



# OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA



11 Número de publicación: 2 627 061

51 Int. Cl.:

A61K 39/395 (2006.01) G01N 33/574 (2006.01) G01N 33/82 (2006.01)

(12)

# TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 04.11.2011 PCT/US2011/059411

(87) Fecha y número de publicación internacional: 10.05.2012 WO12061759

(96) Fecha de presentación y número de la solicitud europea: 04.11.2011 E 11785862 (1)

(97) Fecha y número de publicación de la concesión europea: 08.03.2017 EP 2635304

(54) Título: Folato receptor alfa como diagnóstico y pronóstico para el folato marcadorreceptor de los cánceres expresores de alfa

(30) Prioridad:

05.11.2010 US 410497 P 15.07.2011 US 201161508444 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 26.07.2017

(73) Titular/es:

MORPHOTEK, INC. (100.0%) 210 Welsh Pool Road Exton, PA 19341, US

(72) Inventor/es:

O'SHANNESSY, DANIEL, J.; GRASSO, LUIGI; WAN, SHANHONG; CHAO, QIMIN y SOMERS, ELIZABETH, BROOKE

(74) Agente/Representante:

IZQUIERDO BLANCO, María Alicia

Folato receptor alfa como diagnóstico y pronóstico para el folato marcador receptor de los cánceres expresores de alfa

#### Descripción

5

10

20

25

30

35

40

45

50

55

# APLICACIONES RELACIONADAS

**[0001]** Esta solicitud reivindica el beneficio de la fecha de presentación de la solicitud provisional de EE.UU. Nº 61/410.497, presentada el 5 de noviembre de 2010 y la solicitud provisional US nº 61/508.444, presentada el 15 de julio, 2011.

#### **ANTECEDENTES DE LA INVENCIÓN**

[0002] En los seres humanos, el receptor de alta afinidad para el folato viene en tres isoformas: alfa, beta y gamma. Las formas alfa y beta son típicamente unidas a las membranas de las células por un anclaje de fosfatidilinositol de glicosilo (GPI). Reciclan entre compartimentos extracelulares y endocíticos y son capaces de transportar el folato dentro de la célula. Las formas solubles de FRα se pueden derivar por la acción de proteasas o fosfolipasa en los receptores de folato anclados a membranas.

100031 Receptor de folato alfa (también referido como FRα, FR-alfa, FOLR1 o FOLR1) se expresa en una variedad de tejidos epiteliales, incluyendo los del plexo coroideo, pulmón, tiroides, riñón, útero, mama, trompa de Falopio, epididimis, y las glándulas salivales. Weitman, SD et al. Cancer Res 52: 3396-3401-(1992); Weitman S.D. et al., Cancer Res 52: 6708-6711. La sobreexpresión de FR $\alpha$  se ha observado en varios tipos de cáncer, incluyendo el cáncer de pulmón (por ejemplo, carcinomas bronquioalveolares, tumores de carcinoides, y cáncer de pulmón de células no pequeñas, tales como adenocarcinomas); mesotelioma; cáncer de ovarios; cáncer renal; cáncer de cerebro (por ejemplo, ependimoma anaplásico, cerebelosa astrocitoma pilocítico juvenil, y las metástasis cerebrales); cáncer de cuello uterino; cáncer nasofaríngeo; tumor derivado mesodermalmente; carcinoma de células escamosas de cabeza y cuello; cáncer endometrial; adenocarcinomas endometrioides del ovario, cistoadenocarcinomas serosos, cáncer de mama; cáncer de vejiga; cáncer de páncreas; cáncer de hueso (por ejemplo, osteosarcoma de alto grado); cáncer de pituitaria (por ejemplo, adenomas de la pituitaria); cáncer colorrectal y cáncer medular de tiroides. Véase, por ejemplo, la Patente de EE.UU. Nº 7.754.698; Solicitud de Patente de EE.UU. Nº 2005/0232919; WO 2009/132081; Bueno R et al. J of Thoracic and Cardiovascular Surgery, 12-1-(2): 225-233-(2001); Elkanat H & Ratnam M. Frontiers in Bioscience, 11, 506-519 (2006); Fisher R.E. J Nucl Med, 49: 899-906 (2008); Franklin, WA et al. Int J Cancer, Suppl 8: 89-95-(1994); Hartman LC et al. Int J Cancer 12 1: 938-942-(2007); Iwakiri S et al. Annals of Surgical Oncology, 15-(3): 889-899; Parker N. et al. Analytical Biochemistry, 338: 284-293-(2005); Weitman, SD et al. Cancer Res 52: 3396-3401-(1992); Saba NF et al. Head Neck, 31-(4): 475-481-(2009); Yang R+ y col. Clin Cancer Res 13: 2557-2567 (2007). En algunos tipos de cánceres (por ejemplo.. Carcinoma de células escamosas de cabeza y cuello), un mayor nivel de expresión FRα está asociado con un peor pronóstico, mientras que en otros tipos de cánceres (por ejemplo., cáncer de pulmón de células no pequeñas), un mayor nivel de expresión FRα se asocia con un mejor pronóstico. Véase, por ejemplo, Iwakiri S et al. Annals of Surgical Oncology, 15-(3): 889-899; Saba NF et al. Head Neck, 31-(4): 475-481-(2009).

[0004] Mantovani et al. 1994 evalúa la distribución del receptor de folato alfa en fluidos biológicos, concluyendo en última instancia que no hay diferencia estadísticamente significativa en el nivel de receptor de folato alfa en la orina de sujetos con cáncer de ovario en comparación con el de sujetos sanos.

[0005] La detección temprana del cáncer mejora las velocidades de supervivencia y calidad de vida. Para mejorar la probabilidad de detección y tratamiento tempranos, existe una necesidad apremiante para los métodos no invasivos para el diagnóstico de cáncer, para la determinación del nivel de riesgo de desarrollar cáncer, y para predecir la progresión del cáncer. La presente invención satisface estas necesidades de cánceres de expresión de FRα.

### RESUMEN DE LA INVENCIÓN

- [0006] La presente invención se define por las reivindicaciones adjuntas. Cualquier objeto identificado en la solicitud como "invención", "realización", "aspecto", etc., que excede el alcance de la invención tal como se representa mediante las reivindicaciones, no forma parte de la invención reivindicada, sino que sólo sirve como información de fondo para comprender mejor la invención.
- [0007] La presente invención proporciona métodos de evaluación de si un sujeto está afectado con cánceres FRα que expresan como el pulmón o el cáncer de ovario, métodos de evaluación de la progresión de la Cánceres que expresan FRα como el de cáncer de pulmón o de ovario en un sujeto

aquejado de cánceres que expresan FR $\alpha$ , los métodos de la estratificación de un sujeto con cáncer de expresión de FR $\alpha$  en uno de al menos cuatro grupos de terapia del cáncer, los métodos de evaluación de la eficacia del tratamiento MORAB-003 de cáncer de ovario o cáncer de pulmón y kits para evaluar si una sujeto está afectado con cánceres FR $\alpha$  que expresan tales como cáncer de pulmón o de ovario o para evaluar la progresión de cánceres que expresan FR $\alpha$  como el de cáncer de pulmón o de ovario en un sujeto.

Métodos para evaluar si un sujeto está afectado por un cáncer que expresa FRα

5

45

50

[0008] En un primer aspecto, la presente invención proporciona un método para evaluar si un sujeto está afectado con una FRα que expresan el cáncer, mediante la determinación del nivel de receptor de folato alfa (Frα) que no está unido a una célula, en una muestra derivada del sujeto; y comparar el nivel de receptor de folato alfa (Frα) que no está unido a una célula con el nivel de FRα en una muestra de control, donde una diferencia entre el nivel de FRα en la muestra derivada del sujeto y el nivel de FRα en la muestra de control es una indicación de que el sujeto sufre de un cáncer que expresa FRα; en el que el nivel de FRα en la muestra derivada del sujeto se evalúa poniendo en contacto la muestra con un anticuerpo que une FRα. En una realización particular, la muestra es orina, suero, plasma o ascitis.

[0009] En otro aspecto, la presente invención está dirigida a un método de evaluación de si un sujeto 20 está afectado con un cáncer que expresa FRa, mediante la determinación del nivel de receptor de folato alfa (Frα) que no está unido a una célula de una muestra de orina derivada del sujeto; y comparar el nivel de receptor de folato alfa (Frα) que no está unido a una célula en la muestra de orina derivada del sujeto con el nivel de FRα en una muestra de control, donde una diferencia entre el nivel de FRα en la muestra de orina derivada del sujeto y el nivel de FRa en la muestra de control es una indicación de 25 que el sujeto está afectado con un cáncer que expresa FRa. En un aspecto adicional, la presente invención proporciona un método para evaluar si un sujeto está afectado con un cáncer que expresa FRα, determinando el nivel de receptor de folato alfa (Frα) que no está unido a una célula en una muestra de suero derivada Del sujeto; y comparar el nivel de receptor de folato alfa (Frα) que no está unido a una célula en la muestra de suero derivada del sujeto con el nivel de FRα en una muestra de 30 control, donde una diferencia entre el nivel de FRα en la muestra de suero derivada del sujeto y el nivel de FRa en la muestra de control es una indicación de que el sujeto está afectado con un cáncer que expresa FRα.

[0010] En diversas realizaciones de los aspectos anteriores de la invención, el Cáncer que expresa FRα se selecciona del grupo que consiste en cáncer de pulmón, mesotelioma, cáncer de ovario, cáncer renal, cáncer de cerebro, cáncer cervical, cáncer nasofaringeal, Carcinoma de células escamosas de cabeza y cuello, cáncer de endometrio, cáncer de mama, cáncer de vejiga, cáncer de páncreas, cáncer de hueso, cáncer de pituitaria, cáncer colorrectal y cáncer medular de tiroides. En una realización particular, el cáncer que expresa FRα es cáncer de ovario. En otra realización, el cáncer que expresa FRα es cáncer de pulmón no microcítico, tal como un adenocarcinoma.

**[0011]** En otro aspecto, la presente invención está dirigida a métodos para evaluar si un sujeto padece cáncer de ovario, determinando el nivel de receptor de folato alfa ( $Fr\alpha$ ) que no está unido a una célula en una muestra de orina derivada del sujeto, donde la presencia de  $FR\alpha$  que no está unido a una célula en la muestra de orina a una concentración de más de aproximadamente 9100 pg/ml es una indicación de que el sujeto está afectado por cáncer de ovario.

[0012] En varios aspectos de los aspectos anteriores de la invención, la presencia de FR $\alpha$  en la muestra de orina a una concentración de más de aproximadamente 9500 pg/ml, de aproximadamente 10.000 pg/ml, de aproximadamente 11.000 pg/ml, aproximadamente 12.000 pg/ml, aproximadamente 14.000 pg/ml, aproximadamente 15.000 pg/ml, aproximadamente 16.000 pg/ml, aproximadamente 17.000 pg/ml, aproximadamente 18.000 pg/ml, aproximadamente 19.000 pg/ml, o aproximadamente 20.000 pg/ml es una indicación de que el sujeto padece cáncer de ovario.

- [0013] En varios aspectos, el nivel de FRα se determina poniendo en contacto la muestra con un anticuerpo que se une FRα. Por ejemplo, el anticuerpo se selecciona del grupo que consiste en:
  - (a) un anticuerpo que se une al mismo epítopo que el anticuerpo MORAB-003;
- (b) un anticuerpo que comprende la SEQ ID NO:-1 (GF TFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3;
  - (c) el anticuerpo MOV18;
  - (d) un anticuerpo que se une al mismo epítopo que el anticuerpo MOV18;
- 65 (e) el anticuerpo 548908;
  - (f) un anticuerpo que se une al mismo epítopo que el anticuerpo 548908;
  - (g) el anticuerpo 6D398;

- (h) un anticuerpo que se une al mismo epítopo que el anticuerpo 6D398;
- (i) un anticuerpo que se une al mismo epítopo que el anticuerpo 26B3;
- (j) un anticuerpo que comprende SEQ ID NO: 55 (GYFMN) como CDRH1, SEQ ID NO: 56 (RIFPYNGDTFYNQKFKG) como CDRHH2, SEQ ID NO: 57 (GTHYFDY) como CDRH3, SEQ ID NO: 51 (RTSENIFSYLA) como CDRL1, SEQ ID NO: 52-(NAKTLAE) como CDRL2 y SEQ ID NO: 53 (QHHYAFPWT) como CDRL3;
  - (k) el anticuerpo 26B3;
  - (I) un anticuerpo que se une al mismo epítopo que el anticuerpo 19D4;
- (m) un anticuerpo que comprende SEQ ID NO: 39 (HPYM-H+) como CDRH1, SEQ ID NO: 40 (RIDPANGNTKYDPKFQG) como CDRHH2, SEQ ID NO: 41-(EEVADYTMDY) como CDRH3, SEQ ID NO: 35-(RASESVDTYGNNFIH) SEQ ID NO: 36 (LASNLES) como CDRL2 y SEQ ID NO: 37 (QQNNGDPWT) como CDRL3;
  - (n) el anticuerpo 19D4;
  - (o) un anticuerpo que se une al mismo epítopo que el anticuerpo 9F3;
- (p) un anticuerpo que comprende SEQ ID NO: 31 (SGYYWN) como CDRH1, SEQ ID NO: 32-(YIKSDGSNNYNPSLKN) como CDRHH2, SEQ ID NO: 33 (EWKAMDY) como CDRH3, SEQ ID NO: 27 (RASSTVSYSYLH) SEQ ID NO: 28 (GTSNLAS) como CDRL2 y SEQ ID NO: 29 (QQYSGYPLT) como CDRL3;
  - (q) el anticuerpo 9F3;
- 20 (r) un anticuerpo que se une al mismo epítopo que el anticuerpo 24F12;

cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16).

- (s) un anticuerpo que comprende SEQ ID NO: 47 (SYAMS) como CDRH1, SEQ ID NO: 48 (EIGSGGSYTYYPDTVTG) como CDRHH2, SEQ ID NO: 49 (ETTAGYFDY) como CDRH3, SEQ ID NO: 43 (SASQGINNFLN) SEQ ID NO: 44 (YTSSLHS) como CDRL2 y SEQ ID NO: 45-(QHFSKLPWT) como CDRL3;
- 25 (t) el anticuerpo 24F12;

35

55

60

- (u) un anticuerpo que comprende una cadena ligera de región variable seleccionada del grupo que consiste en LK26HuVK (SEQ ID NO: 13); LK26HuVKY (SEQ ID NO: 14); LK26HuVKPW (SEQ ID NO: 15); Y LK26HuVKPW, Y (SEQ ID NO: 16);
- (v) un anticuerpo que comprende una cadena pesada de región variable seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); Y LK26KOLHuVH (SEQ ID NO: 21);
  - (w) un anticuerpo que comprende la región variable de cadena pesada LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16);
  - (x) un anticuerpo que comprende la región variable de cadena pesada LK26HuVH SLF (SEQ ID NO: 19) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16); y
    - (y) un anticuerpo que comprende la región variable de cadena pesada LK26HuVH FAIS, N (SEQ ID NO: 18) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16).
- [0014] En una realización particular, el anticuerpo se une al mismo epítopo que el anticuerpo MORAB-40 003. En otra realización, el anticuerpo incluye SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3. En otra realización, el anticuerpo es el anticuerpo MOV18. En aún otra realización, el anticuerpo se une al mismo epítopo que el anticuerpo MOV18. En una 45 realización adicional, el anticuerpo comprende una cadena ligera de región variable seleccionada del grupo que consiste en LK26HuVK (SEQ ID NO: 13); LK26HuVKY (SEQ ID NO: 14); LK26HuVKPW (SEQ ID NO: 15); Y LK26HuVKPW, Y (SEQ ID NO: 16). Alternativamente o en combinación, el anticuerpo incluye una cadena pesada de región variable seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); 50 LK26HuVH I, I (SEQ ID NO: 20); Y LK26KOLHuVH (SEQ ID NO: 21). En ciertas realizaciones, el anticuerpo incluye (i) la región variable de cadena pesada LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16); la cadena pesada de la región variable LK26HuVH SLF (SEQ ID NO: 19) y el cha luz en la región variable de LK26HuVKPW, Y (SEQ ID NO:
  - [0015] En una realización particular, el nivel de FRα en la muestra derivada de dicho sujeto se evalúa poniendo en contacto la muestra con un par de anticuerpos seleccionados de entre el grupo que consiste en (a) anticuerpo MOV18 inmovilizado a un soporte sólido y MORAB marcado -003; (b) anticuerpo 9F3 inmovilizado en un soporte sólido y anticuerpo 24F12 marcado; (c) anticuerpo 26B3 inmovilizado sobre un soporte sólido y anticuerpo 19D4 marcado; y (d) anticuerpo 9F3 inmovilizado en un soporte sólido y anticuerpo 26B3 marcado.

16); O la región variable de cadena pesada LK26HuVH FAIS, N (SEQ ID NO: 18) y la región variable de

[0016] En ciertas realizaciones, el anticuerpo se selecciona del grupo que consiste de un anticuerpo murino, un anticuerpo humano, un anticuerpo humanizado, un anticuerpo biespecífico, un anticuerpo quimérico, un fragmento Fab, Fab'2, ScFv, SMIP, aficuerpo, avimer, versacuerpo, nanobody, y un dominio de anticuerpos. Alternativamente, o en combinación, el anticuerpo está marcado, por ejemplo,

con una etiqueta seleccionada del grupo que consiste en un marcador radio, un marcador biotina, un marcador cromóforo, un marcador fluoróforo o un marcador enzimático.

**[0017]** En ciertas realizaciones, el nivel de FRα se determina mediante el uso de una técnica seleccionada de entre el grupo que consiste en el análisis de Transferencia Western, radioinmunoensayo, inmunofluorimetría, inmunoprecipitación, diálisis de equilibrio, inmunodifusión, ensayo de fase de solución, inmunoensayo de electroquimioluminiscencia (ECLIA) Y ensayo ELISA.

5

10

15

20

25

30

35

40

45

50

55

60

65

[0018] En diversas realizaciones de los aspectos anteriores de la invención, la muestra de control es un nivel de control estandarizado de FRα en un sujeto sano.

[0019] En ciertas realizaciones, la muestra se trata con guanidina antes de determinar el nivel de FR $\alpha$  en la muestra. Alternativamente o en combinación, la muestra se diluye antes de determinar el nivel de FR $\alpha$  en la muestra. Alternativamente, o en combinación, la muestra se centrifuga, se agitó con vórtex, o ambos, antes de determinar el nivel de FR $\alpha$  en la muestra.

[0020] En aún otro aspecto, la presente invención está dirigida a un método de evaluación de si un sujeto está afectado por cáncer de ovario, determinando el nivel de receptor de folato alfa (Frα) que no está unido a una célula i Nav muestra derivada Del sujeto; y comparar el nivel de receptor de folato alfa (Frα) que no está unido a una célula en la muestra con el nivel de FRα en una muestra de control, donde una diferencia entre los niveles de FRα en la muestra derivada del sujeto y En la muestra de control es una indicación de que el sujeto está afligido con cáncer de ovario; en el que el nivel de FRα en la muestra derivada del sujeto se evalúa mediante contacto la muestra con (a) anticuerpo MOV18 inmovilizado en un soporte sólido y etiquetado anticuerpo MORAB-003, (b) anticuerpo 9F3 inmovilizado a un soporte sólido y etiquetado 24F12, (c) anticuerpo 26B3 inmovilizado en un soporte sólido y anticuerpo 26B3 marcado. Por ejemplo, la muestra puede ser orina, suero, plasma o ascitis.

#### Métodos de evaluación de la progresión de un cáncer que expresa FRα en un sujeto

[0021] En un aspecto adicional, la presente invención está dirigida a un método de evaluación de la progresión de un cáncer que expresa FR $\alpha$  en un sujeto que padece un cáncer que expresa FR $\alpha$ , mediante la determinación del nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula, en una muestra derivada del sujeto; y comparar el nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula con el nivel de FR $\alpha$  en una muestra de control, en el que un aumento en el nivel de FR $\alpha$  en la muestra derivada del sujeto en comparación con el nivel de FR $\alpha$  en la muestra de control es una indicación de que el cáncer progresa rápidamente; y en el que una disminución en el nivel de FR $\alpha$  en la muestra de control es una indicación de que el cáncer progresa lentamente o retrocederá, evaluando de ese modo la progresión de la cáncer que expresa FR $\alpha$  en el sujeto; en el que el nivel de FR $\alpha$  que no está unido a una célula en la muestra derivada del sujeto se evalúa poniendo en contacto la muestra con un anticuerpo que se une FR $\alpha$ . En una realización particular, la muestra es orina, suero, plasma o ascitis.

[0022] En otro aspecto, la presente invención proporciona un método para evaluar el progreso de un cáncer que expresa FR $\alpha$  en un sujeto que padece un cáncer que expresa FR $\alpha$ , mediante la determinación del nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula en una muestra de orina derivada del sujeto; y comparar el nivel de folato receptor alfa (Fr $\alpha$ ) que no está unido a una célula en la muestra de orina derivada del sujeto con el nivel de FR $\alpha$  en una muestra de control, en el que un aumento en el nivel de FR $\alpha$  en el muestra de orina derivada del sujeto en comparación con el nivel de FR $\alpha$  en la muestra de control es una indicación de que el cáncer progresa rápidamente; y en el que una disminución en el nivel de FR $\alpha$  en la muestra de control es una indicación de que el cáncer progresa lentamente o retrocederá, evaluando de ese modo la progresión de la FR $\alpha$  que expresa cáncer en el sujeto.

[0023] En un aspecto adicional, la presente invención proporciona métodos de evaluación de la progresión de un cáncer que expresa FRα en un sujeto que padece un cáncer que expresa FRα, mediante la determinación del nivel de receptor de folato alfa (Frα) que no está unido a una célula en una muestra de suero derivada del sujeto; y comparar el nivel de receptor de folato alfa (Frα) que no está unido a una célula en la muestra de suero derivada del sujeto con el nivel de FRα en la muestra de control, en el que un aumento en el nivel de FRα en la muestra de suero derivada del sujeto en comparación con el nivel de FRα en la muestra de control es una indicación de que el cáncer avanza rápidamente; y en el que una disminución en el nivel de FRα en la muestra de suero derivada del sujeto en comparación con el nivel de FRα en la muestra de control es una indicación de que el cáncer progresa lentamente o retrocederá, evaluando de esta manera el progreso de la FRα que expresa cáncer en el sujeto.

[0024] En diversas realizaciones de los aspectos anteriores de la invención, el cáncer que expresa FRα se selecciona del grupo que consiste en cáncer de pulmón, mesotelioma, cáncer de ovario, cáncer renal, el sujetador en el cáncer, cáncer cervical, cáncer nasofaringeal, carcinoma de células escamosas de cabeza y cuello, cáncer de endometrio, cáncer de mama, cáncer de vejiga, cáncer de páncreas, cáncer de hueso, cáncer de pituitaria, cáncer colorrectal y cáncer medular de tiroides. En una realización particular, el cáncer que expresa FRα es cáncer de ovario. En otra realización, el cáncer que expresa FRα es cáncer de pulmón no microcítico, tal como un adenocarcinoma.

- [0025] En otro aspecto, la presente invención está dirigida a métodos para evaluar si un sujeto padece de cáncer de ovario, determinando el nivel de receptor de folato alfa (Frα) que no está unido a una célula en una muestra de orina derivada del sujeto, en el que la presencia de FRα que no está unido a una célula en la muestra de orina a una concentración de más de aproximadamente 9100 pg/ml es una indicación de que el sujeto está afectado por cáncer de ovario.
- 15 **[0026]** En varios aspectos de los aspectos anteriores de la invención, la presencia de FRα en la muestra de orina a una concentración de más de aproximadamente 9500 pg/ml, de aproximadamente 10.000 pg/ml, de aproximadamente 11.000 pg/ml, aproximadamente 12.000 pg/ml, aproximadamente 14.000 pg/ml, aproximadamente 15.000 pg/ml, aproximadamente 17.000 pg/ml, aproximadamente 17.000 pg/ml, aproximadamente 19.000 pg/ml, o aproximadamente 20.000 pg/ml es una indicación de que el sujeto padece cáncer de ovario.

**[0027]** En varios aspectos, el nivel de FR $\alpha$  se determina poniendo en contacto la muestra con un anticuerpo que se une FR $\alpha$ . Por ejemplo, el anticuerpo se selecciona del grupo que consiste en:

- 25 (a) un anticuerpo que se une al mismo epítopo que el anticuerpo MORAB-003;
  - (b) un anticuerpo que comprende la SEQ ID NO: 1 (GF TFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3;
- 30 (c) el anticuerpo MOV18;
  - (d) un anticuerpo que se une al mismo epítopo que el anticuerpo MOV18;
    - (e) el anticuerpo 548908;
  - (f) un anticuerpo que se une al mismo epítopo que el anticuerpo 548908;
  - (g) el anticuerpo 6D398;
- (h) un anticuerpo que se une al mismo epítopo que el anticuerpo 6D398;
  - (i) un anticuerpo que se une al mismo epítopo que el anticuerpo 26B3;
  - (j) un anticuerpo que comprende SEQ ID NO: 55-(GYFMN) como CDRH1, SEQ ID NO: 56 (RIFPYNGDTFYNQKFKG) como CDRHH2, SEQ ID NO: 57 (GTHYFDY) como CDRH3, SEQ ID NO: 51-(RTSENIFSYLA) como CDRL1, SEQ ID NO: 52-(NAKTLAE) como CDRL2 y SEQ ID NO: 53 (QHHYAFPWT) como CDRL3;
  - (k) el anticuerpo 26B3;

40

- (I) un anticuerpo que se une al mismo epítopo que el anticuerpo 19D4;
- (M) un anticuerpo que comprende SEQ ID NO: 39 (HPYM-H+) como CDRH1, SEQ ID NO: 40 (RIDPANGNTKYDPKFQG) como CDRHH2, SEQ ID NO: 41-(EEVADYTMDY) como CDRH3, SEQ ID NO: 35-(RASESVDTYGNNFIH) SEQ ID NO: 36 (LASNLES) como CDRL2 y SEQ ID NO: 37 (QQNNGDPWT) como CDRL3:
- (n) el anticuerpo 19D4;
- (o) un anticuerpo que se une al mismo epítopo que el anticuerpo 9F3;
- (p) un anticuerpo que comprende SEQ ID NO: 31-(SGYYWN) como CDRH1, SEQ ID NO: 32 (YIKSDGSNNYNPSLKN) como CDRHH2, SEQ ID NO: 33 (EWKAMDY) como CDRH3, SEQ ID NO: 27 (RASSTVSYSYLH) SEQ ID NO: 28 (GTSNLAS) como CDRL2 y SEQ ID NO: 29 (QQYSGYPLT) como CDRL3;
  - (q) el anticuerpo 9F3;
  - (r) un anticuerpo que se une al mismo epítopo que el anticuerpo 24F12;
- (s) un anticuerpo que comprende SEQ ID NO: 47 (SYAMS) como CDRH1, SEQ ID NO: 48 (EIGSGGSYTYYPDTVTG) como CDRHH2, SEQ ID NO: 49 (ETTAGYFDY) como CDRH3, SEQ ID NO: 43 (SASQGINNFLN) SEQ ID NO: 44 (YTSSLHS) como CDRL2 y SEQ ID NO: 45-(QHFSKLPWT) como CDRL3;
  - (t) el anticuerpo 24F12;
- (u) un anticuerpo que comprende una cadena ligera de región variable seleccionada del grupo que consiste en LK26HuVK (SEQ ID NO: 13); LK26HuVKY (SEQ ID NO: 14); LK26HuVKPW (SEQ ID NO: 15); Y LK26HuVKPW, Y (SEQ ID NO: 16);
  - (v) un anticuerpo que comprende una cadena pesada de región variable seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); Y LK26KOLHuVH (SEQ ID NO: 21);
- (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); Y LK26KOLHuVH (SEQ ID NO: 21);
   (w) un anticuerpo que comprende la región variable de cadena pesada LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16);

(x) un anticuerpo que comprende la región variable de cadena pesada LK26HuVH SLF (SEQ ID NO: 19) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16); y

(y) un anticuerpo que comprende la región variable de cadena pesada LK26HuVH FAIS, N (SEQ ID NO: 18) y la región variable de cadena ligera LK26HuVKPW, Y (SEC ID № 16).

5

10

15

20

[0028] En una realización particular, el anticuerpo se une al mismo epítopo que el anticuerpo MORAB-003. En otra realización, el anticuerpo incluye SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3. SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3. En otra realización, el anticuerpo es el anticuerpo MOV18. En aún otra realización, el anticuerpo se une al mismo epítopo que el anticuerpo MOV18. En una realización adicional, el anticuerpo comprende una cadena ligera de región variable seleccionada del grupo que consiste en LK26HuVK (SEQ ID NO: 13); LK26HuVKY (SEQ ID NO: 14); LK26HuVKPW (SEQ ID NO: 15); Y LK26HuVKPW, Y (SEQ ID NO: 16). Alternativamente o en combinación, el anticuerpo incluye una cadena pesada de región variable seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); Y LK26KOLHuVH (SEQ ID NO: 21). En ciertas realizaciones, el anticuerpo incluye (i) la región variable de cadena pesada LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16); la región de cadena pesada variable LK26HuVH SLF (SEQ ID NO: 19) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16); o la región variable de cadena pesada LK26HuVH FAIS, N (SEQ ID NO: 18) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16).

25

[0029] En una realización particular, el nivel de FRα en la muestra derivada de dicho sujeto se evalúa poniendo en contacto la muestra con un par de anticuerpos seleccionados de entre el grupo que consiste en (a) anticuerpo MOV18 inmovilizado a un soporte sólido y etiquetado anticuerpo MORAB-003; (b) anticuerpo 9F3 inmovilizado en un soporte sólido y anticuerpo 24F12 marcado; (c) anticuerpo 26B3 inmovilizado sobre un soporte sólido y anticuerpo 19D4 marcado; y (d) anticuerpo 9F3 inmovilizado en un soporte sólido y anticuerpo 26B3 marcado.

30

**[0030]** En ciertas realizaciones, el anticuerpo se selecciona del grupo que consiste de un anticuerpo murino, un anticuerpo humano, un anticuerpo humanizado, un anticuerpo biespecífico, un anticuerpo quimérico, un fragmento Fab, Fab'2, ScFv, SMIP, aficuerpo, avimer, versacuerpo, nanocuerpo, y un dominio de anticuerpos. Alternativamente, o en combinación, el anticuerpo está marcado, por ejemplo, con una etiqueta seleccionada del grupo que consiste en un marcador radio, un marcador biotina, un marcador cromóforo, un marcador fluoróforo o un marcador enzimático.

35

[0031] En ciertas realizaciones, el nivel de FRα se determina mediante el uso de una técnica seleccionada de entre el grupo que consiste en el análisis de Transferencia Western, radioinmunoensayo, inmunofluorimetría, inmunoprecipitación, diálisis de equilibrio, la inmunodifusión, ensayo de fase de solución, inmunoensayo de electroquimioluminiscencia (ECLIA) Y ensayo ELISA.

40

45

**[0032]** En diversas realizaciones de los aspectos anteriores de la invención, la muestra de control es un nivel de control estandarizado de FR $\alpha$  en un sujeto sano. En otra realización, la muestra de control es una muestra previamente obtenida del sujeto.

50

[0033] En ciertas realizaciones, la muestra se trata con guanidina antes de determinar el nivel de FR $\alpha$  en la muestra. Alternativamente o en combinación, la muestra se diluye antes de determinar el nivel de FR $\alpha$  en la muestra. Alternativamente, o en combinación, la muestra se centrifuga, se agitó con vórtex, o ambos, antes de determinar el nivel de FR $\alpha$  en la muestra.

55

60

65

[0034] En un aspecto adicional, la presente invención proporciona métodos de como evaluar la progresión del cáncer de ovario en un sujeto que padece cáncer de ovario, determinando el nivel de receptor de folato alfa (Frα) que no está unido a una célula en una muestra derivada del sujeto; y comparar el nivel de receptor de folato alfa (Frα) que no está unido a una célula en la muestra con el nivel de FRα en una muestra de control, en el que un aumento en el nivel de FRα en la muestra derivada del sujeto en comparación con el nivel de FRα en la muestra de control es una indicación de que el cáncer de ovario progresará rápidamente; y en el que una disminución en el nivel de FRα en la muestra de control es una indicación de que el cáncer de ovario progresará lentamente o retrocederá, evaluando con ello la progresión de cáncer de ovario cáncer en el sujeto; en el que el nivel de FRα en la muestra derivada del sujeto se evalúa mediante contacto de la muestra con (a) anticuerpo MOV18 inmovilizado a un soporte sólido y etiquetado anticuerpo 4F12, (c) anticuerpo 26B3 inmovilizado en un soporte sólido y etiquetado anticuerpo 9F3 inmovilizado en un soporte sólido y etiquetado anticuerpo 9F3 inmovilizado en un soporte sólido y etiquetado anticuerpo 26B3. Por ejemplo, la muestra puede ser orina, suero, plasma o ascitis.

#### Métodos de estratificar un cáncer que expresa FRα en Grupos de terapia del cáncer

[0035] En un aspecto adicional, la presente invención proporciona un método de estratificar un sujeto aquejado de un cáncer que expresa FR $\alpha$  en uno de al menos cuatro grupos de terapia de cáncer mediante la determinación del nivel de receptor de folato alfa (Fr $\alpha$ ) que no se une a una célula, en una muestra derivada del sujeto; y estratificar el sujeto en uno de al menos cuatro grupos de terapia del cáncer basado en el nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula; en donde el nivel de FR $\alpha$  que no está unido a una célula en la muestra derivada del sujeto se evalúa poniendo en contacto la muestra con un anticuerpo que se une FR $\alpha$ . Por ejemplo, la muestra se selecciona del grupo que consiste en orina, suero, plasma o ascitis.

[0036] En aún otro aspecto, la presente invención proporciona un método de estratificar un sujeto aquejado de un cáncer que expresa FR $\alpha$  en uno de al menos cuatro grupos de terapia de cáncer mediante la determinación del nivel de receptor de folato alfa (Fr $\alpha$ ) que no es unido a una célula en una muestra de orina derivada del sujeto; y estratificar el sujeto en uno de al menos cuatro grupos de terapia del cáncer basado en el nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula en la muestra. En un aspecto adicional, la presente invención se dirige a métodos de estratificación de un sujeto aquejado de FR $\alpha$  que expresa cáncer en uno de al menos cuatro grupos de terapia de cáncer mediante la determinación del nivel de receptor de folato alfa (FR $\alpha$ ) que no está unido a una célula en una muestra de suero derivada del sujeto; y estratificar el sujeto en uno de al menos cuatro grupos de terapia del cáncer basado en el nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula en la muestra de suero.

[0037] En diversas realizaciones de los anteriores aspectos de la invención, el cáncer que expresa FRα se selecciona del grupo que consiste en cáncer de pulmón, mesotelioma, cáncer de ovario, cáncer renal, cáncer cerebral, cáncer cervical, cáncer de nasofaringeal, carcinoma celular escamoso de la cabeza y cuello, cancer endometrial, cáncer de mama, cáncer de vejiga, cancer pancreática, cancer del hueso, cancer pituitario, colorrectal cancer y cancer medular tiroideo. En una realización particular, el cáncer que expresa FRα es cáncer de ovario. En otra realización, el FRα que expresa cáncer es el cáncer de pulmón no microcítico, tal como un adenocarcinoma.

[0038] En otro aspecto, la presente invención se dirige a métodos para evaluar si un sujeto está afectado por cáncer de ovario, determinando el nivel de receptor de folato alfa ( $Fr\alpha$ ) que no está unido a una célula en una muestra de orina derivada del sujeto, en donde la presencia de  $FR\alpha$  que no está unido a una célula en la muestra de orina a una concentración de más de aproximadamente 9100 pg/ml es una indicación de que el sujeto padece de cáncer de ovario.

[0039] En varios aspectos de los aspectos anteriores de la invención, la presencia de FRα en la muestra de orina a una concentración de más de aproximadamente 9500 pg/ml, de aproximadamente 10.000 pg/ml, de aproximadamente 11.000 pg/ml, aproximadamente 12.000 pg/ml, de aproximadamente 13.000 pg/ml, aproximadamente 14.000 pg/ml, de aproximadamente 15.000 pg/ml, de aproximadamente 16.000 pg/ml, de aproximadamente 17.000 pg/ml, de aproximadamente 18.000 pg/ml, de aproximadamente 19.000 pg/ml, o aproximadamente 20.000 pg/ml es una indicación de que el sujeto está afectado por cáncer de ovario.

[0040] En varios aspectos, el nivel de FR $\alpha$  se determina poniendo en contacto la muestra con un anticuerpo que se une FR $\alpha$ . Por ejemplo, el anticuerpo se selecciona del grupo que consiste en:

- (a) un anticuerpo que se une al mismo epítopo que el anticuerpo MORAB-003;
- (b) un anticuerpo que comprende la SEQ ID NO: 1 (GFT FSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3;
  - (c) el anticuerpo MOV18;
  - (d) un anticuerpo que se une al mismo epítopo que el anticuerpo MOV18;
  - (e) el anticuerpo 548.908;
  - (f) un anticuerpo que se une al mismo epítopo que el anticuerpo 548.908;
  - (g) el anticuerpo 6D398;
  - (h) un anticuerpo que se une al mismo epítopo que el anticuerpo 6D398;
  - (i) un anticuerpo que se une al mismo epítopo que el anticuerpo 26B3;
  - (j) un anticuerpo que comprende la SEQ ID NO: 55-(GYFMN) como CDRH1, SEQ ID NO: 56 (RIFPYNGDTFYNQKFKG) como CDRHH2, SEQ ID NO: 57 (GTHYFDY) como CDRH3, SEQ ID NO: 51-(RTSENIFSYLA) como CDRL1, SEQ ID NO: 52-(NAKTLAE) como CDRL2 y SEQ ID NO: 53 (QHHYAFPWT) como CDRL3;
- 65 (k) el anticuerpo 26B3;

10

15

20

35

40

45

55

60

(I) un anticuerpo que se une al mismo epítopo que el anticuerpo 19D4;

(m) un anticuerpo que comprende la SEQ ID NO: 39 (HPYM-H+) como CDRH1, SEQ ID NO: 40 (RIDPANGNTKYDPKFQG) como CDRHH2, SEQ ID NO: 41-(EEVADYTMDY) como CDRH3, SEQ ID NO: 35-(RASESVDTYGNNFIH) como CDRL1, SEQ ID NO: 36 (LASNLES) como CDRL2 y SEQ ID NO: 37 (QQNNGDPWT) como CDRL3;

- (n) el anticuerpo 19D4;
  - (o) un anticuerpo que se une al mismo epítopo que el anticuerpo 9F3;
  - (p) un anticuerpo que comprende la SEQ ID NO: 31-(SGYYWN) como CDRH1, SEQ ID NO: 32-(YIKSDGSNNYNPSLKN) como CDRHH2, SEQ ID NO: 33 (EWKAMDY) como CDRH3, SEQ ID NO: 27 (RASSTVSYSYLH) como CDRL1, SEQ ID NO: 28 (GTSNLAS) como CDRL2 y SEQ ID NO: 29 (QQYSGYPLT) como CDRL3;
  - (q) el anticuerpo 9F3:
  - (r) un anticuerpo que se une al mismo epítopo que el anticuerpo 24F12;
  - (s) un anticuerpo que comprende la SEQ ID NO: 47 (SYAMS) como CDRH1, SEQ ID NO: 48 (EIGSGGSYTYYPDTVTG) como CDRHH2, SEQ ID NO: 49 (ETTAGYFDY) como CDRH3, SEQ ID NO: 43 (SASQGINNFLN) como CDRL1, SEQ ID NO: 44 (YTSSLHS) como CDRL2 y SEQ ID NO: 45-(QHFSKLPWT) como CDRL3;
  - (t) el anticuerpo 24F12;
  - (u) un anticuerpo que comprende una cadena ligera de la región variable seleccionada del grupo que consiste en LK26HuVK (SEQ ID NO: 13); LK26HuVKY (SEQ ID NO: 14); LK26HuVKPW (SEQ ID NO: 15); y LK26HuVKPW, Y (SEQ ID NO: 16);
  - (v) un anticuerpo que comprende una cadena pesada de la región variable seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); y LK26KOLHuVH (SEQ ID NO: 21);
  - (w) un anticuerpo que comprende la región de cadena pesada variable LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16);
  - (x) un anticuerpo que comprende la región de cadena pesada variable LK26HuVH SLF (SEQ ID NO: 19) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16); y
  - (y) un anticuerpo que comprende la región de cadena pesada variable LK26HuVH FAIS, N (SEQ ID NO: 18) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16).

30

35

40

45

50

5

10

15

20

25

- [0041] En una realización particular, el anticuerpo se une al mismo epítopo que el anticuerpo MORAB-003. En otra realización, el anticuerpo incluye SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3. En otra realización, el anticuerpo es el anticuerpo MOV18. En aún otra realización, el anticuerpo se une al mismo epítopo que el anticuerpo MOV18. En una realización adicional, el anticuerpo comprende una cadena ligera de la región variable seleccionada del grupo que consiste en LK26HuVK (SEQ ID NO: 13); LK26HuVKY (SEQ ID NO: 14); LK26HuVKPW (SEQ ID NO: 15); y LK26HuVKPW, y (SEQ ID NO: 16). Alternativamente o en combinación, el anticuerpo incluye una cadena pesada de la región variable seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); y LK26KOLHuVH (SEQ ID NO: 21). En ciertas realizaciones, el anticuerpo incluye (i) la cadena pesada de la región variable LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16); la región de cadena pesada variable LK26HuVH SLF (SEQ ID NO: 19) y la cadena ligera de región variable LK26HuVKPW, Y (SEQ ID NO: 16); o la cadena pesada de la región variable LK26HuVH FAIS, N (SEQ ID NO: 18) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16).
- [0042] En una realización particular, el nivel de FRα en la muestra derivada de dicho sujeto se evalúa poniendo en contacto la muestra con un par de anticuerpos seleccionados de entre el grupo que consiste en (a) anticuerpo MOV18 inmovilizado a un soporte sólido y etiquetado anticuerpo MORAB-003; (b) anticuerpo 9F3 inmovilizado a un soporte sólido y etiquetado 24F12 de anticuerpo; (c)anticuerpo 26B3 inmovilizado a un soporte sólido y el marcado anticuerpo 19D4; y (d) el anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 26B3.

55

60

- [0043] En ciertas realizaciones, el anticuerpo se selecciona del grupo que consiste de un anticuerpo murino, un anticuerpo humano, un anticuerpo humanizado, un anticuerpo biespecífico, un anticuerpo quimérico, un fragmento Fab, Fab'2, ScFv, SMIP, aficuerpo, avimer, versacuerpo, nanoanticuerpo, y un anticuerpo de dominio. Alternativamente, o en combinación, el anticuerpo está marcado, por ejemplo, con un marcador seleccionado del grupo que consiste de una etiqueta radiactivo, una etiqueta de biotina, una etiqueta cromóforo, una etiqueta fluoróforo, o una etiqueta de enzima.
- **[0044]** En ciertas realizaciones, el nivel de FRα se determina mediante el uso de una técnica seleccionada de entre el grupo que consiste en el análisis de Transferencia Western, radioinmunoensayo, inmunofluorimetría, inmunoprecipitación, diálisis de equilibrio, la inmunodifusión, ensayo de fase de solución, inmunoensayo de electroquimioluminiscencia (ECLIA) y el ensayo ELISA.

**[0045]** En diversas realizaciones de los aspectos anteriores de la invención, la muestra de control es un nivel de control estandarizado de FR $\alpha$  en un sujeto sano.

[0046] En ciertas realizaciones, la muestra se trata con guanidina antes de determinar el nivel de FRα en la muestra. Alternativamente o en combinación, la muestra se diluye antes de determinar el nivel de FRα en la muestra. Alternativamente, o en combinación, la muestra se centrifuga, se agitó con vórtex, o ambos, antes de determinar el nivel de FRα en la muestra.

[0047] En una realización particular, el sujeto es estratificado en la etapa I, etapa II, etapa III o cáncer de ovario en etapa IV.

[0048] En un aspecto adicional, la presente invención proporciona un método de estratificar un sujeto de cáncer ovario en uno de al menos cuatro grupos de terapia del cáncer por determinación del nivel de receptor de folato alfa (Frα) que no está unido a una célula en una muestra derivada del sujeto; y estratificar el sujeto en uno de al menos cuatro de terapia del cáncer de grupos basados en el nivel de receptor de folato alfa (Frα) que no está unido a una célula en la muestra; en el que el nivel de FRα en la muestra derivada del sujeto se evalúa mediante contacto de la muestra con (a) anticuerpo MOV18 inmovilizado a un soporte sólido y etiquetado anticuerpo MORAB-003, (b) anticuerpo 9F3 inmovilizado a un soporte sólido y etiquetado anticuerpo 24F12, (c) anticuerpo 26B3 inmovilizado a un soporte sólido y etiquetado anticuerpo 19D4, y (d) el anticuerpo 9F3 inmovilizado a un soporte sólido y etiquetado anticuerpo 26B3. Por ejemplo, la muestra puede ser orina, suero, plasma o ascitis.

Métodos de monitorizar la eficacia de tratamiento MORAb-003 de cáncer de ovario o cáncer de pulmón

25 [0049] En un aspecto, la presente invención proporciona un método de monitorización de la eficacia de tratamiento MORAb-003 de cáncer de ovario o cáncer de pulmón en un sujeto que padece de cáncer de ovario o cáncer de pulmón, mediante la determinación del nivel de receptor de folato alfa (Fra) que no está unido a una célula, en una muestra derivada del sujeto, donde al sujeto ha sido previamente administrada MORAb-003; y comparar el nivel de receptor de folato alfa (Frα) que no está unido a una 30 célula con el nivel de FRα en una muestra de control, en el que un aumento en el nivel de FRα en la muestra derivada del sujeto en comparación con el nivel de FRα en la muestra de control es una indicación de que el tratamiento MORAb-003 no es eficaz; y en el que una disminución en el nivel de FR $\alpha$  en la muestra derivada del sujeto en comparación con el nivel de FR $\alpha$  en la muestra de control es una indicación de que el tratamiento MORAb-003 es eficaz. En realizaciones particulares, el nivel de 35 FRα que no está unido a una célula en la muestra derivada del sujeto se evalúa poniendo en contacto la muestra con un anticuerpo que se une FRα. Por ejemplo, la muestra puede ser orina, suero, plasma o ascitis.

[0050] En un aspecto adicional, la presente invención proporciona un método de monitorización de la eficacia del tratamiento MORAb-003 de cáncer de ovario o cáncer de pulmón en un sujeto que padece de cáncer de ovario o cáncer de pulmón, mediante la determinación del nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula en una muestra de orina derivada del sujeto, en el que al sujeto ha sido previamente administrada MORAb-003; y comparar el nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula en la muestra de orina derivado de la materia con el nivel de FR $\alpha$  en una muestra de control, en el que un aumento en el nivel de FR $\alpha$  en la muestra de orina derivada del sujeto en comparación con el nivel de FR $\alpha$  en la muestra de control es una indicación de que el tratamiento MORAb-003 no es eficaz; y en el que una disminución en el nivel de FR $\alpha$  en la muestra de orina derivada del sujeto en comparación con el nivel de FR $\alpha$  en la muestra de control es una indicación de que el tratamiento MORAb-003 es eficaz.

[0051] En aún otro aspecto, la presente invención está dirigida a un método de monitorización de la eficacia del tratamiento MORAb-003 de cáncer de ovario o cáncer de pulmón en un sujeto que padece de cáncer de ovario o cáncer de pulmón, mediante la determinación del nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula en una muestra de suero derivada del sujeto, en el que al sujeto ha sido previamente administrada MORAb-003; y comparar el nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula en la muestra de suero derivada del sujeto con el nivel de FR $\alpha$  en una muestra de control, en el que un aumento en el nivel de FR $\alpha$  en el muestra de suero derivada del sujeto en comparación con el nivel de FR $\alpha$  en la muestra de control es una indicación de que el tratamiento MORAb-003 no es eficaz; y en el que una disminución en el nivel de FR $\alpha$  en la muestra de suero derivada del sujeto en comparación con el nivel de FR $\alpha$  en la muestra de control es una indicación de que el tratamiento MORAb-003 es eficaz.

**[0052]** En varios aspectos, el nivel de FR $\alpha$  se determina por el contacto de la muestra con un anticuerpo que se une FR $\alpha$ . Por ejemplo, el anticuerpo se selecciona del grupo que consiste en:

(a) un anticuerpo que se une al mismo epítopo que el anticuerpo MORAb-003;

65

5

10

15

20

40

45

50

55

- (b) un anticuerpo que comprende la SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3;
- 5 (c) el anticuerpo MOV18;
  - (d) un anticuerpo que se une al mismo epítopo que el anticuerpo MOV18;
  - (e) el anticuerpo 548.908;
  - (f) un anticuerpo que se une al mismo epítopo que el anticuerpo 548.908;
  - (g) el anticuerpo 6D398;
- (h) un anticuerpo que se une al mismo epítopo que el anticuerpo 6D398;
  - (i) un anticuerpo que se une al mismo epítopo que el anticuerpo 26B3;
  - (j) un anticuerpo que comprende la SEQ ID NO: 55-(GYFMN) como CDRH1, SEQ ID NO: 56 (RIFPYNGDTFYNQKFKG) como CDRHH2, SEQ ID NO: 57 (GTHYFDY) como CDRH3, SEQ ID NO: 51-(RTSENIFSYLA) como CDRL1, SEQ ID NO: 52 (NAKTLAE) como CDRL2 y SEQ ID NO: 53 (QHHYAFPWT) como CDRL3;
  - (k) el anticuerpo 26B3;

15

40

- (I) un anticuerpo que se une al mismo epítopo que el anticuerpo 19D4;
- (m) un anticuerpo que comprende la SEQ ID NO: 39 (HPYM-H+) como CDRH1, SEQ ID NO: 40 (RIDPANGNTKYDPKFQG) como CDRHH2, SEQ ID NO: 41-(EEVADYTMDY) como CDRH3, SEQ ID NO: 35-(RASESVDTYGNNFIH) como CDRL1, SEQ ID NO: 36 (LASNLES) como CDRL2 y SEQ
- 20 ID NO: 35-(RASESVDTYGNNFIH) como ( ID NO: 37 (QQNNGDPWT) como CDRL3;
  - (n) el anticuerpo 19D4;
  - (o) un anticuerpo que se une al mismo epítopo que el anticuerpo 9F3;
- (p) un anticuerpo que comprende la SEQ ID NO: 31 (SGYYWN) como CDRH1, SEQ ID NO: 32 (YIKSDGSNNYNPSLKN) como CDRHH2, SEQ ID NO: 33 (EWKAMDY) como CDRH3, SEQ ID NO: 27 (RASSTVSYSYLH) como CDRL1, SEQ ID NO: 28 (GTSNLAS) como CDRL2 y SEQ ID NO: 29 (QQYSGYPLT) como CDRL3;
  - (q) el anticuerpo 9F3;
  - (r) un anticuerpo que se une al mismo epítopo que el anticuerpo 24F12;
- (s) un anticuerpo que comprende la SEQ ID NO: 47 (SYAMS) como CDRH1, SEQ ID NO: 48 (EIGSGGSYTYYPDTVTG) como CDRHH2, SEQ ID NO: 49 (ETTAGYFDY) como CDRH3, SEQ ID NO: 43 (SASQGINNFLN) como CDRL1, SEQ ID NO: 44 (YTSSLHS) como CDRL2 y SEQ ID NO: 45-(QHFSKLPWT) como CDRL3;
  - (t) el anticuerpo 24F12:
- 35 (u) un anticuerpo que comprende una cadena ligera de la región variable seleccionada del grupo que consiste en LK26HuVK (SEQ ID NO: 13); LK26HuVKY (SEQ ID NO: 14); LK26HuVKPW (SEQ ID NO: 15); y LK26HuVKPW, y (SEQ ID NO: 16);
  - (v) un anticuerpo que comprende una cadena pesada de la región variable seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); y LK26KOLHuVH (SEQ ID NO: 21);
  - (w) un anticuerpo que comprende la región de cadena pesada variable LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16);
  - (x) un anticuerpo que comprende la región de cadena pesada variable LK26HuVH SLF (SEQ ID NO: 19) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16); y
- 45 (Y) un anticuerpo que comprende la región de cadena pesada variable LK26HuVH FAIS, N (SEQ ID NO: 18) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16).
- [0053] En una realización particular, el anticuerpo se une al mismo epítopo que el anticuerpo MORAb-003. En otra realización, el anticuerpo incluye SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID 50 NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3. En otra realización, el anticuerpo es el anticuerpo MOV18. En aún otra realización, el anticuerpo se une al mismo epítopo que el anticuerpo MOV18. En una realización adicional, el anticuerpo comprende una cadena ligera de la región variable seleccionada del 55 grupo que consiste en LK26HuVK (SEQ ID NO: 13); LK26HuVKY (SEQ ID NO: 14); LK26HuVKPW (SEQ ID NO: 15); y LK26HuVKPW, Y (SEQ ID NO: 16). Alternativamente o en combinación, el anticuerpo incluye una cadena pesada de la región variable seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); y LK26KOLHuVH (SEQ ID NO: 21). En ciertas realizaciones, el 60 anticuerpo incluye (i) la cadena pesada de la región variable LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16); la cadena pesada de la región variable LK26HuVH SLF (SEQ ID NO: 19) y la región variable de cadena ligera LK26HuVKP W, Y (SEQ ID NO: 16); o la cadena pesada de la región variable LK26HuVH FAIS, N (SEQ ID NO: 18) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16).
  - [0054] En una realización particular, el nivel de  $FR\alpha$  en la muestra derivada de dicho sujeto se evalúa poniendo en contacto la muestra con un par de anticuerpos seleccionados de entre el grupo que

consiste en (a) anticuerpo MOV18 inmovilizado a un soporte sólido y etiquetado anticuerpo MORAb-003; (b) anticuerpo 9F3 inmovilizado a un soporte sólido y etiquetado 24F12 de anticuerpo; (c) anticuerpo 26B3 inmovilizado a un soporte sólido y el marcado anticuerpo 19D4; y (d) el anticuerpo 9F3 inmovilizado a un soporte sólido y etiquetado anticuerpo 26B3.

5

10

15

25

40

45

50

55

60

**[0055]** En ciertas realizaciones, el anticuerpo se selecciona del grupo que consiste de un anticuerpo murino, un humano anticuerpo, un anticuerpo humanizado, un anticuerpo biespecífico, un anticuerpo quimérico, un fragmento Fab, Fab'2, ScFv, SMIP, aficuerpo, avimer, versacuerpo, nanoanticuerpo, y un anticuerpo de dominio. Alternativamente, o en combinación, el anticuerpo está marcado, por ejemplo, con un marcador seleccionado del grupo que consiste de un marcador radiactivo, un marcador de biotina, una etiqueta cromóforo, un marcador fluoróforo, o una etiqueta de enzima.

 ${f [0056]}$  En ciertas realizaciones, el nivel de FRlpha se determina mediante el uso de una técnica seleccionada de entre el grupo que consiste en el análisis de Transferencia Western, radioinmunoensayo, inmunofluorimetría, inmunoprecipitación, diálisis de equilibrio, la inmunodifusión, ensayo de fase de solución, inmunoensayo de electroquimioluminiscencia (ECLIA) y el ensayo de ELISA.

[0057] En diversas realizaciones de los aspectos anteriores de la invención, la muestra de control es un nivel de control estandarizado de FRα en un sujeto sano. En otra realización, la muestra de control es una muestra previamente obtenida a partir de la materia.

[0058] En ciertas realizaciones, la muestra se trata con guanidina antes de determinar el nivel de FRα en la muestra. Alternativamente o en combinación, la muestra se diluye antes de determinar el nivel de FRα en la muestra. Alternativamente, o en combinación, la muestra se centrifuga, se agitó con vórtex, o ambos, antes de determinar el nivel de FRα en la muestra.

### Métodos de predicción de si un sujeto responderá a tratamiento MORAb-003

[0059] En un aspecto, la presente invención proporciona un método para predecir si un sujeto que padece de un cáncer que expresa FRα, como el cáncer de ovario o cáncer de pulmón, responderá al tratamiento con MORAb-003, mediante la determinación del nivel de receptor de folato alfa (Frα) que no está unido a una célula en una muestra derivada del sujeto; y comparar el nivel de receptor de folato alfa (Frα) que no está unido a una célula en la muestra derivada del sujeto con el nivel de FRα en una muestra de control, donde una diferencia entre el nivel de FRα en la muestra derivada del sujeto y el nivel de FRα en la muestra de control es una indicación de que el sujeto responderá al tratamiento con MORAb-003.

[0060] En un aspecto, la presente invención proporciona un método para predecir si un sujeto que padece de cáncer que expresa FR $\alpha$ , como el cáncer de ovario o cáncer de pulmón, responderá al tratamiento con MORAb-003, mediante la determinación del nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula en una muestra de orina derivada del sujeto; y comparar el nivel o receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula en la muestra de orina derivada del sujeto con el nivel de FR $\alpha$  en una muestra de control, donde una diferencia entre el nivel de FR $\alpha$  en la muestra de orina derivada del sujeto y el nivel de FR $\alpha$  en la muestra de control es una indicación de que el sujeto responderá al tratamiento con MORAb-003.

[0061] En un aspecto adicional, la presente invención proporciona un método para predecir si un sujeto que padece de un cáncer que expresa FR $\alpha$ , como cáncer de ovario o cáncer de pulmón, responderá al tratamiento con MORAb-003, mediante la determinación del nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula en una muestra de suero derivada del sujeto; y comparar el nivel de receptor de folato alfa (Fr $\alpha$ ) que no está vinculado a una célula en la muestra de suero derivada del sujeto con el nivel de FR $\alpha$  en una muestra de control, donde una diferencia entre el nivel de FR $\alpha$  en la muestra de suero derivada del sujeto y el nivel de FR $\alpha$  en la muestra de control es un indicio de que el sujeto responderá al tratamiento con MORAb-003.

[0062] En realizaciones adicionales, el cáncer que expresa FR $\alpha$  se selecciona del grupo que consiste en cáncer de pulmón, mesotelioma, cáncer de ovario, cáncer renal, cáncer cerebral, cáncer de cuello uterino, cáncer asofaringeo, carcinoma de células escamosas de cabeza y cuello, cáncer endometrial, cáncer de mama, cáncer de vejiga, cáncer de páncreas, cáncer de hueso, cáncer de hipófisis, cáncer colorrectal y cáncer de tiroides medular. En una realización particular, el Cáncer que expresa FR $\alpha$  es cáncer de ovario. En otra realización, el cáncer que expresa FR $\alpha$  de pulmón es el cáncer de pulmón de células no pequeñas, tales como adenocarcinoma.

[0063] En un aspecto adicional, la presente invención proporciona métodos para predecir si un sujeto que padece cáncer de ovario responderá al tratamiento con MORAb-003, mediante la determinación del nivel de receptor de folato alfa (Frα) que no está unido a células en una muestra de orina derivada

del sujeto, en el que la presencia de FR $\alpha$  que no está unido a una célula en la muestra de orina a una concentración de más de aproximadamente 9100 pg/ml es una indicación de que el sujeto responderá al tratamiento con MORAb-003.

- 5 **[0064]** En diversas realizaciones de los aspectos anteriores de la invención, la presencia de FRα en la muestra de orina a una concentración de más de aproximadamente 9500 pg/ml, de aproximadamente 10.000 pg/ml, de aproximadamente 11.000 pg/ml, aproximadamente 12.000 pg/ml, de aproximadamente 13.000 pg/ml, de aproximadamente 15.000 pg/ml, de aproximadamente 16.000 pg/ml, de aproximadamente 17.000 pg/ml, de aproximadamente 18.000 pg/ml, de aproximadamente 19.000 pg/ml, o aproximadamente 20.000 pg/ml es una indicación de que el sujeto está afectado por cáncer de ovario.
- [0065] En diversas realizaciones de los aspectos anteriores de la invención, el nivel de FRα se determina poniendo en contacto la muestra con un anticuerpo que se une FRα. Por ejemplo, el anticuerpo se selecciona del grupo que consiste en:
  - (a) un anticuerpo que se une al mismo epítopo que el anticuerpo MORAb-003;
  - (b) un anticuerpo que comprende la SEQ ID NO: 1 (GF TFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3;
  - (c) el anticuerpo MOV18;

20

- (d) un anticuerpo que se une al mismo epítopo que el anticuerpo MOV18;
- (e) el anticuerpo 548908:
- 25 (f) un anticuerpo que se une al mismo epítopo que el anticuerpo 548908;
  - (g) el anticuerpo 6D398;
  - (h) un anticuerpo que se une al mismo epítopo que el anticuerpo 6D398;
  - (i) un anticuerpo que se une al mismo epítopo que el anticuerpo 26B3;
- (j) un anticuerpo que comprende la SEQ ID NO: 55 (GYFMN) como CDRH1, SEQ ID NO: 56 (RIFPYNGDTFYNQKFKG) como CDRHH2, SEQ ID NO: 57 (GTHYFDY) como CDRH3, SEQ ID NO: 51-(RTSENIFSYLA) como CDRL1, SEQ ID NO: 52-(NAKTLAE) como CDRL2 y SEQ ID NO: 53 (QHHYAFPWT) como CDRL3;
  - (k) el anticuerpo 26B3;
  - (I) un anticuerpo que se une al mismo epítopo que el anticuerpo 19D4;
- (m) un anticuerpo que comprende la SEQ ID NO: 39 (HPYM-H+) como CDRH1, SEQ ID NO: 40 (RIDPANGNTKYDPKFQG) como CDRHH2, SEQ ID NO: 41-(EEVADYTMDY) como CDRH3, SEQ ID NO: 35-(RASESVDTYGNNFIH) como CDRL1, SEQ ID NO: 36 (LASNLES) como CDRL2 y SEQ ID NO: 37 (QQNNGDPWT) como CDRL3;
  - (n) el anticuerpo 19D4;
- 40 (o) un anticuerpo que se une al mismo epítopo que el anticuerpo 9F3;
  - (p) un anticuerpo que comprende la SEQ ID NO: 31-(SGYYWN) como CDRH1, SEQ ID NO: 32-(YIKSDGSNNYNPSLKN) como CDRHH2, SEQ ID NO: 33 (EWKAMDY) como CDRH3, SEQ ID NO: 27 (RASSTVSYSYLH) como CDRL1, SEQ ID NO: 28 (GTSNLAS) como CDRL2 y SEQ ID NO: 29 (QQYSGYPLT) como CDRL3;
- 45 (q) el anticuerpo 9F3;
  - (r) un anticuerpo que se une al mismo epítopo que el anticuerpo 24F12;
  - (s) un anticuerpo que comprende la SEQ ID NO: 47 (SYAMS) como CDRH1, SEQ ID NO: 48 (EIGSGGSYTYYPDTVTG) como CDRHH2, SEQ ID NO: 49 (ETTAGYFDY) como CDRH3, SEQ ID NO: 43 (SASQGINNFLN) como CDRL1, SEQ ID NO: 44 (YTSSLHS) como CDRL2 y SEQ ID NO: 45-(QHFSKLPWT) como CDRL3;
  - (t) el anticuerpo 24F12;
  - (u) un anticuerpo que comprende una cadena ligera de la región variable seleccionada del grupo que consiste en LK26HuVK (SEQ ID NO: 13); LK26HuVKY (SEQ ID NO: 14); LK26HuVKPW (SEQ ID NO: 15); y LK26HuVKPW, Y (SEQ ID NO: 16);
- (v) un anticuerpo que comprende una cadena pesada de la región variable seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); y LK26KOLHuVH (SEQ ID NO: 21); (w) un anticuerpo que comprende la región de cadena pesada variable LK26KOLHuVH (SEQ ID
  - (w) un anticuerpo que comprende la región de cadena pesada variable LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16);
- (x) un anticuerpo que comprende la región de cadena pesada variable LK26HuVH SLF (SEQ ID NO: 19) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16); y
   (y) un anticuerpo que comprende la región de cadena pesada variable LK26HuVH FAIS, N (SEQ ID NO: 18) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16).
- [0066] En una realización particular, el anticuerpo se une al mismo epítopo que el anticuerpo MORAb-
- 003. En otra realización, el anticuerpo incluye SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3,

SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3. En otra realización, el anticuerpo es el anticuerpo MOV18. En aún otra realización, el anticuerpo se une al mismo epítopo que el anticuerpo MOV18. En una realización adicional, el anticuerpo comprende una cadena ligera de la región variable seleccionada del grupo que consiste en LK26HuVK (SEQ ID NO: 13); LK26HuVKY (SEQ ID NO: 14); LK26HuVKPW (SEQ ID NO: 15); y LK26HuVKPW, Y (SEQ ID NO: 16). Alternativamente o en combinación, el anticuerpo incluye una cadena pesada de la región variable seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); y LK26KOLHuVH (SEQ ID NO: 21). En ciertas realizaciones, el anticuerpo incluye (i) la cadena pesada de la región variable LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16); la región de cadena pesada variable LK26HuVH SLF (SEQ ID NO: 19) y la cadena ligera de la región variable LK26HuVKPW, Y (SEQ ID NO: 16); o la cadena pesada de la región variable LK26HuVH FAIS, N (SEQ ID NO: 18) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16).

15

20

10

[0067] En una realización particular, el nivel de FRα en la muestra derivada f rom dicho sujeto se evalúa poniendo en contacto la muestra con un par de anticuerpos seleccionados de entre el grupo que consiste en (a) anticuerpo MOV18 inmovilizado a un soporte sólido y etiquetado anticuerpo MORAb-003; (b) anticuerpo 9F3 inmovilizado a un soporte sólido y etiquetado 24F12 de anticuerpo; (c) anticuerpo 26B3 inmovilizado a un soporte sólido y el marcado anticuerpo 19D4; y (d) el anticuerpo 9F3 inmovilizado a un soporte sólido y etiquetado anticuerpo 26B3.

murii 25 quim antic

**[0068]** En ciertas realizaciones, el anticuerpo se selecciona del grupo que consiste de un anticuerpo murino, un humano anticuerpo, un anticuerpo humanizado, un anticuerpo biespecífico, un anticuerpo quimérico, un fragmento Fab, Fab'2, ScFv, SMIP, aficuerpo, avimer, versacuerpo, nanoanticuerpo, y un anticuerpo de dominio. Alternativamente, o en combinación, el anticuerpo está marcado, por ejemplo, con un marcador seleccionado del grupo que consiste de un marcador radiactivo, un marcador de biotina, una etiqueta cromóforo, un marcador fluoróforo, o una etiqueta de enzima.

30

[0069] En ciertas realizaciones, el nivel de FR $\alpha$  se determina mediante el uso de una técnica seleccionada de entre el grupo que consiste en el análisis de Transferencia Western, radioinmunoensayo, inmunofluorimetría, inmunoprecipitación, diálisis de equilibrio, la inmunodifusión, ensayo de fase de solución, electroquimioluminiscencia inmunoensayo (ECLIA) y el ensayo de ELISA. [0070] En diversas realizaciones de los aspectos anteriores de la invención, la muestra de control es un nivel de control estandarizado de FR $\alpha$  en un sujeto sano.

35

[0071] En ciertas realizaciones, la muestra se trata con guanidina antes de determinar el nivel de FR $\alpha$  en la muestra. Alternativamente o en combinación, la muestra se diluye antes de determinar el nivel de FR $\alpha$  en la muestra. Alternativamente, o en combinación, la muestra se centrifuga, se agitó con vórtex, o ambos, antes de determinar el nivel de FR $\alpha$  en la muestra.

40

45

[0072] En un aspecto adicional, la presente invención proporciona un método para predecir si un sujeto que padece de un cáncer que expresa FRα, como el cáncer de ovario o cáncer de pulmón, responderá al tratamiento con MOR Ab-003, mediante la determinación del nivel de receptor de folato alfa (Frα) que no está unido a una célula en una muestra derivada del sujeto; y comparar el nivel de receptor de folato alfa (Frα) que no está unido a una célula en la muestra con el nivel de FRα en una muestra de control, donde una diferencia entre los niveles de FRα en la muestra derivada del sujeto y en la muestra de control es una indicación de que el sujeto responderá al tratamiento con MORAb-003; en el que el nivel de FRα en la muestra derivada de la materia se evalúa poniendo en contacto la muestra con (a) anticuerpo MOV18 inmovilizado a un soporte sólido y etiquetado anticuerpo MORAb-003, (b) anticuerpo 9F3 inmovilizado a un soporte sólido y etiquetado 24F12 anticuerpo, (c) anticuerpo 26B3 inmovilizado a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetado anticuerpo 9F3 inmovilizadodo a un soporte sólido y etique

55

50

[0073] En diversas realizaciones de los aspectos anteriores de la invención, la MORAb-003 para el tratamiento es (a) un anticuerpo que comprende la secuencia de cadena pesada de aminoácidos como se expone en SEQ ID NO: 7 y la secuencia de aminoácidos de cadena ligera como se expone en SEQ ID NO: 8; (b) un anticuerpo que se une al mismo epítopo que el anticuerpo MORAb-003; o (c) un anticuerpo que comprende la SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GT- SNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3.

60

Métodos de tratamiento de un sujeto que tiene cáncer de ovario o cáncer de pulmón

65

[0074] En otro aspecto, la presente invención proporciona métodos de tratamiento de un sujeto que tiene cáncer de ovario o cáncer de pulmón mediante la determinación del nivel de receptor de folato

alfa ( $Fr\alpha$ ), que está no unido a una célula, en una muestra derivada de dicho sujeto (por ejemplo, orina, suero, plasma o ascitis); y comparar el nivel de receptor de folato alfa ( $Fr\alpha$ ) que no está unido a una célula con el nivel de  $FR\alpha$  en una muestra de control, donde una diferencia entre el nivel de  $FR\alpha$  en la muestra derivada de dicho sujeto y el nivel de  $FR\alpha$  en la muestra de control es una indicación de que el sujeto está afectado por cáncer de ovario o cáncer de pulmón; y administrar una cantidad terapéuticamente eficaz de MORAb-003 a dicho sujeto.

[0075] En otro aspecto, la presente invención proporciona métodos de tratamiento de un sujeto que tiene cáncer de ovario o cáncer de pulmón mediante la determinación del nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula, en una muestra de orina derivada de dicho sujeto; y comparar el nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula con el nivel de FR $\alpha$  en una muestra de control, donde una diferencia entre el nivel de FR $\alpha$  en la muestra de orina derivado de dicho sujeto y el nivel de FR $\alpha$  en la muestra de control es una indicación de que el sujeto está afectado por cáncer de ovario o cáncer de pulmón; y administrar una cantidad terapéuticamente eficaz de MORAb-003 a dicho sujeto.

[0076] En otro aspecto, la presente invención proporciona métodos de tratamiento de un sujeto que tiene cáncer de ovario o cáncer de pulmón mediante la determinación del nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula, en una muestra de suero derivadas de dicho sujeto; y comparar el nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula con el nivel de FR $\alpha$  en una muestra de control, donde una diferencia entre el nivel de FR $\alpha$  en la muestra de suero e derivado de dicho sujeto y el nivel de FR $\alpha$  en la muestra de control es una indicación de que el sujeto está afectado por cáncer de ovario o cáncer de pulmón; y administrar una cantidad terapéuticamente eficaz de MORAb-003 a dicho sujeto.

25

30

5

10

15

20

[0077] En un aspecto adicional, la presente invención proporciona métodos para tratar un sujeto que padece cáncer de ovario mediante la determinación del nivel de receptor de folato alfa ( $Fr\alpha$ ) que no está unido a una célula en una muestra de orina derivada del sujeto, en donde la presencia de  $FR\alpha$  que no está unido a una célula en la muestra de orina a una concentración de más de aproximadamente 9100 pg/ml es una indicación de que el sujeto responderá al tratamiento con MORAb-003; y administrar una cantidad terapéuticamente eficaz de MORAb-003 a dicho sujeto.

[0078] En realizaciones particulares, el nivel de FR $\alpha$  que no está unido a una célula en la muestra derivada de dicho sujeto se evalúa poniendo en contacto la muestra con un anticuerpo que se une FR $\alpha$ .

35

40

65

[0079] En diversas realizaciones de los aspectos anteriores de la invención, la presencia de FRα en la muestra de orina a una concentración de más de aproximadamente 9500 pg/ml, de aproximadamente 10.000 pg/ml, de aproximadamente 11.000 pg/ml, aproximadamente 12.000 pg/ml, aproximadamente 13.000 pg/ml, de aproximadamente 14.000 pg/ml, de aproximadamente 15.000 pg/ml, de aproximadamente 16.000 pg/ml, de aproximadamente 17.000 pg/ml, de aproximadamente 18.000 pg/ml, de aproximadamente 19.000 pg/ml, o aproximadamente 20.000 pg/ml es una indicación de que el sujeto está afectado por cáncer de ovario.

[0080] En diversas realizaciones de los aspectos anteriores de la invención, el nivel de FRα se determina poniendo en contacto la muestra con un anticuerpo que se une FRα. Por ejemplo, el anticuerpo se selecciona del grupo que consiste en:

- (a) un anticuerpo que se une al mismo epítopo que el anticuerpo MORAb-003;
- (b) un anticuerpo que comprende la SEQ ID NO: 1 (GF TFSGYGLS) como CDRH<sub>1</sub>, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRH<sub>12</sub>, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH<sub>3</sub>, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3;
  - (c) el anticuerpo MOV18;
  - (d) un anticuerpo que se une al mismo epítopo que el anticuerpo MOV18;
- 55 (e) el anticuerpo 548908;
  - (f) un anticuerpo que se une al mismo epítopo que el anticuerpo 548908;
  - (g) el anticuerpo 6D398;
  - (h) un anticuerpo que se une al mismo epítopo que el anticuerpo 6D398;
  - (i) un anticuerpo que se une al mismo epítopo que el anticuerpo 26B3;
- (j) un anticuerpo que comprende la SEQ ID NO: 55 (GYFMN) como CDRH<sub>1</sub>, SEQ ID NO: 56 (RIFPYNGDTFYNQKFKG) como CDRH<sub>H2</sub>, SEQ ID NO: 57 (GTHYFDY) como CDRH<sub>3</sub>, SEQ ID NO: 51 (RTSENIFSYLA) como CDRL1, SEQ ID NO: 52-(NAKTLAE) como CDRL2 y SEQ ID NO: 53 (QHHYAFPWT) como CDRL3;
  - (k) el anticuerpo 26B3;
  - (I) un anticuerpo que se une al mismo epítopo que el anticuerpo 19D4;
    - (m) un anticuerpo que comprende la SEQ ID NO: 39 (HPYM-H+) como CDRH1, SEQ ID NO: 40 (RIDPANGNTKYDPKFQG) como CDRH12, SEQ ID NO: 41-(EEVADYTMDY) como CDRH3, SEQ ID

NO: 35-(RASESVDTYGNNFIH) como CDRL1, SEQ ID NO: 36 (LASNLES) como CDRL2 y SEQ ID NO: 37 (QQNNGDPWT) como CDRL3;

- (n) el anticuerpo 19D4;
- (o) un anticuerpo que se une al mismo epítopo que el anticuerpo 9F<sub>3</sub>;
- (p) un anticuerpo que comprende la SEQ ID NO: 31-(SGYYWN) como CDRH<sub>1</sub>, SEQ ID NO: 32-(YIKSDGSNNYNPSLKN) como CDRH<sub>H2</sub>, SEQ ID NO: 33 (EWKAMDY) como CDRH<sub>3</sub>, SEQ ID NO: 27 (RASSTVSYSYLH) como CDRL1, SEQ ID NO: 28 (GTSNLAS) como CDRL2 y SEQ ID NO: 29 (QQYSGYPLT) como CDRL3;
  (q) el anticuerpo 9F<sub>3</sub>;
- (r) un anticuerpo que se une al mismo epítopo que el anticuerpo 24F12;
  - (s) un anticuerpo que comprende la SEQ ID NO: 47 (SYAMS) como CDRH<sub>1</sub>, SEQ ID NO: 48 (EIGSGGSYTYYPDTVTG) como CDRH<sub>12</sub>, SEQ ID NO: 49 (ETTAGYFDY) como CDRH<sub>3</sub>, SEQ ID NO: 43 (SASQGINNFLN) como CDRL1, SEQ ID NO: 44 (YTSSLHS) como CDRL2 y SEQ ID NO: 45-(QHFSKLPWT) como CDRL3;
- 15 (t) el anticuerpo 24F12;

25

50

60

- (u) un anticuerpo que comprende una cadena ligera de la región variable seleccionada del grupo que consiste en LK26HuVK (SEQ ID NO: 13); LK26HuVKY (SEQ ID NO: 14); LK26HuVKPW (SEQ ID NO: 15); y LK26HuVKPW, y (SEQ ID NO: 16);
- (v) un anticuerpo que comprende una cadena pesada de la región variable seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); y LK26KOLHuVH (SEQ ID NO: 21);
  - (w) un anticuerpo que comprende la región de cadena pesada variable LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16);
  - (x) un anticuerpo que comprende la región de cadena pesada variable LK26HuVH SLF (SEQ ID NO: 19) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16); y
  - (y) un anticuerpo que comprende la región de cadena pesada variable LK26HuVH FAIS, N (SEQ ID NO: 18) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16).
- [0081] En una realización particular, el anticuerpo se une al mismo epítopo que el anticuerpo MORAb-30 003. En otra realización, el anticuerpo incluye SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3. En otra realización, el anticuerpo es el anticuerpo MOV18. En aún otra realización, el anticuerpo se une al mismo epítopo que el anticuerpo MOV18. En una 35 realización adicional, el anticuerpo comprende una cadena ligera de la región variable seleccionada del grupo que consiste en LK26HuVK (SEQ ID NO: 13); LK26HuVKY (SEQ ID NO: 14); LK26HuVKPW (SEQ ID NO: 15); y LK26HuVKPW, Y (SEQ ID NO: 16). Alternativamente o en combinación, el anticuerpo incluye una cadena pesada de la región variable seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); y LK26KOLHuVH (SEQ ID NO: 21). En ciertas realizaciones, el 40 anticuerpo incluye (i) la región de cadena pesada variable LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, y (SEQ ID NO: 16); la región de cadena pesada variable LK26HuVH SLF (SEQ ID NO: 19) y la cadena ligera de la región variable LK26HuVKPW, Y (SEQ ID NO: 16); o la cadena pesada de la región variable LK26HuVH FAIS, N (SEQ ID NO: 18) y la región 45 variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16).
  - [0082] En una realización particular, el nivel de FRα en la muestra derivada de dicho sujeto se evalúa poniendo en contacto la muestra con un par de anticuerpos seleccionados de entre el grupo que consiste en (a) anticuerpo MOV18 inmovilizado a un soporte sólido y etiquetado anticuerpo MORAb-003; (b) anticuerpo 9F3 inmovilizado a un soporte sólido y etiquetado 24F12 de anticuerpo; (c) anticuerpo 26B3 inmovilizado a un soporte sólido y el marcado anticuerpo 19D4; y (d) el anticuerpo 9F3 inmovilizado a un soporte sólido y etiquetado anticuerpo 26B3.
- [0083] En ciertas realizaciones, el anticuerpo se selecciona del grupo que consiste de un anticuerpo murino, un anticuerpo humano, un anticuerpo humanizado, un anticuerpo biespecífico, un anticuerpo quimérico, un fragmento Fab, Fab'2, ScFv, SMIP, aficuerpo, avimer, versacuerpo, nanoanticuerpo, y un anticuerpo de dominio. Alternativamente, o en combinación, el anticuerpo está marcado, por ejemplo, con un marcador seleccionado del grupo que consiste de un marcador radiactivo, un marcador de biotina, una etiqueta cromóforo, un marcador fluoróforo, o una etiqueta de enzima.
  - ${f [0084]}$  En ciertas realizaciones, el nivel de FRlpha se determina mediante el uso de una técnica seleccionada de entre el grupo que consiste en el análisis de Transferencia Western, radioinmunoensayo, inmunofluorimetría, inmunoprecipitación, diálisis de equilibrio, la inmunodifusión, ensayo de fase de solución, inmunoensayo de electroquimioluminiscencia (ECLIA) y el ensayo de ELISA.

[0085] En diversas realizaciones de los aspectos anteriores de la invención, la muestra de control es un nivel de control estandarizado de FRα en un sujeto sano.

[0086] En ciertas realizaciones, la muestra se trata con guanidina antes de determinar el nivel de FRα en la muestra. Alternativamente o en combinación, la muestra se diluye antes de determinar el nivel de FRα en la muestra. Alternativamente, o en combinación, la muestra se centrifuga, se agitó con vórtex, o ambos, antes de determinar el nivel de FRα en la muestra.

[0087] En un aspecto adicional, la presente invención proporciona un método para tratar a un sujeto que padece de cáncer de ovario o cáncer de pulmón, mediante la determinación del nivel de receptor de folato alfa (FRα) que no está unido a una célula en una muestra derivada del sujeto; y comparar el nivel de receptor de folato alfa (FRα) que no está unido a una célula en la muestra con el nivel de FRα en una muestra de control, donde una diferencia entre los niveles de FRα en la muestra derivada de la subj ect y en la muestra de control es una indicación de que el sujeto responderá al tratamiento con MORAb-003; en el que el nivel de FRα en la muestra derivada del sujeto se evalúa mediante contacto la muestra con (a) anticuerpo MOV18 inmovilizada a un sólido su pport y etiquetado anticuerpo MORAb-003, (b) anticuerpo 9F3 inmovilizado a un soporte sólido y etiquetado 24F12 de anticuerpo, (c) anticuerpo 26B3 inmovilizado a un soporte sólido y etiquetado anticuerpo 19D4, y (d) el anticuerpo 9F3 inmovilizadodo a un soporte sólido y etiquetados anticuerpo 26B3. Por ejemplo, la muestra puede ser orina, suero, plasma o ascitis.

[0088] En diversas realizaciones de los aspectos anteriores de la invención, la MORAb-003 para el tratamiento es (a) un anticuerpo que comprende la secuencia de cadena pesada de aminoácidos como se expone en SEQ ID NO: 7 y la secuencia de aminoácidos de cadena ligera como se expone en SEQ ID NO: 8; (b) un anticuerpo que se une al mismo epítopo que el anticuerpo MORAb-003; o (c) un anticuerpo que comprende la SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRH42, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GT- SNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3.

Kits de la invención

5

10

15

20

25

30

35

40

45

50

55

65

[0089] En un aspecto, la presente invención proporciona un kit para la evaluación de si un sujeto padece de un cáncer que expresa FRα o para la evaluación de la progresión de un cáncer que expresa FRα en un sujeto, el kit incluye medios para determinar el nivel de receptor de folato alfa (Frα) que no está unido a una célula en una muestra derivada del sujeto; e instrucciones para uso del kit para evaluar si el sujeto está afectado con un cáncer que expresa FRα o para evaluar la progresión de un cáncer que expresa FRα. Por ejemplo, el FRα que expresa cáncer se selecciona del grupo que consiste en cáncer de pulmón, mesotelioma, cáncer de ovario, cáncer renal, cáncer cerebral, cáncer cervical, cáncer de la nasofaringe, carcinoma de células escamosas de cabeza y cuello, cáncer de endometrio, cáncer de mama, cáncer de vejiga, cáncer de páncreas, cáncer de hueso, cáncer de hipófisis, cáncer colorrectal y cáncer de tiroides medular. En una realización particular, el cáncer que expresa FRα es cáncer de ovario. En aún otra realización, el cáncer que expresa FRα es cáncer de pulmón de células no pequeñas, por ejemplo, adenocarcinoma. En una realización adicional, la muestra es o bien orina, suero, plasma o ascitis.

[0090] En otra realización, los medios incluyen un agente de unión de receptor de folato alfa ( $Fr\alpha$ ), por ejemplo, un anticuerpo. En una realización adicional, el anticuerpo se selecciona del grupo que consiste en

(a) un anticuerpo que se une al mismo epítopo que el anticuerpo MORAb-003;

(b) una anticuerpo que comprende la SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3;

- (c) el anticuerpo MOV18;
- (d) un anticuerpo que se une al mismo epítopo que el anticuerpo MOV18;
- (e) el anticuerpo 548.908;
- (f) un anticuerpo que se une al mismo epítopo que el anticuerpo 548.908;
- 60 (g) el anticuerpo 6D398;
  - (h) un anticuerpo que se une al mismo epítopo que el anticuerpo 6D398;
  - (i) un anticuerpo que se une al mismo epítopo que el anticuerpo 26B3;
  - (j) un anticuerpo que comprende la SEQ ID NO: 55 (GYFMN) como CDRH1, SEQ ID NO: 56 (RIFPYNGDTFYNQKFKG) como CDRHH2, SEQ ID NO: 57 (GTHYFDY) como CDRH3, SEQ ID NO: 51 (RTSENIFSYLA) como CDRL1, SEQ ID NO: 52-(NAKTLAE) como CDRL2 y SEQ ID NO: 53 (QHHYAFPWT) como CDRL3;
  - (k) el anticuerpo 26B3;

- (I) un anticuerpo que se une al mismo epítopo que el anticuerpo 19D4;
- (m) un anticuerpo que comprende la SEQ ID NO: 39 (HPYM-H+) como CDRH1, SEQ ID NO: 40 (RIDPANGNTKYDPKFQG) como CDRHH2, SEQ ID NO: 41-(EEVADYTMDY) como CDRH3, SEQ ID NO: 35-(RASESVDTYGNNFIH) como CDRL1, SEQ ID NO: 36 (LASNLES) como CDRL2 y SEQ ID NO: 37 (QQNNGDPWT) como CDRL3:
- (n) el anticuerpo 19D4;

5

10

35

40

55

60

- (o) un anticuerpo que se une al mismo epítopo que el anticuerpo 9F<sub>3</sub>;
- (p) un anticuerpo que comprende la SEQ ID NO: 31-(SGYYWN) como CDRH<sub>1</sub>, SEQ ID NO: 32-(YIKSDGSNNYNPSLKN) como CDRH<sub>H2</sub>, SEQ ID NO: 33 (EWKAMDY) como CDRH<sub>3</sub>, SEQ ID NO: 27 (RASSTVSYSYLH) como CDRL1, SEQ ID NO: 28 (GTSNLAS) como CDRL2 y SEQ ID NO: 29 (QQYSGYPLT) como CDRL3;
- (q) el anticuerpo 9F<sub>3</sub>;
- (r) un anticuerpo que se une al mismo epítopo que el anticuerpo 24F12;
- (s) un anticuerpo que comprende la SEQ ID NO: 47 (SYAMS) como CDRH<sub>1</sub>, SEQ ID NO: 48 (EIGSGGSYTYYPDTVTG) como CDRH<sub>12</sub>, SEQ ID NO: 49 (ETTAGYFDY) como CDRH<sub>3</sub>, SEQ ID NO: 43 (SASQGINNFLN) como CDRL1, SEQ ID NO: 44 (YTSSLHS) como CDRL2 y SEQ ID NO: 45-(QHFSKLPWT) como CDRL3;
  - (t) el anticuerpo 24F12;
- (u) un anticuerpo que comprende una cadena ligera de la región variable seleccionada del grupo que consiste en LK26HuVK (SEQ ID NO: 13); LK26HuVKY (SEQ ID NO: 14); LK26HuVKPW (SEQ ID NO: 15); y LK26HuVKPW, Y (SEQ ID NO: 16);
  - (v) un anticuerpo que comprende una cadena pesada de la región variable seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); y LK26KOLHuVH (SEQ ID NO: 21);
- (w) un anticuerpo que comprende la región de cadena pesada variable LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16);
  - (x) un anticuerpo que comprende la región de cadena pesada variable LK26HuVH SLF (SEQ ID NO: 19) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16); y
- (Y) un anticuerpo que comprende la región de cadena pesada variable LK26HuVH FAIS, N (SEQ ID NO: 18) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16).

[0091] En ciertas realizaciones, el anticuerpo está marcado, incluyendo, pero no limitado a, un marcador radiactivo, un marcador de biotina, una etiqueta de cromóforo, un marcador fluoróforo, o una etiqueta de enzima.

[0092] En aún otra realización, el kit incluye un medio para obtener una muestra del sujeto.

[0093] La presente invención se ilustra adicionalmente mediante la siguiente descripción detallada y los dibujos.

#### **BREVE DESCRIPCIÓN DE LOS DIBUJOS**

# [0094]

- La Figura 1 es una representación esquemática de un método de inmunoensayo de electroquimioluminiscencia (ECLIA) para evaluar la FR $\alpha$  en la orina como se describe en los Ejemplos. El anticuerpo MOV18 unido a soportes sólidos unidos FR $\alpha$  en la orina. La FR $\alpha$  se detectó posteriormente por unión a anticuerpo MORAb-003 marcado con Ru.
- La Figura 2 muestra la distribución de niveles de FRα en la orina de sujetos con cáncer ovárico y sujetos de control normales, medidos por ECLIA (véase el Ejemplo 1).
  - La Figura 3 representa la detección de FRα en la orina de pacientes con cáncer de ovario (banda pálida en el carril 1, banda clara en el carril 2) usando inmunotransferencia (véase el Ejemplo 5).
  - La Figura 4 muestra la distribución de niveles de FRα en la orina de los sujetos con cáncer de ovario y los sujetos de control normales, medidos por ECLIA después de tratarse la orina con guanidina, tal como se describe en el Ejemplo 7.
    - La Figura 5 representa una curva ROC que muestra la sensibilidad y especificidad de la medición ECLIA de niveles FRα en orina después de que la orina se trató con guanidina, tal como se describe en el Ejemplo 7. El área bajo la curva (AUC) mide la exactitud de la prueba en separación de cáncer de ovario de los sujetos control. Un valor de corte (por encima del que se consideró los resultados de la prueba anormales) de 9100 pg/mL.
    - La Figura 6 muestra la distribución de niveles FRα en cáncer de ovario (OC) y sujetos de control normales después de la corrección de niveles de creatinina. Hay una diferencia estadísticamente significativa entre los pacientes de cáncer de ovario y los controles en los niveles de creatinina corregidos de FRα (p=0,007)-(véase el Ejemplo 8).
- La Figura 7 representa un análisis ROC de niveles FRα corregidos por creatinina determinados usando ensayo de electroquimioluminiscencia (ECLIA) de muestras de orina tratadas con guanidina (véase el Ejemplo 8).

La Figura 8 es una representación esquemática del método de inmunoensayo enzimático (EIA) utilizado para evaluar el nivel de FRα (es decir, FRα) en muestras, como se describe en el Ejemplo 9. MOV-18 sirvió como el anticuerpo de captura, que se unió FRα a partir de fluidos biológicos. La FRα se detectó mediante la unión a MORAb-003 biotinilado, que fue detectada usando avidina conjugada con peroxidasa de rábano picante (avidina-HRP).

La Figura 9 representa los resultados obtenidos para la medición de FRα en suero utilizando de uno y de dos pasos de incubación procedimientos, como se describe en el Ejemplo 9.

La Figura 10 es una representación esquemática de las tres combinaciones diferentes de anticuerpos de captura y de detector que se utilizaron con el método de inmunoensayo (EIA) para evaluar el nivel de  $FR\alpha$  en el plasma humano, como se describe en el Ejemplo 11.

La Figura 11 muestra las concentraciones plasmáticas de FRα (pg/ml) para los sujetos individuales se determinaron utilizando EIA con tres combinaciones de anticuerpos de captura y el detector, como se describe en el Ejemplo 11.

La Figura 12 representa la relación entre los valores de DO y FRα concentraciones (véase el Ejemplo 11).

La Figura 13 muestra la distribución de concentraciones de plasma FRα en sujetos con cáncer de ovario y los sujetos de control normales determinados mediante EIA (véase el Ejemplo 12).

La Figura 14 representa la correlación entre concentraciones plasmáticas  $FR\alpha$  determinadas utilizando EIA y ECLIA (véase el Ejemplo 12).

La Figura 15 muestra las correlaciones entre las medidas ECLIA de niveles FRα en suero y orina. La correlación para pacientes con cáncer era de r=0,24 (panel superior) y la correlación para los pacientes con cáncer de ovario era de r=-0,76 (panel inferior) (véase el Ejemplo 13).

La Figura 16 muestra la correlación de suero frente a niveles de plasma FR $\alpha$  para los ensayos llevados a cabo usando el par 1 (véase el Ejemplo 16).

La Figura 17 muestra la correlación de suero frente a niveles de plasma FRα para los ensayos llevados a cabo usando el par 2 (véase el Ejemplo 16).

La Figura 18 muestra la correlación de niveles suero FRα para los ensayos llevados a cabo usando el par 1 frente a par 2 (véase el Ejemplo 16).

La Figura 19 muestra la correlación de niveles de plasma FRα para los ensayos llevados a cabo usando el par 1 frente a par 2 (véase el Ejemplo 16).

La Figura 20 muestra la correlación intradía de niveles suero FR $\alpha$  para los ensayos llevados a cabo usando el par 2 (Ejemplo 16).

#### **DESCRIPCION DETALLADA DE LA INVENCION**

[0095] La presente invención se basa, al menos en parte, en el descubrimiento inesperado de que el receptor de folato alfa (Fr $\alpha$ ), no unido a una célula, se encuentra en niveles elevados en los fluidos corporales, por ejemplo, orina o suero, de un sujeto que tiene un cáncer que expresa FR $\alpha$  tal como de cáncer de pulmón o de ovario en comparación con una muestra de control. Además, la presente invención se basa, al menos en parte, en la identificación de un ensayo inmunológico que exhibe la sensibilidad necesaria para la evaluación de niveles FR $\alpha$  en muestras, habiéndose fallido repetidamente con carácter anterior. Como resultado, la presente invención proporciona métodos para diagnosticar un cáncer que expresa FR $\alpha$  mediante la evaluación de los niveles de una FR $\alpha$  no unido a una célula en muestras derivadas del sujeto. De hecho, la presente invención supera los retos observados durante los intentos previos para desarrollar un ensayo de diagnóstico a base de FR $\alpha$  para cánceres que expresan FR $\alpha$  tales como el cáncer de ovario, proporcionando un ensayo inmunológico capaz de evaluar con precisión los niveles de FR $\alpha$  no unidos a una de las células en las muestras.

[0096] Por consiguiente, se proporcionan los métodos y kits para evaluar si un sujeto tiene o está en riesgo de desarrollar un cáncer que expresa FR $\alpha$  y, además, para evaluar la progresión de la FR $\alpha$  que expresa cáncer. En diversas realizaciones, los métodos implican ° comparación e de niveles de FR $\alpha$  no unido a una célula en muestras, por ejemplo, orina y suero, en comparación con los niveles de control, en la evaluación de la presencia, el grado o el riesgo de desarrollo de cáncer de ovario en el sujeto. En realizaciones particulares, los métodos implican el uso del anticuerpo MORAb-003, los anticuerpos que se unen al mismo epítopo que el anticuerpo MORAb-003 o anticuerpos que tienen SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRH12, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3, en la evaluación de los niveles de FR $\alpha$  no unidos a una célula en una muestra, *por ejemplo.*, orina o suero. Alternativamente, o además, el anticuerpo MOV18 o un anticuerpo que se une al mismo epítopo del anticuerpo 548.908, el anticuerpo 6D398 o un anticuerpo que se une al mismo epítopo del anticuerpo puede utilizarse de acuerdo con los métodos de la presente invención.

65 [0097] Se describen varios aspectos de la invención con más detalle en las siguientes subsecciones:

#### I. Definiciones

5

10

15

30

35

40

45

50

55

[0098] Como se usa en el presente documento, cada uno de los siguientes términos tiene el significado asociado en esta sección.

[0099] Los artículos "un" y "una" se usa aquí para referirse a uno o a más de uno (es decir, a al menos uno) del objeto gramatical del artículo. A modo de ejemplo, "un elemento" significa un elemento o más de un elemento.

**[0100]** Tal como se usa en el presente documento, el término "sujeto" se refiere a animales no humanos y humanos, incluyendo sujetos veterinarios. El término "animal no humano" incluye todos los vertebrados, *por ejemplo*., Mamíferos y no mamíferos, tales como primates no humanos, ratones, conejos, ovejas, perro, gato, caballo, vaca, pollos, anfibios, y reptiles. En una realización preferida, el sujeto es un humano.

10

25

30

35

40

45

50

55

60

65

[0101] Los términos "cáncer" o "tumor" son bien conocidos en la técnica y se refieren a la presencia, por ejemplo, en un sujeto, de células que poseen características típicas de células causantes de cáncer, tales como la proliferación incontrolada, inmortalidad, potencial metastásico, rápido crecimiento y velocidad de proliferación, y ciertas características morfológicas características. Las células cancerosas son a menudo en la forma de un tumor, pero dichas células pueden existir solas dentro de un sujeto, o pueden ser células cancerosas no tumorigénicas, tales como células de leucemia. Tal como se utiliza aquí, el término "cáncer" incluye los cánceres pre-malignos, así como cánceres malignos.

[0102] Tal como se usa en este documento, un "cáncer que expresa FRα" incluye cualquier tipo de cáncer caracterizado porque las células cancerosas expresan FRa. En realizaciones concretas, el cáncer que expresa FRα incluye condiciones cancerosas, caracterizadas porque las células cancerosas son capaces de secretar, derramar, exportar o liberar FR $\alpha$  de tal manera que niveles elevados de FR $\alpha$ son detectables en una biológica del sujeto. Cánceres que expresan FRα incluyen, pero no se limitan a, cáncer de pulmón (por ejemplo, carcinomas bronquioalveolares, tumores carcinoides, y cáncer de pulmón de células no pequeñas, tales como adenocarcinomas); mesotelioma; cáncer de ovarios; cáncer renal; cáncer de cerebro (por ejemplo, ependimoma anaplásico y cerebelosa astrocitoma pilocítica juvenil); cáncer de cuello uterino; cáncer de la nasofaringe; tumor derivado de mesodermo; carcinoma de células escamosas de cabeza y cuello; cáncer endometrial; adenocarcinomas de endometrio del ovario, cistadenocarcinomas serosos, cáncer de mama; cáncer de vejiga; cáncer de páncreas; cáncer de hueso (por ejemplo, osteosarcoma de alto grado); cáncer de pituitaria (por ejemplo, adenoma de la pituitaria). Véase por ejemplo, Patente de EE.UU. Nº 7.754.698; Solicitud de Patente de EE.UU. Nº 2005/0232919; WO 2009/132081; Bueno R et al. J de Cirugía Torácica y Cardiovascular, 12-1-(2): 225-233-(2001); Elkanat H & Ratnam M. Frontiers in Bioscience, 11, 506-519 (2006); Franklin, W.A. et al. Int J Cáncer, Suppl 8: 89-95-(1994); Hartman L.C. et al. Int J Cancer 121: 938-942-(2007); Iwakiri S et al. Annals of Surgical Oncology, 15-(3): 889-899; Weitman, S.D. et al. Cancer Res 52: 3396 a 3.401-(1992); Saba NF et al. Head Neck, 31-(4): 475-481-(2009); Yang R et al. Clin Cancer Res 13: 2557-2567 (2007). En una realización particular, el cáncer que expresa FR $\alpha$  es cáncer de ovario. En otra realización, el cáncer que expresa FRa es cáncer de pulmón tal como cáncer de pulmón de células no pequeñas. En otras realizaciones, el cáncer que expresa FRα es cáncer colorrectal y cáncer de tiroides medular.

[0103] Tal como se usa en la presente memoria, un sujeto que "padece de un cáncer que expresa FR $\alpha$ " es uno que está clínicamente diagnosticado con un cáncer tal por un médico cualificado (por ejemplo, por los métodos de la presente invención), o uno que exhibe uno o más signos o síntomas (por ejemplo, niveles elevados de FR $\alpha$  en fluidos biológicos) de un cáncer, y posteriormente clínicamente diagnosticado con un cáncer tal por un médico cualificado (por ejemplo, por los métodos de la presente invención). Un sujeto no humano que sirve como un modelo animal de FR $\alpha$  que expresa cáncer también puede caer dentro del alcance de la expresión de un sujeto "que padece de un cáncer que expresa FR $\alpha$ ".

**[0104]** El término "cáncer de ovario" se refiere a la enfermedad reconocida en la técnica e incluye cada uno de cáncer de ovario epitelial (EOC; >90% de cáncer de ovario en los países occidentales), tumores de células germinales (*circa* 2-3% de cáncer de ovario), y el cáncer de ovario del estroma. El cáncer de ovario se estratifica en diferentes grupos basados en la diferenciación del tejido tumoral. En el grado I, el tejido tumoral es bien diferenciado. En el grado II, el tejido tumoral está moderadamente bien diferenciado. En el grado III, el tejido tumoral es pobremente diferenciado. Este grado se correlaciona con un pronóstico menos favorable que los grados I y II.

[0105] El cáncer de ovario se estratificó en diferentes etapas en base a la propagación del cáncer. La etapa I se limita generalmente dentro de la cápsula que rodea uno (etapa 1A) o ambos (ovarios 1B) ovarios, aunque en algunos cánceres de etapa I (es decir, etapa CI), las células malignas pueden ser detectadas en la ascitis, en el líquido de enjuague peritoneal, o en la superficie de los ovarios. La etapa

Il implica la extensión o metástasis del tumor a partir de uno o ambos ovarios a otras estructuras pélvicas. En la etapa IIA, el tumor se extiende o se ha hecho metástasis al útero, las trompas de Falopio, o ambos. La etapa IIB implica extensión del tumor a la pelvis. La etapa IIC es la etapa IIA o IIB en la que las células malignas pueden ser detectadas en la ascitis, en el líquido de enjuague peritoneal, o en la superficie de los ovarios. En la etapa III, el tumor comprende al menos una extensión maligna al intestino delgado o el epiplón, se ha formado implantes peritoneales extrapélvicos de tamaño microscópico (etapa IIIA) o macroscópico (<2 cm de diámetro, etapa IIIB;> 2 cm de diámetro, etapa IIIC), o se ha metastatizado a un ganglio linfático inguinal o retroperitoneal (un indicador alternativo de la etapa IIIC). En la etapa IV, metástasis distante (es decir, no-peritoneal) del tumor puede detectarse.

10

15

**[0106]** Las duraciones de las diversas etapas del cáncer de ovario no se conocen actualmente, pero se cree que son al menos aproximadamente un año cada uno (Richart et al., 1969, Am J. Obstet Gynecol 105: 386). El pronóstico disminuye con designación de etapa incremental. Por ejemplo, las velocidades de supervivencia a 5 años para sujetos humanos diagnosticados con etapa I, II, III, y cáncer de ovario IV son 80%, 57%, 25% y 8%, respectivamente.

[0107] Cada uno de los tipos anteriores, los grupos y las etapas del cáncer de ovario están abarcados por el término "cáncer de ovario" como se usa en el presente documento.

25

20

[0108] Tal como se utiliza aquí, el término "cáncer de pulmón" se refiere a una enfermedad en los tejidos del pulmón que implica un crecimiento celular incontrolado, que, en algunos casos, conduce a la metástasis. El cáncer de pulmón es la causa más común de muerte por cáncer en hombres y mujeres. La mayoría de los cánceres primarios de pulmón son carcinomas de pulmón, derivados a partir de células epiteliales. Los principales tipos de cáncer de pulmón son el carcinoma de pulmón de células pequeñas (SCLC) y carcinoma de pulmón de células no pequeñas (NSCLC). En una realización particular, el cáncer que expresa FR $\alpha$  es un cáncer no microcítico de pulmón de células.

[0109] Células pequeñas de cáncer de pulmón o carcinoma de pulmón de células pequeñas (SCLC) es un cáncer maligno del pulmón, en el que las células cancerosas tienen una forma plana y citoplasma escaso; por lo tanto, SCLC es a veces llamado "carcinoma de células de avena." SCLC es generalmente más metastásico de NSCLC y, a veces se ve en combinación con carcinomas de células escamosas.

35

40

30

[0110] Tal como se utiliza aquí, el término "células no pequeñas de cáncer de pulmón", también conocido como carcinoma de pulmón de células no pequeñas (NSCLC), se refiere a cáncer de pulmón epitelial distinto de carcinoma de pulmón de células pequeñas (SCLC). Hay tres subtipos principales: adenocarcinoma, carcinoma de pulmón de células escamosas y carcinoma de pulmón de células grandes. Otros tipos menos comunes de cáncer de pulmón de células no pequeñas incluyen pleomórfico, tumor carcinoide, carcinoma de glándula salival, y carcinoma no clasificado. Adenocarcinomas representan aproximadamente el 40% de los cánceres de pulmón, y son el tipo más común de cáncer de pulmón en personas que nunca han fumado. Carcinomas de células escamosas representan aproximadamente el 25% de los cánceres de pulmón. El carcinoma de células escamosas del pulmón es más común en hombres que en mujeres y es aún más altamente correlacionado con antecedentes de consumo de tabaco que son otros tipos de carcinoma de pulmón. Hay al menos cuatro variantes (papilar, de células pequeñas, de células claras, y basaloide) de carcinoma de células escamosas de pulmón. Grandes carcinomas de pulmón de células son un grupo heterogéneo de neoplasmas malignos que se originan a partir de células epiteliales transformadas en el pulmón. Grandes carcinomas de pulmón de células son carcinomas que carecen de características microscópicas ligeras de carcinoma de células pequeñas, carcinoma de células escamosas, o adenocarcinoma.

50

45

[0111] Los diferentes sistemas de clasificación se utilizan para SCLC y NSCLC. SCLC se clasifica como enfermedad limitada al hemitórax ipsilateral o enfermedad tan extensa con metástasis más allá de la hemitórax ipsilateral.

55

[0112] NSCLC puede clasificarse utilizando el sistema de estadificación de tumor-nodos-metástasis (TNM). Véase Spira J & Ettinger, D.S. Multidisciplinary management of lung cancer, N Engl J Med, 350: 382 (2004) (en adelante Spira); Greene FL, Page DL, Fleming ID, Fritz AG, Balch CM, Haller DG, et al (eds). AJCC Cancer Staging Manual. 6ª edición. Nueva York: Springer-Verlag, 2002: 167-77 (en lo sucesivo Greene); Sobin LH, Wittekind CH (eds). Internacional Union Against Cancer. TNM classificacion of malignant tumors. 6ª edición. Nueva York: Wiley-Liss (2002) (en adelante Sobin). Además, NSCLC se trata típicamente de acuerdo con la etapa del cáncer determinado por el siguiente esquema de clasificación (véase http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/Patient/page2#Keypoint10).

65

**[0113]** En la *etapa oculta (escondida),* las células cancerosas se encuentran en el esputo (moco expulsado de los pulmones), pero ningún tumor se puede encontrar en el pulmón mediante formación de imágenes o broncoscopia, o el tumor es demasiado pequeño para ser revisado.

5 **[0114]** En *la etapa 0 (carcinoma in situ)*, se encuentran células anormales en el revestimiento de las vías respiratorias. Estas células anormales se pueden volver cancerosas y diseminarse hasta el tejido cercano normal. la etapa 0 también se llama carcinoma in situ.

[0115] Etapa I, en la que se ha formado el cáncer, se divide en las etaps IA y IB.

10

15

40

45

50

55

60

65

[0116] En la Etapa IA, el tumor es solo en el pulmón y es de 3 centímetros o menos.

[0117] En la Etapa IB, el cáncer no se ha extendido a los ganglios linfáticos y uno o más de lo siguiente es cierto: (i) El tumor es mayor de 3 centímetros, pero no más de 5 centímetros; (ii) el cáncer se ha diseminado al bronquio principal y es al menos 2 centímetros por debajo de donde la tráquea se une con el bronquio; (iii) el cáncer se ha extendido a la capa más interna de la membrana que cubre el pulmón; (iv) una parte del pulmón se colapsa o neumonitis (inflamación del pulmón) en el área donde la tráquea se une con el bronquio.

20 [0118] En la Etapa IIA, el cáncer se ha extendido a ciertos ganglios linfáticos en el mismo lado del pecho que el tumor primario; el cáncer es (a) de 5 cm o más pequeño, (b) se ha extendido hasta el bronquio principal, y/o (c) se ha extendido a la capa más interna del revestimiento del pulmón. O, el cáncer no se ha diseminado a los ganglios linfáticos; el cáncer es (d) mayor de 5 cm, pero no de 7 cm, (e) se ha extendido hasta el bronquio principal, y/o (f) se ha extendido a la capa más interna del 25 revestimiento del pulmón. Parte del pulmón puede haberse hundido o inflamado. La etapa IIA se divide en dos secciones, dependiendo del tamaño del tumor, donde se encuentra el tumor, y si existe cáncer en los ganglios linfáticos. En la primera sección, el cáncer se ha diseminado a los ganglios linfáticos en el mismo lado del pecho como el tumor. Los ganglios linfáticos con cáncer están dentro del pulmón o cerca del bronquio. Además, uno o más de lo siguiente es cierto: (i) el tumor es no más de 5 30 centímetros, (ii) el cáncer se ha diseminado al bronquio principal y es al menos 2 centímetros por debajo de donde la tráquea se une con el bronquio, (iii) el cáncer se ha extendido a la capa más interna de la membrana que cubre el pulmón, (iv) una parte del pulmón se colapsa o desarrolla neumonitis (inflamación del pulmón) en el área donde la tráquea se une con el bronquio. En la segunda sección, el cáncer no se ha diseminado a los ganglios linfáticos y una o más de las siguientes situaciones: (i) el 35 tumor es mayor de 5 centímetros, pero no de 7 centímetros, (ii) el cáncer se ha diseminado al bronquio principal y es al menos 2 centímetros por debajo de donde la tráquea se une con el bronquio, (iii) el cáncer se ha extendido a la capa más interna de la membrana que cubre el pulmón, (iv) una parte del pulmón se colapsa o neumonitis (inflamación del pulmón) en la zona donde la tráguea se une con el bronquio.

[0119] En la Etapa IIB, el cáncer se ha extendido a ciertos ganglios linfáticos en el mismo lado del pecho que el tumor primario; el cáncer es (a) mayor de 5 cm, pero no de 7 cm, (b) se ha extendido hasta el bronquio principal, y/o (c) se ha extendido a la capa más interna del revestimiento del pulmón. Parte del pulmón puede haberse hundido o inflamado. Alternativamente, (d) el cáncer es mayor de 7 cm; (e) se ha extendido hasta el bronquio principal, (f) el diafragma, (g) la pared torácica o el revestimiento de la pared torácica; y/o (h) se ha extendido a la membrana que rodea el corazón. Puede haber uno o más tumores separados en el mismo lóbulo del pulmón; cáncer puede haberse diseminado en el nervio que controla el diafragma; todo el pulmón puede haberse hundido o inflamado. La etapa IIB se divide en dos secciones, dependiendo del tamaño del tumor, donde se encuentra el tumor, y si existe cáncer en los ganglios linfáticos. En la primera sección, el cáncer se ha diseminado a los ganglios linfáticos cercanos en el mismo lado del pecho como el tumor. Los ganglios linfáticos con cáncer están dentro del pulmón o cerca del bronquio. Además, uno o más de lo siguiente es cierto: (i) el tumor es mayor de 5 centímetros, pero no de 7 centímetros, (ii) el cáncer se ha diseminado al bronquio principal y es al menos 2 centímetros por debajo de donde la tráquea se une a la bronquios, (iii) el cáncer se ha extendido a la capa más interna de la membrana que cubre el pulmón, (iv) una parte del pulmón se colapsa o neumonitis (inflamación del pulmón) en el área donde la tráquea se une con el bronquio. En la segunda sección, el cáncer no se ha diseminado a los ganglios linfáticos y una o más de las siguientes situaciones: (i) el tumor es mayor que 7 centímetros, (ii) el cáncer se ha diseminado al bronquio principal (y es menos de 2 centímetros por debajo de donde la tráquea se une con el bronquio), la pared torácica, el diafragma, o el nervio que controla el diafragma, (iii) el cáncer se ha extendido a la membrana que rodea el corazón o el revestimiento de la pared del pecho, (iv) todo el pulmón se colapsa o neumonitis desarrollado (inflamación del pulmón), (v) hay uno o más tumores separados en el mismo lóbulo del pulmón.

[0120] Etapa IIIA se divide en tres secciones, dependiendo del tamaño del tumor, donde se encuentra el tumor, y que los ganglios linfáticos tienen cáncer (si existe). En la primera sección de la Etapa IIIA, el cáncer se ha diseminado a los ganglios linfáticos en el mismo lado del pecho que el tumor. Los ganglios

linfáticos con cáncer están cerca del esternón (hueso del pecho) o cuando el bronquio entra en el pulmón. También, el tumor puede ser de cualquier tamaño; parte del pulmón (donde la tráquea se une con el bronquio) o todo el pulmón puede haber colapsado o neumonitis (inflamación del pulmón); puede haber uno o más tumores separados en el mismo lóbulo del pulmón; y el cáncer puede haberse diseminado a cualquiera de los siguientes: (i) bronquio principal, pero no el área donde la tráquea se une con el bronquio, (ii) de la pared torácica, (iii) de diafragma y el nervio que lo controla, (iv) membrana alrededor del pulmón o el revestimiento de la pared del pecho, (iv) la membrana alrededor del corazón. En la segunda sección de la Etapa IIIA, el cáncer se ha diseminado a los ganglios linfáticos en el mismo lado del pecho como el tumor. Los ganglios linfáticos con cáncer están dentro del pulmón o cerca del bronquio. También, el tumor puede ser de cualquier tamaño; todo el pulmón puede haber colapsado o neumonitis (inflamación del pulmón); puede haber uno o más tumores separados en cualquiera de los lóbulos del pulmón con cáncer; y el cáncer puede haberse diseminado a cualquiera de los siguientes: (i) bronquio principal, pero no el área donde la tráquea se une con el bronquio, (ii) de la pared torácica, (iii) de diafragma y el nervio que lo controla, (iv) membrana alrededor del pulmón o el revestimiento de la pared del pecho, (v) del corazón o de la membrana alrededor de ella, (vi) los vasos sanguíneos principales que conducen a o desde el corazón, (vi) tráquea, (vii) esófago, (viii) nervio que controla la laringe (caja de voz), (ix) esternón (hueso del pecho) o columna vertebral, (x) carina (donde la tráquea se une con los bronquios). En la tercera sección de la Etapa IIIA, el cáncer no se ha diseminado a los ganglios linfáticos y el tumor puede ser de cualquier tamaño, y el cáncer se ha diseminado a cualquiera de los siguientes: (i) el corazón, (ii) los principales vasos sanguíneos que conducen hacia o desde el corazón, (iii) la tráquea, (iv) el esófago, (v) el nervio que controla el laringe (caja de voz), (vi) el esternón (hueso del pecho) o la columna vertebral, (vi) carina (donde la tráquea se une con los bronquios).

10

15

20

50

55

60

65

25 [0121] Etapa IIIB se divide en dos secciones, dependiendo del tamaño del tumor, donde se encuentra el tumor, y que los ganglios linfáticos tienen cáncer. En la primera sección, el cáncer se ha diseminado a los ganglios linfáticos encima de la clavícula o en los ganglios linfáticos en el lado opuesto del pecho que el tumor; el tumor puede ser de cualquier tamaño; parte del pulmón (donde la tráquea se une con el bronquio) o todo el pulmón puede haber colapsado o neumonitis (inflamación del pulmón); puede haber 30 uno o más tumores separados en cualquiera de los lóbulos del pulmón con cáncer; y el cáncer puede haberse diseminado a cualquiera de los siguientes: (i) bronquio principal, (ii) de la pared torácica, (iii) de diafragma y el nervio que lo controla, (iv) la membrana alrededor del pulmón o el revestimiento de la pared del pecho, (iv) corazón o la membrana alrededor de él, (v) los vasos sanguíneos principales que conducen a o desde el corazón, (vi) tráquea, (vii) esófago, (viii) del nervio que controla el laringe (caja 35 de voz), (ix) esternón (pecho hueso) o columna vertebral, (x) carina (donde la tráquea se une con los bronquios). En la segunda sección de la Etapa IIIB, el cáncer se ha diseminado a los ganglios linfáticos en el mismo lado del pecho que el tumor; los ganglios linfáticos con cáncer están cerca del esternón (hueso del pecho) o cuando el bronquio entra en el pulmón; el tumor puede ser de cualquier tamaño; puede haber tumores separados en diferentes lóbulos del mismo pulmón; y el cáncer se ha diseminado 40 a cualquiera de los siguientes: (i) el corazón, (ii) los principales vasos sanguíneos que van hacia o desde el corazón, (iii) la tráquea, (iv) el esófago, (v) del nervio que controla la laringe (caja de la voz), (vi) esternón (hueso del pecho) o espina dorsal, (vii) carina (donde la tráquea se une con los bronquios).

[0122] En la etapa IV, el tumor puede ser de cualquier tamaño y el cáncer puede haberse diseminado a los ganglios linfáticos. Uno o más de los siguientes es cierto: hay uno o más tumores en ambos pulmones; el cáncer se encuentra en el líquido alrededor de los pulmones o el corazón; el cáncer se ha extendido a otras partes del cuerpo, como el cerebro, el hígado, las glándulas suprarrenales, los riñones, o el hueso.

**[0123]** Por consiguiente, en diversas realizaciones de la invención anterior, el cáncer de pulmón puede ser estratificado en cualquiera de las etapas anteriores *(por ejemplo,* oculto, la etapa 0, etapa IA, etapa IB, etapa IIA, etapa IIIB o etapa IV) sobre la base de la evaluación de los niveles de FR $\alpha$  no unidos a una célula, como una célula normal o cancerosa, en una muestra (por ejemplo, orina o suero) de un sujeto.

[0124] Tal como se utiliza aquí, el término "receptor de folato alfa" (también referido como FR $\alpha$ , FR-alfa, FOLR-1 o FOLR1) se refiere a la isoforma alfa del receptor de alta afinidad para el folato. FR $\alpha$  unida a la membrana está unida a la superficie celular mediante un anclaje de glicosilo fosfatidilinositol (GPI)), se recicla entre los compartimentos extracelulares y endocíticos y es capaz de transportar folato en la célula. FR $\alpha$  se expresa en una variedad de tejidos epiteliales, incluyendo las del tracto reproductivo feminino, placenta, mama, túbulos proximales de riñón, el plexo coroideo, pulmón y glándulas salivales. Las formas solubles de FR $\alpha$  se pueden derivar por la acción de proteasas o fosfolipasa en los receptores de folato anclado a membrana.

[0125] El consenso de nucleótidos y secuencias de aminoácidos para FR $\alpha$  humanos se exponen en el presente documento como SEQ ID NOs: 24 y 25, respectivamente. Las variantes, por ejemplo,

variantes alélicas naturales o secuencias que contienen al menos una sustitución de aminoácidos, están abarcadas por los términos tal como se usa en el presente documento.

**[0126]** Tal como se utiliza aquí, el término "no unido a una célula" se refiere a FRα que no está unido a la membrana celular de una célula, tal como una célula cancerosa. En una realización particular, el FRα no unido a una célula es no unido a cualquier célula y es libremente flotante o solubilizado en fluidos biológicos, *por ejemplo*, orina o suero. Por ejemplo, el FRα puede ser derramado, secretado o exportado de células normales o cancerosas, por ejemplo, a partir de la superficie de células cancerosas, en fluidos biológicos.

10

15

20

25

45

50

55

60

65

[0127] El "nivel" del receptor de folato alfa no unido a una célula, como se usa en el presente documento, se refiere al nivel de la proteína del receptor de folato alfa como se determina usando cualquier método conocido en la técnica para la medición de los niveles de proteína. Tales métodos incluyen, por ejemplo, electroforesis, electroforesis capilar, cromatografía líquida de alto rendimiento (HPLC), cromatografía en capa fina (TLC), cromatografía de hiperdifusión, reacciones de precipitina de fluido o gel, la espectroscopia de absorción, a ensayos colorimétricos, ensayos espectrofotométricos, citometría de flujo, inmunodifusión (simple o doble), ensayo de solución de fasa, inmunoelectroforesis, transferencia Western, radioinmunoensayo (RIA), ensayos de inmunoabsorción ligados a enzimas (ELISA), ensayos de inmunofluorescencia, y inmunoensayo de electroquimioluminiscencia (ejemplificado más abajo), y similares. En una realización preferida, el nivel se determina usando técnicas basadas en anticuerpos, como se describe en más detalle en el presente documento.

[0128] En general, es preferible inmovilizar o bien un anticuerpo o proteína de unión específica para  $FR\alpha$  no unido a una célula en un soporte sólido para las transferencias Western y técnicas de inmunofluorescencia. Soportes de fasa sólida adecuados o vehículos incluyen un apoyo capaz de unirse a un antígeno o un anticuerpo. Los soportes o vehículos bien conocidos incluyen vidrio, poliestireno, polipropileno, polietiloeno, dextrano, nylon, amilasas, celulosas naturales y modificadas, poliacrilamidas, gabros, y magnetita.

[0129] Un experto en la técnica conocerá muchos otros vehículos adecuados para el anticuerpo o la unión al antígeno, y será capaz de adaptar tal soporte para uso con la presente invención. Por ejemplo, la proteína aislada de una muestra de sujeto (por ejemplo., Orina o suero) se pueden ejecutar en una electroforesis en gel de poliacrilamida y se inmovilizan sobre un soporte en fasa sólida tal como nitrocelulosa. El soporte se puede lavar con tampones adecuados seguido por tratamiento con el anticuerpo marcado. El soporte de fasa sólida se puede lavar con el tampón una segunda vez para eliminar el anticuerpo no unido. La cantidad de marcador unido sobre el soporte sólido puede detectarse entonces por medios convencionales. Los medios para detectar proteínas usando técnicas electroforéticas son bien conocidas por los expertos en la técnica (véase, en general, R. Scopes (1982) Protein Purification, Springer-Verlag, NY; Deutscher, (1990) Methods in Enzymology Vol 182: Guide to Protein Purification, Academic Press, Inc., Nueva York).

**[0130]** Otros métodos estándar incluyen técnicas de inmunoensayo que son bien conocidos para un experto normal en la técnica y se pueden encontrar en Principios y Práctica de Inmunoensayo, segunda edición, Price y Newman, eds., MacMillan (1997) y anticuerpos, A Laboratory Manual, Harlow y Lane, eds., Cold Spring Harbor Laboratory, cap. 9 (1988).

[0131] Los anticuerpos utilizados en inmunoensayos para determinar el nivel de expresión de receptor de folato alfa se pueden marcar con un marcador detectable. El término "marcado", con respecto al agente o anticuerpo de unión, se pretende que abarque el marcaje directo del agente o anticuerpo de unión por acoplamiento (es decir, físicamente vincular) de una sustancia detectable al agente o anticuerpo de unión, así como el marcaje indirecto del agente de unión o anticuerpo por reactividad con otro reactivo que está marcado directamente. Un ejemplo de marcado indirecto incluye la detección de un anticuerpo primario usando un anticuerpo secundario marcado con fluorescencia. En una realización, el anticuerpo está marcado, por ejemplo, radio-etiquetado, marcado con cromóforo, marcado con fluoróforo, o marcado con enzima. En otra realización, el anticuerpo es un derivado de anticuerpo (por ejemplo, un anticuerpo conjugado con un sustrato o con la proteína o ligando de un par de proteínas-ligando (por ejemplo, biotina-estreptavidina), o un fragmento de anticuerpo (por ejemplo, un anticuerpo de cadena única, un aislado contra dominio hipervariable del cuerpo) que se une específicamente con FRα no unido a una célula.

[0132] En una realización de la invención, los métodos proteómicos, *por ejemplo.*, espectrometría de masas, se utilizan. espectrometría de masas es una técnica analítica que consiste en compuestos químicos ionizantes para generar moléculas cargadas (o fragmentos del mismo) y la medición de sus relaciones de masa a carga. En un procedimiento típico de espectrometría de masas, se obtiene una muestra de un sujeto, se cargó en la espectrometría de masas, y sus componentes (*por ejemplo, FRa*) se ionizan por diferentes métodos (*por ejemplo,* mediante el impacto con un haz de electrones), resultando en la formación de partículas cargadas (iones). La relación de carga de masa de las

partículas se calcula entonces a partir del movimiento de los iones cuando se mueven a través de campos electromagnéticos.

[0133] Por ejemplo, espectrometría de masas de tiempo de vuelo asociada a la matriz de desorción/ionización por láser (MALDI-TOF MS) o espectrometría de masas de tiempo de vuelo de desorción/ionización de láser mejorada por superficie (SELDI-TOF MS), que implica la aplicación de una muestra, tal como la orina o suero, a un chip de unión a proteínas (Wright, GL, Jr., et al (2002) Experto Rev Mol Diagn 2: 549; Li, J., et al (2002) Clin Chem 48: 1296; Laronga, C., et al (2003) Dis Markers. 19: 229; Petricoin, EF, et al. (2002) 359: 572; Adam, BL, et al (2002) Cancer Res 62:3609; Tolson, J., et al (2004) Lab Invest. 84: 845; Xiao, Z., et al (2001) Cancer Res 61: 6029) se puede utilizar para determinar el nivel de FRα.

5

10

15

20

25

30

35

40

45

50

55

60

**[0134]** Por otra parte, técnicas *in vivo* para la determinación del nivel de FR $\alpha$  no unido a una célula incluyen introducir en un sujeto un marcado anticuerpo dirigido contra FR $\alpha$ , que se une a y transforma FR $\alpha$  en una molécula detectable. La presencia, nivel, o ubicación de los FR $\alpha$  detectables no unidos a una célula en un sujeto pueden determinarse usando técnicas de imagen estándar.

[0135] El término "muestra" tal como se utiliza aquí se refiere a una colección de fluidos similares, células, o tejidos aislados de un sujeto, así como fluidos, células, o tejidos presentes dentro de un sujeto. En realizaciones preferidas, la muestra es un fluido biológico que contiene FRα no unidos a una célula cancerosa. Los fluidos biológicos son típicamente líquidos a temperaturas fisiológicas y pueden incluir fluidos de origen natural presentes en, retirados de, expresados o extraidos de otro modo desde una fuente de materia o biológica. Ciertos fluidos biológicos se derivan de determinados tejidos, órganos o regiones localizadas y ciertos otros fluidos biológicos pueden ser más globales o sistémicamente situados en un sujeto fuente o biológico. Los ejemplos de fluidos biológicos incluyen sangre, suero y fluidos serosos, plasma, linfa, orina, líquido cefalorraquídeo, saliva, fluidos oculares, líquido quístico, gotas de lágrimas, heces, esputo, secreciones mucosas de los tejidos secretores y órganos, secreciones vaginales, fluidos ginecológicos, fluidos ascíticos, tales como los asociados con tumores no sólidos, fluidos de la pleural, pericárdico, peritoneal, abdominal y otras cavidades corporales, los fluidos recogidos por lavado bronquial y similares. En una realización particular, la muestra es orina o suero. En otra realización, la muestra no incluye ascitis o no es una muestra de ascitis. En otra realización, la muestra no incluye fluido peritoneal o no es fluido peritoneal.

[0136] En una realización, la muestra se retira del sujeto. En otra realización, la muestra está presente dentro del sujeto. Los fluidos biológicos también pueden incluir soluciones líquidas en contacto con un sujeto o fuente biológica, por ejemplo, célula y órgano medio de cultivo, incluyendo células o medio de órganos acondicionados, fluidos de lavado y similares.

[0137] En algunas realizaciones, sólo una parte de la muestra se somete a un ensayo para determinar el nivel de FRα no unido a una célula, o diversas partes de la muestra sometidas a diversos ensayos para determinar el nivel de FRα no unido a una célula. Además, en muchas realizaciones, la muestra puede ser pre-tratada por medios físicos o químicos antes del ensayo. Por ejemplo, en formas de realización descritas con más detalle en la sección de Ejemplos, las muestras, por ejemplo, muestras de orina, se sometieron a centrifugación, la dilución y/o el tratamiento con una sustancia solubilizante (por ejemplo., El tratamiento de guanidina) antes de ensayar las muestras para FRα no unido a una célula. Tales técnicas sirven para mejorar la precisión, la fiabilidad y reproducibilidad de los ensayos de la presente invención.

[0138] El término "muestra de control", como se usa aquí, se refiere a cualquier muestra de control clínicamente relevante, incluyendo, por ejemplo, una muestra de un sujeto sano no afectado por cáncer de ovario, una muestra de un sujeto que tiene una menos grave o más lento progresando cáncer de ovario que el sujeto a ser evaluado, una muestra de un sujeto que tiene algún otro tipo de cáncer o enfermedad, y similares. Una muestra de control puede incluir una muestra derivada de uno o más sujetos. Una muestra de control también puede ser una muestra hecha en un punto de tiempo anterior a partir del sujeto a ser evaluado. Por ejemplo, la muestra de control podría ser una muestra tomada del sujeto a ser evaluado antes de la aparición de la cáncer que expresa FRα como el pulmón o el cáncer de ovario, en una fasa anterior de la enfermedad, o antes de la administración del tratamiento o de una parte de tratamiento. La muestra de control también puede ser una muestra de un un modelo animal, o de un tejido o líneas de célula derivadas del modelo animal, de los cánceres que expresa FRα tales como cáncer de pulmón o de ovario. El nivel de FRα no unido a una célula en una muestra de control que consiste en un grupo de mediciones puede determinarse en base en cualquier medida estadística adecuada, tales como, por ejemplo, medidas de tendencia central incluyendo valores de media, mediana, o modales.

[0139] El término "nivel de control" se refiere a un nivel aceptado o pre-determinado de FRα que se utiliza para comparar con el nivel de FRα en una muestra derivada de un sujeto. En una realización, el nivel de control de FRα se basa en el nivel de FRα no unido a una célula en la muestra de un sujeto

que tiene progresión de la enfermedad lenta. En otra realización, el nivel de control de FR $\alpha$  no unido a una célula se basa en el nivel en una muestra de un sujeto que tiene la progresión rápida de la enfermedad. En otra realización, el nivel de control de FR $\alpha$  se basa en el nivel de FR $\alpha$  no unido a una célula en una muestra a partir de un sujto no afectado, *es decir*, no enfermo, *es decir*, un sujeto que no tiene un cáncer que expresa FR $\alpha$  tales como cáncer de pulmón o ovario. En aún otra realización, el nivel de control de FR $\alpha$  se basa en el nivel de FR $\alpha$  no unido a una célula en una muestra de un sujeto antes de la administración de una terapia para el cáncer de ovario. En otra realización, el nivel de control de FR $\alpha$  se basa en el nivel de FR $\alpha$  no unido a una célula en una muestra de un sujeto que tiene un cáncer que expresa FR $\alpha$  como el cáncer de pulmón o de ovario que no contacta con un compuesto de ensayo. En otra realización, el nivel de control de FR $\alpha$  se basa en el nivel de FR $\alpha$  no unido a una célula en una muestra de un sujeto que no tiene un cáncer que expresa FR $\alpha$  como el cáncer de pulmón o de ovario que está en contacto con un compuesto de ensayo. En una realización, el nivel de control de FR $\alpha$  se basa en el nivel de FR $\alpha$  no unido a una célula en una muestra a partir de un modelo animal de un cáncer que expresa FR $\alpha$  como el pulmón o el cáncer de ovario, una célula, o una línea celular derivada del modelo animal de un cáncer que expresa FR $\alpha$  como el pulmón o de ovario.

10

15

20

25

30

35

40

45

50

55

60

65

[0140] En una realización, el control es un control normalizado, tal como, por ejemplo, un control que está predeterminado utilizando un promedio de los niveles de FR $\alpha$  no unidos a una célula de una población de sujetos que no tienen cáncer que expresa FR $\alpha$  tal como cáncer de pulmón o cáncer de ovario. En todavía otras realizaciones de la invención, un nivel de control de FR $\alpha$  se basa en el nivel de FR $\alpha$  no unido a una célula en una muestra no cancerosa derivada del sujeto que tienen un cáncer que expresa FR $\alpha$  como el de pulmón o de ovario. Por ejemplo, cuando una laparotomía u otro procedimiento médico revela la presencia de cáncer de ovario en una porción de los ovarios, el nivel de control de FR $\alpha$  puede determinarse utilizando la parte no afectada del ovario, y este nivel de control puede ser comparado con el nivel de FR $\alpha$  en una parte afectada de los ovarios. Del mismo modo, cuando una biopsia u otro procedimiento médico revela la presencia de un cáncer de pulmón en una porción de los pulmones, el nivel de control de FR $\alpha$  puede determinarse utilizando la parte no afectada de los pulmones, y este nivel de control puede ser comparado con el nivel de FR $\alpha$  en una parte afectada de los pulmones.

**[0141]** Como se usa en este documento, "una diferencia" entre el nivel de receptor de folato alfa no unido a una célula en una muestra de un sujeto (es decir, una muestra de ensayo) y el nivel de receptor de folato alfa no unido a una célula en una muestra de control se refiere ampliamente a cualquier diferencia clínicamente relevante y/o estadísticamente significativa en el nivel de receptor de folato alfa en las dos muestras. En una realización ejemplar, la diferencia se selecciona basándose en un valor de corte determinado usando un receptor de funcionamiento de análisis característico (ROC), un ejemplo del cual se presenta en el Ejemplo 6.

[0142] En otras realizaciones, la diferencia debe ser mayor que los límites de detección del método para determinar el nivel de FRα no unido a una célula. Se prefiere que la diferencia sea de al menos mayor que el error estándar del método de evaluación, y preferiblemente una diferencia de al menos aproximadamente 2, aproximadamente 3, aproximadamente 4, aproximadamente 5, aproximadamente 6, aproximadamente 7, aproximadamente 8, aproximadamente 9, aproximadamente 10, aproximadamente 15, aproximadamente 20, aproximadamente 25, aproximadamente 100, aproximadamente 500, aproximadamente 1000 veces o mayor que el error estándar del método de evaluación. La diferencia puede ser evaluada por cualquier comparación apropiada, incluyendo cualquier estadística descriptiva paramétrica o no paramétrica apropiada o comparación. Por ejemplo, "un aumento" en el nivel de FRα no unido a una célula puede referirse a un nivel en una muestra de prueba que es aproximadamente dos, y más preferiblemente de aproximadamente tres, aproximadamente cuatro, aproximadamente cinco, aproximadamente seis, aproximadamente siete, aproximadamente ocho, aproximadamente nueve, diez o más veces más que el nivel de FRα en la muestra de control. Un aumento también puede referirse a un nivel en una muestra de ensayo que es preferiblemente de al menos aproximadamente 1,5, y más preferiblemente de aproximadamente dos, aproximadamente tres, aproximadamente cuatro, cinco o más desviaciones estándar por encima del nivel medio de FRα en la muestra de control. Del mismo modo, "una disminución" en el nivel de FRα no unido a una célula puede referirse a un nivel en una muestra de ensayo que es preferiblemente de al menos aproximadamente dos, y más preferiblemente de aproximadamente tres, aproximadamente cuatro, aproximadamente cinco, aproximadamente seis, aproximadamente siete, aproximadamente ocho, aproximadamente nueve, diez o más veces menores que el nivel de FRα en la muestra de control. Una disminución también puede referirse a un nivel en una muestra de ensayo que es preferiblemente de al menos aproximadamente 1,5, y más preferiblemente de aproximadamente dos, aproximadamente tres, aproximadamente cuatro, cinco o más desviaciones estándar por debajo del nivel de edad de FRα en la muestra de control.

[0143] Tal como se utiliza aquí, el término "poner en contacto la muestra" con un agente de unión FRα, por ejemplo, un anticuerpo FR-α, incluye exponer la muestra, o cualquier porción del mismo con el agente o anticuerpo, tal que al menos una porción de la muestra entra en contacto con el agente o

anticuerpo. La muestra o porción de los mismos pueden alterarse de alguna manera, tal como sometiéndolo a tratamientos físicos o químicos (*por ejemplo*, dilución o tratamiento de guanidina), antes del acto de ponerse en contacto con el agente o anticuerpo.

[0144] El término "anticuerpo" como se usa en el presente documento, comprende cuatro cadenas polipeptídicas, dos cadenas pesadas (H) y dos cadenas ligeras (L) interconectadas por enlaces de disulfuro, así como cualquier fragmento funcional (es decir, de unión a antígeno), mutante, variante, o derivación del mismo, que conserva las características de unión al epítopo esenciales de una molécula de Ig. Tal mutante, variante, o formatos de derivado de anticuerpo son conocidos en la técnica, e incluyen moléculas tales como fragmentos Fab, los fragmentos Fab', fragmentos Fab')<sub>2</sub>, fragmentos Fd, fragmentos Fabc, anticuerpos sc (anticuerpos de cadena sencilla), diacuerpos, cadenas ligeras de anticuerpos individuales, cadenas pesadas de anticuerpos individuales, fusiones quiméricas entre cadenas de anticuerpos y similares. Moléculas de inmunoglobulinas en moles pueden ser de cualquier tipo (por ejemplo, IgG, IgE, IgM, IgD, IgA e IgY), clase (por ejemplo, IgG1, IgG2, IgG3, IgG4, IgA1 y IgA2) o subclase.

[0145] Cada cadena pesada está compuesta de una región variable de cadena pesada (abreviada en este documento como HCVR o VH) y una región constante de cadena pesada. La región constante de la cadena pesada está compuesta de tres dominios, CH1, CHH2 y CH3. Cada cadena ligera está compuesta de una región variable de cadena ligera (abreviada en este documento como LCVR o VL) y una región constante de cadena ligera. La región constante de la cadena ligera está compuesta de un dominio, CL. Las regiones VH y VL pueden subdividirse adicionalmente en regiones de hipervariabilidad, denominadas regiones determinantes de complementariedad (CDR), intercaladas con regiones más conservadas denominadas regiones marco (FR). Cada VH y VL está compuesta de tres CDR y cuatro FR, dispuestas desde el extremo amino al extremo carboxi-terminal en el siguiente orden: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. Las cadenas ligeras se clasifican como kappa o lambda. Las cadenas pesadas se clasifican como gamma, mu, alfa, delta, o epsilon, y definen el isotipo del anticuerpo como IgG, IgM, IgA, IgD e IgE, respectivamente.

20

25

35

40

45

50

55

60

65

[0146] Las regiones variables de las cadenas pesadas y ligeras contienen un dominio de unión que interacciona con un antígeno. Las regiones constantes de los anticuerpos pueden mediar en la unión de la inmunoglobulina a tejidos del huésped o factores, incluyendo varias células del sistema inmunitario (por ejemplo., células efectoras) y el primer componente (Clq) del sistema del complemento clásico.

[0147] El término "porción de unión a antígeno" de un anticuerpo, como se usa en el presente documento, se refiere a uno o más fragmentos de un anticuerpo que retienen la capacidad para unirse específicamente a un antígeno (por ejemplo, FRα no unido a una célula). Se ha demostrado que la función de unión al antígeno de un anticuerpo puede realizarse por fragmentos de un anticuerpo de longitud completa. Los ejemplos de fragmentos de unión incluidos dentro del término "porción de unión a antígeno" de un anticuerpo incluyen (i) un fragmento Fab, un fragmento monovalente que consiste en los dominios V<sub>L</sub>, V<sub>H</sub>, CL v CH1; (ii) un F(ab')<sub>2</sub>, un fragmento bivalente que comprende dos fragmentos Fab unidos por un puente disulfuro en la región bisagra; (iii) un fragmento Fd que consiste en los dominios de V<sub>H</sub> y CH<sub>1</sub> y; (iv) un fragmento Fv que consiste en los dominios V<sub>L</sub> y V<sub>H</sub> de un solo brazo de un anticuerpo, (v) un dAb incluyendo dominios V<sub>H</sub> y V<sub>L</sub>; (vi) un fragmento dAb (Ward et al (1989) Nature 341, 544-546.), que consta de un dominio de V<sub>H</sub>; (vii) un dAb que consiste en un dominio V<sub>H</sub> o un V<sub>L</sub>; y (viii) una región determinante de complementariedad aislada (CDR) o (ix) una combinación de dos o más CDR aisladas que pueden estar opcionalmente unidas por un enlazador sintético. Además, aunque los dos dominios del fragmento Fv, VL y VH, están codificados por genes separados, pueden unirse, usando métodos recombinantes, por un enlazador sintético que les permite hacerse como una sola cadena proteica en la que las regiones V<sub>L</sub> y V<sub>H</sub> se emparejan para formar moléculas monovalentes (conocidas como Fv de cadena única (scFv); véase por ejemplo, Bird et al (1988) Science 242, 423-426; y Huston et al (1988) Proc Natl Acad Sci EE.UU. 85, 5879-5883). Tales anticuerpos de cadena única también están destinados a ser abarcados dentro del término "porción de unión a antígeno" de un anticuerpo. Estos fragmentos de anticuerpo se obtienen usando técnicas convencionales conocidas por los expertos en la técnica, y los fragmentos se criban para la utilidad de la misma manera que los anticuerpos intactos. Porciones de unión a antígeno pueden producirse por técnicas de ADN recombinante, o por escisión enzimática o química de inmunoglobulinas intactas.

**[0148]** El término "anticuerpo", como se usa en el presente documento, incluye anticuerpos policionales, anticuerpos monoclonales, anticuerpos murinos, anticuerpos quiméricos, anticuerpos humanizados, y anticuerpos humanos, y los que se producen de forma natural o se producen recombinantemente de acuerdo con métodos bien conocidos en la técnica.

[0149] En una realización, un anticuerpo para su uso en los métodos de la invención es un anticuerpo biespecífico. Un "anticuerpo biespecífico" es un anticuerpo de híbrido artificial que tiene dos pares de cadena pesada/ligera diferentes y dos sitios de unión diferentes. Los anticuerpos biespecíficos pueden producirse mediante una variedad de métodos que incluyen fusión de hibricúpulas o unión de

fragmentos Fab'. Véase, *por ejemplo*, Songsivilai y Lachmann, (1990) Clin. Exp. Immunol. 79, 315-321; Kostelny et al. (1992) J. Immunol. 148, 1547-1553.

[0150] En otra realización, un anticuerpo para uso en los métodos de la invención es un anticuerpo camélido como se describe en, por ejemplo, la publicación PCT WO 94/04678.

5

10

15

20

25

30

35

40

45

50

55

60

65

[0151] Una región del anticuerpo de camélido que es el dominio de variable pequeño y único identificado como V<sub>HH</sub> se puede obtener por ingeniería genética para producir una proteína pequeña que tiene una alta afinidad por una diana, lo que resulta en un bajo peso molecular, el anticuerpo de proteína derivada conocida como un "nanoanticuerpo camélido". Véase la patente de los Estados Unidos. Nº 5.759.808; véase también Stijlemans et al., 2004 J. Biol. Chem. 279: 1256-1261;. Dumoulin et al., 2003 Nature 424: 783-788; Pleschberger et al., 2003, Bioconjugate Chem. 14: 440-448; Cortez-Retamozo et al., 2002 Int. J. Cancer 89: 456-62;. y Lauwereys et al., 1998 EMBO J. 17: 3512-3520. Bibliotecas de ingeniería de anticuerpos de camélidos y fragmentos de anticuerpos están disponibles comercialmente, por ejemplo, de Ablynx, Gante, Bélgica. Por consiguiente, una característica de la presente invención es un nanocuerpo de camélido que tiene una alta afinidad por FRα.

[0152] En otras realizaciones de la invención, un anticuerpo para uso en los métodos de la invención es un diacuerpo, un diacuerpo de cadena única, o un di-diacuerpo.

[0153] Los diacuerpos son moléculas bivalentes, biespecíficos en los dominios V<sub>H</sub> y V<sub>L</sub> se expresan en una cadena polipeptídica única, conectada por un enlazador que es demasiado corta para permitir el emparejamiento entre los dos dominios en la misma cadena. Los dominios V<sub>H</sub> y V<sub>L</sub> se emparejan con dominios complementarios de otra cadena, creando de ese modo dos sitios de unión de antígeno (véase *por ejemplo*, Holliger et al., 1993 Proc Natl Acad Sci EE.UU. 90: 6.444-6.448; Poljak et al. 1994 Structure 2: 11 21-1123). Los diacuerpos pueden ser producidos mediante la expresión de dos cadenas de polipéptidos, ya sea con la estructura V<sub>HA</sub>-V<sub>LB</sub> y V<sub>HB</sub>-V<sub>LA</sub> (configuración V<sub>H</sub>-V<sub>L</sub>), o V<sub>LA</sub>-V<sub>HB</sub> y V<sub>LB</sub>-V<sub>HA</sub> (configuración V<sub>L</sub>-V<sub>H</sub>) dentro de la misma célula. La mayoría de ellos se puede expresar en forma soluble en bacterias.

[0154] diacuerpos de cadena única (SCDB) se producen mediante la conexión de las dos cadenas polipeptídicas de formación de diacuerpo-con enlazador de aproximadamente 15 residuos de aminoácidos (véase Holliger y Winter, 1997 Cancer Immunol Immunother, 45-(3-4): 12 8. 30; Wu et al., 1996 Immunotachnology, 2-(1): 21-36). SCDB puede expresarse en bacterias en forma monomérica soluble, activo (véase Holliger y Winter, 1997 Cancer Immunol Immunother, 45-(34): 12 8-30; Wu et al., 1996 inmu- notachnology, 2-(1): 21 -36; Pluckthun and pack, 1997 Immunotachnology, 3-(2): 83-105; Ridgway et al., 1996 Protein Eng, 9 (7): 617-21).

[0155] Un diacuerpo puede fusionarse a Fc para generar un "di-diacuerpo" (véase Lu et al., 2004 J. Biol Chem, 279 (4): 2856-65).

[0156] Moléculas de unión FRα que exhiben propiedades funcionales de los anticuerpos pero derivan su marco y las porciones de antígeno de otros polipéptidos de unión (por ejemplo, polipéptidos distintos de los codificados por genes de anticuerpo o generados por la recombinación de genes de anticuerpos in vivo) también se pueden utilizar en los métodos de la presente invención. Los dominios de unión a antígeno (por ejemplo., dominios de unión a FRα) de estas moléculas de unión se generan a través de un proceso de evolución dirigida. Véase la patente de los Estados Unidos. Nº 7.115.396. Las moléculas que tienen un pliegue global similar a la de un dominio variable de un anticuerpo (un pliegue "inmunoglobulina") son proteínas de andamiaje adecuadas. Proteínas de andamiaje adecuadas para derivar moléculas de unión a antígeno incluyen fibronectina o un dímero de fibronectina, tenascina, Ncadherina, E-cadherina, ICAM, titina, receptor GCSF, receptor de citoquina, inhibidor de glicosidasa, cromoproteína antibiótica, molécula de adhesión a membrana de mielina P0, CD8, CD4, CD2, MHC de clase I, receptor de antígeno de células T, dominios de conjunto CD1, C2 e I, VCAM-1, dominio de inmunoglobulina de conjunto I de la proteína de unión a miosina C, dominio de inmunoglobulina de conjunto C de la proteína vinculante a miosina H, dominio de inmunoglobulina de conjunto I de teloquina, NCAM, twitchina, neuroglía, receptor de la hormona del crecimiento, receptor de la el receptor receptor interferón-gamma, eritropovetina. de la prolactina, de galactosidasa/glucuronidasa, β-glucuronidasa, transglutaminasa, receptor de antígeno de células T, dismutasa de superóxido, el dominio del factor tisular, el citocromo F, proteína verde fluorescente, GroEL, y taumatina.

[0157] "Unión específica" cuando se usa en el contexto de anticuerpos, o fragmentos de anticuerpos, representa la unión a través de los dominios codificados por genes de inmunoglobulina o fragmentos de genes de inmunoglobulina a uno o más epítopos de una proteína de interés, pero que no reconocen sustancialmente y se unen a otras moléculas en una muestra que contiene una población mixta de moléculas antigénicas. Típicamente, un anticuerpo se une a un antígeno relacionado con una Kd de

menos de aproximadamente  $1x10^{-8}$  M, medida mediante un ensayo de resonancia de plasmón de superficie o un ensayo de unión celular.

[0158] Como se usa en este documento, un "agente de unión" de receptor de folato alfa incluye un anticuerpo que se une FRα no unido a una célula así como agentes de unión no anticuerpos. Para generar agentes de unión no de anticuerpos o moléculas de unión, se puede crear una biblioteca de clones en cuyas secuencias las regiones de la proteína de armazón que forman las superficies de unión a antígeno (por ejemplo, las regiones análogas en posición y estructura a las CDR de un dominio variable de anticuerpo plegado de la inmunoglobulina) se asignaron al azar. Clones de biblioteca se ensayaron para la unión específica al antígeno de interés (por ejemplo, FRα) y para otras funciones (por ejemplo, inhibición de la actividad biológica de FRα). Los clones seleccionados se pueden utilizar como la base para seguir la aleatorización y selección para producir derivados de mayor afinidad por el antígeno.

5

10

35

40

45

50

55

60

- [0159] Las moléculas de unión de alta afinidad se generan, por ejemplo, usando el décimo módulo de fibronectina III (10Fn3) como el armazón, que se describe en la patente de los Estados Unidos. Nos 6.818.418 y 7.115.396.; Roberts y Szostak, 1997 Proc. Natl. Acad. Sci EE.UU. 94: 12297; Patente de EE.UU.. Nº 6.261.804; Patente de EE.UU.. Nº 6.258.558; y Szostak et al. (WO98/31700).
- 20 [0160] Las moléculas de unión que no son anticuerpos pueden ser producidas como dímeros o multímeros para aumentar la avidez por el antígeno diana. Por ejemplo, el dominio de unión a antígeno se expresa como una fusión con una región constante (Fc) de un anticuerpo que forma dímeros Fc-Fc. Véase, por ejemplo, la Patente de los Estados Unidos. Nº 7.115.396.
- [0161] Un "antígeno" es una molécula reconocida por el sistema inmune; el término vino originalmente de "generador de anticuerpo" e incluye una molécula que se une específicamente a un anticuerpo. A nivel molecular, un antígeno se caracteriza por su capacidad de unirse en el sitio de unión al antígeno de un anticuerpo. En la presente invención, el antígeno es FRα, tal como FRα que no está unido a una molécula FRα o una porción del mismo.
  - **[0162]** Tal como se utiliza aquí, el término "epítopo" se refiere a las características de la superficie molecular de un antígeno, *por ejemplo*, FRα, capaz de ser unida por un anticuerpo. Moléculas antigénicas, normalmente "grandes" polímeros biológicos, por lo general presentan varias características de la superficie que pueden actuar como puntos de interacción para anticuerpos específicos. Cualquier característica molecular distinta constituye un epítopo. Por lo tanto, la mayoría de los antígenos tienen el potencial de ser accionados por varios anticuerpos distintos, cada uno de los cuales es típicamente específico para un epítopo particular. En una realización de la presente invención, un agente de unión, *por ejemplo*, anticuerpo, se une a un epítopo en FRα que está disponible en la forma del receptor que no está unido a una célula pero no en la forma unida a membrana del receptor. Por ejemplo, el anticuerpo puede unirse al mismo epítopo en FRα a que MORAb-003 se une.
  - [0163] Como se usa en este documento, la frase "progresión de un cáncer que expresa FR $\alpha$  en un sujeto que padece un cáncer que expresa FR $\alpha$ " incluye la progresión de un cáncer de este tipo de un estado menos severo a un estado más grave. Esto podría incluir un aumento en el número o la gravedad de los tumores, el grado de metástasis, la velocidad con la que el cáncer está creciendo y la difusión, y similares. Por ejemplo, "la progresión de cáncer de ovario" incluye la progresión de un cáncer de este tipo de un estado menos severo a uno más grave, tal como la progresión desde la fasa l a la fasa II, de la etapa II a la fasa III, etc. Alternativamente, la frase "progresión de un cáncer que expresa FR $\alpha$  en un sujeto que padece un cáncer que expresa FR $\alpha$ " puede referirse a la regresión de un cáncer que expresa FR $\alpha$  a partir de un estado más grave a un estado menos grave. Por ejemplo, en una realización, "la progresión de cáncer de ovario" se refiere a la regresión de la Etapa IV a la fasa III, de la fasa III a la Etapa II, etc. En otras realizaciones, la "progresión de un cáncer que expresa FR $\alpha$  en un sujeto aquejado de un cáncer que expresa FR $\alpha$ " puede referirse a la velocidad de supervivencia determinada a partir del comienzo de los síntomas del cáncer que expresa FR $\alpha$ , o a la velocidad de supervivencia desde el momento del diagnóstico del cáncer que expresa FR $\alpha$ .
  - [0164] Tal como se utiliza aquí, el término "estratificar" se refiere a la caracterización de un cáncer que expresa FRα, por ejemplo, cáncer de ovario o de pulmón, en una etapa apropiada basada, por ejemplo, del grado de la propagación del cáncer, como estratificaciones bien aceptadas en la técnica. Por ejemplo, estratificación incluye la caracterización del cáncer que expresa FRα en la etapa I, etapa II, etapa III o etapa IV. En ciertas realizaciones, la etapa I se refiere a los cánceres que se localizan en una parte del cuerpo. En ciertas realizaciones, las etapas II y III se refieren a cánceres que son localmente avanzados, en los que una distinción entre las fases es a menudo específica del cáncer particular. Por último, la etapa IV se refiere a los cánceres que han hecho metástasis o propagación a otros órganos o partes del cuerpo.

[0165] Tal como se utiliza aquí, el término "supervivencia" se refiere a la continuación de la vida de un sujeto que ha sido tratado por cáncer. En una realización, la supervivencia se refiere a la no repetición de un tumor. Tal como se utiliza aquí, el término "vuelva a ocurrir" se refiere a la regeneración de las células tumorales o cancerosas en un sujeto en el que se ha administrado el tratamiento primario para el tumor. El tumor puede reaparecer en el sitio original o en otra parte del cuerpo. En una realización, un tumor que se repite es del mismo tipo que el tumor original para el que se trató el sujeto. Por ejemplo, si un sujeto tenía un tumor de cáncer de ovario, se trató y posteriormente se desarrolló otro tumor de cáncer de ovario, el tumor ha recidivado. Además, un cáncer puede reaparecer en un órgano o tejido diferente que el en dónde ocurrió originalmente.

## II. Métodos y kits de la invención

10

15

20

30

35

40

45

50

55

60

[0166] La presente invención se basa, al menos en parte, en el descubrimiento inesperado de que el receptor de folato alfa ( $Fr\alpha$ ), no unido a una célula, se encuentra en niveles elevados en los fluidos corporales, por ejemplo, orina o suero, de un sujeto que tiene un cáncer que expresa  $FR\alpha$  en comparación con una muestra de control. Además, la presente invención se basa, al menos en parte, en la identificación de un ensayo inmunológico que exhibe la sensibilidad necesaria para evaluar los niveles de  $FR\alpha$  no unido a una células en muestras, donde intentos anteriores habían fracasado repetidamente. De hecho, la presente invención supera los retos observados durante los intentos anteriores para desarrollar un  $FR\alpha$  basado en ensayo de diagnóstico para cáncer que expresa  $FR\alpha$  tal como cáncer de pulmón o de ovario, proporcionando un ensayo inmunológico capaz de evaluar con precisión los niveles de  $FR\alpha$  no unidos a una célula en una muestra, *por ejemplo*, orina o suero.

[0167] Por consiguiente, se proporcionan métodos y kits para evaluar si un sujeto tiene o está en riesgo de desarrollar un cáncer que expresa FRα y, además, para evaluar la progresión de un cancer que expresa FRα. En diversas realizaciones, los métodos implican la comparación de los niveles de FRα no unido a una célula en muestras, por ejemplo, orina y suero, en comparación con los niveles de control, en la evaluación de la presencia, el grado o el riesgo de desarrollo de cancer de ovario en el sujeto.

# A. Métodos de diagnóstico, métodos de pronóstico, métodos de evaluación de riesgo, y métodos de estratificación

[0168] Específicamente, la presente invención proporciona métodos de diagnóstico para la evaluación de si un sujeto está afectado con un cáncer que expresa  $FR\alpha$ , tales como cáncer de pulmón o cáncer de ovario, los métodos de pronóstico para la predicción de la progresión de un cáncer que expresa  $FR\alpha$  tal como cáncer de pulmón o cáncer de ovario, y los métodos de evaluación de riesgos para evaluar el nivel de riesgo de que un sujeto desarrolle cáncer que expresa  $FR\alpha$ . Además, la invención proporciona métodos de estratificación para estratificar un cáncer que expresa  $FR\alpha$  tal como cáncer de pulmón o cáncer de ovario de sujetos en los grupos de terapia de cáncer. Los diversos aspectos y realizaciones de la invención aquí descritos no pretenden ser limitativos ni abarcar todas las posibles combinaciones de las realizaciones específicas mencionadas, que pueden aplicarse a cualquiera de los métodos y kits discutidos en este documento o se reivindican a continuación.

**[0169]** Los métodos de la presente invención se pueden practicar en combinación con cualquier otro método utilizado por el experto en la materia para diagnosticar un cáncer que expresa FRα, predecir la progresión de un cáncer que expresa FRα, o para evaluar el nivel de riesgo que un sujeto desarrollará un cáncer que expresa FRα.

[0170] En un aspecto, la invención proporciona un método para evaluar si un sujeto está afectado con un cáncer que expresa FR $\alpha$ , mediante la determinación del nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula, en una muestra (tal como la orina o suero) derivada del sujeto; y comparar el nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula con el nivel de FR $\alpha$  en una muestra de control, donde una diferencia entre el nivel de FR $\alpha$  en la muestra derivada del sujeto y el nivel de FR $\alpha$  en la muestra de control es una indicación de que el sujeto está afectado con un cáncer que expresa FR $\alpha$ . En una realización particular, el nivel de FR $\alpha$  en la muestra derivada del sujeto se evalúa poniendo en contacto la muestra con un anticuerpo que se une FR $\alpha$  no unidos a una célula y se selecciona del grupo que consiste en (a) un anticuerpo que se une el mismo epítopo que el anticuerpo MORAb-003; y (b) un anticuerpo que comprende la SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3. En una realización, la muestra se selecciona del grupo que consiste en orina y suero.

[0171] En otro aspecto, la presente invención proporciona un método para evaluar si un sujeto está afectado con un cáncer que expresa FRα, como cáncer de pulmón o cáncer de ovario, comprendiendo el método la determinación del nivel de receptor de folato alfa (Frα) no unido a una célula en una muestra de orina derivada del sujeto; y comparar el nivel de receptor de folato alfa (Frα) en la muestra

de orina derivada del sujeto con el nivel de FR $\alpha$  en una muestra de control, donde una diferencia entre el nivel de FR $\alpha$  en la muestra de orina derivada del sujeto y el nivel de FR $\alpha$  en la muestra de control es una indicación de que el sujeto está aquejado de un cáncer que expresa FR $\alpha$ .

[0172] En otro aspecto, la invención proporciona un método para evaluar si un sujeto está afectado con un cáncer que expresa FRα, mediante la determinación del nivel de receptor de folato alfa (Frα) no unido a una célula en una muestra de suero derivada del sujeto; y comparar el nivel de receptor de folato alfa (Frα) en la muestra de suero derivada del sujeto con el nivel de FRα en una muestra de control, donde una diferencia entre el nivel de FRα en la muestra de suero derivada del sujeto y la nivel de FRα en la muestra de control es una indicación de que el sujeto está afectado con un cáncer que expresa FRα. En realizaciones particulares, el sujeto no ha sido tratada con un agente, tal como un esteroide, que mejora las Leve Is de FRα en el suero. En una realización específica, el cáncer que expresa FRα es cáncer de ovario y el sujeto no ha sido tratada con un agente, tal como un esteroide, que mejora los niveles de FRα en el suero.

15

20

25

40

45

50

55

60

65

[0173] En los métodos y kits de la presente invención, cánceres que expresan FRα incluyen cánceres caracterizados en que las células cancerosas expresan FRα. En realizaciones particulares, la FRα se libera de las células de cáncer, por ejemplo, desde la superficie de la célula cancerosa, y en los fluidos biológicos de la sujeto. Cánceres que expresan FRα incluyen cáncer de pulmón (por ejemplo, carcinomas bronquioalveolares, tumores carcinoides, y cáncer de pulmón de células no pequeñas, tales como adenocarcinomas); mesotelioma; cáncer de ovarios; cáncer renal; cáncer de cerebro (por ejemplo, ependimoma anaplásico y astrocitoma pilocítico juvenil cerebelar); cáncer de cuello uterino; cáncer de la nasofaringe; tumor derivado del mesodermo; carcinoma de células escamosas de cabeza y cuello; cáncer endometrial; adenocarcinomas de endometrio del ovario, cistoadenocarcinomas serosas, el cáncer de mama; cáncer de vejiga; cáncer de páncreas; cáncer de hueso (por ejemplo, osteosarcoma de alto grado); y el cáncer de pituitaria (por ejemplo, adenoma de la pituitaria). En una realización particular, el cáncer que expresa FRα es cáncer de ovario.

[0174] En ciertas realizaciones de los métodos y kits de la presente invención, el cáncer que expresa FRα es cáncer de pulmón. En realizaciones más específicas, el cáncer de pulmón es el carcinoma de pulmón de células no pequeñas (NSCLC). En una tal realización, el NSCLC se selecciona del grupo que consiste en adenocarcinoma, carcinoma de pulmón de células escamosas, gran carcinoma de pulmón de células, pleomórfico NSCLC, tumor carcinoide, carcinoma de glándula salival, y carcinoma no clasificado. En una realización preferida, el NSCLC es adenocarcinoma. En realizaciones alternativas, el cáncer de pulmón es el carcinoma de pulmón de células pequeñas (SCLC). En otra realización, el cáncer de pulmón es el carcinoma bronquioalveolar. En aún otra realización, el cáncer de pulmón es un tumor carcinoide de pulmón.

[0175] La presente invención también proporciona métodos para evaluar si un sujeto está afectado por cáncer de ovario mediante la determinación del nivel de receptor de folato alfa (Frα) no unido a una célula en una muestra de orina derivada del sujeto, en la que la presencia de FRα en la muestra de orina a una concentración de más de aproximadamente 3000 UA/ml es una indicación de que el sujeto está afectado por cáncer de ovario. En realizaciones particulares, la presencia de FRα en la muestra de orina a una concentración de más de aproximadamente 4000 UA/ml, aproximadamente 5000 UA/ml, aproximadamente 6000 UA/ml, aproximadamente 7000 UA/ml, aproximadamente 8000 UA/ml, aproximadamente 9000 au/ml, aproximadamente 10000 au/ml, aproximadamente 11000 au/ml, aproximadamente 12000 au/ml, aproximadamente 13000 au/ml, aproximadamente 14000 au/ml, aproximadamente 15000 au/ml, aproximadamente 16000 au/ml, aproximadamente 17000 au/ml, aproximadamente 18000 au/ml, aproximadamente 20000 au/ml, aproximadamente 21000 au/ml, aproximadamente 22000 au/ml, aproximadamente 23000 au/ml, aproximadamente 24 000 au/ml, aproximadamente 25000 au/ml, aproximadamente 26000 au/ml, aproximadamente 27000 au/ml, aproximadamente 28000 au/ml, aproximadamente 29000 au/ml o aproximadamente 30000 UA/ml es una indicación de que el sujeto está afectado por cáncer de ovario.

[0176] En otro aspecto más, la presente invención proporciona un método para evaluar si un sujeto está afectado por cáncer de ovario, determinando el nivel de receptor de folato alfa (Frα) en una muestra de orina derivada del sujeto, en el que la presencia de FRα en la muestra de orina a una concentración de más de aproximadamente 9100 pg/ml es una indicación de que el sujeto está afectado por cáncer de ovario o en el que una concentración de menos de ab cabo 9100 pg/ml es una indicación de que el sujeto no está afligido con cáncer de ovario. Por ejemplo, la presencia de FRα en la muestra de orina a una concentración de más de aproximadamente 9500 pg/ml, de aproximadamente 10 000 pg/ml, de aproximadamente 11.000 pg/ml, de aproximadamente 12000 pg/ml, aproximadamente 13 000 pg/ml, aproximadamente 14.000 pg/ml, de aproximadamente 15000 pg/ml, de aproximadamente 16000 pg/ml, de aproximadamente 2000 pg/ml, de aproximadamente 21000 pg/ml, aproximadamente 22000 pg/ml, aproximadamente 24000 pg/ml, aproximadamente 24000 pg/ml, aproximadamente 25000 pg/ml, aproximadamente 25000 pg/ml, aproximadamente 27000 pg

aproximadamente 28000 pg/ml, aproximadamente 29000 pg/ml, aproximadamente 30000 pg/ml, aproximadamente 40000 pg/ml, de aproximadamente 50000 pg/ml, de aproximadamente 60000 pg/ml, de aproximadamente 70000 pg/ml, de aproximadamente 80000 pg/ml, aproximadamente 90000 pg/ml, aproximadamente 10 0000 pg/ml o aproximadamente 150,00 0 pg/ml es una indicación de que el sujeto está afectado por cáncer de ovario.

5

10

15

20

25

30

35

40

45

50

55

60

65

[0177] En ciertas realizaciones de los aspectos anteriores de la invención, los niveles de FRα no unido a una célula en una muestra (por ejemplo, una muestra tal como una muestra de orina o una muestra de suero) d erived de un sujeto se comparan con el niveles de FRα en una muestra de control, donde una diferencia entre los niveles es una indicación de que el sujeto está afectado con un cáncer que expresa FRα tal como cáncer de cáncer de pulmón o de ovario. En una realización particular, la diferencia constituye un aumento en el nivel de FRα no unido a una célula en la muestra derivada del sujeto en comparación con el nivel de FRα en la muestra de control, en el que este aumento es indicativo de la presencia o crecimiento de cancer que expresa FRa. Alternativamente, la diferencia constituye una disminución en el nivel de FRa, en el que la disminución es indicativo de la ausencia o regresión de cáncer que expresa FRa. Tal como se usa en este documento, "una diferencia" entre el nivel de receptor de folato alfa no unido en un celula en una muestra de un sujeto (es decir, una muestra de ensayo) y el nivel de receptor de folato alfa en una muestra de control se refiere ampliamente a cualquier clínicamente relevante cambio (incluyendo un aumento o una disminución) y/o diferencia estadísticamente significativa en el nivel de receptor de folato alfa en las dos muestras. En una realización ejemplar, la diferencia se selecciona basándose en un valor de corte determinado usando un receptor de funcionamiento análisis característico (ROC), un ejemplo del cual se presenta en el Ejemplo 6. El óptimo valor de corte puede variar dependiendo de los métodos y condiciones de ensayo empleadas. En otras realizaciones, la diferencia debe ser mayor que los límites de detección del método para determinar el nivel de FRα no unido a una célula. Se prefiere que la diferencia sea al menos mayor que el error estándar del método de evaluación, y preferiblemente una diferencia de al menos aproximadamente 2, aproximadamente 3, aproximadamente 4, aproximadamente 5, aproximadamente 6, aproximadamente 7-, aproximadamente 8, aproximadamente 9, aproximadamente 10, aproximadamente 15, aproximadamente 20, aproximadamente 25, aproximadamente 100, aproximadamente 500, aproximadamente 1000 veces o mayor que el error estándar del método de evaluación. La diferencia puede ser evaluada por cualquier comparación apropiada, incluyendo cualquier estadística descriptiva paramétrica o no paramétrica apropiada o comparación. Por ejemplo, "un aumento" en el nivel de FRlpha puede referirse a un nivel que excede de un valor de corte determinado usando un análisis ROC. También puede referirse a un nivel en una muestra de ensayo que es de dos, y más preferiblemente de aproximadamente 5%, aproximadamente 10%, aproximadamente el 15%, aproximadamente el 20%, aproximadamente el 25%, aproximadamente el 30%, aproximadamente el 40%, aproximadamente el 50%, aproximadamente el 60%, aproximadamente el 70%, aproximadamente el 80%, aproximadamente el 90%, aproximadamente el 10 0%, aproximadamente el 150%, aproximadamente el 200%, aproximadamente el 300%, aproximadamente el 400%, aproximadamente el 500%, aproximadamente el 600%, aproximadamente el 700%, aproximadamente 800 %, aproximadamente 900% o aproximadamente 10 00% más que el nivel de FRα en la muestra de control. Un aumento n también puede referirse a un nivel en una muestra de ensayo que es preferiblemente de al menos aproximadamente 1,5, y más preferiblemente de aproximadamente dos, aproximadamente tres, aproximadamente cuatro, cinco o más desviaciones estándar por encima del nivel medio de FRa en la muestra de control. Del mismo modo, "una disminución" en el nivel de FRα no unido a una célula puede referirse a un nivel en una muestra de ensayo que no exceda de un valor de corte determinado usando un análisis ROC. También puede referirse a un nivel en una muestra de ensayo que es de aproximadamente 5%, aproximadamente 10%, aproximadamente el 15%, aproximadamente el 20%, aproximadamente el 25%, aproximadamente el 30%, aproximadamente el 40%, aproximadamente el 50%, aproximadamente el 60%, aproximadamente el 70%, aproximadamente el 80%, o aproximadamente el 90% menor que el nivel de FRα en la muestra de control. Una disminución también puede referirse a un nivel en una muestra de ensayo que es preferiblemente de al menos aproximadamente 1,5, y más preferiblemente de aproximadamente dos, aproximadamente tres, aproximadamente cuatro, cinco o más desviaciones estándar por debajo del nivel medio de FRα en la muestra de control.

[0178] Las muestras útiles en los métodos y kits de la invención incluyen cualquier tejido, célula, biopsia, o fluido corporal que puede contener niveles detectables de FR $\alpha$  no unido a una célula. En una realización, una muestra puede ser un tejido, una célula, sangre entera, plasma, rascado bucal, saliva, líquido cefalorraquídeo, heces, o lavado broncoalveolar. En algunas realizaciones, la muestra es FR $\alpha$  que expresan muestra de tumor o una muestra de tejidos o células, donde FR $\alpha$  que expresa cáncer pueden ser encontrados. En realizaciones preferidas, la muestra es una muestra de orina o suero.

**[0179]** Muestras corporales pueden obtenerse a partir de un sujeto por una variedad de técnicas conocidas en la técnica, incluyendo, por ejemplo, por el uso de una biopsia o raspando o frotando un área o mediante el uso de una aguja para aspirar fluidos corporales. Los métodos para la recogida de diversas muestras corporales son bien conocidos en la técnica.

**[0180]** Las muestras adecuadas para la detección y la cuantificación de la FRα nivel de proteínas pueden ser frescas, congeladas o fijas de acuerdo con métodos conocidos por un experto en la técnica. Muestras de tejidos adecuados se seccionaron preferentemente y se colocaron en un portaobjetos de microscopio para otros análisis. Las muestras sólidas, *es decir*, muestras de tejido, pueden ser solubles y/o se homogeneizadas y posteriormente se analizaron como extractos solubles. Las muestras líquidas también pueden ser sometidas a tratamientos físicos o químicos. En algunas realizaciones, las muestras de orina son tratadas por centrifugación, agitación en vórtex, la dilución y/o el tratamiento con una sustancia solubilizante (tal como, por ejemplo, el tratamiento de guanidina).

- [0181] En una realización, una muestra de biopsia recién obtenida se congela usando, por ejemplo, nitrógeno líquido o difluorodiclorometano. La muestra congelada se monta para seccionarse utilizando, por ejemplo, OCT, y se secciona en serie en un criostato. Las secciones seriadas se recogen sobre un portaobjetos de microscopio de vidrio. Para la tinción inmunohistoquímica de los portaobjetos se pueden recubrir, por ejemplo, con cromo-alumbre, gelatina o poli-L-lisina para asegurar que las secciones se adhieran a los portaobjetos. En otra realización, las muestras se fijaron y se embebieron antes de seccionarse. Por ejemplo, una muestra de tejido puede fijarse en, por ejemplo, formalina, en serie deshidratados e incluidos en, por ejemplo, parafina.
- [0182] Una vez que la muestra se obtiene, cualquier método conocido en la técnica por ser adecuado para detectar y cuantificar FRα no unido a una célula se puede utilizar (ya sea en el ácido nucleico o, preferiblemente, a nivel de proteína), como se describe en la sección (b) a continuación. Los métodos ejemplares se conocen bien en la técnica e incluyen, pero no se limitan a transferencias Western, transferencias Northern, transferencias Southern, inmunohistoquímica, ensayo de fasa de solución, ELISA, por ejemplo, amplificadas ELISA, inmunoprecipitación, inmunofluorescencia, citometría de flujo, inmunocitoquímica, analisis espectrometrométrica de masa, por ejemplo, MALDI-TOF y SELDI-TOF, técnicas de hibridación de ácidos nucleicos, métodos de transcripción inversa de ácidos nucleicos, y métodos de amplificación de ácido nucleico.
- [0183] En muchas realizaciones, el nivel de FRα no unido a una célula en la muestra (tal como, por ejemplo, orina o suero) se evalúa poniendo en contacto la muestra con un anticuerpo que se une FRα. Anticuerpos que se unen FRα son conocidos en la técnica e incluyen (i) el anticuerpo monoclonal murino LK26 (las cadenas pesadas y ligeras de los mismos se presentan en el presente documento como SEQ ID NOs: 22 y 23), como se describe en la Solicitud de Patente Europea Nº 86104170,5 (Rettig); (ii) el anticuerpo MORAb-003, como se describe en la Publicación Internacional Nº WO2004/113388 y en la Patente de EE.UU. Nº 5.646.253.
  - [0184] Los anticuerpos monoclonales MOV18 y MOv19 también se unen diferentes epítopos en la molécula FR $\alpha$  (anteriormente conocida como GP38/FBP). Miotti, S. et al. Int J Cancer, 38: 297-303 (1987). Por ejemplo, el anticuerpo MOV18 se une al epítopo expuesto en el presente documento como SEQ ID NO: 26 (TELLNVXMNAK \* XKEKPXPX \* KLXXQX) (nótese que en la posición 12, un residuo de triptófano o histidina es posible, y en la posición 21, un ácido aspártico o residuo de ácido glutámico es posible), como se enseña en Coney et al. Cancer Res, 51: 612 5-6132-(1991).
- [0185] Tal como se utiliza aquí, el término "MORAb-003" se refiere a un anticuerpo que se une específicamente FRα y que comprende la secuencia de aminoácidos de la cadena pesada madura como se expone en SEQ ID NO: 7 y la secuencia de cadena ligera madura de la SEQ ID NO: 8. Las correspondientes secuencias de aminoácidos pre-proteína para MORAb-003 se exponen en SEQ ID NOs: 9 (cadena pesada) y 10 (cadena ligera). El anticuerpo MORAb-003 comprende los siguientes CDRs: SEQ ID NO:-1-como CDRH1, SEQ ID NO: 2 como CDRHH2, SEQ ID NO: 3 como CDRH3, SEQ ID NO: 4 como CDRL1, SEQ ID NO: 5 como CDRL2, y SEQ ID NO: 6 como CDRL3. Células productoras de anticuerpos MORAb-003 han sido des planteado con la American Type Culture Collection (10801 University Blvd., Manassas, Virginia 20110-2209) el 24 de abril de 2006 y se les ha asignado el Nº de Acceso PTA-7552.
- [0186] Otros anticuerpos que se unen FRα y para uso en los métodos de la presente invención incluyen 9F3.H9.H3.H3.B5.G2 (también denominado 9F3), 19D4.B7 (también referidos como 19D4), 24F12.B1 (también denominado 24F12), y 26B3.F2 (también denominado 26B3). Las secuencias de aminoácidos de estos anticuerpos, sus CDR, y sus dominios variables de cadena pesada y ligera, así como secuencias de polinucleótidos que pueden codificar ellos, se proporcionan en la Tabla 33. En algunas realizaciones, estos anticuerpos son IgG murina, o derivados de los mismos. En otras realizaciones, los anticuerpos son humanos, humanizados, o quiméricos.

9F3

40

[0187] En algunas realizaciones, el anticuerpo que se une FRα es un anticuerpo o fragmento de unión a antígeno que incluye una CDR1 secuencia de aminoácidos de cadena ligera sustancialmente la misma que, o idéntica a, SEQ ID NO: 27. En algunas realizaciones, el anticuerpo que se une FRα

incluye una secuencia de aminoácidos CDR2de cadena ligera sustancialmente la misma que, o idéntica a, SEQ ID NO: 28. En algunas realizaciones, el anticuerpo que se une FRα incluye una secuencia de aminoácidos CDR3 de cadena ligera sustancialmente la misma que, o idéntica a, la SEQ ID NO 29. En algunas realizaciones, el anticuerpo que se une FRα incluye una secuencia de aminoácidos de CDR1 de cadena pesada sustancialmente la misma que, o idéntica a, la SEQ ID NO 31. En algunas realizaciones, el anticuerpo que se une FRα incluye una CDR2-amino CA cadena pesada secuencia ID sustancialmente la misma que, o idéntica a, SEQ ID NO: 32. En algunas realizaciones, el anticuerpo que se une FRα incluye una secuencia de aminoácidos de CDR3 de cadena pesada sustancialmente de la misma una s, o idéntica a, SEQ ID NO: 33. El anticuerpo que se une FRα puede incluir una cadena ligera que tiene una secuencia de aminoácidos CDR1 sustancialmente la misma que, o idéntica a, SEQ ID NO: 27; una secuencia de aminoácidos de CDR2 de sustancialmente el mismo que, o idéntica a, la SEQ I D NO: 28; y una secuencia de aminoácidos de CDR3 sustancialmente la misma que, o idéntica a, SEQ ID NO: 29. El anticuerpo que se une FRα puede incluir una cadena pesada que tiene una secuencia de aminoácidos CDR1 sustancialmente la misma que, o idéntica a, SEQ ID NO: 31; una secuencia de aminoácidos CDR2 sustancialmente la misma que, o idéntica a, SEQ ID NO: 32; y una secuencia de aminoácidos de CDR3 sustancialmente la misma que, o idéntica a, SEQ ID NO: 33. El anticuerpo que se une FRα puede incluir una cadena ligera que tiene una secuencia de aminoácidos CDR1 subst antially el mismo que, o idéntica a, SEQ ID NO: 27; una secuencia de CDR2 de aminoácidos sustancialmente el mismo que, o idéntica a, SEQ ID NO: 28; y una secuencia de aminoácidos de CDR3 sustancialmente la misma que, o idéntica a, SEQ ID NO: 29, y también tienen una cadena pesada que tiene una secuencia de aminoácidos CDR1 sustancialmente la misma que, o idéntica a, SEQ ID NO: 31; una secuencia de CDR2 de aminoácidos sustancialmente el mismo que, o idéntica a, SEQ ID NO: 32; y una secuencia de aminoácidos de CDR3 sustancialmente la misma que, o idéntica a, la SEQ ID NO: 33.

25

30

35

40

45

50

55

60

65

10

15

20

[0188] El anticuerpo que se une FR $\alpha$  puede incluir un dominio variable de cadena ligera que incluye una secuencia de aminoácidos sustancialmente igual a, o idéntica a, SEQ ID NO: 30. El anticuerpo que se une FR $\alpha$  puede incluir un dominio variable de cadena pesada que incluye una secuencia de aminoácidos sustancialmente igual a, o idéntica a, SEQ ID NO: 34. El anticuerpo que se une FR $\alpha$  puede incluir una luz y una cadena pesada de los dominios variables, en el que el dominio variable de cadena ligera comprende una secuencia de aminoácidos substanti aliado el mismo que, o idéntica a, SEQ ID NO: 30, y el dominio variable de cadena pesada incluye una secuencia de aminoácidos sustancialmente igual a, o idéntica a, SEQ ID NO: 34. En algunas realizaciones, el anticuerpo que se une FR $\alpha$  es el 9F $_3$ .H9.H $_3$ .H $_3$ .B5.G2-(9F $_3$ ) un ntibody o un fragmento de unión a antígeno del mismo, capaz de unirse ya sea una forma nativa o no reducida de FR $\alpha$ . En algunas realizaciones, el anticuerpo tiene una región constante IgG2a murino.

[0189] En algunas realizaciones, el anticuerpo que se une FR $\alpha$  es un anticuerpo que se produce por las células productoras de anticuerpos depositados en el American Type Culture Collection (10801 University Blvd., Manassas, Virginia 20110 hasta 2.209) el 19 de mayo de 2011 y se les ha asignado el Nº de Acceso PTA-11887. En algunas realizaciones, el anticuerpo que se une FR $\alpha$  comprende una o más de las CDR de cadena ligera y pesada de los anticuerpos producidos por las células productoras de anticuerpos depositados. En algunas realizaciones, el anticuerpo que se une FR $\alpha$  comprende las regiones de luz y variable de cadena pesada de los anticuerpos producidos por las células productoras de anticuerpos depositados.

#### 19D4

[0190] En algunas realizaciones, el anticuerpo que se une FRα es un anticuerpo o fragmento de unión a antígeno que incluye una CDR1 secuencia de aminoácidos de cadena ligera sustancialmente igual que, o idéntica a, SEQ ID NO: 35. En algunas realizaciones, el anticuerpo que se une FRα incluye una secuencia de aminoácidos CDR2de cadena ligera sustancialmente la misma que, o idéntica a, SEQ ID NO: 36. En algunas realizaciones, el anticuerpo que se une FRα incluye una CDR3 de cadena ligera la secuencia de aminoácidos sustancialmente la mismo que, o idéntica a, SEQ ID NO: 37. En algunas realizaciones, el anticuerpo que se une FRα incluye una secuencia de cadena pesada de CDR1 de aminoácidos sustancialmente el mismo que, o idéntica a, SEQ ID NO: 39. En algunas formas de realización, el anticuerpo que se une FRα incluye una secuencia de cadena pesada de CDR2 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 40. En algunas realizaciones, el anticuerpo que se une FRa incluye una secuencia de cadena pesada CDR3 de aminoácidos sustancialmente iqual que, o idéntica a, la SEQ ID NO: 41. El anticuerpo que se une FRα puede incluir una cadena ligera que tiene una secuencia de aminoácidos CDR1 sustancialmente igual que, o idéntica a, SEQ ID NO: 35; una secuencia de CDR2 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 36; y una amin CDR3 o secuencia de ácido sustancialmente igual que, o idéntica a, SEQ ID NO: 37. El anticuerpo que se une FRα puede incluir una cadena pesada que tiene una secuencia de aminoácidos CDR1 sustancialmente igual que, o idéntica a, SEQ ID NO: 39; una secuencia de aminoácidos de CDR2 sustancialmente igual que, o idéntica a, SEQ ID NO: 40; y una secuencia de aminoácidos de CDR3 sustancialmente igual que, o idéntica a, SEQ ID NO: 41. El anticuerpo que se

une FRα puede incluir una cadena ligera que tiene una secuencia de aminoácidos CDR1 sustancialmente igual que, o idéntica a, SEQ ID NO: 35; una secuencia de CDR2 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 36; y una secuencia de aminoácidos de CDR3 sustancialmente igual que, o idéntica a, SEQ ID NO: 37, y también tienen una cadena pesada que tiene una secuencia de aminoácidos CDR1 sustancialmente igual que, o idéntica a, SEQ ID NO: 39; una secuencia de CDR2 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 40; y una secuencia de aminoácidos de CDR3 sustancialmente igual que, o idéntica a, SEQ ID NO: 41.

**[0191]** El anticuerpo que se une FRα puede incluir un dominio variable de cadena ligera que incluye una secuencia de aminoácidos sustancialmente igual a, o idéntica a, SEQ ID NO: 38. El anticuerpo que se une FRα puede incluir un dominio variable de cadena pesada que incluye un una secuencia de aminoácido sustancialmente igual que, o idéntica a, SEQ ID NO: 42. El anticuerpo que se une FRα puede incluir una cadena ligera o pesada de los dominios variables, en el que el dominio variable de cadena ligera comprende una secuencia de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 38, y el dominio variable de cadena pesada incluye una secuencia de aminoácidos sustancialmente igual a, o idéntica a, SEQ ID NO: 42. En algunas realizaciones, el anticuerpo que se une FRα es el (19D4) anticuerpo 19D4.B7 o un fragmentos de unión a antígeno del mismo, capaz de unirse ya sea una forma nativa o no reducida de FRα. En algunas realizaciones, el anticuerpo tiene una región constante de IgG2a murino.

20

25

35

40

45

50

55

60

65

5

10

15

[0192] En algunas realizaciones, el anticuerpo que se une FR $\alpha$  es un anticuerpo que se produce por las células productoras de anticuerpos depositados en el American Type Culture Collection (10801 University Blvd., Manassas, Virginia 20110 a 2209) el 19 de mayo, 2 011 y se les ha asignado el Nº de Acceso PTA-11884. En algunos realizaciones, el anticuerpo que se une FR $\alpha$  comprende una o más de las cadenas ligeras y pesadas CDR de de los anticuerpos producidos por las células productoras de anticuerpos depositados. En algunas realizaciones, el anticuerpo que se une FR $\alpha$  comprende las regiones variables de cadena ligera y pesada de los anticuerpos producidos por las células productoras de anticuerpos depositados.

## 30 <u>24F12</u>

[0193] En algunas realizaciones, el anticuerpo que se une FRα es un anticuerpo o fragmento de unión a antígeno que incluye una CDR1 secuencia de cadena ligera de aminoácidos sustancialmente igual, o idéntica a, SEQ ID NO: 43. En algunas realizaciones, el anticuerpo que se une FRα incluye una secuencia de aminoácidos CDR2de cadena ligera sustancialmente igual que, o idéntica a, SEQ ID NO: 44. En algunas realizaciones, el anticuerpo que se une FRα incluye una secuencia de aminoácidos CDR3 de la cadena ligera sustancialmente igual que, o idéntica a, SEQ ID NO: 45. En algunas realizaciones, el anticuerpo que se une FRa incluye una secuencia de cadena pesada de CDR1 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 47. En algunas formas de realización, el anticuerpo que se une FRa incluye una secuencia de cadena pesada de CDR2 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 48. En algunas realizaciones, el anticuerpo que se une FRα incluye una cadena pesada CDR3 la secuencia de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 49. El anticuerpo que se une FRα puede incluir una cadena ligera que tiene una secuencia de aminoácidos CDR1 sustancialmente igual que, o idéntica a, SEQ ID NO: 43; una secuencia de CDR2 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 44; y una secuencia de aminoácidos de CDR3 sustancialmente igual que, o idéntica a, SEQ ID NO: 45. El anticuerpo que se une FRα puede incluir una cadena pesada que tiene una secuencia de aminoácidos CDR1 sustancialmente igual que, o idéntica a, SEQ ID NO: 47; una secuencia de CDR2 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 48; y una secuencia de aminoácidos de CDR3 sustancialmente igual que, o idéntica a, SEQ ID NO: 49. El anticuerpo que se une FRα puede incluir una cadena ligera que tiene un aminoácido CDR1 secuencia sustancialmente igual que, o idéntica a, SEQ ID NO: 43; una secuencia de CDR2 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 44; y una secuencia de aminoácidos de CDR3 sustancialmente igual que, o idéntica a, SEQ ID NO: 45, y también tienen una cadena pesada que tiene una secuencia de aminoácidos CDR1 sustancialmente igual que, o idéntica a, SEQ ID NO: 47; una secuencia de CDR2 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 48; y una secuencia de aminoácidos de CDR3 sustancialmente igual que, o ide ntical a, SEQ ID NO: 49.

[0194] El anticuerpo que se une FR $\alpha$  puede incluir un dominio variable de cadena ligera que incluye una secuencia de aminoácidos sustancialmente igual a, o idéntica a, SEQ ID NO: 46. El anticuerpo que se une FR $\alpha$  puede incluir una región variable de cadena pesada capaz que incluye una secuencia de aminoácidos sustancialmente igual a, o idéntica a, SEQ ID NO: 50. El anticuerpo que se une FR $\alpha$  puede incluir una región variable de cadena ligera o pesada, en la que el dominio variable de cadena ligera incluye un aminoácido se cuencia sustancialmente igual que, o idéntica a, SEQ ID NO: 46, y el dominio variable de cadena pesada incluye una secuencia de aminoácidos sustancialmente igual a, o idéntica a, SEQ ID NO: 50. En algunas realizaciones, el anticuerpo que se une FR $\alpha$  es el anticuerpo 24F12.B1-(24F12) o un fragmento de unión a antígeno del mismo, capaz de unirse ya sea una forma

nativa o no reducida de  $FR\alpha$ . En algunas realizaciones, el anticuerpo tiene una región constante de IgG1 murina.

[0195] En algunas realizaciones, el anticuerpo que se une FR $\alpha$  es un anticuerpo que es producido por las células productoras de anticuerpos depositados en el American Type Culture Collection (10801 University Blvd., Manassas, Virginia 20110 a 2209) el 19 de mayo, 2011 y se les ha asignado el Nº de Acceso PTA-11886. En algunas realizaciones, el anticuerpo que se une FR $\alpha$  comprende una o más de las CDR de cadena ligera y pesada de los anticuerpos producidos por las células productoras de anticuerpos depositados. En algunas realizaciones, el anticuerpo que se une FR $\alpha$  comprende las regiones variables de cadena ligera y pesada de los anticuerpos producidos por las células productoras de anticuerpos depositados.

#### 26B3

5

10

45

50

55

60

65

15 [0196] En algunas realizaciones, el anticuerpo que se une FRα es un anticuerpo o fragmento de unión a antígeno que incluye una secuencia de aminoácidos CDR1 de cadena ligera sustancialmente igual que, o idéntica a, SEQ ID NO: 51. En algunas realizaciones, el anticuerpo que se une FRα incluye una secuencia de aminoácidos CDR2 de cadena ligera sustancialmente igual que, o idéntica a, SEQ ID NO: 52. En algunas realizaciones, el anticuerpo que se une FRα incluye una CDR3 de cadena ligera la 20 secuencia de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 53. En algunas realizaciones, el anticuerpo que se une FRα incluye una secuencia de cadena pesada de CDR1 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 55. En algunas formas de realización, el anticuerpo que se une  $FR\alpha$  incluye una secuencia de cadena pesada de CDR2 de aminoácidos sustancialmente iqual que, o idéntica a, SEQ ID NO: 56. En algunas realizaciones, el anticuerpo que se 25 une FRα incluye una secuencia de cadena pesada CDR3 de aminoácidos sustancialmente igual que, o idéntica a, la SEQ ID NO: 57. El anticuerpo que se une FRα puede incluir una cadena ligera que tiene una secuencia de aminoácidos CDR1 sustancialmente igual que, o idéntica a, SEQ ID NO: 51; una secuencia de CDR2 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 52; y una secuencia de aminoácido CDR3 sustancialmente igual que, o idéntica a, SEQ ID NO: 53. El anticuerpo que se une FRα puede incluir una cadena pesada que tiene una secuencia de aminoácidos CDR1 30 sustancialmente igual a, o idéntica a, SEQ ID NO: 55; una secuencia de CDR2 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 56; y una secuencia de aminoácidos de CDR3 sustancialmente igual que, o idéntica a, SEQ ID NO: 57. Él anticuerpo que se une FRα puede incluir una cadena ligera que tiene una secuencia de aminoácidos CDR1 sustancialmente igual que, o idéntica 35 a, SEQ ID NO: 51; una secuencia de CDR2 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 52; y una secuencia de aminoácidos de CDR3 sustancialmente igual que, o idéntica a, SEQ ID NO: 53, y también tienen una cadena pesada que tiene una secuencia de aminoácidos CDR1 sustancialmente igual que, o idéntica a, SEQ ID NO: 55; una secuencia de CDR2 de aminoácidos sustancialmente igual que, o idéntica a, SEQ ID NO: 56; y una secuencia de aminoácidos de CDR3 40 Sustancia cialmente igual que, o idéntica a, SEQ ID NO: 57.

[0197] El anticuerpo que se une FR $\alpha$  puede incluir un dominio variable de cadena ligera que incluye una secuencia de aminoácidos sustancialmente igual a, o idéntica a, SEQ ID NO: 54. El anticuerpo que se une FR $\alpha$  puede incluir un dominio variable de cadena pesada que incluye una secuencia de aminoácidos sustancialmente igual a, o idéntica a, SEQ ID NO: 58. El anticuerpo que se une FR $\alpha$  puede incluir una luz y una cadena pesada de los dominios variables, en el que el dominio variable de cadena ligera comprende una secuencia de aminoácidos sustancialmente igual a, o idéntica a, SEQ ID NO: 54, y la cadena pesada del dominio variable incluye una secuencia de aminoácidos sustancialmente igual a, o idéntica a, SEQ ID NO: 58. En algunas realizaciones, el anticuerpo que se une FR $\alpha$  es el (26B3) anticuerpo 26B3.F2 o un fragmento de unión a antígeno del mismo, capaz de unirse ya sea una forma nativa o no reducida de FR $\alpha$ . En algunas realizaciones, el anticuerpo tiene una región constante de IgG1 murina.

[0198] En algunas realizaciones, el anticuerpo que se une FR $\alpha$  es un anticuerpo que se produce por las células productoras de anticuerpos depositados en el American Type Culture Collection (10801 University Blvd., Manassas, Virginia 20110 hasta 2.209) el 19 de mayo de 2011 y se les ha asignado el Nº de Acceso PTA-11885. En algunas realizaciones, el anticuerpo que se une FR $\alpha$  comprende una o más de las CDR de cadena ligera y pesada de los anticuerpos producidos por las células productoras de anticuerpos depositados. En algunas realizaciones, el anticuerpo que se une FR $\alpha$  comprende las regiones de luz y variable de cadena pesada de los anticuerpos producidos por las células productoras de anticuerpos depositados.

**[0199]** Disposiciones de unión al antígeno de CDR pueden diseñarse usando proteínas similares a anticuerpos como andamios CDR. Proteínas de unión a antígeno diseñadas se incluyen dentro del alcance de anticuerpos que se unen FR $\alpha$ .

[0200] Otros anticuerpos reactivos que se unen FR $\alpha$  son conocidos en la técnica, y en la actualidad, múltiples tales anticuerpos reactivos están disponibles comercialmente (en base a la búsqueda de anticuerpos anti-FR $\alpha$  en http://www.biocompare.com), que se enumeran en la siguiente tabla.

| Producto                                                                                                                                                                                                                                                     | Empresa                             | Cantidad                | Aplicaciones                                                                                                                                                                                 | Reactividad |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| FRα de ratón anti-humano                                                                                                                                                                                                                                     | Abnova                              | 50 μg                   | La detección de                                                                                                                                                                              | Humano      |
| purificada - MaxPab de                                                                                                                                                                                                                                       | Corporación                         |                         | anticuerpos,                                                                                                                                                                                 |             |
| anticuerpos policionales,                                                                                                                                                                                                                                    |                                     |                         | Transferencia Western                                                                                                                                                                        |             |
| no conjugados                                                                                                                                                                                                                                                |                                     |                         | (lisado transfectadas)                                                                                                                                                                       |             |
| FRα de ratón anti-humano                                                                                                                                                                                                                                     | Abnova                              | 50 μg                   | La detección de                                                                                                                                                                              | Humano      |
| purificada - MaxPab de                                                                                                                                                                                                                                       | Corporación                         |                         | anticuerpos,                                                                                                                                                                                 |             |
| anticuerpos policionales,                                                                                                                                                                                                                                    |                                     |                         | Transferencia Western                                                                                                                                                                        |             |
| no conjugados                                                                                                                                                                                                                                                |                                     |                         | (lisado transfectadas)                                                                                                                                                                       |             |
| FRα de conejo anti-                                                                                                                                                                                                                                          | Abnova                              | 10 0 μg                 | La detección de                                                                                                                                                                              | Humano      |
| humano purificada -                                                                                                                                                                                                                                          | Corporación                         |                         | anticuerpos,                                                                                                                                                                                 |             |
| MaxPab de anticuerpos                                                                                                                                                                                                                                        |                                     |                         | Transferencia Western                                                                                                                                                                        |             |
| policionales, no                                                                                                                                                                                                                                             |                                     |                         | (lisado transfectadas)                                                                                                                                                                       |             |
| conjugados                                                                                                                                                                                                                                                   |                                     | 50                      | TD C ' W                                                                                                                                                                                     |             |
| Anticuerpo policional                                                                                                                                                                                                                                        | Aviva                               | 50 μg                   | Transferencia Western                                                                                                                                                                        | Humano,     |
| Anti-FRα de conejo, no                                                                                                                                                                                                                                       | Sistemas                            |                         |                                                                                                                                                                                              | ratón, rata |
| conjugado                                                                                                                                                                                                                                                    | Biology                             | 1001                    | T                                                                                                                                                                                            | **          |
| Anticuerpo policional                                                                                                                                                                                                                                        | GeneTex                             | 10 0 μl                 | Transferencia Western.                                                                                                                                                                       | Humano      |
| FRα anti-humano de                                                                                                                                                                                                                                           |                                     |                         | La utilidad de este                                                                                                                                                                          |             |
| conejo, no conjugado                                                                                                                                                                                                                                         |                                     |                         | producto en otras                                                                                                                                                                            |             |
|                                                                                                                                                                                                                                                              |                                     |                         | aplicaciones no se ha                                                                                                                                                                        |             |
| D                                                                                                                                                                                                                                                            | I : C- C                            | 10                      | determinado.                                                                                                                                                                                 | Desire      |
| Receptor de folato alfa                                                                                                                                                                                                                                      | LifeSpan                            | 10 mg                   | ELISA (1: 4000 juego-                                                                                                                                                                        | Bovino      |
| policional anti-bovino de                                                                                                                                                                                                                                    | Biosciences                         |                         | 1: 20.000),                                                                                                                                                                                  |             |
| ` '' '                                                                                                                                                                                                                                                       |                                     |                         | *                                                                                                                                                                                            |             |
| con biotina                                                                                                                                                                                                                                                  |                                     |                         |                                                                                                                                                                                              |             |
|                                                                                                                                                                                                                                                              |                                     |                         |                                                                                                                                                                                              |             |
| December de felete elfe                                                                                                                                                                                                                                      | LifoCnon                            | No                      |                                                                                                                                                                                              | Dovino      |
|                                                                                                                                                                                                                                                              |                                     | 1.0                     |                                                                                                                                                                                              | DOVIIIO     |
|                                                                                                                                                                                                                                                              | Biosciences                         |                         |                                                                                                                                                                                              |             |
|                                                                                                                                                                                                                                                              |                                     | auo                     | Transferencia western                                                                                                                                                                        |             |
|                                                                                                                                                                                                                                                              | LifeSpan                            | 20 mg                   | ELISA (1: 2000-1:                                                                                                                                                                            | Bovino      |
|                                                                                                                                                                                                                                                              | Biosciences                         |                         |                                                                                                                                                                                              | 20,1110     |
| -                                                                                                                                                                                                                                                            |                                     |                         |                                                                                                                                                                                              |             |
|                                                                                                                                                                                                                                                              |                                     |                         |                                                                                                                                                                                              |             |
| Receptor de folato alfa policional anti-bovino de cabra (FRα), conjugado con biotina  Receptor de folato alfa policional anti-bovino de cabra (FRα), conjugado con biotina  Receptor de folato alfa policional anti-bovino de cabra (FRα), conjugado con Hrp | LifeSpan<br>Biosciences<br>LifeSpan | No proporcion ado 20 mg | inmunofluorescencia, Imm unohistochemistry, Transferencia Western ELISA (1: 5000 juego-1: 25.000), Transferencia Western ELISA (1: 2000-1: 10000), inmunohistoquímica, Transferencia Western | Bovino      |

| Producto                                                                                                                                | Empresa                                                     | Cantidad                | Aplicaciones                                                                                           | Reactividad             |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------|-------------------------|
| Receptor de folato alfa policlonal anti-bovino de cabra (FRα), conjugado con Hrp                                                        | LifeSpan<br>Biosciences                                     | 10 00 μg                | ELISA (1: 2000-1: 12000), Cambio de Gel, inmunohistoquímica (1: 100-1: 200), inmunohistoquímica        | Bovino                  |
| Receptor de folato alfa policional anti-bovino de cabra (FRα), conjugado con Hrp                                                        | LifeSpan<br>Biosciences                                     | 2000 μg<br>(200 μl)     | ELISA, Transferencia<br>Western                                                                        | Bovino                  |
| Receptor de folato alfa policional anti-bovino de cabra (FRα), conjugado con Hrp                                                        | LifeSpan<br>Biosciences                                     | No<br>proporcionad<br>o | ELISA, inmunohistoquímica (secciones congeladas), inmunohistoquímica (Parafina), Transferencia Western | Bovino                  |
| Receptor de folato alfa policional anti-bovino de cabra (FRα), no conjugado                                                             | LifeSpan<br>Biosciences                                     | 50 mg                   | ELISA (1: 10000-1: 40.000), inmunoprecipitación, Transferencia Western                                 | Bovino                  |
| Receptor de folato alfa anti- policional bovino de cabra (FRα), no conjugado                                                            | LifeSpan<br>Biosciences                                     | 10 000 μg               | ELISA (1: 10000-1: 40.000), inmunoprecipitación, Transferencia Western                                 | Bovino                  |
| Receptor de folato alfa policional anti-bovino de cabra (FRα), no conjugado                                                             | LifeSpan<br>Biosciences                                     | 1 mL                    | ELISA (1: 3000-1: 9000),<br>inmunoprecipitación,<br>Transferencia Western                              | Bo vine                 |
| Receptor de folato alfa<br>anti- policlonal anti-bovino<br>de cabra (FRα), policlonal,<br>no conjugado Receptor de<br>folato alfa (Frα) | LifeSpan<br>Biosciences                                     | No<br>proporcionad<br>o | ELISA (1: 3000-1: 9000),<br>inmunoprecipitación,<br>Transferencia Western                              | Bovino                  |
| Receptor de folato alfa<br>anti-bovino de ratón (Frα)<br>monoclonal, no conjugado                                                       | LifeSpan<br>Biosciences                                     | 200 μg                  | ELISA                                                                                                  | Bovino                  |
| Receptor de folato alfa anti-bovino de ratón (Frα) monoclonal, no conjugado                                                             | LifeSpan<br>BioSciences<br>Folate<br>receptor alfa<br>(Frα) | 200 µg                  | ELISA                                                                                                  | Humano                  |
| Receptor de folato alfa anti-bovino de ratón (Frα) monoclonal, no conjugado                                                             | LifeSpan<br>Biosciences                                     | 200 μg                  | ELISA                                                                                                  | Humano                  |
| Receptor de folato alfa<br>anti-bovino de ratón (Frα)<br>monoclonal, no conjugado                                                       | LifeSpan<br>Biosciences                                     | 200 μg                  | ELISA                                                                                                  | No<br>proporcionad<br>o |
| Receptor de folato alfa<br>anti-bovino de ratón (Frα)<br>monoclonal, no conjugado,<br>clon 6d398                                        | LifeSpan<br>Biosciences                                     | 10 0 µl                 | ELISA (1-10 µg/ml), citometría de flujo, inmunocitoquímica, inmunohistoquímica (secciones congeladas)  | Mono                    |
| Receptor de folato alfa<br>anti-bovino de ratón (Frα)<br>policional, no conjugado                                                       | LifeSpan<br>Biosc icos                                      | 1 mL                    | ÈLISA                                                                                                  | Bovino                  |
| Receptor de folato alfa<br>anti-bovino de ratón (Frα)<br>policional, no conjugado                                                       | LifeSpan<br>Biosciences                                     | No<br>proporcionad<br>o | No proporcionado                                                                                       | Bovino                  |

| Producto                                                                                                | Empresa                             | Cantida                | Aplicaciones                                                                     | Reactivida |
|---------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|----------------------------------------------------------------------------------|------------|
| Anticuerpo policional FRα anti-                                                                         | Novus                               | <b>d</b> 0,05 mL       | Transferencia                                                                    | d          |
| humano de ratón, no conjugado,<br>receptor de folato de clon 1 (adulto)                                 | Productos<br>Biológico<br>s         | 0,00 1112              | Western, ELISA                                                                   |            |
| FRα anti-humano de ratón policional, no conjugado                                                       | Novus<br>Productos<br>Biológico     | 0,05 mg                | ELI SA,<br>Transferencia<br>Western                                              | Humano     |
| Anticuerpo policional purificado de afinidad FRα anti-humano de cabra, conjugado con biotina            | R&D<br>Systems                      | 50 μg                  | Transferencia<br>Western                                                         | Humano     |
| Anticuerpo policional purificado de afinidad FRα anti-humano de cabra, no conjugado                     | R&D<br>Systems                      | 10 0 μg                | Citometría de Flujo,<br>Transferencia<br>Western                                 | Humano     |
| Anticuerpo monoclonal FRα anti-<br>humano de ratón, conjugado de<br>aloficocianina, clon 548908         | R&D<br>Systems                      | 10 0<br>Tests          | Citometría de flujo                                                              | Humano     |
| Anticuerpo monoclonal FRα anti-<br>humano de ratón, conjugado de<br>ficoeritrina conjugado, clon 548908 | R&D<br>Systems                      | 10 0 Tes<br><b>T</b> s | Citometría de flujo                                                              | Humano     |
| Anticuerpo monoclonal FRα anti-<br>humano de ratón, no conjugado, clon<br>548908                        | R&D<br>Systems                      | 10 0 μg                | Citometría de flujo,<br>inmunocitoquímica,<br>Transferencia<br>Western           | Humano     |
| Anticuerpo monoclonal FRα anti-<br>ratón de humano, no conjugado                                        | Estados<br>Unidos<br>Biologi<br>cal | 10 0 μg                | ELISA, citometría<br>de flujo,<br>inmunocitoquímica,<br>Transferencia<br>Western | Humano     |

[0201] En una realización preterida, el anticuerpo que se une FRα comprende al menos uno de los siguientes CDRs, como se deriva de cadenas pesadas y ligeras de LK26murino: SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (faltantes GGSYTYYADSVKG) como CDRH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3. Véase la Patente de EE.UU. N° 5.646.253.

5

10

15

20

[0202] Otras mutaciones pueden hacerse en las regiones de marco como se enseña en la Patente de EE.UU. Nº 5.646.253.

[0203] En otra realización preferida, el anticuerpo incluye una cadena ligera de la región variable seleccionada del grupo que consiste en LK26HuVK (SEQ ID NO: 13) LK26HuVKY (SEQ ID NO: 14), LK26HuVKPW (SEQ ID NO: 15), y LK26HuVKPW, y (SEQ ID NO: 16); y una región variable de cadena pesada seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); y LK26KOLHuVH (SEQ ID NO: 21). Véase la Patente de EE.UU. Nº 5.646.253 y la Patente de EE.UU. Nº 6.124.106. En otra realización, el anticuerpo comprende la región variable de cadena pesada LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16). En otra realización, el anticuerpo comprende la región de cadena pesada variable LK26HuVH SLF (SEQ ID NO: 19) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16). En una realización adicional, el anticuerpo comprende la región de cadena pesada variable LK26HuVH FAIS, N (SEQ ID NO: 18) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16).

25 [0204] En algunas realizaciones, las muestras pueden necesitar ser modificadas con el fin de hacer FRα accesible a la unión del anticuerpo. En un aspecto particular de los métodos de inmunocitoquímica o inmunohistoquímica, las portaobjetos se pueden transferir a un tampón de pretratamiento y opcionalmente calentar para aumentar la accesibilidad del antígeno. El calentamiento de la muestra en el tampón de pretratamiento rápidamente interrumpe la bi-capa lípida de las células y hace que los antígenos (puede ser el caso en muestras frescas, pero no típicamente lo que ocurre en las muestras

fijadas) (es decir, la proteína FRα) sean más accesibles para la unión del anticuerpo. El término "tampón de pretratamiento" se usa indistintamente en este documento para referirse a un tampón que se utiliza para preparar las muestras de citología o la histología para la inmunotinción, en particular mediante el aumento de la accesibilidad de la proteína FRα para la unión de anticuerpos. El tampón de pretratamiento puede comprender una solución salina pH específica, un polímero, un detergente, o un tensioactivo no iónico o aniónico tal como, por ejemplo, un agente tensioactivo etilooxilado aniónico o no iónico, un alcanoato o un alcoxilato o incluso mezclas de estos tensioactivos o incluso el uso de una sal biliar. El tampón de pretratamiento puede ser, por ejemplo, una solución de 0,1% a 1% de ácido desoxicólico, sal de sodio, o una solución de sodio de laurilo-13-carboxilato de metilo (por ejemplo, Sandopan LS) o y complejo aniónico etoxilado. En algunas realizaciones, el tampón de pretratamiento también puede utilizarse como un tampón de almacenamiento de portaobjetos. En una realización particular, la muestra, por ejemplo, la muestra de orina, se centrifuga, se agita con vórtex, se diluye y/o se somete a tratamiento de guanidina.

- [0205] Cualquier método para la fabricación de proteína FRα más acesible para la unión de anticuerpo puede utilizarse en la práctica de la invención, incluyendo los métodos de recuperación de antígeno conocido en la técnica. Véase, por ejemplo, Bibbo, et al. (2002) Acta. Citol. 46: 25-29; Saqi, et al. (2003) Diagn. Cytopathol. 27: 365-370; Bibbo, et al. (2003) Anal. Quant. Citol. Histológico. 25: 8-11.
- [0206] Tras el pretratamiento para aumentar la proteína de accesibilidad FRα, las muestras pueden ser bloqueadas usando un agente de bloqueo adecuado, por ejemplo, una peroxidasa reactiva de bloqueo, tal como peróxido de hidrógeno. En algunas realizaciones, las muestras pueden ser bloqueadas usando un reactivo de bloqueo de proteína para prevenir unión no específica del anticuerpo. El reactivo de bloqueo de proteína puede comprender, por ejemplo, caseína purificada. Un anticuerpo, particularmente un anticuerpo monoclonal o policlonal, que se une específicamente a FRα se incuba después con la muestra.
- [0207] Las técnicas para la detección son bien conocidas en la técnica de unión del anticuerpo. La unión a FRα del anticuerpo puede ser detectada mediante el uso de reactivos químicos que generan una señal detectable que se corresponde con el nivel de unión de anticuerpos y, en consecuencia, el nivel de expresión de proteína FRα. En uno de los métodos de inmunohistoquímica o inmunocitoquímica de la invención, se detecta la unión de anticuerpos a través del uso de un anticuerpo secundario que está conjugado a un polímero marcado. Ejemplos de polímeros marcados incluyen, pero no se limitan a conjugados de polímero-enzima. Las enzimas en estos complejos se utilizan típicamente para catalizar la deposición de un cromógeno en el sitio de unión antígeno-anticuerpo, lo que resulta en la tinción de células que corresponde al nivel de expresión del biomarcador de interés. Las enzimas incluyen, pero no se limitan a, peroxidasa de rábano picante (HRP) y fosfatasa alcalina (AP).
- 40 102081 En un método inmunohistoquímico o inmunocitoquímico de la invención, la unión del anticuerpo a la proteína FRα se detectó a través del uso de un polímero marcado con HRP que se conjuga a un anticuerpo secundario. La unión del anticuerpo también se puede detectar a través del uso de un reactivo de sonda específica de la especie, que se une a anticuerpos monoclonales o policlonales, y un polímero conjugado con HRP, que se une a la especie de reactivo de sonda específica. Los 45 portaobjetos se tiñeron para la unión usando cualquier cromógeno, anticuerpo, por ejemplo, el cromógeno 3,3-diaminobencidina (DAB), y después se contratiñeron con hematoxilina y, opcionalmente, un agente de azulado tal como hidróxido de amonio o TBS/Tween-20. Otros cromógenos adecuados incluyen, por ejemplo, 3-amino-9-etilocarbazol (AEC). En algunos aspectos de la invención, los portaobjetos son revisados microscópicamente por un citotécnico y/o un patólogo para evaluar la tinción de células, por ejemplo, la tinción fluorescente (es decir, expresión FRa). 50 Alternativamente, las muestras pueden ser revisadas a través de microscopía automatizada o por personal con la ayuda de software de ordenador que facilita la identificación de células de tinción
- 55 [0209] En una realización preferida de la invención, el anticuerpo está marcado. Por ejemplo, la detección de la unión del anticuerpo se puede facilitar mediante el acoplamiento del anticuerpo anti-FRα a una sustancia detectable. Ejemplos de sustancias detectables incluyen diversas enzimas, grupos prostéticos, materiales fluorescentes, luminiscentes materiales, materiales bioluminiscentes, y materiales radiactivos. Ejemplos de enzimas adecuadas incluyen peroxidasa de rábano picante, 60 fosfatasa alcalina, β-galactosidase, o acetilocolinesterasa; ejemplos de complejos de grupos prostéticos adecuados incluyen estreptavidina/biotina y avidina/biotina; ejemplos de materiales fluorescentes adecuados incluyen umbeliferona, fluoresceína, isotiocianato de fluoresceína, rodamina, diclorotriazinilamina fluoresceína, cloruro de dansilo o ficoeritrina; un ejemplo de un material luminiscente incluye luminol; ejemplos de materiales bioluminiscentes incluyen luciferasa, luciferina, y aequorina: v eiemplos de materiales radiactivos adecuados incluven 1251, 1311, 35S, 14C, o 3H. En una 65 realización particular, el anticuerpo está marcado con un radio-etiqueta, etiqueta de cromóforo, etiqueta de fluoróforo, o etiqueta de enzima.

[0210] En una realización de la invención muestras congeladas se preparan como se describió anteriormente y posteriormente se tiñeron con anticuerpos contra FRα diluido a una concentración apropiada usando, por ejemplo, solución salina tamponada con Tris (TBS). Los anticuerpos primarios pueden detectarse mediante incubación de los portaobjetos en anti-inmunoglobulina biotinilada. Esta señal opcionalmente puede ser amplificada y se visualizó usando precipitación con diaminobencidina del antígeno. Además, los portaobjetos se pueden contrateñir opcionalmente con, por ejemplo, hematoxilina, para visualizar las células.

**[0211]** En otra realización, muestras fijadas y embebidas se tiñeron con anticuerpos contra FRα y se contra-tiñeron como se ha descrito anteriormente para las secciones congeladas. Además, las muestras se pueden tratar opcionalmente con agentes para amplificar la señal con el fin de visualizar la tinción de anticuerpos. Por ejemplo, una deposición catalizada por peroxidasa de biotinil-tiramida, que a su vez se hace reaccionar con (sistema catalizado amplificación de señal (CSA), DAKO, Carpinteria, CA) estreptavidina conjugada con peroxidasa puede utilizarse.

10

15

20

50

55

60

65

**[0212]** Un experto en la técnica reconocerá que la concentración de un anticuerpo particular utilizado para practicar los métodos de la invención variará dependiendo de factores tales como el tiempo para la unión, el nivel de especificidad del anticuerpo para  $FR\alpha$ , y el método de preparación de la muestra. Además, cuando se usan múltiples anticuerpos, la concentración requerida puede verse afectada por el orden en que los anticuerpos se aplican a la muestra, *por ejemplo*, al mismo tiempo como un cóctel o secuencialmente como reactivos de anticuerpo individuales. Además, la química de detección utilizada para visualizar la unión a anticuerpo  $FR\alpha$  debe ser optimizada para producir la señal a ruido deseado.

[0213] En una realización de la invención, los métodos proteómicos, por ejemplo, espectrometría de masas, se utilizan para detectar y cuantificar la proteína FRα. Por ejemplo, espectrometría de masas de tiempo de vuelo de desorción/ionización por láser asociada a la matriz (MALDI-TOF MS) o espectrometría de masas de tiempo de vuelo de desorción/ionización de mayor superficie (SELDI-TOF MS), que implica la aplicación de una muestra, tal como suero, a un chip de unión a proteínas (Wright, GL, Jr., et al (2002) Experto Rev Mol Diagn. 2: 549; Li, J., et al (2002) Clin Chem. 48: 1296; Laronga, C., et al (2003) Dis Markers 19: 229; Petricoin, EF, et al. (2002)₃59: 572; Adam, BL, et al (2002) Cancer Res 62: 3609; Tolson, J., et al (2004) Lab Invest 84: 845; Xiao, Z., et al (2001) Cancer Res 61: 6029) se puede utilizar para detectar y cuantificar la proteína FRα. Los métodos de espectrometría de masas se describen en, por ejemplo, la Patente de EE.UU. Nos. 5.622.824, 5.605.798 y 5.547.835.

35 [0214] La presente invención además implica, al menos en parte, la identificación de FRa como biomarcador de pronóstico, es decir, como un biomarcador de la progresión y/o la gravedad, de un cáncer que expresa FRα tal como cáncer de ovario o de cáncer de pulmón de células pequeñas. Por consiguiente, la presente invención proporciona métodos de evaluación de la progresión de un cáncer que expresa FRα en un sujeto aquejado de cáncer de ovario comparando el nivel de FRα en una 40 muestra derivada de un sujeto con el nivel de FRα en una muestra de control, en el que una diferencia en el nivel de FRα en la muestra (tal como una muestra de orina o suero) derivada del sujeto en comparación con la muestra de control es una indicación de que el cáncer progresa rápidamente. Del mismo modo, los métodos de evaluación del nivel de riesgo de que un sujeto desarrollará un cáncer que expresa FRα implica comparar el nivel de FRα en una muestra derivada de un sujeto con el nivel 45 de FRa en una muestra de control, en el que una diferencia en el nivel de FRa en la muestra (como la orina o suero de la muestra) derivada del sujeto en comparación con la muestra de control es una indicación de que el sujeto tiene un mayor nivel de riesgo de desarrollo de un cáncer que expresa FRa en comparación con riesgo normal en un individuo sano.

**[0215]** En una realización, la diferencia es un aumento. En otra realización, la diferencia es una disminución. En algunos tipos de cáncer (*por ejemplo, carcinoma* de células escamosas de la cabeza y cuello, cáncer de ovario), un mayor nivel de expresión de FRα se asocia con un peor pronóstico, mientras que en otros tipos de cánceres (*por ejemplo,* de pulmón no de células pequeñas cánceres), un mayor nivel de expresión de FRα se asocia con un mejor pronóstico. Por lo tanto, en una realización específica, el cáncer que expresa FRα es cáncer de ovario o carcinoma de células escamosas de la cabeza y el cuello y la diferencia es un aumento. En otra realización específica, el cáncer que expresa FRα es un cáncer de pulmón no de células pequeñas, y la diferencia es una disminución.

[0216] En ciertos aspectos, la invención proporciona métodos de evaluación de la progresión de un cáncer que expresa FRα en un sujeto que padece un cáncer que expresa FRα mediante la comparación del nivel de FRα en una muestra derivada de un sujeto con el nivel de FRα en una muestra de control, en el que un aumento en el nivel de FRα en la muestra (tal como una muestra de orina o suero) derivada del sujeto en comparación con la muestra de control es una indicación de que el cáncer progresa rápidamente, o una disminución en el nivel de FRα en la muestra derivada del sujeto en comparación con el nivel de FRα en la muestra de control es una indicación de que el cáncer progresa lentamente o retrocederá. Del mismo modo, los métodos de evaluación del nivel de riesgo de que un sujeto desarrolle un cáncer que expresa FRα implica comparar el nivel de FRα en una muestra

derivada de un sujeto con el nivel de FR $\alpha$  en una muestra de control, en el que un aumento del nivel de FR $\alpha$  en la muestra (como la orina o suero de la muestra) derivada del sujeto en comparación con la muestra de control es una indicación de que el sujeto tiene un mayor nivel de riesgo de desarrollar un cáncer que expresa FR $\alpha$ n en comparación el riesgo normal en un individuo sano, o una disminución en el nivel de FR $\alpha$  en la muestra derivada de la materia en comparación con el nivel de FR $\alpha$  en la muestra de control es una indicación de que el sujeto tiene un nivel inferior de riesgo de desarrollar un cáncer que expresa FR $\alpha$ , en comparación con un riesgo normal en un individuo sano.

5

10

15

20

25

30

35

40

45

50

55

60

65

**[0217]** Cualquier aumento o disminución clínicamente relevante o estadísticamente significativa, usando cualquier método de análisis conocido en la técnica, puede utilizarse en la evaluación de pronóstico, el riesgo y otros métodos de la invención. En una realización, un aumento en el nivel de FRα se refiere a un nivel que excede de un valor de corte determinado usando un análisis ROC como se ejemplifica en el Ejemplo 6. En otra realización, una disminución en el nivel de FRα se refiere a un nivel en una muestra de ensayo que no exceda de un valor de corte determinado utilizando un análisis de ROC.

**[0218]** En otras realizaciones, el aumento o disminución debe ser mayor que los límites de detección del método para determinar el nivel de FRα. En realizaciones adicionales, el aumento o disminución ser al menos mayor que el error estándar de un método de evaluación, y preferiblemente una diferencia de al menos aproximadamente 2, aproximadamente 3, aproximadamente 4, aproximadamente 5, aproximadamente 6, aproximadamente 7, aproximadamente 8, aproximadamente 9, aproximadamente 10, aproximadamente 15, aproximadamente 20, aproximadamente 25, aproximadamente 100, aproximadamente 500, aproximadamente 1000 veces o mayor que el error estándar del método de evaluación. En algunas realizaciones, el aumento o disminución se evalúa utilizando estadísticas paramétricas o no paramétricas descriptivas, comparaciones, análisis de regresión, y similares.

102191 En otras realizaciones, el aumento o disminución es un nivel en la muestra derivada del sujeto que es de aproximadamente 5%, aproximadamente 10%, aproximadamente el 15%, aproximadamente el 20%, aproximadamente el 25%, aproximadamente el 30%, aproximadamente el 40%, aproximadamentel 50%, aproximadamente el 60%, aproximadamente el 70%, aproximadamente el 80%, aproximadamente el 90%, aproximadamente el 100%, aproximadamente el 150%, aproximadamente el 200%, aproximadamente el 300%, aproximadamente el 400%, aproximadamente el 500%, aproximadamente el 600%, aproximadamente 700%, aproximadamente el 800%, aproximadamente 900% o aproximadamente 1,000% más o menos que el nivel de FRα en la muestra de control. En realizaciones alternativas, el aumento o disminución es un nivel en la muestra derivada del sujeto que es al menos aproximadamente 1,5, y más preferiblemente de aproximadamente dos, aproximadamente tres, aproximadamente cuatro, cinco o más desviaciones estándar por encima o por debajo del nivel medio de FRα en la muestra de control. Como se usa aquí, la frase "progresión de un cáncer que expresa FRα en un sujeto que padece un cáncer que expresa FRα" puede referirse a la progresión de un cáncer que expresa FRα desde una menos un estado de cáncer menos severo a un estado más grave. Esto podría incluir un aumento en el número o la gravedad de los tumores, el grado de metástasis, la velocidad con la que el cáncer está creciendo y la difusión, y similares. En ciertas realizaciones, la progresión es una progresión desde una fasa menos severa a una etapa más severa, en la que la etapa se evalúa de acuerdo con un esquema de clasificación conocido en la técnica. En una realización, en el que el cáncer que expresa FRα es el cáncer de ovario, la progresión se refiere a una progresión de la fasa I a la fasa II, de la etapa II a la fasa III, etc. En otra realización, en la que el cáncer que expresa FRa no cáncer de pulmón de células no pequeñas (NSCLC), la progresión se refiere a una progresión de la Etapa 0 a la Etapa IA, Etapa IA a la Etapa IB, Etapa IB a la Etapa IIA, Etapa IIA a la Etapa IIB, Etapa IIB de la Etapa IIC, etc. En otra forma de realización, en la que el cáncer que expresa FRα es cáncer de pulmón no microcítico (CPNM), la progresión se refiere a una progresión desde un estado menos severo a uno más severo, determinado con arreglo al sistema de clasificación TNM. Véase Spira; Greene; Sobin.

[0220] Alternativamente, la frase "progresión de un cáncer que expresa FR $\alpha$  en un sujeto que padece un cáncer que expresa FR $\alpha$ " puede referirse a una regresión de un cáncer que expresa FR $\alpha$  a partir de un estado más grave a uno menos grave, tal como una disminución en el número o la gravedad de los tumores, el grado de metástasis, la velocidad con la que el cáncer está creciendo y la difusión, y similares. En ciertas realizaciones, la progresión es una progresión desde una etapa más severa a una etapa menos grave, en la que la etapa se evalúa de acuerdo con un esquema de clasificación conocido en la técnica. En una realización, en el que el cáncer que expresa FR $\alpha$  es cáncer del ovario, la progresión se refiere a una regresión de la Etapa IV a la fasa III, de la fasa III a la Etapa II, etc. En otra realización, en el que el cáncer que expresa FR $\alpha$  es cáncer de pulmón de células no pequeñas (NSCLC), la progresión se refiere a una progresión de la etapa IV a la etapa IIIB, Etapa IIIB a la Etapa IIIA, Etapa IIIB a la Etapa (NSCLC), la progresión de células no pequeñas (NSCLC), la progresión se refiere a una progresión de una etapa más severa a una menos severa tal como se determina bajo el sistema de clasificación TNM. Véase Spira; Greene; Sobin.

[0221] En realizaciones adicionales, el nivel de FRa puede usarse para calcular la probabilidad de que un sujeto está afectado con un cáncer que expresan FRα, la progresión de un cáncer que expresa FRα en un sujeto, el nivel de riesgo de desarrollar un cáncer que expresa FRα, el riesgo de recurrencia del cáncer en un sujeto que está siendo tratado por un cáncer que expresa FRα, la supervivencia de un sujeto que está siendo tratado por un cáncer que expresa FRa, la eficacia de al régimen de ratamiento para tratar una cáncer que expresa FRα, y similares, utilizando los métodos de la invención, que pueden incluir los métodos de análisis de regresión conocidos por un experto en la técnica. Por ejemplo, los modelos de regresión adecuados incluyen, pero no se limiten a CART (por ejemplo, Hill, T v Lewicki, P. (2006) "STATISTICS, Methods and Aplications" StatSoft, Tulsa, OK), Cox (por ejemplo, www.evidence-based-medicine.co.uk), exponencial, normal У log normal (por www.obgyn.cam.ac.uk/mrg/statsbook/stsurvan.html), logística ejemplo, (por www.en.wikipedia.org/wiki/Logistic\_regression), paramétrico, no paramétrico, semi-paramétrico (por www.soc-serv.mcmaster.ca/jfox/Books/Companion), lineal (por ejemplo, www.en.wikipedia.org/wiki/Linear\_regression), aditivo ejemplo, (por www.en.wikipedia.org/wiki/Generalized additive model).

5

10

15

20

25

45

50

55

60

65

**[0222]** En una realización, un análisis de regresión incluye el nivel de FRα. En realizaciones adicionales, un análisis de regresión puede incluir covariables clínicos adicionales y/o moleculares. Tales covariables clínicos incluyen, pero no se limitan a, la edad del sujeto, la etapa del tumor, el grado del tumor, el tamaño del tumor, el régimen de tratamiento, por ejemplo, quimioterapia y/o terapia de radiación, el resultado clínico (por ejemplo, la recaída, supervivencia específica de la enfermedad, el fracaso de la terapia), y/o el resultado clínico como una función del tiempo después del diagnóstico, tiempo después del inicio de la terapia, y/o el tiempo después de la finalización del tratamiento. Covariables moleculares pueden incluir, pero no están limitadas a valores de los marcadores moleculares adicionales. Por ejemplo, en realizaciones en las que el cáncer que expresa FRα es cáncer de ovario, tales marcadores pueden incluir, por ejemplo, niveles de CA125 en suero, niveles de DF3 de suero, y/o niveles de LPA plasma.

[0223] En otros aspectos, la invención proporciona métodos para monitorizar la eficacia de un regimen de terapia o tratamiento. Por ejemplo, la presente invención proporciona métodos para monitorizar la eficacia del tratamiento MORAb-003 de cáncer de ovario o cáncer de pulmón en un sujeto que padece de cáncer de ovario o cáncer de pulmón. Específicamente, los métodos implican determinar el nivel de receptor de folato alfa (Frα) que no está unido a una célula, en una muestra derivada de dicho sujeto, en el que dicho sujeto ha sido previamente administrada MORAb-003; y comparar el nivel de receptor de folato alfa (Frα) que no está unido a una célula con el nivel de FRα en un control de la muestra, en donde un incremento o ningún cambio en el nivel de FRα en la muestra derivada de dicho sujeto como en comparación con el nivel de FRα en la muestra de control es una indicación de que el tratamiento MORAb-003 no es eficaz; y en el que una disminución en la nivel de FRα en la muestra derivada de dicho sujeto en comparación con el nivel de FRα en la muestra de control es una indicación de que el tratamiento MORAb-003 es eficaz.

[0224] Por ejemplo, la muestra de control puede ser derivada de un sujeto no sometido al régimen de tratamiento y una muestra de ensayo puede derivarse de un sujeto sometido a al menos una parte del régimen de tratamiento. Alternativamente, la muestra de ensayo y la muestra de control se pueden derivar de la misma materia. Por ejemplo, la muestra de ensayo puede ser una muestra derivada de un sujeto después de la administración de un agente terapéutico, tal como MORAb-003. La muestra de control puede ser una muestra derivada de un sujeto antes de la administración de terapéutica o en una etapa anterior del régimen terapéutico. De acuerdo con ello, una disminución en el nivel de expresión de FRα en la muestra de ensayo, respecto a la muestra de control, es una indicación de que la terapia ha disminuido la progresión del cáncer que expresa FRα, por ejemplo, cáncer de ovario. Para cánceres que expresan FRα en los que un nivel más alto de FRα está asociado con un peor pronóstico, tales como *por ejemplo, cáncer* de ovario o carcinoma de células escamosas de cabeza y cuello, una disminución en el nivel de expresión de FRα en la muestra de ensayo, relativa a la muestra de control, es una indicación de que la terapia es eficaz para retrasar la progresión del cáncer que expresa FRα, o en la causa de una regresión del cáncer, en el sujeto aquejado del cáncer que expresa FRα. En una realización preferida, el cáncer que expresa FRα es cáncer de ovario.

**[0225]** En diversas realizaciones de este aspecto de la invención, la muestra puede ser orina, suero, plasma o ascitis. En realizaciones particulares, la muestra es orina o suero. Además, la FR $\alpha$  puede determinarse por contacto de la muestra con un anticuerpo que se une FR $\alpha$ , opcionalmente, usando anticuerpos como se describe en el presente documento y los métodos de ensayo como se describe en el presente documento.

[0226] En diversas realizaciones, el anticuerpo tratamiento MORAb-003 es (a) un anticuerpo que comprende la cadena pesada de secuencia de aminoácidos como se expone en SEQ ID NO: 7 y la secuencia de aminoácidos de cadena ligera como se establece en la SEQ ID NO:8; (b) un anticuerpo que se une al mismo epítopo que el anticuerpo MORAb-003; o (c) un anticuerpo que comprende la

SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3.

- 5 [0227] En una realización particular, el cáncer que expresa FRα es cáncer de ovario. En otras realizaciones, el cáncer que expresa FRα es cáncer de pulmón. En realizaciones más específicas, el cáncer de pulmón es el cáncer de pulmón de células no pequeñas (NSCLC). En una de tales realizaciones, el NSCLC se selecciona del grupo que consiste de adenocarcinoma, carcinoma de pulmón de células escamosas, gran carcinoma de pulmón de células, pleomórfico NSCLC, tumor carcinoide, carcinoma de glándula salival, y carcinoma no clasificado. En una realización preferida, el NSCLC es adenocarcinoma. En realizaciones alternativas, el cáncer de pulmón es el carcinoma de pulmón de células pequeñas (SCLC). En otra realización, el cáncer de pulmón es el carcinoma bronquioalveolar. En aún otra realización, el cáncer de pulmón es un tumor carcinoide de pulmón.
- [0228] En otro aspecto, la invención proporciona métodos de estratificar un sujeto con un cáncer que expresa FRα en grupos de terapia de cáncer basado en el nivel determinado de FRα en una muestra. En una realización preferida, el método implica la estratificación de un sujeto con un cáncer que expresa FRα en uno de al menos cuatro grupos de terapia de cancer. En otras realizaciones, el método implica la estratificación de un sujeto con un cáncer que expresa FRα en uno de al menos aproximadamente dos, sobre las tres, sobre cuatro, aproximadamente cinco, aproximadamente seis, sobre siete, aproximadamente ocho, aproximadamente nueve, o diez grupos de terapia de cáncer.
  - [0229] Según la presente invención, los niveles de FRα pueden estar asociados con la gravedad, es decir, la etapa, de la cáncer que expresa FRα. Por ejemplo, el cáncer de ovario se estratificó en diferentes etapas en función de la gravedad del cáncer, como se expone en el presente documento. Por consiguiente, la presente invención proporciona métodos para estratificar el cáncer de ovario en etapa I, por ejemplo, Etapa IA, Etapa 1B o Etapa CI; Etapa II, por ejemplo, la Etapa IIA, Etapa IIB o Etapa IIIC; o cáncer de ovario en etapa IV.

25

40

45

50

55

60

- [0230] SCLS o NSCLC pueden ser estratificados en diferentes etapas en función de la gravedad del cáncer, como se expone en el presente documento. Por consiguiente, la presente invención proporciona métodos de estratificación del cáncer de pulmón, por ejemplo, SCLS o NSCLC, en la etapa oculta (escondida); etapa 0; La etapa I, por ejemplo, estadios IA y IB; Etapa II, por ejemplo, estadios IIA y IIB; Etapa III, por ejemplo, etapas IIIA y IIIB; o cáncer de pulmón en etapa IV.
  - [0231] En aún otro aspecto, la presente invención se basa, al menos en parte, en el descubrimiento de que FR $\alpha$  puede servir como un biomarcador predictivo para el tratamiento de cánceres que expresan FR $\alpha$ . Específicamente, los métodos de la presente invención se proporcionan para evaluar si un sujeto responderá al tratamiento, por ejemplo, con MORAb-003, y si y cuándo se inicia el tratamiento, por ejemplo, con MORAb-003, mediante la evaluación de los niveles de FR $\alpha$  en un sujeto.
  - [0232] En un aspecto, la presente invención proporciona un método para predecir si un sujeto que padece de un cáncer que expresa FR $\alpha$ , por ejemplo, cáncer de ovario o de pulmón, responderá al tratamiento con MORAb-003, mediante la determinación del nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula en una muestra derivada de dicho sujeto; y comparar el nivel de receptor de folato alfa (Fr $\alpha$ ) que no está unido a una célula en la muestra derivada de dicho sujeto con el nivel de FR $\alpha$  en una muestra de control, donde una diferencia entre el nivel de FR $\alpha$  en la muestra deriva de dicho sujeto y el nivel de FR $\alpha$  en la muestra de control es una indicación de que el sujeto responde al tratamiento con MORAb-003.
  - [0233] En ciertas realizaciones, el grado de diferencia entre los niveles de FRα no unidos a una célula de cáncer en la muestra de ensayo en comparación con la muestra de control es indicativo de que el sujeto responderá al tratamiento con MORAb-003. Por ejemplo, una diferencia de al menos aproximadamente 2, aproximadamente 3, aproximadamente 4, aproximadamente 5, aproximadamente 6, aproximadamente 7, aproximadamente 8, aproximadamente 9, aproximadamente 10, aproximadamente 15, aproximadamente 20, aproximadamente 25, aproximadamente aproximadamente 500, aproximadamente 1000 veces o mayor que el error estándar del método de evaluación es indicativo de que el sujeto responderá al tratamiento con MORAb-003. Alternativamente o en combinación, una diferencia de al menos aproximadamente 5%, aproximadamente 10%, aproximadamente el 15%, aproximadamente el 20%, aproximadamente el 25%, aproximadamente el aproximadamente el 40%, aproximadamente el 50%, aproximadamente el 60%, aproximadamente el 70 %, aproximadamente el 80%, aproximadamente el 90%, aproximadamente el 10 0%, aproximadamente el 150%, aproximadamente el 200%, aproximadamente el 300%, aproximadamente el 400%, aproximadamente el 500%, aproximadamente el 600%, aproximadamente el 700%, aproximadamente el 800%, aproximadamente 900% o aproximadamente 10 00% es indicativo de que el sujeto responderá al tratamiento con MORAb-003. Alternativamente o en combinación, una diferencia de al menos aproximadamente 1,5, y más preferiblemente de aproximadamente dos, sobre

las tres, sobre cuatro, cinco o más desviaciones estándar es indicativo de que el sujeto responderá al tratamiento con MORAb-003.

[0234] En diversas realizaciones, el anticuerpo de tratamiento MORAb-003 es (a) un anticuerpo que se une al mismo epítopo que el anticuerpo MORAb-003; o (b) un anticuerpo que comprende la SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3.

[0235] En diversas realizaciones, la muestra es orina, plasma, suero o ascitis. En realizaciones particulares, la muestra es orina o suero. En realizaciones adicionales, el cáncer que expresa FRα se selecciona del grupo que consiste en cáncer de pulmón, mesotelioma, cáncer de ovario, cáncer renal, cáncer cerebral, cáncer cervical, cáncer de la nasofaringe, carcinoma de células escamosas de la cabeza y cuello, cáncer endometrial, cáncer de mama, cáncer de vejiga, cáncer de páncreas, cáncer de hueso, cáncer de hipófisis, cáncer colorrectal y cáncer de tiroides medular. En una realización particular, el cáncer que expresa FRα es cáncer de ovario. En otra realización, el cáncer que expresa FRα es cáncer de pulmón de células no pequeñas, tales como adenocarcinoma.

### B. Ensayos basados en anticuerpos anti-FRα para detectar cánceres que expresan FRα

20

25

30

35

40

45

50

55

60

65

[0236] Hay una variedad de formatos de ensayo conocidos por los de experiencia ordinaria en la una técnica para el uso de un anticuerpo para detectar un polipéptido en una muestra, incluyendo pero no limitado a análisis de inmunoabsorción enzimática (ELISA), radioinmunoensayo (RIA), inmunofluorimetría, inmunoprecipitación, ensayo de fasa de solución, diálisis de equilibrio, inmunodifusión y otras técnicas. Véase, *por ejemplo*, Harlow y Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; Weir, DM, Handbook of Experimental Immunology, 1986, Blackwell Scientific, Boston. Por ejemplo, el ensayo puede realizarse en un formato de transferencia de Western, en el que una preparación de proteína de la muestra biológica se somete a electroforesis, se transfirió a una membrana adecuada y se dejó reaccionar con el anticuerpo. La presencia del anticuerpo en la membrana puede entonces ser detectado utilizando un reactivo de detección adecuado, como es bien conocido en la técnica y se describe a continuación.

[0237] En otra realización, el ensayo implica el uso de un anticuerpo inmovilizado sobre un soporte sólido para unirse a la FRα diana polipéptido y retirarlo del resto de la muestra. La FRα unido a polipéptido puede entonces ser detectada usando un segundo anticuerpo reactivo con un determinante antigénico polipeptídico distinto FRα, por ejemplo, un reactivo que contiene un resto informador detectable. Como ejemplo no limitativo, de acuerdo con esta realización, el anticuerpo inmovilizado y el segundo anticuerpo que reconoce determinantes antigénicos distintos pueden ser cualquiera de dos de los anticuerpos monoclonales descritos en el presente documento seleccionados de MORAb-003, MOV18, 548908, 6D398 o variantes de los mismos como se describe en el presente documento. Alternativamente, un ensayo competitivo puede ser utilizado, en el que FRα está marcado con un resto indicador detectable y se deja unir al anticuerpo anti-FR inmovilizado α anticuerpo después de la incubación del anticuerpo inmovilizado con la muestra. La medida en que los componentes de la muestra inhiben la unión del polipéptido marcado para el anticuerpo es indicativo de la reactividad de la muestra con el anticuerpo inmovilizado y, como resultado, indicativo del nivel de FRα en la muestra.

**[0238]** El soporte sólido puede ser cualquier material conocido por los de experiencia ordinaria en la técnica al que el anticuerpo puede estar unido, tal como un pocillo de ensayo en una placa de microtitulación, un filtro de nitrocelulosa u otra membrana adecuada. Alternativamente, el soporte puede ser una perla o disco, tal como vidrio, fibra de vidrio, látex o un plástico tal como poliestireno o cloruro de polivinilo. El anticuerpo puede ser inmovilizado sobre el soporte sólido usando una variedad de técnicas conocidas por los expertos en la técnica, que se describen ampliamente en la bibliografía de patentes y científica.

**[0239]** En ciertas realizaciones preferidas, el ensayo para la detección de FRα en una muestra es un ensayo de sándwich de dos anticuerpos. Este ensayo puede realizarse poniendo en contacto primero un anticuerpo específico FRα (*p.ej.*, MORAb-003, MOV18, 548908, 6D398 o variantes del mismo como se describe en el presente documento) que ha sido inmovilizado sobre un soporte sólido, comúnmente el pocillo de una de placa de microtitulación, con la muestra biológica, de manera que una molécula soluble de origen natural en la muestra y que tiene un determinante antigénico que es reactivo se permite que el anticuerpo se una al anticuerpo inmovilizado (*por ejemplo*, un tiempo de incubación de 30 minutos a temperatura ambiente es generalmente suficiente) para formar un complejo antígeno-anticuerpo o un complejo inmune. Constituyentes no unidos de la muestra se retiran de los complejos inmunes inmovilizados. A continuación, un segundo anticuerpo específico para FRα se añade, en el que el sitio de combinación de antígeno del segundo anticuerpo no inhibe competitivamente la unión del sitio de combinación de antígeno del primer anticuerpo inmovilizado para FRα (*por ejemplo, MORAb*-003, MOV18, 548908, 6D398 o variantes de los mismos como se describe aquí, que no es igual que el

anticuerpo monoclonal inmovilizado sobre el soporte sólido). El segundo anticuerpo puede estar marcado de forma detectable como se proporciona aquí, de manera que se puede detectar directamente. Alternativamente, el segundo anticuerpo puede ser detectado indirectamente a través del uso de un anti-anticuerpo secundario (o "segunda etapa") marcado de manera detectable, o usando un reactivo de detección específica como se proporciona aquí. El método objeto de la invención no se limita a cualquier procedimiento particular de detección, como los que tienen familiaridad con inmunoensayos apreciarán que hay numerosos reactivos y configuraciones para detectar inmunológicamente un antígeno particular ( $por ejemplo, FR\alpha$ ) en un inmunoensayo de sándwich de dos anticuerpos.

10

15

20

25

30

[0240] En ciertas realizaciones preferidas de la invención usando el ensayo de tipo sándwich de dos anticuerpos descrito anteriormente, el primero, el anticuerpo inmovilizado específico para FRα es un anticuerpo policlonal y el segundo anticuerpo específico para FRa es un anticuerpo policlonal. En ciertas otras formas de realización de la invención, la primera, anticuerpo inmovilizado específico para FR $\alpha$  es un anticuerpo monoclonal y el segundo anticuerpo específico para FR $\alpha$  es un anticuerpo policional. En ciertas otras formas de realización de la invención, la primero, el anticuerpo inmovilizado específico para FRa es un anticuerpo policlonal y el segundo anticuerpo específico para FRa es un anticuerpo monoclonal. En ciertas otras formas de realización de la invención, el primero, el anticuerpo inmovilizado específico para FRα es un anticuerpo monoclonal y el segundo anticuerpo específico para FRα es un anticuerpo monoclonal. Por ejemplo, en las realizaciones cabe señalar que los anticuerpos monoclonales MORAb-003, MOV18, 548908, 6D398 o variantes de los mismo como se describen en el presente documento, como se proporciona aquí, reconocen determinantes antigénicos distintos y no competitivos (por ejemplo, epítopos) en polipéptidos de FRa, de manera que cualquier combinación de pares de estos anticuerpos monoclonales se pueden emplear. En otras realizaciones preferidas de la invención, la primera, el anticuerpo inmovilizado específico para FRα y/o el segundo anticuerpo específico para FRα puede ser cualquiera del tipo de anticuerpos conocidos en la técnica y referenciados en el presente documento, por ejemplo, a modo de ilustración y no de limitación, fragmentos Fab, F(ab')2 fragmentos, proteínas de fusión de la región V de inmunoglobulina o anticuerpos de cadena sencilla. Aquellos familiarizados con la técnica apreciarán que la presente invención abarca el uso de otras formas de anticuerpos, fragmentos, derivados y similares, en los métodos descritos y reivindicados en el presente documento.

35

40

45

[0241] En ciertas realizaciones particularmente preferidas, el segundo anticuerpo puede contener un resto indicador o marcador detectable tal como una enzima, tinte, radionúclido, grupo luminiscente, grupo fluorescente o biotina, o similares. La cantidad del segundo anticuerpo que permanece unido al soporte sólido entonces se determina utilizando un método apropiado para el resto indicador detectable específico o etiqueta. Para grupos radioactivos, el recuento de centelleo o métodos autorradiográficos son generalmente apropiados. Los conjugados anticuerpo-enzima se pueden preparar usando una variedad de técnicas de acoplamiento (para una revisión véase, por ejemplo, Scouten, WH, Methods in Enzymology 135: 30-65, 1987). Los métodos espectroscópicos pueden utilizarse para detectar colorantes (incluyendo, por ejemplo, productos colorimétricos de reacciones enzimáticas), grupos luminiscentes y grupos fluorescentes. La biotina puede detectarse utilizando avidina o estreptavidina, acoplada a un grupo indicador diferente (comúnmente un grupo radiactivo o fluorescente o una enzima). Grupos indicadores enzimáticos pueden detectarse generalmente mediante la adición de sustrato (generalmente durante un periodo específico de tiempo), seguido por medios espectroscópicos, análisis espectrofotométrico u otro de los productos de reacción. Normas y adiciones estándar se pueden utilizar para determinar el nivel de polipéptido de mesotelina en una muestra, utilizando técnicas bien conocidas.

50

55

60

65

 ${f [0242]}$  Un método de cribado para la presencia de un cáncer que expresa FR $\alpha$  de acuerdo con la presente invención puede mejorarse adicionalmente por la detección de marcador asociado más de un tumor en una muestra biológica de un sujeto. Por consiguiente, en ciertas realizaciones, la presente invención proporciona un método de cribado que, además de la detección de la reactividad de FR $\alpha$  no unido a una célula, también incluye la detección de al menos un marcador soluble adicional de un cuadro clínico maligno utilizando métodos establecidos como se conoce en la técnica y proporcionado en el presente documento. Como se señaló anteriormente, hay actualmente un número de antígenos asociados a tumores solubles que son detectables en muestras de fluidos biológicos obtenidos fácilmente.

## C. Kits de la invención

[0243] La invención también proporciona kits para evaluar si un sujeto está afectado con un cáncer que expresa  $FR\alpha$  expresando, para la evaluación de la progresión de un cáncer que expresa  $FR\alpha$ , para evaluar el nivel de riesgo de que un sujeto desarrolle un cáncer que expresa  $FR\alpha$ , o para monitorizar la eficacia de un régimen de terapia o tratamiento para un cáncer que expresa  $FR\alpha$ . Estos kits incluyen medios para determinar el nivel de expresión de  $FR\alpha$  e instrucciones para el uso del kit para evaluar la progresión de un cáncer que expresa  $FR\alpha$ , para evaluar el nivel de riesgo de que un sujeto desarrolle

un cáncer que expresa  $FR\alpha$ , o para supervisar la eficacia de un régimen de terapia o tratamiento para un cáncer que expresa  $FR\alpha$ .

**[0244]** Los kits de la invención pueden comprender opcionalmente componentes adicionales útiles para realizar los métodos de la invención. A modo de ejemplo, los kits pueden comprender medios para obtener una muestra de un sujeto, una muestra de control, *por ejemplo*, una muestra de un sujeto que tiene lentamente cáncer de progresión lenta y/o un sujeto que no tiene cáncer, uno o más compartimentos de la muestra, y material de instrucción que describe el rendimiento de un método de la invención y tejidos específicos de los controles/estándares.

[0245] Los medios para determinar el nivel de FR $\alpha$  incluyen métodos conocidos en la técnica para la evaluación de los niveles de proteína, como se discutió anteriormente, y formas de realización preferidas específicas, por ejemplo, utilizando el anticuerpo MORAb-003, como se discute en el presente documento. Así, por ejemplo, en una realización, el nivel de FR $\alpha$  se evalúa poniendo en contacto una muestra derivada de un sujeto (tal como la orina o suero) con un receptor de folato alfa (Fr $\alpha$ ) agente de unión. En una realización preferida, el agente de unión es un anticuerpo. Muchos de los tipos de anticuerpos que se unen FR $\alpha$  se discuten más arriba en los métodos de la invención y también se pueden utilizar en los kits de la invención.

20 [0246] Los medios para determinar el nivel de FRα pueden incluir además, por ejemplo, tampones u otros reactivos para su uso en un ensayo para determinar el nivel de FRα. Las instrucciones pueden ser, por ejemplo, instrucciones impresas para realizar el ensayo y/o instrucciones para evaluar el nivel de expresión de FRα.

25 [0247] Los kits de la invención pueden incluir también medios para aislar una muestra de un sujeto. Estos medios pueden comprender uno o más elementos del equipo o de los reactivos que se pueden utilizar para obtener un fluido o tejido de un sujeto. Los medios para la obtención de una muestra de un sujeto también pueden comprender medios para aislar componentes de la sangre, tales como suero, a partir de una muestra de sangre. Preferiblemente, el kit está diseñado para su uso con un sujeto humano.

### III. Los ensayos de cribado

5

10

15

35

40

45

50

55

60

65

[0248] En realizaciones adicionales, la invención también proporciona métodos (también denominados aquí como "ensayos de selección") para identificar moduladores, es decir, compuestos candidatos o de ensayo o agentes (por ejemplo, proteínas, péptidos, peptidomiméticos, peptoides, moléculas pequeñas u otros fármacos), que modulan el crecimiento, la progresión y/o agresividad del cáncer, por ejemplo, un cáncer que expresa FRa, o una célula de cáncer, por ejemplo, una célula de cáncer de ovario, por monitoreo y comparación de los niveles de FRα en una muestra. Tales ensayos comprenden típicamente un compuesto de ensayo, o una combinación de compuestos de prueba, cuya actividad contra el cáncer o una célula de cáncer se evalúa. Los compuestos identificados mediante ensayos tales como los descritos en el presente documento pueden ser útiles, por ejemplo, para modular, por ejemplo, inhibir, mejorar, tratar, o prevenir la agresividad de un cáncer que expresa FRa o una célula de cáncer, por ejemplo, una célula de cancer del ovario. Al monitorear el nivel de FRα en una muestra, se puede determinar si el cáncer que expresa FRα está progresando o regresando y si el compuesto de prueba tiene el efecto deseado. Por ejemplo, en realizaciones en las que el cáncer que expresa FRα es un cáncer para el que mayores niveles de FRα se asocian con un peor pronóstico, una disminución en el nivel de FRa después de la administración del compuesto de prueba sería indicativa de la eficacia del compuesto de ensayo. Por el contrario, un aumento en el nivel de FRa después de la administración del compuesto de prueba indicaría que el compuesto de ensayo no es eficaz en el tratamiento de cáncer de ovario. Por el contrario, en formas de realización en las que el cáncer que expresa FRα es un cáncer para el que mayores niveles de FRα están asociados con un mejor pronóstico, un aumento en el nivel de FRα después de la administración del compuesto de prueba sería indicativo de la eficacia del compuesto de ensayo. Por el contrario, una disminución en el nivel de FRa después de la administración del compuesto de prueba indicaría que el compuesto de ensayo no es eficaz en el tratamiento de cáncer de ovario.

[0249] Los compuestos de ensayo utilizados en los ensayos de cribado de la presente invención pueden obtenerse de cualquier fuente disponible, incluyendo bibliotecas sistemáticas de los compuestos naturales y/o sintéticos. Los compuestos de ensayo también se pueden obtener por cualquiera de los numerosos enfoques en los métodos de bibliotecas combinatorias conocidas en la técnica, incluyendo bibliotecas biológicas; bibliotecas de peptoides (bibliotecas de moléculas que tienen las funcionalidades de péptidos, pero con un nuevo esqueleto no peptídico que son resistentes a la degradación enzimática pero que sin embargo siguen siendo bioactivas; véase, por ejemplo, Zuckermann et al., 1994, J. Med Chem.. 37: 2678-85); bibliotecas en fase de solución o en fasa sólida paralelas espacialmente direccionables; métodos de bibliotecas sintéticas que requieren desconvolución; el método de biblioteca 'una perla-un compuesto'; y métodos de bibliotecas sintéticas

usando selección por cromatografía de afinidad. La biblioteca biológica y enfoques de la biblioteca de peptoides se limitan a bibliotecas de péptidos, mientras que los otros cuatro enfoques son aplicables a péptidos, oligómeros no peptídicos o bibliotecas de moléculas pequeñas de compuestos (Lam, 1997, Anticancer Drug Des. 12: 145).

5

10

15

[0250] Ejemplos de métodos para la síntesis de bibliotecas moleculares pueden encontrarse en la técnica, por ejemplo en: DeWitt et al. (1993) Proc. Natl. Acad. Sci. EE.UU. 90: 6909; Erb et al. (1994) Proc. Natl. Acad. Sci. EE.UU. 91: 11422; Zuckermann et al. (1994). J. Med. Chem. 37: 2678; Cho et al. (1993) Science 261: 13 03; Carrell et al. (1994) Angew. Chem. Int. Ed. Engl. 33: 2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33: 2061; y en Gallop et al. (1994) J. Med. Chem. 37: 1233.

[0251] Las bibliotecas de compuestos pueden presentarse en solución (por ejemplo, Houghten, 1992, Biotechniques 13: 412-421), o en perlas (Lam, 1991, Nature 354: 82-84), los chips (Fodor, 1993, Nature 364: 555-556), bacterias y/o esporas, (Ladner, USP 5.223.409), plásmidos (Cull et al., 1992, Proc Natl Acad Sci EE.UU. 89: 1865-1869) o en fago (Scott y Smith, 1990, Science 249: 386-390; Devlin, 1990, Science 249: 40 4-406; Cwirla et al., 1990, Proc Natl Acad Sci. 87: 6.378-6382; Felici, 1991, J. Mol Biol 222: 301-310; Ladner, supra).

[0252] La presente invención se ilustra adicionalmente mediante los siguientes ejemplos.

20

### **EJEMPLOS**

EJEMPLO 1. determinación de niveles fra en muestras de orina de sujetos humanos con y sin cáncer ovariano medido por inmunoensayo de electroquimioluminiscencia (eclia).

25

30

35

40

45

55

60

### Materiales y métodos

[0253] Las muestras de orina se obtuvieron de sujetos humanos, incluidos los sujetos que sufren de cáncer de ovario y los sujetos de control normales no aquejados de cáncer de ovario. Los niveles de FRα en muestras de orina se determinaron utilizando un inmunoensayo de electroquemiluminescencia (ECLIA) de acuerdo con el siguiente procedimiento (véase Namba et al (1999) Analytical Science 15: 1087-1093):

i. Recubrimiento de anticuerpos a las microperlas

[0254] El anticuerpo receptor alfa anti-folato monoclonal se revistió sobre la superficie de microesferas (Dynabeads M-450 Epoxy, Dynal). Treinta y seis miligramos de microperlas se mezclan con 1,2 mL de anticuerpo MOV18 (0,36 mg/ml, Enzo Life Science) en 0,15 mol/L de solución salina de tampón fosfato pH 7,8 (PBS), seguido de un mezclado suave durante 16 horas a temperatura ambiente. A continuación, las microperlas se lavaron 5 veces con tampón HEPES 50 mM que contenía suero normal de conejo 0,1% (NRS), 150 mmol/L de NaCl, 0,01% Tween 20 pH 7,5 (tampón de lavado). A continuación, las microesferas revestidas se suspendieron en 1,2 mL de tampón HEPES 50 mM que contiene 20% NRS, 150 mmol/L de NaCl y 0,01% de Tween 20 pH 7,5 (tampón de reacción) para bloquear la superficie no unida, seguido de un mezclado suave durante 3,5 horas a temperatura ambiente. Por último, las microperlas se lavaron 5 veces con tampón de lavado y se resuspendieron con 1,2 mL de tampón HEPES 50 mM que contiene 10% NRS, 150 mmol/L de NaCl,10 mmol/l de EDTA-2Na y 0,01% de Tween 20 pH 7,5 (reacción de buffer) de modo que la concentración de microesferas era de 30 mg/mL. Las microesferas se almacenaron a 4°C hasta su uso.

50 ii. Etiquetado de anticuerpo con rutenio-quelato-NHS (Ru)

[0255] Un mililitro de MORAb-003 (1 mg/ml) en PBS se mezcló con 14 µl de Ru (10 mg/ml), la relación molar inicial de anticuerpo a Ru era 1:20, seguido por agitación durante 30 minutos a temperatura ambiente en la oscuridad. La reacción se terminó mediante la adición de 25 µl de solución de glicina 2 mol/l, seguido de incubación durante 20 minutos. El anticuerpo marcado se purificó por filtración en gel utilizando Sephadex G-25-(GE Healthcare) eluido con PBS. Se recogió la fracción amarilla que se eluyó primero y se determinó la concentración de anticuerpo y Ru por medio del kit de ensayo de proteínas Pierce BCA (Thermo Scientific) y la absorción a 455 nm, respectivamente. La relación molar final se calculó por la fórmula: relación molar final=[(absorción a 455)/13700]/[Ab(mg/ml/150.000)]. El anticuerpo marcado se almacenó a 4°C hasta su uso.

iii. Inmunoensayo de una etapa

[0256] Las microperlas revestidas de anticuerpo se establecen en la tabla reactivo de la Picolumi 8220 (Sanko, Tokio, Japón) después de ajustar la concentración de las perlas a 1,5 mg/ml (solución de trabajo) en tampón de reacción. El anticuerpo marcado con Ru se estableció en la tabla de reactivo del

Picolumi 8220 después de ajustar la concentración de anticuerpo a 2 μg/ml (solución de trabajo) en tampón de reacción.

[0257] Diez microlitros de orina (diluidos 1:51 en tampón de reacción) o FRα estándar (preparado en tampón de reacción) y 100 μl de tampón de reacción se dispensaron en un tubo de reacción (Sanko, Tokio, Japón) y SET en Picolumi 8220.

[0258] Los pasos siguientes se llevaron a cabo automáticamente por Picolumi 8220. Veinticinco microlitros de perlas (de trabajo de la solución) y 18 0  $\mu$ l de Ru marcado anticuerpo (solución de trabajo) se dispensaron. Después de 26 minutos de incubación a 30 +/- 2°C, las perlas se lavaron y se suspendieron con 300  $\mu$ l de la solución de electrolito (Sanko, Tokio, Japón). Las perlas lavadas se transfirieron posteriormente al electrodo y electroquimioluminiscencia se midió de emisión (ECL).

[0259] Todas las mediciones ECL se llevaron a cabo por duplicado.

## Resultados

10

15

20

**[0260]** La Tabla 1-representa los niveles en orina de  $FR\alpha$  en sujetos individuales con cáncer de ovario y los sujetos de control femeninos no afectados.

Tabla 1: Niveles FRα en la orina de los sujetos con cáncer de ovario y los sujetos de control femininos normales

| Grupo             | Muestra # | FRα (pg/ml) |
|-------------------|-----------|-------------|
| cáncer de ovarios | 1         | 27800       |
|                   | 2         | 40242       |
|                   | 3         | 85580       |
|                   | 4         | 4994        |
|                   | 5         | 2017        |
|                   | 6         | 3781        |
|                   | 7         | 29469       |
|                   | 8         | 47456       |
|                   | 9         | 4479        |
|                   | 10        | 11920       |
|                   | 11        | 18352       |
|                   | 12        | 162017      |
|                   | 13        | 30630       |
|                   | 14        | 14431       |
|                   | 15        | 11801       |
|                   | 16        | 13470       |
|                   | 17        | 11563       |
|                   | 18        | 22185       |

| Grupo          | Muestra# | FRα (pg/ml) |
|----------------|----------|-------------|
|                | 19       | 52106       |
| control normal | 20       | 8491        |
|                | 21       | 4885        |
|                | 22       | 3595        |
|                | 23       | 21301       |
|                | 24       | 22757       |
|                | 25       | 16578       |
|                | 26       | 6081        |
|                | 27       | 4195        |
|                | 28       | 12169       |
|                | 29       | 20639       |

**[0261]** La Figura 2 representa la distribución de niveles FRα en la orina en sujetos con cáncer de ovario y en sujetos de control hembra normales, tal como se expone en la Tabla 1.

[0262] La Tabla 2 resume el número de sujetos (n), media, desviación estandar (SD), valores máximos (Max.) y mínimos (Min.) para los niveles de FRα en el grupo de cáncer de ovario y el grupo de control normal de la mujer.

Tabla 2: Resumen de la medición de orina FRa

| 1 | 0 |
|---|---|
| • | _ |

15

5

|       | FRα (pg/ml)       |                 |  |
|-------|-------------------|-----------------|--|
|       | cáncer de ovarios | femenino normal |  |
| N     | 19                | 10              |  |
| Media | 31279             | 12069           |  |
| SD    | 37895             | 7654            |  |
| Max.  | 162017            | 22757           |  |
| Min.  | 2017              | 3595            |  |

### Discusión

20

**[0263]** Un alto nivel de FR $\alpha$  se detectó en la orina de los sujetos con cáncer de ovario. Por otra parte, los niveles de FR $\alpha$  diferían significativamente entre cáncer de ovario y los grupos de control femininos normales (p=0,03, unilateral).

25 EJEMPLO 2. linealidad de dilución - determinación de niveles frα en muestras de orina que se diluyeron en serie medidos por electroquimioluminiscencia inmunoensayo (eclia)

**[0264]** La linealidad de dilución es una medida de la precisión de un ensayo. Dos muestras de orina se diluyeron en serie en un factor de 10 y 100. Los niveles  $FR\alpha$  de cada muestra se midieron tal como se expone en el Ejemplo 1 y se compararon para evaluar el porcentaje de error. El error porcentual se calcula del siguiente modo:

[[(FRα <u>en la muestra diluida)\*(factor de difusión)] - (</u>FRα <u>en la muestra diluida)]\*100</u> (FRα en la muestra no diluida)

35

30

[0265] Los resultados se exponen en la Tabla 3:

Tabla 3: Linealidad de dilución para la orina

40

| Muestra | Factor de dilución | FRα (pg/ml) | Error (%) |
|---------|--------------------|-------------|-----------|
| 1       | 1                  | 25037       | -         |
|         | 10                 | 2601        | 4         |
|         | 100                | 279         | 11        |
|         |                    |             |           |
| 2       | 1                  | 16649       | -         |
|         | 10                 | 1696        | 2         |
|         | 100                | 173         | 4         |

45

[0266] Los resultados anteriores demuestran la linealidad de dilución en la evaluación de los niveles de FRα en muestras de orina humana y que, dentro de los errores aceptables, la orina puede diluirse hasta un factor de al menos 100 al tiempo que conserva los niveles precisos de FRα. En consecuencia, la dilución de las muestras de orina se puede considerar antes de determinar los niveles de FRα.

## 55 EJEMPLO 3: la centrifugación de las muestras de orina - reproducibilidad

[0267] La reproducibilidad del ensayo ECLIA para una muestra de orina en particular también se examinó. Por ejemplo, como se refleja en la Tabla 4, los ensayos de ECLIA de la misma muestra resultaron en resultados variables.

60

Tabla 4. Reproducibilidad sin centrifugación de la muestra

|         | ECL Counts |          |  |
|---------|------------|----------|--|
| Muestra | prueba 1   | prueba 2 |  |
| 1       | 29380      | 15046    |  |
| 2       | 20912      | 17227    |  |

[0268] Se planteó la hipótesis de que la presencia de material insoluble (precipitados) en muestras de orina era responsable de la variabilidad observada en la medición de los niveles de  $FR\alpha$ . Como resultado, la centrifugación de muestras con el fin de eliminar el sedimento de orina, antes de la medición de niveles  $FR\alpha$ , se consideró como una opción para mejorar la exactitud y reproducibilidad del ensayo.

[0269] La Tabla 5 representa los resultados obtenidos cuando tres muestras se centrifugaron antes de la realización del ensayo ECLIA.

Tabla 5. Reproducibilidad con centrifugación de la muestra

|                |           | FRα concentración (ng/mL) |           |  |
|----------------|-----------|---------------------------|-----------|--|
| Prueba         | Muestra 1 | Muestra 2                 | Muestra 3 |  |
| 1              | 10,4      | 9,2                       | 13,3      |  |
| 2              | 10,5      | 8,9                       | 14,0      |  |
| 3              | 10,3      | 9,2                       | 13,4      |  |
| Media          | 10,4      | 9,1                       | 13,6      |  |
| Dakota del Sur | 0,1       | 0,1                       | 0,3       |  |
| CV(%)          | 1,0       | 1,1                       | 2,2       |  |

25 [0270] Como se ha expuesto anteriormente, los resultados indican que la centrifugación proporciona mediciones más consistentes de concentración de FRα.

[0271] Adicionalmente, dos muestras fueron sometidas a (i) la centrifugación (a 2000 xg durante 2 min) y el sobrenadante eliminado para la medición de FRα (representado como la muestra "A" a continuación en la Tabla 6) y (ii) centrifugación seguida de agitación en vórtex (representado como muestra "B" a continuación en la Tabla 6), antes de la medición de niveles FRα por el ensayo ECLIA expuesto en el Ejemplo 1. los resultados se reflejan en la Tabla 6 a continuación.

Tabla 6: Efecto de la centrifugación en niveles FRα en la orina

| Muestra | Sedimento después de la centrifugación | A/B | FRα (pg/m L) | Diferencia (%) |
|---------|----------------------------------------|-----|--------------|----------------|
| 1       | Sí (++)                                | Α   | 13678        | Ī              |
|         |                                        | В   | 16559        | 21             |
| 2       | Si (+)                                 | Α   | 12271        | Ī              |
|         |                                        | В   | 13206        | 8              |

[0272] La diferencia (%) se determinó como sigue:

$$\frac{[[(Nivel\ de\ FR\alpha\ en\ "B")\ -\ (nivel\ de\ FR\alpha\ en\ "A")]*100}{(nivel\ de\ FR\alpha\ en\ "A")}$$

[0273] Como se muestra en la Tabla 6, los niveles de FR $\alpha$  como se determina por el ensayo ECLIA varían dependiendo de si la orina se clarificó por centrifugación para eliminar precipitados o si la orina se agitó en vórtex para suspender o dispersar los sedimentos. Por consiguiente, en ciertas realizaciones la centrifugación o agitación de las muestras de orina pueden realizarse antes de determinar los niveles de FR $\alpha$ .

EJEMPLO 4. determinación de niveles fr $\alpha$  en muestras de orina centrifugadas de sujetos humanos con y sin cáncer de ovario medidas por electroquimioluminiscencia inmunoensayo (eclia).

[0274] Sobre la base de los resultados del Ejemplo 3, el ensayo para la evaluación de niveles FR $\alpha$  en los sujetos se modificó para introducir un paso de centrifugación. Los niveles FR $\alpha$  se determinaron en las mismas muestras utilizadas en el Ejemplo 1, incluyendo el grupo de sujetos con cáncer de ovario y el grupo de sujetos de control femininos normales.

## Materiales y métodos

30

20

5

10

15

35

40

45

50

**[0275]** La metodología utilizada fue como se describe en el Ejemplo 1, excepto que las muestras de orina se centrifugaron durante 10.000 x g durante 1 minuto y el sobrenadante resultante se diluyó posteriormente por 1:51 en tampón de reacción.

## 5 Resultados

10

**[0276]** La tabla 7 representa los niveles de FRα en muestras de orina centrifugadas y no centrifugadas de sujetos aquejados de cáncer de ovario y los sujetos de control sanos.

Tabla 7: Nivel de orina FRα-1 en el cáncer de ovario y el grupo de control normal

|                      |           |                           | FRα (pg/ml)           |                                        |
|----------------------|-----------|---------------------------|-----------------------|----------------------------------------|
| Grupo                | Muestra # | sin<br>centrifugaci<br>ón | con la centrifugación | sedimento después de la centrifugación |
| cáncer de<br>ovarios | 1         | 27800                     | 23960                 | +                                      |
|                      | 2         | 40242                     | 37852                 | +                                      |
|                      | 3         | 85580                     | 78976                 | +                                      |
|                      | 4         | 4994                      | 3766                  | +                                      |
|                      | 5         | 2017                      | 1512                  | -                                      |
|                      | 6         | 3781                      | 3443                  | -                                      |
|                      | 7         | 29469                     | 25728                 | +                                      |
|                      | 8         | 47456                     | 16556                 | +                                      |
|                      | 9         | 4479                      | 3357                  | -                                      |

|                   |              |                           | FRα (pg/ml)           |                                           |
|-------------------|--------------|---------------------------|-----------------------|-------------------------------------------|
| Grupo             | Muestra<br># | Sin<br>centrifucació<br>n | con la centrifugación | sedimento después de<br>la centrifugación |
|                   | 10           | 11920                     | 5020                  | +                                         |
|                   | 11           | 18352                     | 16695                 | -                                         |
|                   | 12           | 162017                    | 82705                 | +                                         |
|                   | 13           | 30630                     | 4496                  | +                                         |
|                   | 14           | 14431                     | 8786                  | +                                         |
|                   | 15           | 11801                     | 10582                 | -                                         |
|                   | 16           | 13470                     | 5611                  | +                                         |
|                   | 17           | 11563                     | 5463                  | +                                         |
|                   | 18           | 22185                     | 14443                 | +                                         |
|                   | 19           | 52106                     | 38327                 | -                                         |
| control<br>normal | 20           | 8491                      | 6867                  | +                                         |
|                   | 21           | 4885                      | 3754                  | -                                         |
|                   | 22           | 3595                      | 3529                  | -                                         |
|                   | 23           | 21301                     | 15047                 | +                                         |
|                   | 24           | 22757                     | 4850                  | +                                         |
|                   | 25           | 16578                     | 14366                 | +                                         |
|                   | 26           | 6081                      | 5201                  | -                                         |
|                   | 27           | 4195                      | 3135                  | -                                         |
|                   | 28           | 12169                     | 499                   | +                                         |
|                   | 29           | 20639                     | 2439                  | +                                         |

[0277] De acuerdo con los resultados expuestos en la Tabla 7, centrifugación resultó en una disminución en la medición de niveles  $FR\alpha$  en algunas muestras, como se ha demostrado anteriormente en la Tabla 6.

## EJEMPLO 5: detección de frα en sedimento urinario por inmunotransferencia

[0278] Basándose en los resultados mostrados en los Ejemplos 3 y 4, la presencia o ausencia de FRα en sedimento/precipitado de la orina se evaluó mediante Transferencia Western.

## Materiales y métodos

5

15

20

25

30

35

45

55

60

[0279] Las muestras de orina a partir de 2 pacientes con cáncer de ovario para los que concentraciones de FRα se midieron a 18.747 pg/ml y 145.564 pg/ml, respectivamente (véase la Tabla 10 *supra*), se sometieron a los siguientes procedimientos. Las muestras de control consistieron en lisado celular HeLa 10 μg, tejido hepático lisado 20 μg, y lisado de tejido de cáncer de ovario de 20 μg.

- 900 µl de orina se centrifugó durante 2 minutos a 10.000 g
- se eliminó el sobrenadante
  - el sedimento restante se disolvió en 15 µl de tampón de muestra PAGE (que contiene LDS 292 mM) y posteriormente
  - se hirvió a 70°C durante 10 min
  - la muestra completa (aprox. 20 μl) se cargó en el gel de bis-tris NuPAGE (Invitrogen)
  - Después de la electroforesis, las proteínas se transfirieron a una membrana de PVDF
  - 1% de leche descremada/0,05% de Tween 20/PBS se añadió para bloquear
  - la membrana se lavó con 0,05% de Tween 20/PBS
  - 0,5 mL de anticuerpo monoclonal 548 908 (R&D Systems) a 2 μg/ml se añadió y se incubó durante 60 minutos a temperatura ambiente
  - la membrana se lavó con 0,05% de Tween 20/PBS
    - se añadió 10 mL de IgG anti-ratón-HRP (DAKO 2000 p0447, 1) y se dejó incubar durante 60 minutos
    - la membrana se lavó con 0,05% de Tween 20/PBS
    - eustrato Pierce ECL se añadió a la membrana
  - la membrana se retiró de los sustratos y después se obtuvieron imágenes usando LAS-3000 del sistema (FUJIFILM)

### Resultados

[0280] La inmunotransferencia resultante se muestra en la Figura 3. En esta figura, carriles 1-5 corresponden a FR $\alpha$  detectada a partir de las siguientes fuentes:

- (1) orina de pacientes con cáncer de ovario con un nivel de FRα medido de 18.747 pg/ml
- (2) orina de pacientes con cáncer de ovario con un nivel de FRα medido a 145.564 pg/ml
- (3) lisado de células HeLa: 10 µg
- 40 (4) lisado de tejido de hígado: 20 μg
  - (5) lisado de tejido de cáncer de ovario: 20 μg

**[0281]** El carril 6 en la transferencia Western representa marcadores de peso molecular y demuestra que la banda observada en los carriles 1,2, 3 y 5 se ejecuta en el peso molecular esperado para FRα.

**[0282]** Los carriles 3 y 5 son muestras de control positivo y el carril 4 es una muestra de control negativo. La banda débil en el carril 1 y la banda clara en el carril 2 demuestra que  $FR\alpha$  puede detectarse en el sedimento de la orina de pacientes con cáncer de ovario en la Transferencia Western.

50 EJEMPLO 6. determinación de niveles fra en muestras de orina humana normal tratadas por guanidina poe inmunoensayo de electroquimioluminiscencia (eclia).

[0283] Sobre la base de los resultados del Ejemplo 4 en el que centrifugación resultó en niveles disminuidos de FRα, y los resultados del Ejemplo 5, donde se demostró que el sedimento de orina obtenido a partir de la centrifugación para contener inmunorreactiva FRα, se buscaron métodos para solubilizar los sedimentos de orina para obtener mediciones más cuantitativas y precisas de FRα. [0284] En este sentido, se intentó el tratamiento de las muestras de orina hembra normales con

[0284] En este sentido, se intentó el tratamiento de las muestras de orina hembra normales con guanidina antes de la evaluación de niveles  $FR\alpha$ .

[0285] La metodología utilizada era como se describe en el Ejemplo 1, excepto que las muestras de orina se mezclaron en una relación 1:1 ya sea con guanidina 6 M en tampón (PBS) o tampón solo. Posteriormente, las muestras de orina se diluyeron por 1:51 en tampón de reacción.
[0286] Los resultados de este ensayo se muestran en la Tabla 8.

Tabla 8: Nivel de FRα normal en orina con o sin tratamiento de guanidina

| Muestra      |        | Tratamiento de guanidina | FRα (pg/ml) |
|--------------|--------|--------------------------|-------------|
|              | std Ag | Sí                       | 83964       |
|              |        | No                       | 82512       |
| Orina normal | 1      | Sí                       | 9431        |
| ·            |        | No                       | 7796        |
|              | 2      | Sí                       | 5713        |
|              |        | No                       | 4066        |
|              | 3      | Sí                       | 9687        |
|              |        | No                       | 0/128       |

[0287] Los resultados de este experimento indican que guanidina no interfiere con mediciones de FRa. Como se puede observar para el control de antígeno puro (Std Ag), esta metodología de tratamiento de 15 quanidina y posterior dilución no tiene ningún efecto en la medición de FRa. Además, se notará que en las tres (3) muestras de orina evaluadas, los niveles de FRα fueron mayores en las muestras tratadas

(solubilizadas) con guanidina en relación con las muestras no tratadas con guanidina.

[0288] La fiabilidad de pre-tratamiento de guanidina de las muestras de orina se evaluó adicionalmente mediante la exposición de tres muestras a quanidina y la medición de la concentración FRα de cada muestra de quanidina tratada 3 veces usando el ensavo ECLIA. Los resultados se reflejan en la Tabla 9 a continuación:

Tabla 9: Reproducibilidad intra-ensayo de orina tratada con guanidina

|        |           | FRα (pg/ml)                   |        |  |  |  |  |
|--------|-----------|-------------------------------|--------|--|--|--|--|
| Prueba | Muestra 1 | Muestra 1 Muestra 2 Muestra 3 |        |  |  |  |  |
| 1      | 9210      | 5477                          | 9889   |  |  |  |  |
| 2      | 9638      | 5405                          | 10 047 |  |  |  |  |
| 3      | 10192     | 5812                          | 10944  |  |  |  |  |
| Media  | 9680      | 5565                          | 10293  |  |  |  |  |
| SD     | 492       | 217                           | 569    |  |  |  |  |
| CV(%)  | 5.1       | 3.9                           | 5,5    |  |  |  |  |

[0289] Como se ha expuesto anteriormente, los resultados indican que el tratamiento de guanidina de 40 la orina antes del ensayo FRα proporciona mediciones consistentes de concentración FRα con CV muy bajos.

EJEMPLO 7. determinación de los niveles fra en muestras de orina tratadas con quanidina de sujetos humanos con y sin cáncer del ovario medidas por inmunoensayo de electroquimioluminiscencia (eclia).

[0290] Sobre la base de los resultados del Ejemplo 6 en el que se muestra que el tratamiento de guanidina no interfiere con ensayos de FRα, un protocolo de ensayo modificado se empleó para medir FRα en las muestras de orina de los sujetos con y sin cáncer de ovario en el Ejemplo 1. [0291] se empleó el siguiente protocolo de ensayo:

## Materiales y métodos

[0292] La metodología utilizada era como se describe en el Ejemplo 1, excepto que las muestras de orina se mezclaron en una relación 1:1 con un tampón de guanidina 6 M y posteriormente se diluyeron 1:26 en tampón de reacción.

## Resultados

102931 La Tabla 10 muestra los niveles de FRα en muestras de orina tratadas de quanidina de sujetos aquejados de cancer del ovario y sujetos de control sanos.

## Tabla 10: Nivel de FRα en la orina en el cáncer de ovario y el grupo de control normal

53

5

10

20

25

30

35

45

50

55

60

[0294] La Figura 4 muestra la distribución de niveles FRα en la orina de sujetos con cáncer de ovario y sujetos normales de sexo femenino de control utilizando el protocolo modificado con el tratamiento de quanidina. Se observó una diferencia estadísticamente significativa entre los grupos. La Tabla 11 resume estos resultados.

Tabla 11: Resumen de la medición de FRα en orina

FRa (pg/ml) cáncer de ovarios control normal Ν Media SD Max. Min. 

[0295] Mediante el uso de los datos de este experimento, un análisis de característica operativa del receptor (ROC) se realizó). La Figura 5 muestra una curva de ROC de la sensibilidad y especificidad de la medición ECLIA de niveles FRα en orina después de que la orina se trató con guanidina. AUC es el área bajo la curva, que mide la exactitud de la prueba para separar cáncer de ovario de los sujetos de

[0296] Mediante el uso de un valor de corte arbitrario de 9100 pg FRa/ml, el AUC era de 0,70 con un valor predictivo positivo de 70% y un valor predictivo negativo del 80%, como se muestra en la Tabla 12. El uso de este valor de corte, 15/19 pacientes con cáncer de ovario tenía una concentración de FRa encima de 9100 pg/ml y 8/10 sujetos normales tenían una concentración de FRα inferior a 9100 pg/mL.

Tabla 12: Tratamiento de guanidina para la medición de la orina

|                      | cáncer de ovarios | controlar |
|----------------------|-------------------|-----------|
| Número de muestras   | 19                | 10        |
| Positivo             | 15                | 2         |
| Valor predictivo (%) | 78,9              | 80,0      |

## EJEMPLO 8: corrección de creatinina de concentraciones fra determinada en muestras de orina tratadas con guanidina mediante inmunoensayo de electroquimioluminiscencia (eclia)

[0297] Las concentraciones de FRα se determinaron previamente utilizando ECLIA de muestras de 5 orina tratadas de guanidina de pacientes con cáncer de ovario y controles de las mujeres normales (véase el Ejemplo 7, Tabla 10). Aquí, estas concentraciones de FRα fueron corregidas para los niveles de creatinina de orina con el fin de normalizar para la velocidad de filtración glomerular. Los valores resultantes se sometieron a un análisis ROC.

## Métodos

10

15

20

[0298] El nivel de creatinina urinaria se determinó por el kit de prueba aprobado por el Ministerio de Salud, Trabajo y Bienestar, determinante L CRE (Kyowa Medex, Japón). El valor corregido para concentración de FRa en orina se calculó del siguiente modo:

Corrección de creatina de FRα de orina (ng/g)

- =(Orina FR $\alpha$  (ng/L) x 1000) / (Creatina de orina (mg/dL) x10) =(Orina FR $\alpha$  (ng/L) x 1000) / (Creatina de orina (mg/L)
- =(Orina FRα (ng/L) / (Creatina de orina (g/L)
- =(Orina FRα (ng) / (Creatina de orina (g)
- = 1/1000 x Orina FRα (μg) / Creatina de orina (g)

#### 25 Resultados

[0299] La Tabla 13 presenta los niveles de FRα de creatinine corregida resultantes.

#### Tabla 13: Niveles de FRα de creatinine corregida determinados usando ECLIA de muestras de 30 orina tratadas con guanidina

| Grupo          | Muestra<br># | FRα<br>(pg/ml) | Corregido FRα (μg FRα/g creatinina) |
|----------------|--------------|----------------|-------------------------------------|
|                | 1            | 27015          | 11,6                                |
|                | 2            | 37315          | 37,8                                |
|                | 3            | 79 579         | 33,9                                |
|                | 4            | 285            | 0,6                                 |
|                | 5            | 1864           | 6,7                                 |
|                | 6            | 2902           | 7,1                                 |
|                | 7            | 27914          | 54,9                                |
|                | 8            | 51864          | 17,1                                |
| cáncer de      | 9            | 2699           | 13,5                                |
| ovarios        | 9            | 9455           | 14,5                                |
|                | 10           | 18396          | 23,1                                |
|                | 11           | 145564         | 66,0                                |
|                | 12           | 19046          | 9,1                                 |
|                | 13           | 10440          | 8,5                                 |
|                | 14           | 10977          | 7,4                                 |
|                | 15           | 9199           | 5,9                                 |
|                | 16           | 18223          | 13,0                                |
|                | 17           | 18747          | 9,6                                 |
|                | 18           | 3797           | 7,7                                 |
|                | 19           | 3323           | 7,9                                 |
|                | 20           | 20976          | 10,7                                |
|                | 21           | 6941           | 4,3                                 |
| control normal | 22           | 14512          | 8,6                                 |
| Control Horria | 23           | 7286           | 13,8                                |
|                | 24           | 2789           | 4,3                                 |
|                | 25           | 2617           | 1,9                                 |
|                | 26           | 7233           | 3,1                                 |
|                |              |                |                                     |

[0300] La Figura 6 muestra la distribución de niveles FR $\alpha$  en cáncer de ovario (OC) y sujetos de control femininos normales después de la corrección para los niveles de creatinina en orina. Hay una diferencia estadísticamente significativa entre los pacientes de cáncer de ovario y los controles de niveles de FRa de creatinina corregida (p=0,007).

[0301] Los datos de resumen para el cáncer de ovario y de sujetos de control normales se proporcionan en la Tabla 14.

Tabla 14: Resumen de las estadísticas para niveles de FRα de creatinina corregida

|    |                | FRα (μg/g-creatinina)           |      |  |  |
|----|----------------|---------------------------------|------|--|--|
|    |                | cáncer de ovarios control norma |      |  |  |
|    | N              | 18                              | 9    |  |  |
| 15 | Media          | 18,9                            | 6,9  |  |  |
|    | Dakota del Sur | 17,9                            | 3,9  |  |  |
|    | Max.           | 66.0                            | 13,8 |  |  |
|    | Min.           | 0,6                             | 1,9  |  |  |

20

5

10

[0302] Los niveles de FRα de creatinina corregida se sometieron además a un análisis ROC. La curva ROC se muestra en la Figura 7. La Tabla 15 presenta la sensibilidad, especificidad, y el área bajo la curva (AUC) para varios valores de corte de la prueba de creatinina corregida.

Tabla 15: Sensibilidad, especificidad y AUC para varios valores de corte de la prueba de FRα de creatinina corregida

30

25

| Limite | Sensibilidad | Especificidad | AUC  |
|--------|--------------|---------------|------|
| 3,0    | 94,4%        | 11,1%         | 0,67 |
| 4.0    | 94,4%        | 2-2,2-%       | 0,70 |
| 5.0    | 94,4%        | 44,4%         | 0,78 |
| 6.0    | 88,9%        | 44,4%         | 0,74 |
| 9.0    | 66.7%        | 77.8%         | 0.70 |

35

40

[0303] Como se señaló anteriormente, existe una clara discriminación entre orinas de pacientes con cáncer de ovario y las de los sujetos de control sanos femeninos.

## EJEMPLO 9: inmunoensayo enzimático (eia) y optimización del mismo

## 1. Inmunoensayo enzimático (EIA)

45

## Recubrimiento de anticuerpo a placas de microtitulación

55

50

[0304] El anticuerpo receptor alfa anti-folato monoclonal se revistió sobre la superficie de placas de microtitulación (Nunc-inmunoplaca, Thermo Scientific) del siguiente modo. Cien microlitros de anticuerpo (absorbancia 0.02 a 280 nm) en 50 mmol/L de tampón carbonato de pH 9.4 se dispensó en los pocillos, seguido de revestimiento durante 16 horas a 4°C. A continuación, las microplacas se lavaron 2 veces con PBS que contenía 0,05% de Tween 20 (PBS-T). Después de esto 0,15 mL de PBS que contenía 20% pH suero normal de conejo 7.8 se dispensaron en los pocillos para bloquear la superficie sin límites, seguido de bloqueo durante 1 hora a temperatura ambiente. Por último, las microplacas se lavaron 2 veces con PBS-T. Las placas recubiertas de anticuerpo se secaron y se mantuvieron a 4°C en bolsas de aluminio hasta su uso.

## Etiquetado de biotina

65

60

[0305] El etiquetado con biotina se realizó de acuerdo a las recomendaciones de los fabricantes para EZ-Link Sulfo-NHS LC-LC-Biotina (Nº de Producto 21338, Thermo Scientific). Brevemente, 1 mg de anticuerpo en 0,4 mL de PBS se mezcló con 0,013 mL de 10 mM de Sulfo-NHS-LC-LC-biotina, con una relación inicial molar de anticuerpo a la biotina de 1:20, seguido de incubación durante 30 min a temperatura ambiente. El anticuerpo acoplado de biotina se purificó por filtración en gel utilizando una columna EP-10 (GE Healthcare) se eluyó con PBS para eliminar la biotina que no ha reaccionado. Con el fin de determinar el nivel de incorporación de biotina, se utilizó el kit de cuantificación EZ Biotina

(Producto Nº 28005, Thermo Scientific). El anticuerpo marcado con biotina se almacenó a -80°C hasta su uso.

## Inmunoensayo de dos etapas

5

15

30

35

40

45

60

[0306] Para la primera reacción, 40 µl de plasma o antígeno estándar y 60 µl de tampón HEPES 50 mM que contiene 10% NRS, 150 mmol/L de NaCl,10 mmol/l de EDTA-2Na, 0,01% de Tween 20, pH 7,5 (tampón de reacción) se dispensó en los pocillos recubiertos de anticuerpo. La placa se incubó durante 18 horas a 4°C, y posteriormente se lavaron 5 veces con PBS-T. Para la segunda reacción, 100 µl de 10 10 m se dispensó g/ml de anticuerpo marcado con biotina en tampón de reacción. La placa se incubó durante 1 hora a temperatura ambiente, y posteriormente se lavó 5 veces con PBS-T. 100 µl de estreptavidina (Pierce) marcada con peroxidasa de rábano picante se dispensó. Después de 30 minutos de incubación a temperatura ambiente, las placas se lavaron 5 veces con PBS-T. Finalmente, para el desarrollo del color, 100 µl de solución de TMB (KPL) se dispensó y se dejó durante 15 minutos en la oscuridad. Después de parar el desarrollo del color mediante la adición de 100 µl de 1N HCl, la absorción a 450 nm se leyó usando un lector de placas. Todas las etapas de lavado se realizaron automáticamente por la lavadora automática de placas (AMW-8, Biotec, Japón), y todas las mediciones EIA se llevaron a cabo por duplicado.

20 [0307] La Figura 8 representa el ensayo EIA usando MOV18 como anticuerpo de captura y MORAb-003 biotinilado como anticuerpo detector.

## 2. Optimización de los procedimientos de EIA

25 [0308] Los procedimientos de EIA anteriores se formularon, en parte, basándose en los siguientes experimentos diseñados para optimizar el procedimiento.

[0309] En primer lugar, se compararon anticuerpo, avidina-HRP, anticuerpo marcado con biotina y marcado con HRP. En comparación con anticuerpo marcado con HRP, el anticuerpo marcado con biotina y avidina-HRP proporcionaron una señal más alta; por lo tanto, se emplearon anticuerpo marcado con biotina y avidina-HRP.

[0310] En segundo lugar, se compararon los procedimientos de incubación de una y dos etapas. Como se representa en la Figura 9, un procedimiento de incubación de dos etapas dio una señal más alta y por lo tanto se empleó.

103111 En tercer lugar, para optimizar el segundo tiempo de incubación, se compararon los tiempos de incubación de una a cuatro horas. Los resultados indicaron que los tiempos de incubación de una hora proporcionan la señal más alta a ruido y por lo tanto se empleó posteriormente un tiempo de incubación de una hora.

[0312] En cuarto lugar, con el fin de optimizar la concentración de trabajo de anticuerpo marcado con biotina, anticuerpos marcados con HRP y volumen de la muestra, se emplearon diferentes concentraciones como se expone en la descripción anterior del ensavo EIA. Las óptimas concentraciones de valores se describen anteriormente.

## EJEMPLO 10: COMPARACIÓN DE LA FRA EN PLASMA HUMANO USANDO INMUNOENSAYO DE ELECTROQUIMIOLUMINISCENCIA (ECLIA) Y INMUNOENSAYO ENZIMÁTICO (EIA)

50 103131 Los niveles de FRα se midieron en muestras de plasma humano tomadas de pacientes del cáncer ovárico y controles femininos sanos utilizando el ensayo de electroquimioluminiscencia (ECLIA) descrito en el Ejemplo 1 y la Figura 1 (utilizando MORAb-003 como anticuerpo de captura y rutenio (Ru) marcado con MOV-18 como anticuerpo detector marcado) y el inmunoensayo enzimático (EIA) como se describe en el Ejemplo 9 y la Figura 8. En ambos ensayos, se ensayó 40 µL de plasma. 55

[0314] La Tabla 16 muestra los niveles plasmáticos de FRα en el cáncer de ovario y de sujetos de control normales, como se determina usando el EIA y ECLIA.

Tabla 16: Las concentraciones plasmáticas de FRα determinadas usando métodos de EIA y **ECLIA** 

| C                  | Museum #  | Conce | ntración FRα (pg/ml) |
|--------------------|-----------|-------|----------------------|
| Grupo              | Muestra # | EIA   | ECLIA                |
|                    | 1         | 10    | 73                   |
|                    | 2         | <10   | 200                  |
| ancer de ovarios   | 3         | 56    | 286                  |
| Janicei de ovarios | 4         | 44    | 286                  |
|                    | 5         | 353   | 1606                 |
|                    | 6         | 83    | 494                  |
|                    | 7         | 110   | 127                  |
|                    | 8         | 162   | 112                  |
| control sano       | 9         | 88    | 252                  |
| CONTROL SANO       | 10        | 180   | 254                  |
|                    | 11        | 262   | 471                  |
|                    | 12        | 206   | 396                  |

[0315] Con una sola excepción, los resultados para todos los sujetos indicaron que las concentraciones de FRα detectadas en suero utilizando EIA son más bajos que los niveles detectados usando ECLIA, lo que demuestra que el ensayo EIA, con este formato, no es tan sensible como el ensayo ECLIA cuando esta combinación particular de captura (MOV-18) y el detector de anticuerpos (MORAb- 003) se emplea. Por lo tanto, se llevaron a cabo experimentos adicionales con otros tipos de anticuerpos para desarrollar un procedimiento de EIA más sensible.

# EJEMPLO 11: VIABILIDAD DE LOS DIFERENTES TIPOS DE ANTICUERPOS PARA MEDICIÓN EIA DE FRA EN EL PLASMA HUMANO

## 1. Experimentación preliminar de combinaciones de anticuerpo

**[0316]** Se consideraron varias combinaciones de anticuerpos de captura/detección. La experimentación preliminar rindió los resultados expuestos en la Tabla 17.

Tabla 17

|                                      |        |                          | Anticuerpo de captura |                          |                   |                          |                  |                          |      |  |
|--------------------------------------|--------|--------------------------|-----------------------|--------------------------|-------------------|--------------------------|------------------|--------------------------|------|--|
|                                      |        | MORA                     | B-003                 | MO                       | V18               | 548908                   | (R&D)            | 6D                       | 398  |  |
| ction                                | 003    | Est. en<br>blanco<br>1-S | Bajo<br>-<br>-        | Est. en<br>blanco<br>1-S | Bajo<br>+++<br>++ | Est. en<br>blanco<br>1-S | Bajo<br>++<br>++ | Est. en<br>blanco<br>1-S | Alto |  |
| Biotin-labeled detection<br>antibody | MOV18  | Est. en<br>blanco<br>1-S | Bajo<br>+<br>++       | Est. en<br>blanco<br>1-S | Alto<br>-<br>+++  | Est. en<br>blanco<br>1-S | Alto<br>-<br>++  | Est. en<br>blanco<br>1-S | High |  |
|                                      | 548908 |                          |                       |                          |                   |                          |                  | Est. en<br>blanco<br>1-S | Bajo |  |

# 2.Comparación de ensayos de EIA usando varias combinaciones de anticuerpos y comparación con el ensayo ECLIA

**[0317]** Los niveles de FRα en el plasma de pacientes con cáncer de ovario y controles normales femininos sanos se midieron usando un ensayo inmunoenzimático enlazado con enzimas (EIA) con diferentes combinaciones de anticuerpos de captura y marcados con biotina y en comparación con los niveles de FRα medidos usando el ensayo ECLIA.

## Materiales y métodos

5

10

15

30

35

40

45

50

55

[0318] El método ECLIA era como se describe en el Ejemplo 1 y se representa en la Figura 1 (usando el anticuerpo MORAb-003 como anticuerpo de captura y el anticuerpo Mov-18 como anticuerpo detector marcado). El método EIA era como se describe en el Ejemplo 9, excepto que las tres combinaciones diferentes de anticuerpos captura/detector se emplearon, tal como se representa en la Figura 10: MOV18/MORAb-003, 548,908/MORAb-003 y 6D398/MORAb-003. Los anticuerpos 548908 y 6D398 están disponibles comercialmente. El anticuerpo 548908 se obtuvo de R&D Systems (North Las Vegas, NV) y el anticuerpo 6D398 se obtuvo de US Biological (Swampscott, MA 01907).

### Resultados

[0319] Las concentraciones de FRα (pg/ml) determinadas usando los métodos EIA y ECLIA se muestran en la Tabla 18. Además, las concentraciones de FRα (pg/ml) determinadas por EIA usando varias combinaciones de anticuerpos de captura/detector se representan gráficamente en la Figura 11.

Tabla 18: Las concentraciones plasmáticas de FR $\alpha$  (pg/ml) determinada usando el EIA y métodos ECLIA con diversas combinaciones de anticuerpos de captura y el detector.

| Grupo            | Muestra # | EIA 548908-MORAb-003 | EIA 6D398-MORAb-003 | EIA MOV18-MORAb-003 | ECLIA MOV18-MORAb-003 |
|------------------|-----------|----------------------|---------------------|---------------------|-----------------------|
| Cáncer de ovario | 1         | 176                  | 2                   | 10                  | 217                   |
|                  | 2         | 85                   | <0                  | ~                   | 165                   |
|                  | 3         | 257                  | 35                  | ÷                   | 296                   |
|                  | 4         | 117                  | 42                  | 44                  | 322                   |
|                  | 5         | 2048                 | 370                 | 353                 | 1335                  |
|                  | 6         | 447                  | 63                  | 83                  | 390                   |
| Control normal   | 7         | 247                  | 66                  | 110                 | 137                   |
|                  | 8         | 213                  | 110                 | 162                 | 185                   |
|                  | 9         | 367                  | 78                  | 88                  | 219                   |
|                  | 10        | 364                  | 152                 | 180                 | 228                   |
|                  | 11        | 804                  | 224                 | 262                 | 388                   |
|                  | 12        | 473                  | 194                 | 206                 | 318                   |
|                  |           |                      |                     |                     |                       |

[0320] Los datos de la Tabla 18 indican que las mediciones de niveles FR $\alpha$  con EIA utilizando la combinación 54908-MORAb-003 da resultados que son más similares a los resultados obtenidos utilizando el ensayo de ECLIA. Se realizaron análisis cuantitativos, lo que confirma esta observación. Además, estos datos demuestran que la detección de FR $\alpha$  es dependiente de los anticuerpos y anticuerpos de combinación empleados. Por consiguiente, diferentes combinaciones de anticuerpos se pueden emplear para la determinación de FR $\alpha$  en fluidos biológicos. Además, ya que los datos obtenidos de los formatos de ensayo EIA y ECLIA son similares, diversos formatos de ensayo se pueden utilizar para la determinación de FR $\alpha$ .

**[0321]** Para cada una de las tres combinaciones de anticuerpos de captura y detector utilizadas para el método de EIA, se realizó un análisis de regresión, y las concentraciones de FRα (pg/ml) determinadas con EIA se correlacionaron con las concentraciones determinadas con el ensayo ECLIA. Los resultados de este análisis se muestran en la Tabla 19 y en la Figura 12.

Tabla 19: Correlaciones de las concentraciones plasmáticas de FRα medidos por ECLIA con concentraciones medidas por EIA utilizando tres combinaciones de anticuerpos de captura y detector

| Anticuerpo de captura anticuerpo-<br>detector | 548098-003<br>MORAb- | 6D398-<br>MORAb-003 | MOV18-<br>MORAb-003 |
|-----------------------------------------------|----------------------|---------------------|---------------------|
| Γ                                             | 0,960                | 0,781               | 0,715               |
| Pendiente                                     | 1,595                | 0,285               | 0,223               |
| Interceptación                                | -87,06               | -0,64               | 58,62               |

[0322] Los resultados para EIA utilizando la combinación de captura-detector 548098-MORAb-003 se correlacionaron bien (r=0,96) con los resultados para ECLIA.

## EJEMPLO 12: niveles de plasma de fr $\alpha$ determinados por eia y eclia en muestras de pacientes con cancer ovario

[0323] Las mediciones de niveles de FRα en suero se determinaron en un grupo de pacientes con cáncer de ovario (n=17) y controles normales (n=35) utilizando ECLIA y EIA. Para las mediciones de la EIA, se empleó la combinación de anticuerpo detector 548908 captura/MORAb-003. De otra manera, el procedimiento EIA era como se describe en el Ejemplo 9. El procedimiento ECLIA era como se describe en el Ejemplo 1. Los resultados se muestran en la Tabla 20.

59

15

10

5

20

25

30

35

40

45

50

55

60

abla 20: Concentraciones de plasma FR $\alpha$  en pacientes con cáncer de ovario y controles normales, como se determina usando EIA y ECLIA

| Cruno             | Muestra #  | EIA   | ECLIA |
|-------------------|------------|-------|-------|
| Grupo             | wiuestra # | pg/mL | pg/mL |
|                   | 1          | 245.  | 217   |
|                   | 2          | 247   | 223   |
|                   | 3          | 194   | 229   |
|                   | 4          | 2613  | 1335  |
|                   | 5          | 154   | 153   |
|                   | 6          | 319   | 215   |
|                   | 7          | 516   | 390   |
| Cáncer de ovarios | 8          | 370   | 271   |
|                   | 9          | 933   | 449   |
|                   | 10         | 4768  | 4502  |
|                   | 11         | 385   | 266   |
|                   | 12         | 251   | 322   |
|                   | 13         | 404   | 349   |
|                   | 14         | 338   | 371   |
|                   | 15         | 4147  | 2344  |

| C         | 3.75 / // | EIA   | ECLIA |
|-----------|-----------|-------|-------|
| Grupo     | Muestra # | pg/mL | pg/mL |
|           | 16        | 179   | 165   |
|           | 17        | 380   | 296   |
|           | 18        | 232   | 181   |
|           | 19        | 372   | 173   |
|           | 20        | 332   | 189   |
|           | 21        | 380   | 203   |
|           | 22        | 376   | 290   |
|           | 23        | 406   | 217   |
|           | 24        | 281   | 182   |
|           | 25        | 348   | 191   |
|           | 26        | 490   | 247   |
|           | 27        | 253   | 137   |
|           | 28        | 368   | 185   |
|           | 29        | 338   | 195   |
|           | 30        | 289   | 219   |
|           | 31        | 338   | 206   |
|           | 32        | 406   | 226   |
|           | 33        | 365   | 228   |
|           | 34        | 501   | 280   |
| Controlar | 35        | 806   | 388   |
|           | 36        | 613   | 286   |
|           | 37        | 380   | 250   |
|           | 38        | 420   | 281   |
|           | 39        | 393   | 280   |
|           | 40        | 552   | 284   |
|           | 41        | 664   | 318   |
|           | 42        | 429   | 261   |
|           | 43        | 499   | 286   |
|           | 44        | 310   | 218   |
|           | 45        | 281   | 217   |
|           | 46        | 215   | 202   |
|           | 47        | 293   | 217   |
|           | 48        | 380   | 256   |
|           | 49        | 270   | 195   |
|           | 50        | 393   | 234   |
|           | 51        | 425   | 308   |
|           | 52        | 226   | 199   |
|           |           |       |       |

0324] La Figura 13 muestra la distribución de concentraciones de  $FR\alpha$  de plasma en sujetos con cáncer de ovario y sujetos de control femininos normales como se determina usando EIA.

[0325] La Tabla 21 muestra las estadísticas descriptivas de resumen para las concentraciones de FRα de plasma en cáncer de ovario y sujetos de control normales femeninos como se determinó usando EIA.

Tabla 21: Resumen de concentraciones plasmáticas FRα en el cáncer de ovario y de sujetos de control femininos normales como se determinó usando EIA.

|       | F                 | Rα (pg/ml)     |
|-------|-------------------|----------------|
|       | Cáncer de ovarios | Control normal |
| N     | 17                | 35             |
| Media | 967               | 389            |
| SD    | 1438              | 126            |
| Max.  | 4768              | 806            |
| Min.  | 154               | 215            |

5

15

[0326] La Figura 14 representa aún más la correlación entre las concentraciones plasmáticas FRα determinadas utilizando EIA y ECLIA. La correlación es alta (r=0 0,95).

EJEMPLO 13. determinación de niveles fra en muestras de orina y suero de pacientes con cáncer de pulmón y pacientes con cáncer ovárico como medidas por inmunoensayo de electroquimioluminiscencia (eclia)

[0327] Niveles de FRα se determinaron en muestras de orina y suero de pacientes de cáncer de pulmón y pacientes con cáncer de ovario usando ECLIA donde se tomaron las muestras del mismo paciente. La correlación entre los niveles FRα de suero y de orina también se determinó.

## Materiales y métodos

[0328] La metodología ECLIA utilizada es como se describe en el Ejemplo 1. La guanidina fue utilizada para solubilizar los sedimentos de orina tal como se describe en el Ejemplo 6.

### Resultados

[0329] Los resultados de los ensayos de ECLIA de suero y orina de pacientes con cáncer de pulmón y pacientes de cáncer de ovario se presentan en la Tabla 22.

Tabla 22: FRα concentraciones en las muestras de orina y suero de pacientes con cáncer pulmonar y pacientes de cáncer de ovario, como se determina por ECLIA

|                  |                | Suero | Orina |
|------------------|----------------|-------|-------|
| Grupo            | ID de conjunto | pg/mL | pg/mL |
|                  | 1              | 146   | 2009  |
|                  | 2              | 153   | 4496  |
|                  | 3              | 206   | -     |
|                  | 4              | 70    | 3562  |
|                  | 5              | 195   | 12381 |
|                  | 6              | 352   | 21873 |
|                  | 7              | 198   | 11296 |
|                  | 8              | 120   | 18570 |
|                  | 9              | 275   | 4455  |
|                  | 10             | 163   | 8662  |
|                  | 11             | 145   | 5294  |
|                  | 12             | 178   | -     |
|                  | 13             | 165   | 1106  |
|                  | 14             | 187   | 7446  |
| Cáncer de pulmón | 15             | 168   | 11167 |
|                  | 16             | 217   | 24448 |
|                  | 17             | 142   | 6724  |
|                  | 18             | 177   | 14514 |
|                  | 19             | 236   | 822   |
|                  | 20             | 101   | 4826  |
|                  | 21             | 145   | 7723  |
|                  | 22             | 213   | 9887  |
|                  | 23             | 143   | 7422  |
|                  | 24             | 253   | 3376  |
|                  | 25             | 421   | 8045  |
|                  | 26             | 282   | 9414  |
|                  | 27             | 1605  | 7651  |
|                  | 28             | 240   | 13059 |
|                  | 29             | 695   | 10549 |

[0330] Los datos resumidos para niveles FRα de suero y orina de pacientes con cáncer de pulmón se presentan en la Tabla 23.

Tabla 23: Resumen de las estadísticas para concentraciones FRα en las muestras de suero y orina de pacientes de cáncer de pulmón, según lo determinado por ECLIA

| Cáncar do nulmán | FRα (pg/ı | ml)   |
|------------------|-----------|-------|
| Cáncer de pulmón | Suero     | Orina |
| N                | 25        | 23    |
| Media            | 191       | 8700  |
| SD               | 75        | 6291  |
| Max.             | 421       | 24448 |
| Min.             | 70        | 822   |

[0331] Los datos resumidos para niveles FR $\alpha$  de suero y de orina de pacientes con cáncer de ovario se presenta en la Tabla 24.

Tabla 24: Resumen de las estadísticas para concentraciones FRα en las muestras de suero y orina de pacientes de cáncer de ovario, como se determina por ECLIA

| Cáncer de ovarios | FRα (pg/ | ml)   |
|-------------------|----------|-------|
|                   | Suero    | Orina |
| N                 | 4        | 4     |
| Media             | 705      | 10168 |
| SD                | 634      | 2266  |
| Max.              | 1605     | 13059 |
| Min.              | 240      | 7651  |

[0332] La Figura 15 muestra las

5

10

15

20

25

30

35

40

50

55

60

65

correlaciones entre las medidas de ECLIA de niveles FRα en muestras de suero y orina tomadas del mismo paciente. La correlación para pacientes con cáncer de pulmón era de r=0,24 (panel superior) y la correlación para los pacientes con cáncer de ovario era de r=-0,76 (panel inferior).

[0333] Estos datos demuestran la relativa falta de correlación entre las concentraciones de FR $\alpha$  medidas en la orina en comparación con el suero, especialmente como se muestra para pacientes de cáncer de pulmón. Además, estos datos demuestran que FR $\alpha$  es básicamente no detectable por encima de los niveles de fondo en el suero de pacientes con cáncer de pulmón frente a los controles normales mientras que FR $\alpha$  es detectable en la orina de estos pacientes.

45 EJEMPLO 14. evaluación de los niveles de frα en muestras de suero de pacientes con cáncer de ovario, los pacientes con cáncer de pulmón, y los controles normales

[0334] Se evaluaron niveles de FRα en el suero de pacientes con cáncer de ovario, los pacientes con cáncer de pulmón, y controles normales. Niveles de FRα en suero se evaluaron usando ECLIA con dos pares diferentes de anticuerpos de captura-detector: **Par 1**, en el que 9F3 era el anticuerpo de captura y 24F12 era el anticuerpo detector, y el **Par 2**, en el que 26B3 era el anticuerpo de captura y 19D4 era el anticuerpo detector.

[0335] Los pares de FRα se ensayaron con las curvas de calibrador completo y 196 sueros individuales diluidos 1: 4. En un experimento, 26B3 se utilizó como anticuerpo de captura después del procesamiento CR en un lote de placa (75 μg/ml, +B, +T) y 19D4 se usó como el anticuerpo detector a 1,0 μg/mL. En otro experimento, 9F3 se usó como el anticuerpo de captura y 24F12 se utilizó como anticuerpo detector en 1,0 μg/mL. Cada uno se procesó por CR (lote 10070) con una proporción de etiqueta a proteína (L/P) de 13.3. El diluyente 100 (Meso Scale Discovery, Gaithersburg, Maryland) + anticuerpo anti-ratón humano (HAMA) + mlgG se utilizó para las muestras y calibrador. Eldiluyente 3 (Meso Scale Discovery, Gaithersburg, Maryland) se utilizó para las detecciones.

[0336] Se empleó el siguiente protocolo para ECLIA. Se añadieron las muestras a 50  $\mu$ l/pocillo. Las muestras se agitaron durante 2 horas y posteriormente se lavaron con solución salina de tampón fosfato (PBS) con el detergente Tween 20 (PBST). El anticuerpo detector se añadió a 25  $\mu$ l/pocillo. Las muestras se agitaron durante 2 horas y después se lavaron con PBST. Por último, la emisión de electroquimioluminiscencia (ECL) de las muestras se leyó con 2X MSD® Buffer T.

[0337] Los resultados se muestran en la Tabla 25 a continuación.

|                              |                    | LLOQ1 = 1pg/mL<br>FRg - Par 2         |     | LLOQ1 = 5 pg/mL<br>FRv: Pair 1        |     |          |            |        |                                         |
|------------------------------|--------------------|---------------------------------------|-----|---------------------------------------|-----|----------|------------|--------|-----------------------------------------|
| MSD Sample<br>Testing Number | tipo de<br>muestra | Conc² de reequipo<br>ajustado (pg/mL) | %CV | Conc² de reequipo<br>ajustado (pg/mL) | %CV | Etapa    | Grado      | Género | Comentarios                             |
|                              | Suero              | 3760                                  | 4 % | 3585                                  | 4%  | =        | 2          | ш      | Adenocarcinoma-Ovario                   |
| 2                            | Suero              | 223                                   | 3%  | 273                                   | 2%  | =        | е          | u.     | Adenocarcinoma-Ovario                   |
| 6                            | Suero              | 096                                   | 1%  | 3346                                  | 8%  | o<br>III |            | ш      | Carcinoma seroso papilario              |
| 4                            | Suero              | 3827                                  | 4%  | 996                                   | %0  | =        | 2          | ш      | Adenocarcinoma-Ovario                   |
| ın.                          | Suero              | 251                                   | 6%  | 468                                   | 2%  | 2        | 2          | н      | Adenocarcinoma-Ovario                   |
| 9                            | Suero              | 199                                   | 8%  | 328                                   | 1%  | 9        | 2          | ш      | Cistadenocarcinoma                      |
| 7                            | Suero              | 166                                   | 1%  | 257                                   | 969 | 2        | 2          | ш      | Cistadenocarcinoma                      |
|                              | Suero              | 182                                   | 4%  | 248                                   | 2%  | ⊒<br>E   | 2          | ш      | Cistadenocarcinoma                      |
| 0                            | Suero              | 155                                   | 8%  | 265                                   | 2%  | 9        | 2          | ш      | Cistadenocarcinoma                      |
| 10                           | Suero              | 145                                   | %6  | 253                                   | 9%9 | 9        | 2          | ш      | Cistadenocarcinoma                      |
| 1                            | Suero              | 142                                   | 2%  | 186                                   | 1%  | BB BB    | -          | ш      | Adenocarcinoma seroso                   |
| 12                           | Suero              | 299                                   | 5%  | 456                                   | 2%  | 8        | က          | щ      | Adenocarcinoma seroso                   |
| 13                           | Suero              | 315                                   | %0  | 768                                   | 8%  | <b>B</b> | alto grado | ш      | Cistadenocarcinoma seroso<br>del ovario |

| 14                         | 15                                                 | 16                                      | 11                                                 | 18                                      | 19                                                 | 20                                                 | 71                        | 22                                                 | 23                                                 |
|----------------------------|----------------------------------------------------|-----------------------------------------|----------------------------------------------------|-----------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------|----------------------------------------------------|----------------------------------------------------|
| Suero                      | Suero                                              | Suero                                   | Suero                                              | Suero                                   | Suero                                              | Suero                                              | Suero                     | Suero                                              | Suero                                              |
| 168                        | 187                                                | 423                                     | 98                                                 | 29                                      | 108                                                | 207                                                | 99                        | 108                                                | 201                                                |
| 969                        | 8%                                                 | 3%                                      | %2                                                 | 3%                                      | %1                                                 | 3%                                                 | %0                        | 2%                                                 | 2%                                                 |
| 351                        | 263                                                | 229                                     | 289                                                | 255                                     | 393                                                | 328                                                | 254                       | 197                                                | 457                                                |
| 1%                         | 1%                                                 | 5%                                      | %                                                  | 1%                                      | 1%                                                 | 1%                                                 | 1%                        | 2%                                                 | %                                                  |
| =                          | -                                                  | Ā                                       | _                                                  | _                                       | =                                                  | Ausente                                            | Ausente                   | =                                                  | =                                                  |
| alto grado                 | Diferenciado<br>bien a<br>moderadamente            | mal<br>diferenciado                     | moderadamente<br>diferenciado                      | bien<br>diferenciado                    | moderadamente<br>diferenciado                      | mai<br>diferenciado                                | alto grado                | bajo grado                                         | alto grado                                         |
| щ                          | ш                                                  | ш                                       | u.                                                 | щ                                       | ш                                                  | ш                                                  | щ                         | щ                                                  | ш                                                  |
| Cardinoma seroso papilario | Cistadenocarcinoma seroso<br>papilar<br>del ovario | Cistadenocarcinoma mucoso<br>del ovario | Cistadenocarcinoma seroso<br>papilar<br>del ovario | Cistadenocarcinoma mucoso<br>del ovario | Cistadenocarcinoma seroso<br>papilar<br>del ovario | Cistadenocarcinoma seroso<br>papilar<br>del ovario | Adenocarcinoma del ovario | Cistadenocarcinoma seroso<br>papilar<br>del ovario | Cistadenocarcinoma seroso<br>papilar<br>del ovario |

| Suero 477 1%                            | Suero<br>ovario 423 3%                       | Suero<br>ovario 249 8%                   | Suero<br>ovario 152 7%                    | Suero<br>ovario 1409 5%           | Suero ovario 443 2%                       | Suero<br>ovario 208 1%            | Suero 114 9%                              | Suero 223 4%                              | Suero 5034 1%                     | Suero 32966 6%                            | Suero<br>ovario 94 6%            |  |
|-----------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------|-------------------------------------------|-----------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------|-------------------------------------------|----------------------------------|--|
| 808                                     | 613                                          | 432                                      | 235                                       | 1287                              | 547                                       | 298                               | 344                                       | 157                                       | 4405                              | 23228                                     | 188                              |  |
| 11%                                     | 3%8                                          | %1                                       | 5%                                        | 3%8                               | 2%                                        | 13%                               | 1%                                        | 133%                                      | 1%                                | 4%                                        | 3%                               |  |
| III alto grado                          | n/a n/a                                      | n/a 2                                    | <u>N</u> 2                                | 3                                 | ≡C 2                                      | AI 1                              | III B 2                                   | ≡ c                                       | ≡ C 3                             | IV n/a                                    | n/a 3                            |  |
| - L                                     | ш                                            | ш                                        | u.                                        | ır.                               | ш                                         | ш                                 | ш                                         | Œ.                                        | ш                                 | ш                                         | ш,                               |  |
| Cistadenocarcinoma seroso<br>del ovario | carcinoma del ovario -<br>tipo endometrioide | ovarian carcinoma -<br>endometrioid type | carcinoma ovario - tipo<br>papilar seroso | carcinoma ovario - tipo<br>seroso | carcinoma ovario - tipo<br>papilar seroso | carcinoma ovario - tipo<br>seroso | carcinoma ovario - tipo<br>papilar seroso | carcinoma ovario - tipo<br>papilar seroso | cardinoma celular<br>transicional | carcinoma ovario - tipo<br>papilar seroso | adenocarcinoma de células claras |  |

| Suero<br>37 ovario                        | Suero<br>38 ovario                | Suero<br>39 ovario                        | Suero<br>ovario                   | Suero<br>41 ovario                     | Suero<br>ovario                           | Suero<br>43 ovarlo                                  | Suero<br>44 ovario    | Suero<br>45 ovario    | Suero<br>46 ovario    | Suero<br>evario       | Suero<br>48 ovario    | Suero                                     |
|-------------------------------------------|-----------------------------------|-------------------------------------------|-----------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------------------|
| 2916                                      | 679                               | 294                                       | 2037                              | 16289                                  | 386                                       | 1474                                                | 169                   | 257                   | 184                   | 251                   | 165                   |                                           |
| 8%                                        | 4%                                | 8%                                        | 4%                                | %9                                     | %9                                        | %9                                                  | 2%                    | 4%                    | %9                    | %9                    | 2%                    | 0000                                      |
| 3121                                      | 1037                              | 478                                       | 12                                | 10431                                  | 736                                       | 2382                                                | 438                   | 635                   | 393                   | 629                   | 394                   |                                           |
| %0                                        | 17%                               | 3%                                        | 74%                               | 3%                                     | %9                                        | 3%                                                  | 1%                    | 10%                   | %0                    | 1%                    | 7%                    |                                           |
| Ν                                         | 2                                 | <b>□</b>                                  | ©<br>≡                            | O<br>I                                 | Β/u                                       | ⊒                                                   | 2                     | 12                    | oii                   | HA                    | 2                     | 0.00                                      |
| 3                                         | 3                                 | 9                                         | 6                                 | 2                                      | 9                                         |                                                     | 3                     | alto grado            | mal<br>diferenciado   | 2                     | 2                     | 50 60 60 60 60 60 60 60 60 60 60 60 60 60 |
| ш                                         | ш                                 | ш                                         | ш                                 | u.                                     | ш                                         | u.                                                  | щ                     | u.                    | ш                     | u.                    | ш                     | 1000                                      |
| carcinoma ovario - tipo<br>papilar seroso | carcinoma ovario - tipo<br>seroso | carcinoma ovario - tipo<br>papilar seroso | carcinoma ovario - tipo<br>seroso | carcinoma ovario - tipo papilar seroso | carcinoma ovario - tipo<br>papilar seroso | Cistadenocarcinoma seroso<br>papilar del<br>pelvico | Adenocarcinoma-Ovario | Adenocarcinoma-Ovario | Adenocarcinoma-Ovario | Adenocarcinoma-Ovario | Adenocarcinoma-Ovario | Cistadenocarcinoma seroso                 |

| 376 11% IIIC alto grado F adenocarcinoma seroso nos 5% IIIC alto grado F adenocarcinoma seroso nos IV alto grado F Cistadenocarcinoma seroso nos | 5% IIIC alto grado F | 6% IV alto grado | ) 11 in ) 1 ii | 363 6% I differenciado F del ovario | 304 10% IB alto grado F del ovario | 326 4% IIIB alto grado F del ovario | 1670 2% IIIB F , del ovario | 3257 2% IIIC F adenocarcinoma papilar del ovario | Cistadenocardinoma seroso pspilar H | 3285 14% IIIC alto grado F carcinoma seroso del ovario |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|----------------|-------------------------------------|------------------------------------|-------------------------------------|-----------------------------|--------------------------------------------------|-------------------------------------|--------------------------------------------------------|
|                                                                                                                                                  |                      |                  | 340            |                                     |                                    |                                     |                             |                                                  |                                     |                                                        |
| 700                                                                                                                                              |                      | 112 4%           | 198 2%         | 134 3%                              | 118 5%                             | 107                                 | 728 1%                      | 2138 1%                                          | 167 4%                              | 3054 4%                                                |
|                                                                                                                                                  | Suero                | Suero            | Suero          | Suero                               | Suero                              | Suero                               | Suero                       | Suero                                            | Suero                               | Suero                                                  |
|                                                                                                                                                  | 51                   | 52               | 53             | 54                                  | 55                                 | 26                                  | 57                          | 28                                               | 59                                  | 09                                                     |

| Suero             | 26  | 39% | 215 | %0  | <b>B</b> | alto grado                           | ш  | Cistadenocarcinoma seroso<br>papilar<br>del ovario |
|-------------------|-----|-----|-----|-----|----------|--------------------------------------|----|----------------------------------------------------|
| Suero             | 19  | 3%  | 366 | 10% | Ā        | mai<br>diferenciado<br>moderadamente | Σ  | Adenocarcinoma del pulmón                          |
| Suero             | 106 | 1%  | 319 | 4%  | 9        |                                      | Σ  | Adenocardinoma del pulmón                          |
| Suero             | 49  | 2%  | 257 | 1%  | 18       | moderadamente<br>diferenciado        | ×  | Adenocarcinoma of the lung                         |
| Suero             | 75  | 2%  | 301 | 2%  | =        | ю                                    | ×  | Adenocarcinoma del pulmón                          |
| Suero             | 7.9 | 3%  | 283 | %8  | =        | 2                                    | ×  | Adenocarcinoma                                     |
| Suero             | 145 | 2%  | 492 | %0  | =        | 2                                    | ш  | Adenocarcinoma                                     |
| Suero<br>Pulmonar | 142 | 2%  | 367 | %9  | ≥        | n/a                                  | ů. | Adenocarcinoma                                     |
| Suero             | 103 | 2%  | 231 | %2  | 2        | n/a                                  | ш  | Adenocarcinoma                                     |
| Suero<br>Pulmonar | 153 | 1%  | 311 | 3%  | B<br>≡   | n/a                                  | ш  | Adenocarcinoma                                     |
| Suero             | 54  | 3%  | 124 | %9  | ¥ ≡      | Ausente                              | Σ  | carcinoma de células grandes y sólidas             |
| Suero             | 183 | 3%  | 391 | 10% | 8        | Ausente                              | ш  | Adenocarcinoma                                     |

| Adenocarcinoma                                                          | × | 2       | 2        | %0 | 330 | 1%  | 235      | Suero             |  |
|-------------------------------------------------------------------------|---|---------|----------|----|-----|-----|----------|-------------------|--|
| Adenocarcinoma moderadamente diferenciado                               | × | 2       | 8        | 7% | 231 | 2%  | 135      | Suero<br>Pulmonar |  |
| carcinoma de células grandes y sólidas                                  | ш | Ausente | missing  | 5% | 240 | 3%  | 129      | Suero<br>Pulmonar |  |
| carcinoma de células grandes y sólidas                                  | ш | Ausente | 9        | 3% | 278 | 4%  | 127      | Suero<br>Pulmonar |  |
| carcircma de células grandes y sólidas                                  | × | Ausente | <u>@</u> | 1% | 155 | %9  | 18       | Suero             |  |
| cardinoma de células grandes y sólidas a                                | W | 6       | ΑI       | 1% | 221 | 12% | 130      | Suero             |  |
| Adenocarcinoma moderadamente<br>diferenciado                            | ш | 2       | IIIA     | 7% | 158 | 1%  | 72       | Suero             |  |
| Carcinoma pleomorfico                                                   | × | e/u     | ¥ II     | 8% | 249 | 3%  | 08<br>80 | Suero             |  |
| Carcinoma pleomorfico                                                   | ш | n/a     | Y III    | 5% | 183 | 3%  | 52       | Suero<br>Pulmonar |  |
| Adenocardisoma moderadamento<br>diferenciado                            | Œ | 2       | W H      | 7% | 452 | 3%  | 197      | Suero             |  |
| Adenocarcinoma moderadamente diferenciado                               | ш | 2       | A I      | 1% | 330 | 3%  | 139      | Suero<br>Pulmonar |  |
| Adenocarcinoma poco<br>diferenciado                                     | ш | e       | <b>■</b> | 2% | 221 | 7%  | 88       | Suero<br>Pulmonar |  |
| carcinoma celular escamoso<br>non kerathitzing III<br>poco diferenciado | × | ო       | Ausente  | 7% | 199 | 2%  | 91       | Suero             |  |

|                   | moderadamente Carcinoma de células escamosas diferenciado F del pulmón | moderadamente Adenocardinoma del pulmón | moderadamente mucoso adenocarcinoma dienenciado F del pulmon | diferenciado M Adenocarcinoma del pulmón | moderadamente M Adenocarcinoma del pulmón | mal Adenocardnoma del pulmón | moderadamente<br>mai<br>diferenciado M Adenocarcinoma del pulmón | mai Adenocardinoma del pulmón | bien Adenocarcinoma del pulmón | mal Adenocarcinoma del pulmón | Diferenciado  blen a  moderadamente  F Adenocarcinoma del pulmón |
|-------------------|------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------|------------------------------------------------------------------|-------------------------------|--------------------------------|-------------------------------|------------------------------------------------------------------|
| 2                 | A                                                                      | 9                                       | 8                                                            | IIA III                                  | Ausente                                   | 8                            | ¥ Y                                                              | HIA 0                         | 9                              | 8                             | 8                                                                |
| 5%                | %9                                                                     | 4%                                      | %0                                                           | 5%                                       | 2%                                        | %6                           | 5%                                                               | 3%                            | 4%                             | 2%                            | %0                                                               |
| 396               | 572                                                                    | 214                                     | 270                                                          | 292                                      | 578                                       | 300                          | 117                                                              | 196                           | 722                            | 286                           | 431                                                              |
| 5%                | 3%                                                                     | %<br>6                                  | 7%                                                           | 3%                                       | 1%                                        | 2%                           | %9                                                               | 3%                            | 3%                             | %6                            | 1%                                                               |
| 243               | 204                                                                    | 54                                      | 116                                                          | 117                                      | 248                                       | 98                           | 33                                                               | 36                            | 237                            | 82                            | 112                                                              |
| Suero<br>Pulmonar | Suero                                                                  | Suero                                   | Suero                                                        | Suero                                    | Suero                                     | Suero                        | Suero<br>Pulmonar                                                | Suero<br>Pulmonar             | Suero                          | Suero                         | Suero<br>Pulmonar                                                |
| 87                | 88                                                                     | 68                                      | 06                                                           | 94                                       | 92                                        | 93                           | 8                                                                | 95                            | 96                             | 26                            | 86                                                               |

| 66  | Suero             | 137 | 5%  | 379  | %0  | ₹ | moderadamente<br>diferenciado        | u.  | Adenocarcinoma alveolar<br>del pulmón |
|-----|-------------------|-----|-----|------|-----|---|--------------------------------------|-----|---------------------------------------|
| 100 | Suero<br>Pulmonar | 99  | 2%  | 181  | %6  | A | moderadamente<br>mal<br>diferenciado | Σ   | Adenocarcinoma del pulmón             |
| 101 | Suero<br>Pulmonar | 119 | %9  | 280  | 4%  | 9 |                                      | Σ   | Adenocarcinoma del pulmón             |
| 102 | Suero             | 187 | %9  | 391  | 2%  |   |                                      | ш   |                                       |
| 103 | Suero             | 337 | %   | 260  | %9  |   |                                      | u.  |                                       |
| 104 | Suero             | 203 | %4  | 405  | 3%8 |   |                                      | ш   |                                       |
| 105 | Suero             | 26  | 3%  | 311  | 5%  |   |                                      | щ   |                                       |
| 106 | Suero             | 210 | 11% | 393  | %9  |   |                                      | IL. |                                       |
| 107 | Suero             | 135 | %0  | 27.1 | %9  |   |                                      | Σ   |                                       |
| 108 | Suero             | 145 | 2%  | 225  | 3%  |   |                                      | ш   |                                       |
| 109 | Suero             | 182 | 4%  | 257  | 5%  |   |                                      | Σ   |                                       |
| 110 | Suero             | 186 | 5%  | 297  | 2%  |   |                                      | ुञ  |                                       |
| 111 | Suero             | 129 | 8%  | 197  | 4%  |   |                                      | Σ   |                                       |

| Suero<br>normal 133 | Suero<br>normal | Suero<br>normal 189 | Suero<br>normal 167 | Suero<br>normal 159 | Suero<br>normal 166 | Suero<br>normal 197 | Suero<br>normal 148 | Suero<br>normal 198 | Suero<br>normal 101 | Suero<br>normal 111 | Suero<br>normal 96 | Suero<br>normal 224 |
|---------------------|-----------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|---------------------|
| 13 4%               | 1%              | 3%                  | 17.                 | 1%                  | 3%                  | 17 2%               | 1%                  | 49%                 | 3%                  | 1 8%                | %0 9               | 1%                  |
| 254                 | 298             | 321                 | 257                 | 315                 | 270                 | 339                 | 389                 | 833                 | 137                 | 266                 | 172                | 249                 |
| 4%                  | %6              | 1%                  | %9                  | 1%                  | 1%                  | %0                  | 4%                  | %6                  | %0                  | 1%                  | 2%                 | 7%                  |
| M                   | М               | M                   | M                   | M                   | M                   | ×                   | S                   | ×                   | M                   | ×                   | ×                  | ×                   |

| Suero  | Suero       | Suero       | Suero       | Suero       | Suero       | Suero   | Suero  | Suero       | Suero       | Suero       | Suero       | Suero |
|--------|-------------|-------------|-------------|-------------|-------------|---------|--------|-------------|-------------|-------------|-------------|-------|
| al 203 | o<br>al 277 | o<br>al 191 | o<br>al 206 | o<br>al 204 | o<br>al 156 | o<br>la | JE 109 | o<br>al 116 | o<br>al 182 | o<br>al 324 | o<br>al 122 | 135   |
| 8%     | 10%         | 4%          | 4%          | 15%         | 1%          | 3%      | %0     | 1%          | 7%          | 2%          | 18%         | 7%    |
| 312    | 388         | 272         | 297         | 194         | 106         | 195     | 148    | 281         | 250         | 475         | 191         | 185   |
| 1%     | 5%          | 4%          | 3%6         | 3%6         | 2%          | 3%6     | 5%     | 1%          | 8%          | 7%          | 1%          | 1%    |
| M      | Σ           | ıL          | ıL          | L           | L           | ıL      | ×      | ш           | M           | ш           | ш           | L     |
|        |             |             |             |             |             |         |        |             |             |             |             |       |

| 139 " | S 140 nc | S 141 IX | 142 nt | 143 III | 144 n | 145 n | . S   | 147 n | S<br>148 nr | 149 n | 150 n | S<br>151 |
|-------|----------|----------|--------|---------|-------|-------|-------|-------|-------------|-------|-------|----------|
| Suero | Suero    | Suero    | Suero  | Suero   | Suero | Suero | Suero | Suero | Suero       | Suero | Suero | Suero    |
| 264   | 105      | 374      | 693    | 143     | 108   | 153   | 448   | 109   | 142         | 174   | 185   | 180      |
| 4%    | 4%       | %0       | 7%     | 7%      | 3%    | 8%    | 8%    | 44%   | %9          | 4%    | 5%    | 36       |
| 372   | 188      | 649      | 162    | 326     | 202   | 341   | 400   | 196   | 218         | 309   | 270   | 241      |
| 2%    | 5%       | %0       | 2%     | 4%      | 2%    | 3%    | 2%    | 3%    | 1%          | %6    | 2%    | 360      |
| U.    | M        | Σ        | Σ      | ш       | ш     | ш     | ш     | u.    | ıL          | ıL    | u     | 2        |
|       |          |          |        |         |       |       |       |       |             |       |       |          |

| 152 n | 153   | 154 n  | 155 n | 156 " | 157 n | 158 n | 159 n | 160   | 161 n | 162 n | 163 n | S 164 |
|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Suero | Suero | Suero  | Suero | Suero | Suero | Suero | Suero | Suero | Suero | Suero | Suero | Suero |
| 125   | 270   | 127    | 251   | 121   | 137   | 77    | 143   | 121   | 66    | 158   | 138   | 175   |
| 5%    | %0    | %<br>6 | 3%    | 1%    | 8%    | 3%    | 4%    | 5%    | 8%    | 2%    | 7%    | 18%   |
| 314   | 449   | 232    | 415   | 349   | 223   | 173   | 223   | 411   | 199   | 236   | 235   | 290   |
| 4%    | 2%    | 1%     | %9    | %0    | %0    | %9    | 7%    | 8%    | 3%    | %0    | 3%    | 2%    |
| L.    | 11.   | M      | ш     | M     | M     | W     | L     | M     | H     | L     | IL.   | ш     |
|       |       |        |       |       |       |       |       |       |       |       |       |       |

| 4% 5   | 4% 3   | 0%     | 7% 3   | 10%    | 2% 3   | 6%     | 3%     | 2% 2   | 12%    | 5%     | 7% 2   | 3%     |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 589 8% | 372 1% | 278 1% | 377 3% | 255 3% | 312 4% | 344 1% | 306 4% | 274 6% | 279 1% | 196 0% | 282 5% | 330 6% |
| Σ      | 4      | Σ      | Σ      | L.     | Σ      | Σ      | Ψ      | u.     | Ψ      | Σ      | Σ      | 2      |
| Σ      | u.     | W      | M      | u.     | M      | ×      | M      | ш      | ×      | Σ      | M      | >      |

| L     | Μ     | ш     | ш     | u.    | Σ     | ш     | ш     | Ν     | · LL  | Σ     | ш     | Σ     |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 15%   | 8%    | 13%   | %0    | %0    | 79%   | 53%   | 4%    | 3%    | 1%    | 1%    | 4%    | 4%    |
| 277   | 281   | 308   | 324   | 287   | 112   | 147   | 377   | 258   | 264   | 249   | 251   | 268   |
| %6    | 3%    | 4%    | 3%    | 2%    | 1%    | 3%    | 7%    | 13%   | %0    | 4%    | 11%   | 36    |
| 174   | 295   | 29    | 115   | 128   | 128   | 76    | 264   | 146   | 132   | 92    | 89    | 135   |
| Suero |
| 178   | 179   | 180   | 181   | 182   | 183   | 184   | 185   | 186   | 187   | 188   | 189   | 190   |

| 191 | Suero | 177 | 84 | 394 | 3% | u.  |  |
|-----|-------|-----|----|-----|----|-----|--|
| 192 | Suero | 184 | %8 | 367 | 2% | u   |  |
| 193 | Suero | 156 | 3% | 387 | 5% | ш   |  |
| 194 | Suero | 118 | 8% | 275 | 4% | Σ   |  |
| 195 | Suero | 74  | 7% | 217 | %9 | Σ   |  |
| 196 | Suero | 185 | %8 | 373 | 5% | u.  |  |
| 197 | Suero | 159 | 3% | 378 | 2% | L   |  |
| 198 | Suero | 94  | 5% | 245 | 1% | LL. |  |

**[0338]** Basándose en los datos anteriores, era evidente que los anticuerpos 9F3, 2412, 26B3 y 19D4 eran útiles en la detección de niveles de FRα en muestras biológicas, por ejemplo suero, derivadas de un sujeto. Además, las combinaciones particulares de (i) 9F3 como anticuerpo de captura y 24F12 como anticuerpo detector y (ii) 26B3 como anticuerpo de captura y 19D4 como anticuerpo detector eran capaces y particularmente eficaces para evaluar los niveles de FRα en muestras biológicas.

# EJEMPLO 15. evaluación de los niveles de fra en la orina usando tres pares de anticuerpos detectores y de captura diferentes

[0339] La capacidad de los tres pares de anticuerpos anti-FRα en la detección de los niveles de FRα se evaluó en muestras de orina. Los pares de anticuerpos utilizados fueron los siguientes: (1) 26B3 como anticuerpo detector y 9F3 como anticuerpo de captura, y (2)24F12 como anticuerpo detector y 9F3 como anticuerpo de captura.

#### 15 Método

5

20

25

30

40

45

50

55

**[0340]** Dos pares de anticuerpos fueron examinados con las curvas de calibrador completas y orina tratada previamente con una dilución 1:1 durante 2 minutos en cualquiera de guanidina 6 M, guanidina 3M o control de PBS. Las siguientes muestras de orina fueron examinadas: tres depósitos de orina humana diluidos 1:80, y cinco orinas individuales humanas diluidas 1:80 (un masculino, cuatro femininos)

[0341] Las placas se marcaron a 150  $\mu$ g/ml, +B, +T, en 4spot STD ((Meso Scale Discovery, Gaithersburg, Maryland)), una captura por pocillo. Detecciones se realizaron a 1  $\mu$ g/mL. Diluyente 100 + HAMA + mlgG se utilizó para las muestras y calibrador. Diluyente 3 se utilizó para detecciones. Los diluyentes eran diluyentes disponibles comercialmente obtenidos de Meso Scale Discovery.

[0342] Se empleó el siguiente protocolo para ECLIA. Se añadieron las muestras a 50 μl/pocillo. Las muestras se agitaron durante 2 horas. Las muestras se lavaron con solución salina de tampón fosfato (PBS) con el detergente Tween 20 (PBST). El anticuerpo detector se añadió a 25 μl/pocillo. Las muestras se agitaron durante 2 horas y posteriormente se lavaron con PBST. La emisión de electroquimioluminiscencia (ECL) de las muestras se leyó con 2X MSD Buffer T.

[0343] Los resultados de estos experimentos se muestran en las Tablas 26-27.

Tabla 26: Detección de niveles FRα en la orina usando 26B3 como anticuerpo detector y 9F<sub>3</sub> como anticuerpo de captura

| Detectar                  | 26B3                             |      |              |                                           |                                  |                 |                                  |     |
|---------------------------|----------------------------------|------|--------------|-------------------------------------------|----------------------------------|-----------------|----------------------------------|-----|
| Capturar                  | 9F3                              |      |              |                                           |                                  |                 |                                  |     |
|                           | 6M Guanic                        | lina |              | 3M Guanio                                 | dina                             |                 | Control PBS                      | S   |
| ID<br>Muestra             | Conc. de reequipo ajustado pg/mL | %CV  | % of control | Conc. de<br>reequipo<br>ajustado<br>pg/mL | %CV                              | % de<br>control | Conc. de reequipo ajustado pg/mL | %CV |
| Depósito<br>de orina<br>1 | 13,252                           | 2%   | 114%         | 14,505                                    | 10%                              | 124%            | 11,655                           | 17% |
| Depósito<br>de orina<br>2 | 14,827                           | 5%   | 133%         | 17,039                                    | 4%                               | 152%            | 11,187                           | 5%  |
| Depósito<br>de orina<br>3 | 11,280                           | 5%   | 119%         | 9,065                                     | 10%                              | 96%             | 9,479                            | 9%  |
| Ind de<br>orina 1         | 1,747                            | 3%   | 99%          | 1,754                                     | 6%                               | 100%            | 1,760                            | 12% |
| Ind de<br>orina 2         | 40,505                           | 7%   | 145%         | 46,622                                    | 5%                               | 167%            | 27,920                           | 13% |
| Ind de<br>orina 3         | 1,623                            | 1%   | 117%         | 1,496                                     | 5%                               | 108%            | 1,381                            | 4%  |
| Ind de<br>orina 4         | 12,091                           | 2%   | 86%          | 14,941                                    | 5%                               | 107%            | 13,996                           | 13% |
| Ind de<br>orina 5         | 22,829                           | 2%   | 128%         | 24,607                                    | 8%                               | 137%            | 17,899                           | 5%  |
|                           | Media                            | 3%   | 118%         | Media                                     | 7%                               | 124%            | Media                            | 10% |
|                           |                                  |      |              |                                           | Diferencia<br>de condición<br>6M | <u>6%</u>       |                                  |     |

**Tabla 27:** Detección de niveles  $FR\alpha$  en orina usando 24F12 como anticuerpo detector y 9F3 como anticuerpo de captura

| 5  |  |
|----|--|
| 10 |  |
| 15 |  |
| 20 |  |
| 25 |  |
| 30 |  |
|    |  |

45

| Detectar               | 24F12                            |     |              |                                  |                                     |              |                                  |     |
|------------------------|----------------------------------|-----|--------------|----------------------------------|-------------------------------------|--------------|----------------------------------|-----|
| Capturar               | 9F3                              |     |              |                                  |                                     |              |                                  |     |
|                        | 6M Guanid                        | ina |              | 3M Guanid                        | ina                                 |              | Control PB                       | S   |
| ID<br>Muestra          | Conc. de reequipo ajustado pg/mL | %CV | % of control | Conc. de reequipo ajustado pg/mL | %CV                                 | % of control | Conc. de reequipo ajustado pg/mL | %CV |
| Depósito<br>de orina 1 | 10,883                           | 2%  | 53%          | 14,689                           | 9%                                  | 72%          | 20,504                           | 10% |
| Depósito<br>de orina 2 | 11,763                           | 8%  | 60%          | 16,487                           | 7%                                  | 85%          | 19,468                           | 1%  |
| Depósito<br>de orina 3 | 7,456                            | 9%  | 40%          | 9,362                            | 17%                                 | 50%          | 18,677                           | 7%  |
| Ind de<br>orina 1      | 1,376                            | 1%  | 39%          | 1,894                            | 7%                                  | 54%          | 3,501                            | 3%  |
| Ind de<br>orina 2      | 29,567                           | 0%  | 61%          | 37,843                           | 13%                                 | 78%          | 48,607                           | 5%  |
| Ind de<br>orina 3      | 1,621                            | 4%  | 61%          | 2,153                            | 2%                                  | 81%          | 2,667                            | 1%  |
| Ind de<br>orina 4      | 10,470                           | 6%  | 58%          | 14,116                           | 5%                                  | 78%          | 18,175                           | 6%  |
| Ind de<br>orina 5      | 19,390                           | 6%  | 68%          | 22,076                           | 23%                                 | 78%          | 28,421                           | 4%  |
|                        | Media                            | 5%  | 55%          | Media                            | 10%                                 | 72%          | Media                            | 5%  |
|                        |                                  |     |              |                                  | Diferencia<br>de<br>condición<br>6M | 17%          |                                  |     |

[0344] Basándose en los datos anteriores, era evidente que los anticuerpos de 9F3, 24F12, 26B3 y 19D4 eran útiles en la detección de niveles de FRα en muestras biológicas derivadas de un sujeto.
 40 Además, las combinaciones de (1)26B3 como anticuerpo detector y 9F3 como anticuerpo de captura y (2)24F12 como anticuerpo detector y 9F3 como anticuerpo de captura eran capaces y particularmente eficaces para evaluar niveles de FRα en muestras biológicas.

[0345] Un segundo conjunto de experimentos, siguiendo el protocolo descrito anteriormente y utilizando los mismos dos pares de anticuerpos, se llevaron a cabo utilizando cuatro orinas individuales humanas femeninas diluidas 1:80. La orina se trató previamente con una dilución 1:1 durante 2 minutos en cualquiera de guanidina 3M o control de PBS. Los resultados se muestran en las Tablas 28-29.

Tabla 28: Detección de niveles FR $\alpha$  en la orina usando 26B3 como anticuerpo detector y 9F3 como  $_{50}$  anticuerpo de captura

| 55 |  |
|----|--|
| 60 |  |
| 65 |  |

| Detectar          | 26B3                             |     |                 |                                  |     |
|-------------------|----------------------------------|-----|-----------------|----------------------------------|-----|
| Capturar          | 9F3                              |     |                 |                                  |     |
|                   | 3M Guanidina                     |     |                 | Control PBS                      |     |
| ID de<br>muestra  | Conc. de reequipo ajustado pg/mL | %CV | % de<br>control | Conc. de reequipo ajustado pg/mL | %CV |
| Ind de orina<br>2 | 33,824                           | 4%  | 98%             | 34,569                           | 2%  |
| Ind de orina<br>3 | 2,086                            | 4%  | 99%             | 2,107                            | 3%  |
| Ind de orina<br>4 | 15,283                           | 5%  | 97%             | 15,696                           | 2%  |
| Ind de orina<br>5 | 24,955                           | 4%  | 92%             | 26,991                           | 3%  |
|                   | Media                            | 4%  | 97%             | Media                            | 3%  |

Tabla 29: Detección de niveles FRα en orina usando 24F12 como anticuerpo detector y 9F3 como anticuerpo de captura

| Detect         | 24F12                            |          |              |                                  |     |
|----------------|----------------------------------|----------|--------------|----------------------------------|-----|
| Capture        | 9F3                              |          |              |                                  |     |
|                | 3M Guanidina                     |          |              | Control PBS                      |     |
|                | Conc. de reequipo ajustado pg/mL | V/∧( .\/ | Control<br>% | Conc. de reequipo ajustado pg/mL | %CV |
| Ind de orina 2 | 38,455                           | 4%       | 106%         | 36,414                           | 6%  |
| Ind de orina 3 | 2,447                            | 2%       | 109%         | 2,250                            | 2%  |
| Ind de orina 4 | 15,303                           | 3%       | 81%          | 18,964                           | 8%  |
| Ind de orina 5 | 27,216                           | 0%       | 95%          | 28,651                           | 5%  |
|                | Media                            | 2%       | 98%          | Media                            | 5%  |

15

35

10

[0346] Los resultados de este segundo conjunto de experimentos confirman aún más los resultados de la primera serie de experimentos y demuestran que el nivel de FRα que no está unido a una célula se puede evaluar de manera fiable, por ejemplo, en la orina, usando ensayos tales como el ensayo ECLIA y utilizando los anticuerpos 26B3, 9F3, 24F12. Además, los resultados demuestran que tales ensayos pueden detectar eficazmente FRα usando pares de anticuerpos de detector y de captura que se unen FRα (tales como, *por ejemplo.*, 26B3 como anticuerpo detector y 9F3 como anticuerpo de captura).

#### EJEMPLO 16. evaluación de los niveles de fra en suero y plasma

30 [0347] Los niveles de FRα se evaluaron en muestras de suero y plasma en dos días separados. Los sujetos de los que se derivaron las muestras eran o bien sujetos normales o pacientes con cáncer de ovario o pulmón.

[0348] El protocolo para evaluar niveles de FRα era igual que el explicado en el Ejemplo 14 anterior. Los pares de anticuerpos usados para la evaluación de niveles FRα fueron también los mismos que en el Ejemplo 14, es decir., Par 1, en el que 9F3 era el anticuerpo de captura y 24F12 era el anticuerpo detector, y el Par 2, en el que 26B3 era el anticuerpo de captura y 19D4 era el anticuerpo detector. [0349] Los resultados se proporcionan en la Tabla 30.

Tabla 30: Niveles de FR $\alpha$  evaluados en muestras de suero y plasma en diferentes días

|                  |            |                                       |            | Dia 1            | Dia 2            | Dia 1                | Dia 2                | Dia 1            | Dia 2            | Dia 1             | Dia 2             |
|------------------|------------|---------------------------------------|------------|------------------|------------------|----------------------|----------------------|------------------|------------------|-------------------|-------------------|
|                  |            |                                       |            | FRa/par          | FRα/par<br>1     | FRa/par <sup>-</sup> | FRα/par <sup>-</sup> | FRa/par          | FRa/pair<br>2    | FRatipar<br>2     | FRa/lpar<br>2     |
| ID de<br>donante | Enfermedad | Diagnosis confirmada<br>de biomuestra | Etapa      | Suero<br>(pg/ml) | Suero<br>(pg/ml) | Plasma<br>(pg/ml)    | Plasma<br>(pg/ml)    | Suero<br>(pg/ml) | Suero<br>(pg/ml) | Plasma<br>(pg/mL) | Plasma<br>(pg/mL) |
| 17168            | ovario     | Suero FRA - Par 1 contra<br>Par 2     | -          | 1236             | 1282             | 1466                 | 1183                 | 1298             | 1384             | 1410              | 1336              |
| 46464            | ovario     | Carcinoma seroso                      | IIIC       | 1589             | 1848             | 2027                 | 2147                 | 1966             | 2018             | 2066              | 2210              |
| 47219            | ovario     | Adenocarcinoma                        | No aparece | 447              | 432              | 1208                 | 748                  | 435              | 446              | 969               | 21.5              |
| 47721            | ovario     | Cistadenocarcinoma seroso papilar     | IIIB       | 1307             | 1400             | 2291                 | 2100                 | 1642             | 1479             | 1940              | 1807              |
| 48185            | ovario     | Adenocarcinoma                        | No aparece | 1058             | 1038             | 883                  | 652                  | 918              | 872              | 811               | 781               |
| 48254            | ovario     | Adenocarcinoma                        | )IIIC      | 511              | 495              | 3030                 | 2569                 | 909              | 445              | 1332              | 1370              |
| 48258            | ovario     | Adenocarcinoma                        | No aparece | 471              | 552              | 1978                 | 1070                 | 629              | 547              | 878               | 798               |
| 48282            | ovario     | Adenocarcinoma                        | No aparece | 375              | 388              | 688                  | 536                  | 446              | 407              | 540               | 428               |
| 48698            | ovario     | Cardinoma, no diferenciado            | IIIB       | 279              | 231              | 308                  | 225                  | 340              | 255              | 328               | 228               |
| 49028            | ovario     | Carcinoma seroso                      | IIIC       | 727              | 290              | 158                  | 169                  | 468              | 526              | 192               | 192               |
| 49030            | ovario     | Carcinoma seroso                      | IIIC       | 215              | 205              | 695                  | 485                  | 362              | 291              | 734               | 290               |
| 49033            | ovario     | Cistadenocarcinoma seroso             | IIIC       | 629              | 457              | 805                  | 717                  | 511              | 451              | 629               | 899               |
| 49071            | ovario     | Cistadenocarcinoma seroso             | 2          | 335              | 338              | 1884                 | 1462                 | 559              | 457              | 1224              | 1028              |
| 49092            | ovario     | Cistadenocarcinoma papilar            | No aparece | 272              | 228              | 1235                 | 615                  | 399              | 334              | 878               | 535               |
| 49258            | ovario     | Cistadenocarcinoma seroso papilar     | IIIB       | 201              | 190              | 343                  | 142                  | 328              | 253              | 368               | 244               |
| 49335            | ovario     | Cistadenocarcinoma seroso             | IIIB       | 1904             | 1698             | 1560                 | 1485                 | 1879             | 1503             | 1868              | 1627              |
| 49369            | ovario     | Carcinoma seroso                      | )IIIC      | 2451             | 2805             | 2589                 | 2641                 | 3402             | 2659             | 2898              | 2605              |
| 49551            | ovario     | Carcinoma seroso                      | =          | 408              | 385              | 364                  | 342                  | 505              | 432              | 436               | 418               |
| 60009            | ovario     | Carcinoma seroso                      | IIIC       | 2887             | 4127             | 2641                 | 3811                 | 4466             | 3914             | 3533              | 3519              |

| 50370    | ovary  | Cistadenocarcinoma seroso                 | IIB        | 619 | 220 | 788  | 611  | 813 | 762 | 708 | 758 |
|----------|--------|-------------------------------------------|------------|-----|-----|------|------|-----|-----|-----|-----|
| 50378    | ovario | Cistadenocarcinoma seroso papilar         | _          | 410 | 387 | 330  | 256  | 388 | 464 | 381 | 387 |
| 50460    | ovario | Cistadenocarcinoma seroso papilar         | BIII B     | 254 | 274 | 688  | 414  | 284 | 272 | 489 | 420 |
| 50467    | ovario | Adenocarcinoma de célula<br>transparente  | -          | 427 | 314 | 414  | 300  | 272 | 313 | 292 | 309 |
| 50635    | ovario | Cistadenocarcinoma seroso                 | ΙA         | 247 | 227 | 462  | 367  | 355 | 345 | 392 | 392 |
| 51503    | ovario | Cistadenocarcinoma papilar                | _          | 291 | 250 | 925  | 651  | 315 | 326 | 818 | 498 |
| 51504    | ovario | Cistadenoma mucoso, malignidad borderline | _          | 224 | 184 | 2438 | 1395 | 225 | 240 | 916 | 856 |
| 51506    | ovario | Cistadenoma mucoso<br>papilar             | =          | 270 | 258 | 713  | 324  | 335 | 384 | 457 | 424 |
| 52949    | ovario | Adenocarcinoma                            | No aparece | 446 | 436 | 288  | 257  | 435 | 483 | 395 | 390 |
| 52952    | ovario | Papillary serous<br>cystadenocarcinoma    | No aparece | 480 | 415 | 451  | 376  | 310 | 351 | 299 | 321 |
| 52957    | ovario | Cistadenocarcinoma seroso papilar         | =          | 373 | 334 | 274  | 221  | 318 | 374 | 303 | 330 |
| 52978    | ovario | Cistadenoma mucoso<br>papilar             | =          | 348 | 318 | 533  | 429  | 525 | 559 | 596 | 624 |
| 52980    | ovario | Cistadenocarcinoma seroso                 | Ξ          | 627 | 630 | 1447 | 1019 | 834 | 908 | 964 | 966 |
| DLSN-057 | normal |                                           |            | 309 | 402 | 413  | 394  | 515 | 527 | 509 | 531 |
| DLSN-056 | normal |                                           |            | 273 | 254 | 483  | 498  | 480 | 458 | 522 | 524 |
| DLSN-052 | normal |                                           |            | 282 | 289 | 293  | 298  | 446 | 483 | 438 | 401 |

| 256<br>399<br>176<br>176<br>236<br>236<br>237<br>237<br>237<br>238<br>238<br>328<br>328<br>328<br>328<br>328<br>328<br>328<br>328 | 282<br>362<br>188<br>188<br>295<br>244<br>245<br>392<br>463<br>265<br>265<br>265<br>265<br>27<br>27<br>27<br>27<br>27 |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|

| DLSO-020  | ovario | 536  | 261  | 453  | 389          |
|-----------|--------|------|------|------|--------------|
| DLSO-026  | ovario |      |      |      |              |
| DLSO-027  | ovario | 290  | 140  | 269  | 218          |
| DLSO-028  | ovario | 357  | 207  | 397  | 18           |
| DLSO-029  | ovario | 412  | 236  | 369  | 361          |
| DLSO-030  | ovario | 387  | 498  | 595  | 616          |
| DLSO-031  | ovario | 348  | 496  | 353  | 413          |
| DLSO-034  | ovario | 197  | 222  | 308  | 346          |
| DLSO-035  | ovario | 144  | 540  | 298  | 587          |
| DLSO-023  | ovario | 404  | 216  | 423  | 337          |
| DLSO-025  | ovario | 306  | 156  | 301  | 272          |
| DLSO-026  | ovario | 231  | 293  | 406  | 378          |
| DLSO-032  | ovario | 151  | 190  | 240  | 255          |
| DLSO-018  | ovario | 155  | 340  | 303  | 343          |
| DLSO-019  | ovario | 350  | 330  |      | 5—15<br>5—33 |
| DLSO-021  | ovario | 329  | 365  | 346  | 434          |
| DLSO-024  | ovario | 260  | 140  | 338  | 318          |
| 10001627  | ovario | 1481 | 1396 | 1583 | 1655         |
| 11025393  | ovario | 5241 | 4069 | 4998 | 5486         |
| 11025394  | ovario | 473  | 371  | 488  | 518          |
| 110025395 | ovario | 3215 | 2920 | 3466 | 4043         |
| 110025397 | ovario | 109  | 145  | 245  | 232          |

| 110025398 | ovario | 476  | 2    | 497  | 613   | 543   |
|-----------|--------|------|------|------|-------|-------|
| 110025399 | ovario | 166  |      | 145  | 234   | 229   |
| 110025402 | ovario | 219  |      | 221  | 389   | 357   |
| 110025403 | ovario | 7529 | 6    | 0669 | 13033 | 11888 |
| 110025405 | ovario | 510  |      | 508  | 836   | 835   |
| S)        | ovario | 164  | 7000 | 328  | 252   | 375   |
| 00        | ovario | 251  | too  | 602  | 473   | 573   |
| 0         | ovario | 249  | 522  | 743  | 482   | 561   |
| 10        | ovario | 288  |      | 569  | 412   | 446   |
| 11        | ovario | 180  | 323  | 417  | 310   | 397   |
| 17        | ovario | 296  |      | 760  | 342   | 628   |
| 110025392 | ovario | 1094 | 4    | 2210 | 206   | 1294  |

[0350] Basándose en los datos anteriores, era evidente que los anticuerpos 9F3, 2412, 26B3 y 19D4 eran útiles en la detección de niveles de FR $\alpha$  en muestras biológicas, por ejemplo, suero o plasma, derivadas de un sujeto. Además, las combinaciones particulares de (i) 9F3 como anticuerpo de captura y 24F12 como anticuerpo detector y (ii) 26B3 como anticuerpo de captura y 19D4 como anticuerpo detector eran capaces y particularmente eficaces en la evaluación de los niveles de FR $\alpha$  en muestras biológicas.

[0351] Para los ensayos llevados a cabo utilizando tanto el par 1 como par 2, hubo una alta correlación entre los niveles FRα de suero y plasma. La Figura 16 muestra la correlación en niveles FRα de suero y plasma para los ensayos llevados a cabo usando el par 1 (véase el ejemplo 16). El valor R² era de 0,8604. La Figura 17 muestra la correlación en suero contra niveles FRα de plasma para los ensayos llevados a cabo usando el par 2 (véase el Ejemplo 16). El valor R² era de 0,9766.

- [0352] Para ambas muestras de suero y plasma, hubo una alta correlación entre los niveles FRα medidos usando el par 1 y el par 2. La Figura 18 muestra la correlación en niveles FRα de suero para los ensayos llevados a cabo usando el par 1 contra el par 2 (véase el Ejemplo 16). El valor R² era 0,9028. La Figura 19 muestra la correlación en niveles FRα de plasma para los ensayos llevados a cabo usando el par 1 frente a par 2 (véase el Ejemplo 16). El valor R² era 0,8773.
- [0353] Los resultados también mostraron que hubo una alta correlación entre niveles FR $\alpha$  medidos en días diferentes. La Figura 20 muestra la correlación entre días en niveles FR $\alpha$  de suero para ensayos realizados usando el par 2. El valor R<sup>2</sup> era 0,9839.

#### **EQUIVALENTES**

25

[0354] Los expertos en la técnica reconocerán, o serán capaces de determinar usando no más que experimentación rutinaria, muchos equivalentes de las realizaciones específicas de la invención aquí descritas.

30

5

### **LISTADO DE SECUENCIAS** 5 [0355] <110> MORPHOTEK INC. <120> RECEPTOR DEL FOLATO ALFA COMO MARCADOR DIAGNÓSTICO Y PROGNÓSTICO PARA EL RECEPTOR DE FOLATAS CÁNCERES EXPRESSORES DE ALFA 10 <130> 118557-01420 <140> PCT/US2011/059411 <141> 2011-11-04 <150> 61/508,444 <151> 2011-07-15 <150> 61/410,497 15 <151> 2010-11-05 <160>90 <170> PatentIn version 3.5 <210> 1 <211> 10 20 <212> PRT <213> Secuencia Artificial <220> <221> Fuente 25 <223> /nota="Descrición de Secuencia Artificial: Peptido sintético" <400> 1 Gly Phe Thr Phe Ser Gly Tyr Gly Leu Ser 30 10 35 <210> 2 <211> 17 <212> PRT <213> Secuencia Aritifical <220> 40 <221> Fuente <223> /nota="Descrición de Secuencia Artificial: péptido Sintético" <400> 2 Met Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Ala Asp Ser Val Lys 10 15 Gly 45 <210> 3 50 <211> 10 <212> PRT <213> Secuencia Artificial <220> <221> Fuente 55 <223> /nota="Descripción de Secuencia Artificial: Péptido Sintético" <400> 3

```
His Gly Asp Asp Pro Ala Trp Phe Ala Tyr
                                       5
                                                                 10
5
     <210> 4
10
     <211> 12
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <221> Fuente
15
     <223> /nota="Descripción de Secuencia Artificial: Péptido sintético"
20
                   Ser Val Ser Ser Ser Ile Ser Ser Asn Asn Leu His
                                         5
                                                                    10
25
     <210> 5
     <211> 7
30
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <221> Fuente
     <223> /nota="Descripción de secuencia Artificial: Péptido sintético"
35
     <400> 5
40
                   Gly Thr Ser Asn Leu Ala Ser
                                                  5
45
     <210> 6
     <211> 11
     <212> PRT
     <213> Secuencia Artificial
50
     <220>
     <221> Fuente
     <223> /nota="Descrición de la Secuencia Artificial: Péptido sintético"
     <400>6
55
              Gln Gln Trp Ser Ser Tyr Pro Tyr Met Tyr Thr
                                                               10
60
```

```
<210> 7
<211> 449
<212> PRT
5 <213> Secuencia Artificial
<220>
<221> Fuente
<223> /nota="Descripción de Secuencia Artificial: Polipéptido sintético"
<400> 7
```

Glu Val Gln Leu Val dt S 2e62Ay061yTGly Val Val Gln P

15

Ser Leu Arg Leu Ser Cys Ser Ala Ser Gly Phe Thr Phe Ser Gly Tyr Gly Leu Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Met Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Ala Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Phe Leu Gln Met Asp Ser Leu Arg Pro Glu Asp Thr Gly Val Tyr Phe Cys Ala Arg His Gly Asp Asp Pro Ala Trp Phe Ala Tyr Trp Gly Gln Gly 105 Thr Pro Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 185 Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 200 Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro 230 Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 245 250 255 Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp

| 5  |                           |            |            |            |            |            |            |            |            |            |            |            |            |            |                |            |            |
|----|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|
|    |                           | Pro        | Glu        | Val<br>275 | Lys        | Phe        | Asn        | Trp        | Tyr<br>280 | Val        | Asp        | Gly        | Val        | Glu<br>285 | Val            | His        | Asn        |
| 10 |                           | Ala        | Lys<br>290 | Thr        | Lys        | Pro        | Arg        | Glu<br>295 | Glu        | Gln        | Tyr        | Asn        | Ser<br>300 | Thr        | Tyr            | Arg        | Val        |
| 15 |                           | Val<br>305 | Ser        | Val        | Leu        | Thr        | Val<br>310 | Leu        | His        | Gln        | Asp        | Trp<br>315 | Leu        | Asn        | Gly            | Lys        | Glu<br>320 |
| 20 |                           | Tyr        | Lys        | Cys        | Lys        | Val<br>325 | Ser        | Asn        | Lys        | Ala        | Leu<br>330 | Pro        | Ala        | Pro        | Ile            | Glu<br>335 | Lys        |
| 25 |                           | Thr        | Ile        | Ser        | Lys<br>340 | Ala        | Lys        | Gly        | Gln        | Pro<br>345 | Arg        | Glu        | Pro        | Gln        | <b>Val</b> 350 | Tyr        | Thr        |
| 30 |                           | Leu        | Pro        | Pro<br>355 | Ser        | Arg        | Asp        | Glu        | Leu<br>360 | Thr        | Lys        | Asn        | Gln        | Val<br>365 | Ser            | Leu        | Thr        |
| 35 |                           | Cys        | Leu<br>370 | Val        | Lys        | Gly        | Phe        | Tyr<br>375 | Pro        | Ser        | Asp        | Ile        | Ala<br>380 | Val        | Glu            | Trp        | Glu        |
| 40 |                           | Ser<br>385 | Asn        | Gly        | Gln        | Pro        | Glu<br>390 | Asn        | Asn        | Tyr        | Lys        | Thr<br>395 | Thr        | Pro        | Pro            | Val        | Leu<br>400 |
| 45 |                           | Asp        | Ser        | Asp        | Gly        | Ser<br>405 | Phe        | Phe        | Leu        | Tyr        | Ser<br>410 | Lys        | Leu        | Thr        | Val            | Asp<br>415 | Lys        |
| 50 |                           | Ser        | Arg        | Trp        | Gln<br>420 | Gln        | Gly        | Asn        | Val        | Phe<br>425 | Ser        | Cys        | Ser        | Val        | Met<br>430     | His        | Glu        |
| 55 |                           | Ala        | Leu        | His<br>435 | Asn        | His        | Tyr        | Thr        | Gln<br>440 | Lys        | Ser        | Leu        | Ser        | Leu<br>445 | Ser            | Pro        | Gly        |
| 60 |                           | Lys        |            |            |            |            |            |            |            |            |            |            |            |            |                |            |            |
| 65 | <210><211><211><212><213> | 217<br>PRT | ncia Ar    | tificial   |            |            |            |            |            |            |            |            |            |            |                |            |            |

5

<220> <221> Fuente <223> /nota="Descripción de secuencia artificial: Polipéptido Sintético" <400> 8 Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 10 15 Asp Arg Val Thr Ile Thr Cys Ser Val Ser Ser Ser Ile Ser Ser Asn Asn Leu His Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Pro Trp 40 35 Ile Tyr Gly Thr Ser Asn Leu Ala Ser Gly Val Pro Ser Arg Phe Ser 50 55 Gly Ser Gly Ser Gly Thr Asp Tyr Thr Phe Thr Ile Ser Ser Leu Gln Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Tyr Pro 90 Tyr Met Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr 105 Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu 115 120 125 Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro 130 135 Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly 160 145 150 155

> Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His 180 185 190

> Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr

170

175

Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val 195 200 205

Thr Lys Ser Phe Asn Arg Gly Glu Cys 210 215

<210> 9
<211> 468
5 <212> PRT
<213> Secuencia Artificial
<220>
<221> Fuente
<223> /nota="Descripción de la secuencia Artificial: Polipéptido Sintético"
10 <400> 9

Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly
1 5 10 15

| Val        | His        | Ser        | Glu<br>20  | Val        | Gln        | Leu        | Val        | Glu<br>25  | Ser            | Gly        | Gly        | Gly        | Val<br>30  | Val        | Gln        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|------------|------------|------------|------------|
| Pro        | Gly        | Arg<br>35  | Ser        | Leu        | Arg        | Leu        | Ser<br>40  | Cys        | Ser            | Ala        | Ser        | Gly<br>45  | Phe        | Thr        | Phe        |
| Ser        | Gly<br>50  | Tyr        | Gly        | Leu        | Ser        | Trp<br>55  | Val        | Arg        | Gln            | Ala        | Pro<br>60  | Gly        | Lys        | Gly        | Leu        |
| Glu<br>65  | Trp        | Val        | Ala        | Met        | Ile<br>70  | Ser        | Ser        | Gly        | Gly            | Ser<br>75  | Tyr        | Thr        | Tyr        | Tyr        | Ala<br>80  |
| Asp        | Ser        | Val        | Lys        | Gly<br>85  | Arg        | Phe        | Ala        | Ile        | Ser<br>90      | Arg        | Asp        | Asn        | Ala        | Lys<br>95  | Asn        |
| Thr        | Leu        | Phe        | Leu<br>100 | Gln        | Met        | Asp        | Ser        | Leu<br>105 | Arg            | Pro        | Glu        | Asp        | Thr<br>110 | Gly        | Val        |
| Tyr        | Phe        | Cys<br>115 | Ala        | Arg        | His        | Gly        | Asp<br>120 | Asp        | Pro            | Ala        | Trp        | Phe<br>125 | Ala        | Tyr        | Trp        |
| Gly        | Gln<br>130 | Gly        | Thr        | Pro        | Val        | Thr<br>135 | Val        | Ser        | Ser            | Ala        | Ser<br>140 | Thr        | Lys        | Gly        | Pro        |
| Ser<br>145 | Val        | Phe        | Pro        | Leu        | Ala<br>150 | Pro        | Ser        | Ser        | Lys            | Ser<br>155 | Thr        | Ser        | Gly        | Gly        | Thr<br>160 |
| Ala        | Ala        | Leu        | Gly        | Cys<br>165 | Leu        | Val        | Lys        | Asp        | <b>Tyr</b> 170 | Phe        | Pro        | Glu        | Pro        | Val<br>175 | Thr        |
| Val        | Ser        | Trp        | Asn<br>180 | Ser        | Gly        | Ala        | Leu        | Thr<br>185 | Ser            | Gly        | Val        | His        | Thr<br>190 | Phe        | Pro        |
| Ala        | Val        | Leu<br>195 | Gln        | Ser        | Ser        | Gly        | Leu<br>200 | Tyr        | Ser            | Leu        | Ser        | Ser<br>205 | Val        | Val        | Thr        |
| Val        | Pro<br>210 | Ser        | Ser        | Ser        | Leu        | Gly<br>215 | Thr        | Gln        | Thr            | Tyr        | Ile<br>220 | Cys        | Asn        | Val        | Asn        |
| His<br>225 | Lys        | Pro        | Ser        | Asn        | Thr<br>230 | Lys        | Val        | Asp        | Lys            | Lys<br>235 | Val        | Glu        | Pro        | Lys        | Ser<br>240 |
| Cys        | Asp        | Lys        | Thr        | His<br>245 | Thr        | Суз        | Pro        | Pro        | Cys<br>250     | Pro        | Ala        | Pro        | Glu        | Leu<br>255 | Leu        |
| Gly        | Gly        | Pro        | Ser<br>260 | Val        | Phe        | Leu        | Phe        | Pro<br>265 | Pro            | Lys        | Pro        | Lys        | Asp<br>270 | Thr        | Leu        |
| Met        | Ile        | Ser        | Arg        | Thr        | Pro        | Glu        | Val        | Thr        | Cys            | Val        | Val        | Val        | Asp        | Val        | Ser        |

|            |                   | 275        |            |            |            |            | 280        |            |            |            |            | 285        |            |            |            |
|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| His        | Glu<br>290        | Asp        | Pro        | Glu        | Val        | Lys<br>295 | Phe        | Asn        | Trp        | Tyr        | Val<br>300 | Asp        | Gly        | Val        | Glu        |
| Val<br>305 | His               | Asn        | Ala        | Lys        | Thr<br>310 | Lys        | Pro        | Arg        | Glu        | Glu<br>315 | Gln        | Tyr        | Asn        | Ser        | Thr<br>320 |
| Tyr        | Arg               | Val        | Val        | Ser<br>325 | Val        | Leu        | Thr        | Val        | Leu<br>330 | His        | Gln        | Asp        | Trp        | Leu<br>335 | Asn        |
| Gly        | Lys               | Glu        | Tyr<br>340 | Lys        | Суз        | Lys        | Val        | Ser<br>345 | Asn        | Lys        | Ala        | Leu        | Pro<br>350 | Ala        | Pro        |
| Ile        | Glu               | Lys<br>355 | Thr        | Ile        | Ser        | Lys        | Ala<br>360 | Lys        | Gly        | Gln        | Pro        | Arg<br>365 | Glu        | Pro        | Gln        |
| Val        | <b>Tyr</b><br>370 | Thr        | Leu        | Pro        | Pro        | Ser<br>375 | Arg        | Asp        | Glu        | Leu        | Thr<br>380 | Lys        | Asn        | Gln        | Val        |
| Ser<br>385 | Leu               | Thr        | Cys        | Leu        | Val<br>390 | Lys        | Gly        | Phe        | Tyr        | Pro<br>395 | Ser        | Asp        | Ile        | Ala        | Val<br>400 |
| Glu        | Trp               | Glu        | Ser        | Asn<br>405 | Gly        | Gln        | Pro        | Glu        | Asn<br>410 | Asn        | Tyr        | Lys        | Thr        | Thr<br>415 | Pro        |
| Pro        | Val               | Leu        | Asp<br>420 | Ser        | Asp        | Gly        | Ser        | Phe<br>425 | Phe        | Leu        | Tyr        | Ser        | Lys<br>430 | Leu        | Thr        |
| Val        | Asp               | Lys<br>435 | Ser        | Arg        | Trp        | Gln        | Gln<br>440 | Gly        | Asn        | Val        | Phe        | Ser<br>445 | Cys        | Ser        | Val        |
| Met        | His<br>450        | Glu        | Ala        | Leu        | His        | Asn<br>455 | His        | Tyr        | Thr        | Gln        | Lys<br>460 | Ser        | Leu        | Ser        | Leu        |
| Ser<br>465 | Pro               | Gly        | Lys        |            |            |            |            |            |            |            |            |            |            |            |            |

<210> 10

- <211> 236
- <212> PRT
- <213> Secuncia Artificial
- <220>
- 5
- <221> Fuente <223> /nota="Descripción de secuencia artificial: Polipéptido Sintético" <400> 10

| Met<br>1   | Gly        | Trp        | Ser        | Cys<br>5   | Ile        | Ile        | Leu        | Phe        | Leu<br>10  | Val        | Ala        | Thr        | Ala        | Thr<br>15  | Gly        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Val        | His        | Ser        | Asp<br>20  | Ile        | Gln        | Leu        | Thr        | Gln<br>25  | Ser        | Pro        | Ser        | Ser        | Leu<br>30  | Ser        | Ala        |
| Ser        | Val        | Gly<br>35  | Asp        | Arg        | Val        | Thr        | Ile<br>40  | Thr        | Cys        | Ser        | Val        | Ser<br>45  | Ser        | Ser        | Ile        |
| Ser        | Ser<br>50  | Asn        | Asn        | Leu        | His        | Trp<br>55  | Tyr        | Gln        | Gln        | Lys        | Pro<br>60  | Gly        | Lys        | Ala        | Pro        |
| Lys<br>65  | Pro        | Trp        | Ile        | Tyr        | Gly<br>70  | Thr        | Ser        | Asn        | Leu        | Ala<br>75  | Ser        | Gly        | Val        | Pro        | Ser<br>80  |
| Arg        | Phe        | Ser        | Gly        | Ser<br>85  | Gly        | Ser        | Gly        | Thr        | Asp<br>90  | Tyr        | Thr        | Phe        | Thr        | Ile<br>95  | Ser        |
| Ser        | Leu        | Gln        | Pro<br>100 | Glu        | Asp        | Ile        | Ala        | Thr<br>105 | Tyr        | Tyr        | Cys        | Gln        | Gln<br>110 | Trp        | Ser        |
| Ser        | Tyr        | Pro<br>115 | Tyr        | Met        | Tyr        | Thr        | Phe<br>120 | Gly        | Gln        | Gly        | Thr        | Lys<br>125 | Val        | Glu        | Ile        |
| Lys        | Arg<br>130 | Thr        | Val        | Ala        | Ala        | Pro<br>135 | Ser        | Val        | Phe        | Ile        | Phe<br>140 | Pro        | Pro        | Ser        | Asp        |
| Glu<br>145 | Gln        | Leu        | Lys        | Ser        | Gly<br>150 | Thr        | Ala        | Ser        | Val        | Val<br>155 | Cys        | Leu        | Leu        | Asn        | Asn<br>160 |
| Phe        | Tyr        | Pro        | Arg        | Glu<br>165 | Ala        | Lys        | Val        | Gln        | Trp<br>170 | Lys        | Val        | Asp        | Asn        | Ala<br>175 | Leu        |
| Gln        | Ser        | Gly        | Asn<br>180 | Ser        | Gln        | Glu        | Ser        | Val<br>185 | Thr        | Glu        | Gln        | Asp        | Ser<br>190 | Lys        | Asp        |
| Ser        | Thr        | Tyr<br>195 | Ser        | Leu        | Ser        | Ser        | Thr<br>200 | Leu        | Thr        | Leu        | Ser        | Lys<br>205 | Ala        | Asp        | Tyr        |
| Glu        | Lys<br>210 | His        | Lys        | Val        | Tyr        | Ala<br>215 | Cys        | Glu        | Val        | Thr        | His<br>220 | Gln        | Gly        | Leu        | Ser        |
| Ser<br>225 | Pro        | Val        | Thr        | Lys        | Ser<br>230 | Phe        | Asn        | Arg        | Gly        | Glu<br>235 | Cys        |            |            |            |            |

<210> 11
<211> 1407
<212> ADN
<213> Secuencia artificial
<220>
<221> Fuente
<223> /nota="Descripción de secuncia Artificial: Polinucleotido sintético"
<400> 11

10

| 10 |            |            |            |            |            |            |      |
|----|------------|------------|------------|------------|------------|------------|------|
|    | atgggatgga | gctgtatcat | cctcttcttg | gtagcaacag | ctacaggtgt | ccactccgag | 60   |
| 15 | gtccaactgg | tggagagcgg | tggaggtgtt | gtgcaacctg | gccggtccct | gcgcctgtcc | 120  |
| 13 | tgctccgcat | ctggcttcac | cttcagcggc | tatgggttgt | cttgggtgag | acaggcacct | 180  |
|    | ggaaaaggtc | ttgagtgggt | tgcaatgatt | agtagtggtg | gtagttatac | ctactatgca | 240  |
| 20 | gacagtgtga | agggtagatt | tgcaatatcg | cgagacaacg | ccaagaacac | attgttcctg | 300  |
|    | caaatggaca | gcctgagacc | cgaagacacc | ggggtctatt | tttgtgcaag | acatggggac | 360  |
| 25 | gatcccgcct | ggttcgctta | ttggggccaa | gggaccccgg | tcaccgtctc | ctcagcctcc | 420  |
|    | accaagggcc | catcggtctt | cccctggca  | ccctcctcca | agagcacctc | tgggggcaca | 480  |
| 30 | gcggccctgg | gctgcctggt | caaggactac | ttccccgaac | cggtgacggt | gtcgtggaac | 540  |
|    | tcaggcgccc | tgaccagcgg | cgtgcacacc | ttcccggctg | tcctacagtc | ctcaggactc | 600  |
| 35 | tactccctca | gcagcgtggt | gaccgtgccc | tccagcagct | tgggcaccca | gacctacatc | 660  |
| 33 | tgcaacgtga | atcacaagcc | cagcaacacc | aaggtggaca | agaaagttga | gcccaaatct | 720  |
|    | tgtgacaaaa | ctcacacatg | cccaccgtgc | ccagcacctg | aactcctggg | gggaccgtca | 780  |
| 40 | gtcttcctct | tcccccaaa  | acccaaggac | accctcatga | tctcccggac | ccctgaggtc | 840  |
|    | acatgcgtgg | tggtggacgt | gagccacgaa | gaccctgagg | tcaagttcaa | ctggtacgtg | 900  |
| 45 | gacggcgtgg | aggtgcataa | tgccaagaca | aagccgcggg | aggagcagta | caacagcacg | 960  |
|    | taccgtgtgg | tcagcgtcct | caccgtcctg | caccaggact | ggctgaatgg | caaggagtac | 1020 |
| 50 | aagtgcaagg | tctccaacaa | agccctccca | gcccccatcg | agaaaaccat | ctccaaagcc | 1080 |
|    | aaagggcagc | cccgagaacc | acaggtgtac | accctgcccc | catcccggga | tgagctgacc | 1140 |
| 55 | aagaaccagg | tcagcctgac | ctgcctggtc | aaaggcttct | atcccagcga | catcgccgtg | 1200 |
| 33 | gagtgggaga | gcaatgggca | gccggagaac | aactacaaga | ccacgcctcc | cgtgctggac | 1260 |
|    | tccgacggct | ccttcttctt | atattcaaag | ctcaccgtgg | acaagagcag | gtggcagcag | 1320 |
| 60 | gggaacgtct | tctcatgctc | cgtgatgcat | gaggctctgc | acaaccacta | cacgcagaag | 1380 |
|    | agcctctccc | tgtctcccgg | gaaatga    |            |            |            | 1407 |

| 5   | <210> 12<br><211> 711<br><212> ADN<br><213> Secuencia Artificial<br><220>                                                       |     |  |  |  |  |  |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|--|--|--|--|--|
| 10  | <221> fuente<br><223> /nota="Descripción de secuencia artificial: Polinucleotido sintético"<br><400> 12                         |     |  |  |  |  |  |  |  |  |  |  |  |  |
| 15  | atgggatgga gctgtatcat cctcttcttg gtagcaacag ctacaggtgt ccactccgac                                                               | 60  |  |  |  |  |  |  |  |  |  |  |  |  |
|     | atccagctga cccagagccc aagcagcctg agcgccagcg tgggtgacag agtgaccatc                                                               | 120 |  |  |  |  |  |  |  |  |  |  |  |  |
| 20  | acctgtagtg tcagctcaag tataagttcc aacaacttgc actggtacca gcagaagcca                                                               | 180 |  |  |  |  |  |  |  |  |  |  |  |  |
|     | ggtaaggete caaageeatg gatetaegge acateeaace tggettetgg tgtgeeaage                                                               | 240 |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.5 | agattcagcg gtagcggtag cggtaccgac tacaccttca ccatcagcag cctccagcca                                                               | 300 |  |  |  |  |  |  |  |  |  |  |  |  |
| 25  | gaggacatcg ccacctacta ctgccaacag tggagtagtt acccgtacat gtacacgttc                                                               | 360 |  |  |  |  |  |  |  |  |  |  |  |  |
|     | ggccaaggga ccaaggtgga aatcaaacga actgtggctg caccatctgt cttcatcttc                                                               | 420 |  |  |  |  |  |  |  |  |  |  |  |  |
| 30  | ccgccatctg atgagcagtt gaaatctgga actgcctctg ttgtgtgcct gctgaataac                                                               | 480 |  |  |  |  |  |  |  |  |  |  |  |  |
|     | ttctatccca gagaggccaa agtacagtgg aaggtggata acgccctcca atcgggtaac                                                               | 540 |  |  |  |  |  |  |  |  |  |  |  |  |
|     | tcccaggaga gtgtcacaga gcaggacagc aaggacagca cctacagcct cagcagcacc                                                               | 600 |  |  |  |  |  |  |  |  |  |  |  |  |
| 35  | ctgacgctga gcaaagcaga ctacgagaaa cacaaagtct acgcctgcga agtcacccat                                                               | 660 |  |  |  |  |  |  |  |  |  |  |  |  |
|     | cagggcctga gctcgcccgt cacaaagagc ttcaacaggg gagagtgtta a                                                                        | 711 |  |  |  |  |  |  |  |  |  |  |  |  |
| 40  |                                                                                                                                 |     |  |  |  |  |  |  |  |  |  |  |  |  |
|     | <210> 13<br><211> 110<br><212> PRT                                                                                              |     |  |  |  |  |  |  |  |  |  |  |  |  |
| 45  | <213> Secuencia artificial <220> <221> fuente <223> /nota="descripción de secuencia artificial: Polipéptido sintético" <400> 13 |     |  |  |  |  |  |  |  |  |  |  |  |  |
| 50  |                                                                                                                                 |     |  |  |  |  |  |  |  |  |  |  |  |  |

|          |                                                                  |                                         | Asp<br>1  | Ile       | Gln       | Leu        | <b>FS</b><br>5 | 26A       | 27 <b>sQ</b> £     | <b>5ЪТ</b> | 3 Ser      | Ser<br>10 | Leu       | S         |           |            | 15        |           |
|----------|------------------------------------------------------------------|-----------------------------------------|-----------|-----------|-----------|------------|----------------|-----------|--------------------|------------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|
| 5        |                                                                  |                                         | Asp       | Arg       | Val       | Thr<br>20  | Ile            | Thr       | Cys                | Ser        | Val<br>25  | Ser       | Ser       | Ser       | Ile       | Ser<br>30  | Ser       | Asn       |
|          |                                                                  |                                         | Asn       | Leu       | His<br>35 | Trp        | Tyr            | Gln       | Gln                | Lys<br>40  | Pro        | Gly       | Lys       | Ala       | Pro<br>45 | Lys        | Leu       | Leu       |
| 10       |                                                                  |                                         | Ile       | Tyr<br>50 | Gly       | Thr        | Ser            | Asn       | Leu<br>55          | ı Ala      | Ser        | Gly       | Val       | Pro<br>60 | Ser       | Arg        | Phe       | Ser       |
| 15       |                                                                  |                                         | Gly<br>65 | Ser       | Gly       | Ser        | Gly            | Thr<br>70 | Asp                | Phe        | Thr        | Phe       | Thr<br>75 | Ile       | Ser       | Ser        | Leu       | Gln<br>80 |
| 20       |                                                                  |                                         | Pro       | Glu       | Asp       | Ile        | Ala<br>85      | Thr       | Tyr                | Tyr        | Cys        | Gln<br>90 | Gln       | Trp       | Ser       | Ser        | Tyr<br>95 | Pro       |
| 25       |                                                                  | 1                                       | Tyr       | Met       | Tyr       | Thr<br>100 | Phe            | Gly       | Gln                | Gly        | Thr<br>105 | _         | Val       | Glu       | Ile       | Lys<br>110 |           |           |
| 30<br>35 | <210> 1 <211> 1 <212> F <213> S <220> <221> Fi <223> /n <400> 14 | 10<br>PRT<br>Secuer<br>uente<br>lota="[ |           |           | de Sec    | uenci      | a Artif        | icial: F  | <sup>o</sup> olipé | ptido S    | Sintétic   | o"        |           |           |           |            |           |           |
|          |                                                                  | Asp<br>1                                | Ile       | Glr       | ı Lev     | Th<br>5    | r G            | ln S      | er 1               | Pro        |            | Ser<br>10 | Leu       | Ser       | Ala       | Ser        | Val<br>15 | Gly       |
|          |                                                                  | Asp                                     | Arg       | Va]       | Thr<br>20 | : Il       | e Tl           | hr C      | ys :               |            | Val<br>25  | Ser       | Ser       | Ser       | Ile       | Ser<br>30  | Ser       | Asn       |
|          |                                                                  | Asn                                     | Leu       | His<br>35 | Trp       | ту         | r G            | ln G      |                    | Lys<br>40  | Pro        | Gly       | Lys       | Ala       | Pro<br>45 | Lys        | Leu       | Leu       |
|          |                                                                  | Ile                                     | Tyr<br>50 | Gl        | 7 Thr     | s Se       | r A            |           | eu i<br>5          | Ala        | Ser        | Gly       | Val       | Pro<br>60 | Ser       | Arg        | Phe       | Ser       |
|          |                                                                  | Gly<br>65                               | Ser       | Gl        | y Ser     | Gl         | у ТI<br>70     |           | sp '               | Tyr        | Thr        | Phe       | Thr<br>75 | Ile       | Ser       | Ser        | Leu       | Gln<br>80 |
|          |                                                                  | Pro                                     | Glu       | Asp       | ) Ile     | A1<br>85   |                | hr T      | 'yr '              | Tyr        |            | Gln<br>90 | Gln       | Trp       | Ser       | Ser        | Tyr<br>95 | Pro       |

Tyr Met Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105 110

| 5   | <210> 15<br><211> 110<br><212> PRT<br><213> Sect<br><220><br><221> Fuen | uencia    | Artifici  | al        |        |             |           |           |           |             |           |           |           |           |           |           |           |
|-----|-------------------------------------------------------------------------|-----------|-----------|-----------|--------|-------------|-----------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|     | <223> /nota<br><400> 15                                                 |           | cripció   | n de Se   | ecuenc | ia Artifi   | cial: P   | olipépti  | do SIn    | tético      |           |           |           |           |           |           |           |
| 10  |                                                                         |           |           |           |        |             |           |           |           |             |           |           |           |           |           |           |           |
| 1.5 |                                                                         | Asp<br>1  | Ile       | Gln       | Leu    | Thr<br>5    | Gln       | Ser       | Pro       | Ser         | Ser<br>10 | Leu       | Ser       | Ala       | Ser       | Val<br>15 | Gly       |
| 15  |                                                                         | Asp       | Arg       | Val       | Thr    | Ile         | Thr       | Cys       | Ser       | Val<br>25   | Ser       | Ser       | Ser       | Ile       | Ser       | Ser       | Asn       |
| 20  |                                                                         |           |           |           |        |             |           |           |           |             |           |           |           |           |           |           |           |
|     |                                                                         | Asn       | Leu       | His<br>35 | Trp    | Tyr         | Gln       | Gln       | Lys<br>40 | Pro         | Gly       | Lys       | Ala       | Pro<br>45 | Lys       | Pro       | Trp       |
| 25  |                                                                         | Ile       | Tyr<br>50 | Gly       | Thr    | Ser         | Asn       | Leu<br>55 | Ala       | Ser         | Gly       | Val       | Pro<br>60 | Ser       | Arg       | Phe       | Ser       |
| 30  |                                                                         | Gly<br>65 | Ser       | Gly       | Ser    | Gly         | Thr<br>70 | Asp       | Phe       | Thr         | Phe       | Thr<br>75 | Ile       | Ser       | Ser       | Leu       | Gln<br>80 |
| 35  |                                                                         | Pro       | Glu       | Asp       |        | Ala T<br>85 | hr T      | 'yr T     | yr Cy     | ys G1<br>90 |           | n Tr      | p Sei     | r Ser     | Tyr<br>95 | Pro       |           |
| 40  |                                                                         | Tyr       | Met       | Tyr       | Thr 1  | Phe G       | Sly G     | ln G      |           | nr Ly<br>05 | ys Va     | l Gl      | u Ile     | E Lys     |           |           |           |
| 45  | <210> 16<br><211> 110<br><212> PRT<br><213> Seci                        |           | Artifici  | al        |        |             |           |           |           |             |           |           |           |           |           |           |           |
| 50  | <220><br><221> Fuen<br><223> /nota<br><400> 16                          | ite       |           |           | secue  | ncia art    | ificial:  | polipép   | otido si  | ntético'    | "         |           |           |           |           |           |           |
| 55  |                                                                         |           |           |           |        |             |           |           |           |             |           |           |           |           |           |           |           |
| 60  |                                                                         |           |           |           |        |             |           |           |           |             |           |           |           |           |           |           |           |
| 65  |                                                                         |           |           |           |        |             |           |           |           |             |           |           |           |           |           |           |           |

```
Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Sel Ala Sel val Gly
                                                                          15
           Asp Arg Val Thr Ile Thr Cys Ser Val Ser Ser Ser Ile Ser Ser Asn
5
           Asn Leu His Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Pro Trp
                                           40
10
           Ile Tyr Gly Thr Ser Asn Leu Ala Ser Gly Val Pro Ser Arg Phe Ser
               50
                                                             60
                                      55
           Gly Ser Gly Ser Gly Thr Asp Tyr Thr Phe Thr Ile Ser Ser Leu Gln
15
                                  70
                                                        75
           Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Tyr Pro
20
           Tyr Met Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
25
    <210> 17
    <211> 119
    <212> PRT
30
    <213> Secuencia artificial
    <220>
    <221> fuente
    <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"
    <400> 17
```

|    | G1<br>1                                           | n Va                | l Gl     | ı Leu   | Gln<br>5  | Glu       | Ser       | Gly      | Pro        | Gly<br>10 | Leu       | Val       | Arg       | Pro        | Ser<br>15 | Gln       |
|----|---------------------------------------------------|---------------------|----------|---------|-----------|-----------|-----------|----------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|
| 5  | Th                                                | r Le                | u Se     | Leu     | Thr       | Cys       | Thr       | Ala      | Ser        | Gly       | Phe       | Thr       | Phe       | Ser        | Gly       | Tyr       |
| 10 |                                                   |                     |          | 20      |           |           |           |          | 25         |           |           |           |           | 30         |           |           |
| 15 | Gl                                                | y Le                | u Se     | r Trp   | Val       | Arg       | Gln       | Pro      | Pro        | Gly       | Arg       | Gly       | Leu<br>45 | Glu        | Trp       | Val       |
| 15 | Al                                                | a Me                |          | e Ser   | Ser       | Gly       | Gly<br>55 | Ser      | Tyr        | Thr       | Tyr       | Tyr<br>60 | Ala       | Asp        | Ser       | Val       |
| 20 | Ly<br>65                                          |                     | y Ar     | g Val   | Thr       | Met<br>70 | Leu       | Arg      | Asp        | Thr       | Ser<br>75 | Lys       | Asn       | Gln        | Phe       | Ser<br>80 |
| 25 | Le                                                | u Ar                | g Le     | ı Ser   | Ser<br>85 | Val       | Thr       | Ala      | Ala        | Asp       | Thr       | Ala       | Val       | Tyr        | Tyr<br>95 | Cys       |
| 30 | Al                                                | a Ar                | g Hi     | s Gly   | _         | Asp       | Pro       | Ala      | Trp<br>105 | Phe       | Ala       | Tyr       | Trp       | Gly<br>110 | Gln       | Gly       |
| 35 | Se                                                | r Le                | u Va     | l Thr   | Val       | Ser       | Ser       |          |            |           |           |           |           |            |           |           |
| 40 |                                                   |                     |          |         |           |           |           |          |            |           |           |           |           |            |           |           |
| 45 | <210> 7<br><211> 7<br><212> F<br><213> 5<br><220> | 119<br>PRT<br>Secue | ncia art | ificial |           |           |           |          |            |           |           |           |           |            |           |           |
| 50 | <221> ft<br><223> /r<br><400> 1                   | nota="              | Descrip  | ción de | la sec    | uencia    | artifici  | al: poli | péptid     | o sinté   | tico"     |           |           |            |           |           |

|    | G]<br>1                                                   | Ln | Val       | Gln       | Leu        | Gln<br>5  | ES 2<br>Glu | 2 62°<br><b>Se</b> r | / 06]<br>Gly | Pro        | Gly<br>10 | Leu       | Val       | Arg       | Pro        | Ser<br>15 | Gln       |
|----|-----------------------------------------------------------|----|-----------|-----------|------------|-----------|-------------|----------------------|--------------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|
| 5  | Tì                                                        | nr | Leu       | Ser       | Leu<br>20  | Thr       | Cys         | Thr                  | Ala          | Ser<br>25  | Gly       | Phe       | Thr       | Phe       | Ser<br>30  | Gly       | Tyr       |
| 10 | G.                                                        | Ly | Leu       | Ser<br>35 | Trp        | Val       | Arg         | Gln                  | Pro<br>40    | Pro        | Gly       | Arg       | Gly       | Leu<br>45 | Glu        | Trp       | Val       |
| 10 | A                                                         | La | Met<br>50 | Ile       | Ser        | Ser       | Gly         | Gly<br>55            | Ser          | Tyr        | Thr       | Tyr       | Tyr<br>60 | Ala       | Asp        | Ser       | Val       |
| 15 | L <sub>2</sub>                                            | 22 | Gly       | Arg       | Phe        | Ala       | Ile<br>70   | Ser                  | Arg          | Asp        | Asn       | Ser<br>75 | Lys       | Asn       | Gln        | Phe       | Ser<br>80 |
| 20 | Le                                                        | eu | Arg       | Leu       | Ser        | Ser<br>85 | Val         | Thr                  | Ala          | Ala        | Asp<br>90 | Thr       | Ala       | Val       | Tyr        | Tyr<br>95 | Cys       |
| 25 | A                                                         | La | Arg       | His       | Gly<br>100 | Asp       | Asp         | Pro                  | Ala          | Trp<br>105 | Phe       | Ala       | Tyr       | Trp       | Gly<br>110 | Gln       | Gly       |
| 30 |                                                           |    |           |           |            | Se        | er Le       |                      | al Th        | nr Va      | al Se     | er Se     | er        |           |            |           |           |
| 30 | <210> 19<br><211> 119<br><212> PRT                        |    |           |           |            |           |             |                      |              |            |           |           |           |           |            |           |           |
| 35 | <213> Section <220> <221> fuention <223> /notain <400> 19 | е  |           |           | le la se   | ecuen     | cia arti    | ficial:              | polipé       | otido s    | intétic   | 0"        |           |           |            |           |           |
| 40 |                                                           |    |           |           |            |           |             |                      |              |            |           |           |           |           |            |           |           |

Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Arg Pro Ser Gln 1 5 10 15

| Gln Val Gln Leu Gln Glu Ser Glv Pro Glv Leu Val Ard Pro Ser Glr Gly Leu Ser Trp Val Arg Gln Pro Pro Gly Arg Gly Leu Glu Trp 45  Ala Met Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Ala Asp Ser 50 Th  Lys Gly Arg Val Thr Met Leu Arg Asp Thr Ser Lys Asn Gln Phe 65 70  Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Ile Tyr Ile 85  Ala Arg His Gly Asp Asp Pro Ala Trp Phe Ala Tyr Trp Gly Gln 100  Ala Arg His Gly Asp Asp Pro Ala Trp Phe Ala Tyr Trp Gly Gln 100                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                                                                        |                    |             |     |             |             |             |          |         |             |         |             |             |     |      |      |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------|--------------------|-------------|-----|-------------|-------------|-------------|----------|---------|-------------|---------|-------------|-------------|-----|------|------|-----------|
| Ala Met Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Ala Asp Ser Val 50  Lys Gly Arg Val Thr Met Leu Arg Asp Thr Ser Lys Asn Ser Leu Phe 65  Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys 85  Ala Arg His Gly Asp Asp Pro Ala Trp Phe Ala Tyr Trp Gly Gln Gly 100  Thr Thr Val Thr Val Ser Ser 2219 PRI 2219 PRI 2219 Secuencia artificial 2200 2215 fuente 2223 /nota*Descripción de la secuencia artificial: polipéptido sintético* 4000 20  Gln Val Gln Leu Gln Glu Ser Glv Pro Glv Leu Val Arg Pro Ser Gly 100  Ala Met Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Ala Asp Ser 100  Ala Met Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Ala Asp Ser 101  Lys Gly Arg Val Thr Met Leu Arg Asp Thr Ser Lys Asn Gln Phe 102  103  Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Ile Tyr Ile 85  Ala Arg His Gly Asp Asp Pro Ala Trp Phe Ala Tyr Trp Gly Gln 100  Ser Leu Val Thr Val Ser Ser |    | Thr                                                                    | Leu                | Ser         |     | Thr         | Cys         | Thr         | Ala      |         | Gly         | Phe     | Thr         | Phe         |     | Gly  | Tyr  |           |
| Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ser Lys Asn Ser Leu Phe 80  Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys 85  Ala Arg His Gly Asp Asp Pro Ala Trp Phe Ala Tyr Trp Gly Gln Gly 100  Thr Thr Val Thr Val Ser Ser 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | Gly                                                                    | Leu                |             | Trp | Val         | Arg         | Gln         |          | Pro     | Gly         | Arg     | Gly         |             | Glu | Trp  | Val  |           |
| Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys 85  Ala Arg His Gly Asp Asp Pro Ala Trp Phe Ala Tyr Trp Gly Gln Gly 100  Thr Thr Val Thr Val Ser Ser 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | Ala                                                                    |                    | Ile         | Ser | Ser         | Gly         |             | Ser      | Tyr     | Thr         | Tyr     |             | Ala         | Asp | Ser  | Val  |           |
| Ala Arg His Gly Asp Asp Pro Ala Trp Phe Ala Tyr Trp Gly Gln Gly 100  Thr Thr Val Thr Val Ser Ser 115 <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 100 100 100 100 100 100 100 100 100 100                                | Gly                | Arg         | Val | Thr         |             | Leu         | Arg      | Asp     | Thr         |         | Lys         | Asn         | Ser | Leu  |      |           |
| Thr Thr Val Thr Val Ser Ser  115  Thr Thr Val Thr Val Ser Ser  1210 20  2211 119  2212 PRT  2213 Secuencia artificial  2220 223 /nota="Descripción de la secuencia artificial: polipéptido sintético"  223 /nota="Descripción de la secuencia artificial: polipéptido sintético"  223 /nota="Descripción de la secuencia artificial: polipéptido sintético"  224 funte  225 /nota="Descripción de la secuencia artificial: polipéptido sintético"  226 /                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | Leu                                                                    | Arg                | Leu         | Ser |             | Val         | Thr         | Ala      | Ala     |             | Thr     | Ala         | Val         | Tyr |      | Cys  |           |
| <pre> 210&gt; 20 2211&gt; 119 212&gt; PRT 213&gt; Secuencia artificial 220&gt; 221&gt; fuente 223&gt; /nota="Descripción de la secuencia artificial: polipéptido sintético" 400&gt; 20  Gln Val Gln Leu Gln Glu Ser Glv Pro Glv Leu Val Ard Pro Ser Gli Gly Leu Ser Trp Val Ard Gln Pro Pro Gly Ard Gly Leu Glu Trp 1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | Ala                                                                    | Arg                | His         |     | Asp         | Asp         | Pro         | Ala      |         | Phe         | Ala     | Tyr         | Trp         |     | Gln  | Gly  |           |
| 5 <211> 119 212> PRT 213> Secuencia artificial 220> 221> fuente 223> /nota="Descripción de la secuencia artificial: polipéptido sintético" 400> 20 Gln Val Gln Leu Gln Glu Ser Glv Pro Glv Leu Val Arg Pro Ser Glu Gly Leu Ser Trp Val Arg Gln Pro Pro Gly Arg Gly Leu Glu Trp 40 Ala Met Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Ala Asp Ser 50 Th Lys Gly Arg Val Thr Met Leu Arg Asp Thr Ser Lys Asn Gln Phe 65 For To 70 Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Ile Tyr Ile 85 Ala Arg His Gly Asp Asp Pro Ala Trp Phe Ala Tyr Trp Gly Gln 100 Ser Leu Val Thr Val Ser Ser Ser Leu Val Thr Val Ser Ser                                                                                                                                                                                                                                                                                    |    | Thr                                                                    | Thr                |             | Thr | Val         | Ser         | Ser         |          |         |             |         |             |             |     |      |      |           |
| Ala Met Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Ala Asp Ser  Th  Lys Gly Arg Val Thr Met Leu Arg Asp Thr Ser Lys Asn Gln Phe 65  Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Ile Tyr Ile 85  Ala Arg His Gly Asp Asp Pro Ala Trp Phe Ala Tyr Trp Gly Gln 100  Ser Leu Val Thr Val Ser Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | <211> 119<br><212> PR<br><213> Se<br><220><br><221> fuel<br><223> /not | T<br>cuenci<br>nte |             |     | la sec      | cuencia     | a artifi    | cial: po | olipépt | ido sir     | ntético | "           |             |     |      |      |           |
| Th  So So Ser Leu Val Thr Val Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15 | G]<br>1                                                                | ln Va              | l Gl<br>Leu | Ser | u Gl<br>Trp | n Gl<br>Val | u Se<br>Arg | r Gl     | Pro     | o Gl<br>Pro | v Le    | u Va<br>Arg | l Ar<br>Gly | Leu | o Se | r Gl | N<br>Val  |
| Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Ile Tyr Ile 85  Ala Arg His Gly Asp Asp Pro Ala Trp Phe Ala Tyr Trp Gly Gln 105  Ser Leu Val Thr Val Ser Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 | Tì                                                                     |                    |             | Ile | Ser         | Ser         | Gly         |          | Ser     | Tyr         | Thr     | Tyr         |             | Ala | Asp  | Ser  | Val       |
| Ala Arg His Gly Asp Asp Pro Ala Trp Phe Ala Tyr Trp Gly Gln 100 105 110  Ser Leu Val Thr Val Ser Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25 |                                                                        |                    | Gly         | Arg | Val         | Thr         |             | Leu      | Arg     | Asp         | Thr     |             | Lys         | Asn | Gln  | Phe  | Ser<br>80 |
| 100 105 110 35 Ser Leu Val Thr Val Ser Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30 |                                                                        | Leu                | Arg         | Leu | Ser         |             | Val         | Thr      | Ala     | Ala         |         | Thr         | Ala         | Ile | Tyr  |      | Cys       |
| Ser Leu Val Thr Val Ser Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                                                                        | Ala                | Arg         | His |             | Asp         | Asp         | Pro      | Ala     |             | Phe     | Ala         | Tyr         | Trp |      | Gln  | Gly       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35 |                                                                        | Ser                | Leu         |     | Thr         | Val         | Ser         | Ser      |         |             |         |             |             |     |      |      |           |

| 5  |                      |                          |             |            |           |          |            |           |           |           |           |           |     |           |           |           |           |
|----|----------------------|--------------------------|-------------|------------|-----------|----------|------------|-----------|-----------|-----------|-----------|-----------|-----|-----------|-----------|-----------|-----------|
| 10 | <212<br><213<br><220 | > 119<br>> PRT<br>> Secu | uencia a    | artificial |           |          |            |           |           |           |           |           |     |           |           |           |           |
| 15 |                      | > /nota                  | ="Desc      | ripción    | de la se  | ecuenci  | a artific  | ial: poli | péptido   | sintétio  | co"       |           |     |           |           |           |           |
|    |                      |                          |             |            |           |          |            |           |           |           |           |           |     |           |           |           |           |
| 20 |                      |                          |             |            |           |          |            |           |           |           |           |           |     |           |           |           |           |
| 25 |                      |                          |             |            |           |          |            |           |           |           |           |           |     |           |           |           |           |
| 30 |                      |                          |             |            |           |          |            |           |           |           |           |           |     |           |           |           |           |
| 35 |                      | Glu<br>1                 | Val         | Gln        | Leu       | Val<br>5 | Glu        | Ser       | Gly       | Gly       | Gly<br>10 | Val       | Val | Gln       | Pro       | Gly<br>15 | Arg       |
| 40 |                      | Ser                      | Leu         | Arg        | Leu<br>20 | Ser      | Cys        | Ser       | Ala       | Ser<br>25 | Gly       | Phe       | Thr | Phe       | Ser<br>30 | Gly       | Tyr       |
|    |                      | Gly                      | Leu         | Ser<br>35  | Trp       | Val      | Arg        | Gln       | Ala<br>40 | Pro       | Gly       | Lys       | Gly | Leu<br>45 | Glu       | Trp       | Val       |
| 45 |                      | Ala                      |             | Ile        | Ser       | Ser      | Gly        |           | Ser       | Tyr       | Thr       | Tyr       | -   | Ala       | Asp       | Ser       | Val       |
| 50 |                      |                          | 50          |            |           |          |            | 55        |           |           |           |           | 60  |           |           |           |           |
| 55 |                      | Lys<br>65                | Gly         | Arg        | Phe       | Ala      | Ile<br>70  | Ser       | Arg       | Asp       | Asn       | Ala<br>75 | Lys | Asn       | Thr       | Leu       | Phe<br>80 |
|    |                      | <b>T</b>                 | <b>~1</b> ~ | Wat        | * ~~      | 0        | <b>*</b> ^ | ***       | D=0       | c1        | 1         | mh ss     | c1  | 17-1      | m         | nha       | ^···      |
| 60 |                      |                          |             |            |           |          |            |           |           |           |           |           |     |           |           |           |           |
|    |                      |                          | I           | hr P       | ro Va     |          | r Val      | Ser       | Ser       |           |           |           |     |           |           |           |           |
| 65 |                      |                          |             |            |           |          |            |           |           |           |           |           |     |           |           |           |           |

| 5  | <pre>&lt;210&gt; 22 &lt;211&gt; 119 &lt;212&gt; PRT &lt;213&gt; Mus s &lt;220&gt; &lt;221&gt; MOD &lt;222&gt; (3)(3 &lt;223&gt; algún &lt;220&gt; &lt;221&gt; MOD &lt;223&gt; Algún &lt;223&gt; Algún</pre> | RES amino RES (6) |           |            |            |           |           |           |           |            |           |           |           |           |            |           |           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|------------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|
| 15 | <400> 22                                                                                                                                                                                                    |                   |           |            |            |           |           |           |           |            |           |           |           |           |            |           |           |
| 20 |                                                                                                                                                                                                             |                   |           |            |            |           |           |           |           |            |           |           |           |           |            |           |           |
| 25 |                                                                                                                                                                                                             |                   |           |            |            |           |           |           |           |            |           |           |           |           |            |           |           |
| 30 |                                                                                                                                                                                                             | Gln<br>1          | Val       | Xaa        | Leu        | Gln<br>5  | Xaa       | Ser       | Gly       | Gly        | Asp<br>10 | Leu       | Val       | Lys       | Pro        | Gly<br>15 | Gly       |
| 35 |                                                                                                                                                                                                             | Ser               | Leu       | Lys        | Leu<br>20  | Ser       | Cys       | Ala       | Ala       | Ser<br>25  | Gly       | Phe       | Thr       | Phe       | Ser<br>30  | Gly       | Tyr       |
| 40 |                                                                                                                                                                                                             | Gly               | Leu       | Ser<br>35  | Trp        | Val       | Arg       | Gln       | Thr<br>40 | Pro        | Asp       | Lys       | Arg       | Leu<br>45 | Glu        | Trp       | Val       |
|    |                                                                                                                                                                                                             | Ala               | Met<br>50 | Ile        | Ser        | Ser       | Gly       | Gly<br>55 | Ser       | Tyr        | Thr       | Tyr       | Tyr<br>60 | Ala       | Asp        | Ser       | Val       |
| 45 |                                                                                                                                                                                                             | Lys<br>65         | Gly       | Arg        | Phe        | Ala       | Ile<br>70 | Ser       | Arg       | Asp        | Asn       | Ala<br>75 | Lys       | Asn       | Ser        | Leu       | Phe<br>80 |
| 50 |                                                                                                                                                                                                             | Leu               | Gln       | Met        | Ser        | Ser<br>85 | Leu       | Lys       | Ser       | Asp        | Asp<br>90 | Thr       | Ala       | Ile       | Tyr        | Ile<br>95 | Cys       |
| 55 |                                                                                                                                                                                                             | Ala               | Arg       | His        | Gly<br>100 | Asp       | Asp       | Pro       | Ala       | Trp<br>105 | Phe       | Ala       | Tyr       | Trp       | Gly<br>110 | Gln       | Gly       |
| 60 |                                                                                                                                                                                                             | Thr               | Leu       | Val<br>115 | Thr        | Val       | Ser       | Ala       |           |            |           |           |           |           |            |           |           |
| 65 | <210> 23<br><211> 110<br><212> PRT                                                                                                                                                                          |                   |           |            |            |           |           |           |           |            |           |           |           |           |            |           |           |

<213> Mus sp. <400> 23

| 5  |                                                              | Asp<br>1  | Ile       | Glu       | Leu        | Thr<br>5  | Gln       | Ser       | Pro       | Ala        | Leu<br>10 | Met       | Ala       | Ala       | Ser        | Pro<br>15 | Gly       |
|----|--------------------------------------------------------------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|
| 10 |                                                              | Glu       | Lys       | Val       | Thr<br>20  | Ile       | Thr       | Cys       | Ser       | Val<br>25  | Ser       | Ser       | Ser       | Ile       | Ser<br>30  | Ser       | Asn       |
|    |                                                              | Asn       | Leu       | His<br>35 | Trp        | Tyr       | Gln       | Gln       | Lys<br>40 | Ser        | Glu       | Thr       | Ser       | Pro<br>45 | Lys        | Pro       | Trp       |
| 15 |                                                              | Ile       | Tyr<br>50 | Gly       | Thr        | Ser       | Asn       | Leu<br>55 | Ala       | Ser        | Gly       | Val       | Pro<br>60 | Leu       | Arg        | Phe       | Arg       |
| 20 |                                                              | Gly<br>65 | Phe       | Gly       | Ser        | Gly       | Thr<br>70 | Ser       | Tyr       | Ser        | Leu       | Thr<br>75 | Ile       | Ser       | Ser        | Met       | Glu<br>80 |
|    |                                                              | Ala       | Glu       | Asp       | Ala        | Ala<br>85 | Thr       | Tyr       | Tyr       | Cys        | Gln<br>90 | Gln       | Trp       | Ser       | Ser        | Tyr<br>95 | Pro       |
| 25 |                                                              | Tyr       | Met       | Tyr       | Thr<br>100 | Phe       | Gly       | Gly       | Gly       | Thr<br>105 | Lys       | Leu       | Glu       | Ile       | Lys<br>110 |           |           |
| 30 | <210> 24<br><211> 962<br><212> ADN<br><213> Homo<br><400> 24 | o sapi    | ens       |           |            |           |           |           |           |            |           |           |           |           |            |           |           |

| 5  | tcaaggttaa | acgacaagga | cagacatggc | tcagcggatg | acaacacagc | tgctgctcct | 60  |
|----|------------|------------|------------|------------|------------|------------|-----|
| 3  | tctagtgtgg | gtggctgtag | taggggaggc | tcagacaagg | attgcatggg | ccaggactga | 120 |
| 10 | gcttctcaat | gtctgcatga | acgccaagca | ccacaaggaa | aagccaggcc | ccgaggacaa | 180 |
| 10 | gttgcatgag | cagtgtcgac | cctggaggaa | gaatgcctgc | tgttctacca | acaccagcca | 240 |
|    | ggaagcccat | aaggatgttt | cctacctata | tagattcaac | tggaaccact | gtggagagat | 300 |
| 15 | ggcacctgcc | tgcaaacggc | atttcatcca | ggacacctgc | ctctacgagt | gctcccccaa | 360 |
|    | cttggggccc | tggatccagc | aggtggatca | gagctggcgc | aaagagcggg | tactgaacgt | 420 |
| 20 | gcccctgtgc | aaagaggact | gtgagcaatg | gtgggaagat | tgtcgcacct | cctacacctg | 480 |
|    | caagagcaac | tggcacaagg | gctggaactg | gacttcaggg | tttaacaagt | gcgcagtggg | 540 |
| 25 | agctgcctgc | caacctttcc | atttctactt | ccccacaccc | actgttctgt | gcaatgaaat | 600 |
|    | ctggactcac | tcctacaagg | tcagcaacta | cagccgaggg | agtggccgct | gcatccagat | 660 |
| 30 | gtggttcgac | ccagcccagg | gcaaccccaa | tgaggaggtg | gcgaggttct | atgctgcagc | 720 |
|    | catgagtggg | gctgggccct | gggcagcctg | gcctttcctg | cttagcctgg | ccctaatgct | 780 |
| 35 | gctgtggctg | ctcagctgac | ctccttttac | cttctgatac | ctggaaatcc | ctgccctgtt | 840 |
|    | cagccccaca | gctcccaact | atttggttcc | tgctccatgg | tegggeetet | gacagccact | 900 |
| 40 | ttgaataaac | cagacaccgc | acatgtgtct | tgagaattat | ttggaaaaaa | aaaaaaaaa  | 960 |
|    | aa         |            |            |            |            |            | 962 |

45

<210> 25 <211> 257 <212> PRT <213> Homo sapiens <400> 25

55

50

| Met<br>1   | Ala        | Gln        | Arg        | Met<br>5   | Thr               | Thr        | Gln        | Leu        | Leu<br>10  | Leu               | Leu        | Leu        | Val        | Trp<br>15  | Va:        |
|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|
| Ala        | Val        | Val        | Gly<br>20  | Glu        | Ala               | Gln        | Thr        | Arg<br>25  | Ile        | Ala               | Trp        | Ala        | Arg<br>30  | Thr        | Glı        |
| Leu        | Leu        | Asn<br>35  | Val        | Cys        | Met               | Asn        | Ala<br>40  | Lys        | His        | His               | Lys        | Glu<br>45  | Lys        | Pro        | Gly        |
| Pro        | Glu<br>50  | Asp        | Lys        | Leu        | His               | Glu<br>55  | Gln        | Cys        | Arg        | Pro               | Trp<br>60  | Arg        | Lys        | Asn        | Ala        |
| Cys<br>65  | Cys        | Ser        | Thr        | Asn        | Thr<br>70         | Ser        | Gln        | Glu        | Ala        | His<br>75         | Lys        | Asp        | Val        | Ser        | Ту:<br>80  |
| Leu        | Tyr        | Arg        | Phe        | Asn<br>85  | Trp               | Asn        | His        | Cys        | Gly<br>90  | Glu               | Met        | Ala        | Pro        | Ala<br>95  | Суя        |
| Lys        | Arg        | His        | Phe<br>100 | Ile        | Gln               | Asp        | Thr        | Cys<br>105 | Leu        | Tyr               | Glu        | Cys        | Ser<br>110 | Pro        | Ası        |
| Leu        | Gly        | Pro<br>115 | Trp        | Ile        | Gln               | Gln        | Val<br>120 | Asp        | Gln        | Ser               | Trp        | Arg<br>125 | Lys        | Glu        | Arg        |
| Val        | Leu<br>130 | Asn        | Val        | Pro        | Leu               | Cys<br>135 | Lys        | Glu        | Asp        | Cys               | Glu<br>140 | Gln        | Trp        | Trp        | Gli        |
| Asp<br>145 | Cys        | Arg        | Thr        | Ser        | <b>Tyr</b><br>150 | Thr        | Cys        | Lys        | Ser        | <b>Asn</b><br>155 | Trp        | His        | Lys        | Gly        | Trp        |
| Asn        | Trp        | Thr        | Ser        | Gly<br>165 | Phe               | Asn        | Lys        | Cys        | Ala<br>170 | Val               | Gly        | Ala        | Ala        | Cys<br>175 | Gli        |
| Pro        | Phe        | His        | Phe<br>180 | Tyr        | Phe               | Pro        | Thr        | Pro<br>185 | Thr        | Val               | Leu        | Cys        | Asn<br>190 | Glu        | Ile        |
| Trp        | Thr        | His<br>195 | Ser        | Tyr        | Lys               | Val        | Ser<br>200 | Asn        | Tyr        | Ser               | Arg        | Gly<br>205 | Ser        | Gly        | Arq        |
| Cys        | Ile<br>210 | Gln        | Met        | Trp        | Phe               | Asp<br>215 | Pro        | Ala        | Gln        | Gly               | Asn<br>220 | Pro        | Asn        | Glu        | Gli        |
| Val<br>225 | Ala        | Arg        | Phe        | Tyr        | Ala<br>230        | Ala        | Ala        | Met        | Ser        | Gly<br>235        | Ala        | Gly        | Pro        | Trp        | Ala<br>240 |
| Ala        | Trp        | Pro        | Phe        | Leu        | Leu               | Ser        | Leu        | Ala        | Leu        | Met               | Leu        | Leu        | Trp        | Leu        | Let        |
|            |            |            |            | 245        | 5                 |            |            |            | 25         | 0                 |            |            |            | 25         | 5          |

Ser

```
5
      <210> 26
      <211> 27
      <212> PRT
10
      <213> Secuencia artificial
      <220>
      <221> fuente
      <223> /nota="Descripción de la secuencia artificial: Péptido sintético"
      <220>
15
      <221> MOD_RES
      <222> (7)..(7)
      <223> Algún aminoacido
      <220>
      <221> VARIANT
20
      <222> (12)..(12)
      <223> /replace="His"
      <220>
      <221> misc_feature
      <222> (12)..(12)
25
      <223> /nota=" El residuo dado en la secuencia no tiene preferencia con respecto a la anotación para
      dicho "
      <220>
      <221> MOD RES
      <222> (13)..(13)
30
      <223> Algún aminoacido
      <220>
      <221> MOD RES
      <222> (18)..(18)
      <223> Algún aminoacido
35
      <220>
      <221> MOD_RES
      <222> (20)..(20)
      <223> Algún aminoacido
      <220>
40
      <221> VARIANT
      <222> (21) .. (21)
      <223> /replace="Glu"
      <220>
      <221> misc_feature
45
      <222> (21) .. (21)
      <223> /nota=" El residuo dado en la secuencia no tiene preferencia con respecto a la anotación para
      dicho "
      <220>
      <221> MOD_RES
50
      <222> (24) .. (25)
      <223> Algún aminoacido
      <220>
      <221> MOD RES
55
      <222> (27) .. (27)
      <223> Algún aminoacido
```

65

<400> 26 Thr Glu Leu Leu Asn Val Xaa Met Asn Ala Lys Trp Xaa Lys Glu Lys 5 10 5 Pro Xaa Pro Xaa Asp Lys Leu Xaa Xaa Gln Xaa 20 10 15 <210> 27 <211> 12 <212> PRT <213> Secuencia artificial <220> 20 <221> fuente <223> /nota="Descripción de la secuencia artificial: Péptido sintético" <400> 27 25 Arg Ala Ser Ser Thr Val Ser Tyr Ser Tyr Leu His 5 10 <210>28 30 <211> 7 <212> PRT <213> Secuencia artificial 35 <400> 28 Gly Thr Ser Asn Leu Ala Ser 40 5 <210>29 <211> 9 <212> PRT 45 <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: Péptido sintético" 50 <400> 29 Gln Gln Tyr Ser Gly Tyr Pro Leu Thr 55 5

115

|    | <212> PRT<br><213> Secu<br><220>                                         |             | ficial    |           |            |           |           |           |           |            |           |           |           |           |           |           |           |
|----|--------------------------------------------------------------------------|-------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 5  | <221> fuente<br><223> /nota:<br><400> 30                                 |             | ción d    | e la se   | ecuen      | cia ar    | tificial  | : polip   | éptido    | sinté      | tico"     |           |           |           |           |           |           |
| 10 |                                                                          | Pro<br>1    | Ala       | Ile       | Met        | Ser<br>5  | Ala       | Ser       | Pro       | Gly        | Glu<br>10 | Lys       | Val       | Thr       | Met       | Thr<br>15 | Cys       |
| 15 |                                                                          | Arg         | Ala       | Ser       | Ser<br>20  | Thr       | Val       | Ser       | Tyr       | Ser<br>25  | Tyr       | Leu       | His       | Trp       | Tyr<br>30 | Gln       | Gln       |
| 20 |                                                                          | Lys         | Ser       | Gly<br>35 | Ala        | Ser       | Pro       | Gln       | Leu<br>40 | Trp        | Ile       | Tyr       | Gly       | Thr<br>45 | Ser       | Asn       | Leu       |
| 25 |                                                                          | Ala         | Ser<br>50 | Gly       | Val        | Pro       | Ala       | Arg<br>55 | Phe       | Ser        | Gly       | Ser       | Gly<br>60 | Ser       | Gly       | Thr       | Ser       |
|    |                                                                          | Tyr<br>65   | Ser       | Leu       | Thr        | Ile       | Ser<br>70 | Ser       | Val       | Glu        | Ala       | Glu<br>75 | Asp       | Ala       | Ala       | Thr       | Tyr<br>80 |
| 30 |                                                                          | Tyr         | Cys       | Gln       | Gln        | Tyr<br>85 | Ser       | Gly       | Tyr       | Pro        | Leu<br>90 | Thr       | Phe       | Gly       | Ala       | Gly<br>95 | Thr       |
| 35 |                                                                          | Lys         | Leu       | Glu       | Leu<br>100 | Lys       | Arg       | Ala       | Asp       | Ala<br>105 | Ala       | Pro       |           |           |           |           |           |
| 40 | <210> 31<br><211> 6<br><212> PRT<br><213> Secu                           | iencia arti | ficial    |           |            |           |           |           |           |            |           |           |           |           |           |           |           |
| 45 | <220><br><221> fuento<br><223> /nota:<br><400> 31                        | е           |           | e la se   | ecuen      | cia ar    | tificial  | : Pépt    | ido sir   | ntético    | <b>"</b>  |           |           |           |           |           |           |
| 50 |                                                                          |             | Ser<br>1  | G         | lу         | Ty        | r T       | yr        | Tr<br>5   | p I        | Asn       |           |           |           |           |           |           |
| 55 |                                                                          |             |           |           |            |           |           |           |           |            |           |           |           |           |           |           |           |
| 60 | <210> 32<br><211> 16<br><212> PRT<br><213> Secu<br><220><br><221> fuento | е           |           |           |            |           |           |           |           |            |           |           |           |           |           |           |           |
| 65 | <223> /nota:<br><400> 32                                                 | ="Descripe  | ción d    | e la se   | ecuen      | cia ar    | tificial  | : Pépt    | ido sir   | ntético    | ,"        |           |           |           |           |           |           |

```
Tyr Ile Lys Ser Asp Gly Ser Asn Asn Tyr Asn Pro Ser Leu Lys Asn
                              5
                                                        10
                                                                                  15
5
      <210> 33
      <211> 7
10
      <212> PRT
      <213> Secuencia artificial
      <220>
      <221> fuente
      <223> /nota="Descripción de la secuencia artificial: Péptido sintético"
15
      <400> 33
20
                            Glu Trp Lys Ala Met Asp Tyr
                            1
                                                     5
25
      <210> 34
      <211> 129
<212> PRT
      <213> Secuencia artificial
30
      <220>
      <221> fuente
      <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"
      <400> 34
35
```

|    | Glu<br>1                                                  | Ser       | Gly        | Pro        | Gly<br>5  | Leu        | Val       | Arg             | Pro        | Ser<br>10 | Gln        | Ser       | Leu               | Ser        | Leu<br>15 | Thr         |
|----|-----------------------------------------------------------|-----------|------------|------------|-----------|------------|-----------|-----------------|------------|-----------|------------|-----------|-------------------|------------|-----------|-------------|
| 5  | Cys                                                       | Ser       | Val        | Thr<br>20  | Gly       | Tyr        | Ser       | Ile             | Thr<br>25  | Ser       | Gly        | Tyr       | Tyr               | Trp<br>30  | Asn       | Trp         |
| 10 | Ile                                                       | Arg       | Gln<br>35  | Phe        | Pro       | Gly        | Ser       | Arg<br>40       | Leu        | Glu       | Trp        | Met       | Gly<br><b>4</b> 5 | Tyr        | Ile       | Lys         |
| 15 | Ser                                                       | Asp<br>50 | Gly        | Ser        | Asn       | Asn        | Tyr<br>55 | Asn             | Pro        | Ser       | Leu        | Lys<br>60 | Asn               | Arg        | Ile       | Ser         |
| 20 | Ile<br>65                                                 | Thr       | Arg        | Asp        | Thr       | Ser<br>70  | Lys       | Asn             | Gln        | Phe       | Phe<br>75  | Leu       | Lys               | Leu        | Asn       | Ser<br>80   |
| _, | Val                                                       | Thr       | Thr        | Glu        | Asp<br>85 | Thr        | Ala       | Thr             | Tyr        | Phe<br>90 | Cys        | Thr       | Arg               | Glu        | Trp<br>95 | Lys         |
| 25 | Ala                                                       | Met       | Asp        | Tyr<br>100 | Trp       | Gly        | Gln       | Gly             | Thr<br>105 | Ser       | Val        | Thr       | Val               | Ser<br>110 | Ser       | Ala         |
| 30 | Lys                                                       | Thr       | Thr<br>115 | Pro        | Pro       | Ser        | Val       | Tyr<br>120      | Pro        | Leu       | Ala        | Pro       | Gly<br>125        | Cys        | Gly       | Asp         |
| 35 | Thr                                                       |           |            |            |           |            |           |                 |            |           |            |           |                   |            |           |             |
| 40 | <210> 35<br><211> 15<br><212> PRT<br><213> Secue<br><220> |           | artificia  | ıl         |           |            |           |                 |            |           |            |           |                   |            |           |             |
| 45 | <221> fuente<br><223> /nota=<br><400> 35                  |           | ripción    | de la      | secue     | encia a    | ırtificia | l: Pép          | tido sii   | ntético   | )"         |           |                   |            |           |             |
| 50 |                                                           | A<br>1    |            | la S       | er G      | lu Se<br>5 | er Va     | al As           | sp Th      | ır Ty     | r Gl<br>10 | 1900      | n As              | n Ph       | e Ile     | e His<br>15 |
| 55 | <210> 36<br><211> 7<br><212> PRT<br><213> Secue           | encia a   | artificia  | ıl         |           |            |           |                 |            |           |            |           |                   |            |           |             |
| 60 | <220><br><221> fuente<br><223> /nota=<br><400> 36         |           | ripción    | de la      | secue     | encia a    | ırtificia | l: Pép          | tido sii   | ntético   | <b>)</b> " |           |                   |            |           |             |
| 65 |                                                           |           | Leu<br>1   | Al         | a S       | er .       | Asn       | Le <sup>2</sup> | u G        | lu        | Ser        |           |                   |            |           |             |

```
<210> 37
     <211> 9
     <212> PRT
     <213> Secuencia artificial
5
     <220>
     <221> fuente
     <223> /nota="Descripción de la secuencia artificial: Péptido sintético"
     <400> 37
10
                   Gln Gln Asn Asn Gly Asp Pro Trp Thr
                                         5
15
     <210> 38
     <211> 110
     <212> PRT
20
     <213> Secuencia artificial
     <220>
     <221> fuente
     <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"
25
     <400> 38
              Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys
                                5
                                                       10
                                                                              15
30
              Arg Ala Ser Glu Ser Val Asp Thr Tyr Gly Asn Asn Phe Ile His Trp
                            20
                                                   25
                                                                          30
35
              Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Leu Ala
                       35
40
              Ser Asn Leu Glu Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser
45
                   50
                                         55
                                                                60
              Arg Thr Asp Phe Thr Leu Thr Ile Asp Pro Val Glu Ala Asp Asp Ala
50
              65
                                     70
                                                                                   80
              Ala Thr Tyr Tyr Cys Gln Gln Asn Asn Gly Asp Pro Trp Thr Phe Gly
55
                                85
                                                       90
                                                                              95
              Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Pro
60
                            100
                                                  105
                                                                         110
```

119

<210> 39

<211> 5

```
<212> PRT
      <213> Secuencia artificial
      <220>
      <221> fuente
5
      <223> /nota="Descripción de la secuencia artificial: Péptido sintético"
      <400>39
10
                                      Pro
                                                 Tyr Met
                                                                   His
                              1
                                                                    5
15
      <210> 40
      <211> 17
      <212> PRT
      <213> Secuencia artificial
      <220>
20
      <221> fuente
      <223> /nota="Descripción de la secuencia artificial: Péptido sintético"
      <400> 40
                Arg Ile Asp Pro Ala Asn Gly Asn Thr Lys Tyr Asp Pro Lys Phe Gln
25
                                    5
                                                            10
                                                                                     15
                Gly
30
      <210> 41
      <211> 10
      <212> PRT
      <213> Secuencia artificial
35
      <220>
      <221> fuente
      <223> /nota="Descripción de la secuencia artificial: Péptido sintético"
      <400>41
40
                    Glu Glu Val Ala Asp Tyr Thr Met Asp Tyr
                                             5
                                                                            10
45
      <210> 42
50
      <211> 126
      <212> PRT
      <213> Secuencia artificial
      <220>
55
      <221> fuente
      <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"
      <400> 42
```

|                                                                             | Ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ser                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                    | Gly                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Asn                                                                                                                                                                                                                                                                                                                                                 | Ile                                                                                                                                                                                                                                                                                                         | Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | His                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tyr                                                                                                                                                                                                                                                                                                                                                                                      | Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | His                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                    |                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                             | Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pro                                                                                                                                                                                | Asp<br>35                                                                                                                                                                                                                   | Gln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gly                                                                                                                                                                                                                                                                                                                                                 | Leu                                                                                                                                                                                                                                                                                                         | Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trp<br>40                                                                                                                        | Ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gly                                                                                                                                                                                                                                                                                                                                                                                      | Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Asp<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             | Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Asn<br>50                                                                                                                                                                          | Thr                                                                                                                                                                                                                         | Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tyr                                                                                                                                                                                                                                                                                                                                                 | Asp                                                                                                                                                                                                                                                                                                         | Pro<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lys                                                                                                                              | Phe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gln                                                                                                                                                                                                                                                                                                                                                                                      | Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lys<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             | Ala<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Asp                                                                                                                                                                                | Thr                                                                                                                                                                                                                         | Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ser                                                                                                                                                                                                                                                                                                                                                 | Asn<br>70                                                                                                                                                                                                                                                                                                   | Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ala                                                                                                                              | Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Leu                                                                                                                                                                                                                                                                                                                                                                                      | Gln<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Thr<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                             | Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Glu                                                                                                                                                                                | Asp                                                                                                                                                                                                                         | Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ala<br>85                                                                                                                                                                                                                                                                                                                                           | Val                                                                                                                                                                                                                                                                                                         | Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tyr                                                                                                                              | Cys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gly<br>90                                                                                                                                                                                                                                                                                                                                                                                | Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ala<br>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             | Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Thr                                                                                                                                                                                | Met                                                                                                                                                                                                                         | Asp<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tyr                                                                                                                                                                                                                                                                                                                                                 | Trp                                                                                                                                                                                                                                                                                                         | Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gln                                                                                                                              | Gly<br>105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Thr                                                                                                                                                                                                                                                                                                                                                                                      | Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Val<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             | Ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lys                                                                                                                                                                                | Thr<br>115                                                                                                                                                                                                                  | Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ala                                                                                                                                                                                                                                                                                                                                                 | Pro                                                                                                                                                                                                                                                                                                         | Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Val<br>120                                                                                                                       | Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pro                                                                                                                                                                                                                                                                                                                                                                                      | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pro<br>125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                    |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <220><br><221> fuente                                                       | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                                                                             | a secu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iencia                                                                                                                                                                                                                                                                                                                                              | artific                                                                                                                                                                                                                                                                                                     | ial: Pé                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ptido s                                                                                                                          | sintétio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | co"                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                    |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Se<br>1                                                                                                                                                                            | r Al                                                                                                                                                                                                                        | a S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er (                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ile                                                                                                                              | Ası                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n As                                                                                                                                                                                                                                                                                                                                                                                     | n Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <211> 7<br><212> PRT<br><213> Secu<br><220><br><221> fuente<br><223> /nota= | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                                                                             | a secu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ıencia                                                                                                                                                                                                                                                                                                                                              | artific                                                                                                                                                                                                                                                                                                     | ial: Pé                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ptido s                                                                                                                          | sintétic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | co"                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                             | <211> 11 <212> PRT <213> Secu <220> <221> fuente <223> /nota= <400> 43  <210> 44 <211> 7 <212> PRT <213> Secu <220> <221> fuente <221> fuente <221> fuente <211> fuente <211> fuente <211> fuente <221> fuente <221> fuente <221> fuente <211> fuente <211 fuente | Fyr  Ala  <210> 43 <211> 11 <212> PRT <213> Secuencia <220> <221> fuente <223> /nota="Des <400> 43  <211> 7 <212> PRT <213> Secuencia <220> <221> fuente <223> /nota="Des <400> 43 | Ala Asp 65  Ser Glu  Tyr Thr  Ala Lys  <210> 43 <211> 11 <212> PRT <213> Secuencia artific <220> <221> fuente <223> /nota="Descripció <400> 43  Se 1  <210> 44 <211> 7 <212> PRT <213> Secuencia artific <220> <221> fuente | Ala Asp Thr 65  Ser Glu Asp  Tyr Thr Met  Ala Lys Thr 115  <210> 43 <211> 11 <212> PRT <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la cumple de | Ala Asp Thr Ser 65  Ser Glu Asp Thr  Tyr Thr Met Asp 100  Ala Lys Thr Thr 115  <210> 43 <211> 11 <212> PRT <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuenta" <400> 43  Ser Ala S 1  <210> 44 <211> 7 <212> PRT <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuenta" <400> 43 | Ala Asp Thr Ser Ser 65  Ser Glu Asp Thr Ala 85  Tyr Thr Met Asp Tyr 100  Ala Lys Thr Thr Ala 115  <210> 43 <211> 11 <212> PRT <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia <400> 43  Ser Ala Ser 0 1  <210> 44 <211> 7 <212> PRT <213> Secuencia artificial <220> | Ala Asp Thr Ser Ser Asn 70  Ser Glu Asp Thr Ala Val 85  Tyr Thr Met Asp Tyr Trp 100  Ala Lys Thr Thr Ala Pro 115  <210> 43 <211> 11 <212> PRT <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial 400> 43  Ser Ala Ser Gln 1  <210> 44 <211> 7 <212> PRT <213> Secuencia artificial 400> 43  Ser Ala Ser Gln 1  <220> 4215 FRT <211> 7 <212> PRT <213> Secuencia artificial 400> 43  Ser Ala Ser Gln 1  <210> 44 <211> 7 <211> FRT <213> Secuencia artificial 400> 43  Ser Ala Ser Gln 1  <220> 421> fuente 400> 44  4211> 7 <212> PRT <213> Secuencia artificial 400> 400  4220> 4221> fuente 41  4223> /nota="Descripción de la secuencia artificial 400> 400  4220> 4221> fuente 41  4223> /nota="Descripción de la secuencia artificial 400> 400  423> /nota="Descripción de la secuencia artificial 400> 400  423> /nota="Descripción de la secuencia artificial 400> 400  423> /nota="Descripción de la secuencia artificial 400> 400  423 / nota="Descripción de la secuencia artificial 400> 400  423 / nota="Descripción de la secuencia artificial 400> 400  423 / nota="Descripción de la secuencia artificial 400> 400  424 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 10 | Ala Asp Thr Ser Ser Asn Thr 70  Ser Glu Asp Thr Ala Val Tyr 85  Tyr Thr Met Asp Tyr Trp Gly 100  Ala Lys Thr Thr Ala Pro Ser 115 | Ala Asp Thr Ser Ser Asn Thr Ala 70  Ser Glu Asp Thr Ala Val Tyr Tyr 85  Tyr Thr Met Asp Tyr Trp Gly Gln 100  Ala Lys Thr Thr Ala Pro Ser Val 115  210> 43 211> 11 212> PRT 221> fuente 222> /nota="Descripción de la secuencia artificial: Péptido selection of the secuencia artificial secuencia artificial secuencia artificial: Péptido selection of the secuencia artificial: Péptido selection selection secuencia artificial: Péptido selection secuencia artifi | Ala Asp Thr Ser Ser Asn Thr Ala Tyr 65  Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85  Tyr Thr Met Asp Tyr Trp Gly Gln Gly 100  Ala Lys Thr Thr Ala Pro Ser Val Tyr 115  Ala Pro Ser Val Tyr 120  2210> 43  <211> 11  <212> PRT  <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: Péptido sintétic <400> 43  Ser Ala Ser Gln Gly Ile Asr 1  5 | Ala Asp Thr Ser Ser Asn Thr Ala Tyr Leu 70  Ser Glu Asp Thr Ala Val Tyr Tyr Cys Gly 85  Tyr Thr Met Asp Tyr Trp Gly Gln Gly Thr 100  Ala Lys Thr Thr Ala Pro Ser Val Tyr Pro 115  Ala Lys Thr Thr Ala Pro Ser Val Tyr Pro 120  <210> 43 <211> 11 <212> PRT <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: Péptido sintético" <alore 1="" 43="" <210="" ala="" as="" asn="" gln="" gly="" ile="" ser=""> 44 &lt;211&gt; 7 &lt;212&gt; PRT &lt;213&gt; Secuencia artificial &lt;220&gt; &lt;215 PRT &lt;213&gt; Secuencia artificial &lt;220&gt; &lt;215 PRT &lt;215 PRT &lt;216 PRT &lt;217 PRT &lt;218 PRT &lt;219 PRT &lt;219 PRT &lt;219 PRT &lt;219 PRT &lt;2110 Secuencia artificial &lt;220&gt; &lt;221&gt; fuente &lt;223&gt; /nota="Descripción de la secuencia artificial: Péptido sintético"</alore> | Ala Asp Thr Ser Ser Asn Thr Ala Tyr Leu Gln 75  Ser Glu Asp Thr Ala Val Tyr Tyr Cys Gly Arg 85  Tyr Thr Met Asp Tyr Trp Gly Gln Gly Thr Ser 100  Ala Lys Thr Thr Ala Pro Ser Val Tyr Pro Leu 115  Ala Lys Thr Thr Ala Pro Ser Val Tyr Pro Leu 120  <210> 43 <211> 11 <212> PRT <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: Péptido sintético" <alors 100="" 110="" <210="" ala="" asn="" gln="" gly="" ile="" pro="" ser=""> 44 &lt;211&gt; 7 &lt;212&gt; PRT &lt;213&gt; Secuencia artificial &lt;220&gt; &lt;221&gt; fuente &lt;221&gt; fuente &lt;221&gt; fuente &lt;221&gt; fuente &lt;221&gt; fuente &lt;221&gt; fuente &lt;223&gt; /nota="Descripción de la secuencia artificial: Péptido sintético"</alors> | Ala Asp Thr Ser Ser Asn Thr Ala Tyr Leu Gln Leu 65 Ser Glu Asp Thr Ala Val Tyr Tyr Cys Gly Arg Glu 85 Tyr Thr Met Asp Tyr Trp Gly Gln Gly Thr Ser Val 100 Ala Lys Thr Thr Ala Pro Ser Val Tyr Pro Leu Ala 115 Secuencia artificial Secuencia art | Ala Asp Thr Ser Ser Asn Thr Ala Tyr Leu Gln Leu Ser 70  Ser Glu Asp Thr Ala Val Tyr Tyr Cys Gly Arg Glu Glu 85  Tyr Thr Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr 100  Ala Lys Thr Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro 115  **Ala Lys Thr Thr Ala Pro 120  **Comparison of the image of the i | Ala Asp Thr Ser Ser Asn Thr Ala Tyr Leu Gln Leu Ser Ser 75  Ser Glu Asp Thr Ala Val Tyr Tyr Cys Gly Arg Glu Glu Val 85  Tyr Thr Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val 100  Ala Lys Thr Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Val 115  **Total Common Comm | Ala Asp Thr Ser Ser Asn Thr Ala Tyr Leu Gln Leu Ser Ser Leu 75  Ser Glu Asp Thr Ala Val Tyr Tyr Cys Gly Arg Glu Glu Val Ala 90  Tyr Thr Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser 100  Ala Lys Thr Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Val 115  Ala Lys Thr Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Val 115  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 1  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 1  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 1  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 1  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 1  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 1  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 1  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10  Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn 10 |

# Tyr Thr Ser Ser Leu His Ser 1

5 <210> 45 <211> 9 10 <212> PRT <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: Péptido sintético" 15 <400> 45 Gln His Phe Ser Lys Leu Pro Trp Thr 20 5 25 <210> 46 <211> 106 <212> PRT <213> Secuencia artificial <220> <221> fuente 30 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético" <400> 46 35 Thr Ser Ser Leu Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys 5 10 Ser Ala Ser Gln Gly Ile Asn Asn Phe Leu Asn Trp Tyr Gln Gln Lys 40 20 25 Pro Asp Gly Thr Val Lys Leu Leu Ile Tyr Tyr Thr Ser Ser Leu His 45 Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr 50 Ser Leu Thr Ile Ser Asn Leu Glu Pro Glu Asp Ile Ala Ile Tyr Tyr 70 55 Cys Gln His Phe Ser Lys Leu Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Pro 60 105 100

65 <210> 47

```
<211> 5
      <212> PRT
      <213> Secuencia artificial
      <220>
 5
      <221> fuente
      <223> /nota="Descripción de la secuencia artificial: Péptido sintético"
      <400> 47
10
                          Ser Tyr Ala Met Ser
                          1
                                                        5
      <210> 48
      <211> 17
<212> PRT
15
      <213> Secuencia artificial
      <220>
      <221> fuente
      <223> /nota="Descripción de la secuencia artificial: Péptido sintético"
20
      <400>48
                       Glu Ile Gly Ser Gly Gly Ser Tyr Thr Tyr Tyr Pro Asp Thr Val Thr
25
                                          5
                       1
                                                                 10
                                                                                         15
30
                       Glv
      <210> 49
      <211> 9
35
      <212> PRT
      <213> Secuencia artificial
      <220>
      <221> fuente
      <223> /nota="Descripción de la secuencia artificial: Péptido sintético"
40
      <400>49
                 Glu Thr Thr Ala Gly Tyr Phe Asp Tyr
                                             5
45
      <210> 50
      <211> 112
50
      <212> PRT
      <213> Secuencia artificial
      <220>
      <221> fuente
      <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"
55
      <400> 50
60
```

|    |                                                                                            | Ser<br>1  | Gly       | Gly       | Gly        | Leu<br>5   | Val       | Arg       | Pro       | Gly        | Gly<br>10  | Ser       | Leu       | Lys       | Leu        | Ser<br>15 | Cys       |
|----|--------------------------------------------------------------------------------------------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|------------|-----------|-----------|
| 5  |                                                                                            | Ala       | Ala       | Ser       | Gly<br>20  | Phe        | Thr       | Phe       | Ser       | Ser<br>25  | Tyr        | Ala       | Met       | Ser       | Trp<br>30  | Val       | Arg       |
| 10 |                                                                                            | Gln       | Ser       | Pro<br>35 | Glu        | Lys        | Arg       | Leu       | Glu<br>40 | Trp        | Val        | Ala       | Glu       | Ile<br>45 | Gly        | Ser       | Gly       |
| 15 |                                                                                            | Gly       | Ser<br>50 | Tyr       | Thr        | Tyr        | Tyr       | Pro<br>55 | Asp       | Thr        | Val        | Thr       | Gly<br>60 | Arg       | Phe        | Thr       | Ile       |
| 20 |                                                                                            | Ser<br>65 | Arg       | Asp       | Asn        | Ala        | Lys<br>70 | Ser       | Thr       | Leu        | Tyr        | Leu<br>75 | Glu       | Met       | Ser        | Ser       | Leu<br>80 |
| 20 |                                                                                            | Arg       | Ser       | Glu       | Asp        | Thr<br>85  | Ala       | Ile       | Tyr       | Tyr        | Cys<br>90  | Ala       | Arg       | Glu       | Thr        | Thr<br>95 | Ala       |
| 25 |                                                                                            | Gly       | Tyr       | Phe       | Asp<br>100 | Tyr        | Trp       | Gly       | Gln       | Gly<br>105 | Thr        | Thr       | Leu       | Thr       | Val<br>110 | Ser       | Ser       |
| 30 |                                                                                            |           |           |           |            |            |           |           |           |            |            |           |           |           |            |           |           |
| 35 | <210> 51<br><211> 11<br><212> PRT<br><213> Secue<br><220><br><221> fuente<br><223> /nota=" |           |           |           | secue      | ncia a     | rtificia  | l: Pép    | tido sii  | ntético    | <b>,</b> " |           |           |           |            |           |           |
| 40 | <400> 51                                                                                   |           |           |           |            |            |           |           |           |            |            |           |           |           |            |           |           |
| 45 |                                                                                            | Arg<br>1  | Thr       | Ser       | : Glu      | 1 Ası<br>5 | ı Ile     | e Phe     | e Sei     | r Ty:      | r Le       | u Al      | a         |           |            |           |           |
| 50 | <210> 52<br><211> 7<br><212> PRT<br><213> Secue<br><220>                                   | ncia a    | rtificia  | I         |            |            |           |           |           |            |            |           |           |           |            |           |           |
| 55 | <221> fuente<br><223> /nota="<br><400> 52                                                  | 'Descr    | ipción    | de la     | secue      | ncia a     | rtificia  | l: Pép    | tido sii  | ntético    | )"         |           |           |           |            |           |           |
| 60 |                                                                                            |           | As<br>1   | n A       | la :       | Lys        | Thr       | Le<br>5   | u A       | la (       | Glu        |           |           |           |            |           |           |
| 65 | <210> 53<br><211> 9<br><212> PRT<br><213> Secue                                            | ncia a    | rtificia  | I         |            |            |           |           |           |            |            |           |           |           |            |           |           |

|    | <220><br><221> fu<br><223> /n              |           | scripci   | ón de     | la sec     | cuencia   | a artifi  | cial: P   | éptido    | sintét     | ico"      |           |           |           |           |           |           |
|----|--------------------------------------------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 5  | <400> 53                                   | 3         |           |           |            |           |           |           |           |            |           |           |           |           |           |           |           |
| 10 |                                            |           | Gln<br>1  | His       | His        | Tyr       | Ala<br>5  | Phe       | Pro       | Trp        | Thr       |           |           |           |           |           |           |
| 15 | <210> 5-<br><211> 1-<br><212> P<br><213> S | 06<br>RT  | a artifi  | cial      |            |           |           |           |           |            |           |           |           |           |           |           |           |
| 20 | <220><br><221> fu<br><223> /n<br><400> 54  | ota="De   | scripci   | ón de     | la sec     | cuencia   | a artifi  | cial: po  | olipépt   | tido sir   | ntético   | <b>"</b>  |           |           |           |           |           |
| 25 |                                            | Pro<br>1  | Ala       | Ser       | Leu        | Ser<br>5  | Ala       | Ser       | Val       | Gly        | Glu<br>10 | Thr       | Val       | Thr       | Ile       | Thr<br>15 | Суз       |
| 30 |                                            | Arg       | Thr       | Ser       | Glu<br>20  | Asn       | Ile       | Phe       | Ser       | Tyr<br>25  | Leu       | Ala       | Trp       | Tyr       | Gln<br>30 | Gln       | Lys       |
| 35 |                                            | Gln       | Gly       | Ile<br>35 | Ser        | Pro       | Gln       | Leu       | Leu<br>40 | Val        | Tyr       | Asn       | Ala       | Lys<br>45 | Thr       | Leu       | Ala       |
| 40 |                                            | Glu       | Gly<br>50 | Val       | Pro        | Ser       | Arg       | Phe<br>55 | Ser       | Gly        | Ser       | Gly       | Ser<br>60 | Gly       | Thr       | Gln       | Phe       |
| 45 |                                            | Ser<br>65 | Leu       | Lys       | Ile        | Asn       | Ser<br>70 | Leu       | Gln       | Pro        | Glu       | Asp<br>75 | Phe       | Gly       | Ser       | Tyr       | Tyr<br>80 |
| 50 |                                            | Cys       | Gln       | His       | His        | Tyr<br>85 | Ala       | Phe       | Pro       | Trp        | Thr<br>90 | Phe       | Gly       | Gly       | Gly       | Ser<br>95 | Lys       |
| 50 |                                            | Leu       | Glu       | Ile       | Lys<br>100 | Arg       | Ala       | Asp       | Ala       | Ala<br>105 | Pro       |           |           |           |           |           |           |
| 55 |                                            |           |           |           |            |           |           |           |           |            |           |           |           |           |           |           |           |
| 60 |                                            |           |           |           |            |           |           |           |           |            |           |           |           |           |           |           |           |
| 65 |                                            |           |           |           |            |           |           |           |           |            |           |           |           |           |           |           |           |

```
<210> 55
      <211> 5
      <212> PRT
 5
      <213> Secuencia artificial
      <220>
      <221> fuente
      <223> /nota="Descripción de la secuencia artificial: Péptido sintético"
10
                    Gly Tyr Phe Met Asn
                                          5
15
20
      <210> 56
      <211> 17
      <212> PRT
      <213> Secuencia artificial
      <220>
25
      <221> fuente
      <223> /nota="Descripción de la secuencia artificial: Péptido sintético"
              Arg Ile Phe Pro Tyr Asn Gly Asp Thr Phe Tyr Asn Gln Lys Phe Lys
                                    5
              1
                                                              10
                                                                                         15
                                                      Gly
      <210> 57
30
      <211> 7
      <212> PRT
      <213> Secuencia artificial
      <220>
      <221> fuente
35
      <223> /nota="Descripción de la secuencia artificial: Péptido sintético"
      <400> 57
                 Gly Thr His Tyr Phe Asp Tyr
40
      <210> 58
      <211> 128
45
      <212> PRT
      <213> Secuencia artificial
      <220>
      <221> fuente
50
      <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"
      <400> 58
```

| 5  | Gly<br>1                                                         | Pro         | Glu        | Leu        | Val<br>5  | Lys       | Pro                  | Gly        | Ala        | Ser<br>10 | Val       | Lys       | Ile        | Ser        | Cys<br>15 | Lys       |
|----|------------------------------------------------------------------|-------------|------------|------------|-----------|-----------|----------------------|------------|------------|-----------|-----------|-----------|------------|------------|-----------|-----------|
| 10 | Ala                                                              | Ser         | Asp        | Tyr<br>20  | Ser       | Phe       | Thr                  | Gly        | Туг<br>25  | Phe       | Met       | Asn       | Trp        | Val<br>30  | Met       | Gln       |
| 15 | Ser                                                              | His         | Gly<br>35  | Lys        | Ser       | Leu       | Glu                  | Trp<br>40  | Ile        | Gly       | Arg       | Ile       | Phe<br>45  | Pro        | Tyr       | Asn       |
| 13 | Gly                                                              | Asp<br>50   | Thr        | Phe        | Tyr       | Asn       | Gln<br>55            | Lys        | Phe        | Lys       | Gly       | Arg<br>60 | Ala        | Thr        | Leu       | Thr       |
| 20 | Val<br>65                                                        | Asp         | Lys        | Ser        | Ser       | Ser<br>70 | Thr                  | Ala        | His        | Met       | Glu<br>75 | Leu       | Arg        | Ser        | Leu       | Ala<br>80 |
| 25 | Ser                                                              | Glu         | Asp        | Ser        | Ala<br>85 | Val       | Tyr                  | Phe        | Cys        | Ala<br>90 | Arg       | Gly       | Thr        | His        | Tyr<br>95 | Phe       |
| 30 | Asp                                                              | Tyr         | Trp        | Gly<br>100 | Gln       | Gly       | Thr                  | Thr        | Leu<br>105 | Thr       | Val       | Ser       | Ser        | Ala<br>110 | Lys       | Thr       |
|    | Thr                                                              | Pro         | Pro<br>115 | Ser        | Val       | Tyr       | Pro                  | Leu<br>120 | Ala        | Pro       | Gly       | Ser       | Ala<br>125 | Ala        | Gln       | Thr       |
| 35 |                                                                  |             |            |            |           |           |                      |            |            |           |           |           |            |            |           |           |
| 40 | <210> 59<br><211> 36<br><212> ADN<br><213> Seci                  |             | a artific  | cial       |           |           |                      |            |            |           |           |           |            |            |           |           |
| 45 | <221> fuent<br><223> /nota<br><400> 59<br>agggccagct             | ="Des       | •          |            |           |           |                      | ficial:    | oligon     | ucleit    | odo si    | ntétic    | 0"         |            |           |           |
| 50 | <210> 60<br><211> 21<br><212> ADN<br><213> Seci<br><220>         | l<br>uencia |            |            | gilac i   | igcac     | 30                   |            |            |           |           |           |            |            |           |           |
| 55 | <221> fuent<br><223> /nota<br><400> 60<br>ggcacatcca<br><210> 61 | ="Des       | •          |            | la se     | cuenc     | ia arti              | ficial:    | oligon     | ucleit    | odo si    | ntétic    | 0"         |            |           |           |
| 60 | <211> 27<br><212> ADN<br><213> Secu<br><220><br><221> fuent      | iencia      | artific    | ial        |           |           |                      |            |            |           |           |           |            |            |           |           |
| 65 | <223> /nota<br><400> 61<br>cagcagtaca<br><210> 62                | ="Des       | •          |            |           | cuenc     | ia arti <sup>.</sup> | ficial:    | oligon     | ucleit    | odo si    | ntétic    | 0"         |            |           |           |

| 5  | <211> 323 <212> ADN <213> Secuencia artificial <220> <221> fuente <221> [nota="Descripción de la secuencia artificial; polinyeleitido sintético"]                  |     |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
|    | <223> /nota="Descripción de la secuencia artificial: polinucleitido sintético"  <400> 62                                                                           |     |  |  |  |  |  |
| 10 | 400 02                                                                                                                                                             |     |  |  |  |  |  |
| 10 | ccagcaatca tgtctgcatc tccaggggaa aaggtcacca tgacctgcag ggccagctca                                                                                                  | 60  |  |  |  |  |  |
| 15 | actgtaagtt acagttactt gcactggtac cagcagaagt caggtgcctc cccccaactc                                                                                                  | 120 |  |  |  |  |  |
|    | tggatttatg gcacatccaa cttggcttct ggagtccctg ctcgcttcag tggcagtggg                                                                                                  | 180 |  |  |  |  |  |
| 20 | tctgggacct cttactctct cacaatcagc agtgtggagg ctgaagatgc tgccacttat                                                                                                  | 240 |  |  |  |  |  |
|    | tactgccagc agtacagtgg ttacccactc acgttcggtg ctgggaccaa gctggagctg                                                                                                  | 300 |  |  |  |  |  |
| 25 | aaacgggctg atgctgcacc aac                                                                                                                                          | 323 |  |  |  |  |  |
|    |                                                                                                                                                                    |     |  |  |  |  |  |
| 30 | <210> 63 <211> 18 <212> ADN <213> Secuencia artificial <220>                                                                                                       |     |  |  |  |  |  |
| 35 | <221> fuente<br><223> /nota="Descripción de la secuencia artificial: oligonucleitodo sintético"<br><400> 63<br>agtggttatt actggaac 18                              |     |  |  |  |  |  |
| 40 | <210> 64 <211> 48 <212> ADN <213> Secuencia artificial <220> <221> fuente                                                                                          |     |  |  |  |  |  |
| 45 | <223> /nota="Descripción de la secuencia artificial: oligonucleitodo sintético" <400> 64 tacataaagt ccgacggtag caataattac aacccatctc tcaaaaat 48 <210> 65 <211> 21 |     |  |  |  |  |  |
| 50 | <212> ADN <213> Secuencia artificial <220> <221> fuente                                                                                                            |     |  |  |  |  |  |
| 55 | <223> /nota="Descripción de la secuencia artificial: oligonucleitodo sintético" <400> 65 gagtggaagg ctatggacta c 21 <210> 66                                       |     |  |  |  |  |  |
| 60 | <211> 389 <212> ADN <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polinucleitido sintético"                   |     |  |  |  |  |  |
| 65 | <400> 66                                                                                                                                                           |     |  |  |  |  |  |

| 5  | gagtcaggac ctggcctcgt gagaccttct cagtctctgt ctctcacctg ctctgtcact                                                                                               | 60  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | ggctactcca tcaccagtgg ttattactgg aactggatcc ggcagtttcc aggaagcaga                                                                                               | 120 |
| 10 | ctggaatgga tgggctacat aaagtccgac ggtagcaata attacaaccc atctctcaaa                                                                                               | 180 |
|    | aatcgaatct ccatcactcg tgacacatct aagaaccagt ttttcctgaa gttgaattct                                                                                               | 240 |
| 15 | gtgactactg aggacacage tacatattte tgtacaaggg agtggaagge tatggactae                                                                                               | 300 |
|    | tggggtcagg gaacctcagt caccgtctcc tcagccaaaa caacaccccc atcagtctat                                                                                               | 360 |
| 20 | ccactggccc ctgggtgtgg agatacaac                                                                                                                                 | 389 |
| 25 |                                                                                                                                                                 |     |
|    |                                                                                                                                                                 |     |
| 30 | <210> 67 <211> 45 <212> ADN <213> Secuencia artificial <220> <221> fuente                                                                                       |     |
| 35 | <223> /nota="Descripción de la secuencia artificial: oligonucleitodo sintético" <400> 67 agagccagtg aaagtgttga tacttatggc aataatttta tacac 45 <210> 68 <211> 21 |     |
| 40 | <212> ADN <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: oligonucleitodo sintético"                         |     |
| 45 | <400> 68 cttgcatcca acctagaatc t 21 <210> 69 <211> 27 <212> ADN                                                                                                 |     |
| 50 | <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: oligonucleitodo sintético" <400> 69                          |     |
| 55 | cagcaaaata atggggatcc gtggacg 27 <210> 70 <211> 331 <212> ADN                                                                                                   |     |
| 60 | <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polinucleitido sintético" <400> 70                           |     |

| 5  | ecagettett tggetgtet tetagggeag agggeeaeca tateetgeag ageeagtgaa                                                                                                                                                                        | 00  |  |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
|    | agtgttgata cttatggcaa taattttata cactggtacc agcagaaacc aggacagcca                                                                                                                                                                       | 120 |  |  |  |  |  |
| 10 | cccaaactcc tcatttatct tgcatccaac ctagaatctg gggtccctgc caggttcagt                                                                                                                                                                       | 180 |  |  |  |  |  |
|    | ggcagtgggt ctaggacaga cttcaccctc accattgatc ctgtggaggc tgatgatgct                                                                                                                                                                       | 240 |  |  |  |  |  |
| 15 | gcaacctatt actgtcagca aaataatggg gatccgtgga cgttcggtgg aggcaccaag                                                                                                                                                                       | 300 |  |  |  |  |  |
| 20 | ctggagatca aacgggctga tgctgcacca a                                                                                                                                                                                                      | 331 |  |  |  |  |  |
| 25 | <210> 71<br><211> 15<br><212> ADN<br><213> Secuencia artificial<br><220>                                                                                                                                                                |     |  |  |  |  |  |
| 30 | <221> fuente <223> /nota="Descripción de la secuencia artificial: oligonucleitodo sintético" <400> 71 caccectata tgcac 15 <210> 72 <211> 51                                                                                             |     |  |  |  |  |  |
| 35 | <211> 51 <212> ADN <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: oligonucleitodo sintético"                                                                                        |     |  |  |  |  |  |
| 40 | <400> 72 aggattgatc ctgcgaatgg taatactaaa tatgacccga agttccaggg c 51 <210> 73 <211> 30 <212> ADN <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: oligonucleitodo sintético" <400> 73 |     |  |  |  |  |  |
| 45 |                                                                                                                                                                                                                                         |     |  |  |  |  |  |
| 50 | gaggaggtgg cggactatac tatggactac 30 <210> 74                                                                                                                                                                                            |     |  |  |  |  |  |
|    | ggggcagagc ttgtgaagcc aggggcctca gtcaagttgt cctgcacagc ttctggcttc                                                                                                                                                                       | 60  |  |  |  |  |  |
| 55 | aacattaaac acccctatat gcactgggtg aagcagaggc ctgaccaggg cctggagtgg                                                                                                                                                                       | 120 |  |  |  |  |  |
|    | attggaagga ttgatcctgc gaatggtaat actaaatatg acccgaagtt ccagggcaag                                                                                                                                                                       | 180 |  |  |  |  |  |
| 60 | gccactataa cagcagacac atcctccaac acagcctacc tacagctcag cagcctgaca                                                                                                                                                                       | 240 |  |  |  |  |  |
|    | tctgaggaca ctgccgtcta ttactgtggt agaggagg tggcggacta tactatggac                                                                                                                                                                         | 300 |  |  |  |  |  |
| 65 | tactggggtc aaggaacctc agtcaccgtc tcctcagcca aaacaacagc cccatcggtc                                                                                                                                                                       | 360 |  |  |  |  |  |
|    | tatccactgg cccctgtgtg                                                                                                                                                                                                                   | 380 |  |  |  |  |  |

| 3  |                                                                                                                                                           |                           |                                        |                       |                    |            |            |     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------|-----------------------|--------------------|------------|------------|-----|
| 10 |                                                                                                                                                           | N<br>cuencia artif<br>ite | îcial<br>ción de la secuel             | ncia artificial: pol  | linucleitido sinté | tico"      |            |     |
| 15 | <400> 74<br><210> 75<br><211> 33<br><212> ADI<br><213> Sec<br><220>                                                                                       |                           | îcial                                  |                       |                    |            |            |     |
| 20 | <221> fuer<br><223> /not<br><400> 75                                                                                                                      | a="Descripo               | ción de la secue<br>o caatttttta aac 3 |                       | gonucleitodo sin   | tético"    |            |     |
| 25 | <210> 76<br><211> 21<br><212> AD<br><213> Sec<br><220>                                                                                                    | cuencia artif             | īcial                                  |                       |                    |            |            |     |
| 30 | <400> 76<br>tacacatcaa<br><210> 77                                                                                                                        | a="Descripo               | ción de la secuel<br>a 21              | ncia artificial: oliç | gonucleitodo sin   | tético"    |            |     |
| 35 | <211> 27<br><212> ADI<br><213> Sec<br><220><br><221> fuer                                                                                                 | cuencia artif             | îcial                                  |                       |                    |            |            |     |
| 40 | <221> fuente <223> /nota="Descripción de la secuencia artificial: oligonucleitodo sintético" <400> 77 cagcacttta gtaagcttcc gtggacg 27 <210> 78 <211> 320 |                           |                                        |                       |                    |            |            |     |
| 45 | <212> ADN <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polinucleitido sintético"                    |                           |                                        |                       |                    |            |            |     |
| 50 | <400> 78                                                                                                                                                  |                           |                                        |                       |                    |            |            |     |
|    | aca                                                                                                                                                       | atcctccc                  | tgtctgcctc                             | tctgggagac            | agagtcacca         | tcagttgcag | tgcaagtcag | 60  |
| 55 | ggo                                                                                                                                                       | cattaaca                  | atttttaaa                              | ctggtatcag            | cagaaaccag         | atggcactgt | taaactcctg | 120 |
| 60 | ato                                                                                                                                                       | ctattaca                  | catcaagttt                             | acactcagga            | gtcccatcaa         | ggttcagtgg | cagtgggtct | 180 |
|    | gg                                                                                                                                                        | gacagatt                  | attctctcac                             | catcagcaac            | ctggaacctg         | aagatattgc | catatactat | 240 |
| 65 | tgt                                                                                                                                                       | cagcact                   | ttagtaagct                             | tccgtggacg            | ttcggtggag         | gcaccaagct | ggaaatcaaa | 300 |
|    | 000                                                                                                                                                       | ractasta                  | ctocaccaac                             |                       |                    |            |            | 320 |

| 5  |                                                                                                                                          | 15                                                  | cial       |                       |                    |            |            |
|----|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------|-----------------------|--------------------|------------|------------|
| 10 | <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: oligonucleitodo sintético" <400> 79 agctatgcca tgtct 15 <210> 80 |                                                     |            |                       |                    |            |            |
| 15 | <220><br><221>                                                                                                                           | ADN<br>Secuencia artifi<br>fuente                   |            | cia artificial: oligo | pruglaitada aintái | ion"       |            |
| 20 | <400><br>gaaatte<br>21                                                                                                                   | 80<br>ggta gtggtggtag t<br>0.<210> 81<br>1.<211> 27 |            | gaca ctgtgacggg       |                    | ico        |            |
| 25 | 21<br><220><br><221><br><223>                                                                                                            | •                                                   |            | cia artificial: oligo | onucleitodo sintél | ico"       |            |
| 30 | <210><br><211><br><212>                                                                                                                  | acgg cgggctactt<br>82<br>336<br>ADN                 |            |                       |                    |            |            |
| 35 | <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polinucleitido sintético" <400> 82    |                                                     |            |                       |                    |            |            |
| 40 |                                                                                                                                          |                                                     |            |                       |                    |            |            |
|    |                                                                                                                                          | tctgggggag                                          | gcttagtgag | gcctggaggg            | tccctgaaac         | tctcctgtgc | agcctctgga |
| 45 |                                                                                                                                          | ttcactttca                                          | gtagctatgc | catgtcttgg            | gttcgccagt         | ctccagagaa | gaggctggag |
| 50 |                                                                                                                                          | tgggtcgcag                                          | aaattggtag | tggtggtagt            | tacacctact         | atccagacac | tgtgacgggc |
| 55 |                                                                                                                                          | cgattcacca                                          | tctccagaga | caatgccaag            | agcaccctgt         | acctggaaat | gagcagtctg |
| 60 |                                                                                                                                          | aggtctgagg                                          | acacggccat | ctattactgt            | gcaagggaaa         | ctacggcggg | ctactttgac |
| 60 |                                                                                                                                          | tactggggcc                                          | aaggcaccac | tctcacagtc            | tcctca             |            |            |

|    | <210> 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                         |                                                                       |              |                                                |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|-----------------------------------------------------------------------|--------------|------------------------------------------------|--|
|    | <211> 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                         |                                                                       |              |                                                |  |
| 5  | <212> ADN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                         |                                                                       |              |                                                |  |
|    | <213> Secuencia artificial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                         |                                                                       |              |                                                |  |
|    | <220>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                         |                                                                       |              |                                                |  |
|    | <221> fuente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | do lo occupació d | whifisial alianam.                      | المنائميات منسلطان                                                    |              |                                                |  |
| 10 | <223> /nota="Descripción <400> 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | de la secuencia a | artificiai: oligonuc                    | ieitodo sintetico                                                     |              |                                                |  |
| 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tattta aca 33     |                                         |                                                                       |              |                                                |  |
|    | cgaacaagtg agaatatttt cagt <210> 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iailia gca 33     |                                         |                                                                       |              |                                                |  |
|    | <211> 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                         |                                                                       |              |                                                |  |
|    | <212> ADN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                         |                                                                       |              |                                                |  |
| 15 | <213> Secuencia artificial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                         |                                                                       |              |                                                |  |
|    | <220>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                         |                                                                       |              |                                                |  |
|    | <221> fuente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                         |                                                                       |              |                                                |  |
|    | <223> /nota="Descripción                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | de la secuencia a | artificial: oligonuc                    | leitodo sintético"                                                    |              |                                                |  |
| 20 | <400> 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                         |                                                                       |              |                                                |  |
| 20 | aatgcaaaaa ccttagcaga g 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>?</u> 1        |                                         |                                                                       |              |                                                |  |
|    | <210> 85<br><211> 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                         |                                                                       |              |                                                |  |
|    | <212> ADN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                         |                                                                       |              |                                                |  |
|    | <213> Secuencia artificial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                         |                                                                       |              |                                                |  |
| 25 | <220>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                         |                                                                       |              |                                                |  |
|    | <221> fuente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                         |                                                                       |              |                                                |  |
|    | <223> /nota="Descripción                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | de la secuencia a | artificial: oligonuc                    | leitodo sintético"                                                    |              |                                                |  |
|    | <400> 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                         |                                                                       |              |                                                |  |
| 20 | caacatcatt atgcttttcc gtggad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cg 27             |                                         |                                                                       |              |                                                |  |
| 30 | <210> 86<br><211> 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                         |                                                                       |              |                                                |  |
|    | <211> 320<br><212> ADN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                                         |                                                                       |              |                                                |  |
|    | <213> Secuencia artificial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                         |                                                                       |              |                                                |  |
|    | <220>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                         |                                                                       |              |                                                |  |
| 35 | <221> fuente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                         |                                                                       |              |                                                |  |
|    | <223> /nota="Descripción                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | de la secuencia a | artificial: polinucle                   | eitido sintético"                                                     |              |                                                |  |
|    | <400> 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                         |                                                                       |              |                                                |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                         |                                                                       |              |                                                |  |
| 40 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                         |                                                                       |              |                                                |  |
|    | LOS REPORTED AT 100 PARTS AND |                   |                                         | 3.500.000 (A) \$1.500.000 (\$1.500.000.000.000.000.000.000.000.000.00 |              | Diamondo (1900 - 19 <b>1</b> - 1900 - 1900 - 1 |  |
|    | ccagcctccc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tatctgcatc        | tgtgggagaa                              | actgtcacca                                                            | tcacatgtcg   | aacaagtgag                                     |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                         |                                                                       |              |                                                |  |
| 45 | 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0202 3 2021       | 21 121 121                              |                                                                       | 77 - 77 - 77 |                                                |  |
| 43 | aatattttca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gttatttagc        | atggtatcag                              | cagaaacagg                                                            | gaatatctcc   | tcagctcctg                                     |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                         |                                                                       | =            |                                                |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                         |                                                                       |              |                                                |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                         |                                                                       |              |                                                |  |
| 50 | at at at a at a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | assasaatt         | 2002020004                              | ataggatasa                                                            | aattaaataa   | and and tan                                    |  |
|    | gicialaly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | caaaaacctt        | aycayayyyc                              | gigocalcaa                                                            | ggcccagcgg   | cagiggaica                                     |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                         |                                                                       |              |                                                |  |
|    | ~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +++++++           | +                                       | at aaaaaat a                                                          |              |                                                |  |
| 55 | ggcacacagt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tttctctgaa        | gateaacage                              | etgeageetg                                                            | aagattttgg   | gagitattac                                     |  |
| 55 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                         |                                                                       |              |                                                |  |
|    | <b>L</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | akkak             | L = = = = = = = = = = = = = = = = = = = | <b>LL mank</b>                                                        |              |                                                |  |
|    | tgtcaacatc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | attatgcttt        | teegtggaeg                              | tteggtggag                                                            | getecaaget   | ggaaatcaaa                                     |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                         |                                                                       |              |                                                |  |
| 60 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                 |                                         |                                                                       |              |                                                |  |
|    | cgggctgatg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ctgcaccaac        |                                         |                                                                       |              |                                                |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                         |                                                                       |              |                                                |  |

|    | <210> 87                                                                        |
|----|---------------------------------------------------------------------------------|
| 5  | <211> 15                                                                        |
|    | <212> ADN                                                                       |
|    | <213> Secuencia artificial                                                      |
|    | <220>                                                                           |
|    | <221> fuente                                                                    |
| 10 |                                                                                 |
|    | <400> 87 ggctacttta tgaac 15                                                    |
|    | <210> 88                                                                        |
|    | <211>51                                                                         |
|    | <212> ADN                                                                       |
| 15 | <213> Secuencia artificial                                                      |
|    | <220>                                                                           |
|    | <221> fuente                                                                    |
|    | <223> /nota="Descripción de la secuencia artificial: oligonucleitodo sintético" |
| 20 | <400> 88                                                                        |
| 20 | cgtatttttc cttacaatgg tgatactttc tacaaccaga agttcaaggg c 51                     |
|    | <210> 89<br><211> 21                                                            |
|    | <212> ADN                                                                       |
|    | <213> Secuencia artificial                                                      |
| 25 | <220>                                                                           |
| 23 | <221> fuente                                                                    |
|    | <223> /nota="Descripción de la secuencia artificial: oligonucleitodo sintético" |
|    | <400> 89                                                                        |
|    | gggactcatt actttgacta c 21                                                      |
| 30 | <210> 90                                                                        |
|    | <211> 386                                                                       |
|    | <212> ADN                                                                       |
|    | <213> Secuencia artificial                                                      |
|    | <220>                                                                           |
| 35 | <221> fuente                                                                    |
|    | <223> /nota="Descripción de la secuencia artificial: polinucleitido sintético"  |
|    | <400> 90                                                                        |
|    |                                                                                 |

| 40 | ggacctgagc tggtgaagcc tgggggcttca gtgaagatat cctgcaaggc ttctgattac | 60  |
|----|--------------------------------------------------------------------|-----|
| 45 | tcttttactg gctactttat gaactgggtg atgcagagcc atggaaagag ccttgagtgg  | 120 |
| 50 | attggacgta tttttcctta caatggtgat actttctaca accagaagtt caagggcagg  | 180 |
|    | gccacattga ctgtagacaa atcctctagc acagcccaca tggagctccg gagcctggca  | 240 |
| 55 | tctgaggact ctgcagtcta tttttgtgca agagggactc attactttga ctactggggc  | 300 |
| 60 | caaggcacca ctctcactgt ctcctcagcc aaaacgacac ccccatctgt ctatccactg  | 360 |
|    | gcccctggat ctgctgccca aactaa                                       | 386 |

#### Reivindicaciones

10

40

45

50

- 1. Un método de evaluación de si un sujeto está afectado con una Cáncer que expresa FRα, comprendiendo el método la determinación del nivel de receptor de folato alfa (Frα) que no está unido a una célula, en una muestra de orina derivada de dicho sujeto; y comparar el nivel de receptor de folato alfa (Frα) que no está unido a una célula con el nivel de FRα en una muestra de control, en la que una diferencia entre el nivel de FRα en la muestra de orina derivada de dicho sujeto y el nivel de FRα en la muestra de control es una indicación de que el sujeto está
  - afectado con un cáncer que expresa  $FR\alpha$ ; en el que el nivel de  $FR\alpha$  que no está unido a una célula en la muestra de orina derivada de dicho sujeto se evalúa poniendo en contacto la muestra con un anticuerpo que se une  $FR\alpha$ .
- 2. El método de la reivindicación 1, en el que el cáncer que expresa FRα se selecciona del grupo que consiste en cáncer de pulmón, mesotelioma, cáncer de ovario, cáncer renal, cáncer cerebral, cáncer cervical, cáncer de la nasofaringe, carcinoma de células escamosas de cabeza y cuello, cáncer endometrial, cáncer de mama, cáncer de vejiga, cáncer de páncreas, cáncer de hueso, cáncer de hipófisis, cáncer colorrectal y cáncer medular de tiroides; opcionalmente en el que el cáncer que expresa FRα es cáncer de ovario o cáncer de pulmón; opcionalmente en el que el cáncer que expresa FRα es cáncer de pulmón de células no pequeñas; opcionalmente en el que el cáncer no microcítico de pulmón de células es adenocarcinoma.
- 3. El método de la reivindicación 1, en el que la presencia de FRα en dicha muestra de orina en una concentración de más de 9.500 pg/ml, 10.000 pg/ml, 11.000 pg/ml, 12.000 pg/ml, 13.000 pg/ml, 14.000 pg/ml, 15.000 pg/ml, 16.000 pg/ml, 17.000 pg/ml, 18.000 pg/ml, 19.000 pg/ml, o 20.000 pg/ml es una indicación de que el sujeto está afectado por cáncer de ovario.
  - 4. El método de la reivindicación 1, donde el anticuerpo se selecciona del grupo que consiste en:
- a. un anticuerpo que se une al mismo epítopo que el anticuerpo MORAb-003;
  - b. un anticuerpo que comprende la SEQ ID NO: 1 (GFTFSGYGLS) como CDRH1, SEQ ID NO: 2 (MISSGGSYTYYADSVKG) como CDRHH2, SEQ ID NO: 3 (HGDDPAWFAY) como CDRH3, SEQ ID NO: 4 (SVSSSISSNNLH) como CDRL1, SEQ ID NO: 5 (GTSNLAS) como CDRL2 y SEQ ID NO: 6 (QQWSSYPYMYT) como CDRL3;
- 35 c. el anticuerpo MOV18;
  - d. un anticuerpo que se une al mismo epítopo que el anticuerpo MOV18;
  - e. el anticuerpo 548.908;
  - f. un anticuerpo que se une al mismo epítopo que el anticuerpo 548.908;
  - g. el anticuerpo 6D398;
  - h. un anticuerpo que se une al mismo epítopo que el anticuerpo 6D398;
  - i. un anticuerpo que se une al mismo epítopo que el anticuerpo 26B3;
  - j. un anticuerpo que comprende la SEQ ID NO: 55 (GYFMN) como CDRH1, SEQ ID NO: 56 (RIFPYNGDTFYNQKFKG) como CDRHH2, SEQ ID NO: 57 (GTHYFDY) como CDRH3, SEQ ID NO: 51 (RTSENIFSYLA) como CDRL1, SEQ ID NO: 52-(NAKTLAE) como CDRL2 y SEQ ID NO: 53 (QHHYAFPWT) como CDRL3;
  - k. el anticuerpo 26B3;
  - I. un anticuerpo que se une al mismo epítopo que el anticuerpo 19D4;
  - m. un anticuerpo que comprende la SEQ ID NO: 39 (HPYM-H+) como CDRH1, SEQ ID NO: 40 (RIDPANGNTKYDPKFQG) como CDRH4, SEQ ID NO: 41-(EEVADYTMDY) como CDRH3, SEQ ID NO: 35-(RASESVDTYGNNFIH) como CDRL1, SEQ ID NO: 36 (LASNLES) como CDRL2 y SEQ ID NO: 37 (QQNNGDPWT) como CDRL3;
  - n. el anticuerpo 19D4;
  - o. un anticuerpo que se une al mismo epítopo que el anticuerpo 9F3;
  - p. un anticuerpo que comprende la SEQ ID NO: 31-(SGYYWN) como CDRH1, SEQ ID NO: 32-(YIKSDGSNNYNPSLKN) como CDRHH2, SEQ ID NO: 33 (EWKAMDY) como CDRH3, SEQ ID NO: 27 (RASSTVSYSYLH) como CDRL1, SEQ ID NO: 28 (GTSNLAS) como CDRL2 y SEQ ID NO: 29 (QQYSGYPLT) como CDRL3;
  - q. el anticuerpo 9F3;
  - r. un anticuerpo que se une al mismo epítopo que el anticuerpo 24F12;
- s. un anticuerpo que comprende la SEQ ID NO: 47 (SYAMS) como CDRH1, SEQ ID NO: 48 (EIGSGGSYTYYPDTVTG) como CDRHH2, SEQ ID NO: 49 (ETTAGYFDY) como CDRH3, SEQ ID NO: 43 (SASQGINNFLN) como CDRL1, SEQ ID NO: 44 (YTSSLHS) como CDRL2 y SEQ ID NO: 45-(QHFSKLPWT) como CDRL3;
  - t. el anticuerpo 24F12;
- u. un anticuerpo que comprende una cadena ligera de la región variable seleccionada del grupo que consiste en LK26HuVK (SEQ ID NO: 13); LK26HuVKY (SEQ ID NO: 14); LK26HuVKPW (SEQ ID NO: 15); y LK26HuVKPW, Y (SEQ ID NO: 16);

- v. un anticuerpo que comprende una cadena pesada de la región variable seleccionada del grupo que consiste en LK26HuVH (SEQ ID NO: 17); LK26HuVH FAIS, N (SEQ ID NO: 18); LK26HuVH SLF (SEQ ID NO: 19); LK26HuVH I, I (SEQ ID NO: 20); y LK26KOLHuVH (SEQ ID NO: 21);
- w. un anticuerpo que comprende la región de cadena pesada variable LK26KOLHuVH (SEQ ID NO: 21) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16);
- x. un anticuerpo que comprende la región de cadena pesada variable LK26HuVH SLF (SEQ ID NO: 19) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16); y
- y. (Y) un anticuerpo que comprende la región de cadena pesada variable LK26HuVH FAIS, N (SEQ ID NO: 18) y la región variable de cadena ligera LK26HuVKPW, Y (SEQ ID NO: 16).
- **5.** El método de la reivindicación 1, en el que el anticuerpo es (a) seleccionado del grupo que consiste de un anticuerpo murino, un anticuerpo humano, un anticuerpo humanizado, un anticuerpo biespecífico, un anticuerpo quimérico, un fragmento Fab, Fab'2, ScFv, SMIP, aficuerpo, avimer, versacuerpo, nanoanticuerpo, y un dominio de anticuerpo; o (b) marcado; opcionalmente en el que el anticuerpo está marcado con un marcador seleccionado del grupo que consiste de un marcador radiactivo, un marcador de biotina, una etiqueta cromóforo, un marcador fluoróforo, un marcador ECL y una etiqueta enzima.
- **6.** El método de la reivindicación 1, en el que el nivel de FRα se determina mediante el uso de una técnica seleccionada de entre el grupo que consiste en el análisis de Transferencia Western, radioinmunoensayo, inmunofluorimetría, inmunoprecipitación, el dialisis de equilibrio, inmunodifusión, ensayo de fase de solución, inmunoensayo de electroquimioluminiscencia (ECLIA) y el ensayo de ELISA.
- **7.** El método de la reivindicación 1, en el que la muestra de control comprende un nivel de control estandarizado de FRα en un sujeto sano.
- 8. El método de la reivindicación 1, en el que la muestra de orina es (a) se trata con guanidina antes de determinar el nivel de FRα en la muestra de orina; o (b) diluido antes de determinar el nivel de FRα en la muestra de orina; o (c) se centrifuga, se agitó con vórtex, o ambos, antes de determinar el nivel de FRα en la muestra de orina.
  - **9.** El método de la reivindicación 1, en el que el nivel de FRα en la muestra de orina derivada de dicho sujeto se evalúa poniendo en contacto la muestra de orina con un par de anticuerpos seleccionados de entre el grupo que consiste en
    - (a) Anticuerpo MOV18 inmovilizado a un soporte sólido y anticuerpo marcado MORAb-003,
    - (b) Anticuerpo 9F3 inmovilizado a un soporte sólido y anticuerpo marcado 24F12,
    - (c) Anticuerpo 26B3 inmovilizado a un soporte sólido y el anticuerpo marcado 19D4, y
    - (d) Anticuerpo 9F3 inmovilizado a un soporte sólido y anticuerpo marcado 26B3.
  - **10.** El uso de un kit de acuerdo con el método de cualquiera de las reivindicaciones 1-9 para la evaluación de si un sujeto está afectado con un cáncer que expresa  $FR\alpha$  en un sujeto, comprendiendo el kit
- un medio para determinar el nivel de receptor de folato alfa (Frα) que no está unido a una célula en una muestra de orina derivada de dicho sujeto; y instrucciones de uso del kit para evaluar si el sujeto está afectado con un cáncer que expresa FRα o para evaluar la progresión de un cáncer que expresa FRα.

50

35

40

5

10

Figura 1

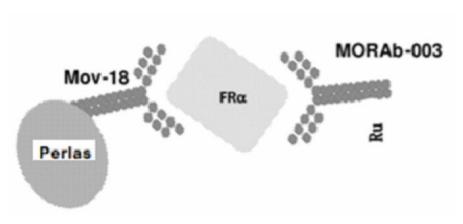
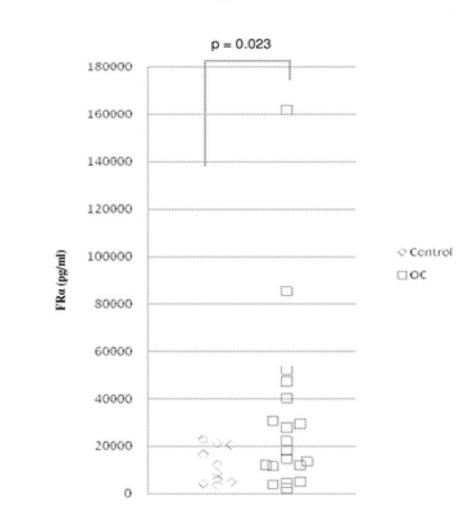




Figura 2



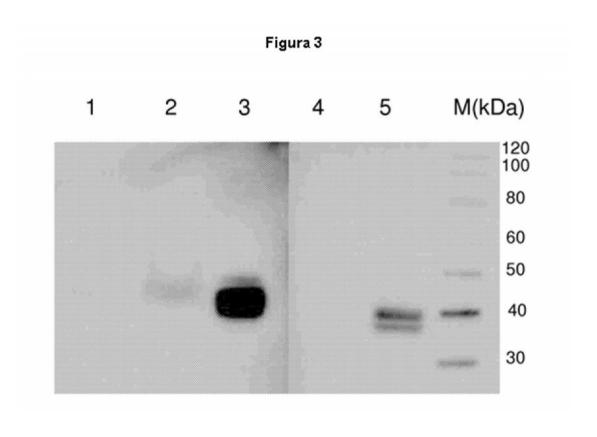



Figura 4

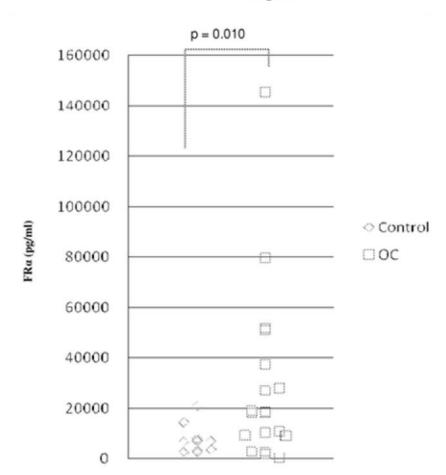



Figura 5

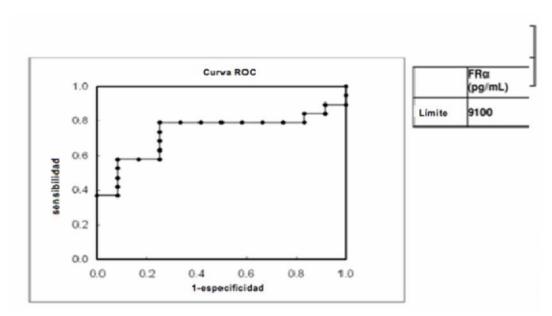



Figura 6

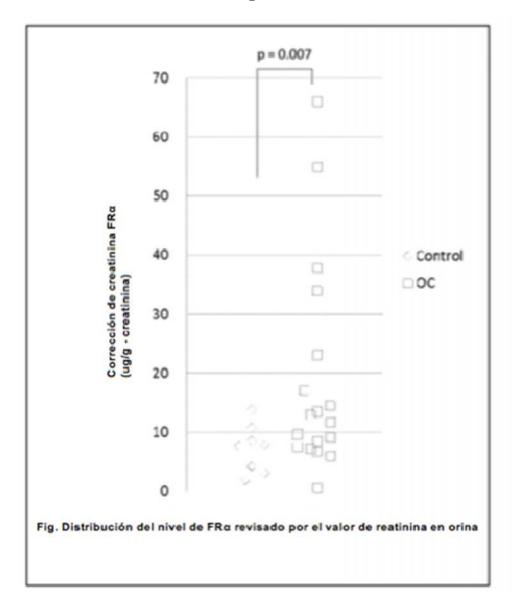



Figura 7

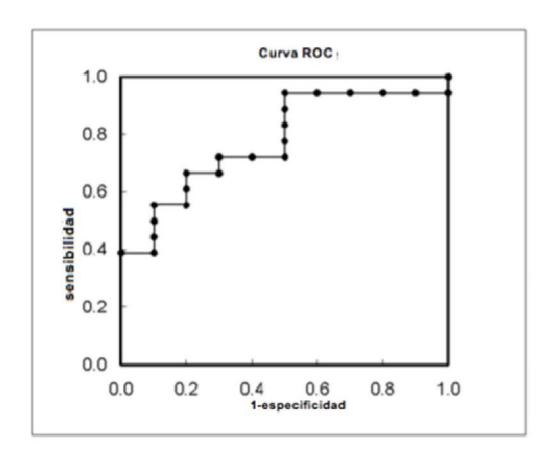



Figura 8

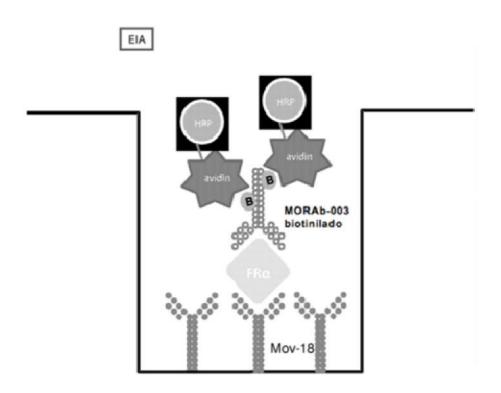



Figura 9

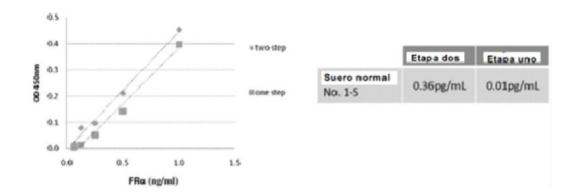
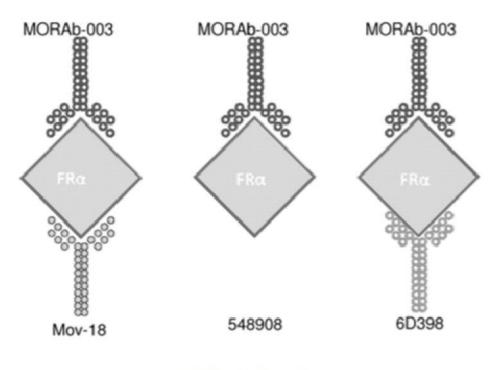




Figura 10

## Anticuerpo detector etiquetado



Anticuerpo de captura

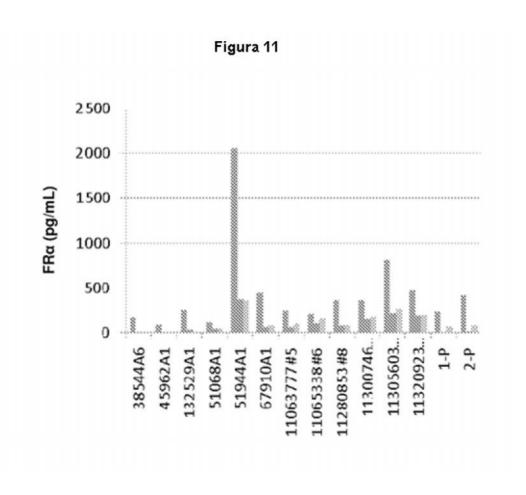



Figura 12

## Medición de antíeno est.

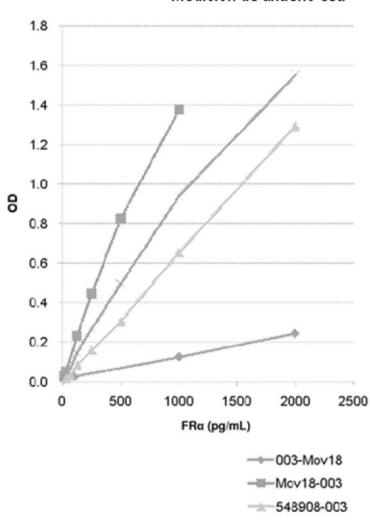
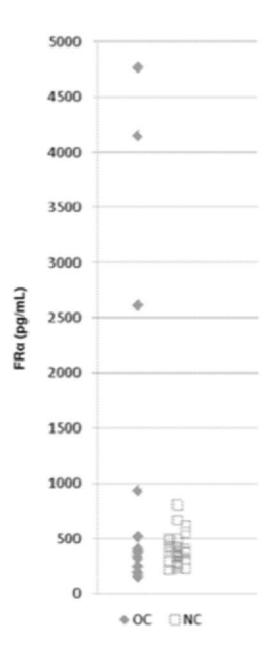




Figura 13

Distribución de plasma FRα



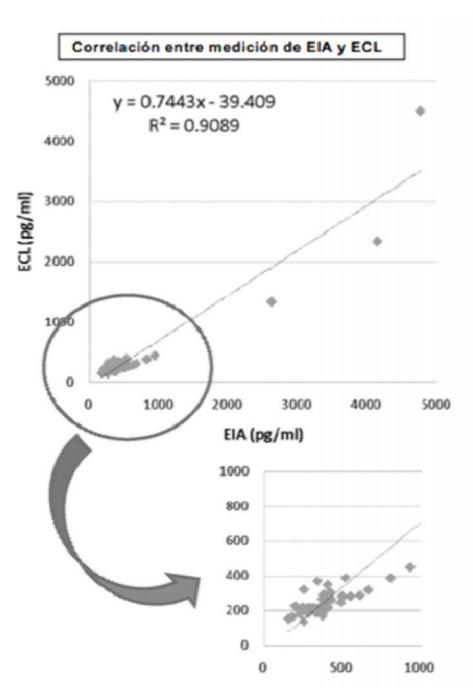
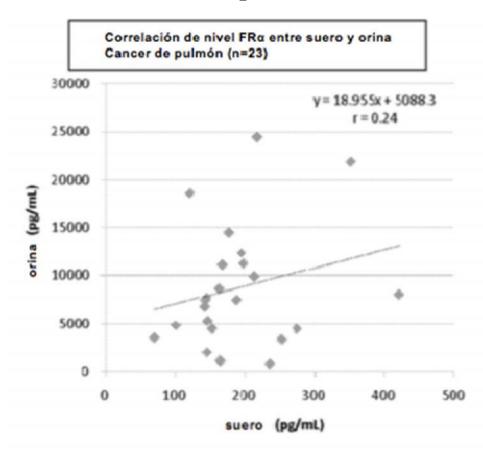




Figura 14

Figura 15



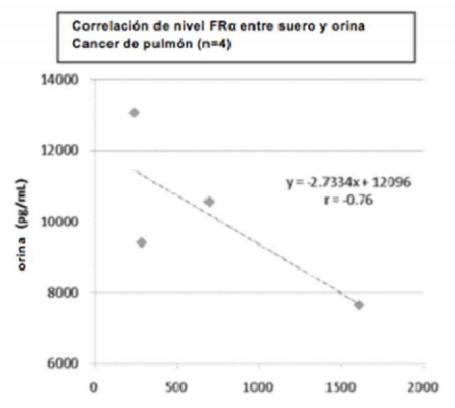



Figura 16

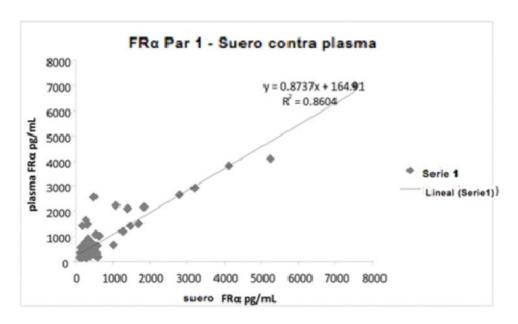



Figura 17

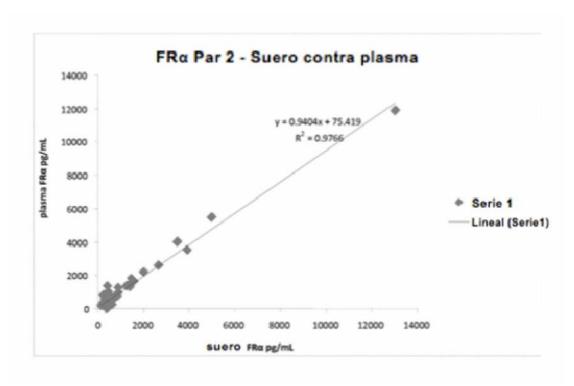



Figura 18

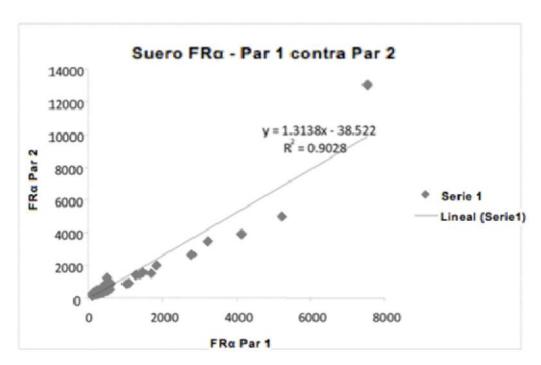
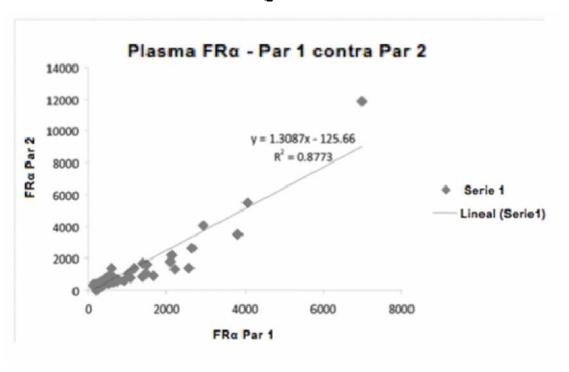




Figura 19



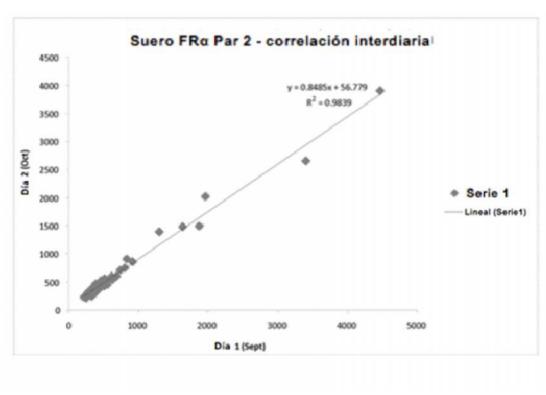



Figura 20