

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 631 455

51 Int. Cl.:

C12Q 1/68 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 07.12.2010 PCT/EP2010/069058

(87) Fecha y número de publicación internacional: 16.06.2011 WO11070005

96) Fecha de presentación y número de la solicitud europea: 07.12.2010 E 10787761 (5)

(97) Fecha y número de publicación de la concesión europea: 08.02.2017 EP 2510113

(54) Título: Alteraciones génicas de EGFR y PTEN predicen la supervivencia en pacientes con tumores cerebrales

(30) Prioridad:

07.12.2009 EP 09382271

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 31.08.2017 (73) Titular/es:

EUROPATH BIOSCIENCES, S.L. (100.0%) Provença, 392 planta baja 08025 Barcelona, ES

(72) Inventor/es:

DONOVAN, MICHAEL J.; COLOMER VALERO, ANNA; ERILL SAGALÉS, NADINA; FERRER ABIZANDA, ISIDRE Y BOLUDA CASAS, SUSANA

(74) Agente/Representante:

ARIAS SANZ, Juan

Observaciones:

Véase nota informativa (Remarks, Remarques o Bemerkungen) en el folleto original publicado por la Oficina Europea de Patentes

DESCRIPCIÓN

Alteraciones génicas de EGFR y PTEN predicen la supervivencia en pacientes con tumores cerebrales

Campo de la invención

5

10

20

25

30

35

45

La invención se refiere a los campos de diagnóstico y terapéutica, en particular a un método de proporcionar atención personalizada a pacientes con cáncer de cerebro basándose en la expresión de determinados genes en una muestra a partir de dichos pacientes, algunos de los cuales sirven como dianas de tratamiento.

Antecedentes de la invención

Gliomas: Diagnóstico y clasificación de la enfermedad

Un glioma es un tipo de cáncer que comienza en el cerebro o columna vertebral. Se denomina glioma porque surge de células gliales y/o sus precursores. El sitio más común de gliomas es el cerebro. Los gliomas se clasifican por tipo de célula, grado y localización. Los gliomas se nombran según el tipo específico de célula a la que más se asemejan. Los tipos principales de gliomas son:

- Ependimomas, gliomas derivados de células ependimarias.
- Astrocitomas, gliomas derivados de astrocitos; el glioblastoma multiforme (GBM) es el astrocitoma más común.
- 15 Oligodendrogliomas, gliomas derivados de oligodendrocitos.
 - Gliomas mixtos, tales como oligoastrocitomas, que contienen células de diferentes tipos de glía.

Los gliomas se clasifican además según su grado, que se determina mediante la evaluación patológica del tumor. Por tanto se puede distinguir entre gliomas de bajo grado que están bien diferenciados (no anaplásicos), benignos y presagian un mejor pronóstico para el paciente; y gliomas de alto grado, que no están diferenciados o anaplásicos, malignos y llevan a un peor pronóstico.

De los numerosos sistemas de calificación en uso, el más común es la Organización Mundial de la Salud (OMS) sistema de calificación para astrocitoma.

Tratamiento de gliomas cerebrales

El tratamiento para gliomas cerebrales depende de la localización, el tipo de célula y el grado de malignidad. A menudo, el tratamiento es un enfoque combinado, que usa cirugía, radioterapia y quimioterapia. La radioterapia es en forma de radiación con rayos externa o el enfoque estereotáctico usando radiocirugía. Los tumores de médula espinal pueden tratarse mediante cirugía y radiación. La temozolomida es un fármaco quimioterápico que puede cruzar la barrera hematoencefálica eficazmente y está usándose en terapia. A pesar de estos enfoques, la mayoría de los pacientes de glioma de alto grado sucumben a su enfermedad. Se necesitan nuevas intervenciones terapéuticas para dianas críticas para mejorar el desenlace en esta población de pacientes.

Glioblastoma multiforme (GBM)

El glioblastoma multiforme (GBM, grado IV de OMS) es un tumor cerebral altamente agresivo que se presenta como uno de los dos subtipos con perfiles moleculares y anamnesis distintos. El GBM primario se presenta completamente como una enfermedad de alto grado y el subtipo GBM secundario evoluciona desde la evolución lenta de una enfermedad de bajo grado.

Brown *et al.* (J Clin Oncology. 2008, 5603-5609) describen un ensayo de fase I/II de erlotinib combinado con temozolomida en pacientes que padecen GBM. Estos autores intentaron relacionar la respuesta de los pacientes con varios marcadores moleculares como EGFR, PTEN, P53, etc., pero dejaron de observar cualquier correlación entre supervivencia y niveles de expresión de dichos genes.

40 Mirimanoff *et al.* (J Clin Oncology. 2006, 2563-2569) describen un ensayo de fase III EORTC completado, en el que la metilación de promotor MGMT fue el factor pronóstico más fuerte para el desenlace y respuesta positiva a temozolomida.

Van den Bent et al. (J Clin Oncology. 2009, 27:1268-1274) describen un ensayo de fase II EORTC aleatorio reciente. Los pacientes con GBM progresiva tras asignarse aleatoriamente radioterapia anterior a o bien erlotinib o bien un brazo de control que recibió tratamiento con o bien temozolomida o bien carmustina (BCNU). El principal punto final fue supervivencia libre de progresión a los 6 meses (PFS). Se investigaron muestras de tumor obtenidas en la primera cirugía para la expresión de EGFR; mutantes de EGFRvIII; amplificación de EGFR; mutaciones de EGFR en exones 18, 19, y 21; y pAkt. No se identificó un marcador biológico claro asociado con desenlace mejorado a erlotinib.

50 Smith et al. (J. National Cancer Institute. 2001, 1246-1256) describen métodos para predecir la supervivencia de

pacientes con astrocitoma anaplásico y GBM. Estos autores identifican que la mutación de PTEN y amplificación de EGFR son marcadores de pronóstico independientes para pacientes con astrocitoma anaplásico y la amplificación de EGFR es un marcador de supervivencia para pacientes de mayor edad con GBM.

Umesh *et al.* (Clinical Neuropathology. Vol. 28 - No. 5/2009 (362-372)) describen un método para predecir el desenlace del paciente de glioma que comprende la detección de amplificación de EGFR y PTEN LOH mediante inmunohistoquímica. La conclusión descrita en dicho documento es que la amplificación de EGFR asociada a LOH del gen de PTEN tiende a una escasa supervivencia.

Prados et al. (J Clin Oncology. 2009, 27(4):579-84) describen un ensayo de fase II que evaluó erlotinib más temozolomida durante y después de la radiación, los pacientes tratados con terapia de combinación (es decir, erlotinib y temozolomida) tuvieron mejor supervivencia. Además, el estudio también evaluó varios marcadores biológicos y hallaron que la metilación del promotor MGMT junto con expresión de PTEN se asociaba a una supervivencia mejorada.

Sin embargo, existe todavía la necesidad de marcadores y combinaciones de marcadores adicionales útiles para predecir el desenlace clínico de los pacientes con glioma. Un área especial para el diagnóstico y pronóstico es el estudio de la muestra de biopsia. Un enfoque integrado que puede definir mejor el desenlace del paciente basándose en el tratamiento más apropiado usando perfiles tumorales será crítico, ofreciendo además al paciente con glioma una mejor calidad de vida.

Sumario de la invención

5

10

15

30

35

40

55

En un aspecto, la invención se refiere a un método para predecir el desenlace clínico de un sujeto que padece glioma que comprende determinar el nivel de expresión del gen de EGFR o los niveles de polisomía/amplificación del locus de EGFR en el cromosoma 7 y la pérdida de los niveles de heterocigosidad (LOH) del gen de PTEN en una muestra del mismo sujeto, y comparar dicho nivel de expresión o los niveles de polisomía/amplificación del gen de EGFR y el nivel LOH del gen de PTEN con valores de referencia convencionales, en el que el nivel LOH del gen de PTEN se mide mediante PCR, mediante un ensayo basado en hibridación, mediante secuenciación o mediante análisis de SNP; y en el que un alto nivel LOH del gen de PTEN con respecto a dicho valor de referencia convencional y un alto nivel de expresión y/o altos niveles de polisomía/amplificación del gen de EGFR con respecto a dichos valores de referencia convencionales son indicativos de un buen desenlace clínico del sujeto.

En otro aspecto se da conocer también un método para predecir el desenlace clínico de un sujeto que padece glioma que comprende determinar el nivel LOH del gen de PTEN en una muestra del sujeto, y comparar dicho nivel LOH de gen de PTEN con un valor de referencia convencional, en el que el nivel LOH del gen de PTEN se mide mediante PCR, mediante un ensayo basado en hibridación, mediante secuenciación o mediante análisis de SNP; y en el que un alto nivel LOH del gen de PTEN con respecto a dicho valor de referencia convencional, es indicativo de un mal desenlace clínico del sujeto.

En otro aspecto, la invención se refiere al uso de un kit que comprende agentes que pueden detectar específicamente el nivel de expresión y/o la polisomía/amplificación del gen de EGFR y el LOH del gen de PTEN y, opcionalmente, un reactivo para detectar un gen constitutivo o la proteína codificada por dicho gen constitutivo y/o un reactivo para detectar los cromosomas 7 y 10, para predecir el desenlace clínico de un sujeto que padece glioblastoma multiforme, en el que el conjunto de agentes que pueden determinar específicamente el nivel LOH del gen de PTEN comprende un par de cebadores de oligonucleótidos adecuados para amplificar un fragmento específico del gen de PTEN o una sonda de oligonucleótido marcada opcionalmente que se une selectivamente a una secuencia diana de polinucleótido sobre la región del cromosoma del gen de PTEN o reactivos adecuados para realizar una reacción de secuenciación o reactivos para realizar un análisis de SNP, y en el que si dichos agentes detectan altos niveles de expresión o un alto nivel de polisomía/amplificación del gen de EGFR y un alto nivel LOH del gen de PTEN, con respecto a valores de referencia, entonces el desenlace clínico del sujeto es bueno.

En otro aspecto, se da conocer también el uso de erlotinib y/o temozolomida en la fabricación de un medicamento para el tratamiento de un glioma en un sujeto que padece un glioma, en el que el medicamento es para un sujeto que tiene un alto nivel LOH del gen de PTEN, que se mide mediante PCR, mediante un ensayo basado en hibridación, mediante secuenciación o mediante un análisis de SNP, con respecto a un valor de referencia convencional y altos niveles de expresión y/o alta polisomía/amplificación del gen de EGFR con respecto a valores de referencia convencionales.

Se da a conocer también el uso de radioterapia en un régimen para el tratamiento de un glioma en un sujeto que padece un glioma, en el que dicho sujeto tiene un alto nivel LOH del gen de PTEN, que se mide mediante PCR, mediante un ensayo basado en hibridación, mediante una tecnología de secuenciación, o mediante una análisis de SNP, con respecto a un valor de referencia convencional y altos niveles de expresión y/o alta polisomía/amplificación del gen de EGFR con respecto a valores de referencia convencionales.

Breve descripción de los dibujos

Figura 1. Curva de supervivencia de Kaplan-Meier que ilustra el tiempo desde la primera cirugía hasta la muerte /

final del seguimiento de solo pacientes GMB (puro), pacientes con astrocitoma y pacientes con oligodendrogliomas.

Figura 2. Curva de Kaplan-Meier que estima la supervivencia desde la primera cirugía hasta la muerte / recaída / progresión o final del seguimiento de solo pacientes GMB (puro), pacientes con astrocitoma y pacientes con oligodendrogliomas.

- Figura 3. Curva de supervivencia de Kaplan-Meier que demuestra la estratificación de pacientes en el glioblastoma multiforme (GBM), astrocitoma anaplásico y grupo mixto con PTEN LOH (p=0,04).
 - Figura 4. Curva de supervivencia de Kaplan-Meier que demuestra la estratificación de pacientes en el glioblastoma multiforme (GBM), astrocitoma anaplásico y grupo mixto como que ambos tiene EGFR AMP/HP (amplificación alta polisomía) y PTEN LOH (p=0,034).
- Figura 5. Imágenes representativas de muestras de glioblastoma multiforme (GBM) teñidas con H&E (Hematoxilina y Eosina) (A). Ejemplos de experimentos FISH donde se ilustran AMP/HP EGFR DNA FISH (B) y monosomía PTEN (C).

Descripción detallada de la invención

25

40

Con el fin de facilitar el entendimiento de la invención descrito en esta solicitud de patente, se explican a continuación el significado de algunos términos y expresiones en el contexto de la invención.

El término "sujeto" se refiere a un miembro de una especie animal mamífera, e incluye, pero no está limitado al mismo, animales domésticos, primates y seres humanos; el sujeto es preferiblemente un ser humano, macho o hembra, de cualquier edad o raza. Alternativamente, el término "individuo" también se usa algunas veces en esta descripción para referirse a seres humanos.

- 20 El término "proteína" se refiere a una cadena molecular de aminoácidos, unida mediante enlaces covalentes o no covalentes. El término incluye todas las formas de modificaciones postraduccionales, por ejemplo, glicosilación, fosforilación o acetilación.
 - El término "anticuerpo" se refiere a una proteína con la capacidad de unirse específicamente a un antígeno. El término anticuerpo comprende anticuerpos recombinantes, anticuerpos monoclonales, o anticuerpos policionales, intactos, o fragmentos de los mismos que mantienen la capacidad de unirse al antígeno, combicuerpos, etc., tanto de origen humano o humanizado como de origen no humano.
 - El término "oligonucleótido cebador", tal como se usa en la presente invención, se refiere a una secuencia de nucleótidos, que es complementaria a una secuencia de nucleótidos de un gen seleccionado. Cada oligonucleótido cebador hibrida con su secuencia diana de nucleótidos y actúa como un punto de inicio para polimerización de ADN.
- Los inventores de la presente invención han hallado que el desenlace clínico de pacientes que padecen cáncer de glioma se correlaciona con niveles de expresión y/o los niveles de polisomía/amplificación del gen de EGFR y con el nivel LOH del gen de PTEN.

Por tanto, en un aspecto, la invención se refiere a un método para predecir el desenlace clínico de un sujeto que padece glioma, a continuación en el presente documento se denomina método [1] de la invención, que comprende:

- a) determinar el nivel de expresión o el nivel de polisomía/amplificación del gen de EGFR y el nivel LOH del gen de PTEN en una muestra del mismo sujeto, y
 - b) comparar dicho nivel de expresión o el nivel de polisomía/amplificación del gen de EGFR y el nivel LOH del gen de PTEN con valores de referencia convencionales, en el que el nivel LOH del gen de PTEN se mide mediante PCR, mediante un ensayo basado en hibridación, mediante secuenciación o mediante una análisis de SNP; y en el que un alto nivel LOH del gen de PTEN con respecto a dicho valor de referencia convencional y un alto nivel de expresión y/o alto nivel de polisomía / amplificación del gen de EGFR con respecto a dichos valores de referencia convencionales son indicativos de un buen desenlace clínico del sujeto.

En la presente invención un "glioma" es un tipo de cáncer que comienza en el cerebro o columna vertebral. Se denomina glioma porque surge de células gliales y/o sus precursores. El sitio más común de gliomas es el cerebro.

45 Los gliomas se clasifican por tipo de célula, grado, y localización. Los gliomas se nombran según el tipo específico de célula a la que más se asemejan. Los tipos principales de gliomas son:

- Ependimomas, gliomas derivados de células ependimarias.
- Astrocitomas, gliomas derivados de astrocitos; el glioblastoma multiforme (GBM) es el astrocitoma más común.
- Oligodendrogliomas, gliomas derivados de oligodendrocitos.
- Gliomas mixtos, tales como oligoastrocitomas, que contienen células de diferentes tipos de glía.

Los gliomas se clasifican además según su grado, que se determina mediante evaluación patológica del tumor. Por tanto, se puede distinguir entre (i) gliomas de bajo grado que están bien diferenciados (no anaplásicos), benignos y presagian un mejor pronóstico para el paciente; y (ii) gliomas de alto grado, que no están diferenciados o anaplásicos, malignos y llevan a un peor pronóstico.

5 En una realización preferida, el glioma es un gliobastoma multiforme (GBM) y más preferiblemente el gliobastoma es un gliobastoma temprano.

10

15

30

35

40

45

55

El gliobastoma multiforme (GBM) es la forma más común y maligna de tumores gliales y se compone de una mezcla heterogénea de malignos astrocitos y células endoteliales displásicas diferenciados escasamente. Afecta principalmente a adultos, implica los hemisferios cerebrales y tiene un desarrollo de la enfermedad rápido lo que a menudo conduce hasta la muerte.

En la presente invención "desenlace clínico" se entiende como el desarrollo esperado de una enfermedad. Denota el pronóstico del doctor de cómo una enfermedad del sujeto progresará, y si hay posibilidades de recuperación o recaída. El pronóstico del desenlace clínico puede realizarse usando cualquier medición de punto final en oncología y que conoce el médico. Los parámetros de punto final útiles para describir la progresión de una enfermedad incluyen:

- progresión libre de enfermedad que, tal como se usa en el presente documento, describe la proporción de pacientes en de pacientes en remisión que no han tenido recaída de la enfermedad durante el periodo de tiempo en estudio:
- respuesta objetiva, que, tal como se usa en el presente documento, describe la proporción de personas tratadas en las cuales se observa una respuesta completa o parcial;
 - control de tumor, que, tal como se usa en el presente documento, se refiere a la proporción de personas tratadas en las que se observa una respuesta completa, respuesta parcial, respuesta menor o enfermedad estable en igual a o más de (≥) 6 meses;
- supervivencia libre de progresión que, tal como se usa en el presente documento, se define como el tiempo desde el inicio de tratamiento hasta la primera medición de crecimiento de cáncer;
 - tasa de supervivencia libre de progresión a los 6 meses o "PFS6" que, tal como se usa en el presente documento, se refiere al porcentaje de personas en el que están libres de progresión en los primeros seis meses tras el inicio del terapia; y
 - supervivencia mediana que, tal como se usa en el presente documento, se refiere al tiempo en el que la mitad de los pacientes inscritos en el estudio están todavía vivos.

Un buen desenlace clínico se entiende como una situación en la que al menos el 10%, el 20%, el 30%, el 40%, el 50%, el 60%, el 70%, el 80%, el 90%, el 95% o incluso más de los pacientes tienen un resultado positivo con respecto a los parámetros de punto final descritos anteriormente.

El término "muestra" tal como se usa en el presente documento, se refiere a cualquier muestra que puede obtenerse del paciente. El método presente puede aplicarse a cualquier tipo de muestra biológica de un paciente, tal como una muestra de biopsia, tejido, célula o líquido (sangre completa, suero, saliva, semen, expectoración, orina, líquido cefalorraquídeo (LCR), lágrimas, moco, sudor, leche, extractos de cerebro y similares). En una realización particular, dicha muestra es una parte o muestra de tejido tumoral del mismo. En una realización más particular, dicha muestra de tejido de tumor es una muestra de tejido cerebral tumoral de un paciente que padece cáncer de cerebro. Dicha muestra puede obtenerse mediante métodos convencionales, por ejemplo, biopsia, usando métodos que conocen bien los expertos en la técnica en la técnica médica relacionada. Los métodos para obtener la muestra de la biopsia incluyen reparto bruto de una masa, o microdisección u otros métodos de separación de células conocidos en la técnica. Las células tumorales pueden obtenerse adicionalmente a partir de una citología de aspiración de aguja fina. Con el fin de simplificar la conservación y manejo de las muestras, estas pueden fijarse en formalina e incrustarse en parafina o congelarse en primer lugar y se incrustó entonces en un medio con capacidad de criosolidificación, tal como compuesto OCT, a través de la inmersión en un medio altamente criogénico que permite una rápida congelación. En una realización particular, la muestra es una muestra de tumor que contiene un número sustancial de células tumorales.

Las muestras pueden obtenerse de sujetos diagnosticados previamente de glioma (pacientes), o de sujetos que no han sido diagnosticados previamente de glioma, o de pacientes diagnosticados de glioma Que se someten a tratamiento, o de pacientes diagnosticados de glioma que se han tratado previamente.

PTEN es la proteína homóloga de fosfatasa y tensina también conocida como BZS; MHAM; TEP1; MMAC1; PTEN1; 10q23del o MGC11227. PTEN es una proteína, que en seres humanos se codifica mediante el gen de PTEN (RefSEq ID NM_000314 SEQ ID NO: 1, proteína de referencia NP_000305.3 SEQ ID NO: 2) (Steck PA, *et al.* 1997 Nat. Genet. 15 (4): 356-62 2). PTEN actúa como un gen supresor tumoral a través de la acción de su producto de

proteína fosfatasa. Esta fosfatasa está implicada en la regulación del ciclo celular, evitando el crecimiento y división demasiado rápidamente de las células. Las mutaciones de este gen contribuye al desarrollo de determinados cánceres (Chu EC, et al. 2004 Med. Sci. Monit. 10 (10): RA235-41 3). Existe como homólogos otras especies, tales como ratones (NM_008960.2, SEQ ID NO: 3), rata (NM_031606.1, SEQ ID NO: 4), perro (NM_001003192, SEQ ID NO: 5), etc.

5

10

15

20

25

30

35

40

La proteína codificada por el gen de PTEN es una fosfatidilinositol-3,4,5-trisfosfato-3-fosfatasa. Contiene una tensina como dominio así como un dominio catalítico similar al de las proteínas tirosina fosfatasas de especificidad dual. A diferencia de mayoría de las proteínas tirosina fosfatasas, esta proteína desfosforila preferencialmente sustratos de fosfoinositida. Regula negativamente niveles intracelulares de fosfatidilinositol-3,4,5-trisfosfato en células y funciona como supresor tumoral mediante la ruta de señalización de Akt/PKB de regulación negativamente (Hamada K, et al 2005 Genes Dev 19 (17): 2054-65).

El receptor de factor de crecimiento epidérmico (EGFR; ErbB-1; HER1 en seres humanos) es el receptor de superficie celular para miembros de la familia de factor de crecimiento epidérmico (EGF-familia) de ligandos de proteína extracelulares (Herbst RS (2004). Int. J. Radiat. Oncol. Biol. Phys. 59 (2 Suppl): 21-6. 1) El EGFR es un miembro de la familia ErbB de receptores. El EGFR es una proteína que en seres humanos es codificada por diferentes isoformas: EGFR variante de transcripción 1 (NM_005228.3, SEQ ID NO: 6), variante de transcripción 2 (NM_201282.1, SEQ ID NO: 7), variante de transcripción 3 (NM_201283.1, SEQ ID NO: 8) y variante de transcripción 4 (NM_201284.1, SEQ ID NO: 9). Existe como homólogos otras especies, tales como ratón (NM_207655.2, SEQ ID NO: 10 y NM_007912.4, SEQ ID NO: 11), rata (NM_031507.1, SEQ ID NO: 12), perro (XM_533073.2, SEQ ID NO: 13), etc.

El método [1] de la invención comprende determinar el nivel de expresión del gen de EGFR. Como el experto en la técnica comprende, puede determinarse el nivel de expresión de un gen midiendo los niveles de ARNm codificados por dichos genes, midiendo ambos niveles de proteínas codificados por dichos genes y los niveles de variantes de los mismos, mediante el uso de sustitutos (número de copia de ADN) para asociar nivel de gen con ARNm y producto de proteína de dicho gen, etc.

Una variante de una proteína, por ejemplo, EGFR o PTEN, tal como se usa en el presente documento puede ser (i) una proteína en la que uno o más de los residuos de aminoácido se sustituye/n con un residuo de aminoácido conservado o no conservado (preferiblemente un residuo de aminoácido conservado) y tal residuo sustituido de aminoácido puede estar codificado o no por el código genético, (ii) una proteína que tiene uno o más residuos de aminoácido modificados, por ejemplo, residuos que se modifican mediante la unión de grupos sustituyentes, (iii) una proteína modificada siendo dicha proteína el resultado de un empalme alternativo del ARNm que codifica el EGFR o proteína PTEN, y/o (iv) un fragmento de la proteína. El término "fragmento" incluye también un péptido o proteína generada por medio de por medio de escisión proteolítica (incluyendo proteolisis multietapa) de una proteína original. Las variantes se consideran que están dentro del alcance de los expertos en la técnica de las enseñanzas en el presente documento.

Como se conoce en la técnica la "similitud" entre dos proteínas se determina comparando la secuencia de aminoácidos y sus sustitutos de aminoácidos conservados de una proteína con respecto a una secuencia de una segunda proteína. Las variantes según la presente invención incluyen péptidos o proteínas que tienen secuencias de aminoácidos que son al menos el 60%, el 65%, el 70%, el 72%, el 74%, el 76%, el 78%, el 80%, el 82%, el 84%, el 86%, el 88%, el 90%, el 95%, o incluso más, similar o idéntica a la secuencia de aminoácidos original. El grado de identidad entre dos proteínas puede determinarse usando algoritmos de ordenador y métodos que los expertos en la técnica conocen ampliamente. La identidad entre las dos secuencias de aminoácidos se determina preferiblemente usando el algoritmo BLASTP (BLASTManual, Altschul, S., et al., NCBI NLM NIH Betesda, Md. 20894, Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990)).

- Las proteínas pueden modificarse postraduccionalmente. Por ejemplo, modificaciones postraduccionales que se encuentran dentro del alcance de la presente invención incluyen escisión del péptido señal, glicosilación, acetilación, isoprenilación, proteólisis, miristoilación, plegamiento de proteínas y procesamiento proteolítico, etc. Adicionalmente, las proteínas pueden incluir aminoácidos no naturales formados mediante modificación postraduccional o introduciendo aminoácidos no naturales durante traducción.
- En una realización preferida, la determinación de los niveles de expresión del gen de EGFR puede llevarse a cabo midiendo el nivel de expresión del ARNm codificado por el gen de EGFR, respectivamente. Para este fin, la muestra biológica puede tratarse para alterar físicamente o mecánicamente la estructura celular o tejido, para liberar componentes intracelulares en una disolución acuosa u orgánica para preparar ácidos nucleicos para análisis adicional. Los ácidos nucleicos se extraen de la muestra mediante procedimientos que conocen los expertos de la técnica y disponibles comercialmente. Entonces se extrae ARN de muestras congeladas o frescas mediante cualquiera de los métodos conocidos en la técnica, por ejemplo, Sambrook, Fischer y Maniatis, Molecular Cloning, un manual de laboratorio, (2ª ed.), Cold Spring Harbor Laboratory Press, Nueva York, (1989). Preferiblemente, se tiene cuidado para evitar la degradación del ARN durante el procedimiento de extracción.

En una realización particular, el nivel de expresión se determina usando ARNm obtenido de una muestra de tejido

fijado con parafina, incrustado en parafina. El ARNm puede aislarse de una muestra patológica o muestra de biopsia de archivo que se desparafina en primer lugar. Un método de desparafinación a modo de ejemplo implica lavado de la muestra parafinizada con un disolvente orgánico, tal como xileno, por ejemplo.

Las muestras desparafinizadas pueden rehidratarse con una disolución acuosa de un alcohol inferior. Los alcoholes inferiores adecuados, por ejemplo incluyen, metanol, etanol, propanoles y butanoles. Muestras desparafinizadas puede rehidratarse con lavados sucesivos con disoluciones de alcoholes inferiores de disminución de la concentración, por ejemplo. Alternativamente, la muestra se desparafina y se rehidrata simultáneamente. La muestra se lisa entonces y se extrae ARN de la muestra.

5

30

35

40

45

60

Mientras que todas las técnicas de elaboración de perfiles de expresión génica (RT-PCR, SAGE, o TaqMan) son adecuadas para su uso en la realización de los aspectos anteriores de la invención, los niveles de expresión del ARNm que codifica para EGFR o para PTEN se determinan a menudo mediante reacción de cadena de polimerasa de transcripción inversa (RT-PCR). La detección puede llevarse a cabo en muestras individuales o en microalineamientos de tejido.

Con el fin de normalizar los valores de la expresión de ARNm entre las diferentes muestras, es posible comparar los niveles de expresión del ARNm de interés en las muestras de prueba con la expresión de un ARN de control. Un "ARN de control" tal como se usa en el presente documento, se refiere a un ARN cuyos niveles de expresión no cambian o cambian solo en cantidades limitadas en células tumorales con respecto a células no tumorigénicas. Preferiblemente, un ARN de control es un ARNm derivado a partir de un gen constitutivo y que codifica para una proteína que se expresa constitutivamente y lleva a cabo funciones celulares esenciales. Genes constitutivos preferidos para su uso en la presente invención incluyen β-2-microglobulina, ubiquitina, proteína ribosomal 18-S, ciclofilina, GAPDH y actina. En una realización preferida, el ARN de control es ARNm de β-actina. En una realización, la cuantificación de la expresión génica relativa se calcula según el método Ct comparativo usando β-actina como un control endógeno y controles de ARN comercial como calibradores. Los resultados finales se determinan según la fórmula 2-(ΔCt de muestra-ΔCt de calibrador), en el que los valores de ΔCT del calibrador y muestra se determinan restando el valor CT del gen diana del valor del gen de β-actina.

La determinación del nivel de expresión del gen de EGFR necesita correlacionarse con los valores de referencia convencionales. Los valores de referencia convencionales corresponden al valor de la mediana de los niveles de expresión del gen de EGFR medidos en una colección de muestras de pacientes sanos. Una vez que se establece este valor de la mediana, el nivel de este marcador expresado en tejidos tumorales de pacientes puede compararse con este valor de la mediana, y por tanto asignarse a un nivel de "bajo", "normal" o "alto". La colección de muestras de cuyo nivel de referencia se deriva se constituirá preferiblemente de personas sanas de la misma edad como los pacientes. En cualquier caso puede contener un número diferente de muestras. En una realización más preferida, las muestras son muestras de cerebro de biopsia. Preferiblemente la colección debe ser suficiente para proporcionar un valor de referencia convencional preciso. Normalmente, el número de muestras usado para determinar un valor de referencia convencional es al menos 10, preferiblemente más de 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 500 o incluso más muestras. El patrón puede incluir también células 'normales' presentes dentro del tejido enfermo y/o canceroso. Esto es particularmente cierto para extirpación de tumor cerebral y ocasionalmente muestras de biopsia que normalmente contienen un borde de tejido normal o tienen células inflamatorias, etc., que no contienen cambios de genes. Además, puede usarse un sistema de cultivo celular para evaluar contenido génico, como una manera de determinar la presencia o pérdida de genes individuales.

En una realización particular, un aumento en la expresión del gen de EGFR, como se determinó en la muestra anterior el valor de referencia convencional de al menos 1,1 veces, 1,5 veces, 5 veces, 10 veces, 20 veces, 30 veces, 40 veces, 50 veces, 60 veces, 70 veces, 80 veces, 90 veces, 100 veces o incluso más en comparación con el valor de referencia se considera como un nivel de expresión "alto" del gen de EGFR, En otra realización particular, una disminución en la expresión del gen de EGFR, como se determinará en la muestra siguiente el valor de referencia convencional de al menos 0,9 veces, 0,75 veces, 0,2 veces, 0,1 veces, 0,05 veces, 0,025 veces, 0,02 veces, 0,01 veces, 0,005 veces o incluso menor en comparación con el valor de referencia convencional se considera como un nivel de expresión "bajo" del gen de EGFR.

Alternativamente, en otra realización particular, el nivel de expresión del gen de EGFR puede determinarse midiendo tanto el nivel del proteína codificado por dichos genes, es decir proteína EGFR, como los niveles de una variante de la misma. Aunque sería posible determinar el nivel de expresión del gen de PTEN midiendo tanto el nivel de la proteína codificada por dichos genes, es decir proteína PTEN, y los niveles de una variante de la misma, en la práctica, dicha opción no es adecuada para la realización de enseñanzas de la presente invención tal como tratará a continuación. El experto en la técnica conoce que la pérdida de expresión de proteína también puede ser el resultado de metilación del promotor de gen y no una pérdida del gen por sí mismo que afecta a otros genes asociados.

La determinación del nivel de expresión de una proteína, por ejemplo, proteína EGFR, o una variante de la misma puede llevarse a cabo mediante cualquier técnica convencional que conoce el experto en la técnica. En una realización particular, la determinación de los niveles de expresión de dicha proteína, por ejemplo, proteína EGFR, o una variante de la misma, se lleva a cabo mediante técnicas inmunológicas tales como por ejemplo, ELISA (Ensayo

por inmunoabsorción ligado a enzimas), inmunotransferencia de tipo Western, inmunofluorescencia (SI), análisis de inmunohistoquímica (IHC), etc. ELISA se basa en el uso de antígenos o anticuerpos marcados (por ejemplo, con enzimas) de modo que los conjugados formados entre el antígeno diana y el anticuerpo marcado da como resultado la formación de, por ejemplo, complejos enzimáticamente activos. Puesto que uno de los componentes (el antígeno o el anticuerpo marcado) se inmoviliza sobre un soporte, los complejos anticuerpo-antígeno se inmovilizan sobre el soporte y por tanto, puede detectarse mediante la adición de un sustrato que se convierte mediante la enzima en un producto que puede detectarse mediante, por ejemplo espectrofotometría, fluorometría, etc. Esta técnica no permite la localización exacta la proteína diana o la determinación de su peso molecular sin embargo permite una detección muy específica y altamente sensible de la proteína diana en una variedad de muestras biológicas (suero, plasma, homogeneizados de tejido, sobrenadantes posnucleares, ascitos y similares). La inmunotransferencia de tipo Western se basa en la detección de una proteína que se vuelve a disolver previamente mediante electroforesis en gel en condiciones desnaturalizantes e inmovilizada sobre una membrana, generalmente nitrocelulosa, mediante incubación con un anticuerpo específico para dicha proteína y un sistema de desarrollo (por ejemplo quimioluminiscencia, etc.). El análisis mediante inmunofluorescencia (SI) requiere el uso de un anticuerpo específico para la proteína diana para el análisis de la expresión y localización subcelular mediante microscopio. Generalmente, las células en estudio se fijan previamente con paraformaldehído y permeabilizan con un detergente no iónico. En una realización preferida, la proteína EGFR se detecta mediante un análisis inmunohistoquímica (IHC) usando secciones delgadas de muestra biológica inmovilizada sobre portaobjetos recubiertos. Las secciones se desparafinan entonces, si se derivaron de muestra de tejido parafinado, y se tratan de modo que se recupere el antígeno. La detección puede llevarse a cabo en muestras individuales o en microalineamientos de tejido. En otra realización el método usado para determinar el nivel de expresión de una proteína, por ejemplo, proteína EGFR, o una variante de la misma es un alineamiento proteómico.

5

10

15

20

25

30

35

40

45

50

55

60

Puede usarse prácticamente cualquier anticuerpo o reactivo conocido por unirse con alta afinidad a la proteína diana para detectar la cantidad de dicha proteína diana. Se prefiere no obstante el uso de un anticuerpo, por ejemplo sueros policlonales, sobrenadantes de hibridoma o anticuerpos monoclonales, fragmentos de anticuerpo, Fv, Fab, Fab' y F(ab')2, ScFv, dicuerpos, tricuerpos, tetracuerpos y anticuerpos humanizados.

En aún otra realización, la determinación del nivel de expresión de una proteína, por ejemplo, EGFR, etc., puede llevarse a cabo construyendo una microalineación de tejido (TMA) que contiene las muestras de paciente ensambladas, y determinar los niveles de expresión de dicha proteína mediante técnicas IHC. La intensidad de inmunotinción puede evaluarse mediante dos bioquímicos clínicos diferentes y puntuarse usando criterios de punto de corte uniformes y claros, con el fin de mantener la reproducibilidad del método. Las discrepancias pueden resolverse mediante reevaluación simultánea. Brevemente, puede registrarse el resultado de inmunotinción como expresión negativa (0) frente a expresión positiva, como expresión baja (1+) expresión frente a moderada (2+) y como expresión alta (3+), teniendo en cuenta la expresión en células tumorales y el punto de corte específico para cada marcador. Como criterio general, se seleccionaron los puntos de corte con el fin de facilitar la reproducibilidad, y cuando sea posible, traducir acontecimientos biológicos.

La determinación del nivel de expresión del gen de EGFR necesita correlacionarse con los valores de referencia convencionales que corresponden al valor de la mediana de niveles de expresión del gen de EGFR medidos en una colección de muestras de tejido de cerebro de pacientes sanos. Preferiblemente la colección debe ser suficiente para proporcionar un nivel de referencia preciso. Normalmente el número de muestras usado para determinar los valores de referencia convencionales es al menos 10 muestras, preferiblemente más de 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 500, o incluso más.

En una realización preferida la muestra es una biopsia. Una vez que se establece este valor de la mediana, el nivel de este marcador expresado en tejidos tumorales de pacientes puede compararse con este valor de la mediana, y por tanto asignarse a nivel de "bajo", "normal" o "alto" tal como se definió anteriormente.

"Polisomía" / "amplificación" del locus de EGFR en el cromosoma 7 tal como se usa en la presente invención se entiende como la presencia de más de una copia del locus de EGFR en el cromosoma 7.

Además, tal como se usa en el presente documento, el término "LOH" dentro del contexto de la presente invención se refiere una "pérdida de heterocigosidad". LOH en una célula representa la pérdida de la función normal de un alelo de un gen en el que ya se inactivó el otro alelo. Este término se usa principalmente en el contexto de la oncogénesis; tras una mutación de inactivación en un alelo de un gen supresor tumoral que se produce en la célula germinal original, se transmite al cigoto que da como resultado un descendiente que es heterocigoto para este alelo. En oncología, la pérdida de heterocigosidad (LOH) se produce cuando el alelo funcional restante en una célula somática del descendiente llega a inactivarse mediante mutación. En el caso de PTEN LOH, esto da como resultado que no se produzca un supresor tumoral normal.

En una realización particular, pueden medirse la determinación del polisomía/amplificación nivel del gen de EGFR y la determinación de los niveles LOH del gen de PTEN, por ejemplo, en el ADN obtenido de las células tumorales según procedimientos convencionales tales como, por ejemplo, PCR cuantitativa, hibridación genómica comparativa (CGH) para tecnologías de microalineamientos, etc.; o en las células tumorales a partir la sección incrustada en parafina o de la preparación de citología mediante FISH usando sondas moleculares apropiadas, etc.

En una realización particular, la detección del polisomía/amplificación nivel del gen de EGFR y la determinación de los niveles LOH del gen de PTEN se lleva a cabo mediante a reacción en cadena de polimerasa (PCR).

En una realización particular, la detección del polisomía/amplificación nivel del gen de EGFR y la determinación de los niveles LOH del gen de PTEN se lleva a cabo mediante un ensayo basado en hibridación. En una realización particular, la etapa de detección del método [1] de la invención comprende poner en contacto la muestra de ácido nucleico con una o más sondas de ácido nucleico cada una de ellas se une selectivamente a una secuencia diana de polinucleótido sobre la región del cromosoma del loci de EGFR o PTEN, en condiciones en las que la sonda forma una complejo de hibridación estable con la secuencia diana de polinucleótido; y detectar el complejo de hibridación. En una realización particular, las sondas de ácido nucleico usadas en el método [1] de la invención se marcan con un fluoróforo. Alternativamente, en otra realización particular, la etapa de detección del complejo de hibridación comprende determinar el número de copia de la secuencia diana de polinucleótido, determinando de este modo la presencia de polisomía o LOH del gen diana.

5

10

15

20

25

30

45

En una realización preferida, dicho ensayo basado en hibridación se selecciona del grupo que consiste en transferencia Southern, hibridación in situ (ISH), fluorescencia ISH (FISH) e hibridación genómica comparativa (CGH). La transferencia Southern es un método usado rutinariamente en biología molecular par la detección de una secuencia de ADN específica en muestras de ADN; la transferencia Southern generalmente combina la transferencia de fragmentos de ADN separados por electroforesis a una membrana de filtración y detección de fragmento posterior mediante hibridación de sonda. La hibridación in situ (ISH) es un tipo de hibridación que usa una hebra de ADN o ARN complementaria marcada (es decir, sonda) para localizar una secuencia de ADN o ARN específica en una porción o sección de tejido (in situ), o, si el tejido es suficientemente pequeño, en el tejido completo; puede usarse ISH de ADN para determinar la estructura de los cromosomas. La hibridación in situ (FISH) con fluorescencia es una técnica citogenética usada para detectar y localizar la presencia o ausencia de secuencias de ADN específico en los cromosomas. FISH usa sondas fluorescentes que unen a solo algunas partes del cromosoma con los cuales muestran un alto grado de similitud de secuencia. La microscopía fluorescente puede usarse para averiguar donde se unió la sonda fluorescente a los cromosomas. FISH se usa a menudo para hallar características específicas en ADN para su uso en asesoramiento genético, medicina (por ejemplo, en diagnóstico médico para evaluar la integridad cromosómica), y identificación de especies; FISH también puede usarse para detectar y localizar ARNm específicos y otros transcritos en las secciones de tejido o cantidades completas (así, puede ayudar a definir los patrones espacio-temporales de expresión génica en células y tejidos). La hibridación genómica comparativa (CGH) o análisis de microalineamientos cromosómicos (CMA) es un método molecular-citogenético para el análisis de cambios de número de copias (ganancias/pérdidas) en el Contenido de ADN de un ADN de sujeto dado y a menudo en células tumorales; CGH detecta solo cambios cromosómicos desequilibrados. En una realización particularmente preferida, dicho ensayo basado en hibridación es un ensayo CGH.

En una realización particular, dicho ensayo basado en hibridación es un ensayo basado en alineamiento. En una realización particular, una vez que la muestra se ha obtenido y el ADN total se ha extraído, se lleva a cabo análisis de todo el genoma de cambios de número de copia de ADN mediante CGH. En general, para una medición de CGH típica, se aísla ADN genómico total de las poblaciones celulares de referencia y prueba, se marcaron diferencialmente y se hibridaron a una representación del genoma que permite la unión de secuencias en diferentes localizaciones genómicas para que se distingan. Las reacciones de hibridación pueden realizarse en condiciones de rigurosidad diferentes. La rigurosidad de una reacción de hibridación incluye la dificultad con que dos moléculas de ácido nucleico cualquiera hibridarán entre sí. Preferiblemente, cada polinucleótido de hibridación se hibrida a su polinucleótido correspondiente en condiciones de rigurosidad reducida, más preferiblemente condiciones rigurosas, y lo más preferiblemente condiciones altamente rigurosas.

La cantidad de ADN de muestra es frecuentemente una restricción en medidas de CGH. Los procedimientos de CGH de alineamiento típico usan de desde 300 ng hasta 3 mg de ADN de muestra en la reacción de marcaje, equivalente a aproximadamente de 50.000 a 500.000 células de mamífero. Habitualmente, se emplean protocolos que marcan cebadores aleatorios, que amplifican también el ADN, de modo que se usan varios microgramos (μg) en la hibridación.

Se ha implementado alineamiento CGH usando una amplia variedad de técnicas. En una realización particular, se lleva a cabo alineamiento CGH usando alineamientos de clones genómicos de gran inserción tales como cromosomas artificiales bacterianos (BAC). Los principios y condiciones generales para la detección de ácidos nucleicos, tales como el uso de alineamiento CGH a microalineamientos BAC los conoce también el experto en la técnica. Esta técnica permite examinar el genoma completo para cambios de número de copia de ADN permitiendo por tanto la detección cuantitativa de la variación del número de copia de ADN en genomas tumorales con alta resolución (Pinkel D, et al. Nat Genet 1998; 20(2):207-11; Hodgson G, et al. Nat Genet 2001;29(4):459-64). Como ejemplo no limitativo ilustrativo, en el alineamiento CGH llevado a cabo por el método [1] de la invención pueden marcarse mediante tumores de prueba y ADN de referencia genómicos mediante cebado aleatorio usando fluoróforos Cy3 y Cy5. Entonces, pueden analizarse las imágenes de los alineamientos usando, por ejemplo, una cámara con dispositivo acoplado de carga (CCD) y software apropiado.

60 El principal reto técnico de alineamiento CGH es la generación de señales de hibridación que sean suficientemente intensas y específicas de modo que puedan detectarse cambios de número de copias. La intensidad de señal en un

elemento de alineamiento está afectada por varios factores incluyendo la composición de base, la proporción de contenido de secuencia repetitiva, y la cantidad de ADN en el elemento de alineamiento disponible para hibridación.

Los elementos de alineamiento elaborados a partir de clones BAC genómicos proporcionan normalmente señales más intensas que los elementos que emplean secuencias más cortas tales como ADNc, productos de PCR, y oligonucleótidos. Las señales más altas de los elementos de alineamiento más complejos dan como resultado mejor precisión de medición, permitiendo la detección de límites de transición de copia simple incluso en muestras con una alta proporción de células normales.

5

10

50

55

En otra realización preferida, dicho ensayo basado en hibridación es una hibridación in situ fluorescente (FISH) o FISH más carotipo de espectro (SKY) (Liehr T. et al 2008 Fluorescence In situ Hybridization (FISH) – Application Guide, Springer Berlín Heidelberg).

FISH permite detectar y localizar la presencia o ausencia de secuencias de ADN específico en los cromosomas, por ejemplo, FISH permite localizar la señal a un tipo de célula (tumoral) específica. FISH usa sondas fluorescentes que se unen solo a aquellas partes del cromosoma con las que muestran un alto grado de similitud de secuencia. La microscopía fluorescente puede usarse para averiguar donde se une la sonda fluorescente a los cromosomas.

El término "sonda" tal como se usa en el presente documento se refiere a cualquier ribopolinucleótido o desoxirribosecuencia de polinucleótido que se une específicamente a solo aquellas partes del cromosoma con que muestran un alto grado de similitud de secuencia. La sonda debe ser suficientemente grande para hibridar específicamente con su diana pero no tan larga como para impedir el proceso de hibridación. Existen muchas sondas de FISH diferentes que pueden usarse en la presente invención; los ejemplos ilustrativos, no limitativos de los mismos incluyen cromosomas artificiales bacterianos (BAC), sondas de oligonucleótidos de tipo mosaico (TOP), etc. El diseño de sondas para FISH lo conoce bien el experto en la técnica (por favor véanse Bayani J, Squire JA. Curr Protoc Cell Biol. 2004 Sep; capítulo 22: unidad 22.4; Bayani J, Squire J.Curr Protoc Cell Biol. 2004 Oct; capítulo 22: unidad 22.5; Navin, N. et al. Bioinformatics, volumen 22, número 19, 1 de octubre de 2006, págs. 2437-2438(2)) editorial: Oxford University Press). La sonda puede etiquetarse directamente con fluoróforos, con dianas para anticuerpos, con biotina, etc. El etiquetado puede realizarse de varias maneras, tales como mediante traslado de mella, mediante PCR usando nucleótidos etiquetados, etc.

La muestra puede fijarse e incrustarse en parafina, así puede realizarse una etapa adicionalmente de desparafinación.

Para la hibridación, se produce una preparación de cromosoma de interfase o metafase. Los cromosomas se adhieren firmemente a un sustrato, habitualmente, un vidrio. Las secuencias de ADN repetitivas deben bloquearse añadiendo fragmentos cortos de ADN a la muestra. La sonda se aplica entonces a el ADN de cromosoma y se incuba durante aproximadamente 12 horas mientras se hibrida. Las varias etapas de lavado retiran todas las sondas sin hibridar o parcialmente hibridadas. Tras lavados de poshibridación convencionales los portaobjetos se tiñen con la sonda de tinción de ADN tal como DAPI y se monta con un agente de montaje tal como Antifade.

Los resultados se visualizan y se cuantifican entonces usando, por ejemplo, un microscopio que puede excitar el colorante y registrar imágenes. Si la señal fluorescente es débil, la amplificación de la señal puede ser necesaria con el fin de exceder el umbral de detección del microscopio. La fuerza de señal fluorescente depende de muchos factores tales como eficacia de marcado de sonda, el tipo de sonda, y el tipo de colorante. Anticuerpos etiquetados fluorescentemente o estreptavidina se unen a la molécula de colorante. Estos componentes secundarios se seleccionan de modo que tengan una señal fuerte. En una realización preferida, antes de la obtención de imágenes el bioquímico clínico evaluó todos los portaobjetos y se identificaron regiones de interés basándose en criterios histopatológicos y calidad incluyendo, sin excluir otros, contenido tumoral, fijación apropiada, necrosis y vascularidad

Los experimentos FISH diseñados para detectar o localizar expresión génica en células y tejidos se basan en el uso de un gen indicador, tal como uno que expresa proteína verde fluorescente (GFP) y similares, para proporcionar la señal fluorescente.

En una técnica alternativa para preparaciones de interfase o metafase, FISH de fibra, se adhieren cromosomas de interfase a un portaobjetos de tal modo que se estiran en una línea recta, en vez de enrollarse finamente, como en FISH convencional, o adoptar una conformación aleatoria, como en la interfase FISH. Esto se lleva a cabo aplicando accionamiento mecánico junto con la longitud del portaobjetos, o bien a células que se han fijado al portaobjetos y entonces se lisaron, o bien a una disolución de ADN purificado. La conformación de los cromosomas ampliada permite resolución drásticamente más alta - incluso bajando hasta unas pocas kilobases (kb).

En una realización particular aún más preferida, en paralelo a la detección de la polisomía/amplificación del locus de EGFR y el nivel LOH del gen de PTEN, se usan sondas de control FISH para cromosomas 10 y 7. Las "sondas de control FISH" son sondas que se unen específicamente para los cromosomas individuales, permitiendo así la determinación del número de cromosoma. En una realización preferida, las sondas de control FISH se refieren a secuencias satélite alfa. Secuencias satélite alfa, cuando son altamente repetitivas, son específicas de cada cromosoma individual. Estas secuencias flanquean los centrómeros y pueden presentar una diana medida en

megabases. En una realización preferida, estas sondas de control FISH se marcarían con colores diferentes que las sondas EGFR y PTEN.

En una realización preferida, la sonda FISH para PTEN es una sonda que se hibrida a la región 10q23 en el cromosoma 10 y contiene secuencias que flanquean tanto los extremos 5' y 3' del gen de PTEN; en una realización más preferida la sonda tiene entre 300 y 400 kb. En una realización más preferida, la sonda FISH para PTEN y la sonda de control FISH para el cromosoma 10 son la sonda de color dual LSI PTEN (10q23) / CEP 10 para PTEN (Vysis, Abbot Molecular) (Goberdhan, D., et al. Human Molecular Genetics 12 (2) (2003): 239-248; Eng, C., et al. Human Mutation 22 (2003): 183-198; Sasaki, H., et al. Am. J. de Pathology 159 (1) (2001): 359-367). Se describen otras sondas por Cairns et al. (Cairns et al. 1997. Cancer Res 57; 4997-5000) y por Hermans et al. (Hermans et al. 2004 Genes Chrom Cancer, 39; 171-184). El LSI PTEN (10q23) se marca con SpectrumOrange. La sonda SpectrumGreen CEP 10 se hibrida a secuencias satélite alfa específicas para cromosoma 10.

5

10

15

20

25

30

35

40

45

En una realización particular, la sonda FISH para EGFR es una sonda que se hibrida a la región 7p12 del cromosoma 7 y contiene el gen de EGFR completo. En una realización más preferida, la sonda FISH para el gen de EGFR y la sonda de control para el cromosoma 10 son la sonda de color dual LSI EGFR/CEP 7 (Vysis, Abbot Molecular). En una realización particular la sonda EGFR se marca con SpectrumOrange y se cubre una región de aproximadamente 300 kb de la región 7p12 del cromosoma 7 (Bredel, M., et al. 1999. Clin Cancer Res 5, 1786-92; Harris, A., et al. 1989. J Steroid Biochem 34, 123-31; Kitagawa, Y., et al. 1996. Clin Cancer Res 2, 909-14; Neal, D.E., et al. 1990. Cancer 65, 1619-25; Osaki, A., et al. 1992. Am J de Surg 164, 323-6; Pavelic, K., et al. 1993. Anticancer Res 13, 1133-7; Sauter, G., et al. 1996. Am J Pathol 148, 1047-53; Torregrosa, D., et al. 1997. Clin Chim Acta 262, 99-119). La sonda CEP 7, marcada con SpectrumGreen, se hibrida al ADN satélite alfa localizado en el centrómero del cromosoma 7 (7p11.1-q11.1).

Pueden usarse otros métodos conocidos en la técnica para determinar aberraciones en el número de copias; ejemplos ilustrativos, no limitativos de los mismos incluyen microalineamientos basados en oligonucleótidos (Lucito, et al. 2003. Genoma Res. 13:2291-2305; Bignell et al. 2004. Genoma Res. 14:287-295; Zhao, et al. 2004. Cancer Research, 64(9):3060-71).

En otra realización particular, el nivel de polisomía/amplificación del gen de EGFR y/o el nivel LOH del gen de PTEN se mide usando polimorfismos de longitud de secuencia simple (o microsatélites) (Virmani A.K. *et al.* Genes cromosomas Cancer 1998, 21 (4) 308-319) o los SNP como marcadores genéticos (Lindblad-toh K *et al.* Nat. Biotechnol. 2000, 18(9)1001-1005); en una realización particular, el nivel de polisomía/amplificación del gen de EGFR y/o el nivel LOH del gen de PTEN se mide usando un alineamiento SNP.

En otra realización particular, el nivel de polisomía/amplificación del gen de EGFR v/o el nivel LOH del gen de PTEN se miden mediante secuenciación de polinucleótidos, es decir, un método para determinar el orden de las bases de nucleótidos en una molécula de un polinucleótido. En una realización particular, la secuenciación de polinucleótidos se realiza usando una tecnología de secuenciación profunda. En una realización más particular, la tecnología de secuenciación usa un sistema de pirosecuenciación paralela a gran escala que puede secuenciar más o menos 400-600 megabases de ADN por serie con longitudes leídas de 400-500 pares de bases en un secuenciador adecuado (por ejemplo, secuenciador de genoma FLX con series de reactivos GS FLX Titanium). El sistema se base en fijar fragmentos de ADN nebulizados y ligados a adaptador a perlas de captura de ADN pequeñas en una emulsión de agua en aceite. El ADN fijado a estas perlas se amplifica entonces mediante PCR. Cada perla unida a ADN se coloca en un pocillo en una placa picotituladora, un chip óptico de fibra. También se empaquetan una mezcla de enzimas tales como ADN polimerasa, ATP sulfurilasa y luciferasa en el pocillo. Entonces se coloca la placa picotituladora en el sistema GS FLX para secuenciación. Esta tecnología de secuenciación puede secuenciar cualquier ADN de doble cadena y permitir una variedad de aplicaciones incluyendo secuenciación de genoma completo de novo, resecuenciación de genomas completos y regiones diana de ADN, metagenómica y análisis de ARN. En otra realización, la tecnología de secuenciación es la tecnología de secuenciación de amplicón, es decir, una secuenciación ultra profunda diseñada para permitir mutaciones que van a detectarse a niveles extremadamente bajos, y PCR amplifica regiones específicas, diana de ADN. Este método se usa para identificar mutaciones somáticas de baja frecuencia en muestras de cáncer o descubrir de las variantes raras en individuos infectados VIH.

La determinación del nivel del polisomía/amplificación de EGFR y el nivel de LOH de PTEN, necesita correlacionarse con un valor de referencia convencional. Dichos valores de referencia convencionales los genera el experto en la técnica en forma de una tabla que divide al paciente en número ascendente de copias del gen de EGFR o con respecto al nivel de LOH y número ascendente de copias del gen de PTEN.

Para EGFR, pueden generarse los valores de referencia, sin limitación, usando por ejemplo, la clasificación de Capuzzo et al. (Cappuzzo et al. JNCI 2005;4:643-55). En esta clasificación, se clasifican los pacientes en seis estratos con número ascendente de copias del gen de EGFR por célula según la frecuencia de células tumorales con número específico de copias del gen de EGFR por cromosoma 7. Tal como se mencionó anteriormente, están disponibles comercialmente sondas de control que detectan el cromosoma 7 para obtener un número de razón de copias de gen de EGFR/cromosoma 7. Por ejemplo, puede usarse la sonda SpectrumGreen CEP 7 (Vysis) que se hibrida a secuencias satélite alfa específicas para cromosoma 7.

Un ejemplo no limitativo de una tabla para clasificar un paciente que es responsable de la polisomía del gen de EGFR es:

- 1) disomía (D): ≤ 2 copias en > 90% de las células de la muestra;
- 2) baja trisomía (LT): ≤ 2 copias en ≥ 40% de las células de la muestra o 3 copias en el 10% 40% de las células de la muestra o ≥ 4 copias en <10% de las células de la muestra;
 - 3) alta trisomía (HT): \leq 2 copias en \geq 40% de las células de la muestra o 3 copias en \geq 40% de las células de la muestra o \geq 4 copias en <10% de las células de la muestra;
 - 4) baja polisomía (LP): ≥ 4 copias en el 10% 40% de las células de la muestra; y
- 5) alta polisomía (HP): ≥ 4 copias en ≥ 40% de las células de la muestra o la presencia de amplificación (presencia de agrupaciones de gen de EGFR ajustadas y una razón de gen de EGFR con respecto a cromosoma de ≥ 2 o ≥ 15 copias de EGFR por célula en ≥ 10% de células analizadas de la muestra).

Como entenderá el experto en la técnica, el método [1] de la invención puede realizarse usando más de una muestra de un paciente. En tal caso, se considera que existe una "alto nivel de polisomía del gen de EGFR" cuando al menos el 50%, preferiblemente más del 50%, más del 60%, más del 70%, más del 80%, más del 90%, más del 95%, o incluso más, de las muestras del paciente se clasifican como "alta polisomía" (HP) según los criterios de clasificación descritos anteriormente.

Para la generación de una tabla para la clasificación de los pacientes que es responsable del nivel del LOH y número de copias del gen de PTEN, el experto en la técnica podría clasificar, por ejemplo, el pacientes en 4 estratos con número ascendente de copias del gen de PTEN por célula según la frecuencia de células tumorales con número específico de copias del gen de PTEN por cromosoma 10. Tal como se mencionó anteriormente, están disponibles comercialmente sondas de control que detectan el cromosoma 10 para obtener un número de razón de copias de gen de PTEN/cromosoma 10. Por ejemplo, puede usarse la sonda SpectrumGreen CEP 10 (Vysis) que se hibrida a secuencias satélite alfa específicas para cromosoma 10.

Un ejemplo no limitativo de una tabla para clasificar un paciente que es responsable de la polisomía / nivel de LOH del gen de PTEN es:

1) disomía (D): 2 copias de cada sonda en >90% de células;

15

20

35

40

45

- 2) LOH: <2 copias de PTEN sonda en >10% de células (incluye monosomía o disomía de cromosoma 10 con PTEN LOH, siempre en >10% de células);
- 3) polisomía (P): ≥ 3 copias de cada sonda (PTEN+ CEP 10) en >10% de células (no discrimina entre polisomía alta y baja, o trisomía de cromosoma 10); y
 - 4) amplificado (AMP): definido por una razón del gen de PTEN con respecto a cromosoma 10 de ≥ 2 por célula en ≥ 10% de células analizadas.

Como entenderá un experto en la técnica, el método [1] de la invención puede realizarse usando más de una muestra de un paciente. En tal caso, se considera que existe un "nivel LOH alto del gen de PTEN" cuando al menos el 50%, preferiblemente más del 50%, más del 60%, más del 70%, más del 80%, más del 90%, más del 95%, o incluso más, de las muestras del paciente se clasifican como "LOH" según los criterios de clasificación descritos anteriormente.

En la última etapa del método [1] de la invención, un alto nivel LOH del gen de PTEN con respecto a dichos valores de referencia convencionales y altos niveles de expresión y/o alta polisomía/amplificación del gen de EGFR son indicativos de un buen desenlace clínico del sujeto.

Como entenderá un experto en la técnica, las muestras pueden también considerarse no apropiadas para incluirse en cualquiera de los estratos de clasificación. Por tanto, en una realización preferida, adicionalmente, se tiñen secciones de muestras de tejido del paciente con colorantes como hematoxilina y eosina (H&E) y las revisan dos o más expertos en la técnica (es decir, bioquímicos clínicos) para evaluar contenido tumoral general, necrosis y calidad general (por ejemplo, efecto de cauterización térmica, fijación con morfología, etc.). En una realización preferida las muestras usadas para determinar los niveles de expresión y/o los niveles de polisomía del gen de EGFR y el nivel LOH del gen de PTEN tienen al menos el 20%, al menos el 30%, al menos el 40%, al menos el 50%, al menos el 60%, al menos el 70%, al menos el 80%, al menos el 90%, al menos el 95% de tumor tejido en la muestra, y tienen una fijación apropiada con morfología aceptable.

Las enseñanzas de la presente invención no están de acuerdo con las conclusiones alcanzadas por Umesh et al. (Clinical Neuropathology. Vol. 28 - No. 5/2009 (362-372)), quién describe un método para predecir el desenlace del paciente de glioma que comprende la detección de amplificación de EGFR y LOH de PTEN mediante inmunohistoquímica (IHC) en el que se afirma que el gen de EGFR amplificación asociada a LOH del gen de PTEN

tiende una escasa supervivencia.

5

10

15

20

45

50

Efectivamente, como se muestra en el ejemplo, las enseñanzas de la presente invención, que comprende combinar polisomía/amplificación de EGFR (es decir, expresión de EGFR) con LOH del gen de PTEN en el que el nivel LOH del gen de PTEN se mide mediante PCR, un ensayo basado en hibridación, secuenciación o alineamientos SNP [el nivel de polisomía/amplificación del gen de EGFR puede determinarse a nivel de proteína o, alternativamente, a nivel de ácido nucleico] muestran que una amplificación de EGFR asociada a LOH del gen de PTEN tiende a buena supervivencia.

Los ensayos realizados por los inventores han mostrado que, aparentemente, el uso de IHC para determinar el nivel del LOH del gen de PTEN no es adecuado para evaluar de manera precisa su perfil de expresión relevante que es especialmente importante en expresión baja pero sin pérdida de proteína PTEN, los tumores en los que una diferencia crítica de este tipo permitirá la evaluación verdadera de expresión de proteína en esta configuración. Además, pueden atribuirse diferentes resultados en un ensayo IHC a anticuerpos específicos y su sensibilidad para evaluar PTEN; existe bibliografía documentada para respaldar los retos de usar IHC para evaluar PTEN cuando se compara con FISH (por ejemplo, Reid et al., British Journal of Cancer 2010, 102:678-684). Métodos FISH para ADN generalmente tiene impacto sobre la preparación de la muestra analítica previa, por el contrario, tales diferencias en fijación y manejo de muestras tienen impacto sobre el antígeno de PTEN en tejido. Una manera de abordar esto es usar modelado matemático con IF cuantitativa para evaluar expresión verdadera frente a unión no específica y 'ruido' en el sistema.

Por tanto, la invención proporciona un método para predecir de una manera más precisa el desenlace clínico de un sujeto que padece glioma.

Los hallazgos de los inventores permiten la determinación del desenlace clínico de un paciente que padece glioma midiendo el nivel LOH del gen de PTEN. Por tanto, se da conocer también un método para predecir el desenlace clínico de un sujeto que padece glioma, a continuación en el presente documento se denomina el método [2], comprendiendo dicho método:

- a) determinar el nivel LOH del gen de PTEN en una muestra del sujeto, y
 - b) comparar dicho nivel LOH del gen de PTEN con un valor de referencia convencional,

en el que el nivel LOH del gen de PTEN se mide mediante PCR, o mediante un ensayo basado en hibridación, o mediante secuenciación o mediante una análisis de SNP; y

en el que un alto nivel LOH del gen de PTEN con respecto a dicho valor de referencia convencional, es indicativo de 30 un mal desenlace clínico del sujeto.

El término glioma se ha definido previamente. En una realización preferida, el glioma es un gliobastoma multiforme (GMB) y más preferiblemente el gliobastoma es un gliobastoma temprano.

En una realización preferida, el desenlace clínico se mide como supervivencia.

El término "muestra" se ha definido previamente en relación con el método [1] de la invención y puede aplicarse a cualquier tipo de muestra biológica de un paciente, tal como una muestra de biopsia, tejido, célula o fluido (sangre completa, suero, saliva, semen, expectoración, líquido cefalorraquídeo (LCR), orina, lágrimas, moco, sudor, leche, extractos de cerebro y similares). En una realización particular, dicha muestra es una parte o muestra de tejido tumoral del mismo En una realización más particular, dicha muestra de tejido de tumor es una muestra de tejido cerebral tumoral de un paciente que padece glioma o una muestra de tejido de cerebro incrustado en formalina.

Los métodos para determinar el nivel LOH del gen de PTEN se han descrito anteriormente así como los valores de referencia convencionales usados. En una realización preferida, el nivel LOH del gen de PTEN se determina mediante un ensayo basado en hibridación, por ejemplo, mediante FISH.

La invención también se refiere al uso de un kit útil en la implementación la metodología descrita en el presente documento. Por tanto, en otro aspecto, la invención se refiere al uso de un kit que comprende un conjunto de agentes que pueden determinar específicamente los niveles de expresión y/o la polisomía/amplificación de EGFR y el nivel LOH del gen de PTEN y, opcionalmente, un reactivo para detectar un gen constitutivo o la proteína codificada por dicho gen constitutivo y/o un reactivo para detectar los cromosomas 7 y 10, para predecir el desenlace clínico de un sujeto que padece glioblastoma multiforme, en el que el conjunto de agentes que pueden determinar específicamente el nivel LOH del gen de PTEN comprende un par de cebadores de oligonucleótidos adecuados para amplificar un fragmento específico del gen de PTEN y/o una sonda de oligonucleótido marcada opcionalmente que se une selectivamente a una secuencia diana de polinucleótido sobre la región del cromosoma del gen de PTEN y/o reactivos adecuados para realizar una reacción de secuenciación y/o reactivos para realizar un análisis de SNP.

En una realización particular del uso del kit de la invención, los agentes del kit pueden detectar específicamente los

niveles de ARNm de genes de EGFR y/o de PTEN o los niveles de las proteínas EGFR y/o PTEN, preferiblemente, los niveles del proteína EGFR.

Los ácidos nucleicos que pueden hibridarse específicamente con los genes EGFR y/o de PTEN pueden ser uno o más pares de cebadores de oligonucleótidos para la amplificación específica de fragmentos de los ARNm (o sus correspondientes ADNc) de dichos genes y/o uno o más sondas para la identificación de uno o más genes seleccionados de dichos genes. Ácidos nucleicos que pueden hibridarse específicamente con los genes de EGFR y/o PTEN pueden ser también sondas para FISH.

5

10

15

20

25

30

35

40

45

50

55

Anticuerpos, o un fragmento del mismo, que pueden detectar un antígeno, que pueden unirse específicamente a proteínas EGFR y/o PTEN o a variantes de los mismos son, por ejemplo, anticuerpos monoclonales y policlonales, fragmentos de anticuerpo, Fv, Fab, Fab' y F(ab')2, ScFv, dicuerpos, tricuerpos, tetracuerpos y anticuerpos humanizados.

Dichos reactivos, específicamente, las sondas y los anticuerpos, pueden fijarse sobre un soporte sólido, tal como una membrana, un plástico o un vidrio, tratado opcionalmente con el fin de facilitar la fijación de dichas sondas o anticuerpos sobre el soporte. Dicho soporte sólido, que comprende, al menos, un conjunto de anticuerpos que puede unirse específicamente a proteínas EGFR y/o PTEN o a variantes de los mismos, y/o sondas específicamente hibridadas con los genes de EGFR y/o PTEN, pueden usarse para la detección de los niveles de expresión por medio de tecnología de alineamiento.

Los kits para el uso de la invención comprenden opcionalmente reactivos adicionales para detectar un polipéptido codificado por un gen constitutivo o el ARNm codificado por dichos genes constitutivos. La disponibilidad de dicho reactivo adicional permite la normalización de mediciones tomadas en diferentes muestras (por ejemplo la muestra de prueba y la muestra de control) para excluir que las diferencias en la expresión de los diferentes marcadores biológicos son debidos a cantidades diferentes de proteína total en la muestra en vez de en diferencias reales en niveles de expresión relativos. Genes constitutivos, tal como se usa en el presente documento, se refieren a genes que codifican proteínas que se expresan constitutivamente y llevan a cabo funciones celulares esenciales. Los genes constitutivos preferidos para su uso en la presente invención incluyen β-2-microglobulina, ubiquitina, proteína ribosomal 18-S, ciclofilina, GAPDH y actina.

En una realización, el kit para su uso de la invención puede contener reactivos adecuados para realizar una reacción de secuenciación y/o reactivos para realizar un alineamiento SNP, por ejemplo, enzimas, nucleótidos, etc.

En otra realización, la invención se refiere al uso de un kit de la invención para predecir el desenlace clínico de un sujeto que padece gliobastoma multiforme, en el que si dichos agentes detectan un alto nivel de expresión y/o alto nivel de polisomía / amplificación del gen de EGFR y un alto nivel LOH del gen de PTEN, con respecto a valores de referencia convencionales, en una muestra a partir de dicho sujeto, entonces el desenlace clínico del sujeto es bueno.

Previamente se han descrito métodos para detectar los niveles de expresión de EGFR y los métodos para determinar la polisomía del gen de EGFR y el nivel LOH del gen de PTEN así como los valores de referencia convencionales (véase, por ejemplo, método [1] de la invención).

En otra realización, se da conocer también el uso de los niveles de expresión EGFR y/o niveles de polisomía/amplificación del gen de EGFR y el nivel LOH del gen de PTEN como marcador predictivo del desenlace clínico de un paciente con glioma. En una realización particular, el glioma es un gliobastoma multiforme (GMB). En otra realización particular, el desenlace clínico se mide como supervivencia.

En otra realización particular, se da a conocer también el uso de erlotinib y/o temozolomida en la fabricación de un medicamento para el tratamiento de un glioma en un sujeto que padece un glioma, en el que el medicamento es para un sujeto que tiene un alto nivel LOH del gen de PTEN, que se mide mediante PCR, mediante un ensayo basado en hibridación, mediante secuenciación o mediante una análisis de SNP, con respecto a un valor de referencia convencional y altos niveles de expresión y/o alta polisomía/amplificación del gen de EGFR con respecto a valores de referencia convencionales. Alternativamente, se da conocer también erlotinib y/o temozolomida para su uso en el tratamiento de un glioma en un sujeto que padece un glioma, en el que el medicamento es para un sujeto que tiene un alto nivel LOH del gen de PTEN, que se mide mediante PCR, mediante un ensayo basado en hibridación, mediante secuenciación o mediante un alineamiento SNP, con respecto a un valor de referencia convencional y altos niveles de expresión y/o alta polisomía/amplificación del gen de EGFR con respecto a valores de referencia convencionales. El glioma puede ser un gliobastoma multiforme (GMB). El desenlace clínico puede medirse como supervivencia.

En otra realización, se da a conocer también el uso de radioterapia en un régimen para el tratamiento de un glioma en un sujeto que padece un glioma, en el que dicho sujeto tiene un alto nivel LOH del gen de PTEN, que se mide mediante PCR, mediante un ensayo basado en hibridación, mediante secuenciación o mediante una análisis de SNP, con respecto a un valor de referencia convencional y altos niveles de expresión y/o alta polisomía/amplificación del gen de EGFR con respecto a valores de referencia convencionales. El glioma puede ser un gliobastoma multiforme (GMB). El desenlace clínico puede medirse como supervivencia.

EJEMPLOS

5

10

20

I. MATERIAL Y MÉTODOS

Pacientes y muestras

Se obtuvieron múltiples bloques incrustados en parafina fijados en formalina de cincuenta y seis (56) muestras de tumor cerebral primario del Hospital Universitari de Belvitge. Estos pacientes formaban parte de una cohorte longitudinal y se seleccionaron utilizando criterios de inclusión predeterminados que incluían un diagnóstico primario de uno cualquiera de los siguientes criterios: tumor astrocítico, oligodendrocítico y glial, con seguimiento continuo durante una mediana de 3 años y material tisular disponible. Se extrajeron datos clínicos de la historia clínica del paciente utilizando un conjunto de campos de datos predeterminados clínico-patológicos y de desenlace (véase la tabla 1). El desglose histológico de las muestras de tumor era como sigue:

- I. Grupo astrocitoma, total 44 pacientes: pilocítico (1), difuso (13), anaplásicos (16), y glioblastoma multiforme (14);
- II. Grupo oligodendroglioma, total 6 pacientes: oligodendroglioma (6); y
- III. Mixto, total 4 pacientes: oligoastrocitoma (3), y oligoastrocitomas anaplásicos (1).
- Se realizó una revisión completa de los archivos de datos clínicos disponibles en todos los pacientes en que estaban disponibles bloques/muestras incrustados en parafina (FFPE) fijados en formalina para análisis adicional.

Se obtuvieron secciones de 5 µm de todos los bloques, se tiñeron con hematoxilina y eosina (H&E) y las revisaron dos bioquímicos clínicos para evaluar el contenido tumoral global (≥ 50% tumor en al menos un campo 200X), la necrosis y la calidad global (por ejemplo, efecto de cauterización térmica, fijación apropiada con aceptable morfología, etc). Entonces se obtuvieron secciones posteriores para ensayos FISH de ADN e inmunofluorescencia cuantitativa (SI) tal como se explica resumidamente a continuación. Se mantuvieron todos los bloques para estudios posteriores incluyendo RT-PCR.

para la cohor			Astrocitoma	Mixto / otros	No disponible
desglose segú diagnóstico	ín grupo de	N=15	N=26	N=5	N=10
	Masculino	8	17	4	5
Género del paciente	Femenino	7	9	1	3
•	No disponible	0	0	0	2
Raza del	Caucásica	15	25	5	8
paciente	No disponible	0	1	0	2
	Si	4	13	2	5
Convulsiones sintomáticas	No	11	13	2	3
	No disponible	0	0	1	2
Presión	Si	7	5	1	1
intracraneal alta sintomática	No	8	21	3	7
Sintomatica	No disponible	0	0	1	2
	Imagen 1	12	21	5	7
Número de lesiones en	Imagen 2	1	1	0	0
pretratamiento	Múltiples	2	3	0	1
	No disponible	0	1	0	2
1 ubicación de	Lóbulo frontal	10	10	3	5
lesiones en imagen de	Lóbulo temporal	3	3	0	1
pretratamiento	Lóbulo parietal	1	6	1	0

	Opérculo	0	1	0	0
	Tronco encefálico	1	2	1	0
	Médula espinal	0	1	0	0
	Nervio óptico	0	0	0	1
	Cisura interhemisférica	0	1	0	0
	Cerebelo	0	0	0	1
		0	1	0	0
	No disponible	0	1	0	2
	Lóbulo temporal	1	1	0	1
	Lóbulo parietal	3	1	0	0
	Lóbulo occipital	2	1	0	1
2 ubicación o	le Cuerpo calloso	0	1	0	0
	en Ganglios le basales	2	0	0	0
	Tronco encefálico	0	1	0	0
	Tálamo	0	0	0	1
	No disponible	7	21	5	7
A lada da la	Derecho	9	12	2	6
	_n Izquierdo	4	11	3	2
imagen d pretratamiento	le Desconocido	0	1	0	0
	No disponible	2	2	0	2
	n	1	1	0	1
imagen d pretratamiento	e No disponible	14	25	5	9
	Biopsia	1	6	0	4
Tipo de muestra	Biopsia estereotáxica	2	4	0	1
	Resección	12	16	5	3
	No disponible	0	0	0	2
Tipo c	Completa le	4	11	1	6
eliminación pos		10	12	4	2
quirúrgica	No disponible	1	3	0	2
	Si	7	12	3	1
Radioterapia	No	8	12	2	7
	No disponible	0	2	0	2
Tipo c	le ^{Focal}	5	8	0	1

radiación	No disponible	10	18	5	9
Dosis total de radiación (**) (datos disponibles: n=20)		60,0 (60,0-60,0)	60,0 (40,0-60,0)	51,0 (48,0-54,0)	60,0 (60,0-60,0)
	Si	2	9	1	1
Quimioterapia	No	13	15	4	7
	No disponible	0	2	0	2
	BCNU	0	7	0	0
Tipo de primera	TMZ	2	1	0	0
quimioterapia	PCV	0	1	0	1
	No disponible	13	17	5	9
	Si	4	13	4	6
Recaída o progresión	No	9	10	1	1
p. cg. co.c.	No disponible	2	3	0	3
	Focal	3	8	4	6
Tipo de primera	Difusa	1	1	0	0
recaída	Múltiple	0	2	0	0
	No disponible	11	15	1	4
	Si	3	10	4	5
Tratamiento de primera recaída	No	1	1	0	1
primora rocarda	No disponible	11	15	1	4
	Radiación	0	2	1	1
4 4:00 do	Quimioterapia	2	3	1	0
1 tipo de tratamiento de	Cirugía	1	4	2	4
primera recaída	Radiocirugía	0	1	0	0
	No disponible	12	16	1	5
0 4:	Radiación	0	2	0	4
2 tipo de tratamiento de	Quimioterapia	0	1	0	0
primera recaída	No disponible	15	23	5	6
3 tipo de	Quimioterapia	0	1	0	1
tratamiento de primera recaída	No disponible	15	25	5	9
Valor de pretratamiento Karnovsky (**) (datos disponibles: n=49)		70,0(40,0-100)	90,0 (20,0-100)	95,0 (90,0-100)	100(60,0 100)
Valor de pretratamiento		60,0(30,0-90,0)	80,0(10,0-100)	95,0 (80,0-100)	100(30,0 100)

Karnovsky (**) (datos disponibles: n=49)

Muerte paciente	del	Si	15	15	1	1
		No	0	7	3	5
		No disponible	0	4	1	4

ADN EGFR y PTEN FISH

5

10

15

20

25

30

35

Usando la sonda de color dual LSI EGFR/CEP 7 (Vysis, Abbot Molecular) para EGFR y la sonda de color dual LSI PTEN (10g23)/CEP 10 para PTEN (Vysis, Abbot Molecular), se realizó ADN FISH incluyendo hibridación, lavado y detección de fluorescencia en todas las muestras en la cohorte según protocolos estándar (Smith et al., 2001. JNCI; 93:1246-1256). Brevemente, se desparafinaron secciones parafina en xilenos, se sometieron a microondas en disolución de citrato de sodio 10 mmol/l (pH 6.0) durante 5-10 minutos, enfriados hasta temperatura ambiente, se enjuagaron, y se trataron entonces con HCl pepsina durante 5 minutos a 37°C antes de enjuagarse y se deshidrataron. Se aplicó la mezcla de sonda precalentada a los portaobjetos y cubreobjetos sellados en el sitio con adhesivo de caucho. Los portaobjetos se desnaturalizaron entonces a 85°C durante de 4 a 6 minutos usando una cámara de hibridación automatizada y entonces se incubaron durante la noche a 37°C. Después de los lavados poshibridación convencionales, se tiñeron los portaobjetos con la tinción de ADN DAPI y se montaron con Antifade (Vectashield). Antes de la obtención de imágenes, un patólogo evaluó todos los portaobjetos H&E y se identificaron regiones de interés basándose en criterios histopatológicos y calidad incluyendo contenido tumoral, fijación apropiada, necrosis y vascularidad. Una imagen H&E de casos de GBM individuales se ilustra en la figura 5A. Un científico formado ciego para el desenlace sometió a obtención de imágenes todos los portaobietos usando un microscopio inmunofluorescente Nikon. Se definieron criterios para anomalías FISH mediante el uso de muestras de cerebro histológicamente normales. Una ganancia simple requirió el 10% o más de núcleos con tres o más señales de sonda específicas para locus. La pérdida del brazo q del cromosoma 10 requirió que la razón PTEN/CEP10 media global fuese menos de 0.90. Se aplicó amplificación tanto para EGFR como para PTEN y requirió que la razón fuese de 2 o más y que el 10% o más de núcleos tuviera más de tres señales EGFR y/o PTEN. Se adquirieron regiones de interés representativas para documentación de señal en todas las muestras (ejemplos de imágenes representativas de FISH AMP/HP de EGFR y monosomía de PTEN se muestran en las figuras 5B y C, respectivamente). Para EGFR FISH se siguió el esquema de clasificación de Capuzzo et al. (Cappuzzo F, et al., JNCI 2005;4: 643-55) y se identificaron 6 categorías para categoría EGFR en todas las muestras de tumor. Estas categorías individuales incluían: D=disomía. HT= alta trisomía. LT= baia trisomía. HP=alta polisomía. LP=baia polisomía, y AMP=amplificación. En este esquema tanto HP como AMP se consideran amplificación. Se caracterizó la categoría PTEN como D=disomía, LOH=>10%, P=polisomía, AMP=amplificado y NE=no evaluable. Un único observador revisó todos los casos y los registró de manera anónima con respecto a tipo de tumor o desenlace.

Inmunofluorescencia cuantitativa (SI)

Utilizando métodos establecidos previamente (Cordon Cardo *et al.*, 2007 JCI 2007; 117; 1876-83; Donovan *et al.*, 2008 JCO;26:3923-3929) se construyó el ensayo multiplex-1 (mplex1) que incorpora anticuerpos a: GFAP (proteína ácida fibrilar glial), PTEN (fosfatasa y homólogo de tensina), pAKT y Ki67 combinados con la tinción nuclear DAPI (4',6-diamidin-2-fenilindol) - véase la tabla 2 para una revisión completa de anticuerpos usados dentro del ensayo mplex1. Se evaluaron los anticuerpos individuales en ensayos IF simplex usando tejidos de control y líneas celulares para confirmar la sensibilidad a la expresión y la especificidad antes de la inclusión en el ensayo multiplex-1.

Tabla 2. Lista de reactivos

Anticuerpo	Proveedor	n.º d catálogo	de Diluc	ión Isotipo	Marcadores	Muestras
			1:30	M lgG1	2X M 488	Casos GBM, LNCaP cerebral NL
PTEN	Neomarkers					Tonsil
Ki67	Dako		1:100	M lgG1	2X M 555	Igual
pAKT	CST	n.º 3787	1:25	R lgG	2X R 594	Igual
GFAP	Dako		1:200	M lgG1	2X M 647	Igual

Brevemente, se desparafinizaron las muestras FFPE, se rehidrataron y se sometieron a un procedimiento de

recuperación de antígeno con el sistema de tampón de recuperación (Biocare Medical). Se combinó una serie de cuatro anticuerpos con DAPI en un ensayo de inmunofluorescencia multiplex. Se marcaron diferencialmente los reactivos enumerados en la tabla 2 y con los fluorocromos identificados y entonces se aplicaron de manera secuencial a secciones individuales usando un dispositivo de inmunotinción Nemesis 7200 (BioCare Medical). Un patólogo (ciego para el desenlace) adquirió un mínimo de tres imágenes o regiones de interés (ROI) usando un microscopio inmunofluorescente Nikon 90i equipado con un sistema de obtención de imágenes espectrales CRI (CRI). Utilizando bibliotecas sin mezclar desarrolladas previamente y el software CRI, se generaron imágenes en escale de grises individuales que representan el anticuerpo - combinación de filtro en investigación. Se evaluaron las imágenes individuales para determinar la razón señal:ruido, distribución celular y distribución conjunta con otros reactivos marcados con fluorocromos-anticuerpos. Usando el manual del software CRI existente, se crearon umbrales para que las combinaciones anticuerpo-fluorocromo individual se maximizaran la señal:ruido y conservaran la distribución. Se generaron métricas cuantitativas usando el software para identificar porcentajes de poblaciones celulares individuales que presentan una señal positiva (basándose en el umbral), normalizada con respecto a la región tumoral en evaluación. Se obtuvieron una serie de líneas celulares cáncer de próstata incluvendo LNCaP. PC3 y DU145 (ATCC), se hicieron crecer hasta confluencia, se cultivaron como aglomerados de células agar, se fijaron e incrustaron en parafina y entonces se colocaron las tres líneas celulares en un alineamiento celular para control de calidad durante tanto el desarrollo del ensavo como la investigación de casos de tumor cerebral.

Resultados y discusión

Pacientes y muestras

5

10

15

Había 54 pacientes con historias clínicas disponibles y muestras de tejido FFPE apropiadas para evaluación. El desglose de pacientes se enumera en la tabla 3 con la mayoría de pacientes en la categoría de diagnóstico de astrocitoma. Las características demográficas individuales incluyendo datos de sexo, localización de masa, tratamiento y desenlace se explica en detalle en la tabla 1.

Tabla 3. Categoría de diagnóstico de los pacientes

Códigos originales	GBM puro	Astrocitoma	Oligodendroglio ma	Mixto / otro
001: astrocitoma grado II	0	10	0	0
002: astrocitoma grado III	0	16	0	0
003: glioblastoma	15	0	0	0
004: oligoastrocitoma grado II	0	0	0	3
005: oligoastrocitoma grado III	0	0	0	2
006: oligodendroglioma grado II	0	0	4	0
007: oligodendroglioma grado III	0	0	1	0
008: astrocitoma pilocítico	0	2	0	0
009: gliomatosis cerebri	0	0	0	1
999: No disponible	0	0	0	2

Con el fin de entender las tendencias de supervivencia general dentro de la cohorte y en particular el grupo de glioblastoma frente a otros, se realizaron análisis de función de supervivencia Kaplan-Meier para estimar la supervivencia entre los tres grupos. La figura 1 es la curva de supervivencia de Kaplan-Meier que demuestra una supervivencia reducida en el grupo glioblastoma frente al astrocitoma anaplásico y categorías mixtas (prueba de logrango P=0,001). La figura 2 es una segunda curva de función de supervivencia Kaplan-Meier que evalúa un punto final más compuesto que incluye supervivencia libre de progresión y global en las tres mismas categorías de diagnóstico (prueba log-rango P<0,001). Según la bibliografía, el grupo glioblastoma tiene una supervivencia global y libre de progresión reducida y en comparación con el astrocitoma y grupo oligodendroglioma puro que tiene el mayor tiempo de supervivencia de las tres categorías de diagnóstico. Como resulta evidente a partir de las curvas, parece que un subconjunto del grupo astrocitoma anaplásico se comporta como la categoría de glioblastoma.</p>

35 EGFR y PTEN FISH

Dada la frecuencia de amplificación de EGFR (aproximadamente el 40%) y el papel notificado que desempeña EGFR en el desarrollo de glioblastoma, el primer estudio ADN FISH realizado fue sobre la caracterización de EGFR. Usando los métodos de puntuación de tanto Cappuzzo et al. (Capuzzo et al., 2005 JNCI; 4:643-55) como Smith et al. (Smith et al., 2001 JNCI; 93:1246-1256), se investigaron los perfiles EGFR en todos los casos de tumor cerebral en

el grupo. Dado el tamaño global de la cohorte, se optó por clasificar adicionalmente a los pacientes como positivos si presentaban cualquier polisomía y/o amplificación del locus de EGFR o cromosoma 7. Esto es contraste con algunos estudios notificados que caracterizan independientemente EGFR ADN FISH o bien como polisomía o bien como amplificación. En el estudio, el 71% de los pacientes GBM tenía polisomía/amplificación EGFR en comparación con el 45% en el grupo astrocitoma anaplásico. No se encontró amplificación de EGFR o polisomía asociada a la supervivencia cuando se examinó la cohorte entera o subgrupos individuales (todos los pacientes de la prueba logrango P=0,8; pacientes de solo glioblastoma P=0,1). También se realizó FISH con sondas de color dual para PTEN que utilizan un sistema de puntuación similar a EGFR; sin embargo además de disomía y polisomía, se incluyó la pérdida de PTEN como mayor del 10% en núcleos epiteliales tumorales. En los estudios, el 61% de muestras GBM tenía PTEN LOH en comparación con el 25% en el grupo astrocitoma anaplásico. Existe escasa bibliografía sobre la evaluación de PTEN mediante ADN FISH en muestras de tumor cerebral usando la mayoría de los estudios más técnicas moleculares tales como secuenciación, RT-PCR e inmunohistoquímica (IHC). De manera reseñable en la cohorte, PTEN LOH se asoció de manera invariable y estadística a una supervivencia reducida en el glioblastoma multiforme combinado, astrocitoma y grupos de paciente mixtos (n=25 sin LOH, supervivencia mediana 913D frente a n=10 con LOH, supervivencia mediana 174D; prueba log-rango p=0,04) [véase la figura 3].

Ni la polisomía/amplificación EGFR ni la pérdida de PTEN fueron factores pronóstico independientes, significativos para la supervivencia en el glioblastoma de solo el grupo (P=0,1); sin embargo, cuando se combinaron, se observó una tendencia a significativo con un aumento en la supervivencia global (n=6 con tanto EGFR/PTEN, supervivencia mediana 242D frente a n=6 sin, supervivencia mediana 71D; prueba log-rango P=0,034) (Figura 4). La hipótesis es que la combinación de PTEN LOH y amplificación de EGFR en glioblastoma puede representar un subconjunto de pacientes con un fenotipo tumoral más susceptible a radiación y/o tratamiento con temozolomida.

Tabla	4. Carac	ter	isticas c	linicas d	le pacientes	con condicion	es de filtro	previas		
Idalthia	gender a	age	sympseiz	sympticp	imagelesions	imagelocat_1	imagelocat_2	imageside_1	imageside_2	diagn
L08-00080	femenino	50	no	si	1	lóbulo frontal	NA	izquierda	NA.	glioblastoma
L08-00084	femenino	65	no	si	1	lóbulo frontal	NA	derecha	NA.	glioblastoma
L08-00085	masculino	71	no	si	1	lóbulo temporal	NA.	derecha	NA.	glioblastoma
L08-00087	masculino	66	no	no	1	lóbulo frontal	lóbulo parietal	derecha	NA.	glioblastoma
L08-00090	femenino	74	no	no	1	lóbulo parietal	lóbulo occipital	derecha	N.A.	glioblastoma
L08-00091	masculino	68	no	no	1	lóbulo temporal	NA	derecha	NA.	glioblastoma
L08-00094	femenino	66	si	no	1	lóbulo frontal	lóbulo temporal	derecha	NA.	glioblastoma
L08-00097	masculino	50	si	si	1	lóbulo temporal	NA	derecha	NA.	glioblastoma
L08-00098	femenino	49	si	no	1	lóbulo frontal	lóbulo parietal	izquierda	NA.	glioblastoma
L08-00106	masculino	68	si	si	múltiples	lóbulo frontal	ganglio basal	NA.	N.A.	glioblastoma
L08-00109	femenino	60	no	no	2	lóbulo frontal	lóbulo occipital	izquierda	NA.	glioblastoma
L08-00128	masculino	37	no	si	1	lóbulo frontal	NA	derecha	izquierda	glioblastoma

NA: datos no disponibles

5

10

15

20

Idalthia	diagnspec	psiremoval	recur.progr	recurrtype	death
L08-00080	resección	completo	si	NA	si
L08-00084	resección	completo	si	focal	si
L08-00085	resección	completo	si	focal	si
L08-00087	resección	incompleto	no	NA	si
L08-00090	biopsia	incompleto	no	NA	si
L08-00091	resección	completo	no	NA	si
L08-00094	resección	NA	no	NA	si
L08-00097	resección	incompleto	no	NA	si
L08-00098	resección	incompleto	si	focal	si
L08-00106	biopsia esteotáxica	incompleto	no	NA	si
L08-00109	biopsia esteotáxica	incompleto	no	NA	si
I 08-00128	resección	incompleto	si	difuso	si

Información de variables de la tabla 4:

gender = "género de los pacientes"

25 age = "edad de los pacientes"

sympseiz = "convulsiones sintomáticas"

```
sympticp = "alta presión intracraneal sintomática"
      imagelesions = "número de lesiones en imagen de pretratamiento"
      imagelocat 1 = "localización de la 1ª lesión en imagen de pretratamiento"
      imagelocat 2 = "localización de la 2ª lesión en imagen de pretratamiento"
 5
      imageside 1 = "lado de la 1ª lesión en imagen de pretratamiento"
      imageside 2 = "lado de la 2ª lesión en imagen de pretratamiento"
      diagn = "diagnóstico anatomopatológico"
      diagnspec = "tipo de muestra"
      psiremoval = "tipo de eliminación posquirúrgica"
10
      recur.prog = "recaída o progresión"
      recurrtype = "tipo de primera recaída"
      death = "muerte del paciente"
      En la tabla 4, se incluyeron 12 pacientes, 6 con el fenotipo EGFR AMP / PTEN LOH y 6 sin (véase columna 2),
      EGFR/Categoría PTEN (si / no con respecto a fenotipo). De los 6 pacientes con glioblastoma multiforme (GBM) con
      este fenotipo, 3 no mostraron evidencias de recaída clínica. Los 3 pacientes que recayeron en el grupo positivo
15
      EGFR AMP / PTEN LOH recibieron radiación y uno recibió tanto radiación como el agente quimioterapéutico
      temozolomida (TMZ). Aunque el número de pacientes es pequeño, los datos sugieren que los pacientes GBM con
      un tumor que presenta el EGFR AMP / PTEN LOH tienen un mejor desenlace clínico global que los pacientes sin
      este fenotipo independientemente del tratamiento actual incluyendo radiación y quimioterapia. Se concluye que el
      fenotipo identificado que implica tanto señalización de EGFR como pérdida de PTEN pueden reflejar una buena
20
      actuación global de GBM, independientemente de las modalidades de tratamiento actuales y que las más nuevas
      terapias de investigación y ensayos clínicos beneficiarían el enfoque en la intersección de las dos rutas para mejorar
      adicionalmente el desenlace.
      LISTA DE SECUENCIAS
25
      <110> Europath Biosciences S.L.
      <120> ALTERNACIONES GÉNICAS DE EGFR Y PTEN PREDICEN LA SUPERVIVENCIA EN PACIENTES CON
      TUMORES CEREBRALES
      <130> P5001PC00
      <150> EP 09382271.6
30
      <151> 12-07-2009
      <160> 13
      <170> PatentIn versión 3.5
      <210> 1
      <211> 5572
35
      <212> ADN
      <213> Homo sapiens
```

<400>

cctcccctcg	cccggcgcgg	tcccgtccgc	ctctcgctcg	cctcccgcct	cccctcggtc	60
ttccgaggcg	cccgggctcc	cggcgcggcg	gcggagggg	cgggcaggcc	ggcgggcggt	120
gatgtggcgg	gactctttat	gcgctgcggc	aggatacgcg	ctcggcgctg	ggacgcgact	180
gcgctcagtt	ctctcctctc	ggaagctgca	gccatgatgg	aagtttgaga	gttgagccgc	240
tgtgaggcga	ggccgggctc	aggcgaggga	gatgagagac	ggcggcggcc	gcggcccgga	300
gcccctctca	gcgcctgtga	gcagccgcgg	gggcagcgcc	ctcggggagc	cggccggcct	360
gcggcggcgg	cagcggcggc	gtttctcgcc	tcctcttcgt	cttttctaac	cgtgcagcct	420
cttcctcggc	ttctcctgaa	agggaaggtg	gaagccgtgg	gctcgggcgg	gagccggctg	480
aggcgcggcg	gcggcggcgg	cacctcccgc	tcctggagcg	ggggggagaa	gcggcggcgg	540
cggcggccgc	ggcggctgca	gctccaggga	gggggtctga	gtcgcctgtc	accatttcca	600
gggctgggaa	cgccggagag	ttggtctctc	cccttctact	gcctccaaca	cggcggcggc	660
ggcggcggca	catccaggga	cccgggccgg	ttttaaacct	cccgtccgcc	gccgccgcac	720
cccccgtggc	ccgggctccg	gaggccgccg	gcggaggcag	ccgttcggag	gattattcgt	780
cttctcccca	ttccgctgcc	gccgctgcca	ggcctctggc	tgctgaggag	aagcaggccc	840
agtcgctgca	accatccagc	agccgccgca	gcagccatta	cccggctgcg	gtccagagcc	900
aagcggcggc	agagcgaggg	gcatcagcta	ccgccaagtc	cagagccatt	tccatcctgc	960
agaagaagcc	ccgccaccag	cagcttctgc	catctctctc	ctccttttc	ttcagccaca	1020
ggctcccaga	catgacagcc	atcatcaaag	agatcgttag	cagaaacaaa	aggagatatc	1080
aagaggatgg	attcgactta	gacttgacct	atatttatcc	aaacattatt	gctatgggat	1140
ttcctgcaga	aagacttgaa	ggcgtataca	ggaacaatat	tgatgatgta	gtaaggtttt	1200
tggattcaaa	gcataaaaac	cattacaaga	tatacaatct	ttgtgctgaa	agacattatg	1260
acaccgccaa	atttaattgc	agagttgcac	aatatccttt	tgaagaccat	aacccaccac	1320

agctagaact tatcaaaccc ttttgtgaag	atcttgacca	atggctaagt	gaagatgaca	1380
atcatgttgc agcaattcac tgtaaagctg	gaaagggacg	aactggtgta	atgatatgtg	1440
catatttatt acatcggggc aaatttttaa	aggcacaaga	ggccctagat	ttctatgggg	1500
aagtaaggac cagagacaaa aagggagtaa	ctattcccag	tcagaggcgc	tatgtgtatt	1560
attatagcta cctgttaaag aatcatctgg	attatagacc	agtggcactg	ttgtttcaca	1620
agatgatgtt tgaaactatt ccaatgttca	gtggcggaac	ttgcaatcct	cagtttgtgg	1680
tetgeeaget aaaggtgaag atatatteet	ccaattcagg	acccacacga	cgggaagaca	1740
agttcatgta ctttgagttc cctcagccgt	tacctgtgtg	tggtgatatc	aaagtagagt	1800
tettecacaa acagaacaag atgetaaaaa	aggacaaaat	gtttcacttt	tgggtaaata	1860
cattetteat accaggacea gaggaaacet	cagaaaaagt	agaaaatgga	agtctatgtg	1920
atcaagaaat cgatagcatt tgcagtatag	agcgtgcaga	taatgacaag	gaatatctag	1980
tacttacttt aacaaaaaat gatcttgaca	aagcaaataa	agacaaagcc	aaccgatact	2040
tttctccaaa ttttaaggtg aagctgtact	tcacaaaaac	agtagaggag	ccgtcaaatc	2100
cagaggctag cagttcaact tctgtaacac	cagatgttag	tgacaatgaa	cctgatcatt	2160
atagatattc tgacaccact gactctgatc	cagagaatga	accttttgat	gaagatcagc	2220
atacacaaat tacaaaagtc tgaattttt	tttatcaaga	gggataaaac	accatgaaaa	2280
taaacttgaa taaactgaaa atggaccttt	tttttttaa	tggcaatagg	acattgtgtc	2340
agattaccag ttataggaac aattctcttt	tcctgaccaa	tcttgtttta	ccctatacat	2400
ccacagggtt ttgacacttg ttgtccagtt	gaaaaaaggt	tgtgtagctg	tgtcatgtat	2460
ataccttttt gtgtcaaaag gacatttaaa	attcaattag	gattaataaa	gatggcactt	2520
tcccgtttta ttccagtttt ataaaagtg	gagacagact	gatgtgtata	cgtaggaatt	2580
ttttcctttt gtgttctgtc accaactgaa	gtggctaaag	agctttgtga	tatactggtt	2640
cacatectae eeetttgeae ttgtggeaac	agataagttt	gcagttggct	aagagaggtt	2700
teegaagggt tttgetacat tetaatgeat	gtattcgggt	taggggaatg	gagggaatgc	2760
tcagaaagga aataatttta tgctggactc	tggaccatat	accatctcca	gctatttaca	2820
cacacettte tttagcatge tacagttatt	aatctggaca	ttcgaggaat	tggccgctgt	2880
cactgettgt tgtttgegea tttttttta	aagcatattg	gtgctagaaa	aggcagctaa	2940
aggaagtgaa tctgtattgg ggtacaggaa	tgaaccttct	gcaacatctt	aagatccaca	3000
aatgaaggga tataaaaata atgtcatagg	taagaaacac	agcaacaatg	acttaaccat	3060
ataaatgtgg aggctatcaa caaagaatgg	gcttgaaaca	ttataaaaat	tgacaatgat	3120
ttattaaata tgttttctca attgtaacga	cttctccatc	tcctgtgtaa	tcaaggccag	3180
tgctaaaatt cagatgctgt tagtacctac	atcagtcaac	aacttacact	tattttacta	3240

gttttcaatc	ataatacctg	ctgtggatgc	ttcatgtgct	gcctgcaagc	ttctttttc	3300
tcattaaata	taaaatattt	tgtaatgctg	cacagaaatt	ttcaatttga	gattctacag	3360
taagcgtttt	ttttctttga	agatttatga	tgcacttatt	caatagctgt	cagccgttcc	3420
acccttttga	ccttacacat	tctattacaa	tgaattttgc	agttttgcac	attttttaaa	3480
tgtcattaac	tgttagggaa	ttttacttga	atactgaata	catataatgt	ttatattaaa	3540
aaggacattt	gtgttaaaaa	ggaaattaga	gttgcagtaa	actttcaatg	ctgcacacaa	3600
aaaaaagaca	tttgattttt	cagtagaaat	tgtcctacat	gtgctttatt	gatttgctat	3660
tgaaagaata	gggtttttt	tttttttt	tttttttt	ttaaatgtgc	agtgttgaat	3720
catttcttca	tagtgctccc	ccgagttggg	actagggctt	caatttcact	tcttaaaaaa	3780
aatcatcata	tatttgatat	gcccagactg	catacgattt	taagcggagt	acaactacta	3840
ttgtaaagct	aatgtgaaga	tattattaaa	aaggttttt	tttccagaaa	tttggtgtct	3900
tcaaattata	ccttcacctt	gacatttgaa	tatccagcca	ttttgtttct	taatggtata	3960
aaattccatt	ttcaataact	tattggtgct	gaaattgttc	actagctgtg	gtctgaccta	4020
gttaatttac	aaatacagat	tgaataggac	ctactagagc	agcatttata	gagtttgatg	4080
gcaaatagat	taggcagaac	ttcatctaaa	atattcttag	taaataatgt	tgacacgttt	4140
tccatacctt	gtcagtttca	ttcaacaatt	tttaaatttt	taacaaagct	cttaggattt	4200
acacatttat	atttaaacat	tgatatatag	agtattgatt	gattgctcat	aagttaaatt	4260
ggtaaagtta	gagacaacta	ttctaacacc	tcaccattga	aatttatatg	ccaccttgtc	4320
tttcataaaa	gctgaaaatt	gttacctaaa	atgaaaatca	acttcatgtt	ttgaagatag	4380
ttataaatat	tgttctttgt	tacaatttcg	ggcaccgcat	attaaaacgt	aactttattg	4440
ttccaatatg	taacatggag	ggccaggtca	taaataatga	cattataatg	ggcttttgca	4500
ctgttattat	ttttcctttg	gaatgtgaag	gtctgaatga	gggttttgat	tttgaatgtt	4560
tcaatgtttt	tgagaagcct	tgcttacatt	ttatggtgta	gtcattggaa	atggaaaaat	4620
ggcattatat	atattatata	tataaatata	tattatacat	actctcctta	ctttatttca	4680
gttaccatcc	ccatagaatt	tgacaagaat	tgctatgact	gaaaggtttt	cgagtcctaa	4740
ttaaaacttt	atttatggca	gtattcataa	ttagcctgaa	atgcattctg	taggtaatct	4800
ctgagtttct	ggaatatttt	cttagacttt	ttggatgtgc	agcagcttac	atgtctgaag	4860
ttacttgaag	gcatcacttt	taagaaagct	tacagttggg	ccctgtacca	tcccaagtcc	4920
tttgtagctc	ctcttgaaca	tgtttgccat	acttttaaaa	gggtagttga	ataaatagca	4980
tcaccattct	ttgctgtggc	acaggttata	aacttaagtg	gagtttaccg	gcagcatcaa	5040
atgtttcagc	tttaaaaaat	aaaagtaggg	tacaagttta	atgtttagtt	ctagaaattt	5100
tgtgcaatat	gttcataacg	atggctgtgg	ttgccacaaa	gtgcctcgtt	tacctttaaa	5160
tactgttaat	gtgtcatgca	tgcagatgga	aggggtggaa	ctgtgcacta	aagtgggggc	5220

tttaactgta	gtatttggca	gagttgcctt	ctacctgcca	gttcaaaagt	tcaacctgtt	5280
ttcatataga	atatatatac	taaaaaattt	cagtctgtta	aacagcctta	ctctgattca	5340
gcctcttcag	atactcttgt	gctgtgcagc	agtggctctg	tgtgtaaatg	ctatgcactg	5400
aggatacaca	aaaataccaa	tatgatgtgt	acaggataat	gcctcatccc	aatcagatgt	5460
ccatttgtta	ttgtgtttgt	taacaaccct	ttatctctta	gtgttataaa	ctccacttaa	5520
aactgattaa	agtctcattc	ttgtcaaaaa	aaaaaaaaa	aaaaaaaaa	aa	5572
<210> 2						

<211> 403

<212> PRT

5 <213> Homo sapiens

<400> 2

Met 1	Thr	Ala	Ile	Ile 5	Lys	Glu	Ile	Val	Ser 10	Arg	Asn	Lys	Arg	Arg 15	Tyr
Gln	Glu	Asp	Gly 20	Phe	Asp	Leu	Asp	Leu 25	Thr	Tyr	Ile	Tyr	Pro 30	Asn	Ile
Ile	Ala	Met 35	Gly	Phe	Pro	Ala	Glu 40	Arg	Leu	Glu	Gly	Val 45	Tyr	Arg	Asn
Asn	Ile 50	Asp	Asp	Val	Val	Arg 55	Phe	Leu	Asp	Ser	Lys 60	His	Lys	Asn	His
Tyr 65	Lys	Ile	Tyr	Asn	Leu 70	Cys	Ala	Glu	Arg	His 75	Tyr	Asp	Thr	Ala	Lys 80
Phe	Asn	Cys	Arg	Val 85	Ala	Gln	Tyr	Pro	Phe 90	Glu	Asp	His	Asn	Pro 95	Pro
Gln	Leu	Glu	Leu 100	Ile	Lys	Pro	Phe	Cys 105	Glu	Asp	Leu	Asp	Gln 110	Trp	Leu
Ser	Glu	Asp 115	Asp	Asn	His	Val	Ala 120	Ala	Ile	His	Cys	Lys 125	Ala	Gly	Lys
Gly	A rg 130	Thr	Gly	Val	Met	Ile 135	Cys	Ala	Tyr	Leu	Leu 140	His	Arg	Gly	Lys
Phe 145	Leu	Lys	Ala	Gln	Glu 150	Ala	Leu	Asp	Phe	Tyr 155	Gly	Glu	Val	Arg	Thr 160
Arg	Asp	Lys	Lys	Gly 165	Val	Thr	Ile	Pro	Ser 170	Gln	Arg	Arg	Tyr	Val 175	Tyr

Tyr	Tyr	Ser	Tyr 180	Leu	Leu	Lys	Asn	His 185	Leu	Asp	Tyr	Arg	Pro 190	Val	Ala
Leu	Leu	Phe 195	His	Lys	Met	Met	Phe 200	Glu	Thr	Ile	Pro	Met 205	Phe	Ser	Gly
Gly	Thr 210	Cys	Asn	Pro	Gln	Phe 215	Val	Val	Cys	Gln	Leu 220	Lys	Val	Lys	Ile
Tyr 225	Ser	Ser	Asn	Ser	Gly 230	Pro	Thr	Arg	Arg	Glu 235	Asp	Lys	Phe	Met	Tyr 240
Phe	Glu	Phe	Pro	Gln 245	Pro	Leu	Pro	Val	Cys 250	Gly	Asp	Ile	Lys	Val 255	Glu
Phe	Phe	His	Lys 260	Gln	Asn	Lys	Met	Leu 265	Lys	Lys	Asp	Lys	Met 270	Phe	His
Phe	Trp	Val 275	Asn	Thr	Phe	Phe	Ile 280	Pro	Gly	Pro	Glu	Glu 285	Thr	Ser	Glu
Lys	Val 290	Glu	Asn	Gly	Ser	Leu 295	Cys	Asp	Gln	Glu	Ile 300	Asp	Ser	Ile	Cys
Ser 305	Ile	Glu	Arg	Ala	Asp 310	Asn	Asp	Lys	Glu	Tyr 315	Leu	Val	Leu	Thr	Leu 320
Thr	Lys	Asn	Asp	Leu 325	Asp	Lys	Ala	Asn	Lys 330	Asp	Lys	Ala	Asn	A rg 335	Tyr
Phe	Ser	Pro	Asn 340	Phe	Lys	Val	Lys	Leu 345	Tyr	Phe	Thr	Lys	Thr 350	Val	Glu
Glu	Pro	Ser 355	Asn	Pro	Glu	Ala	Ser 360	Ser	Ser	Thr	Ser	Val 365	Thr	Pro	Asp
Val	Ser 370	Asp	Asn	Glu	Pro	Asp 375	His	Tyr	Arg	Tyr	Ser 380	Asp	Thr	Thr	Asp
Ser 385	Asp	Pro	Glu	Asn	Glu 390	Pro	Phe	Asp	Glu	Asp 395	Gln	His	Thr	Gln	Ile 400
Thr	Lys	Val													

<210> 3 <211> 8229 <212> ADN <213> Mus musculus

<400> 3

gcggcaggat	acgcgcttgg	gcgtcgggac	gcggctgcgc	tcagctctct	cctctcggaa	60
gctgcagcca	tgatggaagt	ttgagagttg	agccgctgtg	aggccaggcc	cggcgcaggc	120
gagggagatg	agagacggcg	gcggccacgg	cccagagccc	ctctcagcgc	ctgtgagcag	180
ccgcgggggc	agcgccctcg	gggagccggc	cgggcggcgg	cggcggcagc	ggcggcgggc	240
ctcgcctcct	cgtcgtctgt	tctaaccggg	cagcttctga	gcagcttcgg	agagagacgg	300
tggaagaagc	cgtgggctcg	agcgggagcc	ggcgcaggct	cggcggctgc	acctcccgct	360
cctggagcgg	gggggagaag	cggcggcggc	ggccgcggct	ccggggaggg	ggtcggagtc	420
gcctgtcacc	attgccaggg	ctgggaacgc	cggagagttg	ctctctcccc	ttctcctgcc	480
tccaacacgg	cggcggcggc	ggcggcacgt	ccagggaccc	gggccggtgt	taagcctccc	540
gtccgccgcc	gccgcacccc	ccctggcccg	ggctccggag	gccgccggag	gaggcagccg	600
ctgcgaggat	tatccgtctt	ctccccattc	cgctgcctcg	gctgccaggc	ctctggctgc	660
tgaggagaag	caggcccagt	ctctgcaacc	atccagcagc	cgccgcagca	gccattaccc	720
ggctgcggtc	cagggccaag	cggcagcaga	gcgaggggca	tcagcgaccg	ccaagtccag	780
agccatttcc	atcctgcaga	agaagcctcg	ccaccagcag	cttctgccat	ctctctcctc	840
ctttttcttc	agccacaggc	tcccagacat	gacagccatc	atcaaagaga	tcgttagcag	900
aaacaaaagg	agatatcaag	aggatggatt	cgacttagac	ttgacctata	tttatccaaa	960
tattattgct	atgggatttc	ctgcagaaag	acttgaaggt	gtatacagga	acaatattga	1020
tgatgtagta	aggtttttgg	attcaaagca	taaaaaccat	tacaagatat	acaatctatg	1080
tgctgagaga	cattatgaca	ccgccaaatt	taactgcaga	gttgcacagt	atccttttga	1140
agaccataac	ccaccacagc	tagaacttat	caaacccttc	tgtgaagatc	ttgaccaatg	1200
gctaagtgaa	gatgacaatc	atgttgcagc	aattcactgt	aaagctggaa	agggacggac	1260
tggtgtaatg	atttgtgcat	atttattgca	tcggggcaaa	tttttaaagg	cacaagaggc	1320
cctagatttt	tatggggaag	taaggaccag	agacaaaaag	ggagtcacaa	ttcccagtca	1380
gaggcgctat	gtatattatt	atagctacct	gctaaaaaat	cacctggatt	acagacccgt	1440
ggcactgctg	tttcacaaga	tgatgtttga	aactattcca	atgttcagtg	gcggaacttg	1500
caatcctcag	tttgtggtct	gccagctaaa	ggtgaagata	tattcctcca	attcaggacc	1560
cacgcggcgg	gaggacaagt	tcatgtactt	tgagttccct	cagccattgc	ctgtgtgtgg	1620
tgatatcaaa	gtagagttct	tccacaaaca	gaacaagatg	ctcaaaaagg	acaaaatgtt	1680
tcacttttgg	gtaaatacgt	tcttcatacc	aggaccagag	gaaacctcag	aaaaagtgga	1 74 0
aaatggaagt	ctttgtgatc	aggaaatcga	tagcatttgc	agtatagagc	gtgcagataa	1800
tgacaaggag	tatcttgtac	tcaccctaac	aaaaaacgat	cttgacaaag	caaacaaaga	1860
caaggccaac	cgatacttct	ctccaaattt	taaggtgaaa	ctatacttta	caaaaacagt	1920

agaggagcca	tcaaatccag	aggctagcag	ttcaacttct	gtgactccag	atgttagtga	1980
caatgaacct	gatcattata	gatattctga	caccactgac	tctgatccag	agaatgaacc	2040
ttttgatgaa	gatcagcatt	cacaaattac	aaaagtctga	tttttttt	cttatcaaga	2100
gggataaaat	accatgaaaa	aaaaaaaact	tgaataaact	gaaatggacc	tttttttt	2160
tttttttt	ttaaatggca	ataggacatt	gtgtcagatt	gcagttatag	gaacaattct	2220
cttctcctga	ccaatcttgt	tttaccctat	acatccacag	ggttttgaca	cttgttgtcc	2280
agttaaaaaa	aggttgtgta	gctgtgtcat	gtatatacct	ttttgtgtca	aaaggacatt	2340
taaaattcaa	ttaggataaa	taaaagatgg	cactttccca	ttttattcca	gttttataaa	2400
aagtggagac	aggctgatgt	gtatacgcag	gagtttttcc	tttattttct	gtcaccagct	2460
gaagtggctg	aagagctctg	attcccgggt	tcacgtccta	cccctttgca	cttgtggcaa	2520
cagataagtt	tgcagttggc	taaggaagtt	tctgcagggt	tttgttagat	tctaatgcat	2580
gcacttgggt	tgggaatgga	gggaatgctc	agaaaggaat	gtttctacct	gggctctgga	2640
ccatacacca	tctccagctc	cttagatgca	cctttcttta	gcatgctcca	cttactaatc	2700
tggacatccg	agagattggc	tgctgtcctg	ctgtttgttt	gtgcatttta	aagagcatat	2760
tggtgctaga	caaggcagct	agagtgagta	tatttgtagt	ggggtacagg	aatgaaccat	2820
ctacagcatc	ttaagaatcc	acaaaggaag	ggatataaaa	aaagtggtca	tagatagata	2880
aaagacacag	cagcaatgac	ttaaccatac	aaatgtggag	gctttcaaca	aaggatgggc	2940
tggaaacaga	aaatttgaca	atgatttatt	cagtatgctt	tctcagttgt	aatgactgct	3000
ccatctccta	tgtaatcaag	gccagtgcta	agagtcagat	gctattagtc	cctacatcag	3060
tcaacacctt	acctttattt	ttattaattt	tcaatcatat	acctactgtg	gatgcttcat	3120
gtgctggctg	ccagtttgtt	tttctcctta	aatatttat	aattcttcac	aggaaatttc	3180
aacttgagat	tcaacagtaa	gcaggttttg	tttttttt	ttcctagaga	ttgatgatgc	3240
gcgtcctcag	tccagtggct	gtcagacgtt	cagccccttt	gaccttacac	attctattac	3300
aatgagtttt	gcagttttgc	acatttttt	taaatgtcat	taactgttag	ggaattttac	3360
ttgaatactg	aatacatata	atgtgtatat	taaaaaagtc	attgtttgtg	ttaaaaaaga	3420
aattagagtt	gcagtaaatt	tacagcactg	cacgaataat	aaggcattga	agtttttcag	3480
tagaaattgt	cctacagatg	ctttatcgac	ttgctattgg	aagaatagat	cttcttaaat	3540
gtgcagtgtt	gagtcacttc	gttatagtgg	tagagttggg	attagggctt	caattttact	3600
tcttaaatat	cattctatgt	ttgatatgcc	cagactgcat	acaatttaaa	gcaagagtac	3660
aactactatc	gtaatggtaa	tgtgaagatg	ctattacaaa	ggatctcctc	ccaacccctc	3720
gggaatttgg	tgtctttcaa	attatatctt	gaccttgaca	tttgaatatc	cagccattat	3780
tagatttctt	aatggtgtga	agtcccattt	tcaataactt	attggtgctg	aaattgttca	3840
ctagctgtgg	tctgacctag	ttaatttaca	agtacagatt	gcataggacc	cactagagaa	3900

gcatttatag tttgatggta	agtagattag	gcagaacgcc	atctaaaata	ttcttagaaa	3960
ataatgttga tgtattttcc	atacctcatc	agtttcactc	aaccaataaa	gtttttaaaa	4020
ttgtaacaaa gctcttagga	tttacacatt	tatatttaaa	cattgataca	tgaatattga	4080
ctgactgttg ataaagtcag	agacaacttt	tcctgagatc	tcaccatgga	aatctgtaca	4140
cccccttgtc tttcctaaaa	gctgaaagtg	gctgactaaa	atgcaaagca	gctgttgatg	4200
ttttgaagat agtgataaac	actgttcttt	gttagttttg	ggcacagcat	gctaaactat	4260
aacttgtatt gttccaatat	gtaacacaga	gggccaggtc	atgaataatg	acattacaat	4320
gggctgttgc actgttaata	tttttccttt	ggaatgtgaa	ggtctgaatg	agggttttga	4380
ttttgaatgt ttcagtgttt	ttgagaagcc	ttgcttacat	tttatggtgt	agtcattgga	4440
aatggaaaaa tggcattata	tatatattat	atatatataa	atatatatat	tatacatact	4500
ctccttactt tatttcagtt	accatcccca	tagaatttga	caagaattgc	tatgactgaa	4560
agggttttga gtcctaattc	aaactttctt	tatgacagta	ttcacgatta	gcctgaagtg	4620
cattetgtag gtgatetete	ccgtgtttct	ggaatgcttt	cttagactct	tggatgtgca	4680
gcagcttatg tgtctgaaat	gacttgaagg	catcaccttt	aagaaggctt	acagttgggc	4740
cccgtacatc ccaagtcctc	tgtaattcct	cttggacatt	tttgccataa	ttgtaaaagg	4800
gtagttgaat taaatagcgt	caccattctt	tgctgtggca	caggttataa	acttaagtgg	4860
agtttaccgg cagcatcaaa	tgtttcagct	ttaaaaataa	aagtaggtta	caagttacat	4920
gtttagtttt agaaaatttg	tgcaatatgt	tcataacgat	ggctgtggtt	gccacaaagt	4980
gcctcgttta cctttaaata	ctgttaatgt	gtcgtgcatg	cagacggaag	gggtggatct	5040
gtgcactaaa cggggggctt	ttactctagt	attcggcaga	gttgccttct	acctgccagc	5100
tcaaaagttc gatctgtttt	catatagaat	atatatacta	aaaccatcca	gtctgtaaaa	5160
cagcettace eegatteage	ctcttcagat	actcttgtgc	tgtgcagcag	tggctctgtg	5220
tgtaaatgct atgcactgag	gatacacaaa	tatgacgtgt	acaggataat	gcctcatacc	5280
aatcagatgt ccatttgtta	ctgtgtttgt	taacaaccct	ttatctctta	gtgttataaa	5340
ctccacttaa aactgattaa	agtctcattc	ttgtcattgt	gtgggtgttt	tattaaatga	5400
gagtatttat aattcaaatt	gcttaaatcc	attaaaatgt	tcagtaatgg	gcagccacat	5 4 60
atgattacaa agttcctgtg	catttttcta	ttttccccc	tccttgctat	ccttccaagc	5520
aaagcatctt tctgtcatct	tggtagacac	atacctgtct	actcatggtt	aagaagagca	5580
ctttaagcct tagtcatcac	ttaataagtt	attccaggca	cagtaaaaag	ttcaaggttc	5640
ttggaaaacg gtgcttattt	ctcttcttat	aagccagatg	tctgaagata	gccctaaccc	5700
caagaacggg cttgatgtct	caggtctgtt	ctgtggcttt	ctgtttttt	taacactgca	5760
gttggccatc agcacatggg	aggtttcatc	gggacttgtc	cagagtagta	ggctcaaata	5820

tac	ctatctcc	tttctaatat	tcttaaaggc	taaggagtcc	tttcaatata	acagtaagat	5880
aac	cttgtgat	gttttagaag	taagcagacc	attaatgtca	atgtggagtc	ttaatgttac	5940
ato	gaagttga	tagtttctct	gtgacccatt	taaaaataca	aaccgagtag	catgcaatta	6000
tgt	aaagaaa	tatgaagatt	atatgtagtc	acacattttc	tttagaattc	ttagtttggt	6060
gaa	aaacttga	atataaaggt	attttgattt	atatgacatt	ttgatgatat	ttgaaaaaaa	6120
gga	aatttcct	gacattttgc	ttttagatca	tgtcccccat	tgtgctgtaa	tttaagccaa	6180
ctt	ggttcag	tgaatgccat	caccatttcc	attgagaatt	taaaactcac	cagtgtttaa	6240
cat	gcaggct	tctgagggct	cccggagaat	cagaccttaa	gcccagttga	tttacttcta	6300
acç	gtgaaact	tcgagttcct	gtatactttg	ctagataatt	tgtggtacat	ctaaagctta	6360
gto	cttaagtg	gcttgtgtgt	ggattttatt	caacattctt	gttgctaggg	tagagagaaa	6420
tgt	tgctgag	tagaaacaag	agtacccagt	tcaatgtggt	acagagagca	gtccctaaaa	6480
tct	gtacaca	gtgtaatgga	ccactttagg	agtcaagagg	ctgattttc	ctatgaaatt	6540
aca	attgcaac	aggaagcctt	ctagtatagt	tccttttact	gttagaatat	gtttttatgc	6600
ata	acgctata	gctgctttcc	catcttccaa	caacaggtat	caggatgtaa	gcaagcttta	6660
aac	cagtgtga	agatggcagg	atagtgtcat	cggtaacagt	cctctgactc	taaatgtagt	6720
tgo	ctctgtaa	cactttgtga	atataacatc	acaattctca	tgtccttggg	ggggggggc	6780
ata	acccagta	ttagtatgtt	ttagtgacta	agcaatcatt	tttctgttta	ctcatgtaca	6840
ttt	tctcttt	aaaactaaaa	cctgtactgt	gtatgtctcc	aaagcctttt	agcttagttt	6900
tta	aggaaatg	aacactgaat	ggatcacttt	ttagtgtagc	aggtatggga	tatgtgcatt	6960
ata	agagagac	cttgtcagct	ctctgggcct	atttgaatgt	ttattgttgg	tgtgaggatg	7020
gta	aggggaat	cagtaaatac	aagttacgtt	ggtttagcag	agcaagctca	gtgtgggtat	7080
tto	ctctttga	agcgtggtgc	gtgacgcact	gtgagtagag	aatttggtca	ccctttgagt	7140
cct	cttgcat	tttgcaaact	tgctcagcaa	atgcgtacct	accttgcccc	ctaggtaaaa	7200
gca	aggaacta	ctactgattt	atctgtcact	cagctgtctt	tatatgtgtg	cttctgtgac	7260
ttç	gtatcaca	caagaatctt	aaagatttca	caaattgtta	ccttttagct	ctgaatgttg	7320
agt	attetgg	tgggctaaca	acaagacaaa	ctcttgacag	tcatttgaga	attttcatga	7380
aac	catttagc	tgaaaacatt	ttataattta	tgaaaaaaat	gtgttacctt	aaacttttac	7440
ata	atgtggga	gacattaact	gccatatttg	agcatactga	attttaaatt	taaaataaag	7500
ctç	gcatattt	ttaaatgaaa	tgtttaacaa	ggattcatat	tttttgtttt	ttaagattaa	7560
aaa	ataattta	tgtcttctca	tgtggaacct	catctgtcac	aatggttaga	ttatacagaa	7620
tg	gagcaagg	cttgtagtgg	tttagcttac	agtaaaattc	ttaatgttta	gatgtgttta	7680
ctt	actggct	gttatgtata	cttttgagat	tttccacctg	ttctgtgtag	ttttctaaat	7740
gat	actccta	cttaaaaaca	gcattttagt	atctattttc	tgtctccatt	aaatggtcct	7800

cattttctat	tgagtttgga	agtgtgcaca	ttgtgtgtgt	gtgtgtgtgt	gtgtgtgtgc	7860
acacgtgtgc	gcgcccgtgc	gtgtgtctat	ttgtggagtt	tgtatgggag	aattagtttt	7920
gaaagtgcta	gaatagagat	gaaatttggt	tcaagtaaaa	ttttcccact	gggattttac	7980
agtttattgt	aataaaatgt	taattttgga	tgaccttgaa	tattaatgaa	tttgttagcc	8040
tcttgatgtg	tgcattaatg	agatatatca	aagttgtata	ttaaaccaaa	gttggagttg	8100
tggaagtgtt	tttatgaagt	tccgtttggc	taccaatgga	cataagacta	gaaatacctt	8160
cctgtggaga	atattttcc	tttaaacaat	taaaaaggtt	cattatttt	gaaaaaaaa	8220
aaaaaaaa						8229

<210> 4

<211> 1212

<212> ADN

5 <213> Rattus norvegicus

<400> 4

atgacagcca	tcatcaaaga	gatcgttagc	agaaacaaaa	ggagatatca	agaggatgga	60
ttcgacttag	acttgaccta	tatttatcca	aatattattg	ctatgggatt	tcctgcagaa	120
agacttgaag	gtgtatacag	gaacaatatt	gatgatgtag	taaggttttt	ggattcaaag	180
cataaaaacc	attacaagat	atacaatcta	tgtgctgaga	gacattatga	caccgccaaa	240
tttaactgca	gagttgcaca	gtatcctttt	gaagaccata	acccaccaca	gctagaactt	300
atcaaaccct	tttgtgaaga	tcttgaccaa	tggctaagtg	aagacgacaa	tcatgttgca	360
gcaattcact	gtaaagctgg	gaaaggacgg	actggtgtaa	tgatttgtgc	atatttattg	420
catcggggca	agtttttaaa	ggcacaagag	gccctggatt	tttatgggga	agtaaggacc	480
agagataaaa	agggagtaac	tattcccagt	cagaggcgct	atgtatatta	ttatagctac	540
ctgttaaaga	atcacctgga	ttacagacca	gtggcactgt	tgtttcacaa	gatgatgttt	600
gaaactattc	caatgttcag	tggcggaact	tgcaatcccc	agtttgtggt	ctgccagcta	660
aaggtgaaga	tctactcctc	caactcagga	cccacgcggc	gggaggacaa	gctcatgtac	720
tttgagttcc	ctcagccatt	gcctgtgtgt	ggtgacatca	aagtagagtt	cttccacaaa	780
cagaacaaga	tgctcaaaaa	ggacaaaatg	tttcactttt	gggtaaatac	gttcttcata	840
ccaggaccag	aggaaacctc	agaaaaagtg	gaaaatggaa	gtctttgtga	tcaggaaatc	900
gatagcattt	gtagtataga	gcgtgcggat	aatgacaagg	agtatcttgt	gctcaccctg	960
acaaaaaatg	atcttgacaa	agcaaacaaa	gacaaggcca	accgatactt	ctctccaaat	1020
tttaaggtga	agttatactt	cacaaaaaca	gtagaggagc	catcaaatcc	agaggctagc	1080
agttcaactt	ctgtgactcc	agacgttagt	gacaatgaac	ctgatcatta	tagatattct	1140
gacaccactg	actctgatcc	agagaatgaa	ccttttgatg	aagatcagca	ttcacaaatt	1200
acaaaagtct	ga					1212

<210> 5

<211> 1396

<212> ADN

5 <213> Canis familiaris

<400> 5

ccgcccgccg	ccaggcccgg	ggccgcctgc	agcctgcgga	ggaggccgcg	ccgcccgccg	60
ctcctgccgt	ctctctcctc	cttcctctcc	agccaccggc	tcccagacat	gacagccatc	120
atcaaggaga	tcgtcagcag	aaacaaaagg	cgctaccagg	aggatgggtt	cgacttggac	180
ttgacctata	tttatcccaa	cattattgct	atggggtttc	ctgcagaaag	acttgaaggc	240
gtatacagga	acaatattga	tgatgtagta	aggtttttgg	attcaaagca	taaaaaccat	300
tacaagatat	acaatctgtg	tgctgaaaga	cattatgata	ccgccaaatt	taactgcaga	360
gttgcacagt	atccttttga	agaccataat	ccaccacagc	tagaacttat	caaacccttt	420
tgtgaagatc	ttgaccaatg	gctaagtgaa	gatgacaatc	atgttgcagc	aattcactgt	480
aaagctggaa	agggacgaac	tggtgtaatg	atttgtgcat	atttattaca	tcggggcaaa	540
tttctaaagg	cacaagaggc	cctagatttc	tatggggaag	taaggaccag	agacaaaaag	600
ggagtaacta	ttcccagtca	gaggcgctat	gtgtattatt	atagctacct	gttaaagaat	660
catctggatt	atagaccagt	ggcactgttg	tttcacaaga	tgatgtttga	aactattcca	720
atgttcagtg	gcggaacttg	caatcctcag	tttgtggtct	gccagctaaa	ggtgaagatc	780
tattcctcca	attcaggacc	cacacgacgg	gaagacaagt	tcatgtactt	tgagttccct	840
cagccattgc	ctgtgtgcgg	tgacatcaaa	gtagagttct	tccacaaaca	gaacaagatg	900
ctaaaaaagg	acaaaatgtt	tcacttttgg	gtaaacacat	tcttcatacc	aggaccagag	960
gaaacctcag	aaaaagtaga	aaatggaagt	ctatgtgatc	aagaaattga	tagtatttgc	1020
agtatagaac	gtgcagataa	tgacaaggaa	tatctagtac	tcactttaac	aaaaaatgat	1080
ctcgacaaag	caaataaaga	caaggccaac	cgatattttt	ctccaaattt	taaggtgaag	1140
ctgtacttca	caaaaactgt	agaggagcca	tcaaacccgg	aggctagcag	ttcaacttct	1200
gtgacgccag	atgttagtga	caatgaacct	gatcattata	gatattctga	caccactgac	1260
tctgacccag	agaatgaacc	ctttgatgaa	gatcagcaca	cacaaatcac	aaaagtctga	1320
attttttta	atcaagaggg	ataaaacacc	atgaaaacaa	acttgaataa	actgaaattg	1380
gaccttttt	ttttaa					1396

<210>6

<211> 5616

<212> ADN

5 <213> Homo sapiens

<400> 6

ccccggcgca gcgcggccgc agcagcctcc gcccccgca cggtgtgagc gcccgacgcg 60

gccgaggcgg	ccggagtccc	gagctagccc	cggcggccgc	cgccgcccag	accggacgac	120
aggccacctc	gtcggcgtcc	gcccgagtcc	ccgcctcgcc	gccaacgcca	caaccaccgc	180
gcacggcccc	ctgactccgt	ccagtattga	tcgggagagc	cggagcgagc	tcttcgggga	240
gcagcgatgc	gaccctccgg	gacggccggg	gcagcgctcc	tggcgctgct	ggctgcgctc	300
tgcccggcga	gtcgggctct	ggaggaaaag	aaagtttgcc	aaggcacgag	taacaagctc	360
acgcagttgg	gcacttttga	agatcatttt	ctcagcctcc	agaggatgtt	caataactgt	420
gaggtggtcc	ttgggaattt	ggaaattacc	tatgtgcaga	ggaattatga	tctttccttc	480
ttaaagacca	tccaggaggt	ggctggttat	gtcctcattg	ccctcaacac	agtggagcga	540
attcctttgg	aaaacctgca	gatcatcaga	ggaaatatgt	actacgaaaa	ttcctatgcc	600
ttagcagtct	tatctaacta	tgatgcaaat	aaaaccggac	tgaaggagct	gcccatgaga	660
aatttacagg	aaatcctgca	tggcgccgtg	cggttcagca	acaaccctgc	cctgtgcaac	720
gtggagagca	tccagtggcg	ggacatagtc	agcagtgact	ttctcagcaa	catgtcgatg	780
gacttccaga	accacctggg	cagctgccaa	aagtgtgatc	caagctgtcc	caatgggagc	840
tgctggggtg	caggagagga	gaactgccag	aaactgacca	aaatcatctg	tgcccagcag	900
tgctccgggc	gctgccgtgg	caagtccccc	agtgactgct	gccacaacca	gtgtgctgca	960
ggctgcacag	gcccccggga	gagcgactgc	ctggtctgcc	gcaaattccg	agacgaagcc	1020
acgtgcaagg	acacctgccc	cccactcatg	ctctacaacc	ccaccacgta	ccagatggat	1080
gtgaaccccg	agggcaaata	cagctttggt	gccacctgcg	tgaagaagtg	tccccgtaat	1140
tatgtggtga	cagatcacgg	ctcgtgcgtc	cgagcctgtg	gggccgacag	ctatgagatg	1200
gaggaagacg	gcgtccgcaa	gtgtaagaag	tgcgaagggc	cttgccgcaa	agtgtgtaac	1260
ggaataggta	ttggtgaatt	taaagactca	ctctccataa	atgctacgaa	tattaaacac	1320
ttcaaaaact	gcacctccat	cagtggcgat	ctccacatcc	tgccggtggc	atttaggggt	1380
gactccttca	cacatactcc	tcctctggat	ccacaggaac	tggatattct	gaaaaccgta	1440
aaggaaatca	cagggttttt	gctgattcag	gcttggcctg	aaaacaggac	ggacctccat	1500
gcctttgaga	acctagaaat	catacgcggc	aggaccaagc	aacatggtca	gttttctctt	1560
gcagtcgtca	gcctgaacat	aacatccttg	ggattacgct	ccctcaagga	gataagtgat	1620
ggagatgtga	taatttcagg	aaacaaaaat	ttgtgctatg	caaatacaat	aaactggaaa	1680
aaactgtttg	ggacctccgg	tcagaaaacc	aaaattataa	gcaacagagg	tgaaaacagc	1740
tgcaaggcca	caggccaggt	ctgccatgcc	ttgtgctccc	ccgagggctg	ctggggcccg	1800
gagcccaggg	actgcgtctc	ttgccggaat	gtcagccgag	gcagggaatg	cgtggacaag	1860
tgcaaccttc	tggagggtga	gccaagggag	tttgtggaga	actctgagtg	catacagtgc	1920
cacccagagt	gcctgcctca	ggccatgaac	atcacctgca	caggacgggg	accagacaac	1980
tgtatccagt	gtgcccacta	cattgacggc	ccccactgcg	tcaagacctg	cccggcagga	2040

gtcatgggag aaaacaacac	cctggtctgg	aagtacgcag	acgccggcca	tgtgtgccac	2100
ctgtgccatc caaactgcac	ctacggatgc	actgggccag	gtcttgaagg	ctgtccaacg	2160
aatgggccta agatcccgtc	catcgccact	gggatggtgg	gggccctcct	cttgctgctg	2220
gtggtggccc tggggatcgg	cctcttcatg	cgaaggcgcc	acatcgttcg	gaagcgcacg	2280
ctgcggaggc tgctgcagga	gagggagctt	gtggagcctc	ttacacccag	tggagaagct	2340
cccaaccaag ctctcttgag	gatcttgaag	gaaactgaat	tcaaaaagat	caaagtgctg	2400
ggctccggtg cgttcggcac	ggtgtataag	ggactctgga	tcccagaagg	tgagaaagtt	2460
aaaattcccg tcgctatcaa	ggaattaaga	gaagcaacat	ctccgaaagc	caacaaggaa	2520
atcctcgatg aagcctacgt	gatggccagc	gtggacaacc	cccacgtgtg	ccgcctgctg	2580
ggcatctgcc tcacctccac	cgtgcagctc	atcacgcagc	tcatgccctt	cggctgcctc	2640
ctggactatg tccgggaaca	caaagacaat	attggctccc	agtacctgct	caactggtgt	2700
gtgcagatcg caaagggcat	gaactacttg	gaggaccgtc	gcttggtgca	ccgcgacctg	2760
gcagccagga acgtactggt	gaaaacaccg	cagcatgtca	agatcacaga	ttttgggctg	2820
gccaaactgc tgggtgcgga	agagaaagaa	taccatgcag	aaggaggcaa	agtgcctatc	2880
aagtggatgg cattggaatc	aattttacac	agaatctata	cccaccagag	tgatgtctgg	2940
agctacgggg tgaccgtttg	ggagttgatg	acctttggat	ccaagccata	tgacggaatc	3000
cctgccagcg agatctcctc	catcctggag	aaaggagaac	gcctccctca	gccacccata	3060
tgtaccatcg atgtctacat	gatcatggtc	aagtgctgga	tgatagacgc	agatagtcgc	3120
ccaaagttcc gtgagttgat	catcgaattc	tccaaaatgg	cccgagaccc	ccagcgctac	3180
cttgtcattc agggggatga	aagaatgcat	ttgccaagtc	ctacagactc	caacttctac	3240
cgtgccctga tggatgaaga	agacatggac	gacgtggtgg	atgccgacga	gtacctcatc	3300
ccacagcagg gcttcttcag	cagcccctcc	acgtcacgga	ctccctcct	gagctctctg	3360
agtgcaacca gcaacaattc	caccgtggct	tgcattgata	gaaatgggct	gcaaagctgt	3420
cccatcaagg aagacagctt	cttgcagcga	tacagctcag	accccacagg	cgccttgact	3480
gaggacagca tagacgacac	cttcctccca	gtgcctgaat	acataaacca	gtccgttccc	3540
aaaaggcccg ctggctctgt	gcagaatcct	gtctatcaca	atcagcctct	gaaccccgcg	3600
cccagcagag acccacacta	ccaggacccc	cacagcactg	cagtgggcaa	ccccgagtat	3660
ctcaacactg tccagcccac	ctgtgtcaac	agcacattcg	acagccctgc	ccactgggcc	3720
cagaaaggca gccaccaaat	tagcctggac	aaccctgact	accagcagga	cttctttccc	3780
aaggaagcca agccaaatgg	catctttaag	ggctccacag	ctgaaaatgc	agaataccta	3840
agggtcgcgc cacaaagcag	tgaatttatt	ggagcatgac	cacggaggat	agtatgagcc	3900
ctaaaaatcc agactctttc	gatacccagg	accaagccac	agcaggtcct	ccatcccaac	3960

agccatgccc	gcattagctc	ttagacccac	agactggttt	tgcaacgttt	acaccgacta	4020
gccaggaagt	acttccacct	cgggcacatt	ttgggaagtt	gcattccttt	gtcttcaaac	4080
tgtgaagcat	ttacagaaac	gcatccagca	agaatattgt	ccctttgagc	agaaatttat	4140
ctttcaaaga	ggtatatttg	aaaaaaaaa	aaagtatatg	tgaggatttt	tattgattgg	4200
ggatcttgga	gtttttcatt	gtcgctattg	atttttactt	caatgggctc	ttccaacaag	4260
gaagaagctt	gctggtagca	cttgctaccc	tgagttcatc	caggcccaac	tgtgagcaag	4320
gagcacaagc	cacaagtctt	ccagaggatg	cttgattcca	gtggttctgc	ttcaaggctt	4380
ccactgcaaa	acactaaaga	tccaagaagg	ccttcatggc	cccagcaggc	cggatcggta	4440
ctgtatcaag	tcatggcagg	tacagtagga	taagccactc	tgtcccttcc	tgggcaaaga	4500
agaaacggag	gggatggaat	tcttccttag	acttactttt	gtaaaaatgt	ccccacggta	4560
cttactcccc	actgatggac	cagtggtttc	cagtcatgag	cgttagactg	acttgtttgt	4620
cttccattcc	attgttttga	aactcagtat	gctgcccctg	tcttgctgtc	atgaaatcag	4680
caagagagga	tgacacatca	aataataact	cggattccag	cccacattgg	attcatcagc	4740
atttggacca	atagcccaca	gctgagaatg	tggaatacct	aaggatagca	ccgcttttgt	4800
tctcgcaaaa	acgtatctcc	taatttgagg	ctcagatgaa	atgcatcagg	tcctttgggg	4860
catagatcag	aagactacaa	aaatgaagct	gctctgaaat	ctcctttagc	catcacccca	4920
acccccaaa	attagtttgt	gttacttatg	gaagatagtt	ttctcctttt	acttcacttc	4980
aaaagctttt	tactcaaaga	gtatatgttc	cctccaggtc	agctgccccc	aaaccccctc	5040
cttacgcttt	gtcacacaaa	aagtgtctct	gccttgagtc	atctattcaa	gcacttacag	5100
ctctggccac	aacagggcat	tttacaggtg	cgaatgacag	tagcattatg	agtagtgtgg	5160
aattcaggta	gtaaatatga	aactagggtt	tgaaattgat	aatgctttca	caacatttgc	5220
agatgtttta	gaaggaaaaa	agttccttcc	taaaataatt	tctctacaat	tggaagattg	5280
gaagattcag	ctagttagga	gcccaccttt	tttcctaatc	tgtgtgtgcc	ctgtaacctg	5340
actggttaac	agcagtcctt	tgtaaacagt	gttttaaact	ctcctagtca	atatccaccc	5400
catccaattt	atcaaggaag	aaatggttca	gaaaatattt	tcagcctaca	gttatgttca	5460
gtcacacaca	catacaaaat	gttccttttg	cttttaaagt	aatttttgac	tcccagatca	5520
gtcagagccc	ctacagcatt	gttaagaaag	tatttgattt	ttgtctcaat	gaaaataaaa	5580
ctatattcat	ttccactcta	aaaaaaaaa	aaaaaa			5616

<210> 7

<211> 2239

<212> ADN

5 <213> Homo sapiens

<400> 7

ccccggcgca gcgcggccgc agcagcctcc gcccccgca cggtgtgagc gcccgacgcg

60

gccgaggcgg	ccggagtccc	gagctagccc	cggcggccgc	cgccgcccag	accggacgac	120
aggccacctc	gtcggcgtcc	gcccgagtcc	ccgcctcgcc	gccaacgcca	caaccaccgc	180
gcacggcccc	ctgactccgt	ccagtattga	tcgggagagc	cggagcgagc	tcttcgggga	240
gcagcgatgc	gaccctccgg	gacggccggg	gcagcgctcc	tggcgctgct	ggctgcgctc	300
tgcccggcga	gtcgggctct	ggaggaaaag	aaagtttgcc	aaggcacgag	taacaagctc	360
acgcagttgg	gcacttttga	agatcatttt	ctcagcctcc	agaggatgtt	caataactgt	420
gaggtggtcc	ttgggaattt	ggaaattacc	tatgtgcaga	ggaattatga	tctttccttc	480
ttaaagacca	tccaggaggt	ggctggttat	gtcctcattg	ccctcaacac	agtggagcga	540
attcctttgg	aaaacctgca	gatcatcaga	ggaaatatgt	actacgaaaa	ttcctatgcc	600
ttagcagtct	tatctaacta	tgatgcaaat	aaaaccggac	tgaaggagct	gcccatgaga	660
aatttacagg	aaatcctgca	tggcgccgtg	cggttcagca	acaaccctgc	cctgtgcaac	720
gtggagagca	tccagtggcg	ggacatagtc	agcagtgact	ttctcagcaa	catgtcgatg	780
gacttccaga	accacctggg	cagctgccaa	aagtgtgatc	caagctgtcc	caatgggagc	840
tgctggggtg	caggagagga	gaactgccag	aaactgacca	aaatcatctg	tgcccagcag	900
tgctccgggc	gctgccgtgg	caagtccccc	agtgactgct	gccacaacca	gtgtgctgca	960
ggctgcacag	gcccccggga	gagcgactgc	ctggtctgcc	gcaaattccg	agacgaagcc	1020
acgtgcaagg	acacctgccc	cccactcatg	ctctacaacc	ccaccacgta	ccagatggat	1080
gtgaaccccg	agggcaaata	cagctttggt	gccacctgcg	tgaagaagtg	tccccgtaat	1140
tatgtggtga	cagatcacgg	ctcgtgcgtc	cgagcctgtg	gggccgacag	ctatgagatg	1200
gaggaagacg	gcgtccgcaa	gtgtaagaag	tgcgaagggc	cttgccgcaa	agtgtgtaac	1260
ggaataggta	ttggtgaatt	taaagactca	ctctccataa	atgctacgaa	tattaaacac	1320
ttcaaaaact	gcacctccat	cagtggcgat	ctccacatcc	tgccggtggc	atttaggggt	1380
gactccttca	cacatactcc	tcctctggat	ccacaggaac	tggatattct	gaaaaccgta	1440
aaggaaatca	cagggttttt	gctgattcag	gcttggcctg	aaaacaggac	ggacctccat	1500
gcctttgaga	acctagaaat	catacgcggc	aggaccaagc	aacatggtca	gttttctctt	1560
gcagtcgtca	gcctgaacat	aacatccttg	ggattacgct	ccctcaagga	gataagtgat	1620
ggagatgtga	taatttcagg	aaacaaaaat	ttgtgctatg	caaatacaat	aaactggaaa	1680
aaactgtttg	ggacctccgg	tcagaaaacc	aaaattataa	gcaacagagg	tgaaaacagc	1740
tgcaaggcca	caggccaggt	ctgccatgcc	ttgtgctccc	ccgagggctg	ctggggcccg	1800
gagcccaggg	actgcgtctc	ttgccggaat	gtcagccgag	gcagggaatg	cgtggacaag	1860
tgcaaccttc	tggagggtga	gccaagggag	tttgtggaga	actctgagtg	catacagtgc	1920
cacccagagt	gcctgcctca	ggccatgaac	atcacctgca	caggacgggg	accagacaac	1980
tgtatccagt	gtgcccacta	cattgacggc	ccccactgcg	tcaagacctg	cccggcagga	2040

gtcatgggag	aaaacaacac	cctggtctgg	aagtacgcag	acgccggcca	tgtgtgccac	2100
ctgtgccatc	caaactgcac	ctacgggtcc	taataaatct	tcactgtctg	actttagtct	2160
cccactaaaa	ctgcatttcc	tttctacaat	ttcaatttct	ccctttgctt	caaataaagt	2220
cctgacacta	ttcatttga					2239
<210> 8						

<211> 1595

<212> ADN

5 <213> Homo sapiens

ccccggcgca	gcgcggccgc	agcagcctcc	gcccccgca	cggtgtgagc	gcccgacgcg	60
gccgaggcgg	ccggagtccc	gagctagccc	cggcggccgc	cgccgcccag	accggacgac	120
aggccacctc	gtcggcgtcc	gcccgagtcc	ccgcctcgcc	gccaacgcca	caaccaccgc	180
gcacggcccc	ctgactccgt	ccagtattga	tcgggagagc	cggagcgagc	tcttcgggga	240
gcagcgatgc	gaccctccgg	gacggccggg	gcagcgctcc	tggcgctgct	ggctgcgctc	300
tgcccggcga	gtcgggctct	ggaggaaaag	aaagtttgcc	aaggcacgag	taacaagctc	360
acgcagttgg	gcacttttga	agatcatttt	ctcagcctcc	agaggatgtt	caataactgt	420
gaggtggtcc	ttgggaattt	ggaaattacc	tatgtgcaga	ggaattatga	tctttccttc	480
ttaaagacca	tccaggaggt	ggctggttat	gtcctcattg	ccctcaacac	agtggagcga	540
attcctttgg	aaaacctgca	gatcatcaga	ggaaatatgt	actacgaaaa	ttcctatgcc	600
ttagcagtct	tatctaacta	tgatgcaaat	aaaaccggac	tgaaggagct	gcccatgaga	660
aatttacagg	aaatcctgca	tggcgccgtg	cggttcagca	acaaccctgc	cctgtgcaac	720
gtggagagca	tccagtggcg	ggacatagtc	agcagtgact	ttctcagcaa	catgtcgatg	780
gacttccaga	accacctggg	cagctgccaa	aagtgtgatc	caagctgtcc	caatgggagc	840
tgctggggtg	caggagagga	gaactgccag	aaactgacca	aaatcatctg	tgcccagcag	900
tgctccgggc	gctgccgtgg	caagtccccc	agtgactgct	gccacaacca	gtgtgctgca	960
ggctgcacag	gcccccggga	gagcgactgc	ctggtctgcc	gcaaattccg	agacgaagcc	1020
acgtgcaagg	acacctgccc	cccactcatg	ctctacaacc	ccaccacgta	ccagatggat	1080
gtgaaccccg	agggcaaata	cagctttggt	gccacctgcg	tgaagaagtg	tccccgtaat	1140
tatgtggtga	cagatcacgg	ctcgtgcgtc	cgagcctgtg	gggccgacag	ctatgagatg	1200
gaggaagacg	gcgtccgcaa	gtgtaagaag	tgcgaagggc	cttgccgcaa	agtgtgtaac	1260
ggaataggta	ttggtgaatt	taaagactca	ctctccataa	atgctacgaa	tattaaacac	1320
ttcaaaaact	gcacctccat	cagtggcgat	ctccacatcc	tgccggtggc	atttaggggt	1380
gactccttca	cacatactcc	tcctctggat	ccacaggaac	tggatattct	gaaaaccgta	1440
		ctgaattatc tatttcctgt				1500 1560
ttttaccgtt	aaaaaaaaa	aaaaaaaaa	aaaaa			1595

<210> 9

<211> 2865

5 <212> ADN

<213> Homo sapiens

ccccggcgca	gcgcggccgc	agcagcctcc	gccccccgca	cggtgtgagc	gcccgacgcg	60
gccgaggcgg	ccggagtccc	gagctagccc	cggcggccgc	cgccgcccag	accggacgac	120
aggccacctc	gtcggcgtcc	gcccgagtcc	ccgcctcgcc	gccaacgcca	caaccaccgc	180
gcacggcccc	ctgactccgt	ccagtattga	tcgggagagc	cggagcgagc	tcttcgggga	240
gcagcgatgc	gaccctccgg	gacggccggg	gcagcgctcc	tggcgctgct	ggctgcgctc	300
tgcccggcga	gtcgggctct	ggaggaaaag	aaagtttgcc	aaggcacgag	taacaagctc	360
acgcagttgg	gcacttttga	agatcatttt	ctcagcctcc	agaggatgtt	caataactgt	420
gaggtggtcc	ttgggaattt	ggaaattacc	tatgtgcaga	ggaattatga	tctttccttc	480
ttaaagacca	tccaggaggt	ggctggttat	gtcctcattg	ccctcaacac	agtggagcga	540
attcctttgg	aaaacctgca	gatcatcaga	ggaaatatgt	actacgaaaa	ttcctatgcc	600
ttagcagtct	tatctaacta	tgatgcaaat	aaaaccggac	tgaaggagct	gcccatgaga	660
aatttacagg	aaatcctgca	tggcgccgtg	cggttcagca	acaaccctgc	cctgtgcaac	720
gtggagagca	tccagtggcg	ggacatagtc	agcagtgact	ttctcagcaa	catgtcgatg	780
gacttccaga	accacctggg	cagctgccaa	aagtgtgatc	caagctgtcc	caatgggagc	840
tgctggggtg	caggagagga	gaactgccag	aaactgacca	aaatcatctg	tgcccagcag	900
tgctccgggc	gctgccgtgg	caagtccccc	agtgactgct	gccacaacca	gtgtgctgca	960
ggctgcacag	gcccccggga	gagcgactgc	ctggtctgcc	gcaaattccg	agacgaagcc	1020
acgtgcaagg	acacctgccc	cccactcatg	ctctacaacc	ccaccacgta	ccagatggat	1080
gtgaaccccg	agggcaaata	cagctttggt	gccacctgcg	tgaagaagtg	tccccgtaat	1140
tatgtggtga	cagatcacgg	ctcgtgcgtc	cgagcctgtg	gggccgacag	ctatgagatg	1200
gaggaagacg	gcgtccgcaa	gtgtaagaag	tgcgaagggc	cttgccgcaa	agtgtgtaac	1260
ggaataggta	ttggtgaatt	taaagactca	ctctccataa	atgctacgaa	tattaaacac	1320
ttcaaaaact	gcacctccat	cagtggcgat	ctccacatcc	tgccggtggc	atttaggggt	1380
gactccttca	cacatactcc	tcctctggat	ccacaggaac	tggatattct	gaaaaccgta	1440
aaggaaatca	cagggttttt	gctgattcag	gcttggcctg	aaaacaggac	ggacctccat	1500
gcctttgaga	acctagaaat	catacgcggc	aggaccaagc	aacatggtca	gttttctctt	1560
gcagtcgtca	gcctgaacat	aacatccttg	ggattacgct	ccctcaagga	gataagtgat	1620

ggagatgtga	taatttcagg	aaacaaaaat	ttgtgctatg	caaatacaat	aaactggaaa	1680
aaactgtttg	ggacctccgg	tcagaaaacc	aaaattataa	gcaacagagg	tgaaaacagc	1740
tgcaaggcca	caggccaggt	ctgccatgcc	ttgtgctccc	ccgagggctg	ctggggcccg	1800
gagcccaggg	actgcgtctc	ttgccggaat	gtcagccgag	gcagggaatg	cgtggacaag	1860
tgcaaccttc	tggagggtga	gccaagggag	tttgtggaga	actctgagtg	catacagtgc	1920
cacccagagt	gcctgcctca	ggccatgaac	atcacctgca	caggacgggg	accagacaac	1980
tgtatccagt	gtgcccacta	cattgacggc	ccccactgcg	tcaagacctg	cccggcagga	2040
gtcatgggag	aaaacaacac	cctggtctgg	aagtacgcag	acgccggcca	tgtgtgccac	2100
ctgtgccatc	caaactgcac	ctacgggcca	ggaaatgaga	gtctcaaagc	catgttattc	2160
tgccttttta	aactatcatc	ctgtaatcaa	agtaatgatg	gcagcgtgtc	ccaccagagc	2220
gggagcccag	ctgctcagga	gtcatgctta	ggatggatcc	cttctcttct	gccgtcagag	2280
tttcagctgg	gttggggtgg	atgcagccac	ctccatgcct	ggccttctgc	atctgtgatc	2340
atcacggcct	cctcctgcca	ctgagcctca	tgccttcacg	tgtctgttcc	ccccgctttt	2400
cctttctgcc	acccctgcac	gtgggccgcc	aggttcccaa	gagtatccta	cccatttcct	2460
tccttccact	ccctttgcca	gtgcctctca	ccccaactag	tagctaacca	tcacccccag	2520
gactgacctc	ttcctcctcg	ctgccagatg	attgttcaaa	gcacagaatt	tgtcagaaac	2580
ctgcagggac	tccatgctgc	cagccttctc	cgtaattagc	atggccccag	tccatgcttc	2640
tagccttggt	tccttctgcc	cctctgtttg	aaattctaga	gccagctgtg	ggacaattat	2700
ctgtgtcaaa	agccagatgt	gaaaacatct	caataacaaa	ctggctgctt	tgttcaatgc	2760
tagaacaacg	cctgtcacag	agtagaaact	caaaaatatt	tgctgagtga	atgaacaaat	2820
gaataaatgc	ataataaata	attaaccacc	aatccaacat	ccaga		2865

<210> 10

<211> 5983

<212> ADN

5 <213> Mus musculus

ctcccccagt	cccgacccga	gctaactaga	cgtctgggca	gccccagcgc	aacgcgcagc	60
agcctccctc	ctcttcttcc	cgcactgtgc	gctcctcctg	ggctagggcg	tctggatcga	120
gtcccggagg	ctaccgcctc	ccagacagac	gacaggtcac	ctggacgcga	gcctgtgtcc	180
gggtctcgtc	gttgccggcg	cagtcactgg	gcacaaccgt	gggactccgt	ctgtctcgga	240
ttaatcccgg	agagccagag	ccaacctctc	ccggtcagag	atgcgaccct	cagggaccgc	300
gagaaccaca	ctgctggtgt	tgctgaccgc	gctctgcgcc	gcaggtgggg	cgttggagga	360
aaagaaagtc	tgccaaggca	caagtaacag	gctcacccaa	ctgggcactt	ttgaagacca	420
ctttctgagc	ctocagagga	totacaacaa	ctataaaata	gtccttggga	acttogaaat	480

tacctatgtg	caaaggaatt	acgacctttc	cttcttaaag	accatccagg	aggtggccgg	540
ctatgtcctc	attgccctca	acaccgtgga	gagaatccct	ttggagaacc	tgcagatcat	600
caggggaaat	gctctttatg	aaaacaccta	tgccttagcc	atcctgtcca	actatgggac	660
aaacagaact	gggcttaggg	aactgcccat	gcggaactta	caggaaatcc	tgattggtgc	720
tgtgcgattc	agcaacaacc	ccatcctctg	caatatggat	actatccagt	ggagggacat	780
cgtccaaaac	gtctttatga	gcaacatgtc	aatggactta	cagagccatc	cgagcagttg	840
ccccaaatgt	gatccaagct	gtcccaatgg	aagctgctgg	ggaggaggag	aggagaactg	900
ccagaaattg	accaaaatca	tctgtgccca	gcaatgttcc	catcgctgtc	gtggcaggtc	960
ccccagtgac	tgctgccaca	accaatgtgc	tgcggggtgt	acagggcccc	gagagagtga	1020
ctgtctggtc	tgccaaaagt	tccaagatga	ggccacatgc	aaagacacct	gcccaccact	1080
catgctgtac	aaccccacca	cctatcagat	ggatgtcaac	cctgaaggga	agtacagctt	1140
tggtgccacc	tgtgtgaaga	agtgcccccg	aaactacgtg	gtgacagatc	atggctcatg	1200
tgtccgagcc	tgtgggcctg	actactacga	agtggaagaa	gatggcatcc	gcaagtgtaa	1260
aaaatgtgat	gggccctgtc	gcaaagtttg	taatggcata	ggcattggtg	aatttaaaga	1320
cacactctcc	ataaatgcta	caaacatcaa	acacttcaaa	tactgcactg	ccatcagcgg	1380
ggacetteae	atcctgccag	tggcctttaa	gggggattct	ttcacgcgca	ctcctcctct	1440
agacccacga	gaactagaaa	ttctaaaaac	cgtaaaggaa	ataacaggct	ttttgctgat	1500
tcaggcttgg	cctgataact	ggactgacct	ccatgctttc	gagaacctag	aaataatacg	1560
tggcagaaca	aagcaacatg	gtcagttttc	tttggcggtc	gttggcctga	acatcacatc	1620
actggggctg	cgttccctca	aggagatcag	tgatggggat	gtgatcattt	ctggaaaccg	1680
aaatttgtgc	tacgcaaaca	caataaactg	gaaaaaactc	ttcgggacac	ccaatcagaa	1740
aaccaaaatc	atgaacaaca	gagctgagaa	agactgcaag	gccgtgaacc	acgtctgcaa	1800
tcctttatgc	tcctcggaag	gctgctgggg	ccctgagccc	agggactgtg	tctcctgcca	1860
gaatgtgagc	agaggcaggg	agtgcgtgga	gaaatgcaac	atcctggagg	gggaaccaag	1920
ggagtttgtg	gaaaattctg	aatgcatcca	gtgccatcca	gaatgtctgc	cccaggccat	1980
gaacatcacc	tgtacaggca	ggggaccaga	caactgcatc	cagtgtgccc	actacattga	2040
tggcccacac	tgtgtcaaga	cctgcccagc	tggcatcatg	ggagagaaca	acactctggt	2100
ctggaagtat	gcagatgcca	ataatgtctg	ccacctatgc	cacgccaact	gtacctatgg	2160
atgtgctggg	ccaggtcttc	aaggatgtga	agtgtggcca	tctgggccaa	agataccatc	2220
tattgccact	gggattgtgg	gtggcctcct	cttcatagtg	gtggtggccc	ttgggattgg	2280
cctattcatg	cgaagacgtc	acattgttcg	aaagcgtaca	ctacgccgcc	tgcttcaaga	2340
gagagagctc	gtggaacctc	tcacacccag	cggagaagct	ccaaaccaag	cccacttgag	2400

gatattaaag	gaaacagaat	tcaaaaagat	caaagttctg	ggttcgggag	catttggcac	2460
agtgtataag	ggtctctgga	tcccagaagg	tgagaaagta	aaaatcccgg	tggccatcaa	2520
ggagttaaga	gaagccacat	ctccaaaagc	caacaaagaa	atccttgacg	aagcctatgt	2580
gatggctagt	gtggacaacc	ctcatgtatg	ccgcctcctg	ggcatctgtc	tgacctccac	2640
tgtccagctc	attacacagc	tcatgcccta	cggttgcctc	ctggactacg	tccgagaaca	2700
caaggacaac	attggctccc	agtacctcct	caactggtgt	gtgcagattg	caaagggcat	2760
gaactacctg	gaagatcggc	gtttggtgca	ccgtgacttg	gcagccagga	atgtactggt	2820
gaagacacca	cagcatgtca	agatcacaga	ttttgggctg	gccaaactgc	ttggtgctga	2880
agagaaagaa	tatcatgccg	aggggggcaa	agtgcctatc	aagtggatgg	ctttggaatc	2940
aattttacac	cgaatttata	cacaccaaag	tgatgtctgg	agctatggtg	tcactgtgtg	3000
ggaactgatg	acctttgggt	ccaagcctta	tgatggaatc	ccagcaagtg	acatctcatc	3060
catcctagag	aaaggagagc	gccttccaca	gccacctatc	tgcaccatcg	atgtctacat	3120
gatcatggtc	aagtgctgga	tgatagatgc	tgatagccgc	ccaaagttcc	gagagttgat	3180
tcttgaattc	tccaaaatgg	cccgagaccc	acagcgctac	cttgttatcc	agggggatga	3240
aagaatgcat	ttgccaagcc	ctacagactc	caacttttac	cgagccctga	tggatgaaga	3300
ggacatggag	gatgtagttg	atgctgatga	gtatcttatc	ccacagcaag	gcttcttcaa	3360
cagcccgtcc	acgtcgagga	ctccctctt	gagttctctg	agtgcaacta	gcaacaattc	3420
cactgtggct	tgcattaata	gaaatgggag	ctgccgtgtc	aaagaagacg	ccttcttgca	3480
gcggtacagc	tccgacccca	caggtgctgt	aacagaggac	aacatagatg	acgcattcct	3540
ccctgtacct	gaatatgtaa	accaatctgt	tcccaagagg	ccagcaggct	ctgtgcagaa	3600
ccctgtctat	cacaatcagc	ccctgcatcc	agctcctgga	agagacctgc	attatcaaaa	3660
tccccacagc	aatgcagtgg	gcaaccctga	gtatctcaac	actgcccagc	ctacctgtct	3720
cagtagtggg	tttaacagcc	ctgcactctg	gatccagaaa	ggcagtcacc	aaatgagcct	3780
agacaaccct	gactaccagc	aggacttctt	ccccaaggaa	accaagccaa	atggcatatt	3840
taagggcccc	acagctgaaa	atgcagagta	cctacgggtg	gcacctccaa	gcagtgagtt	3900
tattggagca	tgacaagaag	gggcatcata	ccagctataa	aatgtctgga	ctttctagaa	3960
tcccaggacc	aactatggca	gcacctccac	ttctggtagc	catgcccacg	ctgtgtcaaa	4020
tgtcactcag	actggcttta	aagcataact	ctgatgggct	ttgtcactga	gccaagaagt	4080
gggcctctct	cctgatgcac	tttgggaagt	tgaaggtaca	tcaattgatc	ttcgaactgt	4140
gaagattcca	caaaaaaggt	atccatcgag	aacattgtcc	attggaacag	aagtttgcct	4200
catggtgagg	tacatatggg	aaaaaaacag	acatatggag	cttatattta	gggaactttg	4260
ggattcttgt	ctttattgat	ttgattgatg	cactcttgta	gtctggtaca	cagagttgcc	4320
tggagccaac	tgaccagaca	gttggttcca	ccagctctgc	atcaagacac	ttccgtggca	4380

agacaactaa	atgtataaga	agtccatgga	tgccctgagc	aggccacact	tgtacagcat	4440
taaaccatgg	cagatacaat	aggataagcc	actttgttac	ttactggggc	tgggagaaga	4500
ggaatgacgg	ggtagaattt	tccctcagac	gtactttta	tataaatatg	tccctggcac	4560
ctaacacgcg	ctagtttacc	agtgttttct	attagacttc	cttctatgtt	ttctgtttca	4620
ttgttttgag	ttgtaaatat	gtgttcctgt	cttcatttca	tgaagtaaac	aaacaaacaa	4680
aaaacccagt	attaagtatt	atcaaagaac	aaccatgatt	ccacattcga	acccattcaa	4740
accatcagta	ttgtgaccaa	aagcctttaa	ctaagaagga	gtaaccatgc	aaaaatccat	4800
agaggaattt	aacccaaaat	tttagtctca	gcattgtgtc	tgctgaggtg	tgtatatgag	4860
actacgaaag	tgaactactc	ttcaaatcca	ctttgccttc	actcctctat	accctaaatc	4920
tagtgtaaac	cacacatgga	ggataacttt	tttttttaat	tttaaaagtg	tttattagat	4980
atgtttttct	tcctggtaaa	ctgcagccaa	acatcagtta	agagccattt	ttgataaaca	5040
ctatcacaat	gatctcggga	tccatccttt	ccgatttacc	aagtgatgga	tagacgtgaa	5100
ctcataaaca	ctacccataa	gacaaaacaa	tgagtgccag	acaagacatc	agccaggcac	5160
cagagcacag	agcaggactg	ggcaatctgt	tggagatatc	tagaaagttc	acaaaggaaa	5220
caagattgtc	cactaccttg	tgagatctag	cagtcataaa	taccagggaa	atggaaagtg	5280
tgtttcctta	cagcaccagg	tcttcgatct	tcctaatgct	gtgacccttt	aatacagttt	5340
gccatgttgt	ggtgaccccc	aaccataaaa	ttatttttgt	tgctacttca	taactgtaaa	5400
tttgctactc	ttacagacca	caatgtaaat	atctgatatg	ctatctgata	tgcaggctat	5460
ctgacagagg	tcgcaacccg	caggttgaga	gccactgcct	tcaaggcttt	aatcaagaga	5520
gtagtgagct	gagggcttta	ctggtaagtc	aggggcaagt	ccaactcaat	catcctcaca	5580
tactggctgc	tccctcaggc	ctgagaatga	ggcttgcagc	atcctctggt	ttcctaaccg	5640
ttatccatcc	ctgactctca	tctctgaaaa	tagatgtcat	ccatgaaatt	aaggagtgag	5700
aatattaagc	agcatttata	gagctcaaaa	ttccatgtca	tcaccaggaa	gtgccatgtt	5760
gatcacagag	aacacagagg	agacatatag	acagggtttt	gctcaaaatt	gggatataga	5820
atgagcctgt	caggtaccta	tcaggagcgg	taatccgtga	gagagaaccg	ttgcaagcca	5880
ctctaactgt	agcaatgaaa	ccctagtatt	tttgtacttt	gaaatacttt	cttataacaa	5940
aataaagtag	caaaaaaact	gttcaaaaaa	aaaaaaaaa	aaa		5983

<210> 11

<211> 2678

<212> ADN

5 <213> Mus musculus

<400> 11						
ctcccccagt	cccgacccga	gctaactaga	cgtctgggca	gccccagcgc	aacgcgcagc	60
agcctccctc	ctcttcttcc	cgcactgtgc	gctcctcctg	ggctagggcg	tctggatcga	120

gtcccggagg ctaccgcctc	ccagacagac	gacaggtcac	ctggacgcga	gcctgtgtcc	180
gggtetegte gttgeeggeg	cagtcactgg	gcacaaccgt	gggactccgt	ctgtctcgga	240
ttaatcccgg agagccagag	ccaacctctc	ccggtcagag	atgcgaccct	cagggaccgc	300
gagaaccaca ctgctggtgt	tgctgaccgc	gctctgcgcc	gcaggtgggg	cgttggagga	360
aaagaaagtc tgccaaggca	caagtaacag	gctcacccaa	ctgggcactt	ttgaagacca	420
ctttctgagc ctgcagagga	tgtacaacaa	ctgtgaagtg	gtccttggga	acttggaaat	480
tacctatgtg caaaggaatt	acgacettte	cttcttaaag	accatccagg	aggtggccgg	540
ctatgtcctc attgccctca	acaccgtgga	gagaatccct	ttggagaacc	tgcagatcat	600
caggggaaat gctctttatg	aaaacaccta	tgccttagcc	atcctgtcca	actatgggac	660
aaacagaact gggcttaggg	aactgcccat	gcggaactta	caggaaatcc	tgattggtgc	720
tgtgcgattc agcaacaacc	ccatcctctg	caatatggat	actatccagt	ggagggacat	780
cgtccaaaac gtctttatga	gcaacatgtc	aatggactta	cagagccatc	cgagcagttg	840
ccccaaatgt gatccaagct	gtcccaatgg	aagctgctgg	ggaggaggag	aggagaactg	900
ccagaaattg accaaaatca	tctgtgccca	gcaatgttcc	catcgctgtc	gtggcaggtc	960
ccccagtgac tgctgccaca	accaatgtgc	tgcggggtgt	acagggcccc	gagagagtga	1020
ctgtctggtc tgccaaaagt	tccaagatga	ggccacatgc	aaagacacct	gcccaccact	1080
catgctgtac aaccccacca	cctatcagat	ggatgtcaac	cctgaaggga	agtacagctt	1140
tggtgccacc tgtgtgaaga	agtgcccccg	aaactacgtg	gtgacagatc	atggctcatg	1200
tgtccgagcc tgtgggcctg	actactacga	agtggaagaa	gatggcatcc	gcaagtgtaa	1260
aaaatgtgat gggccctgtc	gcaaagtttg	taatggcata	ggcattggtg	aatttaaaga	1320
cacactctcc ataaatgcta	caaacatcaa	acacttcaaa	tactgcactg	ccatcagcgg	1380
ggaccttcac atcctgccag	tggcctttaa	gggggattct	ttcacgcgca	ctcctcctct	1440
agacccacga gaactagaaa	ttctaaaaac	cgtaaaggaa	ataacaggct	ttttgctgat	1500
tcaggcttgg cctgataact	ggactgacct	ccatgctttc	gagaacctag	aaataatacg	1560
tggcagaaca aagcaacatg	gtcagttttc	tttggcggtc	gttggcctga	acatcacatc	1620
actggggctg cgttccctca	aggagatcag	tgatggggat	gtgatcattt	ctggaaaccg	1680
aaatttgtgc tacgcaaaca	caataaactg	gaaaaaactc	ttcgggacac	ccaatcagaa	1740
aaccaaaatc atgaacaaca	gagctgagaa	agactgcaag	gccgtgaacc	acgtctgcaa	1800
tcctttatgc tcctcggaag	gctgctgggg	ccctgagccc	agggactgtg	tctcctgcca	1860
gaatgtgagc agaggcaggg	agtgcgtgga	gaaatgcaac	atcctggagg	gggaaccaag	1920
ggagtttgtg gaaaattctg	aatgcatcca	gtgccatcca	gaatgtctgc	cccaggccat	1980
gaacatcacc tgtacaggca	ggggaccaga	caactgcatc	cagtgtgccc	actacattga	2040

tggcccacac	tgtgtcaaga	cctgcccagc	tggcatcatg	ggagagaaca	acactctggt	2100
ctggaagtat	gcagatgcca	ataatgtctg	ccacctatgc	cacgccaact	gtacctatgg	2160
atgtgctggg	ccaggtcttc	aaggatgtga	agtgtggcca	tctgggtacg	ttcaatggca	2220
gtggatctta	aagacctttt	ggatctaaga	ccagaagcca	tctctgactc	ccctctcacc	2280
ttccagtttc	ttccaaatcc	tctgggccag	ccagaggtct	cagattctgc	cctcttgccc	2340
tgtgcccacc	ttgttgacca	ctggacagca	tatgtgatgg	ctactgctag	tgccagcttc	2400
acaagaggtt	aacactacgg	actagccatt	cttcctatgt	atctgtttct	gcaaatacag	2460
ccgctttact	taagtctcag	cacttcttag	tctcctcttt	tcctctcagt	agcccaaggg	2520
gtcatgtcac	aaacatggtg	tgaagggcta	ctttgtcaaa	tgaaaaggtc	tatcttgggg	2580
ggcattttt	tctttcttt	ttttcttgaa	acacattgcc	cagcaaagcc	aataaatttc	2640
tctcatcatt	ttgtttctga	taaattctta	ctattgat			2678

<210> 12

<211> 4161

<212> ADN

5 <213> Rattus norvegicus

ggaccgccac	caagacaggc	gacgggtcac	ctggacgcga	gtctgagtcc	gggtcccgtc	60
gtcgttgccg	acgcagtcac	cgggcacgac	cgtgggactc	agtctgactc	ggattaatcc	120
cggagagcca	gagccaacga	ctgccgagcc	gggatgcgac	cctcagggac	tgcgagaacc	180
aagctactgc	tgctgctggc	tgcgctctgc	gccgcaggtg	gggcgctgga	ggaaaagaaa	240
gtttgccaag	gcacaagtaa	caggctcacc	caactaggca	cctttgaaga	ccactttctg	300
agcctccaga	ggatgttcaa	caactgtgaa	gtggtccttg	gaaacttgga	aatcacctat	360
gtgcaaagga	attatgacct	ttccttctta	aagaccatcc	aggaggtggc	tggctatgtt	420
ctcattgccc	tgaacaccgt	ggagagaatc	cctttggaga	acctgcagat	catcagggga	480
aatgctctct	acgaaaacac	ctacgcctta	gccgtcctgt	ccaactatgg	aaccaacaaa	540
actgggctta	gggaactgcc	catgcggaac	ttacaggaaa	ttctgatcgg	tgctgtgcga	600
tttagcaaca	accccatcct	ctgcaatatg	gagaccatcc	agtggaggga	catcgtccaa	660
gatgtctttc	tgagcaacat	gtcaatggac	gtacagcgcc	acctgacggg	ctgcccgaaa	720
tgtgatccga	gctgtcccaa	tggaagctgc	tggggaagag	gagaggagaa	ctgccagaaa	780
ttgaccaaaa	tcatctgcgc	ccagcaatgt	tcccggcgtt	gtcgtggcag	gtcccctagc	840
gactgctgcc	acaaccagtg	tgccgcaggg	tgtacagggc	ccagagagag	tgactgtctg	900
gtctgccaca	ggttccgaga	tgaagccacg	tgcaaagaca	cctgcccacc	actcatgctg	960
tacaacccca	ccacgtacca	gatggatgtc	aaccctgagg	ggaagtacag	ctttggtgcc	1020
acctgtgtga	agaaatgccc	cagaaactac	gtggtgacag	atcacggctc	gtgtgtccgg	1080

gcctgtgggc	cagactacta	tgaagtagaa	gaagatggag	tcagcaagtg	taaaaaatgt	1140
gacgggccct	gccgcaaagt	ttgcaatggc	ataggcattg	gtgaatttaa	agacacactc	1200
tccataaatg	ctacaaacat	caaacacttc	aagtactgca	ctgccatcag	tggggacctc	1260
cacateetge	cagtggcctt	taagggggat	tctttcaccc	gcactcctcc	tctagaccca	1320
cgggaactag	aaattctcaa	aactgtgaag	gaaataacag	ggtttttgct	gattcaggct	1380
tggcctgaaa	actggactga	cctccatgct	tttgagaacc	tagaaataat	tcgtggcaga	1440
acaaagcaac	atggtcagtt	ttctctggcg	gttgtcggcc	tgaacataac	atcgctgggg	1500
ttgcgttccc	tcaaggagat	cagtgatggg	gatgtgatta	tttctgggaa	ccgaaatttg	1560
tgctacgcaa	acactataaa	ctggaaaaaa	ctcttcggga	cgcccaatca	aaagaccaaa	1620
atcatgaaca	acagagctga	aaaggactgc	aaggccacga	accacgtctg	taatccttta	1680
tgctcctcgg	aaggctgctg	gggccctgag	cccacggact	gtgtctcctg	ccagaatgtg	1740
agcagaggca	gggagtgcgt	ggacaagtgc	aacatcctgg	agggggaacc	gagggagttt	1800
gtggaaaatt	ctgaatgcat	ccagtgccat	ccagaatgtc	tgccccagac	catgaacatc	1860
acctgtacag	gccgggggcc	agacaactgc	atcaagtgtg	cccactatgt	tgatggtccc	1920
cactgtgtca	agacctgccc	ttcgggcatc	atgggggaga	acaacaccct	ggtctggaag	1980
tttgcagatg	ccaataacgt	ctgccacctc	tgccatgcaa	actgtaccta	tggatgtgct	2040
gggccaggcc	ttaaaggatg	tcaacaacca	gaagggccaa	agateceate	catcgccact	2100
gggattgtgg	gtggcctcct	cttcatagta	gtggtggccc	ttgggatcgg	cctcttcatg	2160
cgtcgacgtc	agcttgtccg	aaaacgtaca	ctacgccgcc	tgcttcaaga	gagagagctc	2220
gtggaacctc	tcacacccag	cggagaagct	ccgaaccaag	cccacttgag	gatattaaag	2280
gaaacagaat	tcaaaaagat	caaagttctg	ggttcaggag	catttggcac	agtgtataag	2340
ggtctctgga	tcccagaagg	cgagaaagtg	aaaatccctg	tggccatcaa	ggagttaaga	2400
gaagccacat	ctcccaaagc	caacaaggaa	atccttgatg	aagcctacgt	gatggccagt	2460
gtggacaacc	ctcatgtatg	ccgcctcctg	ggcatctgtc	tgacctccac	tgtccagctc	2520
attacacaac	tcatgcccta	tggttgcctc	ctggactatg	tccgagaaca	taaggacaac	2580
attggctccc	agtacctact	caactggtgt	gtgcagattg	caaagggcat	gaactacctg	2640
gaagaccggc	gtttggtaca	ccgtgacttg	gcagccagga	atgtactggt	aaagacacca	2700
cagcatgtca	agatcacaga	ttttggactg	gccaaactgc	ttggtgctga	ggagaaagaa	2760
taccatgcag	aggggggcaa	agtgcctatc	aagtggatgg	ctttggaatc	aattttacac	2820
cgaatttata	cacaccaaag	cgacgtctgg	agctatggag	tcaccgtgtg	ggaactgatg	2880
acctttgggt	ccaagcctta	tgatgggatc	cctgcaagtg	agatctcatc	catcctagag	2940
aaaggagagc	gccttccaca	gccacctatc	tgcaccatcg	acgtctacat	gatcatggtc	3000
aagtgctgga	tgatagatgc	tgatagccgc	ccaaagttcc	gagagttgat	tctcgaattc	3060

tccaaaatgg	ccagagaccc	acagcgctac	cttgttatcc	agggggatga	aaggatgcat	3120
ttgccgagcc	ctacagactc	caacttttac	cgagccctga	tggaggagga	ggacatggaa	3180
gacgtagttg	atgctgatga	atacctcatc	ccacagcaag	gcttcttcaa	cagcccatcc	3240
acgtcacgga	ctccactctt	gagctctctg	agtgcaaata	gcaacagttc	cactgtggct	3300
tgcattaata	gaaatgggag	ctgccgtgtc	aaagaagacg	ccttcttgca	acggtatagc	3360
tccgatccca	ccagcgtcct	gacagaggac	aacatagatg	acacattcct	tcccgtgcct	3420
gaatatataa	accaatctgt	tcccaagagg	ccggctggct	ctgtgcagaa	cccagtctat	3480
cacaatcagc	ccctgcatcc	agctcctgga	agagacctgc	attatcaaaa	tccccatagc	3540
aatgcggtga	gcaaccctga	gtatctcaac	actgcccagc	cgacctgcct	cagtagtggg	3600
tttgacagct	ctgccctctg	gatccagaaa	ggcagccacc	aaatgagcct	ggacaaccct	3660
gactaccagc	aggacttctt	tcccaaagaa	gccaagccga	atggcatctt	taagggcccc	3720
acagctgaaa	atgcagagta	cctgcgggtg	gcaccgccaa	gcagtgagtt	tagtggagca	3780
tgacattgaa	gaggcattgt	accagttaca	aaccggactt	tccagaggcc	caggaccaag	3840
ccatggcagc	acctctgctc	ctgacagcca	tgtccacatt	gtgtcaaatg	tcaaaccctc	3900
agactggctt	taaagcataa	ctctgacggg	ctttgtcact	gagccaagaa	gtgggcccct	3960
cccctgatgc	tctttgggaa	gttgaaggta	tatctattgg	tcttcgaact	gtgaagattc	4020
cactgaaagg	tatccatcga	gaacattgtc	cttttggaac	agaaggttgc	ctcatggtga	4080
ggtacatagg	gggaaaaaaa	acagacctat	ggcgcttgct	gacataggga	actctgggat	4140
tettatettt	attgatttgc	t.				4161

<210> 13

<211> 4788

5 <212> ADN

<213> Canis familiaris

atgctttcac	cacccaagtg	tgagcaagtg	caaggccgta	gaggcaccgc	aggaccggga	60
aaccgggaag	agcagcggga	tggggttgtc	ctcctggggg	gtgtcgctgt	gagcggaggc	120
cacacacgtg	gaattcccga	gagcgccgag	gaggaggag	acctggagca	gcgtccccgg	180
gtgggaaaag	caggggtgag	aaaagcagtg	ggaggacgca	gtcattgtct	ccactgtctg	240
cagggctgcg	aggtcgagga	gaagcaggtc	gcatctctgt	tcacccggag	gaagtcatgg	300
ggggacaagc	ttggggcccc	taaagcacag	ggtcatggga	accctgatcc	tatacttcca	360
gacctcctgt	taggccttcc	tctgaagcag	agctcggtga	agtacagccc	gtggttcaaa	420
tccagcgact	gcctgttttt	taagccaagt	tttcgggcac	gagccggtgc	caggcccatt	480
cgtttggttc	ttgtctgtgg	ctgctttttg	cacgctggcg	gcggagcgga	ggggctggga	540
cogaccetto	gagaatgttc	tgaggaggaa	gctgggagtt	ctcctacaaa	aattctgaaa	600

ggcccatccg	aggtgtggcc	ccctcagctt	tcagtgcccg	gcttgccccc	cccacccccg	660
ctcaaatcca	cccttgcccc	ccgaggctcc	ccgtggaagg	gctctgatat	ctgcctgcac	720
ctcattgcca	ggcttgcctg	cgctcctgca	acaggcacct	ttggtcttgg	ggcagctgag	780
gctcgtaggc	tagctgaggg	gctggacaag	ccttacctgg	caggctgtaa	aacagttctg	840
gaaggtcagg	attattttca	gcatgcctac	gacttgagga	aagcgtgccg	gggagagctt	900
agagaagtca	ttcggggtca	cgtcgtggct	tattgtcgca	accctgcacc	tacatcagtg	960
gtggcatcgt	tagggacctt	gggattgggc	aacgagtctg	gccccatgtg	catgcgttgc	1020
cgccagctgt	gtacagatgt	tccaagtgaa	gggtgcaatc	agagcagcct	gtgcttccga	1080
gtgcgagcag	cccagagctg	tgaggccaca	gaagagggaa	atccccatag	agttcaagag	1140
gatgtggcga	ttgcttcata	tttaatgtca	gtgtcagtgc	atggggttga	tgatgtggtg	1200
tctgaacatg	tgctcgctgc	cgtggcacca	aaacgcaagg	gcagacggtc	agtctgccaa	1260
ggcacgagta	accggctcac	ccagttgggc	acttttgaag	accactttct	gagccttcag	1320
aggatgttca	ataactgtga	ggtggtcctg	gggaatttgg	aaattaccta	catgcaaagg	1380
aattatgacc	tttccttctt	aaagaccatc	caggaagttg	ccgggtatgt	attgattgcc	1440
ctcaacacgg	tggagaagat	tcctttggaa	aacctgcaga	tcatccgagg	aaatgtgctc	1500
tatgaaaaca	cccatgcctt	atccgtcctc	tccaactatg	gctcaaataa	aactggactg	1560
caggagette	ccctgagaaa	cttgcatgaa	atactacaag	gcgctgtgcg	cttcagcaat	1620
aaccctgtcc	tctgcaacgt	ggaaaccatc	cagtggcggg	acatcgttga	caacgatttt	1680
ataagcaaca	tgtcgatgga	catccagaac	caagcgggca	ggtgccaaaa	gtgtgatcca	1740
agctgtccca	atggaagttg	ctggggtccg	ggaaaggaga	attgccagaa	actgaccaaa	1800
atcatctgtg	cccagcagtg	ttcggggcgc	tgccgcggca	ggtcccccag	cgactgctgc	1860
cacaaccagt	gtgccgccgg	ctgcacgggg	ccccgcgaga	gcgactgcct	ggtctgccgc	1920
aagttccggg	atgaagccac	gtgcaaggac	acctgcccgc	ccctcatgct	ctacaacccc	1980
accacctacc	aaatggacgt	caacccagag	ggaaaataca	gctttggtgc	cacctgcgtg	2040
aagaaatgcc	cccgcaacta	cgtggtgaca	gaccacggtt	catgtgtccg	cgcctgcagc	2100
tctgacagct	acgaggtgga	ggaggatggt	gtccgcaagt	gtaagaagtg	tgaggggcct	2160
tgtcgcaaag	tttgtaatgg	aatagggatt	ggagagttca	aagacacact	ttccataaat	2220
gctacaaaca	ttaaacactt	caaaaactgc	acgtcgatca	gtggagacct	tcatatcttg	2280
ccagtcgcat	ttagaggtga	ctccttcacg	cataccctac	ctctagatcc	gaaggagctg	2340
gatatcctga	aaactgtcaa	ggaaataaca	gggtttttgc	tgattcaggc	ctggcccgaa	2400
aataggactg	acctccatgc	tttcgagaac	ctagaaatca	tacgtggaag	aacaaagcaa	2460
catggccagt	tttctctggc	ggtcgtcggc	ctgaacataa	cgtccttggg	attacgctcc	2520

ctcaaggaga	taagcgatgg	agatgtgatc	atctctggaa	accgaaaatt	gtgctatgca	2580
aatacaataa	actggaagaa	actctttggg	acttcaagtc	agaaaaccaa	aattataaac	2640
aacaaagatg	aaaaagcctg	caaggccata	ggccacgtct	gccatccatt	gtgctcctca	2700
gaaggctgct	ggggcccagg	gccgagagac	tgcgtgtcct	gccgaaacgt	cagccgtggc	2760
aaggaatgtg	tggaaaagtg	caacattctg	gaggggagc	caagggagtt	tgtggagaat	2820
tcggagtgca	tacagtgcca	tccggaatgc	ctgccccagg	ccatgaacat	aacctgcaca	2880
ggacgggggc	cggacagctg	catcaagtgc	gcccactaca	tcgatggccc	tcactgcgtc	2940
aagacctgcc	cggctggcat	catgggagaa	aacaacaccc	tggtctggaa	gttttcggat	3000
ggcagccgca	tgtgccacct	gtgccatcca	aactgcacct	atggctgtga	gggaccaggt	3060
cttgaaggct	gtgcaaaacc	tgggcccaag	atcccatcca	ttgctaccgg	gattgtcggc	3120
ggcctcctct	tggtggtggt	ggtggccctt	ggagtgggcc	tctttttgcg	ccggcgccac	3180
attgtccgga	agcgcacgct	tcgcagactg	ctgcaagaaa	gagagcttgt	cgagcctctt	3240
acacccagcg	gagaagctcc	caaccaggct	ctcttgagga	tcttaaagga	gacggagttc	3300
aaaaagatca	aggtgctggg	ctctggagca	ttcggcacag	tgtacaaggg	actctggatc	3360
ccagaaggcg	agaaggttaa	aattcccgtg	gccatcaagg	aattgagaga	agccacgtct	3420
cccaaagcca	acaaggaaat	tcttgatgaa	gcctacgtga	tggccagtgt	ggacaatccc	3480
cacgtgtgcc	gcctcctggg	catctgcctg	acgtccacgg	tgcagctcat	cacgcagctc	3540
atgccctttg	gctgcctcct	ggactatgtc	cgcgagcaca	aggacaacat	cggctcccag	3600
cacctgctca	actggtgtgt	gcagattgca	aagggcatga	actacctgga	agaccggcgc	3660
ttggtgcacc	gcgacctggc	ggccaggaac	gtcctggtga	agaccccgca	gcacgtcaag	3720
atcacagatt	ttgggctggc	caaactgctg	ggtgccgagg	agaaagagta	ccacgcggaa	3780
ggaggcaaag	tgcctatcaa	gtggatggct	ttagaatcga	ttttacaccg	aatttatacc	3840
caccaaagcg	atgtgtggag	ctacggcgtc	accgtgtggg	agctgatgac	cttcgggtcc	3900
aagccttacg	acggtatccc	tgcaagtgag	atctccacca	tcctggagaa	gggagagcgc	3960
ctcccgcagc	cgcccatatg	caccatcgat	gtctacatga	tcatggtcaa	gtgctggatg	4020
atagatgcag	acagtcgccc	aaaattccgt	gagttgatca	tcgaattctc	caaaatggcc	4080
cgagacccgc	agcgctacct	tgtcatccag	ggagatgaga	ggatgcattt	gccaagccct	4140
acagactcca	atttttaccg	cgccctgatg	gacgaggagg	acatggagga	tgttgtggat	4200
gctgacgagt	acctcatccc	ccagcagggc	ttcttccaca	geceetecae	ttcccggacc	4260
cccctcctaa	gttctctgag	cgccaccagc	aacagttcca	acgtggcttg	catcgaccga	4320
aatgggacct	gtcccctcaa	agaagacagc	ttcttgcagc	ggtacagctc	agaccccact	4380
ggcaccttga	cggaggacaa	catagatgac	actttcctcc	cagcacccga	atacataaac	4440
cagtctgttc	ccaaaaggcc	tgcgggttct	gtccagaatc	ccgtctatca	caatcagcct	4500

ctaaatccag	ctcctgccag	agaccctcac	taccaaaatc	cccacagcaa	cgcagtggac	4560
aaccctgagt	atctcaacac	ccaccccacc	tgcgtcaaca	gtgtcctcga	caggcccagc	4620
ctctggaccc	aggaggccaa	ccaccaaatc	agcctggaca	accctgacta	ccagcaggac	4680
ttctttccca	aggaagccaa	gtccaatggc	atttttaagg	gccctgcagc	tgaaaatgca	4740
gactacctga	gggtagcgc	accaagcagt	gagtttattg	gagcgtga		4788

REIVINDICACIONES

- Método para predecir el desenlace clínico de un sujeto que padece glioblastoma multiforme (GBM) que comprende:
 - a) determinar el nivel de expresión o el nivel de polisomía/amplificación del gen de EGFR y la pérdida de nivel de heterocigosidad (LOH) del gen de PTEN en una muestra del mismo sujeto, y
 - b) comparar dicho nivel de expresión o el nivel de polisomía/amplificación del gen de EGFR y el nivel LOH del gen de PTEN con valores de referencia convencionales,
 - en el que el nivel LOH del gen de PTEN se mide mediante PCR, mediante un ensayo basado en hibridación, mediante tecnología de secuenciación o mediante un análisis de SNP; y
- en el que un alto nivel LOH del gen de PTEN con respecto a dicho valor de referencia convencional y un alto nivel de expresión y/o alto nivel de polisomía/amplificación del gen de EGFR con respecto a dichos valores de referencia convencionales son indicativos de un buen desenlace clínico del sujeto.
 - 2. Método según la reivindicación 1, en el que el desenlace clínico se mide como supervivencia.

5

- 3. Método según una cualquiera de las reivindicaciones 1 ó 2, en el que la muestra es una muestra celular o tisular, preferiblemente una muestra de tejido tumoral.
 - 4. Método según una cualquiera de las reivindicaciones 1 a 3, en el que el nivel de expresión del gen de EGFR se mide determinando el ARNm y/o el nivel de expresión de proteína de dicho gen.
- 5. Método según la reivindicación 1, en el que dicho ensayo basado en hibridación comprende una transferencia de tipo Southern, hibridación *in situ* (ISH), hibridación *in situ* fluorescente (ISH), o un ensayo de hibridación genómica comparativa (CGH).
 - 6. Método según la reivindicación 1 y 5, en el que el nivel LOH del gen de PTEN se determina mediante FISH.
 - 7. Método según una cualquiera de las reivindicaciones 1 a 6, en el que el glioblastoma es glioblastoma precoz.
- 8. Uso de un kit que comprende un conjunto de agentes que pueden determinar específicamente el nivel de expresión o el nivel de polisomía/amplificación del gen de EGFR y el nivel LOH del gen de PTEN para predecir el desenlace clínico de un sujeto que padece glioblastoma multiforme, en el que el conjunto de agentes que pueden determinar específicamente el nivel LOH del gen de PTEN comprende un par de cebadores de oligonucleótido para amplificar un fragmento específico del gen de PTEN, o una sonda de oligonucleótido marcada opcionalmente que se une selectivamente a una secuencia de polinucleótido diana sobre la región del cromosoma del gen de PTEN, o reactivos adecuados para realizar una reacción de secuenciación, o reactivos para realizar un análisis de SNP, y en el que si dichos agentes detectan altos niveles de expresión o un alto nivel de polisomía/ amplificación del gen de EGFR y un alto nivel LOH del gen de PTEN, con respecto a valores de referencia, entonces el desenlace clínico del sujeto es bueno.
- 9. Uso según la reivindicación 8, en el que el kit comprende además un reactivo para detectar un gen constitutivo o la proteína codificada por dicho gen constitutivo.
 - 10. Uso según cualquiera de las reivindicaciones 8 ó 9, en el que el conjunto de agentes para determinar específicamente el nivel de expresión y/o el nivel de polisomía/amplificación del EGFR comprende un reactivo para detectar el nivel de ARNm del gen de EGFR o el nivel de la proteína EGFR.
- Uso según la reivindicación 10, en el que el reactivo para detectar el nivel de ARNm del gen de EGFR o el nivel de la proteína EGFR comprende una sonda que se hibrida específicamente con el gen de EGFR, o un anticuerpo que se une a la proteína EGFR.

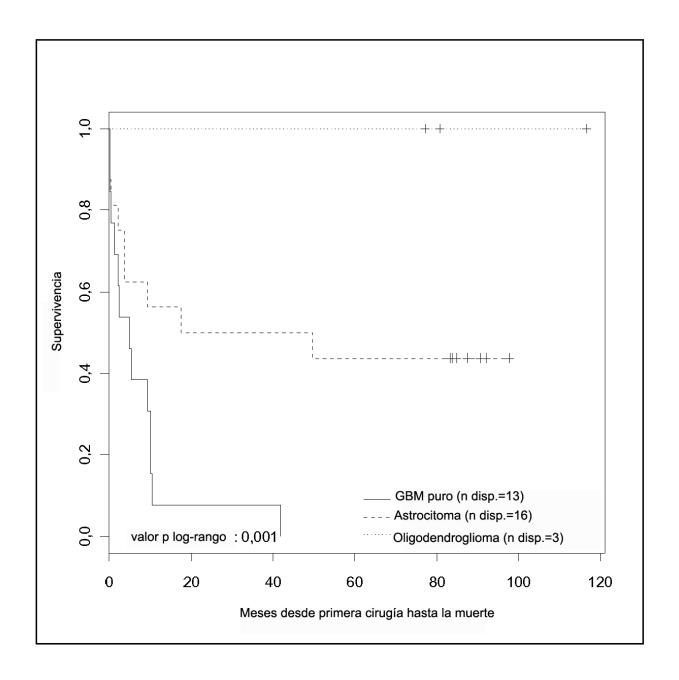
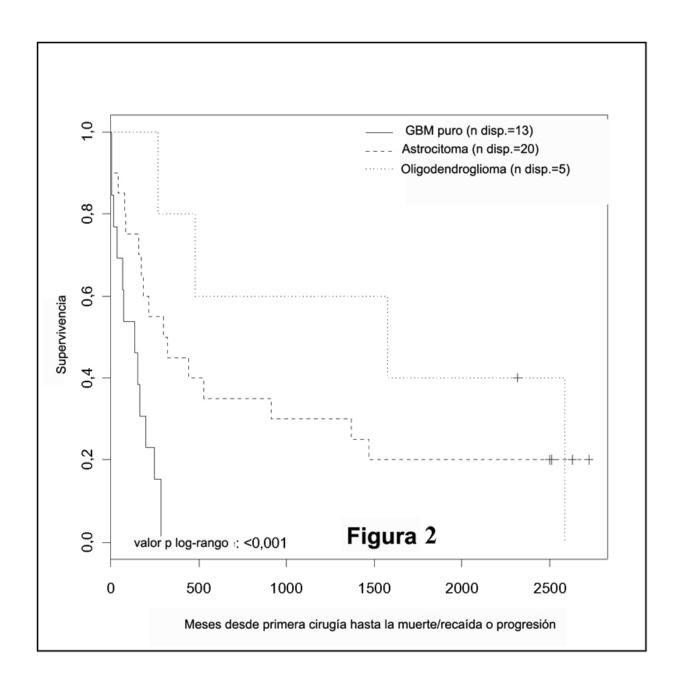



Figura 1

Categorías de PTEN 2

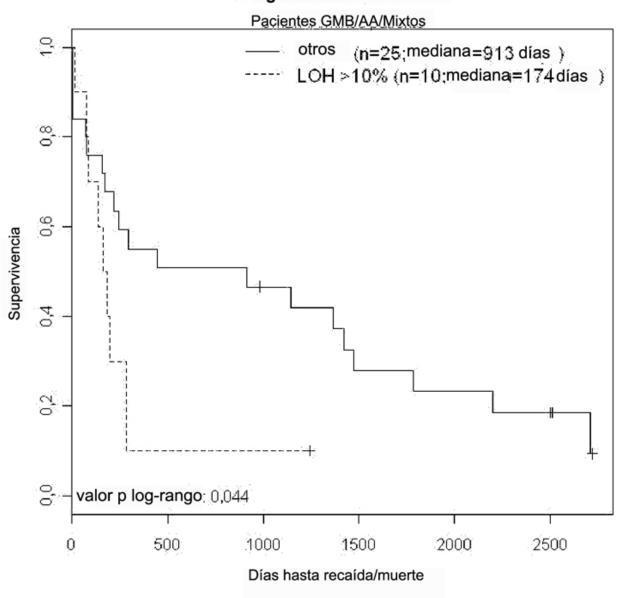
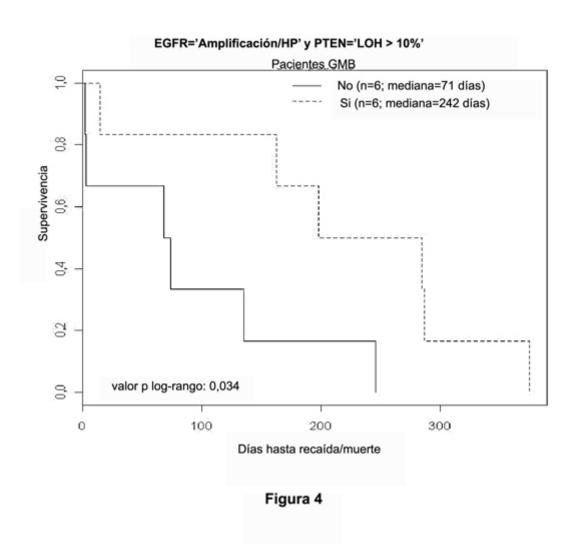



Figura 3

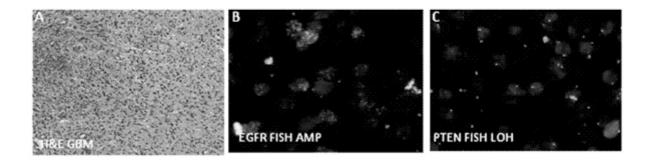


Figura 5