

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 619 943

51 Int. Cl.:

C07K 16/12 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 03.01.2008 PCT/US2008/000104

(87) Fecha y número de publicación internacional: 17.07.2008 WO08085878

(96) Fecha de presentación y número de la solicitud europea: 03.01.2008 E 08712978 (9)

(97) Fecha y número de publicación de la concesión europea: 09.11.2016 EP 2109622

(54) Título: Anticuerpos de alta afinidad que neutralizan la enterotoxina B estafilocócica

(30) Prioridad:

03.01.2007 US 883271 P 06.02.2007 US 888405 P

Fecha de publicación y mención en BOPI de la traducción de la patente: **27.06.2017**

(73) Titular/es:

MORPHOTEK, INC. (100.0%) 210 WELSH POOL ROAD EXTON, PA 19341, US

(72) Inventor/es:

SASS, PHILIP M.; NICOLAIDES, NICHOLAS C.; GRASSO, LUIGI; BERGER, MARC y SAI, TAO

(74) Agente/Representante:

SALVA FERRER, Joan

DESCRIPCIÓN

Anticuerpos de alta afinidad que neutralizan la enterotoxina B estafilocócica

CAMPO

5

10

15

20

25

40

45

50

55

60

65

[0001] La presente invención se encuadra, de forma general, en el campo de la inmunoterapia. Más concretamente, la invención se refiere a anticuerpos monoclonales que pueden neutralizar toxinas bacterianas, y a procedimientos para el uso de dichos anticuerpos para tratar a sujetos expuestos a dichas toxinas.

ANTECEDENTES

En la actualidad, se presta gran atención a la amenaza que supone el bioterrorismo, dada la facilidad de uso de muchos de los agentes mortales y la accesibilidad a poblaciones en su mayor parte desprotegidas. Las consecuencias económicas y políticas de un ataque bioterrorista pueden ser tremendas, como se constató en los ataques llevados a cabo con sobres cargados de "ántrax" (carbunco) en Washington D.C. y Nueva York en 2001, que causaron graves problemas en el servicio postal de correos y provocaron 18 muertes. A raíz de la amenaza que constituyen tales agentes, los Centros para el Control y la Prevención de Enfermedades (Centers for Disease Control) de Estados Unidos elaboraron una lista de agentes biológicos que se pueden usar como "arma" y que tienen el potencial de ocasionar morbilidad y mortalidad a gran escala. Tales agentes se han clasificado en tres grupos (A, B y C) en función de su potencial de amplia diseminación entre las poblaciones civiles. Se considera que los agentes de la Categoría B tienen una capacidad de diseminación moderada y que, si se liberan intencionadamente en el seno de poblaciones civiles, causan morbilidad y mortalidad moderadas. En la lista de los agentes de la Categoría B está la enterotoxina B estafilocócica (SEB, por sus siglas en inglés), que es producida por el microorganismo Staphylococcus aureus (Mantis, NJ (2005) Adv. Drug Del. Rev. 57:1424-39). La SEB tiene el potencial de enfermar a los seres humanos a dosis relativamente bajas; en particular, cuando la vía de administración es a través de la superficie de una mucosa. Las vías de administración habituales de la SEB son: inhalación en forma de aerosol, o ingestión de SEB presente en alimentos o en agua.

30 [0003] Las enterotoxinas, antigénicamente diferentes, secretadas por diferentes cepas de *S. aureus*, son al menos siete (Kotb (1998) Curr. Opin. Microbiol 1:56-65; Bergdoll (1983) Enterotoxins, in: C.S.F. Easmon, C. Adlam (Eds.), Staphylococcus and Staphylococcal Infections, Academic Press, Nueva York, Nueva York, páginas 559-598). La SEB es un solo polipéptido que tiene una masa molecular de aproximadamente 28.000 Da (28 KDa) y que comprende dos dominios muy compactos: un dominio grande y un dominio pequeño (Swaminathan *et al.* (1992) Nature 359:801-6). La SEB tiene una estructura terciaria compacta que le confiere gran resistencia a la degradación por parte de las proteasas (como la tripsina, la quimotripsina y la papaína). Probablemente, dicha resistencia a las proteasas contribuye a la estabilidad de la SEB en la luz intestinal (Mantis (2005)).

[0004] La infección de un organismo hospedador por bacterias patógenas tales como los estafilococos se ve facilitada por la producción de exotoxinas. La SEB producida por S. aureus es una proteína clasificada como un "superantígeno" (SAg). Los superantígenos se definen como toxinas capaces de activar las células T mediante la formación de un puente entre un MHC II (complejo mayor de histocompatibilidad de tipo II) de las células presentadoras de antígeno (APC, por sus siglas en inglés) y los receptores de células T (TCR, por sus siglas en inglés), en subconjuntos concretos de células T CD4+ y CD8+. La SEB reconoce uno de los siete tipos de receptores de células T V_β⁺ humanos: V_β3, 12, 13.2, 14, 15, 17, 20 (Jardetzky *et al.* (1994) Nature 368:711-8; Leder *et al.* (1998) J. Exp. Med. 187:823-33; Li et al (1998) Immunity 9:807- 16). A consecuencia de la unión a la SEB, las células T liberan cantidades masivas de citoquinas (como, entre otras, la IL-2, el TNF-β y el interferón-γ) y sufren una hiperproliferación que, en última instancia, conduce a su depleción (Kappler et al. (1989) Science 244:811-3). Las APC MHC II+ responden produciendo TNF-α e IL-1 (Krakauer (2003) Methods Mol. Biol. 214:137-49). En la interacción con el MHC II participan dos regiones de la SEB, incluido un bolsillo hidrófobo cercano a L45 y un bolsillo polar que incluye los residuos Y89, Y115 y E67 (Mantis (2005); Jardetzky et al. (1994); Olson et al, (1997) J. Mol. Recognit. 10:277-89; y, Seth et al. (1994) Nature 369:324-7). Se prevé que cuando se obtenga una mayor comprensión de las interacciones moleculares entre la SEB y TCR-MHC II, se podrá avanzar en el desarrollo de candidatos a vacunas atenuadas contra la SEB; de hecho, dicha previsión ya se materializado, hasta cierto punto (Ulrich et al. (1998) Vaccine 16:1857-64).

[0005] La SEB es una proteína bastante estable, aunque puede desnaturalizarse mediante ebullición prolongada. Se considera que, puesto que es estable en forma de aerosol, su uso como agente bioterrorista es probable. La SEB es una toxina incapacitante, con una DL_{50} (la dosis letal para el 50% de la población), por inhalación, de 27 µg/kg, y una DI_{50} (la dosis infectiva para el 50% de la población) de tan solo 0,0004 µg/kg. Las vías de entrada de la SEB en el cuerpo más frecuentes son la ingestión o la inhalación, que conducen a dos presentaciones clínicas diferentes: la intoxicación alimentaria por SEB, y el síndrome respiratorio por SEB. Es improbable que la SEB sea ingerida en el campo de batalla, pero, en caso de un ataque terrorista, ambas vías son posibles. Como arma de destrucción masiva terrorista, lo más probable es que la SEB fuese diseminada en forma de aerosol. (Madsen (2001) Clinics in Laboratory Medicine 21:593-605).

[0006] La intoxicación alimentaria por SEB se caracteriza por espasmos abdominales severos y, habitualmente, por diarrea no hemorrágica; a veces, se acompaña de cefalea y fiebre. Los síntomas aparecen súbitamente, por lo general dentro de un plazo de 2 a 8 horas tras la ingestión, y suelen disminuir en 12 horas o menos. La inhalación de la toxina preformada aerosolizada produce síndrome respiratorio por SEB, que se caracteriza por fiebre, cefalea, escalofríos, mialgias, tos no productiva, disnea y dolor torácico retroesternal. La deglución accidental de la toxina tiene como consecuencia náuseas y vómitos, y el contacto de los ojos con la toxina puede inducir infección conjuntival. La fiebre, de 39 °C a 41 °C, puede perdurar hasta 5 días, y la tos puede persistir durante un período de hasta 4 semanas. El mecanismo de la muerte, en caso de inhalación fatal, es el edema pulmonar (Madsen 2001).

10

15

20

25

[0007] Se están desarrollando diversas estrategias posibles para el tratamiento de los individuos infectados por SEB, aunque en la actualidad no existe ningún tratamiento eficaz. Un enfoque que se ha intentado, con éxito limitado, ha sido el uso de inmunoglobulinas por vía intravenosa (Darrenberg *et al.* (2004) Clin. Infect. Dis. 38:836-42). Recientemente se ha informado de otro enfoque, que está aún en desarrollo, en un sistema-modelo murino de SEB (Krakauer *et al.* (2006) Antimicrob. Agents Chemother. 50:391-5). En dicho sistema-modelo murino de SEB, se expusieron ratones a la SEB, y se trataron dichos ratones con el fármaco antiinflamatorio dexametasona. En un modelo de SEB potenciada mediante LPS (lipopolisacárido), el choque tóxico puede detenerse si se administra rápidamente dicho fármaco a los ratones, tras la exposición a la SEB (la ventana de tratamiento es corta). Sin embargo, en términos prácticos, sería difícil diagnosticar correctamente la exposición a la SEB y administrar suficiente dexametasona para detener las enfermedades mediadas por SEB dentro de dicha ventana de tratamiento corta

[0008] Las investigaciones de cara a la obtención de una vacuna contra la SEB las ha llevado a cabo principalmente el Instituto de investigaciones médicas contra las enfermedades infecciosas del Ejército de los Estados Unidos (USAMRIID, *United States Army Medical Research Institute of Infectious Diseases*). El desarrollo de las vacunas se ha centrado en el uso de la toxina, inactivada mediante formol (Tseng *et al.* (1995) Infect. Immun. 63:2880-5). Habitualmente, la vacuna con el toxoide se elabora mediante incubación prolongada en formol, a pH 7,5. Si bien la vacuna con el toxoide SEB se mostró inmunogénica y los pacientes desarrollaron una reacción inmunitaria frente a la SEB, en años recientes dicha vacuna ha sido abandonada en su mayor parte por el USAMRIID, en favor de mutantes atenuados recombinantes, dirigidos contra sitios (Stiles *et al.* (2001) Infect. Immun. 69:2031-6). Desafortunadamente, dichos mutantes pueden no ser adecuados para su uso en seres humanos, porque se ha observado, en estudios en primates, que mantienen la actividad emética (en Harris *et al.* (1993) Infect. Immun. 61:3175-83).

35

30

[0009] Leclaire *et al.* (Infect. Immun. 2002, 70(5): 2278) describen una preparación de anticuerpos de gallina inmunopurificados (IgY) contra la enterotoxina B estafilocócica (SEB) de tipo natural.

40

[0010] De la revisión que acabamos de realizar de las investigaciones llevadas a cabo contra la SEB se desprende que actualmente se carece de procedimientos eficaces para combatir un uso terrorista de la SEB. Por lo tanto, un enfoque con el que concebir un fármaco capaz de neutralizar la actividad de la SEB *in vivo* sería una herramienta terapéutica valiosa en seres humanos para el tratamiento y la prevención de las enfermedades mediadas por la SEB.

DESCRIPCIÓN RESUMIDA

45

50

55

[0011] En la invención se presentan anticuerpos humanos y fragmentos fijadores de antígeno humanos, aislados, que se unen de manera específica a la enterotoxina B de *Staphylococcus* (enterotoxina B estafilocócica) y que, preferiblemente, la neutralizan. En un primer aspecto, la presente invención proporciona un anticuerpo humano aislado, o un fragmento de unión a antígeno del mismo, que se une a la enterotoxina B estafilocócica con una constante de disociación (KD) inferior a 3 x 10⁻¹⁰ M, y en donde la CDR1 de la cadena pesada comprende la secuencia de aminoácidos de la SEC N.º ID: 146, y la CDR3 de la cadena pesada comprende la secuencia de aminoácidos de la SEC N.º ID: 146, y la CDR3 de la cadena ligera comprende la secuencia de aminoácidos de la SEC N.º ID: 136, la CDR2 de la cadena ligera comprende la secuencia de aminoácidos de la SEC N.º ID: 130, y la CDR3 de la cadena ligera comprende la secuencia de aminoácidos de la SEC N.º ID: 140, o en donde el dominio variable de la cadena pesada comprende la secuencia de aminoácidos de la SEC N.º ID: 230, y la cadena ligera comprende la secuencia de aminoácidos de la SEC N.º ID: 230, y la cadena ligera comprende la secuencia de aminoácidos de la SEC N.º ID: 230, y la cadena ligera comprende la secuencia de aminoácidos de la SEC N.º ID: 214.

60

[0012] Preferiblemente, los anticuerpos son anticuerpos monoclonales humanos. La invención proporciona también células que expresan el anticuerpo o los fragmentos fijadores de antígeno del mismo de la invención, tales como células de hibridoma y células de expresión.

65

[0013] La invención contempla también anticuerpos o fragmentos de los mismos fijadores de antígeno, que compiten por la unión a la SEB con el anticuerpo 154G12.

[0014] La invención contempla también anticuerpos, o fragmentos de los mismos fijadores de antígeno, que se unen al mismo epítopo al que se une el anticuerpo 154G12.

- 5 [0015] La invención presenta asimismo polinucleótidos que codifican los anticuerpos y fragmentos fijadores de antígeno, de la invención, que se unen de manera específica a la enterotoxina B estafilocócica. En otro aspecto, la presente invención proporciona un polinucleótido que codifica un anticuerpo o un fragmento del mismo de unión a antígeno, de la invención.
- 10 [0016] En otro aspecto, la presente invención proporciona un vector que comprende un polinucleótido de la invención.
 - [0017] Asimismo, la invención proporciona una composición que comprende un anticuerpo o un fragmento del mismo de unión a antígeno, de la invención, y un portador farmacéuticamente aceptable.
 - [0018] En otro aspecto, la presente invención proporciona un anticuerpo o un fragmento de él de unión a antígeno, de la invención, para uso en el tratamiento o prevención de una enfermedad mediada por la enterotoxina B estafilocócica en un sujeto, o para la neutralización de la enterotoxina B estafilocócica en un sujeto.
- 20 [0019] En otro aspecto, la presente invención proporciona un procedimiento de producción de un anticuerpo o de un fragmento del mismo de unión a antígeno, de la invención, y dicho procedimiento comprende cultivar una célula hospedadora en condiciones adecuadas para producir el anticuerpo, o un fragmento del mismo de unión a antígeno, y recuperar, del cultivo celular, el anticuerpo o fragmento de unión a antígeno.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

[0020] En la Figura 1 se muestra la secuencia de aminoácidos de la enterotoxina B estafilocócica (SEB) de la cepa ATCC14458 de *S. aureus* (en negrita) (SEC N.º ID: 46). Paralelamente, se proporciona (en cursiva) otra secuencia de aminoácidos de la SEB, y se ilustran las diferencias entre las secuencias de aminoácidos de la SEB y de la vacuna basada en una muteína (forma mutante) de la SEB (STEB) (fondo resaltado en color oscuro) (SEC N.º ID: 45) (Boles *et al.* (2003) Clin. Immunol. 108:51-9); asimismo, se ilustran los epítopos de unión a la IVIG (inmunoglobulina intravenosa) (subrayado simple) (Nishi *et al.* (1997) J. Immunol. 158:247-54), los enlaces H (puentes de H) de unión a los receptores de células T (subrayado doble) (Li *et al.* (1998) Immunity 9:807-16), y los contactos de Van der Waals que participan en la unión a los receptores de células T (fondo resaltado en color claro). En las Figuras 2A-2D se muestran las secuencias de ácidos nucleicos correspondientes a las cadenas H (pesada) y L (ligera), así como las secuencias de aminoácidos de dichas cadenas, del anticuerpo 154G12 (con las SEC N.º ID: 133-134, 141-142, 213-216, 227-230). Las regiones en negrita de las secuencias indican las CDR (regiones determinantes de complementariedad), el segmento subrayado denota una secuencia líder añadida mediante PCR (reacción en cadena de la polimerasa), y las regiones sombreadas indican el dominio variable.

- En las Figuras 3A-3D se muestran las regiones CDR y FWR (región de andamiaje (*framework* en inglés) del anticuerpo 154G12 (con las SEC N.º ID: 135-140, 143-148, 252-263).
- En las Figuras 4A-4B se muestran las secuencias de ácidos nucleicos, con codones optimizados, correspondientes a las cadenas H y/o L del anticuerpo 154G12 (con las SEC N.º ID: 178, 192, 205, 217-219). Las regiones en negrita de las secuencias indican las CDRs, el segmento subrayado denota una secuencia líder añadida mediante PCR, y las regiones sombreadas indican el dominio variable.
- En las Figuras 5A-5B se muestran las secuencias de ácidos nucleicos, con codones optimizados, correspondientes a las regiones CDR y FWR del anticuerpo 154G12 (con las SEC N.º ID: 207-212, 221-226).
- La Figura 6 ilustra la unión de los anticuerpos 79G9, 100C9 y 154G12 a las enterotoxinas estafilocócicas SEA, SED, SEC1, SEC2 y TSST-1; a las exotoxinas pirogénicas estreptocócicas SPE-A y SPE-B; y al toxoide tetánico. Las barras rayadas ilustran la unión de los anticuerpos de control específicos de TSST-1 o del toxoide tetánico (los anticuerpos 79G9 y 100C9 no forman parte de la invención, sino que se usan con fines comparativos).

DESCRIPCIÓN DETALLADA

[0021] Con fines prácticos, en la Tabla 1 se enumera cada SEC N.º ID ("secuencia con número de identificación", o simplemente, "número de secuencia") y el nombre de la secuencia correspondiente.

Tabla 1. Números de secuencia (SEC N.º ID)

SEC N.º ID	Descripción de la secuencia
1	Cebador 390
2	Cebador 391
3	Cebador 883

60

55

15

25

30

35

40

45

50

4	Cebador 974
5	Cebador 975
6	Cebador 1463
7	Cebador 882
8	Cebador 885
9	Cebador 888
10	Cebador 900
11	Cebador 1017
12	Cebador 1018
13	Cebador 1019
14	Cebador 1024
15	Cebador 1040
16	Cebador 1500
17	Cebador 1550
18	Cebador 1551
19	Cebador 1552
20	Cebador 1553
21	Secuencia de nucleótidos líder 2
22	Cebador 1557
23	Cebador 1559
24	Cebador 1560
25	Cebador 1570
26	Cebador 996
43	Secuencia de nucleótidos líder 1
44	Secuencia de aminoácidos líder
133	Secuencia de nucleótidos correspondiente a la cadena ligera del 154G12
134	Secuencia de aminoácidos de la cadena ligera del 154G12
135	Secuencia de aminoácidos de la región FWR1 de la cadena ligera del 154G12
136	Secuencia de aminoácidos de la región CDR1 de la cadena ligera del 154G12
137	Secuencia de aminoácidos de la región FWR2 de la cadena ligera del 154G12
138	Secuencia de aminoácidos de la región CDR2 de la cadena ligera del 154G12
139	Secuencia de aminoácidos de la región FWR3 de la cadena ligera del 154G12
140	Secuencia de aminoácidos de la región CDR3 de la cadena ligera del 154G12
141	Secuencia de nucleótidos correspondiente a la cadena pesada del 154G12
142	Secuencia de aminoácidos de la cadena pesada del 154G12
143	Secuencia de aminoácidos de la región FWR1 de la cadena pesada del 154G12
144	Secuencia de aminoácidos de la región CDR1 de la cadena pesada del 154G12
145	Secuencia de aminoácidos de la región FWR2 de la cadena pesada del 154G12
146	Secuencia de aminoácidos de la región CDR2 de la cadena pesada del 154G12
147	Secuencia de aminoácidos de la región FWR3 de la cadena pesada del 154G12
148	Secuencia de aminoácidos de la región CDR3 de la cadena pesada del 154G12
150	Secuencia de nucleótidos con codones optimizados correspondiente al dominio variable de la cadena ligera del 100C9

178	Secuencia de nucleótidos con codones optimizados correspondiente al dominio variable de la cadena ligera del 154G12
192	Secuencia de nucleótidos con codones optimizados correspondiente al dominio variable de la cadena pesada del 154G12
205	Secuencia de nucleótidos con codones optimizados correspondiente a la cadena ligera del 154G12
206	Secuencia de nucleótidos líder 3
207	Secuencia de nucleótidos con codones optimizados correspondiente a la región FWR1 de la cadena ligera del 154G12
208	Secuencia de nucleótidos con codones optimizados correspondiente a la región CDR1 de la cadena ligera del 154G12
209	Secuencia de nucleótidos con codones optimizados correspondiente a la región FWR2 de la cadena ligera del 154G12
210	Secuencia de nucleótidos con codones optimizados correspondiente a la región CDR2 de la cadena ligera del 154G12
211	Secuencia de nucleótidos con codones optimizados correspondiente a la región FWR3 de la cadena ligera del 154G12
212	Secuencia de nucleótidos con codones optimizados correspondiente a la región CDR3 de la cadena ligera del 154G12
213	Secuencia de nucleótidos correspondiente a la cadena ligera del 154G12 (menos la secuencia líder)
214	Secuencia de aminoácidos de la cadena ligera del 154G12 (menos la secuencia líder)
215	Secuencia de nucleótidos correspondiente a la cadena pesada del 154G12 (menos la secuencia líder)
216	Secuencia de aminoácidos de la cadena pesada del 154G12 (menos la secuencia líder)
217	Secuencia de nucleótidos con codones optimizados correspondiente a la cadena ligera del 154G12 (menos la secuencia líder)
218	Secuencia de nucleótidos con codones optimizados correspondiente a la cadena pesada del 154G12 (menos la secuencia líder)
219	Secuencia de nucleótidos con codones optimizados correspondiente a la cadena pesada del 154G12
220	Secuencia de nucleótidos líder 4
221	Secuencia de nucleótidos con codones optimizados correspondiente a la región FWR1 de la cadena pesada del 154G12
222	Secuencia de nucleótidos con codones optimizados correspondiente a la región CDR1 de la cadena pesada del 154G12
223	Secuencia de nucleótidos con codones optimizados correspondiente a la región FWR2 de la cadena pesada del 154G12
224	Secuencia de nucleótidos con codones optimizados correspondiente a la región CDR2 de la cadena pesada del 154G12
225	Secuencia de nucleótidos con codones optimizados correspondiente a la región FWR3 de la cadena pesada del 154G12
226	Secuencia de nucleótidos con codones optimizados correspondiente a la región CDR3 de la cadena pesada del 154G12
227	Secuencia de nucleótidos correspondiente al dominio variable de la cadena ligera del 154G12

228	Secuencia de aminoácidos del dominio variable de la cadena ligera del 154G12
229	Secuencia de nucleótidos correspondiente al dominio variable de la cadena pesada del 154G12
230	Secuencia de aminoácidos del dominio variable de la cadena pesada del 154G12
233	Cebador 1015
234	Cebador 1020
235	Cebador 1321
236	Cebador 1461
237	Cebador 1530
238	Cebador 1578
239	Cebador 1582
240	Cebador 1730
241	Cebador 1731
242	Cebador 1732
243	Cebador 1733
244	Cebador 1734
245	Cebador 1735
246	Cebador 1736
247	Cebador 1737
252	Secuencia de nucleótidos correspondiente a la región FWR1 de la cadena pesada del 154G12
253	Secuencia de nucleótidos correspondiente a la región CDR1 de la cadena pesada del 154G12
254	Secuencia de nucleótidos correspondiente a la región FWR2 de la cadena pesada del 154G12
255	Secuencia de nucleótidos correspondiente a la región CDR2 de la cadena pesada del 154G12
256	Secuencia de nucleótidos correspondiente a la región FWR3 de la cadena pesada del 154G12
257	Secuencia de nucleótidos correspondiente a la región CDR3 de la cadena pesada del 154G12
258	Secuencia de nucleótidos correspondiente a la región FWR1 de la cadena ligera del 154G12
259	Secuencia de nucleótidos correspondiente a la región CDR1 de la cadena ligera del 154G12
260	Secuencia de nucleótidos correspondiente a la región FWR2 de la cadena ligera del 154G12
261	Secuencia de nucleótidos correspondiente a la región CDR2 de la cadena ligera del 154G12
262	Secuencia de nucleótidos correspondiente a la región FWR3 de la cadena ligera del 154G12
263	Secuencia de nucleótidos correspondiente a la región CDR3 de la cadena ligera del 154G12
264	Cebador 1577
265	Cebador 1584

[0022] En la especificación y en las reivindicaciones se usan diversos términos relacionados con los procedimientos y otros aspectos de la presente invención. A menos que se indique de otro modo, se debe dar a dichos términos el significado que tienen ordinariamente en este campo del conocimiento. Otros términos, definidos específicamente, se deben entender de manera acorde con las definiciones de ellos que se proporcionan en el presente.

[0023] En esta invención se usan las siguientes abreviaturas: SEB, enterotoxina B estafilocócica; PBMC, células mononucleares de sangre periférica; BSA, seroalbúmina bovina; TT, toxoide tetánico; HEL, lisozima de huevo de gallina; CAB, albúmina de embrión de pollo; BGG, gammaglobulina bovina; TCR, receptor de células T; CDR, región determinante de complementariedad; FWR, región de andamiaje (región "framework").

10

15

20

[0024] Tal y como se usan en esta especificación y en las reivindicaciones anexas, las formas singulares "un", "uno", "una", "el" y "la" engloban también las formas plurales, a menos que se desprenda de otro modo del contenido. Por ejemplo, cuando aquí se hace referencia a "una célula", ello comprende también una combinación de dos o más células, y así en otros casos en general.

[0025] En este contexto, el término "aproximadamente" (o "aproximado" o "alrededor de unos" o "en torno a", etc.) se usa al hacer referencia a un valor medible como, por ejemplo, una cantidad, una duración en el tiempo, y similares, y se debe entender que engloba variaciones del ±20% o del ±10%, más preferiblemente del ±5%, aún más preferiblemente del ±1%, e incluso más preferiblemente del ±0,1%, respecto del valor especificado, dado que tales variaciones resultan apropiadas para la puesta en práctica de los procedimientos aquí descritos.

[0026] "Aislado/a/s" significa "alterado/a/s por la mano del hombre", a diferencia del estado natural. Si una molécula o una composición se da en la naturaleza, se ha "aislado" la misma si ha sido modificada, retirada de su entorno original o ambas cosas. Por ejemplo, un polinucleótido o un polipéptido presente de manera natural en una planta o animal vivos, no se ha "aislado"; sin embargo, ese mismo polinucleótido o polipéptido, si ha sido separado de los materiales con los que coexiste en su estado natural, ha sido "aislado" conforme al significado que aquí se le da a ese término.

"Polinucleótido" y su sinónimo denominado "molécula de ácido nucleico", se refiere a cualquier [0027] polirribonucleótido o polidesoxirribonucleótido, que puede ser ARN o ADN sin modificar, o ARN o ADN modificados. El término "polinucleótidos" comprende, entre otras posibilidades, ADN de cadena única y de cadena doble, ADN que sea una mezcla de regiones de cadena única y de cadena doble, ARN de cadena única y de cadena doble, ARN que sea una mezcla de regiones de cadena única y de cadena doble, y moléculas híbridas que comprenden ADN y ARN que pueden ser de cadena única o, más habitualmente, de cadena doble, o una mezcla de regiones de cadena única y de cadena doble. Además, "polinucleótido" se refiere regiones de cadena triple que comprenden ARN o ADN o tanto ARN como ADN. El término polinucleótido comprende además ADN o ARN que contienen una o más bases modificadas y ADN o ARN con esqueletos modificados en aras de una mayor estabilidad o por otras razones. Cuando aquí se hace referencia a bases "modificadas", se entiende que ello incluye, por ejemplo, bases tritiladas y bases inusuales como, por ejemplo, inosina. Se pueden efectuar muy diversas modificaciones al ADN y al ARN; por ello, el término "polinucleótido" comprende también formas química, enzimática o metabólicamente modificadas de polinucleótidos, como las que se encuentran habitualmente en la naturaleza, así como las formas químicas del ADN y del ARN que son características de los virus y de las células. "Polinucleótido" comprende asimismo cadenas de ácidos nucleicos relativamente cortas, que a menudo se denominan "oligonucleótidos".

10

15

20

25

30

35

45

50

55

60

[0028] "Sustancialmente iguales", en relación a secuencias de ácidos nucleicos o de aminoácidos, significa que existe una igualdad de al menos el 65%, aproximadamente, entre dos o más secuencias (son idénticas entre sí en al menos un 65% aproximadamente). Preferiblemente, el término se refiere a una igualdad, entre dos o más secuencias, de al menos el 70%, aproximadamente; más preferiblemente, a una igualdad de al menos el 75%, aproximadamente; más preferiblemente, a una igualdad de al menos el 80%, aproximadamente; más preferiblemente, a una igualdad de al menos el 90%, aproximadamente; más preferiblemente, a una igualdad de al menos el 91%, aproximadamente; más preferiblemente, a una igualdad de al menos el 93%, aproximadamente; más preferiblemente, a una igualdad de al menos el 94%, aproximadamente; más preferiblemente, a una igualdad de al menos el 96%, aproximadamente; más preferiblemente, a una igualdad de al menos el 96%, aproximadamente; más preferiblemente, a una igualdad de al menos el 97%, aproximadamente; más preferiblemente, a una igualdad de al menos el 97%, aproximadamente; más preferiblemente, a una igualdad de al menos el 97%, aproximadamente; más preferiblemente, a una igualdad de al menos el 99%, aproximadamente; o superior.

[0029] Un "vector" es un replicón como, por ejemplo, un plásmido, fago, cósmido o virus en el que se puede insertar operativamente otro segmento de ácido nucleico para poder lograr la replicación o la expresión de dicho segmento.

[0030] El término "unidas operativamente" o "insertadas operativamente" significa que las secuencias reguladoras necesarias para la expresión de la secuencia codificadora se sitúan, dentro una molécula de ácido nucleico, en las posiciones adecuadas en relación a la secuencia codificadora, a fin de posibilitar la expresión de la secuencia codificadora. Por ejemplo, un promotor se une operativamente a una secuencia codificadora cuando el promotor es capaz de controlar la transcripción o la expresión de dicha secuencia codificadora. Las secuencias codificadoras pueden unirse operativamente a promotores o a secuencias reguladoras, en una orientación que es la del "sentido habitual" ("sense") o en "sentido contrario" al "habitual" ("antisense"). A veces, el término "unidos operativamente" se aplica a la disposición de otros elementos de control de la transcripción (por ejemplo, "potenciadores") en un vector de expresión.

[0031] Se entiende que una célula ha sido "transformada" o "transfectada" por ácidos nucleicos exógenos o heterólogos como, por ejemplo, ADN, cuando dicho ADN ha sido introducido en la célula. El ADN transformador puede integrarse o no (mediante enlaces covalentes) en el genoma de la célula. En las células de procariotas, levaduras y mamíferos, por ejemplo, el ADN transformador puede mantenerse en un elemento episomal como, por ejemplo, un plásmido. Con respecto a las células eucarióticas, una célula transformada de manera estable, o "célula estable", es una en la que el ADN transformador se ha integrado en un cromosoma, de manera que es heredado por las células hijas mediante la replicación cromosómica. Dicha estabilidad es demostrada por la capacidad de la célula eucariótica de establecer líneas celulares o clones que comprendan una población de células hijas que contienen el ADN transformador. Un "clon" es una población de células derivadas de una única célula o ancestro común, mediante mitosis. Una "línea celular" es un clon de una célula primaria que es capaz de crecer de manera estable *in vitro* durante muchas generaciones.

65 [0032] "Polipéptido" se refiere a cualquier péptido o proteína que comprenda dos o más aminoácidos unidos entre sí por enlaces peptídicos o por enlaces peptídicos modificados (a saber, isoésteres peptídicos). "Polipéptido"

se refiere tanto a cadenas cortas, comúnmente denominados péptidos, oligopéptidos u oligómeros, como a cadenas más largas, comúnmente denominados proteínas. Los polipéptidos pueden contener aminoácidos que no sean los 20 aminoácidos codificados por los genes. El término "polipéptidos" comprende las secuencias de aminoácidos modificadas por procesos naturales, tales como el procesado postraduccional, o mediante técnicas de modificación químicas, que son conocidas en este campo del conocimiento. Tales modificaciones están ampliamente descritas en los textos básicos de este campo, así como en monografías más detalladas y en una voluminosa cantidad de investigaciones (bibliografía). Las modificaciones pueden acaecer en cualquier lugar de un polipéptido, incluidos el esqueleto del péptido, las cadenas laterales de los aminoácidos y los extremos aminoterminal o carboxiterminal. El lector entenderá que, en varios lugares ("sitios") de un polipéptido dado puede estar presente o producirse el mismo tipo de modificación, y en el mismo grado o en grados variables. Además, un polipéptido determinado puede contener muchos tipos de modificaciones. Los polipéptidos pueden ser ramificados (como consecuencia de una ubiquitinación); también pueden ser cíclicos (con o sin ramificación). Los polipéptidos cíclicos, ramificados o cíclicos ramificados pueden surgir de procesos postraduccionales naturales, o pueden producirse mediante procedimientos sintéticos. Son modificaciones posibles, entre otras, las siguientes: acetilación, acilación, ADP-ribosilación, amidación, unión covalente de flavina, unión covalente de una fracción hemo, unión covalente de un nucleótido o de un derivado nucleotídico, unión covalente de un lípido o de un derivado lipídico, unión covalente de fosfatidilinositol, enlaces cruzados, ciclación, formación de enlaces disulfuro, desmetilación, formación de enlaces cruzados covalentes, formación de cistina, formación de piroglutamato, formilación, gamma-carboxilación, glicosilación, formación de anclajes glicosilfosfatidilinositol (GPI), hidroxilación, yodación, metilación, miristoilación, oxidación, procesado proteolítico, fosforilación, prenilación, racemización, selenoilación, sulfatación, adición (mediada por ARN transferente) de aminoácidos a proteínas (como, por ejemplo, arginilación), y ubiquitinación. Véase, por ejemplo, Proteins - Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, Nueva York, 1993, y Wold, F., Posttranslational Protein Modifications: Perspectives and Prospects, páginas 1-12 in Posttranslational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, Nueva York, 1983; Seifter et al., Analysis for Protein Modifications and Nonprotein Cofactors, Meth Enzymol (1990) 182:626- 646, y Rattan et al., Protein Synthesis: Posttranslational Modifications and Aging, Ann NY Acad Sci (1992) 663:48-62.

10

15

20

25

30

35

40

45

50

55

[0033] El término "biomoléculas" incluye proteínas, polipéptidos, ácidos nucleicos, lípidos, monosacáridos, polisacáridos, así como todos los fragmentos, análogos, homólogos, conjugados y derivados de los mismos.

[0034] Los términos "expresar" y "producir" se usan en la presente invención como sinónimos y se refieren a la biosíntesis de un producto génico. Dichos términos engloban la transcripción de un gen a ARN. Dichos términos engloban también la traducción del ARN en uno o más polipéptidos, y engloban todas las modificaciones postranscripcionales y postraduccionales que se dan de forma natural. La expresión/producción de un anticuerpo puede acaecer dentro del citoplasma de la célula, y/o hacia el entorno extracelular, como, por ejemplo, el medio de cultivo de un cultivo celular.

[0035] Los términos "tratar" o "tratamiento" se refieren al éxito, o a indicios de éxito, en la atenuación o mejoría de una lesión, patología o estado patológico, incluidos cualesquiera parámetros objetivos o subjetivos tales como: mitigación, remisión, disminución de los síntomas, o hacer que la enfermedad, patología o estado patológico resulte más tolerable para el paciente, ralentizar la velocidad de degeneración o de empeoramiento, hacer que el punto final de la degeneración sea menos debilitante, mejorar el bienestar físico o mental de un sujeto, o prolongar el tiempo de supervivencia. El tratamiento o mejoría de los síntomas puede basarse en parámetros objetivos o subjetivos, incluidos los resultados de exploraciones físicas, exámenes neurológicos y/o evaluaciones psiquiátricas.

[0036] "Cantidad eficaz" y "cantidad terapéuticamente eficaz" se usan aquí como sinónimos, y se refieren a una cantidad de un anticuerpo o de una composición, como los que se describen en el presente, eficaz para conseguir un resultado biológico concreto como, por ejemplo, entre otros posibles, los resultados biológicos que se presentan, describen o ejemplifican en la presente invención. Dichos resultados pueden comprender, por ejemplo, el tratamiento de una enfermedad mediada por exposición a la enterotoxina B estafilocócica, conforme a lo que determine mediante cualquier medio que se estime adecuado en este campo de la técnica.

[0037] "Farmacéuticamente aceptable" se refiere a las propiedades y/o sustancias que se consideran aceptables, desde un punto de vista farmacológico/toxicológico, para el paciente; y las que se consideran aceptables, desde un punto de vista físico-químico, para los químicos que fabrican productos farmacéuticos, en cuanto a su composición, formulación, estabilidad, aceptación por el paciente y biodisponibilidad. El término "portador farmacéuticamente aceptable" se refiere a un medio que no interfiere en la eficacia de la actividad biológica de los ingredientes activos y que no es tóxico para el hospedador al que es administrado.

60 [0038] Tal y como aquí se usa, el término "inhibición de la mitogénesis *in vitro*" significa una disminución en el número de células, en cultivo, en un 5% aproximadamente, y preferiblemente en un 10% aproximadamente, más preferiblemente en un 20% aproximadamente, más preferiblemente en un 30% aproximadamente, más preferiblemente en un 50% aproximadamente, más preferiblemente en un 50% aproximadamente, más preferiblemente en un 70% aproximadamente, más preferiblemente en un 80% aproximadamente, más preferiblemente en un 90% aproximadamente, y en el caso más preferible, en un 100% aproximadamente. La inhibición *in vitro* del crecimiento celular mitogénico puede medirse

mediante ensayos conocidos en este campo del conocimiento.

10

25

30

35

40

45

50

55

60

65

[0039] Debe entenderse que esta invención no se limita a los procedimientos, reactivos, compuestos, composiciones o sistemas biológicos que se emplean aquí en particular y que, por supuesto, pueden variar. Asimismo, debe entenderse que la terminología aquí empleada se usa con la única finalidad de describir realizaciones concretas, y no debe interpretarse que limite en modo alguno el alcance de la presente invención.

[0040] Las toxinas estafilocócicas son un factor de virulencia importante en las infecciones bacterianas por *Staphylococcus*. La exposición a dichas toxinas, por ingestión de alimento o agua contaminados, o por inhalación (por ejemplo, a causa de un ataque terrorista), pueden producir una enfermedad debilitante de aparición rápida. Hasta la fecha actual, ha habido muchas dificultades para lograr tratamientos eficaces de la exposición a toxinas estafilocócicas. No obstante, se ha descubierto, de conformidad con la presente invención, que las toxinas tales como la enterotoxina B estafilocócica pueden neutralizarse mediante anticuerpos.

15 [0041] Por eso, en un aspecto, esta invención presenta anticuerpos y fragmentos de ellos fijadores de antígeno, aislados, que se unen específicamente a las enterotoxinas de *Staphylococcus* (enterotoxinas estafilocócicas) y, más específicamente, a la enterotoxina B estafilocócica. Dichos anticuerpos pueden ser policionales o monoclonales, o pueden ser derivados o fragmentos de anticuerpos que conservan la especificidad por las enterotoxinas estafilocócicas. La estructura general de una molécula de anticuerpo comprende un dominio de unión a antígenos, que incluye las cadenas pesadas y ligeras, y el dominio Fc, que desempeña diversas funciones, incluida la fijación del complemento.

[0042] Hay cinco clases de inmunoglobulinas, y la estructura primaria de la cadena pesada, a nivel de la región Fc, determina la clase de inmunoglobulina. Concretamente, las cadenas alfa, delta, épsilon, gamma, y mu se corresponden con los isotipos IgA, IgD, IgE, IgG e IgM, respectivamente. Los anticuerpos de la invención comprenden todos los isotipos y multímeros sintéticos de la estructura de cuatro cadenas de las inmunoglobulinas. Los anticuerpos de la invención comprenden también el isotipo IgY, que se encuentra generalmente en el suero de gallina o de pavo o en la yema de huevo de gallina o de pavo. Los anticuerpos se unen de manera específica, no covalente, y reversible, a un antígeno.

[0043] Los fragmentos fijadores de antígeno comprenden porciones de anticuerpos intactos, que conservan la especificidad de unión a antígenos de la molécula de anticuerpo padre. Por ejemplo, los fragmentos fijadores de antígeno pueden comprender al menos una región variable (una región variable de una cadena pesada o de una cadena ligera). Son ejemplos de fragmentos fijadores de antígeno adecuados, entre otros posibles, los siguientes: anticuerpos con especificidad poliepitópica, anticuerpos biespecíficos, diacuerpos, moléculas de una sola cadena, así como moléculas Fab, F(ab')2, Fd, Fabc y Fv, anticuerpos de cadena única (Sc), cadenas ligeras individuales de anticuerpos, cadenas pesadas individuales de anticuerpos, fusiones quiméricas entre cadenas de anticuerpos y otras moléculas, monómeros o dímeros de cadenas pesadas, monómeros o dímeros de cadenas ligeras, dímeros formados por una cadena pesada y una cadena ligera, y similares. Se pueden usar todos los isotipos de anticuerpo a fin de producir fragmentos fijadores de antígeno. Los fragmentos fijadores de antígeno se pueden producir recombinantemente.

[0044] Los anticuerpos de la invención son plenamente humanos. Tal y como aquí se usa, el término "anticuerpo humano" significa que el anticuerpo es exclusivamente de origen humano, o que es un anticuerpo en el que las secuencias de los dominios variables y constantes son secuencias humanas. El término engloba anticuerpos con secuencias derivadas/obtenidas de (es decir, que utilizan) genes humanos, pero que han sido modificadas, por ejemplo, para reducir su posible inmunogenicidad, aumentar su afinidad, eliminar cisteínas que pueden ocasionar plegados no deseables, etc. El término engloba tales anticuerpos, producidos recombinantemente en células no humanas, que pueden proporcionar glicosilación no típica de las células humanas.

[0045] Los anticuerpos de la invención se pueden marcar o de otro modo conjugar con diversas fracciones de compuesto químico/sustancia química o biomolécula; por ejemplo, para aplicaciones terapéuticas o diagnósticas. Las fracciones pueden ser citotóxicas; por ejemplo, pueden ser toxinas bacterianas, toxinas víricas, radioisótopos y similares. Las fracciones pueden ser marcadores detectables; por ejemplo, pueden ser marcadores fluorescentes, radiomarcadores, biotina y similares.

[0046] Los entendidos en la materia sabrán que la especificidad de los anticuerpos está determinada principalmente por las seis regiones CDR; en especial, por la CDR3 de la cadena pesada (cadena H) (Kala *et al.* (2002) J. Biochem. 132:535-41; Morea *et al.* (1998) J. Mol. Biol. 275:269-94; y, Chothia *el al.* (1987) J. Mol. Biol. 196:901-17). No obstante, las regiones de andamiaje de los anticuerpos pueden desempeñar un papel en las interacciones antígeno-anticuerpo (Panka *et al.* (1988) Proc. Natl. Acad. Sci. USA 85:3080-4), en particular en lo referente a su papel en la conformación de los bucles CDR (Foote *el al.* (1992) J. Mol. Biol. 224:487-99). Por ello, los anticuerpos de la invención pueden comprender cualquier combinación de regiones CDR o FWR de cadena H (pesada) o de cadena L (ligera) que confiera especificidad por la SEB. Pueden emplearse experimentos de intercambio ("shuffling") de dominios, que se llevan a cabo rutinariamente en este campo del conocimiento (Jirholt *el al.* (1998) Gene 215:471-6; Söderlind *et al.* (2000) Nature Biotechnology 18:852-6), para, en el caso de la presente

invención, generar anticuerpos que se unan de manera específica a la SEB, de conformidad con las especificaciones que aquí se describen y ejemplifican. Los anticuerpos generados mediante experimentos de intercambio de dominios recaen dentro del alcance de la presente invención.

- 5 En algunas realizaciones, el anticuerpo de la invención comprende una secuencia de aminoácidos de la región FWR1 de la cadena pesada que es sustancialmente la misma que la siguiente SEC N.º ID, o idéntica a ella: 143. En algunas realizaciones, los anticuerpos comprenden una secuencia de aminoácidos de la región FWR2 de la cadena pesada que es sustancialmente la misma que la siguiente SEC N.º ID, o idéntica a ella: 145. En algunas realizaciones, los anticuerpos comprenden una secuencia de aminoácidos de la región FWR3 de la cadena pesada que es sustancialmente la misma que la siguiente SEC N.º ID, o idéntica a ella: 147. En algunas realizaciones, los 10 anticuerpos comprenden una secuencia de aminoácidos de la región FWR1 de la cadena ligera que es sustancialmente la misma que la siguiente SEC N.º ID, o idéntica a ella: 135. En algunas realizaciones, los anticuerpos comprenden una secuencia de aminoácidos de la región FWR2 de la cadena ligera que es sustancialmente la misma que la siguiente SEC N.º ID, o idéntica a ella: 137. En algunas realizaciones, los 15 anticuerpos comprenden una secuencia de aminoácidos de la región FWR3 de la cadena ligera que es sustancialmente la misma que la siguiente SEC N.º ID, o idéntica a ella: 139. En las Figuras 3 y 4 se muestran ejemplos de secuencias de ácidos nucleicos que pueden codificar las regiones CDR1-3 y FWR1-3 de la cadena pesada y de la cadena ligera, descritas en este párrafo.
- 20 [0048] Los anticuerpos de la invención pueden comprender una cadena pesada que comprende la secuencia de aminoácidos de la SEC N.º ID: 216. Dicha cadena pesada puede ser codificada por una secuencia de ácidos nucleicos que comprende la SEC N.º ID: 215 o 218.
- [0049] En algunas realizaciones preferidas, los anticuerpos y fragmentos fijadores de antígeno pueden comprender un dominio variable de la cadena pesada con la SEC N.º ID: 230. En algunas realizaciones preferidas, los anticuerpos y fragmentos fijadores de antígeno pueden comprender una cadena pesada que tiene la SEC N.º ID: 142.
- [0050] En algunas realizaciones preferidas, los anticuerpos y fragmentos fijadores de antígeno pueden comprender un dominio variable de la cadena ligera con la SEC N.º ID: 228. En algunas realizaciones preferidas, los anticuerpos y fragmentos fijadores de antígeno pueden comprender una cadena ligera que tiene la SEC N.º ID: 134 o 214.
- [0051] En algunas realizaciones preferidas, los anticuerpos y fragmentos fijadores de antígeno pueden comprender un dominio variable de la cadena pesada con la SEC N.º ID: 230, así como un dominio variable de la cadena ligera con la SEC N.º ID: 228.
- [0052] En algunas realizaciones preferidas, los anticuerpos y fragmentos fijadores de antígeno, de la invención, comprenden una cadena pesada que tiene la SEC N.º ID: 216, así como una cadena ligera que tiene la SEC N.º ID: 40 214.
 - [0053] Preferiblemente, los anticuerpos son anticuerpos monoclonales humanos. La invención proporciona también células que expresan tales anticuerpos y fragmentos fijadores de antígeno; por ejemplo, células de hibridoma y células de expresión.
 - [0054] Los anticuerpos de la invención pueden comprender una cadena ligera que comprende la secuencia de aminoácidos de la SEC N.º ID: 214. Dicha cadena ligera puede ser codificada por una secuencia de ácidos nucleicos que comprende la SEC N.º ID: 213 o 217.

45

60

65

- 50 [0055] Se debe entender que, a causa de la variación natural de las secuencias que es probable que exista en las cadenas pesadas y ligeras y en los genes que las codifican, los entendidos en la materia esperarían encontrar algún grado de variación en las secuencias de aminoácidos o en los genes que las codifican, aunque siempre manteniendo las propiedades de unión únicas (a saber, especificidad y afinidad) de los anticuerpos de la presente invención. Tal expectativa se debe en parte a que se sabe que el código genético, de manera natural, sufre degeneración; también se debe al conocido éxito evolutivo de las variaciones conservadoras en las secuencias de aminoácidos, que no alteran de manera apreciable la naturaleza de la proteína codificada.
 - [0056] En algunas realizaciones preferidas, los anticuerpos pueden comprender una cadena pesada que comprende la secuencia de aminoácidos de la SEC N.º ID: 216, y una cadena ligera que comprende la secuencia de aminoácidos de la SEC N.º ID: 214.
 - [0057] Los anticuerpos de la invención tienen afinidades de unión (en M), por el antígeno diana, que incluyen una constante de disociación (K_D) inferior a 3 x 10⁻¹⁰. En otras realizaciones, la K_D es inferior a 1 x 10⁻¹¹. En algunas realizaciones, la K_D es inferior a 1 x 10⁻¹³. En otras realizaciones, la K_D es inferior a 1 x 10⁻¹⁴. Y en otras realizaciones, la K_D es inferior a 1 x 10⁻¹⁵.

Los anticuerpos de la invención pueden ser modificados, por ejemplo, por la unión covalente de algún tipo de molécula con el anticuerpo, de manera tal que la unión covalente no impide que el anticuerpo se una al epítopo que tiene como diana. Los ejemplos de modificaciones adecuadas incluyen, entre otros, los siguientes: glicosilación, acetilación, pegilación, fosforilación, amidación y similares. Los propios anticuerpos de la invención pueden ser derivados por grupos protectores/bloqueadores conocidos, escisión proteolítica, unión a un ligando celular o a otras proteínas y similares. Los anticuerpos de la invención pueden tener fracciones postraduccionales que aumentan la actividad o la estabilidad de dichos anticuerpos. Dichas fracciones incluyen, entre otras posibles, fracciones de sulfuro, metilo, carbohidrato, fósforo, así como otros grupos químicos que se encuentran frecuentemente en las moléculas de inmunoglobulina. Además, los anticuerpos de la invención pueden contener uno o más aminoácidos no clásicos.

Se proporcionan secuencias de nucleótidos que codifican anticuerpos de la invención. Los ácidos nucleicos de la invención incluyen (entre otras posibilidades) ADN genómico, ADN, ADNc, ARN, ácidos nucleicos de cadena doble y de cadena única, así como secuencias complementarias de lo anterior.

Los polinucleótidos preferidos de la invención incluyen secuencias de ácidos nucleicos que codifican la secuencia de aminoácidos de la cadena pesada, de la SEC N.º ID: 142 o 216. Además, secuencias de ácidos nucleicos que codifican la secuencia de aminoácidos de la cadena ligera, de la SEC N.º ID: 134 o 214. Otros polinucleótidos preferidos de la invención incluyen secuencias de ácidos nucleicos que codifican la secuencia de aminoácidos del dominio variable de la cadena pesada, de la SEC N.º ID: 230. Además, secuencias de ácidos nucleicos que codifican la secuencia de aminoácidos del dominio variable de la cadena ligera, de la SEC N.º ID: 228. Otros polinucleótidos preferidos incluyen las secuencias de ácidos nucleicos que codifican los dominios CDR3 del anticuerpo o anticuerpos, de las SEC N.º ID: 140 o 148; los dominios CDR2 de la SEC N.º ID: 138 o 146 y los dominios CDR1 de la SEC N.º ID: 136 o 144.

[0061] Algunos ejemplos preferidos de polinucleótidos que codifican las secuencias de aminoácidos de la invención incluyen los polinucleótidos correspondientes a la cadena pesada, de las SEC N.º ID: 141, 162, 215, 218, 219 y 250; y los polinucleótidos correspondientes a la cadena ligera, de las SEC N.º ID: 133, 205, 213 y 217. Otros ejemplos preferidos de polinucleótidos que codifican las secuencias de aminoácidos de la invención incluyen los dominios variables de la cadena pesada, de las SEC N.º ID: 192 y 229; así como los dominios variables de la cadena ligera, de las SEC N.º ID: 178 y 227. Otros ejemplos preferidos de polinucleótidos que codifican las secuencias de aminoácidos de la invención incluyen los dominios CDR1 de la cadena pesada, de las SEC N.º ID: 222 y 253; los dominios CDR2, de las SEC N.º ID: 224 y 255; los dominios CDR3, de las SEC N.º ID: 212 y 257; así como los dominios CDR1 de la cadena ligera, de las SEC N.º ID: 208 y 259; los dominios CDR2, de las SEC N.º ID: 210 y 261; los dominios CDR3, de las SEC N.º ID: 212 y 263. Si bien las secuencias de polinucleótidos descritas aquí y en otros apartados de la presente especificación proporcionan ejemplos de realizaciones preferidas de la invención, los expertos en la materia reconocerán que la naturaleza degenerativa del código genético proporciona numerosos polinucleótidos que codifican los anticuerpos y fragmentos fijadores de antígeno, de la invención. En algunas realizaciones preferidas, los polinucleótidos codifican un anticuerpo o fragmento de unión a antígeno que tiene las regiones CDR1, CDR2 y CDR3, de la cadena pesada, de las SEC N.º ID: 144, 146 y 148. Por ejemplo, el polinucleótido puede comprender las SEC N.º ID: 253 o 222, 255 o 224, y 257 o 226.

En algunas realizaciones preferidas, los polinucleótidos codifican un anticuerpo o fragmento de unión a antígeno que tiene las regiones CDR1, CDR2 y CDR3, de la cadena ligera, de las SEC N.º ID: 136, 138 y 140. Por ejemplo, el polinucleótido puede comprender las SEC N.º ID: 259 o 208, 261 o 210, y 263 o 212.

En algunas realizaciones preferidas, el dominio variable de la cadena pesada del anticuerpo o fragmento de unión a antígeno es codificado por un polinucleótido que comprende la SEC N.º ID: 159, 164, 172, 175, 192, 201, 203 o 229. En algunas realizaciones preferidas, la secuencia de la cadena pesada es codificada por un polinucleótido que comprende la SEC N.º ID: 141, 215, 218 o 219. En algunas realizaciones preferidas, los polinucleótidos codifican un anticuerpo o fragmento de unión a antígeno que tiene un dominio variable, de la cadena pesada, de la SEC N.º ID: 230. Por ejemplo, el polinucleótido puede comprender la SEC N.º ID: 192 o 229.

En algunas realizaciones preferidas, las regiones CDR1, CDR2 y CDR3 de la cadena ligera del [0064] anticuerpo y del fragmento de unión a antígeno son codificadas por polinucleótidos que comprenden las SEC N.º ID: 259, 261 y 263; o las SEC N.º ID: 208, 210 y 212. En algunas realizaciones preferidas, el dominio variable de la cadena ligera del anticuerpo y del fragmento de unión a antígeno es codificado por un polinucleótido que comprende la SEC N.º ID: 178 o 227.

En algunas realizaciones preferidas, los polinucleótidos codifican un anticuerpo o fragmento de unión a 60 antígeno que tiene un dominio variable, de la cadena ligera, de la SEC N.º ID: 228. Por ejemplo, el polinucleótido puede comprender la SEC N.º ID: 178 o 227. En algunas realizaciones preferidas, la secuencia de la cadena ligera del anticuerpo y del fragmento de unión a antígeno es codificada por un polinucleótido que comprende la SEC N.º ID: 133, 205, 213 o 217. 65

[0066] En algunas realizaciones preferidas, los polinucleótidos codifican un anticuerpo o fragmento de unión a

10

15

20

25

30

35

40

45

50

55

antígeno que tiene las regiones CDR1, CDR2 y CDR3, de la cadena pesada, y las regiones CDR1, CDR2 y CDR3, de la cadena ligera, de las SEC N.º ID: 144, 146 y 148; y 136, 138 y 140, respectivamente. Por ejemplo, el polinucleótido puede comprender las SEC N.º ID: 253 o 222, 255 o 224, y 257 o 226; y 259 o 208, 261 o 210, y 263 o 212; respectivamente.

[0067] En algunas realizaciones preferidas, los polinucleótidos codifican un anticuerpo o fragmento de unión a antígeno que tiene un dominio variable de la cadena pesada, y un dominio variable de la cadena ligera, de las SEC N.º ID: 230 y 228. Por ejemplo, el polinucleótido puede comprender la SEC N.º ID: 229 o 192, y 227 o 178.

10 [0068] En algunas realizaciones preferidas, el polinucleótido que codifica los anticuerpos y fragmentos fijadores de antígeno puede comprender una cadena pesada que tiene una CDR1 con la SEC N.º ID: 222 o 253, una CDR2 con la SEC N.º ID: 224 o 255, y una CDR3 con la SEC N.º ID: 212 o 257; así como una cadena ligera que tiene una CDR1 con la SEC N.º ID: 208 o 259, una CDR2 con la SEC N.º ID: 210 o 261, y una CDR3 con la SEC N.º ID: 212 o 263. En algunas realizaciones preferidas, el polinucleótido que codifica los anticuerpos y fragmentos fijadores de antígeno puede comprender un dominio variable de la cadena pesada con la SEC N.º ID: 192 o 229, así como un dominio variable de la cadena ligera con la SEC N.º ID: 178 o 227. En algunas realizaciones preferidas, el polinucleótido que codifica los anticuerpos y fragmentos fijadores de antígeno puede comprender una secuencia correspondiente a la cadena pesada que sea la SEC N.º ID: 141, 215, 218 o 219, y una secuencia correspondiente a la cadena ligera que sea la SEC N.º ID: 133, 205, 213 o 217. La invención proporciona también vectores que comprenden tales polinucleótidos.

[0069] En algunas realizaciones, los polinucleótidos de la invención (y los péptidos que codifican) comprenden una secuencia líder. Puede emplearse cualquier secuencia líder conocida en este campo del conocimiento. La secuencia líder puede incluir, entre otras posibilidades, un sitio de restricción y/o un sitio de inicio de la traducción. En algunas realizaciones preferidas, la secuencia líder tiene la secuencia de ácidos nucleicos ATGGGATGGAGCTGTATCATCCTCTTTCTTGGTAGCAACAGCTACAGGTGTACACAGC (SEC N.º ID: 43), ATGGGCTGGTCCTGCATCATCCTGTTTCTGGTGGCCACCGCCACCGGCGTGCACTCC (SEC N.º ID: 206), ATGGGATGGAGCTGTATCATCCTCTTTCTTGGTAGCAACAGCTACAGGTGTCCACTCC (SEC N.º ID: 220), o ATGGGATGGAGCTGTATCATCCTCTTTCTTGGTAGCAACAGCTACAGGTGTGCACTCC (SEC N.º ID: 21). En algunas realizaciones preferidas, la secuencia líder codifica la secuencia de aminoácidos MGWSCIILFLVATATGVHS (SEC N.º ID: 44).

25

30

35

40

45

50

[0070] En la presente invención están englobados también vectores que comprenden los polinucleótidos de la invención. Los vectores pueden ser vectores de expresión. Por lo tanto, la invención proporciona vectores de expresión recombinantes que contienen una secuencia que codifica un polipéptido de interés. El vector de expresión puede contener una o más secuencias adicionales (como, entre otras posibles, secuencias reguladoras (por ejemplo, un promotor, un potenciador)), un marcador de selección y una señal de poliadenilación. Son conocidos por los entendidos en la materia vectores para la transformación de una amplia diversidad de células hospedadoras. Dichos vectores pueden ser, por ejemplo: plásmidos, fagémidos, cósmidos, baculovirus, bácmidos, cromosomas artificiales bacterianos (BAC, por sus siglas en inglés), cromosomas artificiales de levaduras (YAC, por sus siglas en inglés), así como otros vectores bacterianos, vectores víricos y vectores de levaduras.

[0071] Los vectores de expresión recombinantes de la invención comprenden fragmentos de ácidos nucleicos sintéticos, genómicos o derivados de ADNc, que codifican al menos una proteína recombinante que puede unirse, operativamente, a elementos reguladores adecuados. Dichos elementos reguladores pueden comprender un promotor de la transcripción, secuencias que codifican sitios de unión ribosómicos a ARNm adecuados y secuencias que controlan la terminación de la transcripción y de la traducción. Los vectores de expresión, en especial los vectores de expresión de mamíferos, pueden comprender asimismo uno o más elementos no transcritos, tales como un origen de la replicación, un promotor y un potenciador adecuados unidos al gen que se debe expresar, otras secuencias no transcritas flanqueadoras 5' o 3', secuencias no traducidas 5' o 3' (tales como sitios de unión a ribosoma necesarios), un sitio de poliadenilación, sitios de "splicing" (corte-eliminación-unión) de donante y aceptante, o secuencias de terminación de la transcripción. También puede incorporarse un origen de la replicación que confiera capacidad para la replicación en un hospedador.

55 [0072] Las secuencias de control transcripcional y traduccional presentes en los vectores de expresión a usar en la transformación de células de vertebrados pueden proporcionarse mediante fuentes víricas. Pueden construirse vectores ejemplares de la manera descrita en Okayama y Berg (1983) *Mol. Cell. Biol.* 3:280.

[0073] En algunas realizaciones, la secuencia que codifica el anticuerpo se coloca bajo el control de un promotor constitutivo potente; por ejemplo, los promotores de los siguientes genes: hipoxantina fosforribosiltransferasa (HPRT, por sus siglas en inglés), adenosina desaminasa, piruvato quinasa, beta-actina, miosina humana, hemoglobina humana, creatina muscular humana, y otros. Además, muchos promotores víricos funcionan constitutivamente en células eucarióticas y son adecuados para uso en la presente invención. Algunos de dichos promotores víricos son: promotor temprano inmediato del citomegalovirus (CMV), los promotores temprano y tardío del virus simiano SV40, el promotor del virus del tumor mamario murino (MMTV), las repeticiones terminales largas (LTRs, por sus siglas en inglés) del virus de la leucemia de Maloney, virus de la inmunodeficiencia humana

(VIH), virus de Epstein-Barr (EBV), virus del sarcoma de Rous (RSV) y otros retrovirus, así como el promotor de la timidina quinasa del virus Herpes simplex. Los expertos en este campo conocen otros promotores. En una realización, la secuencia que codifica el anticuerpo se coloca bajo el control de un promotor inducible tal como el promotor de las metalotioneínas, el promotor inducible mediante tetraciclina, el promotor inducible mediante doxiciclina, promotores que contienen uno o más elementos de respuesta estimulados por interferón (ISRE, por sus siglas en inglés), tales como la proteína quinasa R, las 2',5'-oligoadenilato sintetasas, los genes Mx, ADAR1 y similares. Los expertos en este campo conocen otros promotores inducibles adecuados.

5

10

15

35

40

45

50

55

[0074] Los vectores de la invención pueden contener uno o más sitios de entrada internos del ribosoma (IRES, por sus siglas en inglés). La inclusión de una secuencia con IRES en vectores de fusión puede resultar beneficiosa para aumentar la expresión de algunas proteínas. En algunas realizaciones, el sistema vector incluye uno o más sitios de poliadenilación (por ejemplo, SV40), que pueden estar presentes antes o después de cualquiera de las secuencias de ácidos nucleicos mencionadas. Los componentes del vector pueden unirse de manera contigua entre sí, o disponerse de una manera que proporcione un espaciado óptimo para la expresión de los productos génicos (es decir, mediante la introducción de nucleótidos "espaciadores" entre los marcos abiertos de lectura (ORF, por sus siglas en inglés), o situarse de otra manera. Los elementos reguladores, tales como el motivo IRES, también pueden disponerse de manera que proporcionen un espaciado óptimo para la expresión.

[0075] Los vectores pueden comprender marcadores de selección, que son bien conocidos en este campo del conocimiento. Los marcadores de selección comprenden marcadores de selección positivos y negativos, como, por ejemplo, genes de resistencia a antibióticos (por ejemplo, un gen de resistencia a la neomicina, un gen de resistencia a la higromicina, un gen de resistencia a la tetraciclina, un gen de resistencia a la penicilina), gen HSV-TK (gen de la timidina quinasa del virus Herpes simplex), derivados del HSV-TK para la selección del ganciclovir o gen de la purina nucleósido fosforilasa bacteriana para la selección de la 6-metilpurina (Gadi et al. (2000) Gene Ther. 7:1738-1743). Una secuencia de ácido nucleico que codifica un marcador de selección o el sitio de clonación puede estar presente antes o después de una secuencia de ácido nucleico que codifica un polipéptido de interés o el sitio de clonación.

[0076] Los vectores de la invención pueden usarse para transformar diversas células con los genes que codifican los diversos anticuerpos de la invención. Por ejemplo, los vectores pueden usarse para generar células productoras de anticuerpos. Así, otro aspecto de la invención presenta células hospedadoras transformadas con vectores que comprenden una secuencia de ácidos nucleicos que codifica un anticuerpo que se une específicamente a la SEB, tal como los anticuerpos que se describen y ejemplifican en el presente.

[0077] En este campo del conocimiento se conocen numerosas técnicas para la introducción de genes foráneos en células, y pueden usarse para construir células recombinantes con la finalidad de poner en práctica los procedimientos de la invención, de conformidad con las diversas realizaciones de la invención. La técnica que se use debe hacer posible la transferencia estable de la secuencia génica heteróloga a la célula hospedadora, de modo que dicha secuencia génica heteróloga sea heredable y expresable por la progenie de la célula hospedadora, y de modo, también, que no se desbaraten las funciones fisiológicas y de desarrollo necesarias de las células receptoras. Algunas de las técnicas que se pueden usar son: transferencia cromosómica (por ejemplo, fusión de células, transferencia de genes mediada por cromosomas, transferencia de genes mediada por microcélulas), procedimientos físicos (por ejemplo, transfección, fusión de esferoplastos, microinyección, electroporación, liposomas transportadores), transferencia de vectores víricos (por ejemplo, virus con ADN recombinante, virus con ARN recombinante), y similares (véase una descripción en Cline (1985) *Pharmac. Ther.* 29:69-92). Para transformar las células también puede usarse la precipitación con fosfato cálcico, y la fusión, inducida por polietilenglicol (PEG), de protoplastos bacterianos con células de mamíferos.

[0078] Las células transfectadas con los vectores de expresión de la invención pueden seleccionarse en condiciones de selección positivas y/o seleccionarse con arreglo a la expresión recombinante de anticuerpos. Se expanden (se cultivan en cultivos) las células recombinantes-positivas y se analizan a fin de seleccionar subclones que exhiban un fenotipo deseado, como, por ejemplo, células que exhiban expresión de niveles altos, propiedades de crecimiento mejoradas, y/o capacidad para producir proteínas con las características bioquímicas deseadas (por ejemplo, a raíz de modificación de las proteínas y/o de modificaciones postraduccionales alteradas). Dichos fenotipos pueden deberse a propiedades inherentes a un subclon dado o a mutagénesis. La mutagénesis puede llevarse a cabo mediante sustancias químicas, luz de longitud de onda UV, radiación, virus, mutágenos insercionales (mutágenos por inserción), reparación deficiente del ADN o mediante una combinación de dichos procedimientos de mutagénesis.

60 [0079] Las células adecuadas para uso en la invención para la expresión de anticuerpos son, preferiblemente, células eucarióticas y, más preferiblemente, células de origen vegetal, de roedor o humano, como, por ejemplo, entre otras posibles, células NSO, CHO, perC.6, Tk-ts13, BHK, HEK293, COS-7, T98G, CV-1/EBNA, células L, C127, 3T3, HeLa, NS1, células de mieloma Sp2/0 y líneas de células BHK. Las células de hibridoma son células muy preferidas para la expresión de anticuerpos. En este campo del conocimiento hay procedimientos establecidos para la producción de hibridomas.

[0080] Una vez que se ha identificado una célula que expresa la proteína deseada, dicha célula puede ser expandida y seleccionada. Hay una serie de maneras de seleccionar células transfectadas. Por ejemplo, se pueden seleccionar células que expresen el polipéptido de interés. En los casos en que el vector contiene también un gen de resistencia a antibióticos, pueden seleccionarse las células basándose en las que muestren dicha resistencia a antibióticos, con lo cual, se seleccionan, sin lugar a dudas, células que contienen el vector. En otras realizaciones puede dejarse que las células crezcan en condiciones selectivas.

[0081] La invención presenta también composiciones que comprenden al menos un anticuerpo de la invención y un portador farmacéuticamente aceptable. Dichas composiciones son útiles, por ejemplo, para su administración a pacientes, a fin de tratar o prevenir enfermedades mediadas por la SEB, tales como las que aquí se describen y ejemplifican. Las composiciones pueden formularse en forma de cualquiera de las diversas preparaciones que son conocidas en este campo del conocimiento, y que se sabe que son adecuadas, incluidas las que aquí se describen y ejemplifican.

10

25

30

35

40

45

50

55

15 [0082] En algunas realizaciones, las composiciones son formulaciones acuosas. Se pueden preparar formulaciones acuosas añadiendo los anticuerpos a agua o a un tampón fisiológico adecuado y, opcionalmente, añadiendo colorantes, aromas, conservantes, estabilizantes y espesantes adecuados, y agentes similares adecuados, en las cantidades deseadas. También se pueden elaborar suspensiones acuosas dispersando los anticuerpos en agua o en un tampón fisiológico con material viscoso, tal como gomas naturales o sintéticas, resinas, metilcelulosa, carboximetilcelulosa sódica, y otras sustancias suspensoras bien conocidas.

[0083] Están incluidas también las formulaciones líquidas, así como las preparaciones en forma sólida destinadas a ser convertidas, poco antes de su uso, en preparaciones en forma líquida. Tales formas líquidas comprenden: soluciones, suspensiones, jarabes, geles y emulsiones. Las preparaciones líquidas pueden prepararse mediante medios convencionales con aditivos farmacéuticamente aceptables, tales como sustancias suspensoras (por ejemplo, jarabe de sorbitol, derivados de la celulosa o aceites o grasas hidrogenadas comestibles); emulgentes (por ejemplo, lecitina o goma arábiga); vehículos no acuosos (por ejemplo, aceite de almendra, ésteres de aceites, o aceites vegetales "fraccionados"; y conservantes (por ejemplo, metil- o propil-p-hidroxibenzoatos o ácido sórbico). Dichas preparaciones pueden contener, además del ingrediente/agente activo, colorantes, aromas, estabilizantes, tampones, edulcorantes artificiales y naturales, dispersantes, espesantes, solubilizantes, y similares. Las composiciones pueden ser en polvo o estar en forma liofilizada, para su constitución con un vehículo adecuado tal como agua estéril, tampón fisiológico, solución salina o alcohol, antes del uso.

[0084] Las composiciones pueden formularse para inyección en un sujeto. Para su inyección, las composiciones de la invención pueden formularse en soluciones acuosas tales como agua o alcohol, o en tampones fisiológicamente compatibles tales como solución de Hanks, solución de Ringer o tampón fisiológico salino. La solución puede contener sustancias para formulación, tales como sustancias suspensoras, estabilizantes y/o dispersantes. Las formulaciones para inyección pueden prepararse también como preparaciones en forma sólida destinadas a ser convertidas, poco antes de su uso, en preparaciones en forma líquida adecuadas para inyección (por ejemplo, mediante constitución con un vehículo adecuado, tal como agua estéril, solución salina o alcohol, antes del uso).

[0085] Las composiciones pueden formularse en vehículos de liberación sostenida o en preparaciones "depot" ("preparaciones depósito"). Tales formulaciones de acción duradera pueden administrarse mediante implantación (por ejemplo, subcutánea o intramuscular) o mediante inyección intramuscular. Así, por ejemplo, las composiciones pueden formularse con materiales poliméricos o hidrófobos adecuados (por ejemplo, en forma de emulsión en un aceite aceptable) o con resinas de intercambio iónico, o como derivados limitadamente solubles, como, por ejemplo, una sal limitadamente soluble. Los liposomas y las emulsiones son ejemplos bien conocidos de vehículos de administración adecuados para uso como transportadores de fármacos hidrófobos.

[0086] Además, en la invención se presenta el uso del anticuerpo o fragmento de él de unión a antígeno, de la invención, en un procedimiento para el tratamiento o para la prevención de enfermedades mediadas por la SEB en sujetos que necesitan dicho tratamiento o dicha prevención. En algunos aspectos, el uso puede comprender identificar un sujeto que necesita tratamiento o prevención de una enfermedad mediada por la SEB. En una realización, el uso conforme a la invención puede comprender el uso de una composición, tal como las composiciones que comprenden un portador farmacéuticamente aceptable y al menos un anticuerpo que se une específicamente a la enterotoxina B estafilocócica, y que, preferiblemente, la neutraliza, en una cantidad eficaz para tratar o prevenir enfermedades mediadas por la SEB.

60 [0087] Como comprenderán los expertos en este campo, la SEB es un factor de virulencia de las bacterias *Staphylococcus*, que puede ser producido por dichas bacterias en individuos con infección por *Staphylococcus spp.*. Así, un sujeto que necesite tratamiento con anticuerpos neutralizadores de la SEB puede estar padeciendo una infección por bacterias *Staphylococcus*. La infección puede estar en cualquier lugar dentro del cuerpo del sujeto o sobre el cuerpo del sujeto, y puede estar en cualquiera de las fases de la infección, tales como infección incipiente, infección avanzada o infección crónica, como las que se observan en pacientes que tienen implantados dispositivos de uso médico. Además, como aquí se describe, la SEB puede ocasionar, por sí misma, diversas enfermedades en

pacientes. La SEB puede estar presente sin que estén presentes las bacterias que la producen; por ejemplo, en alimentos o bebidas contaminados, o si se dispersa en forma de un ataque biológico terrorista. Por lo tanto, un sujeto que necesite tratamiento con anticuerpos neutralizadores de la SEB puede haber sido expuesto a la SEB, y no necesariamente en conjunción con las bacterias ni con otras células que expresen dicha toxina.

5

10

[0088] La SEB media diversos estados patológicos en sujetos expuestos a dicha toxina. Son ejemplos de enfermedades mediadas por la SEB, que pueden tratarse eficazmente con los procedimientos de la invención y con los anticuerpos neutralizadores de la SEB, de la invención, los siguientes (entre otros posibles): fiebre, mialgia, distrés respiratorio, disnea, pleuritis, cefalea, náuseas, vómitos, anorexia, hepatomegalia y leucocitosis (véase, por ejemplo, Ulrich *et al.* (1997) Medical Aspects of Chemical and Biological Warfare, Sidell, Takafuj, y Franz, Eds., en "Textbook of Military Medicine", Brigadier Gen. Russ Zajtchuk, Eds., publicado por "Office of the Surgeon General" en TMM Publications, Borden Institute, Walter Reed Army Medical Center, Washington, D.C., Estados Unidos de América). Los expertos en este campo conocerán otras enfermedades y complicaciones mediadas por la SEB que podrían tratarse conforme a los procedimientos de la invención.

15

[0089] En otro aspecto, la presente invención proporciona un anticuerpo como el que se ha definido anteriormente en relación con otros aspectos de la invención, o un fragmento de unión a antígeno del mismo, para uso en el tratamiento o prevención de una enfermedad mediada por la enterotoxina B estafilocócica en un sujeto, o para la neutralización de la enterotoxina B estafilocócica en un sujeto.

20

[0090] La administración de las composiciones puede realizarse mediante infusión o inyección (intravenosa, intramuscular, intracutánea, subcutánea, intratecal, intraduodenal, intraperitoneal y similares). Las composiciones pueden administrarse también por vía intranasal, vaginal, rectal, oral o transdérmica. Preferiblemente, las composiciones se administran por vía oral. La administración puede realizarse conforme a las instrucciones de un médico.

25

[0091] Pueden emplearse diversos sistemas de administración farmacéutica alternativos. Son ejemplos de dichos sistemas, entre otros posibles, los liposomas y las emulsiones. También pueden emplearse ciertos solventes orgánicos, como, por ejemplo, dimetilsulfóxido. Además, las composiciones pueden administrarse usando un sistema de liberación sostenida, como, por ejemplo, matrices semipermeables de polímeros sólidos que contengan los anticuerpos terapéuticos. Los diversos materiales disponibles para la liberación sostenida son bien conocidos por los entendidos en la materia. Las cápsulas de liberación sostenida pueden, en función de su naturaleza química, liberar los anticuerpos a lo largo de un período que puede ser de varios días, varias semanas o varios meses.

35

30

[0092] Para tratar a un sujeto que padece una enfermedad mediada por la SEB, se administra al sujeto una cantidad terapéuticamente eficaz de la composición. Una cantidad terapéuticamente eficaz proporcionará una mitigación clínica significativa de al menos una enfermedad mediada por la SEB, que puede ser, entre otras posibles, una de las enfermedades mediadas por la SEB aquí descritas y ejemplificadas.

40

45

[0093] La cantidad eficaz de la composición puede variar en función de un número cualquiera de variables, incluidas, entre otras posibles, las siguientes: especie, raza, tamaño, estatura, peso, edad y estado general de salud del sujeto; tipo de formulación, modo o manera de administración; gravedad/severidad de la enfermedad (causada por la SEB) en el sujeto. Los entendidos en la materia pueden determinar rutinariamente la cantidad eficaz adecuada, haciendo uso de técnicas de optimización rutinarias y del juicio clínico experto y fundamentado del médico/profesional sanitario, y haciendo uso de otros factores evidentes para los expertos en este campo. Preferiblemente, una dosis terapéuticamente eficaz de los compuestos aquí descritos proporcionará un beneficio terapéutico sin ocasionar toxicidad importante al sujeto.

55

50

[0094] La toxicidad y la eficacia terapéutica de los agentes o compuestos puede determinarse mediante procedimientos farmacéuticos estándar en cultivos celulares o en animales de experimentación; por ejemplo, para determinar la DL_{50} (la dosis letal para el 50% de la población) y la DE_{50} (la dosis terapéuticamente eficaz en el 50% de la población). La proporción entre dosis con efectos tóxicos y dosis con efectos terapéuticos es el índice terapéutico, que se puede expresar como la proporción o DL_{50}/DE_{50} . Se prefieren los agentes o composiciones que muestran índices terapéuticos altos. Los datos obtenidos de ensayos con cultivos celulares y de estudios con animales pueden usarse para formular un intervalo de dosis para uso en el sujeto. Preferiblemente, la pauta posológica de dichos agentes o composiciones está comprendida dentro de un intervalo de concentraciones circulantes que comprenden la DE_{50} , sin toxicidad o con escasa toxicidad. La pauta posológica puede variar, dentro de dicho intervalo, en función de la forma de administración que se emplee y de la vía de administración que se utilice.

60

65

[0095] Para cualquier composición que se usa en la invención, la dosis terapéuticamente eficaz puede estimarse, inicialmente, a partir de ensayos *in vitro*, tales como ensayos con cultivos celulares. Por ejemplo, se puede formular una dosis en modelos animales, de manera tal que se alcance un intervalo de concentraciones plasmáticas circulantes que comprenda la Cl₅₀ determinada en el cultivo celular (a saber, la concentración de la composición que logre una inhibición que sea la mitad de la inhibición máxima de la formación de osteoclastos o activación de éstos). Esa información se puede usar para determinar con mayor exactitud las dosis útiles en un

sujeto especificado, como, por ejemplo, un ser humano. El médico a cargo del tratamiento puede cesar, interrumpir o ajustar la administración, por motivos tales como toxicidad o disfunciones de un órgano u órganos, y, a fin de mejorar la respuesta, puede ajustar el tratamiento en la medida de lo necesario si la respuesta clínica no resulta adecuada. En el contexto del tratamiento del trastorno de interés, la magnitud de una dosis administrada variará en función de la severidad del estado patológico que se debe tratar, y en función de la vía de administración. La severidad del estado patológico puede evaluarse, en parte, por ejemplo, mediante procedimientos estándar de evaluación del pronóstico.

[0096] En un aspecto, las composiciones empleadas en los procedimientos de tratamiento de la invención comprenden una concentración de al menos un anticuerpo anti-SEB que está comprendida en un intervalo que va desde aproximadamente un 0,01% hasta aproximadamente un 90% del peso del extracto seco de la composición. En algunas realizaciones, el al menos un anticuerpo anti-SEB comprende un total de hasta aproximadamente un 50% del peso del extracto seco de la composición. En algunas realizaciones, al menos un anticuerpo anti-SEB comprende un total de hasta aproximadamente un 40% del peso del extracto seco de la composición. En algunas realizaciones, al menos un anticuerpo anti-SEB comprende un total de hasta aproximadamente un 25% del peso del extracto seco de la composición. En algunas realizaciones, al menos un anticuerpo anti-SEB comprende un total de hasta aproximadamente un 25% del peso del extracto seco de la composición. En algunas realizaciones, al menos un anticuerpo anti-SEB comprende un total de hasta aproximadamente un 20% del peso del extracto seco de la composición. En algunas realizaciones, al menos un anticuerpo anti-SEB comprende un total de hasta aproximadamente un 15% del peso del extracto seco de la composición. En algunas realizaciones, al menos un anticuerpo anti-SEB comprende un total de hasta aproximadamente un 15% del peso del extracto seco de la composición. En algunas realizaciones, al menos un anticuerpo anti-SEB comprende un total de hasta aproximadamente un 15% del peso del extracto seco de la composición. En algunas realizaciones, al menos un anticuerpo anti-SEB comprende un total de hasta aproximadamente un 15% del peso del extracto seco de la composición. En algunas realizaciones, al menos un anticuerpo anti-SEB comprende un total de hasta aproximadamente un 10% del peso del extracto seco de la composición.

10

15

20

25

30

35

40

45

50

55

60

65

En algunas realizaciones, se puede administrar a los sujetos al menos un anticuerpo anti-SEB usando [0097] un intervalo de dosis diarias que va desde aproximadamente 0,01 µg hasta aproximadamente 500 mg de anticuerpo por kg de peso del sujeto. La dosis administrada al sujeto puede medirse también en términos de la cantidad total del al menos un anticuerpo anti-SEB que se administra al día. En algunas realizaciones, se administra a un sujeto una dosis comprendida en un intervalo de que va desde aproximadamente 5 miligramos al día hasta aproximadamente 5000 miligramos al día de al menos un anticuerpo anti-SEB. En algunas realizaciones, se administra a un sujeto una dosis total de hasta aproximadamente 10 miligramos de al menos un anticuerpo anti-SEB al día. En algunas realizaciones, se administra a un sujeto una dosis total de hasta aproximadamente 100 miligramos de al menos un anticuerpo anti-SEB al día. En algunas realizaciones, se administra a un sujeto una dosis total de hasta aproximadamente 250 miligramos de al menos un anticuerpo anti-SEB al día. En algunas realizaciones, se administra a un sujeto una dosis total de hasta aproximadamente 500 miligramos de al menos un anticuerpo anti-SEB al día. En algunas realizaciones, se administra a un sujeto una dosis total de hasta aproximadamente 750 miligramos de al menos un anticuerpo anti-SEB al día. En algunas realizaciones, se administra a un sujeto una dosis total de hasta aproximadamente 1000 miligramos de al menos un anticuerpo anti-SEB al día. En algunas realizaciones, se administra a un sujeto una dosis total de hasta aproximadamente 1500 miligramos de al menos un anticuerpo anti-SEB al día. En algunas realizaciones, se administra a un sujeto una dosis total de hasta aproximadamente 2000 miligramos de al menos un anticuerpo anti-SEB al día. En algunas realizaciones, se administra a un sujeto una dosis total de hasta aproximadamente 2500 miligramos de al menos un anticuerpo anti-SEB al día. En algunas realizaciones, se administra a un sujeto una dosis total de hasta aproximadamente 3000 miligramos de al menos un anticuerpo anti-SEB al día. En algunas realizaciones, se administra a un sujeto una dosis total de hasta aproximadamente 3500 miligramos de al menos un anticuerpo anti-SEB al día. En algunas realizaciones, se administra a un sujeto una dosis total de hasta aproximadamente 4000 miligramos de al menos un anticuerpo anti-SEB al día. En algunas realizaciones, se administra a un sujeto una dosis total de hasta aproximadamente 4500 miligramos de al menos un anticuerpo anti-SEB al día. En algunas realizaciones, se administra a un sujeto una dosis total de hasta aproximadamente 5000 miligramos de al menos un anticuerpo anti-SEB al día.

[0098] El tratamiento puede iniciarse con posologías menores, que sean inferiores a la dosis óptima del al menos un anticuerpo anti-SEB, y después, incrementarse la posología a lo largo del período de tratamiento hasta que se alcance el efecto óptimo acorde a las circunstancias. Si resulta necesario, la dosis total diaria puede dividirse y administrarse en forma de "porciones" a lo largo del día.

[0099] Para el tratamiento eficaz de las enfermedades mediadas por la SEB, los expertos en este campo pueden recomendar una pauta posológica y una cantidad de dosis adecuada para el sujeto a quien se trata. Puede preferirse que la administración se realice de una a cuatro o más veces al día, durante el período que sea necesario. La administración de dosis puede realizarse con menor frecuencia si las composiciones se formulan en forma de vehículos de liberación sostenida. Además, la pauta posológica puede variar en función de la concentración del fármaco activo, que puede depender de las necesidades del sujeto.

[0100] Las composiciones de la invención para el tratamiento de enfermedades mediadas por la SEB pueden, asimismo, coadministrarse con otros agentes terapéuticos bien conocidos, seleccionados por su especial utilidad frente al estado patológico que se debe tratar. Por ejemplo, tales agentes terapéuticos pueden ser aliviadores del dolor, reductores de la fiebre, antiácidos estomacales, compuestos que reduzcan los efectos no deseados de las

composiciones, u otros agentes conocidos que tratan enfermedades mediadas por la SEB.

[0101] La administración de dichos compuestos adicionales puede hacerse en simultaneidad con la administración del al menos un anticuerpo anti-SEB, o pueden administrarse uno detrás de otro, antes o después de la administración del al menos un anticuerpo anti-SEB, conforme resulte necesario. Puede diseñarse un protocolo adecuado, con arreglo al que se administren los diversos compuestos a incluir en el tratamiento combinado, con un plazo o plazos de minutos, horas, días o semanas entre las administraciones de dichos diversos compuestos. Dentro del alcance de la presente invención se contempla también la administración repetida, en el contexto de un protocolo cíclico.

10

15

20

- La invención presenta también procedimientos para producir un anticuerpo de la invención que se une [0102] específicamente a la enterotoxina B estafilocócica. En algunas realizaciones, los procedimientos comprenden proporcionar células de médula ósea o de sangre periférica de un ser humano, cultivar dichas células con la enterotoxina B estafilocócica o con un fragmento antigénico de dicha enterotoxina, aislar del cultivo las células B que expresan un anticuerpo que se une específicamente a la enterotoxina B estafilocócica, y aislar los anticuerpos producidos por las células B. Opcionalmente, se puede fusionar las células B con células donantes, a fin de formar un hibridoma, de conformidad con cualesquiera de los procedimientos conocidos en este campo del conocimiento. El ser humano de quien se aíslan las células de médula ósea o de sangre periférica puede ser inmunizado con la enterotoxina B estafilocócica o con un fragmento antigénico de dicha enterotoxina, antes de aislar dichas células de médula ósea o de sangre periférica. En algunas realizaciones, la enterotoxina B estafilocócica empleada para inmunizar al ser humano, y/o empleada en el cultivo con las células de médula ósea o de sangre periférica aisladas, es STEB. STEB tiene la siguiente secuencia de aminoácidos; los residuos que difieren de los de la SEB se muestran ESQPDPKPDELHKSSKFTGLMENMKVLYDDNHVSAINVKS subravados: IDQFRYFDLIYSIKDTKLGNYDNVRVEFKNKDLADKYKDKYVDVFGANAYY
- QCAFSKKTNDINSHQTDKRKTCMYGGVTEHNGNQLDKYRSITVRVFEDG
 KNLLSFDVQTNKKKVTAQELDYLTRHYLVKNKKLYEFNNS PYETGYIKFI ENENSFWYDM
 MPAPGDKFDQSKYLMMYNDNKMVDSKDVKIEVYLTTKKK (SEC N.º ID: 45). He aquí, con fines comparativos, la
 secuencia de aminoácidos de la SEB: ESQPDPKPDELHKSSKFTGLMENMKVLYDDNHVSAINVKS
 IDQFLYFDLIYSIKDTKLGNYDNVRVEFKNKDLADKYKDKYVDVFGANYYY
- 30 QCYFSKKTNDINSHQTDKRKTCMYGGVTEHNGNQLDKYRSITVRVFEDG KNLLSFDVQTNKKKVTAQELDYLTRHYLVKNKKLYEFNNS PYETGYIKFI ENENSFWYDM MPAPGDKFDQSKYLMMYNDNKMVDSKDVKIEVYLTTKKK (SEC N.º ID: 46).
- [0103] En algunas realizaciones, los procedimientos de producción de un anticuerpo que se une específicamente a la enterotoxina B estafilocócica comprenden cultivar una célula hospedadora en condiciones adecuadas para producir el anticuerpo, y recuperar el anticuerpo del cultivo celular. En algunas realizaciones, la célula hospedadora puede ser cualquier célula transformada con un vector que comprende los polinucleótidos de la invención que codifican los anticuerpos y fragmentos de ellos fijadores de antígeno, de la invención.
- 40 [0104] Se proporcionan los ejemplos siguientes a fin de describir más detalladamente la invención. Su finalidad es ilustrar la invención, no limitarla.

EJEMPLO 1

50

55

60

65

45 Generación de líneas celulares de hibridoma plenamente humanas y específicas de antígeno

[0105] Se examinaron donantes humanos sanos a fin de identificar y seleccionar aquellos que presentaban títulos séricos contra la SEB. Se llevó a cabo ELISA específico de SEB, y para ello, se revistieron placas de ELISA TPP Immunomini® con 1 μg/ml de STEB (vacuna contra la SEB) disuelta en tampón de revestimiento bicarbonatado (pH 9,6) (Sigma) durante toda la noche a 4 °C. Después, las placas se lavaron tres veces con tampón de lavado (que contenía Tween-20 al 0,5%), y luego se bloquearon con tampón de ensayo 1x durante 2 horas a temperatura ambiente. Las placas bloqueadas se incubaron a temperatura ambiente durante 1 hora, con diluciones en serie de plasma humano normal (1:100, 1:300, 1:900, 1:2700, 1:8100 y 1:24300) de diferentes donantes, así como con controles positivos (mAb [anticuerpo monoclonal] murino anti-SEB 15D2-1-1, y PAb [anticuerpo policlonal] de conejo anti-SEB FT1009). Tras incubación con suero, las placas se lavaron y se incubaron con anticuerpo de cabra anti-IgG(H+L) humana conjugado con HRP (peroxidasa de rábano) (diluido al 1:10000), anticuerpo de cabra anti-IgG(H+L) murina conjugado con HRP (diluido al 1:10000) y anticuerpo de cabra (conjugado con HRP) anti-IgG(H+L) de conejo (diluido al 1:10000), durante 1 hora a temperatura ambiente con agitación. Después, las placas se lavaron, se revelaron con 100 μl de sustrato TMB por pocillo, y la reacción se detuvo mediante adición de 50 μl de solución para detención (H₂SO₄ 1M). Las placas reveladas se leyeron a 450 nm en un lector de placas de microtitulación.

[0106] A fin de obtener células B reactivas frente a la SEB, se obtuvieron conjuntos de células ("leukopacks") de donantes SEB-positivos. Se purificaron PBMC mediante centrifugación con gradiente de densidad con Ficoll-Paque (GE Healthcare, Piscataway, Nueva Jersey, Estados Unidos). Se aislaron células B CD20-positivas a partir de las PBMC, mediante selección negativa usando el kit EasySep® de enriquecimiento de células B humanas (StemCell Technologies, Vancouver, BC, Canadá). Las células B enriquecidas se estimularon y expandieron usando

el sistema de cultivo CD40.

[0107] Las células B se resuspendieron hasta una concentración final de $0,2 \times 10^6$ células/ml en medio IMDM (Gibco) suplementado con suero AB humano inactivado por el calor, al 10% (Nabi Pharmaceuticals, FL, Estados Unidos), L-glutamina 4 mM, 10 µg/ml de gentamicina (Gibco), 50 µg/ml de transferrina (Sigma Chemical Co., ST. Louis, MO, Estados Unidos) y 5 µg/ml de insulina (Sigma Chemical Co.). Las células B enriquecidas se activaron mediante CD40 usando células alimentadoras de CHO (células ováricas de hámster chino) transfectadas con el ligando de CD40 (CD40L). Para el co-cultivo, las células CD40L-CHO se irradiaron con radiación y (gamma) (96 Gy) y se emplacaron $0,4 \times 10^5$ células en placas de 6 pocillos.

Se dejó que las células alimentadoras se adhiriesen, durante toda la noche, a 37 °C. Un total de 4 ml (0,8 x 10⁶) de células B aisladas se co-cultivaron a 37 °C durante un período de siete a catorce días con las células CD40L-CHO γ-irradiadas, en presencia de 100 U/ml de IL-4 recombinante humana (PeproTech) y de CsA 0,55 μM (Sigma Chemical Co.).

Las células B expandidas se fusionaron con un socio de fusión (células de mieloma), mediante electrofusión, usando el aparato CytoPulse CEEF-50 a una razón de 1:1 célula B:célula de mieloma. Los clones E12, F10, F6, C5, 79G9 y 100C9 se fusionaron con células de mieloma K6H6/B5 (ATCC), y se sembraron en placas de 96 pocillos de fondo plano en medio RPMI 1640 (Invitrogen, Carlsbad, CA, Estados Unidos) suplementado con FBS (suero fetal bovino) inactivado por calor, al 10% (JRH Biosciences, KS, USA), L-glutamina 2 mM, aminoácidos no esenciales 0,1 mM, piruvato sódico 1 mM, 2-mercaptoetanol 55 μM, y 1X HAT (hipoxantina 100 μM, aminopterina 0,4 μM y timidina 16 μM). El clon 154G12 se fusionó con células de mieloma CBF7 (Grunow *et al.* (1990) Dev. Biol. Stand. 71, 3-7; Niedbla and Stott (1998) Hybridoma 17 (3), 299-304) y sembraron en placas de 96 pocillos de fondo plano en IMDM (Gibco) suplementado con suero AB humano inactivado por el calor, al 10% (Nabi Pharmaceuticals, FL, Estados Unidos), L-glutamina 4 mM, 10 μg/ml de gentamicina (Gibco), 50 μg/ml de transferrina (Sigma Chemical Co., St. Louis, MO, Estados Unidos) y 5 μg/ml de insulina (Sigma Chemical Co.).

[0109] Tras la fusión celular, el medio de cultivo se reemplazó semanalmente y la selección con HAT prosiguió durante el proceso de selección de reactividad frente al antígeno. Aproximadamente el 90% de los pocillos sembrados mostraron crecimiento de células de hibridoma viables. Los hibridomas se analizaron mediante ELISA, usando una forma atenuada de SEB recombinante (STEB). Los clones de hibridoma con reactividad frente a la SEB se volvieron a analizar mediante ELISA, a fin de confirmar su reactividad y especificidad, consistente en unión a la SEB, y no al toxoide tetánico (TT). Los clones E12, F10, F6, C5, 79G9, 100C9 y 154G12 se mostraron altamente reactivos frente a la SEB, y no frente al TT. Después, cada uno de los clones se subclonó y, luego, se analizó mediante ELISA para confirmar que se mantenía la especificidad por la SEB.

EJEMPLO 2

30

35

45

50

55

60

65

Análisis de la cinética de unión y competición por la unión, de los anticuerpos anti-SEB

40 [0110] En el siguiente Ejemplo, los anticuerpos 79G9 y 100C9 no forman parte de la invención, pero se hace alusión a ellos con fines comparativos.

[0111] Se diluyó SEB en tampón acetato sódico, pH 5,0, hasta una concentración de 5 μg/ml, y se acopló a un chip CM5 (usando técnicas estándar tipo amina con hidrocloruro de 1-etil-3-(3- dimetilaminopropil) carbodiimida (EDC) y N-hidroxisuccinimida (NHS), hasta un nivel de 10,8 UR), unido a un instrumento BlAcore® 3000 en el que se ejecutó el software de control BlAcore® 3000, versión 3.2. Los sitios activos restantes se bloquearon con etanolamina 1M. Se preparó un célula de flujo de referencia como control, mediante activación con EDC y NHS y bloqueo subsiguiente con etanolamina, sin administración del ligando de la SEB. Se llevó a cabo un análisis del comportamiento de superficie en el chip, usando anticuerpo 100C9 500 nM y HCl 10 mM como solución de regeneración, a fin de confirmar la respuesta estable y el nivel de referencia. Se evaluaron los efectos de transporte de masa mediante análisis de la asociación y de la disociación de los anticuerpos anti-SEB seleccionados, a velocidades de flujo de 10 μl/min, 45 μl/min y 70 μl/min (min = minuto). Las velocidades variaron en menos de un 10% a lo largo del intervalo de velocidades de flujo probadas, lo que indicaba que no había limitaciones de transporte de masa o que, si las había, eran de escasa entidad.

Para analizar la cinética de unión de los anticuerpos, se diluyeron anticuerpos monoclonales anti-SEB purificados hasta concentraciones 1000 nM, 333,3 nM, 111,1 nM, 37,0 nM, 12,3 nM, 4,1 nM, 1,4 nM, 0,46 nM y 0 nM en tampón HBS-EP (BIAcore®). Se inyectaron las muestras aleatoriamente, a una velocidad de flujo de 30 μ l/min (el volumen inyectado total fue de 250 μ l): primero sobre la célula de referencia y luego sobre la célula unida a SEB. Se observó la disociación durante 30 minutos. La regeneración del chip después de cada ciclo se logró mediante dos inyecciones de 50 μ l de HCl 10 mM a una velocidad de flujo de 100 μ l/min. Todo el análisis de datos subsiguiente se realizó en el software BIAevaluation, versión 4.1. Primero, los sensogramas se normalizaron mediante resta de los datos de las inyecciones en blanco a fin de eliminar los efectos en masa y el "ruido" del instrumento. Las constantes de velocidad de asociación (k_{a1}) y de disociación (k_{d1}) correspondientes a la reacción de unión A + B = AB (donde A es el analito anti-SEB y B es el ligando de la SEB) se determinaron simultáneamente mediante ajuste global de los datos de cada anticuerpo analizado conforme a un modelo de unión a analito bivalente. Se determinó una constante

de unión de estado estacionario (K_{D1}) correspondiente a la interacción que se acaba de indicar, mediante la relación $K_{D1} = k_{d1}/k_{a1}$ (Tabla 2).

Tabla 2. Cinética de unión de los anticuerpos anti-SEB 79G9, 100C9 y 154G12.

Anticuerpo anti-SEB	k _{a1} (x10 ³ M ⁻¹ seg ⁻¹)	k _{d1} (x10 ⁴ seg ⁻¹)	K _{D1} (nM)
79G9	9,56	2,39	25,00
100C9	159,0	15,5	9,75
154G12	93	0,271	0,29

[0113] Para determinar si había competición por la unión, se inyectaron anticuerpos monoclonales anti-SEB a una concentración 1 µM sobre el chip unido a ligando, tal y como se ha descrito anteriormente. Se eligió dicha concentración porque, para la totalidad de los anticuerpos, ésta era de 10 a 100 veces mayor que la K_{D1}. En estas condiciones, la totalidad o casi la totalidad de los sitios de unión disponibles deberían estar ocupados. Después, se llevó a cabo una segunda inyección del mismo anticuerpo, a fin de confirmar que se había alcanzado el estado de equilibrio. Luego se inyectó un tercer anticuerpo, no similar, a una concentración 1 µM. Subsiguientemente, se regeneró el chip con dos inyecciones de 50 µl de HCl 10 mM. El grado de unión (R_{eq}) del segundo anticuerpo se comparó con el nivel de unión alcanzado sobre un chip no ocupado (R_{eq}). Después, se calculó la relación R_{eq}/R_{eq}; una relación cercana o igual a 1 indicaba que los anticuerpos no competían, y que se unían independientemente a la SEB, mientras que una relación muy inferior a 1 indicaba un notable solapamiento en los sitios de unión (Tabla 3).

Tabla 3. Competición por la unión, de los anticuerpos anti-SEB 79G9, 100C9 y 154G12.

1 ^{er} mAb	2º mAb	Req	R _{eq'}	R _{eq'} /R _{eq}
154G12	79G9	19,4	16,8	0,87
154G12	100C9	22,2	0	0,00
79G9	154G12	33	27,3	0,83
79G9	100C9	22	14,9	0,68

[0114] Los resultados que se muestran en la Tabla 3 indican que 79G9 y 154G12 no compiten, que se pueden unir de manera independiente entre sí y que no tienen epítopos solapados. No obstante, estos datos indican también que 154G12 y 100C9 compiten en alto grado entre sí y que, por lo tanto, tienen epítopos solapados. 79G9 inhibe ligeramente la unión subsiguiente de 100C9, y por ello, es posible que estos dos anticuerpos tengan epítopos cercanos. Dada la alta velocidad de disociación del 100C9, así como la dificultad para evaluar los efectos sobre la unión de un anticuerpo subsiguiente, no se probó el 100C9 como primer anticuerpo.

EJEMPLO 3

5

10

15

20

25

35

40

Clonación y secuenciación del anticuerpo IgG anti-SEB humano 154G12

30 [0115] Se obtuvieron, mediante procedimientos de biología molecular estándar, las secuencias de nucleótidos y de aminoácidos correspondientes al anticuerpo IgG anti-SEB humano 154G12. Se aisló ARN total de células de hibridoma 154G12, usando el reactivo Trizol® (Invitrogen) conforme a las instrucciones del fabricante. Se usó la transcriptasa inversa Superscript II (Invitrogen) para sintetizar ADNc correspondiente al 154G12, a partir del ARN total aislado, conforme a las instrucciones del fabricante.

[0116] A fin de amplificar las secuencias correspondientes a la cadena ligera y a la cadena pesada, se llevó a cabo PCR (reacción en cadena de la polimerasa) con la ADN polimerasa Herculase® (Stratagene), usando los cebadores N.º 1578 (SEC N.º ID: 238) y N.º 1582 (SEC N.º ID: 239) para la cadena ligera, y N.º 1584 (SEC N.º ID: 265) y N.º 1577 (SEC N.º ID: 264) para la cadena pesada (Tabla 4). Los cebadores 5' para las amplificaciones de ambas cadenas contienen péptidos líder para la expresión en células eucarióticas.

Tabla 4. Cebadores de PCR para la amplificación de las secuencias de nucleótidos correspondientes a los anticuerpos anti-SFB

Cebador	Secuencia (5' - 3')	SEC N.º ID:
390	CCCAGTCACGACGTTGTAAAACG	1

20

391	AGCGGATAACAATTTCACACAGG	2
883	TGGAAGAGCACGTTCTTTCTTT	3
974	AGGTRCAGCTGBWGSAGTCDG	4
975	GAHRTYSWGHTGACBCAGTCTCC	5
1463	GATCGAATTCTTAACACTCTCCCCTGTT	6
	GAAGCTCTTTGTGACGGGCGAGCTCAGGCC	
882	GTCCACCTTGGTGTTGCTGGGCTT	7
885	TGAAGATTCTGTAGGGGCCACTGTCTT	8
888	GAGGTGCAGCTGGAGTCTGG	9
900	TCCTATGTGCTGACTCAGCCACC	10
1017	TGCAAGGTCTCCAACAAAGC	11
1018	CCTGGTTCTTGGTCAGCTCA	12
1019	GGCACGGTGGGCATGTGTGA	13
1024	ACCAAGGCCCATCGGTCTT	14
1040	GCAACACCAAGGTGGACAAG	15
1500	GGTTCAGGGGAGGTGTGGGAGGT	16
1550	GGGAAGCTTGCCGCCACCATGGGATGGAGCTGT ATCATCCTCTTCTTGGTAGCAACAGCTACAGGTG TACACAGCTCCTATGTGCTGACTCAGCCACC	17
1551	CCCGAATTCCTATGAAGATTCTGTAGGGGCCACTGTCTT	18
1552	GGGAAGCTTGCCGCCACCATGGGATGGAGCTG	
	TATCATCCTCTTCTTGGTAGCAACAGCTACAGG TGTACACAGCGAGGTGCAGCTGGTGGAGTCTGGG	19
1553	CCCGAATTCTCATTTACCCAGAGACAGGGAGAGGCTCTTCTG	20
1557	GGGAAGCTTGCCGCCACCATGGGATGGAGCTGTATCAT CCTCTTCTTGGTAGCAACAGCTACAGGTGTACACAGCG	22
1559	ACATTGAGTTGACCCAGTCTCCA GGGAAGCTTGCCGCCACCATGGGATGGAGCTGTATCAT CCTCTTCTTGGTAGCAACAGCTACAGGTGTACACAGCGT ACAGCTGTTGGAGTCTGGCGCA	23
1560	CCCTTCGAATTAATCACTCTCCCCTGTTGAAGCTCTTTG	24
1570	GGGAAGCTTGCCGCCACCATGGGATGGAGCTGTATCATCCTC TTCTTGGTAGCAACAGCTACAGGTGTACACAGCGAGGTACAG CTGTTGGAGTCTGGCGCA	25
996	GATCGAATTCTCATTTCCCGGGAGACAGGGAGAGG	26
1015	GGTTCGCTTATTGGGGCCAA	233
1020	CGGTGTCTTCGGGTCTCAGG	234
1321	GGAGGCAGTGTAGTCTGAG	235

1461	CCTCTACAAATGTGGTATGGCTGATTATG	236
1530	GGGAACGGTGCATTGGAACG	237
1577	CCCAAGCTTGCCGCCACCATGGGATGGAGCTGTATCATCCTC TTCTTGGTAGCAACAGCTACAGGTGTCCACTCCSAGGTRCAGC TGBWGSAGTCDG	264
1578	CCCAAGCTTGCCGCCACCATGGGATGGAGCTGTATCATCCTC TTCTTGGTAGCAACAGCTACAGGTGTCCACTCCGAHRTYSWG HTGACBCAGTCTCC	238
1582	CCCGAATTCTCATGAAGATTCTGTAGGGGCCACTGTCTT	239
1584	CCCGAATTCTCATTTACCCGGAGACAGGGAGAGGCTCTTC	265
1730	ACGCCGTCCACGTACCAATT	240
1731	AAGCCCTTCACCAGACAGGT	241
1732	TGGTGGACGTGTCCCACG	242
1733	GGAAGGCCCTTGGTGGA	243
1734	ACCGTGGCCGCTCCTTCC	244
1735	TGCAGGGCGTTGTCCACC	245
1736	AGGCCGCTCCCTCA	246
1737	TTCACAGGGGAGGAGTCAG	247

[0117] Los productos de la PCR resultantes se clonaron en el vector pCR4-TOPO (Invitrogen), se transformaron en células Mach1 de *E. coli*, se emplacaron en placas de ágar con medio LB y kanamicina, y se seleccionaron con arreglo a su resistencia a la kanamicina. Se cribaron las colonias, seleccionándose insertos, usando los cebadores N.º 1578 (SEC N.º ID: 238) y N.º 1582 (SEC N.º ID: 239) para la cadena ligera, y N.º 1584 (SEC N.º ID: 265) y N.º 1577 (SEC N.º ID: 264) para la cadena pesada (Tabla 4). Se usaron cuatro colonias positivas en cada caso, a fin de generar ADN plantilla para la determinación de las secuencias de ADN, usando el reactivo TempliPhi (GE Healthcare).

[0118] Los insertos de ADN correspondientes a la cadena ligera se secuenciaron con los cebadores N.º 1321 (SEC N.º ID: 235), 1461 (SEC N.º ID: 236), 1500 (SEC N.º ID: 16), 1551 (SEC N.º ID: 18) y 1552 (SEC N.º ID: 19) (Tabla 4), usando el reactivo DTCS (Beckman Coulter) de secuenciación; después, se adquirieron y analizaron los datos en un Beckman Coulter CEQ2000. Se secuenció el ADNc correspondiente a la cadena pesada de longitud completa del 154G12, con los cebadores N.º 996 (SEC N.º ID: 26), 1015 (SEC N.º ID: 233), 1017 (SEC N.º ID: 11), 1018 (SEC N.º ID: 12), 1019 (SEC N.º ID: 13), 1020 (SEC N.º ID: 234), 1040 (SEC N.º ID: 15) y 1530 (SEC N.º ID: 237) (Tabla 4), usando el ADN plantilla generado mediante el reactivo TempliPhi.

[0119] Las secuencias de ácidos nucleicos correspondientes al anticuerpo y de aminoácidos del anticuerpo se proporcionan en las Figuras 2A-2D; en ellas, las regiones en negrita de las secuencias indican las CDRs, el segmento subrayado denota una secuencia líder añadida mediante PCR, y las regiones sombreadas indican el dominio variable. Las regiones en negrita de las secuencias indican las CDRs. Las Figuras 3A-3D proporcionan las secuencias de ácidos nucleicos correspondientes a las regiones CDR y FWR del anticuerpo y las secuencias de aminoácidos de las regiones CDR y FWR del anticuerpo.

25 EJEMPLO 4

20

Desarrollo de los anticuerpos IgG plenamente humanos anti-SEB, con codones optimizados, 79G9, 100C9 y 154G12 (los anticuerpos 79G9 y 100C9 no forman parte de la invención)

30 [0120] Se remitieron a Gene Art AG (Regensburg, Alemania) los marcos de lectura abiertos completos

correspondientes a las cadenas pesada y/o ligera del anticuerpo IgG plenamente humano anti-SEB 154G12, para la optimización del uso de los codones. Se secuenciaron las formas optimizadas de los tres anticuerpos (cadenas pesadas y ligeras). Se secuenciaron los insertos de ADN de las cadenas pesadas y ligeras con los siguientes cebadores de secuenciación específicos de clon (que se enumeran en la Tabla 4): cadenas ligeras del 154G12 - N.º 1736 (SEC N.º ID: 246) y N.º 1737 (SEC N.º ID: 247); cadenas pesadas del 154G12 - N.º 1730 (SEC N.º ID: 240), N.º 1731 (SEC N.º ID: 241), N.º 1732 (SEC N.º ID: 242) y N.º 1733 (SEC N.º ID: 243). La secuenciación se llevó a cabo usando el reactivo DTCS (Beckman Coulter) de secuenciación; después, se adquirieron y analizaron los datos en un Beckman Coulter CEQ2000.

10 [0121] Las secuencias de ácidos nucleicos correspondientes a estos anticuerpos se proporcionan en las Figuras 4A y 4B; en ellas, las regiones en negrita de las secuencias indican las CDRs, el segmento subrayado denota una secuencia líder añadida mediante PCR, y las regiones sombreadas indican el dominio variable del anticuerpo. Las Figuras 4A y 4B proporcionan las secuencias de ácidos nucleicos correspondientes a las regiones CDR y FWR de este anticuerpo.

EJEMPLO 5

20

25

30

35

40

45

50

Evaluación de la inhibición, mediada por anticuerpos anti-SEB, de la producción de citoquinas por células T inducida por la SEB (el anticuerpo 79G9 no forma parte de la invención)

[0122] Se usaron células mononucleares de sangre periférica (PBMC) humanas a fin de determinar la capacidad de los anticuerpos anti-SEB para inhibir la producción de citoquinas por las células T, inducida por la SEB, y a fin de medir sus valores de CE_{50} *in vitro*. Se cultivaron aproximadamente 1 x 10^5 PBMC, a 37 °C en CO_2 al 5%, en placas de 96 pocillos de fondo plano para cultivo de tejidos. Los anticuerpos anti-SEB 79G9 (no comprendido en las reivindicaciones), 154G12, o una mezcla de ellos, a concentraciones 4 x, se incubaron con SEB (4 x su DE_{50} *in vitro*) durante 1 hora. Después, la mezcla se añadió a las PBMC (1 x concentración final tanto del anticuerpo anti-SEB como de la SEB) y se incubó durante 18-22 horas. A fin de determinar si había producción de citoquinas, los sobrenadantes se transfirieron a placas de ELISA con anti-IFN-y y anti-TNF- α absorbidas, se ensayaron usando un kit de ELISA (de la empresa R&D System), siguiendo el procedimiento recomendado por el fabricante. Se realizaron cálculos de la CE_{50} del anticuerpo anti-SEB usando Prism4 (software de GraphPad). El límite de sensibilidad del ELISA con IFN-y y TNF- α es 16 pg/ml. Los resultados se presentan en la Tabla 5.

Tabla 5. Valores de CE₅₀ de los anticuerpos anti-SEB 154G12 y 79G9.

Anticuerpo (:g/ml)	IFN-(IFN-(
	CE ₅₀ (ng/ml)	Desv. estánd.	CE ₅₀ (ng/ml)	Desv. estánd.
154G12 (1)	0,60	0,07	0,96	0,49
79G9 (10)	158,39	174,82	216,87	257,76
154G12(1), 79G9 (1)	0,90	0,21	1,23	0,52

EJEMPLO 6

Reactividad de los anticuerpos específicos de SEB 79G9, 100C9 y 154G12, frente a toxinas relacionadas con la SEB (los anticuerpos 79G9 y 100C9 no forman parte de la invención)

[0123] A fin de determinar la especificidad por la SEB de los anticuerpos 79G9, 100C9 y 154G12, se examinó si dichos anticuerpos presentaban reactividad cruzada con las siguientes toxinas relacionadas con la SEB: enterotoxinas estafilocócicas SEA, SED, SEC1, SEC2 y TSST-1; con las exotoxinas pirogénicas estreptocócicas SPE-A, SPE-B (cada una de estas dos, comprada de la empresa Toxin Technologies); y con el toxoide tetánico (TT, comprado de la empresa Cylex Inc.). Cada una de dichas toxinas se diluyó hasta 0,5 μg/ml en tampón de revestimiento (carbonato-bicarbonato 50 mM, pH 9,4 (Sigma)) y se absorbió en placas de ELISA durante toda la noche a 4 °C. Dichas placas de ELISA se bloquearon con tampón de ensayo (PBS (CellGro) que contenía BSA (seroalbúmina bovina) al 1% (Sigma) y Tween 20 al 0,05% (Bio-Rad)) durante 2 horas a temperatura ambiente. Las placas de ELISA se lavaron una vez con tampón de lavado (PBS (solución tamponada con fosfatos) que contenía Tween 20 al 0,05%). Los anticuerpos purificados 79G9, 100C9 y 154G12, anticuerpo murino de control anti-TSST-1 (Hycult), y anticuerpo murino de control anti-TT (Abcam), cada uno de ellos a una concentración de 2,5 μg/ml, se transfirieron a las placas de ELISA a razón de 100 μl por pocillo, y se incubaron a temperatura ambiente durante 1 hora. Después, las placas se lavaron cuatro veces. La unión de los anticuerpos se determinó mediante adición de 100 μl por pocillo de anticuerpo de cabra anti-IgG+M(H+L) humanas conjugado con peroxidasa de rábano (Jackson

ImmunoResearch) diluido al 1:10000 en tampón de unión para los anticuerpos 79G9, 100C9 y 154G12; para detectar los anticuerpos de control se usó anticuerpo de cabra anti-lgG(H+L) murina conjugado con peroxidasa de rábano. Una vez añadidos a las placas de ELISA, los anticuerpos conjugados con peroxidasa de rábano se incubaron a temperatura ambiente durante 1 hora. Las placas se lavaron cuatro veces y se añadió sustrato SureBlue (Kirkegaard & Perry Laboratories) (100 μl/pocillo) durante 10 min. Las reacciones se detuvieron mediante adición de ácido sulfúrico 1 N (50 μl/pocillo), y se determinó la absorbancia a 450 nm. Los resultados se presentan en la Figura 18.

[0124] Depósito biológico de las células productoras de anticuerpos: de conformidad con la descripción detallada y con los ejemplos que se proporcionan por escrito en la presente invención, se depositaron ejemplos de las células productoras de los anticuerpos de la invención en la Amer. Type Cult. Coll. [American Type Culture Collection (Colección estadounidense de cultivos celulares), 10801 University Blvd., Manassas, Virginia 20110-2209, Estados Unidos). Las células productoras del anticuerpo 154G12 se depositaron el 19 de diciembre de 2007, y se les asignó el N.º de acceso ATCC: PTA-8850.

LISTADO DE SECUENCIAS
[0125]

<110> Morphotek, Inc.
20 Sass, Philip M.
Nicolaides Niche

Nicolaides, Nicholas C. Grasso, Luigi Berger, Marc Sai, Tao

<120> ANTICUERPOS DE ALTA AFINIDAD QUE NEUTRALIZAN LA ENTEROTOXINA B ESTAFILICÓCICA

<130> MOR-0718

25

40

<150> US 60/883,271 <151> 2007-01-03

<150> US 60/888,405
35 <151> 2007-02-06

<160> 265

<170> PatentIn version 3.3

<210> 1 <211> 23

<212> ADN

<213> Homo Sapiens

45 <400> 3

cccagtcacg acgttgtaaa acg 23

50 <210> 2 <211> 23

<212> ADN

<213> Homo Sapiens

55 <400> 2

agcggataac aatttcacac agg

<210> 3
60 <211> 24
<212> ADN

<213> Homo Sapiens

<400> 3

65 tggaagaggc acgttctttt cttt

23

24

```
<210>
             21
     <211>
     <212>
             ADN
     <213>
             Homo Sapiens
 5
     <220>
<221>
              misc_feature
     <222>
              (5)..(5)
10
     <223>
              R = A \circ G
     <220>
     <221>
<222>
             misc_feature (12)..(12)
     <223>
             B = C \circ G \circ T
15
     <220>
     <221>
             misc_feature
     <222>
             (13)..(13)
W = A o T
     <223>
20
     <220>
     <221>
              misc_feature
     <222>
              (15)..(15)
25
     <223>
              S = C \circ G
     <220>
     <221>
             misc_feature
      <222>
             (20)..(20)
30
     <223>
             D = A O G O T
     <400> 4
     aggtrcagct gbwgsagtcd g
                                                                                           21
35
     <210>
              5
             23
     <211>
      <212>
             ADN
     <213>
             Homo Sapiens
40
     <220>
     <221>
              misc_feature
     <222>
             (3)..(3)
H = A O C O T
     <223>
45
     <220>
              misc_feature
     <221>
              (4)...(4)
R = A O G
     <222>
     <223>
50
     <220>
     <221>
<222>
              misc_feature
             (6)..(6)
Y = C o T
     <223>
55
     <220>
     <221>
             misc_feature
     <222>
<223>
              (7)..(7)
S = C o G
60
     <220>
     <221>
<222>
              misc_feature
              (8)..(8)
65
     <223>
              W = A O T
     <220>
             misc_feature
     <221>
```

	<222> <223>	(10)(10) H = A O C O T			
5	<220> <221> <222> <223>	misc_feature (15)(15) B = C o G o T			
10		5 swgh tgacbcagtc	tcc		23
15	<210> <211> <212> <213>	6 58 ADN Homo Sapiens			
20		6 attc ttaacactct	cccctgttga agctctttgt gacgggcga	ag ctcaggcc	58
25	<210> <211> <212> <213>	7 24 ADN Homo Sapiens			
	<400> gtccac	7 cttg gtgttgctgg	gctt		24
30	<210> <211> <212> <213>	8 27 ADN Homo Sapiens			
35	<400> tgaaga	8 ttct gtaggggcca	ctgtctt		27
40	<210> <211> <212> <213>	9 23 ADN Homo Sapiens			
45	<400> gaggtg	9 cagc tggtggagtc	tgg		23
50	<210> <211> <212> <213>	10 23 ADN Homo Sapiens			
55	<400> tcctate	10 gtgc tgactcagcc	acc		23
60	<210> <211> <212> <213>	11 20 ADN Homo Sapiens			
65	<400> tgcaag	11 gtct ccaacaaagc			20
		12			

	<212> <213>	ADN Homo Sapiens				
5		12 tctt ggtcagctca				20
10	<210> <211> <212> <213>					
15	<400> ggcacg	13 gtgg gcatgtgtga				20
20						
	<400> accaag	14 ggcc catcggtctt				20
25	<210><211><212>	20 ADN				
30	<400>	Homo Sapiens 15 ccaa ggtggacaag				20
35	<210> <211> <212> <213>					
40	<400> ggttca	16 gggg gaggtgtggg	aggt			24
45	<210><211><211><212><213>	17 98 ADN Homo Sapiens				
50	<400> gggaag	17 cttg ccgccaccat	gggatggagc	tgtatcatcc	tcttcttggt agcaacagct	60
	acaggt	gtac acagctccta	tgtgctgact	cagccacc		98
55	<210> <211> <212> <213>	18 39 ADN Homo Sapiens				
60	<400> cccgaa	18 ttcc tatgaagatt	ctgtaggggc	cactgtctt		39
65	<210><211><211><212><213>	19 99 ADN Homo Saniens				

	<pre><400> 19 gggaagcttg ccgccaccat gggatggagc tgtatcatcc tcttcttggt agcaacagct</pre>	60
5	acaggtgtac acagcgaggt gcagctggtg gagtctggg	99
10	<210> 20 <211> 42 <212> ADN <213> Homo Sapiens	
	<400> 20 cccgaattct catttaccca gagacaggga gaggctcttc tg	42
15	<210> 21 <211> 57 <212> ADN <213> Secuencia artificial	
20	<220> <223> Polinucleótido	
25	<400> 21 atgggatgga gctgtatcat cctcttcttg gtagcaacag ctacaggtgt gcactcc	57
30	<210> 22 <211> 99 <212> ADN <213> Homo Sapiens	
25	<400> 22 gggaagcttg ccgccaccat gggatggagc tgtatcatcc tcttcttggt agcaacagct	60
35	acaggtgtac acagcgacat tgagttgacc cagtctcca	99
40	<210> 23 <211> 99 <212> ADN <213> Homo Sapiens	
45	<400> 23 gggaagcttg ccgccaccat gggatggagc tgtatcatcc tcttcttggt agcaacagct	60
	acaggtgtac acagcgtaca gctgttggag tctggcgca	99
50	<210> 24 <211> 39 <212> ADN <213> Homo Sapiens	
55	<400> 24 cccttcgaat taatcactct cccctgttga agctctttg	39
60	<210> 25 <211> 102 <212> ADN <213> Homo Sapiens	
65	<400> 25 gggaagcttg ccgccaccat gggatggagc tgtatcatcc tcttcttggt agcaacagct	60
	acaggtgtac acagcgaggt acagctgttg gagtctggcg ca	102

5	<210> 26 <211> 35 <212> ADN <213> Homo Sapiens	
	<400> 26 gatcgaattc tcatttcccg ggagacaggg agagg	35
10 15	<210> 27 <211> 642 <212> ADN <213> Homo Sapiens	
10	<400> 27 gacgttgagc tgacccagtc tccttccacc ctgtctgcat ctgtaggaga cagagtcacc	60
	atcacttgcc gggccagtca gagtattagt agctggttgg cctggtatca gcagaaacca	120
20	gggaaagccc ctaagctcct gatctataag gcgtctagtt tagaaagtgg ggtcccatca	180
	aggttcagcg gcagtggatc tgggacagaa ttcactctca ccatcagcag cctgcagcct	240
25	gatgattttg caacttatta ctgccaacag tataatagtt atccgtggac gttcggccaa	300
	gggaccaagg tggaaatcaa acgaactgtg gctgcaccat ctgtcttcat cttcccgcca	360
	tctgatgagc agttgaaatc tggaactgcc tctgttgtgt gcctgctgaa taacttctat	420
30	cccagagagg ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag	480
	gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg	540
35	ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc	600
	ctgagctcgc ccgtcacaaa gagcttcaac aggggagagt gt	642
40	<210> 28 <211> 214 <212> PRT <213> Homo Sapiens	
45	<400> 28	
	Asp Val Glu Leu Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 10 15	
50	Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Trp 20 25 30	
55	Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45	
60	Tyr Lys Ala Ser Ser Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60	
65	Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80	
	Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Tyr Pro Trp	

5	Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	val	Glu 105	Ile	Lys	Arg	Thr	va1 110	Ala	Ala	
	Pro	Ser	Val 115	Phe	Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Lys	Ser	Gly	
10	Thr	Ala 130	Ser	Val	Val	Cys	Leu 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Arg	Glu	Ala	
15	Lys 145	Val	Gln	Trp	Lys	val 150	Asp	Asn	Ala	Leu	Gln 155	Ser	Gly	Asn	Ser	Gln 160	
20	Glu	Ser	۷al	Thr	Glu 165	Gln	Asp	Ser	Lys	Asp 170	Ser	Thr	Tyr	Ser	Leu 175	Ser	
25	Ser	Thr	Leu	Thr 180	Leu	Ser	Lys	Ala	Asp 185	Tyr	Glu	Lys	нis	Lys 190	val	Tyr	
	Ala	Cys	Glu 195	۷al	Thr	His	Gln	Gly 200	Leu	Ser	Ser	Pro	va1 205	Thr	Lys	Ser	
30	Phe	Asn 210	Arg	Gly	Glu	Cys											
35	<210 <210 <210 <210	1> (2> /	29 693 ADN Homo	Sap [.]	iens												
40	<400 cag		29 agc	tggt	gcagt	tc to	99999	gagge	ctg	ggtca	aagc	ctg	9999	gtc	cctga	agactc	60
	tcc	tgtg	cag	cctc	tggat	tt ca	accti	tcag	t ago	ctata	agca	tga	actg	ggt	ccgc	aggct	120
45	cca	ggga	agg	ggct	ggagt	tg g	gtct	catco	at	tagta	agta	gta	gtag [.]	tta	cata	tactac	180
	gca	gact	cag	tgaa	gggc	g a	ttca	ccat	tc	caga	gaca	acg	ccaa	gaa	ctca	tgtat	240
F 0	ctg	caaa [.]	tga :	acago	cctga	ag ag	gccga	agga	ac	ggct	gtgt	atta	actg [.]	tgc (gagag	999999	300
50	gtg	gctg	gtc	gaac	cgaaa	at t	tacta	acta	ta	ctac	ggta	tgg	acgt	ctg	gggc	caaggg	360
	acc	acgg [.]	tca	ccgt	ctcct	tc ag	gggag	gtgca	a tco	cgcc	ccaa	ccc	tttt	ccc	cctc	gtctcc	420
55	tgt	gaga	att	cccc	gtcg	ga ta	acga	gcago	gt	ggcc	gttg	gct	gcct	cgc a	acag	gacttc	480
	ctt	cccg	act	ccat	cacti	tt c	tcct	ggaaa	a tao	caaga	aaca	act	ctga	cat	cagca	agcacc	540
00	cgg	ggct [.]	tcc	catca	agtco	ct ga	agago	gggg	aag	gtac	gcag	cca	cctc	aca (ggtg	tgctg	600
60	cct	tcca	agg (acgt	catgo	ca g	ggca	caga	gaa	acac	gtgg	tgt	gcaa	agt	ccago	cacccc	660
	aac	ggca	aca :	aagaa	aaaga	aa c	gtgc	ctct	t cca	a							693
65	<210 <211 <211	1> 7	30 231 PRT														

	<213> Homo		Sapi	ens												
	<400)> :	30													
5	Gln 1	val	Gln	Leu	val 5	Gln	Ser	Gly	Gly	Gly 10	Leu	val	Lys	Pro	Gly 15	Gly
10	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr
15	Ser	Met	Asn 35	Trp	val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	val
	ser	ser 50	Ile	Ser	Ser	Ser	ser 55	Ser	Tyr	Ile	Tyr	Tyr 60	Ala	Asp	Ser	val
20	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Аlа 75	Lys	Asn	Ser	Leu	Tyr 80
25	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	val	Tyr	Tyr 95	Cys
30	Ala	Arg	Gly	Gly 100	val	Ala	Gly	Arg	Thr 105	Glu	Ile	Tyr	Tyr	Tyr 110	Tyr	Tyr
35	Gly	Met	Asp 115	val	Trp	Gly	Gln	Gly 120	Thr	Thr	val	Thr	Val 125	Ser	Ser	Gly
	Ser	Ala 130	Ser	Ala	Pro	Thr	Leu 135	Phe	Pro	Leu	val	Ser 140	Cys	Glu	Asn	Ser
40	Pro 145	Ser	Asp	Thr	Ser	Ser 150	val	Ala	val	Gly	Cys 155	Leu	Ala	Gln	Asp	Phe 160
45	Leu	Pro	Asp	Ser	11e 165	Thr	Phe	Ser	Trp	Lys 170	Tyr	Lys	Asn	Asn	Ser 175	Asp
50	Ile	Ser	Ser	Thr 180	Arg	Gly	Phe	Pro	Ser 185	val	Leu	Arg	Gly	Gly 190	Lys	Tyr
55	Ala	Ala	Thr 195	Ser	Gln	val	Leu	Leu 200	Pro	Ser	Lys	Asp	va1 205	Met	Gln	Gly
	Thr	Asp 210	Glu	His	٧al	val	Cys 215	Lys	val	Gln	His	Pro 220	Asn	Gly	Asn	Lys
60	Glu 225	Lys	Asn	val	Pro	Leu 230	Pro									
65	<210 <211 <212 <213	L> ? 2> /	31 702 ADN Homo	Sapi	iens											

	<400		31 102 (20+01	-2+62	+ ~	-+-+		. a+-			c+ 2.0	- 2 0 0 1	-a+	26262	actc	_	60
_																agctc		
5																atcac		120
																ggcca 		180
10																gatt		240
																gaaga		300
	gagg	ıctga	act a	attai	tgtc	a at	tcago	cagac	ago	cagto	ggta	ctto	cct	ggt	gttc	ggcgg	a	360
15	ggga	ıccaa	agc 1	tgaco	gtco	t ag	ggtca	agcco	aag	ggctg	JCCC	ccto	ggto	cac ·	tctgt	tccc	g	420
	ccct	ccto	ctg a	aggag	gcttc	a ag	gccaa	acaag	gco	cacao	tgg	tgtg	gtcto	cat	aagto	gactt	С	480
20	tacc	cggg	gag (ccgt	gacag	jt g	gcctg	ggaag	g gca	agata	agca	gcc	cgt	caa	ggcgg	ggagt	g	540
	gaga	ıccad	cca o	cacco	tcca	ia ad	caaag	gcaac	aac	aagt	acg	cggo	cago	cag	ctaco	tgag	С	600
	ctga	cgc	ctg a	agcag	gtgga	ia gi	tccca	acaaa	ago	ctaca	agct	gcca	aggto	cac	gcato	gaagg	g	660
25	agca	ccgt	tgg a	agaag	gacag	jt g	gccc	ctaca	ı gaa	atctt	cat	ag						702
30	<210 <211 <212 <213	> 2 !> F !> H		Sap	iens													
	<400		32															
35	Met 1	Gly	Trp	Ser	Cys 5	Ile	Ile	Leu	Phe	Leu 10	val	Ala	Thr	Ala	Thr 15	Gly		
40	Val	His	Ser	Ser 20	Tyr	val	Leu	Thr	G]n 25	Pro	Pro	Ser	val	Ser 30	Val	Ser		
45	Pro	Gly	Gln 35	Thr	Ala	Arg	Ile	Thr 40	Cys	Ser	Gly	Asp	Ala 45	Leu	Pro	Lys		
	Gln	Tyr 50	Thr	Tyr	Trp	Tyr	G]n 55	Gln	Lys	Pro	Gly	Gln 60	Ala	Pro	val	val		
50	va1 65	Ile	Tyr	Lys	Asp	Ser 70	Glu	Arg	Pro	Ser	Gly 75	Ile	Pro	Glu	Arg	Phe 80		
55	Ser	Gly	Ser	Ser	Ser 85	Gly	Thr	Thr	val	Thr 90	val	Thr	Ile	Ser	Gly 95	val		
60	Gln	Ala	Glu	Asp 100	Glu	Ala	Asp	Tyr	Tyr 105	Cys	Gln	Ser	Ala	Asp 110	Ser	Ser		
65	Gly	Thr	Ser 115	Leu	val	Phe	Gly	Gly 120	Gly	Thr	Lys	Leu	Thr 125	val	Leu	Gly		
	Gln	Pro 130	Lys	Ala	Ala	Pro	Ser 135	٧a٦	Thr	Leu	Phe	Pro 140	Pro	Ser	Ser	Glu		

5	Glu Leu Gln A 145	Ala Asn Lys Ala T 150	hr Leu Val Cys 155	Leu Ile Ser Asp P	he 60
	Tyr Pro Gly A	ala val Thr val A 165	ala Trp Lys Ala 170	Asp Ser Ser Pro V 175	al
10		/al Glu Thr Thr T L80	hr Pro Ser Lys 185	Gln Ser Asn Asn Ly 190	ys
15	Tyr Ala Ala S 195		er Leu Thr Pro 00	Glu Gln Trp Lys S 205	er
20	His Lys Ser T 210	Tyr Ser Cys Gln V 215	al Thr His Glu	Gly Ser Thr Val G 220	lu
25	Lys Thr Val A 225	Ala Pro Thr Glu S 230	er Ser		
30	<210> 33 <211> 1419 <212> ADN <213> Homo S	Sapiens			
	<400> 33 atgggatgga go	ctgtatcat cctctto	ttg gtagcaacag	ctacaggtgt acacag	cgag 60
35	gtgcagctgg tg	ggagtctgg gggaggc	ttg gtccagcctg	gggggtccct gagact	ctcc 120
	tgttcagcct ct	ggtttcac ctttagt	agt tattggatga	gctgggtccg ccaggc	tcca 180
40	gggaaggggc tg	ggagtgggt cgccaac	ata atacaagatg	gaagtgagaa atacta	tgcg 240
40	gactctgtga ag	gggccggct caccato	tcc agagacaacg	ccaagaactc actata	tctg 300
	cagatgaaca go	cctgagagt cgacgac	acg gctgtgtatt	attgtgcgag aggata	tgag 360
45	gggtgtagtg ca	accaggtg ctacctg	tac tactttgact	attggggccc ggggac	cctg 420
	gtcaccgtct co	ctcagcctc caccaag	ggc ccatcggtct	tcccctggc accctc	ctcc 480
50	aagagcacct ct	gggggcac agcggco	ctg ggctgcctgg	tcaaggacta cttccc	cgaa 540
50	ccggtgacgg tg	gtcgtggaa ctcaggo	gcc ctgaccagcg	gcgtgcacac cttccc	ggct 600
	gtcctacagt co	ctcaggact ctactco	ctc agcagcgtgg	tgaccgtgcc ctccag	cagc 660
55	ttgggcaccc ag	gacctacat ctgcaac	gtg aatcacaagc	ccagcaacac caaggt	ggac 720
	aagagagttg ag	gcccaaatc tggtccc	cca tgcccacctt	gcccagcacc tgaact	cctg 780
60	gggggaccgt ca	agtcttcct gttcccc	cca aaacccaagg	acaccctcat gatctc	ccgg 840
60	acccctgagg to	cacatgcgt ggtggtg	gac gtgagccacg	aagaccctga ggtcaa	gttc 900
	aactggtacg tg	gacggcgt ggaggtg	cat aatgccaaga	caaagccgcg ggagga	gcag 960
65	tacaacagca cg	gtaccgtgt ggtcagg	gtc ctcaccgtcc	tgcaccagga ctggct	gaat 1020
	uucaannant an	raantocaa oototoo	aac aaanccetce	caaccccat caaaaa	aacc 1080

	atct	tccaa	aag (ccaaa	agggo	ca go	cccg	gagaa	a cca	acago	gtgt	acad	cctg	gcc (cccat	tcccgg	1140
	gagg	gagat	tga d	ccaag	gaaco	ca go	gtcag	gcct	g aco	ctgc	tgg	tcaa	aaggo	ctt (ctato	ccagc	1200
5	gaca	atcgo	ccg 1	tggag	gtggg	ga ga	agcaa	atgg	g cag	gccg	gagg	acaa	actao	caa g	gacca	acgcct	1260
	ccc	gtgct	tgg a	actco	cgac	gg ct	ccti	tctt	cto	ctata	agca	agct	tcaco	gt	ggaca	aagagc	1320
10	aggt	tggca	agc a	agggg	gaac	gt ct	ttct	atgo	tco	gtga	atgc	atga	aggct	ct	gcaca	accac	1380
10	tacacgcaga agagcctctc cctgtctctg ggtaaatga 143															1419	
15	<210 <211 <212 <213	1> 4 2> F	34 472 PRT Homo	Sap	iens												
20	<400	<400> 34 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly															
20	Met 1	Gly	Trp	Ser	Cys 5	Ile	Ile	Leu	Phe	Leu 10	val	Ala	Thr	Ala	Thr 15	Gly	
25	٧a٦	His	Ser	Glu 20	val	Gln	Leu	val	Glu 25	Ser	Gly	Gly	Gly	Leu 30	val	Gln	
30	Pro	Gly	Gly 35	Ser	Leu	Arg	Leu	Ser 40	Cys	Ser	Ala	Ser	Gly 45	Phe	Thr	Phe	
35	Ser	Ser 50	Tyr	Trp	Met	Ser	Trp 55	val	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu	
	Glu 65	Trp	val	Ala	Asn	Ile 70	Ile	Gln	Asp	Gly	Ser 75	Glu	Lys	Tyr	Tyr	Ala 80	
40	Asp	Ser	val	Lys	Gly 85	Arg	Leu	Thr	Ile	Ser 90	Arg	Asp	Asn	Ala	Lys 95	Asn	
45	Ser	Leu	Tyr	Leu 100	Gln	Met	Asn	Ser	Leu 105	Arg	val	Asp	Asp	Thr 110	Ala	val	
50	Tyr	Tyr	Cys 115	Ala	Arg	Gly	Tyr	Glu 120	Gly	Cys	Ser	Ala	Thr 125	Arg	Cys	Tyr	
55	Leu	Tyr 130	Tyr	Phe	Asp	Tyr	Trp 135	Gly	Pro	Gly	Thr	Leu 140	val	Thr	val	Ser	
	Ser 145	Ala	Ser	Thr	Lys	Gly 150	Pro	Ser	val	Phe	Pro 155	Leu	Ala	Pro	Ser	Ser 160	
60	Lys	Ser	Thr	Ser	Gly 165	Gly	Thr	Ala	Ala	Leu 170	Gly	Cys	Leu	val	Lys 175	Asp	
65	Tyr	Phe	Pro	Glu 180	Pro	val	Thr	val	Ser 185	тгр	Asn	Ser	Gly	Ala 190	Leu	Thr	

	Ser	Gly	val 195	ніѕ	Thr	Phe	Pro	Ala 200	val	Leu	Gln	Ser	Ser 205	Gly	Leu	Tyr
5	Ser	Leu 210	Ser	Ser	val	val	Thr 215	val	Pro	Ser	Ser	Ser 220	Leu	Gly	Thr	Gln
10	Thr 225	Tyr	Ile	Cys	Asn	Va1 230	Asn	His	Lys	Pro	Ser 235	Asn	Thr	Lys	val	Asp 240
15	Lys	Arg	val	Glu	Pro 245	Lys	Ser	Gly	Pro	Pro 250	Cys	Pro	Pro	Cys	Pro 255	Ala
	Pro	Glu	Leu	Leu 260	Gly	Gly	Pro	Ser	va1 265	Phe	Leu	Phe	Pro	Pro 270	Lys	Pro
20	Lys	Asp	Thr 275	Leu	Met	Ile	Ser	Arg 280	Thr	Pro	Glu	val	Thr 285	Cys	val	val
25	Val	Asp 290	val	Ser	His	Glu	Asp 295	Pro	Glu	val	Lys	Phe 300	Asn	Trp	Tyr	val
30	Asp 305	Gly	val	Glu	val	ніs 310	Asn	Ala	Lys	Thr	Lys 315	Pro	Arg	Glu	Glu	Gln 320
35	Tyr	Asn	Ser	Thr	Tyr 325	Arg	val	val	Arg	va1 330	Leu	Thr	val	Leu	Нis 335	Gln
	Asp	Trp	Leu	Asn 340	Gly	Lys	Glu	Tyr	Lys 345	Cys	Lys	val	Ser	Asn 350	Lys	Ala
40	Leu	Pro	Ala 355	Pro	Ile	Glu	Lys	Thr 360	Ile	Ser	Lys	Ala	Lys 365	Gly	Gln	Pro
45	Arg	Glu 370	Pro	Gln	val	Tyr	Thr 375	Leu	Pro	Pro	Ser	Arg 380	Glu	Glu	Met	Thr
50	Lys 385	Asn	Gln	val	Ser	Leu 390	Thr	Cys	Leu	val	Lys 395	Gly	Phe	Tyr	Pro	Ser 400
55	Asp	Ile	Ala	val	Glu 405	Trp	Glu	Ser	Asn	Gly 410	Gln	Pro	Glu	Asp	Asn 415	Tyr
	Lys	Thr	Thr	Pro 420	Pro	val	Leu	Asp	Ser 425	Asp	Gly	Ser	Phe	Phe 430	Leu	Tyr
60	Ser	Lys	Leu 435	Thr	val	Asp	Lys	Ser 440	Arg	Trp	Gln	Gln	Gly 445	Asn	val	Phe
65	Ser	Cys 450	Ser	۷al	Met	His	Glu 455	Ala	Leu	His	Asn	His 460	Tyr	Thr	Gln	Lys

	Ser Leu Ser Leu Gly Lys 465 470	
5	<210> 35 <211> 699 <212> ADN <213> Homo Sapiens	
10	<400> 35 atgggatgga gctgtatcat cctcttcttg gtagcaacag ctacaggtgt acacagcgac	60
	attgagttga cccagtctcc atccttcctg tctgcatctg tcggagacag agtcgccatc	120
15	acttgccggg ccagtcaggg cattagcaat tatttagcct ggtatcagca aaaaccaggg	180
	aaagccccta agctcctgat ctatgctgca ttcgttttgc aaagtggggt cccatcaagg	240
	ttcagcggca gtggatctgg gacagaattc actctcacaa tcagtaacct gcagcctgaa	300
20	gattttgcaa cttattactg tcaacaactt aatagttatc ctcgcgcttt cggccctggg	360
	accaaagtgg atatcaaacg aactgtggct gcaccatctg tcttcatctt cccgccatct	420
25	gatgagcagt tgaaatctgg aactgcctct gttgtgtgcc tgctgaataa cttctatccc	480
	agagaggcca aagtacagtg gaaggtggat aacgccctcc aatcgggtaa ctcccaggag	540
	agtgtcacag agcaggacag caaggacagc acctacagcc tcagcagcac cctgacgctg	600
30	agcaaagcag actacgagaa acacaaagtc tacgcctgcg aagtcaccca tcagggcctg	660
	agctcgcccg tcacaaagag cttcaacagg ggagagtga	699
35 40	<210> 36 <211> 232 <212> PRT <213> Homo Sapiens	
	<400> 36	
45	Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 10 15	
	Val His Ser Asp Ile Glu Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala 20 25 30	
50	Ser Val Gly Asp Arg Val Ala Ile Thr Cys Arg Ala Ser Gln Gly Ile 35 40 45	
55	Ser Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys 50 60	
60	Leu Leu Ile Tyr Ala Ala Phe Val Leu Gln Ser Gly Val Pro Ser Arg 65 70 75 80	
65	Phe Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Asn 85 90 95	
	Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Leu Asn Ser 100 105 110	

5	Tyr	Pro	Arg 115	Ala	Phe	Gly	Pro	Gly 120	Thr	Lys	val	Asp	11e 125	Lys	Arg	Thr	
	val .	Ala 130	Ala	Pro	Ser	val	Phe 135	Ile	Phe	Pro	Pro	Ser 140	Asp	Glu	Gln	Leu	
10	Lys 145	Ser	Gly	Thr	Ala	Ser 150	val	val	Cys	Leu	Leu 155	Asn	Asn	Phe	Tyr	Pro 160	
15	Arg	Glu	Ala	Lys	va1 165	Gln	Trp	Lys	val	Asp 170	Asn	Ala	Leu	Gln	Ser 175	Gly	
20	Asn	ser	Gln	Glu 180	Ser	val	Thr	Glu	Gln 185	Asp	Ser	Lys	Asp	Ser 190	Thr	Tyr	
25	Ser	Leu	Ser 195	Ser	Thr	Leu	Thr	Leu 200	Ser	Lys	Ala	Asp	Tyr 205	Glu	Lys	His	
	Lys	va1 210	Tyr	Ala	Cys	Glu	val 215	Thr	His	Gln	Gly	Leu 220	Ser	Ser	Pro	val	
30	Thr 225	Lys	Ser	Phe	Asn	Arg 230	Gly	Glu									
35	<210 <211 <212 <213	> 1 > A	37 L413 ADN Homo	Sapi	iens												
40	<400 atgg		37 gga g	gctgt	tatca	at co	ctcti	tcttg	g gta	agcaa	acag	ctad	caggt	gt a	acaca	agcgag	6
	gtgc	agct	gt 1	tgcag	gtcto	gg cg	gcag	gacto	g ttg	gaago	cctt	cgga	agaco	cct	gtcc	tcacc	12
45	tgcg	ctgt	ct a	atggt	tgggt	c ct	ttcag	gtgga	a tao	tact	tgga	gtt	ggato	ccg	ccag	gcccca	18
	ggga	aggg	gac 1	tggag	gtgga	at to	gggga	aaato	gat	cata	agtg	gaad	cac	caa	ctaca	aacccg	24
50	tccc	tcaa	aga (gtcgg	ggtca	ac ca	atato	cagta	a gag	jacat	cca	agaa	accag	gtt	ctcc	tgagg	30
30	ctga	gcto	tg 1	tgaco	gccg	gc gg	gacto	ggct	t gto	tatt	tact	gtg	gago	cag ·	tggat	tattgt	36
	tctc	atgo	gtt 1	tatgo	cccc	a ag	gagga	actg	g ggd	cago	ggaa	ccct	tggto	cac	cgtct	tcctca	42
55	gcct	ccad	ca a	agggo	ccat	c g	gtcti	tccc	cto	gcad	cct	ccto	ccaa	gag	cacct	tctggg	480
	ggca	cago	gg (ccto	gggct	g co	ctggt	caag	g gad	tact	tcc	ccga	aacc	gt	gacgo	gtgtcg	540
20	tgga	acto	ag g	gcgco	ctga	ac ca	agcg	gcgtg	g cad	acct	tcc	cgg	ctgto	ct	acagt	tcctca	60
60	ggac	tcta	act (cct	cagca	ag co	gtggt	tgaco	gtg	jccct	cca	gcag	gctt	ggg (cacco	cagacc	66
	taca	tctg	gca a	acgto	gaato	ca ca	aagco	cago	aac	acca	aagg	tgga	acaag	gaa a	agtt	gagccc	72
65	aaat	ctt	gtg a	acaaa	aacto	ca ca	acato	gccca	a ccg	gtgco	cag	caco	ctgaa	act	cctg	gggga	78
	ccat	C 2 C +	-c+ ·	+cc+	-++~	-		3200	- 224	ימפרי		+024	tast4	-+c	ccaa	ccct	8/1

	gagg	gtcad	cat o	gcgtg	ggtgg	gt gg	gacgt	tgago	cac	gaag	gacc	ctga	aggto	caa g	gttca	aactgg	900
	tace	gtgga	acg g	gcgtg	ggagg	gt go	cataa	atgco	aag	gacaa	aagc	cgcg	ggag	gga g	gcagt	acaac	960
5	agca	acgta	acc g	gtgtg	ggtca	ag cg	gtcct	caco	gto	ctg	cacc	agga	actgo	gct g	gaato	gcaag	1020
	gagt	tacaa	agt g	gcaag	ggtct	c ca	aacaa	aagco	cto	ccag	gccc	ccat	cgag	gaa a	aacca	atctcc	1080
40	aaag	gccaa	aag g	ggcag	gccc	g ag	gaaco	cacag	ggtg	gtaca	accc	tgc	ccca	atc o	ccggg	gatgag	1140
10	ctga	accaa	aga a	accag	ggtca	ag co	ctgad	ctg	cto	ggtca	aaag	gctt	ctat	cc o	cagco	gacatc	1200
	gccg	gtgga	agt g	gggag	gagca	aa to	gggca	agcc	g gag	gaaca	aact	acaa	agaco	cac g	gccto	ccgtg	1260
15	ctg	gacto	ccg a	acggo	ctcct	t ct	ttcct	tcta	ago	caago	ctca	ccgt	ggad	caa g	gagca	aggtgg	1320
	cago	cagg	gga a	acgto	cttct	c at	tgcto	cgt	gato	gcate	gagg	ctct	gcad	caa o	ccact	acacg	1380
20	caga	aagag	gcc 1	tctc	ctgt	c to	ccggg	gtaaa	a tga	à							1413
20	<210) . :	38														
	<210 <211 <212	L> 4	470 PRT														
25	<213		Homo	Sap	iens												
	<400)> 3	38														
30	Met 1	Gly	Trp	Ser	Cys	Ile	Ile	Leu	Phe	Leu 10	٧a٦	Ala	Thr	Ala	Thr 15	Gly	
30	_				,					10					13		
	٧a٦	His	Ser	Glu 20	٧a٦	Gln	Leu	Leu	G1n 25	Ser	Gly	Ala	Gly	Leu 30	Leu	Lys	
35				20					23					30			
	Pro	ser	Glu 35	Thr	Leu	Ser	Leu	Thr 40	Cys	Ala	۷a٦	Tyr	G]y 45	Gly	Ser	Phe	
40			33					10					13				
40	Ser	Gly 50	Tyr	Tyr	Trp	Ser	Trp 55	Ile	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu	
		50					33					00					
45	Glu 65	Trp	Ile	Gly	Glu	Ile 70	Asp	His	ser	Gly	Thr 75	Thr	Asn	Tyr	Asn	Pro 80	
	03					, ,					, ,					00	
50	Ser	Leu	Lys	Ser	Arg 85	٧a٦	Thr	Ile	Ser	va1 90	Glu	Thr	Ser	Lys	Asn 95	Gln	
	Phe	Ser	Leu	Arg 100	Leu	Ser	Ser	۷a٦	Thr 105	Ala	Ala	Asp	Ser	Ala 110	٧a٦	Tyr	
55																	
	Tyr	Cys	Ala 115	Ser	Ser	Gly	Tyr	Cys 120	Ser	His	Gly	Leu	Cys 125	Pro	Gln	Glu	
60																	
	Asp	Trp 130	Gly	Gln	Gly	Thr	Leu 135	val	Thr	val	Ser	Ser 140	Ala	ser	Thr	Lys	
65	Gly 145	Pro	Ser	val	Phe	Pro 150	Leu	Ala	Pro	Ser	Ser 155	Lys	ser	Thr	Ser	Gly 160	

	Gly	Thr	Ala	Ala	Leu 165	Gly	Cys	Leu	val	Lys 170	Asp	Tyr	Phe	Pro	Glu 175	Pro
5	۷al	Thr	val	Ser 180	Trp	Asn	Ser	Gly	Ala 185	Leu	Thr	Ser	Gly	val 190	His	Thr
10	Phe	Pro	Ala 195	val	Leu	Gln	Ser	Ser 200	Gly	Leu	Tyr	Ser	Leu 205	Ser	Ser	٧a٦
15	۷al	Thr 210	val	Pro	Ser	Ser	Ser 215	Leu	Gly	Thr	Gln	Thr 220	Tyr	Ile	Cys	Asn
	Va1 225	Asn	His	Lys	Pro	Ser 230	Asn	Thr	Lys	val	Asp 235	Lys	Lys	val	Glu	Pro 240
20	Lys	Ser	Cys	Asp	Lys 245	Thr	His	Thr	Cys	Pro 250	Pro	Cys	Pro	Ala	Pro 255	Glu
25	Leu	Leu	Gly	G]y 260	Pro	Ser	٧a٦	Phe	Leu 265	Phe	Pro	Pro	Lys	Pro 270	Lys	Asp
30	Thr	Leu	Met 275	Ile	Ser	Arg	Thr	Pro 280	Glu	val	Thr	Cys	Va1 285	val	val	Asp
35	۷al	Ser 290	His	Glu	Asp	Pro	Glu 295	٧a٦	Lys	Phe	Asn	Trp 300	Tyr	val	Asp	Gly
	Va1 305	Glu	val	His	Asn	Ala 310	Lys	Thr	Lys	Pro	Arg 315	Glu	Glu	Gln	Tyr	Asn 320
40	Ser	Thr	Tyr	Arg	va1 325	val	Ser	٧a٦	Leu	Thr 330	val	Leu	His	Gln	Asp 335	Trp
45	Leu	Asn	Gly	Lys 340	Glu	Tyr	Lys	Cys	Lys 345	val	Ser	Asn	Lys	Ala 350	Leu	Pro
50	Ala	Pro	Ile 355	Glu	Lys	Thr	Ile	ser 360	Lys	Ala	Lys	Gly	G]n 365	Pro	Arg	Glu
55	Pro	Gln 370	val	Tyr	Thr	Leu	Pro 375	Pro	Ser	Arg	Asp	G]u 380	Leu	Thr	Lys	Asn
	Gln 385	val	Ser	Leu	Thr	Cys 390	Leu	val	Lys	Gly	Phe 395	Tyr	Pro	Ser	Asp	Ile 400
60	Ala	۷al	Glu	Trp	G]u 405	Ser	Asn	Gly	Gln	Pro 410	Glu	Asn	Asn	Tyr	Lys 415	Thr
65	Thr	Pro	Pro	Val 420	Leu	Asp	Ser	Asp	G]y 425	Ser	Phe	Phe	Leu	Tyr 430	Ser	Lys

```
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
             435
     Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
5
     Ser Leu Ser Pro Gly Lys
10
     <210>
            39
     <211>
            13
15
     <212>
            PRT
     <213>
            Homo Sapiens
     <400>
           39
     Cys Ser Ala Ala Gly Thr Val Asp Tyr Trp Gly Gln Gly 1 	 5 	 10
20
     <210>
            40
     <211>
            10
25
     <212>
            PRT
            Homo Sapiens
     <213>
     <400> 40
30
     Cys Thr Thr Met Arg Asn Trp Gly Gln Gly 1 5
     <210>
            41
35
     <211>
            15
     <212>
            PRT
     <213> Homo Sapiens
40
     <400> 41
     Cys Gln Ser Ala Asp Ser Ser Gly Thr Tyr Val Phe Gly Thr Gly
1 10 15
45
     <210>
            42
     <211>
            16
     <212>
            PRT
     <213>
            Homo Sapiens
50
     <400> 42
     Cys Gln Ser Ala Asp Ser Ser Gly Thr Tyr Val Val Phe Gly Gly 10 \phantom{000} 15
55
     <210>
            43
     <211>
            57
     <212>
            ADN
60
     <213>
            Secuencia artificial
     <220>
            Polinucleótido
     <223>
65
     <400> 43
     atgggatgga gctgtatcat cctcttcttg gtagcaacag ctacaggtgt acacagc
```

57

```
<210> 44
             19
     <211>
     <212>
             PRT
             Secuencia artificial
      <213>
 5
     <220>
     <223>
             Constructo sintético
     <400>
10
     Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
     Val His Ser
15
     <210>
             45
             239
     <211>
20
     <212>
             PRT
             Secuencia artificial
     <213>
     <220>
25
     <223>
            Constructo sintético
     <400> 45
     Glu Ser Gln Pro Asp Pro Lys Pro Asp Glu Leu His Lys Ser Ser Lys
1 10 15
30
     Phe Thr Gly Leu Met Glu Asn Met Lys Val Leu Tyr Asp Asp Asn His 20 25 30
35
     Val Ser Ala Ile Asn Val Lys Ser Ile Asp Gln Phe Arg Tyr Phe Asp 35 40 45
40
     Leu Ile Tyr Ser Ile Lys Asp Thr Lys Leu Gly Asn Tyr Asp Asn Val 50 60
     Arg Val Glu Phe Lys Asn Lys Asp Leu Ala Asp Lys Tyr Lys Asp Lys 65 70 75 80
45
     Tyr Val Asp Val Phe Gly Ala Asn Ala Tyr Tyr Gln Cys Ala Phe Ser
85 90 95
50
     Lys Lys Thr Asn Asp Ile Asn Ser His Gln Thr Asp Lys Arg Lys Thr 100 105 110
55
     Cys Met Tyr Gly Gly Val Thr Glu His Asn Gly Asn Gln Leu Asp Lys
60
     Tyr Arg Ser Ile Thr Val Arg Val Phe Glu Asp Gly Lys Asn Leu Leu
130 135 140
     Ser Phe Asp Val Gln Thr Asn Lys Lys Val Thr Ala Gln Glu Leu
145 150 155 160
65
                             150
```

Asp Tyr Leu Thr Arg His Tyr Leu Val Lys Asn Lys Lys Leu Tyr Glu 165 170 175 Phe Asn Asn Ser Pro Tyr Glu Thr Gly Tyr Ile Lys Phe Ile Glu Asn 180 185 190 5 Glu Asn Ser Phe Trp Tyr Asp Met Met Pro Ala Pro Gly Asp Lys Phe 195 200 205 10 Asp Gln Ser Lys Tyr Leu Met Met Tyr Asn Asp Asn Lys Met Val Asp 210 215 220 15 Ser Lys Asp Val Lys Ile Glu Val Tyr Leu Thr Thr Lys Lys Lys 225 230 235 20 46 239 <210> <211> PRT Staphylococcus aureus 25 <400> Glu Ser Gln Pro Asp Pro Lys Pro Asp Glu Leu His Lys Ser Ser Lys
1 10 15 30 Phe Thr Gly Leu Met Glu Asn Met Lys Val Leu Tyr Asp Asp Asn His 20 25 30 35 Val Ser Ala Ile Asn Val Lys Ser Ile Asp Gln Phe Leu Tyr Phe Asp 35 40 45Leu Ile Tyr Ser Ile Lys Asp Thr Lys Leu Gly Asn Tyr Asp Asn Val 50 60 40 Arg Val Glu Phe Lys Asn Lys Asp Leu Ala Asp Lys Tyr Lys Asp Lys 65 70 75 80 45 Tyr Val Asp Val Phe Gly Ala Asn Tyr Tyr Gln Cys Tyr Phe Ser 85 90 95 50 Lys Lys Thr Asn Asp Ile Asn Ser His Gln Thr Asp Lys Arg Lys Thr 100 105 110 55 Cys Met Tyr Gly Gly Val Thr Glu His Asn Gly Asn Gln Leu Asp Lys 115 120 Tyr Arg Ser Ile Thr Val Arg Val Phe Glu Asp Gly Lys Asn Leu Leu 130 135 140 60 Ser Phe Asp Val Gln Thr Asn Lys Lys Lys Val Thr Ala Gln Glu Leu 145 150 155 160 65 Asp Tyr Leu Thr Arg His Tyr Leu Val Lys Asn Lys Lys Leu Tyr Glu

				165					170					175			
5	Phe As	n Asn	Ser 180	Pro	Tyr	Glu	Thr	Gly 185	Tyr	Ile	Lys	Phe	Ile 190	Glu	Asn		
10	Glu As	n Ser 195	Phe	Trp	Tyr	Asp	Met 200	Met	Pro	Ala	Pro	Gly 205	Asp	Lys	Phe		
	Asp Gl		Lys	Tyr	Leu	Met 215	Met	Tyr	Asn	Asp	Asn 220	Lys	Met	٧a٦	Asp		
15	Ser Ly 225	s Asp	val	Lys	Ile 230	Glu	Val	Tyr	Leu	Thr 235	Thr	Lys	Lys	Lys			
20	<210> <211> <212> <213>	47 69 ADN Homo	Sapi	iens													
25	<400> gacgtt	47 gagc t	tgaco	cagt	tc to	cctt	ccac	c cto	gtct	gcat	ctg	tagga	aga (cagag	gtcaco		
	atcact	tgc														6	9
30	<210> <211> <212> <213>	48 45 ADN Homo	Sapi	iens													
35	<400> tggtat	48 cagc a	agaaa	accag	gg ga	aaago	cccc	t aag	gctco	ctga	tcta	at				4	5
40	<210> <211> <212> <213>	49 102 ADN Homo	Sapi	iens													
45	<400> ggggtc		caagg	gttca	ag co	ggcag	gtgga	a tci	tggga	acag	aati	tcact	tct (cacca	atcago	c 6	0
	agcctg	cagc o	ctgat	gati	tt to	gcaa	ctta	t tad	ctgc	caac	ag					10	2
50	<210> <211> <212> <213>	50 33 ADN Homo	Sapi	iens													
55	<400> cgggcc	50 agtc a	agagt	atta	ag ta	agcto	ggtt	g gco	Ξ.							3	3
60	<210> <211> <212> <213>	51 21 ADN Homo	Sapi	iens													
65	<400> aaggcg	51 tcta g	gttta	agaaa	ag t											2	1

```
<210>
            52
     <211>
           21
     <212>
           ADN
     <213>
            Homo Sapiens
5
     <400> 52
                                                                               21
     tataatagtt atccgtggac g
     <210>
            53
10
           23
     <211>
     <212>
            PRT
           Homo Sapiens
     <213>
     <400> 53
     Asp Val Glu Leu Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly
20
     Asp Arg Val Thr Ile Thr Cys
25
     <210>
            54
     <211>
            15
     <212>
            PRT
     <213> Homo Sapiens
30
     <400> 54
    Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr 10 15
35
     <210>
            55
     <211>
           34
     <212>
           PRT
     <213> Homo Sapiens
40
     <400> 55
     Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr 1 10 15
45
     Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys 20 25 30
50
     Gln Gln
     <210>
            56
55
     <211>
            11
     <212>
            PRT
     <213>
            Homo Sapiens
60
     <400> 56
     Arg Ala Ser Gln Ser Ile Ser Ser Trp Leu Ala
65
     <210>
            57
     <211>
     <212>
           PRT
```

```
<213> Homo Sapiens
     <400>
            57
    Lys Ala Ser Ser Leu Glu Ser
5
     <210>
            58
10
     <211>
           PRT
     <212>
     <213>
           Homo Sapiens
    <400> 58
15
     Tyr Asn Ser Tyr Pro Trp Thr
     <210>
            59
20
     <211>
            78
     <212>
            ADN
     <213>
            Homo Sapiens
    <400> 59
25
    caggtacagc tggtgcagtc tgggggaggc ctggtcaagc ctggggggtc cctgagactc
                                                                              60
                                                                              78
    tcctgtgcag cctctgga
30
     <210>
            60
     <211>
            42
     <212>
            ADN
     <213>
            Homo Sapiens
35
     <400> 60
     tgggtccgcc aggctccagg gaaggggctg gagtgggtct ca
                                                                              42
     <210>
40
            61
     <211>
            96
     <212>
            ADN
     <213>
            Homo Sapiens
    <400> 61
45
    cgattcacca tctccagaga caacgccaag aactcactgt atctgcaaat gaacagcctg
                                                                              60
     agagccgagg acacggctgt gtattactgt gcgaga
                                                                              96
50
            62
27
     <210>
     <211>
     <212>
            ADN
            Homo Sapiens
     <213>
55
     <400> 62
     ttcaccttca gtagctatag catgaac
                                                                              27
60
     <210>
            63
     <211>
            51
     <212>
            ADN
            Homo Sapiens
     <213>
65
     <400> 63
    tccattagta gtagtagtag ttacatatac tacgcagact cagtgaaggg c
                                                                              51
```

```
<210> 64
     <211>
            54
     <212>
            ADN
     <213>
             Homo Sapiens
5
     <400> 64
                                                                                     54
     gggggggtgg ctggtcgaac cgaaatttac tactactact acggtatgga cgtc
     <210>
             65
10
     <211>
             26
     <212>
             PRT
     <213>
             Homo Sapiens
     <400> 65
     Gln Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val Lys Pro Gly Gly 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
20
     Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
             66
25
     <210>
     <211>
             14
     <212>
             PRT
            Homo Sapiens
     <213>
30
     <400> 66
     Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser
35
     <210>
             67
     <211>
            32
            PRT
     <212>
     <213> Homo Sapiens
40
     <400> 67
     Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gln
10 15
45
     Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg
20 25 30
50
     <210>
             68
     <211>
             9
     <212>
            PRT
            Homo Sapiens
     <213>
55
     <400> 68
     Phe Thr Phe Ser Ser Tyr Ser Met Asn \mathbf{5}
60
             69
17
     <210>
     <211>
     <212>
             PRT
65
     <213>
            Homo Sapiens
     <400> 69
```

	Ser Ile Ser Ser Ser Ser Tyr Ile Tyr Tyr Ala Asp Ser Val Lys 1 10 15	
5	Gly	
10	<210> 70 <211> 18 <212> PRT <213> Homo Sapiens	
15	<400> 70	
15	Gly Gly Val Ala Gly Arg Thr Glu Ile Tyr Tyr Tyr Tyr Gly Met 1 5 10 15	
20	Asp Val	
25	<210> 71 <211> 66 <212> ADN <213> Homo Sapiens	
30	<400> 71 tcctatgtgc tgactcagcc accctcggtg tcggtgtccc caggacagac ggccaggatc	60
	acctgc	66
35	<210> 72 <211> 45 <212> ADN <213> Homo Sapiens	
40	<400> 72 tggtaccagc agaagccagg ccaggcccct gtggtggtga tctat	45
45	<210> 73 <211> 96 <212> ADN <213> Homo Sapiens	
50	<400> 73 gggatccctg agcgattctc tggctccagc tcagggacaa cagtcacggt gaccatcagt	60
	ggagtccagg cagaagacga ggctgactat tattgt	96
55	<210> 74 <211> 33 <212> ADN <213> Homo Sapiens	
60	<400> 74 tctggagatg cattgccaaa gcaatatact tat	33
65	<210> 75 <211> 21 <212> ADN <213> Homo Sapiens	

```
<400> 75
                                                                               21
     aaagacagtg agaggccctc a
     <210>
            76
5
     <211>
            33
     <212>
           ADN
     <213>
           Homo Sapiens
     <400> 76
10
                                                                               33
     caatcagcag acagcagtgg tacttccctg gtg
     <210>
            77
           22
15
     <211>
     <212>
           PRT
     <213>
           Homo Sapiens
     <400> 77
20
     Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Gln
25
    Thr Ala Arg Ile Thr Cys
     <210>
           78
30
     <211>
            15
     <212>
            PRT
     <213>
            Homo Sapiens
     <400> 78
35
    Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Val Val Ile Tyr 1 5 10 15
     <210>
            79
40
     <211>
            32
     <212>
           PRT
     <213>
           Homo Sapiens
     <400> 79
45
     Gly Ile Pro Glu Arg Phe Ser Gly Ser Ser Gly Thr Thr Val Thr
50
    Val Thr Ile Ser Gly Val Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys
20 25 30
     <210>
            80
55
     <211>
            11
     <212>
            PRT
     <213>
            Homo Sapiens
60
     <400> 80
     Ser Gly Asp Ala Leu Pro Lys Gln Tyr Thr Tyr
65
     <210>
            81
     <211>
     <212>
            PRT
```

```
<213> Homo Sapiens
     <400> 81
5
    Lys Asp Ser Glu Arg Pro Ser
     <210>
            82
10
     <211>
            11
     <212>
            PRT
     <213>
           Homo Sapiens
     <400> 82
15
    Gln Ser Ala Asp Ser Ser Gly Thr Ser Leu Val
     <210>
            83
20
     <211>
            75
     <212>
            ADN
     <213>
            Homo Sapiens
    <400> 83
25
    gaggtgcagc tggtggagtc tgggggaggc ttggtccagc ctggggggtc cctgagactc
                                                                              60
                                                                              75
    tcctgttcag cctct
30
     <210>
            84
           42
     <211>
     <212>
            ADN
     <213>
            Homo Sapiens
35
     <400> 84
     tgggtccgcc aggctccagg gaaggggctg gagtgggtcg cc
                                                                              42
            85
40
     <210>
            96
     <211>
     <212>
            ADN
     <213>
            Homo Sapiens
    <400> 85
45
    cggctcacca tctccagaga caacgccaag aactcactat atctgcagat gaacagcctg
                                                                              60
     agagtcgacg acacggctgt gtattattgt gcgaga
                                                                              96
50
     <210>
            86
     <211>
            30
     <212>
            ADN
            Homo Sapiens
     <213>
55
     <400> 86
     ggtttcacct ttagtagtta ttggatgagc
                                                                              30
60
     <210>
            87
     <211>
            51
     <212>
            ADN
            Homo Sapiens
     <213>
65
     <400>
                                                                              51
     aacataatac aagatggaag tgagaaatac tatgcggact ctgtgaaggg c
```

```
<210>
            88
     <211>
            51
     <212>
            ADN
     <213>
            Homo Sapiens
5
     <400> 88
                                                                                  51
     ggatatgagg ggtgtagtgc aaccaggtgc tacctgtact actttgacta t
     <210>
            89
10
            25
     <211>
     <212>
            PRT
            Homo Sapiens
     <213>
     <400> 89
     Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
20
     Ser Leu Arg Leu Ser Cys Ser Ala Ser
25
     <210>
            90
     <211>
            14
     <212>
            PRT
            Homo Sapiens
     <213>
30
     <400> 90
     Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala
35
     <210>
            91
     <211>
            32
            PRT
     <212>
     <213> Homo Sapiens
40
     <400> 91
     Arg Leu Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gln 1 	 5 	 10 	 15
45
     Met Asn Ser Leu Arg Val Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg 20 25 30
50
     <210>
            92
     <211>
            10
     <212>
            PRT
            Homo Sapiens
     <213>
55
     <400> 92
     Gly Phe Thr Phe Ser Ser Tyr Trp Met Ser 1 	 5 	 10
60
            93
17
     <210>
     <211>
     <212>
            PRT
     <213>
            Homo Sapiens
65
     <400> 93
```

	Asn Ile Ile Gln Asp Gly Ser Glu Lys Tyr Tyr Ala Asp Ser Val Lys 1 10 15	
5	Gly	
10	<210> 94 <211> 17 <212> PRT <213> Homo Sapiens	
15	<400> 94	
15	Gly Tyr Glu Gly Cys Ser Ala Thr Arg Cys Tyr Leu Tyr Tyr Phe Asp 1 15	
20	туг	
25	<210> 95 <211> 69 <212> ADN <213> Homo Sapiens	
30	<400> 95 gacattgagt tgacccagtc tccatccttc ctgtctgcat ctgtcggaga cagagtcgcc	60
	atcacttgc	69
35	<210> 96 <211> 45 <212> ADN <213> Homo Sapiens	
40	<400> 96 tggtatcagc aaaaaccagg gaaagcccct aagctcctga tctat	45
45	<210> 97 <211> 96 <212> ADN <213> Hpmo Sapiens	
50	<400> 97 ggggtcccat caaggttcag cggcagtgga tctgggacag aattcactct cacaatcagt	60
50	aacctgcagc ctgaagattt tgcaacttat tactgt	96
	auccigcage cigaagacic igcaacitat tacigi	30
55	<210> 98 <211> 33 <212> ADN <213> Homo Sapiens	
60	<400> 98 cgggccagtc agggcattag caattattta gcc	33
65	<210> 99 <211> 21 <212> ADN <213> Homo Sapiens	

```
<400> 99
                                                                                   21
     gctgcattcg ttttgcaaag t
     <210>
            100
5
     <211>
            27
     <212>
            ADN
     <213>
            Homo Sapiens
     <400> 100
10
                                                                                   27
     caacaactta atagttatcc tcgcgct
     <210>
            101
15
     <211>
            23
     <212>
            PRT
     <213>
            Homo Sapiens
     <400> 101
20
     Asp Ile Glu Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala Ser Val Gly
25
     Asp Arg Val Ala Ile Thr Cys
            102
     <210>
30
     <211>
            15
     <212>
            PRT
     <213>
            Homo Sapiens
     <400> 102
35
     Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
     <210>
            103
40
     <211>
            32
     <212>
            PRT
     <213>
            Homo Sapiens
     <400> 103
45
     Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr
50
     Leu Thr Ile Ser Asn Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys 20 25 30
     <210>
            104
55
     <211>
            11
     <212>
            PRT
     <213>
            Homo Sapiens
60
     <400> 104
     Arg Ala Ser Gln Gly Ile Ser Asn Tyr Leu Ala
65
            105
     <210>
     <211>
     <212>
            PRT
```

```
<213> Homo Sapiens
     <400>
            105
5
    Ala Ala Phe Val Leu Gln Ser
     <210>
            106
10
     <211>
            9
            PRT
     <212>
     <213>
           Homo Sapiens
     <400> 106
15
    Gln Gln Leu Asn Ser Tyr Pro Arg Ala
     <210>
            107
20
     <211>
            75
     <212>
            ADN
     <213>
            Homo Sapiens
    <400> 107
25
    gaggtgcagc tgttgcagtc tggcgcagga ctgttgaagc cttcggagac cctgtccctc
                                                                              60
                                                                              75
    acctgcgctg tctat
30
     <210>
            108
           42
     <211>
     <212>
            ADN
     <213>
            Homo Sapiens
35
     <400> 108
     tggatccgcc aggccccagg gaagggactg gagtggattg gg
                                                                              42
     <210>
            109
40
            96
     <211>
     <212>
            ADN
     <213>
            Homo Sapiens
    <400> 109
45
    cgggtcacca tatcagtaga gacatccaag aaccagttct ccctgaggct gagctctgtg
                                                                              60
    accgccgcgg actcggctgt ctattactgt gcgagc
                                                                              96
50
     <210>
            110
     <211>
            30
     <212>
            ADN
            Homo Sapiens
     <213>
55
     <400> 110
     ggtgggtcct tcagtggata ctactggagt
                                                                              30
60
     <210>
            111
     <211>
            48
     <212>
            ADN
     <213>
            Homo Sapiens
65
     <400>
    gaaatcgatc atagtggaac caccaactac aacccgtccc tcaagagt
                                                                              48
```

```
<210>
            112
            39
     <211>
     <212>
            ADN
     <213>
            Homo Sapiens
5
     <400> 112
                                                                                39
     agtggatatt gttctcatgg tttatgcccc caagaggac
     <210>
            113
10
     <211>
            25
     <212>
            PRT
            Homo Sapiens
     <213>
     <400> 113
     Glu Val Gln Leu Leu Gln Ser Gly Ala Gly Leu Leu Lys Pro Ser Glu 1 5 10 15
20
    Thr Leu Ser Leu Thr Cys Ala Val Tyr
25
     <210>
            114
     <211>
            14
     <212>
            PRT
     <213>
            Homo Sapiens
30
     <400>
           114
     Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly
35
     <210>
            115
     <211>
            32
           PRT
     <212>
     <213> Homo Sapiens
40
     <400> 115
    Arg Val Thr Ile Ser Val Glu Thr Ser Lys Asn Gln Phe Ser Leu Arg
1 10 15
45
     Leu Ser Ser Val Thr Ala Ala Asp Ser Ala Val Tyr Tyr Cys Ala Ser 20 25 30
50
     <210>
            116
     <211>
            10
     <212>
            PRT
            Homo Sapiens
     <213>
55
     <400> 116
     Gly Gly Ser Phe Ser Gly Tyr Tyr Trp Ser
1 5 10
60
     <210>
            117
     <211>
            16
     <212>
            PRT
65
     <213>
            Homo Sapiens
     <400> 117
```

	Glu Ile Asp His Ser Gly Thr Thr Asn Tyr Asn 1 5 10	Pro Ser Leu Lys Ser 15
5	<210> 118 <211> 13 <212> PRT <213> Homo Sapiens	
10	<400> 118	
	Ser Gly Tyr Cys Ser His Gly Leu Cys Pro Gln 1 5 10	Glu Asp
15	<210> 119 <211> 1413 <212> ADN <213> Homo Sapiens	
20	<400> 119 atgggatgga gctgtatcat cctcttcttg gtagcaacag	ctacaggtgt ccactccgag 60
	gtacagctgg aggagtctgg cgcaggactg ttgaagcctt	cggagaccct gtccctcacc 120
25	tgcgctgtct atggtgggtc cttcagtgga tactactgga	gttggatccg ccaggcccca 180
	gggaagggac tggagtggat tggggaaatc gatcatagtg	gaaccaccaa ctacaacccg 240
30	tccctcaaga gtcgggtcac catatcagta gagacatcca	agaaccagtt ctccctgagg 300
	ctgagctctg tgaccgccgc ggactcggct gtctattact	gtgcgagcag tggatattgt 360
25	tctcatggtt tatgccccca agaggactgg ggccagggaa	ccctggtcac cgtctcctca 420
35	gcctccacca agggcccatc ggtcttcccc ctggcaccct	cctccaagag cacctctggg 480
	ggcacagcgg ccctgggctg cctggtcaag gactacttcc	ccgaaccggt gacggtgtcg 540
40	tggaactcag gcgccctgac cagcggcgtg cacaccttcc	cggctgtcct acagtcctca 600
	ggactctact ccctcagcag cgtggtgacc gtgccctcca	gcagcttggg cacccagacc 660
4.5	tacatctgca acgtgaatca caagcccagc aacaccaagg	tggacaagag agttgagccc 720
45	aaatcttgtg acaaaactca cacatgccca ccgtgcccag	cacctgaact cctgggggga 780
	ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc	tcatgatctc ccggacccct 840
50	gaggtcacat gcgtggtggt ggacgtgagc cacgaagacc	ctgaggtcaa gttcaactgg 900
	tacgtggacg gcgtggaggt gcataatgcc aagacaaagc	cgcgggagga gcagtacaac 960
	agcacgtacc gtgtggtcag cgtcctcacc gtcctgcacc	aggactggct gaatggcaag 1020
55	gagtacaagt gcaaggtctc caacaaagcc gtcccagccc	ccatcgagaa aaccatctcc 1080
	aaagccaaag ggcagccccg agaaccacag gtgtacaccc	tgccccatc ccgggaggag 1140
60	atgaccaaga accaggtcag cctgacctgc ctggtcaaag	gcttctatcc cagcgacatc 1200
	gccgtggagt gggagagcaa tgggcagccg gagaacaact	acaagaccac gcctcccgtg 1260
3 <i>E</i>	ctggactccg acggctcctt cttcctctat agcaagctca	ccgtggacaa gagcaggtgg 1320
65	cagcagggga acgtcttctc atgctccgtg atgcatgagg	ctctgcacaa ccactacacg 1380
	cagaagagcc tctccctgtc tccgggtaaa tga	1413

5	<210> <211> <212> <213>	120 75 ADN Homo Sapiens	
10	<400> gaggta	120 cagc tggaggagtc tggcgcagga ctgttgaagc cttcggagac cctgtccctc	60
	acctgc	gctg tctat	75
15	<210> <211> <212> <213>	121 42 ADN Homo Sapiens	
20	<400> tggatc	121 cgcc aggccccagg gaagggactg gagtggattg gg	42
25	<210> <211> <212> <213>	122 96 ADN Homo Sapiens	
30	<400> cgggtca	122 acca tatcagtaga gacatccaag aaccagttct ccctgaggct gagctctgtg	60
00	accgcc	gcgg actcggctgt ctattactgt gcgagc	96
35	<210> <211> <212> <213>	123 30 ADN Homo Sapiens	
40	<400> ggtggg	123 tcct tcagtggata ctactggagt	30
45	<210> <211> <212> <213>	124 48 ADN Homo Sapiens	
50	<400> gaaatc	124 gatc atagtggaac caccaactac aacccgtccc tcaagagt	48
55	<210> <211> <212> <213>	125 39 ADN Homo Sapiens	
	<400> agtgga	125 tatt gttctcatgg tttatgcccc caagaggac	39
60	<210> <211> <212>	126 470 PRT	
65	<213> <400>	Homo Sapiens 126	
		y Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly	

	1				5					10					15	
5	val	His	Ser	Glu 20	val	Gln	Leu	Glu	Glu 25	Ser	Gly	Ala	Gly	Leu 30	Leu	Lys
10	Pro	Ser	Glu 35	Thr	Leu	Ser	Leu	Thr 40	Cys	Ala	val	Tyr	Gly 45	Gly	Ser	Phe
	Ser	Gly 50	Tyr	Tyr	Trp	Ser	Trp 55	Ile	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu
15	Glu 65	Trp	Ile	Gly	Glu	11e 70	Asp	His	Ser	Gly	Thr 75	Thr	Asn	Tyr	Asn	Pro 80
20	Ser	Leu	Lys	Ser	Arg 85	٧a٦	Thr	Ile	Ser	va1 90	Glu	Thr	Ser	Lys	Asn 95	Gln
25	Phe	Ser	Leu	Arg 100	Leu	Ser	Ser	val	Thr 105	Ala	Ala	Asp	Ser	Ala 110	val	Tyr
30	Tyr	Cys	Ala 115	Ser	Ser	Gly	Tyr	Cys 120	Ser	His	Gly	Leu	Cys 125	Pro	Gln	Glu
	Asp	Trp 130	Gly	Gln	Gly	Thr	Leu 135	val	Thr	val	Ser	Ser 140	Ala	Ser	Thr	Lys
35	Gly 145	Pro	Ser	val	Phe	Pro 150	Leu	Ala	Pro	Ser	Ser 155	Lys	Ser	Thr	Ser	Gly 160
40	Gly	Thr	Ala	Ala	Leu 165	Gly	Cys	Leu	val	Lys 170	Asp	Tyr	Phe	Pro	Glu 175	Pro
45	val	Thr	val	Ser 180	Trp	Asn	Ser	Gly	Ala 185	Leu	Thr	Ser	Gly	Val 190	His	Thr
50	Phe	Pro	Ala 195	val	Leu	Gln	Ser	Ser 200	Gly	Leu	Tyr	Ser	Leu 205	Ser	Ser	val
	val	Thr 210	val	Pro	Ser	Ser	Ser 215	Leu	Gly	Thr	Gln	Thr 220	Tyr	Ile	Cys	Asn
55	Va1 225	Asn	His	Lys	Pro	Ser 230	Asn	Thr	Lys	٧al	Asp 235	Lys	Arg	val	Glu	Pro 240
60	Lys	Ser	Cys	Asp	Lys 245	Thr	His	Thr	Cys	Pro 250	Pro	Cys	Pro	Ala	Pro 255	Glu
65	Leu	Leu	Gly	G]y 260	Pro	Ser	val	Phe	Leu 265	Phe	Pro	Pro	Lys	Pro 270	Lys	Asp
	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	٧a٦	Thr	Cys	val	val	٧a٦	Asp

			275					280					285			
5	val	Ser 290	His	Glu	Asp	Pro	Glu 295	val	Lys	Phe	Asn	Trp 300	Tyr	val	Asp	Gly
10	va1 305	Glu	val	ніѕ	Asn	Ala 310	Lys	Thr	Lys	Pro	Arg 315	Glu	Glu	Gln	Tyr	Asn 320
	Ser	Thr	Tyr	Arg	va1 325	val	Ser	val	Leu	Thr 330	val	Leu	His	Gln	Asp 335	Trp
15	Leu	Asn	Gly	Lys 340	Glu	Tyr	Lys	Cys	Lys 345	val	Ser	Asn	Lys	Ala 350	val	Pro
20	Ala	Pro	Ile 355	Glu	Lys	Thr	Ile	ser 360	Lys	Ala	Lys	Gly	Gln 365	Pro	Arg	Glu
25	Pro	Gln 370	val	Tyr	Thr	Leu	Pro 375	Pro	Ser	Arg	Glu	Glu 380	Met	Thr	Lys	Asn
30	Gln 385	val	Ser	Leu	Thr	Cys 390	Leu	val	Lys	Gly	Phe 395	Tyr	Pro	Ser	Asp	Ile 400
	Ala	val	Glu	Trp	G1u 405	Ser	Asn	Gly	Gln	Pro 410	Glu	Asn	Asn	Tyr	Lys 415	Thr
35	Thr	Pro	Pro	va1 420	Leu	Asp	Ser	Asp	Gly 425	Ser	Phe	Phe	Leu	Tyr 430	Ser	Lys
40	Leu	Thr	Val 435	Asp	Lys	Ser	Arg	Trp 440	Gln	Gln	Gly	Asn	Val 445	Phe	Ser	Cys
45	Ser	va1 450	Met	His	Glu		Leu 455		Asn	His		Thr 460		Lys	Ser	Leu
50	Ser 465	Leu	Ser	Pro	Gly	Lys 470										
55	<210 <211 <212 <213	L> 2 2> 1	L27 25 PRT	Sap	iens											
	<400		127	•												
60	Glu 1	val	Gln	Leu	Glu 5	Glu	Ser	Gly	Ala	Gly 10	Leu	Leu	Lys	Pro	Ser 15	Glu
65	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	val	Tyr 25							
	<210		128 1 <i>4</i>													

```
<212>
           PRT
           Homo Sapiens
    <400> 128
5
    Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly 1 	 5 	 10
    <210>
           129
10
    <211>
            32
     <212>
           PRT
     <213>
           Homo Sapiens
    <400>
           129
    Arg Val Thr Ile Ser Val Glu Thr Ser Lys Asn Gln Phe Ser Leu Arg
1 10 15
20
    Leu Ser Ser Val Thr Ala Ala Asp Ser Ala Val Tyr Tyr Cys Ala Ser
20 25 30
25
    <210>
           130
    <211>
           10
    <212>
            PRT
    <213>
           Homo Sapiens
    <400>
           130
30
    Gly Gly Ser Phe Ser Gly Tyr Tyr Trp Ser 1 	 5
35
    <210>
           131
    <211>
           16
     <212>
           PRT
    <213>
           Homo Sapiens
40
    <400>
           131
    Glu Ile Asp His Ser Gly Thr Thr Asn Tyr Asn Pro Ser Leu Lys Ser 1 \hspace{1cm} 15
45
    <210>
           132
    <211>
           13
    <212>
           PRT
           Homo Sapiens
50
    <213>
    <400>
           132
    Ser Gly Tyr Cys Ser His Gly Leu Cys Pro Gln Glu Asp
55
    <210>
           133
    <211>
            690
60
     <212>
           ADN
     <213>
           Homo Sapiens
    <400> 133
                                                                            60
    atgggatgga gctgtatcat cctcttcttg gtagcaacag ctacaggtgt gcactcccta
65
    tgtgctgact cagccaccct cagtgtcagt ggccccagga gagacggcca gcattcctgt
                                                                           120
    180
```

	cct	ctact	tgg 1	tccto	ctato	ca to	gacao	cago	g cgg	gccct	caa	ggat	ttcct	tga (gcgat	tctct	240
5	ggct	tccaa	act o	ctgga	aaaca	ac gg	gccad	cctg	g aco	catca	agca	gggt	tcgaa	agc (cgggg	gatgag	300
5	gccg	gacta	att a	actgt	cago	gt gt	ggga	atagt	t cga	aaggg	gtgt	tcg	gcgga	agg (gacca	agctg	360
	acco	gtcct	tag (gtcag	gccca	aa gg	gcggd	cccc	tc	ggtca	actc	tgti	tcccg	gcc (ctcct	ctgag	420
10	gago	cttca	aag (ccaac	caago	gc ca	acact	tggtg	g tgt	tctca	ataa	gtga	actto	cta d	cccg	ggagcc	480
	gtga	acagt	tgg (cctg	gaagg	gc ag	gatag	gcago	ccc	gtca	aagg	cggg	gagt	gga g	gacca	accaca	540
15	CCC1	tccaa	aac a	aaago	caaca	aa ca	agta	acgcg	g gco	cagca	agct	acc1	tgago	ct	gacgo	ctgag	600
10	cagt	tggaa	agt (ccca	caaaa	ag ct	acag	gctgo	cag	ggtca	acgc	atga	aaggg	gag (cacc	gtggag	660
	aaga	acagt	tgg (cccct	tacag	ga at	ctto	atga	a								690
20	<210 <211 <212 <213	L> 2 2> F	134 229 PRT Homo	Sapi	iens												
25	<400)> 1	134														
30	Met 1	Gly	Trp	Ser	Cys 5	Ile	Ile	Leu	Phe	Leu 10	val	Ala	Thr	Ala	Thr 15	Gly	
	val	His	Ser	Leu 20	Cys	Ala	Asp	Ser	Ala 25	Thr	Leu	Ser	val	Ser 30	Gly	Pro	
35	Arg	Arg	Asp 35	Gly	Gln	His	Ser	Cys 40	Gly	Gly	Asn	Asn	Ile 45	Gly	Thr	Lys	
40	Ser	va1 50	His	Trp	Tyr	Gln	Gln 55	Arg	Pro	Gly	Gln	Ala 60	Pro	Leu	Leu	val	
45	Leu 65	Tyr	His	Asp	Thr	Arg 70	Arg	Pro	Ser	Arg	11e 75	Pro	Glu	Arg	Phe	Ser 80	
50	Gly	Ser	Asn	Ser	G]y 85	Asn	Thr	Ala	Thr	Leu 90	Thr	Ile	Ser	Arg	Va1 95	Glu	
	Ala	Gly	Asp	Glu 100	Ala	Asp	Tyr	Tyr	Cys 105	Gln	val	Trp	Asp	Ser 110	Arg	Arg	
55	Val	Phe	Gly 115	Gly	Gly	Thr	Lys	Leu 120	Thr	val	Leu	Gly	Gln 125	Pro	Lys	Ala	
60	Ala	Pro 130	Ser	val	Thr	Leu	Phe 135	Pro	Pro	Ser	Ser	Glu 140	Glu	Leu	Gln	Ala	
65	Asn 145	Lys	Ala	Thr	Leu	Val 150	Cys	Leu	Ile	Ser	Asp 155	Phe	Tyr	Pro	Gly	Ala 160	
	Val	Thr	Val	ΔΊа	Trn	LVS	Δla	Δsn	Ser	Ser	Pro	Val	LVS	Δla	Glv	Val	

165 170 175 Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser 5 185 180 Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Lys Ser Tyr 195 200 10 Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala 210 215 220 15 Pro Thr Glu Ser Ser <210> 135 20 <211> 21 <212> PRT <213> Homo Sapiens <400> 135 25 Leu Cys Ala Asp Ser Ala Thr Leu Ser Val Ser Gly Pro Arg Asp 1 10 15 30 Gly Gln His Ser Cys 20 35 <210> 136 11 <211> <212> PRT <213> Homo Sapiens 40 <400> 136 Gly Gly Asn Asn Ile Gly Thr Lys Ser Val His $1 \hspace{1cm} 10$ 45 <210> 137 <211> 15 <212> PRT <213> Homo Sapiens 50 <400> 137 Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Leu Leu Val Leu Tyr 1 5 10 15 55 <210> 138 <211> <212> PRT 60 <213> Homo Sapiens <400> 138 His Asp Thr Arg Arg Pro Ser 1 5 65 <210> 139

```
<211>
            32
     <212>
            PRT
            Homo Sapiens
     <400>
            139
 5
    Arg Ile Pro Glu Arg Phe Ser Gly Ser Asn Ser Gly Asn Thr Ala Thr 1 10 15
10
     Leu Thr Ile Ser Arg Val Glu Ala Gly Asp Glu Ala Asp Tyr Tyr Cys
20 25 30
     <210>
            140
15
     <211>
            8
     <212>
            PRT
            Homo Sapiens
     <400>
            140
20
    Gln Val Trp Asp Ser Arg Arg Val
25
     <210>
            141
            1428
     <211>
            ADN
            Homo Sapiens
30
     <400>
     atgggatgga gctgtatcat cctcttcttg gtagcaacag ctacaggtgt ccactcccag
                                                                             60
                                                                            120
     gtgcagctgt tggagtcagg gggaggcttg gtccagccgg gggggtccct gagactctcc
35
     tgtgcagcct ctggattcag ctttggcgac tattggatga gttgggtccg ccaggctcca
                                                                            180
                                                                            240
     gggaagggcc tggagtgggt ggccgacata aagccagatg gcagtgacaa agactatgtg
40
     gactctgtga agggccgatt caccatctcc agagacaacg ccaagaactc actgtatctg
                                                                            300
                                                                            360
     caaatgagca gcctgcgagg cgaagacacg gctgtctatt attgtgcgag agactatgtc
                                                                            420
     gtcgtcgcac catctcaacc cccaaacatt caccctgaat acttccagaa ctggggccag
45
     ggcaccctgg tcatcgtctc ctcagcctcc accaagggcc catcggtctt ccccctggca
                                                                            480
     ccctcctcca agagcacctc tgggggcaca gcggccctgg gctgcctggt caaggactac
                                                                            540
                                                                            600
50
     ttccccgaac cggtgacggt gtcgtggaac tcaggcgccc tgaccagcgg cgtgcacacc
                                                                            660
     ttcccggctg tcctacagtc ctcaggactc tactccctca gcagcgtggt gaccgtgccc
                                                                            720
     tccagcagct tgggcaccca gacctacatc tgcaacgtga atcacaagcc cagcaacacc
55
     aaggtggaca agagagtgag ctgtgacaaa actcacacat gcccaccgtg cccagcacct
                                                                            780
                                                                            840
     gaactcctgg ggggaccgtc agtcttcctc ttccccccaa aacccaagga caccctcatg
60
     atctcccgga cccctgaggt cacatgcgtg gtggtggacg tgagccacga agaccctgag
                                                                            900
                                                                            960
     gtcaagttca actggtacgt ggacggcgtg gaggtgcata atgccaagac aaagccgcgg
                                                                           1020
     gaggagcagt acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtcct gcaccaggac
65
                                                                           1080
     tggctgaatg gcaaggagta caagtgcaag gtctccaaca aagccctccc agcccccatc
                                                                           1140
     gagaaaacca tctccaaagc caaagggcag ccccgagaac cacaggtgta caccctgccc
```

	ccat	ccc	ggg a	aggag	gatga	ac ca	aagaa	accag	gto	cagco	ctga	cctg	gcct	ggt	caaag	ggcttc	: :	1200
E	tato	ccag	gcg a	acato	gccg	gt gg	gagto	gggag	gago	caato	gggc	agco	ggag	gaa d	caact	tacaag	j :	1260
5	acca	acgc	ctc o	ccgt	gctgg	ga ct	ccga	acggo	tco	cttct	ttcc	tcta	atago	caa g	gctca	accgtg	j :	1320
	gaca	aagag	gca g	ggtgg	gcago	a gg	gggaa	acgto	tto	ctcat	tgct	ccgt	tgat	gca 1	tgagg	gctctg	j :	1380
10	caca	aacca	act a	acaco	gcaga	aa ga	agcct	tctc	cto	gtcto	ccgg	gtaa	aatga	a				1428
15	<210 <211 <212 <213	L> 4 2> F	L42 475 PRT Homo	Sapi	iens													
	<400)> 1	142															
20	Met 1	Gly	Trp	Ser	Cys 5	Ile	Ile	Leu	Phe	Leu 10	val	Ala	Thr	Ala	Thr 15	Gly		
25	val	His	Ser	G]n 20	val	Gln	Leu	Leu	Glu 25	Ser	Gly	Gly	Gly	Leu 30	Val	Gln		
30	Pro	Gly	G]y 35	Ser	Leu	Arg	Leu	Ser 40	Cys	Ala	Ala	Ser	Gly 45	Phe	Ser	Phe		
	Gly	Asp 50	Tyr	Trp	Met	Ser	Trp 55	٧a٦	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu		
35	Glu 65	Trp	val	Ala	Asp	11e 70	Lys	Pro	Asp	Gly	Ser 75	Asp	Lys	Asp	Tyr	Va1 80		
40	Asp	Ser	val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Ala	Lys 95	Asn		
45	Ser	Leu	Tyr	Leu 100	Gln	Met	Ser	Ser	Leu 105	Arg	Gly	Glu	Asp	Thr 110	Ala	Val		
50	Tyr	Tyr	Cys 115	Ala	Arg	Asp	Tyr	val 120	val	val	Ala	Pro	Ser 125	Gln	Pro	Pro		
	Asn	Ile 130	His	Pro	Glu	Tyr	Phe 135	Gln	Asn	Trp	Gly	Gln 140	Gly	Thr	Leu	Val		
55	Ile 145	val	Ser	Ser	Ala	Ser 150	Thr	Lys	Gly	Pro	Ser 155	val	Phe	Pro	Leu	Ala 160		
60	Pro	Ser	Ser	Lys	Ser 165	Thr	Ser	Gly	Gly	Thr 170	Ala	Ala	Leu	Gly	Cys 175	Leu		
65	val	Lys	Asp	Tyr 180	Phe	Pro	Glu	Pro	Val 185	Thr	val	ser	Trp	Asn 190	Ser	Gly		
	Ala	Leu	Thr	Ser	Gly	٧a٦	His	Thr	Phe	Pro	Ala	٧a٦	Leu	Gln	Ser	Ser		

			195					200					205			
5	Gly	Leu 210	Tyr	Ser	Leu	Ser	Ser 215	val	val	Thr	val	Pro 220	Ser	Ser	Ser	Leu
10	Gly 225	Thr	Gln	Thr	Tyr	Ile 230	Cys	Asn	val	Asn	Нis 235	Lys	Pro	Ser	Asn	Thr 240
	Lys	val	Asp	Lys	Arg 245	val	Ser	Cys	Asp	Lys 250	Thr	His	Thr	Cys	Pro 255	Pro
15	Cys	Pro	Ala	Pro 260	Glu	Leu	Leu	Gly	Gly 265	Pro	Ser	val	Phe	Leu 270	Phe	Pro
20	Pro	Lys	Pro 275	Lys	Asp	Thr	Leu	Met 280	Ile	Ser	Arg	Thr	Pro 285	Glu	val	Thr
25	Cys	va1 290	val	val	Asp	val	Ser 295	His	Glu	Asp	Pro	G]u 300	val	Lys	Phe	Asn
30	Trp 305	Tyr	val	Asp	Gly	val 310	Glu	val	His	Asn	Ala 315	Lys	Thr	Lys	Pro	Arg 320
	Glu	Glu	Gln	Tyr	Asn 325	Ser	Thr	Tyr	Arg	va1 330	val	Ser	val	Leu	Thr 335	۷a٦
35	Leu	ніѕ	Gln	Asp 340	Trp	Leu	Asn	Gly	Lys 345	Glu	Tyr	Lys	Cys	Lys 350	val	Ser
40	Asn	Lys	Ala 355	Leu	Pro	Ala	Pro	Ile 360	Glu	Lys	Thr	Ile	Ser 365	Lys	Ala	Lys
45	Gly	Gln 370	Pro	Arg	Glu	Pro	Gln 375	val	Tyr	Thr	Leu	Pro 380	Pro	Ser	Arg	Glu
50	Glu 385	Met	Thr	Lys	Asn	G1n 390	val	Ser	Leu	Thr	Cys 395	Leu	val	Lys	Gly	Phe 400
	Tyr	Pro	Ser	Asp	Ile 405	Ala	val	Glu	Trp	Glu 410	Ser	Asn	Gly	Gln	Pro 415	Glu
55	Asn	Asn	Tyr	Lys 420	Thr	Thr	Pro	Pro	va1 425	Leu	Asp	Ser	Asp	Gly 430	Ser	Phe
60	Phe	Leu	Tyr 435	Ser	Lys	Leu	Thr	va1 440	Asp	Lys	Ser	Arg	Trp 445	Gln	Gln	Gly
65	Asn	va1 450	Phe	Ser	Cys	Ser	va1 455	Met	нis	Glu	Ala	Leu 460	ніѕ	Asn	нis	Tyr
	Thr	Gln	Lys	Ser	Leu	Ser	Leu	Ser	Pro	Gly	Lys					

```
465
                        470
                                            475
           143
    <210>
    <211>
           25
    <212>
           PRT
    <213>
           Homo Sapiens
    <400> 143
10
    Gln Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
    Ser Leu Arg Leu Ser Cys Ala Ala Ser
20 25
15
                20
    <210>
           144
    <211>
20
           10
    <212>
           PRT
    <213>
           Homo Sapiens
    <400> 144
25
    Gly Phe Ser Phe Gly Asp Tyr Trp Met Ser 1 5
30
    <210>
           145
    <211>
           14
    <212>
           PRT
    <213>
           Homo Sapiens
35
    <400> 145
    Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala 1 5 10
40
    <210>
           146
    <211>
           17
    <212>
           PRT
    <213>
           Homo Sapiens
45
    <400> 146
    Asp Ile Lys Pro Asp Gly Ser Asp Lys Asp Tyr Val Asp Ser Val Lys 1 \hspace{1cm} 15
50
    Gly
55
    <210>
           147
    <211>
           32
    <212>
           PRT
    <213>
           Homo Sapiens
60
    <400> 147
    65
    Met Ser Ser Leu Arg Gly Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg
20 25 30
```

```
<210>
            148
     <211>
            20
 5
     <212>
            PRT
            Homo Sapiens
     <213>
     <400>
            148
     Asp Tyr Val Val Val Ala Pro Ser Gln Pro Pro Asn Ile His Pro Glu
10
                                          10
     Tyr Phe Gln Asn
15
            149
     <210>
            702
     <211>
20
     <212>
            ADN
     <213>
            Homo Sapiens
     <400>
           149
     atgggctggt cctgcatcat cctgtttctg gtggccaccg ccaccggcgt gcactcctcc
                                                                             60
25
     tacgtgctga cccagcctcc ttccgtgtcc gtgtcccctg gccagaccgc ccggatcacc
                                                                            120
                                                                            180
     tgctccggcg acgccctgcc taagcagtac acctactggt atcagcagaa gcccggccag
30
    gcccctgtgg tggtgatcta caaggactcc gagcggcctt ccggcatccc tgagcggttc
                                                                            240
     tccggctcct cctccggcac caccgtgacc gtgaccatct ccggcgtgca ggccgaggac
                                                                            300
                                                                            360
     gaggccgact actactgcca gtccgccgac tccagcggca cctccctggt gtttggcggc
35
     ggaacaaagc tgaccgtgct gggccagcct aaggccgctc cctccgtgac cctgttccct
                                                                            420
     ccttcctccg aggaactgca ggccaacaag gccaccctgg tgtgcctgat ctccgacttc
                                                                            480
40
     taccctggcg ctgtgaccgt ggcctggaag gctgactcct cccctgtgaa ggccggcgtg
                                                                            540
     gagacaacca ccccttccaa gcagtccaac aacaagtacg ccgcctcctc ctacctgtcc
                                                                            600
                                                                            660
     ctgacccctg agcagtggaa gtcccacaag tcctacagct gccaggtgac ccacgagggc
45
                                                                            702
     tccaccgtgg aaaagaccgt ggcccctacc gagtcctcct ga
     <210>
            150
            294
50
     <211>
     <212>
            ADN
     <213>
            Homo Sapiens
     <400>
           150
     tcctacgtgc tgacccagcc tccttccgtg tccgtgtccc ctggccagac cgcccggatc
                                                                             60
55
     acctgctccg gcgacgccct gcctaagcag tacacctact ggtatcagca gaagcccggc
                                                                            120
     caggccctg tggtggtgat ctacaaggac tccgagcggc cttccggcat ccctgagcgg
                                                                            180
60
     ttctccggct cctcctccgg caccaccgtg accgtgacca tctccggcgt gcaggccgag
                                                                            240
                                                                            294
     gacgaggccg actactactg ccagtccgcc gactccagcg gcacctccct ggtg
65
     <210>
            151
     <211>
            66
     <212>
            ADN
```

	<213>	Homo Sapiens					
5	<400> tcctaco	151 gtgc tgacccagcc	tccttccgtg	tccgtgtccc	ctggccagac	cgcccggatc	60
Ü	acctgc						66
10	<210> <211> <212> <213>	152 33 ADN Homo Sapiens					
15	<400> tccggcg	152 gacg ccctgcctaa	gcagtacacc	tac			33
20	<210> <211> <212> <213>	153 45 ADN Homo Sapiens					
25	<400> tggtato	153 cagc agaagcccgg	ccaggcccct	gtggtggtga	tctac		45
30	<210> <211> <212> <213>	154 21 ADN Homo Sapiens					
		154 tccg agcggccttc	С				21
35	<210> <211> <212> <213>	155 96 ADN Homo Sapiens					
40	<400> ggcatco	155 cctg agcggttctc	cggctcctcc	tccggcacca	ccgtgaccgt	gaccatctcc	60
45	ggcgtg	cagg ccgaggacga	ggccgactac	tactgc			96
50	<210> <211> <212> <213>	156 33 ADN Homo Sapiens					
	<400> cagtccg	156 gccg actccagcgg	cacctccctg	gtg			33
55	<210> <211> <212> <213>	157 294 ADN Homo Sapiens					
60	<400> tcctato	157 gtgc tgactcagcc	accctcggtg	tcggtgtccc	caggacagac	ggccaggatc	60
65	acctgct	tctg gagatgcatt	gccaaagcaa	tatacttatt	ggtaccagca	gaagccaggc	120
65	caggcc	cctg tggtggtgat	ctataaagac	agtgagaggc	cctcagggat	ccctgagcga	180
	ttctctc	ggct ccagctcagg	gacaacagtc	acqqtqacca	tcagtggagt	ccaggcagaa	240

	gacgaggctg actattattg tcaatcagca gacagcagtg gtacttccct ggtg	294
5	<210> 158 <211> 98 <212> PRT <213> Homo Sapiens	
10	<400> 158	
	Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Gln 10 15	
15	Thr Ala Arg Ile Thr Cys Ser Gly Asp Ala Leu Pro Lys Gln Tyr Thr 20 25 30	
20	Tyr Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Val Val Ile Tyr 35 40 45	
25	Lys Asp Ser Glu Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 60	
30	Ser Ser Gly Thr Thr Val Thr Val Thr Ile Ser Gly Val Gln Ala Glu 65 70 75 80	
	Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Ala Asp Ser Ser Gly Thr Ser	
35	Leu Val	
40	<210> 159 <211> 345 <212> ADN <213> Homo Sapiens	
45	<400> 159 gaggtgcagc tggtggagtc tgggggaggc ttggtccagc ctggggggtc cctgagactc	60
	tcctgttcag cctctggttt cacctttagt agttattgga tgagctgggt ccgccaggct	120
50	ccagggaagg ggctggagtg ggtcgccaac ataatacaag atggaagtga gaaatactat	180
	gcggactctg tgaagggccg gctcaccatc tccagagaca acgccaagaa ctcactatat	240
	ctgcagatga acagcctgag agtcgacgac acggctgtgt attattgtgc gagaggatat	300
55	gaggggtgta gtgcaaccag gtgctacctg tactactttg actat	345
60	<210> 160 <211> 115 <212> PRT <213> Homo Sapiens	
e E	<400> 160	
65	Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15	

	Ser Leu Arg Leu Ser Cys Ser Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30	
5	Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45	
10	Ala Asn Ile Ile Gln Asp Gly Ser Glu Lys Tyr Tyr Ala Asp Ser Val	
15	Lys Gly Arg Leu Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 75 80	
20	Leu Gln Met Asn Ser Leu Arg Val Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95	
	Ala Arg Gly Tyr Glu Gly Cys Ser Ala Thr Arg Cys Tyr Leu Tyr Tyr 100 105 110	
25	Phe Asp Tyr 115	
30	<210> 161 <211> 645 <212> ADN <213> Homo Sapiens	
35	<400> 161 tcctacgtgc tgacccagcc tccttccgtg tccgtgtccc ctggccagac cgcccggatc	60
	acctgctccg gcgacgccct gcctaagcag tacacctact ggtatcagca gaagcccggc	120
40	caggcccctg tggtggtgat ctacaaggac tccgagcggc cttccggcat ccctgagcgg	180
	ttctccggct cctcctccgg caccaccgtg accgtgacca tctccggcgt gcaggccgag	240
	gacgaggccg actactactg ccagtccgcc gactccagcg gcacctccct ggtgtttggc	300
45	ggcggaacaa agctgaccgt gctgggccag cctaaggccg ctccctccgt gaccctgttc	360
	cctccttcct ccgaggaact gcaggccaac aaggccaccc tggtgtgcct gatctccgac	420
50	ttctaccctg gcgctgtgac cgtggcctgg aaggctgact cctcccctgt gaaggccggc	480
	gtggagacaa ccaccccttc caagcagtcc aacaacaagt acgccgcctc ctcctacctg	540
	tccctgaccc ctgagcagtg gaagtcccac aagtcctaca gctgccaggt gacccacgag	600
55	ggctccaccg tggaaaagac cgtggcccct accgagtcct cctga	645
60	<210> 162 <211> 1362 <212> ADN <213> Homo Sapiens	
65	<400> 162 gaggtgcagc tggtcgagtc tggcggcgga ctggtgcagc ctggcggctc cctgcggctg	60
	trefactors retrespett careffects trefactors tatestaget acquired	

	cctggcaagg	gcctggagtg	ggtggccaac	atcatccagg	acggctccga	gaagtactac	180
	gccgactccg	tgaagggccg	gctgaccatc	tcccgggaca	acgccaagaa	ctccctgtac	240
5	ctgcagatga	actccctgcg	ggtggacgac	accgccgtgt	actactgcgc	caggggctac	300
	gagggctgct	ccgccacccg	gtgctacctg	tactacttcg	actactgggg	ccctggcacc	360
10	ctggtgaccg	tgtcctccgc	ctccaccaag	ggcccttccg	tgttccctct	ggccccttcc	420
10	tccaagtcca	cctccggcgg	caccgccgct	ctgggctgcc	tggtgaagga	ctacttccct	480
	gagcctgtga	ccgtgagctg	gaactctggc	gccctgacca	gcggcgtgca	caccttccct	540
15	gccgtgctgc	agtcctccgg	cctgtactcc	ctgtcctccg	tggtgacagt	gccttcctcc	600
	tccctgggca	cccagaccta	catctgcaac	gtgaaccaca	agccttccaa	caccaaggtg	660
20	gacaagcggg	tggagcctaa	gtccggccct	ccttgccctc	cctgccctgc	ccctgagctg	720
20	ctgggcggac	cctccgtgtt	cctgttccct	cctaagccta	aggacaccct	gatgatctcc	780
	cggacccctg	aggtgacctg	cgtggtggtg	gacgtgtccc	acgaggatcc	tgaggtgaag	840
25	ttcaattggt	acgtggacgg	cgtggaggtg	cacaacgcta	agaccaagcc	tcgggaggaa	900
	cagtacaact	ccacctaccg	ggtggtgcgg	gtgctgaccg	tgctgcacca	ggactggctg	960
30	aacggcaagg	aatacaagtg	caaggtctcc	aacaaggctc	tgcctgcccc	catcgaaaag	1020
30	accatctcca	aggccaaggg	ccagcctcgc	gagcctcagg	tgtacaccct	gcccccagc	1080
	cgggaggaaa	tgaccaagaa	ccaggtgtcc	ctgacctgtc	tggtgaaggg	cttctaccct	1140
35	tccgatatcg	ccgtggagtg	ggagtccaac	ggccagcctg	aggacaacta	caagaccacc	1200
	cctcctgtgc	tggactccga	cggctccttc	ttcctgtact	ccaagctgac	cgtggacaag	1260
40	tcccggtggc	agcagggcaa	cgtgttctcc	tgctccgtga	tgcacgaggc	cctgcacaac	1320
40	cactacaccc	agaagtccct	gtccctgtct	ctgggcaagt	ga		1362
45	<210> 163 <211> 1419 <212> ADN <213> Homo) o Sapiens					
50	<400> 163	cctacatcat	cctatttcta	gtggccaccg	ccaccaacat	acactecaaa	60
30				gtgcagcctg			120
				tactggatgt			180
55				atccaggacg			240
				cgggacaacg			300
60				gccgtgtact			360
00				tacttcgact			420
				ccttccgtgt			480
65				ggctgcctgg			540
							600
	ccigigacty	cyayctyyad	ciciggcycc	ctgaccagcg	gcytycacac	criccigc	000

	gtgctgcag ⁻	t cctccggcct	gtactccctg	tcctccgtgg	tgacagtgcc	ttcctcctcc	660
_	ctgggcacc	c agacctacat	ctgcaacgtg	aaccacaagc	cttccaacac	caaggtggac	720
5	aagcgggtg	g agcctaagtc	cggccctcct	tgccctccct	gccctgcccc	tgagctgctg	780
	ggcggaccc	t ccgtgttcct	gttccctcct	aagcctaagg	acaccctgat	gatctcccgg	840
10	acccctgag	g tgacctgcgt	ggtggtggac	gtgtcccacg	aggatcctga	ggtgaagttc	900
	aattggtac	g tggacggcgt	ggaggtgcac	aacgctaaga	ccaagcctcg	ggaggaacag	960
15	tacaactcc	a cctaccgggt	ggtgcgggtg	ctgaccgtgc	tgcaccagga	ctggctgaac	1020
15	ggcaaggaa	t acaagtgcaa	ggtctccaac	aaggctctgc	ctgccccat	cgaaaagacc	1080
	atctccaag	g ccaagggcca	gcctcgcgag	cctcaggtgt	acaccctgcc	cac caaggtggac cac tgagctgctg gat gatctcccgg ggaggaacag ga ctggctgaac cat cgaaaagacc cat cgaaaagacc caa gaccaccct cga ggacaagtcc cat gcacaaccac cct gcacaaccac cct cctgcggctg ggt gcggcaggct cga gaagtactac gaa ctccctgtac cac caggggctac cac caggggctac cac cctgcggctg cacacccct caca cccctgtac cacacccct cacacccct cacacccct cacaccccct cacaccccct cacaccaccccc ccccagccgg ccccccagccgg cccccccc	1140
20	gaggaaatg	a ccaagaacca	ggtgtccctg	acctgtctgg	tgaagggctt	ctacccttcc	1200
	gatatcgcc	g tggagtggga	gtccaacggc	cagcctgagg	acaactacaa	gaccacccct	1260
25	cctgtgctg	g actccgacgg	ctccttcttc	ctgtactcca	agctgaccgt	ggacaagtcc	1320
25	cggtggcag	c agggcaacgt	gttctcctgc	tccgtgatgc	acgaggccct	gcacaaccac	1380
	tacacccag	a agtccctgtc	cctgtctctg	ggcaagtga			1419
30	<210> 16- <211> 34 <212> ADI <213> Hor	5					
35	<400> 16	4	tggcggcgga	ctggtgcagc	ctggcggctc	cctgcggctg	60
	tcctgctcc	g cctccggctt	caccttctcc	tcctactgga	tgtcctgggt	gcggcaggct	120
40	cctggcaag	g gcctggagtg	ggtggccaac	atcatccagg	acggctccga	gaagtactac	180
	gccgactcc	g tgaagggccg	gctgaccatc	tcccgggaca	acgccaagaa	ctccctgtac	240
45	ctgcagatg	a actccctgcg	ggtggacgac	accgccgtgt	actactgcgc	caggggctac	300
	gagggctgc	t ccgccacccg	gtgctacctg	tactacttcg	actac		345
50	<210> 16 <211> 75 <212> ADI <213> HOI						
55	<400> 16 gaggtgcag		tggcggcgga	ctggtgcagc	ctggcggctc	cctgcggctg	60
	tcctgctcc	g cctcc					75
60	<210> 160 <211> 30 <212> AD0 <213> Hor						
65	<400> 16		ctggatgtcc				30

5	<210> <211> <212> <213>	167 42 ADN Homo Sapiens					
	<400> tgggtg	167 cggc aggctcctgg	caagggcctg	gagtgggtgg	СС		42
10	<210><211><211><212><213>	168 51 ADN Homo Sapiens					
15	<400>	168 atcc aggacggctc	cgagaagtac	tacgccgact	ccgtgaaggg	c	51
20	<210> <211> <212> <213>	169 96 ADN Homo Sapiens					
25	<400> cggctga	169 acca tctcccggga	caacgccaag	aactccctgt	acctgcagat	gaactccctg	60
	cgggtg	gacg acaccgccgt	gtactactgc	gccagg			96
30	<210> <211> <212> <213>	170 51 ADN					
35	<400>	Homo Sapiens 170 gagg gctgctccgc	cacccggtgc	tacctgtact	acttcgacta	С	51
40	<210> <211> <212> <213>	171 291 ADN Homo Sapiens					
45	<400> gacatc	171 gagc tgacccagto	cccctccttc	ctgtccgcct	ccgtgggcga	ccgggtggcc	60
	atcacc ⁻	tgcc gggcctccca	gggcatctcc	aactacctgg	cctggtatca	gcagaagcct	120
50	ggcaag	gccc ctaagctgct	gatctacgcc	gccttcgtgc	tgcagtccgg	cgtgccttcc	180
	cggttc	tccg gctccggcag	cggcaccgag	ttcaccctga	ccatctccaa	cctgcagcct	240
55	gaggac	ttcg ccacctacta	ctgccagcag	ctgaactcct	accctcgggc	С	291
60	<210> <211> <212> <213>	172 330 ADN Homo Sapiens					
	<400> gaggtg	172 cagc tggaggaatc	cggcgctggc	ctgctgaagc	cttccgagac	actgtccctg	60
65	acctgc	gccg tgtacggcgg	ctccttctcc	ggctactact	ggtcctggat	ccggcaggct	120
		aagg gcctggagtg					180

	ccttccctga agtcccgggt gaccatctcc gtggagacat ccaagaacca gttctccctg	240
	cggctgtcct ccgtgaccgc cgctgactcc gccgtgtact actgcgcctc cagcggctac	300
5	tgctcccacg gcctgtgccc tcaggaagat	330
10	<210> 173 <211> 291 <212> ADN <213> Homo Sapiens	
	<400> 173 gacgttgagc tgacccagtc tccttccacc ctgtctgcat ctgtaggaga cagagtcacc	60
15	atcacttgcc gggccagtca gagtattagt agctggttgg cctggtatca gcagaaacca	120
	gggaaagccc ctaagctcct gatctataag gcgtctagtt tagaaagtgg ggtcccatca	180
20	aggttcagcg gcagtggatc tgggacagaa ttcactctca ccatcagcag cctgcagcct	240
	gatgattttg caacttatta ctgccaacag tataatagtt atccgtggac g	291
25	<210> 174 <211> 97 <212> PRT <213> Homo Sapiens	
30	<400> 174	
	Asp Val Glu Leu Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15	
35	Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Trp 20 25 30	
40	Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45	
45	Tyr Lys Ala Ser Ser Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60	
50	Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80	
	Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Tyr Pro Trp 85 90 95	
55	Thr	
60	<210> 175 <211> 348 <212> ADN <213> Homo Sapiens	
65	<400> 175 caggtacagc tggtgcagtc tgggggaggc ctggtcaagc ctggggggtc cctgagactc	60
	tcctgtgcag cctctggatt caccttcagt agctatagca tgaactgggt ccgccaggct	120

	ccagggaagg ggctggagtg ggtctcatcc attagtagta gtagtagtta catatactac	180
_	gcagactcag tgaagggccg attcaccatc tccagagaca acgccaagaa ctcactgtat	240
5	ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagggggg	300
	gtggctggtc gaaccgaaat ttactactac tactacggta tggacgtc	348
10	<210> 176 <211> 116 <212> PRT <213> Homo Sapiens	
15	<400> 176	
	Gln Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val Lys Pro Gly Gly	
20	1 5 10 15	
	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30	
25	Ser Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45	
30	Ser Ser Ile Ser Ser Ser Ser Tyr Ile Tyr Tyr Ala Asp Ser Val 50 60	
35	Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 75 80	
40	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95	
	Ala Arg Gly Gly Val Ala Gly Arg Thr Glu Ile Tyr Tyr Tyr Tyr 100 105 110	
45	Gly Met Asp Val 115	
50	<210> 177 <211> 699 <212> ADN <213> Homo Sapiens	
55	<400> 177 atgggctggt cctgcatcat cctgtttctg gtggccaccg ccaccggcgt gcactccgac	60
	atcgagctga cccagtcccc ctccttcctg tccgcctccg tgggcgaccg ggtggccatc	120
60	acctgccggg cctcccaggg catctccaac tacctggcct ggtatcagca gaagcctggc	180
	aaggccccta agctgctgat ctacgccgcc ttcgtgctgc agtccggcgt gccttcccgg	240
65	ttctccggct ccggcagcgg caccgagttc accctgacca tctccaacct gcagcctgag	300
J.	gacttcgcca cctactactg ccagcagctg aactcctacc ctcgggcctt cggccctggc	360
	accaaggtgg acatcaagcg gaccgtggcc gctccttccg tgttcatctt ccctcctcc	420

	gacgagcagc	tgaagtccgg	caccgccagc	gtggtgtgcc	tgctgaacaa	cttctacccc	480
E	cgggaggcca	aggtgcagtg	gaaggtggac	aacgccctgc	agagcggcaa	ctcccaggaa	540
5	tccgtcaccg	agcaggactc	caaggacagc	acctactccc	tgtcctccac	cctgaccctg	600
	tccaaggccg	actacgagaa	gcacaaggtg	tacgcctgcg	aggtgaccca	ccagggcctg	660
10	tccagccctg	tgaccaagtc	cttcaaccgg	ggcgagtga			699
15	<210> 178 <211> 282 <212> ADN <213> Homo	Sapiens					
00	<400> 178 ctgtgcgccg	actccgccac	cctgtccgtg	tccggccctc	ggagggacgg	ccagcactcc	60
20	tgcggcggca	acaacatcgg	caccaagtcc	gtgcactggt	atcagcagcg	gcctggacag	120
	gcccctctgc	tggtgctgta	ccacgacacc	aggcggcctt	cccggatccc	tgagcggttc	180
25	tccggctcca	actccggcaa	caccgctacc	ctgaccatct	cccgggtgga	ggccggcgac	240
	gaggccgact	actactgcca	ggtgtgggac	tccaggcggg	tg		282
30	<210> 179 <211> 69 <212> ADN <213> Homo	Sapiens					
35	<400> 179 gacatcgagc	tgacccagtc	cccctccttc	ctgtccgcct	ccgtgggcga	ccgggtggcc	60
	atcacctgc						69
40	<210> 180 <211> 33 <212> ADN <213> Homo	Sapiens					
45	<400> 180 cgggcctccc	agggcatctc	caactacctg	gcc			33
50	<210> 181 <211> 45 <212> ADN <213> Homo	Sapiens					
55	<400> 181 tggtatcagc	agaagcctgg	caaggcccct	aagctgctga	tctac		45
60	<210> 182 <211> 21 <212> ADN <213> Homo	Sapiens					
65	<400> 182 gccgccttcg	tgctgcagtc	С				21
	<210> 183						

	<211> <212> <213>	96 ADN Homo Sapiens	
5	<400> ggcgtgd	183 cctt cccggttctc cggctccggc agcggcaccg agttcaccct gaccatctcc	60
	aacctg	cagc ctgaggactt cgccacctac tactgc	96
10	<210> <211> <212> <213>	184 27 ADN Homo Sapiens	
15	<400> cagcago	184 ctga actcctaccc tcgggcc	27
20	<210> <211> <212> <213>	185 642 ADN Homo Sapiens	
25	<400> gacatte	185 gagt tgacccagtc tccatccttc ctgtctgcat ctgtcggaga cagagtcgcc	60
	atcacti	tgcc gggccagtca gggcattagc aattatttag cctggtatca gcaaaaacca	120
30	gggaaag	gccc ctaagctcct gatctatgct gcattcgttt tgcaaagtgg ggtcccatca	180
	aggttca	agcg gcagtggatc tgggacagaa ttcactctca caatcagtaa cctgcagcct	240
0.5	gaagati	tttg caacttatta ctgtcaacaa cttaatagtt atcctcgcgc tttcggccct	300
35	gggacca	aaag tggatatcaa acgaactgtg gctgcaccat ctgtcttcat cttcccgcca	360
	tctgat	gagc agttgaaatc tggaactgcc tctgttgtgt gcctgctgaa taacttctat	420
40	cccaga	gagg ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag	480
	gagagt	gtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg	540
	ctgagca	aaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc	600
45	ctgagct	tcgc ccgtcacaaa gagcttcaac aggggagagt ga	642
50	<210> <211> <212> <213>	186 213 PRT Homo Sapiens	
	<400>	186	
55	Asp Ile 1	e Glu Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala Ser Val Gly 5 10 15	
60	Asp Arg	g Val Ala Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Asn Tyr 20 25 30	
65	Leu Ala	a Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45	

Tyr Ala Ala Phe Val Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly

		50					55					60					
5	Ser 65	Gly	Ser	Gly	Thr	Glu 70	Phe	Thr	Leu	Thr	11e 75	Ser	Asn	Leu	Gln	Pro 80	
10	Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	G]n 90	Leu	Asn	Ser	Tyr	Pro 95	Arg	
	Ala	Phe	Gly	Pro 100	Gly	Thr	Lys	val	Asp 105	Ile	Lys	Arg	Thr	val 110	Ala	Ala	
15	Pro	Ser	val 115	Phe	Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Lys	Ser	Gly	
20	Thr	Ala 130	Ser	val	val	Cys	Leu 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Arg	Glu	Ala	
25	Lys 145	val	Gln	Trp	Lys	Val 150	Asp	Asn	Ala	Leu	Gln 155	Ser	Gly	Asn	Ser	Gln 160	
30	Glu	Ser	val	Thr	Glu 165	Gln	Asp	Ser	Lys	Asp 170	Ser	Thr	Tyr	Ser	Leu 175	Ser	
	Ser	Thr	Leu	Thr 180	Leu	Ser	Lys	Ala	Asp 185	Tyr	Glu	Lys	His	Lys 190	val	Tyr	
35	Ala	Cys	Glu 195	val	Thr	His	Gln	G]y 200	Leu	Ser	Ser	Pro	Va1 205	Thr	Lys	Ser	
40	Phe	Asn 210	Arg	Gly	Glu												
45	<210 <211 <212 <213	L> 1 <u>2</u> > 4	ADN	Sapi	ens												
50	<400 gagg	-	187 agc 1	tgttg	gcagt	c to	ggcgd	agga	a ctg	gttga	aagc	ctto	ggag	gac (cctgt	ccctc	60
	acct	gcgo	ctg 1	tctat	ggtg	gg gt	cctt	cagt	gga	itact	act	ggag	gttgg	gat (ccgc	aggcc	120
55	ccag	gggaa	agg g	gacto	ggagt	g ga	attgo	ggaa	ato	gato	ata	gtgg	gaaco	cac o	caact	acaac	180
55	ccgt	ccct	tca a	agagt	cggg	jt ca	accat	atca	a gta	agaga	acat	ccaa	agaad	ca g	gttct	ccctg	240
	aggo	tgag	gct (tgtg	gacco	gc cg	gcgga	actcg	gct	gtct	att	acto	gtgcg	gag (cagto	gatat	300
60	tgtt	ctca	atg g	gttta	itgco	c co	aaga	aggad	tgg	ggco	agg	gaad	cctg	gt (cacco	gtctcc	360
	tcag	gccto	cca d	caag	ggco	c at	cggt	ctto	ccc	ctg	gcac	ccto	ctc	aa g	gagca	acctct	420
25	gggg	ggcad	cag d	ggco	ctg	gg ct	gcct	ggto	aag	ggact	act	tcc	cgaa	acc g	ggtga	acggtg	480
65	tcgt	ggaa	act o	caggo	gcc	t ga	accag	gcggd	gtg	gcaca	acct	tcc	ggct	gt	cctac	agtcc	540
	tcac	gact	tct a	actco	ctca	ag ca	agcgt	ggto	aco	gtgd	cct	cca	gcago	tt (gggca	acccag	600

	acctacatct gcaacgtgaa tcacaagccc agcaacacca aggtggacaa gaaagttgag	660
5	cccaaatctt gtgacaaaac tcacacatgc ccaccgtgcc cagcacctga actcctgggg	720
5	ggaccgtcag tcttcctctt cccccaaaa cccaaggaca ccctcatgat ctcccggacc	780
	cctgaggtca catgcgtggt ggtggacgtg agccacgaag accctgaggt caagttcaac	840
10	tggtacgtgg acggcgtgga ggtgcataat gccaagacaa agccgcggga ggagcagtac	900
	aacagcacgt accgtgtggt cagcgtcctc accgtcctgc accaggactg gctgaatggc	960
15	aaggagtaca agtgcaaggt ctccaacaaa gccctcccag cccccatcga gaaaaccatc	1020
.0	tccaaagcca aagggcagcc ccgagaacca caggtgtaca ccctgccccc atcccgggat	1080
	gagctgacca agaaccaggt cagcctgacc tgcctggtca aaggcttcta tcccagcgac	1140
20	atcgccgtgg agtgggagag caatgggcag ccggagaaca actacaagac cacgcctccc	1200
	gtgctggact ccgacggctc cttcttcctc tacagcaagc tcaccgtgga caagagcagg	1260
25	tggcagcagg ggaacgtctt ctcatgctcc gtgatgcatg aggctctgca caaccactac	1320
_0	acgcagaaga gcctctccct gtctccgggt aaatga	1356
30	<210> 188 <211> 451 <212> PRT <213> Homo Sapiens	
35	<400> 188	
50	Glu Val Gln Leu Leu Gln Ser Gly Ala Gly Leu Leu Lys Pro Ser Glu 1 5 10 15	
40	Thr Leu Ser Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly Tyr 20 25 30	
45	Tyr Trp Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45	
50	Gly Glu Ile Asp His Ser Gly Thr Thr Asn Tyr Asn Pro Ser Leu Lys 50 60	
	Ser Arg Val Thr Ile Ser Val Glu Thr Ser Lys Asn Gln Phe Ser Leu 65 70 80	
55	Arg Leu Ser Ser Val Thr Ala Ala Asp Ser Ala Val Tyr Tyr Cys Ala 85 90 95	
60	Ser Ser Gly Tyr Cys Ser His Gly Leu Cys Pro Gln Glu Asp Trp Gly 100 105 110	
65	Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 115 120 125	
	Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala	

		130					135					140				
5	Ala 145	Leu	Gly	Cys	Leu	val 150	Lys	Asp	Tyr	Phe	Pro 155	Glu	Pro	val	Thr	Val 160
10	Ser	Trp	Asn	Ser	Gly 165	Ala	Leu	Thr	Ser	Gly 170	val	His	Thr	Phe	Pro 175	Ala
	val	Leu	Gln	Ser 180	Ser	Gly	Leu	Tyr	Ser 185	Leu	Ser	Ser	val	Val 190	Thr	val
15	Pro	Ser	Ser 195	Ser	Leu	Gly	Thr	G]n 200	Thr	Tyr	Ile	Cys	Asn 205	val	Asn	His
20	Lys	Pro 210	Ser	Asn	Thr	Lys	val 215	Asp	Lys	Lys	val	Glu 220	Pro	Lys	Ser	Cys
25	Asp 225	Lys	Thr	ніѕ	Thr	Cys 230	Pro	Pro	Cys	Pro	Ala 235	Pro	Glu	Leu	Leu	Gly 240
30	Gly	Pro	Ser	val	Phe 245	Leu	Phe	Pro	Pro	Lys 250	Pro	Lys	Asp	Thr	Leu 255	Met
	Ile	Ser	Arg	Thr 260	Pro	Glu	val	Thr	Cys 265	val	val	٧a٦	Asp	va1 270	Ser	His
35	Glu	Asp	Pro 275	Glu	val	Lys	Phe	Asn 280	Trp	Tyr	val	Asp	Gly 285	val	Glu	Val
40	ніѕ	Asn 290	Ala	Lys	Thr	Lys	Pro 295	Arg	Glu	Glu	Gln	Tyr 300	Asn	Ser	Thr	Tyr
45	Arg 305	val	val	Ser	val	Leu 310	Thr	val	Leu	нis	Gln 315	Asp	Trp	Leu	Asn	Gly 320
50	Lys	Glu	Tyr	Lys	Cys 325	Lys	val	Ser	Asn	Lys 330	Ala	Leu	Pro	Ala	Pro 335	Ile
	Glu	Lys	Thr	Ile 340	Ser	Lys	Ala	Lys	Gly 345	Gln	Pro	Arg	Glu	Pro 350	Gln	val
55	Tyr	Thr	Leu 355	Pro	Pro	Ser	Arg	Asp 360	Glu	Leu	Thr	Lys	Asn 365	Gln	٧a٦	Ser
60	Leu	Thr 370	Cys	Leu	val	Lys	Gly 375	Phe	Tyr	Pro	Ser	Asp 380	Ile	Ala	val	Glu
65	Trp 385	Glu	Ser	Asn	Gly	G]n 390	Pro	Glu	Asn	Asn	Tyr 395	Lys	Thr	Thr	Pro	Pro 400
	val	Leu	Asp	Ser	Asp	Glv	Ser	Phe	Phe	Leu	Tyr	Ser	Lys	Leu	Thr	val

	405	410	415	
5	Asp Lys Ser Arg Trp Gln 0 420	Gln Gly Asn Val Phe 9 425	Ser Cys Ser Val Met 430	
10	His Glu Ala Leu His Asn H 435	His Tyr Thr Gln Lys 9 440	Ser Leu Ser Leu Ser 445	
	Pro Gly Lys 450			
15	<210> 189 <211> 642 <212> ADN <213> Homo Sapiens			
20	<400> 189 gacatcgagc tgacccagtc ccc	cctccttc ctgtccgcct (ccgtgggcga ccgggtggcc	60
	atcacctgcc gggcctccca ggg	gcatctcc aactacctgg (cctggtatca gcagaagcct	120
5 Hi: 10 Pro 15 <2: <2: <2: <2: <2: <2: <2: <2: <2: <2:	ggcaaggccc ctaagctgct gat	tctacgcc gccttcgtgc †	tgcagtccgg cgtgccttcc	180
	cggttctccg gctccggcag cgg	gcaccgag ttcaccctga (ccatctccaa cctgcagcct	r Val Met 0 Ccgggtggcc 60 gcagaagcct 120 cgtgccttcc 180 cctgcagcct 240 cttcggccct 300 cttccctccc 360 caacttctac 420 caactccag 480 cacctgacc 540 ccaccaggcc 600 642 actgtccctg 60 ccggcaggct 120 caactacaac 180 gttctccctg 240 cagcggctac 300 gaccgtgtcc 360 gtccacctcc 420 tgtgaccgtg 480
30	gaggacttcg ccacctacta ctg	gccagcag ctgaactcct a	accctcgggc cttcggccct	300
	ggcaccaagg tggacatcaa gcg	ggaccgtg gccgctcctt o	ccgtgttcat cttccctccc	360
35	tccgacgagc agctgaagtc cgg	gcaccgcc agcgtggtgt g	ctgtccgcct ccgtgggcga ccgggtggcc 60 aactacctgg cctggtatca gcagaagcct 120 gccttcgtgc tgcagtccgg cgtgccttcc 180 ttcaccctga ccatctccaa cctgcagcct 240 ctgaactcct accctcgggc cttcggccct 300 gccgctcctt ccgtgttcat cttccctcc 360 agcgtggtgt gcctgctgaa caacttctac 420 gacaacgccc tgcagagcgg caactcccag 480 agcacctact ccctgtcctc caccctgacc 540 gtgtacgcct gcgaggtgac ccaccagggc 600 cggggcgagt ga 642 ctgctgaagc cttccgagac actgtccctg 60 ggctactact ggtcctgat ccggcaggct 120 atcgaccact ccggcaccac caactacaac 180 gtggagacat ccaagaacca gttctcctg 240 gccgtgtact actgcgcctc cagcggctac 300 tggggccagg gcaccctggt gaccgtgtcc 360 ctggggccagg gcaccctggt gaccgtgtcc 360 ctctggccc cttcctccaa gtccacctc 420 aaggactact tccctcaa gtccacctc 420 aaggactact tccctgagcc tgtgaccgtg 480	
35	ccccgggagg ccaaggtgca gtg	ggaaggtg gacaacgccc	tgcagagcgg caactcccag	480
	gaatccgtca ccgagcagga cto	ccaaggac agcacctact o	ccctgtcctc caccctgacc	540
40	ctgtccaagg ccgactacga gaa	agcacaag gtgtacgcct g	gcgaggtgac ccaccagggc	600
	ctgtccagcc ctgtgaccaa gto	ccttcaac cggggcgagt g	ga	642
45	<210> 190 <211> 1356 <212> ADN <213> Homo Sapiens			
50	<400> 190 gaggtgcagc tggaggaatc cgg	gcgctggc ctgctgaagc (cttccgagac actgtccctg	60
	acctgcgccg tgtacggcgg cto	ccttctcc ggctactact (ggtcctggat ccggcaggct	120
55	cctggcaagg gcctggagtg gat	tcggcgag atcgaccact o	ccggcaccac caactacaac	180
	ccttccctga agtcccgggt gad	ccatctcc gtggagacat o	ccaagaacca gttctccctg	240
3O	cggctgtcct ccgtgaccgc cg	ctgactcc gccgtgtact a	actgcgcctc cagcggctac	300
50	tgctcccacg gcctgtgccc tca	aggaagat tggggccagg g	gcaccctggt gaccgtgtcc	360
	tccgcctcca ccaagggccc tto	ccgtgttc cctctggccc (cttcctccaa gtccacctcc	420
65	ggcggcaccg ccgctctggg ctg	gcctggtg aaggactact	tccctgagcc tgtgaccgtg	480
	agctggaact ctggcgctct gad	ccagcggc gtgcacacct	tccctgccgt gctgcagtcc	540

	tccaacctat	actccctgtc	cancutanta	acantocctt	cctcctccct	uuucacccau	600
		gcaacgtgaa					660
5		gcgacaagac					720
J		tgttcctgtt					780
							840
10		cctgcgtggt					
		acggcgtgga					900
	aactccacct	accgggtggt	gtccgtgctg	accgtgctgc	accaggactg	gctgaacggc	960
15	aaggaataca	agtgcaaggt	ctccaacaag	gccgtgcctg	cccctatcga	aaagaccatc	1020
	tccaaggcca	agggccagcc	tcgcgagcct	caggtgtaca	ccctgcctcc	tagccgggag	1080
20	gaaatgacca	agaatcaggt	gtccctgaca	tgtctggtga	agggcttcta	cccttccgat	1140
	atcgccgtgg	agtgggagtc	caacggccag	cctgagaaca	actacaagac	cacccctcct	1200
	gtgctggact	ccgacggcag	cttcttcctg	tactccaagc	tgaccgtgga	caagtcccgg	1260
25	tggcagcagg	gcaacgtgtt	ctcctgctcc	gtgatgcacg	aggccctgca	caaccactac	1320
	acccagaagt	ccctgtccct	gtctcctggc	aagtga			1356
30		3 o Sapiens					
35	<400> 191 atgggctggt	cctgcatcat	cctgtttctg	gtggccaccg	ccaccggcgt	gcactccgag	60
	gtgcagctgg	aggaatccgg	cgctggcctg	ctgaagcctt	ccgagacact	gtccctgacc	120
40	tgcgccgtgt	acggcggctc	cttctccggc	tactactggt	cctggatccg	gcaggctcct	180
	ggcaagggcc	tggagtggat	cggcgagatc	gaccactccg	gcaccaccaa	ctacaaccct	240
4.5	tccctgaagt	cccgggtgac	catctccgtg	gagacatcca	agaaccagtt	ctccctgcgg	300
45	ctgtcctccg	tgaccgccgc	tgactccgcc	gtgtactact	gcgcctccag	cggctactgc	360
	tcccacggcc	tgtgccctca	ggaagattgg	ggccagggca	ccctggtgac	cgtgtcctcc	420
50	gcctccacca	agggcccttc	cgtgttccct	ctggcccctt	cctccaagtc	cacctccggc	480
	ggcaccgccg	ctctgggctg	cctggtgaag	gactacttcc	ctgagcctgt	gaccgtgagc	540
	tggaactctg	gcgctctgac	cagcggcgtg	cacaccttcc	ctgccgtgct	gcagtcctcc	600
55	ggcctgtact	ccctgtccag	cgtggtgaca	gtgccttcct	cctccctggg	cacccagacc	660
	tacatctgca	acgtgaacca	caagccttcc	aacaccaagg	tggacaagcg	ggtggagcct	720
60		acaagaccca					780
		tcctgttccc					840
		gcgtggtggt					900
65		gcgtggaggt					960
		gggtggtgtc					1020
				-,,,	, -, ->	-, ~~~~~~~~~~~	

	gaataca	agt	gcaaggtctc	caacaaggcc	gtgcctgccc	ctatcgaaaa	gaccatctcc	1080
-	aaggcca	agg	gccagcctcg	cgagcctcag	gtgtacaccc	tgcctcctag	ccgggaggaa	1140
5	atgacca	aga	atcaggtgtc	cctgacatgt	ctggtgaagg	gcttctaccc	ttccgatatc	1200
	gccgtgg	agt	gggagtccaa	cggccagcct	gagaacaact	acaagaccac	ccctcctgtg	1260
10	ctggact	ccg	acggcagctt	cttcctgtac	tccaagctga	ccgtggacaa	gtcccggtgg	1320
	cagcagg	gca	acgtgttctc	ctgctccgtg	atgcacgagg	ccctgcacaa	ccactacacc	1380
15	cagaagt	ccc	tgtccctgtc	tcctggcaag	tga			1413
20	<211> <212> /	192 354 ADN Homo	Sapiens					
		192 agc	tgctggagtc	tggcggcgga	ctggtgcagc	ctggcggctc	cctgcggctg	60
25	tcctgcg	ccg	cctccggctt	ctccttcggc	gactactgga	tgtcctgggt	gcggcaggct	120
	cctggca	agg	gcctggagtg	ggtggccgac	atcaagcctg	acggcagcga	caaggactac	180
20	gtggact	ccg	tgaagggccg	gttcaccatc	tcccgggaca	acgccaagaa	ctccctgtac	240
30	ctgcaga [.]	tgt	cctccctgcg	gggcgaggac	accgccgtgt	actactgcgc	cagagactac	300
	gtggtgg [.]	tgg	ccccttccca	gcctcctaac	atccaccctg	agtacttcca	gaac	354
35	<211> <212> /	193 75 ADN Homo	Sapiens					
40		193 agc	tggaggaatc	cggcgctggc	ctgctgaagc	cttccgagac	actgtccctg	60
45	acctgcg	ccg	tgtac					75
50	<211> <212> /	194 30 ADN Homo	Sapiens					
		194 cct	tctccggcta	ctactggtcc				30
55	<211> <212> /	195 42 ADN) Sapiens					
60	<400>	195	•	caagggcctg	gagtggatcg	gc		42
65	<211> <212> /	196 48 ADN Homo	Sapiens					

	<400> 196 gagatcgacc actccggcac caccaactac aacccttccc tgaagtcc	48
5	<210> 197 <211> 96 <212> ADN <213> Homo Sapiens	
10	<400> 197 cgggtgacca tctccgtgga gacatccaag aaccagttct ccctgcggct gtcctccgtg	60
15	accgccgctg actccgccgt gtactactgc gcctcc	96
20	<210> 198 <211> 39 <212> ADN <213> Homo Sapiens	
	<400> 198 agcggctact gctcccacgg cctgtgccct caggaagat	39
25	<210> 199 <211> 291 <212> ADN <213> Homo Sapiens	
30	<400> 199 gacattgagt tgacccagtc tccatccttc ctgtctgcat ctgtcggaga cagagtcgcc	60
0.5	atcacttgcc gggccagtca gggcattagc aattatttag cctggtatca gcaaaaacca	120
35	gggaaagccc ctaagctcct gatctatgct gcattcgttt tgcaaagtgg ggtcccatca	180
	aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagtaa cctgcagcct	240
40	gaagattttg caacttatta ctgtcaacaa cttaatagtt atcctcgcgc t	291
45	<210> 200 <211> 97 <212> PRT <213> Homo Sapiens	
	<400> 200	
50	Asp Ile Glu Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala Ser Val Gly 1 5 10 15	
55	Asp Arg Val Ala Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Asn Tyr 20 25 30	
60	Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45	
	Tyr Ala Ala Phe Val Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60	
65	Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Asn Leu Gln Pro 65 70 75 80	

	Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Leu Asn Ser Tyr Pro Arg 85 90 95	
5	Ala	
10	<210> 201 <211> 330 <212> ADN <213> Homo Sapiens	
15	<400> 201 gaggtgcagc tgttgcagtc tggcgcagga ctgttgaagc cttcggagac cctgtccctc	60
	acctgcgctg tctatggtgg gtccttcagt ggatactact ggagttggat ccgccaggcc	120
20	ccagggaagg gactggagtg gattggggaa atcgatcata gtggaaccac caactacaac	180
	ccgtccctca agagtcgggt caccatatca gtagagacat ccaagaacca gttctccctg	240
	aggctgagct ctgtgaccgc cgcggactcg gctgtctatt actgtgcgag cagtggatat	300
25	tgttctcatg gtttatgccc ccaagaggac	330
30	<210> 202 <211> 110 <212> PRT <213> Homo Sapiens	
35	<400> 202	
33	Glu Val Gln Leu Leu Gln Ser Gly Ala Gly Leu Leu Lys Pro Ser Glu 1 15	
40	Thr Leu Ser Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly Tyr 20 25 30	
45	Tyr Trp Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45	
50	Gly Glu Ile Asp His Ser Gly Thr Thr Asn Tyr Asn Pro Ser Leu Lys 50 60	
	Ser Arg Val Thr Ile Ser Val Glu Thr Ser Lys Asn Gln Phe Ser Leu 65 70 75 80	
55	Arg Leu Ser Ser Val Thr Ala Ala Asp Ser Ala Val Tyr Tyr Cys Ala 85 90 95	
60	Ser Ser Gly Tyr Cys Ser His Gly Leu Cys Pro Gln Glu Asp 100 105 110	
65	<210> 203 <211> 330 <212> ADN <213> Homo Sapiens	

	<pre><400> 203 gaggtacagc tggaggagtc tggcgcagga ctgttgaagc cttcggagac cctgtccctc</pre>	60
	acctgcgctg tctatggtgg gtccttcagt ggatactact ggagttggat ccgccaggcc	120
5	ccagggaagg gactggagtg gattggggaa atcgatcata gtggaaccac caactacaac	180
	ccgtccctca agagtcgggt caccatatca gtagagacat ccaagaacca gttctccctg	240
10	aggctgagct ctgtgaccgc cgcggactcg gctgtctatt actgtgcgag cagtggatat	300
10		330
	tgttctcatg gtttatgccc ccaagaggac	330
15	<210> 204 <211> 110 <212> PRT <213> Homo Sapiens	
20	<400> 204	
	Glu Val Gln Leu Glu Glu Ser Gly Ala Gly Leu Leu Lys Pro Ser Glu 1 15	
25	Thr Leu Ser Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly Tyr 20 25 30	
30	Tyr Trp Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45	
35	Gly Glu Ile Asp His Ser Gly Thr Thr Asn Tyr Asn Pro Ser Leu Lys 50 60	
40	Ser Arg Val Thr Ile Ser Val Glu Thr Ser Lys Asn Gln Phe Ser Leu 65 70 75 80	
	Arg Leu Ser Ser Val Thr Ala Ala Asp Ser Ala Val Tyr Tyr Cys Ala 85 90 95	
45	Ser Ser Gly Tyr Cys Ser His Gly Leu Cys Pro Gln Glu Asp 100 105 110	
50	<210> 205 <211> 690 <212> ADN <213> Homo Sapiens	
55	<400> 205	60
	atgggctggt cctgcatcat cctgtttctg gtggccaccg ccaccggcgt gcactccctg	120
00	tgcgccgact ccgccaccct gtccgtgtcc ggccctcgga gggacggcca gcactcctgc	120
60	ggcggcaaca acatcggcac caagtccgtg cactggtatc agcagcggcc tggacaggcc	180
	cctctgctgg tgctgtacca cgacaccagg cggccttccc ggatccctga gcggttctcc	240
65	ggctccaact ccggcaacac cgctaccctg accatctccc gggtggaggc cggcgacgag	300
	gccgactact actgccaggt gtgggactcc aggcgggtgt tcggcggagg aacaaagctg	360
	accgtgctgg gccagcctaa ggccgctcct tccgtgaccc tgttccctcc ttcctccgag 85	420

	gaactgo	cagg c	ccaacaaggc	caccctggtg	tgcctgatct	ccgacttcta	ccctggcgcc	480
5	gtgaccg	gtgg c	cttggaaggc	cgactcctcc	cctgtgaagg	ctggcgtgga	gacaaccacc	540
5	ccttcca	agc a	agtccaacaa	caagtacgcc	gcctcctcct	acctgtccct	gacccctgag	600
	cagtgga	agt c	ccacaagtc	ctacagctgc	caggtgaccc	acgagggctc	caccgtggaa	660
10	aagaccg	gtgg c	ccctaccga	gtcctcctga				690
15	<210> <211> <212> <213>	206 57 ADN Secue	encia arti1	Ficial				
	<220> <223>	Polir	nucleótido					
20	<400> atgggct	206 :ggt c	cctgcatcat	cctgtttctg	gtggccaccg	ccaccggcgt	gcactcc	57
25	<210> <211> <212> <213>	207 63 ADN Homo	Sapiens					
30	<400> ctgtgcg	207 JCCg a	actccgccac	cctgtccgtg	tccggccctc	ggagggacgg	ccagcactcc	60
	tgc							63
35	<210> <211> <212> <213>	208 33 ADN Homo	Sapiens					
40	<400> ggcggca	208 aca a	acatcggcac	caagtccgtg	cac			33
45	<210> <211> <212> <213>	209 45 ADN Homo	Sapiens					
50		209 agc a	agcggcctgg	acaggcccct	ctgctggtgc	tgtac		45
55	<211> <212>		Sapiens					
60		210 acca g	ggcggccttc	С				21
65	<211> <212>	211 96 ADN Homo	Sapiens					
	<400>	211						

	cggatccctg agcggttctc cggctccaac tccggcaaca ccgctaccct gaccatctcc	60
	cgggtggagg ccggcgacgactac tactgc	96
5	<210> 212 <211> 24 <212> ADN <213> Homo Sapiens	
10	<400> 212 caggtgtggg actccaggcg ggtg	24
15	<210> 213 <211> 633 <212> ADN <213> Homo Sapiens	
20	<400> 213	60
	ctatgtgctg actcagccac cctcagtgtc agtggcccca ggagagacgg ccagcattcc	120
25	tgtgggggaa acaacattgg aactaagagt gtccactggt accagcagag gccaggccag	180
25	gcccctctac tggtcctcta tcatgacacc aggcggccct caaggattcc tgagcgattc tctggctcca actctggaaa cacggccacc ctgaccatca gcagggtcga agccggggat	240
	gaggccgact attactgtca ggtgtgggat agtcgaaggg tgttcggcgg agggaccaag	300
30	ctgaccgtcc taggtcagcc caaggcggcc ccctcggtca ctctgttccc gccctcctct	360
	gaggagcttc aagccaacaa ggccacactg gtgtgtctca taagtgactt ctacccggga	420
35	gccgtgacag tggcctggaa ggcagatagc agccccgtca aggcgggagt ggagaccacc	480
	acacceteca aacaaagcaa caacaagtae geggeeagca getaeetgag eetgaegeet	540
	gagcagtgga agtcccacaa aagctacagc tgccaggtca cgcatgaagg gagcaccgtg	600
40	gagaagacag tggcccctac agaatcttca tga	633
45	<210> 214 <211> 210 <212> PRT <213> Homo Sapiens	
5 0	<400> 214	
50	Leu Cys Ala Asp Ser Ala Thr Leu Ser Val Ser Gly Pro Arg Asp 1 5 10 15	
55	Gly Gln His Ser Cys Gly Gly Asn Asn Ile Gly Thr Lys Ser Val His 20 30	
60	Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Leu Leu Val Leu Tyr His 35 40 45	
65	Asp Thr Arg Arg Pro Ser Arg Ile Pro Glu Arg Phe Ser Gly Ser Asn 50 60	
	Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly Asp 65 70 75 80	

5	Glu	Ala	Asp	Tyr	Tyr 85	Cys	Gln	val	Trp	Asp 90	Ser	Arg	Arg	val	Phe 95	Gly	
	Gly	Gly	Thr	Lys 100	Leu	Thr	val	Leu	Gly 105	Gln	Pro	Lys	Ala	Ala 110	Pro	Ser	
10	val	Thr	Leu 115	Phe	Pro	Pro	Ser	Ser 120	Glu	Glu	Leu	Gln	Ala 125	Asn	Lys	Ala	
15	Thr	Leu 130	val	Cys	Leu	Ile	Ser 135	Asp	Phe	Tyr	Pro	Gly 140	Ala	val	Thr	Val	
20	Ala 145	Trp	Lys	Ala	Asp	Ser 150	Ser	Pro	val	Lys	Ala 155	Gly	val	Glu	Thr	Thr 160	
25	Thr	Pro	Ser	Lys	Gln 165	Ser	Asn	Asn	Lys	Tyr 170	Ala	Ala	Ser	Ser	Tyr 175	Leu	
	Ser	Leu	Thr	Pro 180	Glu	Gln	тгр	Lys	Ser 185	His	Lys	Ser	Tyr	Ser 190	Cys	Gln	
30	val	Thr	ніs 195	Glu	Gly	Ser	Thr	va1 200	Glu	Lys	Thr	val	Ala 205	Pro	Thr	Glu	
35	Ser	Ser 210															
40	<210 <211 <212 <213	1> 2 2> 4	215 1371 ADN Homo	Sap	iens												
45	<400 cag		215 agc 1	tgttg	ggagt	cc ag	gggg	gaggo	t ttg	ggtco	agc	cggg	99999	gtc (cctga	igactc	60
	tcct	tgtg	cag (cctct	tggat	t ca	agcti	ttgg	gad	tatt	gga	tgag	gttgg	gt (ccgc	aggct	120
5 0	ccag	ggga	agg (gcct	ggagt	g gg	gtggd	cga	ata	aaago	cag	atg	gcagt	ga (caaag	gactat	180
50	gtg	gacto	ctg	tgaag	gggco	cg at	ttcad	cato	tco	cagag	jaca	acgo	ccaag	gaa (ctcad	tgtat	240
	ctg	caaa	tga (gcago	cctg	g ag	ggcga	aagao	acg	gcto	jtct	atta	attgi	gc	gagag	gactat	300
55	gtc	gtcg	tcg (cacca	atcto	a a	cccc	caaa	att	caco	ctg	aata	actto	ca g	gaact	ggggc	360
	cag	ggca	ccc 1	tggto	catco	gt ct	tcct	cagco	tco	cacca	aagg	gcc	catco	gt (cttco	ccctg	420
60	gca	cct	cct	ccaag	gagca	ac ct	tctg	gggg	aca	agcgg	gccc	tggg	gctgo	ct	ggtca	aggac	480
00	tact	ttcc	ccg a	aacco	ggtga	ac go	gtgto	gtg	g aad	ctcag	ggcg	ccct	tgaco	ag (cggcg	gtgcac	540
	acct	ttcc	cgg (ctgto	cctad	a gt	tcct	cagga	a cto	ctact	ccc	tcag	gcago	gt	ggtga	accgtg	600
65	ccct	tcca	gca 🤅	gctt	gggca	ac co	cagao	cta	ato	tgca	aacg	tgaa	atcad	aa g	gccca	agcaac	660
	acca	aaaa	taa a	acaad	าลตลต	nt a	aacta	ntaad	- aaa	aacto	aca	cato	מכככ	ארר נ	ataca	cagca	720

	cctg	gaact	tcc 1	tgggg	gggad	cc gt	tcagt	ctt	cto	cttc	ccc	caaa	aacco	caa g	ggaca	accctc		780
	atga	atcto	ccc g	ggaco	cctg	ga gg	gtcad	catgo	gtg	ggtgg	gtgg	acgt	gago	ca (cgaag	gaccct		840
5	gagg	gtcaa	agt 1	tcaad	tggt	a co	gtgga	acggo	gtg	ggagg	gtgc	ataa	atgco	caa g	gacaa	aagccg	9	900
	cggg	gagga	agc a	agtao	caaca	ag ca	acgta	accgt	t gtg	ggtca	ıgcg	tcct	caco	gt	cctg	caccag	9	960
10	gact	tggct	tga a	atggo	caagg	ga gt	tacaa	agtgo	aag	ggtct	cca	acaa	aagco	ct	cccag	gccccc	10	020
10	atco	gagaa	aaa o	ccato	ctcca	aa ag	gccaa	aaggg	g cag	gccc	gag	aaco	cacag	gt	gtaca	accctg	10	080
	ccc	ccato	ccc g	gggag	ggaga	at ga	accaa	agaad	cag	ggtca	ıgcc	tgad	ctg	ct	ggtca	aaaggc	1	140
15	ttct	tatco	cca g	gcgad	catco	gc cg	gtgga	agtg	g gag	gagca	atg	ggca	agccg	gga g	gaaca	aactac	1	200
	aaga	accad	cgc o	ctcc	gtg	t g	gacto	ccga	ggo	ctcct	tct	tcct	ctat	tag (caago	ctcacc	1	260
20	gtgg	gacaa	aga g	gcagg	gtggd	a go	caggg	ggaad	gto	cttct	cat	gct	cgt	gat g	gcato	gaggct	1	320
20	ctgo	cacaa	acc a	actac	cacgo	a ga	aagag	gccto	tco	ctgt	ctc	cggg	gtaaa	atg a	a		1	371
25	<210 <211 <212 <213	L> 4 2> F	216 456 PRT Homo	Sapi	iens													
20	<400)> 2	216															
30	Gln 1	val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	val	Gln	Pro	Gly 15	Gly		
35	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Ser	Phe	Gly 30	Asp	Tyr		
40	Trp	Met	Ser 35	Trp	val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val		
45	Ala	Asp 50	Ile	Lys	Pro	Asp	Gly 55	Ser	Asp	Lys	Asp	Tyr 60	val	Asp	Ser	Val		
	Lys 65	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ala 75	Lys	Asn	Ser	Leu	Tyr 80		
50	Leu	Gln	Met	Ser	Ser 85	Leu	Arg	Gly	Glu	Asp 90	Thr	Ala	val	Tyr	Tyr 95	Cys		
55	Ala	Arg	Asp	Tyr 100	val	val	val	Ala	Pro 105	Ser	Gln	Pro	Pro	Asn 110	Ile	His		
60	Pro	Glu	Tyr 115	Phe	Gln	Asn	Trp	Gly 120	Gln	Gly	Thr	Leu	Val 125	Ile	val	Ser		
65	Ser	Ala 130	Ser	Thr	Lys	Gly	Pro 135	Ser	val	Phe	Pro	Leu 140	Ala	Pro	Ser	Ser		
	Lys 145	Ser	Thr	Ser	Gly	Gly 150	Thr	Ala	Ala	Leu	Gly 155	Cys	Leu	val	Lys	Asp 160		

5	Tyr	Phe	Pro	Glu	Pro 165	val	Thr	val	Ser	Trp 170	Asn	Ser	Gly	Ala	Leu 175	Thr
	Ser	Gly	٧a٦	ніs 180	Thr	Phe	Pro	Ala	Val 185	Leu	Gln	Ser	Ser	Gly 190	Leu	Tyr
10	Ser	Leu	Ser 195	Ser	val	val	Thr	va1 200	Pro	Ser	Ser	Ser	Leu 205	Gly	Thr	Gln
15	Thr	Tyr 210	Ile	Cys	Asn	val	Asn 215	His	Lys	Pro	Ser	Asn 220	Thr	Lys	val	Asp
20	Lys 225	Arg	val	Ser	Cys	Asp 230	Lys	Thr	нis	Thr	Cys 235	Pro	Pro	Cys	Pro	Ala 240
25	Pro	Glu	Leu	Leu	Gly 245	Gly	Pro	Ser	val	Phe 250	Leu	Phe	Pro	Pro	Lys 255	Pro
	Lys	Asp	Thr	Leu 260	Met	Ile	Ser	Arg	Thr 265	Pro	Glu	val	Thr	Cys 270	val	val
30	val	Asp	va1 275	Ser	His	Glu	Asp	Pro 280	Glu	val	Lys	Phe	Asn 285	Trp	Tyr	val
35	Asp	Gly 290	val	Glu	val	His	Asn 295	Ala	Lys	Thr	Lys	Pro 300	Arg	Glu	Glu	Gln
40	Tyr 305	Asn	Ser	Thr	Tyr	Arg 310	val	val	Ser	val	Leu 315	Thr	val	Leu	His	Gln 320
45	Asp	Trp	Leu	Asn	Gly 325	Lys	Glu	Tyr	Lys	Cys 330	Lys	val	Ser	Asn	Lys 335	Ala
	Leu	Pro	Ala	Pro 340	Ile	Glu	Lys	Thr	11e 345	Ser	Lys	Ala	Lys	Gly 350	Gln	Pro
50	Arg	Glu	Pro 355	Gln	val	Tyr	Thr	Leu 360	Pro	Pro	Ser	Arg	Glu 365	Glu	Met	Thr
55	Lys	Asn 370	Gln	val	Ser	Leu	Thr 375	Cys	Leu	val	Lys	Gly 380	Phe	Tyr	Pro	Ser
60	Asp 385	Ile	Ala	val	Glu	Trp 390	Glu	Ser	Asn	Gly	G]n 395	Pro	Glu	Asn	Asn	Tyr 400
65	Lys	Thr	Thr	Pro	Pro 405	val	Leu	Asp	Ser	Asp 410	Gly	Ser	Phe	Phe	Leu 415	Tyr
	Ser	Lys	Leu	Thr 420	val	Asp	Lys	Ser	Arg 425	тгр	Gln	Gln	Gly	Asn 430	val	Phe

5	Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 435 440 445	Lys	
	Ser Leu Ser Leu Ser Pro Gly Lys 450 455		
10	<210> 217 <211> 633 <212> ADN <213> Homo Sapiens		
15	<400> 217 ctgtgcgccg actccgccac cctgtccgtg tccggccctc ggagggacgg ccagc	actcc	60
	tgcggcggca acaacatcgg caccaagtcc gtgcactggt atcagcagcg gcctg	gacag 1	.20
20	gcccctctgc tggtgctgta ccacgacacc aggcggcctt cccggatccc tgagc	ggttc 1	.80
	tccggctcca actccggcaa caccgctacc ctgaccatct cccgggtgga ggccg	gcgac 2	40
25	gaggccgact actactgcca ggtgtgggac tccaggcggg tgttcggcgg aggaa	caaag 3	00
	ctgaccgtgc tgggccagcc taaggccgct ccttccgtga ccctgttccc tcctt	cctcc 3	60
00	gaggaactgc aggccaacaa ggccaccctg gtgtgcctga tctccgactt ctacc	ctggc 4	20
30	gccgtgaccg tggcttggaa ggccgactcc tcccctgtga aggctggcgt ggaga	caacc 4	80
	accccttcca agcagtccaa caacaagtac gccgcctcct cctacctgtc cctga	cccct 5	40
35	gagcagtgga agtcccacaa gtcctacagc tgccaggtga cccacgaggg ctcca	ccgtg 6	00
	gaaaagaccg tggcccctac cgagtcctcc tga	6	33
40	<210> 218 <211> 1371 <212> ADN <213> Homo Sapiens		
45	<400> 218 caggtgcagc tgctggagtc tggcggcgga ctggtgcagc ctggcggctc cctgc	ggctg	60
	tcctgcgccg cctccggctt ctccttcggc gactactgga tgtcctgggt gcggc	aggct 1	.20
50	cctggcaagg gcctggagtg ggtggccgac atcaagcctg acggcagcga caagg	actac 1	.80
	gtggactccg tgaagggccg gttcaccatc tcccgggaca acgccaagaa ctccc	tgtac 2	40
	ctgcagatgt cctccctgcg gggcgaggac accgccgtgt actactgcgc cagag	actac 3	00
55	gtggtggtgg ccccttccca gcctcctaac atccaccctg agtacttcca gaact	ggggc 3	60
	cagggcaccc tggtgatcgt gtcctccgcc tccaccaagg gcccttccgt gttcc	ctctg 4	20
60	gcccctcct ccaagtccac ctccggcggc accgccgctc tgggctgcct ggtga	aggac 4	80
	tacttccctg agcctgtgac cgtgtcctgg aactctggcg ccctgaccag cggag	tgcac 5	40
e E	accttccctg ccgtgctgca gtcctccggc ctgtactccc tgtcctccgt ggtga	ccgtg 6	00
65	ccttcctcct ccctgggcac ccagacctac atctgcaacg tgaaccacaa gcctt	ccaac 6	60
	accaaggtgg acaagcgggt gtcctgcgac aagacccaca cctgccctcc ctgcc	ctgcc 7	20

	cctgagctgc	tgggcggacc	ctccgtgttc	ctgttccctc	ctaagcctaa	ggacaccctg	780
5	atgatctccc	ggacccctga	ggtgacctgt	gtggtggtgg	acgtgtccca	cgaggatcct	840
5	gaggtgaagt	tcaattggta	cgtggacggc	gtggaggtgc	acaacgctaa	gaccaagcct	900
	cgggaggaac	agtacaactc	cacctaccgg	gtggtgtctg	tgctgaccgt	gctgcaccag	960
10	gactggctga	acggcaagga	atacaagtgc	aaggtctcca	acaaggccct	gcccgctccc	1020
	atcgaaaaga	ccatctccaa	ggccaagggc	cagcctcgcg	agcctcaggt	gtacaccctg	1080
15	cccccagcc	gggaggaaat	gaccaagaac	caggtgtccc	tgacctgtct	ggtgaagggc	1140
13	ttctaccctt	ccgatatcgc	cgtggagtgg	gagtccaacg	gccagcctga	gaacaactac	1200
	aagaccaccc	ctcctgtgct	ggactccgac	ggctccttct	tcctgtactc	caagctgacc	1260
20	gtggacaagt	cccggtggca	gcagggcaac	gtgttctcct	gctccgtgat	gcacgaggcc	1320
	ctgcacaacc	actacaccca	gaagtccctg	tccctgagcc	ctggcaagtg	a	1371
25		3 o Sapiens					
30	<400> 219 atgggctggt	cctgcatcat	cctgtttctg	gtggccaccg	ccaccggcgt	gcactcccag	60
	gtgcagctgc	tggagtctgg	cggcggactg	gtgcagcctg	gcggctccct	gcggctgtcc	120
35	tgcgccgcct	ccggcttctc	cttcggcgac	tactggatgt	cctgggtgcg	gcaggctcct	180
	ggcaagggcc	tggagtgggt	ggccgacatc	aagcctgacg	gcagcgacaa	ggactacgtg	240
40	gactccgtga	agggccggtt	caccatctcc	cgggacaacg	ccaagaactc	cctgtacctg	300
40	cagatgtcct	ccctgcgggg	cgaggacacc	gccgtgtact	actgcgccag	agactacgtg	360
	gtggtggccc	cttcccagcc	tcctaacatc	caccctgagt	acttccagaa	ctggggccag	420
45	ggcaccctgg	tgatcgtgtc	ctccgcctcc	accaagggcc	cttccgtgtt	ccctctggcc	480
	ccctcctcca	agtccacctc	cggcggcacc	gccgctctgg	gctgcctggt	gaaggactac	540
50	ttccctgagc	ctgtgaccgt	gtcctggaac	tctggcgccc	tgaccagcgg	agtgcacacc	600
	ttccctgccg	tgctgcagtc	ctccggcctg	tactccctgt	cctccgtggt	gaccgtgcct	660
	tcctcctccc	tgggcaccca	gacctacatc	tgcaacgtga	accacaagcc	ttccaacacc	720
55	aaggtggaca	agcgggtgtc	ctgcgacaag	acccacacct	gccctccctg	ccctgcccct	780
	gagctgctgg	gcggaccctc	cgtgttcctg	ttccctccta	agcctaagga	caccctgatg	840
60	atctcccgga	cccctgaggt	gacctgtgtg	gtggtggacg	tgtcccacga	ggatcctgag	900
-	gtgaagttca	attggtacgt	ggacggcgtg	gaggtgcaca	acgctaagac	caagcctcgg	960
	gaggaacagt	acaactccac	ctaccgggtg	gtgtctgtgc	tgaccgtgct	gcaccaggac	1020
65	tggctgaacg	gcaaggaata	caagtgcaag	gtctccaaca	aggccctgcc	cgctcccatc	1080
	gaaaagacca	tctccaaggc	caagggccag	cctcgcgagc	ctcaggtgta	caccctgccc	1140

	cccagco	ggg	aggaaatgac	caagaaccag	gtgtccctga	cctgtctggt	gaagggcttc	1200
	taccctt	ccg	atatcgccgt	ggagtgggag	tccaacggcc	agcctgagaa	caactacaag	1260
5	accacco	ctc	ctgtgctgga	ctccgacggc	tccttcttcc	tgtactccaa	gctgaccgtg	1320
	gacaagt	ccc	ggtggcagca	gggcaacgtg	ttctcctgct	ccgtgatgca	cgaggccctg	1380
10	cacaaco	act	acacccagaa	gtccctgtcc	ctgagccctg	gcaagtga		1428
15	<210> <211> <212> <213>	220 57 ADN Secu	uencia arti1	ficial				
	<220> <223>	Poli	nucleótido					
20	<400> atgggat	220 gga	gctgtatcat	cctcttcttg	gtagcaacag	ctacaggtgt	ccactcc	57
25	<210> <211> <212> <213>	221 75 ADN Homo	o Sapiens					
30	<400> caggtgo	221 agc	tgctggagtc	tggcggcgga	ctggtgcagc	ctggcggctc	cctgcggctg	60
	tcctgcg	gccg	cctcc					75
35	<210> <211> <212> <213>	222 30 ADN Homo	o Sapiens					
40	<400> ggcttct	222 cct	tcggcgacta	ctggatgtcc				30
45	<210> <211> <212> <213>	223 42 ADN Homo	o Sapiens					
50		223 ggc	aggctcctgg	caagggcctg	gagtgggtgg	СС		42
55	<210> <211> <212> <213>	224 51 ADN Homo	o Sapiens					
60		224 aagc	ctgacggcag	cgacaaggac	tacgtggact	ccgtgaaggg	С	51
65	<210> <211> <212> <213>	225 96 ADN Homo	o Sapiens					
	<400> cggttca		tctcccggga	caacgccaag	aactccctgt	acctgcagat	gtcctccctg	60

	cggggcgagg acaccgccgt gtactactgc gccaga	96
5	<210> 226 <211> 60 <212> ADN <213> Homo Sapiens	
10	<400> 226 gactacgtgg tggtggcccc ttcccagcct cctaacatcc accctgagta cttccagaac	60
15	<210> 227 <211> 282 <212> ADN <213> Homo Sapiens	
20	<400> 227 ctatgtgctg actcagccac cctcagtgtc agtggcccca ggagagacgg ccagcattcc	60
20	tgtgggggaa acaacattgg aactaagagt gtccactggt accagcagag gccaggccag	120
	gcccctctac tggtcctcta tcatgacacc aggcggccct caaggattcc tgagcgattc	180
25	tctggctcca actctggaaa cacggccacc ctgaccatca gcagggtcga agccggggat	240
	gaggccgact attactgtca ggtgtgggat agtcgaaggg tg	282
30	<210> 228 <211> 94 <212> PRT <213> Homo Sapiens	202
35	<400> 228	
40	Leu Cys Ala Asp Ser Ala Thr Leu Ser Val Ser Gly Pro Arg Arg Asp 1 10 15	
	Gly Gln His Ser Cys Gly Gly Asn Asn Ile Gly Thr Lys Ser Val His 20 25 30	
45	Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Leu Leu Val Leu Tyr His 35 40 45	
50	Asp Thr Arg Arg Pro Ser Arg Ile Pro Glu Arg Phe Ser Gly Ser Asn 50 60	
55	Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly Asp 65 70 75 80	
60	Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Ser Arg Arg Val 85 90	
65	<210> 229 <211> 354 <212> ADN <213> Homo Sapiens	
	<400> 229 caggtgcagc tgttggagtc agggggaggc ttggtccagc cgggggggtc cctgagactc	60

	tcctgtgcag cctctggatt cagctttggc gactattgga tgagttgggt ccgccaggct	120
5	ccagggaagg gcctggagtg ggtggccgac ataaagccag atggcagtga caaagactat	180
5	gtggactctg tgaagggccg attcaccatc tccagagaca acgccaagaa ctcactgtat	240
	ctgcaaatga gcagcctgcg aggcgaagac acggctgtct attattgtgc gagagactat	300
10	gtcgtcgtcg caccatctca acccccaaac attcaccctg aatacttcca gaac	354
15	<210> 230 <211> 118 <212> PRT <213> Homo Sapiens	
	<400> 230	
20	Gln Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 15	
25	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Gly Asp Tyr 20 25 30	
30	Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45	
	Ala Asp Ile Lys Pro Asp Gly Ser Asp Lys Asp Tyr Val Asp Ser Val 50 60	
35	Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80	
40	Leu Gln Met Ser Ser Leu Arg Gly Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95	
45	Ala Arg Asp Tyr Val Val Val Ala Pro Ser Gln Pro Pro Asn Ile His 100 105 110	
50	Pro Glu Tyr Phe Gln Asn 115	
55	<210> 231 <211> 1356 <212> ADN <213> Homo Sapiens	
	<400> 231 gaggtacagc tggaggagtc tggcgcagga ctgttgaagc cttcggagac cctgtccctc	60
60	acctgcgctg tctatggtgg gtccttcagt ggatactact ggagttggat ccgccaggcc	120
	ccagggaagg gactggagtg gattggggaa atcgatcata gtggaaccac caactacaac	180
65	ccgtccctca agagtcgggt caccatatca gtagagacat ccaagaacca gttctccctg	240
	aggctgagct ctgtgaccgc cgcggactcg gctgtctatt actgtgcgag cagtggatat	300
	tgttctcatg gtttatgccc ccaagaggac tggggccagg gaaccctggt caccgtctcc	360

	tcagcctcca ccaagggccc atcggtcttc cccctggcac cctcctccaa gagcacctct	420
5	gggggcacag cggccctggg ctgcctggtc aaggactact tccccgaacc ggtgacggtg	480
5	tcgtggaact caggcgccct gaccagcggc gtgcacacct tcccggctgt cctacagtcc	540
	tcaggactct actccctcag cagcgtggtg accgtgccct ccagcagctt gggcacccag	600
10	acctacatct gcaacgtgaa tcacaagccc agcaacacca aggtggacaa gagagttgag	660
	cccaaatctt gtgacaaaac tcacacatgc ccaccgtgcc cagcacctga actcctgggg	720
15	ggaccgtcag tcttcctctt cccccaaaa cccaaggaca ccctcatgat ctcccggacc	780
13	cctgaggtca catgcgtggt ggtggacgtg agccacgaag accctgaggt caagttcaac	840
	tggtacgtgg acggcgtgga ggtgcataat gccaagacaa agccgcggga ggagcagtac	900
20	aacagcacgt accgtgtggt cagcgtcctc accgtcctgc accaggactg gctgaatggc	960
	aaggagtaca agtgcaaggt ctccaacaaa gccgtcccag cccccatcga gaaaaccatc	1020
25	tccaaagcca aagggcagcc ccgagaacca caggtgtaca ccctgccccc atcccgggag	1080
20	gagatgacca agaaccaggt cagcctgacc tgcctggtca aaggcttcta tcccagcgac	1140
	atcgccgtgg agtgggagag caatgggcag ccggagaaca actacaagac cacgcctccc	1200
30	gtgctggact ccgacggctc cttcttcctc tatagcaagc tcaccgtgga caagagcagg	1260
	tggcagcagg ggaacgtctt ctcatgctcc gtgatgcatg aggctctgca caaccactac	1320
35	acgcagaaga gcctctccct gtctccgggt aaatga	1356
	<210> 232	
	<211> 451 <212> PRT	
40	<213> Homo Sapiens	
	<400> 232	
45	Glu Val Gln Leu Glu Glu Ser Gly Ala Gly Leu Leu Lys Pro Ser Glu 1 15	
	Thr Leu Ser Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly Tyr	
50	20 25 30	
	Tyr Trp Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile	
	35 40 45	
55	Gly Glu Ile Asp His Ser Gly Thr Thr Asn Tyr Asn Pro Ser Leu Lys	
	50 55 60	
60	Ser Arg Val Thr Ile Ser Val Glu Thr Ser Lys Asn Gln Phe Ser Leu	
	65 70 75 80	
	Arg Leu Ser Ser Val Thr Ala Ala Asp Ser Ala Val Tyr Tyr Cys Ala	
65	85 90 95	
	Ser Ser Gly Tyr Cys Ser His Gly Leu Cys Pro Gln Glu Asp Trp Gly	

				100					105					110		
5	Gln	Gly	Thr 115	Leu	val	Thr	val	Ser 120	Ser	Ala	Ser	Thr	Lys 125	Gly	Pro	Ser
10	val	Phe 130	Pro	Leu	Ala	Pro	Ser 135	Ser	Lys	Ser	Thr	Ser 140	Gly	Gly	Thr	Ala
	Ala 145	Leu	Gly	Cys	Leu	val 150	Lys	Asp	Tyr	Phe	Pro 155	Glu	Pro	val	Thr	val 160
15	Ser	Trp	Asn	Ser	Gly 165	Ala	Leu	Thr	Ser	Gly 170	val	His	Thr	Phe	Pro 175	Ala
20	val	Leu	Gln	Ser 180	Ser	Gly	Leu	Tyr	Ser 185	Leu	Ser	Ser	val	val 190	Thr	val
25	Pro	Ser	Ser 195	Ser	Leu	Gly	Thr	G1n 200	Thr	Tyr	Ile	Cys	Asn 205	val	Asn	нis
30	Lys	Pro 210	Ser	Asn	Thr	Lys	val 215	Asp	Lys	Arg	val	G]u 220	Pro	Lys	Ser	Cys
	Asp 225	Lys	Thr	ніѕ	Thr	Cys 230	Pro	Pro	Cys	Pro	Ala 235	Pro	Glu	Leu	Leu	Gly 240
35	Gly	Pro	Ser	val	Phe 245	Leu	Phe	Pro	Pro	Lys 250	Pro	Lys	Asp	Thr	Leu 255	Met
40	Ile	Ser	Arg	Thr 260	Pro	Glu	val	Thr	Cys 265	val	val	val	Asp	Val 270	Ser	ніѕ
45	Glu	Asp	Pro 275	Glu	val	Lys	Phe	Asn 280	Trp	Tyr	val	Asp	Gly 285	val	Glu	val
50	His	Asn 290	Ala	Lys	Thr	Lys	Pro 295	Arg	Glu	Glu	Gln	Tyr 300	Asn	Ser	Thr	Tyr
	Arg 305	val	val	Ser	val	Leu 310	Thr	val	Leu	His	Gln 315	Asp	тгр	Leu	Asn	Gly 320
55	Lys	Glu	Tyr	Lys	Cys 325	Lys	val	Ser	Asn	Lys 330	Ala	val	Pro	Ala	Pro 335	Ile
60	Glu	Lys	Thr	11e 340	Ser	Lys	Ala	Lys	Gly 345	Gln	Pro	Arg	Glu	Pro 350	Gln	val
65	Tyr	Thr	Leu 355	Pro	Pro	Ser	Arg	Glu 360	Glu	Met	Thr	Lys	Asn 365	Gln	val	Ser
	Leu	Thr	Cys	Leu	٧a٦	Lys	Gly	Phe	Tyr	Pro	ser	Asp	Ile	Ala	٧a٦	Glu

		370					375					380					
5	Trp 385	Glu	Ser	Asn	Gly	Gln 390	Pro	Glu	Asn	Asn	Tyr 395	Lys	Thr	Thr	Pro	Pro 400	
10	val	Leu	Asp	Ser	Asp 405	Gly	Ser	Phe	Phe	Leu 410	Tyr	Ser	Lys	Leu	Thr 415	val	
	Asp	Lys	Ser	Arg 420	Trp	Gln	Gln	Gly	Asn 425	val	Phe	Ser	Cys	Ser 430	val	Met	
15	His	Glu	Ala 435	Leu	His	Asn	His	Tyr 440	Thr	Gln	Lys	Ser	Leu 445	Ser	Leu	Ser	
20	Pro	Gly 450	Lys														
25	<210 <211 <212 <213	> 2 !> A	233 20 ADN Homo	Sapi	iens												
30	<400 ggtt		233 tta 1	ttggg	ggcca	aa											20
35	<210 <211 <212 <213	> 2 !> A	234 20 ADN Homo	Sap	iens												
40	<400 cggt		234 ttc (gggto	ctcag	99											20
45	<210 <211 <212 <213	> 2 !> A	235 20 ADN Homo	Sap	iens												
	<400 ggag		235 agt g	gtagt	tctga	ag											20
50	<210 <211 <212 <213	> 2 !> A	236 29 ADN Homo	San	iens												
55	<400)> 2	236 aaa 1	·		gg c1	tgati	tatg									29
60	<210 <211 <212 <213	> 2 !> A	237 20 ADN Homo	Sapi	iens												
65	<400 ggga			catto	ggaad	cg .											20

```
<210>
             238
     <211>
            98
     <212>
            ADN
     <213>
            Homo Sapiens
5
     <220>
     <221>
            misc_feature
     <222>
             (78)..(78)
10
     <223>
            H = A O C O T
     <220>
     <221>
<222>
            misc_feature
            (79)..(79)
15
     <223>
             R = A \circ G
     <220>
     <221>
            misc_feature
     <222>
            (81)...(81)
Y = C o T
     <223>
20
     <220>
     <221>
            misc_feature
     <222>
             (82)..(82)
25
     <223>
             S = C \circ G
     <220>
     <221>
            misc_feature
     <222>
             (83)..(83)
30
     <223>
            W = A O T
     <220>
            misc_feature
     <221>
     <222>
             (85)..(85)
35
     <223>
            H = A O C O T
     <220>
     <221>
            misc_feature
             (90)..(90)
B = C o G o T
     <222>
40
     <223>
                                                                                   60
     cccaagcttg ccgccaccat gggatggagc tgtatcatcc tcttcttggt agcaacagct
     acaggtgtcc actccgahrt yswghtgacb cagtctcc
                                                                                   98
45
     <210>
             239
     <211>
             39
     <212>
50
             ADN
     <213>
            Homo Sapiens
     <400> 239
                                                                                   39
     cccgaattct catgaagatt ctgtaggggc cactgtctt
55
     <210>
             240
     <211>
             20
     <212>
             ADN
60
     <213>
            Homo Sapiens
     <400> 240
                                                                                   20
     acgccgtcca cgtaccaatt
65
     <210>
             241
     <211>
             20
     <212>
             ADN
```

	<213>	Homo Sapiens	
5	<400> aagccc	241 ttca ccagacaggt	20
10	<210> <211> <212> <213>		
		242 acgt gtcccacg	18
15			
20	<400> ggaagg	243 gccc ttggtgga	18
25			
30	<400> accgtg	244 gccg ctccttcc	18
35			
40	<400> tgcagg	245 gcgt tgtccacc	18
45	<210> <211> <212> <213>	246 18 ADN Homo Sapiens	
50	<400> aggccg	246 ctcc ctccgtga	18
55		247 19 ADN Homo Sapiens	
	<400> ttcaca	247 gggg aggagtcag	19
60	<210> <211> <212> <213>	248 645 ADN Homo Sapiens	
65	<400> tcctat	248 gtgc tgactcagcc accctcggtg tcggtgtccc caggacagac ggccaggatc	60

	acct	gcto	tg g	gagat	gcat	t go	ccaaa	agcaa	a tat	actt	att	ggta	accag	gca g	gaago	ccaggo	
	caggo	cccc	tg 1	tggtg	gtga	at ct	tataa	agac	agt	gaga	aggc	ccto	aggg	gat d	ccct	gagcga	L
5	ttct	ctgg	ict (ccago	tcag	gg ga	acaad	agto	acg	gtga	acca	tcag	gtgga	agt o	ccag	gcagaa	L
	gacga	aggc	tg a	actat	tatt	g to	caato	agca	a gad	agca	agtg	gtad	ttc	cct	ggtgt	ttcggc	
10	ggagg	ggac	ca a	agcto	gacco	gt co	tage	gtcag	cco	aagg	gctg	ccc	ctc	ggt	cacto	tgttc	
10	ccgc	cctc	ct	ctgag	ggago	t to	caago	caac	aag	gcca	acac	tggt	gtgt	tct (cataa	agtgac	
	ttcta	acco	gg g	gagco	gtga	ac ag	gtggd	ctg	g aag	gcag	gata	gcag	gccc	gt (caagg	gcggga	L
15	gtgga	agac	ca o	ccaca	accct	c ca	aaaca	aaago	aac	caaca	agt	acgo	ggc	cag o	cagct	tacctg	
	agcc	tgac	gc o	ctgag	gcagt	g ga	aagto	ccac	aaa	agct	aca	gctg	gccag	ggt	cacgo	catgaa	L
20	ggga	gcac	cg t	tggag	gaaga	ac ag	gtggd	ccct	aca	igaat	ctt	cata	ıg				
25	<210: <211: <212: <213:	> 2 > P	149 114 PRT Iomo	Sapi	ens												
	<400>	> 2	49														
30	Ser ⁻ 1	Tyr	val	Leu	Thr 5	Gln	Pro	Pro	ser	va1 10	ser	٧a٦	ser	Pro	Gly 15	Gln	
35	Thr A	Ala	Arg	Ile 20	Thr	Cys	Ser	Gly	Asp 25	Ala	Leu	Pro	Lys	G]n 30	Tyr	Thr	
	Tyr ⁻	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	val	Val 45	val	Ile	Tyr	
40	Lys /	Asp 50	Ser	Glu	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
45	Ser S	Ser	Gly	Thr	Thr	va1 70	Thr	val	Thr	Ile	Ser 75	Gly	val	Gln	Ala	Glu 80	
50	Asp (Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Ser	Ala 90	Asp	Ser	Ser	Gly	Thr 95	Ser	
55	Leu \	val	Phe	Gly 100	Gly	Gly	Thr	Lys	Leu 105	Thr	val	Leu	Gly	Gln 110	Pro	Lys	
	Ala A	Ala	Pro 115	Ser	val	Thr	Leu	Phe 120	Pro	Pro	Ser	Ser	Glu 125	Glu	Leu	Gln	
60	Ala A	Asn 130	Lys	Ala	Thr	Leu	Val 135	Cys	Leu	Ile	Ser	Asp 140	Phe	Tyr	Pro	Gly	
65	Ala \ 145	۷al	Thr	٧a٦	Ala	Trp 150	Lys	Ala	Asp	Ser	Ser 155	Pro	۷a٦	Lys	Ala	Gly 160	

	Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys T 165 170	yr Ala Ala 175
5		is Lys Ser 90
10	Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu L 195 200 205	ys Thr Val
15	Ala Pro Thr Glu Ser Ser 210	
20	<210> 250 <211> 1362 <212> ADN <213> Homo Sapiens	
	<400> 250 gaggtgcagc tggtggagtc tgggggaggc ttggtccagc ctggggggt	c cctgagactc 60
25	tcctgttcag cctctggttt cacctttagt agttattgga tgagctggg	t ccgccaggct 120
	ccagggaagg ggctggagtg ggtcgccaac ataatacaag atggaagtg	a gaaatactat 180
20	gcggactctg tgaagggccg gctcaccatc tccagagaca acgccaaga	a ctcactatat 240
30	ctgcagatga acagcctgag agtcgacgac acggctgtgt attattgtg	c gagaggatat 300
	gaggggtgta gtgcaaccag gtgctacctg tactactttg actattggg	g cccggggacc 360
35	ctggtcaccg tctcctcagc ctccaccaag ggcccatcgg tcttccccc	t ggcaccctcc 420
	tccaagagca cctctggggg cacagcggcc ctgggctgcc tggtcaagg	a ctacttcccc 480
40	gaaccggtga cggtgtcgtg gaactcaggc gccctgacca gcggcgtgc	a caccttcccg 540
40	gctgtcctac agtcctcagg actctactcc ctcagcagcg tggtgaccg	t gccctccagc 600
	agcttgggca cccagaccta catctgcaac gtgaatcaca agcccagca	a caccaaggtg 660
45	gacaagagag ttgagcccaa atctggtccc ccatgcccac cttgcccag	c acctgaactc 720
	ctggggggac cgtcagtctt cctgttcccc ccaaaaccca aggacaccc	t catgatctcc 780
	cggacccctg aggtcacatg cgtggtggtg gacgtgagcc acgaagacc	c tgaggtcaag 840
50	ttcaactggt acgtggacgg cgtggaggtg cataatgcca agacaaagc	c gcgggaggag 900
	cagtacaaca gcacgtaccg tgtggtcagg gtcctcaccg tcctgcacc	a ggactggctg 960
55	aatggcaagg agtacaagtg caaggtctcc aacaaagccc tcccggccc	c catcgagaaa 1020
	accatctcca aagccaaagg gcagccccga gaaccacagg tgtacaccc	t gccccatcc 1080
	cgggaggaga tgaccaagaa ccaggtcagc ctgacctgcc tggtcaaag	g cttctatccc 1140
60	agcgacatcg ccgtggagtg ggagagcaat gggcagccgg aggacaact	a caagaccacg 1200
	cctcccgtgc tggactccga cggctccttc ttcctctata gcaagctca	c cgtggacaag 1260
65	agcaggtggc agcaggggaa cgtcttctca tgctccgtga tgcatgagg	c tctgcacaac 1320
	cactacacgc agaagagcct ctccctgtct ctgggtaaat ga	1362

5	<210 <211 <212 <213	L> 2>	251 453 PRT Homo	Sap	iens											
	<400)>	251													
10	Glu 1	val	Gln	Leu	val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	val	Gln	Pro	Gly 15	Gly
15	Ser	Leu	ı Arg	Leu 20	Ser	Cys	Ser	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr
	Trp	Met	Ser 35	Trp	val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	val
20	Ala	Asn 50	ıle	Ile	Gln	Asp	Gly 55	Ser	Glu	Lys	Tyr	Tyr 60	Ala	Asp	Ser	val
25	Lys 65	Gly	' Arg	Leu	Thr	11e 70	Ser	Arg	Asp	Asn	Ala 75	Lys	Asn	Ser	Leu	Tyr 80
30	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	val	Asp	Asp 90	Thr	Ala	val	Tyr	Tyr 95	Cys
35	Ala	Arg	Gly	Tyr 100	Glu	Gly	Cys	Ser	Ala 105	Thr	Arg	Cys	Tyr	Leu 110	Tyr	Tyr
	Phe	Asp	Tyr 115	Trp	Gly	Pro	Gly	Thr 120	Leu	val	Thr	val	Ser 125	Ser	Ala	Ser
40	Thr	Lys 130	Gly	Pro	Ser	val	Phe 135	Pro	Leu	Ala	Pro	Ser 140	Ser	Lys	Ser	Thr
45	Ser 145	Gly	gly	Thr		Ala 150	Leu	Gly	Cys	Leu	val 155	Lys	Asp	Tyr	Phe	Pro 160
50	Glu	Pro	val	Thr	Val 165	Ser	Trp	Asn	Ser	Gly 170	Ala	Leu	Thr	Ser	Gly 175	val
55	His	Thr	Phe	Pro 180	Ala	val	Leu	Gln	Ser 185	Ser	Gly	Leu	Tyr	Ser 190	Leu	Ser
	Ser	val	val 195	Thr	val	Pro	Ser	Ser 200	Ser	Leu	Gly	Thr	G1n 205	Thr	Tyr	Ile
60	Cys	Asn 210	val	Asn	нis	Lys	Pro 215	Ser	Asn	Thr	Lys	va1 220	Asp	Lys	Arg	val
65	Glu 225	Pro	Lys	Ser	Gly	Pro 230	Pro	Cys	Pro	Pro	Cys 235	Pro	Ala	Pro	Glu	Leu 240

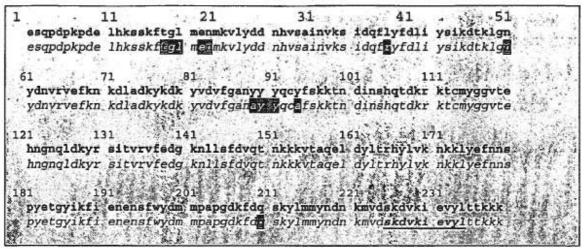
	Leu	Gly	Gly	Pro	Ser 245	val	Phe	Leu	Phe	Pro 250	Pro	Lys	Pro	Lys	Asp 255	Thr	
5	Leu	Met	Ile	Ser 260	Arg	Thr	Pro	Glu	va1 265	Thr	Cys	val	val	va1 270	Asp	Val	
10	Ser	His	G1u 275	Asp	Pro	Glu	val	Lys 280	Phe	Asn	Trp	Tyr	va1 285	Asp	Gly	Val	
15	Glu	Val 290	His	Asn	Ala	Lys	Thr 295	Lys	Pro	Arg	Glu	G]u 300	Gln	Tyr	Asn	Ser	
	Thr 305	Tyr	Arg	val	val	Arg 310	val	Leu	Thr	val	Leu 315	His	Gln	Asp	Trp	Leu 320	
20	Asn	Gly	Lys	Glu	Tyr 325	Lys	Cys	Lys	val	Ser 330	Asn	Lys	Ala	Leu	Pro 335	Ala	
25	Pro	Ile	Glu	Lys 340	Thr	Ile	Ser	Lys	Ala 345	Lys	Gly	Gln	Pro	Arg 350	Glu	Pro	
30	Gln	۷al	Tyr 355	Thr	Leu	Pro	Pro	Ser 360	Arg	Glu	Glu	Met	Thr 365	Lys	Asn	Gln	
35	val	Ser 370	Leu	Thr	Cys	Leu	va1 375	Lys	Gly	Phe	Tyr	Pro 380	Ser	Asp	Ile	Ala	
	va1 385	Glu	Trp	Glu	Ser	Asn 390	Gly	Gln	Pro	Glu	Asp 395	Asn	Tyr	Lys	Thr	Thr 400	
40	Pro	Pro	Val	Leu	Asp 405	Ser	Asp	Gly	Ser	Phe 410	Phe	Leu	Tyr	Ser	Lys 415	Leu	
45	Thr	۷al	Asp	Lys 420	Ser	Arg	Trp	Gln	Gln 425	Gly	Asn	val	Phe	Ser 430	Cys	Ser	
50	val	Met	His 435	Glu	Ala	Leu	His	Asn 440	His	Tyr	Thr	Gln	Lys 445	Ser	Leu	Ser	
55	Leu	Ser 450	Leu	Gly	Lys												
60	<210 <211 <212 <213	1> 2>	252 75 ADN Homo	Sap	iens												
	<400 cage		252 agc 1	tgttg	ggagt	tc ag	gggg	gaggo	ttg	ggtco	cagc	cggg	99999	gtc (ctga	ıgactc	60
65	tcct	tgtg	cag (cctct	t												75
	<210)>	253														

	<211> <212> <213>	30 ADN Homo Sapiens			
5	<400> ggattca	253 agct ttggcgacta ttggatga	jt		30
10	<210> <211> <212> <213>	254 18 ADN Homo Sapiens			
15	<400> tgggtc	254 cgcc aggctcca			18
20	<210> <211> <212> <213>	255 75 ADN Homo Sapiens			
25		255 ggcc tggagtgggt ggccgaca gtga agggc	ca aagccagatg gcag	gtgacaa agactatgtg	60 75
30	<210> <211> <212> <213>	256 96 ADN Homo Sapiens			
35	<400> cgattca	256 acca tctccagaga caacgcca	ng aactcactgt atct	gcaaat gagcagcctg	60
40	<210> <211> <212> <213>	gaag acacggctgt ctattatt 257 60 ADN Homo Sapiens	jt gcgaga		96
45	<400> gactate	257 gtcg tcgtcgcacc atctcaac	cc ccaaacattc acco	ctgaata cttccagaac	60
50	<210> <211> <212> <213>	258 63 ADN Homo Sapiens			
55	<400> ctatgte	258 gctg actcagccac cctcagtg	cc agtggcccca ggag	gagacgg ccagcattcc	60 63
60	<210> <211> <212> <213>	259 33 ADN Homo Sapiens			
65	<400> gggggaa	259 aaca acattggaac taagagtg	cc cac		33

```
<210>
            260
     <211>
            45
     <212>
            ADN
     <213>
            Homo Sapiens
5
     <400>
           260
     tggtaccagc agaggccagg ccaggcccct ctactggtcc tctat
                                                                                 45
10
     <210>
            261
     <211>
            21
     <212>
            ADN
            Homo Sapiens
     <213>
     <400> 261
15
                                                                                 21
     catgacacca ggcggccctc a
     <210>
            262
            99
     <211>
20
     <212>
            ADN
     <213>
            Homo Sapiens
25
     tcaaggattc ctgagcgatt ctctggctcc aactctggaa acacggccac cctgaccatc
                                                                                 60
                                                                                 99
     agcagggtcg aagccgggga tgaggccgac tattactgt
30
     <210>
            263
            24
     <211>
     <212>
            ADN
     <213>
            Homo Sapiens
35
     <400> 263
                                                                                 24
     caggtgtggg atagtcgaag ggtg
     <210>
            264
40
     <211>
            97
     <212>
            ADN
     <213>
            Homo Sapiens
     <220>
45
     <221>
            misc_feature
     <222>
            (76)..(76)
            S = C \circ G
     <223>
     <220>
50
     <221>
            misc_feature
     <222>
            (81)..(81)
     <223>
            R = A O G
     <220>
55
            misc_feature
     <221>
     <222>
            (88)..(88)
B = C o G o T
     <223>
60
     <220>
     <221>
            misc_feature
     <222>
            (89)..(89)
     <223>
            W = A O T
65
     <220>
     <221>
            misc_feature
            (91)..(91)
S = C o G
     <222>
     <223>
```

5	<220> <221> misc_feature <222> (96)(96) <223> D = A o G o T	
	<400> 264 cccaagcttg ccgccaccat gggatggagc tgtatcatcc tcttcttggt agcaacagct	60
10	acaggtgtcc actccsaggt rcagctgbwg sagtcdg	97
15	<210> 265 <211> 40 <212> ADN <213> Homo Sapiens	
	<400> 265 cccgaattct catttacccg gagacaggga gaggctcttc	40
20		

REIVINDICACIONES


- 1. Anticuerpo humano aislado, o un fragmento de unión a antígeno del mismo, que se une a la enterotoxina B estafilocócica, con una constante de disociación (K_D) inferior a 3 x 10⁻¹⁰ M, en el que la CDR1 de la cadena pesada comprende la secuencia de aminoácidos de la SEC N.º ID: 144, la CDR2 de la cadena pesada comprende la secuencia de aminoácidos de la SEC N.º ID: 146, y la CDR3 de la cadena pesada comprende la secuencia de aminoácidos de la SEC N.º ID: 148; y en el que, además, la CDR1 de la cadena ligera comprende la secuencia de aminoácidos de la SEC N.º ID: 136, la CDR2 de la cadena ligera comprende la secuencia de aminoácidos de la SEC N.º ID: 140, o en el que el dominio variable de la cadena pesada comprende la secuencia de aminoácidos de la SEC N.º ID: 230, y la región variable de cadena ligera comprende la secuencia de aminoácidos de la SEC N.º ID: 228, o en el que la cadena pesada comprende la secuencia de aminoácidos de la SEC N.º ID: 228, o en el que la cadena pesada comprende la secuencia de aminoácidos de la SEC N.º ID: 216 y la cadena ligera comprende la secuencia de aminoácidos de la SEC N.º ID: 214.
- 15 2. Polinucleótido que codifica un anticuerpo, o un fragmento de unión a antígeno del mismo, según la reivindicación 1.
 - 3. Composición que comprende un anticuerpo, o un fragmento de unión a antígeno del mismo, según la reivindicación 1, y un portador farmacéuticamente aceptable.
 - 4. Vector que comprende la secuencia del polinucleótido según la reivindicación 2.
 - 5. Célula que expresa un anticuerpo, o un fragmento de unión a antígeno del mismo, según la reivindicación 1.
- 6. Célula, según la reivindicación 5, en la que la célula es un hibridoma.
 - 7. Procedimiento de producción de un anticuerpo, o de un fragmento de unión a antígeno del mismo, según la reivindicación 1, que comprende cultivar una célula hospedadora en condiciones adecuadas para producir el anticuerpo, o un fragmento de unión a antígeno del mismo, y recuperar, del cultivo celular, el anticuerpo o fragmento de unión a antígeno.
 - 8. Anticuerpo, o un fragmento de unión a antígeno del mismo, según la reivindicación 1, para su uso en el tratamiento o prevención de una enfermedad mediada por la enterotoxina B estafilocócica en un sujeto, o para la neutralización de la enterotoxina B estafilocócica en un sujeto.
 - 9. Anticuerpo, o un fragmento de unión a antígeno del mismo, para su uso, según la reivindicación 8, en el que el anticuerpo, o un fragmento de unión a antígeno del mismo, neutraliza la enterotoxina B estafilocócica.
- 10. Anticuerpo, o un fragmento de unión a antígeno del mismo, para su uso, según la reivindicación 8 o 9, en el que 40 el sujeto es un mamífero.
 - 11. Anticuerpo, o un fragmento de unión a antígeno del mismo, para su uso, según la reivindicación 10, en el que el mamífero es un ser humano.

30

20

5

10

SEB

Vacuna basada en muteína de la SEB

Epítopos de unión a la IVIG Enlaces H de unión a TCR

Contactos de Van der Waals de unión a TCR

Figura 1

Figura 2A

Secuencia de nucleótidos correspondiente a la cadena ligera del 154G12 (SEC N.º ID: 133)

Figura 2B

Secuencia de aminoácidos de la cadena ligera del 154G12 (SEC N.º ID: 134)

MGWSCIILFLVATATGVHSLCADSATLSVSGPRRDGQHSCGGNNIGTKSVHWYQQR PGQAPLLVLYHDTRRPSRIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSRRV FGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSS PVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHKSYSCQVTHEGSTVEKTVAPTE SS*

Figura 2C

Secuencia de nucleótidos correspondiente a la cadena pesada del 154G12 (SEC N.º ID: 141)

ATGGGATGGAGCTGTATCATCCTCTTCTTGGTAGCAACAGCTACAGGTGTCCACT TGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTTGGCCACTATTGGATGAGT #GGGTCCGCCAGGCTCCAGGGAAGGGCCTGGAGTGGGTGGCCGACATAAAGC CAGATGGCAGTGACAAAGACTATGTGGACTCTGTGAAGGGCCGATTCAGCAT CTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAGCAGCCTGCGAGG CGAAGACACGCCCGTCTATTATTGTGCGAGAGACTATGTCGTCGCCCCCAT CTCAA'ECCECAAACATTCACECTGAATACTTCCAGAACTGGGGCCAGGGCACC CTGGTCATCGTCTCCTCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCAC CCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGG ACTACTTCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCG GCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAG CGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTG AATCACAAGCCCAGCAACACCCAAGGTGGACAAGAGAGTGAGCTGTGACAAAACT CACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCC TCTTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCAC ATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTA CGTGGACGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGT ACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCT GAATGCCAAGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACAC CCTGCCCCATCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCT GGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTC TTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTC TTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC TCTCCCTGTCTCCGGGTAAATGA

Figura 2D

Secuencia de aminoácidos de la cadena pesada del 154G12 (SEC N.º ID: 142)

MGWSCIILFLVATATGVHSQVQELESGGGLVQPGGSLRLSCAASGESEGDYWMSW VRQAPGKGLEWVADIKPDGSDKDYVDSVKGRETISRDNAKNSLYLQMSSLRGEDT AVYYCARDYVVVAPSQPPNIHPEMEQNWGQGTLVIVSSASTKGPSVFPLAPSSKSTS GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSL GTQTYICNVNHKPSNTKVDKRVSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS RTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLT CLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV FSCSVMHEALHNHYTQKSLSLSPGK*

Figura 3A

Secuencias de nucleótidos correspondientes a la cadena ligera del 154G12

FWR1: (SEC N.º ID: 258)

CTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAGAGACGCCCAG

CATTCCTGT

CRD1: (SEC N.º ID: 259)

GGGGGAAACAACATTGGAACTAAGAGTGTCCAC

FWR2: (SEC N.º ID: 260)

TGGTACCAGCAGAGGCCAGGCCAGGCCCTCTACTGGTCCTCTAT

CDR2: (SEC N.º ID: 261)

CATGACACCAGGCGCCCTCA

FWR3: (SEC N.º ID: 262)

TCAAGGATTCCTGAGCGATTCTCTGGCTCCAACTCTGGAAACACGGCCACCCTGA

CCATCAGCAGGTCGAAGCCGGGGATGAGGCCGACTATTACTGT

CDR3: (SEC N.º ID: 263)

CAGGTGTGGGATAGTCGAAGGGTG

Figura 3B

Secuencias de aminoácidos de la cadena ligera del 154G12

FWR1:

LCADSATLSVSGPRRDGQHSC(SEC N.º ID: 135)

CDR1:

GGNNIGTKSVH(SEC N.º ID: 136)

FWR2:

WYQQRPGQAPLLVLY (SEC N.º ID: 137)

CDR2:

HDTRRPS (SEC N.º ID: 138)

FWR3:

RIPERFSGSNSGNTATLTISRVEAGDEADYYC(SEC N.º ID: 139)

CDR3:

QVWDSRRV(SEC N.º ID: 140)

Figura 3C

Secuencias de nucleótidos correspondientes a la cadena pesada del 154G12

FWR1: (SEC N.º ID: 252)

AGACTCTCCTGTGCAGCCTCT

CDR1: (SEC N.º ID: 253)

GGATTCAGCTTTGGCGACTATTGGATGAGT

FWR2: (SEC N.º ID: 254) TGGGTCCGCCAGGCTCCA

CDR2: (SEC N.º ID: 255)

GGGAAGGCCTGGAGTGGCCGACATAAAGCCAGATGGCAGTGACAAAGA

CTATGTGGACTCTGTGAAGGGC

FWR3: (SEC N.º ID: 256)

CGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAGC

AGCCTGCGAGGCGAAGACACGGCTGTCTATTATTGTGCGAGA

CDR3: (SEC N.º ID: 257)

GACTATGTCGTCGCACCATCTCAACCCCCAAACATTCACCCTGAATACTTCC

AGAAC

Figura 3D

Secuencias de aminoácidos de la cadena pesada del 154G12

FWR1:

QVQLLESGGGLVQPGGSLRLSCAAS (SEC N.º ID: 143)

CDR1:

GFSFGDYWMS (SEC N.º ID: 144)

FWR2:

WVRQAPGKGLEWVA (SEC N.º ID: 145)

CDR2:

DIKPDGSDKDYVDSVKG (SEC N.º ID: 146)

FWR3:

RFTISRDNAKNSLYLQMSSLRGEDTAVYYCAR (SEC N.º ID: 147)

CDR3:

DYVVVAPSQPPNIHPEYFQN(SEC N.º ID: 148)

Figura 4A

Secuencia de nucleótidos con codones optimizados correspondiente a la cadena ligera del 154G12 (SEC N.º ID: 205)

Figura 4B

Secuencia de nucleótidos con codones optimizados correspondiente a la cadena pesada del 154G12 (SEC N.º ID: 219)

ATGGGCTGGTCCTGCATCATCCTGTTTCTGGTGGCCACCGCCACCGGCGTGCACT CCCAGGTGCAGCTGGAGTCTGGCGGCGGGACTGGTGCAGCCTGGCGGGCTCCCT GCGGCTGTCCTGCGCCGCCTCCGGCTTCTCCTTCGGCGACTACTGGATGTCCT GGGTGCGGCAGGCTCCTGGCAAGGGCCTGGAGTGGGTGGCCGACATCAAGCCT GACGCCAGCGACAAGGACTACGTCGACTCCGTGAAGGGCCGGTTCACCATCI CCCGGGACAACGCCAAGAACTECCTGTACCTGCAGATGTCCTECCTGCGGGGCG AGGACACCGCCGTGTACTACTGCGCCAGAGACTACCTCGTCGTCCTCCCCCCTTCC CAGCCTCCTAACATCCACCCTGAGTACTTCCAGAACTGGGGCCAGGGCACCCT GGTGATCGTGTCCTCCGCCTCCACCAAGGGCCCTTCCGTGTTCCCTCTGGCCCCCT CCTCCAAGTCCACCTCCGGCGCACCGCCGCTCTGGGCTGCCTGGTGAAGGACTA CTTCCTGAGCCTGTGACCGTGTCCTGGAACTCTGGCGCCCTGACCAGCGGAGTG CACACCTTCCCTGCCGTGCTGCAGTCCTCCGGCCTGTACTCCCTGTCCTCCGTGGT GACCGTGCCTTCCTCCTGGGCACCCAGACCTACATCTGCAACGTGAACCAC AAGCCTTCCAACACCAAGGTGGACAAGCGGGTGTCCTGCGACAAGACCCACACC TGCCCTCCCTGCCCTGAGCTGCTGGGCGGACCCTCCGTGTTCCTGTTCCC TCCTAAGCCTAAGGACACCCTGATGATCTCCCGGACCCCTGAGGTGACCTGTGTG GTGGTGGACGTGTCCCACGAGGATCCTGAGGTGAAGTTCAATTGGTACGTGGAC GGCGTGGAGGTGCACAACGCTAAGACCAAGCCTCGGGAGGAACAGTACAACTCC ACCTACCGGGTGGTGTCTGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCA AGGAATACAAGTGCAAGGTCTCCAACAAGGCCCTGCCCGCTCCCATCGAAAAGA CCATCTCCAAGGCCAAGGGCCAGCCTCGCGAGCCTCAGGTGTACACCCTGCCCCC CAGCCGGGAGGAAATGACCAAGAACCAGGTGTCCCTGACCTGTCTGGTGAAGGG CTTCTACCCTTCCGATATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCTGAGAAC AACTACAAGACCACCCTCCTGTGCTGGACTCCGACGGCTCCTTCTTCCTGTACTC CAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAGGGCAACGTGTTCTCCTGCTCC GTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGAGCC CTGGCAAGTGA

Figura 5A

Secuencias de nucleótidos con codones optimizados correspondientes a la cadena ligera del 154G12

FWR1:

CTGTGCGCCGACTCCGCCACCCTGTCCGTGTCCGGCCCTCGGAGGGACGGCCAGC ACTCCTGC (SEC N.º ID: 207)

CDR1:

GGCGGCAACAACATCGGCACCAAGTCCGTGCAC (SEC N.º ID: 208)

FWR2:

TGGTATCAGCAGCGGCCTGGACAGGCCCCTCTGCTGGTGCTGTAC (SEC N.º ID: 209)

CDR2:

CACGACACCAGGCGGCCTTCC (SEC N.º ID: 210)

FWR3:

CGGATCCCTGAGCGGTTCTCCGGCTCCAACTCCGGCAACACCGCTACCCTGACCA
TCTCCCGGGTGGAGGCCGACGACGACGACGACTACTACTGC (SEC N.º ID: 211)

CDR3:

CAGGTGTGGGACTCCAGGCGGGTG (SEC N.º ID: 212)

Figura 5b

<u>Secuencias de nucleótidos con codones optimizados correspondientes a la cadena pesada del</u> 154G12

FWR1:

CAGGTGCAGCTGGAGTCTGGCGGCGGACTGGTGCAGCCTGGCGGCTCCCTG CGGCTGTCCTGCGCCGCCTCC (SEC N.º ID: 221)

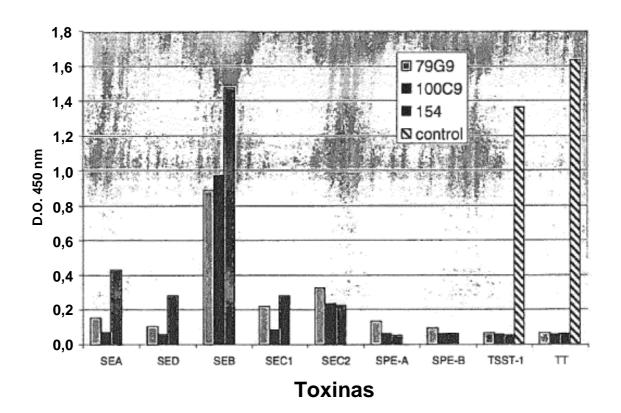
CDR1:

GGCTTCTCCTTCGGCGACTACTGGATGTCC (SEC N.º ID: 222)

FWR2:

CDR2:

GACATCAAGCCTGACGGCAGCGACAAGGACTACGTGGACTCCGTGAAGGGC (SEC N.° ID: 224)


FWR3:

CGGTTCACCATCTCCCGGGACAACGCCAAGAACTCCCTGTACCTGCAGATGTCCT CCCTGCGGGGCGAGGACACCGCCGTGTACTACTGCGCCAGA(SEC N.º ID: 225)

CDR3:

GACTACGTGGTGGCCCCTTCCCAGCCTCCTAACATCCACCCTGAGTACTTCC AGAAC (SEC N.º ID: 226)

Figura 6

