtuvieron dos cepas derivadas recombinantes de JS1569, 1356 (WbeT de tipo natural) y 1342 (S158G WbeT), cuando el gen wbeT mutado se había insertado de manera estable en el cromosoma, dando fenotipos inesperados pero estables. Para la explicación y descripción de estas cepas, véanse los ejemplos anteriores. Estas cepas y cepas de referencia adecuadas se sometieron a transferencia de colonias para evaluar la expresión de Ogawa. Se tomaron pequeñas extensiones de las cepas que contenían genes wbeT mutados sobre una placa de agar LB junto con cepas de control de Inaba y Ogawa y se cultivaron durante la noche a 37ºC. Se aplicó una membrana de nitrocelulosa humedecida con PBS sobre la placa con las colonias hechas crecer y se dejó durante 15 minutos a temperatura ambiente. Se dejó que la membrana se secara sobre un trozo de papel durante 5 minutos antes de bloquearla dos veces durante 20 minutos en 10 ml de albúmina sérica bovina (BSA) al 1% en PBS a temperatura ambiente. Se descartó el líquido de bloqueo y se reemplazó con una dilución apropiada del suero anti-Ogawa en 10 ml en PBS que contenía BSA al 0,1% y Tween 20 al 0,05%. Se incubó la membrana a temperatura ambiente sobre una mesa basculante durante 2 horas. Se lavó entonces la membrana tres veces con PBS que contenía Tween20 al 0,05% antes de añadir anticuerpo de cabra anti-IgG de conejo conjugado a peroxidasa del rábano (Jackson Immunoresearch Laboratories Inc.) en BSA al 0,1% en PBS con Tween 20 al 0,05% e incubando durante 2 horas a temperatura ambiente con agitación suave.

Tras tres lavados adicionales en PSB, Tween 20 al 0,05% y un único lavado con PBS solo, se reveló la membrana durante 15 minutos con 4-cloro-1-naftol al 0,05% y H<sub>2</sub>O<sub>2</sub> al 0,015% en Tris-HCl 20 mM pH 7,5 que contenía NaCl 500 mM y metanol al 16,7%. Se lavó entonces concienzudamente con agua del grifo y se dejó secar sobre un trozo de papel. Se tomó una fotografía digital de la membrana revelada y se midió la densidad de tinción con un sistema informático.

Los resultados en la tabla muestran que la cepa 1356 expresaba casi tanto antígeno Ogawa como la cepa de referencia Ogawa mientras que la cepa 1342 expresaba cantidades sustancialmente menores de antígeno Ogawa. Estos hallazgos se confirmaron adicionalmente cuando se sometieron a prueba preparaciones de las cepas inactivadas con formalina para determinar la expresión cuantitativa de antígeno Ogawa mediante ELISA de inhibición realizado tal como se describió anteriormente tal como también se muestra en la tabla:

| Cepa         | Unidades de densidad      | de | Dilución para el 50% de inhibición |
|--------------|---------------------------|----|------------------------------------|
|              | transferencia puntual/mm² |    | •                                  |
| A 457 Ogawa  | 12700                     |    | 1:60                               |
| JS1569 Inaba | 0                         |    | <<1:1                              |
| 1356         | 10000                     | •  | 1:80                               |
| 1342         | 4500                      | -  | 1:7                                |

Ejemplo 6: Modificación genética del gen wbeT endógeno para obtener el serotipo Hikojima

Aunque las cepas presentadas en los ejemplos anteriores son estables y tienen claramente los fenotipos deseados, una manera alternativa de obtener un fenotipo Hikojima es realizar verdaderas sustituciones génicas en el gen endógeno. Mutaciones adecuadas (tal como se dio a conocer anteriormente) en la posición 158 del producto del gen wbeT activo, endógeno también dieron como resultado actividad disminuida y, por tanto, un serotipo Hikojima. Esto dará como resultado un intervalo de mutantes con niveles diferentes de expresión de Ogawa que pueden someterse a prueba para determinar la expresión de Hikojima como en el ejemplo 5 y en experimentos de inmunización para determinar las propiedades inmunogénicas óptimas.

Tal como se mencionó, el vector pMT-SUICIDE carece de un gen de contraselección adecuado y ha demostrado que es difícil aislar derivados que han perdido el plásmido y mantienen el fenotipo y gen deseados. Por este motivo, se construyó un nuevo vector suicida que portaba el gen sacB de Bacillus subtilis, que permite que las cepas que han perdido el plásmido se aíslen mediante selección en placas que contienen sacarosa puesto que la expresión del producto del gen sacB en bacterias Gram-negativas es mortal y solamente sobrevivirán colonias derivadas de células que han perdido el plásmido debido a recombinación homóloga entre las dos copias del gen wbeT. El plásmido, pMT Suicide/sacB (SEQ ID NO: 16) es mucho más pequeño que los plásmidos comparables con las

mismas funciones y es mucho más fácil de usar.

El tipo natural y varios genes wbeT mutantes se han clonado en un nuevo vector y se aparearán en la cepa JS1569 como antes, así como con otras cepas tales como una cepa Ogawa adecuada.

5

15

20

25

30

Para optimizar las oportunidades de obtener un clon correcto, se analizará la disposición génica de los diploides parciales que resultan de los experimentos de transconjugación antes de que se elija una cepa candidata para la selección adicional de cepas que han eliminado por recombinación el plásmido.

#### Ejemplo 7: Expresión de CFA/I+CS2 híbrido 10

Se ha demostrado recientemente que las cepas E. coli TOP10 y V. cholerae JS1569 pueden expresar uno de los factores de colonización principales de ETEC, es decir fimbrias CFA/I, en su superficie (Tobias J, Lebens M, Bölin I, Wiklund G. Svennerholm AM. Vaccine. 6 de febrero de 2008: 26(6):743-52). Tras la electroporación de un vector de expresión que contiene CFA/I en las cepas anteriores, se detectó la expresión de superficie mediante ensayo de transferencia puntual.

También se ha demostrado recientemente que E. coli TOP10 puede expresar fimbrias híbridas que contienen las subunidades principales de tanto CFA/I como CS2, es decir, un factor de colonización factor principal adicional de ETEC (Tobias J, Svennerholm AM, Holmgren J, Lebens M. Appl Microbiol Biotechnol. Julio de 2010; 87(4)).

Por tanto, se examinó la viabilidad de la expresión de las mismas fimbrias híbridas en la cepa de V. cholerae JS1569. La cepa se electroporó con el vector de expresión pJT-CFA/I-CotA tal como se describió (Tobias et al. 2008, citado anteriormente; Tobias J, Holmgren J, Hellman M, Nygren E, Lebens M, Svennerholm AM. Vaccine. 20 de agosto de 2010. [Publicación electrónica antes de la edición impresa]).

Entonces, se cultivaron en estría cincuenta colonias (clones) en dos placas LB complementadas con cloranfenicol (12,5 μg/ml) e IPTG (1 mM), seguido por incubación durante la noche a 37ºC. Se aplicaron entonces anticuerpos monoclonales (MAb) específicos 1:6 contra CFA/I y MAb 10:3 contra CS2 en el ensayo de transferencia de colonias (Tobias et al, 2010, citado anteriormente) para examinar la expresión de superficie de las fimbrias CFA/I-CotA híbridas en V. cholerae JS1569. Entonces se revelaron las transferencias y mostraron una señal positiva de expresión de superficie de las fimbrias CFA/I-CS2 híbridas en los cincuenta clones sometidos a prueba de V. cholerae JS1569.

35 Por tanto, es posible combinar la expresión de fimbrias híbridas antigénicas en las mismas células que se han diseñado por ingeniería para expresar antígenos O1 de los serotipos tanto Ogawa como Inaba.

#### Lista de secuencias

40 <110> Gotovax AB Holmgren, Jan Lebens, Michael

<120> Vacuna frente a la diarrea debida a E. coli enterotoxigénica (ETEC) y el cólera

45

50

<130> P40903745PCT00

<150> Documento US 61/272351

<151> 16-09-2009

<160> 16

<170> PatentIn versión 3.5

55

<211>41

<212> ADN

<213> Vibrio cholerae

60

cccggtctcg aattcctgca tctgcaagtt gattctgtat g

<210>2

<211> 40

<212> ADN 65

<213> Vibrio cholerae

<210>1

|    | <400> 2 cccggtctca agcttatagt gaactcttcg gaaatgtctg        | 40 |
|----|------------------------------------------------------------|----|
| 5  | <210> 3<br><211> 26<br><212> ADN<br><213> Vibrio cholerae  |    |
| 10 | <400> 3 ctgcatctgc aagttgattc tgtatg                       | 26 |
| 15 | <210> 4<br><211> 25<br><212> ADN<br><213> Vibrio cholerae  |    |
| 20 | <400> 4 atagtgaact cttcggaaat gtctg                        | 25 |
|    | <210> 5<br><211> 953<br><212> ADN<br><213> Vibrio cholerae |    |
| 25 | <220> <221> CDS <222> (67)(927)                            |    |
| 30 | <400> 5                                                    |    |

| cctgca                  | tctg            | caag | ttga | tt c | tgta | tgtt | a tt | tttt | acgc | taa | ıtatt | att | taaa | attgag | 60  |
|-------------------------|-----------------|------|------|------|------|------|------|------|------|-----|-------|-----|------|--------|-----|
| gtagta                  | atg<br>Met<br>1 |      |      |      |      |      |      |      | Val  |     |       |     |      |        | 108 |
| aca ga<br>Thr Gl<br>15  |                 |      |      |      |      |      |      |      |      |     |       |     |      |        | 156 |
| ttc at<br>Phe Il        |                 |      |      |      |      |      |      |      |      |     |       |     |      |        | 204 |
| cat tg<br>His Cy        |                 |      | _    |      | _    | _    |      |      | _    |     | _     |     |      |        | 252 |
| cca aa<br>Pro As        |                 | _    |      |      | _    | _    |      |      | ,    | _   |       |     | _    | _      | 300 |
| cat ga<br>His As<br>80  | p Thr           |      |      |      | _    |      |      | _    |      | -   |       |     |      | _      | 348 |
| gga at<br>Gly Il<br>95  | -               | -    | _    |      |      |      |      |      |      | Il€ |       |     |      | _      | 396 |
| cca ct<br>Pro Le        |                 | _    | _    | Glu  |      | _    |      |      | Met  |     | _     |     |      | Asn    | 444 |
| aat cc<br>Asn Pr        | _               | _    | Glu  |      |      |      |      | Gly  | _    | _   |       |     | Glu  |        | 492 |
| gaa gg<br>Glu Gl        |                 | Asn  |      |      |      |      | Tyr  |      |      |     |       | Arg |      |        | 540 |
| tca tt<br>Ser Le<br>16  | u Tyr           |      |      | _    | _    |      | Ξ    |      | Ξ.   | Ξ   | Lys   |     | _    | _      | 588 |
| agc ca<br>Ser Gl<br>175 | _               | _    | _    | _    | _    |      | _    | _    |      | Asp |       | _   |      |        | 636 |
| aac tc<br>Asn Se        |                 |      |      | Lys  |      |      |      |      | Gly  |     |       |     |      | Ile    | 684 |
| tta aa<br>Leu As        |                 |      | Туг  |      |      |      |      | Lys  |      |     |       |     | Ğlu  |        | 732 |
| tat at<br>Tyr Il        | _               | Phe  | _    |      | _    | _    | Gly  |      |      | _   |       | Ser |      | _      | 780 |
| act tt<br>Thr Ph<br>24  | e Āsp           |      |      |      |      |      |      |      |      |     | Phe   |     |      |        | 828 |

|                                          | tat t<br>Tyr E |            |            | lis P      |            |            |            |           | Ala (        |               |             |            |            | he A       |            |            | 876 |
|------------------------------------------|----------------|------------|------------|------------|------------|------------|------------|-----------|--------------|---------------|-------------|------------|------------|------------|------------|------------|-----|
|                                          | gca a<br>Ala T |            | ln A       |            |            |            |            | Asn       |              |               |             |            | yr V       |            |            |            | 924 |
| taa                                      | aataa          | attta      | ıa ta      | atatt      | ccgt       | ato        | gtca       |           |              |               |             |            |            |            |            |            | 953 |
| :210> 6<br>:211> 2<br>:212> P<br>:213> V | 86             | olerae     | ļ          |            |            |            |            |           |              |               |             |            |            |            |            |            |     |
| :400> 6                                  |                | Lys        | His        | Leu        | Ile<br>5   | Lys        | Asn        | туі       | val          | Glr<br>10     | n Lys       | Leu        | Ile        | Lys        | Thr<br>15  | Glu        |     |
|                                          | Leu            | Asp        | Ala        | Ile<br>20  | Gln        | Ser        | Lys        | s Sei     | val<br>25    | His           | s Asp       | Asn        | Arg        | Asn<br>30  | Phe        | Ile        |     |
|                                          | Tyr            | Asn        | Gly<br>35  | Glu        | Phe        | Leu        | Ile        | Leu<br>40 | ı Glu        | Sei           | r Glu       | . Phe      | Gly<br>45  | Trp        | His        | Cys        |     |
|                                          | Phe            | Pro<br>50  | Arg        | Val        | Gln        | Leu        | Asn<br>55  | h His     | s Ala        | . Leı         | ı Ser       | Tyr<br>60  | Lys        | Asn        | Pro        | Asn        |     |
|                                          | Phe<br>65      | Asp        | Leu        | Gly        | Met        | Arg<br>70  | His        | Trp       | ) Ile        | · Val         | l Asn<br>75 | His        | Cys        | Lys        | His        | Asp<br>80  |     |
|                                          | Thr            | Thr        | Tyr        | Ile        | Asp<br>85  | Ile        | Gly        | Ala       | a Asn        | Va]<br>90     | l Gly       | Thr        | Phe        | Cys        | 95         | Ile        |     |
|                                          | Ala            | Ala        | Arg        | His<br>100 | Ile        | Thr        | Gln        | Gly       | y Lys<br>105 |               | e Ile       | Ala        | Ile        | Glu<br>110 | Pro        | Leu        |     |
|                                          | Thr            | Glu        | Met<br>115 |            | Asn        | Ser        | Ile        | 120       |              | Ası           | n Val       | . Gln      | Leu<br>125 |            | Asn        | Pro        |     |
|                                          | Leu            | Val<br>130 | Glu        | Phe        | His        | His        | Phe<br>135 |           | y Cys        | Ala           | a Ile       | Gly<br>140 |            | Asn        | Glu        | Gly        |     |
|                                          | Glu<br>145     |            | Ile        | Phe        | Glu        | Val<br>150 |            | : Glu     | ı Phe        | Asp           | Asn<br>155  |            | Val        | Ser        | Ser        | Leu<br>160 |     |
|                                          | Tyr            | Phe        | Gln        | Lys        | Asn<br>165 | Thr        | Asp        | ) Ile     | e Ala        | . <b>As</b> r |             | Val        | Lys        | Asn        | Ser<br>175 | Gln        |     |
|                                          | Val            | Leu        | Val        | Arg<br>180 | Lys        | Leu        | Ser        | : Sei     | Leu<br>185   |               | o Ile       | Ser        | Pro        | Thr        | Asn        | Ser        |     |

| Val Val Ile Lys | Ile Asp Ala Glu Gly | Ala Glu Ile Glu Ile Leu Asn |
|-----------------|---------------------|-----------------------------|
| 195             | 200                 | 205                         |

Gln Ile Tyr Glu Phe Thr Glu Lys His Asn Gly Ile Glu Tyr Tyr Ile 210 215 220

Cys Phe Glu Phe Ala Met Gly His Ile Gln Arg Ser Asn Arg Thr Phe 225 230 235 240

Asp Glu Ile Phe Asn Ile Ile Asn Ser Lys Phe Gly Ser Lys Ala Tyr 245 250 255

Phe Ile His Pro Leu Ser Ser Ala Glu His Pro Glu Phe Asn Lys Ala 260 265 270

Thr Gln Asp Ile Asn Gly Asn Ile Cys Phe Lys Tyr Val Ser 275 280 285

<210>7

<211> 4858

5 <212> ADN

<213> Secuencia artificial

<220>

<223> Plásmido de síntesis

10

<400> 7 aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt tctaaataca 60 120 ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat aatccggatt 180 gaaaaaggaa gagtatgagt attcaacatt tccgtgtcgc ccttattccc ttttttgcgg 240 cattttgcct tcctgttttt gctcacccag aaacgctggt gaaagtaaaa gatgctgaag 300 atcagttggg tgcacgagtg ggttacatcg aactggatct caacagcggt aagatccttg 360 agagttttcg ccccgaagaa cgttttccaa tgatgagcac ttttaaagtt ctgctatgtg gcgcggtatt atcccgtgtt gacgccgggc aagagcaact cggtcgccgc atacactatt 420 ctcagaatga cttggttgag tactcaccag tctcagaaaa gcatcttacg gatggcatga 480 cagtaagaga attatgcagt gctgccataa ccatgagtga taacactgcg gccaacttac 540 ttctgacaac gatcggagga ccgaaggagc taaccgcttt tttgcacaac atgggggatc 600 atgtaactcg ccttgatcgt tgggaaccgg agctgaatga agccatacca aacgacgagc 660 720 gtgacaccac gatgcctgta gcaatggcaa caacgttgcg caaactatta actggcgaac 780 tacttactct agcttcccgg caacaattaa tagactggat ggaggcggat aaagttgcag 840 gaccacttct gcgctcggcc cttccggctg gctggtttat tgctgataaa tctggagccg gtgagcgtgg gtctcgcggt atcattgcag cactggggcc agatggtaag ccctcccgta 900

| tcgtagttat | ctacacgacg | gggagtcagg | caactatgga | tgaacgaaat | agacagateg | 960  |
|------------|------------|------------|------------|------------|------------|------|
| ctgagatagg | tgcctcactg | attaagcatt | ggtaactgtc | agaccaagtt | tactcatata | 1020 |
| tactttagat | tgatttaaaa | cttcattttt | aatttaaaag | gatctaggtg | aagatccttt | 1080 |
| ttgataatct | catgaccaaa | atcccttaac | gtgagttttc | gttccactca | gcgtcagacc | 1140 |
| ccgtagaaaa | gatcaaagga | tcttcttgag | atccttttt  | tctgcgcgta | atctgctgct | 1200 |
| tgcaaacaaa | aaaaccaccg | ctaccagcgg | tggtttgttt | gccggatcaa | gagctaccaa | 1260 |
| ctcttttcc  | gaaggtaact | ggcttcagca | gagcgcagat | accaaatact | gtccttctag | 1320 |
| tgtagccgta | gttaggccac | cacttcaaga | actctgtagc | accgcctaca | tacctcgctc | 1380 |
| tgctaatcct | gttaccagtg | gctgctgcca | gtggcgataa | gtcgtgtctt | accgggttgg | 1440 |
| actcaagacg | atagttaccg | gataaggcgc | agcggtcggg | ctgaacgggg | ggttcgtgca | 1500 |
| cacageceag | cttggagcga | acgacctaca | ccgaactgag | atacctacag | cgtgagcatt | 1560 |
| gagaaagcgc | cacgcttccc | gaagggagaa | aggcggacag | gtatccggta | agcggcaggg | 1620 |
| tcggaacagg | acagegeacg | agggagcttc | cagggggaaa | cgcctggtat | ctttatagtc | 1680 |
| ctgtcgggtt | tegecacete | tgacttgagc | gtcgattttt | gtgatgctcg | tcaggggggc | 1740 |
| ggagcctatg | gaaaatcttt | cctgcgttat | cccctgattc | tgtggataac | cgtattaccg | 1800 |
| cctttgagtg | agctgacgcc | agcaacgcgg | cctttttacg | gttcctggcc | ttttgctggc | 1860 |
| cttttgctca | catgttcttt | cctgcgttat | cccctgattc | tgtggataac | cgtattaccg | 1920 |
| cctttgagtg | agctgatacc | gctcgccgca | gccgaacgac | cgagcgcagc | gagtcagtga | 1980 |
| gcgaggaagc | ggaagagcgc | ctgatgcggt | attttctcct | tacgcatctg | tgcggtattt | 2040 |
| cacaccgcat | atggtgcact | ctcagtacaa | tctgctctga | tgccgcatag | ttaagccagt | 2100 |
| atacactccg | ctatcgctac | gtgactgggt | catggctgcg | ccccgacacc | cgccaacacc | 2160 |
| cgctgacgcg | ccctgacggg | cttgtctgct | cccggcatcc | gcttacagac | aagctgtgac | 2220 |
| cgtctccggg | agctgcatgt | gtcagaggtt | ttcaccgtca | tcaccgaaac | gcgcgaggca | 2280 |
| ggatcccgaa | cgccagcaag | acgtagccca | gegegtegge | cagcttgcaa | ttcgcgctaa | 2340 |
| ctcacattaa | ttgcgttgcg | ctcactgccc | gctttccagt | cgggaaacct | gtcgtgccag | 2400 |
| ctgcattaat | gaatcggcca | acgcgcgggg | agaggcggtt | tgcgtattgg | gcgccagggt | 2460 |
| ggtttttctt | ttcaccagtg | agacgggcaa | cagctgattg | cccttcaccg | cctggccctg | 2520 |
| agagagttgc | agcaagcggt | ccacgctggt | ttgccccagc | aggcgaaaat | cctgtttgat | 2580 |
| ggtggttaac | ggcgggatat | aacatgagct | gtcttcggta | tegtegtate | ccactaccga | 2640 |
| gatateegea | ccaacgcgca | geeeggaete | ggtaatggcg | cgcattgcgc | ccagcgccat | 2700 |
| ctgatcgttg | gcaaccagca | tegeagtggg | aacgatgccc | tcattcagca | tttgcatggt | 2760 |
| ttgttgaaaa | ccggacatgg | cactccagtc | gccttcccgt | teegetateg | gctgaatttg | 2820 |
| attgcgagtg | agatatttat | gccagccagc | cagacgcaga | cgcgccgaga | cagaacttaa | 2880 |

| tgggcccgct | aacagcgcga | tttgctggtg | acccaatgcg | accagatgct | ccacgcccag | 2940 |
|------------|------------|------------|------------|------------|------------|------|
| tcgcgtaccg | tcttcatggg | agaaaataat | actgttgatg | ggtgtctggt | cagagacatc | 3000 |
| aagaaataac | gccggaacat | tagtgcaggc | agcttccaca | gcaatggcat | cctggtcatc | 3060 |
| cagcggatag | ttaatgatca | gcccactgac | gcgttgcgcg | agaagattgt | gcaccgccgc | 3120 |
| tttacaggct | tegaegeege | ttcgttctac | catcgacacc | accacgctgg | cacccagttg | 3180 |
| atcggcgcga | gatttaatcg | ccgcgacaat | ttgcgacggc | gcgtgcaggg | ccagactgga | 3240 |
| ggtggcaacg | ccaatcagca | acgactgttt | gcccgccagt | tgttgtgcca | cgcggttggg | 3300 |
| aatgtaattc | ageteegeea | tegeegette | cactttttcc | cgcgttttcg | cagaaacgtg | 3360 |
| gctggcctgg | ttcaccacgc | gggaaacggt | ctgataagag | acaccggcat | actctgcgac | 3420 |
| atcgtataac | gttactggtt | tcacattcac | caccctgaat | tgactctctt | ccgggcgcta | 3480 |
| tcatgccata | ccgcgaaagg | ttttgcacca | ttcgatggtg | tcaacgtaaa | tgccgcttcg | 3540 |
| ccttcgcgcg | cgaattgcaa | gctgatccgg | gcttatcgac | tgcacggtgc | accaatgctt | 3600 |
| ctggcgtcag | gcagccatcg | gaagctgtgg | tatggctgtg | caggtcgtaa | atcactgcat | 3660 |
| aattcgtgtc | gctcaaggcg | cactcccgtt | ctggataatg | ttttttgcgc | cgacatcata | 3720 |
| acggttctgg | cagatctgaa | atgagctgtt | gacaattaat | categgeteg | tataatgtgt | 3780 |
| ggaattgtga | gcggataaca | atttcacaca | ggaaacagaa | ttcctgcatc | tgcaagttga | 3840 |
| ttctgtatgt | tatttttac  | gctaatatta | tttaaaattg | aggtagtatg | aaacatctaa | 3900 |
| taaaaaacta | tgtacaaaaa | ttaattaaaa | cagagettga | tgctattcag | tcaaagtctg | 3960 |
| ttcatgataa | tcgaaacttc | atttacaatg | gagagtttt  | aattcttgaa | agcgaatttg | 4020 |
| gatggcattg | ttttcccaga | gtgcagttga | accatgcttt | aagctacaaa | aacccaaact | 4080 |
| ttgatttagg | tatgcgtcac | tggattgtta | atcattgtaa | gcatgacacc | acttatattg | 4140 |
| atatcggtgc | aaacgttgga | actttctgtg | gaatcgctgc | tcgtcatatt | acacaaggaa | 4200 |
| aaattatagc | gatagaacca | ctcacagaaa | tggaaaatag | tattaggatg | aatgttcaat | 4260 |
| taaataatcc | actagttgag | tttcatcatt | ttggctgtgc | aataggtgag | aatgaagggg | 4320 |
| aaaatatttt | cgaagtttat | gagtttgata | atagggtgtc | atcattatat | tttcaaaaaa | 4380 |
| atacagacat | agcagataag | gttaaaaata | gccaagttct | ggttagaaag | ttaagtagtt | 4440 |
| tagatatatc | gcctactaac | tctgtagtta | taaaaattga | tgctgaaggc | gcagaaatag | 4500 |
| agatattaaa | ccagatttac | gaattcacag | aaaagcataa | tggaattgaa | tattatattt | 4560 |
| gctttgaatt | tgcaatgggt | catatacaga | ggtctaatag | aacttttgat | gagatttta  | 4620 |
| acataataaa | ctcaaaattc | ggaagtaagg | catattttat | tcatccatta | tcatccgctg | 4680 |
| aacatcctga | gtttaataaa | gcaacgcagg | atattaatgg | gaatatctgt | tttaaatatg | 4740 |
| tatcataaaa | taatttaata | tattctcgta | tgtcattgca | agttcaacag | acatttccga | 4800 |
| agagttcact | ataagcttag | cccgcctaat | gagcgggctt | ttttttctcg | aggacgtc   | 4858 |

| 5  | <210> 8<br><211> 28<br><212> ADN<br><213> Vibrio cholerae                                                                                      |     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | <400> 8<br>gegegecaga acttggetat ttttaace                                                                                                      | 28  |
| 10 | <210> 9<br><211> 104<br><212> ADN<br><213> Vibrio cholerae                                                                                     |     |
| 15 | <220> <221> misc_feature <222> (36)(37) <223> n indica a, t, c o g                                                                             |     |
| 20 | <220> <221> misc_feature <222> (38)(38) <223> b indica c o g o t                                                                               |     |
| 25 | <400>9<br>gggggttcga agtttatgag tttgataata gggtgnnbtc attatatttt caaaaaaata                                                                    | 60  |
|    | cagacatage agataaggtt aaaaatagee aagttetgge gege                                                                                               | 104 |
| 30 | <210> 10<br><211> 934<br><212> ADN<br><213> Vibrio cholerae                                                                                    |     |
| 35 | <220><br><221> CDS<br><222> (22)(678)                                                                                                          |     |
|    | <pre>&lt;400&gt; 10 attatttaaa ttgaggtagt a atg aaa cat cta ata aaa aac tat gta caa</pre>                                                      | 51  |
|    | aaa tta att aaa aca gag ctt gat gct att cag tca aag tct gtt cat<br>Lys Leu Ile Lys Thr Glu Leu Asp Ala Ile Gln Ser Lys Ser Val His<br>15 20 25 | 99  |
|    | gat aat cga aac ttc att tac aat gga gag ttt tta att ctt gaa agc<br>Asp Asn Arg Asn Phe Ile Tyr Asn Gly Glu Phe Leu Ile Leu Glu Ser<br>30 35 40 | 147 |
|    | gaa ttt gga ttg cat tgt ttt ccc aga gtg cag ttg aac cat gct tta<br>Glu Phe Gly Leu His Cys Phe Pro Arg Val Gln Leu Asn His Ala Leu<br>45 50 55 | 195 |
|    | agc tac aaa aac cca aac ttt gat tta ggt atg cgt cac tgg att gtt<br>Ser Tyr Lys Asn Pro Asn Phe Asp Leu Gly Met Arg His Trp Ile Val<br>60 65 70 | 243 |

|                              |      |       |       |       |       |       |       | tat<br>Tyr        |      |      |      |       |       |       |        | 291 |
|------------------------------|------|-------|-------|-------|-------|-------|-------|-------------------|------|------|------|-------|-------|-------|--------|-----|
|                              |      |       | _     |       |       | _     | _     | cgt<br>Arg        |      |      |      |       |       |       |        | 339 |
|                              |      |       | _     |       |       |       | _     | atg<br>Met<br>115 | _    |      | _    |       |       | _     |        | 387 |
| -                            |      |       |       |       |       |       | -     | gag<br>Glu        |      |      |      |       |       | -     | -      | 435 |
|                              |      |       |       | _     |       | _     |       | att<br>Ile        |      | _    | _    |       |       |       | _      | 483 |
|                              |      |       |       |       |       |       |       | aaa<br>Lys        |      |      |      | _     |       | _     | _      | 531 |
| _                            | _    |       |       | _     |       | _     | _     | gtt<br>Val        | _    | _    |      | _     | _     |       | _      | 579 |
|                              | _    |       |       |       |       | _     | _     | ata<br>Ile<br>195 |      |      | _    | _     | _     |       | _      | 627 |
| _                            |      |       |       |       |       | _     |       | tac<br>Tyr        | _    |      |      | _     | _     |       |        | 675 |
| tga                          | atto | gaata | att a | atatt | tgct  | t to  | gaatt | tgca              | ato  | ggto | cata | taca  | agago | gtc   |        | 728 |
| taat                         | agaa | ict t | ttga  | atgaç | ga tt | ttta  | acat  | aat               | aaac | ctca | aaat | tegg  | gaa g | gtaag | ggcata | 788 |
| tttt                         | atto | cat o | catt  | atca  | at co | egete | gaaca | a tco             | tgaç | jttt | aata | aaago | caa c | gcaç  | ggatat | 848 |
| taat                         | ggga | aat a | atcto | gtttt | a aa  | atato | gtato | e ata             | aaat | aat  | ttaa | atata | att o | ccgta | itgtca | 908 |
| ttgcaagttc aacagacatt tcgaga |      |       |       |       |       |       |       |                   |      |      |      | 934   |       |       |        |     |
| 10> 1                        | 1    |       |       |       |       |       |       |                   |      |      |      |       |       |       |        |     |

<21

<211> 218

<212> PRT

<213> Vibrio cholerae

<400> 11

Met Lys His Leu Ile Lys Asn Tyr Val Gln Lys Leu Ile Lys Thr Glu

Leu Asp Ala Ile Gln Ser Lys Ser Val His Asp Asn Arg Asn Phe Ile 25

Tyr Asn Gly Glu Phe Leu Ile Leu Glu Ser Glu Phe Gly Leu His Cys

|         | Phe              | Pro<br>50  | Arg        | Val        | Gln        | Leu        | Asn<br>55  | His        | Ala        | Leu            | Ser        | Tyr<br>60  | Lys        | Asn        | Pro        | Asn        |
|---------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|------------|------------|------------|------------|
|         | Phe<br>65        | Asp        | Leu        | Gly        | Met        | Arg<br>70  | His        | Trp        | Ile        | Val            | Asn<br>75  | His        | Cys        | Lys        | His        | Asp<br>80  |
|         | Thr              | Thr        | Tyr        | Ile        | Asp<br>85  | Ile        | Gly        | Ala        | Asn        | Val<br>90      | Gly        | Thr        | Phe        | Cys        | Gly<br>95  | Ile        |
|         | Ala              | Ala        | Arg        | His<br>100 | Ile        | His        | Gln        | Gly        | Lys<br>105 | Ile            | Ile        | Ala        | Ile        | Glu<br>110 | Pro        | Leu        |
|         | Thr              | Glu        | Met<br>115 | Glu        | Asn        | Ser        | Ile        | Arg<br>120 | Met        | Asn            | Val        | Gln        | Leu<br>125 | Asn        | Asn        | Pro        |
|         | Leu              | Val<br>130 | Glu        | Phe        | His        | His        | Phe<br>135 | Gly        | Cys        | Ala            | Ile        | Gly<br>140 | Glu        | Asn        | Glu        | Gly        |
|         | Glu<br>145       | Asn        | Ile        | Phe        | Glu        | Val<br>150 | Tyr        | Glu        | Phe        | Asp            | Asn<br>155 | Arg        | Val        | Ser        | Ser        | Leu<br>160 |
|         | Tyr              | Phe        | Lys        | Lys        | Asn<br>165 | Thr        | Asp        | Ile        | Ala        | <b>Asp</b> 170 | Lys        | Val        | Lys        | Asn        | Ser<br>175 | Gln        |
|         | Val              | Leu        | Val        | Arg<br>180 | Lys        | Leu        | Ser        | Ser        | Leu<br>185 | Asp            | Ile        | Ser        | Pro        | Thr<br>190 | Asn        | Ser        |
|         | Val              | Val        | Ile<br>195 | Lys        | Ile        | Asp        | Ala        | Glu<br>200 | Gly        | Ala            | Glu        | Ile        | G1u<br>205 | Ile        | Leu        | Asn        |
| 2<br>95 | <b>Gln</b><br>54 | Ile<br>210 | Tyr        | Glu        | Phe        | Thr        | Glu<br>215 | Lys        | His        | Asn            |            |            |            |            |            |            |
| -       |                  |            |            |            |            |            |            |            |            |                |            |            |            |            |            |            |

<210> 12

<211> 1954 <212> ADN

<213> Artificial

<223> Plásmido de síntesis

10

<400> 12

| 60  | tacgtctcga | gcgcgcaccg | cgaatgcatc | ggcagatctt | ctcactagtg | agtaatacga |
|-----|------------|------------|------------|------------|------------|------------|
| 120 | ccggttctag | ggtgacgtca | agcttcccat | ggatccacga | caggatatct | ggaattcctg |
| 180 | gtgttcctgt | cagccgttaa | caaggcctgt | accctctagt | gagctctggt | atacctaggt |
| 240 | tccctggctt | gtgcgttaca | gggcttctca | gaggctctaa | attgctttga | gtcactgaaa |
| 300 | tttttttctt | tatatattct | ttaaaagcct | cttaaaagct | accgttaaac | gttgtccaca |
| 360 | ttattottca | tatattaatt | gttgctgatt | ggctatttaa | aaaccttaga | ataaaactta |

| aacatgagag cttagtacgt | gaaacatgag | agcttagtac | gttagccatg | agagcttagt | 420  |
|-----------------------|------------|------------|------------|------------|------|
| acgttagcca tgagggttta | gttcgttaaa | catgagagct | tagtacgtta | aacatgagag | 480  |
| cttagtacgt gaaacatgag | agcttagtac | gtactatcaa | caggttgaac | tgctgatctt | 540  |
| cagateteeg ettgeeetea | tctgttacgc | cggcggtagc | cggccagcct | cgcagagcag | 600  |
| gattcccgtt gagcaccgcc | aggtgcgaat | aagggacagt | gaagaaggaa | cacccgctcg | 660  |
| cgggtgggcc tacttcacct | atcctgcccg | gctgacgccg | ttggatacac | caaggaaagt | 720  |
| ctacacgaac cctttggcaa | aatcctgtat | atcgtgcgaa | aaaggatgga | tataccgaaa | 780  |
| aaatcgctat aatgaccccg | aagcagggtt | atgcagcgga | aaagcgctgc | ttccctgctg | 840  |
| ttttgtggaa tatctaccga | ctggaaacag | gcaaatgcag | gaaattactg | aactgagggg | 900  |
| acaggcgaga gatctggcct | aggccgaccg | aataaatacc | tgtgacggaa | gatcacttcg | 960  |
| cagaataaat aaatcctggt | gtccctgttg | ataccgggaa | gccctgggcc | aacttttggc | 1020 |
| gaaaatgaga cgttgatcgg | cacgtaagag | gttccaactt | tcaccataat | gaaataagat | 1080 |
| cactaccggg cgtattttt  | gagttgtcga | gattttcagg | agctaaggaa | gctaaaatgg | 1140 |
| agaaaaaaat cactggatat | accaccgttg | atatatccca | atggcatcgt | aaagaacatt | 1200 |
| ttgaggcatt tcagtcagtt | gctcaatgta | cctataacca | gaccgttcag | ctggatatta | 1260 |
| cggccttttt aaagaccgta | aagaaaaata | agcacaagtt | ttatccggcc | tttattcaca | 1320 |
| ttcttgcccg cctgatgaat | gctcatccgg | aattacgtat | ggcaatgaaa | gacggtgagc | 1380 |
| tggtgatatg ggatagtgtt | cacccttgtt | acaccgtttt | ccatgagcaa | actgaaacgt | 1440 |
| tttcatcgct ctggagtgaa | taccacgacg | atttccggca | gtttctacac | atatattcgc | 1500 |
| aagatgtggc gtgttacggt | gaaaacctgg | cctatttccc | taaagggttt | attgagaata | 1560 |
| tgtttttcgt ctcagccaat | ccctgggtga | gtttcaccag | ttttgattta | aacgtggcca | 1620 |
| atatggacaa cttcttcgcc | cccgttttca | ccatgggcaa | atattatacg | caaggcgaca | 1680 |
| aggtgctgat gccgctggcg | attcaggttc | atcatgccgt | ttgtgatggc | ttccatgtcg | 1740 |
| gcagaatgct taatgaatta | caacagtact | gcgatgagtg | gcagggcggg | gcgtaatttt | 1800 |
| tttaaggcag ttattggtgc | ccataaacgc | ctggttgcta | cgcctgaata | agtgataata | 1860 |
| agcggatgaa tggcagaaat | tcgaaagcaa | attcgacccg | gtcgtcggtt | cagggcaggg | 1920 |
| tcgttaaata gccgcttatg | tctattgctg | gttt       |            |            | 1954 |

<210> 13

<211> 2948

<212> ADN

<213> Artificial

<220>

<223> Constructo de vector de síntesis con inserto de wbeT de tipo natural

```
<220>
<221> misc_feature
<222> (151)..(1011)
<223> Inserto de CDS de tipo natural de wbeT en orientación inversa

5

<400> 13
```

| agtaatacga ctcactagtg | ggcagatctt | cgaatgcatc | gcgcgcaccg | tacgtctcga | 60   |
|-----------------------|------------|------------|------------|------------|------|
| ggaattcctg caggatatct | ggatctatag | tgaactcttc | ggaaatgtct | gttgaacttg | 120  |
| caatgacata cgagaatata | ttaaattatt | ttatgataca | tatttaaaac | agatattccc | 180  |
| attaatatcc tgcgttgctt | tattaaactc | aggatgttca | gcggatgata | atggatgaat | 240  |
| aaaatatgcc ttacttccga | attttgagtt | tattatgtta | aaaatctcat | caaaagttct | 300  |
| attagacctc tgtatatgac | ccattgcaaa | ttcaaagcaa | atataatatt | caattccatt | 360  |
| atgcttttct gtgaattcgt | aaatctggtt | taatatctct | atttctgcgc | cttcagcatc | 420  |
| aatttttata actacagagt | tagtaggcga | tatatctaaa | ctacttaact | ttctaaccag | 480  |
| aacttggcta tttttaacct | tatctgctat | gtctgtattt | ttttgaaaat | ataatgatga | 540  |
| caccctatta tcaaactcat | aaacttcgaa | aatattttcc | ccttcattct | cacctattgc | 600  |
| acagccaaaa tgatgaaact | caactagtgg | attatttaat | tgaacattca | tcctaatact | 660  |
| attttccatt tctgtgagtg | gttctatcgc | tataattttt | ccttgtgtaa | tatgacgagc | 720  |
| agcgattcca cagaaagttc | caacgtttgc | accgatatca | atataagtgg | tgtcatgctt | 780  |
| acaatgatta acaatccagt | gacgcatacc | taaatcaaag | tttgggtttt | tgtagcttaa | 840  |
| agcatggttc aactgcactc | tgggaaaaca | atgccatcca | aattcgcttt | caagaattaa | 900  |
| aaactctcca ttgtaaatga | agtttcgatt | atcatgaaca | gactttgact | gaatagcatc | 960  |
| aagctctgtt ttaattaatt | tttgtacata | gttttttatt | agatgtttca | tactacctca | 1020 |
| attttaaata atattagcgt | aaaaaataac | atacagaatc | aacttgcaga | tgcagagatc | 1080 |
| cacgaagett eccatggtga | cgtcaccggt | tctagatacc | taggtgagct | ctggtaccct | 1140 |
| ctagtcaagg cctgtcagcc | gttaagtgtt | cctgtgtcac | tgaaaattgc | tttgagaggc | 1200 |
| tctaagggct tctcagtgcg | ttacatccct | ggcttgttgt | ccacaaccgt | taaaccttaa | 1260 |
| aagctttaaa agccttatat | attcttttt  | ttcttataaa | acttaaaacc | ttagaggcta | 1320 |
| tttaagttgc tgatttatat | taattttatt | gttcaaacat | gagagcttag | tacgtgaaac | 1380 |
| atgagagett agtaegttag | ccatgagagc | ttagtacgtt | agccatgagg | gtttagttcg | 1440 |
| ttaaacatga gagcttagta | cgttaaacat | gagagcttag | tacgtgaaac | atgagagctt | 1500 |
| agtacgtact atcaacaggt | tgaactgctg | atcttcagat | ctccgcttgc | cctcatctgt | 1560 |
| tacgccggcg gtagccggcc | agcctcgcag | agcaggattc | ccgttgagca | ccgccaggtg | 1620 |
| cgaataaggg acagtgaaga | aggaacaccc | gctcgcgggt | gggcctactt | cacctatcct | 1680 |
| gcccggctga cgccgttgga | tacaccaagg | aaagtctaca | cgaacccttt | ggcaaaatcc | 1740 |
| tgtatatcgt gcgaaaaagg | atggatatac | cgaaaaaatc | gctataatga | ccccgaagca | 1800 |

| gggttatgca                                              | gcggaaaagc  | gctgcttccc | tgctgttttg | tggaatatct | accgactgga | 1860 |
|---------------------------------------------------------|-------------|------------|------------|------------|------------|------|
| aacaggcaaa                                              | tgcaggaaat  | tactgaactg | aggggacagg | cgagagatct | ggcctaggcc | 1920 |
| gaccgaataa                                              | atacctgtga  | cggaagatca | cttcgcagaa | taaataaatc | ctggtgtccc | 1980 |
| tgttgatacc                                              | gggaagccct  | gggccaactt | ttggcgaaaa | tgagacgttg | atcggcacgt | 2040 |
| aagaggttcc                                              | aactttcacc  | ataatgaaat | aagatcacta | ccgggcgtat | tttttgagtt | 2100 |
| gtcgagattt                                              | tcaggagcta  | aggaagctaa | aatggagaaa | aaaatcactg | gatataccac | 2160 |
| cgttgatata                                              | tcccaatggc  | atcgtaaaga | acattttgag | gcatttcagt | cagttgctca | 2220 |
| atgtacctat                                              | aaccagaccg  | ttcagctgga | tattacggcc | tttttaaaga | ccgtaaagaa | 2280 |
| aaataagcac                                              | aagttttatc  | cggcctttat | tcacattctt | gcccgcctga | tgaatgctca | 2340 |
| tccggaatta                                              | cgtatggcaa  | tgaaagacgg | tgagctggtg | atatgggata | gtgttcaccc | 2400 |
| ttgttacacc                                              | gttttccatg  | agcaaactga | aacgttttca | tcgctctgga | gtgaatacca | 2460 |
| cgacgatttc                                              | cggcagtttc  | tacacatata | ttcgcaagat | gtggcgtgtt | acggtgaaaa | 2520 |
| cctggcctat                                              | ttccctaaag  | ggtttattga | gaatatgttt | ttcgtctcag | ccaatccctg | 2580 |
| ggtgagtttc                                              | accagttttg  | atttaaacgt | ggccaatatg | gacaacttct | tcgccccgtt | 2640 |
| ttcaccatgg                                              | gcaaatatta  | tacgcaaggc | gacaaggtgc | tgatgccgct | ggcgattcag | 2700 |
| gttcatcatg                                              | ccgtttgtga  | tggcttccat | gtcggcagaa | tgcttaatga | attacaacag | 2760 |
| tactgcgatg                                              | agtggcaggg  | cggggcgtaa | tttttttaag | gcagttattg | gtgcccataa | 2820 |
| acgcctggtt                                              | gctacgcctg  | aataagtgat | aataagcgga | tgaatggcag | aaattcgaaa | 2880 |
| gcaaattcga                                              | cccggtcgtc  | ggttcagggc | agggtcgtta | aatagccgct | tatgtctatt | 2940 |
| gctggttt                                                |             |            |            |            |            | 2948 |
| <210> 14<br><211> 24<br><212> ADN<br><213> Vibrio chole | erae        |            |            |            |            |      |
| <400> 14<br>cggtgcaaac gttgga                           | actt tctg   |            |            |            |            | 24   |
| <210> 15<br><211> 25<br><212> ADN<br><213> Vibrio chole | erae        |            |            |            |            |      |
| <400> 15<br>ggaaaacaat gccato                           | ccaaa ttcgc |            |            |            |            | 25   |
| <210> 16<br><211> 3694<br><212> ADN<br><213> Artificial |             |            |            |            |            |      |
| <220> <223> Constructo                                  | de síntesis |            |            |            |            |      |

<400> 16 ttcgatattt tttagttctt taggcccgta gtctgcaaat ccttttatga ttttctatca 60 aacaaaagag gaaaatagac cagttgcaat ccaaacgaga gtctaataga atgaggtcga 120 aaagtaaatc gcgcgggttt gttactgata aagcaggcaa gacctaaaat gtgtaaaggg 180 caaagtgtat actttggcgt caccccttac atattttagg tcttttttta ttgtgcgtaa 240 ctaacttgcc atcttcaaac aggagggctg gaagaagcag accgctaaca cagtacataa 300 aaaaggagac atgaacgatg aacatcaaaa agtttgcaaa acaagcaaca gtattaacct 360 ttactaccgc actgctggca ggaggcgcaa ctcaagcgtt tgcgaaagaa acgaaccaaa 420 480 agccatataa ggaaacatac ggcatttccc atattacacg ccatgatatg ctgcaaatcc 540 ctgaacagca aaaaaatgaa aaatatcaag ttcctgaatt cgattcgtcc acaattaaaa 600 atatetette tgcaaaagge etggaegttt gggaeagetg gecattacaa aaegetgaeg 660 gcactgtcgc aaactatcac ggctaccaca tcgtctttgc attagccgga gatcctaaaa atgeggatga cacategatt tacatgttet atcaaaaagt eggegaaact tetattgaca 720 gctggaaaaa cgctggccgc gtctttaaag acagcgacaa attcgatgca aatgattcta 780 tcctaaaaga ccaaacacaa gaatggtcag gttcagccac atttacatct gacggaaaaa 840 900 tccgtttatt ctacactgat ttctccggta aacattacgg caaacaaaca ctgacaactg cacaagttaa cgtatcagca tcagacagct ctttgaacat caacggtgta gaggattata 960 aatcaatctt tgacggtgac ggaaaaacgt atcaaaatgt acagcagttc atcgatgaag 1020 gcaactacag ctcaggcgac aaccatacgc tgagagatcc tcactacgta gaagataaag 1080 1140 gccacaaata cttagtattt gaagcaaaca ctggaactga agatggctac caaggcgaag aatctttatt taacaaagca tactatggca aaagcacatc attcttccgt caagaaagtc 1200 aaaaacttct gcaaagcgat aaaaaacgca cggctgagtt agcaaacggc gctctcggta 1260 1320 tgattgagct aaacgatgat tacacactga aaaaagtgat gaaaccgctg attgcatcta acacagtaac agatgaaatt gaacgcgcga acgtctttaa aatgaacggc aaatggtacc 1380 tgttcactga ctcccgcgga tcaaaaatga cgattgacgg cattacgtct aacgatattt 1440 acatgcttgg ttatgtttct aattctttaa ctggcccata caagccgctg aacaaaactg 1500 gccttgtgtt aaaaatggat cttgatccta acgatgtaac ctttacttac tcacacttcg 1560 ctgtacctca agcgaaagga aacaatgtcg tgattacaag ctatatgaca aacagaggat 1620 tctacgcaga caaacaatca acgtttgcgc caagcttcct gctgaacatc aaaggcaaga 1680 1740 aaacatctgt tgtcaaagac agcatccttg aacaaggaca attaacagtt aacaaataaa aacgcaaaag aaaatgccga ttgaggccag tttgctcagg ctctccccgt ggaggtaata 1800 1860 attgacgata tgatcagtaa tacgactcac tagtgggcag atcttcgaat gcatcgcgcg

| caccgtacgt | ctcgaggaat | tcctgcagga | tatctggatc | cacgaagctt | cccatggtga | 1920 |
|------------|------------|------------|------------|------------|------------|------|
| cgtcaccggt | tctagatacc | taggtgagct | ctggtaccct | ctagtcaagg | cctgtcagcc | 1980 |
| gttaagtgtt | cctgtgtcac | tgaaaattgc | tttgagaggc | tctaagggct | tctcagtgcg | 2040 |
| ttacatccct | ggcttgttgt | ccacaaccgt | taaaccttaa | aagctttaaa | agccttatat | 2100 |
| attcttttt  | ttcttataaa | acttaaaacc | ttagaggcta | tttaagttgc | tgatttatat | 2160 |
| taattttatt | gttcaaacat | gagagcttag | tacgtgaaac | atgagagctt | agtacgttag | 2220 |
| ccatgagagc | ttagtacgtt | agccatgagg | gtttagttcg | ttaaacatga | gagcttagta | 2280 |
| cgttaaacat | gagagcttag | tacgtgaaac | atgagagctt | agtacgtact | atcaacaggt | 2340 |
| tgaactgctg | atcttcagat | ctccgcttgc | cctcatctgt | tacgccggcg | gtagccggcc | 2400 |
| agcctcgcag | agcaggattc | ccgttgagca | ccgccaggtg | cgaataaggg | acagtgaaga | 2460 |
| aggaacaccc | gctcgcgggt | gggcctactt | cacctatcct | gcccggctga | cgccgttgga | 2520 |
| tacaccaagg | aaagtctaca | cgaacccttt | ggcaaaatcc | tgtatatcgt | gcgaaaaagg | 2580 |
| atggatatac | cgaaaaaatc | gctataatga | ccccgaagca | gggttatgca | gcggaaaagc | 2640 |
| gctgcttccc | tgctgttttg | tggaatatct | accgactgga | aacaggcaaa | tgcaggaaat | 2700 |
| tactgaactg | aggggacagg | cgagagatct | ggcctaggcc | gaccgaataa | atacctgtga | 2760 |
| cggaagatca | cttcgcagaa | taaataaatc | ctggtgtccc | tgttgatacc | gggaagccct | 2820 |
| gggccaactt | ttggcgaaaa | tgagacgttg | atcggcacgt | aagaggttcc | aactttcacc | 2880 |
| ataatgaaat | aagatcacta | ccgggcgtat | tttttgagtt | gtcgagattt | tcaggagcta | 2940 |
| aggaagctaa | aatggagaaa | aaaatcactg | gatataccac | cgttgatata | tcccaatggc | 3000 |
| atcgtaaaga | acattttgag | gcatttcagt | cagttgctca | atgtacctat | aaccagaccg | 3060 |
| ttcagctgga | tattacggcc | tttttaaaga | ccgtaaagaa | aaataagcac | aagttttatc | 3120 |
| cggcctttat | tcacattctt | gcccgcctga | tgaatgctca | tccggaatta | cgtatggcaa | 3180 |
| tgaaagacgg | tgagctggtg | atatgggata | gtgttcaccc | ttgttacacc | gttttccatg | 3240 |
| agcaaactga | aacgttttca | tcgctctgga | gtgaatacca | cgacgatttc | cggcagtttc | 3300 |
| tacacatata | ttcgcaagat | gtggcgtgtt | acggtgaaaa | cctggcctat | ttccctaaag | 3360 |
| ggtttattga | gaatatgttt | ttcgtctcag | ccaatccctg | ggtgagtttc | accagttttg | 3420 |
| atttaaacgt | ggccaatatg | gacaacttct | tegeceeegt | tttcaccatg | ggcaaatatt | 3480 |
| atacgcaagg | cgacaaggtg | ctgatgccgc | tggcgattca | ggttcatcat | gccgtttgtg | 3540 |
| atggcttcca | tgtcggcaga | atgcttaatg | aattacaaca | gtactgcgat | gagtggcagg | 3600 |
| gcggggcgta | attttttaa  | ggcagttatt | ggtgcccata | aacgcctggt | tgctacgcct | 3660 |
| gaataagtga | taataagcgg | atgaatggca | gaaa       |            |            | 3694 |

### REIVINDICACIONES

1. Vacuna que comprende una célula de Vibrio cholerae O1, caracterizada porque dicha célula comprende antígenos O1 de los serotipos tanto Ogawa como Inaba, en la que la vacuna comprende múltiples células 5 de Vibrio cholerae que comprenden antígenos O1 de los serotipos tanto Ogawa como Inaba, y en la que, en promedio, el 10-90% de los antígenos O1 de las células son del serotipo Ogawa. 2. Vacuna según cualquiera de las reivindicaciones anteriores, con la condición de que dicha vacuna no contenga ninguna célula completa inmunológicamente activa adicional además de células de Vibrio 10 cholerae O1 que comprenden antígenos O1 de los serotipos tanto Ogawa como Inaba. 3. Vacuna según cualquiera de las reivindicaciones anteriores, en la que la vacuna es para administración oral. Vacuna según cualquiera de las reivindicaciones anteriores, en la que la célula está inactivada con 15 4. formalina. 5. Vacuna según cualquiera de las reivindicaciones anteriores, en la que dicha célula es tal como se define en cualquiera de las reivindicaciones 10-11. 20 6. Vacuna según cualquiera de las reivindicaciones anteriores, para su uso en inmunización preventiva. Vacuna según cualquiera de las reivindicaciones anteriores, para su uso en inmunización preventiva contra 7. el cólera. 25 8. Vacuna según cualquiera de las reivindicaciones anteriores, en la que la célula comprende además una o más proteínas de factor de colonización (CF) de ETEC, tales como CFA/I, CS2 o CS5, en la que dicha(s) proteína(s) de CF se expresa(n) o bien como fimbrias únicas, dobles o bien híbridas. 30 9. Vacuna según la reivindicación 8, para su uso en inmunización preventiva contra infección por Escherichia coli enterotoxigénica (ETEC). Célula de Vibrio cholerae O1 que expresa simultáneamente antígenos tanto Inaba como Ogawa 10. caracterizada porque 35 a. la célula comprende un gen wbeT endógeno; y b. la célula comprende un constructo de ADN recombinante que puede modular el nivel de expresión de gen wbeT endógeno o la actividad enzimática del producto del mismo; 40 en la que dicho constructo está adaptado para modificar el gen wbeT endógeno del huésped por medio de recombinación homóloga y en la que c. el nivel modulado de la actividad enzimática de WbeT es tal que la célula expresa 45 simultáneamente antígenos Inaba y Ogawa, en la que el 10-90% del antígeno O1 expresado por la célula es del serotipo Ogawa. Célula de Vibrio cholerae O1 según la reivindicación 10, en la que la célula expresa además una o más 11. proteínas de factor de colonización (CF) de ETEC, tales como CFA/I, CS2 o CS5, en la que dicha(s) 50 proteína(s) de CF se expresa(n) o bien como fimbrias únicas, dobles o bien híbridas. 12. Método para fabricar una vacuna, que comprende las etapas de: a. proporcionar una célula de Vibrio cholerae O1 que comprende antígenos O1 de los serotipos 55 tanto Ogawa como Inaba; y

30

Método según la reivindicación 12, en el que la inactivación se realiza mediante tratamiento con formalina.

Método según cualquiera de las reivindicaciones 12-13 en el que la célula es una célula según cualquiera

b. inactivar dicha célula.

de las reivindicaciones 10-11.

13.

14.