

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 618 066

(51) Int. CI.:

H04N 19/117 (2014.01) H04N 19/463 (2014.01) H04N 19/18 (2014.01) H04N 19/48 (2014.01) H04N 19/467 (2014.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 06.11.2012 E 15184700 (1)
 Fecha y número de publicación de la concesión europea: 04.01.2017 EP 2991350

54) Título: Método de decodificación de imágenes

(30) Prioridad:

07.11.2011 FR 1160114

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 20.06.2017

(73) Titular/es:

DOLBY INTERNATIONAL AB (100.0%) Apollo Building, 3E Herikerbergweg 1-35 1101 CN Amsterdam Zuidoost, NL

(72) Inventor/es:

HENRY, FELIX y CLARE, GORDON

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Método de decodificación de imágenes.

5 CAMPO DE LA INVENCIÓN

La presente invención se refiere de manera general al campo del procesamiento de imágenes y más concretamente, a la codificación y a la decodificación de imágenes digitales y de secuencias de imágenes digitales.

La invención puede así, en particular, aplicarse a la codificación de vídeo puesta en práctica en los codificadores de 10 vídeo actuales (MPEG, H.264, etc.) o futuros (ITU-T/VCEG (H.265) o ISO/MPEG (HEVC).

ANTECEDENTES DE LA INVENCIÓN

Los codificadores de vídeo actuales (MPEG, H.264, ...) utilizan una representación por bloques de la secuencia de 15 vídeo. Las imágenes son divididas en macrobloques, siendo el propio macrobloque dividido en bloques y cada bloque, o macrobloque, se codifica por predicción intra-imágenes o inter-imágenes. De este modo, algunas imágenes son codificadas por predicción espacial (predicción intra) mientras que otras imágenes se codifican por predicción temporal (predicción inter) con respecto a una o varias imágenes de referencia codificadas-decodificadas 20 con la ayuda de una compensación en movimiento conocida por los expertos en esta técnica.

Para cada bloque se codifica un bloque residual, también denominado residuo de predicción, correspondiente al bloque original disminuido de una predicción. Los bloques residuales son transformados por una función denominada como Transformada Discreta de Coseno (DCT) y luego se cuantifican con la ayuda de una cuantificación, a modo de ejemplo, del tipo escalar. Coeficientes de los que algunos son positivos y otros negativos se obtienen como resultado de la etapa de cuantificación. A continuación, son recorridos en un orden de lectura generalmente en zigzag (como en la norma JPEG), lo que permite utilizar el número importante de coeficientes nulos en las altas frecuencias. Como resultado del recorrido antes citado, se obtiene una lista monodimensional de coeficientes, cuya lista se denominará "residuo cuantificado". Los coeficientes de esta lista son entonces codificados mediante una codificación entrópica.

La codificación entrópica (a modo de ejemplo de tipo de codificación aritmética o codificación de Huffman) se realiza de la forma siguiente:

- 35 una información es objeto de codificación entrópica para indicar el emplazamiento del último coeficiente no nulo de la lista.
 - para cada coeficiente situado antes del último coeficiente no nulo, una información es objeto de codificación entrópica para indicar si el coeficiente es nulo o no,
 - para cada coeficiente no nulo indicado precedentemente, una información es objeto de codificación entrópica para indicar si el coeficiente es igual a uno o no.
 - para cada coeficiente no nulo y no igual a uno situado delante del último coeficiente no nulo, una información de amplitud (valor absoluto del coeficiente disminuido en dos) es objeto de codificación entrópica,
 - para cada coeficiente no nulo, el signo que le es asignado está codificado por un '0' (para el signo +) o un '1' (para el signo -).
- 50 Según la técnica H.264 a modo de ejemplo, cuando un macrobloque se divide en bloques, una señal de datos, correspondiente a cada bloque, se transmite al decodificador. Una tal señal comprende:
 - los residuos cuantificados contenidos en la lista antes citada,
- 55 informaciones representativas del modo de codificación utilizado, en particular:
 - el modo de predicción (predicción intra, predicción inter, predicción por defecto realizando una predicción para la que no se transmite ninguna información al decodificador (en inglés "skip"));
- informaciones que precisan el tipo de predicción (orientación, imagen de referencia,...);
 - el tipo de división;
 - el tipo de transformada, a modo de ejemplo, DCT 4x4, DCT 8x8, etc.
 - las informaciones de movimiento si fuere necesario;

2

60

25

30

40

45

- etc.

5

50

55

65

La decodificación se realiza imagen por imagen y para cada imagen, macrobloque por macrobloque. Para cada partición de un macrobloque, los elementos correspondientes del flujo son objeto de lectura. La cuantificación inversa y la transformación inversa de los coeficientes de los bloques se efectúan para generar el residuo de predicción decodificado. A continuación, la predicción de la partición se calcula y la partición se reconstruye añadiendo la predicción al residuo de predicción decodificado.

La codificación *intra* o inter por competición, tal como se pone en práctica en la norma H.264, se basa así en la puesta en competición de diferentes informaciones de codificación tales como las antes citadas, con el objeto de seleccionar el mejor modo, es decir, el modo que optimizará la codificación de la partición considerada según un criterio de rendimiento predeterminado, a modo de ejemplo, el coste de la tasa/distorsión bien conocido del experto en esta técnica.

Las informaciones representativas del modo de codificación seleccionado están contenidas en la señal de datos transmitida por el codificador al decodificador. El decodificador es así capaz de identificar el modo de codificación seleccionado al codificador y luego, aplicar la predicción conforme a este modo.

En el documento "Data Hiding of Motion Information in Chroma and Luma Samples for Video Compression", J.-M.
Thiesse, J. Jung y M. Antonini, International Workshop on Multimedia Signal Processing, 2011, se presenta un método de ocultación de datos (traducción inglesa de "Data Hiding") puesta en práctica en el curso de una compresión de vídeo.

Más concretamente, se propone evitar incluir en la señal a transmitir al decodificador al menos un índice de 25 competición tal como resulta de una pluralidad de índices de competición a transmitir. Un tal índice es, a modo de ejemplo, el índice MVComp que representa una información que permite identificar el predictor de vector de movimiento utilizado para un bloque objeto de predicción en el modo inter. Un tal índice que puede valer 0 o 1 no está inscrito directamente en la señal de datos codificados, sino que se transporta mediante la paridad de la suma de los coeficientes del residuo cuantificado. Se crea una asociación entre la paridad del residuo cuantificado y el 30 índice MVComp. A modo de ejemplo, el valor par del residuo cuantificado está asociado al índice MVComp de valor 0, mientras que el valor impar del residuo cuantificado está asociado al índice MVComp de valor 1. Dos casos pueden presentarse. En un primer caso, si la paridad del residuo cuantificado corresponde ya a la paridad del índice MVComp que se quiere transmitir, el residuo cuantificado se codifica de forma clásica. En un segundo caso, si la paridad del residuo cuantificado es diferente de la paridad del índice MVComp que se quiere transmitir, se procede a una modificación del residuo cuantificado de tal manera que su paridad sea la misma que la que tiene el índice 35 MVComp. Una tal modificación consiste en aumentar o disminuir uno o varios coeficientes del residuo cuantificado en un valor impar (por ejemplo: +1, -1, +3, -3, +5, -+5...) y no retener más que la modificación que optimiza un criterio predeterminado, en la ocurrencia del coste de la tasa-distorsión antes citado.

40 En el decodificador, el índice MVComp no es objeto de lectura en la señal. El decodificador se contenta simplemente con determinar el residuo de forma clásica. Si el valor de este residuo es par, el índice MVComp se pone a 0. Si el valor de este residuo es impar, el índice MVComp se pone a 1.

En conformidad con la técnica presentada con anterioridad, los coeficientes que sufren la modificación no siempre se eligen de forma óptima, por lo que la modificación aplicada trae consigo perturbaciones en la señal transmitida al decodificador. Dichas perturbaciones perjudican inevitablemente la eficacia de la compresión de vídeo.

Por otra parte, el índice MVComp no constituye la información más interesante a ocultar puesto que las probabilidades de que este índice sea igual a 0 o a 1 no son iguales. En consecuencia, si este índice se codifica de forma clásica mediante una condición entrópica, se representará, en el fichero comprimido a transmitir al decodificador, por una cantidad de datos inferior a un bit por índice MVComp transmitidos. En consecuencia, si el índice MVComp se transmite en la paridad del residuo cuantificado, la cantidad de datos así economizada es inferior a un bit por índice MVComp, mientras que la paridad del residuo podría permitir transportar una información de un bit por índice.

Por consiguiente, la reducción del coste de señalización, así como de la eficacia de la compresión, no son óptimas.

OBJETIVO Y SUMARIO DE LA INVENCIÓN

Uno de los objetivos de la invención es subsanar inconvenientes del estado de la técnica antes citado.

A este efecto, un objetivo de la presente invención se refiere a un método de codificación de al menos una imagen dividida en partes, una partición en curso de codificación que contiene datos de los que al menos a un dato se le asigna un signo.

El método según la invención es distinguible por lo que se pone en práctica, para la partición en curso antes citada,

las etapas siguientes:

- el cálculo del valor de una función representativa de los datos de dicha partición corriente con la exclusión signo,
- la comparación del valor calculado con el valor predeterminado del signo,
- en función del resultado de la comparación, la modificación o no, de al menos uno de los datos de la partición corriente,
- en caso de modificación, la codificación de al menos un dato modificado.
- Una tal disposición permite aplicar ventaiosamente la técnica de disimulación de datos a los signos de los datos de 15 una partición a codificar. Un signo es, en efecto, una información particularmente pertinente para ocultar debido al hecho de que la probabilidad de aparición de un signo positivo o negativo es equiprobable. En consecuencia, habida cuenta que un signo se codifica necesariamente en un bit, es así posible, ocultando esta información, economizar un bit en la señal a transmitir al decodificador, lo que reduce, en medida notable, el coste de la señalización.
- 20 Conviene señalar que entre las informaciones (signo, amplitud, etc.) asociadas a un dato de imagen, existen muy pocas que sean equiprobables. Al ser el signo una información equiprobable, existe, por lo tanto, un interés específico en ocultar este tipo de información, lo que permite aumentar los rendimientos de compresión.
- En un modo de realización particular, en el caso en que una pluralidad de signos se considere en el curso de la etapa de comparación antes citada, esta última consiste en comparar el valor calculado de una función 25 representativa de los datos de la partición corriente con el valor de una función representativa de la pluralidad de signos.
- Una tal disposición permite optimizar los rendimientos de compresión del codificador aritmético optimizando la 30 reducción del coste de señalización, puesto que permite ocultar varios signos en la señal a transmitir al decodificador.
 - De forma correlativa, la invención se refiere a un dispositivo de codificación de al menos una imagen dividida en partes en donde una partición corriente a codificar contiene datos a los que al menos a un dato se le asigna un signo.

Un tal dispositivo de codificación es distinguible por cuanto que comprende medios de procesamiento) que, para la partición corriente a codificar, son capaces de:

- 40 calcular el valor de una función representativa de los datos de la partición corriente con la exclusión del signo,
 - comparar el valor calculado con el valor predeterminado del signo,
 - modificar, o no, al menos uno de los datos de la partición corriente en función del resultado de la comparación,

y por cuanto que comprende medios de codificación de al menos un dato modificado en caso de modificación por medio de procesamiento.

De forma correspondiente, la invención se refiere también a un método de decodificación de una señal de datos 50 representativa de al menos una imagen dividida en partes que fue codificada con anterioridad, conteniendo una parte corriente a decodificar datos de los que al menos a un dato se le asigna un signo.

Un tal método de decodificación es distinguible por que comprende, para la partición corriente, las etapas siguientes:

- decodificación de los datos de la partición corriente, con la exclusión del signo,
 - cálculo del valor de una función representativa de los datos decodificados de la partición corriente,
 - obtención, a partir del valor calculado, del valor del signo.

De forma correlativa, la invención se refiere a un dispositivo de decodificación de una señal de datos representativa de al menos una imagen dividida en particiones que fue codificada con anterioridad, en donde una partición corriente a decodificar contiene datos de los que a por lo menos un dato se asigna un signo.

Un tal dispositivo de decodificación es distinguible porque comprende medios de procesamiento, para dicha partición 65 corriente a decodificar, que son capaces de:

4

5

10

35

45

55

- decodificar los datos de la partición corriente, con la exclusión del signo,
- calcular el valor de una función representativa de los datos decodificados de la partición corriente,
- obtener, a partir del valor calculado, el valor del signo.

5

10

20

25

35

40

45

La invención se refiere, asimismo, a un programa informático que incluye instrucciones para la ejecución de las etapas del método de codificación o de decodificación anterior, cuando el programa se ejecuta por un ordenador.

Un tal programa puede utilizar cualquier lenguaje de programación y estar bajo la forma de código fuente, código objeto o código intermedio entre el código origen y el código objeto, tal como en una forma parcialmente compilada o en cualquier otra forma deseable.

Otro objetivo de la invención se refiere también a un soporte de registro legible por ordenador e incluye instrucciones de programa informático tal como el mencionado con anterioridad.

El soporte de registro puede ser cualquier entidad o dispositivo capaz de memorizar el programa. A modo de ejemplo, un tal soporte puede incluir un medio de memorización, tal como una memoria ROM, por ejemplo un CD-ROM o una ROM de circuito microelectrónico o también un medio de registro magnético, a modo de ejemplo, un disquete (floppy disc - dispositivo de comunicación inalámbrica móvil) o un disco duro.

Por otra parte, un tal soporte de registro puede ser un soporte transmisible tal como una señal eléctrica u óptica, que puede dirigirse hacia un cable eléctrico u óptico, por radio o por otros medios. El programa según la invención puede ser, en particular, telecargado en una red de tipo Internet.

Como alternativa, un tal soporte de registro puede ser un circuito integrado en donde el programa esté incorporado, estando dicho circuito adaptado para ejecutar el método en cuestión o para utilizarse en la ejecución de este último.

30 El dispositivo de codificación, el método de decodificación, el dispositivo de decodificación y los programas informáticos antes citados presentan al menos las mismas ventajas que las conferidas por el método de codificación según la presente invención.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

Otras características y ventajas se deducirán de la lectura de dos modos de realización preferidos descritos haciendo referencia a las Figuras adjuntas en donde:

- la Figura 1 representa las etapas generales del método de codificación según la invención;
- la Figura 2 representa un dispositivo de codificación según la invención que es capaz de efectuar las etapas del método de codificación representado en la Figura 1,
- la Figura 3 representa un modo de realización particular del método de codificación según la invención,
- la Figura 4 representa un modo de realización particular de un dispositivo de decodificación según la invención,
- la Figura 5 representa las etapas generales del método de decodificación según la invención,
- la Figura 6 representa un dispositivo de decodificación según la invención que es capaz de efectuar las etapas del método de decodificación representado en la Figura 5,
 - la Figura 7 representa un modo de realización particular del metodología de decodificación según la invención,
- 55 la Figura 8 representa un modo de realización particular de un dispositivo de decodificación según la invención.

DESCRIPCIÓN DETALLADA DE LA PARTE DE CODIFICACIÓN

- Un modo de realización general de la invención se describirá a continuación, en donde el método de codificación según la invención se utiliza para codificar una secuencia de imágenes según un flujo binario próximo al que se obtiene por una codificación según la norma H.264/MPEG-4 AVC. En este modo de codificación, el método de codificación según la invención se pone en práctica, a modo de ejemplo, de manera de software o hardware mediante modificaciones de un codificador inicialmente conforme con la norma H.264/MPEG-4 AVC.
- El método de codificación según la invención se representa bajo la forma de un algoritmo que incluye etapas S1 a S40, representadas en la Figura 1.

- Según el modo de realización de la invención, el método de codificación según la invención se pone en práctica en un dispositivo de codificación o codificador CO, del que un modo de realización se representa en la Figura 2.
- 5 En conformidad con la invención, se procede, con anterioridad a la codificación propiamente dicha, a una división de una imagen IE de una secuencia de imágenes a codificar en un orden predeterminado, en una pluralidad Z de particiones B₁, B₂, ..., B_i, ..., B_z, según se representa en la Figura 2.
- Conviene señalar que en el sentido de la invención, el término "partición" significa unidad de codificación (del inglés "coding unit"). Esta última terminología se utiliza, en particular, en la norma HEV/H.265 en curso de elaboración, a modo de ejemplo, en el documento accesible en la dirección Internet siguiente:
 - http://phenix.int-evry.fr/jct/doc end user/current document.php?id=3286

30

55

- 15 En particular, una tal unidad de codificación reagrupa conjuntos de elementos de imagen, denominados pixels, de forma rectangular o cuadrada, también denominados bloques, macrobloques o también conjuntos de pixels que presentan otras geométricas.
- En el ejemplo representado en la Figura 2, dichas particiones son bloques que tienen una forma cuadrada y tienen todos ellos la misma magnitud. En función de la magnitud de la imagen que no es obligatoriamente un múltiplo de la magnitud de los bloques, los últimos bloques a la izquierda y los últimos bloques en la parte inferior pueden no ser cuadrados. En un modo alternativo de realización, los bloques pueden ser, a modo de ejemplo, de forma rectangular y/o no alineados unos con los otros.
- Cada bloque o macrobloque puede, por otro lado, dividirse por sí mismo en sub-bloques que son por sí mismos subdivisibles.
 - Una tal división se efectúa por un módulo PCO de división representado en la Figura 2 que utiliza, a modo de ejemplo, un algoritmo de división bien conocido en tanto como tal.
 - A continuación de dicha etapa de división, se procede a la codificación de cada una de las particiones corrientes B_i (siendo i un número entero tal como $1 \le i \le z$) de dicha imagen IE.
- En la realización ejemplo representada en la Figura 2, una tal codificación se aplica sucesivamente a cada uno de los bloques B₁ a B₂ de la imagen corriente IE. Los bloques se codifican según, a modo de ejemplo, un recorrido tal como el recorrido "raster scan" bien conocido por los expertos en esta técnica.
 - La codificación según la invención se pone en práctica en un módulo de software de codificación MC_CO del codificador CO, según se representa en la Figura 2.
- 40 En el curso de una etapa S1 representada en la Figura 1, el módulo de codificación MC_CO de la Figura 2 selecciona como bloque corriente B_i al primer bloque B₁ a codificar de la imagen corriente IE. Según se representa en la Figura 2, se trata del primer bloque a la izquierda de la imagen IE.
- En el curso de una etapa S2 representada en la Figura 1, se procede a la extracción de datos del bloque corriente B₁
 45 bajo la forma de una lista D₁ = (a₁, a₂, ..., a_P). Una tal extracción se efectúa por un módulo de software de EX_CO tal
 como se representa en la Figura 2. Tales datos son, a modo de ejemplo, datos de elementos de imagen, siendo
 asignado a cada uno de los datos de elementos de imagen no nulos un signo positivo o un signo negativo.
- Cada uno de los datos de la lista D₁ está asociado a diferentes informaciones digitales que se destinan a someterse a una codificación entrópica. Algunas de tales informaciones digitales se describen a continuación a modo de ejemplo.
 - para cada dato situado antes del último dato no nulo de la lista D₁, una información digital, tal como un bit, está destinada a ser objeto de codificación entrópica para indicar si el dato es nulo o no: si el dato es nulo, es, por ejemplo, el bit de valor 0 el que será codificado, mientras que si el dato no es nulo, será el bit de valor 1 el que será codificado;
 - para cada dato no nulo, una información digital, tal como un bit, se destina a ser objeto de codificación entrópica para indicar si el valor absoluto del dato es igual a 1 o no: si es igual a 1, es, por ejemplo, el bit de valor 1 el que será codificado, mientras que si es igual a 0, será el bit de valor 0 el que será codificado;
 - para cada dato no nulo cuyo valor absoluto sea no igual a 1 y que esté situado antes del último dato no nulo, una información de amplitud es objeto de codificación entrópica,
- para cada dato no nulo, el signo que se le asigne es codificado por una información digital, tal como un bit por ejemplo puesto a '0' (para el signo +) o a '1' (para el signo -).

Se describirá a continuación, haciendo referencia a la Figura 1, las etapas específicas de codificación según la invención.

5 En conformidad con la invención, se decide evitar la codificación entrópica de al menos un signo de uno de dichos datos de la lista D₁.

En conformidad con un modo de realización preferido, es el signo del primer dato no nulo el que se destina a ocultarse. Un tal signo es, por ejemplo, positivo y se asigna al primer dato no nulo, tal como el dato a₂, a modo de ejemplo.

En el curso de una etapa S3 representada en la Figura 1, el módulo de procesamiento MTR_CO calcula el valor de una función f que es representativa de los datos de la lista D₁.

En el modo preferido de realización en donde un solo signo está destinado a ocultarse en la señal a transmitir al decodificador, la función f es la paridad de la suma de los datos de la lista D₁.

20

En el curso de una etapa S4 representada en la Figura 1, el módulo de procesamiento MTR_CO verifica si la paridad del valor del signo que se oculta corresponde a la paridad de la suma de los datos de la lista D₁, en virtud de un convenio definido previamente para el codificador CO.

En el ejemplo propuesto, dicho convenio es tal que un signo positivo está asociado a un bit de valor igual 0, mientras que un signo negativo está asociado a un bit de valor igual a 1.

- Si, según el convenio adoptado en el codificador CO según la invención, el signo es positivo, lo que corresponde a un valor de bit de codificación de 0 y siendo la suma de los datos de la lista D₁ de valor par, se prosigue con una etapa S20 de codificación entrópica de los datos de la lista D₁ antes citada, con la excepción del signo del primer dato no nulo a₂. Una tal etapa S20 se representa en la Figura 1.
- 30 Si, siempre según el convenio adoptado en el codificador CO según la invención, el signo es negativo, lo que corresponde a un valor de bit de codificación de 1, y siendo la suma de los datos de la lista D₁ de valor impar, se prosigue igualmente con la etapa S20 de codificación entrópica de datos de la lista D₁ antes citada, con la excepción del signo del primer dato no nulo a₂.
- Si, según el convenio adoptado en el codificador CO según la invención, el signo es positivo, lo que corresponde a un valor de bit de codificación de 0, y siendo la suma de los datos de la lista D₁ un valor impar, se procede, en el curos de una etapa S5 representada en la Figura 1 a una modificación de al menos un dato modificable de la lista D₁.
- Si, siempre según el convenio adoptado en el codificador CO según la invención, el signo es negativo, lo que corresponde a un valor de bit de codificación de 1 y siendo la suma de los datos de la lista D₁ un valor par, se procede igualmente en la etapa S5 a la modificación de al menos un dato modificable de la lista D₁.

 Según la invención, un dato es modificable si la modificación de su valor no da lugar a una desincronización para el decodificador, una vez que este dato modificado sea procesado por el decodificador. De este modo, el módulo de procesamiento MTR_CO está configurado inicialmente para no modificar:
 - el dato o los datos nulos situados antes del primer dato no nulo, de forma que el decodificador no asigne el valor del signo oculto a este dato o estos datos nulos.
- 50 y por motivos de complejidad de cálculo, el dato o los datos nulos situados después del último dato no nulo.

Una tal operación de modificación se efectúa por el módulo de procesamiento MTR CO de la Figura 2.

En el ejemplo de realización propuesto, se supone que la suma total de los datos de la lista D₁ es igual a 5 y por lo tanto, es impar. Con el fin de que el decodificador pueda reconstruir el signo positivo asignado al primer dato no nulo a₂ sin que el codificador CO tenga que transmitir este dato al decodificador, es preciso que la paridad de la suma se haga de valor par. En consecuencia, el módulo de procesamiento MTR_CO verifica, en el curso de dicha etapa S5, diferentes modificaciones de los datos de la lista D₁, con el objetivo de cambiar la paridad de la suma de los datos. En el modo de realización preferido, se procede a la adición de +1 o -1 a cada dato modificable y a la selección, según un criterio predeterminado, de una modificación entre todas las que son efectuadas.

De este modo se obtiene, entonces, como resultado de la etapa S5, una lista modificada $Dm_1 = (a'_1, a'_2, ..., a'_P)$.

Conviene señalar que en el curso de esta etapa, algunas modificaciones están prohibidas. Así, en el caso en donde el primer dato no nulo tenga un valor +1 no sería posible añadirle -1, puesto que se haría nulo y perdería entonces su característica de primer dato no nulo de la lista D₁. El decodificador atribuiría entonces, posteriormente, el signo

decodificado (mediante cálculo de la paridad de la suma de los datos) a otro dato y se tendría entonces un error de decodificación.

A continuación, se procede a la etapa S20 de codificación entrópica de los datos de la lista Dm₁ antes citada, con la excepción del signo positivo del primer dato no nulo a₂ cuyo signo se oculta en la paridad de la suma de los datos.

Conviene señalar que el conjunto de las amplitudes de los datos de la lista D_1 o de la lista modificada Dm_1 se codifica antes del conjunto de los signos, con la exclusión del signo del primer dato no nulo que no se codifica como se explicó con anterioridad.

10

En el curso de una etapa siguiente S30 representada en la Figura 1, el módulo de codificación MC_CO de la Figura 2 verifica si el bloque corriente codificado es el último bloque de la imagen IE.

Si el bloque corriente es el último bloque de la imagen IE, en el curso de una etapa S40 representada en la Figura 1, se pone fin al método de codificación.

Si no fuere el caso, se procede a la selección del bloque siguiente B_i que es entonces codificado conforme al orden de recorrido *raster scan* antes citado, mediante iteración de las etapas S1 a S20, para 1<i<Z.

20 Una vez realizada la codificación entrópica de todos los bloques B₁ a B_z se procede a la construcción de una señal F que representa, bajo forma binaria, a dichos bloques codificados.

La construcción de la señal binaria F se pone en práctica en un módulo de software CF de construcción de flujo, tal como se representa en la Figura 2.

25

El flujo F se transmite, a continuación, por una red de comunicación (no representada) a un terminal distante. Este último incluye un decodificador que se describirá con más detalle, a continuación, en esta descripción.

Se describirá ahora, principalmente con referencia a la Figura 1, otro modo de realización de la invención.

30

Este otro modo de realización se distingue del anterior solamente por el número de señales a ocultar que es N, siendo N un número entero tal como N>2.

A este efecto, la función f es el resto de módulo 2^N de la suma de los datos de la lista D₁. Se supone que en el ejemplo propuesto, N = 2, siendo los dos signos que se ocultan los dos primeros signos de los dos primeros datos no nulos de la lista D₁ a modo de ejemplo, a₂ v a₃.

En el curso de la etapa S4 representada en la Figura 1, el módulo de procesamiento MTR_CO verifica si la configuración de los N signos, o sea 2^N configuraciones posibles, corresponde al valor del resto del módulo 2^N de la suma de los datos de la lista D₁.

En el ejemplo propuesto en donde N=2, existen 2²=4 configuraciones de signos diferentes. Estas cuatro configuraciones obedecen a un convenio en el codificador CO, que se determina, a modo de ejemplo, de la forma siguiente:

45

40

- un resto igual a 0 corresponde a dos signos positivos consecutivos: +, +;
- un resto igual a 1 corresponde a un signo positivo y un signo negativo consecutivos: +, -;
- 50 un resto igual a 2 corresponde a un signo negativo y un signo positivo consecutivos: -, +;
 - un resto igual a 3 corresponde a dos signos negativos consecutivos: -, -.

Si la configuración de los N signos corresponde al valor del resto del módulo 2^N de la suma de los datos de la lista D₁ se procede a la etapa S20 de codificación entrópica de los datos de la lista D₁ antes citada, con la excepción del signo respectivo de los dos primeros datos no nulos a₂ y a₃, cuyos signos se ocultan en la paridad de la suma del módulo 2^N de los datos de la lista D₁.

Si no fuere el caso, se prosigue con la etapa S5 de modificación de al menos un dato modificable de la lista D₁. Una tal modificación se realiza por el módulo de procesamiento MTR_CO de la Figura 2 de tal manera que el resto del módulo 2^N de la suma de los datos modificables de la lista D₁ alcance el valor de cada uno de los dos signos que ocultar.

Entonces se obtiene una lista modificada $Dm_1 = (a'_1, a'_2, ..., a'_P)$.

65

A continuación se prosigue con la etapa S20 de codificación entrópica de los datos de la lista Dm₁ antes citada, con

la excepción del signo del primer dato no nulo a_2 y del signo del segundo dato no nulo a_3 , cuyos signos se ocultan en la paridad de la suma del módulo 2^N de los datos.

- Un modo de realización particular de la invención se describirá a continuación, en donde el módulo de codificación según la invención se utiliza siempre para codificar una secuencia de imágenes según un flujo binario próximo del que se obtiene mediante una codificación según la norma H.264/MPEG-4 AVC. En este modo de realización, el método de codificación según la invención se pone en práctica, a modo de ejemplo, de manera de software o de hardware mediante modificaciones de un codificador inicialmente conforme con la norma H.264/MPEG-4 AVC.
- El método de codificación según la invención se representa bajo la forma de un algoritmo que incluye las etapas C1 a C40, tales como se representan en la Figura 3.

15

35

45

- Según el modo de realización de la invención, el método de codificación se pone en práctica en un dispositivo de codificación o codificador CO1, cuyo modo de realización se representa en la Figura 4.
- En conformidad con la invención, y según se describe en las realizaciones ejemplo anteriores, se procede, con anterioridad a la codificación propiamente dicha, a una división de una imagen IE de una secuencia de imágenes a codificar en un orden predeterminado en una pluralidad Z de particiones B'1, B'2, ..., B'i, ..., B'z, como se representa en la Figura 4.
- En la realización ejemplo representada en la Figura 4, dichas particiones son bloques que tienen una forma cuadrada y todos son de la misma magnitud. En función de la magnitud de la imagen que no es obligatoriamente un múltiplo de la magnitud de los bloques, los últimos bloques a la izquierda y los últimos bloques en la parte inferior no pueden ser cuadrados. En un modo alternativo de realización, los bloques pueden ser, a modo de ejemplo, de forma rectangular y/o no alineados los unos con los otros.
 - Cada bloque o macrobloque puede, por otro lado, dividirse por sí mismo en sub-bloques que son, a su vez, subdivisibles.
- 30 Una tal división se realiza por un módulo de software PCO1 de división representado en la Figura 4 que es idéntico al módulo de división PCO representado en la Figura 2.
 - A continuación de dicha etapa de división, se procede a la codificación de cada una de las particiones corrientes B'_i (siendo i un número entero tal como 1<u><i<</u>Z) de dicha imagen IE.
 - En ejemplo representado en la Figura 4, dicha codificación se aplica sucesivamente a cada uno de los bloques B'₁ a B'₂ de la imagen corriente IE. Los bloques son codificados según un recorrido tal como, a modo de ejemplo, recorrido denominado "raster scan" (exploración de trama) bien conocido por los expertos en esta técnica.
- 40 La codificación según la invención, se pone en práctica en un módulo de software de codificación MC_CO1 del codificador CO1 según se representa en la Figura 4.
 - En el curso de una etapa C1 representada en la Figura 3, el módulo de codificación MC_CO1 de la Figura 4 selecciona como bloque corriente B'₁ al primer bloque B'₁ a codificar de la imagen corriente IE. Según se representa en la Figura 4, se trata del primer bloque a la izquierda de la imagen IE.
 - En el curso de una etapa C2 representada en la Figura 3, se procede a la codificación predictiva del bloque corriente B'₁ mediante técnicas conocidas de predicción *intra* y/o inter, en cuyo curso el bloque B'₁ es objeto de predicción con respecto a al menos un bloque anteriormente codificado y decodificado. Una tal predicción se realiza por un módulo de software de predicción PRED CO1 según se representa en la Figura 4.
 - Por supuesto, son posibles otros modos de predicción intra tales como los propuestos en la norma H.264.
- El bloque corriente B'₁ puede someterse igualmente a una codificación predictiva en el modo inter en cuyo curso el bloque corriente es objeto de predicción con respecto a un bloque derivado de una imagen anteriormente codificada y decodificada. Otros tipos de predicción son, por supuesto, susceptibles de consideración. Entre las predicciones posibles para un bloque corriente, la predicción óptima se elige según un criterio de la tasa-distorsión bien conocidos por los expertos en esta técnica.
- Dicha etapa de codificación predictiva antes citada permite construir un bloque de predicción B'p₁, que es una aproximación del bloque corriente B'₁. Las informaciones relativas a esta codificación predictiva están destinadas a inscribirse en una señal a transmitir al decodificador. Tales informaciones comprenden, en particular, el tipo de predicción (inter o *intra*) y si fuere el caso, el modo de predicción *intra*, el tipo de división de un bloque o macrobloque si este último ha sido subdividido, el índice de imagen de referencia y el vector de desplazamiento utilizados en el modo de predicción inter. Estas informaciones son comprimidas por el codificador CO1.

En el curso de una etapa siguiente C3 representada en la Figura 3, el módulo de predicción PRED_CO1 compara los datos relativos al bloque corriente B'₁ con los datos del bloque de predicción B'p₁. Más concretamente, en el curso de esta etapa, se procede clásicamente a la sustracción del bloque de predicción B'p₁ del bloque corriente B'₁ para obtener un bloque residuo B'r₁.

5

En el curso de una etapa siguiente C4 representada en la Figura 3, se procede a la transformación del bloque residuo $B'r_1$ según una operación clásica de transformación directa, tal como a modo de ejemplo, una transformación del tipo de discreta de coseno, DCT, para obtener un bloque transformado $B't_1$. Un tal operación se realiza por un módulo de software MT CO1 de transformada, según se representa en la Figura 4.

10

En el curso de una etapa siguiente C5 representada en la Figura 3, se procede a la cuantificación del bloque transformado B't₁ según una operación clásica de cuantificación, tal como, a modo de ejemplo, una cuantificación escalar. Un bloque B'q₁ de coeficientes cuantificados es entonces obtenido. Una tal etapa se efectúa por medio de un módulo de software de cuantificación MQ CO1 tal como se representa en la Figura 4.

15

En el curso de una etapa C6 representada en la Figura 3, se procede a un recorrido, en un orden predefinido, de los coeficientes cuantificados del bloque $B'q_1$. En el ejemplo representado se trata de un recorrido en zigzag clásico. Una tal etapa se realiza por un módulo de software de lectura ML_CO1 , tal como se representa en la Figura 4. Como resultado de la etapa C6 se obtiene una lista monodimensional E_1 = ($\epsilon 1$, $\epsilon 2$, ..., ϵL) de coeficientes, más conocida bajo la apelación de "residuo cuantificado", en donde L es un número entero superior o igual a 1. Cada uno de los coeficientes de la lista E_1 está asociado a diferentes informaciones digitales que están destinadas a someterse a una codificación entrópica. Dichas informaciones digitales se describen a continuación a modo de ejemplo.

25

20

Se supone que en el ejemplo representado, L = 16 y que la lista E_1 contiene los dieciséis coeficientes siguientes $E_1 = (0, +9, -7, 0, 0, +1, 0, -1, +2, 0, 0, +1, 0, 0, 0, 0)$.

En particular:

30

- para cada coeficiente situado antes del último coeficiente no nulo de la lista E₁, una información digital, tal como un bit, está destinada a codificarse de forma entrópica para indicar si el coeficiente es nulo o no: si el coeficiente es nulo, en tal caso, a modo de ejemplo, el bit de valor 0 será el que se codifique mientras que si el coeficiente no es nulo, se codificará el bit de valor 1;

35

- para cada coeficiente no nulo +9, -7 +1, -1, +2, +1, una información digital, tal como un bit, está destinada a codificarse de forma entrópica para indicar si el valor absoluto del coeficiente es igual a uno o no: si es igual a 1, se codificará, a modo de ejemplo, el bit de valor 1, mientras que si es igual a 0, se codificará el bit de valor 0;

- para cada coeficiente no nulo y cuyo valor absoluto no sea igual a 1 y situado antes del primer coeficiente no nulo, tales como los coeficientes de valor +9, -7, +2, una información de amplitud (valor absoluto del coeficiente en el que se alcanza el valor 2) es objeto de codificación entrópica;

40

 para cada coeficiente no nulo, el signo que le es asignado se codifica por una información digital, como un bit, a modo de ejemplo, puesto a '0' (para el signo +) o '1' (para el signo -).

45

Se describirá a continuación, haciendo referencia a la Figura 3, las etapas específicas de codificación según la invención.

digitales antes citadas, cuya información es al menos un signo de uno de dichos coeficientes de la lista E1.

50

A este efecto, en el curso de una etapa C7 representada en la Figura 3, se procede a la elección del número de signos a ocultar en el curso de la etapa posterior de codificación entrópica. Una tal etapa se realiza por un módulo

En conformidad con la invención, se decide evitar la codificación entrópica de al menos una de las informaciones

En el modo de realización preferido, el número de signos a ocultar es 1 o 0. Además, en conformidad con dicho modo de realización preferido, es el signo del primer coeficiente no nulo el que se destina a su ocultación. En la realización ejemplo representada, se trata, por lo tanto, de ocultar el signo del coeficiente ε2= +9.

55

En un modo de realización alternativo, el número de signos a ocultar es cero, o uno, o dos, o tres o más.

de software de procesamiento MTR CO1, según se representa en la Figura 4.

60

En conformidad con el modo de realización preferido de la etapa C7, se procede, en el curso de una primera subetapa C71 representada en la Figura 3, a la determinación, a partir de dicha lista E_1 de una sub-lista SE_1 que contiene coeficientes aptos para ser modificados ϵ '1, ϵ '2, ..., ϵ 'M en donde M<L. dichos coeficientes serán denominados coeficientes modificables a continuación en la descripción.

65

Según la invención, un coeficiente es modificable si la modificación de su valor cuantificado no da lugar a la

desincronización para el decodificador, una vez que este coeficiente modificado sea procesado por el decodificador. De este modo, el módulo de procesamiento MTR CO1 está configurado inicialmente para no modificar:

 el coeficiente o los coeficientes nulos situados antes del primer coeficiente no nulo, de modo que el decodificador no asigne el valor del signo oculto a este coeficiente o estos coeficientes nulos,

5

15

20

25

35

40

45

50

- y por motivos de complejidad de cálculo, el coeficiente o los coeficientes situados después del último coeficiente no nulo.
- 10 En la realización ejemplo representada, como resultado de la sub-etapa C71, la sub-lista SE₁ obtenida es tal como SE₁= (9, -7, 0, 0, 1, 0, -1, 2, 0, 0, 1). En consecuencia, se obtienen once coeficientes modificables.
 - En el curso de una etapa siguiente C72 representada en la Figura 3, el módulo de procesamiento MTR_CO1 procede a la comparación del número de coeficientes modificables con un umbral predeterminado TSIG. En el modo de realización preferido, TSIG tiene el valor de 4.
 - Si el número de coeficientes modificables es inferior al umbral TSIG, se procede, en el curso de una etapa C20 representada en la Figura 3, a una codificación entrópica clasifica de los coeficientes de la lista E₁, tal como la realizada, a modo de ejemplo, en un codificador CABAC, designado por la referencia CE_CO1 en la Figura 4. A este efecto, el signo de cada coeficiente no nulo de la lista E₁, es objeto de codificación entrópica.
 - Si el número de coeficientes modificables es superior al umbral TSIG, en el curso de una etapa C8 representada en la Figura 3, el módulo de procesamiento MTR_CO1 calcula el valor de una función f que es representativa de los coeficientes de la sub-lista SE₁.
 - En el modo de realización preferido, en donde un solo signo está destinado a ocultarse en la señal a transmitir al decodificador, la función f es la paridad de la suma de los coeficientes de la sub-lista SE₁.
- En el curso de una etapa C9 representada en la Figura 3, el módulo de procesamiento MTR_CO1 verifica si la paridad del valor del signo a ocultar corresponde a la paridad de la suma de los coeficientes de la sub-lista SE₁, en virtud de un convenio definido previamente para el codificador CO1.
 - En la realización ejemplo propuesta, dicho convenio es tal que un signo positivo está asociado a un bit de valor igual a 0, mientras que un signo negativo está asociado a un bit de valor igual a 1.
 - Si, según el convenio adoptado en el codificador CO1 según la invención, el signo es positivo, lo que corresponde a un valor de bit de codificación de cero y siendo la suma de los coeficientes de la sub-lista SE_1 un valor par, se procede a la C20 de codificación entrópica de los coeficientes de la lista E_1 antes cita con la excepción del signo del coeficiente $\epsilon 2$.
 - Si, siempre según el convenio adoptado en el codificador CO1 según la invención, el signo es negativo, lo que corresponde a un valor de bit de codificación de 1, y siendo la suma de los coeficientes de la sub-lista SE₁ un valor impar, se procede igualmente a la etapa C20 de la codificación entrópica de los coeficientes de la lista E₁ antes citada con la excepción del signo del coeficiente ε2.
 - Si, según el convenio adoptado en el codificador CO1 según la invención, el signo es positivo, lo que corresponde a un valor de bit de codificación de cero, y siendo la suma de los coeficientes de la sub-lista SE₁ un valor impar, se procede en el curso de una tapa C10 representada en la Figura 3, a una modificación de al menos un coeficiente modificable de la sub-lista SE₁.
 - Si, siempre según el convenio adoptado en el codificador CO1 según la invención, el signo es negativo, lo que corresponde a un valor de bit de codificación de 1 y siendo la suma de los coeficientes de la sub-lista SE₁ un valor par, se procede igualmente a la etapa C10 de modificación de al menos un coeficiente modificable de la sub-lista SE₁.
 - Una tal operación de modificación se realiza por el módulo de procesamiento MTR_CO1 de la Figura 4.
- En la realización ejemplo en donde SE₁ = (+9, -7, 0, 0, +1, 0, -1, +2, 0, 0, +1), la suma total de los coeficientes es igual a 5, y por lo tanto, tiene un valor impar. Con el fin de que el decodificador pueda reconstruir el signo positivo asignado al primer coeficiente no nulo, ε2= +9, sin que el codificador CO1 tenga que transmitir este coeficiente al decodificador, es preciso que la paridad de la suma se haga de valor par. En consecuencia, el módulo de procesamiento MTR_CO1 verifica, en el curso de dicha etapa C10, diferentes modificaciones de coeficientes de la sub-lista SE₁, destinadas todas ellas a cambiar la paridad de la suma de los coeficientes. En el modo de realización preferido, se procede a la adición de +1 o -1 a cada coeficiente modificable y a la selección de una modificación entre todas las que son realizadas.

En el modo de realización preferido, una tal selección constituye la predicción óptima según un criterio de rendimiento que es, a modo de ejemplo, el criterio de la tasa-distorsión bien conocido para los expertos en esta técnica. Un tal criterio se expresa por la ecuación (1) siguiente:

 $(1) J = D + \lambda R$

10

15

20

25

30

40

60

65

en donde D representa la distorsión entre el macrobloque original y el macrobloque reconstruido, R representa el coste en bit de codificación de las informaciones de codificación y λ representa un multiplicador de Lagrange, cuyo valor puede fijarse previamente a la codificación.

En la realización ejemplo propuesta, la modificación que trae consigo una predicción óptima según el criterio de tasa- distorsión antes citado es la adición del valor 1 al segundo coeficiente -7 de la sub-lista SE_1 .

Se obtiene entonces, como resultado de la etapa C10, una sub-lista modificada $SEm_1 = (+9, +6, 0, 0, +1, 0, -1, +2, 0, 0, +1)$.

Conviene señalar que, en el curso de esta etapa, están prohibidas algunas modificaciones. Así, en el caso en donde el primer coeficiente no nulo ε2 tuviera un valor +1, no habría sido posible añadirle -1, puesto que se haría nulo y habría entonces perdido su característica de primer coeficiente no nulo de la lista E₁. El decodificador hubiera entonces atribuido posteriormente el signo decodificado (mediante cálculo de la paridad de la suma de los coeficientes) a otro coeficiente y se hubiera tenido entonces un error de decodificación.

En el curso de una etapa C11 representada en la Figura 3, el módulo de procesamiento MTR_CO1 procede a una modificación correspondiente de la lista E_1 . La lista modificada siguiente $Em_1 = (0, +9, -6, 0, 0, +1, 0, -1, +2, 0, 0, +1, 0, 0, 0, 0)$ se obtiene como resultado.

A continuación, se procede a la etapa C20 de codificación entrópica de los coeficientes de la lista Em₁ antes citada, con la excepción del signo del coeficiente ε2, que es el signo + del coeficiente 9 en la realización ejemplo propuesta, cuyo signo se oculta en la paridad de la suma de los coeficientes.

Conviene señalar que el conjunto de las amplitudes de los coeficientes de la lista E_1 o de la lista modificada Em_1 se codifica antes del conjunto de los signos, con la exclusión del signo del primer coeficiente no nulo $\epsilon 2$ que no se codifica, como se explicó con anterioridad.

En el curso de una etapa C30 siguiente, representada en la Figura 3, el módulo de codificación MC_CO1 de la Figura 4 verifica, si el bloque corriente codificado es el primer bloque de la imagen IE.

Si el bloque corriente es el último bloque de la imagen IE, en el curso de una etapa C40 representada en la Figura 3, se pone fin al método de codificación.

Si no fuere el caso, se procede a la selección del bloque siguiente B'_i que se codifica entonces en conformidad con la orden de recorrido denominada *raster scan* antes citada, mediante iteración de las etapas C1 a C20, para 1<i<Z.

Una vez realizada la codificación entrópica de todos los bloques B'₁ a B'_z se procede a la construcción de una señal F' que representa, bajo forma binaria, a dichos bloques codificados.

La construcción de la señal binaria F' se pone en práctica en un módulo de software CF1 de construcción de flujo, tal como se representa en la Figura 4.

El flujo F' se transmite, a continuación, mediante una red de comunicación (no representada), a un terminal distante. Este último incluye un decodificador que se describirá, con más detalle, a continuación en esta descripción.

Se describirá, a continuación, principalmente con referencia a la Figura 3, otro modo de realización de la invención.

Este otro modo de realización se distingue del anterior solamente por el número de coeficientes que se oculta es 0 o N, siendo N un número entero tal como N>2.

A este efecto, la sub-etapa de comparación C72 antes citada se sustituye por la sub-etapa C72a representada en puntos en la Figura 3, en el curso de cuya etapa se procede a la comparación del número de coeficientes modificables con varios umbrales predeterminados 0<TSIG_1<TSIG_2<TSIG_3..., de tal modo que si el número de coeficientes modificables está incluido entre TSIG_N y TSIG_N+1, N signos están destinados a ocultarse.

Si el número de coeficientes modificables es inferior al primer umbral TSIG_1, se procede, en el curso de la etapa C20 antes citada, a la codificación entrópica clasifica de los coeficientes de la lista E₁. A este efecto, el signo de cada coeficiente no nulo de la lista E₁ es objeto de codificación entrópica.

Si el número de coeficientes modificables está incluido entre el umbral TSIG_N y TSIG_N+1, en el curso de una etapa C8 representada en la Figura 3, el módulo de procesamiento MTR_CO1 calcula el valor de una función f que es representativa de los coeficientes de la sub-lista SE₁.

- 5 En este otro modo de realización, la decisión para el codificador de ocultar N signos, la función f es el resto de módulo 2^N de la suma de los coeficientes de la sub-lista SE₁. Se supone que, en la realización ejemplo propuesta, N=2, siendo los dos signos que ocultar los dos primeros signos de los dos primeros coeficientes no nulos respectivamente, a saber, ε2 y ε3.
- En el curso de la etapa siguiente C9 representada en la Figura 3, el módulo de procesamiento MTR_CO1 verifica si la configuración de los N signos, o sea, 2^N configuraciones posibles, corresponden al valor del resto del módulo 2^N de la suma de los coeficientes de la sub-lista SE₁.

En la realización ejemplo propuesta en donde N=2, existe $2^2=4$ configuraciones de signos diferentes.

Estas cuatro configuraciones obedecen a un convenio para el codificador CO1, cuyo convenio se determina, a modo de ejemplo, de la forma siguiente:

- un resto igual a cero corresponde a dos signos positivos consecutivos: +, +;
- un resto igual a uno corresponde a un signo positivo y un signo negativo consecutivos: +, -;
- un resto igual a dos corresponde a un signo negativo y un signo positivo consecutivos: -, +:
- 25 un resto igual a tres corresponde a dos signos negativos consecutivos: -, -.

Si la configuración de los N signos corresponde al valor del resto del módulo 2^N de la suma de los coeficientes de la sub-lista SE_1 , se procede a la etapa C20 de codificación entrópica de los coeficientes de la lista E_1 antes citada, con la excepción del signo del coeficiente $\epsilon 2$ y del coeficiente $\epsilon 3$, cuyos signos se ocultan en la paridad de suma del módulo 2^N de los coeficientes.

Si no fuere el caso, se procede a la etapa C10 de modificación de al menos un coeficiente modificable de la sub-lista SE₁. Una tal modificación se realiza mediante el módulo de procesamiento MTR_CO1 de la Figura 4, de tal manera que el resto del módulo 2^N de la suma de los coeficientes modificables de la sub-lista SE₁ alcance el valor de cada uno de los dos signos que ocultar.

En el curso de la etapa C11 antes citada, el módulo de procesamiento MTR_CO1 procede a una modificación correspondiente de la lista E₁. Se obtiene, entonces, una lista modificada Em₁.

Se procede, a continuación, a la etapa C20 de codificación entrópica de los coeficientes de la lista Em₁ antes citada con la excepción del signo del coeficiente ε2 y del signo del coeficiente ε3, cuyos signos están ocultados en la paridad de la suma del módulo 2^N de los coeficientes.

45 DESCRIPCIÓN DETALLADA DE LA PARTE DE DECODIFICACIÓN

Un modo de realización general del método de decodificación según la invención se describirá a continuación, en donde el método de decodificación se pone en práctica de manera de software o de hardware mediante modificaciones de un decodificador inicialmente conforme con la norma H.264/MPEG-4 AVC.

El método de decodificación según la invención está representado bajo la forma de un algoritmo que incluye las etapas SD1 a SD7 representadas en la Figura 5.

Según el modo de realización general de la invención, el método de decodificación según la invención se pone en práctica en un dispositivo de decodificación o decodificador DO, según se representa en la Figura 6, que está adaptado para recibir el flujo F proporcionado por el codificador CO de la Figura 2.

En el curso de una etapa preliminar no representada en la Figura 5, se procede a la identificación, en la señal de datos F recibida, de las particiones B_1 a B_z que se codificaron precedentemente por el codificador CO. En el modo de realización preferido, dichas particiones son bloques que tienen una forma cuadrada y tienen todos ellos la misma magnitud. En función de la magnitud de la imagen que no es obligatoriamente un múltiplo de la magnitud de los bloques, los últimos bloques a la izquierda y los últimos bloques en la parte inferior pueden no ser cuadrados. En un modo alternativo de realización, los bloques pueden ser, a modo de ejemplo, de forma rectangular y/o no alineados los unos con los otros.

Cada bloque o macrobloque puede, por otro lado, ser dividido por sí mismo en sub-bloques que son susceptibles de

65

60

15

20

30

35

ser subdivisibles.

Una tal identificación se efectúa por un módulo de software EX_CO de análisis de flujo, tal como se representa en la Figura 6.

5

En el curso de una etapa SD1 representada en la Figura 5, el módulo EX_DO de la Figura 6 selecciona como bloque corriente B_i al primer bloque B_1 a decodificar. Una tal selección consiste, a modo de ejemplo, en colocar un puntero de lectura en la señal F al principio de los datos del primer bloque B_1 .

10 A continuación, se procede a la decodificación de cada uno de los bloques codificados seleccionados.

En la realización ejemplo representada en la Figura 5, una tal decodificación se aplica sucesivamente a cada uno de los bloques codificados B_1 a B_2 . Los bloques se decodifican según, a modo de ejemplo, un recorrido denominado "raster scan" bien conocido para los expertos en esta técnica.

15

La decodificación según la invención se pone en práctica en un módulo de software de decodificación MD_DO del decodificador DO, en la Figura 6.

En el curso de la etapa SD2, representada en la Figura 5, se procede, en primer lugar, a la decodificación entrópica del primer bloque corriente B₁ que ha sido seleccionado. Una tal operación se realiza por un módulo de decodificación entrópica DE_DO representado en la Figura 6, a modo de ejemplo de tipo CABAC. En el curso de esta etapa, el módulo DE_DO efectúa una decodificación entrópica de las informaciones digitales correspondientes a la amplitud de cada uno de los datos codificados de la lista D₁ o de la lista modificada Dm₁. En este estado operativo, solamente los signos de los datos de la lista D₁ o de la lista modificada Dm₁ no están decodificados.

25

30

En el caso en donde el módulo de procesamiento MTR_DO recibe la lista D₁ = (a₁, a₂,..., a_P), se procede, en el curso de una etapa SD3 representada en la Figura 5, a una decodificación entrópica clásica de todos los signos de los datos de la lista D₁. Una tal decodificación se realiza por el decodificador CABAC, designado por la referencia DE_DO en la Figura 6. A este efecto, el signo de cada dato no nulo de la lista D₁ es objeto de decodificación entrópica

En el caso en donde el módulo de procesamiento MTR_DO recibe lista modificada Dm₁ = (a'₁, a'₂,...a'_P), se procede, en el curso de dicha etapa SD3, a la decodificación entrópica clásica de todos los signos de los datos de la lista Dm₁ con la excepción del signo del primer dato no nulo a2.

35

- En el curso de etapa SD4 representada en la Figura 5, el módulo de procesamiento MTR_DO calcula el valor de una función f que es representativa de los datos de la lista Dm₁, de modo que se determine si el valor calculado es par o impar.
- 40 En el modo de realización preferido, en donde un solo signo se oculta en la señal F, la función f es la paridad de la suma de los datos de la lista Dm₁.

En conformidad con el convenio utilizado en el codificador CO, que es el mismo que para el decodificador DO, un valor par de la suma de los datos de la lista Dm₁ significa que el signo del primer dato no nulo de la lista modificada Dm₁ es positivo, mientras que un valor impar de la suma de los datos de la lista Dm₁ significa que el signo del primer dato no nulo de la lista modificada Dm₁ es negativo.

En el ejemplo de realización, la suma total de los datos es par. En consecuencia, como resultado de la etapa SD4, el módulo de procesamiento MTR DO deduce que el signo oculto del primer dato no nulo a2 es positivo.

50

- En el curso de una etapa SD5, representada en la Figura 5, se procede a la construcción del bloque decodificado BD₁. Una tal operación se realiza por un módulo de software de reconstrucción MR_DO representado en la Figura 6.
- En el curso de una etapa SD6 representada en la Figura 5, el módulo de decodificación MD_DO verifica si el bloque 55 corriente decodificado es el último bloque identificado en la señal F.
 - Si el bloque corriente es el último bloque de la señal F, en el curso de una etapa SD7 representada en la Figura 5, se pone fin al método de decodificación.
- Si no fuere el caso, se procede a la selección del bloque siguiente B_i, a decodificar, en conformidad con el orden de recorrido de exploración de trama, denominada *raster scan*, antes citada, mediante iteración de las etapas SD1 a SD5 para 1<i-Z.
- A continuación se describirá, principalmente haciendo referencia a la Figura 5, otro modo de realización de la invención.

Este otro modo de realización se distingue del precedente solamente por el número de signos ocultados que es ahora igual a N, siendo N un número entero tal que N≥2.

A este efecto, en el curso de la etapa SD3 antes citada, se procede a la decodificación entrópica clásica de todos los signos de los datos de la lista Dm₁, con la excepción de los N signos respectivos de los primeros datos no nulos de dicha lista modificada Dm₁, estando dichos N signos ocultados.

5

10

15

25

40

55

60

65

En este otro modo de realización, el módulo de procesamiento MTR_DO calcula, en el curso de la etapa SD4, el valor de la función f que es el resto del módulo 2^N de la suma de los datos de la lista Dm₁. Se supone que en la realización ejemplo propuesta, N=2.

El módulo de procesamiento MTR_DO deduce entonces la configuración de los dos signos ocultados que son asignados respectivamente a cada uno de los dos primeros datos no nulos a2 y a3, según el convenio utilizado en la decodificación.

Una vez reconstruidos estos dos signos, se procede a la puesta en práctica de las etapas SD5 a SD7 descritas con anterioridad.

Un modo de realización particular del método de decodificación según la invención se describirá a continuación, en donde el método de decodificación se pone en práctica de manera de software o de hardware mediante modificaciones de un decodificador inicialmente conforme con la norma H.264/MPEG-4 AVC.

El método de decodificación según la invención está representado bajo la forma de un algoritmo que incluye las etapas D1 a D12 representadas en la Figura 7.

Según el modo de realización de la invención, el método de decodificación según la invención se pone en práctica en un dispositivo de decodificación o decodificador DO1, tal como se representa en la Figura 8, cuyo decodificador es capaz de procesar la señal F' proporcionada por el codificador CO1 representado en la Figura 4.

30 En el curso de una etapa preliminar no representada en la Figura 7, se procede a la identificación, en la señal de datos F' recibida, de las particiones B'₁ a B'₂ que han sido codificadas anteriormente por el codificador CO1. En el modo de realización preferido, dichas particiones son bloques que tienen una forma cuadrada y todos ellos tienen la misma magnitud. En función de la magnitud de la imagen que no es obligatoriamente un múltiplo de la magnitud de los datos, los últimos bloques a la izquierda y los últimos bloques de abajo pueden no ser cuadrados. En un modo de realización alternativo, los bloques pueden ser, a modo de ejemplo, de forma rectangular y/o no alineados los unos con los otros.

Cada bloque o macrobloque puede, por otro lado, dividirse por sí mismo en sub-bloques que son susceptibles de subdivisión.

Una tal identificación se efectúa por un módulo de software EX_DO1 de análisis de flujo, tal como se representa en la Figura 8.

En el curso de una etapa D1 representada en la Figura 7, el módulo EX_DO1 de la Figura 8 selecciona como bloque corriente B'_i al primer bloque B'₁, a decodificar. Una tal selección consiste, a modo de ejemplo, en colocar un puntero de lectura en la señal F' al principio de los datos del primer bloque B'₁.

A continuación, se procede a la decodificación de cada uno de los bloques codificados seleccionados.

En la realización ejemplo representada en la Figura 7, una tal decodificación se aplica sucesivamente a cada uno de los bloques codificados B'₁ a B'₂. Los bloques son decodificados, según, a modo de ejemplo, un recorrido de tipo "raster scan" bien conocido para los expertos en esta técnica.

La decodificación según la invención se pone en práctica en un módulo de software de decodificación MD_DO1 del decodificador DO1, según se representa en la Figura 8.

En el curso de una etapa D2 representada en la Figura 7, se procede, en primer lugar a la decodificación entrópica del primer bloque corriente B_1' que fue seleccionado. Una tal operación se realiza por un módulo de decodificación entrópica DE_DO1 representado en la Figura 8, a modo de ejemplo de tipo CABAC. En el curso de esta etapa, el módulo DE_DO1 realiza una decodificación entrópica de las informaciones digitales correspondientes a la amplitud de cada uno de los coeficientes codificados de la lista E_1 o de la lista modificada E_1 . En este estado operativo, solamente los signos de los coeficientes de la lista E_1 o de la lista modificada E_1 no están decodificados.

En el curso de una etapa D3 representada en la Figura 7, se procede a la determinación del número de signos susceptibles de haber sido ocultados en el curso de la etapa precedente de codificación entrópica C20. Una tal etapa D3 se realiza por un módulo de software de procesamiento MTR_DO1, tal como se representa en la Figura 8. La etapa D3 es similar a la etapa C7 antes citada de determinación del número de signos que ocultar.

En el modo de realización preferido, el número de signos ocultados es uno o cero. Además, en conformidad con dicho modo de realización preferido, es el signo del primer coeficiente no nulo el que es objeto de ocultación operativa. En la realización ejemplo representada, se trata, por lo tanto, del signo positivo del coeficiente ε2=+9.

En un modo de realización alternativo, el número de signos ocultados es cero, o uno, o dos, o tres o más.

En conformidad con el modo de realización preferido de la etapa D3, se procede, en el curso de una primera subetapa D31 representada en la Figura 7, a la determinación, a partir de dicha lista E₁ o de la lista modificada Em₁, de una sub-lista que contiene los coeficientes ε'1, ε'2,, ε'M en donde M<L susceptibles de haber sido modificados en la codificación.

Una tal determinación se realiza de la misma manera que en la etapa de codificación C7 antes citada.

- 15 Como el módulo de procesamiento MTR_CO1 antes citado, el módulo de procesamiento MTR_DO1 está configurado inicialmente para no modificar:
 - el coeficiente o los coeficientes nulos situados antes del primer coeficiente no nulo,

5

10

25

30

35

40

55

60

 y por motivos de complejidad de cálculo, el coeficiente o los coeficientes nulos situados después del primer coeficiente no nulo.

En la realización ejemplo representada, como resultado de la sub-etapa D31, se trata de la sub-lista SEm₁ tal como SEm₁ = (9, -6, 0, 0, 1, 0, -1, 2, 0, 0, 1). En consecuencia, se obtienen once coeficientes susceptibles de haber sido modificados.

En el curso de una sub-etapa siguiente D32 representada en la Figura 7, el módulo de procesamiento MTR_D01 procede a la comparación del número de coeficientes susceptibles de haber sido modificado con un umbral predeterminado TSIG. En el modo de realización preferido, TSIG tiene el valor de 4

Si el número de coeficientes susceptibles de haber sido modificados es inferior al umbral TSIG, se procede en el curso de una etapa D4 representada en la Figura 7, a una decodificación entrópica clásica de todos los signos de los coeficientes de la lista E_1 . Una tal decodificación se realiza por el decodificador CABAC, designado por la referencia DE-DO1 en la Figura 8. A este efecto, el signo de cada coeficiente no nulo de la lista E_1 es objeto de decodificación entrópica.

Si el número de coeficientes susceptibles de haber sido modificados es superior al umbral TSIG, se procede, en el curso de dicha etapa D4, a la decodificación entrópica clásica de todos los signos de los coeficientes de la lista Em₁, con la excepción del signo del primero coeficiente no nulo ε2.

En el curso de una etapa D5 representada en la Figura 7, el módulo de procesamiento MTR_DO1 calcula el valor de una función f que es representativa de los coeficientes de la sub-lista SEm₁ con el fin de determinar si el valor calculado es par o impar.

45 En el modo de realización preferido en donde un solo signo se oculta en la señal F', la función f es la paridad de la suma de los coeficientes de la sub-lista SEm₁.

En conformidad con el convenio utilizado para el codificador CO1, que es el mismo para el decodificador DO1, un valor par de la suma de los coeficientes de la sub-lista SEm₁ significa que el signo del primer coeficiente no nulo de la lista modificada Em₁ es positivo, mientras que un valor impar de la suma de los coeficientes de la sub-lista SEm₁ significa que el signo del primer coeficiente no nulo de la lista modificada Em₁ es negativo.

En la realización ejemplo en donde $SEm_1 = (+9, -6, 0, 0, +1, 0, -1, +2, 0, 0, +1)$ D5, la suma total de los coeficientes es igual a 6 y por lo tanto, es de valor par. En consecuencia, como resultado de la etapa D5, el módulo de procesamiento MTR_DO1 deduce que el signo ocultado del primer coeficiente no nulo $\varepsilon 2$ es positivo.

En el curso de una etapa D6 representada en la Figura 7, y con la ayuda de todas las informaciones digitales reconstruidas en el curso de las etapas D2, D4 y D5, se procede a la reconstrucción de los coeficientes cuantificados del bloque B'q₁ en un orden predefinido. En la realización ejemplo representada, se trata de un recorrido en zigzag inverso al recorrido en zigzag realizado en el curso de la etapa de codificación C6 antes citada. Una tal etapa se realiza por un módulo de software de lectura ML_DO1, tal como se representa en la Figura 8. Más concretamente, el módulo ML_DO1 procede a la inscripción de los coeficientes de la lista E₁ (monodimensional) en el bloque B'q₁ (bidimensional), utilizando dicho orden de recorrido en zigzag inverso.

En el curso de una etapa D7 representada en la Figura 7, se procede a la decuantificación del bloque residuo cuantificado B'q₁ según una operación clásica de decuantificación que es la operación inversa de la cuantificación

realizada en la codificación en la etapa C5 anteriormente descrita, para obtener un bloque decuantificado decodificado BD'q₁. Una tal etapa se realiza por medio de un módulo de software de decuantificación MDQ_DO1 según se representa en la Figura 8.

- En el curso de una etapa D8 representada en la Figura 7, se procede a la transformación inversa del bloque decuantificado BD'q₁ que es la operación inversa de la transformación directa efectuada en la codificación en la etapa C4 antes citada. Un bloque residuo decodificado BD'r₁ es entonces obtenido. Una tal operación se realiza por un módulo de software MTI_DO1 de transformada inversa, tal como se representa en la Figura 8.
- En el curso de una etapa D9 representada en la Figura 7, se procede a la decodificación predictiva del bloque corriente B'₁. Una tal decodificación predictiva se realiza clásicamente mediante técnicas conocidas de predicción *intra* y/o *inter*, en cuyo curso el bloque B'₁ es objeto de predicción con respecto a por lo menos un bloque anteriormente decodificado. Una tal operación se realiza por un módulo de decodificación predictiva PRED_DO1 tal como se representa en la Figura 8.

Por supuesto, son posibles otros modos de predicción intra tal como los propuestos en la norma H.264.

En el curso de esta etapa, la decodificación predictiva se realiza con la ayuda de los elementos de sintaxis decodificados en la etapa precedente y que comprenden, en particular, el tipo de predicción (*inter* o *intra*) y si fuere el caso, el modo de predicción *intra*, el tipo de división de un bloque o macrobloque si este último fue subdividido, el índice de imagen de referencia y el vector de desplazamiento utilizados en el modo de predicción *inter*.

Dicha etapa de decodificación predictiva antes citada permite construir un bloque de predicción B'p₁.

20

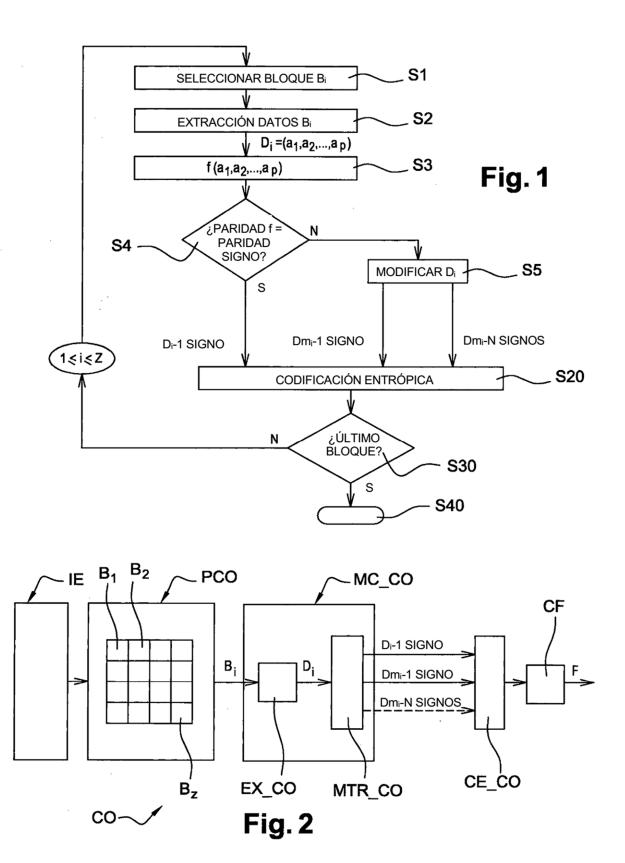
40

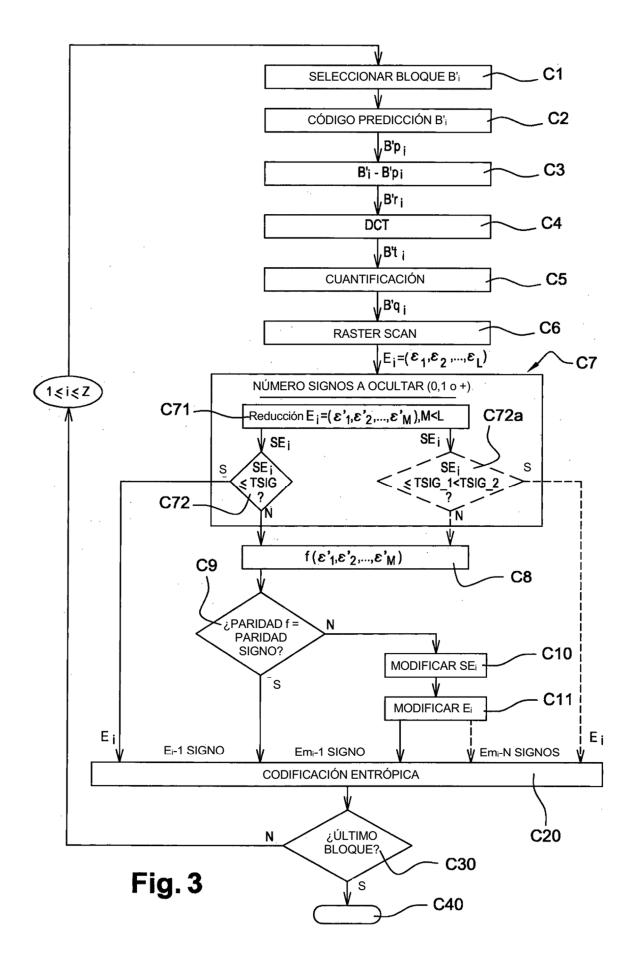
55

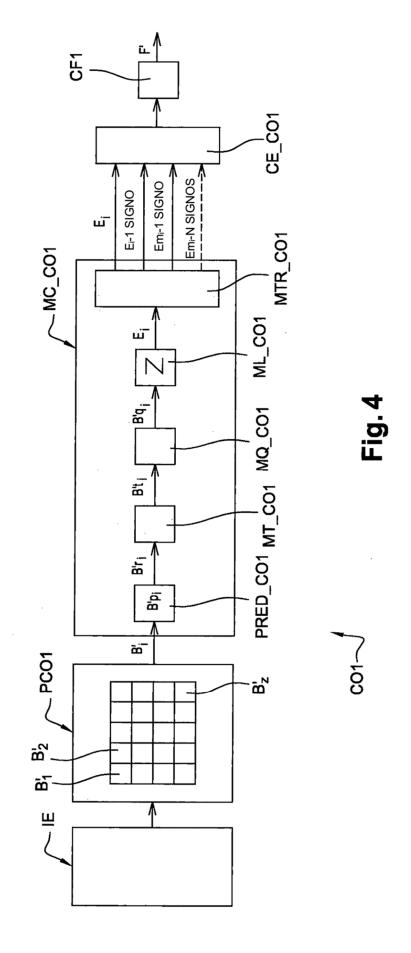
60

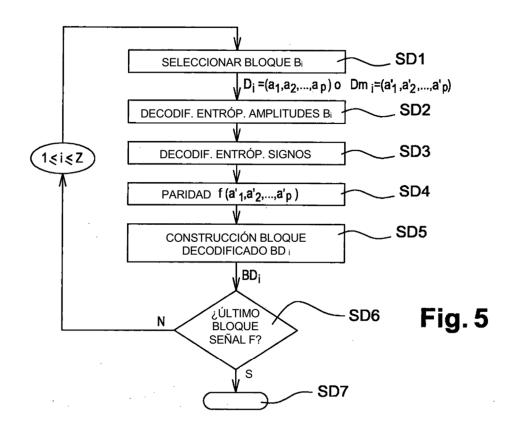
- En el curso de una etapa D10 representada en la Figura 7, se procede a la construcción del bloque decodificado BD'₁ añadiendo al bloque de predicción B'p₁ el bloque residuo decodificado BD'r₁. Una tal operación se realiza por un módulo de software de reconstrucción MR_DO1 representado en la Figura 8.
- En el curso de una etapa D11 representada en la Figura 7, el módulo de decodificación MD_D01 verifica si el bloque 30 corriente decodificado es el último bloque identificado en la señal F'.
 - Si el bloque corriente es el último bloque de la señal F', en el curso de una etapa D12 representada en la Figura 7, se pone fin al método de decodificación.
- 35 Si no fuere el caso, se procede a la selección del bloque siguiente B'_i a decodificar en conformidad con el orden de recorrido de tipo *raster scan* antes citado mediante iteración de las etapas D1 a D10 para 1<i<Z.
 - Se describirá a continuación, principalmente haciendo referencia a la Figura 7 otro modo de realización de la invención.
 - Este otro modo de realización se distingue del anterior solamente por el número de coeficientes ocultados que es 0 o N, siendo N un número entero tal que N>2.
- A este efecto, la sub-etapa de comparación D32 antes citada se sustituye por la sub-etapa D32a representada en puntos en la Figura 7, en cuyo curso se procede a la comparación del número de coeficientes susceptibles de haber sido modificados con varios umbrales predeterminados 0<TSIG_1<TSIG_2<TSIG_3..., de tal manera que si el número de dichos coeficientes está incluido entre TSIG N y TSIG N+1, N signos han sido objeto de ocultación.
- Si el número de dichos coeficientes es inferior al primer umbral TSIG_1, se procede, en el curso de la etapa D4 antes citada, a la decodificación entrópica clásica de todos los signos de los coeficientes de la lista E₁. A este efecto, el signo de cada coeficiente no nulo de la lista E₁ es objeto de decodificación entrópica.
 - Si el número de dichos coeficientes está incluido entre el umbral TSIG_N y TSIG_N+1, se procede, en el curso de la etapa D4 antes citada, a la decodificación entrópica clásica de todos los signos de los coeficientes de la lista E₁, con la excepción de los N signos respectivos de los primeros coeficientes no nulos de dicha lista modificada Em₁, siendo los N signos citados objeto de ocultación.
 - En este otro modo de realización, el módulo de entrada MTR_DO1 calcula, en el curso de la etapa D5, el valor de la función f que es el resto del módulo 2^N de la suma de los coeficientes de la sub-lista SEm₁. Se supone que en la realización ejemplo propuesta, N=2.
 - El módulo de procesamiento MTR_DO1 deduce entonces la configuración de los dos signos ocultados que se asigna respectivamente a cada uno de los dos primeros coeficientes no nulos ε2 y ε3, según el convenio utilizado en la codificación.
 - Una vez reconstruidos estos dos signos, se procede a la realización de las etapas D6 a D12 anteriormente descritas.

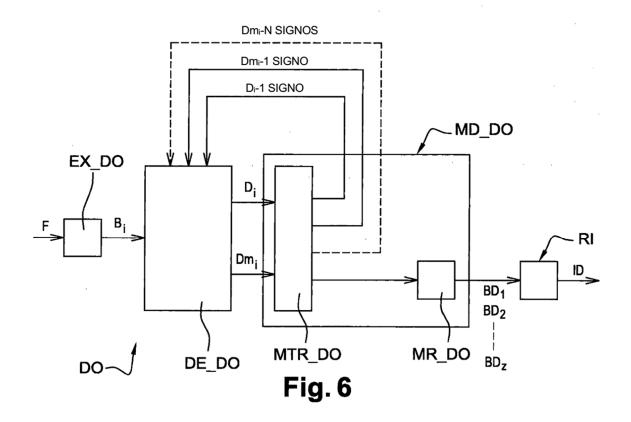
Se supone que los modos de realización que han sido anteriormente descritos han sido dados a título meramente indicativo y no limitativo y que pueden aportarse fácilmente numerosas modificaciones por un experto en esta técnica sin por ello desviarse del alcance de protección de la invención.


Así, a modo de ejemplo, según un modo de realización simplificado con respecto al representado en la Figura 4, el codificador CO1 podría configurarse para que oculte al menos N' signos predeterminados, con N'≥1, en lugar de ser 0, 1 o N signos predeterminados. En este caso, la etapa de comparación C72 o C72a sería suprimida. De forma correspondiente, según un modo de realización simplificado con respecto al representado en la Figura 8, el decodificador DO1 estaría configurado para reconstruir N' signos predeterminados en lugar de ser 0, 1 o N signos predeterminados. En este caso, la etapa de comparación D32 o D32a sería suprimida. Además, el criterio de decisión aplicado en la etapa de codificación C72 y en la etapa de decodificación D32, se podría sustituir por otro tipo de criterio. A este efecto, en lugar de comparar con un umbral el número de coeficientes modificables o el número de coeficientes susceptibles de haber sido modificados, el módulo de procesamiento MTR_CO1 o MTR_DO1 podría aplicar un criterio de decisión que sea, respectivamente, función de la suma de las amplitudes de los coeficientes modificables o susceptibles de haber sido modificados o también, del número de ceros presentes entre los coeficientes modificables o susceptibles de haber sido modificados.


REIVINDICACIONES


- 1. Un método de decodificación de una señal de datos representativa de al menos una imagen dividida en particiones que fue precedentemente codificada, comprendiendo las particiones una partición corriente (Bi) a decodificar que contiene datos de los que al menos a un dato se le asigna un signo, siendo los datos los coeficientes de transformación directa cuyo método de decodificación comprende:
 - decodificación entrópica (D2) de la primera partición corriente (Bi),


5


- determinación (D3) sobre la base de datos decodificados no nulos de la partición corriente, si el signo de al menos un dato está memorizado,
- cálculo (D5) del valor de paridad de una suma de datos decodificados de la partición corriente (Bi), estando el método de decodificación caracterizado por la obtención, a partir de dicho valor de paridad, del valor de dicho signo, si la paridad de la suma de los datos tiene un primer valor cuyo signo es positivo y si la paridad de la suma de los datos tiene un segundo valor cuyo signo es negativo.
- 2. El método de decodificación según la reivindicación 1, en donde un módulo de tratamiento (MTR_D01) deduce que el signo memorizado del primer coeficiente no nulo (ε2) es positivo.
 - 3. El método de decodificación según la reivindicación 1, en donde el módulo de tratamiento (MTR_D01) calcula el valor de una función f que es representativa de los coeficientes de una sub-lista de forma que se determine si el valor calculado es par o impar.
 - 4. El método de decodificación según la reivindicación 1, en el curso del cual una pluralidad de valores asociados respectivamente a una pluralidad (N) de signos se obtiene a partir de dicho valor calculado.

