

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(1) Número de publicación: 2 622 490

51 Int. Cl.:

G06K 7/10 (2006.01) G06K 9/18 (2006.01) B41M 3/14 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 15.06.2011 PCT/US2011/040464

(87) Fecha y número de publicación internacional: 20.12.2012 WO12173612

(96) Fecha de presentación y número de la solicitud europea: 15.06.2011 E 11867735 (0)

(97) Fecha y número de publicación de la concesión europea: 22.02.2017 EP 2721553

(54) Título: Impresión de imagen de seguridad

45) Fecha de publicación y mención en BOPI de la traducción de la patente: 06.07.2017

(73) Titular/es:

HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. (100.0%) 11445 Compaq Center Drive West Houston, TX 77070, US

(72) Inventor/es:

SHACHAM, OMRI y HAIK, OREN

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Impresión de imagen de seguridad

Antecedentes

5

10

15

20

25

30

35

40

50

Es deseable evitar la reproducción o falsificación no autorizadas o falsificadas de muchos tipos de documentos originales. Dichos documentos pueden incluir papel moneda, instrumentos negociables, entradas de eventos, registros oficiales, recetas médicas, diplomas y muchos otros.

A medida que la tecnología de las fotocopiadoras ha mejorado, se ha vuelto más fácil hacer copias realistas de muchos de estos documentos originales. En muchos casos, una copia puede ser difícil de distinguir del original. En respuesta, los productores de estos documentos han añadido características a los documentos que los hacen más difíciles de copiar. Estas características a menudo toman la forma de un fondo de seguridad impreso en el documento original mediante un proceso de impresión de alta resolución como la impresión ófset. La impresión ófset suele ser una operación de impresión analógica realizada con una resolución equivalente entre 2.400 y 10.000 puntos por pulgada (ppp). Este fondo de seguridad en el documento original es, en esencia, indistinguible a simple vista a una distancia de observación normal. Sin embargo, una fotocopiadora común tiene capacidades de escaneo e impresión que son de inferior resolución que la de la impresión ófset, a menudo en el rango de 300 a 1200 ppp. Además, el escáner óptico de una fotocopiadora común percibe y captura el fondo de seguridad de manera diferente al ojo humano. Como resultado, el fondo de seguridad es fácilmente detectable por el ojo humano en un documento reproducido.

Sin embargo, en muchas aplicaciones se desea imprimir documentos originales en sistemas de impresión digital que sean de menor resolución que la impresión ófset y de resolución comparable a las fotocopiadoras. La impresión ófset suele tener altos costos de instalación y, por lo tanto, es rentable para imprimir grandes cantidades del mismo documento. Sin embargo, muchos documentos originales no se imprimen en grandes cantidades y, a menudo, los documentos originales se imprimen en cantidad individual. Por ejemplo, incluso si un conjunto de diplomas para una universidad particular se imprime en una sola tirada, el nombre del graduado en cada diploma será diferente. Por lo tanto, los sistemas de impresión digital estarían mejor adaptados a dichas aplicaciones que los sistemas de impresión ófset.

El documento US 2005/219634 A1 describe un método y aparato de generación de imágenes en donde el patrón inhibidor de falsificación de copia incluye una parte imagen latente y una parte imagen de fondo y una etapa para determinar que la parte imagen latente y la parte imagen de fondo tienen densidades de impresión iguales.

La patente europea EP 1 302 329 A2 describe un método para producir datos de imágenes compuestas que incluyen un patrón de fondo y el patrón de restricción de reproducción y transferir la imagen compuesta sobre una hoja receptora de imágenes en donde la imagen compuesta transferida se copia de tal manera que el patrón de restricción de reproducción destaca contra el patrón de fondo.

La patente de Estados Unidos US 2009/207433 A1 describe la formación de un pantógrafo de datos variables mediante la recepción de una cadena de datos variables y la recuperación de al menos una representación de caracteres de un vocabulario de representaciones de caracteres almacenadas en memoria en donde cada representación de caracteres incluye una región en primer plano que incluye una forma de carácter y una región de fondo adecuadamente dimensionada y dispuesta para abarcar la región en primer plano.

La patente de Estados Unidos US 2009/244641 A1 describe un método para producir un documento impreso multitonal con características de seguridad de distorsión evidentes de copia mejoradas en donde un archivo de seguridad digital electrónico crea un documento impreso con el fondo multitonal y el primer plano multitonal, en donde si el documento impreso se copia electrónicamente, las áreas de primer plano y de fondo de la copia se muestran de manera diferente.

Breve descripción de los dibujos

La FIG. 1A es una representación esquemática de una imagen de seguridad de ejemplo de un documento físico original, de acuerdo con un ejemplo.

La FIG. 1B es una representación esquemática de una copia de la imagen de seguridad de ejemplo del documento físico original de la FIG. 1A realizada en una fotocopiadora o un escáner/impresora, de acuerdo con un ejemplo.

La FIG. 2A es una vista ampliada de un área de la imagen de seguridad de ejemplo de la FIG. 1A que ilustra los patrones impresos en diferentes regiones de la imagen de seguridad, de acuerdo con un ejemplo.

La FIG. 2B es una representación esquemática de una parte ampliada de una imagen de seguridad digital utilizable para imprimir el documento físico original de la FIG. 1A que incluye la imagen de seguridad de ejemplo, de acuerdo con un ejemplo.

Las FIG. 3A-B son diagramas de flujo de acuerdo con un ejemplo de un método para imprimir digitalmente con un colorante único una característica de seguridad imperceptible a simple vista.

La FIG. 4A es una representación esquemática de una parte ampliada modificada de la imagen de seguridad digital de la FIG. 2B que tiene un número reducido de píxeles de valor ACTIVADO para el patrón B, de acuerdo con un ejemplo.

La FIG. 4B es una representación esquemática de una parte ampliada de la imagen de seguridad digital de la FIG. 2B que ilustra los píxeles de valor ACTIVADO del patrón B para imprimir con un nivel de gris reducido, de acuerdo con un ejemplo.

Las FIG. 5A-C son diagramas de flujo de acuerdo con un ejemplo de otro método para imprimir digitalmente con un colorante único una característica de seguridad imperceptible a simple vista.

La FIG. 6 es una representación esquemática de una parte ampliada de un medio impreso previamente que tiene un fondo de seguridad de mayor resolución, de acuerdo con un ejemplo.

La FIG. 7 es una representación esquemática de una parte ampliada de una imagen de seguridad digital que tiene artefactos de escaneo formados al escanear ópticamente el medio de la FIG. 6 con una resolución más baja, de acuerdo con un ejemplo.

La FIG. 8 es una representación esquemática de la parte ampliada de la imagen de seguridad digital de la FIG. 7 después de que los artefactos de escaneo hayan sido reparados, de acuerdo con un ejemplo.

La FIG. 9 es una representación esquemática de la parte ampliada de la imagen de seguridad digital de la FIG. 8 modificada para reducir tanto el nivel de gris de una región más oscura como para codificar un mensaje de seguridad, de acuerdo con una forma de realización de la presente descripción.

La FIG. 10 es un diagrama de bloques de un sistema de impresión utilizable para implementar los métodos de los diagramas de flujo de las FIG. 3A-B y 5A-C e imprimir una imagen de seguridad con un colorante único.

Descripción detallada

5

10

15

20

25

30

Con referencia ahora a los dibujos, se ilustran formas de realización de una técnica y un sistema de impresión para imprimir, con un colorante único, una característica de seguridad que es, en esencia, imperceptible a simple vista. Una imagen de seguridad digital que incluye la característica de seguridad tiene una primera región formada por un primer patrón de píxeles binarios y una segunda región contigua formada por un segundo patrón diferente de píxeles binarios. La primera y segunda regiones tienen cada una un nivel de gris similar. Los patrones primero y segundo se imprimen en un medio de impresión con el colorante único. Se determina el más oscuro de los patrones impresos primero y segundo. La imagen de seguridad se imprime en un medio de impresión con el colorante único, con la región que se corresponde con el patrón impreso más oscuro impresa con un nivel de gris reducido, de manera que la primera y segunda regiones impresas se muestren, en esencia, indistinguibles a simple vista. Utilizar un colorante único es ventajoso para ajustar la apariencia de las regiones impresas ya que esto puede producir resultados de alta calidad en sistemas de impresión que tienen un registro de color menos preciso que otros sistemas de impresión que ajustan la apariencia utilizando diferentes o múltiples colorantes.

El medio de impresión sobre el que se imprime la imagen de seguridad puede ser cualquier tipo de hoja adecuada o material en rollo, tal como papel, cartulina, tejido u otra tela, transparencias, poliéster y similares. El sistema de impresión puede utilizar cualquiera de las diversas tecnologías de impresión digital, incluyendo, pero sin limitarse a, tecnologías de impresión de electrofotografía líquida, de electrofotografía de tóner (por ejemplo, LaserJet) y de inyección de líquido (por ejemplo, InkJet, incluyendo la térmica y la piezoeléctrica). El sistema de impresión puede ser una prensa digital, una impresora láser o una impresora de chorro de tinta, entre muchos otros dispositivos. El sistema de impresión puede incluir un escáner óptico o una cámara o puede incluirse en una fotocopiadora o en un dispositivo todo en uno (por ejemplo, una combinación de al menos dos entre una impresora, escáner, fotocopiadora y fax), por nombrar algunos. Según se define en la presente memoria y en las reivindicaciones adjuntas, un "líquido" debería entenderse, en sentido amplio, como un fluido no compuesto principalmente de un gas o gases.

Un documento físico original incluye normalmente una imagen en primer plano superpuesta sobre una imagen de seguridad que forma el fondo del documento original. Como puede apreciarse con referencia a la FIG. 1A, una imagen de seguridad 10 de un documento físico original tiene al menos una primera región 12 y al menos una segunda región 14 contigua. El borde 16 mostrado en la FIG. 1A no aparece en la propia imagen de seguridad 10 impresa, sino que se ilustra con el fin de indicar los límites entre las regiones 12 y 14. Las regiones 12 y 14 del documento físico original tienen un aspecto similar a simple vista de manera que son, en esencia, indistinguibles por un observador que mira el documento a una distancia de observación normal sin la ayuda de una lupa u otro dispositivo de aumento. Como resultado, la característica de seguridad es imperceptible para el observador.

Considerando ahora una copia 20 de la imagen de seguridad 10 impresa utilizando una fotocopiadora o escáner/impresora y con referencia a la FIG. 1B, la copia 20 revela la característica de seguridad formada por las

regiones 22, 24. Las regiones 22 se corresponden con las regiones 12 y las regiones 24 con las regiones 14. En la copia 20, las regiones 22 no tienen el mismo aspecto que las regiones 24. La característica de seguridad está determinada por las formas de las regiones 22, 24. La característica de seguridad de ejemplo ilustrada en la FIG. 1B es la palabra "COPY", que es visible en la copia 20 porque la región 24 es más oscura que la región 22. Una característica de seguridad de este tipo que no es evidente en un original pero que es visible en una copia se conoce comúnmente como "pantógrafo VOID", Ya que la palabra "VOID" se utiliza a menudo como la característica de seguridad. La característica de seguridad puede ser texto, gráficos o cualquier otra característica que indique que la copia 20 no es un documento original. La diferencia de apariencia entre las regiones 22, 24 puede resultar de una diferencia de claridad o densidad óptica de las regiones en el medio impreso, una diferencia de apariencia de los patrones que rellenan las regiones al imprimirse en el medio u otras diferencias. Una diferencia de claridad o densidad óptica entre las regiones 22, 24 tan pequeña como el 2% puede revelar la característica de seguridad a simple vista.

10

15

20

40

45

50

55

60

La imagen de seguridad 10 de ejemplo y la copia 20 normalmente representan una parte de la imagen de seguridad de un documento original. Por ejemplo, la característica de seguridad se puede replicar varias veces en la imagen de seguridad; varias características de seguridad diferentes pueden estar formadas por regiones con formas diferentes; las características de seguridad pueden ser de diferentes tamaños; se pueden colocar varias características de seguridad en la imagen de seguridad en diferentes orientaciones; y diferentes patrones se pueden utilizar en diferentes regiones. Incluir múltiples características de seguridad en un documento original de esta manera normalmente hace el documento original más seguro contra la copia, ya que ajustar la configuración de la fotocopiadora en un intento de evitar la visibilidad de una característica de seguridad puede no ser eficaz o incluso mejorar la visibilidad de una característica de seguridad diferente. El documento original también incluye una imagen en primer plano, fácilmente perceptible a simple vista, que constituye el contenido del documento, tal como el texto y los gráficos de un diploma, entrada de evento, acciones, bonos, moneda, etc.

Considerando ahora en mayor detalle las regiones 12, 14 de la imagen de seguridad 10 y con referencia a la FIG.

2A, la región 12 del documento original tiene un patrón diferente de la región 14. La FIG. 2A ilustra un área 18 ampliada de la imagen de seguridad 10 de ejemplo de la FIG. 1A. La región 12 tiene un primer patrón 32 de ejemplo y la región 14 tiene un segundo patrón 34 de ejemplo diferente. En una forma de realización, el primer patrón 32 de ejemplo tiene líneas paralelas 36 más delgadas que están dispuestas con una separación entre líneas 37 más estrecha, mientras que el segundo patrón 34 de ejemplo tiene unas líneas paralelas 38 más gruesas que están dispuestas con una separación entre líneas 39 más amplia. El grosor y la separación de las líneas se eligen de tal manera que la claridad percibida o la densidad óptica de las dos regiones en el documento físico original sea, en esencia, la misma cuando el documento original es visualizado por el ojo humano desde una distancia de observación normal.

En otros ejemplos, las regiones 12, 14 pueden utilizar otros patrones. Por ejemplo, las líneas en una región pueden estar dispuestas con una orientación diferente en comparación con las líneas de la otra región, en lugar de con la misma orientación. Como otro ejemplo, las líneas pueden ser continuas, partidas o una serie de puntos. Se consideran múltiples patrones.

Considerando ahora una imagen de seguridad digital utilizable por un sistema de impresión para imprimir un documento original que tiene una característica de seguridad, y con referencia a la FIG. 2B, la imagen de seguridad digital incluye una matriz de filas y columnas de píxeles de valor binario. Cada píxel tiene un valor ACTIVADO o DESACTIVADO. Durante la impresión, el sistema de impresión deposita un colorante único sobre un medio de impresión en aquellas ubicaciones que se corresponden con los píxeles de valor ACTIVADO.

La parte 40 de la imagen de seguridad digital de ejemplo ilustrada en la FIG. 2B se corresponde con una parte 31 de la zona 18 de la imagen de seguridad 10 que se ilustra en la FIG. 2A. Los cuadrados rellenos, tales como los cuadrados 43, representan píxeles de valor ACTIVADO. Los cuadrados vacíos, como los cuadrados 42, representan píxeles de valor DESACTIVADO.

Dentro de la matriz de filas y columnas de pixeles de la parte 40 ilustrada de la imagen de seguridad digital hay una primera región que está formada por un primer patrón de píxeles binarios de valor ACTIVADO y una segunda región contigua que está formada por un segundo patrón diferente de píxeles binarios de valor ACTIVADO. El grosor de las líneas formadas por los píxeles de valor ACTIVADO y la separación entre las líneas que resulta de los píxeles de valor DESACTIVADO no están necesariamente dibujadas a escala, pero han sido elegidas para claridad de la explicación. El primer patrón está formado por los píxeles binarios de valor ACTIVADO que se indican con la letra "A", mientras que el segundo patrón está formado por los píxeles binarios de valor ACTIVADO que se indican con la letra "B". La primera y segunda regiones, al imprimirse, muestran cada una un nivel de gris. Como se define en la presente memoria y en las reivindicaciones adjuntas, el "nivel de gris" de una región impresa de píxeles binarios de una imagen digital debería entenderse en sentido amplio como indicando la oscuridad relativa percibida en la región. Al imprimirse, una región percibida con un mayor del nivel de gris se mostrará más oscura (es decir, tendrá una densidad óptica más alta), mientras que una región con una región gris percibida más baja se mostrará más clara (es decir, tendrá una densidad óptica inferior), cuando se mira a una distancia de observación normal. Imprimir ambas regiones de la imagen de seguridad digital con similar o, en esencia, el mismo nivel de gris da a las regiones,

al imprimirse en un documento original, una claridad o densidad óptica similar que hace que la característica de seguridad sea indistinguible a simple vista en el caso ideal.

El número y colocación de los píxeles elegidos para cada región de la imagen de seguridad digital pueden estar destinadas a producir al imprimirse regiones con el mismo o similar nivel de gris percibido. Sin embargo, debido a diversos efectos de impresión y características del proceso de impresión, un observador puede ser capaz de percibir diferencias entre la primera y segunda regiones impresas al imprimirse un documento original que tiene la imagen de seguridad digital. Esto, a su vez, indeseablemente volvería visible la característica de seguridad en el documento impreso original.

5

10

15

20

30

35

40

45

50

55

60

Considerando ahora un método de impresión digital con un colorante único, una característica de seguridad imperceptible a simple vista y con referencia a las FIG. 3A-B, un método 300 comienza en 302 proporcionando una imagen de seguridad digital que tiene una primera región formada por un primer patrón de píxeles binarios y una segunda región contigua formada por un segundo patrón diferente de píxeles binarios, con los píxeles de cada una de las regiones primera y segunda destinados a tener un nivel de gris similar al imprimirse. En 304, los patrones primero y segundo se imprimen en un medio con el colorante único. El medio es normalmente el mismo tipo de medio sobre el que se imprime la imagen de seguridad, normalmente con una imagen en primer plano superpuesta sobre la misma. El colorante se dispone sobre el medio de impresión en ubicaciones que se corresponden con los píxeles de valor ACTIVADO de cada patrón. El tamaño, cantidad o la parte de cada patrón impresa es suficiente para permitir una evaluación o una medición de la claridad relativa de cada patrón. Por ejemplo, se pueden imprimir dos zonas rectangulares de un tamaño dado, con cada una de las zonas rellenas con uno diferente de los dos patrones. En 306, se determina el más oscuro de los patrones impresos primero y segundo. En 308, la imagen de seguridad digital se imprime en un medio con el colorante único, con la región que se corresponde con el patrón impreso más oscuro impresa con un nivel de gris reducido de tal manera que la primera y segunda regiones impresas se muestran, en esencia, indistinguibles a simple vista si se visualizan a una distancia de observación normal.

En algunas formas de realización, la determinación incluye, en 314, comprobar una diferencia en la densidad óptica entre el primer y el segundo patrón impreso. En dichas formas de realización, el nivel de gris reducido se corresponde con la diferencia en la densidad óptica entre los dos patrones impresos.

Una técnica para imprimir el patrón más oscuro con un nivel de gris reducido en algunas formas de realización incluye, en 316, modificar la imagen de seguridad reduciendo el número de píxeles binarios que tienen un valor ACTIVADO en la región que se corresponde con el patrón impreso más oscuro. Una forma en la que se puede lograr la reducción es mediante la aplicación de un filtro de nivel de gris a la imagen de seguridad. La reducción del número de píxeles binarios que tienen un valor ACTIVADO se corresponde normalmente con la diferencia de densidad óptica entre el primer y el segundo patrones al imprimirse. Reducir el número de píxeles binarios que tienen un valor ACTIVADO normalmente incluye ajustar los seleccionados de los píxeles binarios de valor ACTIVADO a un valor DESACTIVADO. Por ejemplo, considere una imagen de seguridad digital modificada, cuya parte 50 se ilustra en la FIG. 4A y que se corresponde con la parte 40 de la FIG. 2B. Supongamos, por ejemplo, que el segundo patrón de la imagen de seguridad digital, que se corresponde con los píxeles "B" de la FIG. 2B, se determina que es aproximadamente un 4% más oscuro al imprimirse que el primer patrón que se corresponde con los píxeles "A". La imagen de seguridad digital puede modificarse, como se ilustra en la FIG. 4A, cambiando el valor de un número suficiente de píxeles de un valor ACTIVADO a un valor DESACTIVADO para reducir el nivel de gris del segundo patrón. Por ejemplo, en la FIG. 4A, los píxeles 52 han sido cambiados a un valor DESACTIVADO; mientras que en la FIG. 2B, los píxeles en estas mismas ubicaciones tienen un valor ACTIVADO. Las ubicaciones de los píxeles cuyo valor se cambia de ACTIVADO a DESACTIVADO se elige normalmente para evitar la creación de un patrón regular de agujeros en la imagen que produciría un artefacto, tal como un patrón de moaré, por ejemplo, que podría ser visible a simple vista.

En algunas formas de realización y como se discutirá posteriormente con referencia a la FIG. 9, las ubicaciones de los píxeles en el patrón que se establecen, en 318, desde un valor ACTIVADO a un valor DESACTIVADO pueden ser seleccionadas para formar un mensaje codificado que sea detectable en una copia de la imagen de seguridad impresa que se realiza con una fotocopiadora o un escáner/impresora. El mensaje codificado puede proporcionar una capa adicional de seguridad para un documento impreso original.

Otra técnica para imprimir el patrón más oscuro con un nivel de gris reducido en algunas formas de realización incluye, en 320, imprimir cada uno de los píxeles binarios que tienen un valor ACTIVADO en la región que se corresponde con el más claro de los primero y segundo patrones impresos con un nivel de oscuridad nominal e imprimir cada uno de los píxeles binarios que tienen un valor ACTIVADO en la región que se corresponde con el más oscuro de los patrones impresos primero y segundo con un nivel de oscuridad reducido más bajo que el nivel de oscuridad nominal. En esta técnica, la imagen de seguridad digital en sí no se modifica; en otras palabras, los valores de los píxeles binarios de la imagen no se modifican.

Por ejemplo, considere la imagen de seguridad digital, cuya parte 48 se ilustra en la FIG. 4B. Cada píxel de la parte 48 tiene el mismo valor que su correspondiente píxel en la parte 40 de la FIG. 2B. Supongamos, por ejemplo, que se determina que el segundo patrón de la imagen de seguridad digital, que se corresponde con los píxeles "B" de la

FIG. 2B, es aproximadamente un 4% más oscuro al imprimirse que el primer patrón que se corresponde con los píxeles "A". En consecuencia, al imprimir la imagen de seguridad, los píxeles "A" de la FIG. 4B se imprimirán cada uno con el nivel de oscuridad nominal. Los píxeles "B" de la FIG. 4B se imprimirán cada uno con un nivel de oscuridad reducido, como se indica mediante el sombreado de color más claro utilizado para los píxeles "B". Como resultado, se reducirá el nivel de gris del segundo patrón impreso. Como se discutirá posteriormente con referencia a la FIG. 10, diferentes tecnologías de impresión pueden emplear diferentes técnicas para implementar los niveles nominales y reducidos de oscuridad con el colorante único sin modificar la imagen de seguridad digital.

Volviendo al método 300, en 310 se proporciona una imagen en primer plano. La imagen en primer plano constituye el texto, los gráficos y similares que constituyen el contenido del documento original que se va a imprimir, como el de un diploma, una entrada de evento, acciones, bonos, moneda, etc. En 312, la imagen en primer plano se superpone sobre una parte de la imagen de seguridad y a continuación se imprimen la imagen en primer plano y la imagen de seguridad combinadas para formar un documento original seguro que incluye la característica de seguridad. La imagen en primer plano puede imprimirse con un número y variedad de colorantes diferentes, incluyendo el colorante único. Mientras que la impresión 312 de la imagen en primer plano se ilustra en las Figs. 3A-B como separada de la impresión 308 de la imagen de seguridad para claridad de la explicación, debe entenderse que estas operaciones de impresión se realizan normalmente juntas y que la imagen de seguridad normalmente no se imprime en las ubicaciones donde se imprime la imagen en primer plano.

10

15

20

25

35

40

45

50

55

60

En algunas formas de realización, las etapas 304 y 306 pueden repetirse una o más veces, si se desea, después de aplicar las técnicas de reducción del nivel de gris de la etapa 316 o 320 a los patrones impresos. Esto puede comprobar que las dos regiones impresas de la imagen de seguridad serán, en esencia, indistinguibles a simple vista antes de imprimir la imagen de seguridad. Puede afinarse de forma iterativa la cantidad de reducción de nivel de gris que se aplicará con el fin de reducir o eliminar cualquier capacidad de distinción entre las dos regiones.

El método 300 utiliza el conocimiento de cuál de los píxeles de valor ACTIVADO de la seguridad digital se corresponde con el primer patrón y cual se corresponde con el segundo patrón para imprimir los patrones en 304 y la imagen de seguridad en 308. En algunas formas de realización, la imagen de seguridad digital se genera utilizando un software de diseño que proporciona metadatos que son indicativos de si un píxel de valor ACTIVADO es parte del primer patrón (es decir, un píxel "A") o del segundo patrón (es decir, un píxel "B"). Estos metadatos, si se proporcionan, se utilizan junto con la imagen de seguridad digital en las operaciones de impresión 304, 308.

En otra forma de realización, dichos metadatos no se proporcionan. Una situación hipotética en el que esta situación puede ocurrir es cuando la imagen de seguridad digital no es generada por dicho software de diseño, sino que se obtiene mediante el escaneo de un medio en el que se ha impreso previamente un fondo de seguridad que incluye al menos una característica de seguridad. El fondo de seguridad impreso previamente ha sido impreso previamente normalmente en el medio a una alta resolución, tal como con la impresión ófset.

Si bien una solución sería imprimir las imágenes en primer plano deseadas en medios en existencia que hayan sido impresos previamente con el fondo de seguridad, esto a menudo no es posible ni deseable. Por ejemplo, el fondo de seguridad puede ser un espécimen único para el cual no haya existencias disponibles. O bien, el fondo de seguridad puede no estar disponible con el tamaño del documento original seguro que se va a imprimir. Por lo tanto, puede ser ventajoso convertir el fondo de seguridad impreso previamente en una imagen de seguridad digital que se pueda imprimir a continuación junto con la imagen o imágenes en primer plano deseadas sobre medios en existencia en blanco. Sin embargo, escanear, con una resolución más baja, un fondo de seguridad que se imprimió con una resolución más alta, normalmente crea artefactos armónicos en la imagen de seguridad digital resultante que serían visibles a simple vista en un documento impreso posterior que use la imagen de seguridad. Además, la información utilizada para clasificar los píxeles de la imagen de seguridad digital como pertenecientes a un patrón y/o región no es proporcionada por la operación de escaneo.

Considerando ahora otro método de impresión digital con un colorante único, una característica de seguridad imperceptible a simple vista, v con referencia a las FIG. 5A-C, un método 500 comienza en 502 proporcionando un medio que tiene un fondo de seguridad impreso previamente sobre el mismo con una resolución más alta. El fondo tiene una primera región con un primer patrón impreso previamente, y una segunda región contigua con un segundo patrón impreso previamente diferente. La primera y la segunda región son, en esencia, indistinguibles a simple vista desde una distancia de observación normal. En algunas formas de realización, el primer patrón impreso previamente tiene líneas más delgadas dispuestas con una separación entre líneas más estrecha, y el segundo patrón impreso previamente tiene líneas más gruesas dispuestas con una separación entre líneas más amplia. En 504, el medio se escanea ópticamente con una resolución más baja para producir una imagen de seguridad. En algunas formas realización, la imagen de seguridad digital tiene un primer patrón de píxeles de líneas más delgadas de píxeles binarios de valor ACTIVADO con una separación entre líneas más estrecha y un segundo patrón de píxeles de líneas más gruesas de píxeles binarios de valor ACTIVADO que tienen una separación entre líneas más amplia, que se corresponden con las líneas más gruesas y más delgadas del primer y segundo patrones impresos previamente. En 506, la imagen de seguridad se analiza para identificar un primer patrón de píxeles de primeros píxeles binarios que se corresponde con la primera región y un segundo patrón de píxeles de segundos píxeles binarios que se corresponde con la segunda región. En 508, el primer y segundo patrones de píxeles se imprimen con el colorante único. En algunas formas de realización, esto se puede llevar a cabo de una manera similar a la descrita

anteriormente con referencia a la etapa 304. En 510, se determina el patrón más oscuro de los patrones impresos primero y segundo. En algunas formas de realización, esto puede realizarse de una manera similar a la descrita anteriormente con referencia a la etapa 306. En 512, la imagen de seguridad se imprime con la resolución más baja con el colorante único, con la región que se corresponde con el patrón impreso más oscuro impresa con un nivel de gris reducido de manera que la primera y segunda regiones impresas sobre la imagen de seguridad impresa sean, en esencia, indistinguibles a simple vista. En algunas formas de realización, esto se puede llevar a cabo de una manera similar a la descrita hasta ahora con referencia a las etapas 308, 316, 318 y 320. En 514, se proporciona una imagen en primer plano, en algunas formas de realización de una manera similar a la descrita anteriormente con referencia a la etapa 310. En 516, la imagen en primer plano se superpone sobre una parte de la imagen de seguridad y, a continuación, se imprime para formar un documento original seguro que incluya la característica de seguridad, en algunas formas de realización de una manera similar a la descrita anteriormente con referencia a la etapa 312.

10

15

20

25

30

35

40

45

50

En algunas formas de realización, las etapas 508 y 510 pueden repetirse, si se desea, después de aplicar las técnicas de reducción del nivel de gris a los patrones impresos, de una manera similar a como ha sido descrito anteriormente con referencia a las etapas 304 y 306 (FIG. 3).

Considerando ahora los efectos de escanear ópticamente un medio que tiene un fondo de seguridad impreso previamente con mayor resolución con un dispositivo óptico de escaneo de resolución más baja, la FIG. 6 ilustra una parte 60 ampliada de un medio impreso previamente de este tipo. Un primer patrón impreso de líneas más finas 62 está dispuesto con una separación entre líneas más estrecha y un segundo patrón impreso de líneas más gruesas 64 está dispuesto con una separación entre líneas más amplia. La FIG. 7 ilustra una parte 70 que se corresponde con una imagen de seguridad digital formada mediante el escaneo óptico del medio con una resolución más baja. Normalmente, la resolución con la que se escanea el medio se corresponde con la resolución del sistema de impresión que se utilizará para imprimir la imagen de seguridad digital y el documento original correspondiente. Debido a la diferencia en la resolución, las características del escáner óptico y similares, la imagen de seguridad tiene armónicos y otros artefactos que no están presentes en el fondo de seguridad. Por ejemplo, las líneas más delgadas 72 y las líneas más gruesas 74 tienen normalmente un aspecto dentado. Además, los artefactos tales como los aquieros son evidentes en las líneas 72. 74 en las diversas ubicaciones indicadas por los círculos 76. (Debe entenderse que los círculos 76 indican meramente la ubicación de los agujeros y que los círculos 76 no forman parte de la imagen de seguridad digital). Estos agujeros a menudo forman un patrón regular, tal como patrón tipo moaré, por ejemplo, que es fácilmente visible a simple vista al imprimirse. Como tal, si la imagen de seguridad escaneada se imprime en un documento original, estos patrones indeseables serán visibles a simple vista, degradando de forma no deseable la calidad de impresión del documento.

Por lo tanto, en algunas formas de realización, el método 500 elimina de la imagen de seguridad, en 520, por lo menos algunos de estos artefactos. En algunas formas de realización, los agujeros se rellenan digitalmente en 522. Para rellenar los agujeros, el valor binario de los píxeles que se corresponden con al menos algunos de los agujeros puede cambiarse desde un valor DESACTIVADO a un valor ACTIVADO. Esto se puede lograr utilizando una técnica de coincidencia de plantillas o por otros medios. Como ejemplo, la eliminación de los artefactos en la parte 70 de la imagen de seguridad de la FIG. 7 da como resultado la parte 80 de la imagen de seguridad reparada de la FIG. 8.

Analizar 506 la imagen de seguridad para identificar el primer y segundo patrones de píxeles que permiten que cada uno de los píxeles binarios de valor ACTIVADO se clasifique en cuanto a cuál patrón de píxeles y, por tanto, en cuanto a cuál región de la imagen de seguridad pertenece el píxel. Este resultado de este análisis reconstruye los metadatos de clasificación de píxeles que faltan para la imagen de seguridad, en las situaciones en las que dichos metadatos no se proporcionan junto con la imagen de seguridad. Además de las situaciones hipotéticas en las que se escanea un fondo de seguridad impreso previamente para formar la imagen de seguridad, puede haber otras situaciones en las que se proporcione una imagen de seguridad digital sin los datos de clasificación de píxeles correspondientes.

Una técnica de análisis para clasificar los píxeles comienza, en 530, adelgazando las líneas gruesas y delgadas de la imagen de seguridad para formar un esqueleto de las líneas. En 532, para cada píxel de valor ACTIVADO en el esqueleto, se calcula la distancia desde su correspondiente píxel de valor ACTIVADO en la imagen de seguridad hasta un píxel de valor DESACTIVADO vecino más próximo en la imagen de seguridad. En 534, el correspondiente pixel de valor ACTIVADO en la imagen de seguridad en y sus píxeles de valor ACTIVADO vecinos más próximos se clasifican como primeros píxeles binarios si la distancia es menor que un valor límite. En 536, el correspondiente píxel de valor ACTIVADO en la imagen de seguridad y sus píxeles de valor ACTIVADO vecinos más cercanos se clasifican como segundos píxeles binarios si la distancia es al menos el valor límite.

En algunas formas de realización, como se discutió con anterioridad, las regiones de la imagen de seguridad se hacen indistinguibles a simple vista mediante la modificación de la imagen de seguridad al reducir el número de píxeles binarios que tienen un valor ACTIVADO en la región que se corresponde con el patrón impreso más oscuro. La ubicación de los píxeles de valor ACTIVADO que se establecen a un valor DESACTIVADO para llevar a cabo la reducción puede ser seleccionada de una manera tal que se codifique un mensaje que no sea evidente en el documento original, pero que sería detectable en una copia realizada con una fotocopiadora o un escáner/impresora. La parte 90 de la imagen de seguridad digital que tiene un mensaje codificado de la FIG. 9 se corresponde con la

parte 80 de la imagen digital de seguridad de la FIG. 8. Con referencia a la FIG. 9, se supone que las líneas más gruesas se corresponden con el patrón impreso más oscuro. Para reducir el nivel de gris de esa región, se pueden insertar los agujeros 92 en algunas de las líneas más gruesas. La ubicación seleccionada para los agujeros puede dar como resultado, en algunas formas de realización, un conjunto de segmentos de línea, tales como los segmentos 94, que pueden codificar un mensaje de una manera similar a, por ejemplo, un código de barras. Se puede incluir más de una copia del mensaje codificado en la imagen de seguridad. Esta técnica puede proporcionar una capa adicional de seguridad para un documento original impreso. Por ejemplo, el mensaje codificado puede identificar al usuario que generó los documentos originales y/o el sistema de impresión con el que se imprimió. Esto puede permitir que los documentos copiados sean rastreados hasta el documento original.

10 Considerando ahora un sistema de impresión utilizable para imprimir digitalmente con un colorante único una característica de seguridad imperceptible a simple vista, y con referencia a la FIG. 10, un sistema de impresión 100 está configurado para imprimir una impresión de calibración 102 y un documento original seguro 104. El documento original seguro 104 comprende una imagen en primer plano 106 (representada como el texto "\$\$\$") superpuesta sobre una imagen de seguridad. La imagen de seguridad puede ser una imagen de seguridad 108 de píxeles 15 binarios que es recibida por el sistema de impresión 100. En algunas formas de realización, la imagen de seguridad 108 puede producirse mediante un generador de imágenes de seguridad 110, tal como una aplicación software de diseño que se ejecute en un sistema informático. Los metadatos 112 indicativos de que píxeles binarios de la imagen de seguridad se corresponden con un primer patrón de píxeles y que píxeles binarios se corresponden con un segundo patrón de píxeles, se pueden proporcionar también al sistema de impresión 100. Por ejemplo, el 20 generador de imágenes 110 puede generar los metadatos 112 junto con la imagen de seguridad 108. En otras formas de realización, la imagen de seguridad puede ser generada a partir de un fondo de seguridad 114, impreso previamente en un medio con una alta resolución, que se proporciona al sistema de impresión 100. En todavía otras formas de realización, la imagen de seguridad 108 se puede proporcionar al sistema de impresión 100 de una manera diferente.

El sistema de impresión 100 incluye un controlador 120 y un mecanismo de impresión 160. El sistema de impresión 100 puede implementarse usando hardware, software, firmware o una combinación de estas tecnologías. Los subsistemas o partes de los subsistemas, del sistema de impresión 100 se pueden implementar utilizando hardware mecánico y eléctrico dedicado o una combinación de hardware dedicado, junto con un ordenador o microprocesador controlado mediante firmware o software. El hardware eléctrico dedicado puede incluir circuitos analógicos separados o integrados y circuitos digitales, tales como dispositivos lógicos programables y máquinas de estado. El firmware o software pueden definir una secuencia de operaciones lógicas y pueden ser organizados como módulos, funciones u objetos de un programa de ordenador.

35

40

45

50

55

60

En algunas formas de realización, el controlador 120 incluye al menos un procesador 122 y al menos una memoria 140. Una memoria 140 es un medio legible por ordenador en el que se pueden almacenar instrucciones ejecutables por el procesador 122. Un medio legible por ordenador puede ser cualquier medio que pueda almacenar, comunicar, propagar o transportar el programa para su utilización por o en conexión con el sistema de impresión 100. El medio legible por ordenador puede ser, por ejemplo, pero no limitado a, un sistema, aparato, dispositivo o medio de propagación electrónico, magnético, óptico, electromagnético, infrarrojo o semiconductor. Una lista no exhaustiva de ejemplos más específicos del medio legible por ordenador incluye una conexión eléctrica (electrónico) que tiene uno o más cables, un disquete de ordenador portátil (magnético), una memoria de acceso aleatorio (RAM) (electrónico), una memoria de sólo lectura, (ROM) (electrónico), una memoria de sólo lectura programable y borrable (EPROM, EEPROM o memoria flash) (electrónico), una fibra óptica (óptico), un disco compacto portátil de memoria de solo lectura(CD-ROM) (óptico).

La memoria 140 incluye firmware o software organizado en varios componentes que pueden ser módulos, funciones, objetos o similares. La memoria incluye normalmente componentes, tales como un sistema operativo, controladores de dispositivo, software de red o comunicaciones y similares. En algunas formas de realización, los componentes pueden implementar métodos realizados por el sistema de impresión 100, tales como, por ejemplo, el método 300 (FIG. 3) y el método 500 (FIG. 5). Los diversos elementos y/o etapas de estos métodos pueden representar una sección o parte del firmware o código software que realiza las operaciones lógicas correspondientes. Aunque los diagramas de flujo de las FIG. 3-5 muestran un flujo específico de la ejecución, se entiende que el orden de ejecución puede diferir del que se representa. Por ejemplo, el orden de ejecución de dos o más bloques puede estar revuelto en relación con el orden mostrado. Además, dos o más bloques mostrados en sucesión pueden ser ejecutados al mismo tiempo o con coincidencia parcial.

En formas de realización en las que el sistema de impresión 100 recibe un fondo de seguridad impreso previamente 114, el controlador 120 está configurado para escanear ópticamente el fondo 114 mediante un escáner 126 en o acoplado al sistema de impresión 100 para formar la imagen de seguridad digital 108. Dado que el escáner 126 normalmente produce una imagen de seguridad 108 con una resolución más baja que la del fondo de seguridad impreso previamente 114, el controlador 120 ejecuta un módulo de reparación de artefactos 150 en la memoria 140 para reparar los artefactos de escaneo en la imagen de seguridad 108 que resultan de la disminución de resolución. Esta operación de reparación puede llevarse a cabo de una manera similar a como se ha descrito hasta ahora con referencia a las etapas 504, 520-522 de la FIG. 5.

El controlador 120 también está configurado para imprimir una impresión de calibración 102 en un medio de impresión, utilizando un colorante 170 único del mecanismo de impresión 160. La impresión de calibración 102 tiene un primer y un segundo patrón de píxeles binarios de una imagen de seguridad digital. La imagen de seguridad digital tiene una primera región formada por el primer patrón y una segunda región contigua formada por el segundo patrón, y cada una de la primera y segunda regiones tienen la intención de producir regiones con el mismo o similar nivel de gris mostrado al imprimirse. Los patrones pueden ser indicados "A" y "B" respectivamente. Un extractor de patrones 142 en la memoria 140 puede extraer los patrones a partir de la imagen de seguridad y generar los datos de la imagen patrón 164 para la impresión de calibración 102. En la identificación de cuales píxeles de la imagen de seguridad pertenecen al patrón A y cuales al patrón B con el fin de imprimir los patrones adecuados en la impresión de calibración 102, el extractor de patrones 142 utiliza los metadatos 112 proporcionados. Si los metadatos 112 no se proporcionan al sistema de impresión 100, el controlador 120 ejecuta un clasificador de píxeles 152 en la memoria 140 que procesa la imagen de seguridad 108 para clasificar cada píxel como perteneciente a uno de los dos patrones de píxeles A y B en la imagen 108 antes de extraer el primer y segundo patrones de impresión e imprimir la impresión de calibración 102. Esta operación de clasificación puede llevarse a cabo de una manera similar a como se ha descrito hasta ahora con referencia a las etapas 506, 530-536 de la FIG. 5. El controlador 120 envía los datos de la imagen patrón 164 para la impresión de calibración 102 por el mecanismo de impresión 160 para imprimir la impresión de calibración 102.

10

15

20

25

30

35

40

45

El controlador 120 está configurado además para determinar el más oscuro del primer ("A") y segundo ("B") patrones al imprimirse en la impresión de calibración 102. Un analizador de densidad óptica 144 en la memoria 140 puede llevar a cabo, orquestar o participar en esta operación. En algunas formas de realización, un dispositivo de medida de densidad óptica 124 tal como, por ejemplo, un densitómetro puede estar dispuesto en, o acoplado a, el sistema de impresión 100 para hacer la medida de densidad óptica de los patrones A y B en la impresión de calibración 102. La medida normalmente es una medida relativa, e incluye la determinación de una diferencia de porcentaje entre los dos patrones al imprimirse. En otras formas de realización, el escáner 126 puede utilizarse para realizar la medida de densidad óptica. En todavía otras formas de realización, la medida se realiza externa al sistema de impresión, tal como mediante un dispositivo de medida de densidad óptica fuera de línea o mediante una comparación visual por un operador, y los resultados pueden ser introducidos posteriormente al sistema de impresión a través de, por ejemplo, un teclado.

El controlador 120 está configurado, además, para imprimir la imagen de seguridad digital utilizando un colorante 170 único del mecanismo de impresión 160, con la región que se corresponde con el patrón impreso más oscuro impresa con un nivel de gris reducido en relación con el nivel de gris nominal utilizado para imprimir el patrón impreso más claro. Como resultado, las regiones impresas primera y segunda parecen, en esencia, indistinguibles a simple vista en el documento original seguro 104. Estas operaciones pueden ser dirigidas por un generador de documentos seguros 146 en la memoria 140. El generador de documentos seguros 146 superpone la imagen en primer plano 106 en la imagen de seguridad digital antes de generar los datos de la imagen 162 del documento original seguro. Al tiempo que la imagen de seguridad se imprime con el colorante 170 único, la imagen en primer plano puede imprimirse con otros múltiples colorantes 172 en lugar de, o además de, el colorante 170 único.

En algunas formas de realización, un filtro de nivel de gris 148 modifica la imagen de seguridad mediante la aplicación de un filtro o medio tono que reduce el número de píxeles binarios que tienen un valor ACTIVADO en la región que se corresponde con el patrón impreso más oscuro. El patrón de filtración está diseñado a fin de evitar o minimizar la perceptibilidad de los artefactos de escaneo en el documento original 104 impreso. El patrón de filtración también está diseñado para codificar un mensaje en la imagen de seguridad, como se ha descrito hasta ahora con referencia a la FIG. 9. La imagen en primer plano 106 se superpone con la imagen de seguridad digital modificada para formar una imagen del documento original 162 seguro. El controlador 120 envía la imagen del documento original 162 seguro al mecanismo de impresión 160 para la impresión del documento original 104 seguro. El uso del filtro de nivel de gris 148 suele encajar bien en los flujos de trabajo de impresión existentes, ya que la reducción del nivel de gris de la región más oscura se lleva a cabo con los datos de la imagen de seguridad 108 modificada.

En otros ejemplos, la imagen de seguridad 108 no se modifica para reducir el nivel de gris de la región más oscura.

Como resultado, además de la imagen del documento original 162 seguro, el controlador 120 facilita al mecanismo de impresión 160 los datos de clasificación 166 que indican cuales píxeles de valor ACTIVADO en la imagen del documento 162 se corresponden con el patrón A y cuales se corresponden con el patrón B. Esta técnica proporciona una calidad de impresión óptima, en la que se logra la reducción del nivel de gris sin modificar la imagen de seguridad 108.

El mecanismo de impresión 160 utiliza los datos de clasificación 166 para modular el nivel de oscuridad del colorante único al imprimirse los píxeles de la región más oscura de la imagen de seguridad. Cómo la modulación del nivel de oscuridad se lleva a cabo en función de la tecnología de impresión utilizada por el mecanismo de impresión 160. Por ejemplo, para las tecnologías de impresión tales como electrofotografía líquida o la electrofotografía de tóner, los píxeles de valor ACTIVADO de la región que se corresponde con el patrón impreso más oscuro se imprimen utilizando una potencia láser menor que una potencia láser nominal utilizada para la impresión de los píxeles de valor ACTIVADO del patrón impreso más claro. El nivel de potencia láser puede ser directamente proporcional a la cantidad de líquido o de tóner impreso, y por lo tanto a la oscuridad de la región impresa. Como otro ejemplo, para

ES 2 622 490 T3

las tecnologías de inyección de líquido, los píxeles de valor ACTIVADO de la región que se corresponden con el patrón impreso más oscuro se imprimen utilizando una cantidad de colorante único reducida con respecto a una cantidad nominal de colorante único utilizada para la impresión de los píxeles de valor ACTIVADO del patrón impreso más claro. La cantidad reducida de colorante se puede conseguir, por ejemplo, mediante la impresión con un menor número de inyecciones de colorante que si se imprime con la cantidad nominal.

5

REIVINDICACIONES

- 1. Un método para imprimir digitalmente con un colorante único una característica de seguridad imperceptible a simple vista, que comprende:
- imprimir, con el colorante único, los patrones primero y segundo de píxeles binarios de una imagen de seguridad digital (108), teniendo la imagen una primera región (22) formada por el primer patrón y una segunda región (24) contigua formada por el segundo patrón diferente, teniendo cada una de la primera (22) y segunda (24) regiones impresas un nivel de gris:

determinar el más oscuro del primer y segundo patrones impresos;

15

40

45

imprimir la imagen de seguridad (108) con el colorante único, la región que se corresponde con el patrón impreso más oscuro impresa con un nivel de gris reducido de manera que la primera (22) y segunda (24) regiones impresas se muestren, en esencia, indistinguibles a simple vista; caracterizado por,

tener el primer patrón que comprende las primeras líneas (36) una primera separación entre líneas (37) y tener el segundo patrón que comprende las segundas líneas (38) una segunda separación entre líneas (39) en donde un grosor de las primeras líneas (36) es menor que un grosor de las segundas líneas (38) y la primera separación entre líneas (37) es menor que segunda separación entre líneas (39); y

insertar agujeros (92) en ubicaciones seleccionadas en al menos una de las segundas líneas (38) para dar como resultado un conjunto de segmentos de línea (94) para codificar de esta forma un mensaje.

- 2. El método de la reivindicación 1, en donde determinar el más oscuro del primer y segundo patrones impresos incluye comprobar una diferencia en la densidad óptica entre el primer y el segundo patrón impreso; y
- 20 en donde el nivel de gris reducido se corresponde con la diferencia en la densidad óptica.
 - 3. El método de la reivindicación 1 o la reivindicación 2, en donde imprimir la imagen de seguridad comprende:

modificar la imagen de seguridad mediante la reducción del número de píxeles binarios que tienen un valor ACTIVADO en la región que se corresponde con el patrón impreso más oscuro; y

imprimir la imagen de seguridad modificada con el colorante único.

- 4. El método de la reivindicación 3, en donde la reducción en el número de píxeles binarios que tienen un valor ACTIVADO incluye establecer los seleccionados de los píxeles binarios a un valor DESACTIVADO, y en donde la ubicación de los píxeles seleccionados en el patrón forma un mensaje codificado visible a simple vista en la fotocopia de la imagen de seguridad impresa.
- 5. El método de la reivindicación 1, en donde el mensaje codificado identifica un usuario que generó un documento original y/o un dispositivo de impresión con el que se imprimió el documento original.
 - 6. El método de la reivindicación 1 o la reivindicación 2, en donde imprimir la imagen de seguridad comprende:

imprimir cada uno de los píxeles binarios de la imagen de seguridad que tiene un valor ACTIVADO en la región que se corresponde con el más claro del primer y segundo patrones impresos con una oscuridad nominal; y

- imprimir cada uno de los píxeles binarios de la imagen de seguridad que tiene un valor ACTIVADO en la región que se corresponde con el más oscuro del primer y segundo patrones impresos con una oscuridad reducida inferior a la oscuridad nominal.
 - 7. El método de la reivindicación 1, que comprende, además:

escanear ópticamente, con una resolución inferior, un medio que tiene un fondo de seguridad impreso previamente en el mismo con una resolución más alta, teniendo el fondo una primera región con un primer patrón impreso previamente y una segunda región contigua con un segundo patrón impreso previamente diferente, con la primera (22) y segunda (24) regiones, en esencia, indistinguibles a simple vista, produciendo el escaneo la imagen de seguridad (108) de la reivindicación 1;

analizar la imagen de seguridad para identificar el primer patrón de píxeles de primeros píxeles binarios que se corresponden con la primera región (22) y el segundo patrón de píxeles de segundos píxeles binarios que se corresponden con la segunda región (24);

imprimir el primer y segundo patrones de píxeles con el colorante único;

determinar el más oscuro del primer y segundo patrones impresos;

imprimir la imagen de seguridad (108) con la resolución más baja con el colorante único, con la región que se corresponde con el patrón impreso más oscuro impresa con un nivel de gris reducido de manera que la primera (22) y segunda (24) regiones impresas sean, en esencia, indistinguibles a simple vista.

8. El método de la reivindicación 6, en donde la imagen de seguridad incluye artefactos armónicos (76) que resultan del escaneo óptico, comprendiendo el método, además:

eliminar al menos algunos de los artefactos de la imagen de seguridad digital.

9. El método de la reivindicación 8, en donde los artefactos armónicos (76) comprenden agujeros de píxeles de valor DESACTIVADO en al menos algunas de las líneas de píxeles de valor ACTIVADO, que comprende:

rellenar digitalmente los agujeros cambiando el valor binario de los píxeles correspondientes de DESACTIVADO a ACTIVADO.

10. El método de la reivindicación 7, en donde el análisis de la imagen de seguridad comprende:

adelgazar las líneas más gruesas y más delgadas para formar un esqueleto con las líneas;

para cada píxel de valor ACTIVADO en el esqueleto, calcular la distancia desde su correspondiente píxel de valor ACTIVADO en la imagen de seguridad hasta un píxel de valor DESACTIVADO vecino más próximo en la imagen de seguridad;

clasificar el correspondiente pixel de valor ACTIVADO en la imagen de seguridad y sus píxeles de valor ACTIVADO vecinos más próximos como primeros píxeles binarios si la distancia es menor que un valor límite; y

clasificar el correspondiente pixel de valor ACTIVADO en la imagen de seguridad y sus píxeles de valor ACTIVADO vecinos más próximos como segundos píxeles binarios si la distancia es al menos el valor límite.

20 11. Un sistema de impresión (100), que comprende:

un mecanismo de impresión (160);

5

10

15

25

30

un controlador (120) configurado para

imprimir sobre un medio utilizando un colorante (170) único del mecanismo de impresión un primer (102, A) y un segundo (102, A) patrones de píxeles binarios de una imagen de seguridad digital (108) que tiene una primera región formada por el primer patrón y una segunda región contigua formada por el segundo patrón, teniendo cada una de la primera y segunda regiones un nivel de gris;

determinar el más oscuro del primer y segundo patrones impresos sobre el medio; y

imprimir la imagen de seguridad con el colorante único del mecanismo de impresión, con la región que se corresponde con el patrón impreso más oscuro impresa con un nivel de gris reducido de manera que las regiones impresas primera y segunda se muestren, en esencia, indistinguibles a simple vista; caracterizado por,

comprender el primer patrón primeras líneas (36) que tienen una primera separación entre líneas (37) y comprender el segundo patrón segundas líneas (38) que tienen una segunda separación entre líneas (39) en donde un grosor de las primeras líneas (36) es menor que un grosor de las segundas líneas (38) y la primera separación entre líneas (37) es menor que la segunda separación entre líneas (39); y

35 el controlador configurado además para

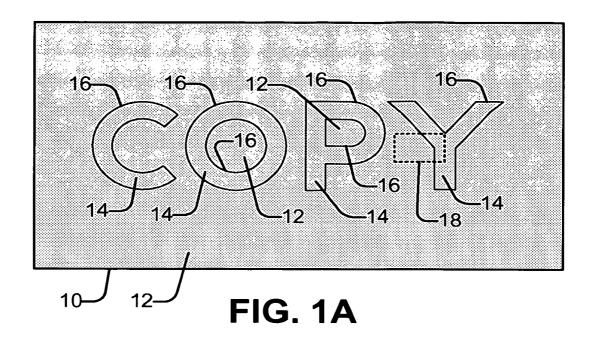
insertar los agujeros (92) en las ubicaciones seleccionadas en al menos una de las segundas líneas (38) para dar como resultado un conjunto de segmentos de línea (94) para codificar de esta forma un mensaje.

12. El sistema de impresión de la reivindicación 11, en donde el controlador está configurado además para

recibir la imagen de seguridad digital (108); y

- 40 recibir los metadatos (112) asociados a la imagen que indican cuál de los píxeles binarios de la imagen se corresponden con el primer patrón y el segundo patrón.
 - 13. El sistema de impresión de la reivindicación 11, en donde el controlador está además configurado para

escanear ópticamente un fondo de seguridad (114) impreso previamente para formar la imagen de seguridad digital (108); y


45 analizar la imagen digital de seguridad (108) para detectar el primer y segundo patrones y para identificar cuál de los píxeles binarios de la imagen se corresponden con el primer patrón y el segundo patrón.

ES 2 622 490 T3

- 14. El sistema de impresión de una de las reivindicaciones 11-13, en donde el mecanismo de impresión imprime cada píxel de valor ACTIVADO de la región que se corresponde con el patrón impreso más oscuro utilizando una potencia láser inferior a una potencia láser nominal que se utiliza para la impresión de cada uno de los otros píxeles de valor ACTIVADO.
- 5 15. El sistema de impresión de una de las reivindicaciones 11-13, en donde el controlador (120) está configurado además para

aplicar un filtro de nivel de gris a la imagen de seguridad (108) para reducir el número de píxeles binarios que tienen un valor ACTIVADO en la región que se corresponde con el patrón impreso más oscuro; y

imprimir la imagen de seguridad modificada con el colorante único.

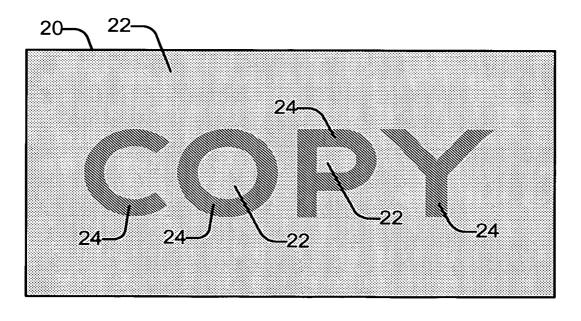


FIG. 1B

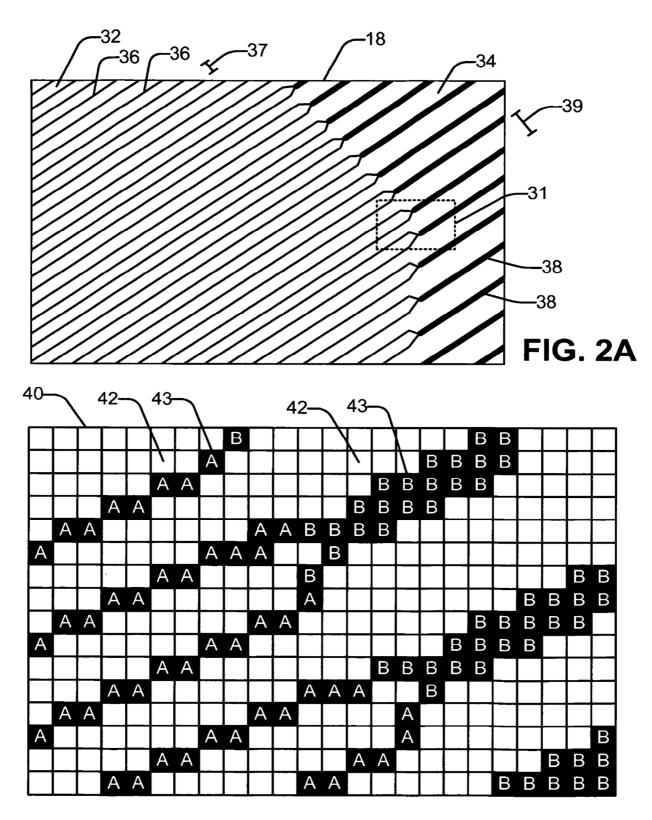


FIG. 2B

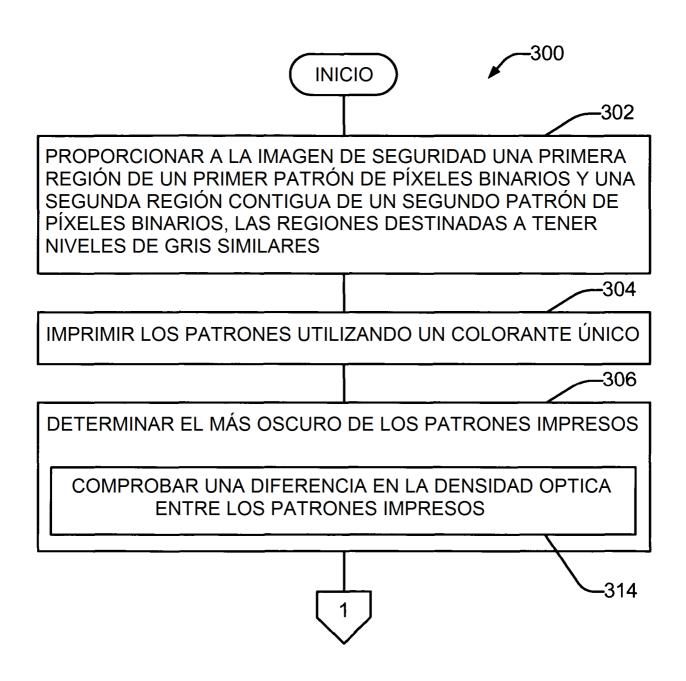
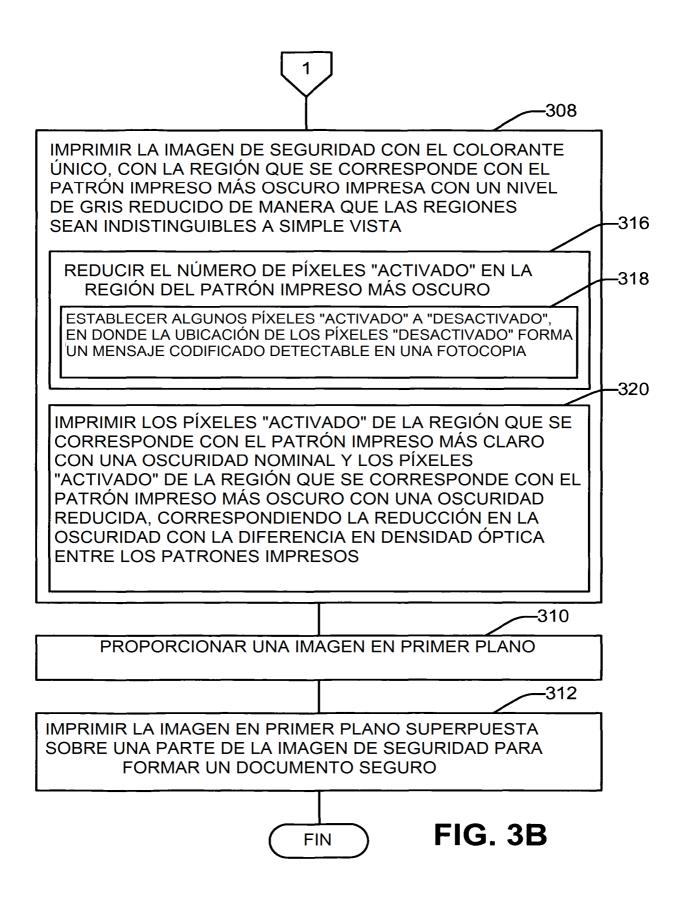
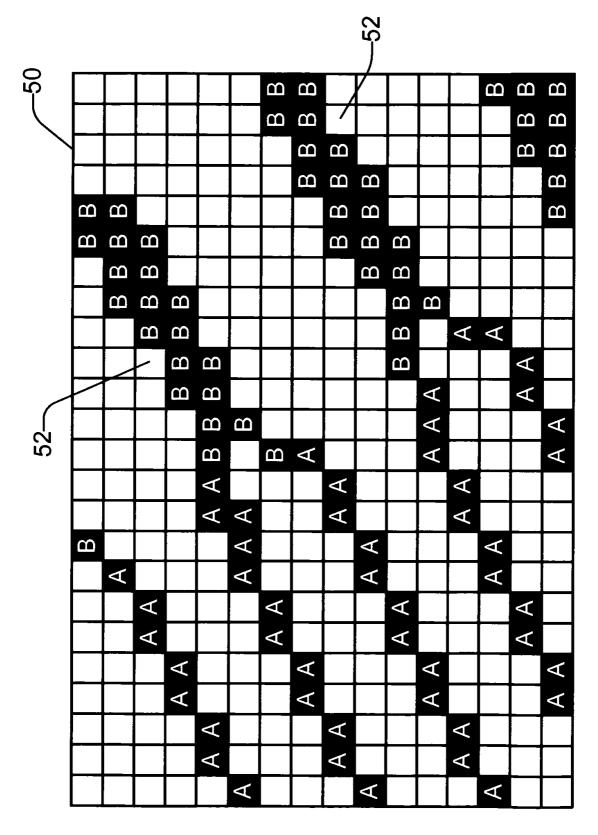
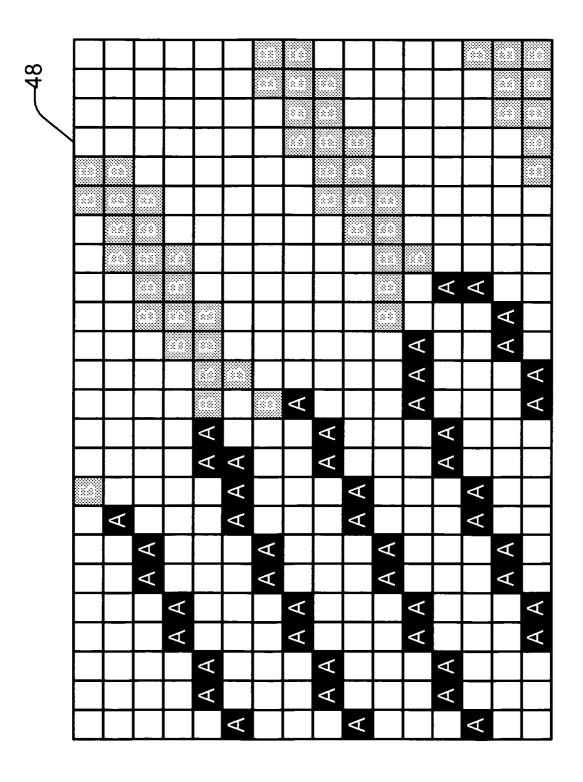





FIG. 3A

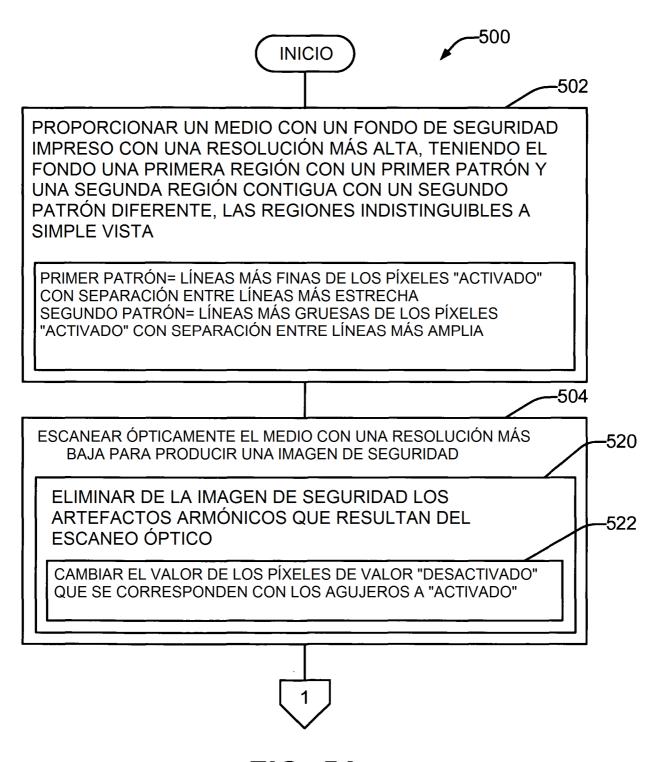
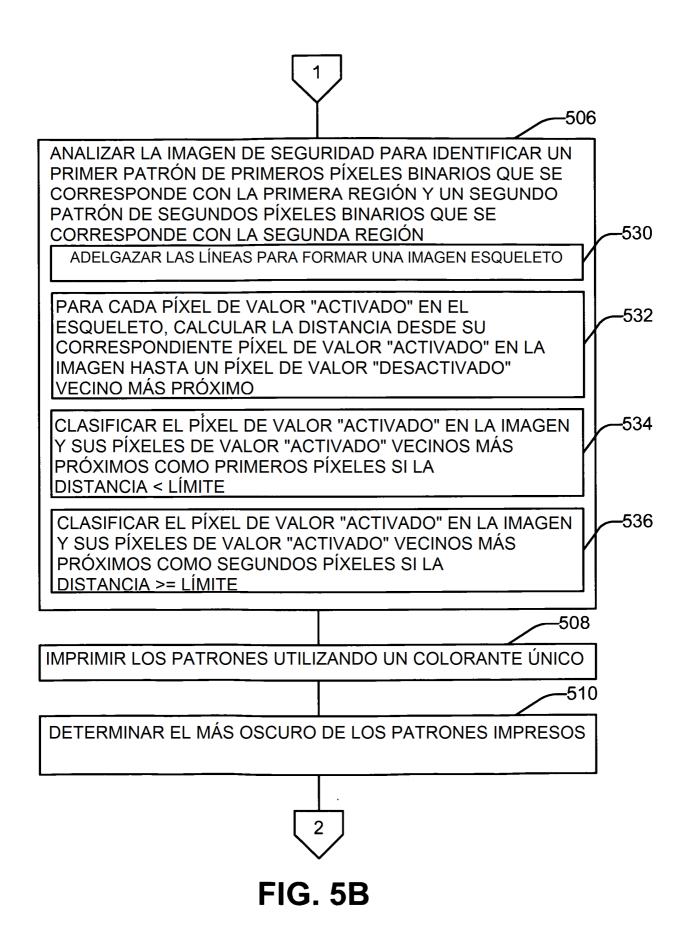



FIG. 5A

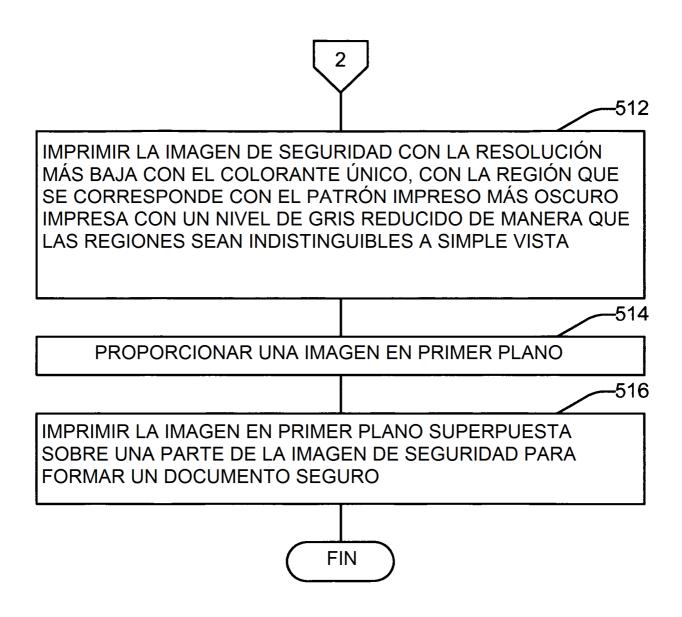


FIG. 5C

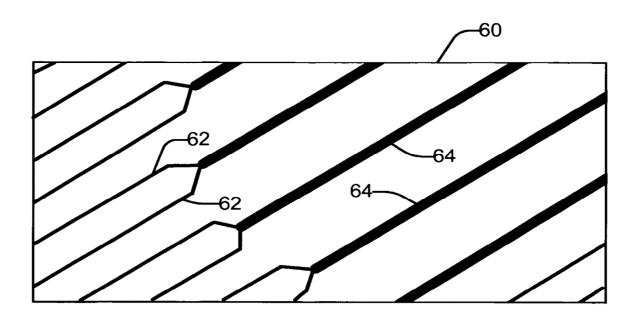


FIG. 6

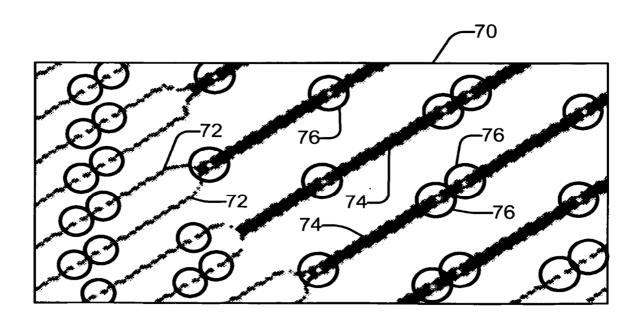


FIG. 7

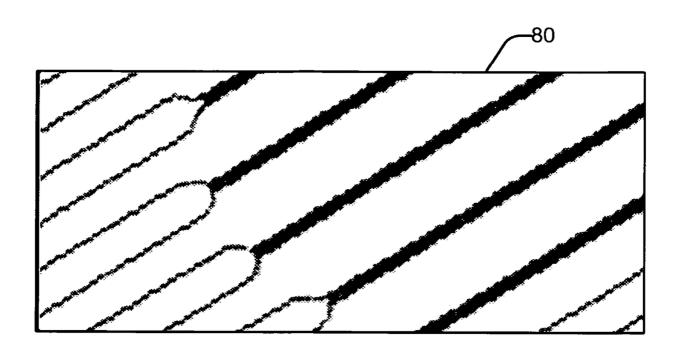


FIG. 8

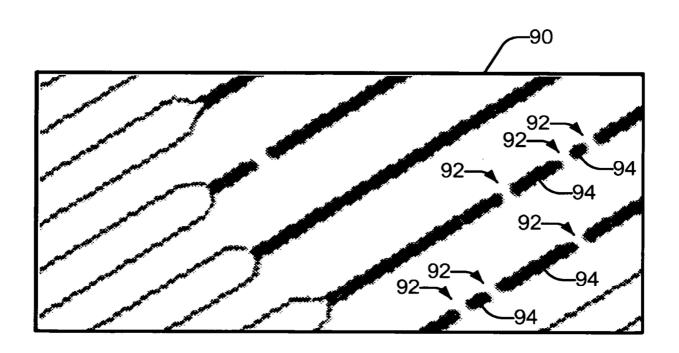
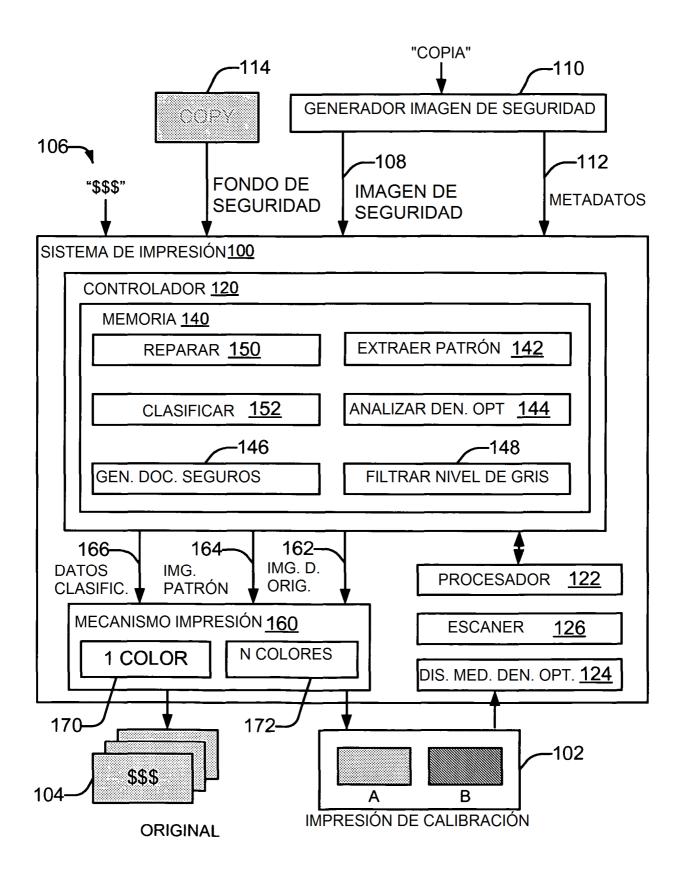



FIG. 9

FIG. 10