

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 623 767

61 Int. Cl.:

H01Q 21/00 (2006.01) H01Q 25/02 (2006.01) H01Q 3/30 (2006.01) H01Q 15/08 (2006.01) H01Q 3/26 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 02.04.2015 E 15162366 (7)
Fecha y número de publicación de la concesión europea: 22.03.2017 EP 2930790

(54) Título: Antena en red

(30) Prioridad:

07.04.2014 US 201414246264

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 12.07.2017

(73) Titular/es:

THINKOM SOLUTIONS, INC. (100.0%) 4881 W. 145th Street Hawthorne, CA 90250, US

(72) Inventor/es:

MILROY, WILLIAM y HASHEMI-YAGENEH, SHAHROKH

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Antena en red

5 Campo técnico

15

20

35

40

50

55

La siguiente información se refiere en general a antenas en red, y más en particular a una antena en red que emplea cancelación coherente de fase par controlar y minimizar reflexiones de entrada.

10 Antecedentes de la técnica

Las antenas en red, tales como las antenas en red de placa plana pasivas, que pueden proporcionar mayor ganancia y anchos de banda más amplios están en continua demanda para diversas aplicaciones de comunicaciones por satélite y punto a punto. En una mayoría de estas antenas, los elementos de antena radiantes son alimentados por series de estructuras de alimentación corporativas dentro de una red de alimentación corporativa que empieza con una o dos entradas, unidas/combinadas a través de una estructura en T de 3 puertos (reactiva). Otras estructuras en T de 3 puertos que componen la mayor red de alimentación corporativa son las principales contribuidoras a las distribuciones de amplitud y fase de los elementos radiantes. Estas estructuras en T están diseñadas y construidas para proporcionar la "banda más ancha" y una debida división de potencia en cada nivel antes de terminar en el elemento de antena radiante. Para obtener mayor ganancia y ancho de banda, es imprescindible que cada componente de la red de alimentación corporativa (por ejemplo, cada estructura en T de 3 puertos) y los elementos de antena radiantes sean diseñados con la menor reflexión posible y el mayor rendimiento de ancho de banda.

Sin embargo, obtener una reflexión muy baja (<-40 dB) por cada componente llega a ser extremadamente difícil debido a las tolerancias geométricas y de fabricación asociadas a las antenas en red actuales. A su vez, esto hace que sea difícil conseguir un coeficiente de reflexión de entrada muy bajo para toda la red. Se ha utilizado software potente de simulación en 3D para optimizar el diseño y la construcción de los componentes de alimentación. Sin embargo, la limitación de rendimiento inherente de cada componente determinada por sus condiciones de contorno, configuración geométrica, y las tolerancias dimensionales alcanzables realistas limitan las mejoras optimizadas.

También se ha intentado la adición de circuitería de sintonización a la entrada de red de antenas para minimizar toda la reflexión. Desgraciadamente, por lo general la circuitería de sintonización no puede proporcionar el rendimiento de "banda ancha" requerido si la amplitud de la reflexión es grande (> -8dB) y/o altamente oscilatoria. Además, la circuitería de sintonización no aporta ninguna ventaja con respecto a las reflexiones que se producen más cerca de los elementos de antena radiantes, afectando así al diagrama de radiación.

Teniendo en cuenta los inconvenientes mencionados, en la técnica hay una necesidad imperiosa de una antena en red en la que el coeficiente de reflexión de entrada total de la antena en red pueda reducirse hasta un nivel aceptable sobre un mayor ancho de banda, sin depender de circuitería de sintonización en la entrada y sin degradación significativa de la reflexión de entrada o el diagrama de radiación.

El documento EP2685557 desvela diferentes tipos de redes Butler conectadas a una red de antenas.

45 Sumario

Se proporciona una antena en red que incluye una pluralidad de elementos de antena radiantes dispuestos para formar una abertura de antena, incluyendo la pluralidad de elementos de antena radiantes un primer grupo de elementos de antena radiantes y un segundo grupo de elementos de antena radiantes distinto en el agrupamiento del primer grupo de elementos de antena radiantes; una red de alimentación corporativa configurada para alimentar la pluralidad de elementos de antena radiantes, en donde la red de alimentación corporativa incluye un dispositivo de 4 puertos que incluye un puerto de suma, un puerto de diferencia, un primer puerto de señal y un segundo puerto de señal, con el primer puerto de señal acoplado a través de la red de alimentación corporativa al primer grupo de elementos radiantes y el segundo puerto de señal acoplado a través de la red de alimentación corporativa al segundo grupo de elementos radiantes; un primer elemento de desviación de fase proximal a la abertura de antena para introducir una primera desviación de fase predeterminada al primer grupo de elementos de antena radiantes; y un segundo elemento de desviación de fase proximal al segundo puerto de señal para introducir una segunda desviación de fase predeterminada al segundo grupo de elementos de antena radiantes.

De acuerdo con un aspecto, el primer grupo de elementos de antena radiantes y el segundo grupo de elementos radiantes representan cada uno una correspondiente mitad de la abertura de antena.

De acuerdo con otro aspecto, el primer elemento de desviación de fase incluye un material dieléctrico de placa plana colocado en frente del primer grupo de elementos de antena radiantes.

De acuerdo con otro aspecto, el material dieléctrico de placa plana incluye vidrio y/o aire.

65

De acuerdo con otro aspecto más, el primer elemento de desviación de fase incluye una longitud de línea de desviación de fase acoplada entre el primer grupo de elementos de antena radiantes y la red de alimentación corporativa.

5 De acuerdo con otro aspecto más, el primer elemento de desviación de fase introduce una desviación de fase de aproximadamente 90 grados a frecuencia media de una banda operativa de la antena en red.

De acuerdo con otro aspecto, el primer puerto de señal y el segundo puerto de señal representan extremos respectivos de primeros y segundos brazos colineales incluidos en el dispositivo de 4 puertos, y el segundo elemento de desviación de fase incluye una longitud de línea adicional en el segundo brazo colineal.

En otro aspecto más, el segundo elemento de desviación de fase tiene una longitud de aproximadamente 90 grados con respecto a una frecuencia media de una banda operativa de la antena en red.

De acuerdo con otro aspecto, el dispositivo de 4 puertos es un acoplador en T mágica, un acoplador híbrido en cuadratura, y/o un acoplador de anillo híbrido en cuadratura.

De acuerdo con otro aspecto más, la red de alimentación corporativa consiste en componentes de guiaondas, microcintas y/o líneas de cinta.

Para alcanzar los objetivos anteriores y asociados, la invención, comprende entonces las características completamente descritas a continuación y, en particular, mostradas en las reivindicaciones. La siguiente descripción y los dibujos adjuntos exponen en detalle determinadas realizaciones ilustrativas de la invención. Sin embargo, estas realizaciones solo son indicativas de algunos de los diversos modos en los que pueden emplearse los principios de la invención. Otros objetivos, ventajas y características novedosas de la invención se pondrán de manifiesto a partir de la siguiente descripción detallada de la invención cuando se considere junto con los dibujos.

Breve descripción de los dibujos

10

20

25

40

45

50

55

60

65

30 En los dibujos adjuntos, referencias similares indican partes o características similares:

la Figura 1 es una ilustración esquemática de una realización a modo de ejemplo de una antena en red de acuerdo con la presente invención;

las Figuras 2A y 2B ilustran una vista en perspectiva y una vista frontal, respectivamente, de un primer ejemplo particular de una antena en red de acuerdo con la presente invención; y

las Figuras 3A y 3B ilustran una vista en perspectiva y una vista frontal, respectivamente, de un segundo ejemplo particular de una antena en red de acuerdo con la presente invención.

Descripción detallada

Una antena en red como la que se describe en el presente documento incorpora una técnica de cancelación coherente de fase para controlar y minimizar un coeficiente de reflexión de entrada visto en la entrada de la T mágica, el acoplador en cuadratura u otro dispositivo de 4 puertos, y la posterior estructura de alimentación corporativa después, incluida la corrección de fase posterior para permitir un estado de fase uniforme en los puertos de una alimentación de conjunto. Las reflexiones causadas por una variación de tolerancia y/o un ancho de banda inadecuado de los componentes se desvían a un puerto de suma o diferencia cargado de la T mágica, el acoplador en cuadratura u otro dispositivo de 4 puertos, mientras que el puerto de diferencia o suma se utiliza para la entrada de la señal, respectivamente. Dicha configuración mejora y aumenta el coeficiente de reflexión de entrada principal aparte de cualquier circuitería adaptada en la entrada.

Haciendo referencia a la Figura 1, se muestra esquemáticamente una antena en red 10. En la realización a modo de ejemplo, la antena en red 10 es una antena en red de placa plana. La antena en red 10 tiene por objeto transmitir y/o recibir una onda plana representada por la línea discontinua 12. La antena en red 10 incluye una pluralidad de elementos de antena radiantes dispuestos para formar una abertura de antena. La pluralidad de elementos de antena radiantes se dispone para incluir un primer grupo de elementos de antena radiantes 14A y un segundo grupo de elementos de antena radiantes 14B, similares en propiedades, pero distintos en agrupamiento, del primer grupo de elementos de antena radiantes 14A. En la realización a modo de ejemplo, el primer grupo de elementos de antena radiantes 14A y el segundo grupo de elementos de antena radiantes 14B representan cada uno la mitad de los elementos de antena radiantes que definen la abertura de la antena en red 10.

Los elementos de antena radiantes pueden componerse de cualquier tipo conocido adecuado de elementos en red tales como bocinas individuales en una red de bocinas, ranuras en una red de ranuras, dipolos en una red de dipolos, parches en una red de parches, etc., así como cualquier combinación de los mismos. La antena en red 10 puede representar una antena entera, uno de diversos elementos idénticos que componen una red mayor, una

alimentación para otro sistema de antenas, etc.

10

15

20

25

30

35

55

60

La antena en red 10 también incluye una red de alimentación corporativa 16 configurada para alimentar la pluralidad de elementos de antena radiantes 14. La red de alimentación corporativa 16 incluye como entrada a la antena en red un dispositivo de 4 puertos 18 tal como un acoplador en T mágica, acoplador híbrido en cuadratura, acoplador de anillo híbrido en cuadratura u otro dispositivo de 4 puertos adecuado. El dispositivo de 4 puertos 18 incluye un puerto de suma (Puerto 1), un puerto de diferencia (Puerto 4), un primer puerto de señal (Puerto 2) y un segundo puerto de señal (Puerto 3). El primer puerto de señal (Puerto 2) se acopla a través de la red de alimentación corporativa al primer grupo de elementos radiantes y el segundo puerto de señal (Puerto 3) se acopla a través de la red de alimentación corporativa al segundo grupo de elementos radiantes.

Un "dispositivo de 4 puertos" como se define en el presente documento se refiere a cualquier dispositivo combinador de microondas de 4 puertos pasivo cuyas propiedades de microondas (difusión por red) proporcionen resolución vectorial de dos puertos (de señal) independientes en dos componentes vectoriales ortogonales a través de los dos puertos (salida/entrada) restantes. La ortogonalidad de los dos canales resueltos por vectores puede ser en forma de pares de amplitud ("A+B" y "A-B") o, como alternativa, en forma de pares de complejos conjugados ("A+jB" y "B+jA",) dependiendo de los detalles del dispositivo de 4 puertos particular. En el caso de la clase del dispositivo anterior (solo amplitud), se añade una desviación de fase de 90 grados (mediante la introducción de un desviador de fase discreto o longitud de línea de compensación) a uno de los dos puertos de señal para proporcionar el diferencial de fase de 90 grados unidireccional requerido, aunque esta sección complementaria es innecesaria al emplear un dispositivo en la última clase (de complejos conjugados).

La red de alimentación corporativa 16 puede incluir una estructura de alimentación corporativa 20 además del dispositivo de 4 puertos 18, incluyendo la estructura de alimentación corporativa 20 cualquiera de varias alimentaciones corporativas convencionales tales como acopladores, divisores, etc. Como se describe en el presente documento, la estructura de alimentación corporativa 20 puede dividirse en una primera parte 20A y una segunda parte 20B para alimentar el primer y segundo grupos de elementos de antena radiantes 14A, 14B, respectivamente. La estructura de alimentación corporativa 20 junto con el dispositivo de 4 puertos 18 puede construirse utilizando cualquier enfoque de línea de transmisión convencional, incluyendo guiaondas, microcintas, líneas de cinta u otro, como puede apreciarse.

La antena en red 10 también incluye un primer elemento de desviación de fase proximal 22 a la abertura de antena para introducir una primera desviación de fase predeterminada, a través de medios mecánicos y/o dieléctricos, al primer grupo de elementos de antena radiantes 14A. Además, la antena en red 10 incluye un segundo elemento de desviación de fase proximal 24 al dispositivo microondas de 4 puertos 18, en el segundo puerto de señal (Puerto 3) para introducir una segunda desviación de fase predeterminada al segundo grupo de elementos de antena radiantes 14B.

El primer elemento de desviación de fase 22 puede incluir un material dieléctrico de placa plana colocado en frente del primer grupo de elementos de antena radiantes 14A. Por ejemplo, el material dieléctrico de placa plana puede incluir aire y/o vidrio como se analiza más adelante con respecto a las Figuras 2 y 3, respectivamente. Como otro ejemplo, el primer elemento de desviación de fase 22 puede incluir una longitud de línea de desviación de fase acoplada entre el primer grupo de elementos de antena radiantes 14A y la red de alimentación corporativa 16. La longitud de línea puede consistir en guiaondas, microcintas, etc., como puede apreciarse. El primer elemento de desviación de fase 22 se configura preferentemente para introducir una desviación de fase de aproximadamente 90 grados a frecuencia media de una banda operativa de la antena en red. Como se menciona en el presente documento, "aproximadamente 90 grados" se refiere a una desviación de fase dentro del intervalo de 90 grados, más o menos 20 grados.

En una realización en la que el dispositivo de 4 puertos incluye un acoplador en T mágica, el primer puerto de señal (Puerto 2) y el segundo puerto de señal (Puerto 3) representan extremos respectivos de primeros y segundos brazos colineales incluidos en el acoplador en T mágica. El segundo elemento de desviación de fase 24 es una longitud de línea adicional en el segundo brazo colineal añadida para compensar el equilibrio de fases introducido por el primer elemento de desviación de fase 14A.

En una realización en donde el primer elemento de desviación de fase 22 es de aproximadamente 90 grados, el segundo elemento de desviación de fase 24 es de aproximadamente 90 grados de longitud con respecto a una frecuencia media de una banda operativa de la antena en red 10. El segundo elemento de desviación de fase 24 puede consistir en guiaondas, microcintas, líneas de cinta, etc., como puede apreciarse.

El dispositivo de 4 puertos 18 puede ser cualquiera de diversos tipos conocidos de dispositivos de 4 puertos incluidos, por ejemplo, un acoplador en T mágica, un acoplador híbrido en cuadratura, y/o un acoplador de anillo híbrido en cuadratura.

Haciendo referencia aún a la Figura 1, un dispositivo 30 tal como un transmisor tiene su salida conectada al puerto de suma (Puerto 1) del dispositivo de 4 puertos 18. El dispositivo 30 genera una señal (A12+B12) en el interior del

Puerto 1. Una mitad de la señal (A12) es dirigida hacia el primer grupo de elementos de antena radiantes 14A a través del Puerto 2 y la primera parte 20A de la estructura de alimentación corporativa 20. La otra mitad de la señal (B12) es dirigida hacia el segundo grupo de elementos de antena radiantes 14B a través del Puerto 3 y la segunda parte 20B de la estructura de alimentación corporativa 20. Las reflexiones no deseadas en el Puerto 2 (A11) son reflejadas de vuelta al interior del Puerto 2 y son dirigidas dentro del dispositivo de 4 puertos 18 al puerto de diferencia (Puerto 4) que termina con una carga 34 diseñada para absorber las reflexiones. De forma similar, las reflexiones no deseadas en el Puerto 3 (B11) son reflejadas de vuelta al interior del Puerto 3 y son dirigidas dentro del dispositivo de 4 puertos 18 al puerto de diferencia (Puerto 4) y dentro de la carga 34.

Se entenderá que el dispositivo 30 podría conectarse al puerto de diferencia (Puerto 4) y la carga 34 conectada al puerto de suma (Puerto 1) y se produciría una operación similar.

15

20

25

30

35

40

45

50

55

De esta manera, la antena en red 10 disfruta de una importante mejora en la ROA canalizando la reflexión causada por la variación de tolerancia y/o el ancho de banda de componentes inadecuados a los puertos de suma o diferencia "cargados" de la T mágica, el acoplador en cuadratura u otro dispositivo de 4 puertos, mientras que el puerto de diferencia o de suma se utiliza para la entrada de señal, respectivamente. La degradación en la reflexión de entrada o el diagrama de radiación se evita porque el cambio de fase en la mitad de la abertura se corrige mediante la introducción del segundo elemento de desviación de fase 24 mientras que la reflexión no deseada se canaliza dentro del brazo cargado del divisor de potencia de 4 vías aislado de la entrada principal. La antena en red 10 presenta así la sencillez de utilizar una pieza de placa plana dieléctrica más un ajuste de fase simple (por ejemplo, en los brazos colineales de una T mágica) para conseguir un ancho de banda más amplio sin circuitería adaptada complicada en la entrada.

En realizaciones a modo de ejemplo, un material dieléctrico de placa plana del tamaño de media abertura que actúa como el primer elemento de desviación de fase 22 se coloca en frente del primer grupo de elementos de antena radiantes 14A que representan una mitad de la abertura de antena. Al mismo tiempo, el dispositivo de 4 puertos 18 que alimenta toda la abertura incluye una desviación de fase a propósito en forma del segundo elemento de desviación de fase 24 para compensar el desequilibrio de fases en la abertura introducido por el primer elemento de desviación de fase 22. Esta desviación de fase intencionada en la abertura y el dispositivo de 4 puertos proporciona propiedades de cancelación de ROA deseadas.

El material dieléctrico de placa plana del tamaño de media abertura que actúa como el primer elemento de desviación de fase 22 debería tener un grosor de media longitud de onda (longitud de onda dentro del medio dieléctrico) alrededor de la frecuencia media de la banda operativa de la antena en red 10. Idealmente, material de vidrio con la constante dieléctrica de 4 puede proporcionar el grosor que sea exactamente el cuarto de longitud de onda en espacio libre y se convierte a una desviación de fase de 90 grados en espacio libre. Sin embargo, a falta del vidrio también pueden utilizarse otros materiales dieléctricos, con grosores apropiados, para alcanzar una mejora similar, aunque alejándose de los criterios rigurosos de un grosor de media longitud de onda. Como alternativa, pueden emplearse realizaciones de múltiples capas como el elemento de desviación de fase 22, con el fin de proporcionar simultáneamente tanto la corrección de fase de inserción deseada como propiedades de sintonización de entrada deseadas.

Haciendo referencia a las Figuras 2A-2B, se muestra una primera realización particular de la presente invención como se describe en el presente documento. El primer grupo de elementos de antena radiantes 14A consiste en cuatro elementos de antena radiantes 14 acoplados al Puerto 2 del dispositivo de 4 puertos 18 a través de una estructura de alimentación corporativa 20A de entre 1 y 4 divisores de potencia. De forma similar, el segundo grupo de elementos de antena radiantes 14B consiste en cuatro elementos de antena radiantes 14 acoplados al Puerto 3 del dispositivo de 4 puertos 18 a través de una estructura de alimentación corporativa 20B de entre 1 y 4 divisores de potencia.

El dispositivo de 4 puertos 18 en esta realización es una T mágica de guiaondas de 4 puertos. Además, en esta realización el primer elemento de desviación de fase 22 consiste en una media abertura rebajada. De esta manera, el primer elemento de desviación de fase es un aire dieléctrico 22a y se configura para introducir una desviación de fase de aproximadamente 90 grados a frecuencia media de una banda operativa de la antena en red. Para compensar el impacto de fase radiada debido a la introducción del aire dieléctrico 22a, el dispositivo de 4 puertos 18 incluye brazos colineales con desequilibrio de fases. Específicamente, el brazo colineal en el Puerto 3 incluye una longitud de línea de alimentación de 90 grados adicional que representa el segundo elemento de desviación de fase

Las Figuras 3A y 3B ilustran otra realización particular similar a la realización de las Figuras 2A-2B, pero con las siguientes excepciones. En lugar del aire dieléctrico 22a, se introduce placa dieléctrica 22b en la abertura de antena en frente de los elementos de antena radiantes 14A. Para compensar el impacto de fase radiada debido a la introducción de la placa dieléctrica 22b, el dispositivo de 4 puertos 18 incluye nuevamente brazos colineales con desequilibrio de fases. Específicamente, el brazo colineal en el Puerto 3 incluye una longitud de línea de alimentación de 90 grados adicional que representa el segundo elemento de desviación de fase 24.

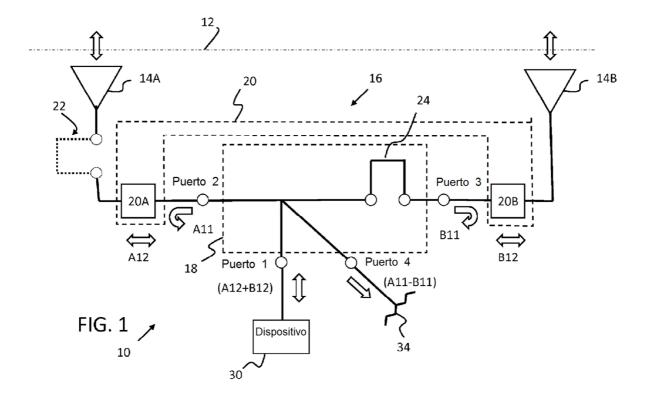
ES 2 623 767 T3

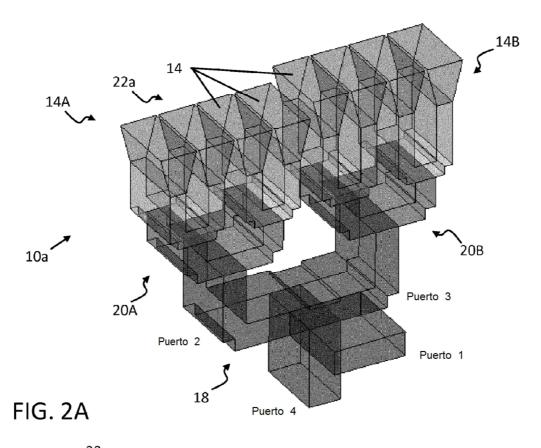
Aunque la invención se ha mostrado y descrito con respecto a una determinada realización o realizaciones, a otros expertos en la materia se les pueden ocurrir alteraciones y modificaciones equivalentes cuando lean y entiendan la presente memoria descriptiva y los dibujos adjuntos. En particular, respecto a las diversas funciones realizadas por los elementos descritos anteriormente (componentes, conjuntos, dispositivos, composiciones, etc.), los términos (incluida una referencia a un "medio") utilizados para describir dichos elementos tienen por objeto corresponder, salvo que se indique otra cosa, a cualquier elemento que realice la función especificada del elemento descrito (es decir, que sea funcionalmente equivalente), aunque no sea estructuralmente equivalente a la estructura desvelada que realiza la función en la realización o realizaciones a modo de ejemplo de la invención del presente documento. Además, aunque anteriormente pueda haberse descrito una característica de la invención particular solo con respecto a una o varias de diversas realizaciones, dicha característica puede combinarse con una o varias características distintas de las otras realizaciones, como sea conveniente y ventajoso para cualquier aplicación determinada o particular.

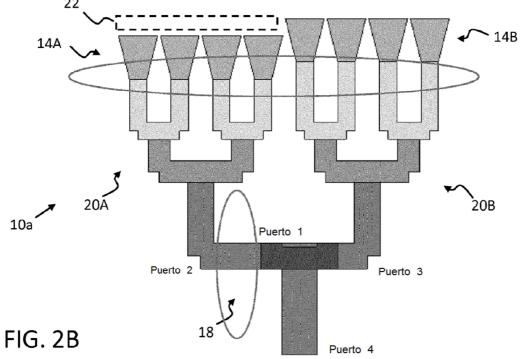
10

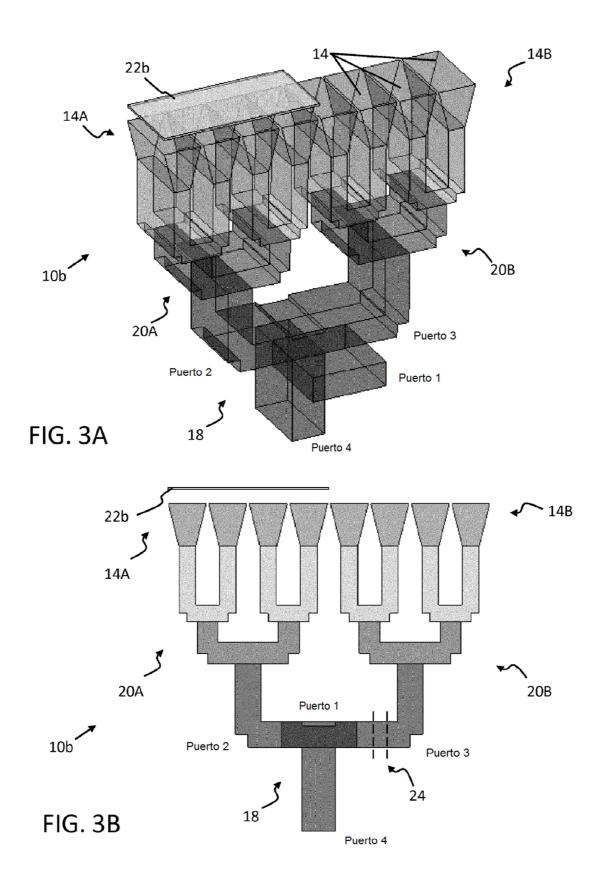
REIVINDICACIONES

1. Una antena en red (10), que comprende:


25


35


40


45

- una pluralidad de elementos de antena radiantes dispuestos para formar una abertura de antena, incluyendo la pluralidad de elementos de antena radiantes un primer grupo de elementos de antena radiantes (14a) y un segundo grupo de elementos de antena radiantes (14b) distinto en el agrupamiento del primer grupo de elementos de antena radiantes;
- una red de alimentación corporativa (16) configurada para alimentar la pluralidad de elementos de antena radiantes, en donde la red de alimentación corporativa incluye un dispositivo de 4 puertos (18) que comprende un puerto de suma (Puerto 1), un puerto de diferencia (Puerto 4), un primer puerto de señal (Puerto 2) y un segundo puerto de señal (Puerto 3), con el primer puerto de señal acoplado a través de la red de alimentación corporativa al primer grupo de elementos radiantes y el segundo puerto de señal acoplado a través de la red de alimentación corporativa al segundo grupo de elementos radiantes;
- un primer elemento de desviación de fase (22) conectado entre el primer grupo de elementos de antena radiantes y el primer puerto de señal, en donde dicho primer elemento de desviación de fase está configurado para introducir una desviación de fase predeterminada al primer grupo de elementos de antena radiantes; y un segundo elemento de desviación de fase (24) situado dentro del dispositivo de 4 puertos (18) y que está configurado para que el segundo puerto de señal introduzca una segunda desviación de fase predeterminada al segundo grupo de elementos de antena radiantes.
 - 2. La antena en red de acuerdo con la reivindicación 1, en donde el primer grupo de elementos de antena radiantes (14a) y el segundo grupo de elementos de antena radiantes (14b) representan cada uno una mitad correspondiente de la abertura de la antena.
 - 3. La antena en red de acuerdo con una cualquiera de las reivindicaciones 1-2, en donde el primer elemento de desviación de fase (22) comprende un material dieléctrico de placa plana (22b) colocado enfrente del primer grupo de elementos de antena radiantes.
- 4. La antena en red de acuerdo con la reivindicación 3, en donde el material dieléctrico de placa plana (22b) incluye vidrio y/o aire.
 - 5. La antena en red de acuerdo con una cualquiera de las reivindicaciones 1-2, en donde el primer elemento de desviación de fase (22) comprende una longitud de línea de desviación de fase acoplada entre el primer grupo de elementos de antena radiantes y la red de alimentación corporativa.
 - 6. La antena en red de acuerdo con una cualquiera de las reivindicaciones 1-5, en donde el primer elemento de desviación de fase (22) introduce una desviación de fase de aproximadamente 90 grados a frecuencia media de una banda operativa de la antena en red.
 - 7. La antena en red de acuerdo con una cualquiera de las reivindicaciones 1-6, en donde el primer puerto de señal (Puerto 2) y el segundo puerto de señal (Puerto 3) representan extremos respectivos de primeros y segundos brazos colineales incluidos en el dispositivo de 4 puertos, y el segundo elemento de desviación de fase comprende una longitud de línea adicional en el segundo brazo colineal.
 - 8. La antena en red de acuerdo con la reivindicación 7, en donde el segundo elemento de desviación de fase (24) tiene una longitud de aproximadamente 90 grados con respecto a una frecuencia media de una banda operativa de la antena en red.
- 9. La antena en red de acuerdo con una cualquiera de las reivindicaciones 1-8, en donde el dispositivo de 4 puertos es un acoplador en T mágica, un acoplador híbrido en cuadratura y/o un acoplador de anillo híbrido en cuadratura.
 - 10. La antena en red de acuerdo con una cualquiera de las reivindicaciones 1-9, en donde la red de alimentación corporativa consiste en componentes de guiaondas, de microcintas y/o de líneas de cinta.

