

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 629 061

(51) Int. CI.:

G01N 33/574 (2006.01) C12Q 1/68 (2006.01) G01N 33/53 (2006.01) C07K 14/47 (2006.01) C07K 16/18 C12N 15/02 (2006.01) C12P 21/08 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

03.08.2012 PCT/JP2012/069824 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 07.02.2013 WO13018885

(96) Fecha de presentación y número de la solicitud europea: 03.08.2012 E 12819473 (5)

05.04.2017 (97) Fecha y número de publicación de la concesión europea: EP 2741085

(54) Título: Método para la detección de cáncer pancreático

(30) Prioridad:

04.08.2011 JP 2011171364

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 07.08.2017

(73) Titular/es:

TORAY INDUSTRIES, INC. (100.0%) 1-1, Nihonbashi-Muromachi 2-chome Chuo-ku, Tokyo 103-8666, JP

(72) Inventor/es:

IDO, TAKAYOSHI y **OKANO, FUMIYOSHI**

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Método para la detección de cáncer pancreático

5 Campo técnico

La presente invención se refiere a un método para la detección de cáncer pancreático utilizando como marcador tumoral CAPRIN-1.

10 Técnica anterior

15

20

25

30

35

40

45

50

Se ha informado que hay más de 10.000 pacientes con cáncer pancreático refractario en Japón, cuya aparición aumenta de año en año y se supone que el número de pacientes continuará aumentando. Aunque el cáncer pancreático se extrajese quirúrgicamente, a menudo pequeñas células cancerosas se han infiltrado y metastatizado a otros órganos. Por consiguiente, el cáncer pancreático a menudo reincide y el índice de supervivencia de 5 años tan solo es del 9 %; es decir, el pronóstico del cáncer pancreático es muy malo. Con el fin de prevenir la recurrencia postoperatoria, se ha empleado Gemcitabina, un agente contra el cáncer. Sin embargo, el propósito principal de la administración de Gemcitabina es aliviar el dolor y apenas puede esperarse la reducción del tamaño del tumor o una ventaja de supervivencia. En algunos hospitales, se utiliza otro agente contra el cáncer, TS-1, que actualmente se utiliza para el cáncer gástrico, aunque es difícil esperar algún efecto terapéutico.

Para mejorar el pronóstico del cáncer pancreático, es importante la detección temprana, al igual que ocurre con otros cánceres; sin embargo, la detección temprana es difícil porque el cáncer pancreático no muestra sustancialmente síntomas iniciales. Hasta ahora, se han empleado métodos de detección de cáncer pancreático utilizando antígeno carcinoembrionario (ACE) y glucoproteínas (CA19-9 y Dupan-2) en muestras biológicas como marcadores tumorales de cáncer pancreático de una manera activa. Sin embargo, los niveles de dichos marcadores tumorales no comienzan a elevarse a menos que el cáncer pancreático avance, y dichos marcadores muestran ocasionalmente valores normales en la fase progresiva. Por consiguiente, dichos marcadores tumorales no se consideran suficientes para la detección precisa del cáncer pancreático. Además, la mayoría de los marcadores tumorales que se conocen actualmente están presentes en cantidades muy pequeñas en los fluidos corporales (a nivel de pg/ml). Por consiguiente, para detectar dichas pequeñas cantidades de marcadores son necesarias técnicas de detección con alta sensibilidad o especiales. En dichas circunstancias, se espera que sea aplicable una nueva técnica para la detección del cáncer pancreático de una manera sencilla con alta sensibilidad para el diagnóstico del cáncer pancreático. Para detectar el cáncer pancreático de fase temprana es necesario someterse a exámenes periódicos completos. Por consiguiente, se está a la espera de un método de detección del cáncer que pueda realizarse de una manera sencilla utilizando muestras de suero sanguíneo o de orina sin la imposición de cargas físicas o financieras bien en individuos sanos sin cáncer pancreático o en pacientes con cáncer.

Además, el cáncer pancreático es refractario en perros. Aunque puede observarse un bulto en la región abdominal de un perro con cáncer pancreático, los síntomas principales son una rápida pérdida de energía, un andar inestable y anomalías al andar resultantes de hipoglucemia. En la mayoría de los casos, el desarrollo del cáncer no se detecta hasta que se observan estos síntomas. Además, con frecuencia es probable que el cáncer pancreático ya esté en una fase avanzada cuando se observan dichos síntomas. Por consiguiente, además de la extirpación quirúrgica del cáncer pancreático, las técnicas terapéuticas están limitadas a una terapia complementaria y a la administración de agentes anticancerosos. Al igual que en el caso de pacientes humanos, la detección temprana es importante en perros que padecen cáncer pancreático para tratar de un modo eficaz dicho cáncer pancreático. Al igual que en el caso de seres humanos, no hay agentes de diagnóstico para perros en el pasado que permitan la detección del cáncer pancreático en la fase temprana de una manera sencilla. En el campo de la medicina veterinaria, las técnicas de detección, tales como técnicas radiográficas con rayos X, CT o MRI aún no son habituales. Por ahora, la detección se realiza palpando, realizando análisis de sangre sencillos y placas de rayos X, y el diagnóstico depende enormemente de la experiencia de los médicos veterinarios. Si pudiese proporcionarse un medio sencillo para la detección del cáncer, con alta sensibilidad, que pudiese aplicarse para el diagnóstico del cáncer de pancreático en perros, podría realizarse un tratamiento adecuado, que tuviese grandes ventajas para los propietarios del perro y los veterinarios.

55

60

La proteína 1 citoplasmática y asociada a proliferación (CAPRIN-1, acrónimo de *Cytoplasmic- and proliferationassociated protein* 1), es una proteína intracelular que se expresa cuando las células normales en fase de reposo se activan o experimentan división celular. También se sabe que CAPRIN-1 interviene en el control del transporte y traducción de los ARNm a través de la formación de gránulos de estrés citoplasmáticos y ARN en una célula. Además, los genes que codifican las proteínas CAPRIN-1 han demostrado expresarse específicamente en testículos de perros y de ser humano y en células tumorales malignas, el análisis FCM de células de cáncer de mama utilizando anticuerpos contra CAPRIN-1 demuestra expresión de CAPRIN-1 en las superficies de células de cáncer de mama y la tinción inmunohistoquímica utilizando tejidos de cáncer de mama demuestra expresión de CAPRIN-1 a alto nivel en células de cáncer de mama. Además, se ha descrito que los anticuerpos mencionados anteriormente podrían dañar a las células de cáncer de mama a través de las funciones de los linfocitos, y que los anticuerpos contra CAPRIN-1 ejercen fuertes efectos antitumorales en modelos de ratón portadores de cáncer en los que se han

trasplantado células de cáncer de mama (Bibliografía de Patente 1). Además, se ha descrito que los cánceres, tales como el cáncer de mama, podrían diagnosticarse midiendo bien anticuerpos inducidos en el cuerpo de un sujeto contra CAPRIN-1 presentes en el suero sanguíneo o polipéptidos que experimentan reacciones antígeno-anticuerpo con CAPRIN-1 (Bibliografía de Patente 2). Sin embargo, hasta ahora, no ha habido informes acerca de que el cáncer pancreático pueda diagnosticarse midiendo bien anticuerpos contra CAPRIN-1 inducidos en el suero sanguíneo de un paciente con cáncer pancreático o polipéptidos que experimentan reacciones antígeno-anticuerpo con CAPRIN-1.

Bibliografía de la técnica anterior

10 Bibliografía de Patentes

Bibliografía de Patente 1: Publicación Internacional N.º WO 2010/016526 Bibliografía de Patente 2: Publicación Internacional N.º WO 2010/016527

15 Sumario de la invención

25

30

35

50

55

60

Problema a resolver por la invención

Es un objetivo de la presente invención proporcionar un medio para la detección del cáncer pancreático que sea útil para el diagnóstico del cáncer pancreático.

Medio para resolver el problema

Los autores de la presente invención han realizado estudios intensos. Como resultado, los inventores de la presente invención han descubierto ahora que el cáncer pancreático puede diagnosticarse, examinarse o detectarse basándose en la expresión de CAPRIN-1 en cáncer pancreático, midiendo (o ensayando) anticuerpos contra CAPRIN-1 inducidos en suero sanguíneo de un paciente con cáncer pancreático utilizando una proteína CAPRIN-1, y uniendo los anticuerpos producidos utilizando dichas proteínas contra CAPRIN-1 en el tejido de cáncer pancreático. Esto ha llevado a la finalización de la presente invención.

Específicamente, la presente invención proporciona un método, como se define en las reivindicaciones, para detectar cáncer pancreático, que comprende medir una expresión de CAPRIN-1 en una muestra aislada de un sujeto. El término "detectar", tal como se usa en el presente documento, puede utilizarse indistintamente con el término "examinar" o "evaluar". Además, la presente divulgación proporciona un reactivo o un kit para detectar cáncer pancreático que comprende un polipéptido que experimenta una reacción antígeno-anticuerpo con un anticuerpo contra CAPRIN-1 inducido o provocado en el cuerpo de un sujeto. Adicionalmente, la presente divulgación proporciona un reactivo o un kit para detectar cáncer pancreático que comprende un antígeno-anticuerpo con CAPRIN-1 o un fragmento de unión a antígeno del anticuerpo. Adicionalmente, la presente divulgación proporciona un reactivo o un kit para detectar cáncer pancreático que comprende un polinucleótido que se hibrida específicamente con una secuencia parcial que comprende al menos de 15 a 19 nucleótidos o al menos de 20 a 30 nucleótidos de la secuencia de nucleótidos representada por cualquiera de las SEQ ID NO: 1, 3, 5, 7, 9, 11, 13...29. El "reactivo o kit para detectar cáncer pancreático" como se usa en el presente documento también puede denominarse "reactivo o kit para la detección de cáncer pancreático".

45 Específicamente, la presente invención proporciona métodos, como se define en las reivindicaciones, para detectar cáncer pancreático.

De acuerdo con la presente invención, se proporciona un nuevo método para detectar cáncer pancreático. Como se describe específicamente en los ejemplos a continuación, un polipéptido recombinante preparado basándose en la secuencia de aminoácidos de CAPRIN-1 (o Caprin-1) puede reaccionar específicamente con un anticuerpo que existe en el suero de un paciente con cáncer pancreático. Como tal, el cáncer pancreático existente en un sujeto puede detectarse midiendo el anticuerpo en una muestra mediante el método de la presente invención. Además, el cáncer pancreático existente en un sujeto puede detectarse midiendo (o ensayando) la propia proteína CAPRIN-1. Como además se describe en los siguientes ejemplos, se observan altos niveles de expresión del gen de CAPRIN-1 específicamente en testículos y en células de cáncer pancreático de sujetos (en lo sucesivo en el presente documento, dicho producto de expresión se denominará ocasionalmente "ácido nucleico que codifica una (proteína) CAPRIN-1"). Por lo tanto, el cáncer pancreático también puede detectarse midiendo un ácido nucleico. Adicionalmente, la presencia o cantidad (expresión) de CAPRIN-1 en el tejido de cáncer pancreático puede medirse utilizando un anticuerpo contra CAPRIN-1. Los pacientes con cáncer pancreático pueden someterse con antelación a dicha medición, de manera que puedan seleccionarse los pacientes a quienes pueda aplicarse el agente terapéutico dirigido contra CAPRIN-1 (p. ej., medicina con anticuerpos).

Realizaciones para llevar a cabo la invención

De acuerdo con el método de la presente invención, la presencia o una cantidad (expresión) de CAPRIN-1 se mide utilizando una muestra aislada de un sujeto. Los ejemplos de métodos para medir la presencia o una cantidad

(expresión) de CAPRIN-1 incluyen: un método para medir inmunológicamente un anticuerpo contra CAPRIN-1 contenido en una muestra (el primer método); un método para medir inmunológicamente la propia CAPRIN-1 contenida en una muestra (el segundo método); y un método para medir un ácido nucleico que codifica CAPRIN-1 contenido en una muestra, tal como ARNm o ADNc sintetizado a partir de ARNm (el tercer método). En la presente invención, la presencia o una cantidad (expresión) de CAPRIN-1 puede medirse mediante cualquiera de los métodos anteriores. En la presente invención, el término "medir" pretende incluir cualquiera de los siguientes significados: detectar, medir cualitativamente, medir cuantitativamente y medir semicuantitativamente.

La secuencia de aminoácidos representada por las SEQ ID NO: 6, 8, 10, 12 o 14 es una secuencia de aminoácidos de la proteína CAPRIN-1 canina. La proteína CAPRIN-1 canina que tiene dicha secuencia de aminoácidos se ha identificado como un polipéptido que se une a un anticuerpo existente específicamente en el suero procedente de un perro portador de cáncer (véase el Ejemplo 1). Un anticuerpo contra CAPRIN-1 que tiene la secuencia de aminoácidos representada por SEQ ID NO: 6, 8, 10, 12 o 14 está específicamente inducido o suscitado en el cuerpo de un perro portador de cáncer. Específicamente, el cáncer pancreático canino puede detectarse midiendo mediante el primer método el anticuerpo anterior contra CAPRIN-1 que tiene la secuencia de aminoácidos representada por SEQ ID NO: 6, 8, 10, 12 o 14. Además, el cáncer pancreático canino puede detectarse midiendo mediante el segundo método la propia CAPRIN-1 como un antígeno que tiene la secuencia de aminoácidos representada por SEQ ID NO: 6, 8, 10, 12 o 14. Dado que el gen de CAPRIN-1 se expresa a niveles significativamente altos en células de cáncer pancreático, el cáncer pancreático canino puede detectarse midiendo el ácido nucleico de acuerdo con el tercer método.

La expresión " que tiene una secuencia de aminoácidos" utilizado en el presente documento se refiere a restos de aminoácido alineados en un orden determinado. Por lo tanto, por ejemplo, la expresión "polipéptido que tiene la secuencia de aminoácidos representada por SEQ ID NO: 2" se refiere a un polipéptido que tiene 709 restos de aminoácido, que consiste en la secuencia de aminoácidos de Met Pro Ser Ala ... (parcialmente omitida) ... Gln Gln Val Asn representada por SEQ ID NO: 2. Además, la expresión "polipéptido que tiene la secuencia de aminoácidos representada por SEQ ID NO: 2" también puede abreviarse como "el polipéptido de SEQ ID NO: 2", por ejemplo. Esto mismo se aplica a la expresión "que tiene una/secuencia de nucleótidos". En este caso, la expresión "que tiene" puede sustituirse por la expresión "que comprende" o "que consiste en".

25

30

35

45

55

60

Además, el término "polipéptido" utilizado en el presente documento se refiere a una molécula que se forma mediante un enlace peptídico de una pluralidad de aminoácidos. Los ejemplos de dicha molécula incluyen no solo moléculas polipeptídicas con grandes números de aminoácidos constituyentes, sino también moléculas de bajo peso molecular (oligopéptidos) con pequeños números de aminoácidos y proteínas de longitud completa. La presente invención incluye adicionalmente proteínas CAPRIN-1 de longitud completa, teniendo cada una de ellas la secuencia de aminoácidos representada por cualquiera de las SEQ ID NO: 2 a 30 par (es decir, SEQ ID NO: 2, 4, 6,... 26, 28 y 30).

El término "sujeto" utilizado en el presente documento se refiere a vertebrados, incluyendo mamíferos y aves, preferentemente mamíferos, y más preferentemente seres humanos, perros, vacas y caballos.

El término "muestra" utilizado en el presente documento se refiere a una muestra biológica sometida a examen para la detección de cáncer pancreático. Los ejemplos de la muestra incluyen fluidos corporales, tejidos y células aislados de un sujeto. Los ejemplos de fluidos corporales incluyen, pero sin limitación, sangre, suero, plasma sanguíneo, fluido ascítico y derrame pleural. Los tejidos o las células del páncreas que se sospecha que tienen cáncer se incluyen en el ámbito del término "muestra".

En el método de la presente invención, las dianas a medir no son solo CAPRIN-1 canina de SEQ ID NO: 6, 8, 10, 12, 14 o 18, sino también CAPRIN-1 de otros mamíferos (en lo sucesivo en el presente documento, también puede denominarse "homólogo" (u "ortólogo") de CAPRIN-1 canina). Cuando ésta se refiere simplemente a "CAPRIN-1", la CAPRIN-1 de otro mamífero, incluyendo un ser humano, también es una diana a medir, además de la CAPRIN-1 de un perro. Como específicamente se describe en los ejemplos más adelante, el nivel de expresión del gen de CAPRIN-1 humano es significativamente alto en células de cáncer pancreático humano, mientras que no se detecta ningún anticuerpo contra el gen de CAPRIN-1 humano en un cuerpo humano sano. Como tal, el cáncer pancreático de un mamífero que no sea un perro puede detectarse midiendo la expresión de CAPRIN-1 en el mamífero. Un ejemplo de CAPRIN-1 de un mamífero que no es un perro, a medir mediante el método de la presente invención es, pero sin limitación, la proteína CAPRIN-1 humana. Las secuencias de nucleótidos que codifican la CAPRIN-1 humana y sus secuencias de aminoácidos se representan por las SEQ ID NO: 1 y 3 y SEQ ID NO: 2 y 4 en el Listado de Secuencias. La identidad de secuencia entre CAPRIN-1 humana y CAPRIN-1 canina es de 94 % para la secuencia de nucleótidos y de 98 % para la secuencia de aminoácidos. La identidad de secuencia de las secuencias de aminoácidos de CAPRIN-1 es tan alta como 98 % entre mamíferos genéticamente distantes, tal como un perro y un ser humano. Por lo tanto, se considera que la identidad de secuencia es de aproximadamente 85 % o mayor entre un perro y un mamífero distinto de un ser humano; es decir, CAPRIN-1 canina y su homólogo. CAPRIN-1, cuya expresión va a medirse mediante el método de la presente invención, tiene preferentemente una identidad de secuencia de 85 % o mayor, más preferentemente de 90 % o mayor, y más preferentemente de 95 % o mayor con la secuencia de aminoácidos de CAPRIN-1 canina representada por SEQ ID NO: 6, 8, 10, 12 o 14, aunque las

identidades de secuencia no están limitadas a estas.

En el primer método, el anticuerpo que puede estar presente en una muestra puede medirse fácilmente mediante inmunoensayo utilizando una sustancia antigénica que experimenta una reacción antígeno-anticuerpo con el anticuerpo. El propio inmunoensayo es un método convencional bien conocido como se describe específicamente más adelante. Como una sustancia antigénica para inmunoensayo puede utilizarse, por ejemplo, la proteína CAPRIN-1 canina de SEQ ID NO: 6, 8, 10, 12, o 14 que induce el anticuerpo en el cuerpo de un perro portador de cáncer o un fragmento que contiene un epítopo de dicha proteína. Además, el anticuerpo tiene reactividad cruzada. Una molécula distinta de una sustancia antigénica que realmente sirve como un inmunógeno también puede unirse, mediante una reacción antígeno-anticuerpo, a un anticuerpo inducido contra un inmunógeno, siempre que la molécula tenga una estructura análoga a un epítopo del inmunógeno. Entre una proteína de un determinado tipo de mamífero y un homólogo del mismo de otro mamífero, en particular, la identidad de sus secuencias de aminoácidos es alta, y las estructuras de epítopo son a menudo análogas entre sí. Como se describe específicamente en los siguientes eiemplos. la CAPRIN-1 canina de SEQ ID NO: 6, 8, 10, 12 o 14 experimenta una reacción antígenoanticuerpo con un anticuerpo inducido contra la CAPRIN-1 canina en el cuerpo de un perro portador de cáncer. Además, la CAPRIN-1 humana experimenta una reacción antígeno-anticuerpo con el anticuerpo inducido en el cuerpo de un perro portador de cáncer. Por consiguiente, la CAPRIN-1 de cualquier mamífero puede utilizarse como un antígeno para inmunoensayo de acuerdo con el primer método de la presente invención.

Cuando una sustancia antigénica es una proteína o similar que tiene una estructura complicada y un peso molecular alto, en general, en la molécula existe una pluralidad de sitios que tienen diferentes estructuras. Por lo tanto, en el cuerpo de un sujeto, se produce una pluralidad de tipos de anticuerpos capaces de reconocer y unirse a diferentes sitios de dichas sustancias antigénicas. Específicamente, un anticuerpo que se produce en el sujeto contra una sustancia antigénica, tal como una proteína, es un anticuerpo policlonal que es una mezcla de una pluralidad de tipos de anticuerpos. Un anticuerpo descubierto ahora por los autores de la presente invención es también un anticuerpo policlonal que está específicamente presente en el suero obtenido de un sujeto portador de cáncer y que se une específicamente, mediante una reacción antígeno-anticuerpo, a una proteína CAPRIN-1 recombinante. La expresión "anticuerpo policlonal" utilizada en la presente invención se refiere a un anticuerpo que existe en el suero obtenido de un sujeto que contiene una sustancia antigénica y que se induce contra dicha sustancia antigénica.

30

35

40

45

50

10

15

En los siguientes ejemplos, los polipéptidos de SEQ ID NO: 6 y SEQ ID NO: 8 (ambos CAPRIN-1 canina) y el polipéptido de SEQ ID NO: 2 (CAPRIN-1 humana) se prepararon como antígenos para inmunoensayo de anticuerpos específicos en animales vivos portadores de cáncer. La reactividad entre estos polipéptidos y los anticuerpos en el suero obtenidos de un sujeto portador de cáncer se confirmó después. Sin embargo, los anticuerpos mencionados anteriormente son anticuerpos policlonales, y se unen de manera natural a polipéptidos que consisten en los homólogos de SEQ ID NO: 6, 8 y 2. Incluso en el caso de un fragmento de dicho polipéptido, este puede unirse a un anticuerpo contenido en el suero obtenido de un sujeto portador de cáncer, dado que algunos anticuerpos policionales pueden reconocer la estructura del fragmento. Esto es, tanto el polipéptido (que es la proteína CAPRIN-1 de longitud completa) del homólogo de SEQ ID NO: 6, 8 o 2 como un fragmento del mismo pueden utilizarse de manera similar para el ensayo de un anticuerpo policional contenido específicamente en el suero de un sujeto portador de cáncer, y son ser útiles para la detección del cáncer. Por consiguiente, un polipéptido a utilizar como un antígeno para inmunoensayo en el primer método de la presente invención no está limitado a un polipéptido solo que consta de la región de longitud completa de una proteína CAPRIN-1 (p. ei., SEQ ID NO: 6, 8 o 12). Este puede ser un fragmento polipeptídico que comprende al menos de 7 a 12, y preferentemente al menos 8, 9 o 10 aminoácidos continuos de la secuencia de aminoácidos de una proteína CAPRIN-1 que experimenta una reacción antígeno-anticuerpo con un anticuerpo policional contra la proteína CAPRIN-1 (en lo sucesivo en el presente documento, esta puede denominarse, por comodidad, "polipéptido parcial específicamente reactivo"). En la técnica se sabe que un polipéptido que comprende aproximadamente de 7 a 12 o más restos de aminoácido puede ejercer antigenicidad. Sin embargo, si el número de restos de aminoácido es demasiado bajo, es muy probable que dicho polipéptido reaccione en cruzado con un anticuerpo contra una proteína distinta de la proteína CAPRIN-1 que exista en la muestra. Por consiguiente, a la vista de potenciar la precisión del inmunoensayo, el número de restos de aminoácido de un fragmento polipeptídico es preferentemente de 20 o más, de 30 o más, y de 50 o más, más preferentemente de 100 o más o de 150 o más, adicionalmente se prefiere de 300 o más, e incluso adicionalmente se prefiere de 600 o más. El número de restos de aminoácido puede ser de 1.000 o más, o de 1.500 o más.

55

Los ejemplos preferidos de los polipéptidos a utilizar como antígenos, incluyen los polipéptidos de las SEQ ID NO: 2 a 30 de número par o sus fragmentos, que comprenden epítopos (p. ej., un fragmento polipeptídico que comprende de aproximadamente 7 a 12 o más restos de aminoácido).

Las secuencias de nucleótidos de los polipéptidos que codifican las proteínas que consisten en las secuencias de aminoácidos de las SEQ ID NO: 2 a 30 de número par (es decir, SEQ ID NO: 2, 4, 6...28 y 30) se representan mediante las SEQ ID NO: 1 a 29 de número impar (es decir, SEQ ID NO: 1,3, 5...27 y 29).

En general, es bien sabido en la técnica que los antígenos de proteína conservan una antigenicidad casi equivalente a la de la proteína original incluso si se ha sustituido, delecionado, añadido o insertado un pequeño número de restos de aminoácidos en la secuencia de aminoácidos de la proteína. Por lo tanto, puede utilizarse un polipéptido que tenga una secuencia procedente de la secuencia de aminoácidos de una proteína CAPRIN-1 por sustitución, deleción y/o inserción de un número pequeño de (preferentemente uno o varios) restos de aminoácido, que tenga una identidad de secuencia de 80 % o mayor, de 85-90 % o mayor, preferentemente de 90 % o mayor, más preferentemente de 95 % o mayor, mas preferentemente de 98 % o mayor, e incluso más preferentemente de 99 % o mayor con la secuencia original, y que se una específicamente mediante una reacción antígeno-anticuerpo a un anticuerpo contra CAPRIN-1 (en lo sucesivo en el presente documento, el mismo puede referirse a un "polipéptido modificado específicamente reactivo" por comodidad) para la detección del cáncer de una manera similar al caso de los polipéptidos descritos anteriormente. Preferentemente, un polipéptido modificado específicamente reactivo tiene una secuencia de aminoácidos procedente de la secuencia de aminoácidos de una proteína CAPRIN-1 por sustitución, deleción y/o inserción de uno o varios restos de aminoácido. El término "varios" como se utiliza en el presente documento se refiere a un número entero de 2 a 10, preferentemente un número entero de 2 a 6, y más preferentemente un número entero de 2 a 4.

10

15

20

25

30

35

40

45

50

55

60

La expresión "identidad de secuencia", utilizada en el presente documento con referencia a secuencias de aminoácidos se determina alineando dos secuencias de aminoácidos a comparar, de tal manera que muchos restos de aminoácido coincidan tanto como sea posible, dividiendo el número de restos de aminoácido que coinciden entre el número total de restos de aminoácidos, y después expresando los resultados en términos de porcentaje (%). Después del alineamiento anterior, se insertan huecos según sea apropiado en una o ambas secuencias a comparar, de acuerdo con las necesidades. Dicho alineamiento de secuencias puede realizarse utilizando un programa o algoritmo bien conocido tal como BLAST, FASTA o CLUSTAL W (Karlin y Altschul, Proc. Nat. Acad. Sci. USA, 87:2264-2268, 1993; Altschul *et al.*, Nucleic Acids Res., 25:3389-3402, 1997).

Veinte tipos de aminoácidos constituyen las proteínas de origen natural que pueden dividirse en grupos de aminoácidos que tienen propiedades análogas entre sí: aminoácidos neutros que tienen cadenas laterales con polaridad baja (Gly, Ile, Val, Leu, Ala, Met y Pro); aminoácidos neutros que tienen cadenas laterales hidrófilas (Asn, Gln, Thr, Ser, Tyr y Cys); aminoácidos ácidos (Asp y Glu); aminoácidos básicos (Arg, Lys y His) y aminoácidos aromáticos (Phe, Tyr, Trp y His). Se sabe que la sustitución entre estos aminoácidos (es decir, sustitución conservativa) raramente altera las propiedades del polipéptido resultante. Cuando los restos de aminoácido de CAPRIN-1 van a sustituirse, por consiguiente, la sustitución se realiza entre miembros del mismo grupo, de tal manera que la posibilidad de mantener la unión con el anticuerpo correspondiente es muy alta. Sin embargo, en la presente invención, la variante anterior puede implicar una sustitución no conservativa, siempre que se confiera actividad inductora de inmunidad, equivalente a o casi equivalente, a la de un polipéptido no modificado.

Para la detección de cáncer pancreático también puede utilizarse un polipéptido (que, por comodidad, en lo sucesivo en el presente documento, puede denominarse polipéptido de adición específicamente reactivo) que contiene, como una secuencia parcial, el polipéptido anterior a utilizar en la presente invención (p. ej., preparado por adición de otro (poli)péptido en un extremo o en ambos extremos de un polipéptido a utilizar en la presente invención) y que se une específicamente mediante una reacción antígeno-anticuerpo a un anticuerpo contra CAPRIN-1, de una manera similar a la de los casos de los polipéptidos anteriores.

Los polipéptidos que se utilizan en la presente invención pueden sintetizarse de acuerdo con un método de síntesis química, tal como el método Fmoc (el método de fluorenilmetoxicarbonilo) o el método tBoc (el método de t-butiloxicarbonilo) (Sociedad Bioquímica Japonesa (ed.), Seikagaku Jikken Koza (Biochemical Experimental Lecture Series) 1, Tanpakushitsu no Kagaku (Protein Chemistry) IV, Kagaku Shushoku to Peptide Gousei (Chemical Modification and Peptide Synthesis), TOKYO KAGAKU DOZIN CO., LTD, Japón, 1981) Además, los polipéptidos pueden sintetizarse mediante un método convencional utilizando diversos sintetizadores peptídicos disponibles en el comercio. Como alternativa, los polipéptidos pueden prepararse fácilmente por técnicas de modificación genética conocidas (p. ej., Sambrook et al., Molecular Cloning, 2ª Edición, Current Protocols in Molecular Biology, 1989, Cold Spring Harbor Laboratory Press, Ausubel et al., Short Protocols in Molecular Biology, 3ª Edición, A Compendium of Methods from Current Protocols in Molecular Biology, 1995, John Wiley & Sons). A partir de ARN extraído de un tejido que expresa un gen que codifica la CAPRIN-1 humana de SEQ ID NO: 2 o un homólogo de la misma, por ejemplo, se prepara ADNc del gen mediante RT-PCR, la secuencia de longitud completa o una secuencia parcial deseada del ADNc se incorpora en un vector de expresión y después el vector se introduce en una célula hospedadora. Por tanto, puede obtenerse un polipéptido de interés. Las secuencias de nucleótidos de los ADNc que codifican la CAPRIN-1 canina de SEQ ID NO: 6, 8, 10, 12 y 14 se muestran en las SEQ ID NO: 5, 7, 9, 11 y 13, respectivamente. Las secuencias de nucleótidos de sus homólogos humanos; es decir, los ADNc que codifican la CAPRIN-1 humana de SEQ ID NO: 2 y 4, se muestran en las SEQ ID NO: 1 y 3, respectivamente. Por consiguiente, pueden diseñarse fácilmente cebadores utilizados para RT-PCR con referencia a estas secuencias de nucleótidos. Como se describe más adelante, además, un gen que codifica la CAPRIN-1 de un mamífero no humano puede amplificarse utilizando cebadores diseñados con referencia a las secuencias de nucleótidos de SEQ ID NO: 1 a 29 de número impar. Por consiguiente, el ADNc que codifica, por ejemplo, la CAPRIN-1 felina puede prepararse fácilmente mediante técnicas similares a las técnicas anteriores. La extracción de ARN, la RT-PCR, la incorporación de ADNc en un vector, y la introducción de un vector en una célula hospedadora puede realizarse, por ejemplo, por métodos bien conocidos como se describe más adelante. Además, los vectores y las células hospedadoras que se utilizan en el presente documento son muy conocidos, y en el comercio se dispone de diversos vectores y células hospedadoras.

Las células hospedadoras anteriores pueden ser cualquier célula, siempre y cuando puedan expresar los polipéptidos anteriores. Como un ejemplo de célula hospedadora procariota se incluye *Escherichia coli*. Como ejemplos de células hospedadoras eucariotas se incluyen células de mamífero cultivadas, tales como células de riñón de mono (COS1), células de ovario de hámster chino (CHO), la línea celular de riñón humano embrionario (HEK293) y la línea celular de piel de ratón embrionario (NIH3T3), células de levaduras en gemación, de levaduras en fisión, de gusano de seda y ovocitos de Xenopus.

Cuando se utilizan células procariotas como células hospedadoras, se utiliza un vector de expresión que tiene un origen de replicación en células procariotas, un promotor, un sitio de unión a ribosoma, un sitio de clonación múltiple, un terminador, un gen de resistencia a fármacos, un gen complementario auxotrófico y similares. Los ejemplos de vectores de expresión de *Escherichia coli* incluyen vectores pUC, pBluescriptII, sistemas de expresión pET y sistemas de expresión pGEX. El ADN que codifica los polipéptidos anteriores se incorpora en dicho vector de expresión, las células hospedadoras procariotas se transforman con el vector, y el transformante así obtenido se cultiva. Por tanto, el polipéptido codificado por el ADN puede expresarse en las células hospedadoras procariotas. En este momento, el polipéptido también puede expresarse como una proteína de fusión con otra proteína. El ADN que codifica el polipéptido anterior puede obtenerse preparando ADNc, por ejemplo, por RT-PCR, como se ha descrito anteriormente. Como alternativa, dicho ADN puede sintetizarse mediante una técnica convencional utilizando un sintetizador de ácido nucleico disponible en el comercio. Las secuencias de nucleótidos de los ADNc de los genes que codifican CAPRIN-1 de SEQ ID NO: 2 y 4 se muestran en las SEQ ID NO: 1 y 3 en el Listado de Secuencias, respectivamente.

10

15

20

25

30

35

40

60

Cuando como células hospedadoras se utilizan células eucariotas, se utiliza un vector de expresión de células eucariotas que tiene un promotor, una región de corte y empalme, un sitio de adición de poli (A), y similar. Como ejemplos de dicho vector de expresión se incluyen pKA1, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, un vector EBV, pRS, pcDNA3 y pYES2. Como se ha descrito anteriormente, el ADN que codifica un polipéptido utilizado en la presente invención se incorpora en dicho vector de expresión, las células hospedadoras se transforman con el vector y el transformante así obtenido se cultiva. Por tanto, el polipéptido codificado por el ADN anterior puede expresarse en células hospedadoras eucariotas. Cuando como un vector de expresión se utiliza pIND/V5-His, pFLAG-CMV-2, pEGFP-N1, pEGFP-C1, o similar, el polipéptido anterior puede expresarse como una proteína de fusión con diversas etiquetas, tales como las etiquetas de His (p. ej., (His)₆ a (His)₁₀), una etiqueta FLAG, una etiqueta myc, una etiqueta HA o GFP.

De acuerdo con una técnica muy conocida, tal como electroporación, un método basado en fosfato de calcio, un método basado en liposomas, un método basado en DEAE dextrano, microinyección, infección vírica, lipofección o unión con un péptido permeable a la membrana celular, un vector de expresión puede introducirse en una célula hospedadora.

Un polipéptido de interés puede aislarse y purificarse de células hospedadoras utilizando técnicas de aislamiento combinadas conocidas. Los ejemplos de dichas técnicas incluyen tratamiento utilizando un agente desnaturalizante, tal como urea o un tensioactivo, ultrasonido, digestión enzimática, salinización, fraccionamiento y precipitación con disolventes, diálisis, centrifugación, ultracentrifugación, filtración en gel, SDS-PAGE, isoelectroenfoque, cromatografía de intercambio iónico, cromatografía hidrófoba, cromatografía de afinidad y cromatografía de fase inversa.

Los polipéptidos obtenidos a través de los métodos anteriores incluyen polipéptidos en forma de proteínas de fusión con cualquier otra proteína. Como ejemplos de dichas proteínas de fusión se incluyen una proteína de fusión con glutatión-S-transferasa (GTS) y una proteína de fusión con una etiqueta de His. Los polipéptidos en forma de dichas proteínas de fusión también están incluidos en el ámbito de los polipéptidos de adición específicamente reactivos descritos anteriormente, y dichos polipéptidos pueden utilizarse para el primer método de detección de la presente invención. Además, los polipéptidos expresados en células transformadas pueden someterse ocasionalmente a diversos tipos de modificación dentro de las células después de la traducción. Dicho polipéptido modificado postraduccionalmente puede utilizarse en el primer método de detección de la presente invención, siempre que tenga la capacidad de unirse específicamente, mediante una reacción antígeno-anticuerpo, a un anticuerpo contra una proteína CAPRIN-1. Como ejemplos de dicha modificación postraduccional se incluyen la retirada de una metionina N-terminal, acetilación N-terminal, glucosilación, proteolisis limitada por proteasas intracelulares, miristoilación, isoprenilación y fosforilación.

Un anticuerpo presente en una muestra puede medirse fácilmente mediante inmunoensayo utilizando el polipéptido anterior como un antígeno. El propio inmunoensayo es muy conocido en la técnica. Los inmunoensayos se clasifican en: el método de tipo sándwich, el método de competición, el método de aglutinación, el método de transferencia de Western, y métodos similares, en función de los tipos de reacciones. Además, el inmunoensayo se clasifica en función de los marcadores utilizados, por ejemplo, en radioinmunoensayo, inmunoensayo con fluorescencia, inmunoensayo enzimático e inmunoensayo con biotina. El inmunoensayo del anticuerpo anterior puede realizarse utilizando cualquiera de estos métodos. El método ELISA de tipo sándwich o el método de aglutinación se emplean preferentemente como una técnica de inmunoensayo para el anticuerpo anterior en el método de la presente invención, dado que los procedimientos de estos métodos son convenientes y no requieren grandes aparatos y

similar, aunque las técnicas no se limitan a estos métodos. Cuando se utiliza una enzima como un marcador para un anticuerpo, dichas enzima no está particularmente limitada, siempre que satisfaga condiciones tales como que: la tasa de utilización sea alta; permanezca estable incluso si se une a un anticuerpo; y causa específicamente el revelado de color del sustrato. Las enzimas que pueden utilizarse para un inmunoensayo enzimático general son enzimas tales como peroxidasa, β-galactosidasa, fosfatasa alcalina, glucosa oxidasa, acetilcolinesterasa, glucosa-6-fosfato deshidrogenasa y ácido málico deshidrogenasa. Además, pueden utilizarse sustancias inhibidoras de enzimas, coenzimas y similares. La unión de estas enzimas con los anticuerpos puede realizarse mediante métodos conocidos que implican el uso de un agente reticulante, tal como un compuesto de maleimida, o un sistema de biotina-(estrept)avidina, o similar. Como sustrato puede utilizarse una sustancia conocida dependiendo del tipo de una enzima que vaya a utilizarse. Cuando se utiliza peroxidasa como una enzima, puede utilizarse, por ejemplo, 3,3',5,5'-tetrametilbencidina. Cuando se utiliza fosfatasa alcalina, puede utilizarse, por ejemplo, para-nitrofenol. Puede utilizarse un radioisótopo que generalmente se utilice en un radioinmunoensayo, tal como, ¹²⁵l o ³H. Puede utilizarse un colorante fluorescente que se utilice en técnicas generales basadas en anticuerpos fluorescentes, tal como isotiocianato de fluoresceína (FITC), isotiocianato de tetrametilrodamina (TRITC) o un colorante de cianina fluorescente (p. ej., Cy3 o Cy5).

10

15

20

25

30

35

No es preciso explicar las técnicas de inmunoensayo anteriores en el presente documento dado que estas técnicas son muy conocidas; sin embargo, brevemente, por ejemplo, el método de tipo sándwich comprende: la inmovilización del polipéptido anterior utilizado como un antígeno en una fase sólida, lo que permite que el polipéptido reaccione con una muestra tal como suero; un lavado, lo que permite que un anticuerpo secundario apropiado reaccione con un anticuerpo de la muestra; lavar de nuevo y después medir el anticuerpo secundario unido a la fase sólida. A inmovilizar un polipéptido antigénico en una fase sólida, un anticuerpo secundario no unido puede retirarse fácilmente. Por consiguiente, es preferible como una realización del método para detectar el cáncer de la presente invención. Como un anticuerpo secundario, si la muestra procede de un perro, puede utilizarse, por ejemplo, un anticuerpo anti-IgG de perro. Un anticuerpo secundario se marca por adelantado con una sustancia marcadora, cuyos ejemplos se han indicado anteriormente, de tal manera que puede medirse el anticuerpo secundario unido a una fase sólida. La cantidad de anticuerpo secundario así medida corresponde a la cantidad del anticuerpo anterior en la muestra de suero. Cuando se utiliza una enzima como una sustancia marcadora, la cantidad del anticuerpo puede medirse añadiendo un sustrato que se degrada para revelar un color mediante acción enzimática y después medirse ópticamente la cantidad de sustrato degradado. Cuando se utiliza un radioisótopo como una sustancia marcadora, la cantidad de radiación del isótopo puede medirse utilizando un contador de centelleo o similar.

En el segundo método de la presente invención, se mide la proteína CAPRIN-1 que puede haber en una muestra obtenida de un sujeto. Como se ha descrito anteriormente, la cantidad de un anticuerpo que experimenta una reacción antígeno-anticuerpo con CAPRIN-1 de un perro, un ser humano, o similar, es significativamente mayor en sujetos con cáncer pancreático, en comparación con sujetos sanos. Esto indica que la cantidad de CAPRIN-1 acumulada como un antígeno es significativamente alta en células de cáncer pancreático. En el caso de sujetos sanos, el nivel de expresión de CAPRIN-1 está por debajo del límite de detección, o la expresión de CAPRIN-1 en tejido es débil y aparecería simplemente en las células. El cáncer pancreático también puede detectarse midiendo directamente CAPRIN-1, como se describe específicamente en los ejemplos más adelante. Por lo tanto, el cáncer pancreático puede detectarse en un sujeto midiendo la propia CAPRIN-1, como es el caso del primer método.

Un polipéptido en una muestra puede medirse fácilmente mediante técnicas de inmunoensayo muy conocidas.

Específicamente, se prepara un anticuerpo o un fragmento de unión a antígeno del mismo, que experimenta una reacción antígeno-anticuerpo con CAPRIN-1, y se realiza un inmunoensayo utilizando el mismo. De esta manera puede medirse la presencia de CAPRIN-1 en la muestra. Como se describe anteriormente, un anticuerpo tiene reactividad cruzada. Por consiguiente, utilizando un anticuerpo que experimenta una reacción antígeno-anticuerpo con CAPRIN-1 canina de SEQ ID NO: 6, o un fragmento de unión a antígeno del mismo, no solo puede medirse la proteína CAPRIN-1 canina de SEQ ID NO: 6, sino también sus homólogos en otros mamíferos (p. ej., CAPRIN-1 humana de SEQ ID NO: 2 o 4). La propia técnica de inmunoensayo es una técnica convencional muy conocida, como se ha descrito anteriormente.

Este estudio revela que CAPRIN-1 es una proteína de membrana celular que se expresa en la superficie de células de cáncer pancreático. Un sujeto con cáncer contiene muchas proteasas en tejidos de cáncer. Por consiguiente, la parte de la secuencia de CAPRIN-1 expresada fuera de las células cancerosas se degrada y se separa de las células cancerosas, y dicha parte es mayor en cantidad que la parte de la secuencia de CAPRIN-1 expresada en las células cancerosas. Por consiguiente, si en la medición se utiliza un anticuerpo capaz de unirse a las superficies de células de cáncer pancreático como un anticuerpo contra CAPRIN-1, o si se utiliza un fragmento de unión a antígeno del mismo, puede detectarse una mayor cantidad de CAPRIN-1, y las células de cáncer pancreático pueden diagnosticarse con mayor sensibilidad.

Por consiguiente, en la presente invención, se prefiere el uso de un anticuerpo que se una a una parte expresada en la superficie de una célula de cáncer pancreático de una molécula de la proteína CAPRIN-1. Un ejemplo de un péptido parcial de una proteína CAPRIN-1 expresada en la superficie de una célula de cáncer pancreático es un polipéptido que consiste en una secuencia de aminoácidos de 7 a 12 o más restos de aminoácido continuos dentro

de la región de restos de aminoácidos (aa) 50 a 98 o restos de aminoácidos (aa) 233 a 305 en cualquiera de las secuencias de aminoácidos representadas por las SEQ ID NO: 2 a 30 de número par en el Listado de Secuencias, excluyendo las SEQ ID NO: 6 y SEQ ID NO: 18. Un ejemplo específico de las mismas es, pero sin limitación, la secuencia de aminoácidos representada por SEQ ID NO: 43 o SEQ ID NO: 61 (en la secuencia de aminoácidos representada por SEQ ID NO: 61, es preferible una región de la secuencia de aminoácidos representada por SEQ ID NO: 62 o SEQ ID NO: 63) o una secuencia de aminoácidos que tenga una identidad de secuencia de 80 % o mayor, preferentemente de 85 % o mayor, más preferentemente de 90 % o mayor, y más preferentemente de 95 % o mayor con la secuencia de aminoácido relevante. Además, todos los anticuerpos que se unen a estos polipéptidos se encuentran dentro del ámbito de los anticuerpos utilizados en la presente invención. Como ejemplos específicos se incluyen, un anticuerpo, o un fragmento de unión a antígeno del mismo, que se une a un polipéptido que comprende la secuencia de aminoácidos representada por SEQ ID NO: 43, un anticuerpo monoclonal, o un fragmento de unión a antígeno del mismo, que tiene las secuencias de aminoácidos representadas por SEQ ID NO: 44 y 45, un anticuerpo monoclonal, o un fragmento de unión a antígeno del mismo, que tiene las secuencias de aminoácidos representadas por SEQ ID NO: 44 y 46, un anticuerpo monoclonal, o un fragmento de unión a antígeno del mismo, que tiene las secuencias de aminoácidos representadas por SEQ ID NO: 44 y 47, un anticuerpo monoclonal, o un fragmento de unión a antígeno del mismo, que tiene las secuencias de aminoácidos representadas por SEQ ID NO: 44 y 48, un anticuerpo monoclonal, o un fragmento de unión a antígeno del mismo, que tiene las secuencias de aminoácidos representadas por SEQ ID NO: 49 y 50, un anticuerpo monoclonal, o un fragmento de unión a antígeno del mismo, que tiene las secuencias de aminoácidos representadas por SEQ ID NO: 51 y 52, un anticuerpo monoclonal, o un fragmento de unión a antígeno del mismo, que tiene las secuencias de aminoácidos representadas por SEQ ID NO: 53 y 54, un anticuerpo monoclonal, o un fragmento de unión a antígeno del mismo, que tiene las secuencias de aminoácidos representadas por SEQ ID NO: 55 y 56, un anticuerpo monoclonal, o un fragmento de unión a antígeno del mismo, que tiene las secuencias de aminoácidos representadas por SEQ ID NO: 57 y 58 y un anticuerpo monoclonal, o un fragmento de unión a antígeno del mismo, que tiene las secuencias de aminoácidos representadas por SEQ ID NO: 59 y 60.

10

15

20

25

30

35

40

45

50

55

60

65

La expresión "fragmento de unión a antígeno" utilizada en el presente documento se refiere a un fragmento de anticuerpo, tal como un fragmento Fab, un fragmento F(ab')₂ o un fragmento Fv, contenido en una molécula de anticuerpo, que tiene la capacidad de unirse a un antígeno. Un anticuerpo también puede ser un anticuerpo policlonal o un anticuerpo monoclonal. Para el inmunoensayo, se prefiere un anticuerpo monoclonal con alta reproducibilidad. Los métodos para preparar un anticuerpo policlonal y un anticuerpo monoclonal utilizando un polipéptido como un inmunógeno son muy conocidos y pueden realizarse fácilmente de una manera convencional. Por ejemplo, un animal se inmuniza con CAPRIN-1 o solo con un fragmento de la misma, o con CAPRIN-1 o un fragmento de la misma, unido a una proteína transportadora, tal como hemocianina de lapa americana (KLH, keyhole limpet hemocyanin), caseína, o albúmina de suero, como un inmunógeno, junto con un adyuvante, y después puede inducirse un anticuerpo contra CAPRIN-1. Las células productoras de anticuerpos, tales como esplenocitos o linfocitos, extraídas del animal inmunizado, se fusionan con células de mieloma para preparar hibridomas, y se seleccionan hibridomas que producen un anticuerpo que se une a CAPRIN-1 y después se desarrollan. Por tanto, en el sobrenadante del cultivo puede obtenerse un anticuerpo monoclonal cuyo antígeno correspondiente sea CAPRIN-1. El método descrito anteriormente es un método convencional muy conocido.

En el tercer método de la presente invención, se mide un ácido nucleico que codifica a CAPRIN-1 (por ejemplo, ARNm o ADNc sintetizado a partir de ARNm) que puede estar contenido en una muestra obtenida de un organismo vivo. Como se describe específicamente en los ejemplos más adelante, un ácido nucleico que codifica CAPRIN-1 canina de SEQ ID NO: 6, 8, 10, 12 o 14 o CAPRIN-1 humana de SEQ ID NO: 2 o 4 se expresa a un nivel significativamente alto en células de cáncer pancreático. Por lo tanto, midiendo dicho ácido nucleico en una muestra, puede detectarse un cáncer existente en el organismo vivo.

El ARNm presente en una muestra puede medirse cuantitativamente, por ejemplo, mediante un método convencional, tal como RT-PCR con detección en tiempo real, utilizando, como molde, ARNm. En general, dicho ARNm puede medirse cuantitativamente basándose en la intensidad de la tinción o similar en el método de transferencia de Northern convencional. Las secuencias de ADNc que codifican a CAPRIN-1 de las SEQ ID NO: 2 a 30 de número par se representan por las SEQ ID NO: 1 a 29 de número impar, respectivamente. Por consiguiente, un polinucleótido que se hibrida específicamente con una región parcial en la secuencia de nucleótidos representada por cualquiera de las SEQ ID NO: 1 a 29 de número par (en lo sucesivo en el presente documento, denominado "polinucleótido para la detección de cáncer") se prepara basándose en estas secuencias y dicho polinucleótido se utiliza como una sonda o como un cebador para la amplificación de ácido nucleico para determinar la cantidad del ARNm en una muestra. Si un polinucleótido es capaz de hibridarse específicamente con una región parcial en la secuencia de nucleótidos representada por cualquiera de las SEQ ID NO: 1 a 29 de número impar, también puede medirse el ARNm que codifica a CAPRIN-1 en mamíferos distintos de perro y ser humano, como se describe más adelante. En la presente invención, un polinucleótido puede ser ARN o ADN.

La expresión "se hibrida específicamente con" utilizada en el presente documento, se refiere a una situación en la que dicho polinucleótido se hibrida solo con una región parcial diana y no se hibrida sustancialmente con ninguna otra región en condiciones de hibridación rigurosas.

La expresión "en condiciones de hibridación rigurosas" utilizada en el presente documento, se refiere a condiciones empleadas para el emparejamiento en PCR general o para detección utilizando una sonda. En el caso de PCR utilizando Taq polimerasa, por ejemplo, se realiza una reacción a una temperatura de emparejamiento apropiada que varía de aproximadamente 54 °C a 60 °C utilizando un tampón general, tal como un tampón que contiene KCI 50 mM, Tris-HCI 10 mM (PH 8,3 a 9,0) y MgCl₂ 1,5 mM. En el caso de hibridación Northern, por ejemplo, una reacción se realiza utilizando una solución de hibridación general tal como 5x SSPE, formamida 50 %, 5x solución Denhardt y SDS 0,1-0,5 %, o 0,1-5x SSC y SDS 0,1-0,5 %, a una temperatura de hibridación apropiada que varía de aproximadamente 42 - 65 °C. Después de la hibridación, se realiza un lavado, por ejemplo, con 0,1-0,2 x SSC y SDS 0,1 %. Las temperaturas de emparejamiento o de hibridación apropiadas no están limitadas a las de los ejemplos anteriores, y dichas temperaturas se determinan basándose en el valor de la temperatura de fusión, Tf, para un polinucleótido para la detección del cáncer que se utiliza como un cebador o como una sonda y en las normas empíricas de las personas que realizan los experimentos. Un experto en la técnica puede determinar fácilmente dicho intervalo de temperatura.

La expresión "no se hibrida sustancialmente con" utilizada en el presente documento, se refiere a una situación en la 15 que dicho polinucleótido no se hibrida en absoluto con una región parcial diana o una cantidad extremadamente baja del polinucleótido se hibrida con una región parcial diana, es decir, en una cantidad relativamente inapreciable, incluso cuando se hibrida con una región parcial diana. Un ejemplo de un polinucleótido que se hibrida específicamente en dichas condiciones es un polinucleótido que tiene un determinado nivel o mayor de una identidad de secuencia con la secuencia de nucleótidos de una región parcial diana. Por ejemplo, dicho 20 polinucleótido tiene una identidad de secuencia de 70 % o mayor, preferentemente de 80 % o mayor, más preferentemente de 85 % o mayor, más preferentemente de 90 % o mayor, incluso más preferentemente de 93 % o mayor, aún más preferentemente de 95 % o mayor, y en particular preferentemente de 98 % o mayor. Más preferentemente, el polinucleótido tiene una secuencia de nucleótidos idéntica a la secuencia de nucleótidos de una región parcial diana. La identidad de secuencia se define de la misma manera que la identidad de secuencia de la 25 secuencia de aminoácidos descrita anteriormente. Incluso si un extremo de un polinucleótido para la detección del cáncer contiene una región que no se hibrida con la misma, en el caso de una sonda, este puede utilizarse para la detección siempre que una región de hibridación ocupe aproximadamente una mitad o más de toda la sonda. En el caso de un cebador, este puede utilizarse para la detección siempre que una región de hibridación ocupe aproximadamente una mitad o más de todo el cebador y se localice en el lado 3' terminal, dado que esto permite que se produzca un emparejamiento y una reacción de extensión normales. Cuando un extremo de un polinucleótido para la detección del cáncer contiene una región de no hibridación, como se describe anteriormente, la identidad de secuencia con una secuencia de nucleótidos diana se calcula centrándose solo en la región de hibridación sin tener en cuenta una región de no hibridación.

35

40

45

10

En la presente invención, la expresión "secuencia parcial" (o "región parcial") se refiere a una parte de una secuencia de nucleótidos representada por cualquiera de las SEQ ID NO: 1 a 29 de número impar. Específicamente, la secuencia parcial comprende al menos de 15 a 19 nucleótidos continuos, preferentemente 18 o más nucleótidos continuos, más preferentemente al menos 20 o 25 nucleótidos continuos, y más preferentemente al menos 30, 40 o 50 nucleótidos continuos. La expresión "la secuencia de nucleótidos representada por SEQ ID NO: 5", utilizada en el presente documento, se refiere a, además de la secuencia de nucleótidos realmente mostrada en SEQ ID NO: 5, a una secuencia complementaria a la misma. Por consiguiente, la expresión "un polinucleótido que tiene la secuencia de nucleótidos representada por SEQ ID NO: 5" se refiere, por ejemplo, a un polinucleótido monocatenario que tiene la secuencia de nucleótidos realmente representada por SEQ ID NO: 5, a un polinucleótido monocatenario que tiene una secuencia de nucleótidos complementaria a la secuencia de nucleótidos representada por SEQ ID NO: 5, o a un polinucleótido bicatenario que consiste en dos polinucleótidos monocatenarios. Cuando se prepara un polinucleótido que se va a utilizar en la presente invención o cuando se prepara un polinucleótido que codifica un polipéptido que se va a utilizar en la presente invención, cualquiera de las secuencias de nucleótidos se selecciona apropiadamente, y un experto en la materia puede realizar fácilmente dicha selección.

50

55

El número de nucleótidos en un polinucleótido para la detección del cáncer es preferentemente de 18 o más con vistas a garantizar la especificidad. Cuando el polinucleótido se utiliza como una sonda, este comprende preferentemente 18 o más nucleótidos, y además, comprende, preferentemente de 20 nucleótidos a toda la longitud de la región codificante. Cuando el polinucleótido se utiliza como un cebador, este comprende preferentemente de 18 a 50 nucleótidos. Un ejemplo preferible del polinucleótido para la detección del cáncer es un polinucleótido que comprende 18 o más nucleótidos continuos en una secuencia de nucleótidos representada por cualquiera de las SEQ ID NO: 1 a 29 de número impar.

Será obvio para un experto en la materia que en la descripción de la presente invención se haga referencia a que: un polinucleótido que se hibrida específicamente con una región parcial en SEQ ID NO: 5, 7, 9, 11 o 13 se utilice para medir la cantidad de un ácido nucleico (p. ej., ARNm o ADNc sintetizado a partir de ARNm) que codifica la proteína CAPRIN-1 canina de SEQ ID NO: 6, 8, 10, 12 o 14, respectivamente; y un polinucleótido que se hibrida específicamente con una región parcial en SEQ ID NO: 1 o 3 se utilice para medir la cantidad de un ácido nucleico (p. ej., ARNm o ADNc sintetizado a partir de ARNm) que codifica la proteína CAPRIN-1 humana de SEQ ID NO: 2 o 4, respectivamente. Sin embargo, una proteína de un mamífero determinado y un homólogo de la misma de otro mamífero generalmente comparten una alta identidad de secuencia incluso a nivel de secuencias de nucleótidos.

Por tanto, la identidad de secuencia entre las secuencias de nucleótidos de las SEQ ID NO: 1 a 13 es también tan alta como de 94 % a 100 %. Por consiguiente, un polinucleótido que se hibrida específicamente con una región parcial de la secuencia de SEQ ID NO: 5 también puede hibridarse específicamente con una región parcial que corresponde a la región parcial de cualquiera de las SEQ ID NO: 1 a 29 de número impar.

De hecho, un par de cebadores que tienen las secuencias de nucleótidos representadas por SEQ ID NO: 33 y 34 se hibridan específicamente tanto a una región parcial de cualquiera de las SEQ ID NO: 1 a 29 de número impar como a una región parcial de la secuencia de SEQ ID NO: 5, como se describe más adelante en los ejemplos. Por tanto, puede medirse tanto el ARNm que codifica la CAPRIN-1 canina de SEQ ID NO: 6 como el ARNm que codifica una secuencia homóloga de la misma. Por consiguiente, utilizando un polinucleótido que se hibrida específicamente con una región parcial de la secuencia de SEQ ID NO: 5, no solo puede medirse el ARNm que codifica a CAPRIN-1 canina de SEQ ID NO: 2 o 4. De manera similar, también puede medirse el ARNm que codifica a CAPRIN-1 de otro mamífero, tal como de un gato. Cuando se diseña un polinucleótido para la detección del cáncer, es más deseable seleccionar regiones parciales que tengan particularmente alta identidad de secuencia de entre las SEQ ID NO: 1 a 29 de número impar (y se prefieren secuencias de nucleótidos idénticas). Si hay una identidad de secuencia particularmente alta que tenga una región parcial entre CAPRIN-1 canina y CAPRIN-1 humana, se espera que también haya una región que muestre una identidad de secuencia alta con dicha región en un gen homólogo de otra especie animal. A través de la selección de dicha región parcial, puede aumentarse la precisión para medir el ARNm que codifica a CAPRIN-1 de una especie animal distinta de un perro o un ser humano.

10

15

20

25

65

Para medir un ácido nucleico en un objeto de ensayo utilizando un polinucleótido que se hibrida específicamente con una región parcial del ácido nucleico como una sonda o como uno o más cebadores, se conoce bien un método de amplificación de ácido nucleico tal como PCR. Como ejemplos de dicho método se incluyen, además de RT-PCR como se describe más adelante específicamente en los siguientes, transferencia de Northern e hibridación *in situ*. Cuando en la presente invención se mide la cantidad de ARNm, pueden emplearse cualquiera de dichos métodos de medición bien conocidos.

Un método de amplificación de ácido nucleico, tal como la PCR, es muy conocido en la técnica, y en el comercio se 30 dispone de kits con reactivos y aparatos para efectuar dicho método, de tal manera que pueda realizarse fácilmente. Específicamente, cada una de las etapas de desnaturalización, emparejamiento y extensión se realizan utilizando un ácido nucleico en un objeto de ensayo (p. ej., el ADNc de un gen que codifica una proteína que tiene una secuencia de aminoácidos representada por cualquiera de las SEQ ID NO: 2 a 30 de número par) como un molde y un par de polinucleótidos (cebadores) para la detección del cáncer en un tampón conocido en presencia de ADN polimerasa termoestable tal como Taq polimerasa o Pfu polimerasa y los dNTP (en este caso, N = A, T, C y G) modificando la 35 temperatura de la solución de reacción en cada etapa. En general, la etapa de desnaturalización se realiza de 90 °C a 95 °C, la etapa de emparejamiento se realiza a o cerca de la Tf del molde y los cebadores (preferentemente entre ± 4 °C), y la etapa de extensión se realiza a 72 °C, que es la temperatura óptima de la ADN polimerasa termoestable tal como Tag polimerasa o Pfu polimerasa, o a una temperatura próxima a la temperatura óptima. La duración de cada etapa se establece adecuadamente entre aproximadamente 30 segundos y 2 minutos. Este ciclo de calentamiento se repite unas 25 a 40 veces, por ejemplo, de tal manera que la región de ácido nucleico molde intercalada entre un par de cebadores se amplifica. El método de amplificación de ácido nucleico no se limita a la PCR, pudiendo emplearse cualquiera de los otros métodos de amplificación de ácido nucleico bien conocidos en la materia. Cuando realiza un método de amplificación de ácido nucleico utilizando como cebadores un par de polinucleótidos para la detección del cáncer y como molde un ácido nucleico en el objeto de ensayo, como se 45 describe anteriormente, el ácido nucleico se amplifica. Sin embargo, si una muestra no contiene el ácido nucleico de ensayo, la amplificación no tiene lugar. Por consiguiente, para determinar la presencia o la ausencia del ácido nucleico en la muestra puede detectarse un producto de amplificación. Dicho producto puede detectarse mediante un método que comprenda someter a electroforesis una solución de reacción después de amplificación y posteriormente teñir la banda con bromuro de etidio o similar o mediante un método que comprenda la 50 inmovilización de un producto de amplificación después de electroforesis en una fase sólida, tal como una membrana de nailon, realizar la hibridación con una sonda de marcaje que se hibrida específicamente con un ácido nucleico, lavar, y después detectar el marcador. Además, la denominada PCR de detección en tiempo real se realiza utilizando un colorante fluorescente inactivador y un colorante fluorescente indicador, y la cantidad de ácido nucleico 55 en un espécimen puede por tanto cuantificarse. Dado que en el comercio se dispone de kits para la PCR de detección en tiempo real, dicha PCR puede realizarse fácilmente. Además, la medición semicuantitativa de un ácido nucleico en un objeto de ensayo también puede realizarse basándose en la intensidad de banda de la electroforesis. Un ácido nucleico en objeto de ensayo puede ser ARNm o ADNc transcrito de manera inversa a partir de ARNm. Cuando el ARNm se amplifica como un ácido nucleico, también puede emplearse un método NASBA (el método 3SR o método TMA) utilizando los pares de cebadores anteriores. El método NASBA es muy conocido y en el 60 comercio también se dispone de kits para realizarlo de manera que el método puede realizarse fácilmente utilizando los pares de cebadores anteriores.

Como una sonda, también puede utilizarse una sonda marcada que se prepara marcando un polinucleótido para la detección del cáncer con un marcador fluorescente, un radiomarcador, un marcador de biotina o similar. Se conocen bien métodos para marcar un polinucleótido. La presencia o ausencia de un ácido nucleico en una muestra puede

examinarse inmovilizando un ácido nucleico o un producto de amplificación del mismo, realizando hibridación con una sonda marcada, lavando y después midiendo el marcador unido a la fase sólida. Como alternativa, un polinucleótido para la detección de cáncer se inmoviliza, un ácido nucleico en el objeto de ensayo se hibrida con este y el ácido nucleico de ensayo unido a la fase sólida puede después detectarse utilizando la sonda marcada o similar. En dicho caso, un polinucleótido para la detección del cáncer unido a una fase sólida también se denomina "sonda". Los métodos para medir un ácido nucleico utilizando una sonda de polinucleótidos también son muy conocidos en la técnica. Dicho método puede realizarse en un tampón, poniendo en contacto una sonda polinucleotídica con un ácido nucleico en el objeto de ensayo a la Tf o próxima a la Tf (preferentemente, ± 4 °C) para la hibridación, lavando y después midiendo la sonda marcada hibridada o el ácido nucleico molde unido a la sonda en fase sólida. Como ejemplos de dicho métodos se incluyen métodos muy conocidos tales como transferencia de Northern, hibridación *in situ* y transferencia de Southern. En la presente invención, puede aplicarse cualquier método bien conocido.

10

15

20

25

30

35

50

65

De acuerdo con el método de detección de la presente invención, se evalúa si un sujeto animal (o un sujeto) padece o no cáncer pancreático, basándose en la presencia o en la cantidad de expresión de CAPRIN-1 medida como se ha descrito anteriormente. Aunque el cáncer pancreático puede detectarse midiendo solo la presencia o la cantidad de expresión de CAPRIN-1 en un animal sujeto, es preferible examinar los niveles de expresión (el nivel de anticuerpo, el nivel de polipéptido o el nivel de ARNm) de CAPRIN-1 en una o más muestras de sujetos sanos y el valor determinado de un sujeto animal se compara con el valor patrón obtenido de individuos sanos, en vistas a potenciar la precisión de la detección. Para potenciar adicionalmente la precisión de la detección, los niveles de expresión de CAPRIN-1 se miden en muestras obtenidas de muchos pacientes en los que se encontró que tenían cáncer pancreático, para obtener un valor patrón para pacientes de cáncer pancreático, y el valor determinado de un sujeto animal puede después compararse tanto con el valor patrón de sujetos sanos como con el valor patrón de pacientes con cáncer pancreático. Los valores patrones anteriores pueden determinarse, por ejemplo, cuantificando el nivel de expresión de CAPRIN-1 en cada muestra y calculando su valor promedio. El valor patrón de sujetos sanos y el mismo para pacientes con cáncer pancreático puede determinarse por adelantado midiendo los niveles de expresión de CAPRIN-1 en muchos sujetos sanos y en pacientes con cáncer pancreático. Por consiguiente, cuando en el método de la presente invención se realiza la comparación con el valor patrón, puede utilizarse un valor patrón determinado por adelantado.

El método de detección de la presente invención puede comprender realizar un diagnóstico basándose en otros antígenos del cáncer o en marcadores del cáncer en combinación. Esto puede potenciar adicionalmente la precisión de la detección del cáncer pancreático. Cuando un anticuerpo, especialmente existente en pacientes con cáncer pancreático, se mide mediante el método de la presente invención, por ejemplo, puede utilizarse otro polipéptido que a menudo se exprese en un tejido con cáncer en combinación como un antígeno de una manera similar a la que se utiliza para los polipéptidos descritos anteriormente. Además, el método de la presente invención puede realizarse en combinación con el diagnóstico utilizando un marcador de cáncer previamente conocido.

El cáncer pancreático que va a someterse al método para detectar cáncer pancreático de la presente invención, es cáncer pancreático que expresa CAPRIN-1. Como ejemplos de dicho cáncer se incluyen, pero sin limitación, carcinoma ductal pancreático, carcinoma ductal pancreático invasivo, adenocarcinoma, carcinoma de células acinares, carcinoma adenoescamoso, tumor de células gigantes, neoplasia papilar mucinosa intraductal (NPMI), neoplasia quística mucinosa (NQM), pancreatoblastoma, cistoadenocarcinoma seroso, tumor sólido pseudopapilar (TSP), gastrinomas (síndrome de Zollinger-Ellison), glucagonosomas, insulinomas, neoplasia endocrina múltiple de Tipo 1 (MEN1) (síndrome de Wermer),tumor no funcional de células de los islotes, somatostatinomas y VIPomas. Un sujeto en el método de la presente invención es un mamífero, preferentemente un ser humano o un perro.

Como ejemplos de muestras que van a someterse al método de la presente invención se incluyen fluidos corporales, tales como sangre, suero, plasma sanguíneo, fluido ascítico y derrame pleural, tejidos y células. En el primer método y en el segundo método, en particular, se utilizan preferentemente muestras de suero, plasma sanguíneo, fluido ascítico, derrame pleural, tejido y células. En el tercer método que comprende medir un ácido nucleico, tal como ARNm, se prefieren muestras de tejido y células.

Para la detección de cáncer pancreático, como reactivos o kits pueden proporcionarse uno o más polipéptidos a utilizar como antígenos para inmunoensayo en el primer método descrito anteriormente (es decir, CAPRIN-1 canina de SEQ ID NO: 2 o una secuencia homóloga de la mismo, un polipéptido parcial específicamente reactivo, un polipéptido modificado específicamente reactivo, y un polipéptido de adición específicamente reactivo) Un reactivo de este tipo puede consistir en el polipéptido anterior, o puede contener individualmente diversos aditivos útiles para la estabilización del polipéptido, un tampón necesario para el ensayo, anticuerpos secundarios, sustratos para enzimas o similar. Como alternativa, dicho reactivo puede inmovilizarse en una fase sólida tal como una placa o una membrana. Anteriormente se han proporcionado ejemplos preferidos de dichos polipéptidos.

Para la detección de cáncer pancreático, también puede proporcionarse en forma de reactivo, un anticuerpo o un fragmento de unión a antígeno del mismo, que experimenta una reacción antígeno-anticuerpo con CAPRIN-1, utilizado para inmunoensayos de CAPRIN-1 mediante el segundo método. El reactivo la para detección de cáncer pancreático puede consistir en el anticuerpo anterior o en un fragmento de unión a antígeno del mismo. El reactivo

puede contener diversos aditivos útiles para la estabilización de dicho anticuerpo o fragmento de unión a antígeno del mismo. Como alternativa, al anticuerpo, o al fragmento de unión a antígeno del mismo, puede unirse un metal, tal como manganeso o hierro. Cuando dicho anticuerpo, o fragmento de unión a antígeno del mismo, unido a metal se administra a un organismo vivo, el anticuerpo, o fragmento de unión a antígeno del mismo, unido a metal se acumula a un nivel aumentado en un sitio en el cual la proteína antigénica está presente a un nivel más alto. Cuando dicho anticuerpo, o fragmento de unión a antígeno del mismo, unido a metal se administra a un organismo vivo, el anticuerpo, o fragmento de unión a antígeno del mismo, unido a metal se acumula a un nivel aumentado en un sitio en el cual la proteína antigénica está presente a un nivel más altoPor lo tanto, el metal se mide mediante MRI o similar, y de esta manera puede detectarse la presencia de células cancerosas productoras de la proteína antigénica.

Adicionalmente, como reactivo o kit para la detección de cáncer pancreático, también pueden proporcionarse uno o más de los polinucleótidos anteriores a utilizar para medir un ácido nucleico, tal como ARNm, en el tercer método. En dicho caso, el reactivo para la detección de cáncer pancreático puede consistir en el polinucleótido, o puede contener individualmente diversos aditivos útiles para la estabilización del polipéptido, un tampón necesario para el ensayo (p. ej., un marcador fluorescente) y similar. El polinucleótido para la detección de cáncer pancreático contenido en el reactivo es preferentemente uno o más cebadores o una o más sondas. Anteriormente se han descrito las condiciones y los ejemplos preferibles del polinucleótido para la detección del cáncer pancreático.

20 Ejemplos

10

15

30

35

La presente invención se describirá con más detalle con referencia a los siguientes ejemplos, aunque el alcance técnico de la misma no está limitado a los ejemplos.

25 [Ejemplo 1] Obtención de la proteína antigénica de cáncer pancreático por el método SEREX (1) Construcción de una biblioteca de ADNc

Se extrajo ARN total de un tejido de testículo de un perro sano mediante un método ácido con guanidio-fenolcloroformo, y el ARN poliA se purificó utilizando un kit de purificación de ARNm Oligotex-dT30 (Takara Shuzo, Co., Ltd.) de acuerdo con los protocolos incluidos en el kit.

Utilizando el ARNm así obtenido (5 μ g), se sintetizó una fagoteca de ADNC de testículo de perro. La fagoteca de ADNc se construyó utilizando un Kit de Síntesis de ADNc, un Kit de Síntesis ZAP- ADNc y un Kit de Clonación ZAP- ADNc GigapackIII Gold (STRATAGENE), de acuerdo con los protocolos incluidos en los kits. El tamaño de la fagoteca de ADNc así construida fue de 7,73 x 10^5 ufp/ml.

(2) Cribado de biblioteca de ADNc utilizando suero

Se realizó inmunocribado utilizando la fagoteca de ADNc de testículo de perro construida anteriormente.

Específicamente, el hospedador *Escherichia coli* (XL1-Blue MRF') se infectó con el fago de modo que se obtuvieron 2210 clones presentes en una placa de agarosa NZY (Φ90 x 15 mm). Las células de *E. coli* se cultivaron a 42 °C durante 3 a 4 horas para formar las placas. La placa se cubrió con una membrana de nitrocelulosa (Hybond C Extra: GE Healthcare Bio-Science) impregnada con IPTG (isopropil-β-D-tiogalactosido) a 37 °C durante 4 horas, de tal manera que las proteínas se indujeron, se expresaron y después se transfirieron a la membrana. Después de esto, la membrana se recuperó y se sumergió en TBS (Tris-HCl 10 mM, NaCl 150 mM, pH 7,5) que contenía leche desnatada en polvo al 0,5 %, seguido de agitación a 4 °C durante una noche, para suprimir las reacciones no específicas. El filtro se sometió a una reacción con suero de un perro con cáncer diluido 500 veces a temperatura ambiente durante 2 a 3 horas.

50 Al igual que el suero anterior de un perro con cáncer, se utilizó un suero recogido de un perro con cáncer pancreático El suero se conservó a -80 °C y después se sometió a pretratamiento inmediatamente antes de su uso. El pretratamiento del suero se realizó por el siguiente método. Específicamente, el hospedador Escherichia coli (XL1-Blue MRF') se infectó con un fago λ ZAP Express en el que no se había insertado gen exógeno, y después se cultivó en medio de placa NZY a 37 °C durante una noche. Posteriormente, a la placa se añadió un tampón 55 (NAHCO3 0,2 M (pH 8,3) que contenía NaCl 0,5 M y después la placa se dejó reposar a 4 °C durante 15 horas y a continuación se recogió un sobrenadante como un extracto de Escherichia coli/fago. Después de esto, el extracto de Escherichia coliifago recogido se aplicó a una columna NHS (GE Healthcare Bio-Science), para inmovilizar la proteína procedente de Escherichia coli/fago. Se aplicó el suero de un perro con cáncer a la columna a la cual se había inmovilizado la proteína para la reacción y retirando de ese modo del suero Escherichia coli y un anticuerpo adsorbido al fago. La fracción de suero que se había pasado a través de la columna se diluyó 500 veces con TBS 60 que contenía leche desnatada en polvo al 0,5 %. La fracción de suero diluida se utilizó como un material de inmunocribado.

Una membrana a la que se había transferido el suero tratado y la proteína de fusión anterior, se lavó 4 veces con TBS-T (Tween20 al 0,05 %/TBS) y la membrana se hizo reaccionar con anticuerpo de cabra anti-IgG de perro (conjugado de cabra con HRP anti IgG-h+I de perro: BETHYL Laboratories) diluido 5000 veces como anticuerpo

secundario con TBS que contenía leche desnatada en polvo al 0,5 % a temperatura ambiente durante 1 hora. La detección se realizó mediante una reacción enzimática de revelado de color utilizando la solución de reacción NBT/BCIP (Roche). Las colonias correspondientes al sitio positivo de la reacción de revelado de color se recogieron de la placa de agarosa NZY (\$\phi\$0 x 15 mm), y después se disolvió en 500 \$\mu\$I de tampón SM (NaCl 100 mM, MgCISO4 100 mM, Tris-HCl 50 mM, gelatina al 0,01 %, pH 7,5). Hasta la unificación de las colonias positivas en la reacción de revelado de color, se repitió el cribado secundario y el cribado terciario por un método similar al anterior, por tanto, se exploraron 30940 clones de fagos que habían reaccionado con IgG de suero. De este modo se aislaron 5 clones positivos.

10 (3) Búsqueda de homologías para el gen antigénico aislado

15

20

25

Se realizó un procedimiento para la conversión de los vectores fágicos en vectores plasmídicos para los 5 clones positivos aislados por el método anterior con el fin de someter los clones a análisis de secuencia de nucleótidos. Específicamente, se prepararon 200 μl de una solución que contenía el hospedador *Escherichia coli* (XL1-Blue MRF') a una absorbancia (DO 600) de 1,0. La solución se mezcló con 250 μl de una solución purificada de fagos y con 1 μl de fago auxiliar ExAssist (STRATAGENE) y la mezcla se sometió a una reacción a 37 °C durante 15 minutos, después de eso, se añadieron 3 ml de medio LB y el cultivo se realizó después a 37 °C durante 2,5 a 3 horas. Inmediatamente después, la temperatura de la solución se mantuvo en un baño de agua a 70 durante 20 minutos, se realizó centrifugación a 4 °C y a 1000 x g durante 15 minutos, y después se recogió el sobrenadante como una solución de fagémido. Posteriormente, se mezclaron 200 μl de una solución que contenía fagémido de hospedador *Escherichia coli* (SOLR) a la absorbancia DO600 de 1,0. La solución resultante se mezcló con 10 μl de una solución purificada de fagos, seguido de 15 minutos de reacción a 37 °C. El producto de reacción (50 μl) se sembró en medio de agar LB que contenía ampicilina (a una concentración final de 50 μg/ml) y después se cultivó durante una noche a 37 °C. Se recogió una única colonia de SOLR transformada y después se cultivó en medio LB que contenía ampicilina (a una concentración final de 50 μg/ml) a 37 °C. Después de esto, utilizando el kit QIAGEN plasmid Miniprep (QIAGEN), se purificó el ADN plasmídico que contenía un inserto de interés.

El plásmido purificado se sometió a análisis de la secuencia de inserto de longitud completa mediante el método de cebador andante utilizando el cebador T3 representado por SEQ ID NO: 31 y el cebador T7 representado por SEQ 30 ID NO: 32. Como un resultado del análisis de secuencia, se obtuvieron las secuencias génicas representadas por SEQ ID NO: 5, 7, 9, 11 y 13. Se realizó un programa de búsqueda de homología, búsqueda BLAST (http://www.ncbi.nlm.nih.gov/BLAST/), utilizando las secuencias de nucleótidos y las de aminoácidos (SEQ ID NO: 6, 8, 10, 12 y 14) de los genes. Como un resultado de esta búsqueda de homología con genes conocidos, se descubrió que los 5 genes obtenidos codificaban a CAPRIN-1. La identidad de secuencia entre los 5 genes fue del 100 % para la secuencia de nucleótidos y del 99 % para la secuencia de aminoácidos en regiones traducidas en proteínas. 35 Además, la identidad de secuencia entre el gen canino (cualquiera de SEQ ID NO. 5, 7, 9, 11, o 13) y un gen que codifica un homólogo humano del mismo fue de 94 % para la secuencia de nucleótidos y de 98 % para la secuencia de aminoácidos en regiones traducidas en proteínas. Las secuencias de nucleótidos del homólogo humano se representan por SEQ ID NO: 1 y 3 y las secuencias de aminoácidos del mismo se representan por SEQ ID NO: 2 y 4. Además, la identidad de secuencia entre el gen canino obtenido y un gen que codifica un homólogo de ganado fue de 94 % para la secuencia de nucleótidos y de 97 % para la secuencia de aminoácidos en regiones traducidas en proteínas. La secuencia de nucleótidos del homólogo de ganado se representa por SEQ ID NO: 15 y la secuencia de aminoácidos de la misma se representa por SEQ ID NO: 16. La identidad de secuencia entre el gen que codifica el homólogo humano y el gen que codifica el homólogo de ganado fue de 94 % para las secuencias de nucleótidos y varió de 93 % a 97 % para la secuencia de aminoácidos en regiones traducidas en proteínas. Además, la identidad 45 de secuencia entre el gen canino obtenido y un gen que codifica un homólogo equino fue de 93 % para la secuencia de nucleótidos y de 97 % para la secuencia de aminoácidos en regiones traducidas en proteínas. La secuencia de nucleótidos del homólogo equino se representa por SEQ ID NO: 17 y la secuencia de aminoácidos del mismo se representa por SEQ ID NO: 18. La identidad de secuencia entre el gen que codifica el homólogo humano y el gen 50 que codifica el homólogo equino fue de 93 % para la secuencia de nucleótidos y de 96 % para la secuencia de aminoácidos en regiones traducidas en proteínas. Además, la identidad de secuencia entre el gen canino obtenido y un gen que codifica el homólogo de ratón varió de 87 % a 89 % en términos de secuencia de nucleótidos y varió de 95 % a 97 % para la secuencia de aminoácidos en regiones traducidas en proteínas. Las secuencias de nucleótidos del homólogo de ratón se representan por las SEQ ID NO: 19, 21, 23, 25 y 27 y las secuencias de aminoácidos del 55 mismo se representan por las SEQ ID NO: 20, 22, 24, 26 y 28. La identidad de secuencia entre el gen que codifica el homólogo humano y el gen que codifica el homólogo de ratón varió de 89 % a 91 % para la secuencia de nucleótidos y varió de 95 % a 96 % para la secuencia de aminoácidos en regiones traducidas en proteínas. Además, la identidad de secuencia entre el gen canino obtenido y un gen que codifica un homólogo de pollo fue de 82 % para la secuencia de nucleótidos y de 87 % para la secuencia de aminoácidos en regiones traducidas en proteínas. La 60 secuencia de nucleótidos del homólogo de pollo se representa mediante SEQ ID NO: 29 y la secuencia de aminoácidos para la misma se representa por SEQ ID NO: 30. La identidad de secuencia entre el gen que codifica el homólogo humano y el gen que codifica el homólogo de pollo varia de 81 % a 82 % para la secuencia de nucleótidos y de 86 % para la secuencia de aminoácidos en regiones traducidas en proteínas.

65 (4) Análisis de expresión génica en líneas celulares de cáncer pancreático humano.

La expresión de los genes obtenidos por el método anterior en tejidos normales humanos (es decir glándula mamaria, cerebro, médula ósea, pulmón, esófago, páncreas y testículo) y 4 tipos de líneas celulares de cáncer pancreático (es decir, Capan-2, MIAPaCa-2, PANC-1, y BxPC-3) se examinó mediante RT-PCR (PCR con transcripción inversa). Se realizó una reacción de transcripción inversa de la siguiente manera. Específicamente, se extrajo ARN total de cada tejido (50 mg a 100 mg) y de cada línea celular (5-10 x 10⁶ células) utilizando el reactivo TRIZOL (Invitrogen) de acuerdo con los protocolos adjuntos. El ADNc se sintetizó utilizando el ARN total y el sistema de síntesis de primera cadena Superscript para RT-PCR (Invitrogen) de acuerdo con los protocolos adjuntos. La PCR se realizó de la siguiente manera utilizando cebadores específicos para los genes obtenidos (representados por SEQ ID NO: 33 y 34). Específicamente, la PCR se realizó preparando una solución de reacción para llevar una cantidad total de la misma a 25 µl con la adición de reactivos y un tampón incluido (es decir, 0,25 µl de una muestra preparada por reacción de transcripción inversa, los cebadores anteriores (2 µm cada uno), los dNTP (0,2 mM cada uno), 0,65 U de ExTag polimerasa (Takara Shuzo, Co., Ltd.)), la solución resultante se sometió a un ciclo de 94 °C durante 30 segundos, 60 °C durante 30 segundos y 72 °C durante 30 segundos, utilizando un termociclador (BIO RAD), y este ciclo se repitió 30 veces. Los cebadores específicos de genes mencionados anteriormente se utilizaron para amplificar la región entre el nucleótido N.º 698 y el nucleótido N.º 1124 en la secuencia de nucleótidos representada por SEQ ID NO: 1 (el gen de CAPRIN-1 humana). Para establecer comparaciones, se utilizaron cebadores específicos de GAPDH (representados por SEQ ID NO: 35 y 36) al mismo tiempo. Como resultado de la inspección de la expresión del gen de la proteína CAPRIN-1 humana, su expresión se observó solo en los testículos en el caso de tejidos caninos sanos, aunque la expresión se observó en células de cáncer pancreático. Los resultados demuestran que la expresión de CAPRIN-1 no se observaba en tejidos normales distintos a los de los testículos, mientras que la expresión de CAPRIN-1 se observaba en las células de cáncer pancreático.

(5) Expresión de CAPRIN-1 en tejidos normales caninos y de ratón.

10

15

20

Ratones (hembra Balb/c) y perros (perros Beagle, hembra) se exanguinaron mediante anestesia con éter y con 25 ketamina/isoflurano. Después de la laparotomía, cada uno de los órganos (estómago, hígado, globo ocular, glándula de timo, músculo, médula ósea, útero, intestino delgado, esófago, corazón, riñón, glándula salival, intestino grueso, glándula mamaria, cerebro, pulmón, piel, glándula adrenal, ovarios, páncreas, bazo y vejiga) se transfirieron a una placa de 10 cm que contenía PBS. Cada órgano se abrió cortando en PBS y después se fijó por perfusión durante una noche con tampón fosfato 0,1 M (pH 7,4) que contenía paraformaldehído (PFA) al 4 %. El perfundido se desechó, la superficie tisular de cada órgano se lavó con PBS, y después una solución de PBS que contenía sacarosa al 10 % se introdujo en un tubo de centrífuga de 50 ml. Después, cada tejido se introdujo en cada tubo, seguido de agitación utilizando un rotor a 4 ºC durante 2 horas. Cada solución se sustituyó con una solución de PBS que contenía sacarosa al 20 % y después se dejó reposar a 4 ºC hasta que precipitaron los tejidos. Cada solución se sustituyó con una solución de PBS que contenía sacarosa al 30 % y después se dejó reposar a 4 ºC hasta que 35 precipitación los tejidos. Cada tejido se retiró y con un escarpelo quirúrgico se escindió una parte necesaria. Posteriormente, se aplicó el compuesto OCT (Tissue Tek) y extendió sobre cada superficie tisular, y después los tejidos se colocaron en un Cryomold. El Cryomold se colocó en hielo seco para enfriarse rápidamente. Los tejidos se cortaron en trozos de 10 a 20 µm de longitud utilizando un criostato (LEICA), y los trozos de tejido cortados en rodajas se secaron después al aire en portaobjetos de vidrio durante 30 minutos utilizando un secador de pelo y de esta manera se trataron los portaobjetos de vidrio sobre los que se habían aplicado los trozos de tejido cortados. Posteriormente, cada portaobjetos de vidrio se introdujo en un frasco de tinción cargado con PBS-T (solución salina que contenía Tween 20 0,05 %), cada 5 minutos se realizó un procedimiento que implicaba el intercambio de PBS-T con PBS-T reciente, y este procedimiento se repitió 3 veces. El exceso de agua alrededor de cada espécimen se retiró utilizando toallitas (Kimwipes) y después cada sección se circundó con DAKOPEN (DAKO). Como soluciones 45 bloqueantes, un reactivo bloqueante de IgG de ratón MOM (VECTASTAIN) se aplicó sobre el tejido de ratón y una solución de PBS-T que contenía suero de ternero fetal al 10 % se aplicó sobre el tejido canino. Los resultantes se dejaron reposar en una cámara con humedad a temperatura ambiente durante 1 hora. Posteriormente, una solución preparada con la solución de bloqueo contra un anticuerpo monoclonal anti-CAPRIN-1 (anticuerpo monoclonal n.º 8) 50 10 μg/ml que tenía la región variable de cadena pesada de SEQ ID NO: 55 y la región variable de cadena ligera de SEQ ID NO: 56, que reacciona con las superficies de las células cancerosas preparadas en el Ejemplo 3, se aplicó sobre cada uno de los portaobjetos de vidrio y después se reposar en una cámara con humedad a 4 ºC durante una noche. Después de lavar 3 veces con PBS-T durante 10 minutos, un anticuerpo anti-IgG marcado con biotina MOM (VECTASTAIN) diluido 250 veces con la solución de bloqueo, se aplicó sobre cada portaobjetos de vidrio y después 55 se deió reposar en una cámara con humedad a temperatura ambiente durante 1 hora. Después de lavar 3 veces durante 10 minutos con PBS-T, se aplicó un reactivo de avidina-biotina ABC (VECTASTAIN) y después se dejó reposar en una cámara con humedad a temperatura ambiente durante 5 minutos. Después de lavar 3 veces durante 10 minutos con PBS-T, se aplicó una solución de tinción DAB (10 mg de DAB + 10 μ l de H_2O_2 al 30 % y 50 ml de Tris-HCl 0,05 M, pH 7,6), y los portaobjetos se dejaron reposar en una cámara con humedad a temperatura ambiente durante 30 minutos. Los portaobjetos se lavaron con agua destilada y después se aplicó reactivo de 60 hematoxilina (DAKO). Después de dejar reposar a temperatura ambiente durante 1 minuto, los portaobjetos se lavaron con aqua destilada. Cada uno de los portaobjetos se colocó en soluciones de etanol al 70 %, 80 %, 90 %, 95 % y 100 % en dicho orden durante 1 minuto y después se dejó que reposaran en xileno durante una noche. Los portaobjetos se retiraron, se cubrieron con un cubreobjetos con medio de montaje Glycergel (DAKO) y después se observaron. Como resultado, la expresión de CAPRIN-1 se observó a un grado escaso en las células en todos los tejidos de glándulas salivales, riñón, colon y estómago, pero no se observó expresión de CAPRIN-1 en las

superficies celulares. Además no se observó en absoluto expresión de CAPRIN-1 en tejidos de otros órganos.

[Ejemplo 2] Preparación de proteínas CAPRIN-1 canina y humana

(1) Preparación de proteína recombinante

10

15

45

50

55

60

Se preparó una proteína recombinante mediante el siguiente método basándose en el gen de SEQ ID NO: 5 obtenido en el Ejemplo 1. Se realizó PCR preparando una solución de reacción para llevar una cantidad total de la misma a 50 µl con la adición de reactivos y un tampón incluido (es decir, 1 µl de un vector preparado a partir de la solución de fagémido obtenida en el Ejemplo 1 y después sometido a análisis de secuencia, 2 tipos de cebadores que contenían secuencias de escisión de enzimas de restricción Ndel y Kpnl (0,4 µm cada una; SEQ ID NO: 37, 38), 0,2 mM de los dNTP y HS polimerasa PrimeSTAR 1,25 U (Takara Shuzo, Co., Ltd.)), la solución de reacción resultante se sometió a un ciclo de 98 °C durante 10 segundos y de 68 °C durante 1,5 minutos utilizando un termociclador (BIO RAD), y este ciclo se repitió 30 veces. Los 2 tipos de cebadores anteriores se utilizaron para amplificar la región que codifica la secuencia de aminoácidos de longitud completa de SEQ ID NO: 6 (CAPRIN-1 canina). Después de la PCR, el ADN amplificado se sometió a electroforesis EN gel de agarosa al 1 %, y después un fragmento de ADN de aproximadamente 1,4 kpb se purificó del gel utilizando un Kit de Extracción en gel QIAquick (QIAGEN).

El fragmento de ADN purificado se ligó a un vector de clonación pCR-Blunt (Invitrogen). El vector se transformó en *Escherichia coli*, el plásmido se recogió y se confirmó que el fragmento génico amplificado correspondía con la secuencia diana mediante secuenciación. El plásmido que correspondía con la secuencia diana se trató con las enzimas de restricción Ndel y Kpnl, lo resultante se purificó utilizando un Kit de Extracción en gel QIAquick y la secuencia génica diana se insertó en un vector de expresión pET30b (Novagen) para *Escherichia coli* tratado con las enzimas de restricción Ndel y Kpnl. Utilizando el vector resultante, pudo producirse una proteína recombinante fusionada a una etiqueta de Histidina. El plásmido se transformó en *Escherichia coli* BL21 (DE3) para la expresión, y se indujo la expresión de la proteína diana en *Escherichia coli* con la ayuda de IPTG 1 mM.

Por separado, la proteína recombinante de un gen homólogo canino se preparó mediante el siguiente método basándose en el gen de SEQ ID NO: 7. Se realizó PCR preparando una solución de reacción para llevar una cantidad total de la misma a 50 µl con la adición de reactivos y un tampón incluido (es decir, 1 µl de ADNc, cuya expresión se confirmó mediante RT-PCR, seleccionado de entre los diversos ADNc de tejidos y células preparados en el Ejemplo 1, 2 tipos de cebadores que contenían secuencias de escisión de enzimas de restricción Ndel y Kpnl (0,4 µm cada una; SEQ ID NO: 39 y 40), 0,2 mM de los dNTP y HS polimerasa PrimeSTAR 1,25 U (Takara Shuzo, Co., Ltd.)), la solución de reacción resultante se sometió a un ciclo de 98 °C durante 10 segundos y de 68 °C durante 2,5 minutos utilizando un termociclador (BIO RAD), y este ciclo se repitió 30 veces. Los 2 tipos de cebadores anteriores se utilizaron para amplificar la región que codifica la secuencia de aminoácidos de longitud completa de SEQ ID NO: 8. Después de la PCR, el ADN amplificado se sometió a electroforesis en gel de agarosa al 1 % y después un fragmento de ADN de aproximadamente 2,2 kpb se purificó del gel utilizando un Kit de Extracción en gel QIAquick (QIAGEN).

El fragmento de ADN purificado se ligó a un vector de clonación pCR-Blunt (Invitrogen). El vector se transformó en *Escherichia coli*, el plásmido se recogió, y se confirmó que el fragmento génico amplificado correspondia con la secuencia diana mediante secuenciación. El plásmido que correspondía con la secuencia diana se trató con las enzimas de restricción Ndel y Kpnl, lo resultante se purificó utilizando un Kit de Extracción con Gel QIAquick y la secuencia génica diana se insertó en un vector de expresión pET30b (Novagen) para *Escherichia coli* tratado con las enzimas de restricción Ndel y Kpnl. Utilizando el vector resultante, pudo producirse una proteína recombinante fusionada a una etiqueta de Histidina. El plásmido se transformó en *Escherichia coli* BL21 (DE3) para la expresión, y se indujo la expresión de la proteína diana en *Escherichia coli* con la ayuda de IPTG 1 mM.

Por separado, la proteína recombinante de un gen homólogo humano se preparó mediante el siguiente método basándose en el gen de SEQ ID NO: 1. Se realizó PCR preparando una solución de reacción para llevar una cantidad total de la misma a 50 µl con la adición de reactivos y un tampón incluido (es decir, 1 µl de ADNc, cuya expresión se confirmó mediante RT-PCR, seleccionado de entre los diversos ADNc de tejidos y células preparados en el Ejemplo 1, 2 tipos de cebadores que contenían secuencias de escisión de enzimas de restricción Sacl y Xhol (0,4 µm cada una; SEQ ID NO: 41 y 42), 0,2 mM de los dNTP y HS polimerasa PrimeSTAR 1,25 U (Takara Shuzo, Co., Ltd.)), la solución de reacción resultante se sometió a un ciclo de 98 °C durante 10 segundos y de 68 °C durante 2,5 minutos utilizando un termociclador (BIO RAD), y este ciclo se repitió 30 veces. Los 2 tipos de cebadores anteriores se utilizaron para amplificar la región que codifica la secuencia de aminoácidos de longitud completa de SEQ ID NO: 2. Después de la PCR, el ADN amplificado se sometió a electroforesis en gel de agarosa al 1 % y después un fragmento de ADN de aproximadamente 2,2 kpb se purificó del gel utilizando un Kit de Extracción en gel QIAquick (QIAGEN).

El fragmento de ADN purificado se ligó a un vector de clonación pCR-Blunt (Invitrogen). El vector se transformó en 65 Escherichia coli, el plásmido se recogió y se confirmó que el fragmento génico amplificado correspondía con la secuencia diana mediante secuenciación. El plásmido que correspondía con la secuencia diana se trató con las enzimas de restricción Sacl y Xhol, lo resultante se purificó utilizando un Kit de Extracción con Gel QIAquick y la secuencia génica diana se insertó en un vector de expresión pET30a (Novagen) para *Escherichia coli* tratado con las enzimas de restricción Sacl y Xhol. Utilizando el vector resultante, pudo producirse una proteína recombinante fusionada a una etiqueta de Histidina. El plásmido se transformó en *Escherichia coli* BL21 (DE3) para la expresión, y se indujo la expresión de la proteína diana en *Escherichia coli* con la ayuda de IPTG 1 mM.

(2) Purificación de proteína recombinante

15

45

50

55

60

65

La cepa de *Escherichia coli* recombinante obtenida anteriormente que expresa las SEQ ID NO: 1, 5 o 7, se cultivó a 37 °C en medio LB que contenía kanamicina 30 μg/ml hasta que la absorbancia a 600 nm alcanzó aproximadamente 0,7. Después de esto, se añadió isopropil-β-D-1-tiogalactopiradósido a una concentración final de 1 mM, y el cultivo se realizó a 37 °C durante 4 horas. Posteriormente, el cultivo se centrifugó a 4.800 rpm durante 10 minutos para recoger las células. El sedimento celular se suspendió en solución salina tamponada con fosfato y después se centrifugó a 4.800 rpm durante 10 minutos para lavar las células.

Las células se suspendieron en solución salina tamponada con fosfato y después se sometieron a ultrasonido en hielo. La solución de *Escherichia coli* sometida a ultrasonido se centrifugó a 6.000 rpm durante 20 minutos, el sobrenadante resultante se denominó fracción soluble y el precipitado resultante se denominó fracción insoluble.

20 La fracción soluble se añadió a una columna quelante de níquel (transportador: Chelating Sepharose™ Fast Flow (GE Healthcare), capacidad de la columna: 5 ml, tampón de ácido clorhídrico 50 mM (pH 8,0) como tampón de equilibrio)) preparada de acuerdo con un método convencional. La fracción no adsorbida se lavó con 10 volúmenes de columna de tampón de ácido clorhídrico 50 mM (pH 8,0) y tampón fosfato 20 mM (pH 8,0) que contenía imidazol 20 mM. Inmediatamente después de esto, se eluyeron 6 lechos con tampón fosfato 20 mM (pH 8,0) que contenía imidazol 100 mM. Después de que se hubiese confirmado la elución de la proteína de interés mediante tinción con 25 Coomassie, se añadió una fracción de elución de tampón fosfato 20 mM (pH 8,0) que contenía imidazol 100 mM a una columna de intercambio aniónico fuerte (transportador: Q Sepharose™ Fast Flow), volumen de la columna: 5 ml y tampón fosfato 20 mM (pH 8,0) como tampón de equilibrio). La fracción no adsorbida se lavó con 10 volúmenes de columna de tampón fosfato 20 mM (pH 7,0) y tampón fosfato 20 mM (pH 7,0) que contenía cloruro de sodio 200 mM. 30 Inmediatamente después de esto, se eluveron 5 lechos utilizando tampón fosfato 20 mM (pH 7.0) que contenía cloruro de sodio 400 mM. Por tanto, se obtuvieron fracciones de proteínas purificadas que tenían las secuencias de aminoácidos representadas por SEQ ID NO: 2, 6 y 8, y estas fracciones purificadas se utilizaron después de esto como materiales para los ensayos de administración.

Cada una de las preparaciones purificadas obtenidas por el método anterior (de 20 μl cada una) se dispensó en 1 ml de un tampón de reacción (Tris-HCl 20 mM, NaCl 50 mM, CaCl₂ 2 mM, pH 7,4) y después se añadieron 2 μl de enteroquinasa (Novagen). La preparación se dejó reposar a temperatura ambiente durante una noche para la reacción, se escindió una etiqueta de His y la purificación se realizó después de acuerdo con los protocolos incluidos en el Kit de Captura de Escisión de Enteroquinasa (Novagen). Posteriormente, 1,2 ml de la preparación purificada obtenida mediante el método anterior se sustituyeron con tampón fosfato fisiológico (Nissui Pharmaceutical Co., Ltd.) utilizando ultrafiltración NANOSEP 10K OMEGA (PALL). Se realizó filtración esterilizada utilizando HT Tuffryn Acrodisc (PALL) de 0,22 μm y los resultantes se utilizaron en los siguientes experimentos.

[Ejemplo 3] Preparación de anticuerpo contra CAPRIN-1

(1) Preparación del anticuerpo policional contra péptido procedente de CAPRIN-1

Para obtener un anticuerpo de unión a CAPRIN-1, se sintetizó un péptido procedente de CAPRIN-1 (Arg-Asn-Leu-Glu-Lys-Lys-Gly-Lys-Leu-Asp-Asp-Tyr-Gln; SEQ ID NO: 43). El péptido como un antígeno (1 mg) se mezcló con el volumen equivalente de una solución de adyuvante incompleto de Freund (IFA), y la mezcla se administró por vía subcutánea a un conejo 4 veces cada 2 semanas. Después de esto, se extrajo sangre, y se obtuvo un antisuero que contenía un anticuerpo policional. Adicionalmente, el antisuero se purificó utilizando un transportador de proteína G (GE Healthcare Bio-Sciences), y después se obtuvo un anticuerpo policional contra el péptido procedente de CAPRIN-1. Posteriormente, se examinó la reactividad del anticuerpo policional resultante contra CAPRIN-1 en la superficie de las células cancerosas utilizando células de cáncer de mama. Específicamente, 10⁶ células de la línea celular de cáncer de mama humano MDA-MB-231 V se sometieron a centrifugación en un tubo de microcentrifuga de 1,5 ml, al mismo se añadió una solución de PBS complementada con suero bovino fetal (FBS) a 0,1 % que contenía el anticuerpo policional y el resultante se dejó reposar en hielo durante 1 hora. Después de lavar con PBS, a la solución se añadió un anticuerpo de cabra anti-IgG de ratón (Invitrogen) marcado con FITC, diluido 500 veces con PBS que contenía FBS al 0,1 %, y después la solución se dejó reposar en hielo durante 1 hora. Después de lavar con PBS, se midió la intensidad de fluorescencia utilizando un FACS Calibur (Becton, Dickinson and Company). Por separado, de acuerdo con un procedimiento similar al anterior, se preparó un control, con la excepción de que en lugar del anticuerpo policional se añadió PBS que contenía FBS al 0,1 %. Como resultado, se descubrió que la intensidad de fluorescencia en las células tratadas con el anticuerpo policlonal era más fuerte que en las células de control, y se descubrió además que el anticuerpo policional obtenido se unía a la superficie de las células de cáncer de mama.

(2) Preparación de anticuerpo monoclonal contra la proteína CAPRIN-1

10

15

20

25

30

55

60

65

La proteína antigénica (CAPRIN-1 humana) (100 μg) representada por SEQ ID NO: 2 preparada en el Ejemplo 2, se mezcló con la cantidad equivalente de adyuvante MPL + TDM (Sigma) y la mezcla se utilizó como una solución antigénica por ratón. La solución antigénica se administró por vía intraperitoneal a ratones Balb/c de 6 semanas de vida (Japón SLC Inc.) y adicionalmente se administró 3 veces a la semana. El bazo se extirpó 3 días después de la inmunización final, se colocó entre dos portaobjetos de vidrio esterilizados, se lavó con PBS (-) (Nissui) y después se centrifugó a 1.500 rpm durante 10 minutos para retirar los sobrenadantes. Este procedimiento se repitió 3 veces para obtener células de bazo. Las células de bazo obtenidas de este modo se mezclaron con las células SP2/0 de mieloma de ratón (adquiridas en la ATCC) a una proporción de 10:1. La solución de PEG se preparó mezclando 200 μl de medio RPMI1640 que contenía FBS al 10 % calentado a 37 °C y se añadieron 800 μl de PEG1500 (Boehringer) a las células. La solución se dejó reposar durante 5 minutos para la fusión celular. La centrifugación se realizó a 1.700 rpm durante 5 minutos para retirar los sobrenadantes, las células se suspendieron en 150 ml de medio RPMI1640 (medio selectivo HAT) que contenía FBS al 15 % complementado con equivalente al 2 % de solución HAT (Gibco), y la solución se sembró después en quince placas de 96 pocillos (Nunc) a 100 μl/pocillo. Las células se cultivaron durante 7 días a 37 °C en presencia de CO₂ al 5 %. Por tanto, se obtuvieron hibridomas resultantes de la fusión de células de bazo con células de mieloma.

Se seleccionaron hibridomas utilizando, como indicador, la afinidad de unión del anticuerpo producido por los hibridomas preparados para la proteína CAPRIN-1. La solución de la proteína CAPRIN-1 (1 µg/ml) preparada en el Ejemplo 2 se añadió a una placa de 96 pocillos a 100 µl/pocillo, y el resultante se dejó reposar a 4 °C durante 18 horas. Cada pocillo se lavó 3 veces con PBS-T, se añadió una solución de albúmina de suero bovino (BSA) al 0,5 % (Sigma a 400 µl/pocillo y después la placa se dejó reposar a temperatura ambiente durante 3 horas. La solución se retiró y cada pocillo se lavó 3 veces con 400 µl de PBS-T. Después de esto, cada sobrenadante del cultivo de los hibridomas obtenidos anteriormente se añadió a 100 µl/pocillo y el resultante se dejó después reposar a temperatura ambiente durante 2 horas. Cada pocillo se lavó 3 veces con PBS-T, un anticuerpo anti-lgG de ratón (H + L) marcado con HRP (Invitrogen), diluido 5.000 veces con PBS se añadió al mismo a 100 µl/pocillo, y el resultante se dejó reposar a temperatura ambiente durante 1 hora. Después, cada pocillo se lavó 3 veces con PBS-T, una solución sustrato TMB (Thermo) se añadió a 100 µl por pocillo, y el resultante se dejó reposar durante 15 a 30 minutos, para permitir el revelado de color. Después de esto, se añadió ácido sulfúrico 1N a 100 µl/pocillo para finalizar la reacción. La absorbancia se midió a 450 nm y 595 nm utilizando un espectrofotómetro. Como resultado, se seleccionó una pluralidad de hibridomas productores de anticuerpos que presentaban valores de alta absorbancia.

Los hibridomas así seleccionados se añadieron a una placa de 96 pocillos a 0,5 hibridomas por pocillo y después se cultivaron. Después de 1 semana, se observaron hibridomas que formaban colonias sencillas en los pocillos. Las 35 células en estos pocillos se cultivaron adicionalmente, y se seleccionaron hibridomas utilizando, como un indicador, la afinidad de unión del anticuerpo producido por los hibridomas clonados para la proteína CAPRIN-1. La solución de la proteína CAPRIN-1 (1 μg/ml) preparada en el Ejemplo 2 se añadió a una placa de 96 pocillos a 100 μl/pocillo, y el resultante se dejó reposar a 4 ºC durante 18 horas. Cada pocillo se lavó 3 veces con PBS-T, una solución de BSA al 40 0,5 % se añadió a 400 µl/pocillo, y la placa se dejó después reposar a temperatura ambiente durante 3 horas. La solución se retiró y cada pocillo se lavó 3 veces con 400 µl de PBS-T. Después de esto, cada sobrenadante de cultivo de los hibridomas obtenidos anteriormente se añadió a 100 µl/pocillo, y el resultante se dejó reposar a temperatura ambiente durante 2 horas. Cada pocillo se lavó 3 veces con PBS-T, un anticuerpo anti-IgG de ratón (H + L) marcado con HRP (Invitrogen), diluido 5.000 veces con PBS se le añadió a esto a 100 µl/pocillo, y el resultante se dejó reposar a temperatura ambiente durante 1 hora. Después de haber lavado cada pocillo 3 veces con PBS-T, 45 se añadió una solución sustrato TMB (Thermo) a 100 µl por pocillo y después se dejó reposar durante 15 a 30 minutos, para permitir el revelado de color. Después de esto, se añadió ácido sulfúrico 1N a 100 µl/pocillo para terminar la reacción, y la absorbancia se midió a 450 nm y 595 nm utilizando un espectrofotómetro. Como resultado, se seleccionó una pluralidad de hibridomas productores de anticuerpos monoclonales que mostraban reactividad 50 con la proteína CAPRIN-1, el sobrenadante del cultivo de los hibridomas se purificó utilizando un transportador de proteína G, y se obtuvieron 150 anticuerpos monoclonales que se unían a la proteína CAPRIN-1.

Posteriormente, los anticuerpos monoclonales que presentaban reactividad con las superficies de las células de cáncer que expresaban CAPRIN-1 se seleccionaron de entre estos anticuerpos monoclonales utilizando células de cáncer de mama. Específicamente, 10^6 células de la línea celular de cáncer de mama humano MDA-MB-231 V se sometieron a centrifugación en un tubo de microcentrífuga de 1,5 ml, $100 \, \mu l$ del sobrenadante del cultivo de los hibridomas se añadió a esto y el resultante se dejó reposar en hielo durante 1 hora. Después de lavar con PBS, a la solución se añadió un anticuerpo de cabra anti-IgG de ratón marcado con FITC (Invitrogen) diluido 500 veces con PBS que contenía FBS al 0,1 %, y la solución se dejó reposar en hielo durante 1 hora. Después de lavar con PBS, la intensidad de fluorescencia se midió utilizando un FACS Calibur (Becton, Dickinson and Company). Por separado, se preparó un control de acuerdo con un procedimiento similar al anterior, excepto que en lugar del anticuerpo se añadió un medio. Como resultado, 10 anticuerpos monoclonales presentaban una intensidad de fluorescencia más fuerte que la del control; es decir, se seleccionaron 10 anticuerpos monoclonales que presentaban reactividad con las superficies de células de cáncer de mama (n.0 1 a n.0 10). Las regiones variables de cadena pesada y las regiones variables de cadena ligera de estos anticuerpos monoclonales se muestran en las SEQ ID NO: 44 a 60. El anticuerpo monoclonal n.0 1 anterior comprende la región variable de cadena pesada de SEQ ID NO: 44 y la región

variable de cadena ligera de SEQ ID NO: 45, el anticuerpo monoclonal n.º 2 comprende la región variable de cadena pesada de SEQ ID NO: 46, el anticuerpo monoclonal n.º 3 comprende la región variable de cadena pesada de SEQ ID NO: 44 y la región variable de cadena ligera de SEQ ID NO: 47, el anticuerpo monoclonal n.º 4 comprende la región variable de cadena pesada de SEQ ID NO: 48, el anticuerpo monoclonal n.º 5 comprende la región variable de cadena ligera de SEQ ID NO: 49 y la región variable de cadena ligera de SEQ ID NO: 50, el anticuerpo monoclonal n.º 6 comprende la región variable de cadena pesada de SEQ ID NO: 51 y la región variable de cadena ligera de SEQ ID NO: 52, el anticuerpo monoclonal n.º 7 comprende la región variable de cadena pesada de SEQ ID NO: 53 y la región variable de cadena ligera de SEQ ID NO: 54, el anticuerpo monoclonal n.º 8 comprende la región variable de cadena pesada de SEQ ID NO: 56, el anticuerpo monoclonal n.º 9 comprende la región variable de cadena pesada de SEQ ID NO: 57 y la región variable de cadena ligera de SEQ ID NO: 58, y el anticuerpo monoclonal n.º 10 comprende la región variable de cadena pesada de SEQ ID NO: 59 y la región variable de cadena ligera de SEQ ID NO: 59 y la región variable de cadena ligera de SEQ ID NO: 59 y la región variable de cadena ligera de SEQ ID NO: 50 y la región variable de cadena ligera de SEQ ID NO: 50 y la región variable de cadena ligera de SEQ ID NO: 50 y la región variable de cadena ligera de SEQ ID NO: 50 y la región variable de cadena ligera de SEQ ID NO: 50 y la región variable de cadena ligera de SEQ ID NO: 50 y la región variable de cadena ligera de SEQ ID NO: 50 y la región variable de cadena ligera de SEQ ID NO: 50 y la región variable de cadena ligera de SEQ ID NO: 50 y la región variable de cadena ligera de SEQ ID NO: 50 y la región variable de cadena ligera de SEQ ID NO: 50 y la región variable de cadena ligera de SEQ ID NO: 50 y la región variable de cadena ligera de SEQ ID NO: 50 y la región variable de cadena ligera de SEQ

15 (3) Identificación de péptidos en la proteína CAPRIN-1 con la que reaccionan los anticuerpos contra CAPRIN-1 con unión en la superficie de células de cáncer de mama.

Utilizando anticuerpos monoclonales n.º 1 a n.º 10 contra CAPRIN-1 que reaccionan con las superficies de células de cáncer de mama obtenidas anteriormente, se identificaron secuencias parciales en la proteína CAPRIN-1 reconocida por estos anticuerpos monoclonales.

A 100 µl de una solución de proteína CAPRIN-1 recombinante ajustada a una concentración de 1 µg/µl con PBS, se añadió, en primer lugar, DTT (Fluka) para obtener una concentración final de 10 mM en su interior, y se dejó proseguir una reacción a 95 °C durante 5 minutos, para reducir los enlaces disulfuro en la proteína CAPRIN-1. Posteriormente, se añadió yodoacetamida (concentración final: 20 mM; Wako Pure Chemical Industries, Ltd.) y los grupos tiol se sometieron a alquilación a 37 °C durante 30 minutos en la oscuridad. Los anticuerpos monoclonales n.º 1 a n.º 10 contra CAPRIN-1 (50 µg cada uno) se añadieron a 40 µg de la proteína CAPRIN-1 sometida a reducción y alquilación, el volumen de la mezcla se ajustó a 1 ml con tampón fosfato 20 mM (pH 7, 0) y la reacción se dejó proseguir a 4 °C durante una noche con agitación y mezcla.

Posteriormente se añadió tripsina (Promega) a una concentración final de 0,2 μg. Después, la reacción se dejó proseguir a 37 °C durante 1 hora, 2 horas, 4 horas y después 12 horas, los resultantes se mezclaron con perlas de vidrio de proteína A (GE), que se habían sometido a bloqueo con PBS que contenía BSA al 1 % (Sigma) y se lavaron con PBS por adelantado, en tampón de carbonato de calcio 1 mM y NP-40 (tampón fosfato 20 mM (pH 7,4), EDTA 5 mM, NaCl 150 mM y NP-40 1 %) y la reacción se dejó proseguir durante 30 minutos más.

Cada una de las soluciones de reacción se lavaron con tampón carbonato de amonio 25 mM (pH 8,0), los complejos antígeno-anticuerpo se eluyeron después utilizando 100 µl de ácido fórmico al 0,1 %, y los eluatos se sometieron a análisis LC-MS utilizando Q-TOF Premier (Waters-MicroMass) de acuerdo con los protocolos incluidos en el instrumento.

Como resultado, se identificó el polipéptido de SEQ ID NO: 61 como una secuencia parcial de CAPRIN-1, que fue reconocida por todos los anticuerpos monoclonales n.º 1 a n.º 10 contra CAPRIN-1. Adicionalmente, el péptido de SEQ ID NO: 62 se identificó como una secuencia parcial en el polipéptido de SEQ ID NO: 61 anterior, que fue reconocido por los anticuerpos monoclonales n.º 1 a n.º 4, n.º 5 a n.º 7 y n.º 9. Además, se descubrió que los anticuerpos monoclonales n.º 1 a n.º 4 reconocían el péptido de SEQ ID NO: 63, que era una secuencia del péptido parcial de la misma.

[Ejemplo 4] Diagnóstico de cáncer pancreático utilizando el polipéptido CAPRIN-1

1) Diagnóstico de cáncer pancreático canino

10

20

25

30

35

40

45

50

55

Como resultado de un diagnóstico patológico utilizando las muestras de tejido de tumor extirpadas, se recogieron muestras de sangre de perros enfermos en los que se confirmó que tenían carcinoma ductal pancreático maligno, y se separaron los sueros. Utilizando la proteína CAPRIN-1 canina (SEQ ID NO: 8) preparada en el Ejemplo 2 y el anticuerpo anti-IgG canino, mediante un método ELISA se midió el título del anticuerpo IgG en suero que reaccionaba específicamente con la proteína CAPRIN-1 canina.

La proteína CAPRIN-1 canina preparada se inmovilizó añadiendo una solución de proteína recombinante diluida a 5 µg/ml con solución salina tamponada con fosfato a una placa de amino inmovilizador de 96 pocillos (Nunc) a 100 µl/pocillo y después se dejó reposar la placa a 4 °C durante una noche. El bloqueo se realizó añadiendo una solución de tampón bicarbonato sódico 50 mM (pH 8,4) (en lo sucesivo en el presente documento denominada "solución de bloqueo") que contenía BSA (albúmina de suero bovino, Sigma Aldrich Japón) al 0,5 %, a 100 µl/pocillo, seguido de agitación a temperatura ambiente durante 1 hora. El suero diluido 1.000 veces con la solución de bloqueo se añadió a 100 µl/pocillo y la mezcla se sometió después a una reacción con agitación a temperatura ambiente durante 3 horas. El producto de reacción se lavó 3 veces con solución salina tamponada con fosfato que

contenía Tween 20 al 0,05 % (Wako Pure Chemical Industries, Ltd.; en el presente documento esta solución se denomina "PBS-T"), se añadió un anticuerpo de IgG canino modificado con HRP (anti-IgG de perro de cabra h + I conjugado con HRP: Laboratorios BETHYL) diluido 3.000 veces con la solución de bloqueo a 100 µl/pocillo, y la mezcla se sometió a una reacción con agitación a temperatura ambiente durante 1 hora. Después de lavar el producto de reacción 3 veces con PBS-T, se añadió sustrato de TMB para HRP (1-Step Turbo TMB (tetrametilbencidina), PIERCE), a 100 µl/pocillo, y después se realizó una reacción sustrato-enzima a temperatura ambiente durante 30 minutos. Después de esto, se añadió una solución de ácido sulfúrico 0,5 M (Sigma Aldrich Japón) a 100 µl/pocillo para terminar la reacción, y utilizando un lector de microplaca se midió la absorbancia a 450 nm. Como controles, un espécimen sobre el cual se había inmovilizado proteína preparada no recombinante y un espécimen en el cual el suero de un perro portador de cáncer no se dejó reaccionar se sometieron al tratamiento y comparación de la misma manera que la descrita anteriormente.

Como resultado, se descubrió que el título del anticuerpo contra una proteína CAPRIN-1 canina de los sueros procedentes de perros portadores de cáncer era más alto que el de los controles.

(2) Diagnóstico del cáncer pancreático canino utilizando proteína CAPRIN-1 humana

Utilizando la proteína CAPRIN-1 humana (SEQ ID NO: 2) preparada en el Ejemplo 2, el título de anticuerpo IgG del suero canino que reaccionaba con la proteína CAPRIN-1 humana se midió de la misma manera que la descrita anteriormente. Cuando las muestras de suero obtenidas de perros sanos se sometieron a la misma medición, no se observó sustancialmente absorbancia a 450 nm como se ha descrito anteriormente. Las muestras de suero obtenidas de perros pacientes de cáncer pancreático de (1) presentaron un título del anticuerpo más alto contra la proteína CAPRIN-1 humana que el del control.

25 (3) Diagnóstico de cáncer pancreático humano

10

15

20

30

35

45

Utilizando la proteína CAPRIN-1 humana (SEQ ID NO: 2) preparada en el Ejemplo 2 y el anticuerpo anti-IgG de ser humano, se midió el título del anticuerpo IgG de las muestras de suero obtenidas de individuos sanos que reaccionaban con el polipéptido. La proteína CAPRIN-1 humana se inmovilizó añadiendo una solución de proteína recombinante diluida a 100 µg/ml con solución salina tamponada con fosfato a una placa de amino inmovilizador de 96 pocillos (Nunc) a 100 μl/pocillo y después se dejó reposar la placa a 4 °C durante una noche. El bloqueo se realizó de la siguiente manera. Esto es, 4 g de polvo Block Ace (DS PHARMA BIOMEDICAL Co., Ltd.) se disolvieron en 100ml de aqua purificada, la solución se diluyó 4 veces con aqua purificada (en lo sucesivo en el presente documento denominada "solución de bloqueo"), la solución de bloqueo se añadió a 100 µl/pocillo, y la mezcla se sometió a agitación a temperatura ambiente durante 1 hora. El suero diluido 1.000 veces con la solución de bloqueo se añadió a 100 µl/pocillo y después se sometió a una reacción con agitación a temperatura ambiente durante 3 horas. Después de lavar 3 veces el resultante con solución salina tamponada con fosfato que contenía Tween 20 al 0,05 % (Wako Pure Chemical Industries, Ltd.: en el presente documento esta solución se denomina "PBS-T"), se añadió un anticuerpo anti-IgG humana modificado con HRP (anti-IgG humana de cabra (H + L) conjugado con HRP: Laboratorios Zymed) diluido 10.000 veces con la solución de bloqueo a 100 µl/pocillo y después se sometió a una reacción mediante agitación a temperatura ambiente durante 1 hora. Después de lavar el producto de reacción 3 veces con PBS-T, se añadió sustrato TMR DE HRP (1-Step Turbo TMB (tetrametilbencidina), PIERCE) a 100 ul/pocillo y después se realizó una reacción enzima-sustrato a temperatura ambiente durante 30 minutos. Después de esto, se añadió una solución de ácido sulfúrico 0,5 M (Sigma Aldrich Japón) a 100 µl/pocillo para finalizar la reacción, y después se midió la absorbancia a 450 nm utilizando un lector de microplaca. Un antígeno de ovoalbúmina ajustado a 50 µg/ml con solución salina tamponada con fosfato se inmovilizó y después se utilizó como un control positivo. Como resultado, se descubrió que la absorbancia a 450 nm era alta en el caso del antígeno de ovoalbúmina, aunque en el caso de la proteína CAPRIN-1 humana no se detectó absorbancia (0).

Adicionalmente, las muestras de suero obtenidas de pacientes con carcinoma ductal pancreático se sometieron a medición del título del anticuerpo IgG en suero que reacciona específicamente con la proteína CAPRIN-1 humana (la secuencia de aminoácidos de SEQ ID NO: 2) de la misma manera que la descrita anteriormente. Como resultado, se descubrió que la absorbancia a 450 nm era más baja que el límite de detección más bajo en el caso de sujetos sanos, aunque se descubrió que era alta en el caso de pacientes con cáncer pancreático. Utilizando la proteína CAPRIN-1 canina (SEQ ID NO: 8) preparada en el Ejemplo 2 y el anticuerpo anti-IgG humana, se midió el título del anticuerpo IgG en suero humano que reaccionaba específicamente con la proteína CAPRIN-1 canina de la misma manera que la descrita anteriormente. Como resultado, se descubrió que los pacientes con cáncer pancreático presentaban títulos más altos que los individuos sanos.

60 Por tanto, se demostró que el cáncer pancreático humano podría detectarse mediante el método de la presente invención.

[Ejemplo 5] Diagnóstico de cáncer pancreático utilizando anticuerpos contra CAPRIN-1

(1) Diagnóstico de cáncer pancreático midiendo la proteína CAPRIN-1

15

20

25

30

35

40

50

55

60

Utilizando el anticuerpo policional contra el péptido procedente de CAPRIN-1 (SEQ ID NO: 43) obtenido en el Ejemplo 3 (1) en combinación con cada anticuerpo monoclonal contra la proteína CAPRIN-1 obtenida en el Ejemplo 3 (2), se realizó un ELISA de tipo Sándwich para detectar la proteína CAPRIN-1 (suero procedente de individuos portadores de cáncer) que reaccionó en positivo sobre diagnóstico de cáncer utilizando la proteína CAPRIN-1 en el Ejemplo 4 (1)-(3). El anticuerpo policional se utilizó como un anticuerpo primario y se utilizó cada anticuerpo monoclonal como un anticuerpo secundario. Se midió la cantidad de las proteínas que reaccionaban específicamente con cada uno de los anticuerpos anteriores en los sueros.

El anticuerpo primario se inmovilizó añadiendo una solución de anticuerpo policlonal diluida a 5 µg/ml con solución salina tamponada con fosfato a una amino placa inmovilizadora de 96 pocillos (Nunc) a 100 ul/pocillo v agitando la placa a temperatura ambiente durante 2 horas. El bloqueo se realizó añadiendo una solución tampón de bicarbonato sódico 50 mM (pH 8,4) (en lo sucesivo en el presente documento denominada "solución de bloqueo") que contenía BSA (albúmina de suero bovino, Sigma Aldrich Japón) al 0,5 % a 100 ul/pocillo, seguido de agitación a temperatura ambiente durante 1 hora. Después de esto, las muestras de suero obtenidas de los individuos portadores de cáncer diluidas con una solución de bloqueo se añadieron a 100 µl/pocillo y después se sometieron a la reacción con agitación a temperatura ambiente durante 3 horas. La tasa de dilución en este momento se ajustó con series de dilución de factor 10 (es decir, diluciones de factor 10-1.000). El producto de reacción se lavó 3 veces con solución salina tamponada con fosfato que contenía Tween 20 al 0,05 % (Wako Pure Chemical Industries, Ltd.: esta solución se denomina en el presente documento "PBS-T"), cada anticuerpo monoclonal como un anticuerpo secundario diluido a una concentración de 1 µg/ml con la solución de bloqueo se añadió a 100 µl/pocillo, y el resultante se sometió después a agitación a temperatura ambiente durante 1 hora para la reacción. El producto de reacción se lavó 3 veces con PBS-T, se añadió un anticuerpo anti-IgG de ratón (H + L) marcado con HRP (Invitrogen) como un anticuerpo terciario diluido 5.000 veces con la solución de bloqueo a 100 µl/pocillo, y el resultante se dejó reposar a temperatura ambiente durante 1 hora. Después, cada pocillo se lavó 3 veces con PBS-T, se añadió una solución sustrato TMB (Thermo) a 100 µl por/pocillo, y el resultante se dejó reposar durante 15 a 30 minutos, para permitir el revelado del color. Después de esto, se añadió ácido sulfúrico 1N a 100 µl/pocillo para finalizar la reacción. La absorbancia se midió a 450 nm utilizando un espectrofotómetro.

Cuando los anticuerpos monoclonales n.º 1 a n.º 10 que reaccionaban con las superficies de las células de cáncer se utilizaron como anticuerpos secundarios, como resultado, se detectaron valores de alta absorbancia en todos los perros con carcinoma ductal pancreático, aunque no se detectó absorbancia en perros sanos. Cuando los anticuerpos monoclonales que reaccionan con las proteínas CAPRIN-1 pero no reaccionaban con las superficies de las células cancerosas se utilizaban como anticuerpos secundarios, se detectaron valores de polipéptidos en todos los especímenes. Sin embargo, todos los valores de absorbancia eran inferiores al límite de detección, que eran inferiores a los resultados para combinaciones de anticuerpos que reaccionaban con las superficies de las células cancerosas.

Después de esto, el cáncer también pudo diagnosticarse y examinarse mediante esta técnica que comprende la detección de las proteínas CAPRIN-1 utilizando anticuerpos contra CAPRIN-1.

45 (2) Diagnóstico o examen de cáncer midiendo polipéptido antigénico en tejido de cáncer pancreático mediante tinción inmunohistoquímica

Se realizó tinción inmunohistoquímica utilizando una matriz (BIOMAX) que tenía 101 especímenes de tejido de cáncer pancreático humano embebidos en parafina. La matriz de tejidos de cáncer pancreático humano se trató a 60 °C durante 3 horas, el resultante se puso en un frasco de tinción cargado con xileno, el xileno se reemplazó con xileno reciente cada 5 minutos, y este procedimiento se repitió 3 veces. Posteriormente, se realizó un procedimiento similar con etanol y PBS-T en lugar de xileno. La matriz de tejidos de cáncer pancreático humano se colocó en un frasco de tinción cargado con tampón citrato 10 mM (pH 6,0) que contenía Tween 20 al 0,05 %, tratado a 125 °C durante 5 minutos y después se dejó reposar a temperatura ambiente durante 40 minutos o más. El exceso de aqua alrededor de cada espécimen se retiró utilizando toallitas (Kimwipes), cada sección se circundó con DAKOPEN (DAKO), y después se añadió por goteo una cantidad apropiada de peroxidasa Block (DAKO) sobre la matriz. La matriz se dejó reposar a temperatura ambiente durante 5 minutos, se colocó en un frasco de tinción cargado con PBS-T y el PBS-T reciente cada 5 minutos. Este procedimiento se realizó 3 veces. Como una solución de bloqueo, sobre la matriz se aplicó una solución de PBS-T que contenía FBS al 10 % y se dejó que la matriz reposara en una cámara con humedad a temperatura ambiente durante 1 hora. Posteriormente, los anticuerpos monoclonales n.º 1 a n.º 10 preparados en el Ejemplo 3 ajustados a 10 µg/ml con una solución de PBS-T que contenía FBS al 5 % se aplicaron sobre la matriz, y se dejó que la matriz reposara en una cámara con humedad a 4 °C durante una noche. Después de lavar la matriz con PBS-T durante 10 minutos 3 veces, sobre la matriz se añadió por goteo una cantidad apropiada de polímero conjugado marcado con peroxidasa (DAKO) y se dejó que la matriz reposara en una cámara con humedad a temperatura ambiente durante 30 minutos. Después de lavar la matriz con PBS-T durante 10 minutos 3 veces, se aplicó una solución de revelado de color DAB (DAKO)

sobre la matriz y se dejó después que la matriz reposara a temperatura ambiente durante aproximadamente 10 minutos. Después de desechar la solución reveladora de color, la matriz se lavó con PBS-T durante 10 minutos 3 veces, se aclaró con agua destilada, sucesivamente se puso en soluciones de etanol al 70 %, 80 %, 90 %, 95 % y 100 % durante 1 minuto cada vez, y después se dejó reposar durante una noche en xileno. Los portaobjetos se retiraron, se cubrieron con cubreobjetos con medio de montaje Glycergel (DAKO) y después se observaron. Como resultado, se observó la expresión de CAPRIN-1 en membranas celulares de cáncer pancreático y en células de cáncer pancreático en las muestras de tejido de cáncer pancreático utilizando cualquier anticuerpo. Cuando se realizó tinción inmunohistoquímica con el anticuerpo n.º 8, por ejemplo, se observó una fuerte expresión de CAPRIN-1 en 54 especímenes entre los especímenes totales de tejido de cáncer pancreático (101 especímenes) (es decir, 54 %).

De manera similar, la tinción inmunohistoquímica se realizó utilizando una matriz (BIOMAX) de tejidos humanos normales embebidos en parafina que incluía tejidos pancreáticos humanos normales. El exceso de agua alrededor de cada espécimen se retiró utilizando toallitas (Kimwipes), cada sección se circundó con DAKOPEN (DAKO), y se añadió por goteo una cantidad apropiada de peroxidasa Block (DAKO) sobre la matriz. La matriz se dejó reposar a temperatura ambiente durante 5 minutos, se puso en un frasco de tinción cargado de PBS-T y el PBS-T se reemplazó con PBS-T reciente cada 5 minutos. Este procedimiento se realizó 3 veces. Como una solución de bloqueo, sobre la matriz se aplicó una solución de PBS-T que contenía FBS al 10 % y se dejó que la esta reposara en una cámara con humedad a temperatura ambiente durante 1 hora. Posteriormente, los anticuerpos monoclonales n.º 1 a n.º 10 preparados en el Ejemplo 3 ajustados a 10 μg/ml en una solución de PBS-T que contenía FBS al 5 % se aplicaron sobre la matriz, y después se dejó que la matriz reposara en una cámara con humedad a 4 ºC durante una noche. Después de lavar la matriz con PBS-T durante 10 minutos 3 veces, se añadió por goteo una cantidad apropiada de polímero conjugado marcado con peroxidasa (DAKO sobre la matriz, y se dejó que la esta reposara en una cámara con humedad a temperatura ambiente durante 30 minutos. Después de lavar la matriz con PBS-T durante 10 minutos 3 veces, se aplicó una solución de revelado de color DAB (DAKO), y después se dejó que la matriz reposara a temperatura ambiente durante aproximadamente 10 minutos. Después la solución reveladora de color se desechó, la matriz se lavó con PBS-T durante 10 minutos 3 veces, se aclaró con agua destilada, se puso sucesivamente en soluciones de etanol al 70 %, 80 %, 90 %, 95 % y 100 % durante 1 minuto cada vez, y después se permitió que reposara en xileno durante una noche. Los portaobjetos se retiraron, se cubrieron con portaobjetos con medio de montaje Glycergel (DAKO) y después se observaron. Como resultado, ninguna de las muestras de tejido normal procedentes de páncreas se tiñó e, independientemente del anticuerpo utilizado, no se observó expresión de CAPRIN-1.

Aplicabilidad industrial

35

10

15

20

25

30

40

50

55

60

La presente invención es útil desde el punto de vista industrial para el diagnóstico o la detección de cáncer pancreático.

Texto libre de Listado de secuencias

SEC ID NO: 31 a 42: cebadores

LISTADO DE SECUENCIAS

```
45 <110> Toray Industries, Inc.
```

<120> Método para la detección de cáncer pancreático

<130> PH-5297-PCT

<150> JP2011-171364 <151> 04-08-2011

<160>63

<170> Patentln versión 3.1

<210> 1

<211> 5562 <212> ADN

<213> Homo sapiens

<220>

<221> CDS

65 <222> (190)..(2319)

<223>

<400> 1

cag	aggg	etg (ctgg	etgg	ct aa	agtco	cctco	c cgc	etcco	ggc	tcto	egeet	ca	ctago	gagegg	60
ctc	taggt	.gc a	agcg	ggaca	ag gç	gcgaa	agcgç	g cct	gege	ecca	cgga	agcgo	ege q	jacao	etgece	120
gga	aggga	acc (gccad	ccctt	g co	ecct	cago	tgo	ccad	ctcg	tgat	ttc	cag o	ggc	eteege	180
gcg	cgca	_	-					•				er G			ag tcg ys Ser	231
	gga Gly															279
	gcc Ala															327
	gct Ala	_	_			_	_	_	_						-	375
-	aaa Lys				-		-		_		_		-	-		423
_	gaa Glu 80	_	_				_					_	_	_	-	471
-	gtt Val		_		_	_	-				_			-		519
	tta Leu															567
ata	aag	aag	aca	gca	cat	caa	gag	cag	ctt	atq	аσа	gaa	gaa	act	gaa	615

Ile	Lys	Lys	Thr 130	Ala	Arg	Arg	Glu	Gln 135	Leu	Met	Arg	Glu	Glu 140	Ala	Glu	
_		_			act Thr	_				_		_	_	_		663
_		_	_	_	gtg Val			-	_				_			711
			-		gaa Glu 180			_		-	-	_	_			759
_		_	_		gaa Glu		_	_	_	_		_		_	_	807
					att Ile											855
					acc Thr											903
_	_		_		aac Asn			_	_					_		951
	_	_		_	gaa Glu 260		_	_		_		_	_	_	_	999
					gaa Glu											1047
					aca Thr											1095
					ggt Gly											1143
					gta Val											1191
			_		gag Glu 340				_				_	_	_	1239
					aga Arg											1287
_					ttc Phe		_	_		-	-	_		-		1335
					gcc Ala											1383

3	385			390					395				
caa aac a Gln Asn A 400		_	_	_	_	_			_			_	1431
tct aga o Ser Arg 1 415	_	_			-		_			_			1479
cag gtt d Gln Val I													1527
ccc ttg t Pro Leu 1	_			_				_		_	-	_	1575
cca att q Pro Ile A			Ala										1623
aca gca t Thr Ala 5 480				_			_			_		_	1671
gct ggg a Ala Gly 1 495	_				_	_				-		_	1719
gct cca t Ala Pro I		_		-				-		_		-	1767
cet cet o	-	_	_				_			_		_	1815
gcc agt t Ala Ser 1			Phe										1863
aca gag o Thr Glu I 560													1911
ggt tee of Gly Ser E 575	_	_								_	_		1959
cct cag o	-				-	_		_					2007
agt cgt o													2055
aat gga t Asn Gly 1			Ala										2103
tac cgc o Tyr Arg F 640													2151

cag ttc agt gct ccc cgg gat tac tct ggc tat caa cgg gat gga tat Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr 655 660 665 670	2199
cag cag aat ttc aag cga ggc tct ggg cag agt gga cca cgg gga gcc Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala 675 680 685	2247
cca cga ggt cgt gga ggg ccc cca aga ccc aac aga ggg atg ccg caa Pro Arg Gly Arg Gly Pro Pro Arg Pro Asn Arg Gly Met Pro Gln 690 695 700	2295
atg aac act cag caa gtg aat taa tctgattcac aggattatgt ttaatcgcca Met Asn Thr Gln Gln Val Asn 705	2349
aaaacacact ggccagtgta ccataatatg ttaccagaag agttattatc tatttgttct	2409
ccctttcagg aaacttattg taaagggact gttttcatcc cataaagaca ggactacaat	2469
tgtcagcttt ctattacctg gatatggaag gaaactattt ttactctgca tgttctgtcc	2529
taagegteat ettgageett geacatgata eteagattee teaccettge ttaggagtaa	2589
aacaatatac tttacagggt gataataatc tccatagtta tttgaagtgg cttgaaaaag	2649
gcaagattga ettttatgae attggataaa atetacaaat cagecetega gttatteaat	2709
gataactgac aaactaaatt atttccctag aaaggaagat gaaaggagtg gagtgtggtt	2769
tggcagaaca actgcatttc acagcttttc cagttaaatt ggagcactga acgttcagat	2829
gcataccaaa ttatgcatgg gtcctaatca cacatataag gctggctacc agctttgaca	2889
cagcactgtt catctggcca aacaactgtg gttaaaaaca catgtaaaat gctttttaac	2949
agctgatact gtataagaca aagccaagat gcaaaattag gctttgattg gcactttttg	3009
aaaaatatgc aacaaatatg ggatgtaatc cggatggccg cttctgtact taatgtgaaa	3069
tatttagata cetttttgaa caettaacag tttetttgag acaatgaett ttgtaaggat	3129
tggtactatc tatcattcct tatgacatgt acattgtctg tcactaatcc ttggattttg	318 9
ctgtattgtc acctaaattg gtacaggtac tgatgaaaat ctctagtgga taatcataac	3249
acteteggte acatgttttt cetteagett gaaagetttt ttttaaaagg aaaagatace	3309
aaatgcctgc tgctaccacc cttttcaatt gctatctttt gaaaggcacc agtatgtgtt	3369
ttagattgat ttccctgttt cagggaaatc acggacagta gtttcagttc tgatggtata	3429
agcaaaacaa ataaaacgtt tataaaagtt gtatcttgaa acactggtgt tcaacagcta	3489
gcagcttatg tgattcaccc catgccacgt tagtgtcaca aattttatgg tttatctcca	3549
gcaacatttc tctagtactt gcacttatta tcttttgtct aatttaacct taactgaatt	3609
ctccgtttct cctggaggca tttatattca gtgataattc cttcccttag atgcataggg	3669
agagtotota aatttgatgg aaatggacac ttgagtagtg acttagcott atgtactotg	3729
ttggaatttg tgctagcagt ttgagcacta gttctgtgtg cctaggaagt taatgctgct	3789

tattgtctca	ttctgacttc	atggagaatt	aatcccacct	ttaagcaaag	gctactaagt	3849
taatggtatt	ttctgtgcag	aaattaaatt	ttattttcag	catttagccc	aggaattett	3909
ccagtaggtg	ctcagctatt	taaaaacaaa	actattetea	aacattcatc	attagacaac	3969
tggagttttt	gctggttttg	taacctacca	aaatggatag	gctgttgaac	attccacatt	4029
caaaagtttt	gtagggtggt	gggaaatggg	ggatcttcaa	tgtttatttt	aaaataaaat	4089
aaaataagtt	cttgactttt	ctcatgtgtg	gttgtggtac	atcatattgg	aagggttaac	4149
ctgttacttt	ggcaaatgag	tattttttg	ctagcacete	cccttgcgtg	ctttaaatga	4209
catctgcctg	ggatgtacca	caaccatatg	ttacctgtat	cttaggggaa	tggataaaat	4269
atttgtggtt	tactgggtaa	tecetagatg	atgtatgctt	gcagtcctat	ataaaactaa	4329
atttgctatc	tgtgtagaaa	ataatttcat	gacatttaca	atcaggactg	aagtaagttc	4389
ttcacacagt	gacctctgaa	tcagtttcag	agaagggatg	ggggagaaaa	tgccttctag	4449
gttttgaact	tctatgcatt	agtgcagatg	ttgtgaatgt	gtaaaggtgt	tcatagtttg	4509
actgtttcta	tgtatgtttt	ttcaaagaat	tgttcctttt	tttgaactat	aatttttctt	4569
tttttggtta	ttttaccatc	acagtttaaa	tgtatatett	ttatgtetet	actcagacca	4629
tatttttaaa	ggggtgcctc	attatggggc	agagaacttt	tcaataagtc	tcattaagat	4689
ctgaatcttg	gttctaagca	ttctgtataa	tatgtgattg	cttgtcctag	ctgcagaagg	4749
ccttttgttt	ggtcaaatgc	atattttagc	agagtttcaa	ggaaatgatt	gtcacacatg	4809
tcactgtagc	ctcttggtgt	agcaagctca	catacaaaat	acttttgtat	atgcataata	4869
taaatcatct	catgtggata	tgaaacttct	tttttaaaac	ttaaaaaggt	agaatgttat	4929
tgattacctt	gattagggca	gttttatttc	cagatectaa	taattootaa	aaaatatgga	4989
aaagttttt	ttcaatcatt	gtaccttgat	attaaaacaa	atatccttta	agtatttcta	5049
atcagttagc	ttctacagtt	cttttgtctc	cttttatatg	cagctcttac	gtgggagact	5109
tttccactta	aaggagacat	agaatgtgtg	cttattctca	gaaggttcat	taactgaggt	5169
gatgagttaa	caactagttg	agcagtcagc	ttcctaagtg	ttttaggaca	tttgttcatt	5229
atattttccg	tcatataact	agaggaagtg	gaatgcagat	aagtgccgaa	ttcaaaccct	5289
tcattttatg	tttaagctcc	tgaatctgca	ttccacttgg	gttgtttta	agcattctaa	5349
attttagttg	attataagtt	agatttcaca	gaatcagtat	tgcccttgat	cttgtccttt	5409
ttatggagtt	aacggggagg	aagacccctc	aggaaaacga	aagtaaattg	ttaaggetea	5469
tetteatace	tttttccatt	ttgaatccta	caaaaatact	gcaaaagact	agtgaatgtt	5529
taaaattaca	ctagattaaa	taatatgaaa	gtc			5562

5

<210> 2 <211> 709 <212> PRT

<213> Homo sapiens

<400> 2

Met 1	Pro	Ser	Ala	Thr 5	Ser	His	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly
Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Ser	Glu	Ala	Ala	Ala 30	Gly	Ala
Gly	Ala	Ala 35	Ala	Pro	Ala	Ser	Gln 40	His	Pro	Ala	Thr	Gly 4 5	Thr	Gly	Ala
Val	Gln 50	Thr	Glu	Ala	Met	Lys 55	Gln	Ile	Leu	Gly	Val 60	Ile	Asp	Lys	Lys
Leu 65	Arg	Asn	Leu	Glu	Lys 70	Lys	Lys	Gly	Lys	Le u 75	Asp	Asp	Tyr	Gln	Glu 80
Arg	Met	Asn	Lys	Gly 85	Glu	Arg	Leu	Asn	Gln 90	Asp	Gln	Leu	Asp	Ala 95	Val
Ser	Lys	Tyr	Gln 100	Glu	Val	Thr	Asn	As n 105	Leu	Glu	Phe	Ala	Lys 110	Glu	Leu
Gln	Arg	Ser 115	Phe	Met	Ala	Leu	Ser 120	Gln	Asp	Ile	Gln	Lys 125	Thr	Ile	Lys
Lys	Thr 130	Ala	Arg	Arg	Glu	Gln 135	Leu	Met	Arg	Glu	Glu 140	Ala	Glu	Gln	Lys
Arg 145	Leu	Lys	Thr	Val	Leu 150	G1u	Leu	Gln	Tyr	Val 155	Leu	Asp	Lys	Leu	Gly 160
Asp	Asp	Glu	Val	Arg 165	Thr	Asp	Leu	Lys	Gln 170	Gly	Leu	Asn	Gly	Val 175	Pro
Ile	Leu	Ser	Glu 180	Glu	Glu	Leu	Ser	Leu 185	Leu	Asp	Glu	Phe	Tyr 190	Lys	Leu
Val	Asp	Pro 195	Glu	Arg	Asp	Met	Ser 200	Leu	Arg	Leu	Asn	Glu 205	Gln	Tyr	Glu
His	Ala 210	Ser	Ile	His	Leu	Trp 215	Asp	Leu	Leu	Glu	Gly 220	Lys	Glu	Lys	Pro
Val 225	Сув	Gly	Thr	Thr	Tyr 230	Lys	Val	Leu	Lys	Glu 235	Ile	Val	Glu	Arg	Val 240
Phe	Gln	Ser	Asn	Tyr	Phe	Asp	Ser	Thr	His		His	Gln	Asn	Gly	Leu

Cys	Glu	Glu	Glu 260	Glu	Ala	Ala	Ser	Ala 265	Pro	Ala	Val	Glu	Asp 270	Gln	Val
Pro	Glu	A la 275	Glu	Pro	Glu	Pro	Ala 280	Glu	Glu	Tyr	Thr	Glu 285	Gln	Ser	Glu
Val	Glu 290	Ser	Thr	Glu	Tyr	Val 295	Asn	Arg	Gln	Phe	Met 300	Ala	G1u	Thr	Gln
Phe 305	Thr	Ser	Gly	Glu	Lys 310	Glu	Gln	Val	Asp	Glu 315	Trp	Thr	Val	Glu	Thr 320
Val	Glu	Val	Val	As n 325	Ser	Leu	Gln	Gln	Gln 330	Pro	Gln	Ala	Ala	Ser 335	Pro
Ser	Val	Pro	Glu 340	Pro	His	Ser	Leu	Thr 345	Pro	Val	Ala	Gln	Ala 350	Asp	Pro
Leu	Val	Arg 355	Arg	Gln	Arg	Val	Gln 360	Asp	Leu	Met	Ala	Gln 365	Met	Gln	Gly
Pro	Tyr 370	Asn	Phę	Ile	Gln	Asp 375	Ser	Met	Leu	Asp	Phe 380	Glu	Asn	Gln	Thr
Leu 385	Asp	Pro	Ala	Ile	Val 390	Ser	Ala	Gln	Pro	Met 395	Asn	Pro	Thr	Gln	Asn 400
Met	Asp	Met	Pro	Gln 4 05	Leu	Val	Cys	Pro	Pro 410	Val	His	Ser	Glu	Ser 415	Arg
Leu	Ala	Gln	Pro 420	Asn	Gln	Val	Pro	Val 425	Gln	Pro	Glu	Ala	Thr 430	Gln	Val
Pro	Leu	Val 435	Ser	Ser	Thr	Ser	Glu 440	Gly	Tyr	Thr	Ala	Ser 445	Gln	Pro	Leu
Tyr	Gln 450	Pro	Ser	His	Ala	Thr 455	Glu	Gln	Arg	Pro	Gln 460	Lys	Glu	Pro	Ile
Asp 465	Gln	Ile	Gln	Ala	Thr 470	Ile	Ser	Leu	Asn	Thr 475	Asp	Gln	Thr	Thr	Ala 480
Ser	Ser	Ser	Leu	Pro 485	Ala	Ala	Ser	Gln	Pro 490	Gln	Val	Phe	Gln	Ala 495	Gly
Thr	Ser	Lys	Pro 500	Leu	His	Ser	Ser	Gly 505	Ile	Asn	Val	Asn	Ala 510	Ala	Pro

Phe Gln Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Thr Leu Lys Gln Gln Asn Gln Tyr Gln Ala Ser 530 535 Tyr Asn Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu Gln Thr Glu 545 550 555 Leu Gln Glu Gln Leu Gln Thr Val Val Gly Thr Tyr His Gly Ser 565 570 575 Pro Asp Gln Ser His Gln Val Thr Gly Asn His Gln Gln Pro Pro Gln 580 585 Gln Asn Thr Gly Phe Pro Arg Ser Asn Gln Pro Tyr Tyr Asn Ser Arg 595 600 605 Gly Val Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met Asn Gly 610 615 Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg 625 630 Pro Ser Phe Ser Asn Thr Pro Asn Ser Gly Tyr Thr Gln Ser Gln Phe 645 650 Ser Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln 660 665 Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg 675 680 Gly Arg Gly Gly Pro Pro Arg Pro Asn Arg Gly Met Pro Gln Met Asn 695 Thr Gln Gln Val Asn 705

<210> 3 <211> 3553 5 <212> ADN <213> Homo sapiens

<220> <221> CDS 10 <222> (190)..(2274) <223>

<400>3

			_	_		ctcgcctca ggagcgcgc		-
ggaagggac	c gccac	eccttg c	cccctcag	c tgccca	ctcg to	gatttccag	eggeeteeg	c 180
gegegeaeg	_			-		agc ggc a Ser Gly S 10		-
	_					gt gag gcg er Glu Ala		279
				_		cc gca acc ro Ala Thr		327
						tc ggg gtg eu Gly Val 60		375
	eu Arg					ag ctt gat ys Leu Asp 75		423
						aa gat cag ln Asp Gln)		471
						tg gag ttt eu Glu Phe		519
_		_		_	Gln As	at att cag sp Ile Gln		567
						ga gaa gaa rg Glu Glu 140	Ala Glu	615
Gln Lys A						at gtt ttg yr Val Leu 155		663
					Lys G	aa ggt ttg ln Gly Leu 70		711
						tg gat gaa eu Asp Glu		759
					Leu Ar	gg ttg aat rg Leu Asn		807
						tg gaa ggg eu Glu Gly 220	Lys Glu	855
Lys Pro Va	_			_		ag gaa att ys Glu Ile 235		903

-	-		_		aac Asn			_	_					_		951
	_	_		-	gaa Glu 260		-	-		-		_	_	_	_	999
					gaa Glu											1047
_	_	_	_		aca Thr			-		_	_		_	_	_	1095
	_			_	ggt Gly	_	_		_	_	_				_	1143
					gta Val											1191
			-		gag Glu 340				_				_	-	-	1239
_				-	aga Arg	_	_	_		_		_	_		_	1287
_					ttc Phe		_	-		_	_	-		_		1335
_			_		gcc Ala		_		-	_		_				1383
		-	-	-	ccc Pro	_	_	-	_			-			-	1431
	_		-	_	cct Pro 420			-		-			-			1479
_	_		_	_	tca Ser			_					_			1527
	_		_		tct Ser		_				_		_	_	_	1575
					cag Gln											1623
	_				ctt Leu		_			_			_		_	1671
gct	ggg	aca	agc	aaa	cct	tta	cat	agc	agt	gga	atc	aat	gta	aat	gca	1719

Ala 495	Gly	Thr	Ser	Lys	Pro 500	Leu	His	Ser	Ser	Gly 505	Ile	Asn	Val	Asn	Ala 510	
_					_		_				_		_	cca Pro 525	-	1767
		_		_		-				_			_	tac Tyr	_	1815
-	_			_	_			_	_				_	gaa Glu		1863
	-		-		•	-					•			tac Tyr		1911
			_	_									_	cag Gln		1959
	-	-						_	-		-			tac Tyr 605		2007
														ttg Leu		2055
						_				_				gat Asp		2103
	_									_				cag Gln		2151
_		_	-			•							_	gga Gly		2199
														gga Gly 685		2247
	cga Arg							tga	tect	taget	tee t	caagt	:gga	gc		2294
ttc	tgtto	etg (geeti	tggaa	ag aç	gatgi	taat	agt	ctg	catg	ttaç	ggaat	cac .	attta	atcctt	2354
tec	agact	tg t	ttgci	taggo	ga ti	taaat	gaaa	a tgo	etete	gttt	ctaa	aaact	ta	atcti	tggaco	2414
caa	attti	caa 1	tttt	tgaat	tg at	tttaa	attt	c ccc	etgti	tact	atat	caaa	stg '	tatta	gaaaad	2474
tag	aacat	tat 1	tata	ttct	ca ga	aaaa	agtgi	ttt	tcc	act	gaaa	aatta	att '	tttc	aggtco	2534
taa	aacct	tgc 1	taaa	tgtti	tt ta	aggaa	agtad	c tta	actga	aaac	att	ttg	taa (gacat	tttttç	2594
gaa	tgaga	att (gaac	attta	at at	taaai	ttat	t tat	tcci	tctt	tcat	tttt	tt (gaaa	catgco	2654
tati	tata	tt 1	taggo	godaç	ga ca	accct	ttaa	a tgo	geeg	gata	age	cata	gtt	aacat	ttaga	2714

gaaccattta	gaagtgatag	aactaatgga	atttgcaatg	ccttttggac	ctctattagt	2774
gatataaata	tcaagttatt	tctgactttt	aaacaaaact	cccaaattcc	taacttattg	2834
agctatactt	aaaaaaaatt	acaggtttag	agagttttt	gtttttcttt	tactgttgga	2894
aaactacttc	ccattttggc	aggaagttaa	cctatttaac	aattagagct	agcatttcat	2954
gtagtctgaa	attctaaatg	gttctctgat	ttgagggagg	ttaaacatca	aacaggtttc	3014
ctctattggc	cataacatgt	ataaaatgtg	tgttaaggag	gaattacaac	gtactttgat	3074
ttgaatacta	gtagaaactg	gccaggaaaa	aggtacattt	ttctaaaaat	taatggatca	3134
cttgggaatt	actgacttga	ctagaagtat	caaaggatgt	ttgcatgtga	atgtgggtta	3194
tgttctttcc	caccttgtag	catattcgat	gaaagttgag	ttaactgata	gctaaaaatc	3254
tgttttaaca	gcatgtaaaa	agttatttta	tctgttaaaa	gtcattatac	agttttgaat	3314
gttatgtagt	ttctttttaa	cagtttaggt	aataaggtct	gttttcattc	tggtgctttt	3374
attaattttg	atagtatgat	gttacttact	actgaaatgt	aagctagagt	gtacactaga	3434
atgtaagctc	catgagagca	ggtaccttgt	ctgtcttctc	tgctgtatct	atteceaacg	3494
cttgatgatg	gtgcctggca	catagtaggc	actcaataaa	tatttgttga	atgaatgaa	3553

<210> 4

5

<211> 694 <212> PRT <213> Homo sapiens

<400> 4

Met	Pro	Ser	Ala	Thr	Şer	His	Şer	Gly	Şer	Gly	Şer	Lys	Şer	Şer	Gly
1				5					10					15	

Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Gly Ala 20 25 30

Gly Ala Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr Gly Ala 35 40 45

Val Gln Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp Lys Lys 50 55 60

Leu Arg Asn Leu Glu Lys Lys Lys Gly Lys Leu Asp Asp Tyr Gln Glu 65 70 75 80

Arg Met Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp Ala Val 85 90 95

Ser Lys Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu 100 105 110

Gln Arg Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys

		115					120					125			
Lys	Thr 130	Ala	Arg	Arg	Glu	Gln 135	Leu	Met	Arg	Glu	Glu 140	Ala	Glu	Gln	Lys
Arg 145	Leu	Lys	Thr	Val	Leu 150	Glu	Leu	Gln	Туг	Val 155	Leu	Asp	Lys	Leu	Gly 160
Asp	Asp	Glu	Val	Arg 165	Thr	Asp	Leu	Lys	Gln 170	Gly	Leu	Asn	Gly	Val 175	Pro
Ile	Leu	Ser	Glu 180	Glu	Glu	Leu	Ser	Leu 185	Leu	Asp	Glu	Phe	Tyr 190	Lys	Leu
Val	Asp	Pro 195	Glu	Arg	Asp	Met	Ser 200	Leu	Arg	Leu	Asn	Glu 205	Gln	Tyr	Glu
His	Ala 210	Ser	Ile	His	Leu	Trp 215	Asp	Leu	Leu	Glu	G1y 220	Lys	Glu	Lys	Pro
Val 225	Cys	Gly	Thr	Thr	Tyr 230	Lys	Val	Leu	Lys	Glu 235	Ile	Val	Glu	Arg	Val 240
Phe	Gln	Ser	Asn	Tyr 245	Phe	Asp	Ser	Thr	His 250	Asn	His	Gln	Asn	Gly 255	Leu
Cys	Glu	Glu	Glu 260	Glu	Ala	Ala	Ser	Ala 265	Pro	Ala	Val	Glu	Asp 270	Gln	Val
Pro	Glu	Ala 275	Glu	Pro	Glu	Pro	Ala 280	Glu	Glu	Tyr	Thr	Glu 285	Gln	Ser	Glu
Val	Glu 290	Ser	Thr	Glu	Tyr	Val 295	Asn	Arg	Gln	Phe	Met 300	Ala	Glu	Thr	Gln
Phe 305	Thr	Ser	Gly	Glu	Lys 310	Glu	Gln	Val	Asp	Glu 315	Trp	Thr	Val	Glu	Thr 320
Val	Glu	Val	Val	Asn 325	Ser	Leu	G1n	Gln	Gln 330	Pro	Gln	Ala	Ala	Ser 335	Pro
Ser	Val	Pro	Glu 340	Pro	His	Ser	Leu	Thr 345	Pro	Val	Ala	Gln	Ala 350	Asp	Pro
Leu	Val	A rg 355	Arg	Gln	Arg	Val	G1n 360	Asp	Leu	Met	Ala	Gln 365	Met	Gln	Gly
Pro	Tyr 370	Asn	Phe	Ile	Gln	Asp	Ser	Met	Leu	Asp	Phe	Glu	Asn	Gln	Thr

Leu Asp Pro 385	Ala Ile	Val Ser 390	Ala	Gln	Pro	Met 395	Asn	Pro	Thr	Gln	As n 400
Met Asp Met	Pro Gln 405	Leu Val	. Cys	Pro	Pro 410	Val	His	Ser	Glu	Ser 415	Arg
Leu Ala Gln	Pro Asn 420	Gln Val	. Pro	Val 425	Gln	Pro	Glu	Ala	Thr 430	Gln	Val
Pro Leu Val 435		Thr Ser	Glu 440	Gly	Tyr	Thr	Ala	Ser 445	Gln	Pro	Leu
Tyr Gln Pro 450	Ser His	Ala Thr 455		Gln	Arg	Pro	Gln 460	Lys	Glu	Pro	Ile
Asp Gln Ile 465	Gln Ala	Thr Ile	Ser	Leu	Asn	Thr 475	Asp	Gln	Thr	Thr	Ala 480
Ser Ser Ser	Leu Pro 485		Ser	Gln	Pro 490	Gln	Val	Phe	Gln	Ala 495	Gly
Thr Ser Lys	Pro Leu 500	His Ser	Ser	Gly 505	Ile	Asn	Val	Asn	Ala 510	Ala	Pro
Phe Gln Ser 515		Thr Val	Phe 520	Asn	Met	Asn	Ala	Pro 525	Val	Pro	Pro
Val Asn Glu 530	Pro Glu	Thr Leu 535	_	Gln	Gln	Asn	Gln 540	Tyr	Gln	Ala	Ser
Tyr Asn Gln 545	Ser Phe	Ser Ser 550	Gln	Pro	His	Gln 555	Val	Glu	Gln	Thr	Glu 560
Leu Gln Gln	Glu Gln 565	Leu Gln	Thr	Val	V al 570	Gly	Thr	Tyr	His	Gly 575	Ser
Pro Asp Gln	Ser His 580	Gln Val	Thr	Gly 585	Asn	His	Gln	Gln	Pro 590	Pro	Gln
Gln Asn Thr 595	_	Pro Arg	Ser 600	Asn	Gln	Pro	Tyr	Tyr 605	Asn	Ser	Arg
Gly Val Ser 610	Arg Gly	Gly Ser 615	_	Gly	Ala	Arg	Gly 620	Leu	Met	Asn	Gly
Tyr Arg Gly 625	Pro Ala	Asn Gly 630	Phe	Arg	Gly	Gly 635	Tyr	Asp	Gly	Tyr	Arg 640

Pro Ser Phe Ser Asn Thr Pro Asn Ser Gly Tyr Thr Gln Ser Gln Phe 645 650 655

Ser Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln 660 665 670

Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg 675 680 685

Gly Asn Ile Leu Trp Trp 690

<210>5

<211> 1605

5 <212> ADN

<213> Canis familiaris

<220>

<221> CDS

<222> (46)..(1392)

<223>

10

gtcacaaata acttggagtt tgcaaaagaa ttacagagga gtttc atg gca tta agt Met Ala Leu Ser 1	57
caa gat att cag aaa aca ata aag aag act gca cgt cgg gag cag ctt Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu 5 10 15 20	105
atg aga gag gaa gcg gaa caa aaa cgt tta aaa act gta ctt gag ctc Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu Leu 25 30 35	153
cag tat gtt ttg gac aaa ttg gga gat gat gaa gtg aga act gac ctg Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp Glu Val Arg Thr Asp Leu 40 45 50	201
aag caa ggt ttg aat gga gtg cca ata ttg tct gaa gaa gaa ttg tcg Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu Glu Leu Ser 55 60 65	249
ttg ttg gat gaa ttc tac aaa tta gca gac cct gaa cgg gac atg agc Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp Pro Glu Arg Asp Met Ser 70 75 80	297
ttg agg ttg aat gag cag tat gaa cat gct tcc att cac ctg tgg gac Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu Trp Asp 85 90 95 100	345
ttg ctg gaa gga aag gaa aag tct gta tgt gga aca acc tat aaa gca Leu Leu Glu Gly Lys Glu Lys Ser Val Cys Gly Thr Thr Tyr Lys Ala 105 110 115	393
cta aag gaa att gtt gag cgt gtt ttc cag tca aat tac ttt gac agc Leu Lys Glu Ile Val Glu Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser 120 125 130	441
act cac aac cac cag aat ggg cta tgt gag gaa gaa gag gca gcc tca	489

Thr	His	As n 135	His	Gln	Asn	Gly	Leu 140	Cys	Glu	Glu	Glu	Glu 145	Ala	Ala	Ser	
											gag Glu 160					537
_	_			_		_	-	_	_		aca Thr			-		585
											ggt Gly					633
_	_			_	_	_					gtg Val				_	681
_			_	_					_		gag Glu				_	729
	-		-	_	-	-				-	aga Arg 240	-	-	-	-	777
_		_	_	_	_	_					ttc Phe		_	_		825
_	_	-		_		_			-		gcc Ala		_		-	873
_		-		_				_	-	_	ccc Pro	-	_	_	_	921
		_			_		_		_		cct Pro			_		969
_			_	_		_	_		_	_	tca Ser 320			_		1017
											tct Ser					1065
	_			_	-			-	_		cag Gln	_				1113
											ctt Leu					1161
-		-	-		_	-			-		cca Pro			-	-	1209
			-		-	-					atg Met		-			1257

3	390					395					400					
aat a Asn M 405	_		_		-			-		-		-		_		1305
caa o			-		-	-	-			-	-			-	-	1353
ect o												tga	acad	ctcaç	gca	1402
agtga	aatt	aa t	ctga	attea	ac aç	ggatt	atgt	tta	aaacq	jeca	aaaa	acaca	act q	ggcca	agtgta	1462
ccata	aata	ıtg t	taco	cagaa	ag aq	gttat	tato	tat	ttgt	tct	ccct	ttca	agg a	aaact	ttattg	1522
taaaq	ggga	ict ç	gttt	cato	CC C	ataaa	agaca	a gga	acta	caat	tgto	caget	ctt a	atatt	tacctg	1582
gaaaa	aaaa	aa a	aaaa	aaaa	aa aa	aa										1605

<210>6

5

<211> 448 <212> PRT <213> Canis familiaris

Met	Ala	Leu	Ser	GIn	Asp	IIе	GIn	Lys	Thr	Пе	Lys	Lys	Thr	Ala	Arg
1				5					10					15	

- Val Leu Glu Leu Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp Glu Val
 35 40 45
- Arg Thr Asp Leu Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu 50 60
- Glu Glu Leu Ser Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp Pro Glu 65 70 75 80
- Arg Asp Met Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile 85 90 95
- His Leu Trp Asp Leu Leu Glu Gly Lys Glu Lys Ser Val Cys Gly Thr 100 105 110
- Thr Tyr Lys Ala Leu Lys Glu Ile Val Glu Arg Val Phe Gln Ser Asn 115 120 125
- Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu 130 135 140

Glu 145	Ala	Ala	Ser	Ala	Pro 150	Thr	Val	Glu	Asp	Gln 155	Val	Ala	Glu	Ala	Glu 160
Pro	Glu	Pro	Ala	Glu 165	Glu	Tyr	Thr	Glu	Gln 170	Ser	Glu	Val	Glu	Ser 175	Thr
Glu	Tyr	Val	Asn 180	Arg	Gln	Phe	Met	Ala 185	Glu	Thr	Gln	Phe	Ser 190	Ser	Gly
Glu	Lys	Glu 195	Gln	Val	Asp	Glu	Trp 200	Thr	Val	Glu	Thr	Val 205	Glu	Val	Val
Asn	Ser 210	Leu	Gln	Gln	Gln	Pro 215	Gln	Ala	Ala	Ser	Pro 220	Ser	Val	Pro	Glu
Pro 225	His	Ser	Leu	Thr	Pro 230	Val	Ala	Gln	Ala	Asp 235	Pro	Leu	Val	Arg	Arg 240
Gln	Arg	Val	Gln	Asp 245	Leu	Met	Ala	Gln	Met 250	Gln	Gly	Pro	Tyr	As n 255	Phe
Ile	Gln	Asp	Ser 260	Met	Leu	Asp	Phe	G1u 265	Asn	Gln	Thr	Leu	Asp 270	Pro	Ala
Ile	Val	Ser 275	Ala	Gln	Pro	Met	Asn 280	Pro	Thr	Gln	Asn	Met 285	Asp	Met	Pro
Gln	Leu 290	Val	Cys	Pro	Pro	Val 295	His	Ser	Glu	Ser	Arg 300	Leu	Ala	Gln	Pro
As n 305	Gln	Val	Pro	Val	Gln 310	Pro	Glu	Ala	Thr	Gln 315	Val	Pro	Leu	Val	Ser 320
Ser	Thr	Ser	Glu	Gly 325	Tyr	Thr	Ala	Ser	Gln 330	Pro	Leu	Tyr	Gln	Pro 335	Ser
His	Ala	Thr	Glu 340	Gln	Arg	Pro	Gln	Lys 345	Glu	Pro	Ile	Asp	Gln 350	Ile	Gln
Ala	Thr	Ile 355	Ser	Leu	Asn	Thr	Asp 360	Gln	Thr	Thr	Ala	Ser 365	Ser	Ser	Leu
Pro	Ala 370	Ala	Ser	Gln	Pro	Gln 375	Val	Phe	Gln	Ala	Gly 380	Thr	Ser	Lys	Pro
Leu 385	His	Ser	Ser	Gly	Ile 390	Asn	Val	Asn	Ala	Ala 395	Pro	Phe	Gln	Ser	Met

Gln Thr Val Phe Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro 405 410 415

Glu Thr Leu Lys Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser 420 425 430

Phe Ser Ser Gln Pro His Gln Val Glu Gln Thr Glu Gly Cys Arg Lys 435 440 445

<210>7

<211> 4154

5 <212> ADN

<213> Canis familiaris

<220>

<221> CDS

10 <222> (1)..(2154)

<223>

ccg Pro								48
ccg Pro								96
gcg Ala								144
ccc Pro 50								192
ctc Leu								240
aag Lys								288
caa Gln								336
ttg Leu								384
gat Asp 130								432
aga Arg								4 80
tat Tyr								528

	165	170	175
			gaa gaa ttg tcg 576 Glu Glu Leu Ser 190
			cgg gac atg agc 624 Arg Asp Met Ser 205
		_	cac ctg tgg gac 672 His Leu Trp Asp
			acc tat aaa gca 720 Thr Tyr Lys Ala 240
		_	tac ttt gac agc 768 Tyr Phe Asp Ser 255
			gag gca gcc tca 816 Glu Ala Ala Ser 270
			cct gag cca gca 864 Pro Glu Pro Ala 285
			gag tat gta aat 912 Glu Tyr Val Asn
			gaa aag gag cag 960 Glu Lys Glu Gln 320
			aat tca ctc cag 1008 Asn Ser Leu Gln 335
-			ccc cac tct ttg 1056 Pro His Ser Leu 350
			cag cga gtc cag 1104 Gln Arg Val Gln 365
			ata cag gat tca 1152 Ile Gln Asp Ser
			att gta tct gca 1200 Ile Val Ser Ala 400
			cag ctg gtt tgc 1248 Gln Leu Val Cys 415
			aat caa gtt cct 1296 Asn Gln Val Pro 430

gta caa Val Gln	_	_	Gln V	_	_	_				_		1344
ggg tat Gly Tyr 450												1392
caa cga Gln Arg 465				_	_		_	_				1440
tta aat Leu Asn	-	_	-	-				-	-	-		1488
cag cct Gln Pro		_			_					_	-	1536
gga atc Gly Ile	_	_	Ala F				_		_			1584
aat atg Asn Met 530	_	_		_		_		_		_		1632
caa caa Gln Gln 545												1680
cct cac Pro His	_	_	_	_	_		-	_				1728
gtg gtt Val Val												1776
ggt aac Gly Asn	_	_	Pro G							_	_	1824
agt cag Ser Gln 610												1872
ggt gct Gly Ala 625		_	-					_				1920
aga gga Arg Gly				•								1968
agt ggt Ser Gly												2016
tat cag Tyr Gln			Gln G									2064

			cgg Arg														2112
	_		atg Met	_		_			_				taa				2154
tatç	gatto	cac	aggat	tatç	gt ti	aaao	cgcca	aaa	aacad	cact	ggcc	agtç	jta i	ccat	aat	atg	2214
ttac	caga	aag	agtta	attat	c ta	ıtttç	gttct	. ac	ettt	agg	aaac	ttat	tg	taaa	ıggg	act	2274
gttt	tcat	ccc	cataa	agac	a go	gacta	acaat	tg1	tcago	ettt	atat	tacc	etg (gata	ıtgga	aag	2334
gaaa	ctat	tt	ttati	ctgo	a to	gttct	teet	aaq	gagto	atc	ttga	gcct	tg	caca	tgat	tac	2394
tcag	gatto	cct	cacco	ttgc	et ta	aggaç	gtaaa	aca	ataat	aca	cttt	acag	igg .	tgat	atc	tcc	2454
atag	ttat	tt	gaagt	gget	t gç	gaaas	agca	aga	attaa	actt	ctga	catt	gg	ataa	aaat	tca	2514
acaa	atca	agc	cctaq	gagtt	a tt	caaa	atggt	aat	ttgad	aaa	aact	aaaa	ıta '	tttc	ccti	tcg	2574
agaa	aggag	gtg	gaatq	gtggt	t to	ggcag	gaaca	act	tgcat	ttc	acag	rcttt	tc	cggt	taa	att	2634
ggaç	rcact	aa	acgtt	taga	at go	catac	ccaaa	tta	atgca	atgg	gccc	ttaa	ata ·	taaa	agge	ctg	2694
gcta	ecaç	gct	ttgad	cacaç	gc ad	ctatt	cato	cto	etgga	caa	acaa	ctgt	gg .	ttaa	acaa	aca	2754
cato	gtaaa	att	gcttt	ttaa	ac aç	gctga	atact	ata	aataa	ıgac	aaag	rccaa	aaa '	tgca	aaaa	att	2814
gggc	etttç	gat	tggca	acttt	t to	yaaas	aatat	gca	aacaa	ata	tggg	jatgt	aa	tctç	gate	ggc	2874
cgct	tetç	gta	cttaa	atgtç	ja aç	gtatt	taga	tac	cttt	ttg	aaca	ctta	ac	agtt	tcti	tct	2934
gaca	atga	act	tttgl	aagg	ga tt	ggta	actat	cta	atcat	tca	ttat	aato	ŋta	catt	gtc	tgt	2994
cact	aato	ect	cagat	ctto	je to	gtatt	gtca	cct	taaat	.tgg	taca	ıggta	act	gatç	jaaa	ata	3054
tcta	atgo	gat	aatca	ataac	a ct	ctto	ggtca	cat	tgttt	tta	ctgo	agec	tg	aagg	jttti	tta	3114
aaag	jaaaa	aag	atato	caaat	g co	etget	gcta	CC	accct	ttt	aaat	tgct	at	cttt	tgaa	aaa	3174
gcac	cagt	at	gtgtl	ttaç	ga tt	gatt	tece	tai	tttt	ıggg	aaat	gaca	aga	cagt	agti	ttc	3234
agtt	ctga	atg	gtata	aagca	aa aa	ıcaaa	ataaa	aca	atgti	tat	aaaa	gttg	jta '	tctt	gaa	aca	3294
ctgg	jtgtt	ca	acago	stago	a go	ttat	gtgg	, tt	cacco	cat	gcat	tgtt	ag	tgtt	tca	gat	3354
ttta	tggt	ta	tete	cagca	ıg ct	gttt	ctgt	agt	tactt	gca	ttta	tctt	tt	gtct	aac	cct	3414
aata	ttct	ca	cggaq	ggcat	t ta	atatt	caaa	gto	ggtga	atcc	ctto	actt	ag	acgo	ata	aaa	3474
agag	rtcad	caa	gttt	gatga	a ga	aggad	cagtg	, taq	gtaat	tta	tatg	ıctgt	tg (gaat	ttgi	tgc	3534
tago	agtt	tg	agcad	ctagt	t ct	gtgt	gcat	ato	gaact	taa	tgat	gctt	gt	cata	tta	cac	3594
tttg	gactt	ca	tggaq	gaatt	a at	ccca	atcta	cto	cagca	aag	gcta	tact	aa	tact	aagt	tta	3654
atgg	tatt	tt	ctgtq	gcaga	ıa at	tgaa	atttt	gti	ttat	tag	catt	tago	ta	agga	atti	ttt	3714
ccaç	gtago	gtg	ctcaç	gctac	ct aa	agaa	aaac	aaa	aaaca	aga	caca	aaac	cta	ttct	caa	aca	3774
ttca	ttgt	ta	gacaa	actgo	ga gt	tttt	gctg	gti	tttgt	aac	ctac	taaa	at (ggat	agge	ctg	3834
ttga	acat	tc	cacat	tcaa	a aç	gttt	ttgt	age	ggtgg	ıtgg	ggaa	ıgggç	igg (gtgt	ctt	caa	3894

tgtttatttt	aaaataaaat	aagttcttga	cttttctcat	gtgtggttgt	ggtacatcat	3954
attggaaggg	ttatctgttt	acttttgcaa	atgagtattt	ctcttgctag	cacctcccgt	4014
tgtgcgcttt	aaatgacatc	tgcctgggat	gtaccacaac	catatgttag	ctgtatttta	4074
tggggaatag	ataaaatatt	cgtggtttat	tgggtaatcc	ctagatgtgt	atgcttacaa	4134
tcctatatat	aaaactaaat					4154

<210> 8 <211> 717 5 <212> PRT <213> Canis familiaris

Met 1	Pro	Ser	Ala	Thr 5	Ser	Leu	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly
Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Ser	Glu	Ala	Ala	Ala 30	Ala	Ala
Gly	Ala	A la 35	Gly	Ala	Ala	Gly	Ala 40	Gly	Ala	Ala	Ala	Pro 45	Ala	Ser	Gln
His	Pro 50	Ala	Thr	Gly	Thr	Gly 55	Ala	Val	Gln	Thr	Glu 60	Ala	Met	Lys	Gln
Ile 65	Leu	Gly	Val	Ile	Asp 70	Lys	Lys	Leu	Arg	Asn 75	Leu	Glu	Lys	Lys	Lys 80
Gly	Lys	Leu	Asp	Asp 85	Tyr	Gln	Glu	Arg	Met 90	Asn	Lys	Gly	Glu	Arg 95	Leu
Asn	Gln	Asp	Gln 100	Leu	Asp	Ala	Val	Ser 105	Lys	Tyr	Gln	Glu	Val 110	Thr	Asn
Asn	Leu	Glu 115	Phe	Ala	Lys	Glu	Leu 120	Gln	Arg	Ser	Phe	Met 125	Ala	Leu	Ser
Gln	Asp 130	Ile	Gln	Lys	Thr	Ile 135	Lys	Lys	Thr	Ala	Arg 140	Arg	Glu	Gln	Leu
Met 145	Arg	Glu	Glu	Ala	Glu 150	Gln	Lys	Arg	Leu	Lys 155	Thr	Val	Leu	Glu	Leu 160
			Leu	165					170					175	
Lys	Gln	Gly	Leu 180	Asn	Gly	Val	Pro	Ile 185	Leu	Ser	Glu	Glu	Glu 190	Leu	Ser

Leu	Leu	Asp 195	Glu	Phe	Туг	Lys	Leu 200	Ala	Asp	Pro	Glu	A rg 205	Asp	Met	Ser
Leu	Arg 210	Leu	Asn	Glu	Gln	Tyr 215	Glu	His	Ala	Ser	Ile 220	His	Leu	Trp	Asp
Leu 225	Leu	G1u	Gl y	Lys	Glu 230	Lys	Ser	Val	Суз	Gly 235	Thr	Thr	Tyr	Lys	Ala 240
Leu	Lys	Glu	Ile	Val 245	Glu	Arg	Val	Phe	Gln 250	Ser	Asn	Tyr	Phe	Asp 255	Ser
Thr	His	Asn	His 260	Gln	Asn	Gly	Leu	Cys 265	Glu	Glu	Glu	Glu	Ala 270	Ala	Ser
Ala	Pro	Thr 275	Val	Glu	Asp	Gln	Val 280	Ala	Glu	Ala	Glu	Pro 285	Glu	Pro	Ala
Glu	G1u 290	Tyr	Thr	Glu	Gln	Ser 295	Glu	Val	Glu	Ser	Thr 300	G1u	Tyr	Val	Asn
Arg 305	Gln	Phe	Met	Ala	Glu 310	Thr	Gln	Phe	Ser	Ser 315	Gly	G1u	Lys	Glu	Gln 320
Val	Asp	Glu	Trp	Thr 325	Val	Glu	Thr	Val	Glu 330	Val	Val	Asn	Ser	Leu 335	Gln
Gln	Gln	Pro	Gln 340	Ala	Ala	Ser	Pro	Ser 345	Val	Pro	Glu	Pro	His 350	Ser	Leu
Thr	Pro	Val 355	Ala	Gln	Ala	Asp	Pro 360	Leu	Val	Arg	Arg	Gln 365	Arg	Val	Gln
Asp	Leu 370	Met	Ala	Gln	Met	Gln 375	Gly	Pro	Tyr	Asn	Phe 380	Ile	Gln	Asp	Ser
Met 385	Leu	Asp	Phe	Glu	As n 390	Gln	Thr	Leu	Asp	Pro 395	Ala	Ile	Val	Ser	Ala 400
Gln	Pro	Met	Asn	Pro 405	Thr	Gln	Asn	Met	Asp 410	Met	Pro	Gln	Leu	Val 415	Cys
Pro	Pro	Val	His 420	Ser	Glu	Ser	Arg	Leu 425	Ala	Gln	Pro	Asn	Gln 430	Val	Pro
Val	Gln	Pro 435	Glu	Ala	Thr	Gln	Val 440	Pro	Leu	Val	Ser	Ser 445	Thr	Ser	Glu

Gly Tyr 450	Thr Ala	Ser Gln	Pro 455	Leu	Tyr	Gln	Pro	Ser 460	His	Ala	Thr	Glu
Gln Arg	Pro Gln	Lys Glu 470		Ile	Asp	Gln	Ile 475	Gln	Ala	Thr	Ile	Ser 480
Leu Asn	Thr Asp	Gln Thr 485	Thr	Ala	Ser	Ser 490	Ser	Leu	Pro	Ala	Ala 495	Ser
Gln Pro	Gln Val 500	Phe Gln	Ala	Gly	Thr 505	Ser	Lys	Pro	Leu	His 510	Ser	Ser
Gly Ile	Asn Val 515	Asn Ala	Ala	Pro 520	Phe	Gln	Ser	Met	Gln 525	Thr	Val	Phe
Asn Met 530	Asn Ala	Pro Val	Pro 535	Pro	Val	Asn	Glu	Pro 540	G1u	Thr	Leu	Lys
Gln Gln . 545	Asn Gln	Tyr Gln 550		Ser	Tyr	Asn	Gln 555	Ser	Phe	Ser	Ser	Gln 560
Pro His	Gln Val	Glu Gln 565	Thr	Asp	Leu	Gln 570	Gln	Glu	Gln	Leu	Gln 575	Thr
Val Val	Gly Thr 580	Tyr His	Gly	Ser	G1n 585	Asp	Gln	Pro	His	Gln 590	Val	Thr
Gly Asn	His Gln 595	Gln Pro	Pro	Gln 600	Gln	Asn	Thr	Gly	Phe 605	Pro	Arg	Ser
Ser Gln : 610	Pro Tyr	Tyr Asn	Ser 615	Arg	Gly	Val	Ser	Arg 620	Gly	Gly	Ser	Arg
Gly Ala . 625	Arg Gly	Leu Met 630		Gly	Tyr	Arg	Gly 635	Pro	Ala	Asn	Gly	Phe 640
Arg Gly	Gly Tyr	Asp Gly 645	Tyr	Arg	Pro	Ser 650	Phe	Ser	Asn	Thr	Pro 655	Asn
Ser Gly	Tyr Thr 660	Gln Ser	Gln	Phe	Ser 665	Ala	Pro	Arg	Asp	Tyr 670	Ser	Gly
Tyr Gln	Arg Asp 675	Gly Tyr	Gln	Gln 680	Asn	Phe	Lys	Arg	Gly 685	Ser	Gly	Gln
Ser Gly :	Pro Arg	Gly Ala	Pro 695	Arg	Gly	Arg	Gly	Gly 700	Pro	Pro	Arg	Pro

Asn Arg Gly Met Pro Gln Met Asn Thr Gln Gln Val Asn 705 710 715

<210>9

<211> 4939

5 <212> ADN

<213> Canis familiaris

<220>

<221> CDS

10 <222> (1)..(2109)

<223>

_	_	_	_		_	ctc Leu	_		_		_	_	_	_		48
_	_		_	_		tcc Ser			_							96
						ggg Gly										144
						ggc Gly 55	_	_	_			_	_	_	_	192
					-	aag Lys					_		_		_	240
	_		_	_		cag Gln	_	-	_				_			288
		-	_	-	-	gcc Ala	-		_		_	-	-			336
	_			_		gaa Glu		_		_		_	_		_	384
	_		_			ata Ile 135	_	_		_	_			_		432
						caa Gln										480
_		-	-	-		ttg Leu		-	-	-		_		-	_	528
						gtg Val										576
						aaa Lys										624

195		200	205	
			tcc att cac ctg Ser Ile His Leu 220	
			gga aca acc tat Gly Thr Thr Tyr 235	
		-	tca aat tac ttt Ser Asn Tyr Phe	-
	s Gln Asn Gly		gaa gaa gag gca Glu Glu Glu Ala 270	
			gct gag cct gag Ala Glu Pro Glu 285	
			tca aca gag tat Ser Thr Glu Tyr 300	_
			agt ggt gaa aag Ser Gly Glu Lys 315	
			gtg gtg aat tca Val Val Asn Ser	
_	n Ala Ala Ser	_	cca gag ccc cac Pro Glu Pro His 350	-
			aga aga cag cga Arg Arg Gln Arg 365	_
			aat ttc ata cag Asn Phe Ile Gln 380	
	-	_	cct gcc att gta Pro Ala Ile Val 395	-
			atg ccc cag ctg Met Pro Gln Leu	
	s Ser Glu Ser		caa cct aat caa Gln Pro Asn Gln 430	
-	-	•	gtt tca tcc aca Val Ser Ser Thr 445	
			cct tct cat gct Pro Ser His Ala 460	

caa cga cca caa aag gaa cca att gac cag att cag gca aca atc tct Gln Arg Pro Gln Lys Glu Pro Ile Asp Gln Ile Gln Ala Thr Ile Ser 465 470 475 480	1440
tta aat aca gac cag act aca gcg tca tca tcc ctt ccg gct gct tct Leu Asn Thr Asp Gln Thr Thr Ala Ser Ser Ser Leu Pro Ala Ala Ser 485 490 495	1488
cag cct cag gta ttc cag gct ggg aca agc aaa cca tta cat agc agt Gln Pro Gln Val Phe Gln Ala Gly Thr Ser Lys Pro Leu His Ser Ser 500 505 510	1536
gga atc aat gta aat gca gct cca ttc caa tcc atg caa acg gtg ttc Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val Phe 515 520 525	1584
aat atg aat gcc cca gtt cct cct gtt aat gaa cca gaa act ttg aaa Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Thr Leu Lys 530 535 540	1632
Caa caa aat cag tac cag gcc agt tat aac cag agc ttt tct agt cag Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser Gln 545 550 560	1680
cct cac caa gta gaa caa aca gac ctt cag caa gaa cag ctt caa aca Pro His Gln Val Glu Gln Thr Asp Leu Gln Glu Glu Gln Leu Gln Thr 565 570 575	1728
gtg gtt ggc act tac cat ggt tcc cag gac cag ccc cac caa gtg act Val Val Gly Thr Tyr His Gly Ser Gln Asp Gln Pro His Gln Val Thr 580 585 590	1776
ggt aac cat cag cag cct ccc cag cag aac act gga ttt cca cgt agc Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser 595 600 605	1824
agt cag ccc tat tac aat agt cgt ggt gtg tct cgt ggt ggt tcc cgt Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg 610 620	1872
ggt gct aga ggc tta atg aat gga tac agg ggc cct gcc aat gga ttc Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe 625 630 635 640	1920
aga gga gga tat gat ggt tac cgc cct tca ttc tct aac act cca aac Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn 645 650 655	1968
agt ggt tat aca cag tct cag ttc agt gct ccc cgg gac tac tct ggc Ser Gly Tyr Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly 660 665 670	2016
tat cag cgg gat gga tat cag cag aat ttc aag cga ggc tct ggg cag Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln 675 680 685	2064
agt gga cca cgg gga gcc cca cga ggt aat att ttg tgg tgg tga Ser Gly Pro Arg Gly Ala Pro Arg Gly Asn Ile Leu Trp Trp 690 695 700	2109
tectagetee taagtggage ttetgttetg geettggaag agetgtteea tagtetgeat	2169
gtaggttaca tgttaggaat acatttatca ttaccagact tgttgctagg gattaaatga	2229

aatgctctgt	ttctaaaact	tctcttgaac	ccaaatttaa	ttttttgaat	gactttccct	2289
gttactatat	aaattgtctt	gaaaactaga	acatttctcc	teeteagaaa	aagtgttttt	2349
ccaactgcaa	attattttc	aggtcctaaa	acctgctaaa	tgtttttagg	aagtacttac	2409
tgaaacattt	ttgtaagaca	tttttggaat	gagattgaac	atttatataa	atttattatt	2469
attectettt	catttttgaa	catgcatatt	atattttagg	gtcagaaatc	ctttaatggc	2529
caaataagcc	atagttacat	ttagagaacc	atttagaagt	gatagaacta	actgaaattt	2589
caatgccttt	ggatcattaa	tagcgatata	aatttcaaat	tgtttctgac	ttttaaataa	2649
aacatccaaa	atcctaacta	acttcctgaa	ctatatttaa	aaattacagg	tttaaggagt	2709
ttctggtttt	ttttctctta	ccataggaaa	actgtttcct	gtttggccag	gaagtcaacc	2769
tgtgtaataa	ttagaagtag	catttcatat	gatctgaagt	tctaaatggt	tctctgattt	2829
aagggaagtt	aaattgaata	ggtttectet	agttattggc	cataacatgt	ataaaatgta	2889
tattaaggag	gaatacaaag	tactttgatt	tcaatgctag	tagaaactgg	ccagcaaaaa	2949
ggtgcatttt	atttttaaat	taatggatca	cttgggaatt	actgacttga	agtatcaaag	3009
gatatttgca	tgtgaatgtg	ggttatgttc	tttctcacct	tgtagcatat	tctatgaaag	3069
ttgagttgac	tggtagctaa	aaatctgttt	taacagcatg	taaaaagtta	ttttatctgt	3129
tacaagtcat	tatacaattt	tgaatgttat	gtagtttctt	tttaacagtt	taggtaacaa	3189
ggtctgtttt	teattetggt	gettttatta	attttgatag	tatgatgtta	cttactactg	3249
aaatgtaagc	tagagtgtac	actagaatgt	aagetecatg	agagcaggta	ccttgtctgt	3309
cttcactgct	gtatctattt	ccaacgcctg	atgacagtgc	ctgacacata	gtaggcactc	3369
aataaatact	tgttgaatga	atgaatgaat	gagtactggt	ggaatactcc	attagctcta	3429
ctcttcttt	agctagagaa	catgagcaaa	tttgcgcatg	acaacttcca	ggacaggtga	3489
acactgaaga	attgacctct	taaacctaat	aatgtggtga	caagetgeee	acatgettet	3549
tgacttcaga	tgaaaatctg	cttgaaggca	aagcaaataa	tatttgaaag	aaaaaccaaa	3609
tgccattttt	gtcttctagg	tcgtggaggg	cccccaagac	ccaacagagg	gatgccgcaa	3669
atgaacactc	agcaagtgaa	ttaatctgat	tcacaggatt	atgtttaaac	gccaaaaaca	3729
cactggccag	tgtaccataa	tatgttacca	gaagagttat	tatctatttg	ttetecettt	3789
caggaaactt	attgtaaagg	gactgttttc	atcccataaa	gacaggacta	caattgtcag	3849
ctttatatta	cctggatatg	gaaggaaact	atttttattc	tgcatgttct	tcctaagcgt	3909
catcttgagc	cttgcacatg	atactcagat	tecteacect	tgcttaggag	taaaacataa	3969
tacactttac	agggtgatat	ctccatagtt	atttgaagtg	gcttggaaaa	agcaagatta	4029
acttctgaca	ttggataaaa	atcaacaaat	cagccctaga	gttattcaaa	tggtaattga	4089
caaaaactaa	aatatttccc	ttcgagaagg	agtggaatgt	ggtttggcag	aacaactgca	4149
tttcacaget	tttccggtta	aattogagga	ctaaacottt	agatgcatac	caaattatoc	4209

atgggccctt	aatataaaag	gctggctacc	agctttgaca	cagcactatt	catectetgg	4269
ccaaacaact	gtggttaaac	aacacatgta	aattgctttt	taacagctga	tactataata	4329
agacaaagcc	aaaatgcaaa	aattgggctt	tgattggcac	tttttgaaaa	atatgcaaca	4389
aatatgggat	gtaatctgga	tggccgcttc	tgtacttaat	gtgaagtatt	tagatacctt	4449
tttgaacact	taacagtttc	ttctgacaat	gacttttgta	aggattggta	ctatctatca	4509
ttccttataa	tgtacattgt	ctgtcactaa	tectcagate	ttgctgtatt	gtcacctaaa	4569
ttggtacagg	tactgatgaa	aatatctaat	ggataatcat	aacactcttg	gtcacatgtt	4629
tttcctgcag	cctgaaggtt	tttaaaagaa	aaagatatca	aatgcctgct	gctaccaccc	4689
ttttaaattg	ctatcttttg	aaaagcacca	gtatgtgttt	tagattgatt	tccctatttt	4749
agggaaatga	cagacagtag	tttcagttct	gatggtataa	gcaaaacaaa	taaaacatgt	4809
ttataaaagt	tgtatcttga	aacactggtg	ttcaacagct	agcagcttat	gtggttcacc	4869
ccatgcattg	ttagtgtttc	agattttatg	gttatctcca	gcagctgttt	ctgtagtact	4929
tgcatttatc						4939

<210> 10

5

<211> 702 <212> PRT

<213> Canis familiaris

Met	Pro	Ser	Ala	Thr	Ser	Leu	Ser	Gly	Ser	Gly	Ser	Lys	Ser	Ser	GLZ
1				5					10					15	

- Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Ala Ala 20 25 30
- Gly Ala Ala Gly Ala Ala Gly Ala Gly Ala Ala Ala Pro Ala Ser Gln 35 40 45
- His Pro Ala Thr Gly Thr Gly Ala Val Gln Thr Glu Ala Met Lys Gln 50 60
- Ile Leu Gly Val Ile Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys 65 70 75 80
- Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg Leu 85 90 95
- Asn Gln Asp Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val Thr Asn 100 105 110
- Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala Leu Ser 115 120 125

Gln	Asp 130	Ile	Gln	Lys	Thr	Ile 135	Lys	Lys	Thr	Ala	Arg 140	Arg	Glu	Gln	Leu
Met 145	Arg	Glu	Glu	Ala	Glu 150	Gln	Lys	Arg	Leu	Lys 155	Thr	Val	Leu	Glu	Leu 160
Gln	Tyr	Val	Leu	Asp 165	Lys	Leu	Gly	Asp	Asp 170	Glu	Val	Arg	Thr	Asp 175	Leu
Lys	Gln	Gly	Leu 180	Asn	Gly	Val	Pro	Ile 185	Leu	Ser	Glu	Glu	Glu 190	Leu	Ser
Leu	Leu	Asp 195	Glu	Phe	Tyr	Lys	Leu 200	Ala	Asp	Pro	G1u	A rg 205	Asp	Met	Ser
Leu	Arg 210	Leu	Asn	Glu	Gln	Tyr 215	Glu	His	Ala	Ser	11e 220	His	Leu	Trp	Asp
Leu 225	Leu	Glu	Gly	Lys	Glu 230	Lys	Ser	Val	Cys	Gly 235	Thr	Thr	Tyr	Lys	A la 240
Leu	Lys	Glu	Ile	Val 245	Glu	Arg	Val	Phe	Gln 250	Ser	Asn	Tyr	Phe	Asp 255	Ser
Thr	His	Asn	His 260	Gln	Asn	Gly	Leu	Cys 265	Glu	Glu	Glu	Glu	Ala 270	Ala	Ser
Ala	Pro	Thr 275	Val	Glu	Asp	Gln	Val 280	Ala	Glu	Ala	Glu	Pro 285	Glu	Pro	Ala
Glu	Glu 290	Tyr	Thr	Glu	Gln	Ser 295	Glu	Val	Glu	Ser	Thr 300	Glu	Tyr	Val	Asn
Arg 305	Gln	Phe	Met	Ala	Glu 310	Thr	Gln	Phe	Ser	Ser 315	Gly	Glu	Lys	Glu	Gln 320
Val	Asp	Glu	Trp	Thr 325	Val	Glu	Thr	Val	Glu 330	Val	Val	Asn	Ser	Leu 335	Gln
Gln	Gln	Pro	Gln 340	Ala	Ala	Ser	Pro	Ser 345	Val	Pro	Glu	Pro	His 350	Ser	Leu
Thr	Pro	Val 355	Ala	Gln	Ala	Asp	Pro 360	Leu	Val	Arg	Arg	Gln 365	Arg	Val	Gln
Asp	Leu 370	Met	Ala	Gln	Met	Gln 375	Gly	Pro	туг	Asn	Phe 380	Ile	Gln	Asp	Ser

Met Leu 385	Asp	Phe	Glu	As n 390	Gln	Thr	Leu	Asp	Pro 395	Ala	Ile	Val	Ser	Ala 400
Gln Pro	Met	Asn	Pro 405	Thr	Gln	Asn	Met	Asp 410	Met	Pro	Gln	Leu	Val 415	Cys
Pro Pro	Val	His 420	Ser	Glu	Ser	Arg	Leu 425	Ala	Gln	Pro	Asn	Gln 430	Val	Pro
Val Glr	Pro 435	Glu	Ala	Thr	Gln	Val 440	Pro	Leu	Val	Ser	Ser 445	Thr	Ser	Glu
Gly Tyr 450		Ala	Ser	Gln	Pro 455	Leu	Tyr	Gln	Pro	Ser 460	His	Ala	Thr	Glu
Gln Arg 465	Pro	Gln	Lys	Glu 470	Pro	Ile	Asp	Gln	Ile 475	Gln	Ala	Thr	Ile	Ser 480
Leu Asr	Thr	Asp	Gln 485	Thr	Thr	Ala	Ser	Ser 490	Ser	Leu	Pro	Ala	Ala 495	Ser
Gln Pro	Gln	Val 500	Phe	Gln	Ala	Gly	Thr 505	Ser	Lys	Pro	Leu	His 510	Ser	Ser
Gly Ile	• As n 515	Val	Asn	Ala	Ala	Pro 520	Phe	Gln	Ser	Met	Gln 525	Thr	Val	Phe
Asn Met 530		Ala	Pro	Val	Pro 535	Pro	Val	Asn	Glu	Pro 540	Glu	Thr	Leu	Lys
Gln Glr 545	Asn	Gln	Tyr	Gln 550	Ala	Ser	Tyr	Asn	Gln 555	Ser	Phe	Ser	Ser	Gln 560
Pro His	Gln	Val	G1u 565	Gln	Thr	Asp	Leu	Gln 570	Gln	Glu	Gln	Leu	Gln 575	Thr
Val Val	Gly	Thr 580	Tyr	His	Gly	Ser	Gln 585	Asp	Gln	Pro	His	Gln 590	Val	Thr
Gly Asr	His 595	Gln	Gln	Pro	Pro	Gln 600	Gln	Asn	Thr	Gly	Phe 605	Pro	Arg	Ser
Ser Glr 610		Tyr	Tyr	Asn	Ser 615	Arg	Gly	Val	Ser	Arg 620	Gly	Gly	Ser	Arg
Gly Ala 625	. Arg	Gly	Leu	Met 630	Asn	Gly	Tyr	Arg	Gly 635	Pro	Ala	Asn	Gly	Phe 640

Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln 675 680 685

Ser Gly Pro Arg Gly Ala Pro Arg Gly Asn Ile Leu Trp Trp 690 695 700

<210> 11

<211> 3306

5 <212> ADN

<213> Canis familiaris

<220>

<221> CDS

10 <222> (1)..(2040)

<223>

_	ccg Pro	_	_		_		_		_		_	_	_	_		48
	ccg Pro															96
	gcg Ala						-			_			_		_	144
	ccc Pro 50															192
	ctc Leu															240
	aag Lys		-	-		-	-	-	-				-			288
	caa Gln															336
	ttg Leu			_		_		_		_		_	_		_	384
	gat Asp 130															432
	aga Arg															480

145					150					155					160	
_		_	_	_		_		_	_	_		_		gac Asp 175	_	528
														ttg Leu		576
-	-	_	-					-	-		-		-	atg Met	-	624
-		_			_		_		-				_	tgg Trp	-	672
_	_	_		_	_	_		_	_					aaa Lys	_	720
	_	-		_		-	-		_					gac Asp 255	_	768
														gcc Ala		816
-			_	-	-	_	-	-	-	_				cca Pro	-	864
_	_			_		_	_	_	_					gta Val		912
-			-	-	-		-		-	-		-	-	gag Glu	_	960
	_											_		ctc Leu 335		1008
														tct Ser		1056
	_		_	_	_	_				_	_	_	_	gtc Val	_	1104
_		_		_	_	_							_	gat Asp		1152
-	-	-		•		_			-		•		-	tct Ser	-	1200
_		_		_				-	_	_		_	_	gtt Val 415	_	1248

		_			_		_		_		cct Pro			_		1296
											tca Ser					1344
			_				_		_		tct Ser 460		-			1392
	_			_	_			-	_		cag Gln	_				1440
			_	_							ctt Leu	_	_	_		1488
_		_	-		_	-			_		cca Pro			_	-	1536
			-		-	•					atg Met		_			1584
											cca Pro 540					1632
			-		-	-	-			_	agc Ser			-	-	1680
			_	_			_		_		gaa Glu	_				1728
											ccc Pro					1776
											gga Gly					1824
											cgt Arg 620					1872
Gly 625											cct Pro					1920
625 aga	Ala gga	Arg gga	Gly tat	Leu gat	Met 630 ggt	Asn tac	Gly	Tyr	Arg	Gly 635 ttc		Ala	Asn act	Gly	Phe 640 aac	1920 1968

tat cag cgg gga tgc cgc aaa tga acactcagca agtgaattaa tctgattcac Tyr Gln Arg Gly Cys Arg Lys 675	2070
aggattatgt ttaaacgcca aaaacacact ggccagtgta ccataatatg ttaccagaag	2130
agttattatc tatttgttct ccctttcagg aaacttattg taaagggact gttttcatcc	2190
cataaagaca ggactacaat tgtcagcttt atattacctg gatatggaag gaaactattt	2250
ttattctgca tgttcttcct aagcgtcatc ttgagccttg cacatgatac tcagattcct	2310
caccettget taggagtaaa acataataca etttacaggg tgatatetee atagttattt	2370
gaagtggctt ggaaaaagca agattaactt ctgacattgg ataaaaatca acaaatcagc	2430
cctagagtta ttcaaatggt aattgacaaa aactaaaata tttcccttcg agaaggagtg	2490
gaatgtggtt tggcagaaca actgcatttc acagcttttc cggttaaatt ggagcactaa	2550
acgtttagat gcataccaaa ttatgcatgg gcccttaata taaaaggctg gctaccagct	2610
ttgacacage actatteate etetggeeaa acaactgtgg ttaaacaaca catgtaaatt	2670
gctttttaac agctgatact ataataagac aaagccaaaa tgcaaaaatt gggctttgat	2730
tggcactttt tgaaaaatat gcaacaaata tgggatgtaa tctggatggc cgcttctgta	2790
cttaatgtga agtatttaga tacctttttg aacacttaac agtttcttct gacaatgact	2850
tttgtaagga ttggtactat ctatcattcc ttataatgta cattgtctgt cactaatcct	2910
cagatettge tgtattgtea eetaaattgg tacaggtaet gatgaaaata tetaatggat	2970
aatcataaca ctcttggtca catgtttttc ctgcagcctg aaggttttta aaagaaaaag	3030
atatcaaatg cctgctgcta ccaccctttt aaattgctat cttttgaaaa gcaccagtat	3090
gtgttttaga ttgatttccc tattttaggg aaatgacaga cagtagtttc agttctgatg	3150
gtataagcaa aacaaataaa acatgtttat aaaagttgta tettgaaaca etggtgttea	3210
acagetagea gettatgtgg tteaceceat geattgttag tgttteagat tttatggtta	3270
tctccagcag ctgtttctgt agtacttgca tttatc	3306

<210> 12

<211> 679

<212> PRT

5

<213> Canis familiaris

Met Pro Ser Ala Thr Ser Leu Ser Gly Ser Gly Ser Lys Ser Ser Gly 1 5 10 15

Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Ala Ala 20 25 30

Gly Ala Ala Gly Ala Gly Ala Gly Ala Ala Ala Pro Ala Ser Gl
n $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

His	Pro 50	Ala	Thr	Gly	Thr	Gly 55	Ala	Val	Gln	Thr	Glu 60	Ala	Met	Lys	Gln
I1e 65	Leu	Gly	Val	Ile	Asp 70	Lys	Lys	Leu	Arg	Asn 75	Leu	Glu	Lys	Lys	Lys 80
Gly	Lys	Leu	Asp	As p 85	Tyr	Gln	Glu	Arg	Met 90	Asn	Lys	Gly	Glu	Arg 95	Leu
Asn	Gln	Asp	Gln 100	Leu	Asp	Ala	Val	Ser 105	Lys	Tyr	Gln	Glu	Val 110	Thr	Asn
Asn	Leu	Glu 115	Phe	Ala	Lys	Glu	Leu 120	Gln	Arg	Ser	Phe	Met 125	Ala	Leu	Ser
Gln	Asp 130	Ile	Gln	Lys	Thr	Ile 135	Lys	Lys	Thr	Ala	Arg 140	Arg	Glu	Gln	Leu
Met 145	Arg	Glu	Glu	Ala	Glu 150	Gln	Lys	Arg	Leu	Lys 155	Thr	Val	Leu	Glu	Leu 160
Gln	Tyr	Val	Leu	Asp 165	Lys	Leu	Gly	Asp	Asp 170	Glu	Val	Arg	Thr	Asp 175	Leu
Lys	Gln	Gly	Leu 180	Asn	Gly	Val	Pro	Ile 185	Leu	Ser	Glu	Glu	Glu 190	Leu	Ser
Leu	Leu	Asp 195	Glu	Phe	Tyr	Lys	Leu 200	Ala	Asp	Pro	Glu	Arg 205	Asp	Met	Ser
Leu	Arg 210	Leu	Asn	Glu	Gln	Туг 215	Glu	His	Ala	Ser	Ile 220	His	Leu	Trp	Asp
Leu 225	Leu	Glu	Gly	Lys	Glu 230	Lys	Ser	Val	Cys	Gly 235	Thr	Thr	Tyr	Lys	Ala 240
Leu	Lys	Glu	Ile	Val 245	Glu	Arg	Val	Phe	Gln 250	Ser	Asn	Tyr	Phe	Asp 255	Ser
Thr	His	Asn	His 260	Gln	Asn	Gly	Leu	Cys 265	Glu	Glu	Glu	Glu	Ala 270	Ala	Ser
Ala	Pro	Thr 275	Val	Glu	Asp	Gln	Val 280	Ala	Glu	Ala	Glu	Pro 285	Glu	Pro	Ala
Glu	Glu 290	Tyr	Thr	Glu	Gln	Ser 295	Glu	Val	Glu	Ser	Thr 300	Glu	Tyr	Val	Asn

Arg 305	Gln	Phe	Met	Ala	Glu 310	Thr	Gln	Phe	Ser	Ser 315	Gly	Glu	Lys	Glu	Gln 320
Val	Asp	G1u	Trp	Thr 325	Val	G1u	Thr	Val	Glu 330	Val	Val	Asn	Ser	Leu 335	Gln
Gln	Gln	Pro	Gln 340	Ala	Ala	Ser	Pro	Ser 345	Val	Pro	Glu	Pro	His 350	Ser	Leu
Thr	Pro	Val 355	Ala	Gln	Ala	Asp	Pro 360	Leu	Val	Arg	Arg	Gln 365	Arg	Val	Gln
Asp	Le u 370	Met	Ala	Gln	Met	Gln 375	Gly	Pro	Tyr	Asn	Phe 380	Ile	Gln	Asp	Ser
Met 385	Leu	Asp	Phe	Glu	Asn 390	Gln	Thr	Leu	Asp	Pro 395	Ala	Ile	Val	Ser	Ala 400
Gln	Pro	Met	Asn	Pro 405	Thr	Gln	Asn	Met	Asp 410	Met	Pro	Gln	Leu	Val 415	Cys
Pro	Pro	Val	His 420	Ser	Glu	Ser	Arg	Leu 425	Ala	Gln	Pro	Asn	Gln 430	Val	Pro
Val	Gln	Pro 435	G1u	Ala	Thr	G1n	Val 440	Pro	Leu	Val	Ser	Ser 445	Thr	Ser	Glu
Gly	Tyr 450	Thr	Ala	Ser	Gln	Pro 455	Leu	Tyr	Gln	Pro	Ser 460	His	Ala	Thr	Glu
Gln 465	Arg	Pro	Gln	Lys	Glu 470	Pro	Ile	Asp	Gln	Ile 475	Gln	Ala	Thr	Ile	Ser 480
Leu	Asn	Thr	Asp	Gln 485	Thr	Thr	Ala	Ser	Ser 490	Ser	Leu	Pro	Ala	Ala 495	Ser
Gln	Pro	Gln	V al 500	Phe	Gln	Ala	Gly	Thr 505	Ser	Lys	Pro	Leu	His 510	Ser	Ser
G1y	Ile	Asn 515	Val	Asn	Ala	Ala	Pro 520	Phe	G1n	Ser	Met	Gln 525	Thr	Val	Phe
Asn	Met 530	Asn	Ala	Pro	Val	Pro 535	Pro	Val	Asn	Glu	Pro 540	Glu	Thr	Leu	Lys
Gln 545	Gln	Asn	Gln	Tyr	Gln 550	Ala	Ser	Tyr	Asn	Gln 555	Ser	Phe	Ser	Ser	Gln 560
Pro	Hie	Gle	Val	Glu	Gln	Thr	Aen	T.em	Glr	Glr	Glu	Gln	T.e.v	Glr	Thr

565 570 575 Val Val Gly Thr Tyr His Gly Ser Gln Asp Gln Pro His Gln Val Thr 580 585 Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser 600 Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe 630 635 Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn 645 650 Ser Gly Tyr Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly 660 665

Tyr Gln Arg Gly Cys Arg Lys 675

<210> 13 <211> 2281

5 <212> ADN <213> Canis familiaris

<220> <221> CDS 10 <222> (1)..(2154) <223>

									ggc Gly						48
_	_	_	_					_	gag Glu						96
		 				_			gct Ala			-		-	144
						-	-	-	acc Thr		-	-	-	-	192
		 		_	_				aac Asn 75	_		_		_	240
									aac Asn						288

	caa Gln	_	_	_	_	_	_		_		_	_	_			336
	ttg Leu			-		-		_		_		_	-		_	384
	gat Asp 130															432
_	aga Arg		-		-			_				-				480
_	tat Tyr	_	_	_		_		_	_	_		_		_	_	528
_	caa Gln		_						_		_	_	_	_	_	576
	ttg Leu															624
_	agg Arg 210	_			_		-		-				_		_	672
	ctg Leu									Gly						720
					230					235					240	
	aag Lys	_		_	gag	_	_		_	tca				_	agc	768
Leu act	_	Glu aac	Ile cac	Val 245 cag	gag Glu aat	ggg	Val cta	Phe tgt	Gln 250 gag	tca Ser gaa	Asn gaa	Tyr gag	Phe gca	Asp 255 gcc	agc Ser	768 816
act Thr	Lys	Glu aac Asn	cac His 260	Val 245 cag Gln gaa	gag Glu aat Asn	cad Gla aaa	Val cta Leu gta	Phe tgt Cys 265 gct	Gln 250 gag Glu gaa	tca Ser gaa Glu gct	Asn gaa Glu gag	Tyr gag Glu cct	Phe gca Ala 270 gag	Asp 255 gcc Ala cca	agc Ser tca Ser	
act Thr gca Ala	Lys cac His	Glu aac Asn aca Thr 275	cac His 260 gtt Val	Val 245 cag Gln gaa Glu	gag Glu aat Asn gac Asp	ggg Gly cag Gln	Val cta Leu gta Val 280	tgt Cys 265 gct Ala gtt	Gln 250 gag Glu gaa Glu	tca Ser gaa Glu gct Ala	Asn gaa Glu gag Glu aca	gag Glu cct Pro 285	gca Ala 270 gag Glu	Asp 255 gcc Ala cca Pro	agc Ser tca Ser gca Ala	816
act Thr gca Ala gaa Glu	Lys cac His cct Pro	Glu aac Asn aca Thr 275 tac Tyr	cac His 260 gtt Val act Thr	Val 245 cag Gln gaa Glu gaa Glu	gag Glu aat Asn gac Asp caa Gln	ggg Gly cag Gln agt Ser 295	val cta Leu gta val 280 gaa Glu	tgt Cys 265 gct Ala gtt Val	Gln 250 gag Glu gaa Glu gaa Glu	tca Ser gaa Glu gct Ala tca Ser	Asn gaa Glu gag Glu aca Thr 300	gag Glu cct Pro 285 gag Glu	gca Ala 270 gag Glu tat Tyr	Asp 255 gcc Ala cca Pro gta Val	agc Ser tca Ser gca Ala aat Asn	816 864
act Thr gca Ala gaa Glu aga Arg 305 gta	Cac His Cct Pro gaa Glu 290	Glu aac Asn aca Thr 275 tac Tyr ttt Phe	cac His 260 gtt Val act Thr atg Met	Val 245 cag Gln gaa Glu gaa Glu gca Ala	gag Glu aat Asn gac Asp caa Gln gaa Glu 310	ggg Gly cag Gln agt Ser 295 aca Thr	val cta Leu gta val 280 gaa Glu cag Gln	tgt Cys 265 gct Ala gtt Val ttc Phe	Gln 250 gag Glu gaa Glu agc Ser	tca Ser gaa Glu gct Ala tca Ser agt Ser 315	Asn gaa Glu gag Glu aca Thr 300 ggt Gly	gag Glu cct Pro 285 gag Glu gaa Glu	gca Ala 270 gag Glu tat Tyr aag Lys	Asp 255 gcc Ala cca Pro gta Val gag Glu	agc Ser tca Ser gca Ala aat Asn cag Gln 320 cag	816 864 912

	_	-	-	_	gca Ala	_			-	_	_	_	_	_	-	1104
_		_		_	atg Met	_							_	_		1152
-	_	-		-	aac Asn 390	_			-		-		-		-	1200
_		_		_	aca Thr			_	-	-		_	_	_	-	1248
		-			gaa Glu		-		-					-		1296
_			_	_	aca Thr	_	_		_	_				_		1344
			_		caa Gln		_		_				-			1392
	_			_	gaa Glu 470			_	_		_	_				1440
			_	_	act Thr							_	_	_		1488
_		_	_		cag Gln	_			_					_	_	1536
			-		gca Ala	-					-		-			1584
	_		-		gtt Val			_		-		-		_		1632
			_		cag Gln 550	_	_			_	_			_	_	1680
			-	-	caa Gln		_		-		-	-				1728
					cat His											1776
					cct Pro											1824
agt	cag	ccc	tat	tac	aat	agt	cgt	ggt	gtg	tct	cgt	ggt	ggt	tcc	cgt	1872

Ser	Gln 610	Pro	Tyr	Tyr	Asn	Ser 615	Arg	Gly	Val	Ser	Arg 620	Gly	Gly	Ser	Arg	
											cct Pro					1920
_				-			_				tct Ser					1968
_				_		_		_	_		cgg Arg	_				2016
	_		_			_	_			_	cga Arg				-	2064
_					-		_		_		ggg Gly 700			_		2112
	_		_	_		_			_		gtg Val		taa			2154
tct	gatto	cac a	aggat	tate	gt tt	aaad	ggc	a aaa	acac	cact	ggc	agto	gta d	cata	aatatg	2214
ttad	ccaga	aag a	agtta	attat	c ta	attt	gact	gtt	ttca	atcc	cata	aaga	ca ç	ggact	acaat	2274
tgto	cage															2281
> 14 > 717																

<210> 14 <211> 717 <212> PRT

5

<213> Canis familiaris

<400> 14

Met Pro Ser Ala Thr Ser Leu Ser Gly Ser Gly Ser Lys Ser Ser Gly 1 5 10 15

Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Ala Ala 20 25 30

Gly Ala Ala Gly Ala Gly Ala Gly Ala Ala Ala Pro Ala Ser Gl
n 35 40 45

His Pro Ala Thr Gly Thr Gly Ala Val Gln Thr Glu Ala Met Lys Gln 50 60

Ile Leu Gly Val Ile Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys 65 70 75 80

Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg Leu 85 90 95

10

Asn	Gln	Asp	Gln 100	Leu	Asp	Ala	Val	Ser 105	Lys	Tyr	Gln	Glu	Val 110	Thr	Asn
Asn	Leu	Glu 115	Phe	Ala	Lys	Glu	Leu 120	Gln	Arg	Ser	Phe	Met 125	Ala	Leu	Ser
Gln	Asp 130	Ile	Gln	Lys	Thr	Ile 135	Lys	Lys	Thr	Ala	Arg 140	Arg	Glu	Gln	Leu
Met 145	Arg	G1u	Glu	Ala	Glu 150	Gln	Lys	Arg	Leu	Lys 155	Thr	Val	Leu	Glu	Leu 160
Gln	Tyr	Val	Leu	Asp 165	Lys	Leu	Gly	Asp	As p 170	Glu	Val	Arg	Thr	Asp 175	Leu
Lys	Gln	Gly	Leu 180	Asn	Gly	Val	Pro	Ile 185	Leu	Ser	Glu	Glu	Glu 190	Leu	Ser
Leu	Leu	Asp 195	Glu	Phe	Tyr	Lys	Leu 200	Ala	Asp	Pro	G1u	Arg 205	Asp	Met	Ser
Leu	Arg 210	Leu	Asn	Glu	Gln	Tyr 215	Glu	His	Ala	Ser	11e 220	His	Leu	Trp	Asp
Leu 225	Leu	Glu	Gly	Lys	Glu 230	Lys	Ser	Val	Cys	Gly 235	Thr	Thr	Tyr	Lys	Ala 240
Leu	Lys	Glu	Ile	Val 245	Glu	Arg	V al	Phe	Gln 250	Ser	Asn	Tyr	Phe	A sp 2 55	Ser
Thr	His	Asn	His 260	Gln	Asn	Gly	Leu	Cys 265	Glu	Glu	Glu	Glu	Ala 270	Ala	Ser
Ala	Pro	Thr 275	Val	Glu	Asp	Gln	Val 280	Ala	Glu	Ala	Glu	Pro 285	Glu	Pro	Ala
Glu	G1u 290	Tyr	Thr	Gl u	G1n	Ser 295	Glu	Val	Glu	Ser	Thr 300	G1u	Tyr	Val	Asn
Ar g 305	Gln	Phe	Met	Ala	Glu 310	Thr	Gln	Phe	Ser	Ser 315	Gly	Glu	Lys	Glu	Gln 320
Val	Asp	Glu	Trp	Thr 325	Val	Glu	Thr	Val	Glu 330	Val	Val	Asn	Ser	Leu 335	Gln
Gln	Gln	Pro	Gln 340	Ala	Ala	Ser	Pro	Ser 345	Val	Pro	Glu	Pro	His 350	Ser	Leu
Th∽	Dwc	1707	7.1.A	C1.	N1 o	200	Dws	T 01-	770 1	7.00	B	Cla	7 w.~	vol.	Cl v

		355					360					365			
Asp	Leu 370	Met	Ala	Gln	Met	Gln 375	Gly	Pro	Tyr	Asn	Phe 380	Ile	Gln	Asp	Ser
Met 385	Leu	Asp	Phe	Glu	Asn 390	Gln	Thr	Leu	Asp	Pro 395	Ala	Ile	Va1	Ser	Ala 400
Gln	Pro	Met	Asn	Pro 405	Thr	Gln	Asn	Met	Asp 410	Met	Pro	Gln	Leu	Val 415	Cys
Pro	Pro	Val	His 420	Ser	Glu	Ser	Arg	Leu 425	Ala	Gln	Pro	Asn	Gln 430	Val	Pro
Val	Gln	Pro 435	Glu	Ala	Thr	Gln	Val 440	Pro	Leu	Val	Ser	Ser 445	Thr	Ser	Glu
G 1y	Туr 450	Thr	Ala	Ser	Gln	Pro 455	Leu	Tyr	Gln	Pro	Ser 460	His	Ala	Thr	Glu
Gln 465	Arg	Pro	Gln	Lys	Glu 470	Pro	Ile	Asp	Gln	Ile 475	Gln	Ala	Thr	Ile	Ser 480
Leu	Asn	Thr	Asp	Gln 485	Thr	Thr	Ala	Ser	Ser 490	Ser	Leu	Pro	Ala	Ala 495	Ser
Gln	Pro	Gln	Val 500	Phe	Gln	Ala	Gly	Thr 505	Ser	Lys	Pro	Leu	His 510	Ser	Ser
G1y	Ile	A sn 515	Val	Asn	Ala	Ala	Pro 520	Phe	Gln	Ser	Met	G1n 525	Thr	Val	Phe
Asn	Met 530	Asn	Ala	Pro	Val	Pro 535	Pro	Val	Asn	Glu	Pro 540	Glu	Thr	Leu	Lys
G1n 545	Gln	Asn	G1n	Tyr	Gln 550	Ala	Ser	Туг	Aşn	Gln 555	Ser	Phe	Ser	Ser	G1n 560
Pro	His	Gln	Val	Glu 565	Gln	Thr	Asp	Leu	Gln 570	Gln	Glu	Gln	Leu	Gln 575	Thr
Val	Val	Gly	Thr 580	Tyr	His	Gly	Ser	Gln 585	Asp	Gln	Pro	His	Gln 590	Val	Thr
Gly	Asn	His 595	Gln	Gln	Pro	Pro	Gln 600	Gln	Asn	Thr	Gly	Phe 605	Pro	Arg	Ser
Ser	Gln 610	Pro	Tyr	Tyr	Asn	Ser 615	Arg	Gly	Val	Ser	Arg 620	Gly	Gly	Ser	Arg

Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe 625 630 635 640

		Ar	g G	ly (31y	Tyr	Asp 645	Gly	Tyr	Arg	Pro	Se: 650		e Se	er A	Asn	Thr	Pro 655	Asn
		S€	r G	ly T		Thr 660	Gln	Ser	Gln	Phe	Ser 665		a Pr	o Aı	eg P	Asp	Tyr 670	Ser	Gly
		Ту	r G		Arg 575	Asp	Gly	Tyr	Gln	Gln 680		Ph€	э Lу	s Aı	_	51y 585	Ser	Gly	Gln
		S€		ly E 90	Pro	Arg	Gly	Ala	Pro 695	Arg	Gly	Arç	g Gl	_	L y E 00	ro	Pro	Arg	Pro
		A s		rg (Sly	Met	Pro	Gln 710	Met	Asn	Thr	Glr	71		al A	Asn			
5	<210><211><212><212><213>	3386 ADN		6															
10	<220><221><222><222><223>	CDS (82).		3)															
	<400>	15																	
	<400>		gtete	ege	cccç	rtcca	icc g	attga	acte	g ccg	getet	tgt	cctt	ccto	ccc	gcto	cttt	ctt	60
	<400>	cgc		_			icc g	atg	cct	tcg		acc	agc	cac	ago	gg	a ago	c	60 111
		cgc; ctct	agc	ett aag	acgo teo	jtttc j tec		atg Met 1	cct Pro	tcg Ser	gcc Ala	acc Thr 5	agc Ser ggt	cac His	ago Ser	gg:	a ago y Sei 10	e r	
		cgcq ctct ggc Gly	agc Ser	aag Lys	teg Ser	tcc Ser 15	aa g	atg Met 1 ccg Pro	cct Pro cca Pro	tcg Ser ccg Pro	gcc Ala ccg Pro 20	acc Thr 5 tcg Ser	agc Ser ggt Gly	cac His tcc Ser	ago Ser too Ser	gg: Gl; Gl; 25	a ago y Ser 10 g aat y Asr	e r t	111
		cgcc ctct ggc Gly gag Glu	agc Ser gcg Ala	aag Lys ggg Gly	teg Ser gec Ala 30	gttto g tco : Ser 15 : ggg	aa g	atg Met 1 ccg Pro gcc Ala	cct Pro cca Pro gcg Ala	tcg Ser ccg Pro ccg Pro 35	gcc Ala ccg Pro 20 gct Ala	acc Thr 5 tcg Ser tcc	agc Ser ggt Gly caa Gln	cac His tcc Ser cac His	age Ser tee Ser cee Pro 40	ggg Gly Gly 25 ato	a ago y Ser 10 g aar y Asr g aco t Thr		111 159
		cgcq ctct ggc Gly gag Glu	agc Ser gcg Ala acc Thr	aag Lys ggg Gly ggg Gly 45	teg Ser gcc Ala 30 gct Ala	gttto g tco Ser 15 ggg i Gly gtc	aa g gga Gly gcc Ala	atg Met 1 ccg Pro gcc Ala acc Thr	cct Pro cca Pro gcg Ala gag Glu 50	tcg Ser ccg Pro ccg Pro 35 gcc Ala	gcc Ala ccg Pro 20 gct Ala atg Met	acc Thr 5 tcg Ser tcc Ser aag Lys	agc Ser ggt Gly caa Gln cag Gln	cac His tcc Ser cac His att Ile 55	ago Ser too Ser coo Pro 40 cto Leu	ggg G1 25 atc Men	a ago y Ser 10 g aat y Asr g acc t Thr g gtc y Val		111 159 207
		cgcq ctct ggc Gly gag Glu atc Ile	agc Ser gcg Ala acc Thr gac Asp 60	aag Lys ggg Gly ggg Gly 45 aag Lys	tegs Ser geo Ala 30 get Ala aaa Lys	gttto g tco g Ser 15 ggg i Gly gtc i Val	gga gga Gly Gla Gln	atg Met 1 ccg Pro gcc Ala acc Thr aac Asn 65	cct Pro cca Pro gcg Ala gag Glu 50 ctg Leu	tcg Ser ccg Pro ccg Pro 35 gcc Ala gag Glu	gcc Ala ccg Pro 20 gct Ala atg Met aag Lys	acc Thr 5 tcg Ser tcc Ser aag Lys	agc Ser ggt Gly caa Gln cag Gln aag Lys 70 ctt	cac His tcc Ser cac His att Ile 55 ggc Gly	agc Ser tcc Ser ccc Pro 40 ctc Leu aagg Lys	ggg G1 25 atc Med	a agg y Ser 10 g aat y Asr g gtc y Val t gat u Asr		111 159 207 255

	95	100		105
gca aaa gaa tta Ala Lys Glu Leu 110				_
aaa aca ata aag Lys Thr Ile Lys 125	Lys Thr Ala Ai		cag ctt atg aga Gln Leu Met Arg 135	
gct gaa cag aaa Ala Glu Gln Lys 140	-	-		-
gac aaa cta gga Asp Lys Leu Gly 155		al Arg Thr		
aat gga gtg cca Asn Gly Val Pro			ttg tcg ttg tta Leu Ser Leu Leu	
ttc tac aaa tta Phe Tyr Lys Leu 190				
gag cag tat gaa Glu Gln Tyr Glu 205	His Ala Ser II	-		
			aaa gct cta aag Lys Ala Leu Lys 230	
gtt gag cgt gtt Val Glu Arg Val 235	_	sn Tyr Phe	-	
cag aat ggt ctg Gln Asn Gly Leu	tgt gag gaa ga Cys Glu Glu Gl 255	ag gag gca lu Glu Ala 260	gcc tca gca cct Ala Ser Ala Pro	aca gtt 879 Thr Val 265
gaa gac cag gca Glu Asp Gln Ala 270				
gaa caa aat gag Glu Gln Asn Glu 285	Val Glu Ser Th		-	-
gca gaa aca cag Ala Glu Thr Gln 300	ttc agc agt go Phe Ser Ser Gl 305	gt gaa aag ly Glu Lys	gag cag gta gat Glu Gln Val Asp 310	gat tgg 1023 Asp Trp
		al Asn Ser	ctc cag cag caa Leu Gln Gln Gln 325	
gct gca tct cct Ala Ala Ser Pro			•	
caa gcc gat ccc Gln Ala Asp Pro 350			gta cag gac ctt Val Gln Asp Leu 360	

Gln Me	tg cag et Gln 365							_	_		_	_	-		1215
Glu A	ac cag sn Gln 80			_		-		_		_	-	_	_		1263
_	ca cag la Gln		_	-			_	_	-	_			_		1311
	aa tct lu Ser														1359
-	ca cag hr Gln	_		_	_				_					_	1407
	aa ccc ln Pro 445	_						_		_		_			1455
Lys G	aa ccg lu Pro 60														1503
_	ct aca hr Thr	_						-	_		_				1551
ttc ca	ag gct	aaa	aca	age	222	cct	++-	+					+		1 5 0 0
Phe G	ln Ala			-					-	_				-	1599
aat g		Gly	Thr 495 ttc	Ser	Lys tcc	Pro atg	Leu caa	His 500 acg	Ser gta	Ser	Gly aat	Ile atg	Asn 505 aat	Val gcc	1647
aat go Asn Ai	ln Ala ca gct	Gly cca Pro 510	Thr 495 ttc Phe	Ser caa Gln aat	Lys tcc Ser gaa	Pro atg Met cca	Leu caa Gln 515 gaa	His 500 acg Thr	Ser gta Val tta	Ser ttc Phe	Gly aat Asn cag	atg Met 520	Asn 505 aat Asn	Val gcc Ala cag	
aat go Asn A cca go Pro Va tac ca	ln Ala ca gct la Ala tt cct al Pro	Gly cca Pro 510 cct Pro	Thr 495 ttc Phe gtt Val	Ser caa Gln aat Asn	tcc Ser gaa Glu	atg Met cca Pro 530	caa Gln 515 gaa Glu	His 500 acg Thr act Thr	gta Val tta Leu	Ser ttc Phe aaa Lys	Gly aat Asn cag Gln 535 cct	atg Met 520 caa Gln	Asn 505 aat Asn aat Asn	Val gcc Ala cag Gln	1647
aat go Asn Ai cca gi Pro Va tac ca Tyr Gi 5a	In Ala ca gct la Ala tt cct al Pro 525 ag gcc ln Ala	Gly cca Pro 510 cct Pro agt Ser	Thr 495 ttc Phe gtt Val tac Tyr	caa Gln aat Asn aac Asn	tcc Ser gaa Glu cag Gln 545	atg Met cca Pro 530 agc Ser	caa Gln 515 gaa Glu ttt Phe	His 500 acg Thr act Thr tcc Ser	gta Val tta Leu agt Ser	ttc Phe aaa Lys cag Gln 550 aca	Gly aat Asn cag Gln 535 cct Pro	atg Met 520 caa Gln cac His	Asn 505 aat Asn aat Asn caa Gln	Val gcc Ala cag Gln gta Val act	1647 1695
aat go Asn Ai cca gi Pro Va tac ca Tyr Gi 54 gaa ca Glu Gi 555 tat ca	In Ala ca gct la Ala tt cct al Pro 525 ag gcc ln Ala 40 aa aca	Gly cca Pro 510 cct Pro agt Ser gag Glu tct	Thr 495 ttc Phe gtt Val tac Tyr ctt Leu	caa Gln aat Asn aac Asn cag Gln 560	tcc ser gaa Glu cag Gln 545 caa Gln	Pro atg Met cca Pro 530 agc Ser gaa Glu ccc	caa Gln 515 gaa Glu ttt Phe cag Gln	His 500 acg Thr act Thr tcc Ser ctt Leu	gta Val tta Leu agt Ser caa Gln 565	ttc Phe aaa Lys cag Gln 550 aca Thr	Gly aat Asn cag Gln 535 cct Pro gtg Val	atg Met 520 caa Gln cac His gtt Val	Asn 505 aat Asn caa Gln ggc Gly	Val gcc Ala cag Gln gta Val act Thr 570 cag	1647 1695 1743
aat go Asn Ai cca gf Pro Va tac ca Tyr Gi gaa ca Glu Gi 555 tat ca Tyr H:	In Ala ca gct la Ala tt cct al Pro 525 ag gcc ln Ala 40 aa aca ln Thr	Gly cca Pro 510 cct Pro agt Ser gag Glu tct Ser cag	Thr 495 ttc Phe gtt Val tac Tyr ctt Leu cag Gln 575 cag	caa Gln aat Asn aac Asn cag Gln 560 gac Asp	tcc Ser gaa Glu cag Gln 545 caa Gln cag	Pro atg Met cca Pro 530 agc Ser gaa Glu ccc Pro	Caa Gln 515 gaa Glu ttt Phe cag Gln cat His	His 500 acg Thr act Thr tcc Ser ctt Leu caa Gln 580 cca	gta Val tta Leu agt Ser caa Gln 565 gtg Val	ttc Phe aaa Lys cag Gln 550 aca Thr act	Gly aat Asn cag Gln 535 cct Pro gtg Val ggt Gly aat	atg Met 520 caa Gln cac His gtt Val aac Asn	Asn 505 aat Asn caa Gln ggc Gly cac His 585	Val gcc Ala cag Gln gta Val act Thr 570 cag Gln	1647 1695 1743 1791

ttg atg aat gga tac aga gga cet get aat gga tte aga gga gga tat	1983
Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr 620 625 630	
gat ggt tac cgc cct tca ttc tct act aac act cca aac agt ggt tat Asp Gly Tyr Arg Pro Ser Phe Ser Thr Asn Thr Pro Asn Ser Gly Tyr 635 640 650	2031
aca caa tot caa tto agt got coo ogg gao tao tot ggo tat cag ogg Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg 655 660 665	2079
gat gga tat cag cag aat ttc aag cga ggc tct ggg cag agt gga cca Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro 670 675 680	2127
cgg gga gcc cca cga ggt cgt gga ggg ccc cca aga ccc aac aga ggg Arg Gly Ala Pro Arg Gly Arg Gly Gly Pro Pro Arg Pro Asn Arg Gly 685 690 695	2175
atg ccg caa atg aac act cag caa gtg aat taa tctgattcac aggattatgt Met Pro Gln Met Asn Thr Gln Gln Val Asn 700 705	2228
ttaatcgcca aaaacacact ggccagtgta ccataatatg ttaccagaag agttattatc	2288
tatttgttct ccctttcagg aaacttattg taaagggact gttttcatcc cataaagaca	2348
ggactacaat tgtcagcttt atattacctg gatatggaag gaaactattt ttactctgca	2408
tgttctgtcc taagcgtcat cttgagcctt gcacatgata ctcagattcc tcacccttgc	2468
ttaggagtaa aacataatat actttaatgg ggtgatatct ccatagttat ttgaagtggc	2528
ttggataaag caagactgac ttctgacatt ggataaaatc tacaaatcag ccctagagtc	2588
attcagtggt aactgacaaa actaaaatat ttcccttgaa aggaagatgg aaggagtgga	2648
gtgtggtttg gcagaacaac tgcatttcac agcttttcca cttaaattgg agcactgaac	2708
atttagatge ataccgaatt atgcatggge cetaatcaca cagacaagge tggtgecage	2768
cttaggettg acacggeagt gttcaccete tggecagacg actgtggtte aagacacatg	2828
taaattgctt tttaacagct gatactgtat aagacaaagc caaaatgcaa aattaggctt	2888
tgattggcac ttttcgaaaa atatgcaaca attaagggat ataatctgga tggccgcttc	2948
tgtacttaat gtgaaatatt tagatacctt tcaaacactt aacagtttct ttgacaatga	3008
gttttgtaag gattggtagt aaatatcatt ccttatgacg tacattgtct gtcactaatc	3068
cttggatctt gctgtattgt cacctaaatt ggtacaggta ctgatgaaaa tctaatggat	3128
aatcataaca etettggtta catgttttte etgeageetg aaagttttta taagaaaaag	3188
acatcaaatg cctgctgctg ccaccctttt aaattgctat cttttgaaaa gcaccagtat	3248
gtgttttaga ttgatttccc tattttaggg aaatgacagt cagtagtttc acttctgatg	3308
gtataagcaa acaaataaaa catgtttata aaaaaaaaaa	3368
aaaaaaaaa aaaaaaaa	3386

<210> 16 <211> 708

5

<212> PRT

<213> Bos taurus

<400> 16

Met 1	Pro	Ser	Ala	Thr 5	Ser	His	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly
Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Asn	Glu	Ala	Gly	Ala 30	Gly	Ala
Ala	Ala	Pro 35	Ala	Ser	Gln	His	Pro 40	Met	Thr	Gly	Thr	Gly 45	Ala	Val	Gln
Thr	Glu 50	Ala	Met	Lys	Gln	Ile 55	Leu	Gly	Val	Ile	Asp 60	Lys	Lys	Leu	Arg
As n 65	Leu	Glu	Lys	Lys	Lys 70	Gly	Lys	Leu	Asp	Asp 75	Tyr	Gln	Glu	Arg	Met 80
Asn	Lys	Gly	Glu	Arg 85	Leu	Asn	Gln	Asp	Gln 90	Leu	Asp	Ala	Val	Ser 95	Lys
Tyr	Gln	Glu	Val 100	Thr	Asn	Asn	Leu	Glu 105	Phe	Ala	Lys	Glu	Leu 110	Gln	Arg
Ser	Phe	Met 115	Ala	Leu	Ser	Gln	Asp 120	Ile	Gln	Lys	Thr	Ile 125	Lys	Lys	Thr
Ala	Arg 130	Arg	Glu	Gln	Leu	Met 135	Arg	Glu	Glu	Ala	Glu 140	Gln	Lys	Arg	Leu
Lys 145	Thr	Val	Leu	Glu	Leu 150	Gln	Tyr	Val	Leu	Asp 155	Lys	Leu	Gly	Asp	Asp 160
Glu	Val	Arg	Thr	Asp 165		Lys		Gly			Gly	Val	Pro	Ile 175	
Ser	Glu	Glu	Glu 180	Leu	Ser	Leu	Leu	As p 185	Glu	Phe	Tyr	Lys	Leu 190	Ala	Asp
Pro	Glu	Arg 195	Asp	Met	Ser	Leu	A rg 200	Leu	Asn	Glu	Gln	Tyr 205	Glu	His	Ala
Ser	Ile 210	His	Leu	Trp	Asp	Leu 215	Leu	Glu	Gly	Lys	Glu 220	Lys	Pro	Val	Cys
Gly 225	Thr	Thr	Tyr	Lys	Ala 230	Leu	Lys	Glu	Ile	Val 235	Glu	Arg	Val	Phe	Gln 240

Ser	Asn	Туг	Phe	Asp 245	Ser	Thr	His	Asn	His 250	Gln	Asn	Gly	Leu	Cys 255	Glu
Glu	Glu	Glu	Ala 260	Ala	Ser	Ala	Pro	Thr 265	Val	Glu	Asp	Gln	Ala 270	Ala	Glu
Ala	Glu	Pro 275	Glu	Pro	Val	Glu	Glu 280	Tyr	Thr	Glu	Gln	Asn 285	Glu	Val	Glu
Ser	Thr 290	Glu	Tyr	Val	Asn	A rg 295	Gln	Phe	Met	Ala	Glu 300	Thr	Gln	Phe	Ser
Ser 305	Gly	Glu	Lys	Glu	Gln 310	Val	Asp	Asp	Trp	Thr 315	Val	Glu	Thr	Val	Glu 320
Val	Val	Asn	Ser	Leu 325	Gln	Gln	Gln	Pro	Gln 330	Ala	Ala	Ser	Pro	Ser 335	Val
Pro	Glu	Pro	His 340	Ser	Leu	Thr	Pro	Val 345	Ala	Gln	Ala	Asp	Pro 350	Leu	V al
Arg	Arg	Gln 355	Arg	Val	Gln	Asp	Leu 360	Met	Ala	Gln	Met	Gln 365	Gly	Pro	Tyr
Asn	Phe 370	Ile	Gln	Asp	Ser	Met 375	Leu	Asp	Phe	Glu	A sn 380	Gln	Thr	Leu	Asp
Pro 385	Ala	Ile	Val	Ser	Ala 390	Gln	Pro	Met	Asn	Pro 395	Ala	Gln	Asn	Met	Asp 400
Ile	Pro	Gln	Leu	Val 405	Cys	Pro	Pro	Val	His 410	Ser	Glu	Ser	Arg	Leu 415	Ala
Gln	Pro	Asn	Gln 420	Val	Ser	Val	Gln	Pro 425	Glu	Ala	Thr	Gln	Val 430	Pro	Leu
Val	Ser	Ser 435	Thr	Ser	Glu	Gly	Tyr 440	Thr	Ala	Ser	Gln	Pro 445	Leu	Tyr	Gln
Pro	Ser 450	His	Ala	Thr	Asp	Gln 455	Arg	Pro	Gln	Lys	Glu 460	Pro	Ile	Asp	Gln
11e 465	Gln	Ala	Thr	Ile	Ser 470	Leu	Asn	Thr	Asp	Gln 4 75	Thr	Thr	Ala	Ser	Ser 480
Ser	Leu	Pro	Ala	Ala 485	Ser	Gln	Pro	Gln	Val 490	Phe	Gln	Ala	Gly	Thr 495	Ser

Lys Pro Leu His Ser Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln 500 505 Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro Val Pro Pro Val Asn 515 520 525 Glu Pro Glu Thr Leu Lys Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn 530 535 Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu Gln Thr Glu Leu Gln 545 550 555 Gln Glu Gln Leu Gln Thr Val Val Gly Thr Tyr His Gly Ser Gln Asp 565 Gln Pro His Gln Val Thr Gly Asn His Gln Gln Pro Pro Gln Gln Asn 580 585 590 Thr Gly Phe Pro Arg Ser Asn Gln Pro Tyr Tyr Asn Ser Arg Gly Val 595 600 605 Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser 625 630 635 Phe Ser Thr Asn Thr Pro Asn Ser Gly Tyr Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn 660 665 670 Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly 675 680 Arg Gly Gly Pro Pro Arg Pro Asn Arg Gly Met Pro Gln Met Asn Thr 695 Gln Gln Val Asn 705 <210> 17 <211> 3150 <212> ADN

5

10

<213> Equus caballus

<222> (1)..(1917)

<220> <221> CDS <223>

<400> 17

_			_		_	-			-	_	atg Met				-	48
			_	_	_	_	_	_			aag Lys		_	_	_	96
											agg Arg					144
_	_	_	_		_				_	_	acg Thr 60	-	_			192
_		_	_	_	_	-	-	_		_	tta Leu			-		240
											gaa Glu					288
_	_				_						ctc Leu		_	_		336
_	_	_	_	_				_		_	gac A sp		_		_	384
_	_	_		_			_				gcc Ala 140				_	432
	_	_	_	_		_	_			_	tgt Cys					480
											cag Gln					528
											gag Glu					576
											gaa Glu					624
											gaa Glu 220					672
											agt Ser					720
											gtg Val					768

5

	245	250	255	;
cag cag caa cct Gln Gln Gln Pro 260		_		
ttg act cca gtg Leu Thr Pro Val 275		Pro Leu Val		_
cag gac ctt atg Gln Asp Leu Met 290			_	-
tca atg ctg gat Ser Met Leu Asp 305		-		
gca cag cct atg Ala Gln Pro Met				Val
tgc cct cca gtt Cys Pro Pro Val 340				-
cct gta caa cca Pro Val Gln Pro 355		n Val Pro Leu		
gag ggg tat aca Glu Gly Tyr Thr 370	-	•	-	
gag caa cga ccg Glu Gln Arg Pro 385				
tct tta aat aca Ser Leu Asn Thr				Ala
tct cag cct cag Ser Gln Pro Gln 420				
agt ggg atc aat Ser Gly Ile Asn 435		a Pro Phe Gln		
ttc aac atg aat Phe Asn Met Asn 450		-		
aaa cag caa aat Lys Gln Gln Asn 465				
ccg cct cac caa Pro Pro His Gln				Gln
acg gtg gtt ggt Thr Val Val Gly 500				

acc ggt aac cac cag cag cct ccc cag cag aac act ggg ttt cca cgt Thr Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg 515 520 525	1584
agc agt cag ccc tat tac aac agt cgt ggt gtg tct cgt gga ggc tcc Ser Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser 530 540	1632
cgt ggt gct aga ggc ttg atg aat gga tac agg ggc cct gcc aat gga Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly 545 550 556	1680
ttc aga gga gga tat gat ggt tac cgc cct tcg ttc tct aac act cca Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro 565 570 575	1728
aac age ggt tac aca cag tet cag tte agt get eee egg gae tac tet Asn Ser Gly Tyr Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser 580 585 590	1776
ggc tat cag cgg gat gga tat cag cag aat ttc aag cga ggc tct ggg Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly 595 600 605	1824
cag agt gga ccc cgg gga gcc cca cga ggt cgt gga ggg ccc cca aga Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg Gly Gly Pro Pro Arg 610 615 620	1872
ccc aac aga ggg atg ccg caa atg aac act cag caa gtg aat taa Pro Asn Arg Gly Met Pro Gln Met Asn Thr Gln Gln Val Asn 625 630 635	1917
tctgattcac aggattatct ttaatcgcca aaacacactg gccagtgtac cataatatgt	1977
tetgatteae aggattatet ttaategeea aaacacaetg geeagtgtae cataatatgt taccagaaga gttattatet atttgttete eettteagga aacttattgt aaagggaetg	1977 2037
taccagaaga gttattatct atttgttctc cctttcagga aacttattgt aaagggactg	2037
taccagaaga gttattatct atttgttctc cctttcagga aacttattgt aaagggactg ttttcatccc ataaagacag gactacagtt gtcagcttta tattacctgg atatggaagg	2037 2097
taccagaaga gttattatct atttgttctc cctttcagga aacttattgt aaagggactg ttttcatccc ataaagacag gactacagtt gtcagcttta tattacctgg atatggaagg aaactatttt tactctgcat gttctgtcct aagcgtcatc ttgagccttg cacatgatac	2037 2097 2157
taccagaaga gttattatct atttgttctc cctttcagga aacttattgt aaagggactg ttttcatccc ataaagacag gactacagtt gtcagcttta tattacctgg atatggaagg aaactatttt tactctgcat gttctgtcct aagcgtcatc ttgagccttg cacatgatac tcagattcct ttcccttgct taggagtaaa acataatata ctttatgggg tgataatatc	2037 2097 2157 2217
taccagaaga gttattatct atttgttctc cctttcagga aacttattgt aaagggactg ttttcatccc ataaagacag gactacagtt gtcagcttta tattacctgg atatggaagg aaactatttt tactctgcat gttctgtcct aagcgtcatc ttgagccttg cacatgatac tcagattcct ttcccttgct taggagtaaa acataatata ctttatgggg tgataatatc tccatagtta tttgaagtgg cttggaaaaa gcaagattga cttttgacat tggataaaat	2037 2097 2157 2217 2277
taccagaaga gttattatct atttgttctc cctttcagga aacttattgt aaagggactg ttttcatccc ataaagacag gactacagtt gtcagcttta tattacctgg atatggaagg aaactatttt tactctgcat gttctgtcct aagcgtcatc ttgagccttg cacatgatac tcagattcct ttcccttgct taggagtaaa acataatata ctttatgggg tgataatatc tccatagtta tttgaagtgg cttggaaaaa gcaagattga cttttgacat tggataaaat ctacaaatca gccctagagt ttcatggtca ttcacaaaac taaaatatt cccttgaaag	2037 2097 2157 2217 2277 2337
taccagaaga gttattatct atttgttctc cctttcagga aacttattgt aaagggactg ttttcatccc ataaagacag gactacagtt gtcagcttta tattacctgg atatggaagg aaactatttt tactctgcat gttctgtcct aagcgtcatc ttgagccttg cacatgatac tcagattcct ttcccttgct taggagtaaa acataatata ctttatgggg tgataatatc tccatagtta tttgaagtgg cttggaaaaa gcaagattga cttttgacat tggataaaat ctacaaatca gccctagagt ttcatggtca ttcacaaaac taaaatatt cccttgaaag gaagatggaa ggactggagt gtggtttggc agaacaactg catttcacag cttttcctat	2037 2097 2157 2217 2277 2337 2397
taccagaaga gttattatct atttgttctc cctttcagga aacttattgt aaagggactg ttttcatccc ataaagacag gactacagtt gtcagcttta tattacctgg atatggaagg aaactatttt tactctgcat gttctgtcct aagcgtcatc ttgagccttg cacatgatac tcagattcct ttcccttgct taggagtaaa acataatata ctttatgggg tgataatatc tccatagtta tttgaagtgg cttggaaaaa gcaagattga cttttgacat tggataaaat ctacaaatca gccctagagt ttcatggtca ttcacaaaac taaaatatt cccttgaaag gaagatggaa ggactggagt gtggtttggc agaacaactg catttcacag cttttcctat taaattggag cactgaatgt taaatgcata ccaaattatg catgggccct taatcacaca	2037 2097 2157 2217 2277 2337 2397 2457
taccagaaga gttattatct atttgttctc cctttcagga aacttattgt aaagggactg ttttcatccc ataaagacag gactacagtt gtcagcttta tattacctgg atatggaagg aaactatttt tactctgcat gttctgtcct aagcgtcatc ttgagccttg cacatgatac tcagattcct ttcccttgct taggagtaaa acataatata ctttatgggg tgataatatc tccatagtta tttgaagtgg cttggaaaaa gcaagattga cttttgacat tggataaaat ctacaaatca gccctagagt ttcatggtca ttcacaaaac taaaatatt cccttgaaag gaagatggaa ggactggagt gtggtttggc agaacaactg catttcacag cttttcctat taaattggag cactgaatgt taaatgcata ccaaattatg catgggccct taatcacaca tacatggcta ccagctttga cacagcacta ttcatcctct ggccaaacga ctgtggttaa	2037 2097 2157 2217 2277 2337 2397 2457 2517
taccagaaga gttattatct atttgttctc cctttcagga aacttattgt aaagggactg ttttcatccc ataaagacag gactacagtt gtcagcttta tattacctgg atatggaagg aaactatttt tactctgcat gttctgtcct aagcgtcatc ttgagcettg cacatgatac tcagattcct ttcccttgct taggagtaaa acataatata ctttatgggg tgataatatc tccatagtta tttgaagtgg cttggaaaaa gcaagattga cttttgacat tggataaaat ctacaaaatca gccctagagt ttcatggtca ttcacaaaac taaaatatt cccttgaaag gaagatggaa ggactggagt gtggtttggc agaacaactg cattcacag cttttcctat taaattggag cactgaatgt taaatgcata ccaaaattatg catgggccct taatcacaca tacatggcta ccagctttga cacagcacta ttcatcctct ggccaaacga ctgtggttaa aaacacgtgt aaattgcttt ttaacagctg atactgtaaa agacaaagct aaaatgcaaa	2037 2097 2157 2217 2277 2337 2397 2457 2517
taccagaaga gttattatet atttgttete eettteagga aacttattgt aaagggaetg tttteateee ataaagacag gactacagtt gteagettta tattacetgg atatggaagg aaactatttt tactetgeat gttetgteet aagegteate ttgageettg cacatgatae teagatteet tteeettget taggagtaaa acataatata etttatgggg tgataatate teetaagatta tttgaagtgg ettggaaaaa geaagattga ettttgaeat tggataaaat etacaaaatea geeetagagt tteatggtea tteacaaaace taaaatattt eeettgaaag gaagatggaa ggaetggagt gtggtttgge agaacaactg eattteacag etttteetat taaattggag eactgaatgt taaatgeata eeaaattatg eatgggeeet taatcacaca tacatggeta eeagetttga eacageacta tteateetet ggeeaaaega etgtggttaa aaacaegtgt aaattgett ttaacagetg atactgtaaa agacaaaget aaaatgeaaa attaggett eattggeact tttegaaaaa tatgeaaaa atttgggatg taatetggat	2037 2097 2157 2217 2277 2337 2397 2457 2517 2577 2637
taccagaaga gttattatct atttgttete cettteagga aacttattgt aaagggactg tttteateee ataaagacag gactacagtt gteagettta tattacetgg atatggaagg aaactatttt tactetgeat gttetgteet aagegteate ttgageettg cacatgatae tecagatteet tteeettget taggagtaaa acataatata ettttatgggg tgataatate tecatagtta tttgaagtgg ettggaaaaa geaagattga ettttgacat tggataaaat etacaaaatea geeetagagt tteatggtea tteacaaaace taaaatatt eeettgaaag gaagatggaa ggactggagt gtggtttgge agaacaactg eattteacag etttteetat taaattggag eactgaatgt taaatgeata eeaaattatg eatgggeeet taateacaca tacatggeta eeagetttga eacageacta tteateetet ggeeaaacga etgtggttaa aaacaegtgt aaattgett ttaacagetg atactgtaaa agacaaaget aaaatgeaaa attaggett eattggeact tttegaaaaa tatgeaacaa atttgggatg taatetggat ggeeacttet gtaettaatg tgaagtattt agatacett ttgaacact aacagtttet	2037 2097 2157 2217 2277 2337 2397 2457 2517 2577 2637 2697

taaaaggaaa	agatatcaaa	tgcctgctgc	taccaccett	ttaaattgct	atcttttgaa	2937
aagcaccagt	atgtgtttt	agattgattt	ccctatttta	gggaaatgac	agtcagtagt	2997
ttcagttctg	atggtataag	caaagcaaat	aaaacgtgtt	tataaaagtt	gtatcttgaa	3057
acactggtgt	tcaacagcta	gcagcttctg	tggttcaccc	cctgccttgt	tagtgttacc	3117
catttatggt	tatctccagc	agcaatttct	cta			3150

<210> 18 <211> 638

<212> PRT

5

<213> Equus caballus

<400> 18

Met 1	Glu	Gly	Lys	Leu 5	Asp	Asp	Tyr	Gln	Glu 10	Arg	Met	Asn	Lys	Gly 15	Glu
Arg	Leu	Asn	Gln 20	Asp	Gln	Leu	Asp	Ala 25	Val	Ser	Lys	Tyr	Gln 30	Glu	Val
Thr	Asn	Asn 35	Leu	Glu	Phe	Ala	Lys 40	Glu	Leu	Gln	Arg	Ser 45	Phe	Met	Ala
Leu	Ser 50	Gln	Asp	Ile	Gln	Lys 55	Thr	Ile	Lys	Lys	Thr 60	Ala	Arg	Arg	Glu
Gln 65	Leu	Met	Arg	Glu	Glu 70	Ala	Glu	Gln	Lys	Arg 75	Leu	Lys	Thr	Val	Leu 80
Glu	Leu	Gln	Tyr	Val 85	Leu	Asp	Lys	Leu	Gly 90	Asp	Glu	Glu	Val	Arg 95	Thr
Asp	Leu	Lys	Gln 100	Gly	Leu	Asn	Gly	Val 105	Pro	Ile	Leu	Ser	Glu 110	Glu	Glu
Leu	Ser	Leu 115	Leu	Asp	Glu	Phe	Tyr 120	Lys	Leu	Ala	Asp	Pro 125	Val	Arg	Asp
	130		_			135		-			140				Leu
145	_				Gly 150	-		-		155	-				160
_				165	Ile			_	170					175	
Asp	Ser	Thr	His		His	Gln		Gly	Leu	Суѕ	Glu	Glu	Glu	Glu	Ala

Thr	Ser	Ala 195	Pro	Thr	Ala	Glu	Asp 200	Gln	Gly	Ala	Glu	Ala 205	Glu	Pro	Glu
Pro	Ala 210	Glu	Glu	Tyr	Thr	Glu 215	Gln	Ser	Glu	Val	Glu 220	Ser	Thr	Glu	Tyr
Val 225	Asn	Arg	Gln	Phe	Met 230	Ala	Glu	Ala	Gln	Phe 235	Ser	Gly	G1u	Lys	Glu 240
Gln	Val	Asp	Glu	Trp 245	Thr	Val	Glu	Thr	Val 250	Glu	Val	Val	As n	Ser 255	Leu
Gln	Gln	Gln	Pro 260	Gln	Ala	Ala	Ser	Pro 265	Ser	Val	Pro	Glu	Pro 270	His	Ser
Leu	Thr	Pro 275	Val	Ala	Gln	Ala	Asp 280	Pro	Leu	Val	Arg	Arg 285	Gln	Arg	Val
Gln	Asp 290	Leu	Met	Ala	Gln	Met 295	Gln	Gly	Pro	Tyr	As n 300	Phe	Ile	Gln	Asp
Ser 305	Met	Leu	Asp	Phe	Glu 310	Asn	Gln	Thr	Leu	Asp 315	Pro	Ala	Ile	Val	Ser 320
Ala	Gln	Pro	Met	As n 325	Pro	Ala	Gln	Asn	Met 330	Asp	Met	Pro	Gln	Leu 335	Val
Сув	Pro	Pro	Val 340	His	Ala	Glu	Ser	Arg 345	Leu	Ala	Gln	Pro	As n 350	Gln	Val
Pro	Val	Gln 355	Pro	Glu	Ala	Thr	Gln 360	Val	Pro	Leu	Val	Ser 365	Ser	Thr	Ser
Glu	Gly 370	Tyr	Thr	Ala	Ser	Gln 375	Pro	Leu	Tyr	Gln	Pro 380	Ser	His	Ala	Thr
G1u 385	Gln	Arg	Pro	Gln	Lys 390	Glu	Pro	Thr	Asp	Gln 395	Ile	Gln	Ala	Thr	Ile 400
Ser	Leu	Asn	Thr	Asp 405	Gln	Thr	Thr	Ala	Ser 410	Ser	Ser	Leu	Pro	Ala 415	Ala
Ser	Gln	Pro	Gln 420	Val	Phe	Gln	Ala	Gly 425	Thr	Ser	Lys	Pro	Leu 430	His	Ser
Ser	Gly	Ile 435	Asn	Val	Asn	Ala	Ala 440	Pro	Phe	Gln	Ser	Met 445	Gln	Thr	Val

Phe Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Thr Leu 450 455 Lys Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser 470 Pro Pro His Gln Val Glu Gln Thr Glu Leu Pro Gln Glu Gln Leu Gln 485 490 Thr Val Val Gly Thr Tyr His Ala Ser Gln Asp Gln Pro His Gln Val 500 505 510 Thr Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg 515 520 525 Ser Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser 530 535 Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly 550 545 555 Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro 565 Asn Ser Gly Tyr Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser 580 Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly 595 600 Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg Gly Gly Pro Pro Arg 610 615 Pro Asn Arg Gly Met Pro Gln Met Asn Thr Gln Gln Val Asn 625 630 635

<210> 19 <211> 6181 <212> ADN

5

<213> Mus musculus

<220>
<221> CDS

10 <222> (179)..(2302)
<223>
<400> 19

gctggctggc	taagtccctc	ccgcgccggc	tcttgtccca	ctaggagcag	ctcagageeg	60
cggggacagg	gcgaagcggc	ctgcgcccac	ggagcgcacg	tctctgttct	caacgcagca	120
ccacccttgc	cccctcggc	tgcccactcc	agacgtccag	cggctccgcg	cgcgcacg	178

_		_	_		_		_		_		agc Ser		_	_		2	26
_	_	_	-						_		gcg Ala		_		-	2	74
-		_	_		_		_	_			acc Thr		_	_	_	3	322
		-	_	_	_				_		gac Asp 60	_				3	370
											tac Tyr					4	118
			_					_	-	_	gat Asp	_	_		_	4	166
											aag Lys					5	14
-		-	-		-		-		_		aca Thr		_	_		5	62
-	_		-			_	_	-	_	_	gaa Glu 140	_	_	_		6	10
		_				_		_	_	_	aag Lys	_		_	_	6	58
_		_		_	_				_	_	gga Gly				_	7	06
											tac Tyr					7	54
		_	-	_	_						cag Gln		_		-	8	102
											gaa Glu 220					8	50
											gag Glu					8	98
				-	-						aat Asn		-	_		9	46
gag	gaa	gag	gcg	gct	tca	gcg	ccc	aca	gtg	gag	gac	cag	gta	gct	gaa	9	94

Glu	Glu	Glu	Ala 260	Ala	Ser	Ala	Pro	Thr 265	Val	Glu	Asp	Gln	Val 270	Ala	Glu	
-	_					_	_				caa Gln	_	_	_	-	1042
				_			_		_	_	gaa Glu 300		_		_	1090
											gtt Val					1138
-	-				_	_			_	-	gcg Ala				-	1186
											tca Ser					1234
											atg Met					1282
			_	_		_	_	_		_	aat Asn 380	-	_		-	1330
	-		_		-	_		_			acc Thr	_		_	-	1378
_		-	_	_	_		_	-			gaa Glu		-		-	1426
				_		_			_	_	aca Thr	_	_		_	1474
											cag Gln					1522
											gag Glu 460					1570
	_	-				_			_	_	act Thr		_			1618
											cag Gln					1666
		_		_	_				_		gca Ala	-			_	1714
	-		_				_		_		gtc Val			-		1762

		515					520					525				
	cca Pro 530															1810
_	agt Ser			_	_					_						1858
	gac Asp		-		-	-	_							-	-	1906
_	cct Pro								-				-	-		1954
	ggc Gly			-	_	_	_					_	_		-	2002
	cga Arg 610				_		_	_		_	_					2050
	cct Pro	_				_				_			_			2098
	tcg Ser					_				_		_			-	2146
	cgg Arg	_					_		_			_	_			2194
	cga Arg															2242
	ggg Gly 690															2290
	gtg Val		taa	tgtq	gatao	cac a	aggat	tato	gt tt	aato	ogoda	a aaa	aacao	cact		2342
ggcd	agto	gta d	cata	atat	gt	acca	agaaq	g agt	tatt	atc	tatt	tgti	cat o	cact	ttcagg	2402
aaad	cttat	tg t	aaaq	gggad	et gt	tttc	catco	cat	aaaq	jaca	ggad	etge	aat t	tgtca	agcttt	2462
acat	taco	ctg (gatat	ggaa	ıg ga	aact	attt	tta	attet	gca	tgti	ctg	cc t	taago	cgtcat	2522
ctto	gagco	ett ç	gcaca	acaat	a ca	atad	ctcaç	g att	ccto	cacc	ctto	getta	agg a	agtaa	aaacat	2582
tata	atact	ta t	ggg	gtgat	a at	tatct	ccat	agt	tagt	tga	agto	ggati	agg a	aaaa	aaaatg	2642
caaq	gatto	gaa t	tttt	gaco	et to	gata	aaaat	cta	acaat	cag	acat	agaa	act a	attca	agtggt	2702
aatt	gaca	aaa q	gttaa	agca	it t	tctt	tgaa	a agg	gaaga	ıtgg	aagg	gagto	gga q	gtgtq	ggttta	2762
gcaz	aact	ac s	attte	atac	c tt	tacc	atta	aat	tace	agea	ccc	cao	att :	aaaa	catac	2822

caaattatgc	atgggtcctt	actcacacaa	gtgaggctgg	ctaccagcct	tgacatagca	2882
ctcactagtc	ttctggccaa	acgactgtga	ttaaaacaca	tgtaaattgc	tctttagtag	2942
tggatactgt	gtaagacaaa	gccaaattgc	aaatcaggct	ttgattggct	cttctggaaa	3002
atatgcatca	aatatggggg	ataatctgga	tgggctgctg	ctgtgctcaa	tgtgaactat	3062
ttagatacct	ttggaacact	taacagtttc	tctgaacaat	gacttacatg	gggattggtc	3122
ctgtttgtca	ttcctcacca	taattgcatt	gtcatcacta	atccttggat	cttgctgtat	3182
tgttactcaa	attggtaata	ggtactgatg	gaaatcgcta	atggatggat	aatcataaca	3242
cttttggtca	catgttttct	cctgcagcct	gaaagttctt	aaagaaaaag	atatcaaatg	3302
cctgctgcta	ccaccctttt	aaattgctat	ctttagaaaa	gcaccggtat	gtgttttaga	3362
ttcatttccc	tgttttaggg	aaatgacagg	cagtagtttc	agttctgatg	gcaaaacaaa	3422
taaaaacatg	tttctaaaag	ttgtatcttg	aaacactggt	gttcaacagc	tagcagctaa	3482
agtaattcaa	cccatgcatt	gctagtgtca	cagcctttgg	ttatgtctag	tagctgtttc	3542
tgaagtattt	tcatttatct	tttgtcaaat	ttaaccctgt	ttgaattctc	teettteete	3602
aaggagacac	ttatgttcaa	agtgttgatt	ctttgcctta	ggtgcataga	gagtagacag	3662
tttggagatg	gaaaggttag	cagtgactta	gccatatgtt	ctgtgttgga	atttgtgcta	3722
gcagtttgag	cactagetet	gcgtgcctat	gaactgaatg	ctgcttgtcc	cattccattt	3782
tatgtcatgg	agaaataatt	ccacttggta	acacaaaggc	taagttaatg	ttattttctg	3842
tacagaaatt	aaattttact	tttagccttt	tgtaaacttt	tttttttt	ttccaagccg	3902
gtatcagcta	ctcaaaacaa	ttctcagata	ttcatcatta	gacaactgga	gtttttgctg	3962
gttttgtagc	ctactaaaac	tgctgaggct	gttgaacatt	ccacattcaa	aagttttgta	4022
gggtggtgga	taatggggaa	gcttcaatgt	ttattttaaa	ataaataaaa	taagttcttg	4082
acttttctca	tgtgtggtta	tggtacatca	tattggaagg	gttatctgtt	tacttttgcc	4142
aagactattt	tgccagcacc	tacacttgtg	tgctttaaaa	gacaactacc	tgggatgtac	4202
cacaaccata	tgttaattgt	attttattgg	gatggataaa	atgtttgtgg	tttattggat	4262
aatccctaga	tggtgtgtta	cgtgtgtaga	atataatttt	atgatagtaa	gaaagcaaaa	4322
ttgaagaaaa	taagtttagt	attgaatttg	agttctgaag	tgaattcagg	gaatgtctca	4382
cgtttcgggc	ttctacccaa	agtgtagggc	agaaggtgta	aaagttgttt	gtagtttgac	4442
ttgtttattt	tttaagttgc	ttattccttt	caacagcaac	atatcattag	ctgtcattct	4502
accattgcag	ttctagtgag	ttttaacgtc	tgcattcaag	actgttttaa	aagcaacctc	4562
actggacaga	gaactgctaa	agtettttee	ttaagatctg	agtetttgtt	actcagtatc	4622
ttctataata	tgcaaatgct	tgtctagagg	cagaagacct	tttgtttggt	caagtgtgta	4682
ttttaccaga	gtacagggaa	ctgatggtcc	tacatgtctc	ttagtgtagt	aagactataa	4742

aatcttttgt	acatgcacaa	ttcacagtat	gtttagatac	cacgtgtata	atgececece	4802
ctcccccagg	tagcatgcca	ttgatgactt	tttgcttagg	gccattttat	taccagggcc	4862
ttaatattcc	taaaaagatg	atttttttc	atcetttete	ctcttttgat	cattgtatct	4922
tgatattaaa	aacatgacct	tccaatgatt	gtagtaaatt	aacttctata	gttcttttgt	4982
ctctatatgt	attcatatat	atgctattgt	atagagactt	caaggagaca	tggagatgca	5042
tgcttattct	caggttcatt	cactaaggtg	cttggcagac	aaccagtttc	taagtgcaga	5102
atgtagttaa	gcagcttcat	atatgtgcca	ggcaatttgt	tttgttaaat	tttcatctac	5162
ttaaggaaat	agggtattgt	agcttaggct	gatcataccc	ttcatttcaa	ccttaagctc	5222
tcaacctgca	tecatecgae	ttgagctatt	aagtacttta	gttttatcga	gtataagtta	5282
acagaaaaag	taaattaagc	tttgccttta	ctattttgaa	tttatataca	ttctggaaaa	5342
acttagaaac	tgttgtatat	ttcattagat	taaattatat	gaaaatgtga	ttgtttatag	5402
caaagcctgt	gagttgcata	caccctaagg	aaaactcctt	aagtgctcct	tgaagagaga	5462
agaaacaatt	ctgggtctgg	tctttttaag	aacaaagcta	gactactgta	tgttagcact	5522
gtacattaat	agtctgttgt	gaagcttgag	cagtttcctg	catagccttg	atccttcacc	5582
gttggcattg	aaaatagcag	tatccctgat	gtacttaaaa	cttaaagtca	ggttttggta	5642
tatttatttg	taagtcttaa	tttcctctaa	atactatatc	tctttagcga	gacaacctga	5702
aatttattag	cacatttggg	tatctcttgc	ttggcattat	ggccagtgtt	aactattcag	5762
tggtgaaaaa	attacccctc	aagacactgg	agtgacccca	gatgtgtgta	gtaagtggca	5822
tggttcaact	gtgtggttaa	tgataaatat	atgacttagt	cggtatgatc	tggaaagact	5882
tgattgaaag	ataattcagc	tgacataagg	atgagtgagg	agtggcaaac	tggataaaag	5942
agtcaagaga	cctgtattcc	agtgactcct	gttttgttta	agcattagca	agatctgtct	6002
ggggaaactg	gatagggcag	ttttcttcca	tgtttagttt	ttgtctcaac	atttggaagc	6062
tattgaaggt	tttaaaatgg	tgtgtattgt	ttttttttgg	aaaaaaaata	gccagaatag	6122
tgggtcatct	aataaaactg	ccatttaaaa	gatcaaaaaa	aaaaaaaaa	aaaaaaaa	6181

<210> 20

<211> 707

<212> PRT

<213> Mus musculus

<400> 20

Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser Ser Gly 1 5 10 15

Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Gly Ala 20 25 30

Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr Gly Ala Val Gln

5

		35					40					45			
Thr	Glu 50	Ala	Met	Lys	Gln	Ile 55	Leu	Gly	Val	Ile	Asp 60	Lys	ГĀЗ	Leu	Arg
As n 65	Leu	Glu	Lys	Lys	Lys 70	Gly	Lys	Leu	Asp	Asp 75	Tyr	Gln	Glu	Arg	Met 80
Asn	Lys	Gly	G1u	Arg 85	Leu	Asn	Gln	Asp	Gln 90	Leu	Asp	Ala	Val	Ser 95	Lys
Tyr	Gln	Glu	Val 100	Thr	Asn	Asn	Leu	Glu 105	Phe	Ala	Lys	Glu	Leu 110	Gln	Arg
Ser	Phe	Met 115	Ala	Leu	Ser	Gln	Asp 120	Ile	Gln	Lys	Thr	I1e 125	Lys	Lys	Thr
Ala	Arg 130	Arg	G1u	Gln	Leu	Met 135	Arg	Glu	Glu	Ala	Glu 140	Gln	ГÀЗ	Arg	Leu
Lys 145	Thr	Val	Leu	Glu	Leu 150	Gln	Tyr	Val	Leu	Asp 155	Lys	Leu	Gly	Asp	Asp 160
Asp	Val	Arg	Thr	Asp 165	Leu	Lys	Gln	Gly	Leu 170	Ser	Gly	Val	Pro	Ile 175	Leu
Ser	Glu	Glu	Glu 180	Leu	Ser	Leu	Leu	Asp 185	Glu	Phe	Tyr	Lys	Leu 190	Val	Asp
Pro	Glu	Arg 195	Asp	Met	Ser	Leu	Arg 200	Leu	Asn	Glu	Gln	Tyr 205	Glu	His	Ala
Ser	Ile 210	His	Leu	Trp	Asp	Leu 215	Leu	Glu	Gly	Lys	Glu 220	Lys	Pro	Val	Cys
Gly 225	Thr	Thr	Tyr	Lys	Ala 230	Leu	Lys	Glu	Ile	Val 235	Glu	Arg	Val	Phe	Gln 240
Ser	Asn	Tyr	Phe	Asp 245	Ser	Thr	His	Asn	His 250	Gln	Asn	G1y	Leu	Cys 255	Glu
Glu	Glu	Glu	Ala 260	Ala	Ser	Ala	Pro	Thr 265	Val	Glu	Asp	Gln	Val 270	Ala	Glu
Ala	Glu	Pro 275	G1u	Pro	Ala	Glu	Glu 280	Tyr	Thr	Glu	Gln	Ser 285	Glu	Val	Glu
Ser	Thr 290	Glu	Tyr	Val	Asn	Arg 295	Gln	Phe	Met	Ala	Glu 300	Thr	Gln	Phe	Ser

Ser 305	Gly	Glu	Lys	Glu	Gln 310	Val	Asp	Glu	Trp	Thr 315	Val	Glu	Thr	Val	Glu 320
Val	Val	Asn	Ser	Leu 325	Gln	Gln	Gln	Pro	G1n 330	Ala	Ala	Ser	Pro	Ser 335	Val
Pro	Glu	Pro	His 340	Ser	Leu	Thr	Pro	Val 345	Ala	Gln	Ser	Asp	Pro 350	Leu	Val
Arg	Arg	Gln 355	Arg	Val	Gln	Asp	Leu 360	Met	Ala	Gln	Met	Gln 365	Gly	Pro	Tyr
Asn	Phe 370	Ile	Gln	Asp	Ser	Met 375	Leu	Asp	Phe	Glu	Asn 380	Gln	Thr	Leu	Asp
Pro 385	Ala	Ile	Val	Ser	Ala 390	Gln	Pro	Met	Asn	Pro 395	Thr	Gln	Asn	Met	Asp 400
Met	Pro	Gln	Leu	Val 405	Cys	Pro	Gln	Val	His 410	Ser	Glu	Ser	Arg	Leu 415	Ala
Gln	Ser	Asn	Gln 420	Val	Pro	Val	Gln	Pro 425	Glu	Ala	Thr	Gln	Val 430	Pro	Leu
Val	Ser	Ser 435	Thr	Ser	Glu	Gly	Tyr 440	Thr	Ala	Ser	Gln	Pro 445	Leu	Tyr	Gln
Pro	Ser 450	His	Ala	Thr	Glu	Gln 4 55	Arg	Pro	Gln	Lys	Glu 460	Pro	Met	Asp	Gln
11e 465	Gln	Ala	Thr	Ile	Ser 470	Leu	Asn	Thr	Asp	Gln 4 75	Thr	Thr	Ala	Ser	Ser 480
Ser	Leu	Pro	Ala	Ala 485	Ser	Gln	Pro	Gln	Val 490	Phe	Gln	Ala	G1y	Thr 495	Ser
Lys	Pro	Leu	His 500	Ser	Ser	Gly	Ile	As n 505	Val	Asn	Ala	Ala	Pro 510	Phe	Gln
Ser	Met	Gln 515	Thr	Val	Phę	Asn	Met 520	Asn	Ala	Pro	Val	Pro 525	Pro	Ala	Asn
Glu	Pro 530	Glu	Thr	Leu	Lys	Gln 535	Gln	Ser	Gln	Tyr	Gln 540	Ala	Thr	Tyr	Asn
Gln 545	Ser	Phe	Ser	Ser	Gln 550	Pro	His	Gln	Val	Glu 555	Gln	Thr	Glu	Leu	Gln 560

Gln Asp Gln Leu Gln Thr Val Val Gly Thr Tyr His Gly Ser Gln Asp 565 570 575

Gln Pro His Gln Val Pro Gly Asn His Gln Gln Pro Pro Gln Gln Asn 580 585 590

Thr Gly Phe Pro Arg Ser Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val 595 600 605

Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg 610 620

Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser 625 635 635

Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln Ser Gln Phe Thr Ala 645 650 655

Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe 660 665 670

Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg 675 680 685

Gly Gly Pro Pro Arg Pro Asn Arg Gly Met Pro Gln Met Asn Thr Gln 690 695 700

Gln Val Asn 705

<210> 21

<211> 6141

5 <212> ADN

<213> Mus musculus

<220>

<221> CDS

10 <222> (139)..(2262)

<223>

<400> 21

cccaccgcgc	gcgcgcgt	ag cogoct	geee ge	cgcccgc	tgcgcgtttt	gtecegegte	60
teteceegte	cgtctcct	ga cttgct	ggte tte	gteettee	ctcccgcttt	tttcctctcc	120
tetetteteg	gtctaaag	_			cac agc gga His Ser Gly		171
-					tcc tcc ggg Ser Ser Gly 25		219
aca aca ac	e ggg gga	act aca	cca act	tct cag	cat ccg gca	acc ggc	267

Ala	Ala	Ala 30	Gly	Ala	Ala	Ala	Pro 35	Ala	Ser	Gln	His	Pro 40	Ala	Thr	Gly	
					acc Thr											315
_	_				aac Asn 65	_		_		_				_	_	363
	_	_	_	_	aat Asn			_					_	_	_	411
-	_	_		_	tac Tyr	_	_	_				_			_	459
_	_		_		agt Ser		_	_		_		_		_		507
		-	-		gca Ala	-		-	-		-	-	-	-	-	555
					aaa Lys 145											603
_	_		_	-	gat Asp		_		-	_				_	_	651
					tct Ser											699
					cct Pro											747
					tca Ser											795
					gga Gly 225											843
	_	-		_	tca Ser				_	_						891
					gag Glu											939
					gct Ala											987
					tca Ser											1035

	285					290					295					
	aca Thr															1083
-	gaa Glu		-		-	_				_	_			_	_	1131
	tcc Ser			-						_				-	-	1179
	gat Asp															1227
_	caa Gln 365							_	_		_	_	_		_	1275
	cag Gln	_		-		-		-		_	_		_			1323
	cag Gln		_	_	_		_	_	_	_		_	_			1371
-	tct Ser	-		-					_		-			-	-	1419
	cag Gln	_		_	_				_					_		1467
_	ccc Pro 445	_		_				_	_		_		_	_		1515
	cca Pro	_	_	_		_	_				_			_	-	1563
	aca Thr	_						_	-		_					1611
_	gct Ala			_			_		_	_				_		1659
-	gct Ala			_		_		_				_		-		1707
_	cct Pro 525		_		_		_	_				_	_	_		1755
-	gcc Ala				_	-			-	_					-	1803

caa aca gag ctt caa caa gac caa ctg caa acg gtg gtt ggc act tac Gln Thr Glu Leu Gln Gln Asp Gln Leu Gln Thr Val Val Gly Thr Tyr 560 565 570	1851
cat gga tcc cag gac cag cct cat caa gtg cct ggt aac cac cag caa His Gly Ser Gln Asp Gln Pro His Gln Val Pro Gly Asn His Gln Gln 575 580 585	1899
ccc cca cag cag aac act ggc ttt cca cgt agc agt cag cct tat tac Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser Ser Gln Pro Tyr Tyr 590 595 600	1947
Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu 605 610 615	1995
atg aat gga tac agg ggc cct gcc aat gga ttt aga gga gga tat gat Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp 620 625 630 635	2043
ggt tac cgc cct tca ttc tcg aac act cca aac agt ggt tat tca cag Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln 640 645 650	2091
tct cag ttc act gct ccc cgg gac tac tct ggt tac cag cgg gat gga Ser Gln Phe Thr Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly 655 660 665	2139
tat cag cag aat ttc aag cga ggc tct ggg cag agt gga cca cgg gga Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly 670 675 680	2187
gee eea ega ggt egt gga ggg eee eea aga eee aac aga ggg atg eeg Ala Pro Arg Gly Arg Gly Gly Pro Pro Arg Pro Asn Arg Gly Met Pro 685 690 695	2235
caa atg aac act cag caa gtg aat taa tgtgatacac aggattatgt Gln Met Asn Thr Gln Gln Val Asn 700 705	2282
ttaatcgcca aaaacacact ggccagtgta ccataatatg ttaccagaag agttattatc	2342
tatttgttct ccctttcagg aaacttattg taaagggact gttttcatcc cataaagaca	2402
ggactgcaat tgtcagcttt acattacctg gatatggaag gaaactattt ttattctgca	2462
tgttctgtcc taagcgtcat cttgagcctt gcacacaata caatactcag attcctcacc	2522
cttgcttagg agtaaaacat tatatactta tggggtgata atatctccat agttagttga	2582
agtggcttgg aaaaaaatg caagattgaa tttttgacct tggataaaat ctacaatcag	2642
ccctagaact attcagtggt aattgacaaa gttaaagcat tttctttgaa aggaagatgg	2702
aaggagtgga gtgtggttta gcaaaactgc attteatagc ttteecatta aattggagca	2762
ccgacagatt aaaagcatac caaattatgc atgggteett actcacacaa gtgaggetgg	2822
ctaccageet tgacatagea eteactagte ttetggeeaa acgaetgtga ttaaaacaca	2882
tgtaaattgc tctttagtag tggatactgt gtaagacaaa gccaaattgc aaatcaggct	2942
ttgattggct cttctggaaa atatgcatca aatatggggg ataatctgga tgggctgctg	3002

ctgtgctca	a tgtgaactat	ttagatacct	ttggaacact	taacagtttc	tctgaacaat	3062
gacttacate	g gggattggtc	ctgtttgtca	ttcctcacca	taattgcatt	gtcatcacta	3122
atccttgga	t cttgctgtat	tgttactcaa	attggtaata	ggtactgatg	gaaatcgcta	3182
atggatgga	t aatcataaca	cttttggtca	catgttttct	cctgcagcct	gaaagttett	3242
aaagaaaaa	g atatcaaatg	cctgctgcta	ccaccctttt	aaattgctat	ctttagaaaa	3302
gcaccggta	t gtgttttaga	ttcatttccc	tgttttaggg	aaatgacagg	cagtagtttc	3362
agttctgate	g gcaaaacaaa	taaaaacatg	tttctaaaag	ttgtatcttg	aaacactggt	3422
gttcaacag	c tagcagctaa	agtaattcaa	cccatgcatt	gctagtgtca	cagcctttgg	3482
ttatgtcta	g tagetgttte	tgaagtattt	tcatttatct	tttgtcaaat	ttaaccctgt	3542
ttgaattct	c teettteete	aaggagacac	ttatgttcaa	agtgttgatt	ctttgcctta	3602
ggtgcatag	a gagtagacag	tttggagatg	gaaaggttag	cagtgactta	gccatatgtt	3662
ctgtgttgg	a atttgtgcta	gcagtttgag	cactagetet	gcgtgcctat	gaactgaatg	3722
ctgcttgtc	c cattccattt	tatgtcatgg	agaaataatt	ccacttggta	acacaaaggc	3782
taagttaat	g ttattttctg	tacagaaatt	aaattttact	tttagccttt	tgtaaacttt	3842
tttttttt	t ttccaagccg	gtatcagcta	ctcaaaacaa	ttctcagata	ttcatcatta	3902
gacaactgg	a gtttttgctg	gttttgtagc	ctactaaaac	tgctgaggct	gttgaacatt	3962
ccacattca	a aagttttgta	gggtggtgga	taatggggaa	gcttcaatgt	ttattttaaa	4022
ataaataaa	a taagttcttg	acttttctca	tgtgtggtta	tggtacatca	tattggaagg	4082
gttatctgt [.]	t tacttttgcc	aagactattt	tgccagcacc	tacacttgtg	tgctttaaaa	4142
gacaactac	c tgggatgtac	cacaaccata	tgttaattgt	attttattgg	gatggataaa	4202
atgtttgtg	g tttattggat	aatccctaga	tggtgtgtta	cgtgtgtaga	atataatttt	4262
atgatagta	a gaaagcaaaa	ttgaagaaaa	taagtttagt	attgaatttg	agttctgaag	4322
tgaattcag	g gaatgtetea	cgtttcgggc	ttctacccaa	agtgtagggc	agaaggtgta	4382
aaagttgtt	t gtagtttgac	ttgtttattt	tttaagttgc	ttattccttt	caacagcaac	4442
atatcatta	g ctgtcattct	accattgcag	ttctagtgag	ttttaacgtc	tgcattcaag	4502
actgtttta	a aagcaacctc	actggacaga	gaactgctaa	agtottttcc	ttaagatctg	4562
agtctttgt:	t actcagtatc	ttctataata	tgcaaatgct	tgtctagagg	cagaagacct	4622
tttgtttgg	t caagtgtgta	ttttaccaga	gtacagggaa	ctgatggtcc	tacatgtete	4682
ttagtgtag	t aagactataa	aatcttttgt	acatgcacaa	ttcacagtat	gtttagatac	4742
cacgtgtat	a atgececce	ctcccccagg	tagcatgcca	ttgatgactt	tttgcttagg	4802
gccatttta	t taccagggcc	ttaatattcc	taaaaagatg	atttttttc	atcctttctc	4862
ctcttttga	t cattgtatct	tgatattaaa	aacatgacct	tccaatgatt	gtagtaaatt	4922
aacttctat	a gttcttttgt	ctctatatgt	attcatatat	atgctattgt	atagagactt	4982

caaggagaca	tggagatgca	tgcttattct	caggttcatt	cactaaggtg	cttggcagac	5042
aaccagtttc	taagtgcaga	atgtagttaa	gcagcttcat	atatgtgcca	ggcaatttgt	5102
tttgttaaat	tttcatctac	ttaaggaaat	agggtattgt	agcttaggct	gatcataccc	5162
ttcatttcaa	ccttaagctc	tcaacctgca	tecateegae	ttgagctatt	aagtacttta	5222
gttttatcga	gtataagtta	acagaaaaag	taaattaagc	tttgccttta	ctattttgaa	5282
tttatataca	ttctggaaaa	acttagaaac	tgttgtatat	ttcattagat	taaattatat	5342
gaaaatgtga	ttgtttatag	caaagcctgt	gagttgcata	caccctaagg	aaaactcctt	5402
aagtgctcct	tgaagagaga	agaaacaatt	ctgggtctgg	tctttttaag	aacaaagcta	5462
gactactgta	tgttagcact	gtacattaat	agtctgttgt	gaagettgag	cagtttcctg	5522
catageettg	atccttcacc	gttggcattg	aaaatagcag	tatccctgat	gtacttaaaa	5582
cttaaagtca	ggttttggta	tatttatttg	taagtottaa	tttcctctaa	atactatatc	5642
tctttagcga	gacaacctga	aatttattag	cacatttggg	tatctcttgc	ttggcattat	5702
ggccagtgtt	aactattcag	tggtgaaaaa	attacccctc	aagacactgg	agtgacccca	5762
gatgtgtgta	gtaagtggca	tggttcaact	gtgtggttaa	tgataaatat	atgacttagt	5822
cggtatgatc	tggaaagact	tgattgaaag	ataattcagc	tgacataagg	atgagtgagg	5882
agtggcaaac	tggataaaag	agtcaagaga	cctgtattcc	agtgactcct	gttttgttta	5942
agcattagca	agatetgtet	ggggaaactg	gatagggcag	ttttcttcca	tgtttagttt	6002
ttgtctcaac	atttggaagc	tattgaaggt	tttaaaatgg	tgtgtattgt	ttttttttgg	6062
gggggggtg	gccagaatag	tgggtcatct	aataaaactg	ccatttaaaa	gatcaaaaaa	6122
aaaaaaaaa	aaaaaaaaa					6141

<210> 22

<211> 707

<212> PRT

<213> Mus musculus

<400> 22

Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser Ser Gly 1 10 15

Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Gly Ala 20 25 30

Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr Gly Ala Val Gln 35 40 45

Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp Lys Lys Leu Arg 50 55 60

10

5

Asn 65	Leu	Glu	Lys	Lys	Lys 70	Gly	Lys	Leu	Asp	As p 75	Tyr	Gln	Glu	Arg	Met 80
Asn	Lys	Gly	Glu	Arg 85	Leu	Asn	Gln	Asp	Gln 90	Leu	Asp	Ala	Val	Ser 95	Lys
Tyr	Gln	Glu	Val 100	Thr	Asn	Asn	Leu	Glu 105	Phe	Ala	Lys	Glu	Le u 110	Gln	Arg
Ser	Phe	Met 115	Ala	Leu	Ser	Gln	Asp 120	Ile	Gln	Lys	Thr	Ile 125	Lys	Lys	Thr
Ala	Arg 130	Arg	Glu	Gln	Leu	Met 135	Arg	Glu	Glu	Ala	Glu 140	Gln	Lys	Arg	Leu
Lys 145	Thr	Val	Leu	Glu	Leu 150	Gln	Tyr	Val	Leu	Asp 155	Lys	Leu	G1y	Asp	Asp 160
Asp	Val	Arg	Thr	Asp 165	Leu	Lys	Gln	Gly	Leu 170	Ser	Gly	Val	Pro	Ile 175	Leu
Ser	Glu	Glu	Glu 180	Leu	Ser	Leu	Leu	Asp 185	Glu	Phe	Tyr	Lys	Leu 190	Val	Asp
Pro	Glu	Arg 195	Asp	Met	Ser	Leu	Arg 200	Leu	Asn	Glu	Gln	Tyr 205	Glu	His	Ala
Ser	Ile 210	His	Leu	Trp	Asp	Leu 215	Leu	Glu	Gly	Lys	Glu 220	Lys	Pro	Val	Cys
Gly 225	Thr	Thr	Tyr	Lys	Ala 230	Leu	Lys	Glu	Ile	Val 235	Glu	Arg	Val	Phe	Gln 240
Ser	Asn	Tyr	Phe	Asp 245	Ser	Thr	His	Asn	His 250	Gln	Asn	Gly	Leu	Cys 255	Glu
Glu	Glu	Glu	Ala 260	Ala	Ser	Ala	Pro	Thr 265	Val	Glu	Asp	Gln	Val 270	Ala	Glu
Ala	Glu	Pro 275	Glu	Pro	Ala	Glu	Glu 280	Tyr	Thr	Glu	Gln	Ser 285	Glu	Val	Glu
Ser	Thr 290	Glu	Tyr	Val	Asn	Arg 295	Gln	Phe	Met	Ala	Glu 300	Thr	Gln	Phe	Ser
Ser 305	Gly	Glu	Lys	Glu	Gln 310	Val	Asp	Glu	Trp	Thr 315	Val	Glu	Thr	Val	Glu 320
To D	37 a 1	Aor	Car	T.A.r	G1 ro	Gl v	G1n	Dro	G1 n	Ale	210	Sar	Dro	207	7/o 1

				325					330					335	
Pro	Glu	Pro	His 340	Ser	Leu	Thr	Pro	Val 345	Ala	Gln	Ser	Asp	Pro 350	Leu	Val
Arg	Arg	Gln 355	Arg	Val	Gln	Asp	Leu 360	Met	Ala	Gln	Met	Gln 365	Gly	Pro	Tyr
Asn	Phe 370	Ile	Gln	Asp	Ser	Me t 375	Leu	Asp	Phe	Glu	As n 380	Gln	Thr	Leu	Asp
Pro 385	Ala	Ile	Val	Ser	Ala 390	Gln	Pro	Met	Asn	Pro 395	Thr	Gln	Asn	Met	Asp
Met	Pro	Gln	Leu	Val 405	Cys	Pro	Gln	Val	His 4 10	Ser	Glu	Ser	Arg	Leu 415	Ala
Gln	Ser	Asn	Gln 420	Val	Pro	Val	Gln	Pro 425	Glu	Ala	Thr	Gln	Val 430	Pro	Leu
Val	Ser	Ser 435	Thr	Ser	Glu	Gly	Tyr 440	Thr	Ala	Ser	Gln	Pro 445	Leu	Tyr	Gln
Pro	Ser 450	His	Ala	Thr	Glu	Gln 455	Arg	Pro	Gln	Lys	Glu 460	Pro	Met	Asp	Gln
Ile 465	Gln	Ala	Thr	Ile	Ser 470	Leu	Asn	Thr	Asp	Gln 475	Thr	Thr	Ala	Ser	Ser 480
Ser	Leu	Pro	Ala	Ala 485	Ser	Gln	Pro	Gln	Val 490	Phe	Gln	Ala	Gly	Thr 495	Ser
Lys	Pro	Leu	His 500	Ser	Ser	Gly	Ile	Asn 505	Val	Asn	Ala	Ala	Pro 510	Phe	Gln
Ser	Met	Gln 515	Thr	Val	Phe	Asn	Met 520	Asn	Ala	Pro	Val	Pro 525	Pro	Ala	Asn
Glu	Pro 530	Glu	Thr	Leu	Lys	Gln 535	Gln	Ser	Gln	Tyr	Gln 540	Ala	Thr	Tyr	Asn
545					550				Val	555					560
Gln	Asp	Gln	Leu	Gln 565	Thr	Val	Val	Gly	Thr 570	Tyr	His	Gly	Ser	Gln 575	Asp
Gln	Pro	His	Gln 580	Val	Pro	Gly	Asn	His 585	Gln	Gln	Pro	Pro	G1n 590	G1n	Asn

	Th	ır (31y	Phe 595	Pro	Arg	Ser	Ser	600		Туг	. Tyr	Asn	Ser 605	Arg	Gly	Val
	Se		Arg 610	Gly	Gly	Ser	Arg	Gly 615	Ala	Arg	G13	, Leu	Met 620	Asn	Gly	Tyr	Arg
	G1 62		Pro	Ala	Asn	Gly	Phe 630	Arg	Gly	Gly	Туз	635	Gly	Tyr	Arg	Pro	Ser 640
	Ph	ie :	Ser	Asn	Thr	Pro 645	Asn	Ser	Gly	Tyr	Ser 650	Gln	Ser	Gln	Phe	Thr 655	Ala
	Pr	:o 1	Arg	Asp	Туг 660	Ser	Gly	Tyr	Gln	Arg 665		Gly	Tyr	Gln	Gln 670	Asn	Phe
	Ly	s l	Arg	Gly 675	Ser	Gly	Gln	Ser	Gly 680		Arç	, Gly	Ala	Pro 685	Arg	Gly	Arg
	Gl		31y 690	Pro	Pro	Arg	Pro	Asn 695	Arg	Gly	Met	: Pro	Gl n 700	Met	Asn	Thr	Gln
	G1 70		Val	Asn													
<210><211><212><212><213>	6114 ADN	mus	culus	;													
<213> Mus musculus <220> <221> CDS <222> (139)(2235) <223>																	
<400>	23																
	ccca	ccç	jege	gcg	cgcgt	ag c	egect	tgeco	gcc	cgcc	cgc ·	tgcgc	gtttt	gtc	cegeç	gtc	60
			-	-		-	-		_			ctccc	-				120
	tete	ttc	tcg	gtc	taaaq							cac a His S					171
												tcc t Ser S		y Se			219
												cat c His P 4	ro Al				267
											Gln	att c Ile L 55					315

_	aag Lys					_		_		_				_	_	363
60					65					70					75	41.5
	cag Gln	_	_	_				_					_	_	_	411
_	gcc Ala	_		-		_	_	_				_			-	459
_	gaa Glu		_		_		_	_		_		_		_		507
	ata Ile 125	-	-		-	-		-	-		-	-	-	-	-	555
_	cag Gln	_	_				_				_		_	_	_	603
_	ctg Leu		_	_	_		_		_	_				_	_	651
	gtg Val			_					_		_	_	_			699
	aag Lys		_	_			_	_	_	_						747
_	tat Tyr 205	_		_				_		_	_	_	_			795
_	aag Lys			_						-		_	_		-	843
	cgt Arg															891
	ggg Gly															939
	cag Gln															987
	agt Ser 285															1035
_	aca Thr	_		_	_			_				_				1083
gtt	gaa	aca	gtt	gag	gtt	gta	aac	tca	ctc	cag	cag	caa	cct	cag	gct	1131

Val	Glu	Thr	Val	Glu 320	Val	Val	Asn	Ser	Leu 325	Gln	Gln	Gln	Pro	Gln 330	Ala	
	tcc Ser															1179
	gat Asp				_		_	_	-		_		_	_		1227
-	caa Gln 365							_	_		-		-		-	1275
	gca Ala	_		_				_		_	_	_		_	_	1323
_	tgc Cys		_	_			_		_		_					1371
_	cct Pro	_			_	_		_	_		_	_				1419
_	gag Glu				_		_		_		_				_	1467
_	gag Glu 445	-		_	_				-	-	_		-	-		1515
	tct Ser	-			_	_			•						-	1563
	tct Ser															1611
	agt Ser															1659
	ttc Phe															1707
	aaa Lys 525		_	_	_		_	_				_	_			1755
_	cag Gln					_							_		_	1803
	acg Thr															1851
	cct Pro				_				_	_						1899

5	575	580		585	
cgt agc agt c Arg Ser Ser G 590	-	_	arg Gly Val S		
tct cgt ggt g Ser Arg Gly A 605		u Met Asn G			
gga ttt aga g Gly Phe Arg G 620			-	_	
cca aac agt g Pro Asn Ser G	-	n Ser Gln F	_		
tct ggt tac c Ser Gly Tyr G 6					
ggg cag agt g Gly Gln Ser G 670		_	arg Gly Arg G		
aga ccc aac a Arg Pro Asn A 685		o Gln Met A			taa 2235
tgtgatacac ag	gattatgt ttaa	tegeca aaaa	cacact ggcca	gtgta ccata	atatg 2295
ttaccagaag ag	rttattatc tatt	tgttct ccct	ttcagg aaact	tattg taaag	ggact 2355
gttttcatcc ca	itaaagaca ggad	tgcaat tgtc	agettt acatt	acctg gatat	ggaag 2415
gaaactattt tt	attctgca tgtt	ctgtcc taag	rcgtcat cttga	gcctt gcaca	caata 2475
caatactcag at	tectcace ctto	cttagg agta	aaacat tatat	actta tgggg	tgata 2535
atatctccat ag	rttagttga agtç	gcttgg aaaa	aaaatg caaga	ttgaa tttt	gacct 2595
tggataaaat ct	acaatcag ccct	agaact atto	agtggt aattg	acaaa gttaa	agcat 2655
tttctttgaa ag	gaagatgg aagg	agtgga gtgt	ggttta gcaaa:	actgc atttc	atagc 2715
tttcccatta aa	ıttggagca ccga	cagatt aaaa	gcatac caaat	tatgc atggg	teett 2775
actcacacaa gt	gaggetgg etac	cageet tgae	atagca ctcac	tagto ttotg	gccaa 2835
acgactgtga tt	aaaacaca tgta	aattgc tctt	tagtag tggat:	actgt gtaag	acaaa 2895
gccaaattgc aa	atcaggct ttga	ttgget ette	tggaaa atatg	catca aatat	ggggg 2955
ataatctgga tg	rggatgatg atgt	gctcaa tgtg	gaactat ttaga	tacct ttgga	acact 3015
taacagtttc tc	tgaacaat gact	tacatg ggga	ittggte etgtt	tgtca ttcct	cacca 3075
taattgcatt gt	catcacta atco	ttggat cttg	ctgtat tgtta	ctcaa attgg	taata 3135
ggtactgatg ga	aatcgcta atgg	atggat aatc	ataaca ctttt	ggtca catgt	tttct 3195
cctgcagcct ga	aagttett aaaq	aaaaag atat	caaatg cctgc	tgeta ceace	etttt 3255
aaattgctat ct	ttagaaaa gcad	cggtat gtgt	tttaga ttcati	tteee tgttt	taggg 3315

aaatgacagg cagtagtttc	agttctgatg	gcaaaacaaa	taaaaacatg	tttctaaaag	3375
ttgtatcttg aaacactggt	gttcaacagc	tagcagctaa	agtaattcaa	cccatgcatt	3435
gctagtgtca cagcctttgg	ttatgtctag	tagctgtttc	tgaagtattt	tcatttatct	3495
tttgtcaaat ttaaccctgt	ttgaattctc	teettteete	aaggagacac	ttatgttcaa	3555
agtgttgatt ctttgcctta	ggtgcataga	gagtagacag	tttggagatg	gaaaggttag	3615
cagtgactta gccatatgtt	ctgtgttgga	atttgtgcta	gcagtttgag	cactagetet	36 75
gcgtgcctat gaactgaatg	ctgcttgtcc	cattccattt	tatgtcatgg	agaaataatt	3735
ccacttggta acacaaaggc	taagttaatg	ttattttctg	tacagaaatt	aaattttact	3795
tttagccttt tgtaaacttt	tttttttt	ttccaagccg	gtatcagcta	ctcaaaacaa	3855
ttctcagata ttcatcatta	gacaactgga	gtttttgctg	gttttgtagc	ctactaaaac	3915
tgctgaggct gttgaacatt	ccacattcaa	aagttttgta	gggtggtgga	taatggggaa	3975
gcttcaatgt ttattttaaa	ataaataaaa	taagttcttg	acttttctca	tgtgtggtta	4035
tggtacatca tattggaagg	gttatctgtt	tacttttgcc	aagactattt	tgccagcacc	4095
tacacttgtg tgctttaaaa	gacaactacc	tgggatgtac	cacaaccata	tgttaattgt	4155
attttattgg gatggataaa	atgtttgtgg	tttattggat	aatccctaga	tggtgtgtta	4215
cgtgtgtaga atataatttt	atgatagtaa	gaaagcaaaa	ttgaagaaaa	taagtttagt	4275
attgaatttg agttctgaag	tgaattcagg	gaatgtctca	cgtttcgggc	ttctacccaa	4335
agtgtagggc agaaggtgta	aaagttgttt	gtagtttgac	ttgtttattt	tttaagttgc	4395
ttattccttt caacagcaac	atatcattag	ctgtcattct	accattgcag	ttctagtgag	4455
ttttaacgtc tgcattcaag	actgttttaa	aagcaacctc	actggacaga	gaactgctaa	4515
agtcttttcc ttaagatctg	agtctttgtt	actcagtatc	ttctataata	tgcaaatgct	4575
tgtctagagg cagaagacct	tttgtttggt	caagtgtgta	ttttaccaga	gtacagggaa	4635
ctgatggtcc tacatgtctc	ttagtgtagt	aagactataa	aatcttttgt	acatgcacaa	4695
ttcacagtat gtttagatac	cacgtgtata	atgcccccc	ctcccccagg	tagcatgcca	4755
ttgatgactt tttgcttagg	gccattttat	taccagggcc	ttaatattcc	taaaaagatg	4815
atttttttc atcctttctc	ctcttttgat	cattgtatct	tgatattaaa	aacatgacct	4875
tocaatgatt gtagtaaatt	aacttctata	gttettttgt	ctctatatgt	attcatatat	4935
atgctattgt atagagactt	caaggagaca	tggagatgca	tgcttattct	caggttcatt	4995
cactaaggtg cttggcagac	aaccagtttc	taagtgcaga	atgtagttaa	gcagcttcat	5055
atatgtgcca ggcaatttgt	tttgttaaat	tttcatctac	ttaaggaaat	agggtattgt	5115
agcttaggct gatcatacco	ttcatttcaa	ccttaagctc	tcaacctgca	tccatccgac	5175
ttgagctatt aagtacttta	gttttatcga	gtataagtta	acagaaaaag	taaattaagc	5235

tttgccttta	ctattttgaa	tttatataca	ttctggaaaa	acttagaaac	tgttgtatat	5295
ttcattagat	taaattatat	gaaaatgtga	ttgtttatag	caaagcctgt	gagttgcata	5355
caccctaagg	aaaactcctt	aagtgctcct	tgaagagaga	agaaacaatt	ctgggtctgg	5415
tctttttaag	aacaaagcta	gactactgta	tgttagcact	gtacattaat	agtctgttgt	5475
gaagcttgag	cagtttcctg	catageettg	atccttcacc	gttggcattg	aaaatagcag	5535
tatccctgat	gtacttaaaa	cttaaagtca	ggttttggta	tatttatttg	taagtottaa	5595
tttcctctaa	atactatatc	tctttagcga	gacaacctga	aatttattag	cacatttggg	5655
tatctcttgc	ttggcattat	ggccagtgtt	aactattcag	tggtgaaaaa	attacccctc	5715
aagacactgg	agtgacccca	gatgtgtgta	gtaagtggca	tggttcaact	gtgtggttaa	5775
tgataaatat	atgacttagt	cggtatgatc	tggaaagact	tgattgaaag	ataattcagc	5835
tgacataagg	atgagtgagg	agtggcaaac	tggataaaag	agtcaagaga	cctgtattcc	5895
agtgactcct	gttttgttta	agcattagca	agatctgtct	ggggaaactg	gatagggcag	5955
ttttcttcca	tgtttagttt	ttgtctcaac	atttggaagc	tattgaaggt	tttaaaatgg	6015
tgtgtattgt	tttttttgg	gggggggtg	gccagaatag	tgggtcatct	aataaaactg	6075
ccatttaaaa	gatcaaaaaa	aaaaaaaaa	aaaaaaaa			6114

<210> 24

<211>698

<212> PRT

<213> Mus musculus

<400> 24

Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser Ser Gly 1 5 10 15

Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Gly Ala 20 25 30

Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr Gly Ala Val Gln 35 40 45

Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp Lys Lys Leu Arg 50 55 60

Asn Leu Glu Lys Lys Lys Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met 65 70 75 80

Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys 85 90 95

Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg 100 105 110

	Ser	Phe	Met 115	Ala	Leu	Ser	Gln	Asp 120	Ile	Gln	Lys	Thr	Ile 125	Lys	Lys	Thr
	Ala	Arg 130	Arg	Glu	Gln	Leu	Met 135	Arg	Glu	Glu	Ala	Glu 1 4 0	Gln	Lys	Arg	Leu
	Lys 145	Thr	Val	Leu	Glu	Leu 150	Gln	Tyr	Val	Leu	Asp 155	Lys	Leu	Gly	Asp	Asp 160
	Asp	Val	Arg	Thr	As p 165	Leu	Lys	Gln	Gly	Leu 170	Ser	Gly	Val	Pro	Ile 175	Leu
	Ser	Glu	Glu	Glu 180	Leu	Ser	Leu	Leu	Asp 185	Glu	Phe	Tyr	Lys	Leu 190	Val	Asp
1	Pro	Glu	Arg 195	Asp	Met	Ser	Leu	Arg 200	Leu	Asn	Glu	Gln	Tyr 205	Glu	His	Ala
	Ser	Ile 210	His	Leu	Trp	Asp	Leu 215	Leu	Glu	Gly	Lys	Glu 220	Lys	Pro	Val	Cys
	G1 y 225	Thr	Thr	Tyr	Lys	Ala 230	Leu	Lys	Glu	Ile	Val 235	Glu	Arg	Val	Phe	Gln 240
	Ser	Asn	Tyr	Phe	Asp 245	Ser	Thr	His	Asn	His 250	Gln	Asn	Gly	Leu	Cys 255	Glu
1	Glu	Glu	Glu	Ala 260	Ala	Ser	Ala	Pro	Thr 265	Val	Glu	Asp	Gln	Val 270	Ala	Glu
į	Ala	Glu	Pro 275	Glu	Pro	Ala	Glu	Glu 280	Tyr	Thr	Glu	Gln	Ser 285	Glu	Val	Glu
	Ser	Thr 290	Glu	Tyr	Val	Asn	Arg 295	Gln	Phe	Met	Ala	Glu 300	Thr	Gln	Phe	Ser
	Ser 305	Gly	Glu	Lys	Glu	Gln 310	Val	Asp	Glu	Trp	Thr 315	Val	Glu	Thr	Val	Glu 320
,	Val	Val	Asn	Ser	Leu 325	Gln	Gln	Gln	Pro	Gln 330	Ala	Ala	Ser	Pro	Ser 335	Val
1	Pro	Glu	Pro	His 340	Ser	Leu	Thr	Pro	Val 345	Ala	Gln	Ser	Asp	Pro 350	Leu	Val
	Arg	Arg	Gln 355	Arg	Val	Gln	Asp	Leu 360	Met	Ala	Gln	Met	Gln 365	Gly	Pro	Tyr

Asn	Phe 370	Ile	Gln	Thr	Leu	Asp 375	Pro	Ala	Ile	Val	Ser 380	Ala	Gln	Pro	Met
Asn 385	Pro	Thr	Gln	Asn	Met 390	Asp	Met	Pro	Gln	Leu 395	Val	Cys	Pro	Gln	Val 400
His	Ser	Glu	Ser	Arg 405	Leu	Ala	Gln	Ser	Asn 410	Gln	Val	Pro	Val	Gln 415	Pro
Glu	Ala	Thr	Gln 420	Val	Pro	Leu	Val	Ser 425	Ser	Thr	Ser	Glu	Gly 430	Tyr	Thr
Ala	Ser	Gln 435	Pro	Leu	Tyr	Gln	Pro 440	Ser	His	Ala	Thr	Glu 445	Gln	Arg	Pro
Gln	Lys 4 50	Glu	Pro	Met	Asp	Gln 455	Ile	Gln	Ala	Thr	Ile 460	Ser	Leu	Asn	Thr
Asp 465	Gln	Thr	Thr	Ala	Ser 470	Ser	Ser	Leu	Pro	Ala 475	Ala	Ser	Gln	Pro	Gln 480
Val	Phe	Gln	Ala	Gly 485	Thr	Ser	Lys	Pro	Leu 490	His	Ser	Ser	Gly	Ile 495	Asn
Val	Asn	Ala	Ala 500	Pro	Phe	Gln	Ser	Met 505	Gln	Thr	Val	Phe	Asn 510	Met	Asn
Ala	Pro	Val 515	Pro	Pro	Ala	Asn	Glu 520	Pro	Glu	Thr	Leu	Lys 525	Gln	Gln	Ser
Gln	Tyr 530	Gln	Ala	Thr	Tyr	Asn 535	Gln	Ser	Phe	Ser	Ser 540	Gln	Pro	His	Gln
Val 545	Glu	Gln	Thr	Glu	Leu 550	Gln	Gln	Asp	Gln	Leu 555	Gln	Thr	Val	Val	Gly 560
Thr	Tyr	His	Gly	Ser 565	Gln	Asp	Gln	Pro	His 570	Gln	Val	Pro	G1y	Asn 575	His
Gln	Gln	Pro	Pro 580	Gln	Gln	Asn	Thr	Gly 585	Phe	Pro	Arg	Ser	Ser 590	Gln	Pro
Tyr	Tyr	Asn 595	Ser	Arg	Gly	Val	Ser 600	Arg	Gly	Gly	Ser	Arg 605	Gly	Ala	Arg
Gly	Leu 610	Met	Asn	Gly	Tyr	Arg 615	Gly	Pro	Ala	Asn	Gly 620	Phe	Arg	Gly	Gly

		Ser	Glr	ı Şe	r G		he 45	Thr	Ala	Pro	Arg	Asp 650	Tyr	Sei	G1	у Т	r Gli 655	_
		Asp	Gly	7 Ту		Ln 6	3ln .	Asn	Phe	Lys	Arg 665	Gly	Ser	Gl ₃	, Gl	n Se	er Gly	7 Pro
		Arg	Gly	7 Al 67		ro P	rg ·	Gly	Arg	Gly 680	Gly	Pro	Pro	Arç	9 Pr 68		en Arq	g Gly
		Met	Pro 690		n Me	et A	\\$n	Thr	Gln 695	Gln	Val	Asn						
5	<210> 2 <211> 3 <212> A <213> A	548 ADN	านระน	ılus														
10	<220> <221> (<222> (<223>		(2257	7)														
	<400> 2	25																
	g	ctgg	ctgg	jo ta	aagt	ccct	ic c	cgcg	ccgg	e tet	tgto	cca	ctag	gago	ag o	ctcaç	gageeg	60
	С	gggg	acag	ją go	cgaa	geg	ge e	tgcg	ccca	c gga	agege	acg	tctc	tgtt	ct o	caacq	gcagca	120
	С	cacc	cttg	je e	ccc	teg	gc to	gece	actc	e aga	acgto	cag	cggc	tccg	cg o	gege	cacg	178
		et P			Ala						agc Ser 10							226
				ro I							agt Ser							274
			la F								acc Thr		Thr					322
		hr G									gta Val							370
		sn L									gat Asp							418
			_		Glu					_	cag Gln 90	-	-	-	_		_	466
				Slu V							ttt Phe							514
15	a	gt t	tc a	atg q	gca	tta	agt	caa	gat	att	cag	aaa	aca	ata	aag	aag	aca	562

Ser	Phe	Met 115	Ala	Leu	Ser	Gln	Asp 120	Ile	Gln	Lys	Thr	Ile 125	Lys	Lys	Thr	
_	_		_	_		_	_	_	_	_	gaa Glu 140	_	_	_		610
											aag Lys					658
_		_		_	_				_	_	gga Gly				_	706
											tac Tyr					754
		_	-	-	-						cag Gln		-		-	802
											gaa Glu 220					850
					-		_	-		-	gag Glu	-	-		-	898
				_	_						aat Asn		_	_		946
	_			_							gac Asp	_	_	_	_	994
											caa Gln					1042
				_			Gln		_	_	gaa Glu 300		_		_	1090
											gtt Val					1138
_	_				_	_			_	_	gcg Ala				_	1186
					-				_	_	tca Ser	-				1234
											atg Met					1282
											aat Asn					1330

	370					375					380					
	_		_		-	_	cct Pro	_				_		_	-	1378
_		_	_	_	_		cag Gln	_			_		_		_	1426
				_		_	caa Gln		_	_		_	_		_	1474
_				-			tat Tyr 440		-		_		_		-	1522
							cgg Arg									1570
	_	_				_	aat Asn		_	_			_			1618
							cct Pro									1666
		_		_	_		atc Ile		_		_	_			_	1714
							atg Met 520									1762
_		_	_				cag Gln	_	_		_	_				1810
							cac His									1858
							gtt Val									1906
							aac Asn									1954
	~ ~			_	_	-	cag Gln 600					-	-		-	2002
	_				_		gcc Ala	_		_	_					2050
							gga Gly									2098

ttc tcg aac act cca aac agt ggt tat tca cag tct cag ttc act gct Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln Ser Gln Phe Thr Ala 645 650 655	2146
ccc cgg gac tac tct ggt tac cag cgg gat gga tat cag cag aat ttc Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe 660 665 670	2194
aag cga ggc tct ggg cag agt gga cca cgg gga gcc cca cga ggt aat Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Asn 675 680 685	2242
ata ttg tgg tgg tga tectagetee tatgtggage ttetgttetg geettggaag Ile Leu Trp Trp 690	2297
aactgttcat agtccgcatg taggttacat gttaggaata catttatctt ttccagactt	2357
gttgctaaag attaaatgaa atgctctgtt tctaaaattt catcttgaat ccaaatttta	2417
atttttgaat gactttccct gctgttgtct tcaaaatcag aacattttct ctgcctcaga	2477
aaagcgtttt tccaactgga aatttatttt tcaggtctta aaacctgcta aatgttttta	2537
ggaagtacct actgaaactt tttgtaagac atttttggaa cgagcttgaa catttatata	2597
aatttattac cototttgat ttttgaaaca tgcatattat atttaggotg agaagcoott	2657
caaatggcca gataagccac agttttagct agagaaccat ttagaattga cataactaat	2717
ctaaacttga acacttttag gaccaatgtt agtgttctaa ataccaacat atttctgatg	2777
tttaaacaga tctcccaaat tcttaggacc ttgatgtcat taaaatttag aatgacaagc	2837
ttaagagget ttagttteat ttgtttttea agtaatgaaa aataatttet tacatgggea	2897
gatagttaat ttgttgaaca attacaggta gcatttcatg taatctgatg ttctaaatgg	2957
ttctcttatt gaaggaggtt aaagaattag gtttcttaca gtttttggct ggccatgaca	3017
tgtataaaat gtatattaag gaggaattat aaagtacttt aatttgaatg ctagtggcaa	3077
ttgatcatta agaaagtact ttaaagcaaa aggttaatgg gtcatctggg aaaaatactg	3137
aagtatcaaa ggtatttgca tgtgaatgtg ggttatgttc ttctatccca ccttgtagca	3197
tattctatga aagttgagtt aaatgatagc taaaatatct gtttcaacag catgtaaaaa	3257
gttattttaa ctgttacaag tcattataca attttgaatg ttctgtagtt tctttttaac	3317
agtttaggta caaaggtctg ttttcattct ggtgcttttt attaattttg atagtatgat	3377
gtcacttcct attgaaatgt aagctagcgt gtaccttaga atgtgagctc catgagagca	3437
ggtaccttgt ttgtcttcac tgctgtatct attcccaacg cctcatgaca gtgcctggca	3497
catagtagge actcaataaa tacttgttga atgaatgaaa aaaaaaaaaa	3548

<210> 26

<211> 692 <212> PRT

5

<213> Mus musculus

<400> 26

Met 1	Pro	Ser	Ala	Thr 5	Ser	His	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gl
Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Ser	Glu	Ala	Ala	Ala 30	Gly	Ala
Ala	Ala	Pro 35	Ala	Ser	Gln	His	Pro 40	Ala	Thr	Gly	Thr	Gly 45	Ala	Val	Glr
Thr	Glu 50	Ala	Met	Lys	Gln	Ile 55	Leu	Gly	Val	Ile	Asp 60	Lys	Lys	Leu	Arç
Asn 65	Leu	Glu	Lys	Lys	Lys 70	Gly	Lys	Leu	Asp	Asp 75	Tyr	Gln	Glu	Arg	Met 80
Asn	Lys	Gly	Glu	Arg 85	Leu	Asn	Gln	Asp	Gln 90	Leu	Asp	Ala	Val	Ser 95	Lys
Tyr	Gln	Glu	Val 100	Thr	Asn	Asn	Leu	Glu 105	Phe	Ala	Lys	Glu	Leu 110	Gln	Arg
Ser	Phe	Met 115	Ala	Leu	Ser	Gln	Asp 120	Ile	Gln	Lys	Thr	Ile 125	Lys	Lys	Thr
Ala	Arg 130	Arg	Glu	Gln	Leu	Met 135	Arg	Glu	Glu	Ala	Glu 140	Gln	Lys	Arg	Lev
Lys 145	Thr	Val	Leu	Glu	Leu 150	Gln	Tyr	Val	Leu	Asp 155	Lys	Leu	Gly	Asp	Asp
Asp	Val	Arg	Thr	As p 165	Leu	Lys	Gln	Gly	Leu 170	Ser	Gly	Val	Pro	Ile 175	Leu
Ser	Glu	Glu	Glu 180	Leu	Ser	Leu	Leu	Asp 185	Glu	Phe	Tyr	Lys	Leu 190	Val	Asp
Pro	Glu	Arg 195	Asp	Met	Ser	Leu	Arg 200	Leu	Asn	Glu	Gln	Tyr 205	Glu	His	Ala
Ser	Ile 210	His	Leu	Trp	Asp	Leu 215	Leu	Glu	Gly	Lys	Glu 220	Lys	Pro	Val	Суя
Gly 225	Thr	Thr	Tyr	Lys	Ala 230	Leu	Lys	Glu	Ile	Val 235	Glu	Arg	Val	Phe	Glr 240
Ser	Asn	Tyr	Phe	Asp 245	Ser	Thr	His	Asn	His 250	Gln	Asn	Gly	Leu	Cys 255	Glu

Glu	Glu	Glu	Ala 260	Ala	Ser	Ala	Pro	Thr 265	Val	Glu	Asp	Gln	Val 270	Ala	Glu
Ala	Glu	Pro 275	Glu	Pro	Ala	Glu	Glu 280	Tyr	Thr	Glu	Gln	Ser 285	Glu	Val	Glu
Ser	Thr 290	Glu	Tyr	Val	Asn	Arg 295	Gln	Phe	Met	Ala	Glu 300	Thr	Gln	Phe	Ser
Ser 305	Gly	Glu	Lys	Glu	Gln 310	Val	Asp	Glu	Trp	Thr 315	Val	Glu	Thr	Val	Glu 320
Val	Val	Asn	Ser	Leu 325	Gln	Gln	Gln	Pro	Gln 330	Ala	Ala	Ser	Pro	Ser 335	Val
Pro	Glu	Pro	His 340	Ser	Leu	Thr	Pro	Val 345	Ala	Gln	Ser	Asp	Pro 350	Leu	Val
Arg	Arg	Gln 355	Arg	Val	Gln	Asp	Leu 360	Met	Ala	Gln	Met	G1n 365	Gly	Pro	Tyr
Asn	Phe 370	Ile	Gln	Asp	Ser	Met 375	Leu	Asp	Phe	Glu	Asn 380	Gln	Thr	Leu	Asp
Pro	Ala	Tle	Val	Ser	Als	G1n	Dro	Wa+	3.00	D	mb	a1-	3	W-4	
385				501	390	J111	110	Mec	ASIL	395	Int	GIN	ASII	Mec	400
			Leu		390					395					400
Met	Pro	Gln		Val 405	390 C y s	Pro	Gln	Val	His 410	395 Ser	Glu	Ser	Arg	Leu 415	400
Me t Gln	Pro Ser	Gln Asn	Leu	Val 405 Val	390 Cys Pro	Pro Val	Gln Gln	Val Pro 425	His 410 Glu	395 Ser Ala	Glu Thr	Ser Gln	Arg Val 430	Leu 415 Pro	400 Ala Leu
Met Gln Val	Pro Ser	Gln Asn Ser 435	Leu Gln 420	Val 405 Val Ser	390 Cys Pro Glu	Pro Val Gly	Gln Gln Tyr 440	Val Pro 425 Thr	His 410 Glu Ala	395 Ser Ala Ser	Glu Thr	Ser Gln Pro 445	Arg Val 430 Leu	Leu 415 Pro	Ala Leu Gln
Met Gln Val	Pro Ser Ser 450	Gln Asn Ser 435	Leu Gln 420 Thr	Val 405 Val Ser	390 Cys Pro Glu Glu	Pro Val Gly Gln 455	Gln Gln Tyr 440 Arg	Val Pro 425 Thr	His 410 Glu Ala Gln	395 Ser Ala Ser	Glu Thr Gln Glu 460	Ser Gln Pro 445	Arg Val 430 Leu Met	Leu 415 Pro Tyr	Ala Leu Gln
Met Gln Val Pro	Pro Ser Ser 450	Gln Asn Ser 435 His	Leu Gln 420 Thr	Val 405 Val Ser Thr	390 Cys Pro Glu Glu Ser 470	Pro Val Gly Gln 455	Gln Gln Tyr 440 Arg	Val Pro 425 Thr	His 410 Glu Ala Gln Asp	Ser Ala Ser Lys Gln 475	Glu Thr Gln 460	Ser Gln Pro 445 Pro	Arg Val 430 Leu Met	Leu 415 Pro Tyr Asp	Ala Leu Gln Gln Ser 480

Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro Val Pro Pro Ala Asn 515 520 525 Glu Pro Glu Thr Leu Lys Gln Gln Ser Gln Tyr Gln Ala Thr Tyr Asn 530 535 540 Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu Gln Thr Glu Leu Gln 550 Gln Asp Gln Leu Gln Thr Val Val Gly Thr Tyr His Gly Ser Gln Asp 565 570 Gln Pro His Gln Val Pro Gly Asn His Gln Gln Pro Pro Gln Gln Asn 580 585 Thr Gly Phe Pro Arg Ser Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg 610 615 Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser 625 630 635 Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln Ser Gln Phe Thr Ala 645 650 Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Asn 675 680

Ile Leu Trp Trp 690

<210> 27 <211> 3508 5 <212> ADN <213> Mus musculus

<220> <221> CDS 10 <222> (139)..(2217) <223>

<400> 27

			tgcgcgtttt gtcccgcgtc	60
_	 2 22	-	ctcccgcttt tttcctctcc	120
tctcttctcg	 •	•	cac agc gga agc ggc His Ser Gly Ser Gly	171

					1				5					10		
								ccg Pro 20								219
								gct Ala								267
		_	_	_			_	atg Met	_	_				_		315
_	_					_		aag Lys		_				_	_	363
	_	_	_	_				gaa Glu					_	_	_	411
_	_	_		_			_	gtc Val 100				_			_	459
_	_		_		_		_	gca Ala		_		-		_		507
		_	_		_	_		gaa Glu	_		_	_	_	_	_	555
_	_	_	_				_	ctt Leu			_		-	_	_	603
_	_		_	_	_		_	aca Thr	_	_				_	-	651
								gag Glu 180								699
								gac Asp								747
								ttg Leu								795
-	_			-				tat Tyr		-		_	_		-	843
								ttt Phe								891
								gcg Ala 260								939

	cag Gln															987
	agt Ser 285		-	-					-			-		_	-	1035
_	aca Thr	_		_	_			_				_				1083
_	gaa Glu		_		-	-				_	_			_	-	1131
	tcc Ser			_						_				_	_	1179
	gat Asp				-		_	_	-		-		-	-		1227
	caa Gln 365															1275
	cag Gln	_		-		_		_		_	_		_			1323
	cag Gln															1371
-	tct Ser	-		-					_		_			-	-	1419
	cag Gln	_		_	_				_					-		1467
_	ccc Pro 445	_		_				_	_		_		_	_		1515
	cca Pro															1563
	aca Thr															1611
_	gct Ala			_			_		-	_				_		1659
	gct Ala															1707

gtc cct cct gct aat gaa cca gaa acg tta aaa caa cag agt cag tac 1' Val Pro Pro Ala Asn Glu Pro Glu Thr Leu Lys Gln Gln Ser Gln Tyr 525 530 535	755
cag gcc act tat aac cag agt ttt tcc agt cag cct cac caa gtg gaa 18 Gln Ala Thr Tyr Asn Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu 540 545 550 555	803
caa aca gag ctt caa caa gac caa ctg caa acg gtg gtt ggc act tac 18 Gln Thr Glu Leu Gln Gln Asp Gln Leu Gln Thr Val Val Gly Thr Tyr 560 565 570	851
cat gga tee cag gae cag cet cat caa gtg cet ggt aac cae cag caa 18 His Gly Ser Gln Asp Gln Pro His Gln Val Pro Gly Asn His Gln Gln 575 580 585	899
ccc cca cag cag aac act ggc ttt cca cgt agc agt cag cct tat tac 19 Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser Ser Gln Pro Tyr Tyr 590 595 600	947
aac agt cgt ggg gta tct cga gga ggg tct cgt ggt gcc aga ggc ttg 19 Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu 605 615	995
atg aat gga tac agg ggc cct gcc aat gga ttt aga gga gga tat gat Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp 620 635 630 635	043
ggt tac cgc cct tca ttc tcg aac act cca aac agt ggt tat tca cag Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln 640 645 650	091
tet eag tte act get eee egg gae tae tet ggt tae eag egg gat gga 23 Ser Gln Phe Thr Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly 655 660 665	139
tat cag cag aat ttc aag cga ggc tct ggg cag agt gga cca cgg gga 2: Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly 670 675 680	187
gcc cca cga ggt aat ata ttg tgg tgg tga tectagetee tatgtggage 22 Ala Pro Arg Gly Asn Ile Leu Trp Trp 685 690	237
ttctgttctg gccttggaag aactgttcat agtccgcatg taggttacat gttaggaata 22	297
catttatctt ttccagactt gttgctaaag attaaatgaa atgctctgtt tctaaaattt 23	357
catcttgaat ccaaatttta atttttgaat gactttccct gctgttgtct tcaaaatcag 24	417
aacattttct ctgcctcaga aaagcgtttt tccaactgga aatttatttt tcaggtctta 24	477
aaacctgcta aatgttttta ggaagtacct actgaaactt tttgtaagac atttttggaa 25	537
cgagcttgaa catttatata aatttattac cctctttgat ttttgaaaca tgcatattat 29	597
atttaggetg agaageeett caaatggeea gataageeae agttttaget agagaaceat 20	657
ttagaattga cataactaat ctaaacttga acacttttag gaccaatgtt agtgttctaa 2	717
ataccaacat atttctgatg tttaaacaga tctcccaaat tcttaggacc ttgatgtcat 2	777
	837
aataatttot tacatgggca gatagttaat ttgttgaaca attacaggta gcatttcatg 28	897

taatctgatg	ttctaaatgg	ttctcttatt	gaaggaggtt	aaagaattag	gtttettaca	2957
gtttttggct	ggccatgaca	tgtataaaat	gtatattaag	gaggaattat	aaagtacttt	3017
aatttgaatg	ctagtggcaa	ttgatcatta	agaaagtact	ttaaagcaaa	aggttaatgg	3077
gtcatctggg	aaaaatactg	aagtatcaaa	ggtatttgca	tgtgaatgtg	ggttatgttc	3137
ttctatccca	ccttgtagca	tattctatga	aagttgagtt	aaatgatagc	taaaatatct	3197
gtttcaacag	catgtaaaaa	gttattttaa	ctgttacaag	tcattataca	attttgaatg	3257
ttctgtagtt	tctttttaac	agtttaggta	caaaggtctg	ttttcattct	ggtgcttttt	3317
attaattttg	atagtatgat	gtcacttcct	attgaaatgt	aagctagcgt	gtaccttaga	3377
atgtgagctc	catgagagca	ggtaccttgt	ttgtcttcac	tgctgtatct	atteceaacg	3437
cctcatgaca	gtgcctggca	catagtaggc	actcaataaa	tacttgttga	atgaatgaaa	3497
aaaaaaaaa	a					3508

<210> 28 <211> 692

5

<212> PRT

<213> Mus musculus

<400> 28

Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser Ser Gly 1 5 10 15

Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Gly Ala 20 25 30

Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr Gly Ala Val Gln $35 \hspace{1cm} 40 \hspace{1cm} 45$

Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp Lys Lys Leu Arg 50 55 60

Asn Leu Glu Lys Lys Lys Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met 65 70 75 80

Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys 85 90 95

Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg 100 105 110

Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr 115 120 125

Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu 130 135 140

Lys Thr Va. 145	l Leu Glu	Leu Gln 150	Tyr Va	l Leu Asp 155	_	ı Gly Asp	Asp 160
Asp Val Ar	g Thr Asp 165		Gln Gl	y Leu Ser 170	: Gly Val	Pro Ile 175	
Ser Glu Gl	ı Glu Leu 180	Ser Leu	Leu Ası	-	Tyr Lys	Leu Val	Asp
Pro Glu Are		Ser Leu	Arg Le	u Asn Glu	Gln Tyı 205		Ala
Ser Ile Hi	s Leu Trp	Asp Leu 215		u Gly Lys	Glu Lys 220	3 Pro Val	Суз
Gly Thr Th	r Tyr Lys	Ala Leu 230	Lys Gl	u Ile Val 235		y Val Phe	Gln 240
Ser Asn Ty	r Phe Asp 245		His As:	n His Gln 250	ı Asn Gly	Leu Cys 255	
Glu Glu Gl	ı Ala Ala 260	Ser Ala	Pro Th		ı Asp Glı	val Ala 270	Glu
Ala Glu Pro 27		Ala Glu	Glu Ty: 280	r Thr Glu	ı Gln Ser 285		Glu
Ser Thr Gl	ı Tyr Val	Asn Arg 295		e Met Ala	Glu Thi	Gln Phe	Ser
Ser Gly Glo 305	ı Lys Glu	Gln Val 310	Asp Gl	u Trp Thr 315		ı Thr Val	Glu 320
Val Val As	n Ser Leu 325		Gln Pr	Gln Ala 330	ı Ala Ser	Pro Ser 335	
Pro Glu Pro	His Ser 340	Leu Thr	Pro Va		ı Ser Ası	Pro Leu 350	Val
Arg Arg Gla	_	Gln Asp	Leu Me	t Ala Gln	Met Glr 365	_	Tyr
Asn Phe Ile 370	e Gln As p	Ser Met 375	-	o Phe Glu	Asn Glr 380	ı Thr Leu	Asp
Pro Ala Ilo 385	e Val Ser	Ala Gln 390	Pro Me	t Asn Pro 395		ı Asn Met	Asp 400

Met	Pro	Gln	Leu	Val 405	Cys	Pro	Gln	Val	His 410	Ser	Glu	Ser	Arg	Leu 415	Ala
Gln	Ser	Asn	Gln 420	Val	Pro	Val	Gln	Pro 425	Glu	Ala	Thr	Gln	Val 430	Pro	Leu
Val	Ser	Ser 435	Thr	Ser	Glu	Gly	Tyr 440	Thr	Ala	Ser	Gln	Pro 445	Leu	Tyr	Gln
Pro	Ser 450	His	Ala	Thr	Glu	Gln 455	Arg	Pro	Gln	Lys	Glu 460	Pro	Met	Asp	Gln
11e 465	Gln	Ala	Thr	Ile	Ser 470	Leu	Asn	Thr	Asp	Gln 475	Thr	Thr	Ala	Ser	Ser 480
Ser	Leu	Pro	Ala	Ala 485	Ser	Gln	Pro	Gln	Val 490	Phe	Gln	Ala	Gly	Thr 495	Ser
ГĀЗ	Pro	Leu	His 500	Ser	Ser	Gly	Ile	Asn 505	Val	Asn	Ala	Ala	Pro 510	Phe	Gln
		515					520					525		Ala	
	530					535					540			Tyr	
545					550					555				Leu	560
				565					570					Gln 575	
			580					585					590	Gln	
		595		_			600		_			605	-	Gly	
	610	_	_			615			_		620			Tyr	
625					630					635				Pro	640
rne	ser	ASN	ınr	645	АЅП	ser	стА	тАц	Ser 650	GIU	ser	GTU	rne	Thr 655	WTG

Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe 660 665 670

Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Asn 675 680 685

Ile Leu Trp Trp 690

<210> 29 <211> 2109

<211> 2109 <212> ADN

5

<212> ADN <213> Gallus gallus

<220>

<221> CDS

10 <222> (1)..(2109)

<223>

<400> 29

_	ccc Pro	_	_					_		_	_	_		_		48
	ccg Pro				-	_	-	_			_			_	_	96
	gcg Ala															144
	atc Ile 50															192
-	agc Ser			-	-		_	-	_	-		_		-	-	240
	aat Asn		-		-	-	_					_	-			288
	aac Asn	_	-		_		_	_	_		_		_	-	_	336
	caa Gln															384
_	atg Met 130	_	_		_		_	_	_		_					432
	cag Gln															480
	aaa Lys															528

	165	170	175
			t gaa agg gac atg 576 o Glu Arg Asp Met 190
		c Glu Gln Ala Se	t gtt cac ctg tgg 624 r Val His Leu Trp 205
			a aca acc tat aaa 672 y Thr Thr Tyr Lys 0
			t agt tac ttt gat 720 r Ser Tyr Phe Asp 240
_			a gaa gag gca gca 768 u Glu Glu Ala Ala 255
			t gag cct gat cca 816 a Glu Pro Asp Pro 270
		c Glu Val Glu Se	g act gag tat gta 864 r Thr Glu Tyr Val 285
_			t agt gag aag gaa 912 r Ser Glu Lys Glu 0
			t gta aat toa ctg 960 1 Val Asn Ser Leu 320
-	•	-	t gaa cct cat aca 1008 o Glu Pro His Thr 335
			a aga cag aga gta 1056 g Arg Gln Arg Val 350
		Gly Pro Tyr As	c ttc atg cag gac 1104 n Phe Met Gln Asp 365
		-	t gcc att gta tct 1152 o Ala Ile Val Ser 0
			g ccg caa atg gtc 1200 t Pro Gln Met Val 400
-		-	g cct aat caa gtt 1248 n Pro Asn Gln Val 415
			t tca tct aca agt 1296 1 Ser Ser Thr Ser 430

	gga Gly			_		_		_		_						1344
	caa Gln 450			_	_	_			_	_		_	_		_	1392
	ctg Leu		_	_	_		_								-	1440
	cag Gln	_		-			_			_			_		-	1488
_	gga Gly			_		-	_					_			-	1536
	aac Asn	_		-		-			-				-	_		1584
_	caa Gln 530			_		_	_	_			_	_				1632
_	cca Pro			_	-			_		_		_	_		-	1680
	gtg Val	-							_	-	-					1728
_	gga Gly			_				_	_						_	1776
	agt Ser															1824
	ggg Gly 610															1872
	aga Arg															1920
	agt Ser			_	_					-		_	_			1968
	tac Tyr	_		_			_	_				_				2016
	agt Ser															2064
	aac Asn 690	_		_			_		_	_				taa		2109

<210>	30
<211>	702
<212>	PRT
<213>	Gallus gallus

<400> 30

Met 1	Pro	Ser	Ala	Thr 5	Asn	Gly	Thr	Met	Ala 10	Ser	Ser	Ser	Gly	Lys 15	Ala
Gly	Pro	Gly	Gly 20	Asn	Glu	Gln	Ala	Pro 25	Ala	Ala	Ala	Ala	Ala 30	Ala	Pro
Gln	Ala	Ser 35	Gly	Gly	Ser	Ile	Thr 40	Ser	Val	Gln	Thr	Glu 45	Ala	Met	Lys
Gln	Ile 50	Leu	Gly	Val	Ile	As p 55	Lys	Lys	Leu	Arg	Asn 60	Leu	Glu	Lys	Lys
Lys 65	Ser	Lys	Leu	Asp	Asp 70	Tyr	Gln	Glu	Arg	Met 75	Asn	Lys	Gly	Glu	Arg 80
Leu	Asn	Gln	Asp	Gln 85	Leu	Asp	Ala	Val	Ser 90	Lys	Tyr	Gln	Glu	Val 95	Thr
Asn	Asn	Leu	Glu 100	Phe	Ala	Lys	Glu	Leu 105	Gln	Arg	Ser	Phe	Met 110	Ala	Leu
Ser	Gln	Asp 115	Ile	Gln	Lys	Thr	Ile 120	Lys	Lys	Thr	Ala	A rg 125	Arg	Glu	Gln
Leu	Met 130	Arg	Glu	Glu	Ala	Glu 135	Gln	Lys	Arg	Leu	Lys 140	Thr	Val	Leu	Glu
Leu 145	Gln	Phe	Ile	Leu	Asp 150	Lys	Leu	Gly	Asp	Asp 155	Glu	Val	Arg	Ser	Asp 160
Leu	Lys	Gln	Gly	Ser 165	Asn	Gly	Val	Pro	Val 170	Leu	Thr	G1u	Glu	Glu 175	Leu
Thr	Met	Leu	Asp 180	Glu	Phe	Tyr	Lys	Leu 185	Val	Tyr	Pro	Glu	Arg 190	Asp	Met
Asn	Met	Arg 195	Leu	Asn	Glu	Gln	Туг 200	Glu	Gln	Ala	Ser	Val 205	His	Leu	Trp
Asp	Leu	Leu	Glu	Gly	Lys	Glu	Lys	Pro	Val	Cys	Gly	Thr	Thr	Tyr	Lys

	210					215					220				
Ala 225	Leu	Lys	Glu	Val	Val 230	Glu	Arg	Ile	Leu	Gln 235	Thr	Ser	Tyr	Phe	Asp 240
Ser	Thr	His	Asn	His 245	Gln	Asn	Gly	Leu	Суз 250	Glu	G1u	Glu	Glu	Ala 255	Ala
Pro	Thr	Pro	Ala 260	Val	Glu	Asp	Thr	Val 265	Ala	Glu	Ala	Glu	Pro 270	Asp	Pro
Ala	Glu	Glu 275	Phe	Thr	Glu	Pro	Thr 280	Glu	Val	Glu	Ser	Thr 285	Glu	Tyr	Val
Asn	A rg 290	Gln	Phe	Met	Ala	Glu 295	Thr	Gln	Phe	Ser	Ser 300	Ser	Glu	Lys	Glu
Gln 305	Val	Asp	Glu	Trp	Thr 310	Val	Glu	Thr	Val	Glu 315	Val	Val	Asn	Ser	Leu 320
Gln	Gln	Gln	Thr	Gln 325	Ala	Thr	Ser	Pro	Pro 330	Val	Pro	Glu	Pro	His 335	Thr
Leu	Thr	Thr	Val 340	Ala	Gln	Ala	Asp	Pro 345	Leu	Val	Arg	Arg	Gln 350	Arg	Val
Gln	Asp	Leu 355	Met	Ala	Gln	Met	Gln 360	Gly	Pro	Tyr	Asn	Phe 365	Met	Gln	Asp
Ser	Met 370	Leu	Glu	Phe	Glu	Asn 375	Gln	Thr	Leu	Asp	Pro 380	Ala	Ile	Val	Ser
Ala 385	Gln	Pro	Met	Asn	Pro 390	Ala	Gln	Asn	Leu	Asp 395	Met	Pro	Gln	Met	Val 400
Cys	Pro	Pro	Val	His 405	Thr	Glu	Ser	Arg	Leu 410	Ala	G1n	Pro	Asn	Gln 415	Val
Pro	Val	Gln	Pro 420	Glu	Ala	Thr	Gln	Val 425	Pro	Leu	Val	Ser	Ser 430	Thr	Ser
Glu	Gly	Tyr 435	Thr	Ala	Ser	Gln	Pro 440	Met	Tyr	Gln	Pro	Ser 445	His	Thr	Thr
Glu	Gln 450	Arg	Pro	Gln	Lys	Glu 455	Ser	Ile	Asp	Gln	Ile 460	Gln	Ala	Ser	Met
Ser 465	Leu	Asn	Ala	Asp	Gln 470	Thr	Pro	Ser	Ser	Ser	Ser	Leu	Pro	Thr	Ala 480

Ser Gln Pro Gln Val Phe Gln Ala Gly Ser Ser Lys Pro Leu His Ser 485 490 Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val 500 505 Phe Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Ala Leu 515 520 Lys Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Asn 530 535 Gln Pro His Gln Val Glu Gln Ser Asp Leu Gln Glu Glu Gln Leu Gln 545 550 555 Thr Val Val Gly Thr Tyr His Gly Ser Pro Asp Gln Thr His Gln Val Ala Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg 580 Asn Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser 595 600 Arg Gly Thr Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly 610 615 Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro 630 Asn Ser Gly Tyr Thr Gln Pro Gln Phe Asn Ala Pro Arg Asp Tyr Ser 650 Asn Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly 660 Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg Gly Pro Pro Arg Pro Asn Arg Gly Met Pro Gln Met Asn Ala Gln Gln Val Asn 690 695 700

<210> 31 <211> 20 5 <212> ADN <213> Artificial

> <220> <223> Cebador T3

	<400> 31 aattaaccct cactaaaggg	20
5	<210> 32 <211> 19 <212> ADN <213> Artificial	
10	<220> <223> Cebador T7	
	<400> 32 taatacgact cactatagg	19
15	<210> 33 <211> 18 <212> ADN <213> Artificial	
20	<220> <223> Cebador	
25	<400> 33 aaggtttgaa tggagtgc	18
	<210> 34 <211> 18 <212> ADN <213> Artificial	
30	<220> <223> Cebador	
35	<400> 34 tgctcctttt caccactg	18
40	<210> 35 <211> 18 <212> ADN <213> Artificial	
	<220> <223> Cebador GAPDH	
45	<400> 35 gggctgcttt taactctg	18
50	<210> 36 <211> 18 <212> ADN <213> Artificial	
55	<220> <223> Cebador GAPDH	
55	<400> 36 ccaggaaatg agcttgac	18
60	<210> 37 <211> 27 <212> ADN <213> Artificial	
65	<220> <223> Cebador	

	<400> 37 catatggcat taagtcaaga tattcag	27
5	<210> 38 <211> 23 <212> ADN <213> Artificial	
10	<220> <223> Cebador	
	<400> 38 ggtacctttg cggcatccct ctg	23
15	<210> 39 <211> 21 <212> ADN <213> Artificial	
20	<220> <223> Cebador	
25	<400> 39 catatgccgt cggccaccag c	21
25	<210> 40 <211> 22 <212> ADN <213> Artificial	
30	<220> <223> Cebador	
35	<400> 40 ggtaccattc acttgctgag tg	22
40	<210> 41 <211> 23 <212> ADN <213> Artificial	
	<220> <223> Cebador	
45	<400> 41 gagctcatgc cctcggccac cag	23
50	<210> 42 <211> 23 <212> ADN <213> Artificial	
EE	<220> <223> Cebador	
55	<400> 42 ctcgagttaa ttcacttgct gag	23
60	<210> 43 <211> 14 <212> PRT <213> Homo sapiens	
	<400> 43	

<210> 44

5

<211> 148

<212> PRT

<213> Mus musculus

<400> 44

Met Glu Trp Ser Gly Val Phe Ile Phe Leu Leu Ser Gly Thr Ala Gly 1 5 10 15

Val Leu Ser Glu Val Gln Leu His Gln Phe Gly Ala Glu Leu Val Lys 20 25 30

Pro Gly Ala Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45

Thr Asp Tyr Asn Met Asp Trp Val Lys Gln Ser His Gly Lys Ser Leu 50 55 60

Glu Trp Ile Gly Asp Ile Asn Pro Asn Tyr Asp Ser Thr Ser Tyr Asn 65 70 75 80

Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Ser 90 95

Thr Ala Tyr Met Glu Leu Arg Ser Leu Thr Ser Glu Asp Thr Ala Val 100 105 110

Tyr Tyr Cys Ala Arg Ser Arg Ser Tyr Asp Tyr Glu Gly Phe Ala Tyr 115 120 125

Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala Ala Lys Thr Thr Pro

Pro Ser Val Tyr 145

10

<210> 45

<211> 132

<212> PRT

15 <213> Mus musculus

<400> 45

Ala	Val	Leu	Arg	Cys	Ser	Arg	Gly	Leu	Leu	Val	Ile	Trp	Ile	Ser	Asp
1				5					10					15	

Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ala Val Thr Ala Gly Glu 20 25 30

Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Trp Ser Val 35 40 45

Asn Gln Lys Asn Tyr Leu Ser Trp Tyr Gln Gln Lys Gln Arg Gln Pro 50 55 60

Pro Lys Leu Leu Ile Tyr Gly Ala Ser Ile Arg Glu Ser Trp Val Pro 65 70 75 80

Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile 85 90 95

Ser Asn Val His Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln His Asn 100 105 110

His Gly Ser Phe Leu Pro Ser Arg Ser Glu Gln Val Pro Ser Trp Arg
115 120 125

Ser Asn Asn Arg 130

<210> 46

<211> 117

<212> PRT

<213> Mus musculus

<400> 46

Arg Thr Thr Ser His Met Asp Ser Asp Ile Gln Leu Thr Gln Ser Pro 1 5 10 15

Ala Ser Leu Ser Ala Ser Val Gly Glu Thr Val Thr Ile Thr Cys Arg 20 25 30

Ala Ser Gly Asn Ile His Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Gln 35 40 45

Gly Lys Ser Pro Gln Leu Leu Val Tyr Asn Ala Lys Thr Leu Ala Asp 50 55 60

Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Tyr Ser

70 Leu Lys Ile Asn Ser Leu Gln Pro Glu Asp Phe Gly Ser Tyr Tyr Cys 95 85 90 Gln His Phe Trp Ser Thr Leu Thr Phe Gly Gly Gly Thr Lys Leu Glu 100 110 Ile Lys Gln Ser Asp 115 <210> 47 <211>94 5 <212> PRT <213> Mus musculus <400> 47 Ser Gly Asp Arg Val Ser Leu Ser Cys Arg Ala Ser Gln Ser Ile Ser Asn Tyr Leu His Trp Tyr Gln Gln Lys Ser His Glu Ser Pro Arg Leu Leu Ile Lys Tyr Ala Ser Gln Ser Ile Ser Gly Ile Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Ser Val Glu Thr Glu Asp Phe Gly Met Tyr Phe Cys Gln Gln Ser Asn Ser Trp 70 80 65 75 Pro Tyr Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Gln 85 90 10 <210>48 <211> 105 <212> PRT 15 <213> Mus musculus <400> 48

Gly Leu Phe Cys Ser Val Glu Arg Cys His Tyr Gln Leu Gln Ser Ser 1 5 10 15

Gln Asn Leu Leu Ser Ile Val Asn Arg Tyr His Tyr Met Ser Gly Asn 20 25 30

Pro Pro Lys Leu Leu Val Tyr Pro Ala Leu Leu Ile Tyr Glu Ala Ser 35 40 45

Ile Thr Lys Ser Cys Val Pro Asp Arg Phe Thr Arg Ser Gly Ser Gly 50 55 60

Thr Asn Phe Thr Leu Thr Ile Asn Phe Val His Ala Asp Asp Leu Ile 65 70 75 80

Phe Tyr Tyr Cys Gln His Asn Arg Gly Ser Phe Leu Pro Ser Ser Ser 85 90 95

Val Gln Val Pro Arg Arg Arg Ser Asn 100 105

<210> 49

<211> 100

<212> PRT

5

<213> Mus musculus

<400> 49

Asp Ile Leu Gln Ala Ser Gly Tyr Ser Phe Thr Gly Tyr Thr Met Asn 1 5 10 15

Trp Val Lys Gln Ser His Gly Lys Asn Leu Glu Trp Ile Gly Leu Ile 20 25 30

Asn Pro Tyr Asn Gly Gly Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys
35 40 45

Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr Met Glu Leu 50 60

Leu Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Trp 65 70 75 80

Gly Val Trp Ser Ala Met Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr 85 90 95

Val Ser Ser Lys 100

10

<210> 50

	<211> 9 <212> P <213> N	RT	ısculu	s													
5	<400> 5	0															
		Asp 1	Arg	Val	Ser	Ile 5	Thr	Cys	Lys	Ala	Ser 10	Gln	Asn	Val	Arg	Thr 15	Ala
		Val	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Arg	Gln	Ser	Pro	Lys	Ala	Leu	Ile
					20					25					30		
		Tyr	Leu	Ala 35	Ser	Asn	Arg	Asp	Thr 40	Gly	Leu	Pro	Asp	Arg 45	Phe	Pro	Gly
		Arg	Gly 50	Ser	Gly	Thr	Asp	Phe 55	Thr	Leu	Asn	Ile	Thr 60	Asn	Val	Gln	Ser
		Glu 65	Asp	Leu	Glu	Asp	T yr 70	Phe	Cys	Leu	Gln	His 75	Cys	Asn	Tyr	Pro	Asn 80
		Glu	Phe	Arg	Gly	Cys 85	Thr	Lys	Val	Pro	Ile 90						

<210> 51 10 <211> 116 <212> PRT <213> Mus musculus

<400> 51

Leu Gln Glu Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val Lys
1 10 15

Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Trp Met Gln 20 25 30

Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Ala Ile 35 40 45

Tyr Pro Gly Asp Gly Asp Thr Arg Tyr Thr Gln Lys Phe Lys Gly Lys 50 60

Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu 65 70 75 80

Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Gly 85 90 95

Glu Tyr Gly Asn Tyr Phe Ala Tyr Trp Gly Gln Gly Thr Thr Val Thr
100 105 110

Val Ser Ser Asn 115

<210> 52

<211> 100

<212> PRT

5

<213> Mus musculus

<400> 52

Thr Ser Asp Ala Ser Leu Gly Glu Arg Val Thr Ile Thr Cys Lys Ala 1 5 10 15

Ser Gln Asp Ile Asn Ser Tyr Leu Ser Trp Phe Gln Gln Lys Pro Gly 20 25 30

Lys Ser Pro Lys Thr Leu Ile Tyr Arg Ala Asn Arg Leu Val Asp Gly 35 40 45

Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Gln Asp Tyr Ser Leu 50 55 60

Thr Ile Ser Ser Leu Glu Tyr Glu Asp Met Gly Ile Tyr Tyr Cys Leu 65 70 75 80

Gln Tyr Asp Glu Phe Pro Leu Thr Phe Gly Gly Gly Thr Lys Leu Glu 85 90 95

Ile Lys Gln Lys 100

<210> 53 <211> 108 <212> PRT

<213> Mus musculus

<400>53

5

Ala Trp Leu Ser Gln Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys
1 5 10 15

Asp Thr Tyr Met His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu 20 25 30

Trp Ile Gly Arg Ile Asp Pro Ala Asn Gly Asn Thr Lys Tyr Asp Pro 35 40 45

Lys Phe Gln Gly Lys Ala Thr Ile Thr Ala Asp Thr Ser Ser Asn Thr 50 55 60

Ala Tyr Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr 65 70 75 80

Tyr Cys Ala Arg Pro Ile His Tyr Tyr Tyr Gly Ser Ser Leu Ala Tyr 85 90 95

Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Lys
100 105

10

<210> 54

<211> 104 <212> PRT <213> Mus musculus

5 <400> 54

Glu Phe His Ala Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Arg 1 5 10 15

Ala Ser Glu Ser Val Asp Ser Tyr Gly Asn Ser Phe Met His Trp Tyr 20 25 30

Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Arg Ala Ser 35 40 45

Asn Leu Glu Ser Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Arg 50 55 60

Thr Asp Phe Thr Leu Thr Ile Asm Pro Val Glu Ala Asp Asp Val Ala 65 70 75 80

Thr Tyr Tyr Cys Gln Gln Ser Asn Glu Asp Pro Gly Arg Ser Glu Val 85 90 95

Val Pro Ser Trp Arg Ser Asn Lys 100

<210> 55 10 <211> 109 <212> PRT <213> Mus musculus

<400> 55

Pro Arg Ala Ser Leu Gly Val Ser Glu Thr Leu Leu Cys Thr Ser Gly 1 5 10 15

Phe Thr Phe Thr Asp Tyr Tyr Met Ser Trp Val Arg Gln Pro Pro Gly 20 25 30

Lys Ala Leu Glu Trp Leu Gly Phe Ile Arg Asn Lys Ala Asn Gly Tyr 35 40 45

Thr Thr Glu Tyr Ser Ala Ser Val Lys Gly Arg Phe Thr Ile Ser Arg 50 60

Asp Asn Ser Gln Ser Ile Leu Tyr Leu Gln Met Asn Thr Leu Arg Ala 65 70 75 80

Glu Asp Ser Ala Thr Tyr Tyr Cys Ala Arg Ala Asn Trp Ala Phe Asp 85 90 95

Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Lys

100 105

<210> 56

<211>94

5

<212> PRT

<213> Mus musculus

<400> 56

Ser Gly Asp Arg Val Ser Leu Ser Cys Arg Ala Ser Gln Ser Ile Ser 1 5 10 15

Asn Tyr Leu His Trp Tyr Gln Gln Lys Ser His Glu Ser Pro Arg Leu 20 25 30

Leu Ile Lys Tyr Ala Ser Gln Ser Ile Ser Gly Ile Pro Ser Arg Phe 35 40 45

Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Ser Val 50 55 60

Glu Thr Glu Asp Phe Gly Met Tyr Phe Cys Gln Gln Ser Asn Ser Trp 65 70 75 80

Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gln 85 90

<210> 57 <211> 111

<210> 57

<212> PRT <213> Mus musculus

<400> 57

5

Pro Ala Cys Leu Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Thr Ser 1 5 10 15

Gly Phe Thr Phe Thr Asp Tyr Tyr Met Ser Trp Val Arg Gln Pro Pro 20 25 30

Gly Lys Ala Leu Glu Trp Leu Gly Phe Ile Arg Asn Lys Ala Asn Gly 35 40 45

Tyr Thr Thr Glu Tyr Ser Ala Ser Val Lys Gly Arg Phe Thr Ile Ser 50 55 60

Arg Asp Asn Ser Gln Ser Ile Leu Tyr Leu Gln Met Asn Thr Leu Arg 65 70 75 80

Ala Glu Asp Ser Ala Thr Tyr Tyr Cys Ala Arg Ala Pro Leu Leu Tyr 85 90 95

Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser 100 105 110

<210> 58

<211> 102

10

<212> PRT

<213> Mus musculus

<400> 58

Arg Leu Pro Phe Tyr Ser Leu Glu Gln Arg Ala Thr Ile Ser Tyr Arg 1 5 10 15

Ala Ser Lys Asn Val Ser Thr Ser Gly Tyr Ser Tyr Met His Trp Asn 20 25 30

Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Leu Val Ser 35 40 45

Asn Leu Glu Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly 50 55 60

Thr Asp Phe Thr Leu Asn Ile His Pro Val Glu Glu Glu Asp Ala Ala 65 70 75 80

Thr Tyr Tyr Cys Gln His Ile Arg Glu Leu Thr Arg Ser Glu Leu Val 85 90 95

Pro Ser Trp Lys Ser Asn

<210> 59

<211> 101

<212> PRT

5

<213> Mus musculus

<400>59

Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Trp Met His
1 10 15

Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Met Ile
20 25 30

Asp Pro Ser Asn Ser Glu Thr Arg Leu Asn Gln Lys Phe Lys Asp Lys 35 40 45

Ala Thr Leu Asn Val Asp Lys Ser Ser Asn Thr Ala Tyr Met Gln Leu 50 55 60

Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Gly 65 70 75 80

Leu Arg His Tyr Trp Tyr Phe Asp Val Trp Gly Gln Gly Thr Thr Val 85 90 95

Thr Val Ser Ser Lys 100

<210> 60 <211> 99

```
<212> PRT
      <213> Mus musculus
      <400>60
5
             Thr Ile Leu Trp Arg Glu Gly Pro Phe Ser Tyr Arg Ala Ser Lys Ser
             Val Ser Thr Ser Gly Tyr Ser Tyr Met His Trp Asn Gln Gln Lys Pro
                        20
                                              25
             Gly Gln Pro Pro Arg Leu Leu Ile Tyr Leu Val Ser Asn Leu Glu Ser
                                         40
             Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr
             Leu Asn Ile His Pro Val Glu Glu Glu Asp Ala Ala Thr Tyr Tyr Cys
                                                                           80
             Gln His Ile Arg Glu Leu Thr Arg Ser Glu Glu Val Pro Ser Trp Arg
             Ser Asn Lys
      <210>61
      <211>58
10
      <212> PRT
      <213> Homo sapiens
      <400>61
             Val Phe Gln Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly
             Leu Cys Glu Glu Glu Glu Ala Ala Ser Ala Pro Ala Val Glu Asp Gln
                                              25
             Val Pro Glu Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln Ser
                                          40
             Glu Val Glu Ser Thr Glu Tyr Val Asn Arg
                                     55
15
      <210> 62
      <211> 15
      <212> PRT
20
      <213> Homo sapiens
      <400>62
              Tyr Thr Glu Gln Ser Glu Val Glu Ser Thr Glu Tyr Val Asn Arg
```

<210> 63 <211> 11 <212> PRT <213> Homo sapiens 5 <400> 63

> Ser Glu Val Glu Ser Thr Glu Tyr Val Asn Arg 1 5 10

REIVINDICACIONES

- 1. Un método para la detección de cáncer pancreático, que comprende medir, en una muestra aislada de un sujeto:
- (i) la presencia o una cantidad de un polipéptido que tiene una reactividad de unión específica a un anticuerpo contra una proteína CAPRIN-1 mediante una reacción antígeno-anticuerpo, o
 - (ii) un anticuerpo contra la proteína CAPRIN-1, o

5

15

25

30

35

- (iii) la presencia o una cantidad de un ácido nucleico que codifica la proteína CAPRIN-1,
- en el que dicha proteína CAPRIN-1 consiste en una secuencia de aminoácidos representada por cualquiera de las SEQ ID NO: 2 a 30 de número par.
 - 2. El método de acuerdo con la reivindicación 1, en el que el polipéptido es una proteína CAPRIN-1 que consiste en una secuencia de aminoácidos representada por cualquiera de las SEQ ID NO: 2 a 30 de número par, o un polipéptido que consiste en una secuencia de aminoácidos que tiene una identidad de secuencia de 85-90 % o mayor con la proteína CAPRIN-1.
 - 3. El método de acuerdo con las reivindicaciones 1 o 2, en el que el sujeto es un ser humano o un perro.
- 4. El método de acuerdo con la reivindicación 3, en el que el sujeto es un perro y la proteína CAPRIN-1 comprende la secuencia de aminoácidos representada por SEQ ID NO: 6, 8, 10, 12 o 14.
 - 5. El método de acuerdo con la reivindicación 3, en el que el sujeto es un ser humano y la proteína CAPRIN-1 comprende la secuencia de aminoácidos representada por SEQ ID NO: 2 o 4.
 - 6. El método de acuerdo con una cualquiera de las reivindicaciones 1 a 5, en el que la presencia o la cantidad del ácido nucleico en la muestra se mide utilizando un polinucleótido que se hibrida específicamente con una secuencia parcial que comprende 15-19 o más nucleótidos o 20-30 o más nucleótidos en la secuencia de nucleótidos del ácido nucleico o una secuencia complementaria a la misma.
 - 7. El método de acuerdo con la reivindicación 6, en el que el sujeto es un perro y el polinucleótido se hibrida específicamente con una secuencia parcial que comprende 15-19 o más nucleótidos o 20-30 o más nucleótidos en la secuencia de nucleótidos representada por SEQ ID NO: 5, 7, 9, 11 o 13 o una secuencia complementaria a las mismas.
 - 8. El método de acuerdo con la reivindicación 6, en el que el sujeto es un ser humano y el polinucleótido se hibrida específicamente con una secuencia parcial que comprende 15-19 o más nucleótidos o 20-30 o más nucleótidos en la secuencia de nucleótidos representada por SEQ ID NO: 1 o 3 o una secuencia complementaria a las mismas.
- 40 9. El método de acuerdo con una cualquiera de las reivindicaciones 1 a 5, en el que la presencia o la cantidad del polipéptido se determina midiendo el polipéptido contenido en la muestra en un ensayo inmunológico.
 - 10. El método de acuerdo con una cualquiera de las reivindicaciones 1 a 9, en el que la muestra es sangre, suero, plasma sanguíneo, fluido ascítico, derrame pleural, tejidos o células.
 - 11. El método de acuerdo con una cualquiera de las reivindicaciones 1 a 10, en el que el anticuerpo que experimenta una reacción antígeno-anticuerpo con el polipéptido es un anticuerpo que se une a la superficie de una célula de cáncer pancreático.
- 12. El método de acuerdo con una cualquiera de las reivindicaciones 1 a 11, en el que el anticuerpo que experimenta una reacción antígeno-anticuerpo con el polipéptido comprende un anticuerpo que tiene una reactividad inmunológica con un polipéptido que consiste en una secuencia de aminoácidos que comprende al menos de 7 a 12 restos de aminoácido continuos dentro de la región de restos de aminoácidos números 50 a 98 o de restos de aminoácidos de números 233 a 344 de la secuencia de aminoácidos representada por cualquiera de las SEQ ID NO: 55 2 a 30 de número par exceptuando las SEQ ID NO: 6 y 18.
- 13. El método de acuerdo con una cualquiera de las reivindicaciones 1 a 12, en el que el anticuerpo que experimenta una reacción antígeno-anticuerpo con el polipéptido son uno o más anticuerpos seleccionados del grupo que consiste en: un anticuerpo que se une a un polipéptido que comprende la secuencia de aminoácidos representadas por SEQ ID NO: 43; un anticuerpo monoclonal que comprende las secuencias de aminoácidos representadas por SEQ ID NO: 44 y 45; un anticuerpo monoclonal que comprende las secuencias de aminoácidos representadas por SEQ ID NO: 44 y 46; un anticuerpo monoclonal que comprende las secuencias de aminoácidos representadas por SEQ ID NO: 44 y 47; un anticuerpo monoclonal que comprende las secuencias de aminoácidos representadas por SEQ ID NO: 49 y 48; un anticuerpo monoclonal que comprende las secuencias de aminoácidos representadas por SEQ ID NO: 49 y 50; un anticuerpo monoclonal que comprende las secuencias de aminoácidos representadas por SEQ ID NO: 51 y 52; un anticuerpo monoclonal que comprende las secuencias de aminoácidos representadas por SEQ ID NO: 51 y 52; un anticuerpo monoclonal que comprende las secuencias de aminoácidos

representadas por SEQ ID NO: 53 y 54; un anticuerpo monoclonal que comprende las secuencias de aminoácidos representadas por SEQ ID NO: 55 y 56; un anticuerpo monoclonal que comprende las secuencias de aminoácidos representadas por SEQ ID NO: 57 y 58 y un anticuerpo monoclonal que comprende las secuencias de aminoácidos representadas por SEQ ID NO: 59 y 60.

5

10

14. El método de acuerdo con una cualquiera de las reivindicaciones 1 a 10, que utiliza un reactivo o un kit que comprende uno o más polinucleótidos que se hibridan específicamente con una secuencia parcial que comprende de 15 a 19 o más nucleótidos o de 20 a 30 o más nucleótidos en la secuencia de nucleótidos representada por cualquiera de las SEQ ID NO: 1 a 29 de número par y que codifica una proteína CAPRIN-1 o en una secuencia complementaria a la secuencia de nucleótidos.