

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 623 387

(51) Int. CI.:

A61K 31/4353 (2006.01) A61K 31/436 (2006.01) A61K 31/437 (2006.01) A61K 31/553 (2006.01) C07D 403/04 (2006.01) A61P 25/00 C07D 401/04 C07D 471/04 (2006.01) C07D 498/04 (2006.01) C07D 491/048 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

06.12.2011 PCT/IB2011/055489 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 28.06.2012 WO12085721

(96) Fecha de presentación y número de la solicitud europea: 06.12.2011 E 11805210 (9)

08.03.2017 (97) Fecha y número de publicación de la concesión europea: EP 2654750

(54) Título: Nuevos compuestos de piridina condensada como inhibidores de la cinasa de caseína

(30) Prioridad:

20.12.2010 US 201061425213 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 11.07.2017

(73) Titular/es:

PFIZER INC. (100.0%) 235 East 42nd Street New York, NY 10017, US

(72) Inventor/es:

BUTLER, TODD, W.; CHANDRASEKARAN, RAMALAKSHMI, Y.; MENTE, SCOT, R.; SUBRAMANYAM, CHAKRAPANI y WAGER, TRAVIS, T.

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Nuevos compuestos de piridina condensada como inhibidores de la cinasa de caseína

Campo de la invención

5

10

15

20

25

30

35

40

Esta invención se refiere de forma general a agentes farmacéuticos útiles en el tratamiento y/o la prevención de enfermedades y trastornos relacionados con el sistema nervioso central. Más particularmente, la presente invención comprende compuestos para el tratamiento de un paciente que padece una enfermedad o un trastorno que mejora mediante la inhibición de la actividad de la cinasa de caseína I delta (CK1δ) o CK1 épsilon (CK1ε) a través de la administración de una serie de compuestos de piridina condensada sustituidos. Más específicamente, la invención se refiere a heteroarilos de 5 miembros sustituidos con arilo sustituidos con (2,3-piridina condensada-4-ilos) opcionalmente sustituidos y los análogos relacionados, que son inhibidores de la fosforilación de la CK1δ o de la CK1ε humanas.

Antecedentes de la invención

El reloj circadiano relaciona nuestros ciclos diarios de sueño y actividad con el medio ambiente externo. Una desregulación del reloj está implicada en diversos trastornos humanos, que incluyen la depresión, el trastorno afectivo estacional y trastornos metabólicos. Los ritmos circadianos están controlados en los mamíferos por el reloj maestro ubicado en el núcleo supraquiasmático del hipotálamo (Antle y Silver, Trends Neurosci 28: 145-151). A nivel celular, los acontecimientos moleculares subyacentes en el ciclo del reloj son descritos por el aumento y la disminución regular de los ARNm y de las proteínas que definen los bucles de retroalimentación, dando como resultado ciclos de aproximadamente 24 horas. El núcleo supraquiasmático está regulado principalmente, o sincronizado, directamente por la luz a través del tracto retinohipotalámico. Las emisiones cíclicas del núcleo supraquiasmático, que no han sido completamente identificadas, regulan múltiples ritmos cascada abajo, tales como los del sueño y la vigilia, la temperatura corporal y la secreción hormonal (Ko y Takahashi, Hum Mol Gen 15: R271-R277.). Adicionalmente, enfermedades tales como la depresión, el trastorno afectivo estacional y los trastornos metabólicos, pueden tener un origen circadiano (Barnard y Nolan, PLoS Genet. Mayo de 2008; 4 (5): e1000040).

La fosforilación de las proteínas del reloj circadiano es un elemento esencial para el control de ritmo circadiano del reloj. La CK1ε y la CK1δ están estrechamente relacionadas con las cinasas de proteínas de Ser-Thr que sirven como reguladores clave del reloi, según se ha demostrado por las mutaciones en mamíferos en cada una que alteran drásticamente el periodo circadiano. (Lowrey et al., Science 288: 483-492). Por lo tanto, los inhibidores de la CK1δ/ε tienen utilidad en el tratamiento de los trastornos circadianos. Meng et al. (PNAS of the USA, vol. 107, nº 34, agosto de 2010, páginas 15240-15245) y Walton et al. (J. Pharm. Exp. Ther., vol. 330, nº 2, agosto de 2009, páginas 430-439) desvelan un derivado de imidazolina, PF-670462, que tiene actividad inhibidora de la CK1δ/CK1ε. Pérez et al. (Med. Res. Rev., vol. 31, nº 6, junio de 2010, páginas 924-954) analizan específicamente la actividad de dicho derivado de imidazolina, así como más generalmente el papel de la CK1 como objetivo para las enfermedades neurodegenerativas. Peifer et al. (J. Med. Chem., vol. 52, nº 23, diciembre de 2009, páginas 7618-7630) desvelan derivados de isoxazol que tienen una actividad inhibidora doble de p38α/CK1δ. Finalmente, Bamborough et al. (J. Med. Chem., vol. 51, nº 24, diciembre de 2008, páginas 7898-7914) informan de los resultados del cribado de diversos compuestos a lo largo de un grupo de 203 cinasas de proteínas. Sin embargo, todavía hay una necesidad de inhibidores alternativos de la CK1δ/CK1ε útiles en el tratamiento de los trastornos relacionados con los ciclos circadianos. Por lo tanto, es un objeto de esta invención proporcionar compuestos de Fórmula I que son inhibidores de la CK1δ o de la CK1ε. Este objeto y otros objetos de esta invención serán evidentes a partir del análisis detallado de la invención que sigue.

Sumario de la invención

La invención se refiere a compuestos que tienen la estructura de Fórmula I:

$$(R^4)_n$$
 A
 R^7

en la que X es -NR¹- y dicho R¹ de N es alquilo C₁-4 o cicloalquilo C₃-4; Y es CR¹ y dicho R¹ de C es H o CH₃;

El anillo A es

$$N-R^2$$

Cada R^2 es independientemente H, alquilo C_{1-6} , bicicloalquilo C_{4-10} , $-(CH_2)_{t^-}CN$, $-SO_2$ alquilo C_{1-6} , $-SO_2(CH_2)_{t^-}CN$ cicloalquilo C_{3-6} , alquilo C_{1-6} -O-alquilo C_{1-6} , alquilo C_{1-6} -C(O)O-alquilo C_{1-6} , cicloalquilo- C_{3-6} -C(O)O-alquilo C_{1-6} , -C(O)-alquilo C_{1-6} , alquilo C_{1-6} ,

en los que dicho arilo, heteroarilo, cicloalquilo y heterocicloalquilo de R^2 pueden estar sustituidos con hasta dos sustituyentes seleccionados independientemente entre halógeno, OH, ciano, alquilo C_{1-6} , C(O)-O-alquilo C_{1-3} o alquilo C_{1-6} -O-alquilo C_{1-6} y en los que cualquier alquilo, cicloalquilo y heterocicloalquilo de R^2 puede estar adicionalmente sustituido con oxo cuando la valencia lo permita;

Cada R4 es F;

Cada R⁵ es independientemente H o alquilo C₁₋₆;

Cada R⁶ es independientemente H o alquilo C₁₋₆;

 R^7 es H;

5

10

15

25

30

35

n es 0, 1 o 2;

Cada t es independientemente 0, 1 o 2;

Cada u es independientemente 0 o 1;

20 y sales de los mismos farmacéuticamente aceptables.

Esta invención también incluye sales farmacéuticamente aceptables de los compuestos de Fórmula I.

Esta invención se refiere de forma general a agentes farmacéuticos y a sales de los mismos farmacéuticamente aceptables, útiles en el tratamiento y/o en la prevención de enfermedades y trastornos relacionados con el sistema nervioso central. Más particularmente, la presente invención comprende compuestos para el tratamiento de un paciente que padece una enfermedad o un trastorno que mejora mediante la inhibición de la actividad de la CK1 δ o de la CK1 ϵ a través de la administración de una serie de compuestos de piridina condensada sustituidos de Fórmula l

Cuando se presentan los elementos de la presente invención o la(s) realización(es) ejemplar(es) de la misma, los artículos "un", "uno/a", "el/la" y "dicho/a" pretenden significar que hay uno o más de los elementos. Los términos "que comprende", "que incluye" y "que tiene" pretenden ser incluyentes y significar que puede haber elementos adicionales distintos a los elementos indicados.

Descripción detallada

Una realización de la presente invención es un compuesto de Fórmula I como se ha descrito anteriormente.

Otra realización de los compuestos de Fórmula I incluyen compuestos en los que X es NR¹ y dicho R¹ de N es alquilo C₁-₄;

Cada R^2 es independientemente H, alquilo C_{1-6} , $-SO_2$ alquilo C_{1-6} , $-SO_2(CH_2)_t$ cicloalquilo C_{3-6} , alquilo C_{1-6} -O-alquilo C_{1-6} , -C(O)- $(O)_u$ -alquilo C_{1-6} , $-(CH_2)_t$ -(arilo C_{6-10}), -C(O)- $(O)_u$ -(CH_2)-(heteroarilo de entre 5 y 10 miembros), $-(CH_2)_t$ -(heteroarilo de entre 4 y 10 miembros) o - $(CH_2)_t$ -(cicloalquilo de entre 3 y 10 miembros),

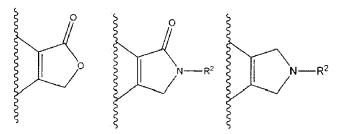
40 en los que dicho arilo, heteroarilo, cicloalquilo y heterocicloalquilo de R^2 pueden estar sustituidos con hasta dos sustituyentes seleccionados independientemente entre halógeno, OH, ciano, -alquilo C_{1-6} , -C(O)-O-alquilo C_{1-3} o alquilo C_{1-6} -O-alquilo C_{1-6} y en los que cualquier alquilo, cicloalquilo y heterocicloalquilo de R^2 puede estar adicionalmente sustituido con oxo cuando la valencia lo permita;

R⁴ es F; 45 Cada R⁵ es H:

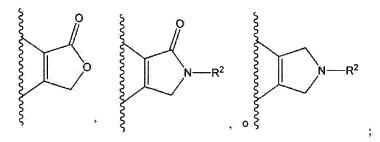
Cada R⁶ es independientemente H o alquilo C₁₋₆;

R⁷ es H;

n es 1;


Cada t es independientemente 0, 1 o 2;

Cada u es independientemente 0 o 1;


Y y A son según se han definido en cualquier otra realización de Fórmula I;

y sales de los mismos farmacéuticamente aceptables.

La invención concierne también a los compuestos en los que A de Fórmula I en cualquier realización analizada en el presente documento es cualquiera de los siguientes:

- 5 en los que R² es según se ha definido para la realización de Fórmula I o cualquier grupo de definiciones descrito en el presente documento.
 - Otra realización de los compuestos de Fórmula I incluye los compuestos en los que A de Fórmula está sustituido en un nitrógeno disponible por R² en el que R² es independientemente H, -CH₃ o SO₂CH₃.
- Otra realización de la invención incluye los compuestos de Fórmula I en los que X es NR¹ en el que R¹ es alquilo C₁₊₄ o cicloalquilo C₃₊₄; Y es CR¹ en el que R¹ es H o CH₃; A es una lactona, una lactama o un isoindolinilo sustituido según se permite en cualquier realización de Fórmula I; R⁴ es F y R² es H. El uso de fracciones para A, otra forma de presentar esta realización de la invención, es en el que X es NR¹ en el que R¹ es alquilo C₁₊₄ o cicloalquilo C₃₊₄; Y es CR¹ en el que R¹ es H o CH₃; A es:

15 sustituido según se permite en cualquier realización de Fórmula I; R⁴ es F y R⁷ es H.

En una realización, la invención también se refiere a cada uno de los compuestos individuales descritos en el presente documento como Ejemplos (incluyendo las bases libres o sus sales farmacéuticamente aceptables)

En otra realización la invención se refiere a un compuesto que consiste en:

- 6-bencil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-5,6-dihidro-7H-pirrolo[3,4-b]piridin-7-ona;
- 20 o en forma de una sal del mismo farmacéuticamente aceptable.

25

35

También se divulga un compuesto de la invención para su uso en la inhibición de la actividad de la cinasa de caseína 1 CK1 delta o CK1 épsilon.

- En otra realización, la invención se refiere a un compuesto de la invención para su uso en el tratamiento de un trastorno del estado de ánimo o de un trastorno del sueño. En una realización, la invención se refiere a un compuesto de la invención para su uso en el tratamiento de un trastorno del sueño. En una realización adicional, el trastorno del sueño es un trastorno del sueño del ritmo circadiano. En otra realización más, el trastorno del sueño del ritmo circadiano se selecciona entre el grupo que consiste en trastorno del sueño por trabajo a turnos, síndrome de la diferencia horaria (jet lag), síndrome de fase de sueño avanzada y síndrome de fase de sueño retardada.
- En una realización adicional, la invención se refiere a un compuesto de la invención para su uso en el tratamiento de un trastorno del estado de ánimo seleccionado entre el grupo que consiste en un trastorno depresivo y un trastorno bipolar. En otra realización de la invención, el trastorno depresivo es un trastorno depresivo mayor. En una realización adicional de la invención, el trastorno del estado de ánimo es un trastorno bipolar. En otra realización, el trastorno bipolar se selecciona entre el grupo que consiste en un trastorno bipolar I y un trastorno bipolar II.
 - En otra realización la presente invención proporciona un compuesto de la invención para su uso en el tratamiento de trastornos neurológicos y psiquiátricos.

Algunos trastornos neurológicos y psiquiátricos incluyen trastornos neurológicos y psiquiátricos agudos tales como deficiencias cerebrales subsiguientes a una revascularización quirúrgica cardiaca y un injerto, una apoplejía, una isquemia cerebral, un traumatismo de la médula espinal, un traumatismo craneal, una hipoxia perinatal, una parada cardiaca, un daño neuronal hipoglucémico, demencia, una demencia inducida por el SIDA, una demencia vascular, demencias mixtas, un deterioro de la memoria relacionado con la edad, la enfermedad de Alzheimer, la Corea de Huntington, la esclerosis lateral amiotrófica, un daño ocular, una retinopatía, trastornos cognitivos, que incluyen trastornos cognitivos relacionados con la esquizofrenia y los trastornos bipolares, la enfermedad de Parkinson idiopática y la inducida por fármacos, espasmos musculares y trastornos relacionados con una espasticidad muscular que incluyen temblores, epilepsia, convulsiones, migraña, dolor de cabeza migrañoso, incontinencia urinaria, tolerancia a sustancias, abstinencia de sustancias, abstinencia de opiáceos, nicotina, productos del tabaco, alcohol, benzodiacepinas, cocaína, sedantes e hipnóticos, psicosis, deterioro cognitivo leve, deterioro cognitivo amnésico, deterioro cognitivo multi-dominio, obesidad, esquizofrenia, ansiedad, trastorno de ansiedad generalizado, trastorno de ansiedad social, trastorno de pánico, trastorno por estrés postraumático, trastorno obsesivo compulsivo, trastornos del estado de ánimo, depresión, manías, trastornos bipolares, neuralgia del trigémino, pérdida auditiva, acúfenos, degeneración macular del ojo, emesis, edema cerebral, dolor, estados dolorosos agudos y crónicos, dolor grave, dolor incoercible, dolor neuropático, dolor postraumático, discinesia tardía, trastornos del sueño, narcolepsia, trastorno por déficit de atención/hiperactividad, autismo, enfermedad de Asperger y trastorno de la conducta en un mamífero. Consecuentemente, en una realización, la invención proporciona un compuesto de la invención para su uso en el tratamiento de una afección en un mamífero, tal como un ser humano, seleccionada entre las anteriores afecciones. El mamífero es preferentemente un mamífero en necesidad de dicho tratamiento.

5

10

15

20

25

30

35

40

45

Como ejemplos, la invención proporciona un compuesto de la invención para su uso en el tratamiento del trastorno por déficit de atención/hiperactividad, de la esquizofrenia y de la enfermedad de Alzheimer.

En otra realización la presente invención proporciona un compuesto de la invención para su uso en el tratamiento de trastornos neurológicos y psiquiátricos. El compuesto de Fórmula I se usa opcionalmente junto con otro agente activo. Dicho agente activo puede ser, por ejemplo, un antipsicótico atípico, un inhibidor de la colinesterasa, Dimebon o un antagonista del receptor del NMDA. Dichos antipsicóticos atípicos incluyen, pero no se limitan a, ziprasidona, clozapina, olanzapina, risperidona, quetiapina, aripiprazol, paliperidona; dichos antagonistas del receptor del NMDA incluyen, pero no se limitan a, memantina; y dichos inhibidores de la colinesterasa incluyen, pero no se limitan a, donapezilo y galantamina.

- La invención también se refiere a una composición farmacéutica que comprende un compuesto de Fórmula I y un vehículo farmacéuticamente aceptable. La composición puede ser, por ejemplo, una composición para el tratamiento de una afección seleccionada entre el grupo que consiste en trastornos neurológicos y psiquiátricos, que incluyen, pero no se limitan a: trastornos neurológicos y psiquiátricos agudos tales como deficiencias cerebrales subsiguientes a una revascularización quirúrgica cardiaca y un injerto, una apoplejía, una isquemia cerebral, un traumatismo de la médula espinal, un traumatismo craneal, una hipoxia perinatal, una parada cardiaca, un daño neuronal hipoglucémico, una demencia inducida por el SIDA, una demencia vascular, demencias mixtas, un deterioro de la memoria relacionado con la edad, la enfermedad de Alzheimer, la Corea de Huntington, la esclerosis lateral amiotrófica, un daño ocular, una retinopatía, trastornos cognitivos, que incluyen trastornos cognitivos relacionados con la esquizofrenia y los trastornos bipolares, la enfermedad de Parkinson idiopática y la inducida por fármacos, espasmos musculares y trastornos relacionados con una espasticidad muscular que incluyen temblores, epilepsia, convulsiones, migraña, dolor de cabeza migrañoso, incontinencia urinaria, tolerancia a sustancias, abstinencia de sustancias, abstinencia de opiáceos, nicotina, productos del tabaco, alcohol, benzodiacepinas, cocaína, sedantes e hipnóticos, psicosis, deterioro cognitivo leve, deterioro cognitivo amnésico, deterioro cognitivo multi-dominio, obesidad, esquizofrenia, ansiedad, trastorno de ansiedad generalizado, trastorno de ansiedad social, trastorno de pánico, trastorno por estrés postraumático, trastorno obsesivo compulsivo, trastornos del estado de ánimo, depresión, manías, trastornos bipolares, neuralgia del trigémino, pérdida auditiva, acúfenos, degeneración macular del ojo, emesis, edema cerebral, dolor, estados dolorosos agudos y crónicos, dolor grave, dolor incoercible, dolor neuropático, dolor postraumático, discinesia tardía, trastornos del sueño, narcolepsia, trastorno por déficit de atención/hiperactividad, autismo, enfermedad de Asperger y trastorno de la conducta en un mamífero.
- La composición opcionalmente comprende adicionalmente un antipsicótico atípico, un inhibidor de la colinesterasa, Dimebon o un antagonista del receptor del NMDA. Dichos antipsicóticos atípicos incluyen, pero no se limitan a, ziprasidona, clozapina, olanzapina, risperidona, quetiapina, aripiprazol, paliperidona; dichos antagonistas del receptor del NMDA incluyen, pero no se limitan a, memantine; y dichos inhibidores de la colinesterasa incluyen, pero no se limitan a, donapezilo y galantamina.
- Los compuestos de la presente invención también están adaptados para un uso terapéutico como agentes antiproliferativos (por ejemplo, en el cáncer), antitumorales (por ejemplo, efecto frente a tumores sólidos) en mamíferos, particularmente en seres humanos. En particular, los compuestos de la presente invención son útiles en la prevención y el tratamiento de una diversidad de trastornos hiperproliferativos humanos que incluyen un crecimiento celular anómalo tanto maligno como benigno.
- 60 Los compuestos y las composiciones proporcionados en el presente documento son útiles para el tratamiento del cáncer y para la preparación de un medicamento para el tratamiento del cáncer que incluyen, pero no se limitan a:

sistema circulatorio, por ejemplo, corazón (sarcoma [angiosarcoma, fibrosarcoma, rabdomiosarcoma, liposarcoma], mixoma, rabdomioma, fibroma, lipoma y teratoma), mediastino y pleura y otros órganos intratorácicos, tumores vasculares y tejido vascular asociado al tumor;

tracto respiratorio, por ejemplo, cavidad nasal y oído medio, senos secundarios, laringe, tráquea, bronquios y pulmón, tales como cáncer de pulmón microcítico (SCLC), cáncer de pulmón no microcítico (NSCLC), carcinoma broncogénico (epidermoide, microcítico indiferenciado, macrocítico indiferenciado, adenocarcinoma), carcinoma alveolar (bronquiolar), adenoma bronquial, sarcoma, linfoma, hamartoma condromatoso, mesotelioma;

5

10

15

20

40

45

50

55

gastrointestinal, por ejemplo, esófago (carcinoma epidermoide, adenocarcinoma, leiomiosarcoma, linfoma), estómago (carcinoma, linfoma, leiomiosarcoma), gástrico, páncreas (adenocarcinoma ductal, insulinoma, glucagonoma, gastrinoma, tumores carcinoides, vipoma), intestino delgado (adenocarcinoma, linfoma, tumores carcinoides, sarcoma de Karposi, leiomioma, hemangioma, lipoma, neurofibroma, fibroma), intestino grueso (adenocarcinoma, adenoma tubular, adenoma velloso, hamartoma, leiomioma);

tracto genitourinario, por ejemplo, riñón (adenocarcinoma, tumor de Wilm [nefroblastoma], linfoma, leucemia), vejiga y/o uretra (carcinoma epidermoide, carcinoma de células transicionales, adenocarcinoma), próstata (adenocarcinoma, sarcoma), testículos (seminoma, teratoma, carcinoma embrionario, teratocarcinoma, coriocarcinoma, sarcoma, carcinoma de células intersticiales, fibroma, fibroadenoma, tumores adenomatoides, lipoma);

hígado, por ejemplo, hepatoma (carcinoma hepatocelular), colangiocarcinoma, hepatoblastoma, angiosarcoma, adenoma hepatocelular, hemangioma, tumores endocrinos pancreáticos (tales como feocromocitoma, insulinoma, tumor por el péptido intestinal vasoactivo, tumor de las células de los islotes y glucagonoma);

hueso, por ejemplo, sarcoma osteogénico (osteosarcoma), fibrosarcoma, histiocitoma fibroso maligno, condrosarcoma, sarcoma de Ewing, linfoma maligno (sarcoma de células reticulares), mieloma múltiple, cordoma tumoral maligno de células gigantes, osteocronfroma (exostosis osteocartilaginosas), condroma benigno, condroblastoma, condromixofibroma, osteoma osteoide y tumores de células gigantes;

sistema nervioso, por ejemplo, neoplasmas del sistema nervioso central (SNC), linfoma primario del SNC, cáncer de cráneo (osteoma, hemangioma, granuloma, xantoma, osteitis deformans), meninges (meningioma, meningiosarcoma, gliomatosis), cáncer cerebral (astrocitoma, meduloblastoma, glioma, ependimoma, germinoma [pinealoma], glioblastoma multiforme, oligodendroglioma, schwannoma, retinoblastoma, tumores congénitos), neurofibroma de la médula espinal, meningioma, glioma, sarcoma);

aparato reproductor, por ejemplo, ginecológico, útero (carcinoma endometrial), cuello de útero (carcinoma cervical, displasia cervical pretumoral), ovarios (carcinoma de ovario [cistadenocarcinoma seroso, cistadenocarcinoma mucinoso, carcinoma no clasificado], tumores de las células granulosas-tecales, tumores de las células de Sertoli-Leydig, disgerminoma, teratoma maligno), vulva (carcinoma epidermoide, carcinoma intraepitelial, adenocarcinoma, fibrosarcoma, melanoma), vagina (carcinoma de células claras, carcinoma epidermoide, sarcoma botrioide
 (rabdomiosarcoma embrionario), trompas de Falopio (carcinoma) y otros lugares relacionados con los órganos genitales femeninos; placenta, pene, próstata, testículos y otros lugares relacionados con los órganos genitales masculinos:

hematológico, por ejemplo, sangre (leucemia mieloide [aguda y crónica], leucemia linfoblástica aguda, leucemia linfocítica crónica, enfermedades mieloproliferativas, mieloma múltiple, síndrome mielodisplásico), enfermedad de Hodgkin, linfoma no Hodgkin [linfoma maligno]:

cavidad oral, por ejemplo, labio, lengua, encías, suelo de la boca, paladar y otras partes de la boca, glándula paratiroidea y otras partes de las glándulas salivales, amígdalas, orofaringe, nasofaringe, seno piriforme, hipofaringe y otras zonas de los labios, la cavidad oral y la faringe;

piel, por ejemplo, melanoma maligno, melanoma cutáneo, carcinoma de células basales, carcinoma epidermoide, sarcoma de Karposi, nevus displásicos en mola, lipoma, angioma, dermatofibroma y queloides; glándulas adrenales: neuroblastoma; y

cánceres que implican otros tejidos que incluyen tejido conectivo y tejidos blandos, retroperitoneo y peritoneo, ojo, melanoma intraocular y de los anejos, mama, cabeza y/o cuello, región anal, tiroides, paratiroides, glándula adrenal y otras glándulas endocrinas y estructuras relacionadas, neoplasma maligno secundario e inespecífico de los nódulos linfáticos, neoplasma maligno secundario de los sistemas digestivo y respiratorio, y neoplasma maligno secundario de otras zonas.

Más específicamente, algunos ejemplos de "cáncer" incluyen un cáncer elegido entre cáncer de pulmón (NSCLC y SCLC), cáncer de cabeza o de cuello, cáncer de ovario, cáncer de colon, cáncer rectal, cáncer de la región anal, cáncer de estómago, cáncer de mama, cáncer de riñón o de uréter, carcinoma de células renales, carcinoma de la pelvis renal, neoplasmas del sistema nervioso central (SNC), linfoma primario del SNC, linfoma no Hodgkin, tumores del eje espinal, o una combinación de uno o más de los anteriores cánceres.

Aun más específicamente, algunos ejemplos de "cáncer" incluyen un cáncer seleccionado entre cáncer de pulmón (NSCLC y SCLC), cáncer de mama, cáncer de ovario, cáncer de colon, cáncer rectal, cáncer de la región anal o una

combinación de uno más de los anteriores cánceres.

Algunas afecciones no cancerosas incluyen afecciones hiperplásicas tales como hiperplasia benigna de la piel (por ejemplo, psoriasis) e hiperplasia benigna de la próstata (por ejemplo, HPB).

Como se ha mencionado anteriormente, los compuestos de la invención pueden usarse junto con uno o más agentes antineoplásicos adicionales que se describen a continuación. Cuando se usa una terapia de combinación, el uno o más agentes antineoplásicos adicionales pueden ser administrados secuencialmente o simultáneamente con el compuesto de la invención. El agente antineoplásico adicional puede ser administrado a un mamífero (por ejemplo, a un ser humano) antes de la administración del compuesto de la invención. El agente antineoplásico adicional puede ser administrado a un mamífero después de la administración del compuesto de la invención. El agente antineoplásico adicional puede ser administrado al mamífero (por ejemplo, a un ser humano) simultáneamente junto con la administración del compuesto de la invención.

Las composiciones farmacéuticas que comprenden una cantidad de un compuesto de Fórmula I, como se ha definido anteriormente, junto con uno o más (preferentemente entre uno y tres) agentes antineoplásicos seleccionados entre el grupo que consiste en agentes antiangiogénicos e inhibidores de la transducción de señales y un vehículo farmacéuticamente aceptable, pueden ser útiles para el tratamiento de un crecimiento celular anómalo.

Definiciones

5

10

15

20

25

30

35

40

45

50

55

El término "alquilo" se refiere a un sustituyente hidrocarbilo saturado de cadena lineal o ramificada (es decir, un sustituyente obtenido a partir de un hidrocarburo mediante la eliminación de un hidrógeno) que contiene entre uno y veinte átomos de carbono; en una realización, entre uno y doce átomos de carbono; en otra realización, entre uno y seis átomos de carbono; y en otra realización, entre uno y cuatro átomos de carbono Algunos ejemplos de dichos sustituyentes incluyen metilo, etilo, propilo (incluyendo n-propilo e isopropilo), butilo (incluyendo n-butilo, isobutilo, sec-butilo y terc-butilo), pentilo, isoamilo, hexilo y similares. En algunos casos, el número de átomos de carbono en un sustituyente hidrocarbilo (es decir, alquilo, alquenilo, cicloalquilo, arilo, etc.) está indicado por el prefijo " C_{a-b} ", en el que a es el número mínimo y b es el número máximo de átomos de carbono en el sustituyente. Por lo tanto, por ejemplo, "alquilo C_{1-6} " se refiere a un sustituyente alquilo que contiene entre 1 y 6 átomos de carbono.

"Alquenilo" se refiere a un hidrocarburo alifático que tiene al menos un doble enlace carbono-carbono, que incluye grupos de cadena lineal, de cadena ramificada o cíclicos que tienen al menos un doble enlace carbono-carbono Preferiblemente, es un alquenilo de tamaño medio que tiene entre 2 y 6 átomos de carbono. Por ejemplo, según se usa en el presente documento, el término "alquenilo C_{2-6} " significa radicales insaturados de cadena lineal o ramificada con entre 2 y 6 átomos de carbono, que incluyen, pero no se limitan a, etenilo, 1-propenilo, 2-propenilo (alilo), isopropenilo, 2-metil-1-propenilo, 1-butenilo, 2-butenilo, y similares; opcionalmente sustituido con entre 1 y 5 sustituyentes adecuados como se ha definido anteriormente tales como flúor, cloro, trifluorometilo, alcoxi (C_1-C_6) , (ariloxi C_6-C_{10}), trifluorometoxi, difluorometoxi o alquilo C_1-C_6 . Cuando los compuestos de la invención contienen un grupo alquenilo C_{2-6} , el compuesto puede existir en la forma E pura (entgegen), en la forma Z (zusammen) pura, o cualquier mezcla de los mismos.

"Alquinilo" se refiere a un hidrocarburo alifático que tiene al menos un triple enlace carbono-carbono, que incluye grupos de cadena lineal, de cadena ramificada o cíclicos que tienen al menos un triple enlace carbono-carbono Preferiblemente, es un alquinilo inferior que tiene entre 2 y 6 átomos de carbono Por ejemplo, según se usa en el presente documento, el término "alquinilo C_{2-6} " se usa en el presente documento para significar un radical alquinilo de cadena hidrocarbonada lineal o ramificada cadena como se ha definido anteriormente que tiene entre 2 y 6 átomos de carbono y un triple enlace.

El término "cicloalquilo" se refiere a un sustituyente carbocíclico obtenido mediante la eliminación de un hidrógeno de una molécula carbocíclica saturada y que tiene entre tres y catorce átomos de carbono En una realización, un sustituyente cicloalquilo tiene entre tres y diez átomos de carbono. El cicloalquilo puede ser un único anillo, que normalmente contiene entre 3 y 6 átomos en el anillo. Algunos ejemplos de cicloalquilo incluyen ciclopropilo, ciclobutilo, ciclopentilo y ciclohexilo. Alternativamente, el cicloalquilo puede tener 2 o 3 anillos condensados entre sí, tal como biciclo[4.2.0]octano y decalinilo, y también puede denominarse "bicicloalquilo".

El término "cicloalquilo" también incluye sustituyentes que están condensados con un anillo aromático C_6 - C_{10} o con un anillo heteroaromático de entre 5 y 10 miembros, en el que un grupo tiene dicho grupo cicloalquilo condensado en forma de un sustituyente que está unido a un átomo de carbono del grupo cicloalquilo. Cuando dicho grupo cicloalquilo condensado está sustituido con uno o más sustituyentes, el uno o más sustituyentes, salvo que se especifique de otro modo, están unidos cada uno a un átomo de carbono del grupo cicloalquilo. El anillo aromático condensado C_6 - C_{10} o el anillo heteroaromático de 5-10 miembros puede estar opcionalmente sustituido con halógeno, alquilo C_{1-6} , cicloalquilo C_{3-10} o =O.

El término "arilo" se refiere a un sustituyente aromático que contiene un anillo o dos o tres anillos condensados. El sustituyente arilo puede tener entre seis y dieciocho átomos de carbono. Como ejemplo, el sustituyente arilo puede tener entre seis y catorce átomos de carbono El término "arilo" puede referirse a sustituyentes tales como fenilo,

naftilo y antracenilo. El término "arilo" también incluye sustituyentes tales como fenilo, naftilo y antracenilo que están condensados con un anillo carbocíclico C_{4-10} , tal como un anillo carbocíclico C_5 o C_6 , o con un anillo heterocíclico de entre 4 y 10 miembros, en el que un grupo que tiene dicho grupo arilo condensado como un sustituyente está unido a un carbono aromático del grupo arilo. Cuando dicho grupo arilo condensado está sustituido a uno o más sustituyentes, el uno o más sustituyentes, salvo que se especifique de otro modo, están unidos cada uno a un carbono aromático del grupo arilo condensado. El anillo condensado carbocíclico C_{4-10} o heterocíclico de entre 4 y 10 miembros puede estar opcionalmente sustituido con halógeno, alquilo C_{1-6} , cicloalquilo C_{3-10} o =O. Algunos ejemplos de grupos arilo incluyen consecuentemente fenilo, naftalenilo, tetrahidronaftalenilo (también conocido como "tetralinilo"), indenilo, isoindenilo, indanilo, antracenilo, fenantrenilo, benzonaftenilo (también conocido como "fenalenilo") y fluorenilo.

En algunos casos, el número de átomos de un sustituyente cíclico que contiene uno o más heteroátomos (es decir, heteroarilo o heterocicloalquilo) está indicado por el prefijo "A-B miembros", en el que en el que A es el número mínimo y B es el número máximo de átomos que forman la fracción cíclica del sustituyente. Por lo tanto, por ejemplo, heterocicloalquilo de entre 5 y 8 miembros se refiere a un heterocicloalquilo que contiene entre 5 y 8 átomos, que incluyen uno o más heteroátomos, en la fracción cíclica del heterocicloalquilo.

El término "hidrógeno" se refiere a un sustituyente hidrógeno y puede representarse como -H.

10

15

20

25

30

35

40

45

50

55

El término "hidroxi" o "hidroxilo" se refiere a -OH. Cuando se usa junto con otro(s) término(s), el prefijo "hidroxi" indica que el sustituyente al que está unido el prefijo está sustituido con uno o más sustituyentes hidroxi. Algunos compuestos portadores de un carbono al que están unidos uno o más sustituyentes hidroxi incluyen, por ejemplo, alcoholes, enoles y fenol.

El término "ciano" (denominado también "nitrilo") significa -CN, que también puede representarse como:

El término "halógeno" se refiere a flúor (que puede representarse como -F), cloro (que puede representarse como -Cl), bromo (que puede representarse como -Br) o yodo (que puede representarse como -I). En una realización, el halógeno es cloro. En otra realización, el halógeno es flúor. En otra realización, el halógeno es bromo.

El término "heterocicloalquilo" se refiere a un sustituyente obtenido mediante la eliminación de un hidrógeno a partir de una estructura anular saturada o parcialmente saturada que contiene un total de entre 4 y 14 átomos en el anillo, en la que al menos uno de los átomos del anillo es un heteroátomo seleccionado entre oxígeno, nitrógeno o azufre. Por ejemplo, según se usa en el presente documento, el término "heterocicloalquilo de entre 4 y 10 miembros" significa que el sustituyente es un anillo individual con un total de entre 4 y 10 miembros. Un heterocicloalquilo puede comprender como alternativa 2 o 3 anillos condensados entre sí, en los que al menos uno de dichos anillos contiene un heteroátomo como átomo del anillo (es decir, nitrógeno, oxígeno o azufre). En un grupo que tiene un sustituyente heterocicloalquilo, el átomo del anillo del sustituyente heterocicloalquilo que está unido al grupo puede ser el al menos un heteroátomo, o puede ser un átomo de carbono del anillo, en el que el átomo de carbono del anillo puede estar en el mismo anillo que el al menos un heteroátomo. De forma análoga, si el sustituyente heterocicloalquilo está su vez sustituido con un grupo o un sustituyente, el grupo o el sustituyente puede estar unido al menos a un heteroátomo, o puede estar unido al átomo de carbono del anillo, en el que el átomo de carbono del anillo puede estar en el mismo anillo que el al menos un heteroátomo, o en el que el átomo de carbono del anillo puede estar en el mismo anillo que el al menos un heteroátomo, o en el que el átomo de carbono del anillo puede estar en un anillo diferente al del al menos un heteroátomo, o en el que el átomo de carbono del anillo puede estar en un anillo diferente al del al menos un heteroátomo.

El término "heterocicloalquilo" también incluye sustituyentes que están condensados con un anillo aromático C_{6-10} o un anillo heteroaromático de entre 5 y 10 miembros, en el que un grupo que tiene dicho grupo heterocicloalquilo condensado como un sustituyente está unido a un heteroátomo del grupo heterocicloalquilo o a un átomo de carbono del grupo heterocicloalquilo. Cuando dicho grupo heterocicloalquilo condensado está sustituido a uno o más sustituyentes, el uno o más sustituyentes, salvo que se especifique de otro modo, están unidos cada uno a un heteroátomo del grupo heterocicloalquilo o a un átomo de carbono del grupo heterocicloalquilo. El anillo aromático condensado C_6 - C_{10} o el anillo heteroaromático de entre 5 y 10 miembros puede estar opcionalmente sustituido con halógeno, alquilo C_{1-6} , cicloalquilo C_{3-10} , alcoxi C_{1-6} o =O.

El término "heteroarilo" se refiere a una estructura anular aromática que contiene entre 5 y 14 átomos en el anillo en la que al menos uno de los átomos del anillo es un heteroátomo (es decir, oxígeno, nitrógeno o azufre), seleccionándose el resto de los átomos del anillo independientemente entre el grupo que consiste en carbono, oxígeno, nitrógeno y azufre. Un heteroarilo puede ser un anillo individual o 2 o 3 anillos condensados. Algunos ejemplos de sustituyentes heteroarilo incluyen, pero no se limitan a: sustituyentes anulares de 6 miembros tales como piridilo, pirazilo, pirimidinilo y piridazinilo; sustituyentes anulares de 5 miembros tales como triazolilo, imidazolilo, furanilo, tiofenilo, pirazolilo, oxazolilo, isoxazolilo, tiazolilo, 1,2,3-, 1,2,4-, 1,2,5- o 1,3,4-oxadiazolilo e isotiazolilo; sustituyentes anulares condensados de 6/5 miembros tales como benzotiofuranilo, isobenzotiofuranilo, benzoxazolilo, purinilo y antranililo; y sustituyentes anulares condensados de 6/6 miembros tales

como quinolinilo, isoquinolinilo, cinnolinilo, quinazolinilo y 1,4-benzoxazinilo. En un grupo que tiene un sustituyente heteroarilo, el átomo del anillo del sustituyente heteroarilo que está unido al grupo puede ser el al menos un heteroátomo, o puede ser un átomo de carbono del anillo, en el que el átomo de carbono del anillo puede estar en el mismo anillo que el al menos un heteroátomo, o en el que el átomo de carbono del anillo puede estar en un anillo diferente al del al menos un heteroátomo. De forma análoga, si el sustituyente heteroarilo está a su vez sustituido con un grupo o un sustituyente, el grupo o el sustituyente puede estar unido al menos a un heteroátomo, o puede estar unido a un átomo de carbono del anillo, en el que el átomo de carbono del anillo puede estar en el mismo anillo que el al menos un heteroátomo, o en el que el átomo de carbono del anillo puede estar en un anillo diferente al del al menos un heteroátomo. El término "heteroarilo" también incluye N-óxidos de piridilo y grupos que contienen un anillo de N-óxido de piridina.

5

10

15

20

25

30

35

40

55

60

Algunos ejemplos de heteroarilos y heterocicloalquilos de anillo único incluyen, pero no se limitan a, furanilo, dihidrofuranilo, tetrahidrofuranoílo, tiofenilo (también conocido como "tiofuranilo"), dihidrotiofenilo, tetrahidrotiofenilo, pirrolilo, pirrolinilo, pirrolidinilo, imidazolilo, isoimidazolilo, imidazolinilo, imidazolidinilo, pirazolilo, pirazolilo, pirazolilo, pirazolilo, tetrazolilo, ditiolilo, oxatiolilo, oxazolilo, isoxazolilo, isoxazolinilo, tiazolilo, isotiazolilo, tiazolilo, isotiazolinilo, tiazolilo, isotiazolilo, oxadiazolilo, oxadiazolilo, oxadiazolilo, oxadiazolilo (incluyendo oxadiazolilo, 1,2,4-oxadiazolilo (también conocido como "azoximilo"), 1,2,5-oxadiazolilo (también conocido como "furazanilo") o 1,3,4-oxadiazolilo, piranilo (incluyendo 1,2-piranilo o 1,4-piranilo), dihidropiranilo, piridinilo (también conocido como "1,2-diazinilo"), pirimidinilo (también conocido como "1,3-diazinilo"), pirimidinilo (también conocido como "1,4-diazinilo")), piperazinilo, triazinilo (incluyendo s-triazinilo (también conocido como "1,3,5-triazinilo"), as-triazinilo (también conocido como 1,2,4-triazinilo) y v-triazinilo (también conocido como "1,2,3-triazinilo")), morfolinilo, azepinilo, tiepinilo y diazepinilo.

Algunos ejemplos de heteroarilos con 2 anillos condensados, pero no se limitan a, indolizinilo, piranopirrolilo, 4H-quinolizinilo, purinilo, naftiridinilo, piridopiridinilo (incluyendo pirido[3,4-ti]-piridinilo, pirido[3,2-ti]-piridinilo, o pirido[4,3-ti]-piridinilo) y pteridinilo, indolilo, isoindolilo, isoindazolilo, benzazinilo, ftalazinilo, quinoxalinilo, quinazolinilo, benzodiazinilo, benzopiranilo, benzotiopiranilo, benzoxazolilo, indoxazinilo, antranililo, benzodioxolilo, benzodioxanilo, benzotiazolilo, benzotiazo

Algunos ejemplos de heteroarilos o heterocicloalquilos con 3 anillos condensados incluyen, pero no se limitan a, 5,6dihidro-4H-imidazo[4,5,1-ii]quinolina, 4,5-dihidroimidazo[4,5,1-hi]indol, 4,5,6,7-tetrahidroimidazo[4,5,1jk][1]benzacepina, y dibenzofuranilo. Otros ejemplos de heteroarilos con anillos condensados incluyen, pero no se limitan a, heteroarilos benzocondensados tales como indolilo, isoindolilo (también conocido como "isobenzazolilo" o "pseudoisoindolilo"), indoleninilo (también conocido como "pseudoindolilo"), isoindazolilo (también conocido como "benzopirazolilo"), benzazinilo (incluyendo quinolinilo (también conocido como "1-benzazinilo") o isoquinolinilo (también conocido como "2-benzazinilo")), ftalazinilo, quinoxalinilo, quinazolinilo, benzodiazinilo (incluyendo cinnolinilo (también conocido como "1,2-benzodiazinilo") o quinazolinilo (también conocido como "1,3benzodiazinilo")), benzopiranilo (incluyendo "cromanilo" o "isocromanilo"), benzotiopiranilo (también conocido como "tiocromanilo"), benzoxazolilo, indoxazinilo (también conocido como "benzoisoxazolilo"), antranililo, benzodioxolilo, benzodioxanilo, benzoxadiazolilo, benzofuranilo (también conocido como "cumaronilo"), isobenzofuranilo, benzotienilo (también conocido como "benzotiofenilo", "tionaftenilo" o "benzotiofuranilo"), isobenzotienilo (también conocido como "isobenzotiofenilo", "isotionaftenilo" o "isobenzotiofuranilo"), benzotiazolilo, benzotiadiazolilo, bencimidazolilo, benzotriazolilo, benzoxazinilo (incluyendo 1,3,2-benzoxazinilo, 1,4,2-benzoxazinilo, 2,3,1benzoxazinilo, o 3,1,4-benzoxazinilo), benzoisoxazinilo (incluyendo 1,2-benzoisoxazinilo o 1,4-benzoisoxazinilo), tetrahidroisoquinolinilo, carbazolilo, xantenilo y acridinilo.

El término "heteroarilo" también incluye sustituyentes tales como piridilo y quinolinilo que están condensados con un anillo carbocíclico C₄₋₁₀, tales como un anillo carbocíclico C₅ o C₆, o con un anillo heterocíclico de 4-10 miembros, en los que un grupo que tiene dicho grupo heteroarilo condensado como sustituyente está unido a un carbono aromático del grupo heteroarilo o a un heteroátomo del grupo heteroarilo. Cuando dicho grupo heteroarilo condensado está sustituido con uno o más sustituyentes, el uno o más sustituyentes, salvo que se especifique de otro modo, están unidos cada uno a un carbono aromático del grupo heteroarilo o a un heteroátomo del grupo heteroarilo. El carbocíclico condensado C₄₋₁₀ o el anillo heterocíclico de 4-10 miembros puede estar opcionalmente sustituido con halógeno, alquilo C₁₋₆, cicloalquilo C₃₋₁₀ o =O.

Algunos ejemplos adicionales de heteroarilos y heterocicloalquilos incluyen, pero no se limitan a: 6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona, 6,7-dihidro-5H-pirrolo[3,4-b]piridilo, furo[3,4-b]piridin-5(7H)-ona, 2,3,4,5-tetrahidropirido[2,3-f][1,4]oxacepina, 6,7-dihidro-5H-ciclopenta[b]piridilo, 5,6,7,8-tetrahidro-1,7-naftiridilo, furo[3,4-b]piridin-7(5H)-ona, 7,8-dihidro-1,7-naftiridin-6(5H)-ona, 5H-pirrolo[3,4-b]piridin-7(6H)-ona, 7,8-dihidro-1,6-naftiridin-5(6H)-ona, 1H-pirazolo[3,4-b]piridilo, 5,6,7,8-tetrahidro-1,6-naftiridilo, 2H-pirazolo[4,3-b]piridilo, 6,7,8,9-tetrahidro-5H-pirido[2,3-d]acepina, oxazolo[4,5-b]piridilo, oxazolo[5,4-b]piridilo, 3-1H-bencimidazol-2-ona, (1-sustituido)-2-oxobencimidazol-3-ilo, 2-tetrahidrofuranoílo, 3-tetrahidrofuranoílo, 2-tetrahidropiranilo, 3-tetrahidropiranilo, 4-tetrahidropiranilo, [1,3]-dioxalanilo, [1,3]-dioxanilo, 2-tetrahidrotiofenilo, 3-tetrahidrotiofenilo, 2-pirrolidinilo, 3-pirrolidinilo, 4-piperidinilo, 4-tiazolidinilo, 3-piperidinilo, 4-piperidinilo, 4-tiazolidinilo, 4-tiazoli

diazolonilo. diazolonilo N-sustituido, 1-ftalimidinilo, benzoxanilo. benzo[1,3]dioxina, benzo[1,4]dioxina, benzopirrolidinilo. 4,5,6,7-tetrahidropirazol[1,5-a]piridina, benzopiperidinilo, benzoxolanilo, benzotiolanilo, benzotianilo, pirrolidinilo, tetrahidrofuranoílo, dihidrofuranilo, tetrahidrotienilo, tetrahidropiranilo, dihidropiranilo, tetrahidrotiopiranilo, piperidino, morfolino, tiomorfolino, tioxanilo, piperazinilo, azetidinilo, oxetanilo, tietanilo, homopiperidinilo, oxepanilo, tiepanilo, oxazepinilo, diazepinilo, tiazepinilo, 1,2,3,6-tetrahidropiridinilo, 2-pirrolinilo, 3pirrolinilo, indolinilo, 2H-piranilo, 4H-piranilo, dioxanilo, 1,3-dioxolanilo, pirazolinilo, ditianilo, ditiolanilo, dihidropiranilo, dihidrofuranilo, pirazolidinilo, imidazolinilo, imidazolidinilo, 3-azabiciclo[3.1.0]hexanilo, azabiciclo[4.1.0]heptanilo, 3H-indolilo, quinolizinilo, piridinilo, imidazolilo, pirimidinilo, pirazolilo, triazolilo, pirazinilo, tetrazolilo, furilo, tienilo, isoxazolilo, tiazolilo, oxazolilo, isotiazolilo, pirrolilo, quinolinilo, isoquinolinilo, indolilo, bencimidazolilo, benzofuranilo, cinnolinilo, indazolilo, indolizinilo, ftalazinilo, piridazinilo, triazinilo, isoindolilo, pteridinilo, purinilo, oxadiazolilo, tiadiazolilo, furazanilo, benzofurazanilo, benzotiofenilo, benzotiazolilo, benzoxazolilo, quinazolinilo, quinoxalinilo, naftiridinilo y furopiridinilo. Los grupos anteriores, como derivados de los grupos indicados anteriormente, pueden estar unidos por el C o unidos por el N cuando ello sea posible. Por ejemplo, un grupo derivado de pirrol puede ser pirrol-1-ilo (unido por el N) o pirrol-3-ilo (unido por el C). Además, un grupo obtenido a partir de imidazol puede ser imidazol-1-ilo (unido por el N) o imidazol-2-ilo (unido por el C).

5

10

15

20

25

30

35

40

45

50

55

60

Un sustituyente es "sustituible" si comprende al menos un átomo de carbono o de nitrógeno que está unido a uno o más átomos de hidrógeno. Por lo tanto, por ejemplo, hidrógeno, halógeno y ciano no están incluidos en esta definición.

Si un sustituyente se describe como que está "sustituido", un sustituyente que no es hidrógeno está en el lugar de un sustituyente hidrógeno en un carbono o nitrógeno del sustituyente. Por lo tanto, por ejemplo, un sustituyente alquilo sustituido es un sustituyente alquilo en el que al menos un sustituyente que no es hidrógeno está en el lugar de un sustituyente hidrógeno del sustituyente alquilo. Como ilustración, monofluoroalquilo es alquilo sustituido con un sustituyente fluoro, y difluoroalquilo es alquilo sustituido con dos sustituyentes fluoro. Debería reconocerse que si hay más de una sustitución en un sustituyente, cada sustituyente que no es hidrógeno puede ser idéntico o diferente (salvo que se indique de otro modo).

Si un sustituyente se describe de forma que "puede estar sustituido" o como que está "opcionalmente sustituido", el sustituyente puede estar (1) no sustituido, o (2) sustituido. Si un carbono de un sustituyente se describe como que está opcionalmente sustituido con uno o más de una lista de sustituyentes, uno o más de los hidrógenos del carbono (siempre que los haya) pueden estar sustituidos por separado y/o conjuntamente con un sustituyente opcional seleccionado independientemente. Si un nitrógeno de un sustituyente se describe como que está opcionalmente sustituido con uno o más de una lista de sustituyentes, uno o más de los hidrógenos del nitrógeno (siempre que los haya) pueden estar sustituidos cada uno con un sustituyente opcional seleccionado independientemente. Un ejemplo de sustituyente puede representarse como -NR'R", en el que R' y R" junto con el átomo de nitrógeno al que están unidos pueden formar un anillo heterocíclico que comprende 1 o 2 heteroátomos seleccionados independientemente entre oxígeno, nitrógeno o azufre, en el que dicha fracción de heterocicloalquilo puede estar opcionalmente sustituida. El anillo heterocíclico formado a partir de R' y R" junto con el átomo de nitrógeno al que están unidos puede estar parcialmente o completamente saturado, o ser aromático. En una realización, el anillo heterocíclico consiste en entre 4 y 10 átomos. En otra realización, el anillo heterocíclico se selecciona entre el grupo que consiste en piperidinilo, morfolinilo, azetidinilo, pirrolilo, imidazolilo, pirazolilo, triazolilo, tetrazolilo, isoxazolilo y tiazolilo.

Esta memoria descriptiva usa los términos "sustituyente", "radical" y "grupo" de forma intercambiable.

Si un grupo de sustituyentes se describe conjuntamente como que está opcionalmente sustituido con uno o más de una lista de sustituyentes, el grupo puede incluir: (1) sustituyentes no sustituibles, (2) sustituyentes sustituibles que no están sustituidos por los sustituyentes opcionales, y/o (3) sustituyentes sustituibles que están sustituidos por uno o más de los sustituyentes opcionales.

Si un sustituyente se describe de forma que "puede estar sustituido" o como que está opcionalmente sustituido con hasta un número particular de sustituyentes que no son hidrógeno, ese sustituyente puede estar (1) no sustituido; o (2) sustituido con hasta ese número particular de sustituyentes que no son hidrógeno o con hasta el número máximo de posiciones sustituibles en el sustituyente, lo que sea menor. Por lo tanto, por ejemplo, si un sustituyente se describe como que es un heteroarilo opcionalmente sustituido con hasta 3 sustituyentes que no son hidrógeno, entonces cualquier heteroarilo con menos de 3 posiciones sustituibles estaría opcionalmente sustituido con hasta únicamente tantos sustituyentes que no son hidrógeno como posiciones sustituibles tenga el heteroarilo. Como ilustración, un tetrazolilo (que solo tiene una posición sustituible) estaría opcionalmente sustituido con hasta un sustituyente que no es hidrógeno. Como ilustración adicional, si un nitrógeno de un amino se describe como que está opcionalmente sustituido con hasta 2 sustituyentes que no son hidrógeno, entonces el nitrógeno estará opcionalmente sustituido con hasta 2 sustituyentes que no son hidrógeno si el nitrógeno del amino es un nitrógeno primario, mientras que el nitrógeno del amino estará opcionalmente sustituido con hasta únicamente 1 sustituyente que no es hidrógeno si el nitrógeno del amino es un nitrógeno secundario.

Un prefijo unido a un sustituyente multi-fracción únicamente se aplica a la primera fracción. Como ilustración, el término "alquilcicloalquilo" contiene dos fracciones: alquilo y cicloalquilo. Por lo tanto, un prefijo C₁₋₆- en el

alquilcicloalquilo C₁₋₆ significa que la fracción alquilo del alquilcicloalquilo contiene entre 1 y 6 átomos de carbono; el prefijo C₁₋₆- no describe la fracción cicloalquilo. Como ilustración adicional, el prefijo "halo" en haloalcoxialquilo indica que *únicamente* la fracción alcoxi del sustituyente alcoxialquilo está sustituida con uno o más sustituyentes halógeno. Si la sustitución del halógeno se produce *únicamente* en la fracción de alquilo, el sustituyente se describiría como "alcoxihaloalquilo." Si la sustitución del halógeno se produce tanto en la fracción alquilo como en la fracción alcoxi, el sustituyente se describiría como "haloalcoxihaloalquilo."

Si se describen los sustituyentes como "seleccionados independientemente" entre un grupo, cada sustituyente es seleccionado independientemente de los demás. Cada sustituyente puede ser, por lo tanto, idéntico o diferente de los demás sustituyentes.

Según se usa en el presente documento el término "Fórmula I" puede referirse en lo sucesivo en el presente documento al (los) "compuesto(s) de la invención". Dichos términos también están definidos para incluir todas las formas del compuesto de Fórmula I, que incluyen hidratos, solvatos, isómeros, formas cristalinas y no cristalinas, isomorfos, polimorfos y metabolitos de los mismos. Por ejemplo, los compuestos de Fórmula I, o las sales de los mismos farmacéuticamente aceptables, pueden existir en las formas sin solvatar y solvatadas. Cuando el disolvente o el agua están fuertemente unidos, el complejo tendrá una estequiometría bien definida independientemente de la humedad. Sin embargo, cuando el disolvente o el agua están débilmente unidos, como en los solvatos de canal y en los compuestos higroscópicos, el contenido en agua/disolvente dependerá de la humedad y de las condiciones de secado. En dichos casos la no estequiometría será la norma.

Los compuestos de Fórmula I pueden existir en forma de clatratos o de otros complejos. En el ámbito de la invención están incluidos complejos tales como los clatratos, los complejos de inclusión fármaco-hospedador en los que, al contrario que los anteriormente mencionados solvatos, el fármaco y el hospedador están presentes en unas cantidades estequiométricas o no estequiométricas. También están incluidos los complejos de Fórmula I que contienen dos o más componentes orgánicos y/o inorgánicos que pueden estar en unas cantidades estequiométricas o no estequiométricas. Los complejos resultantes pueden estar ionizados, parcialmente ionizados o no ionizados. Para una revisión de dichos complejos, véase J. Pharm. Sci., 64 (8), 1269-1288 de Haleblian (agosto de 1975).

30

35

40

45

50

55

El uso de una línea continua para representar enlaces con átomos de carbono asimétricos pretende indicar que están incluidos todos los posibles estereoisómeros (por ejemplo, enantiómeros específicos, mezclas racémicas, etc.) de ese átomo de carbono. El uso de una cuña tanto continua como punteada para representar enlaces con átomos de carbono asimétricos pretende indicar que se entiende que únicamente está incluido el estereoisómero mostrado. Es posible que los compuestos de Fórmula I puedan contener más de un átomo de carbono asimétrico. En esos compuestos, el uso de una línea continua para representar enlaces con átomos de carbono asimétricos pretende indicar que se entiende que están incluidos todos los posibles estereoisómeros. Por ejemplo, salvo que se indique de otro modo, se entiende que los compuestos de Fórmula I pueden existir en forma de enantiómeros y de diastereómeros o en forma de racematos y mezclas de los mismos. El uso de una línea continua para representar enlaces con uno o más átomos de carbono asimétricos en un compuesto de Fórmula I y el uso de una cuña continua o punteada para representar dos enlaces con otros átomos de carbono asimétricos en el mismo compuesto, pretende indicar que hay presente una mezcla de diastereómeros.

Los estereoisómeros de Fórmula I incluyen los isómeros cis y trans, los isómeros ópticos tales como R y S, los enantiómeros, los diastereómeros, los isómeros geométricos, los isómeros rotacionales, los isómeros conformacionales y los tautómeros de los compuestos de Fórmula I, incluyendo los compuestos que muestran más de un tipo de isomería; y mezclas de los mismos (tales como racematos y pares diastereoméricos). También están incluidas las sales de adición ácida o básica, en las que el contraión es ópticamente activo, por ejemplo, D-lactato o L-lisina, o racémico, por ejemplo, DL-tartrato o DL-arginina.

Cuando cristaliza cualquier racemato, son posibles dos tipos de cristales diferentes. El primer tipo es el compuesto racémico (racemato verdadero) mencionado anteriormente, en el que se produce una forma homogénea del cristal que contiene ambos enantiómeros en unas cantidades equimolares. El segundo tipo es la mezcla racémica o conglomerado, en el que se producen dos formas del cristal en unas cantidades equimolares, cada una de las cuales comprende un único enantiómero.

Los compuestos de Fórmula I pueden mostrar el fenómeno de tautomería y de isomería estructural. Por ejemplo, los compuestos de Fórmula I pueden existir en varias formas tautómeras, que incluyen las formas de enol e imina y las formas de ceto y enamina, y los isómeros geométricos y las mezclas de los mismos. Todas esas formas tautómeras están incluidas en el ámbito de los compuestos de Fórmula I. Los tautómeros existen en forma de mezclas de un conjunto tautomérico en disolución. A pesar de que puede describirse un tautómero, la presente invención incluye todos los tautómeros de los compuestos de Fórmula I.

La presente invención también incluye compuestos marcados con isótopos, que son idénticos a los indicados en la

anterior Fórmula I, pero en los que uno o más átomos se reemplazan por un átomo que tiene una masa atómica o un número másico diferente de la masa atómica o del número másico que se encuentra normalmente en la naturaleza. Algunos ejemplos de isotopos que pueden ser incorporados en los compuestos de Fórmula I incluyen isótopos de hidrógeno, de carbono, de nitrógeno, de oxígeno, de fósforo, de flúor y de cloro, tales como, pero no se limitan a, ²H, ³H, ¹³C, ¹⁴C, ¹⁵N, ¹⁸O, ¹⁷O, ³¹P, ³²P, ³⁵S, ¹⁸F y ³⁶Cl. Algunos de los compuestos marcados con isótopos de Fórmula I, por ejemplo, aquellos en los que se incorporan isótopos radiactivos tales como ³H y ¹⁴C, son útiles en los ensayos de distribución de fármacos y/o de sustratos en tejidos. Los isótopos tritiados, es decir, de ³H, y de carbono-14, es decir, ¹⁴C, son particularmente preferidos por su facilidad de preparación y detectabilidad. Además, la sustitución con isótopos más pesados tales como deuterio, es decir, ²H, puede producir ciertas ventajas terapéuticas producidas por una mayor estabilidad metabólica, por ejemplo, un aumento de la semivida *in vivo* o unos requisitos de dosificación reducidos, e incluso pueden ser preferidos en algunas circunstancias. Los compuestos marcados con isótopos de Fórmula I pueden ser preparados generalmente mediante la realización de los procedimientos desvelados en los siguientes Esquemas y/o en los Ejemplos y Preparaciones, mediante la sustitución de un reactivo marcado con isótopos por un reactivo no marcado con isótopos.

5

10

40

55

- Los compuestos de esta invención pueden usarse en forma de sales derivadas de ácidos inorgánicos u orgánicos. Dependiendo del compuesto en particular, una sal del compuesto puede ser ventajosa debido a una o más de las propiedades físicas de la sal, tales como un aumento en la estabilidad farmacéutica a diferentes temperaturas y humedades, o una deseable solubilidad en agua o en aceite. En algunos casos puede usarse también una sal de un compuesto como ayuda en el aislamiento, la purificación y/o la resolución del compuesto.
- Cuando se va a administrar una sal a un paciente (por oposición a, por ejemplo, usarse en un contexto *in vitro*), la sal es preferentemente farmacéuticamente aceptable. El término "sal farmacéuticamente aceptable" se refiere a una sal preparada mediante la combinación de un compuesto de Fórmula I con un ácido cuyo anión, o una base cuyo catión, se considera generalmente adecuado para el consumo humano. Las sales farmacéuticamente aceptables son particularmente útiles como productos de los procedimientos de la presente invención debido a su mayor solubilidad acuosa con respecto al compuesto parental. Para su uso en medicina, las sales de los compuestos de esta invención son "sales farmacéuticamente aceptables" no tóxicas. Las sales englobadas por el término "sales farmacéuticamente aceptables" se refieren a las sales no tóxicas de los compuestos de esta invención que se preparan generalmente mediante la reacción de la base libre con un ácido orgánico o inorgánico adecuado.
- Algunas sales de adición ácida farmacéuticamente aceptables de los compuestos de la presente invención, cuando son posibles, incluyen las obtenidas a partir de ácidos inorgánicos, tales como ácido clorhídrico, bromhídrico, fluorhídrico, bórico, fluorobórico, fosfórico, metafosfórico, nítrico, carbónico, sulfónico y sulfúrico, y de ácidos orgánicos tales como ácido acético, bencensulfónico, benzoico, cítrico, etansulfónico, fumárico, glucónico, glicólico, isotiónico, láctico, lactobiónico, maleico, málico, metansulfónico, trifluorometansulfónico, succínico, toluensulfónico, tartárico y trifluoroacético. Algunos ácidos adecuados incluyen generalmente, pero no se limitan a, clases de ácidos orgánicos alifáticos, cicloalifáticos, aromáticos, aralifáticos, heterocíclicos, carboxílico y sulfónico.
 - Algunos ejemplos específicos de ácidos orgánicos adecuados incluyen, pero no se limitan a, acetato, trifluoroacetato, formiato, propionato, succinato, glicolato, gluconato, digluconato, lactato, malato, ácido tartárico, citrato, ascorbato, glucuronato, maleato, fumarato, piruvato, aspartato, glutamato, benzoato, ácido antranílico, estearato, salicilato, p-hidroxibenzoato, fenilacetato, mandelato, embonato (pamoato), metansulfonato, etansulfonato, bencensulfonato, pantotenato, toluensulfonato, 2-hidroxietansulfonato, sufanilato, ciclohexilaminosulfonato, ácido algénico, ácido β-hidroxibutírico, galactarato, galacturonato, adipato, alginato, butirato, canforato, canforsulfonato, ciclopentanopropionato, dodecilsulfato, glicoheptanoato, glicerofosfato, heptanoato, nicotinato, 2-naftalesulfonato, oxalato, palmoato, pectinato, 3-fenilpropionato, picrato, pivalato, tiocianato y undecanoato.
- Adicionalmente, cuando los compuestos de la invención portan una fracción ácida, algunas sales de los mismos farmacéuticamente aceptables pueden incluir sales de metales alcalinos, es decir, sales de sodio o de potasio; sales de metales alcalinotérreos, por ejemplo, sales de calcio o de magnesio; y las sales formadas con ligandos orgánicos adecuados, por ejemplo, sales de amonio cuaternario. En otra realización, las sales de bases se forman a partir de bases que forman sales no tóxicas, que incluyen sales de aluminio, de arginina, de benzatina, de colina, de dietilamina, de diolamina, de glicina, de lisina, de meglumina, de olamina, de trometamina y de cinc.
 - Las sales orgánicas pueden formarse a partir de sales de aminas secundarias, terciarias o cuaternarias, tales como trometamina, dietilamina, N,N'-dibenciletilendiamina, cloroprocaína, colina, dietanolamina, etilendiamina, meglumina (N-metilglucamina) y procaína. Los grupos que contienen un nitrógeno básico puede ser cuaternizados con agentes tales como haluros de alquilo inferior (C_1-C_6) (por ejemplo, metilo, etilo, propilo y cloruros, bromuros y yoduros de butilo), sulfatos de dialquilo (es decir, sulfatos de dimetilo, de dietilo, de dibutilo y de diamilo), haluros de cadena larga (es decir, cloruros, bromuros y yoduros de decilo, de laurilo, de miristilo y de estearilo), haluros de arilalquilo (es decir, bromuros de bencilo y de fenetilo) y otros.

En una realización, también pueden formarse hemisales de ácidos y de bases, por ejemplo, sales de hemisulfato y de hemicalcio.

Normalmente, un compuesto de la invención es administrado en una cantidad eficaz para el tratamiento de una afección según se describe en el presente documento. Los compuestos de la invención son administrados a través de cualquier vía adecuada en forma de una composición farmacéutica adaptada a dicha vía y en una dosis eficaz para el tratamiento previsto. Las dosis terapéuticamente eficaces de los compuestos necesarias para el tratamiento del progreso de la afección médica son fácilmente averiguables por el experto en la materia mediante el uso de las metodologías preclínicas y clínicas familiares en las artes médicas. El término "cantidad terapéuticamente eficaz", según se usa en el presente documento, se refiere a la cantidad del compuesto que se va a administrar que aliviará en un cierto grado uno o más de los síntomas del trastorno que se va a tratar.

El término "tratar", según se usa en el presente documento, salvo que se indique de otro modo, significa invertir, aliviar, inhibir el progreso de, o prevenir, el trastorno o la afección a la que se aplica tal término, o uno o más de los síntomas de dicho trastorno o afección. El término "tratamiento", según se usa en el presente documento, salvo que se indique de otro modo, se refiere al acto de tratamiento como se ha definido "tratar" inmediatamente antes. El término "tratar" también incluye el tratamiento de un sujeto con un adyuvante y con un neo-adyuvante.

Los compuestos de la invención pueden ser administrados por vía oral. La administración oral puede implicar una ingestión, de forma que el compuesto entra en el tracto gastrointestinal, o puede emplearse una administración bucal o sublingual, mediante la cual el compuesto entra en el torrente sanguíneo directamente desde la boca.

15

20

25

30

35

40

45

50

55

En otra realización, los compuestos de la invención también pueden ser administrados directamente en el torrente sanguíneo, en el músculo o en un órgano interno. Algunos medios adecuados para una administración parenteral incluyen intravenosa, intraarterial, intraperitoneal, intratecal, intraventricular, intrauretral, intraesternal, intracraneal, intramuscular y subcutánea. Algunos dispositivos adecuados para una administración parenteral incluyen inyectores de aquia (incluyendo de microaquia), inyectores sin aquias y técnicas de infusión.

En otra realización, los compuestos de la invención también pueden ser administrados por vía tópica en la piel o en las mucosas, es decir, dérmicamente o transdérmicamente. En otra realización, los compuestos de la invención también pueden ser administrados por vía intranasal o mediante inhalación. En otra realización, los compuestos de la invención pueden ser administrados por vía rectal o vaginal. En otra realización, los compuestos de la invención también pueden ser administrados directamente en el ojo o en el oído.

El régimen de dosificación de los compuestos y/o de las composiciones que contienen los compuestos se basa en diversos factores, que incluyen el tipo, la edad, el peso, el sexo y el estado médico del paciente; la gravedad de la afección; la vía de administración; y la actividad del compuesto en particular empleado. Por lo tanto, el régimen de dosificación puede variar ampliamente. Unos niveles de dosificación del orden de desde aproximadamente 0,01 mg hasta aproximadamente 100 mg por kilogramo de peso corporal al día son útiles en el tratamiento de las afecciones indicadas anteriormente. En una realización, la dosis diaria total de un compuesto de la invención (administrado en una única dosis o en dosis divididas) normalmente es de desde aproximadamente 0,01 hasta aproximadamente 100 mg/kg. En otra realización, la dosis diaria total del compuesto de la invención es de desde aproximadamente 0,1 hasta aproximadamente 50 mg/kg y en otra realización, de desde aproximadamente 0,5 hasta aproximadamente 30 mg/kg (es decir, mg de compuesto de la invención por kg de peso corporal). En una realización, la dosis es de desde 0,01 hasta 10 mg/kg/día. En otra realización, la dosis es de desde 0,1 hasta 1,0 mg/kg/día. Las composiciones de dosis unitarias pueden contener dichas cantidades o submúltiplos de las mismas hasta completar la dosis diaria. En muchos casos, la administración del compuesto se repetirá una pluralidad de veces al día (normalmente no más de 4 veces). Normalmente pueden usarse múltiples dosis al día para aumentar la dosis diaria total, si se desea.

Para su administración oral, las composiciones pueden proporcionarse en forma de comprimidos que contienen 0,01, 0,05, 0,1, 0,5, 1,0, 2,5, 5,0, 10,0, 15,0, 25,0, 50,0, 75,0, 100, 125, 150, 175, 200, 250 y 500 miligramos del principio activo para el ajuste sintomático de la dosis al paciente. Un medicamento normalmente contiene desde aproximadamente 0,01 mg hasta aproximadamente 500 mg del principio activo, o en otra realización, desde aproximadamente 1 mg hasta aproximadamente 100 mg del principio activo. Por vía intravenosa, las dosis pueden variar desde aproximadamente 0,1 hasta aproximadamente 10 mg/kg/minuto para una velocidad de infusión constante.

Los sujetos adecuados según la presente invención incluyen sujetos mamíferos. Los mamíferos según la presente invención incluyen, pero no se limitan a, canino, felino, bovino, caprino, equino, ovino, porcino, roedores, lagomorfos, primates, y similares, y engloban a los mamíferos *in utero*. En una realización, los seres humanos son sujetos adecuados. Los sujetos humanos pueden ser de cualquier género y estar en cualquier fase de desarrollo.

En otra realización, la invención comprende el uso de uno o más compuestos de la invención para la preparación de un medicamento para el tratamiento de las afecciones mencionadas en el presente documento.

Para el tratamiento de las afecciones indicadas anteriormente, los compuestos de la invención pueden administrarse como el compuesto *per se*. Alternativamente, las sales farmacéuticamente aceptables son adecuadas para aplicaciones médicas debido a su mayor solubilidad acuosa con respecto al compuesto parental.

En otra realización, la presente invención comprende composiciones farmacéuticas. Dichas composiciones farmacéuticas comprenden un compuesto de la invención presentado con un vehículo farmacéuticamente aceptable.

El vehículo puede ser un sólido, un líquido, o ambos, y puede estar formulado con el compuesto en forma de una composición de dosis unitaria, por ejemplo, un comprimido, que puede contener desde un 0,05 % hasta un 95 % en peso de los compuestos activos. Un compuesto de la invención puede ser acoplado con polímeros adecuados en forma de vehículos del fármaco direccionables. También puede haber presentes otras sustancias farmacológicamente activas.

5

20

25

30

35

40

45

50

55

60

Los compuestos de la presente invención pueden ser administrados a través de cualquier vía adecuada, preferentemente en forma de una composición farmacéutica adaptada a dicha vía y en una dosis eficaz para el tratamiento previsto. Los compuestos activos y las composiciones pueden administrarse, por ejemplo, por vía oral, rectal, parenteral o tópica.

La administración oral de una forma de dosificación sólida puede presentarse, por ejemplo, en unidades individuales, tales como cápsulas duras o blandas, píldoras, obleas, tabletas o comprimidos, conteniendo cada uno, una cantidad predeterminada de al menos un compuesto de la presente invención. En otra realización, la administración oral puede ser en forma de polvos o de gránulos. En otra realización, la forma de dosificación oral es sublingual, tal como, por ejemplo, una tableta. En dichas formas de dosificación sólidas, los compuestos de Fórmula I se combinan habitualmente con uno o más adyuvantes. Dichas cápsulas o comprimidos pueden contener una formulación de liberación controlada. En el caso de las cápsulas, los comprimidos y las píldoras, las formas de dosificación también pueden comprender agentes tamponantes, o pueden prepararse con recubrimientos entéricos.

En otra realización, la administración oral puede ser en una forma de dosificación líquida. Algunas formas de dosificación líquidas para administración oral incluyen, por ejemplo, emulsiones, soluciones, suspensiones, jarabes y elixires farmacéuticamente aceptables que contienen los diluyentes inertes usados habitualmente en la materia (es decir, agua). Dichas composiciones también pueden comprender adyuvantes, tales como agentes humectantes, emulsionantes, suspensores, saborizantes (por ejemplo, edulcorantes) y/o perfumantes.

En otra realización, la presente invención comprende una forma de dosificación parenteral. Una "administración parenteral" incluye, por ejemplo, inyecciones subcutáneas, inyecciones intravenosas, inyecciones intraperitoneales, inyecciones intramusculares, inyecciones intraesternales e infusiones. Las preparaciones inyectables (es decir, las suspensiones estériles inyectables acuosas u oleaginosas) pueden formularse según la técnica conocida mediante el uso de los adecuados agentes dispersantes, humectantes y/o suspensores.

En otra realización, la presente invención comprende una forma de dosificación tópica. La "administración tópica" incluye, por ejemplo, la administración transdérmica, tal como a través de parches transdérmicos o de dispositivos de iontoforesis, una administración intraocular o una administración intranasal o mediante inhalación. Algunas composiciones para administración tópica también incluyen, por ejemplo, geles tópicos, pulverizadores, ungüentos y cremas. Una formulación tópica puede incluir un compuesto que mejora la absorción o la penetración del principio activo a través de la piel o de otras zonas afectadas. Cuando los compuestos de esta invención son administrados mediante un dispositivo transdérmico, la administración se llevará a cabo mediante el uso de un parche del tipo de depósito y membrana porosa, o de una variedad de matriz sólida. Algunas formulaciones típicas para este fin incluyen geles, hidrogeles, lociones, soluciones, cremas, ungüentos, polvos para espolvorear, apósitos, espumas, películas, parches cutáneos, obleas, implantes, esponjas, fibras, vendas y microemulsiones. También pueden usarse liposomas. Algunos vehículos típicos incluyen alcohol, agua, aceite mineral, vaselina líquida, vaselina blanca, glicerina, polietilenglicol y propilenglicol. Pueden incorporarse potenciadores de la penetración - véase, por ejemplo, Finnin y Morgan, J. Pharm. Sci., 88 (10), 955-958 (1999).

Algunas formulaciones adecuadas para su administración tópica en el ojo incluyen, por ejemplo, gotas oculares en las que el compuesto de esta invención se disuelve o se suspende en un vehículo adecuado. Una formulación típica adecuada para una administración ocular o aural puede estar en forma de gotas de una suspensión o de una solución micronizada en una solución salina estéril isotónica con el pH ajustado. Otras formulaciones adecuadas para una administración ocular y aural incluyen ungüentos, implantes biodegradables (es decir, esponjas de gel absorbibles, colágeno) y no biodegradables (es decir, de silicona), obleas, lentes y sistemas particulados o vesiculares, tales como niosomas o liposomas. Puede incorporarse un polímero tal como ácido poliacrílico reticulado, alcohol polivinílico, ácido hialurónico, un polímero celulósico, por ejemplo, hidroxipropilmetil celulosa, hidroxietil celulosa, o metil celulosa, o un polímero de un heteropolisacárido, por ejemplo, goma gelan, junto con un conservante, tal como cloruro de benzalconio. Dichas formulaciones también pueden ser administradas mediante iontoforesis.

Para su administración intranasal o una administración mediante inhalación, los compuestos activos de la invención son administrados convenientemente en forma de una solución o de una suspensión desde un recipiente pulverizador con una bomba que es comprimido o bombeado por el paciente, o en forma de una presentación de pulverizador de aerosol desde un recipiente presurizado o un nebulizador, con el uso de un propelente adecuado. Las formulaciones adecuadas para su administración intranasal se administran normalmente en forma de un polvo seco (tanto solo; como en una mezcla, por ejemplo, en una mezcla seca con lactosa; o en forma de una partícula de un componente mixto, por ejemplo, mezclado con fosfolípidos, tales como fosfatidilcolina) desde un inhalador de polvo seco o en forma de un pulverizador de aerosol desde un recipiente presurizado, una bomba, un pulverizador, un atomizador (preferentemente un atomizador mediante el uso de electrohidrodinámica para producir una niebla

fina) o un nebulizador, con o sin el uso de un propelente adecuado, tal como 1,1,1,2-tetrafluoroetano o 1,1,1,2,3,3,3-heptafluoropropano. Para su uso intranasal, el polvo puede comprender un agente bioadhesivo, por ejemplo, chitosan o ciclodextrina.

En otra realización, la presente invención comprende una forma de dosificación rectal. Dicha forma de dosificación rectal puede estar en forma de, por ejemplo, un supositorio. La manteca de cacao es una base de supositorio tradicional, pero pueden usarse diversas alternativas según sea apropiado.

También pueden usarse otros materiales vehículos y modos de administración conocidos en la técnica farmacéutica. Las composiciones farmacéuticas de la invención pueden prepararse mediante cualquiera de las técnicas de Farmacia bien conocidas, tales como mediante procedimientos de formulación y de administración eficaces. Las consideraciones anteriores con respecto a los procedimientos de formulación y de administración eficaces son bien conocidas en la materia y se describen en los libros de texto habituales. La formulación de fármacos se analiza, por ejemplo, en Hoover, John E., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pennsylvania, 1975; en Liberman et al., Eds., Pharmaceutical Dosage Forms, Marcel Decker, Nueva York, N.Y., 1980; y en Kibbe et al., Eds., Handbook of Pharmaceutical Excipients (3ª Ed.), American Pharmaceutical Association, Washington, 1999

Los compuestos de la presente invención pueden usarse solos o junto con otros agentes terapéuticos, en el tratamiento de diversas afecciones o estados patológicos. El (los) compuesto(s) de la presente invención y otro(s) agente(s) terapéutico(s) agente(s) pueden administrarse simultáneamente (tanto en la misma forma de dosificación como en formas de dosificación individuales) como secuencialmente. Un ejemplo de agente terapéutico puede ser, por ejemplo, un agonista del receptor metabotrópico del glutamato.

La administración de dos o más compuestos "en combinación" significa que los compuestos son administrados lo suficientemente cerca en el tiempo como para que la presencia de uno altere los efectos biológicos del otro. Los dos o más compuestos pueden ser administrados simultáneamente, concurrentemente o secuencialmente. Adicionalmente, la administración simultánea puede llevarse a cabo mediante la mezcla de los compuestos antes de la administración, o mediante la administración de los compuestos en el mismo punto temporal pero en diferentes zonas anatómicas o mediante el uso de diferentes vías de administración.

Las frases "administración concurrente", "coadministración", "administración simultanea" y "administrado simultáneamente" significan que los compuestos son administrados en combinación.

La presente invención comprende adicionalmente kits que son adecuados para su uso en el tratamiento descrito anteriormente. En una realización, el kit contiene una primera forma de dosificación que comprende uno o más de los compuestos de la presente invención y un recipiente para la dosis, en unas cantidades suficientes para los usos de la presente invención.

En otra realización, el kit de la presente invención comprende uno o más compuestos de la invención.

En otra realización, la invención se refiere a los nuevos intermedios útiles para la preparación de los compuestos de la invención.

Esquemas sintéticos generales

10

15

20

25

30

35

40

55

Los compuestos de la Fórmula I pueden ser preparados mediante los procedimientos descritos a continuación, junto con los procedimientos sintéticos conocidos en la materia de la química orgánica, o con modificaciones y derivatizaciones que son familiares para los expertos habituales en la materia. Los materiales de partida usados en el presente documento están disponibles en el mercado o pueden ser preparados mediante procedimientos rutinarios conocidos en la materia (tales como los procedimientos divulgados en los libros de referencia habituales, tales como el COMPENDIUM OF ORGANIC SYNTHETIC METHODS, Vol. I-VI (publicado por Wiley-Interscience)). Algunos procedimientos preferidos incluyen, pero no se limitan a, los descritos a continuación.

Durante cualquiera de las siguientes secuencias sintéticas puede ser necesaria y/o deseable la protección de los grupos sensibles o reactivos de cualquiera de las moléculas implicadas. Esto puede conseguirse por medio de los grupos protectores convencionales, tales como los descritos en T. W. Greene, Protective Groups in Organic Chemistry, John Wiley & Sons, 1981; en T. W. Greene y P. G. M. Wuts, Protective Groups in Organic Chemistry, John Wiley & Sons, 1991 y en T. W. Greene y P. G. M. Wuts, Protective Groups in Organic Chemistry, John Wiley & Sons, 1999.

Los compuestos de Fórmula I, o sus sales farmacéuticamente aceptables, pueden ser preparados según los Esquemas de reacción analizados a continuación en el presente documento. Salvo que se indique de otro modo, los sustituyentes de los Esquemas se definen como anteriormente. El aislamiento y la purificación de los productos se llevan a cabo mediante los procedimientos habituales, que son conocidos por el químico experto habitual.

El experto en la materia comprenderá que los diversos símbolos, superíndices y subíndices usados en los esquemas, en los procedimientos y en los ejemplos se usan por conveniencia de representación y/o para reflejar el

orden en el que son introducidos en los esquemas, y no pretenden corresponder necesariamente con los símbolos, los superíndices o los subíndices de las reivindicaciones adjuntas. Los esquemas son representativos de los procedimientos útiles en la síntesis de los compuestos de la presente invención.

Procedimientos experimentales y Ejemplos de trabajo

Esquema 1

Los compuestos de Fórmula I pueden ser sintetizados siguiendo el procedimiento general mostrado en el Esquema 1. Las picolinas de fórmula V pueden tratarse adecuadamente con bases fuertes no nucleófilas tales como LDA, NaHMDS o LiHMDS en tetrahidrofurano (THF) o en éter etílico, y después hacerse reaccionar con los benzoatos de Fórmula IV para producir la cetona III. La amida viníloga II puede obtenerse mediante el tratamiento de la cetona III con reactivo de Bredereck o DMF-DMA puro o con un disolvente no reactivo tal como CH₂Cl₂. La adición de hidrazinas sustituidas en R¹ en un disolvente alcohólico tal como etanol (EtOH), isopropanol o metanol (MeOH) a unas temperaturas que varían entre la temperatura ambiente y 100 °C, produce el pirazol de Fórmula I.

Esquema 2

Halo, OTf
$$N$$
-N
 N -N

15

20

25

10

5

Los compuestos de Fórmula I también pueden ser sintetizados siguiendo el procedimiento general mostrado en el Esquema 2. Cuando M es un ácido borónico o un pinacol borano, la generación del intermedio VI puede llevarse a cabo en primer lugar mediante un intercambio de halógeno-metal del halocompuesto de fórmula VIII con un reactivo de alquilmetal tal como n-BuLi, sec-BuLi o terc-butil-litio o alquil Grignard, en los que se prefiere el complejo de cloruro de isopropil magnesio-cloruro de litio. El tratamiento de esta especie metálica con trialcoxiboratos o 2-isopropoxi-4,4,5,5-tetrametil-1,3,2-dioxaborolano proporciona el correspondiente ácido borónico o el pinacol borano VI. El pinacol borano también puede prepararse a partir del correspondiente haluro VIII a través de un acoplamiento con bis(pinacolato)diboro en presencia de un catalizador de paladio, preferentemente Pd(dppf)Cl₂, en presencia de una base tal como KF, K₂CO₃, K₃PO₄ o preferentemente Cs₂CO₃ en un disolvente polar tal como dimetil acetamida o preferentemente dimetilformamida (DMF) a unas temperaturas que varían entre 50 °C y 120 °C, en las que se prefiere entre 80 °C -100 °C. El ácido borónico o del pinacol borano VI puede acoplarse con el haluro/triflato VII en

unas condiciones de reacción estándar de acoplamiento cruzado catalizado por paladio bien conocidas por el experto habitual en la materia, para proporcionar el compuesto de Fórmula I. [Suzuki, A., Journal of Organometallic Chemistry, 576, 147-169 (1999), Miyaura y Suzuki, Chemical Reviews, 95, 2457-2483 (1995)]. Más específicamente, el yodinato, bromato o triflato de arilo de la Fórmula **VII** se combina con entre 1 y 3 equivalentes de aril pinacol borano y una base adecuada, tal como entre 2 y 5 equivalentes de Cs₂CO₃, en un disolvente orgánico adecuado tal como DMF. Se añade un catalizador de paladio, tal como 0,02 equivalentes de tris(dibencilidinacetona) dipaladio (0), y la mezcla de reacción se calienta a unas temperaturas que varían entre 60 °C y 100 °C durante entre 1 y 24 h. La reacción no está limitada al empleo de este disolvente, base o catalizador, ya que pueden usarse otras muchas condiciones.

5

10

La lactona de Fórmula I-c y la lactama de Fórmula I-d pueden prepararse como se describe en el Esquema 4. La fluoropiridina **XXII** (preparada mediante el uso de los procedimientos generales descritos en los Esquemas 1 y 2)

puede ser convertida en el N-óxido XXI mediante el uso de los procedimientos generales descritos en la descripción del Esquema 3. El tratamiento de XXI con cianuro de tetrametilsililo en THF con o sin la presencia de una cantidad catalítica de cloruro de dimetilcarbamoílo a unas temperaturas que varían entre 0 °C y la temperatura de reflujo del disolvente, proporciona el nitrilo de fórmula XX. El dinitrilo XIX puede ser preparado mediante el tratamiento de XX con una fuente de cianuro, tal como cianuro de tetraalquilamonio (cianuro de tetrabutilamonio, por ejemplo) o cianuro de potasio o de sodio en THF, dimetilsulfóxido (DMSO) o DMF, a unas temperaturas que varían entre la temperatura ambiente y 50 °C. La conversión de XIX en el diácido XVIII puede llevarse a cabo mediante el tratamiento con hidróxido de sodio o de potasio acuoso, en el que se prefiere el hidróxido de potasio, a unas temperaturas en el intervalo de entre 0 °C y 110 °C, en el que se prefiere entre 75 °C y 100 °C. El anhidruro XVII puede obtenerse mediante el tratamiento del diácido XVIII con anhídrido acético puro o con ácido acético como disolvente a entre 75 °C y 100 °C. Una reducción de XVII con borhidruro de sodio/ácido acético para dar el alcohol-ácido XXIII que a continuación se cicla para producir la latona 1-c mediante el uso de ácido acético/anhídrido acético según describe en Inoue, et al. (Synthesis, 1, 113, 1997). La lactona I-c también puede prepararse a partir del intermedio común de anhídrido XVII mediante una reducción regioselectiva con cinc en ácido acético a entre 25 °C y 100 °C, en el que se prefiere entre 50 °C y 80 °C.

La lactama **I-d** puede prepararse como sigue. La reacción de **XVII** con amoníaco o con una amina primaria en ácido acético, con o sin una cantidad catalítica de anhídrido acético, a unas temperaturas de entre 75 °C y 110 °C, produce la ftalamida de fórmula **XVI**. La reducción regioselectiva de **XVI** con cinc en ácido acético a entre 25 °C y 100 °C en la que se prefiere entre 50 °C y 80 °C, proporciona la lactama de Fórmula **I-d**. La **I-d** también puede ser preparada mediante una reducción por etapas de **XVI** con reactivos de hidruro, tales como borhidruro de sodio, en disolventes alcohólicos tales como MeOH, para producir las mezclas de alcoholes de fórmula **XIV** y **XV**. Éstas pueden ser separadas cromatográficamente, y después puede reducirse **XIV** adicionalmente para proporcionar **I-d** mediante el uso de una fuente de hidruro tal como trietilsilano en un ácido fuerte adecuado, tal como ácido trifluoroacético (TFA) tanto puro como con CH₂Cl₂ como cosolvente. Esta transformación puede llevarse a cabo a entre la temperatura ambiente y las temperaturas de reflujo.

Esquema 8

El compuesto de Fórmula I-i puede ser preparado según se describe en el Esquema 8. Puede tratarse el 5H-pirrolo[3,4-b]piridin-6(7H)-carboxilato de etilo XXXIX, con un agente oxidante tal como ácido m-cloroperbenzoico o peróxido de hidrógeno/ácido acético para dar el N-óxido XXXVIII. Una cloración mediante el uso de oxicloruro de fósforo o preferentemente de cloruro de oxalilo en un disolvente inerte pero adecuadamente polar tal como DMF o NMP a unas temperaturas que varían entre 0 °C y 50 °C, en las que se prefiere entre 0 °C y la temperatura ambiente, proporciona una mezcla de productos derivados de 2-cloro y 4-cloro (la fórmula XXXVII). El intermedio XXXVII puede acoplarse con un metalopirazol VI siguiendo los procedimientos generales descritos en el Esquema 2 para proporcionar el compuesto de fórmula XXXV. El intermedio XXXVII también puede ser convertido en el correspondiente yoduro XXXVI poniéndolo a reflujo en acetonitrilo con yoduro de sodio. El yoduro XXXVI también puede ser acoplado con un metalopirazol VI siguiendo los procedimientos generales descritos en el Esquema 2 para proporcionar el compuesto de fórmula XXXV. El tratamiento del carbamato XXXV con hidróxido de sodio o de potasio acuoso o en un disolvente alcohólico tal como EtOH o MeOH a la ta a reflujo, en el que se prefiere el reflujo, proporciona la amina XXXIV. Este material puede ser convertido en las N-alquilaminas, las amidas y las sulfonamidas de los compuestos de Fórmula I-i. Por ejemplo, los compuestos de Fórmula I-i en los que R² es un

carbonilo sustituido (amida), pueden ser preparados mediante el acoplamiento de ácidos carboxílicos sustituidos con **XXXIV** mediante el uso de agentes de acoplamiento de amida, en los que se prefiere anhídrido propilfosfónico (T3P) con trietilamina en disolventes tales como THF o acetato de etilo (EtOAc). Asimismo, los compuestos de Fórmula **I-i** en los que R² es un sulfonilo sustituido (sulfonamida) pueden ser preparados mediante el tratamiento del compuesto **XXXIV** con cloruros de sulfonilo sustituidos en disolventes no reactivos tales como THF o CH₂Cl₂ en presencia de una base no nucleófila tal como diisopropiletilamina o trietilamina.

Esquema 11

$$\begin{array}{c|c} & & & & \\ & &$$

10

15

20

5

La 5H-pirrolo[3,4-b]piridin-7(6H)-ona de Fórmula I-I puede ser preparada según se muestra en el Esquema 11. Se hidroliza la 2-ciano-3-metilpiridina de fórmula LIV (preparada siguiendo los procedimientos generales del Esquema 2) mediante el uso de hidróxido de sodio o de potasio acuoso con MeOH o EtOH como cosolvente a unas temperaturas elevadas para proporcionar el ácido de fórmula LII. Una esterificación con MeOH en presencia de una cantidad catalítica de ácido sulfúrico a entre 50 °C y 100 °C produce el compuesto LII. Este material pude ser bromado con N-bromosuccinimida en tetracloruro de carbono o CH₂Cl₂ con una cantidad catalítica de un iniciador radicálico tal como peróxido de benzoilo o 2'2'-azobis (2-metilpropionitrilo) (AIBN) a entre 50 °C y 85 °C para dar el compuesto LI. El compuesto I-I puede formarse mediante el tratamiento de LI con una amina primaria sustituida en R⁵ en un disolvente polar no reactivo tal como THF o acetonitrilo con una base no nucleófila tal como carbonato de potasio o de sodio, o preferentemente diisopropiletil amina o trietilamina, a unas temperaturas de entre 0 °C y 50 °C, en las que se prefiere la temperatura ambiente.

Lo siguiente ilustra la síntesis de varios compuestos de la presente invención. Pueden prepararse compuestos adicionales en el ámbito de esta invención mediante el uso de los procedimientos ilustrados en estos Ejemplos, tanto solos como junto con las técnicas conocidas de forma general en la materia.

Los experimentos se llevaron a cabo generalmente bajo un atmósfera inerte (de nitrógeno o de argón), particularmente en los casos en los que se empleaban reactivos o intermedios sensibles al oxígeno o a la humedad. Generalmente se usaron disolventes y reactivos comerciales sin ninguna purificación adicional, que incluyen disolventes anhidros cuando fuera apropiado (generalmente productos Sure-Seal™ de Aldrich Chemical Company, Milwaukee, Wisconsin). Se indican los datos de las espectrometrías de masas procedentes de instrumentos de cromatografía líquida-espectrometría de masas (CLEM), de ionización química a la presión atmosférica (APCI) o de cromatografía de gases-espectrometría de masas (GCMS). Los desplazamientos químicos de los datos de la resonancia magnética nuclear (RMN) están expresados en partes por millón (ppm, δ) referenciados a los picos residuales de los disolventes deuterados empleados. Las constantes de acoplamiento (valores de J) están indicadas en hercios.

Para las síntesis, los procedimientos de referencia de otros Ejemplos o Procedimientos, las condiciones de reacción (la duración de la reacción y la temperatura) pueden variar. En general, las reacciones estuvieron seguidas por una cromatografía en capa fina o una espectrometría de masas y se sometieron a una preparación cuando fue de apropiado. Las purificaciones pueden variar entre los experimentos: en general, se eligieron unos disolventes y unas proporciones de disolvente para los eluyentes/gradientes para proporcionar unos apropiados R_f o tiempos de retención (T de Ret).

Ejemplos

Ejemplo 1: 4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)furo[3,4-b]piridin-5(7H)-ona

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N - N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N \end{pmatrix}$$

$$F = \begin{pmatrix} N - N \\ N \end{pmatrix}$$

Etapa 1: preparación del 3-(4-fluorofenil)-1-metil-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)-1H-pirazol

5 Una solución de 4-bromo-3-(4-fluorofenil)-1-metil-1H-pirazol (700 g, 2,74 mol) en THF (1,4 l) se enfrió hasta 15 °C y se añadió lentamente un complejo de cloruro de isopropilmagnesio y cloruro de litio (1,3 M en THF, 3,8 I, 4,94 mol) mientras se mantenía la temperatura de la reacción por debajo de 25 °C. La mezcla se agitó durante 3 h a 20 °C y se añadió a 10 °C gota a gota una solución de 2-isopropoxi-4,4,5,5-tetrametil-1,3,2-dioxaborolano (610 g, 3,28 mol) en THF (1,4 I) mientras se mantenía la temperatura interna por debajo de 20 °C. La solución brumosa de color verde/marrón resultante se agitó durante 1 h a entre 10 °C y 20 °C, tiempo tras el cual se enfrió hasta 10 °C. Se 10 añadió lentamente agua (5,6 l) enfriada a 10 °C a la mezcla de reacción, de forma que la temperatura de la reacción permaneciera por debajo de 25 °C. Se añadió celita (1,4 kg) seguido de 2-metiltetrahidrofurano (7 l), y la mezcla se agitó durante 15 min a 20 °C. La mezcla se filtró a través de celita y la almohadilla del filtro se aclaró con 2metiltetrahidrofurano (8 l). La fase orgánica se separó y se lavó con salmuera (5,6 l), después se concentró a vacío 15 hasta un bajo volumen de agitación. El material se diluyó con EtOH (3 I) y se concentró de nuevo. Este material se redisolvió en EtOH (3,5 l) y se añadió agua (4,2 l) durante 30 min con una fuerte agitación. La suspensión resultante se agitó a 15 °C durante 1 h, se filtró y se lavó con 4 volúmenes de agua. La torta resultante se secó por soplado, después se secó adicionalmente en un horno de vacío a 40 °C para producir 0,4 kg (48 %) del producto del Ej. 1 -Etapa 1 en forma de un sólido de color blanco: APCI EM m/z 303,2 (M + 1); RMN ¹H (400 MHz, CDCl₃) δ 7,91 (dd, J = 8.9, 5.6, 2H), 7,70 (s, 1H), 7,03 (dd, J = 8.8, 8.8, 2H), 3,90 (s, 3H), 1,29 (s, 12H). 20

Etapa 2: preparación del 3-fluoro-4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il) picolinonitrilo

25

30

35

Se combinaron el producto del Ej. 1 - Etapa 1 (14,5 g, 48 mmol) y 3-fluoro-4-yodopicolinonitrilo (9,92 g, 40,0 mmol) en 100 ml de DMF, y se trataron con Cs_2CO_3 (19,90 g, 61,2 mmol). La suspensión resultante se roció con nitrógeno durante 20 min y se trató con tris(dibencilidenacetona) dipaladio (0) (1,51 g, 1,6 mmol) en una única porción. Se continuó la pulverización con nitrógeno durante 20 min adicionales y se continuó la agitación de la suspensión en la oscuridad durante 30 min a la ta. La reacción se calentó a 50 °C durante 6 h y se dejó enfriar hasta la ta durante una noche. La suspensión espesa se añadió a 150 ml de EtOAc, la suspensión se diluyó con 50 ml de cloruro de sodio acuoso saturado al 50 %, después se trató con DARCO y se agitó 1 h a la ta. La mezcla se filtró a través de celita, se separaron las capas y la capa orgánica se lavó con 3 x 30 ml de NaCl acuoso saturado al 50 %. La capa orgánica se secó sobre MgSO₄ anhidro y se concentró a vacío para dar 18 g de un sólido pastoso de color naranja. El sólido se disolvió en una cantidad mínima de CH_2Cl_2 , se cargó en un cartucho SNAP de 100 g, y el material en bruto se eluyó a través de un cartucho SNAP de 340 g con un gradiente de un 5-80 % de EtOAc/heptano a lo largo de 4,8 l. Las fracciones apropiadas se combinaron y se concentraron. Durante la concentración precipitó un sólido de color blanco. Este se recogió para dar 6,93 g (59 %) del producto del Ej. 1 - Etapa 2 en forma de un sólido de color blanco: APCI EM m/z 297,0 (M + 1); RMN 1 H (400 MHz, CDCl₃) δ 8,28 (d, J = 5,1, 1H), 7,84 (d, J = 2,9, 1H), 7,40 (dd, J = 5,3, 2,2, 2H), 7,25 (dd, J = 5,8, 4,9, 1H), 7,09 (dd, J = 8,6, 8,6, 2H), 4,02 (s, 3H).

Etapa 3: preparación del 4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)piridin-2,3-dicarbonitrilo

Se disolvió el producto del Ej. 1 - Etapa 2 (10,00 g, 33,75 mmol) en DMSO (100 ml) con un calentamiento suave. Se añadió cianuro de potasio (2,35 g, 35,0 mmol) y se calentó a 50 °C y se agitó. Después de 2 h, se enfrió en un baño

de hielo y se añadió NaOH acuoso 0,1 N (50 ml) La suspensión resultante se agitó durante 5 min, se recogieron los sólidos, se aclararon con agua y se secaron al aire para producir 10,34 g del producto del Ej. 1 - Etapa 3 en forma de un sólido de color crema claro: RMN 1 H (400 MHz, CDCl₃) δ 8,56 (d, J = 5,2, 1H), 8,02 (s, 1H), 7,33 (dd, J = 8,9, 5,2, 2H), 7,24 (d, J = 5,5, 1H), 7,06 (dd, J = 8,6, 8,6, 2H), 4,02 (s, 3H).

5 Etapa 4: preparación del ácido 4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)piridin-2,3-dicarboxílico, en forma de la sal dipotásica

10

15

20

25

30

35

40

Se calentó una mezcla del producto del Ej. 1 - Etapa 3 (10,34 g, 34,1 mmol) y KOH acuoso (28,3 g, 504 mmol, disuelto en 100 ml de agua) a 100 °C durante 24 h. La mezcla se enfrió en hielo para precipitar un sólido grueso de color blanco. El material se calentó de nuevo hasta la TA, se filtró y se secó al aire para producir 12,47 g (88 %) del producto del Ej. 1 - Etapa 4 en forma de un sólido de color crema claro: CLEM m/z 342,1 (M + 1).

Etapa 5: preparación de la 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]furo[3,4-b]piridin-5(7H)-ona, en forma del monoclorhidrato

Se suspendió el producto del Ej. 1 - Etapa 4 (5,00 g, 12,0 mmol) en ácido acético (35 ml) y anhídrido acético (12,5 ml) v se calentó a 110 °C durante 3 h. La mezcla homogénea resultante se enfrió v se concentró, se suspendió con 50 ml de éter dietílico y se concentró de nuevo para producir la 4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)-6-metil-5Hpirrolo[3,4-b]piridin-5,7(6H)-diona en forma de un sólido pegajoso de color amarillo. Este material se suspendió en THF (70 ml), se añadió borhidruro de sodio (568 mg, 15,0 mmol) y se añadió gota a gota ácido acético (1,7 ml, 2,5 mmol) durante un minuto. Después de agitar durante 90 min, la reacción se concentró hasta una pasta espesa de color amarillo, se añadieron ácido acético (90 ml) y anhídrido acético (45 ml) y la mezcla se calentó a 110 °C durante dos h para dar una solución homogénea. Se retiró el calor y la mezcla se agitó durante una noche a la ta y se concentró. El residuo se particionó entre EtOAc y agua, los orgánicos se separaron y la fase acuosa se extrajo de nuevo con EtOAc. Los extractos combinados se lavaron con salmuera, se secaron (MgSO₄) y se concentraron hasta un aceite expreso de color amarillo. La purificación mediante una cromatografía en gel de sílice eluyendo con un 50 % de EtOAc/heptanos produjo 2,06 g (55 %) del producto del Ej. 1 - Etapa 5 en forma de un sólido ceroso de color blanco. Este material se disolvió en EtOAc (100 ml) y se trató con 1,2 equivalentes de HCl 2 N/dietil éter para producir 1,91 g del producto del Ej. 1 - Etapa 5 en forma de un sólido de color amarillo: EM (APCI) 310,0 m/z (M + 1); RMN ¹H (400 MHz, DMSO-d₆) δ 8,64 (d, J = 5,3,1 H), 8,17 (s, 1H), 7,32 (dd, J = 8,8, 5,5, 2H), 7,11 (dd, J = 9,0, 9,0, 2H), 7,08 (d, J = 5,0, 1H), 5,32 (s, 2H), 3,92 (s, 3H).

El 3-fluoro-4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il) picolinonitrilo (véase la etapa 2) también se preparó a través de la siguiente ruta:

Etapa 6: preparación de la 1-(4-fluorofenil)-2-(3-fluoropiridin-4-il) etanona

Se enfrió hexametildisilazida de litio (1,0 M en THF, 17,9 ml, 17,9 mmol) hasta 0 °C y se añadió gota a gota 3-fluoro-4-metil piridina (1,00 g, 0,926 mmol) en THF (50 ml), manteniendo la temperatura de la solución por debajo de 5 °C. Después la mezcla se agitó durante 1 hora a 0 °C y se añadió gota a gota 4-fluorobenzoato de etilo en THF (50 ml). La reacción se dejó calentar lentamente hasta la ta con agitación durante una noche. Se añadió cloruro de amonio acuoso y la mezcla se vertió en EtOAc. La fase orgánica se separó, se secó (Na₂SO₄) y se concentró. Una cromatografía en gel de sílice mediante el uso de un gradiente de un 10-50 % de EtOAc/heptanos produjo 1,83 g (89 %) del producto del Ej. 1 - Etapa 6 en forma de un sólido de color blanco: CLEM m/z 234,4 (M + 1); RMN ¹H (400 MHz, MeOH-d₄) δ 8,41 (d, J = 1,7 1 H), 8,32 (d, J = 4,8, 1H), 8,14 (dd, J = 8,9, 5,4, 2H), 7,38 (dd, J = 5,9, 5,1, 1H), 7,25 (dd, J = 9,0, 9,0, 2H), 4,52 (s, 2H).

Etapa 7: preparación de la 3-(dimetilamino)-1-(4-fluorofenil)-2-(3-fluoropiridin-4-il) prop-2-en-1-ona

Se agitaron el producto del Ej. 1 - Etapa 6 (1,35 g, 5,79 mmol), dimetilacetal de dimetilformamida (0,77 g, 5,79 mmol) y THF (20 ml) a 80 °C durante 2 h, después a 100 °C durante una hora y después se concentraron para producir 1,6

g del producto del Ej. 1 - Etapa 7 en forma de un aceite de color amarillo que se usó sin purificación: CLEM m/z 289,4 (M + 1).

Etapa 8: preparación de la 3-fluoro-4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il) piridina

5

10

15

20

25

35

40

Se disolvió el producto del Ej. 1 - Etapa 7 (1,6 g, 5,55 mmol) en EtOH (75 ml) y se enfrió hasta 0 °C. Se añadió gota a gota metil hidrazina (0,35 ml, 6,66 mmol) y la mezcla se calentó lentamente hasta la ta con agitación durante una noche y después se concentró. La CLEM del producto en bruto mostró una mezcla de dos regioisómeros del N-metil pirazol que se separaron mediante una cromatografía en gel de sílice mediante el uso de una mezcla 1:1 de heptanos y 7:2:1 de heptano:dietilamina:MeOH para la elución. El producto del Ej. 1 - Etapa 8 se aisló en forma de un sólido de color amarillo claro (900 mg, 60 %): CLEM m/z 272,5 (M + 1); RMN 1 H (400 MHz, MeOH-d₄) δ 8,41 (d, J = 2,5, 1H), 8,20 (d, J = 5,1, 1H), 8,01 (d, J = 1,7, 1H), 7,39 (dd, J = 8,8, 5,3, (2H), 7,19 (dd, J = 6,7, 5,1, 1H), 7,09 (dd, J = 8,8, 8,8, 2H), 3,98 (s, 3H).

Etapa 9: preparación del 1-óxido de la 3-fluoro-4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il) piridina

Se disolvió el producto del Ej. 1 - Etapa 8 (900 mg, 3,32 mmol) en CH_2CI_2 (20 ml) y se trató con ácido m-cloroperbenzoico (85 %, 1,35 g, 6,64 mmol) y se agitó a la ta durante 5 h. La mezcla se concentró y se purificó mediante una cromatografía en gel de sílice. La columna se lavó abundantemente con CH_2CI_2 , después con un 0-50 % de EtOAc/ CH_2CI_2 y finalmente con EtOAc, después se retiró el N-óxido deseado mediante el uso de un 20 % MeOH/EtOAc con trietilamina al 1 %. El deseado N-óxido se obtuvo en forma de un aceite de color amarillo (1,06 g, rendimiento cuantitativo): CLEM m/z 288,5 (M + 1); RMN 1H (400 MHz, MeOH-d₄) δ 8,42 (dd, J = 5,4, 1,7, 1H), 8,04 - 8,06 (ddd, J = 6,7, 1,8, 0,8,1 H), 8,02 (d, J = 2,1, 1H), 7,42 (dd, J = 8,8, 5,3, 2H), 7,24 (dd, J = 8,7, 6,8, 1H), 7,12 (dd, J = 8,7, 8,7, 2H), 3,97 (s, 3H).

Etapa 10: preparación del 3-fluoro-4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il) picolinonitrilo

Se agitaron el producto del Ej. 1 - Etapa 9 (1,06 g, 3,69 mmol), trietilamina (1,03 ml, 7,38 mmol) y cianuro de trimetilsililo (0,615 ml, 4,61 mmol) en acetonitrilo (10 ml) a 70 °C durante 3 días. La CLEM indicó que todavía había presente N-óxido, por lo que se añadieron 1,5 ml de cianuro de trimetilsililo y 2,5 ml trietilamina adicionales, y el calentamiento se continuó durante otras 24 h. La mezcla se enfrió, se concentró y se purificó mediante una cromatografía en gel de sílice mediante el uso de un 10-100 % de EtOAc/heptanos con un modificador de trietilamina al 1 % para producir 600 mg (55 %) del Ej. 1 - Etapa 10 en forma de un sólido de color amarillo. Los datos espectrales son coherentes con los del material preparado mediante el uso del procedimiento de la etapa 2 anterior.

30 Ejemplo 2 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-metil-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona

Etapa 1: preparación de la 4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)-6-metil-5H-pirrolo[3,4-b]piridin-5,7(6H)-diona

$$\begin{array}{c} N^{-N} \\ CO_{2}K \\ CO_{2}K \end{array}$$

Se calentó una mezcla del producto del Ej. 1 - Etapa 4 (275,29 g, 659,41 mmol), ácido acético (2,06 l) y anhídrido acético (137,65 ml, 1456 mmol) a 110 °C durante 1 h, se enfrió hasta 80 °C y después se añadió metilamina (2,0 M/THF, 659,41 ml; 567,09 g) durante 20 min, manteniendo la temperatura a 80 °C. Se observó un humo de color blanco durante la adición. La reacción se calentó a 100 °C durante una noche y se concentró hasta aproximadamente 500 ml, proporcionando una solución de color amarillo claro. Se añadió agua (200 ml) durante 10 min con agitación. Se añadió ácido acético (aproximadamente 100 ml) y 200 ml de agua adicionales para ayudar en la agitación. Los sólidos se eliminaron mediante una filtración mediante el uso de un embudo de Buchner con un paño y se lavaron con 250 ml de agua. Se secaron al aire durante 1 h, después se secaron en un horno de vacío a 60 °C durante una noche para producir 206,47 g (93.10 %) del producto del Ej. 2 - Etapa 1 en forma de un sólido de color amarillo claro: CLEM m/z 337,1 (M + 1); RMN ¹H (400 MHz, MeOH-d₄) ō 8,59 (d, *J* = 5,4, 1H), 8,26 (s, 1H),

7,42 (dd, J = 8,8, 5,3, 2H), 7,25 (d, J = 5,3, 1H), 7,10 (dd, J = 8,9, 8,9, 2H), 4,02 (s, 3H), 3,15 (s, 3H).

Etapa 2: preparación de la 4-[3-(4-fluorofeni)-1-metil-1H-pirazol-4-il]-6-metil-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona

A un matraz equipado con una agitación suspendida se añadió el producto del Ej. 2 - Etapa 1 (202,00 g, 600,61 mmol) y polvo de cinc (< 10 micrómetros) (357,04 g, 5,41 moles) seguido de ácido acético (2,02 l). La mezcla se calentó hasta 105 °C y se agitó durante 4,5 h, después se enfrió hasta la TA. Se añadió celita a la mezcla de reacción y esto se filtró para eliminar el cinc. La almohadilla del filtro se aclaró con EtOAc y el filtrado se concentró hasta ~ 300 ml y se añadieron 200 ml de agua. El sólido resultante se recogió, se aclaró con agua y se secó a vacío durante una noche para dar 103,23 g (53 %) del Ejemplo 2 en forma de un sólido: CLEM m/z 323,2 (M + 1); RMN ¹H (400 MHz, CDCl₃) δ 8,38 (d, *J* = 5,5, 1H), 8,28 (s, 1H), 7,41 (dd, *J* = 8,8, 5,5, 2H), 7,03 (dd, *J* = 8,6, 8,6, 2H), 6,96 (d, *J* = 5,2, 1H), 4,44 (s, 2H), 4,01 (s, 3H), 3,24 (s, 3H).

Ejemplo 3: 4-[3-(4-clorofenil)-1-metil-1H-pirazol-4-il]-6-metil-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5 ona

Etapa 1: preparación del 4-bromo-3-(4-clorofenil)-1H-pirazol

Se añadió en porciones N-bromosuccinimida (10,4 g, 56,0 mmol) a una solución de 3-(4-clorofenil)-1H-pirazol (10,0 g, 56,0 mmol) en CH₂Cl₂ (140 ml). La mezcla se agitó durante 10 min, se añadieron agua y una porción adicional de CH₂Cl₂ y la mezcla se agitó durante 5 min. La fase orgánica se separó, se lavó con salmuera, se secó (MgSO₄) y se concentró para producir 15,0 g del producto del Ej. 3 - Etapa 1 en forma de un sólido de color amarillo claro: RMN ¹H (400 MHz, CDCl₃) δ 7,68 (d, *J* = 8,6, 2H), 7,59 (s, 1H), 7,35 - 7,39 (m, 2H).

20 Etapa 2: preparación del 4-bromo-3-(4-clorofenil)-1-metil-1H-pirazol

Se añadió Cs_2CO_3 (38,0 g, 116,0 mmol) a una solución del producto del Ej. 3 - Etapa 1 (15,0 g, 58,0 mmol) en DMF (63 ml), se añadió yoduro de metilo (3,74 ml, 58,2 mmol) y la solución de color rosa resultante se agitó a la ta durante 2 h. La mezcla se concentró y el residuo se particionó entre EtOAc y agua. La fase orgánica se separó y se lavó con salmuera, se secó (MgSO₄) y se concentró. Una cromatografía en gel de sílice mediante el uso de un 40 % de heptano / CH_2Cl_2 produjo 10,1 g (64 %) del producto del Ej. 3 - Etapa 2 en forma de un sólido de color blanco. La RMN 1H (CDCl₃) mostró un ~ 5 % del correspondiente regioisómero (4-bromo-5-(4-clorofenil)-1-metil-1H-pirazol). Las identidades de los dos regioisómeros fueron establecidas a través de experimentos de RMN NOE (Efecto de Overhauser Nuclear). Este material se usó sin purificación adicional. RMN 1H (400 MHz, CDCl₃) δ 7,80 - 7,82 (m, 2H), 7,43 (s, 1H), 7,35 - 7,38 (m, 2H), 3,90 (s, 3H).

30 Ejemplo de preparación 3:

5

10

25

Se convirtió el producto del Ej. 3 - Etapa 2 en el Ejemplo 3 siguiendo los procedimientos generales descritos en el Ejemplo 1 (etapas 1-5) y después en el Ejemplo 2 (etapas 1 y 2): CLEM m/z 339,1 (M + 1); RMN 1 H (400 MHz, CDCl₃) δ 8,34 (d, J = 5,3, 1H), 8,18 (s, 1H), 7,30 - 7,33 (m, 2H), 7,23 - 7,25 (m, 2H), 6,91 (d, J = 5,2, 1H), 4,38 (s, 2H), 3,94 (s, 3H), 3,17 (s, 3H).

35 Ejemplo 4: 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona

Etapa 1 Preparación de la 4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)-5H-pirrolo[3,4-b]piridin-5,7(6H)-diona

Se calentaron 4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)-6-metil-5H-pirrolo[3,4-b]piridin-5,7(6H)-diona (intermedio del Ejemplo 1, etapa 5, 190 mg, 0,588 mmol) e hidróxido de amonio acuoso al 28-30 % (4 ml) a un reflujo vigoroso durante 30 min y después se concentraron. El residuo se disolvió en 1:1 de ácido acético/anhídrido acético (20 ml) y se calentó a 120 °C durante 2 h, y se concentró. El residuo se disolvió en EtOAc y se analizó a través de un tapón corto de gel de sílice para proporcionar 176 mg (92 %) del producto del Ej. 4 - Etapa 1 en forma de un sólido de color blanco, que se usó sin purificación adicional: CLEM m/z 323,1 (M + 1); RMN 1 H (400 MHz, CDCl₃) δ 8,63 (d, J = 5,2, 1H), 8,15 (s, 1H), 7,37 (dd, J = 8,8, 5,5, 2H), 7,17 (d, J = 5;3, 1H), 7,04 (dd, J = 8,6, 8,6, 2H), 4,01 (s, 3H).

10 Etapa 2 Ejemplo 4:

5

20

30

35

Se preparó el Ejemplo 4 con un rendimiento del 71 % a partir del producto del Ej. 4 - Etapa 1 siguiendo el procedimiento general descrito en el Ejemplo 2, etapa 2 mediante el uso de 5 equivalentes de polvo de cinc y calentando durante 1,5 h: CLEM m/z 309,1 (M + 1); RMN 1 H (400 MHz, CDCl₃) δ 8,40 (d, J = 5,4, 1H), 8,21 (s, 1H), 7,37 - 7,49 (m, 2H), 6,95 - 7,03 (m, 3H), 6,14 (s a, 1H), 4,74 (s, 2H), 3,98 (s, 3H).

15 Ejemplo 5: 6-bencil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona

$$F \longrightarrow F \longrightarrow N-N$$

Etapa 1 Preparación de la 6-bencil-4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)-5H-pirrolo[3,4-b]piridin-5,7(6H)-diona

Se calentaron a reflujo 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]furo[3,4-b]piridin-5(7H)-ona (Ejemplo 1, etapa 5, 472 mg, 1,46 mmol) y bencilamina (0,167 ml, 1,53 mmol) en ácido acético (4,7 ml) durante 18 h, se enfriaron y después se concentraron hasta un sólido de color pardo. Este material se agitó con éter dietílico (20 ml) durante 10 min y después se filtró para producir 450 mg (75 %) del producto del Ej. 5 - Etapa 1 en forma de un sólido de color marrón oscuro: CLEM m/z 413,5 (M + 1); RMN ¹H (400 MHz, CDCl₃) δ 8,57 (d, *J* = 5,2, 1H), 8,15 (s, 1H), 7,26 - 7,42 (m, 7H), 7,13 (d, *J* = 5,3, 1H), 7,01 (dd, *J* = 8,6, 8,6, 2H), 4,87 (s, 2H), 4,00 (s, 3H).

25 Etapa 2 Preparación de la 6-bencil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona

Se añadió trifluoruro de boro-eterato dietílico (0,18 ml, 1,45 mmol) a una solución del producto del Ej. 5 - Etapa 1 (100 mg, 0,242 mmol) en THF (2,4 ml). Después de agitar 30 min a la ta, se añadió un complejo de borano en THF (1,0 M/THF, 1,21 ml, 1,21 mmol) y la mezcla se calentó a 40 °C durante una noche. Se añadieron unas pocas gotas de HCl 6 N y la mezcla se calentó a reflujo durante 1 h, se enfrió y se concentró. Una cromatografía en gel de sílice del material resultante mediante el uso de un gradiente de un 5-10 % de MeOH/EtOAc produjo 6 mg (6 %) del Ejemplo 5 en forma de una goma: CLEM m/z 399,5 (M + 1); RMN 1 H (400 MHz, MeOH-d₄) δ 8,44 (d, J = 5,5, 1H), 8,14 (s, 1H), 7,20 - 7,36 (m, 7H), 7,12 (d, J = 5,2, 1H), 7,03 (dd, J = 8,8,8,8,2H), 4,72 (s, 2H), 4,33 (s, 2H), 3,96 (s, 3H).

Ejemplo 6: 6-bencil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridina

Se añadió gota a gota hidruro de litio y aluminio (LAH), (1,0 M/THF, 1,10 ml, 1,10 mmol) a una solución del Ejemplo 5 (114 mg, 0,276 mmol) en THF (2,8 ml). La mezcla se agitó a la ta durante una noche, se enfrió hasta 0 °C y se inactivó con unas gotas de una solución acuosa saturada de Na_2SO_4 . La reacción se extrajo con CH_2Cl_2 (3 x 50 ml), se filtró (celita), se secó sobre MgSO₄ y se concentró. Este material se purificó en una columna Phenomenex Phenyl Hexyl (de 150 x 3,0 mm, 5 μ) mediante el uso de un gradiente de un 5-100 % de MeOH/agua con un 0,1 % de ácido fórmico, de para producir 5 mg (5 %) del compuesto del título que se convirtió en la sal de clorhidrato: CLEM m/z 399,5 (M + 1); RMN 1 H (400 MHz, MeOH-d₄) \bar{o} 8,49 (d, J = 4,7, 1H), 8,01 (s, 1H), 7,44 - 7,52 (m, 5H), 7,32 - 7,38 (m, 3H), 7,14 (dd, J = 8,6, 8,6, 2H), 4,76 (s a, 2H), 4,57 (s a, 2H), 4,31 (s a, 2H), 4,00 (s, 3H).

10 Ejemplo de referencia 7: 9-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-2,3,4,5-tetrahidropirido[2,3-f][1,4]oxacepina

5

35

Etapa 1: preparación del 2-(2-ciano-4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)piridin-3-iloxi)etil carbamato de terc-butilo

Se añadió hidruro de sodio al 60 % (1,35 g, 33,8 mmol) a una solución de N-Boc-etanolamina (2,62 ml, 16,9 mmol) en THF (85 ml). Después de agitar 5 min a la ta, se añadió el producto del Ejemplo 1 - Etapa 2 (5,0 g, 17,0 mmol) con agitación. La mezcla se agitó durante 30 min, después se inactivó con NH₄Cl y acuoso saturado se diluyó con EtOAc (100 ml). La fase orgánica se separó, se secó (MgSO₄) y se concentró para producir 1,4 g de un aceite viscoso. La purificación mediante una cromatografía en gel de sílice mediante el uso de un 40-60 % de EtOAc/heptano proporcionó 3,35 g (45 %) del producto del Ej. 7 - Etapa 1 en forma de un sólido de color blanco: CLEM m/z 438,6 (M + 1); RMN ¹H (400 MHz, CDCl₃) ō 8,17 (d, *J* = 5,1, 1H), 7,76 (s, 1H), 7,30 (dd, *J* = 8,8, 5,5, 2H), 7,14 (d, *J* = 4,9, 1H), 6,95 (dd, *J* = 8,8, 8,8, 2H), 5,01 (s a, 1H), 3,94 (s, 3H), 3,91 (t, *J* = 5,3, 2H), 3,30 (c, *J* = 5,5, 2H), 1,33 (s, 9H).

Etapa 2: preparación del 3-(2-aminoetoxi)-4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il) picolinonitrilo

Se añadió HCl etanólico (1,25 M, 33 ml, 41 mmol) al producto del Ej. 7 - Etapa 1 (3,35 g, 7,7 mmol) y la solución resultante se calentó a reflujo durante 30 min, después se concentró para producir 2,90 g (92 %) del producto del Ej. 7 - Etapa 2, aislado en forma de la sal de diHCl en forma de un sólido de color blanco: EM (APCl) m/z 338,0 (M + 1); RMN ¹H (400 MHz, MeOH-d₄) δ 8,33 (d, *J* = 4,9, 1H), 8,16 (s, 1H), 7,42 (dd, *J* = 8,8, 5,3, 2H) 7,38 (d, *J* = 5,1, 1H), 7,10 (dd, *J* = 8,7, 2H); 4,14 (t, *J* = 5,2, 2H), 4,03 (s, 3H), 3,22 (t, *J* = 5,1,2H).

30 Etapa 3: (9-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)-3,4-dihidropirido[2,3-f][1,4]oxazepin-5(2H)-ona

Se agitaron el producto del Ej. 7 - Etapa 2 (2,90 g, 7,07 mmol) y NaOH acuoso 1 N (29 ml, 29 mmol) durante 2 h a 85 °C. La reacción se enfrió hasta la ta y el precipitado se recogió, se aclaró con agua y se secó al aire para producir 1,92 g (80 %) del producto del Ej. 7 - Etapa 3 en forma de un sólido de color marrón claro: EM (APCI) m/z (M + 1) 338,8; RMN 1 H (400 MHz, DMSO-d₆) δ 8,47 (t, J = 6,1, 1H), 8,27 (d, J = 4,7, 1H), 7,33 (dd, J = 9,0, 5,7, 2H), 7,11 - 7,17 (m, 3H), 3,89 (s, 3H), 3,84 (t, J = 5,3, 2H), 3,15 (dt, J = 5,5, 4,7, 2H)

Etapa 4: Ejemplo de referencia 7:

5

10

35

40

Se añadió hidruro de litio y aluminio (LAH) (1,0 M en THF, 11,4 ml, 11,4 mmol) a una solución del producto del Ej. 7-Etapa 3 (1,92 g, 5,68 mmol) en THF (56 ml) y la mezcla resultante se calentó a reflujo durante 1 h. Después de enfriar hasta la ta, el exceso de LAH se inactivó con una cantidad mínima de agua y se diluyó con EtOAc. La suspensión resultante se filtró a través de celita, el filtrado se concentró después para producir 1,8 g de un sólido de color amarillo claro. Una cromatografía en gel de sílice con un 5 % de MeOH/CH $_2$ Cl $_2$ produjo 650 mg (35 %) del Ejemplo 7 en forma de una goma de color amarillo claro. Se preparó la sal de diclorhidrato en EtOAc con HCl 2 N/éter dietílico para dar 537 mg de un sólido de color melocotón claro: EM (APCI) m/z 325,0 (M + 1); RMN 1 H (400 MHz, MeOH-d $_4$) δ 8,29 (d, J = 5,7, 1H), 8,15 (s, 1H), 7,45 (d, J = 5,7, 1H), 7,41 (dd, J = 8,8, 5,3, 2H), 7,13 (dd, J = 8,9, 8,9, 2H), 4,68 (s, 2H), 4,21 - 4,24 (m, 2H), 3,99 (s, 3H), 3,66 - 3,68 (m, 2H).

Ejemplo de referencia 8: 9-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-2-metil-2,3,4,5-tetrahidropirido[2,3-f][1,4]oxacepina

Etapa 1: preparación del 4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)-3-hidroxipicolinonitrilo

Se añadió hidruro de sodio (60 %, 4,05 mg, 10,1 mmol) a una solución a 0 °C del producto del Ejemplo 1, Etapa 2 (1,00 g, 3,38 mmol) y 2-(metilsulfonil) etanol (629 mg, 5,06 mmol) en THF (20 ml). La mezcla se calentó a la ta y se agitó durante 18 h. Se añadió una solución de cloruro de amonio acuoso saturado para inactivar el exceso de hidruro de sodio y la mezcla se extrajo en EtOAc. La fase orgánica se separó, se secó (MgSO₄) y se concentró. Una cromatografía con gel de sílice con un gradiente de un 20 % hasta un 100 % de EtOAc/heptanos proporcionó el producto del Ej. de referencia 8 - Etapa 1 con un rendimiento cuantitativo: CLEM m/z 295,1 (M + 1); RMN ¹H (400 MHz, CDCl₃) δ 8,19 (d, *J* = 4,7, 1H), 7,74 (s, 1H), 7,40 (dd, *J* = 8,8, 5,3, 2H), 7,23 (d, *J* = 4,7, 1H), 7,05 (dd, *J* = 8,6, 8,6, 2H), 4,03 (s, 3H).

Etapa 2: preparación del 2-(2-ciano-4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)piridin-3-iloxi)propilcarbamato de terc-butilo

Se añadió azodicarboxilato de diisopropilo (0,78 ml, 3,70 mmol) a una solución enfriada en hielo del producto del Ej. de referencia 8 - Etapa 1 (990 mg, 3,36 mmol), 2-hidroxipropilcarbamato de terc-butilo (590 mg, 3,36 mmol) y trifenilfosfina (1,06 g, 4,04 mmol). La mezcla se agitó a la ta durante 3 h. La reacción se cargó sobre gel de sílice y se purificó mediante una cromatografía mediante el uso de un gradiente de un 10-60 % de EtOAc/heptanos para producir 1,48 g con una pureza del ~ 75 % del producto del Ej. de referencia 8 - Etapa 2 en forma de una goma de color amarillo que se usó sin purificación adicional: CLEM m/z 452,2 (M + 1).

Etapa 3: preparación de la 9-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)-2-metil 3,4-dihidropirido[2,3-f][1,4]oxazepin-5(2H)-ona

El producto del Ej. 8 - Etapa 3 se preparó a partir del producto del Ej. de referencia 8 - Etapa 2 un \sim 75 % puro siguiendo los procedimientos generales descritos en el Ejemplo 6 (etapas 2 y 3): CLEM m/z 353,2 (M + 1); RMN 1 H (400 MHz, CDCl₃) δ 8,39 (d, J = 4,9, 1H), 7,72 (s, 1H), 7,41 (dd, J = 8,8, 5,4, 2H), 7,35 (t a, J = 6,7, 1H), 7,20 (d, J = 4,9, 1H), 7,04 (dd, J = 8,6, 8,6, 2H), 4,31 - 4,38 (m, 1H), 4,02 (s, 3H), 3,40 (ddd, J = 15,6, 6,4, 3,7, 1H), 3,14 (ddd, J = 15,6, 6,1,6,1, 1H), 1,15 (d, J = 6,4, 3H).

Etapa 4: Ejemplo de referencia 8:

Se agitaron polvo de cinc (121 mg, 1,84 mmol) y el producto del Ej. de referencia 8 - Etapa 3 (130 mg, 0,37 mmol) en ácido acético (10 ml) a 110 °C durante 18 h. La CLEM mostró una mezcla del compuesto del título y su derivado N-acetilo (1-(9-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)-2-metil-2,3-dihidropirido[2,3-f][1,4]oxazepin-4(5H)-il)etanona).

La reacción se enfrió hasta 25 °C y se filtró (celita) con un aclarado con ácido acético. El filtrado se concentró, después se añadieron HCl 6 N (5 ml) y MeOH (6 ml) y la mezcla se calentó a reflujo durante 20 h. La reacción se concentró, se disolvió de nuevo en 3:1 de cloroformo/alcohol isopropílico y se lavó con K_2CO_3 acuoso saturado, agua y salmuera, después se secó (MgSO₄) y se concentró. Una cromatografía mediante el uso de un gradiente de un 100 % de CH_2CI_2 hasta un 10 % de MeOH/ CH_2CI_2 produjo 83 mg (66 %) del Ejemplo de referencia 8 en forma de una mezcla racémica. Los enantiómeros se separaron mediante una HPLC quiral (Chiralpak AD-H, de 4,6 mm x 25 cm; fase móvil de 85/15 de dióxido de carbono/EtOH; caudal de 2,5 ml/min; modificador de isopropilamina al 0,2 %).

Enantiómero #1: T de Ret = 5,30 min; CLEM m/z 339,2 (M + 1); RMN 1 H (400 MHz, CDCl₃) δ 8,05 (d, J = 5,1 1H), 7,69 (s, 1H), 7,43 (dd, J = 8,9, 5,4, 2H), 7,02 (dd, J = 8,8, 8,8, 2H), 6,94 (d, J = 5,1, 1H), 4,20 (cuartete AB, J_{AB} = 15,0, ΔV_{AB} = 13,4, 2H), 4,00 (s, 3H), 3,72 - 3,76 (m, 1H), 3,17 (dd, J = 14,0, 1,9, 1H), 2,95 (dd, J = 14,3, 4,7, 1H), 1,12 (d, J = 6,4, 3H).

Enantiómero #2: T de Ret = 5,84 min; CLEM m/z 339,2 (M + 1); RMN 1H igual que para el enantiómero #1.

Ejemplo de referencia 9: 9-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-i]-3-metil-2,3,4,5-tetrahidropirido[2,3-f][1,4]oxacepina

15

20

5

10

El Ejemplo de referencia 9 se preparó siguiendo los mismos procedimientos generales descritos en el Ejemplo de referencia 7, sustituyendo el 1-hidroxipropan-2-ilcarbamato de terc-butilo por 2-hidroxipropilcarbamato de terc-butilo en la etapa 2, y los enantiómeros se separaron mediante una HPLC quiral (Chiralpak AD-H, de 10 mm x 250 cm; fase móvil de 80/20 de dióxido de carbono/EtOH; caudal de 10 ml/min; modificador de isopropilamina al 0,2 %):

Enantiómero #1: T de Ret = 4,30 min; CLEM m/z 339,2 (M + 1); RMN 1 H (400 MHz, CDCl₃) δ 8,06 (d, J = 4,8, 1H), 7,65 (s, 1H), 7,41 (dd, J = 8,8, 5,5, 2H), 7,03 (dd, J = 8,8, 8,8, 2H), 6,93 (d, J = 5,1, 1H), 4,30 (s, 2H), 4,07 (dd, J = 11,9, 2,5, 1H), 4,00 (s, 3H), 3,25-3,30 (m, 1H), 3,17 - 3,22 (m, 2H), 1,04 (d, J = 6,5, 3H). Enantiómero #2: T de Ret = 4,73 min; CLEM m/z 339,2 (M + 1); RMN 1 H igual que para el enantiómero #1.

Ejemplo 10: 4-[3-(4-fluorofonil)-1-metil-1H-pirazol-4-il]-6-(metilsuffonil)-6,7-dihidro-5H-pirrolo[3,4-b]piridina

25

30

35

Etapa 1: preparación de la 6-(metilsulfonil)-6,7-dihidro-5H-pirrolo[3,4-b]piridina

Se añadió gota a gota cloruro de metansulfonilo (0,97 ml, 12,4 mmol) a una solución a -10 °C de diisopropil-etilamina (5,16 ml, 31,1 mmol) y 6,7-dihidro-5H-pirrolo[3,4-b]piridina (2,0 g, 10,0 mmol) en CH_2Cl_2 (20 ml). La mezcla se agitó durante una noche a la ta, se diluyó con CH_2Cl_2 (300 ml) y se lavó con bicarbonato de sodio acuoso saturado. La fase orgánica se separó, se secó (MgSO₄) y se filtró a través de una almohadilla corta de gel de sílice con un aclarado con EtOAc. El filtrado se concentró para producir 2,15 g (cuantitativo) del producto del Ej. 10 - Etapa 1 en forma de un sólido que se usó sin purificación adicional: CLEM m/z 199,2 (M + 1); RMN 1 H (400 MHz, CDCl₃) δ 8,54 (d, J = 4,9, 1H), 7,61 (d, J = 7,8, 1H), 7,25 (dd, J = 7,8, 5,1, 1H), 4,75 (cuartete AB, J AB = 2,1, Δ VAB = 7,8, 4H), 2,94 (s, 3H).

Etapa 2: preparación del 1-óxido de la 6-(metilsulfonil)-6,7-dihidro-5H-pirrolo[3,4-b]piridina

Se preparó el producto del Ej. 10 - Etapa 2 con un 95 % de rendimiento en forma de un sólido de color blanco a partir del producto del Ej. 10 - Etapa 1 siguiendo el procedimiento general descrito en el Ejemplo 1, Etapa 9: CLEM m/z 215,01 (M + 1); RMN 1 H (400 MHz, CDCl₃) δ 8,16 (d, J = 6,5, 1H), 7,29 (dd, J = 7,5, 7,5, 1H), 7,18 (d, J = 7,8, 1H), 4,82 - 4,89 (m, 4H), 2,96 (s, 3H).

Etapa 3: preparación de la 4-cloro-6-(metilsulfonil)-6,7-dihidro-5H-pirrolo[3,4-b]piridina

Se añadió gota a gota cloruro de oxalilo (0,415 ml, 4,67 mmol) a una suspensión a 0 °C del producto del Ej. 10 - Etapa 2 (500 mg, 2,33 mmol) en DMF (40 ml). La mezcla resultante se calentó a la ta y se agitó durante 18 h. Se añadió agua lentamente para inactivar el exceso de cloruro de oxalilo y la mezcla se extrajo en CH_2CI_2 (250 ml). El extracto se lavó con salmuera, se secó (MgSO₄) y se concentró para producir una goma de color marrón que a continuación se purificó mediante una cromatografía en gel de sílice mediante el uso de un gradiente de un 100 % de heptanos hasta un 50 % de EtOAc/heptanos. La 2-cloro-6-(metilsulfonil)-6,7-dihidro-5H-pirrolo[3,4-b]piridina (76 mg, 14 %) eluyó en primer lugar desde la columna, seguida por el producto del Ej. 10 - Etapa 3 (240 mg, 44 %, sólido de color blanco): RMN 1 H (400 MHz, CDCl₃) δ 8,45 (d, J = 5,5, 1H), 7,26 (d parcialmente oscurecido por el pico residual de CHCl₃, 1H), 4,80 (s a, 4H), 2,97 (s, 3H).

Etapa 4: Ejemplo 10:

5

10

15

20

25

35

40

Se combinaron el producto del Ej. 10 - Etapa 3 (100 mg, 0,43 mmol), del producto del Ej. 1 - Etapa 1, (156 mg, 0,516 mmol), LiOH (30,9 mg, 1,29 mmol) y dicloro 1,1'-bis(difenilfosfino)ferroceno paladio (II) (35,1 mg, 0,043 mmol) en forma de sólidos y se desgasificaron mediante una evacuación y un rellenado con nitrógeno gaseoso (3 veces). Se añadió DMF (30 ml) y la mezcla se calentó durante 2 h a 100 °C. Después de enfriar hasta la TA, se añadió EtOAc y la mezcla se filtró (celita) con un aclarado con EtOAc. El filtrado se lavó con agua y salmuera, se secó (MgSO₄) y se concentró. Una cromatografía en gel de sílice mediante el uso de un gradiente de un 40-80 % de EtOAc/heptanos proporcionó 102 mg (64 %) del Ejemplo 10 en forma de un sólido de color pardo claro: CLEM m/z 373,1 (M + 1); RMN ¹H (400 MHz, MeOH-d4) δ 8,47 (d, *J* = 6,4, 1H), 8,28 (s, 1H), 7,42 - 7,48 (m, 3H), 7,15 (dd, *J* = 8,8, 8,8, 2H), 4,96 - 4,97 (m, 2H), 4,77 - 4,79 (m, 2H), 4,02 (s, 3H), 3,00 (s, 3H).

Ejemplo 11: 6-(etilsulfonil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridina

Etapa 1: preparación del 4-cloro-5H-pirrolo[3,4-b]piridin-6(7H)-carboxilato de etilo

El producto del Ej. 11 - Etapa 1 se preparó mediante el uso de los procedimientos generales descritos en el Ejemplo 10 (etapas 1-3) sustituyendo el cloroformiato de etilo por cloruro de metansulfonilo en la etapa 1. El material se obtuvo el forma de un sólido de color rosa: EM (APCI) m/z 226,9 (M + 1); la RMN 1 H muestra una mezcla de rotámeros (400 MHz, CDCI₃) δ 8,43 (d, J = 5,4, 1H), 7,23 - 7,26 (m, 1H), 4,75 - 4,85 (m, 4H), 4,26 (c, J = 7,1,2H), 1,31 - 1,36 (tripletes solapantes, J = 7,2, 3H total). Este material se convirtió en la sal de HCl para su uso en la siguiente etapa.

30 Etapa 2: preparación del 4-yodo-5H-pirrolo[3,4-b]piridin-6(7H)-carboxilato de etilo

Se calentaron a reflujo yoduro de sodio (3,93 g, 26,2 mmol) y la sal de clorhidrato del producto del Ej. 11 - Etapa 1 (etapa 1, 2,30 g, 8,74 mmol) en acetonitrilo (20 ml) durante 3 días. La mezcla de reacción se enfrió, se concentró y se particionó entre CH_2Cl_2 y bicarbonato de sodio acuoso saturado. Las fases se separaron y la fase acuosa se extrajo de nuevo dos veces con CH_2Cl_2 (volumen total de 750 ml). La solución se pasó a través de un lecho de gel de sílice (0,5 ") con una capa de celita (0,5") mediante el uso de un 1:1 de $ECOAC/CH_2Cl_2$ para la elución, para producir 1,98 g (71 %) del producto del Ej. 11 - Etapa 2 en forma de un sólido de color pardo: la RMN ¹H muestra una mezcla ~ 1:1 de rotámeros (400 MHz, $CDCl_3$) δ 8,08 - 8,11 (dobletes solapantes, 1 H total), 7,61 (d a, J = 5,3, 1H), 4,89/4,84 (singletes anchos, 2H total), 4,68/4,64 (singletes anchos, 2H total), 1,32 - 1,37 (tripletes solapantes, 3H total).

Etapa 3: preparación del 4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)-5H-pirrolo[3,4-b]piridin-6(7H)-carboxilato de etilo

El producto del Ej. 11 - Etapa 3 se preparó en forma de un sólido de color pardo claro con un 68 % de rendimiento

siguiendo el procedimiento general descrito en el Ejemplo 10 (etapa 4) mediante el uso de 4-yodo-5H-pirrolo[3,4-b]piridin-6(7H)-carboxilato de etilo en lugar de la 4-cloro-6-(metilsulfonil)-6,7-dihidro-5H-pirrolo[3,4-b]piridina y 2 equivalentes de fluoruro de cesio en lugar de LiOH: CLEM m/z 367,2,1 (M + 1); RMN 1 H (400 MHz, MeOH-d₄) 5 0 mezcla 1:1 de rotámeros, 8,47 - 8,50 (2 dobletes solapantes, 1H), 8,28 (s a, 1H), 7,44 - 7,52 (m, 3H), 7,15 - 7,19 (2 dobletes solapantes, 2H), 4,97/5,00 (singletes anchos, 2H), 4,77/4,80 (singletes anchos, 2H), 4,20 - 4,27 (2 cuartetes solapantes, 2H), 4,05 (s a, 3H), 1,30 - 1,35 (2 tripletes solapantes, 3H).

Etapa 4: preparación de la 4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)-6,7dihidro-5H-pirrolo[3,4-b]piridina

Se calentaron KOH acuoso (10 M, 10,3 ml, 103 mmol), el producto del Ej. 11 - Etapa 3 (1,51 g, 4,12 mmol), MeOH (15 ml) y agua (15 ml) a 90 °C durante 18 h. Después de enfriar hasta la ta, se añadió agua (10 ml) y la mezcla se extrajo dos veces con 3:1 de cloroformo/isopropanol. Los extractos se concentraron para proporcionar 1,2 g (99 %) del producto del Ej. 11 - Etapa 4 en forma de un sólido de color rosa: EM (APCI) m/z 295,0,1; (M + 1); RMN 1 H (400 MHz, CDCI₃) δ 8,34 (d, J = 5,3, 1H), 7,47 (s, 1H), 7,39 (dd, J = 9,0, 5,5, 2H), 7,02 (dd, J = 8,8, 8,8, 2H), 6,94 (d, J = 5,3, 1H), 4,28 (s a, 2H), 3,97 (s a, 2H).

Etapa 5: Ejemplo 11 en forma de la sal de HCl

5

10

Se añadió cloruro de etansulfonilo (24 μl, 0,26 mmol) a una solución del producto del Ej. 11 - Etapa 4 (75 mg, 0,26 mmol) y trietilamina (106 μl, 0,77 mmol) en CH₂Cl₂ (8 ml). Después de agitar durante 5 min, la reacción se diluyó con CH₂Cl₂ y se lavó con bicarbonato de sodio acuoso saturado, se secó (Na₂SO₄) y se concentró para producir 89 mg (91 %) del Ejemplo 11 que se convirtió en una sal de clorhidrato: CLEM m/z 387,1 (M + 1); RMN ¹H (400 MHz, CDCl₃) δ 8,43 (d, *J* = 5,0, 1H), 7,51 (s, 1H), 7,38 (dd, *J* = 8,2, 5,6, 2H), 7,02 - 7,06 (m, 3H), 4,76 (s a, 2H), 4,46 (s a, 2H), 4,02 (s, 3H), 3,00 (c, *J* = 7,5, 2H), 1,34 (t, *J* = 7,3, 3H).

Ejemplo 12: 6-(ciclopropilsulfonil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridina

El Ejemplo 12 se preparó siguiendo el procedimiento general descrito en el Ejemplo 11, etapa 5, sustituyendo el cloruro de ciclopropansulfonilo por cloruro de etansulfonilo para producir la sal de clorhidrato con un 88 % de rendimiento: CLEM m/z 399,1 (M + 1); RMN ¹H (400 MHz, MeOH-d₄) mezcla de rotámeros, 8,54 (s a, 1H), 8,31 (s a, 1H), 7,57 (s a, 1H), 7,47 (s a, 2H), 7,19 (s a, 2H), 5,06 (s a, 2H), 4,79 (s a, 2H), 4,05 (s a, 3H),2,70 (s a, 1H),1,14 (s a, 2H), 1,06 (s a, 2H).

Ejemplo 13: 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-propionil-6,7-dihidro-5H-pirrolo[3,4-b]piridina

Se añadieron trietilamina (142 μ l, 1,02 mmol), ácido propiónico (22,9 μ l, 0,31 mmol) y una solución de anhídrido propilfosfónico (T3P) (50 % en peso, 360 μ l, 0,60 mmol) a una solución de Ejemplo 11 (75 mg, 0,26 mmol) en EtOAc (4 ml). La suspensión resultante se agitó a la ta durante 2 h, después se diluyó con CH_2CI_2 , se lavó con K_2CO_3 acuoso saturado, se secó (Na_2SO_4) y se concentró. El residuo se disolvió de nuevo en EtOAc y se trató con un exceso de HCl 2 N en éter dietílico para producir 113 mg de la sal de clorhidrato del Ejemplo 12 en forma de un sólido con rendimiento cuantitativo: CLEM m/z 351,1 (M + 1); RMN 1 H (400 MHz, MeOH- 1 d) mezcla de rotámeros, 8,52 (d a, 1 d = 6,3, 1H), 8,32/8,36 (singletes, 1H), 7,45 - 7,54 (m, 3H), 7,15 - 7,21 (m, 2H), 4,98/5,03/5,20 (3 singletes anchos, 4H total), 4,06/4,07 (singletes, 3H total), 2,43 - 2,52 (m, 2H), 1,16 - 1,21 (2 tripletes solapantes, 3H).

Ejemplos 14-22:

30

35

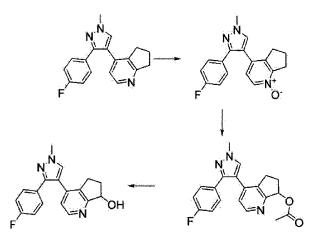
40 Los Ejemplos 14 a 22 de la Tabla 1 se prepararon siguiendo el procedimiento general descrito en el Ejemplo 13, en el que R² es desde:

Tabla 1

Ej. nº	R ²	NOMBRE DE LA IUPAC	CLEM m/z (M + 1)	RMN ¹ H
14	-C(O)-CH₃	6-acetil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol- 4-il]-6,7-dihidro-5H-pirrolo[3,4- b]piridina, sal de HCl	337,2	(MeOH-d4) mezcla ~ 1,5:1 de rotámeros, 8,44 - 8,47 (m, 1H), 8,22/8,29 (singletes, 1H), 7,40 - 7,46 (m, 3H), 7,10 - 7,18 (m, 2H), 4,95/5,13 (singletes anchos, 4H), 4,01/4,03 (singletes, 3H), 2,14/2,17 (singletes, 3H)
15	C(O) CH ₂	6-(ciclopropilacetil)-4-[3-(4-fluorofenil)-1-metil- 1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4- b]piridina, sal de HCl	377,2	(MeOH-d4) mezcla ~ 1,5:1 de rotámeros, 8,51/8,49 (2 dobletes, <i>J</i> = 6,2, 1H total), 8,32/8,28 (singletes, 1H total), 7,44 - 7,53 (m, 3H), 7,14 - 7,21 (m, 2H), 5,01/5,15 (singletes anchos, 2H), 4,91/4,82 (singletes anchos, 2H), 4,05/4,06 (singletes, 3H), 3,47 - 3,49 and 3,12 - 31,4 (multipletes, 1H total), 2,36 y 2,42 (2 dobletes, <i>J</i> = 6,9, 2H total), 0,56 - 0,62 (m, 2H), 0,19 - 0,26 (m, 2H)
16	-\{-\c)-_0	4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6- (tetrahidrofuran-3-ilcarbonil)-6,7-dihidro-5H- pirrolo[3,4-b]piridina, sal de HCl	393,2	(MeOH-d4) mezcla ~ 1,5:1 de rotámeros, 8,50 - 8,53 (m, 1H), 8,36/8,30 (singletes, 1H), 7,44 - 7,56 (m, 3H), 7,15 - 7,21 (m, 2H), 5,28/5,02 (singletes anchos, 4H total), 4,06/4,05 (singletes, 3H total), 3,82 - 4,03 (m, 4H), 3,40 (s a, 1H), 2,07 - 2,15 (m, 2H)
17	C(O) CH ₂ OCH ₃	4-[3-(4-fluorofenil)-1-etil-1H-pirazol-4-il]-6- (metoxi-acetil)-6,7-dihidro-5H-pirrolo[3,4- b]piridina, sal de HCl	367,2	(MeOH-d4) ~ 1:1 mezcla de rotámeros, 8,47 - 8,55 (m, 1H), 8,28 - 8,35 (m, 1H), 7,37 - 7,56 (m, 3H), 7,14 - 7,21 (m, 2H), 5,22/5,08/4,95/4,91 (singletes anchos, 4H total), 4,25/4,21 (singletes anchos, 2H total), 4,07/4,06 (singletes, 3H), 3,47/3,45 (singletes, 3H)

(continuación)

		(continuación)		
Ej. nº	\mathbb{R}^2	NOMBRE DE LA IUPAC	CLEM m/z (M + 1)	RMN ¹ H
18	C(O)-CH(CH₃)₂	4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6- isobutiril-6,7-dihidro-5H-pirrolo[3,4-b]piridina, sal de HCl	365,2	(MeOH-d4) \sim 1:1 mezcla de rotámeros, 8,47 - 8,59 (m, 1H), 8,37/8,31 (singletes anchos, 1H total), 7,55 - 7,60 (m, 1H), 7,41 - 7,54 (m, 2H), 7,13 - 7,25 (m, 2H), 5,28/5,02/4,98 (singletes anchos, 4H total), 4,07/4,06 (singletes, 3H), 2,85 (singlete ancho, 1H), 1,20/1,15 (dobletes anchos, $J = 6,4,6H$)
19		4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6- (tetrahidro-2H-piran-4-ilcarbonil)-6,7-dihidro- 5H-pirrolo[3,4-b]piridina, sal de HCl	407,2	(MeOH-d4) mezcla ~ 1,5:1 de rotámeros, 8,48 - 8,59 (m, 1H), 8,37/8,30 (singletes anchos, 1H total), 7,57 - 7,64 (m, 1H), 7,40 - 7,53 (m, 2H), 7,11 - 7,24 (m, 2H), 5,31/5,01/4,95/4,91 (singletes anchos, 4H total), 4,08/4,05 (singletes, 3H total), 3,95 - 4,04 (m, 2H), 3,45 - 3,60 (m, 2H), 2,7 - 2,95 (m, 1H), 1,55 - 1,90 (m, 4H)
20	-\{\rightarrow \text{C(O)} \rightarrow \text{CH2} \rightarrow \text{N}	4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6- (pirimidin-2-ilacetil)-6,7-dihidro-5H-pirrolo[3,4- b]piridina	415,2	(CDCl3) mezcla ~ 1,5:1 de rotámeros, 8,73 /8,67 (2 dobletes, <i>J</i> = 5,1,2H total), 8,48/8,35 (2 dobletes, <i>J</i> = 5,1, 1H total), 7,56/7,49 (singletes, 1H total), 7,34 - 7,39 (m, 2H), 7,18 - 7,23 (m, 1H), 6,96 - 7,08 (m, 3H), 4,98/4,90 (singletes anchos, 2H total), 4,78/4,55 (singletes anchos, 2H total), 4,18/4,01 (singletes, 2H total), 4,00/3,96 (singletes, 3H total)
21	~ \ C(O)	6-(ciclopropilcarbonil)-4-[3-(4-fluorofenil)-1- metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4- b]piridina, sal de HCl	363,2	(MeOH-d4) mezcla ~ 1,5:1 de rotámeros, 8,49 - 8,51 (dobletes solapantes, 1H), 8,37/8,27 (singletes, 1H), 7,44 - 7,53 (m, 3H), 7,14 - 7,21 (m, 2H), 5,37/5,15/5,02/4,83 (singletes anchos, 4H total), 4,04/4,06 (singletes, 3H), 1,88 - 1,95 (m, 1H), 0,93 - 1,00 (m, 4H)


(continuación)

		,		
Ej. nº	\mathbb{R}^2	NOMBRE DE LA IUPAC	CLEM m/z (M + 1)	RMN ¹ H
22	-\$-C(O) -O-CH ₂	4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-5,7- dihidro-6H-pirrolo[3,4-b]piridin-6-carboxilato de bencilo	429,2	(DMSO-d6) ~ 1:1 mezcla de rotámeros,8,39 - 8,43 (2 dobletes solapantes, 1H total), 8,21/8,25 (singletes, 1H), 7,33 - 7,43 (m, 7H), 7,16 - 7,22 (m, 2H), 7,05/7,01 (2 dobletes, <i>J</i> = 5,6, 1H total), 5,17/5,14 (singletes, 2H total), 4,80/4,71 (singletes, 2H total), 4,64/4,62 (singletes, 2H total), 3,96/3,94 (singletes, 3H total)

Ejemplo de referencia 23:4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-ciclopenta[b]piridina

Se pusieron en un vial de microondas 4-cloro-6,7-dihidro-5 H-ciclopenta[b]piridina (350 mg, 2,28 mmol), el producto del Ej. 1 Etapa 1 (688 mg, 2,28 mmol), K_2CO_3 (661 mg, 4,78 mmol), dicloruro de 1,1-bis(difenilfosfino)ferroceno paladio (84 mg, 0,144 mmol) en DMF (5 ml) y se les aplicaron microondas a 150 °C durante 10 min. La mezcla de reacción se diluyó con CH_2Cl_2 (10 ml) y agua (5 ml). Las capas se separaron y la fase acuosa se extrajo de nuevo con CH_2Cl_2 . Las fases orgánicas combinadas se secaron sobre $MgSO_4$, se filtraron y se concentraron para producir una solución de color marrón. La cromatografía en 40 g de gel de sílice eluyendo con 9:1, 4:1 y 1:1 de heptano:EtOAc produjo el Ejemplo de referencia 23 en forma de un aceite de color marrón claro que solidificó después de un periodo de reposo (290 mg, 43 %). CLEM m/z 294,5 (M + 1), RMN 1 H (400 MHz, 1 CDCl $_3$) 1 D 8,23 (d, 1 D = 5,3, 1H), 7,45 (s, 1H), 7,36 (dd, 1 D = 9,8, 5,4, 2H), 6,97 (dd, 1 D = 8,8, 8,8, 2H), 6,85 (d, 1 D = 5,1, 1H), 3,98 (s, 3H), 3,00 (t, 1 D = 7,6, 2H), 2,59 (t, 1 D = 7,3, 2H), 1,93 - 2,02 (m, 2H).

Ejemplo de referencia 24: 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-ciclopenta[b]piridin-7-ol

Etapa 1: preparación del 1-óxido de la 4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)-6,7-dihidro-5H-ciclopenta[b]piridina

La 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-ciclopenta[b]piridina se convirtió en el N-óxido siguiendo el procedimiento general descrito en el Ejemplo 1, etapa 9. Una cromatografía en gel de sílice mediante el uso de una mezcla de 9:1 a 4:1 de EtOAc/MeOH proporcionó un 54 % del producto del Ej. 24 - Etapa 1 en forma de un sólido de color amarillo: CLEM m/z 310,5 (M + 1); RMN 1 H (400 MHz, CDCl₃) δ 7,97 (d, J = 6,6, 1H), 7,45 (s,1H),

15

5

10

7,35 (dd, J = 8,9, 5,4, 2H), 7,00 (dd, J = 8,7, 8,7, 2H), 6,89 (d, J = 6,6, 1H), 3,97 (s, 3H), 3,17 (t, J = 7,6, 2H), 2,67 (t, J = 7,6, 2H), 2,02 - 2,09 (m, 2H).

Etapa 2: preparación del acetato de 4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)-6,7-dihidro-5H-ciclopenta[b]piridin-7-ilo

Se calentó el producto del Ej. de referencia 24 - Etapa 1 (155 mg, 0,50 mmol) a 105 °C en anhídrido acético (10 ml) durante una noche. La mezcla se enfrió, se diluyó con CH₂Cl₂ y se lavó con bicarbonato de sodio acuoso saturado. La fase orgánica se secó (MgSO₄) y se concentró para dar un aceite de color pardo. La cromatografía en gel de sílice mediante el uso de un gradiente de un 10 % - 90 % de EtOAc/heptanos produjo 109 mg (62 %) del producto del Ej. de referencia 24 - Etapa 2 en forma de un sólido de color blanco: CLEM m/z 352,5 (M + 1); RMN ¹H (400 MHz, CDCl₃) δ 8,41 (d, J = 5,1, 1H), 7,49 (s, 1H), 7,36 (dd, J = 8,2, 5,4, 2H), 6,95 - 7,04 (m, 3H), 6,11 (dd, J = 7,2, 5,3,1 H), 3,99 (s, 3H), 2,69 - 2,79 (m, 1H), 2,49 - 2,59 (m, 2H), 2,13 (s, 3H), 1,89 - 1,97 (m, 1H).

Etapa 3: Ejemplo de referencia 24:

15

25

30

35

Se disolvió parcialmente el producto del Ej. de referencia 24 - Etapa 2 (105 mg, 0,299 mmol) en 1,5 ml de MeOH. Se añadieron 1,5 ml de una solución acuosa al 10 % de K_2CO_3 y se agitó a la ta durante 3 días. Se concentró la reacción, se disolvió de nuevo en EtOAc y se lavó con una solución saturada de bicarbonato de sodio y salmuera. Se secó sobre Na_2SO_4 , se filtró y se concentró para producir el Ejemplo de referencia 24 en forma de un sólido de color pardo (95 mg, rendimiento cuantitativo) CLEM m/z 310,5 (M + 1); RMN 1 H (400 MHz, CDCl₃) \bar{o} 8,33 (d, J = 5,1,1 H), 7,48 (s, 1H), 7,32 - 7,39 (m, 2H), 6,95 - 7,01 (m, 3H), 5,19 (dd, J = 7,0, 7,0, 1H), 3,98 (s, 3H), 3,76 (s a, 1H), 2,70 - 2,79 (m, 1H), 2,40 - 2,52 (m, 2H), 1,86 - 1,97 (m, 2H).

20 Ejemplo de referencia 25: 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-N-metil-6,7-dihidro-5H-ciclopenta[b]piridin-7-amina

Se enfrió el Ejemplo de referencia 23 (50 mg, 0,16 mmol) en CH₂Cl₂ (2 ml) hasta 0 °C. Se añadió trietilamina (0,027 ml, 0,194 mmol) seguido de cloruro de metansulfonilo (0,013 ml, 0,170 mmol). La mezcla resultante se agitó a 0 °C durante 30 min. La CLEM mostró que todavía estaba presente el alcohol de partida, por lo que se añadieron porciones adicionales de trietilamina y de cloruro de metansulfonilo, y se continuó la agitación hasta que la CLEM indicó que se había consumido el material de partida. Se añadió agua y la fase orgánica se separó, se secó y se concentró para proporcionar el metansulfonato de 4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)-6,7-dihidro-5Hciclopenta[b]piridin-7-ilo en bruto (62 mg, 99 %) en forma de un sólido de color púrpura. Se añadió THF (1 ml) a su mesilato en bruto, seguido de 1 ml de metilamina (2 M en THF, 2 mmol) para dar una solución de color marrón. La reacción se agitó durante 16 horas a la ta y después se purificó mediante una cromatografía en gel de sílice. Una elución con 1:3, 1:1 y 1:3 de heptano/EtOAc, después EtOAc y un 95:5 de EtOAc/MeOH, proporcionó 12 mg de 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-ciclopenta[b]piridin-7-ol. Una elución adicional con un 95:5 de EtOAc/amoníaco 2 M en MeOH produjo 11 mg de una goma de color marrón, que se disolvió en EtOAc y se trató con un exceso de HCl 4 M/dioxano y se agitó durante 10 minutos. Una filtración produjo el Ejemplo de referencia 25 en forma de un sólido de color gris, sal de diclorhidrato (6 mg, 9 %): CLEM m/z 323,5 (M + 1); RMN 1H (400 MHz, MeOH-d₄) δ 8,43 (d, J = 5,5,1H), 8,01 (s,1H), 7,37 (dd, J = 9,0, 5,8, 2H), 7,26 (d, J = 5,5,1H), 7,08 (dd, J = 8,6, 8,6, 2H), 4,76 - 4,82 (m,1H), 3,99 (s,3H), 2,92 - 2,99 (m,1H), 2,84 (s,3H), 2,73 - 2,81 (m,1H), 2,58 - 2,67 (m,1 H), 2,06 -2,15 (m,1H).

40 **Ejemplos 26-52**

Los Ejemplos 26 hasta 52 se prepararon mediante el siguiente protocolo:

Procedimiento

Se añadió una solución de 4-[3-(4-fluoro-fenil)-1-metil-1H-pirazol-4-il]-furo[3,4-b]piridina-5,7-diona (0,1 mmol) en ácido acético (0,1 ml) a un vial que contiene la apropiada amina (0,1 mmol). El vial se calentó a 120 °C durante 10 min, momento en el cual se añadió polvo de cinc y el vial se calentó a 110 °C durante 7 h, después se agitó a la ta durante 16 h. La solución de reacción se filtró a través de un cartucho de SPE vacío para eliminar el polvo de cinc, se lavó con EtOAc, y se concentró. El residuo se disolvió en DMSO (1 ml) y se purificó mediante una HPLC en fase inversa (Columna: Waters Atlantis C_{18} de 4,6 x 50 mm, 5 μ m; Fase móvil A: 0,05 % de TFA en agua (v/v); Fase móvil B: 0,05 % de TFA en acetonitrilo (v/v); Gradiente: del 5 % al 95 % de B). El R^2 de la siguiente Tabla 2 se basa en:

	lón del espectro de masas observado <i>m/z</i> (M + 1) o (M + 2)/2	403,1109	393,1183	417,1566	381,148	409,1731
	Peso molecular exacto calculado	402,1604	392,1649	416,1761	380,1649	408,1962
	Tiempo de retención (min) [HPLC en las notas al pie]	2,32	2,34	2,48	2,4	2,81
Tabla 2	NOMBRE DE LA IUPAC	4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[(1- metil-1H- pirazol-4-il)metil]-6,7-dihidro-5 H- pirrolo[3,4-b]piridin-5-ona	4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6- (tetrahidrofuran-3-ilmetil)-6,7-dihidro-5H- pirrolo[3,4-b]piridin-5-ona	6-[(1,5-dimetil-1H-pirazol-3-il)metil]-4-[3-(4- fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H- pirrolo[3,4-b]piridin-5-ona	4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(3-metoxipropil)-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona	6-(2-terc-butoxietil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona
	R²	~~~~	~ ~ ~	N/n Z/Z	-(CH ₂) ₃ -O-CH ₃	-(CH ₂) ₂ -O-t-Butilo
	n, E	56	27	28	29	30

NOMBRE DE LA IUPAC 1-{4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-5-oxo-5,7-dihidro-6H-pirrolo[3,4-b]piridin-6-il}-6-ciclopentil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-Ciclopentil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[2-(1-metil-1H-pirazol-4-il]-6-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(tetrahidro-2H-piralo[3,4-b]piridin-5-ona b]piridin-5-ona b]piridin-5-ona 6-(ciclopropilmetil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(tetrahidro-2H-piralol-3,4-b]piridin-5-ona b]piridin-5-ona 6-(ciclopropilmetil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(tetrahidro-2H-piralol-5H-piralol-3,4-b]piridin-5-ona b]piridin-5-ona 6-(ciclopropilmetil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(tetrahidro-2H-piran-4-il)-6-(3-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(tetrahidro-2H-piran-4-il)-6-(3-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(tetrahidro-2H-piran-4-il)-6-(3-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(tetrahidro-2H-piran-4-il)-6-(3-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(tetrahidro-2H-piran-4-il)-6-(3-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(tetrahidro-2H-piran-4-il)-6-(3-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(tetrahidro-2H-piran-4-il)-6-(3-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(tetrahidro-2H-piran-4-il)-6-(3-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(1-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(1-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(1-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(1-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(1-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(1-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(1-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(1-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(1-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(1-4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(1-4-fluor			(continuación)			lón del espectro de masas
1-{4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-i]-5-oxo-5,7-dihidro-6H-pirrolo[3,4-b]piridin-6-il}-ciclopentil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6.7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona 4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona b]piridin-5-ona b]piridin-5-ona b]piridin-5-ona b]piridin-5-ona b]piridin-5-ona 6.7-dlhidro-5H-pirrolo[3,4-b]piridin-5-ona birrolo[3,4-b]piridin-5-ona birrolo[3,4-b]piridin-5-ona birrolo[3,4-b]piridin-5-ona birrolo[3,4-b]piridin-5-ona birrolo[3,4-b]piridin-5-ona b]piridin-5-ona		R ²	NOMBRE DE LA IUPAC	(min) [HPLC en las notas al pie]	exacto calculado	observado <i>m/z</i> (M + 1) o (M + 2)/2
6-ciclopentil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona N 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[2-(1-metil-1H-pirazol-4-il]-6-[2-(1-metil-1H-pirazol-4-il]-6]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona 6-etil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(tetrahidro-2H-piran-4-il)-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona 6-(ciclopropilmetil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona		400	1-{4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-5-oxo- 5,7-dihidro-6H-pirrolo[3,4-b]piridin-6- il}ciclopropanocarboxilato de metilo		406,1441	407,1035
4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[2-(1-netil-1H-pirazol-4-il])-6-[2-(1-netil-1H-pirazol-4-il])-6-[2-(1-netil-1H-pirazol-4-il])-6-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[(1,5-dimetil-1H-pirazol-4-il))-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[(tetrahidro-2H-piran-4-il)-6,7-dihidro-5H-pirrolo[3,4-pirrolo[3	I	~ ~~	6-ciclopentil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol- 4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona		376,17	377,1632
6-etil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]- 6,7-dlhidro-5H-pirrolo[3,4-b]piridin-5-ona fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona 7-(13-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6 7-dihidro-2H-piran-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona 6-(ciclopropilmetil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-pirrolo[3,4-b]piridin-5-ona		N-N	4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[2-(1- metil-1H-pirazol-4-il)etil]-6,7-dihidro-5H-pirrolo[3,4- b]piridin-5-ona		416,1761	417,1064
6-[(1,5-dimetil-1H-pirazol-4-il)metil]-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(tetrahidro-2H-piran-4-il)-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona 6-(ciclopropilmetil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-		-CH ₂ CH ₃	6-etil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]- 6,7-dlhidro-5H-pirrolo[3,4-b]piridin-5-ona	2,41	336,1386	337,1468
4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6- (tetrahidro-2H-piran-4-il)-6, 7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona 6-(ciclopropilmetil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6, 7-dihidro-5H-pirrolo[3,4-b]piridin-5-		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6-[(1,5-dimetil-1H-pirazol-4-il)metil]-4-[3-(4- fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H- pirrolo[3,4-b]piridin-5-ona		416,1761	417,1088
6-(ciclopropilmetil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-		______	4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6- (tetrahidro-2H-piran-4-il)-6,7-dihidro-5H-pirrolo[3,4- b]piridin-5-ona		392,1649	393,1505
UIG I		-CH ₂ -ciclopropilo	6-(ciclopropilmetii)-4-[3-(4-fluorofenii)-1-metil-1H- pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5- ona		362,1543	363,1586

4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-
--

	lón del espectro de masas observado m/z (M + 1) o (M + 2)/2	391,1226	393,0993	379,1638	375,1468	409,1731
	Peso molecular exacto calculado	390,1492	392,1285	378,1856	374,1543	408,1598
	Tiempo de retención (min) [HPLC en las notas al pie]	2,37	2,34	2,94	2,88	2,67
(continuación)	NOMBRE DE LA IUPAC	4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6- [(1R,5S,6r)-3-oxabiciclo[3.1.0]hex-6-il]-6,7-dihidro- 5H-pirrolo[3,4-b]piridin-5-ona	4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[(3S)- 2-oxotetrahidrofuran-3-il]-6,7-dihidro-5H- pirrolo[3,4-b]pirldln-5-ona	4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[(1R)- 1-metilbutil]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5- ona	6-biciclo[1,1,1]pent-1-il-4-[3-(4-fluorofenil)-1-metil- 1H- pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin- 5-ona	{4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-5-0xo-5,7-dihidro-6H-pirrolo[3,4-b]piridin-6-il} acetato de isopropilo
	\mathbb{R}^2	\$ H	\$	\$	when	-CH ₂ -C(O)O-i-propilo
	Ej. n°	45	46	47	48	64

	lón del espectro de masas observado <i>m/z</i> (M + 1) o (M + 2)/2	400,1359	395,1689	414,1193
	Peso molecular exacto calculado	399,1495	394,1805	413,1652
	Tiempo de retención (min) [HPLC en las notas al pie]	1,94	3,73	1,97
(continuación)	NOMBRE DE LA IUPAC	4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6- (piridin-3-ilmetil)-6,7-dihidro-5H-pirrolo[3,4- b]piridin-5-ona	6-(3-etoxipropil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona	4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[(6- metilpiridin-3-il)metil]-6,7-dihidro-5H-pirrolo[3,4- b]piridin-5-ona
	R ²	~_~~	-(CH ₂) ₃ -O-Et	~~~~
	Ej. n°	50	51	52

Ensayo de la cinasa. El ensayo de la cinasa CK1 δ se llevó a cabo en un volumen final de 40 μ l en tampón que contiene Tris 50 mM, a pH 7,5, MgCl₂ 10 mM, ditiotreitol 1 mM, 100 μ g/ml de BSA con ATP 10 μ M, CKI δ 2 nM de tipo natural y sustrato peptídico 42 μ M PLSRTLpSVASLPGL (Flotow et al., 1990) en presencia de 1 μ l del inhibidor de la CKI δ o de DMSO al 4 μ 8. La reacción se incubó durante 85 min a 25 μ 9°C; la detección se llevó a cabo según se describe para el ensayo Kinase-Glo (Promega). La emisión luminiscente se midió con un lector de placas Perkin Elmer Envision (PerkinElmer, Waltham, MA).

El ensayo de la cinasa CK1 ϵ se llevó a cabo en un volumen final de 40 μ l en tampón que contiene Tris 50 mM, a pH 7,5, MgCl₂ 10 mM, ditiotreitol 1 mM, 100 μ g/ml de BSA con ATP 10 μ M, CKI ϵ 2,5 nM de tipo natural y sustrato peptídico 42 μ M PLSRTLpSVASLPGL (Flotow et al., 1990) en presencia de 1 μ l del inhibidor de la CKI ϵ o de DMSO al 4 %. La reacción se incubó durante 70 min a 25 °C; la detección se llevó a cabo según se describe para el ensayo Kinase-Glo (Promega). La emisión luminiscente se midió con un lector de placas Perkin Elmer Envision (PerkinElmer, Waltham, MA).

10

15

20

25

30

35

40

Ensayo de translocación nuclear de la CK1 WCA HCS. Las células Cos7 se mantuvieron a 37 °C en un 5 % de CO_2 en medio de Eagle modificado por Dulbecco (Gibco 11995) suplementado con un 10 % de suero bovino fetal. Las células en fase logarítmica fueron desalojadas con un tratamiento de 5 min de TrypLE Express (Gibco 12605) y el recuento de células viables se determinó con un contador celular Cedex. Las células se diluyeron en medio DMEM hasta una densidad de 1,5e5 células viables/ml en 2/3 del volumen final de la mezcla final de células transfectadas. Las células fueron cotransfectadas con dos plásmidos de ADN, Per3-GFP de ratón (proteína fluorescente verde) en el vector pd2EGFP-N1, y CKI humana en el vector pADNc4/hisA (para la CK1 Epsilon a una proporción de 1:5 respectivamente; para la CK1 δ a una proporción de 1:11 respectivamente), mediante el uso del reactivo Lipofectamina 2000 (Invitrogen) según las recomendaciones del fabricante. La mezcla de transfección contenía aproximadamente 0,83 µg/ml de ADN y 6 µl/ml de Lipofectamina 2000, en un total de 1/3 del volumen final de transfección en medio Opti-MEM I (Invitrogen). Después de 20 min a la ta, la mezcla de células se combinó con la mezcla de transfección de ADN, según las instrucciones del fabricante. Se dispensaron 50 µl de la suspensión de células transfectadas por pocillo mediante un dispensador multigota en placas Greiner de 384 pocillos Cellcoat (PDL) (Greiner # 781946).

Los compuestos se solubilizaron en DMSO al 100 %, se diluyeron con Opti-MEM I hasta una concentración de 4x antes de la adición a las células de las placas. Después de una exposición de una noche a $37\,^{\circ}\text{C}$ en una estufa de incubación de CO_2 , las células se fijaron mediante la adición de paraformaldehído al $12\,^{\circ}\text{C}$ (Electron Microscopy Sciences, Hatfield, PA) en solución salina tamponada con fosfato (PBS) con sacarosa al $20\,^{\circ}\text{C}$ hasta una concentración final del $4\,^{\circ}\text{C}$, y después las células se incubaron durante $30\,^{\circ}\text{C}$ min a la ta. Se eliminó el fijador y las células se lavaron con PBS y después se tiñeron con $0.4\,^{\circ}\text{Lg/ml}$ de colorante de Hoechst (Invitrogen) en tampón de bloqueo que contiene un $4\,^{\circ}\text{C}$ de suero de cabra (Vector Labs s-1000) y un $0.1\,^{\circ}\text{C}$ de TritonX (Sigma T8787) durante $1\,^{\circ}\text{C}$. Las células se lavaron de nuevo con PBS y se almacenaron a $10\,^{\circ}\text{C}$ en PBS o se escanearon inmediatamente con el Cellomics ArrayScan VTI. La localización nuclear dependiente de la CKIō de la proteína mPer3 marcada con GFP se cuantificó mediante el uso del sistema Cellomics ArrayScan VTI mediante la utilización de la bioaplicación de translocación del citoplasma al núcleo para calcular la diferencia de intensidad Nuclear-Citoplasmática. Los inhibidores de la CK1 $10\,^{\circ}\text{C}$ se ensayaron a lo largo de una curva de dosis respuesta para evaluar su capacidad para inhibir la translocación de la mPer3-GFP al núcleo. En el análisis están incluidas las células con una intensidad total de expresión de la mPER3:GFP igual o mayor a $10\,^{\circ}\text{C}$ en PBS o se descanearon o la la mPer3-GFP igual o mayor a $10\,^{\circ}\text{C}$ en PBS o se escanearon el concentración de la mPER3:GFP igual o mayor a $10\,^{\circ}\text{C}$ en PBS o se escanearon el concentración de la mPER3:GFP igual o mayor a $10\,^{\circ}\text{C}$ en PBS o se escanearon el concentración de $10\,^{\circ}\text{C}$ en PBS o se escanearon el concentración de $10\,^{\circ}\text{C}$ en PBS o se escanearon el concentración de $10\,^{\circ}\text{C}$ en PBS o

La Tabla 3 proporciona los datos biológicos de los Ejemplos y Ejemplos de referencia 1 hasta 52.

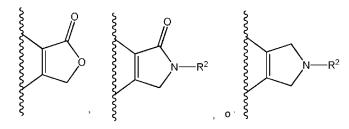
Tabla 3

Ejemplo o	CI50 de la CK1	Cl50 de la CK1 ε	CE50 de la CK1 δ WCA	CE50 de la CK1 ε WCA
Ejemplo de Ref.	δ (nM)	(nM)	(nM)	(nM)
1	7,91	26,9	59,8	355
2	7,9	35,5	52,6	313
3			78,2	343
4	13,9	72,7	122	684
5	6,05	39	16,4	
6	61	292	204	
7 (Ref.)	6,01	27,6	39,2	291
8 (Ref.)			47	217
9 (Ref.)			199	834
10	3,11	10,8	13,5	62,4
11			103	668
12			202	882
13			16,2	124
14			40,2	150
15			12,6	75,4

ES 2 623 387 T3

(continuación)

		(continua	ación)	
Ejemplo o	CI50 de la CK1	Cl50 de la CK1 ε	CE50 de la CK1 δ WCA	CE50 de la CK1 ε WCA
Ejemplo de Ref.	δ (nM)	(nM)	(nM)	(nM)
16			38,1	218
17			47,5	210
18			39,5	195
19			54,8	566
20			84,7	361
21			18,3	82,3
22			51,6	275
23 (Ref.)	25,4	157	214	
24 (Ref.)	28,5	149	266	
25 (Ref.)	17,4	83,7	59,8	
26	22,6	123	125	
27	35,3	210	369	
28	15,7	86,4	66,4	
29	26,2	131	217	
30	27,7	149	159	
31	48,1	187	304	
32	8,93	40,8	84,9	
33	> 75,5	> 230	232	
34	12,4	61,5	99	468
35	23,3	130	104	
36	> 195	> 516	224	
37	12,9	82,5	74,1	
38	18,6	92	71,4	
39	49,5	241	188	
40	11,1	47,1	53,7	
41	20,5	108	65,5	
42	67,3	386	623	
43	93,2	512	564	
44	70,8	342	437	
45	19,5	87	167	
46	68,7	384	1430	
47	> 160	> 423	89,7	
48	18,4	80,7	130	
49	108	496	506	
50	21,3	145	83,6	
51	14,6	63,8	129	
52	19	127	60,7	
52	1.5	121	00,1	


REIVINDICACIONES

1. Un compuesto de Fórmula I:

$$(R^4)_n$$
 A
 R^7

en la que:

5 X es NR¹ y dicho R¹ de N es alquilo C₁.₄ o cicloalquilo C₃.₄; Y es CR¹ y dicho R¹ de C es H o CH₃; El anillo A es

Cada R^2 es independientemente H, alquilo C_{1-6} , bicicloalquilo C_{4-10} , $-(CH_2)_t$ -CN, $-SO_2$ alquilo C_{1-6} , $-SO_2(CH_2)_t$ cicloalquilo C_{3-6} , -alquilo C_{1-6} -O-alquilo C_{1-6} , -alquilo C_{1-6} , -cicloalquilo C_{1-6} , -cicloalquilo C_{3-6} -C(O)O-alquilo C_{1-6} , -C(O)-(O) $_u$ -alquilo C_{1-6} , -C(O)-alquilo C_{1-6} , -C(O)-(O) $_u$ -(CH $_2$) $_t$ -(heteroarilo de entre 5 y 10 miembros), -(CH $_2$) $_t$ -(heteroarilo de entre 5 y 10 miembros), -C(O)-(O) $_u$ -(CH $_2$) $_t$ -(heterocicloalquilo de entre 3 y 10 miembros), -(CH $_2$) $_t$ -(heterocicloalquilo de entre 4 y 10 miembros), -C(O)-(O) $_u$ -(CH $_2$) $_t$ -(cicloalquilo de entre 3 y 10 miembros) o -(CH $_2$) $_t$ -(cicloalquilo de entre 3 y 10 miembros), -C(O)-(O) $_u$ -(CH $_2$) $_t$ -(cicloalquilo de entre 3 y 10 miembros)

en los que dichos arilo, heteroarilo, cicloalquilo y heterocicloalquilo de R^2 puede estar sustituidos con hasta dos sustituyentes seleccionados independientemente entre halógeno, OH, ciano, alquilo C_{1-6} , -C(O)-O-alquilo C_{1-3} o alquilo C_{1-6} y en los que cualquier alquilo, cicloalquilo y heterocicloalquilo de R^2 puede estar adicionalmente sustituido con oxo cuando la valencia lo permita;

20 Cada R⁴ es F;

Cada R⁵ es independientemente H o alquilo C₁₋₆;

Cada R^6 es independientemente H o alquilo C_{1-6} ;

R⁷ es H;

n es 0, 1 o 2;

25 Cada t es independientemente 0, 1 o 2; y

Cada u es independientemente 0 o 1;

o una sal del mismo farmacéuticamente aceptable.

2. Un compuesto según la reivindicación 1, o una sal del mismo farmacéuticamente aceptable, en el que X es NR¹ y dicho R¹ de N es alquilo C₁₋₄;

Cada R^2 es independientemente H, alquilo C_{1-6} , $-SO_2$ alquilo C_{1-6} , $-SO_2$ (CH₂)_t cicloalquilo C_{3-6} , -alquilo C_{1-6} -O-alquilo C_{1-6} , -C(O)-(O)_u-alquilo C_{1-6} , $-(CH_2)$ _t-(arilo C_{6-10}), -C(O)-(O)_u-(CH₂)_t-(heteroarilo de entre 5 y 10 miembros), $-(CH_2)$ _t-(CO)-NR⁵R⁶, $-(CH_2)$ _t-(heteroarilo de entre 5 y 10 miembros), $-(CH_2)$ _t-(heteroalquilo de entre 4 y 10 miembros), $-(CH_2)$ _t-(cicloalquilo de entre 3 y 10 miembros),

en los que dichos arilo, heteroarilo, cicloalquilo y heterocicloalquilo de R² pueden estar sustituidos con hasta dos sustituyentes seleccionados independientemente entre halógeno, OH, ciano, alquilo C₁₋₆, -C(O)-O-alquilo C₁₋₃ o alquilo C₁₋₆-O-alquilo C₁₋₆ y en los que cualquier alquilo, cicloalquilo y heterocicloalquilo de R² puede estar adicionalmente sustituido con oxo cuando la valencia lo permita; Cada R⁵ es H:

n es 1; y

40 Y, R⁴, R⁶, R⁷, t, u y A son como se han definido en la reivindicación 1.

- 3. Un compuesto según la reivindicación 1 o 2, o una sal del mismo farmacéuticamente aceptable, en el que R^2 es independientemente H, $-CH_3$ o SO_2CH_3 .
- 4. Un compuesto según la reivindicación 1, o una sal del mismo farmacéuticamente aceptable, en el que el compuesto es:
- 5 4-(3-(4-fluorofenil)-1-metil-1H-pirazol-4-il)furo[3,4-b]piridin-5(7H)-ona;

20

40

- 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-metil-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona;
- 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona;
- 6-bencil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona;
- 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(metilsulfonil)-6,7-dihidro-5H-pirrolo[3,4-b]piridina;
- 10 6-(etilsulfonil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridina;
 - 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-propionil-6,7-dihidro-5H-pirrolo[3,4-b]piridina;
 - 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[(1-metil-1H-pirazol-4-il)metil]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona:
 - 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(tetrahidrofurano-3-ilmetil)-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona;
- 15 6-[(1,5-dimetil-1H-pirazol-3-il)metil]-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona:
 - 6-ciclopentil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona;
 - 6-etil-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona;
 - 6-[(1,5-dimetil-1H-pirazol-4-il)metil]-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona:
 - 6-(ciclopropilmetil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona;
 - 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[2-(3-metil-1,2,4-oxadiazol-5-il)etil]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona;
 - 3-{4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-5-oxo-5,7-dihidro-6H-pirrolo[3,4-b]piridin-6-il} propanonitrilo;
- 3-([4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-5-oxo-5,7-dihidro-6H-pirrolo[3,4-b]piridin-6-il]metil) benzonitrilo; 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[(1R,5S,6r)-3-oxabiciclo[3.1.0]hex-6-il]-6,7-dihidro-5H-pirolo[3,4-b]piridin-5-ona:
 - 6-biciclo[1.1.1]pent-1-il-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6.7-dihidro-5H-pirrolo[3.4-b]piridin-5-ona;
 - 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-(piridin-3-ilmetil)-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona;
- 30 6-(3-etoxipropil)-4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona; o
 - 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]-6-[(6-metilpiridin-3-il)metil]-6,7-dihidro-5H-pirrolo[3,4-b]piridin-5-ona.
 - 5. Un compuesto según la reivindicación 1 que es la 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]furo[3,4-b]piridin-5(7H)-ona o una sal farmacéuticamente aceptable de la misma.
- 6. Un compuesto según la reivindicación 5 que es la 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]furo[3,4-b]piridin-5(7H)-35 ona.
 - 7. Un compuesto según la reivindicación 5 que es una sal farmacéuticamente aceptable de la 4-[3-(4-fluorofenil)-1-metil-1H-pirazol-4-il]furo[3,4-b]piridin-5(7H)-ona.
 - 8. Un compuesto según una cualquiera de las reivindicaciones 1 a 7 o una sal del mismo farmacéuticamente aceptable para su uso en el tratamiento de una enfermedad o de un trastorno del sueño, neurológico o psiquiátrico, en un mamífero.
 - 9. Un compuesto para su uso según la reivindicación 8 en el que la enfermedad o el trastorno es un trastorno del estado de ánimo o un trastorno del sueño.
 - 10. Un compuesto para su uso según la reivindicación 9 en el que el trastorno del estado de ánimo se selecciona entre el grupo que consiste en un trastorno depresivo y un trastorno bipolar.
- 45 11. Un compuesto para su uso según la reivindicación 8 en el que la enfermedad o el trastorno es un trastorno por déficit de atención/hiperactividad, esquizofrenia o la enfermedad de Alzheimer.
 - 12. Un compuesto para su uso según la reivindicación 11, en el que la enfermedad o el trastorno es la enfermedad de Alzheimer.
- 13. Una composición farmacéutica que comprende un compuesto según una cualquiera de las reivindicaciones 1 a 7 o una sal del mismo farmacéuticamente aceptable, y un vehículo farmacéuticamente aceptable.