

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 624 728

61 Int. Cl.:

H04L 12/725 (2013.01) H04L 12/751 (2013.01) H04L 12/715 (2013.01) H04L 12/741 (2013.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 20.09.2012 E 15185312 (4)
Fecha y número de publicación de la concesión europea: 15.02.2017 EP 2993942

(54) Título: Método y dispositivo de enrutamiento basado en el rendimiento

(30) Prioridad:

30.09.2011 CN 201110297757

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 17.07.2017

73) Titular/es:

HUAWEI TECHNOLOGIES CO., LTD. (100.0%) Huawei Administration Building, Bantian Longgang District, Shenzhen, Guangdong 518129, CN

(72) Inventor/es:

XU, XIAOHU y ZENG, QING

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Método y dispositivo de enrutamiento basado en el rendimiento

5 CAMPO DE LA INVENCIÓN

15

30

40

50

55

La presente invención se refiere al campo de tecnologías de comunicaciones y en particular, a un método y dispositivo de enrutamiento basado en el rendimiento.

10 ANTECEDENTES DE LA INVENCIÓN

Un BGP (Border Gateway Protocol, protocolo de pasarela fronteriza) se utiliza para transmitir información de enrutamiento entre ASs (autonomous systems, sistema autónomos) y en el interior de un AS. El protocolo BGP, como un protocolo de capa de aplicación, se ejecuta en un enrutador BGP memoriza las tablas de enrutamiento BGP, que son una información de enrutamiento adyacente en la base Adj-RIB-in, una información de enrutamiento adyacente fuera de la base Adj-RIB-out y una base de información de enrutamiento local Local-RIB. El BGP mantiene una Adj-RIB-in y una Adj-RIB-out de cada BGP adyacente. Sin embargo, el RIB Local se utiliza para memorizar la información de enrutamiento que cumple una política de BGP configurada para un dispositivo local.

Después de que el BGP establezca una sesión con una adyacencia, el enrutador BGP extrae una ruta desde la Local-RIB, realiza un procesamiento de conformidad con una política de salida para un enrutador BGP adyacente, establece una ruta que cumple la política en Adj-RIB-out del enrutador BGP y envía una ruta en la Adj-RIB-out al enrutador BGP adyacente. El enrutador BGP adyacente establece la ruta recibida en la Adj-RIB-in del enrutador BGP adyacente, de modo que el BGP tome una decisión y realice el procesamiento. Actualmente, la información de enrutamiento memorizada en la Local-RIB se selecciona principalmente a partir de la Adj-RIB-in sobre la base de una política del atributo más corto de AS-Path (sistema autónomo-ruta). Desde la perspectiva de la experiencia del usuario, la información de enrutamiento no es necesariamente óptimo.

Otros métodos de enrutamiento basados en el rendimiento se dan a conocer en las publicaciones XP001517374 y XP010915526.

SUMARIO DE LA INVENCIÓN

Las formas de realización de la presente invención dan a conocer un método y un dispositivo de enrutamiento basado en el rendimiento, que pueden implantar el intercambio de una ruta de rendimiento mediante la expansión de un protocolo de pasarela fronteriza BGP.

Para conseguir el objetivo anterior, las formas de realización de la presente invención adoptan las soluciones técnicas siguientes:

En un aspecto de la idea inventiva, se da a conocer un método de enrutamiento basado en el rendimiento, en donde el método incluye:

recibir, por un primer PCR, una primera información de enrutamiento según el rendimiento enviada por un segundo PCR, en donde la primera información de enrutamiento según el rendimiento incluye un primer atributo de parámetro del rendimiento:

determinar si una ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento existe, o no, en una base de información de enrutamiento adyacente Adj-RIB-in del primer PCR;

añadir la ruta de rendimiento a la base Adj-RIB-in cuando la ruta de rendimiento no existe en la Adj-RIB-in.

En correspondencia con el método anterior, se da a conocer, además, un dispositivo de enrutamiento basado en el rendimiento, en donde el dispositivo de enrutamiento incluye:

una primera unidad de recepción de información de enrutamiento según el rendimiento, configurada para recibir la primera información de enrutamiento según el rendimiento enviada por un segundo PCR, en donde la primera información de enrutamiento según el rendimiento incluye un primer atributo de parámetro del rendimiento;

on una unidad de determinación, configurada para determinar si una ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento existe en una base de información de enrutamiento adyacente Adj-RIB-in del primer PCR; y

una unidad de memorización de información de enrutamiento según el rendimiento, configurada para añadir la primera información de enrutamiento según el rendimiento a la Adj-RIB-in del primer PCR cuando la ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento no existe en la Adj-RIB-

in del primer PCR.

5

15

30

En el método y dispositivo de enrutamiento basado en el rendimiento dados a conocer por las formas de realización de la presente invención, el intercambio de una ruta de rendimiento se realiza a este respecto y la ruta de rendimiento se utiliza para el enrutamiento de paquetes, proporcionando así una mejor experiencia de servicio para un usuario.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

- Para describir las soluciones técnicas en las formas de realización de la presente invención o en la técnica anterior con mayor claridad, a continuación se describen brevemente los dibujos adjuntos requeridos para describir las formas de realización. Evidentemente, los dibujos adjuntos en la descripción siguiente ilustran solamente algunas formas de realización de la presente invención y un experto en esta técnica puede derivar, además, otros dibujos en función de estos dibujos adjuntos sin necesidad de esfuerzos creativos.
 - La Figura 1 es un diagrama de flujo de un método de enrutamiento basado en el rendimiento en conformidad la forma de realización 1 de la presente invención;
- La Figura 2 es un diagrama estructural esquemático de un dispositivo de enrutamiento basado en el rendimiento en conformidad con la forma de realización 2 de la presente invención;
 - La Figura 3 es un diagrama de flujo de un método de enrutamiento basado en el rendimiento en conformidad con la forma de realización 3 de la presente invención,
- La Figura 4 es un primer diagrama de arquitectura de red que se aplica en el método de enrutamiento basado en el rendimiento en conformidad con la forma de realización 3 de la presente invención;
 - La Figura 5 es un segundo diagrama de arquitectura de red que se aplica en el método de enrutamiento basado en el rendimiento en conformidad con la forma de realización 3 de la presente invención;
 - La Figura 6 es un tercer diagrama de arquitectura de red que se aplica en el método de enrutamiento basado en el rendimiento en conformidad con la forma de realización 3 de la presente invención;
- La Figura 7 es un diagrama estructural esquemático de un dispositivo de enrutamiento basado en el rendimiento en conformidad con la forma de realización 4 de la presente invención;
 - La Figura 8 es un primer diagrama estructural esquemático de una unidad de generación de segundo atributo de parámetro del rendimiento en conformidad con la forma de realización 4 de la presente invención; y
- 40 La Figura 9 es un segundo diagrama estructural esquemático de una unidad de generación del segundo atributo de parámetro del rendimiento en conformidad con la forma de realización 4 de la presente invención.

DESCRIPCIÓN DETALLADA DE LAS FORMAS DE REALIZACIÓN

A continuación se describen, de forma clara y completa, las soluciones técnicas en las formas de realización de la presente invención haciendo referencia a los dibujos adjuntos en las formas de realización de la presente invención. Evidentemente, las formas de realización a describirse son simplemente una parte y no la totalidad de las formas de realización de la presente invención. Todas las demás formas de realización obtenidas por un experto en esta técnica, basadas en las formas de realización de la presente invención sin necesidad de esfuerzos creativos, caerán dentro del alcance de protección de la presente invención.

A continuación se describe un método y dispositivo de enrutamiento basado en el rendimiento dados a conocer por las formas de realización de la presente invención en detalle haciendo referencia a los dibujos adjuntos.

55 Ejemplo 1

60

65

En un aspecto de la idea inventiva, según se ilustra en la Figura 1, una forma de realización de la presente invención da a conocer un método de enrutamiento basado en el rendimiento, que puede ponerse en práctica por un primer PCR (Performance-routing Capable Router, enrutador BGP con una capacidad de enrutamiento según el rendimiento). El método incluye:

101. Recibir una primera información de enrutamiento según el rendimiento enviada por un segundo PCR, en donde la primera información de enrutamiento según el rendimiento incluye un primer atributo de parámetro del rendimiento.

A modo de ejemplo, la primera información de enrutamiento según el rendimiento puede incluir, además: información

de alcanzabilidad de capa de red NLRI (Network Layer Reachability Information) y un atributo de ruta, en donde un valor de un salto operativo siguiente (next-hop) en el atributo de ruta es una dirección del segundo PCR; el primer PCR y el segundo PCR son, cada uno de ellos, un PCR adyacente entre sí y el primer atributo de parámetro del rendimiento incluye un parámetro de rendimiento de red entre un PCR indicado por la información de salto operativo siguiente y un PCR indicado por la información de alcanzabilidad de capa de red NLRI (Network Layer Reachability Information).

En esta forma de realización, el parámetro de rendimiento de red incluido en el atributo de parámetro de rendimiento puede ser un retardo, una tasa de pérdida de paquetes y/o una fluctuación de retardo, o puede ser un parámetro de rendimiento completo que se calcula en función de uno o más de los parámetros anteriores.

A modo de ejemplo, la información de enrutamiento según el rendimiento enviada puede codificarse utilizando una subfamilia recientemente definida para diferenciarse de la información de enrutamiento de otras subfamilias de direcciones; la información de enrutamiento según el rendimiento enviada puede codificarse también utilizando una familia de direcciones/subfamilia de direcciones existentes, en donde el primer atributo de parámetro del rendimiento está incluido en un atributo de ruta de la primera información de enrutamiento según el rendimiento, a modo de ejemplo, incluida en un campo de atributo existente, tal como el campo de atributos MED (discriminador de salida múltiple, Multi-Exit Discriminators), del atributo de ruta, o un campo de atributo recientemente añadido puede utilizarse también para incluir el atributo del parámetro de rendimiento.

20

25

5

10

15

A modo de ejemplo, la primera información de enrutamiento según el rendimiento puede incluir, además, una etiqueta MPLS, en donde la etiqueta MPLS es una etiqueta asignada por el segundo PCR para una ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento, de modo que el reenvío de datos de un paquete de datos pueda realizarse por intermedio de una MPLS sobre la base de la ruta de rendimiento.

A modo de ejemplo, la primera información de enrutamiento según el rendimiento puede enviarse por intermedio de un mensaje de actualización (update) del BGP.

30 102. Determinar si una ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento, existe en una base de información de enrutamiento adyacente Adj-RIB-in del primer PCR.

En este caso, la ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento es una ruta de rendimiento entre el PCR de destino y el segundo PCR.

35

- 103. Añadir la primera información de enrutamiento según el rendimiento a la base Adj-RIB-in del primer PCR cuando la ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento no exista en la Adj-RIB-in.
- La ruta de rendimiento en el método de enrutamiento basado en el rendimiento que se da a conocer por esta forma de realización es un método de enrutamiento basado en la utilización de un valor de parámetro de rendimiento de red como una medida de selección de ruta. A modo de ejemplo, un parámetro de rendimiento de red puede ser un parámetro tal como un retardo, una tasa de pérdida de paquetes o una fluctuación de retardo, o puede ser también un parámetro de rendimiento completo que se calcula utilizando un algoritmo específico con el múltiplo de los parámetros de rendimiento individuales anteriores como una entrada. A modo de ejemplo, cuanto más pequeño es el valor del parámetro de rendimiento de red en la ruta de rendimiento tanto mejor es el rendimiento, es decir, tanto mejor es la ruta. Conviene señalar que una ventaja del enrutamiento se determina sobre la base de la selección de parámetros y un algoritmo específico correspondiente a un parámetro. La definición anterior es solamente una

50

Además, el método puede incluir también:

104. Añadir un segundo atributo de parámetro de rendimiento

manera posible para determinar la ventaja del enrutamiento.

- A la ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento, en donde un valor del segundo atributo de parámetro de rendimiento está basado en un valor del primer atributo de parámetro del rendimiento y un valor de parámetro de rendimiento de red desde el primer PCR al PCR indicado por la información de salto operativo siguiente en la primera información de enrutamiento según el rendimiento.
- Más concretamente, el valor del segundo atributo de parámetro de rendimiento es un valor de parámetro del rendimiento de red de una ruta entre el primer PCR y un PCR de destino que se indica por la NLRI incluida en la primera información de enrutamiento según el rendimiento.
- 105. Seleccionar una ruta de rendimiento óptimo a partir de las rutas de rendimiento con el mismo valor NLRI en función del segundo atributo de parámetro del rendimiento, y salvaguardar la ruta de rendimiento óptimo y un segundo atributo de parámetro del rendimiento en la ruta de rendimiento óptimo en una base de información de

enrutamiento local Loc-RIB del primer PCR.

5

15

20

25

30

35

40

45

55

60

65

A modo de ejemplo, una ruta de rendimiento en la que un valor de un segundo atributo de parámetro del rendimiento es el más pequeño en las rutas de rendimiento para un determinado PCR de destino puede utilizarse como la ruta de rendimiento óptimo para el PCR de destino.

A modo de ejemplo, el método de enrutamiento basado en el rendimiento puede incluir, además:

106. Si la ruta de rendimiento óptimo en la base de información de enrutamiento local del primer PCR se actualiza, el primer PCR notifica a un PCR adyacente la ruta de rendimiento óptimo actualizada.

A modo de ejemplo, el hecho de que el primer PCR envíe la ruta de rendimiento óptimo actualiza al PCR adyacente puede incluir. El primer PCR establece un salto operativo siguiente en la información de enrutamiento según el rendimiento enviada al PCR adyacente para sí mismo (el primer PCR) y establece un atributo de parámetro de rendimiento a un atributo de parámetro del rendimiento de una ruta de rendimiento desde el primer PCR a un PCR de destino de la ruta de rendimiento óptimo actualizada; o el primer PCR establece un salto operativo siguiente en la información de enrutamiento según el rendimiento actualizada enviada al PCR advacente para un PCR advacente desde el que está la información de enrutamiento según el rendimiento actualizada, y establece un atributo de parámetro de rendimiento para un atributo de parámetro de rendimiento de una ruta de rendimiento a partir del PCR adyacente desde el que está la información de enrutamiento según el rendimiento actualizada a un PCR de destino de la ruta de rendimiento actualizada; a continuación, la información de enrutamiento según el rendimiento se envía al PCR adyacente del primer PCR. A modo de ejemplo, si la ruta de rendimiento óptimo que incluye el segundo atributo de parámetro del rendimiento y está en la base de información de enrutamiento local del primer PCR se actualiza, el primer PCR notifica al PCR adyacente de la ruta de rendimiento óptimo actualizada en este caso; durante la notificación, el primer PCR puede establecer el salto operativo siguiente de la información de enrutamiento según el rendimiento al primer PCR por sí mismo; en este caso, un atributo de parámetro del rendimiento de la información de enrutamiento según el rendimiento notificada es el segundo atributo de parámetro del rendimiento, es decir, el atributo de parámetro del rendimiento de la ruta de rendimiento desde el primer PCR al PCR de destino que se indica por la NLRI en la ruta de rendimiento óptimo actualizada; si el salto operativo siguiente de la información de enrutamiento según el rendimiento notificada se establece para el PCR advacente a partir del que está la información de enrutamiento según el rendimiento, es decir, el segundo PCR, el atributo de parámetro del rendimiento de la información de enrutamiento según el rendimiento notificada en este caso es el primer atributo de parámetro del rendimiento, es decir, el atributo de parámetro del rendimiento de la ruta de rendimiento desde el segundo PCR al PCR de destino que se indica por la NLRI en la ruta de rendimiento óptimo actualizada. La NLRI en la información de enrutamiento según el rendimiento notificada por el primer PCR al PCR adyacente permanece invariable.

En correspondencia, si la información de enrutamiento según el rendimiento notificada por el primer PCR al PCR adyacente incluye información de etiqueta de MPLS, una etiqueta MPLS incluida es una etiqueta MPLS correspondiente a un PCR de salto operativo siguiente en la información de enrutamiento según el rendimiento. A modo de ejemplo, si el PCR de salto operativo siguiente en la información de enrutamiento según el rendimiento es el segundo PCR, la etiqueta MPLS es una etiqueta asignada por el segundo PCR; si el PCR de salto operativo siguiente en la información de enrutamiento según el rendimiento es el primer PCR, la etiqueta MPLS es una etiqueta asignada por el primer PCR.

En el método de enrutamiento basado en el rendimiento dado a conocer por la forma de realización de la presente invención, el intercambio de una ruta de rendimiento se realiza y la ruta de rendimiento se utiliza para el enrutamiento de paquetes, proporcionando, de este modo, una mejor experiencia de servicio para un usuario.

50 Ejemplo 2

Según se ilustra en la Figura 2, correspondiente a la forma de realización 1 del método anterior, una forma de realización de la presente invención da a conocer un dispositivo de enrutamiento basado en el rendimiento, que incluye:

una primera unidad de recepción de información de enrutamiento según el rendimiento 21, configurada para recibir la primera información de enrutamiento según el rendimiento enviada por un segundo PCR, en donde la primera información de enrutamiento según el rendimiento incluye un primer atributo de parámetro del rendimiento; una manera para que la primera unidad de recepción de información de enrutamiento según el rendimiento 21 reciba la información de enrutamiento según el rendimiento es la misma que la descrita en la etapa anterior 101 y por ello no se describe aquí de forma repetida;

una unidad de determinación 22, configurada para determinar si una ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento existe, o no, en una base de información de enrutamiento adyacente Adj-RIB-in del primer PCR; y

una unidad de memorización de información de enrutamiento según el rendimiento 23, configurada para añadir la primera información de enrutamiento según el rendimiento a la base Adj-RIB-in del primer PCR cuando la ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento no existe en la base Adj-RIB-in del primer PCR; en donde un proceso para que la unidad de memorización de información de enrutamiento según el rendimiento 23 añada la información de enrutamiento según el rendimiento a la base Adj-RIB-in es la misma que la descrita en la etapa anterior 103, y por ello no se describe aquí de forma repetida.

Además, el dispositivo de enrutamiento basado en el rendimiento puede incluir, además:

una unidad de generación del segundo atributo de parámetro del rendimiento 24, configurada para generar un segundo atributo de parámetro del rendimiento en conformidad con un valor de parámetro del rendimiento de red desde el primer PCR a un PCR indicado por la información de salto operativo siguiente en la primera información de enrutamiento según el rendimiento y un valor de parámetro del rendimiento de red en el primer atributo de parámetro del rendimiento, y añadir el segundo atributo de parámetro del rendimiento a la primera información de enrutamiento según el rendimiento; en donde un valor del segundo atributo de parámetro del rendimiento es un valor de parámetro de rendimiento de red de una ruta entre el primer PCR y un PCR de destino indicado por la NLRI incluida en la primera información de enrutamiento según el rendimiento; y

una unidad de selección de ruta de rendimiento óptimo 25, configurada para seleccionar una ruta de rendimiento óptimo a partir de las rutas de rendimiento con el mismo valor NLRI en función del segundo atributo de parámetro del rendimiento, y salvaguardar la ruta de rendimiento óptimo y el segundo atributo de parámetro del rendimiento en una base de información de enrutamiento local Loc-RIB del primer PCR, en donde un proceso para que la unidad de selección de ruta de rendimiento óptimo 25 realice las operaciones anteriores es el mismo que el descrito en la etapa 105 anterior, y por ello no se describe aquí de forma repetida.

Además, el dispositivo de enrutamiento basado en el rendimiento puede incluir, además:

una unidad de notificación de información de enrutamiento 26, configurada para, cuando se actualiza la ruta de rendimiento óptimo en la base de información de enrutamiento local del primer PCR, notificar a un PCR adyacente de la ruta de rendimiento óptimo actualizada, en donde un proceso para que la unidad de notificación de información de enrutamiento 26 realice la operación anterior es el mismo que el descrito en la etapa 106 anterior y por ello no se describe aquí de forma repetida.

En el dispositivo de enrutamiento basado en el rendimiento dado a conocer por la forma de realización de la presente invención, el intercambio de una ruta de rendimiento se realiza y dicha ruta de rendimiento se utiliza para el enrutamiento de paquetes, proporcionando así una mejor experiencia de servicio para un usuario.

Ejemplo 3

5

25

30

50

55

60

- 40 Según se ilustra en la Figura 3, una forma de realización de la presente invención da a conocer un método de enrutamiento basado en el rendimiento, que se utiliza para transmitir información de enrutamiento según el rendimiento entre ASs y en el interior de un AS, en donde un enrutador BGP en el interior del AS está conectado en una manera de malla completa (full-mesh). El método incluye:
- 45 301. Un PCR local negocia una capacidad de enrutamiento según el rendimiento con un BGP próximo.

En esta etapa, el PCR local puede negociar la capacidad de enrutamiento según el rendimiento con el BGP próximo por intermedio de un proceso de notificación de capacidad de expansión de multiprotocolo BGP, con el fin de negociar si el PCR local y el BGP próximo soportan, respectivamente, las operaciones de envío, procesamiento y recepción de una ruta de rendimiento.

Más concretamente, la negociación de capacidad de enrutamiento según el rendimiento puede estar basada en un proceso de notificación de capacidad de expansión de multiprotocolos definido en RFC4760, y los campos en un parámetro opcional de capacidades (Capabilities Optional Parameter) en un mensaje BGP se establecen como sigue:

Código de capacidad (capability code) = 1 indica que el mensaje BGP es un BGP de multiprotocolos (protocolo de pasarela fronteriza multiprotocolos); un campo AFI (Address Family Identifier, identificador de familia de direcciones) en un campo Capability Value (valor de capacidad) que indica si una ruta transmitida por la ruta de rendimiento es una ruta IPv4 o una ruta IPv6; un campo SAFI (Subsequent Address Family Identifier, identificador de familia de direcciones posterior) se establece para un código SAFI que es individualmente asignado por una IANA (Internet Assigned Numbers Authority, Autoridad de números asignados de Internet) para la ruta de rendimiento.

En esta forma de realización, el BGP en el interior del AS está conectado en la manera de malla completa; por lo tanto, el PCR local puede descubrir todos los PCRs adyacentes en el interior del AS por intermedio del proceso de negociación de capacidad anterior; es decir, después de que tenga éxito la negociación de capacidad de

enrutamiento según el rendimiento, el PCR local y un PCR adyacente pueden descubrirse entre sí, y si el PCR es un ASBR (AS Border Router, enrutador frontero de sistema autónomo), el PCR puede descubrir también un PCR en el interior de un AS distante que está en la adyacencia de EBGP (External Border Gateway Protocol, protocolo de pasarela fronteriza exterior) con el PCR.

5

10

Más concretamente, según se ilustra en la Figura 4, una sesión/conexión de BGP de una malla completa se establece entre enrutadores BGP en el interior de un AS100 y un AS200. Por intermedio del proceso de negociación de capacidad de enrutamiento según el rendimiento BGP, un R1 descubre que los R2 y R3 próximos de IBGP son PCRs y asimismo, descubre también que un R4 próximo de EBGP es también un PCR. De modo similar, otros PCRs pueden descubrir también, por intermedio de la negociación de enrutamiento según el rendimiento de un IBGP (Interior Border Gateway Protocol, protocolo de pasarela fronteriza interior) o una sesión de EBGP, si sus IBGP próximos o EBGP próximos son PCRs.

Cuando un RR de reflector de enrutamiento se despliega en el interior del AS, según se ilustra en la Figura 6, un R0 es un reflector de enrutamiento con la capacidad de enrutamiento según el rendimiento, y un R1 a un R3 son PCRs 15 20

de enrutadores BGP con la capacidad de enrutamiento según el rendimiento; los R1 a R3 necesitan notificar, en el interior del AS, un mensaje de actualización de BGP que incluye un atributo de grupo de expansión con un significado específico, para poner en práctica una función de descubrimiento automático de PCR en el interior del AS. Cuando un reflector de enrutamiento RR se despliega en el interior del AS, los PCRs que están conectados al RR se refieren cada uno de ellos como un PCR adyacente entre sí. Cuando el reflector de enrutamiento RR se despliega en el interior del AS, el PCR no puede descubrir todos los PCRs próximos en el interior del AS por intermedio de la etapa 301 puesto que no existe ninguna sesión/conexión de BGP entre algunos enrutadores de PCR; en este caso, después de la negociación, la función de descubrimiento automático de PCR en el interior del AS se pone en práctica distribuyendo el mensaje de actualización que incluye un atributo de grupo de expansión con un significado específico para los PCRs próximos en el interior del AS; un campo de NLRI en el mensaje de actualización incluye una dirección IP del PCR que envía el mensaje de actualización y la dirección es también un ID del PCR.

302. El PCR local mide el rendimiento de red entre el PCR local y el PCR adyacente.

30

25

En esta etapa, el PCR puede medir el rendimiento de red entre el PCR y el PCR adyacente; el rendimiento de la red, a modo de ejemplo, puede ser un retardo, una tasa de pérdida de paquetes y/o una fluctuación de retardo desde el PCR local al PCR advacente; el retardo, a modo de ejemplo, puede ser un tiempo de ida y vuelta RTT (Round Trip Time). El PCR puede medir el rendimiento de transmisión en una manera de medición periódica o puede utilizar también otras maneras de medición en función de los requisitos. Además, si el PCR es un ASBR, un retardo entre el PCR y un PCR en el interior del AS distante como un EBGP próximo del PCR puede medirse también a este respecto.

40

35

Más concretamente, según se ilustra en la Figura 5, los PCRs (a modo de ejemplo, un R1, un R2 y un R3) en el interior de un AS100 realizan una medición de RTT entre sí. Además, el R1 como un ASBR del AS100 y un R4 (es decir, un EBGP próximo del R1) en el interior de un AS200 realizan la medición de RTT entre sí. De modo similar, los PCRs (a modo de ejemplo, el R4 y un R5) en el interior del AS200 realizan la medición de RTT entre sí.

45

A modo de ejemplo, la medición anterior del retardo para el PCR adyacente puede ponerse en práctica en una manera operativa de ICMP (Internet Control Message Protocol, protocolo de mensaje de control de Internet), PING (Packet Internet Groper, Rastreador de Paquetes en Internet) y los detalles no se describen aquí de forma repetida.

50

303. El PCR local recibe la primera información de enrutamiento según el rendimiento enviada por el PCR adyacente, en donde la primera información de enrutamiento según el rendimiento incluye un primer atributo de parámetro del rendimiento.

55

A modo de ejemplo, la primera información de enrutamiento según el rendimiento incluye la NLRI y el primer atributo de parámetro del rendimiento, en donde la NLRI está dirigida a un PCR de destino de la primera ruta de rendimiento. A modo de ejemplo, la información de enrutamiento según el rendimiento enviada puede codificarse utilizando una subfamilia recientemente definida a diferenciarse de la información de enrutamiento de otras subfamilias de direcciones; la información de enrutamiento según el rendimiento enviada puede codificarse también utilizando una familia de direcciones/subfamilia de direcciones existentes, en donde el primer atributo de parámetro del rendimiento está incluido en un atributo de ruta de la primera información de enrutamiento según el rendimiento, a modo de ejemplo, contenida en un campo de atributo existente, tal como un campo de atributo MED (discriminador multisalida, Multi-Exit Discriminators) del atributo de ruta o un campo de atributo recientemente añadido puede utilizarse también para incluir el atributo de parámetro del rendimiento.

60

65

Un salto operativo siguiente en el atributo de ruta puede ser el PCR adyacente que envía la primera información de enrutamiento según el rendimiento, y en este caso, un valor del primer atributo de parámetro del rendimiento es un parámetro de rendimiento de red entre el PCR advacente y un PCR de destino indicado por la NLRI. Como alternativa, un salto operativo siguiente en el atributo de ruta puede ser un prefijo de una dirección de otro PCR que es diferente del PCR adyacente que envía la primera información de enrutamiento según el rendimiento, y en este caso, el primer atributo de parámetro del rendimiento es un parámetro de rendimiento de red entre el otro PCR y un PCR de destino indicado por el valor de NLRI. La primera información de enrutamiento según el rendimiento, a modo de ejemplo, puede incluirse en el mensaje de actualización de BGP. La primera información de enrutamiento según el rendimiento puede incluir también una etiqueta de MPLS que se asigna por el PCR adyacente para la primera información de enrutamiento según el rendimiento.

A modo de ejemplo, la primera información de enrutamiento según el rendimiento es la información de enrutamiento según el rendimiento local que se obtiene por el PCR adyacente en conformidad con el rendimiento de red de otro PCR adyacente al PCR adyacente obtenido mediante medición, o información de enrutamiento de rendimiento óptimo memorizada en una base de información de enrutamiento local Loc-RIB en el PCR adyacente. Si la primera información de enrutamiento según el rendimiento local del PCR adyacente, para un proceso de obtener la información de enrutamiento según el rendimiento local, puede hacerse referencia a la descripción contenida en la etapa 304 siguiente. Por ejemplo, el atributo de parámetro del rendimiento de la primera información de enrutamiento según el rendimiento de red de una ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento, y el parámetro de rendimiento de red es un retardo, una tasa de pérdida de paquetes y/o una fluctuación de retardo, o puede ser un parámetro de rendimiento completo que se calcula en conformidad con uno o más de los parámetros anteriores.

20

5

10

15

A modo de ejemplo, según se ilustra en la Figura 5, el R1 recibe la información de enrutamiento según el rendimiento enviada por el R3, en donde un prefijo de una dirección de red de un PCR de destino de la información de enrutamiento según el rendimiento es el R2, un atributo de parámetro del rendimiento es el tiempo de ida y vuelta que tiene un valor de 2 segundos, un salto operativo siguiente es el R3 y una etiqueta MPLS es 400;

25

35

- 304. El PCR local determina si una primera ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento existe en una base Adj-RIB-in.
- 305. El PCR añade la primera información de enrutamiento según el rendimiento a la base Adj-RIB-in cuando la primera información de enrutamiento según el rendimiento no existe en la base Adj-RIB-in del PCR local.
 - 306. Generar un segundo atributo de parámetro del rendimiento, y añadir el segundo atributo de parámetro del rendimiento a la ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento, en donde un valor del segundo atributo de parámetro del rendimiento está basado en el valor del primer atributo de parámetro del rendimiento y un valor del parámetro de rendimiento de red de una ruta desde el primer PCR a un PRC indicado por la información de salto operativo siguiente en la primera información de enrutamiento según el rendimiento.
- A modo de ejemplo, pueden existir dos maneras para obtener el valor del parámetro de rendimiento de red de la ruta desde el primer PCR al PRC indicado por la información de salto operativo siguiente en la primera información de enrutamiento según el rendimiento.
 - Manera 1: Confirmar la información de enrutamiento según el rendimiento local que tiene NLRI en la información de enrutamiento según el rendimiento local es la misma que una dirección de salto operativo siguiente en la primera información de enrutamiento según el rendimiento y luego, obtener un valor de parámetro de red en un atributo de parámetro del rendimiento de la información de enrutamiento según el rendimiento local.

A modo de ejemplo, un proceso para el PCR local para generar la información de enrutamiento según el rendimiento local es como sigue.

50

55

60

45

El PCR local genera la información de enrutamiento según el rendimiento local en conformidad con un parámetro de rendimiento de red de un PCR próximo diferente que se obtiene mediante medición en la etapa 302, en donde el parámetro de rendimiento de red, a modo de ejemplo, puede ser un retardo, una tasa de pérdida de paquetes y/o una fluctuación de retardo. La información de enrutamiento según el rendimiento local incluye también información de alcanzabilidad de capa de red NLRI (Network Layer Reachability Information) y la información de salto operativo siguiente (next-hop); en donde la información NLRI es un PCR de destino de una ruta del parámetro de rendimiento de red medido por el PCR local. A modo de ejemplo, el parámetro de rendimiento de red puede incluirse en un atributo de ruta de la información de enrutamiento según el rendimiento local, y el atributo de ruta puede ser un atributo de ruta existente o un atributo de ruta recientemente añadido. Conviene señalar que la información de enrutamiento según el rendimiento local puede incluir también una etiqueta MPLS, en donde la etiqueta MPLS es una etiqueta asignada por el PCR local para una ruta de rendimiento correspondiente a la información de enrutamiento según el rendimiento local, de modo que el reenvío de datos de un paquete de datos pueda realizarse en una manera MPLS sobre la base de la ruta de rendimiento.

65

A modo de ejemplo, el atributo de ruta de la ruta de rendimiento local incluye un retardo RTT entre el PCR local y el PCR adyacente, la información NLRI de la ruta de rendimiento local es el PCR adyacente, un valor de salto

operativo siguiente (next-hop) del atributo de ruta de la ruta de rendimiento local se establece a una dirección IP del PCR local y el atributo de ruta de la ruta de rendimiento local incluye una etiqueta MPLS asignada por el PCR local para la ruta de rendimiento local, en donde la etiqueta es única para el PCR local.

5 Más concretamente, tomando a modo de ejemplo el R1 ilustrado en la Figura 5, después de la medición de RTT, el R1 genera tres rutas de rendimiento local, que son:

10

15

- una ruta de rendimiento con el R2, en donde la información de alcanzabilidad de capa de red NLRI (Network Layer Reachability Information) de la ruta de rendimiento es una dirección IP del R2, un retardo de RTT es 6 segundos, una dirección de salto operativo siguiente es el propio R1 y una etiqueta MPLS asignada es 100;
- una ruta de rendimiento al R3, en donde la información de alcanzabilidad de capa de red NLRI (Network Layer Reachability Information) de la ruta de rendimiento es una dirección IP del R3, un retardo de RTT es 3 segundos, una dirección de salto operativo siguiente es el propio R1 y una etiqueta MPLS asignada es 200; y
- una ruta de rendimiento al R4, en donde la información de alcanzabilidad de capa de red NLRI (Network Layer Reachability Information) de la ruta de rendimiento es una dirección IP del R4, un retardo de RTT es 3 segundos, una dirección de salto operativo siguiente es el propio R1 y una etiqueta MPLS asignada es 300.
- Cuando un reflector de enrutamiento RR se despliega en el interior del AS, a modo de ejemplo, un RR con la capacidad de enrutamiento según el rendimiento solamente necesita notificar su capacidad de enrutamiento según el rendimiento en el proceso de negociación de la capacidad y en otro momento, no necesita liberar un mensaje de actualización de BGP especial para indicar que el RR es un PCR. De este modo, los PCRs en el interior de otros ASs no necesitan medir RTT para el RR.
 - Manera 2: Utilizar directamente el valor del parámetro de rendimiento de red registrado que está entre el PCR local y el PCR adyacente y se mide en la etapa 302.
- A modo de ejemplo, el atributo de parámetro del rendimiento del segundo atributo de parámetro del rendimiento 30 generado incluye el parámetro de rendimiento de red, en donde el parámetro de rendimiento de red puede ser un retardo, una tasa de pérdida de paquetes y/o una fluctuación de retardo o un parámetro de rendimiento completo que se calcula en conformidad con uno o más de los parámetros anteriores. Cuando el parámetro de rendimiento de red incluido es un retardo de transmisión, a modo de ejemplo, un tiempo de ida y vuelta RTT, el valor del segundo atributo de parámetro del rendimiento es una suma del valor del primer atributo de parámetro del rendimiento y del valor del parámetro de rendimiento de red desde el PCR local al PCR indicado por la información de salto operativo 35 siguiente en la primera información de enrutamiento según el rendimiento. Más concretamente, según se ilustra en la Figura 5, el R1 recibe la información de enrutamiento según el rendimiento enviada por el R3, en donde el prefijo de la dirección de red del PCR de destino es el R2, el tiempo de ida y vuelta en el atributo de parámetro del rendimiento es 2 segundos, la dirección de salto operativo siguiente es el R3 y la etiqueta MPLS asignada por el R3 40 para la ruta es 400. En conformidad con la información de enrutamiento según el rendimiento local generada por el R1 desde el R1 al R2 y la información de enrutamiento según el rendimiento recibida enviada por el R3, el R1 genera la información de enrutamiento según el rendimiento desde el R1 al R2 por intermedio del R3, en donde un prefijo de una dirección de red de un PCR de destino es el R2, el tiempo de ida y vuelta es 3 + 2 = 5 segundos, una dirección de salto operativo siguiente es el R3 y una etiqueta MPLS asignada para la ruta de rendimiento es 500. 45 Para otros PCRs, se pueden realizar también operaciones similares para generar la información de enrutamiento según el rendimiento para otros PCRs en el interior del AS100.
- El R4 puede generar información de enrutamiento según el rendimiento para otros PCRs en el interior del AS100 recibiendo información de enrutamiento según el rendimiento que procede del R1 a otros PCRs en el interior del AS100 y se envía por el R1 y utilizando la información de enrutamiento según el rendimiento local al R1, en donde un proceso de generación de la información de enrutamiento según el rendimiento es el mismo que un proceso para que el R1 genere la información de enrutamiento según el rendimiento y por ello no se describe aquí de forma repetida.
- 55 307. El PCR local selecciona, en conformidad con el segundo atributo de parámetro del rendimiento, una ruta de rendimiento óptimo a partir de rutas de rendimiento con un mismo prefijo de la dirección de red del PCR de destino y salvaguarda la ruta de rendimiento óptimo en la base Loc-RIB.
- Más concretamente, según se ilustra en la Figura 5, existen dos rutas desde el R1 al R2 y se encuentra, en función del atributo de parámetro del rendimiento, que el retardo de la ruta desde el R1 al R2 por intermedio de R3 es 5 segundos, que es un período más corto que el valor del retardo de 6 segundos de la ruta de rendimiento desde el R1 directamente al R2. Por lo tanto, una ruta para R3 por intermedio de R2 se utiliza como la ruta de rendimiento óptimo, y su información de enrutamiento según el rendimiento correspondiente se salvaguarda en la base Loc-RIB del R1. A modo de ejemplo, la ruta de rendimiento óptimo salvaguardada en la base Loc-RIB del R1 tiene, a la vez, el primer atributo de parámetro del rendimiento y el segundo atributo de parámetro del rendimiento.

308. Cuando cambia la ruta de rendimiento óptimo, el PCR local notifica a otro PCR adyacente la ruta de rendimiento óptimo cambiada.

5

10

15

20

25

30

35

60

65

A modo de ejemplo, el hecho de que el PCR local envíe la ruta de rendimiento óptimo actualizada al PCR adyacente puede incluir: El PCR local establece un salto operativo siguiente en la información de enrutamiento según el rendimiento enviada al PCR adyacente para el propio PCR local y establece un atributo de parámetro de rendimiento para un atributo de parámetro del rendimiento de una ruta de rendimiento desde el PCR local a un PCR de destino al que se dirige la NLRI de la ruta de rendimiento óptimo actualizada; o el PCR local establece un salto operativo siguiente en la información de enrutamiento según el rendimiento actualizada enviada al PCR adyacente para un PCR adyacente con respecto a la información de enrutamiento según el rendimiento procedente del PCR adyacente según la cual se genera la información de enrutamiento según el rendimiento actualizada, y establece un atributo de parámetro del rendimiento para un atributo de parámetro del rendimiento de la información de enrutamiento según el rendimiento desde el PCR adyacente en conformidad con la que se actualiza la información de enrutamiento según el rendimiento. A continuación, la información de enrutamiento según el rendimiento se envía al PCR adyacente del PCR local. A modo de ejemplo, se supone que la primera información de enrutamiento según el rendimiento que incluye el segundo atributo de parámetro del rendimiento se salvaguarda como una ruta óptima desde el R1 al R2 en la base de información de enrutamiento local del R1. El R1 notifica al PCR advacente, por ejemplo, el R4, sobre la primera información de enrutamiento según el rendimiento y puede establecer un salto operativo siguiente de la información de enrutamiento según el rendimiento al propio R1 durante la notificación de la primera información de enrutamiento según el rendimiento, en donde el atributo de parámetro del rendimiento incluido en la información de enrutamiento según el rendimiento notificada es el segundo atributo de parámetro del rendimiento, es decir, el atributo de parámetro del rendimiento de la ruta de rendimiento desde el R1 al R2 por intermedio del R3; si el salto operativo siguiente de la primera información de enrutamiento según el rendimiento notificada se establece para el PCR adyacente desde la cual la primera información de enrutamiento según el rendimiento es, es decir, el R3, el atributo de parámetro del rendimiento de la información de enrutamiento según el rendimiento notificada es el primer atributo de parámetro del rendimiento, es decir, el primer atributo de parámetro del rendimiento incluido cuando el R3 envía la primera información de enrutamiento según el rendimiento al R1, en donde el primer atributo de parámetro del rendimiento corresponde al atributo de parámetro del rendimiento de la ruta de rendimiento desde el R2 al R3. Durante la notificación de la ruta de rendimiento, el valor de NLRI en la información de enrutamiento según el rendimiento notificada por el primer PCR al PCR adyacente permanece invariable.

En consecuencia, si la información de enrutamiento según el rendimiento notificado por el primer PCR al PCR adyacente incluye la información de etiqueta MPLS, siendo una etiqueta MPLS incluida una etiqueta MPLS correspondiente a un PCR de salto operativo siguiente en la información de enrutamiento según el rendimiento. A modo de ejemplo, si el PCR de salto operativo siguiente en la información de enrutamiento según el rendimiento es el segundo PCR, la etiqueta MPLS es una etiqueta asignada por el segundo PCR; si el PCR de salto operativo siguiente en la información de enrutamiento según el rendimiento es el primer PCR, la etiqueta MPLS es una etiqueta asignada por el primer PCR.

40 Más concretamente, según se ilustra en la Figura 5, la segunda información de enrutamiento según el rendimiento se actualiza en la base Loc-RIB del R1: La NLRI es el R2, el retardo RTT es 5 segundos, la dirección de salto operativo siguiente es R3 y la etiqueta MPLS es 500; cuando el R1 notifica al PCR adyacente la ruta de rendimiento, el R1 puede cambiar la dirección de salto operativo siguiente de la información de enrutamiento según el rendimiento notificada al propio R1, de modo que la información de enrutamiento según el rendimiento notifica al 45 PCR adyacente es: La información NLRI es R2, el tiempo de ida y vuelta es 5 segundos, la dirección de salto operativo siguiente es R1 y la etiqueta MPLS es 500; y entonces, la información de enrutamiento según el rendimiento se envía a otro PCR adyacente, a modo de ejemplo, el R4; A modo de otro ejemplo, el R1 puede notificar también al PCR adyacente de la primera información de enrutamiento según el rendimiento correspondiente a la ruta de rendimiento óptimo actualizada y en este caso, la dirección de salto operativo siguiente de la información 50 de enrutamiento según el rendimiento notificada debe establecerse al PCR adyacente de donde procede la primera información de enrutamiento según el rendimiento, por ejemplo, R3, de modo que la información de enrutamiento según el rendimiento notificada al PCR adyacente es: La información NLRI es R2, el tiempo de ida y vuelta es 2 segundos. la dirección de salto operativo siguiente es R3 y la etiqueta MPLS es la etiqueta 400 en la primera información de enrutamiento según el rendimiento; y luego, la información de enrutamiento según el rendimiento se 55 envía a otro PCR adyacente, a modo de ejemplo, el R4.

Después de recibir la información de enrutamiento según el rendimiento notificada por el R1, R4 puede realizar la etapa 305 a la etapa 308 para obtener la ruta de rendimiento óptimo y cuando se actualiza la ruta de rendimiento óptimo, notificar al PCR adyacente del R4 la nueva información de enrutamiento según el rendimiento.

Además, para evitar un envío repetitivo o un bucle de enrutamiento, se sigue estrictamente un principio existente de notificación de enrutamiento de tipo de horizonte dividido (split-horizon) del BGP, es decir, excepto que sea un RR de reflector de enrutamiento, una ruta conocida a partir de un IBGP próximo no puede transmitirse a otros IBGP próximos.

Conviene señalar que la información de enrutamiento según el rendimiento notificada puede codificarse utilizando

una subfamilia recientemente definida para diferenciarse de la información de enrutamiento de otras subfamilias de direcciones; la información de enrutamiento según el rendimiento notificada puede codificarse también utilizando una familia de direcciones/subfamilia de direcciones existentes, en donde el primer atributo de parámetro del rendimiento está incluido en un atributo de ruta de la información de enrutamiento según el rendimiento transmitida, por ejemplo, incluida en un campo de atributos existente, tal como un atributo de MED (discriminador multisalida, Multi-Exit Discriminators), del atributo de ruta o un campo de atributo recientemente añadido puede utilizarse también para incluir el atributo de parámetro de rendimiento.

En una aplicación específica, cuando el PCR recibe un paquete de datos y una política local es el reenvío del enrutamiento según el rendimiento, el PCR encuentra una ruta de rendimiento óptimo correspondiente en la base Loc-RIB y reenvía el paquete de datos en conformidad con la ruta de rendimiento óptimo correspondiente.

Cuando el reflector de enrutamiento RR se despliega en el interior del AS, el RR con la capacidad de enrutamiento según el rendimiento habilita una función de Add-path (adición de una ruta) (para conocer más detalles, véase las rutas draft-ietf-idr-add-paths) es decir, una función de notificación de rutas múltiples, cuando se reenvía la información de enrutamiento según el rendimiento. De este modo, el RR con la capacidad de enrutamiento según el rendimiento puede transmitir, a un PCR próximo del RR, de conformidad con una regla de reflexión del enrutamiento BGP, información de enrutamiento según el rendimiento notificada por cada PCR en el interior del AS, con el fin de asegurar finalmente que la información de enrutamiento según el rendimiento enviada por el PCR o el PCR próximo pueda recibirse por todos los PCRs en el interior del AS. De este modo, cuando se adopta el RR, un resultado de cálculo final de la ruta de rendimiento no resulta afectado; es decir, el RR solamente completa la distribución y sincronización de la ruta de rendimiento entre los PCRs pero no afecta al resultado del cálculo de la ruta de rendimiento. Una manera de puesta en práctica específica es la misma que en las etapas anteriores y por ello no se describe aquí de forma repetida.

En el método de enrutamiento basado en el rendimiento dado a conocer por la forma de realización de la presente invención, el intercambio de una ruta de rendimiento se pone en práctica a este respecto y la ruta de rendimiento se utiliza para el enrutamiento de paquetes, con lo que se proporciona una mejor experiencia de servicio para un usuario.

Ejemplo 4

5

15

20

25

30

35

40

45

En correspondencia con la forma de realización 3 del método anterior, una forma de realización de la presente invención da a conocer, además, un dispositivo de enrutamiento basado en el rendimiento. El dispositivo de enrutamiento basado en el rendimiento puede ser un PCR (Performance-routing Capable Router, enrutador BGP con una capacidad de enrutamiento según el rendimiento).

El dispositivo de enrutamiento basado en el rendimiento dado a conocer por la forma de realización de la presente invención se refiere como un PCR local a continuación. El dispositivo de enrutamiento basado en el rendimiento dado a conocer por la forma de realización de la presente invención incluye:

una unidad de negociación de capacidad de enrutamiento según el rendimiento 71, configurada para negociar una capacidad de enrutamiento según el rendimiento con un BGP próximo, para confirmar si una extremidad homóloga soporta las funciones de envío, procesamiento y recepción de una ruta de rendimiento; en donde un proceso para la unidad de negociación de capacidad de enrutamiento según el rendimiento 71 para negociar la capacidad de enrutamiento según el rendimiento con el BGP próximo es el mismo que el de la etapa 301 y por ello no se describe aquí de forma repetida.;

una unidad de medida de rendimiento de red 72, configurada para medir un rendimiento de red con un PCR adyacente; en donde, a modo de ejemplo, el PCR próximo puede ser otro PCR adyacente en el interior de un AS en donde el PCR local está situado o un PCR como un ASBR adyacente;

un proceso para la unidad de medida de rendimiento de red 72 para medir el rendimiento de red con el PCR adyacente es el mismo que el de la etapa 302 y por ello no se describe aquí de forma repetida; más concretamente, la unidad de medida de rendimiento de red 72 puede incluir un módulo de medida de retardo 721, un módulo de medida de la tasa de pérdida de paquetes 722 y/o un módulo de medida de la fluctuación de retardo 723; a modo de ejemplo, la unidad de medida de rendimiento de transmisión 72 puede medir el rendimiento de transmisión en una manera ICMP (Internet Control Message Protocol, protocolo de mensaje de control de Internet) de PING (Packet Internet Groper, Rastreador de paquetes en Internet);

una unidad de recepción de la primera información de enrutamiento según el rendimiento 73, configurada para recibir una primera información de enrutamiento según el rendimiento enviada por el PCR adyacente, en donde la primera información de enrutamiento según el rendimiento incluye un primer atributo de parámetro del rendimiento; en donde

un proceso para la unidad de recepción de la primera información de enrutamiento según el rendimiento 74 para

•

60

55

recibir la primera información de enrutamiento según el rendimiento enviada por el PCR adyacente es el mismo que el de la etapa 303 y por ello no se describe aquí de forma repetida;

una unidad de determinación 74, configurada para determinar si una primera ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento existe en una base Adj-RIB-in; en donde un proceso para la unidad de determinación 74 para determinar si la primera ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento existe en la base Adj-RIB-in es el mismo que el de la etapa 304 y por ello no se describe aquí de forma repetida;

5

20

25

30

35

40

55

- una unidad de memorización de información de enrutamiento según el rendimiento 75, configurada para añadir la primera información de enrutamiento según el rendimiento a la base Adj-RIB-in cuando la primera ruta de rendimiento no existe en la Adj-RIB-in;
- una unidad de generación de segundo atributo de parámetro del rendimiento 76, configurada para generar un segundo atributo de parámetro del rendimiento de una ruta de rendimiento local y el primer atributo de parámetro del rendimiento, y añadir el segundo atributo de parámetro del rendimiento; en donde un proceso para la unidad de generación del segundo atributo de parámetro del rendimiento 76 para realizar las operaciones anteriores es el mismo que el de la etapa 306 y por ello no se describe aquí de forma repetida;
 - a modo de ejemplo, la unidad de generación del segundo atributo de parámetro del rendimiento 76 puede incluir específicamente: un módulo de registro de parámetro de rendimiento de red 761, configurado para registrar la información de parámetro de rendimiento a otro PCR adyacente en el interior del AS o el PCR como el ASBR adyacente, en donde la información de parámetro de rendimiento incluye el parámetro de rendimiento de red para el otro PCR adyacente en el interior del AS o el PCR como el ASBR adyacente que se obtiene mediante la medición por la unidad de medida de rendimiento de red;
 - un módulo de generación del segundo atributo de parámetro del rendimiento 762, configurado para generar un segundo atributo de parámetro del rendimiento en conformidad con un valor de parámetro de rendimiento de red que procede del PCR local para un PCR indicado por la información de salto operativo siguiente en la primera información de enrutamiento según el rendimiento y se registra por el módulo de registro de parámetro de rendimiento de red 761 y un valor de parámetro de rendimiento de red en el primer atributo de parámetro del rendimiento, y añadir el segundo atributo de parámetro del rendimiento a la primera información de enrutamiento según el rendimiento;
 - a modo de otro ejemplo, la unidad de generación del segundo atributo de parámetro del rendimiento puede incluir concretamente: un módulo de obtención de atributo de parámetro del rendimiento del enrutamiento según el rendimiento local 763, configurado para confirmar la información de enrutamiento según el rendimiento local en la que la NLRI en la información de enrutamiento según el rendimiento local es la misma que una dirección de salto operativo siguiente en la primera información de enrutamiento según el rendimiento y luego, obtener un valor de parámetro de red en un atributo de parámetro del rendimiento de la información de enrutamiento según el rendimiento local; y
- un módulo de generación del segundo atributo de parámetro del rendimiento 762, configurado para generar un segundo atributo de parámetro del rendimiento en conformidad con un valor de parámetro de rendimiento de red que procede del PCR local hacia un PCR indicado por la información de salto operativo siguiente en la primera información de enrutamiento según el rendimiento y se obtiene por el módulo de obtención de atributo de parámetro del rendimiento de rendimiento local 763 y un valor de parámetro de rendimiento de red en el primer atributo de parámetro del rendimiento, y añadir el segundo atributo de parámetro del rendimiento a la primera información de enrutamiento según el rendimiento;
 - una unidad de selección de ruta de rendimiento óptimo 77, configurada para seleccionar una ruta de rendimiento óptimo a partir de las rutas de rendimiento con la misma NLRI en función del segundo atributo de parámetro del rendimiento, y salvaguardar la ruta de rendimiento óptimo y la generada para la ruta de rendimiento óptimo en una base Loc-RIB; en donde un proceso para la unidad de selección de ruta de rendimiento óptimo 78 para realizar las operaciones anteriores es el mismo que el de la etapa 307 y por ello no se describe aquí de forma repetida;
- una unidad de notificación de información de enrutamiento 78, configurada para, cuando cambia la ruta de rendimiento óptimo, notificar a otro PCR adyacente de la ruta de rendimiento óptimo cambiada; en donde un proceso para la unidad de notificación de información de enrutamiento 78 para realizar la operación anterior es el mismo que el de la etapa 308 y por ello no se describe aquí de forma repetida; y
 - una unidad de generación de información de enrutamiento según el rendimiento local 79, configurada para generar una información de enrutamiento según el rendimiento local para el PCR adyacente, en donde un atributo de parámetro del rendimiento en la información de enrutamiento según el rendimiento local incluye un parámetro de rendimiento de red con el PCR adyacente obtenido mediante medición por la unidad de medida de rendimiento de

red 72, un proceso para la unidad de generación de la información de enrutamiento según el rendimiento local 79 para generar la información de enrutamiento según el rendimiento local para el PCR adyacente es el mismo que el proceso de generar la información de enrutamiento según el rendimiento local en la etapa 306 y por ello no se describe aquí de forma repetida.

5

Cuando un reflector de enrutamiento RR se despliega en el interior del AS en donde está situado el dispositivo de enrutamiento basado en el rendimiento, el dispositivo de enrutamiento basado en el rendimiento incluye, además, una unidad de notificación de atributo de grupo de expansión 710, configurada para notificar, en el interior del AS, un mensaje de actualización de BGP que incluye un atributo de grupo de expansión con un significado específico, para poner en práctica una función de descubrimiento automático del PCR en el interior del AS.

10

En el dispositivo de enrutamiento basado en el rendimiento dado a conocer por la forma de realización de la presente invención, el intercambio de una ruta de rendimiento se realiza a este respecto y la ruta de rendimiento se utiliza para el enrutamiento de paquetes, con lo que proporciona una mejor experiencia para un usuario.

15

A través de la descripción anterior de las maneras de puesta en práctica, un experto en esta técnica puede entender claramente que la presente invención puede ponerse en práctica mediante un software junto con una plataforma de hardware universal necesaria o por supuesto, puede ponerse en práctica también mediante hardware. Sobre la base de dicho entendimiento, la totalidad o una parte de las soluciones técnicas de la presente invención, que contribuyen a la técnica anterior, pueden materializarse en una forma de producto de software. El producto informático puede memorizarse en un soporte de memorización tal como una memoria ROM/RAM, un disco magnético o un disco óptico e incluye varias instrucciones a proporcionar a un dispositivo informático (que puede ser un ordenador personal, un servidor o un dispositivo de red, o similar) para realizar los métodos descritos en las formas de realización o alguna parte de las formas de realización de la presente invención.

25

20

La descripción anterior es simplemente maneras de puesta en práctica específicas de la presente invención, pero no está prevista para limitar el alcance de protección de la presente invención. Cualquier variación o sustitución fácilmente determinada por un experto en esta técnica dentro del alcance técnico dado a conocer en la presente invención deberá caer dentro del alcance de protección de la presente invención. Por lo tanto, el alcance de protección de las reivindicaciones.

30

En una quinta forma de realización, un método de enrutamiento basado en el rendimiento comprende:

35

recibir, por un primer PCR, una primera información de enrutamiento según el rendimiento enviada por un segundo PCR, en donde la primera información de enrutamiento según el rendimiento comprende un primer atributo de parámetro del rendimiento;

determinar si una ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento existe en una base de información de enrutamiento adyacente Adj-RIB-in del primer PCR; y

40

añadir la ruta de rendimiento a la base Adj-RIB-in cuando la ruta de rendimiento no exista en la Adj-RIB-in.

45

En un primer desarrollo adicional del método según la quinta forma de realización, en donde la primera información de enrutamiento según el rendimiento comprende, además, información de alcanzabilidad de capa de red e información de salto operativo siguiente de la ruta de rendimiento; el primer atributo de parámetro del rendimiento comprende un parámetro de rendimiento de red entre un PCR indicado por la información de salto operativo siguiente y una dirección indicada por la información de alcanzabilidad de capa de red de la ruta de rendimiento.

50

En un segundo desarrollo adicional de la quinta forma de realización como tal o de conformidad con el primer desarrollo adicional de la quinta forma de realización, en donde al atributo de parámetro del rendimiento incluye un parámetro de rendimiento de red de la ruta de rendimiento, y el parámetro de rendimiento de red es un retardo, una tasa de pérdida de paquetes y/o una fluctuación de retardo o un parámetro de rendimiento completo que se calcula en conformidad con uno o más de los parámetros.

55

En un tercer desarrollo adicional del método en conformidad con el primer desarrollo adicional de la quinta forma de realización o en conformidad con el segundo desarrollo adicional de la quinta forma de realización, en donde se mide el rendimiento de red entre PCRs en el interior de un sistema autónomo AS en donde el primer PCR y el segundo PCR están situados y entre PCRs de un enrutador periférico de sistema autónomo local ASBR y un ASBR distante adyacente del AS, para obtener el parámetro de rendimiento de red.

60

En un cuarto desarrollo adicional del método en conformidad con la quinta forma de realización como tal o cualquiera de entre el primero al tercer desarrollo adicionales de la quinta forma de realización, en donde antes de la recepción, por el primer PCR, de la primera información de enrutamiento según el rendimiento enviada por el segundo PCR, el método comprende, además:

65

negociar, por el primer PCR y el segundo PCR, una capacidad de enrutamiento según el rendimiento con sus

respectivos BGP próximos, para confirmar si una extremidad homóloga soporta las funciones de envío, procesamiento y recepción de la ruta de rendimiento.

- En un quinto desarrollo adicional del método de conformidad con el cuarto desarrollo adicional de la quinta forma de realización, en donde la negociación, por el primer PCR y el segundo PCR, de la capacidad de enrutamiento según el rendimiento con sus respectivos BGP próximos es concretamente: negociar, por el primer PCR y el segundo PCR, la capacidad de enrutamiento según el rendimiento con sus respectivos BGP próximos por intermedio de un proceso de notificación de capacidad de expansión multiprotocolo BGP del protocolo de pasarela periférica.
- En un sexto desarrollo adicional del método de conformidad con el cuarto desarrollo adicional de la quinta forma de realización o el quinto desarrollo adicional de la quinta forma de realización, en donde el descubrimiento automático de un PCR en el interior del AS se completa mediante el proceso de negociación de capacidad de enrutamiento según el rendimiento cuando una conexión de BGP en el interior del sistema autónomo AS en donde está situado el BGP, es un dispositivo de malla completa.
 - En un séptimo desarrollo adicional del método en conformidad con el cuarto desarrollo adicional de la quinta forma de realización o el quinto desarrollo adicional de la quinta forma de realización, en donde cuando un reflector de enrutamiento RR se despliega en el interior del AS en donde está situado el PCR, el PCR necesita notificar, en el interior del AS, un mensaje de actualización que incluye un atributo de grupo de expansión con un significado específico, para realizar el descubrimiento automático de un PCR en el interior del AS.

20

25

- En un octavo desarrollo adicional del método en conformidad con la quinta forma de realización o cualquiera del primero al séptimo desarrollos adicionales de la quinta forma de realización, comprende, además: añadir un segundo atributo de parámetro del rendimiento a la ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento, en donde un valor del segundo atributo de parámetro del rendimiento está basado en un valor del primer atributo de parámetro del rendimiento y un valor del parámetro de rendimiento de red procedente del primer PCR a un PCR indicado por la información de salto operativo siguiente en la primera información de enrutamiento según el rendimiento.
- En un noveno desarrollo adicional del método en conformidad con el octavo desarrollo adicional de la quinta forma de realización, en donde cuando el atributo de parámetro del rendimiento es un retardo de transmisión entre los PCRs, el valor del segundo atributo de parámetro del rendimiento es una suma del valor del primer atributo de parámetro del rendimiento y el valor del parámetro de rendimiento de red procedente del primer PCR al PCR indicado por la información de salto operativo siguiente en la primera información de enrutamiento según el 35 rendimiento.
 - En un décimo desarrollo adicional del método en conformidad con el octavo desarrollo adicional de la quinta forma de realización o en conformidad con el noveno desarrollo adicional de la quinta forma de realización, que comprende, además: utilizar, por el primer PCR, una ruta de rendimiento en la que un valor de atributo de parámetro del rendimiento es el más pequeño en las rutas de rendimiento con la misma NLRI como una ruta de rendimiento óptimo, y salvaguardar la ruta de rendimiento óptimo y el segundo atributo de parámetro del rendimiento generado para la ruta de rendimiento óptimo en una base de información de enrutamiento local Loc-RIB.
- En un undécimo desarrollo adicional del método en conformidad con el décimo desarrollo adicional de la quinta forma de realización, que comprende, además: cuando cambia la ruta de rendimiento óptimo en la Loc-RIB, el envío, por el primer PCR, de una nueva ruta de rendimiento óptimo a un PCR adyacente, en donde cuando un valor de un atributo de salto operativo siguiente en la nueva ruta de rendimiento óptimo enviado al PCR adyacente se establece para el segundo PCR, el valor del primer atributo de parámetro del rendimiento se utiliza como el valor del atributo de parámetro del rendimiento de la información de enrutamiento según el rendimiento enviada a un PCR adyacente del primer PCR, y cuando el valor del atributo de salto operativo siguiente de la nueva ruta de rendimiento óptimo se envía al PCR adyacente del primer PCR se establece para el primer PCR, el valor del segundo atributo de parámetro del rendimiento se utiliza como el valor del atributo de parámetro del rendimiento de la información de enrutamiento según el rendimiento enviada al PCR adyacente del primer PCR.
- En un duodécimo desarrollo adicional del método en conformidad con el décimo desarrollo adicional de la quinta forma de realización o en conformidad con el undécimo desarrollo adicional de la quinta forma de realización, que comprende, además:
- cuando se recibe un paquete de datos y una política local es el reenvío de enrutamiento según el rendimiento, encontrar una ruta de rendimiento óptimo correspondiente en la Loc-RIB; y
 - reenviar el paquete de datos de conformidad con la ruta de rendimiento óptimo correspondiente.
- En un decimotercero desarrollo adicional del método en conformidad con la quinta forma de realización o cualquiera del primero al duodécimo desarrollos adicionales de la quinta forma de realización, en donde la información de enrutamiento según el rendimiento comprende, además, una etiqueta MPLS, en donde la etiqueta MPLS es una

etiqueta asignada por el segundo PCR para la ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento.

En una sexta forma de realización, un dispositivo de enrutamiento basado en el rendimiento, comprende:

5

25

35

40

45

55

60

65

una unidad de recepción de la primera información de enrutamiento según el rendimiento, configurada para recibir la primera información de enrutamiento según el rendimiento enviada por un segundo PCR, en donde la primera información de enrutamiento según el rendimiento comprende un primer atributo de parámetro del rendimiento;

- una unidad de determinación, configurada para determinar si una ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento existe en una base de información de enrutamiento adyacente Adi-RIB-in del primer PCR; y
- una unidad de memorización de información de enrutamiento según el rendimiento, configurada para añadir la primera información de enrutamiento según el rendimiento a la base Adj-RIB-in del primer PCR cuando la ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento no existe en la Adj-RIB-in del primer PCR.
- En un primer desarrollo adicional del dispositivo de enrutamiento en conformidad con la sexta forma de realización, que comprende, además:

una unidad de generación del segundo atributo de parámetro del rendimiento, configurada para añadir un segundo atributo de parámetro del rendimiento a la ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento, en donde un valor del segundo atributo de parámetro del rendimiento está basado en un valor del primer atributo de parámetro del rendimiento y un valor de parámetro de rendimiento de red procedente del primer PCR a un PCR indicado por la información de salto operativo siguiente en la primera información de enrutamiento según el rendimiento.

En un segundo desarrollo adicional del dispositivo de enrutamiento en conformidad con el primer desarrollo adicional de la sexta forma de realización, que comprende, además:

una unidad de selección de ruta de rendimiento óptimo, configurada para seleccionar una ruta de rendimiento óptimo a partir de las rutas de rendimiento con la misma NLRI en conformidad con el segundo atributo de parámetro del rendimiento, y salvaguardar la ruta de rendimiento óptimo y el segundo atributo de parámetro del rendimiento generado para la ruta de rendimiento óptimo para una base de información de enrutamiento local Loc-RIB del primer PCR.

En un tercer desarrollo adicional del dispositivo de enrutamiento en conformidad con la sexta forma de realización o el primer desarrollo adicional o el segundo desarrollo adicional de la sexta forma de realización, que comprende, además:

una unidad de notificación de información de enrutamiento, configurada para, cuando la ruta de rendimiento óptimo en la base de información de enrutamiento local del primer PCR se actualiza, notificar a un PCR adyacente la ruta de rendimiento óptimo actualizada.

En un cuarto desarrollo adicional del dispositivo de enrutamiento en conformidad con la sexta forma de realización o cualquiera del primero al tercer desarrollos adicionales de la sexta forma de realización, que comprende, además:

una unidad de negociación de capacidad de enrutamiento según el rendimiento, configurada para negociar una capacidad de enrutamiento según el rendimiento con un BGP próximo, para confirmar si una extremidad homóloga soporta las funciones de envío, procesamiento recepción de la ruta de rendimiento.

En un quinto desarrollo adicional del dispositivo de enrutamiento en conformidad con la sexta forma de realización o cualquiera del primero al cuarto desarrollos adicionales de la sexta forma de realización, que comprende, además: una unidad de medida de rendimiento de red, configurada para medir el rendimiento de red con el PCR adyacente.

En un sexto desarrollo adicional del dispositivo de enrutamiento en conformidad con cualquiera del primero al cuarto desarrollos adicionales de la sexta forma de realización, en donde la unidad de generación del segundo atributo de parámetro del rendimiento comprende concretamente:

un módulo de registro de parámetro de rendimiento de red, configurado para registrar la información de parámetro de rendimiento para otro PCR adyacente en el interior del AS o un PCR como un ASBR adyacente, en donde la información de parámetro de rendimiento comprende el parámetro de rendimiento de red para el otro PCR adyacente en el interior del AS o el PCR como el ASBR adyacente obtenido por intermedio de la medición por la unidad de medida de rendimiento de red; y

un módulo de generación del segundo atributo de parámetro del rendimiento, configurado para generar un segundo atributo de parámetro del rendimiento en conformidad con un valor de parámetro de rendimiento de red que es desde el PCR local a un PCR indicado por información de salto operativo siguiente en la primera información de enrutamiento según el rendimiento y se registra por el módulo de registro de parámetro de rendimiento de red y un valor de parámetro de rendimiento de red en el primer atributo de parámetro del rendimiento, y añadir el segundo atributo de parámetro del rendimiento a la primera información de enrutamiento según el rendimiento.

En un séptimo desarrollo adicional del dispositivo de enrutamiento en conformidad con cualquiera de entre el primero al cuarto desarrollos adicionales de la sexta forma de realización, en donde la unidad de generación del segundo atributo de parámetro del rendimiento comprende concretamente:

un módulo de obtención de atributo de parámetro del rendimiento de enrutamiento según el rendimiento local, configurado para confirmar la información de enrutamiento según el rendimiento local en donde NLRI en la información de enrutamiento según el rendimiento local es la misma que una dirección de salto operativo siguiente en la primera información de enrutamiento según el rendimiento y luego, obtener un valor de parámetro de red en un atributo de parámetro del rendimiento de la información de enrutamiento según el rendimiento local, y

un módulo de generación del segundo atributo de parámetro del rendimiento, configurado para generar un segundo atributo de parámetro del rendimiento en conformidad con un valor de parámetro de rendimiento de red que es desde el primer PCR a un PCR indicado por la información de salto operativo siguiente en la primera información de enrutamiento según el rendimiento y se obtiene por el módulo de obtención de atributo de parámetro del rendimiento de enrutamiento según el rendimiento local y un valor de parámetro de rendimiento de red incluido en el primer atributo de parámetro del rendimiento, y añadir el segundo atributo de parámetro del rendimiento a la primera información de enrutamiento según el rendimiento.

En un octavo desarrollo adicional del dispositivo de enrutamiento en conformidad con la sexta forma de realización o cualquiera del primero al séptimo desarrollos adicionales de la sexta forma de realización, que comprende, además, una unidad de notificación de atributo de grupo de expansión, configurada para notificar, en el interior del AS, un mensaje de actualización de BGP que incluye un atributo de grupo de expansión con un significado específico, para poner en práctica el descubrimiento automático de un PCR en el interior del AS.

35

30

5

10

15

20

REIVINDICACIONES

- 1. Un método de enrutamiento basado en el rendimiento, que comprende:
- Ia recepción (101, 303), por un primer Enrutador Capaz de un enrutamiento según el Rendimiento, PCR, de una primera información de enrutamiento según el rendimiento enviada por un segundo PCR, en donde la primera información de enrutamiento según el rendimiento comprende un primer atributo de parámetro de rendimiento y una información de alcanzabilidad de capa de red, NLRI, y un atributo de ruta,
- en donde un valor de un salto operativo siguiente en el atributo de ruta es una dirección del segundo PCR, y el primer atributo de parámetro de rendimiento incluye un parámetro de rendimiento de red entre el segundo PCR y un PCR indicado por la información NLRI;
- la determinación (102, 304) de que una ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento existe, o no, en una base de información de enrutamiento adyacente de entrada, Adi-RIB-in del primer PCR:
- la adición (103, 305) de la primera información de enrutamiento según el rendimiento en la base Adj-RIB-in cuando la ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento no existe en la base Adj-RIB-in;

en donde el método comprende, además:

35

45

50

55

60

65

- la adición (306) de un segundo atributo de parámetro de rendimiento a la ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento, en donde un valor del segundo atributo de parámetro de rendimiento está basado en un valor del primer atributo de parámetro de rendimiento y un valor de parámetro de rendimiento de red desde el primer PCR hacia el segundo PCR;
- la selección (307), por el primer PCR, de una ruta de rendimiento óptimo a partir de la ruta de rendimiento con la misma NLRI en conformidad con el segundo atributo del parámetro de rendimiento; y
 - salvaguardar (307), por el primer PCR, la ruta de rendimiento óptimo y un segundo atributo del parámetro de rendimiento en la ruta de rendimiento óptimo en una base de información de enrutamiento local, Loc-RIB, del primer PCR.
 - **2.** El método según la reivindicación 1, en donde el parámetro de rendimiento de red es un retardo, una tasa de pérdida de paquetes y/o una fluctuación de retardo, o un parámetro de rendimiento completo que se calcula en función de uno o más de los parámetros.
- **3.** El método según las reivindicaciones 1 o 2, en donde antes de la recepción, por el primer PCR, de la primera información de enrutamiento según el rendimiento enviada por el segundo PCR, el método comprende, además:
 - la negociación, por el primer PCR y el segundo PCR, de una capacidad de enrutamiento según el rendimiento con sus próximos BGP respectivos, para confirmar si una extremidad homóloga soporta o no, el envío, el procesamiento y la recepción de la ruta de rendimiento.
 - **4.** El método según la reivindicación 3, en donde la negociación, por el primer PCR y el segundo PCR, de la capacidad de enrutamiento según el rendimiento con sus próximos BGP respectivos, es concretamente: la negociación, por el primer PCR y el segundo PCR, de la capacidad de enrutamiento según el rendimiento con sus próximos BGP respectivos, por intermedio de un proceso de notificación de capacidad de expansión de multiprotocolos según el protocolo de pasarela limítrofe, BGP.
 - 5. El método según la reivindicación 4, que comprende, además: la utilización, por el primer PCR, de una ruta de rendimiento en la que un valor de atributo del parámetro de rendimiento es el más pequeño en las rutas de rendimiento con la misma NLRI como una ruta de rendimiento óptimo, y salvaguardar la ruta de rendimiento óptimo y el segundo atributo del parámetro del rendimiento generado para la ruta de rendimiento óptimo en una base de información de enrutamiento local Loc-RIB.
 - 6. El método según la reivindicación 5 que comprende, además:

cuando cambia la ruta de rendimiento óptimo en la base Loc-RIB, el envío, por el primer PCR, de una nueva ruta de rendimiento óptimo a un PCR adyacente, en donde cuando un valor de un atributo de salto operativo siguiente en la nueva ruta de rendimiento óptimo enviado al PCR adyacente se establece para el segundo PCR, siendo el valor del primer atributo del parámetro de rendimiento utilizado como el valor del atributo de parámetro del rendimiento de la información de enrutamiento según el rendimiento enviada a un PCR adyacente del primer PCR, y cuando el valor del atributo del salto operativo siguiente de la nueva ruta de rendimiento óptimo enviado al PCR adyacente del

primer PCR se establece para el primer PCR, el valor del segundo atributo de parámetro del rendimiento se utiliza como el valor del atributo de parámetro del rendimiento de la información de enrutamiento según el rendimiento enviada al PCR adyacente del primer PCR.

5 7. Un primer Enrutador Capaz de un Enrutamiento según el Rendimiento, PCR, que comprende:

10

15

30

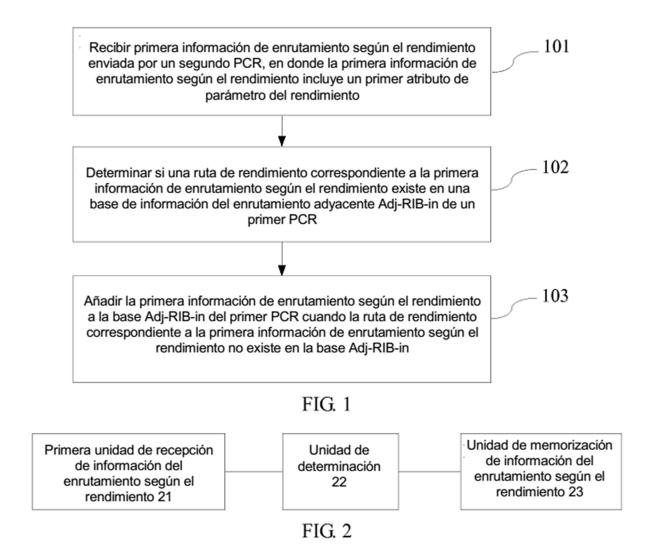
35

45

una primera unidad de recepción de información de enrutamiento según el rendimiento (73), configurada para recibir la primera información de enrutamiento según el rendimiento enviada por un segundo PCR, en donde la primera información de enrutamiento según el rendimiento comprende un primer atributo de parámetro de rendimiento, información de alcanzabilidad de capa de red, NLRI y un atributo de ruta,

en donde un valor de un salto operativo siguiente en el atributo de ruta es una dirección del segundo PCR, y el primer atributo de parámetro de rendimiento incluye un parámetro de rendimiento de red entre el segundo PCR y un PCR indicado por la información NLRI;

una unidad de determinación (74), configurada para determinar si una ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento existe, o no, en una base de información de enrutamiento adyacente Adj-RIB-in, del primer PCR;


- una unidad de memorización de información de enrutamiento según el rendimiento (75), configurada para añadir la primera información de enrutamiento según el rendimiento a la base Adj-RIB-in del primer PCR cuando la ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento no existe en la base Adj-RIB-in del primer PCR;
- una unidad de generación de segundo atributo de parámetro de rendimiento (76), configurada para añadir un segundo atributo de parámetro de rendimiento a la ruta de rendimiento correspondiente a la primera información de enrutamiento según el rendimiento, en donde un valor del segundo atributo del parámetro de rendimiento está basado en un valor del primer atributo de parámetro del rendimiento y un valor de parámetro de rendimiento de red desde el primer PCR al segundo PCR; y

una unidad de selección de ruta de rendimiento óptimo (77), configurada para seleccionar una ruta de rendimiento óptimo a partir de las rutas de rendimiento con la misma NLRI, en conformidad con el segundo atributo de parámetro del rendimiento, y salvaguardar la ruta de rendimiento óptimo y un segundo atributo de parámetro de rendimiento generado para la ruta de rendimiento óptimo en una base de información de enrutamiento local, Loc-RIB, del primer PCR.

- 8. El primer PCR según la reivindicación 7, que comprende, además:
- una unidad de notificación de información de enrutamiento (78), configurada para, cuando la ruta de rendimiento óptimo en la Loc-RIB del primer PCR está actualiza, notificar a un PCR adyacente de la ruta de rendimiento óptimo actualizada.
 - **9.** El primer PCR según la reivindicación 7 o 8, que comprende, además: una unidad de medida de rendimiento de red (72), configurada para medir el rendimiento de red con el PCR adyacente.
 - **10.** El primer PCR según la reivindicación 9, en donde la segunda unidad de generación de atributo de parámetro del rendimiento (76) comprende específicamente:
- un módulo de registro de parámetro de rendimiento de red (761), configurado para registrar la información de parámetro de rendimiento para otro PCR adyacente en el interior de un Sistema Autónomo, AS, o un PCR como un ASBR adyacente, en donde la información del parámetro de rendimiento comprende el parámetro de red para otro PCR adyacente en el interior del AS o el PCR como el ASBR adyacente obtenido mediante la medición por la unidad de medida del rendimiento de red; y
- un módulo de generación de segundo atributo de parámetro de rendimiento (762), configurado para generar un segundo atributo de parámetro de rendimiento en conformidad con un valor de parámetro del rendimiento de red que es desde el PCR local a un PCR indicado por la información de salto operativo siguiente en la primera información de enrutamiento según el rendimiento y se registra por el módulo de registro de parámetro de rendimiento de red y un valor de parámetro de rendimiento de red en el primer atributo de parámetro de rendimiento, y añadir el segundo atributo de parámetro de rendimiento a la primera información de enrutamiento según el rendimiento.
 - **11.** El primer PCR según la reivindicación 9, en donde la unidad de generación del segundo atributo del parámetro de rendimiento (76) comprende concretamente:
- un módulo de obtención de atributo de parámetro de rendimiento del enrutamiento según el rendimiento local (763) configurado para confirmar la información de enrutamiento según el rendimiento local en la que la NLRI en la

información de enrutamiento según el rendimiento local es la misma que una dirección de salto operativo siguiente en la primera información de enrutamiento según el rendimiento, y luego, obtener un valor de parámetro de red en un atributo de parámetro de rendimiento de la información de enrutamiento según el rendimiento local; y

un módulo de generación del segundo atributo de parámetro de rendimiento (762), configurado para generar un segundo atributo de parámetro de rendimiento en conformidad con un valor de parámetro de rendimiento de red que es desde el primer PCR a un PCR indicado por la información de salto operativo siguiente en la primera información de enrutamiento según el rendimiento y se obtiene por el módulo de obtención de atributo de parámetro de rendimiento de enrutamiento según el rendimiento local y un valor de parámetro de rendimiento de red incluido en el primer atributo de parámetro de rendimiento, y añadir el segundo atributo de parámetro de rendimiento a la primera información de enrutamiento según el rendimiento.

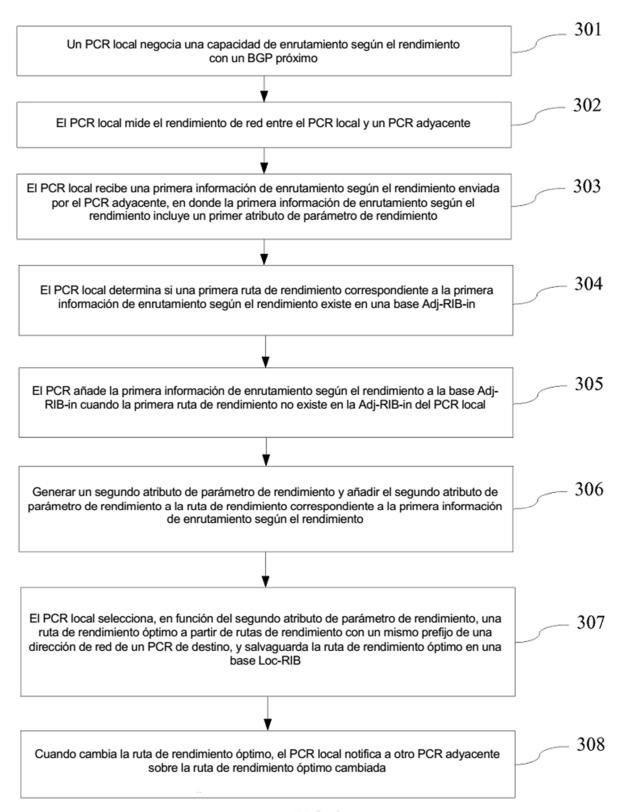
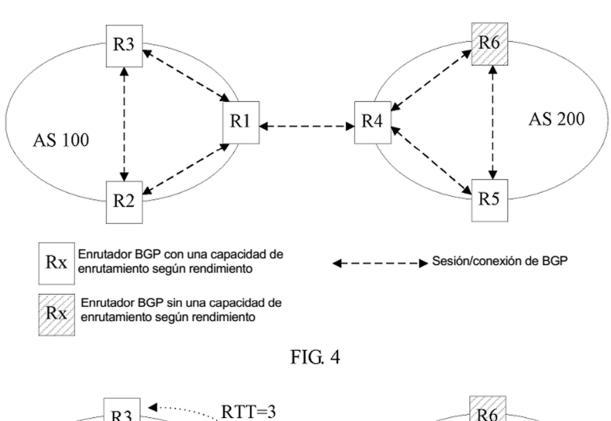



FIG. 3

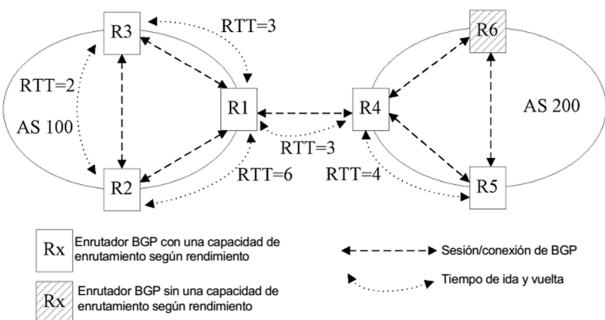


FIG. 5

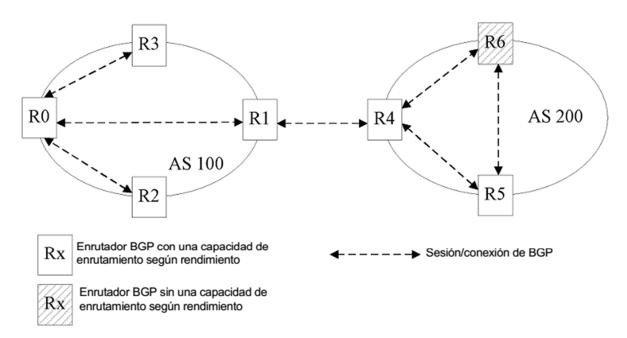


FIG. 6

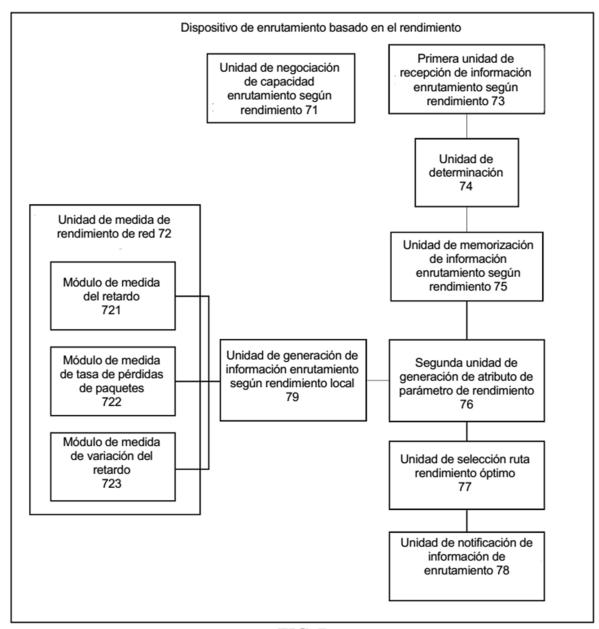


FIG. 7

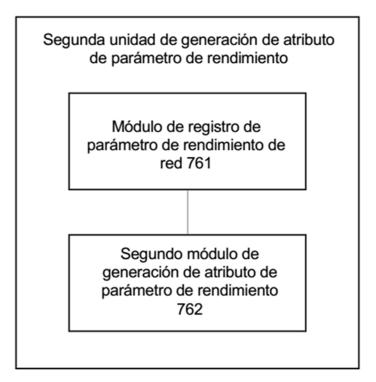


FIG. 8

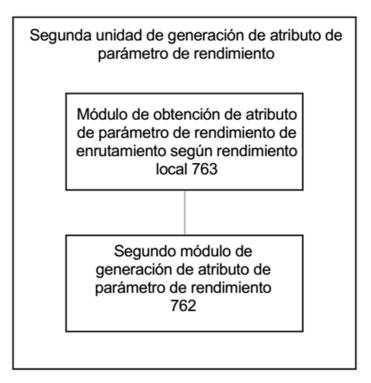


FIG. 9