

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(1) Número de publicación: 2 634 623

(51) Int. CI.:

C07K 14/755 (2006.01) C12N 15/85 (2006.01) C07K 14/81 (2006.01) C12P 21/00 (2006.01) C12N 5/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 16.03.2004 E 14162830 (5) (97) Fecha y número de publicación de la concesión europea: 26.04.2017 EP 2808341

(54) Título: Uso de chaperonas moleculares para la producción potenciada de proteínas secretadas, recombinantes, en células de mamífero

⁽³⁰) Prioridad:

27.06.2003 US 483505 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 28.09.2017

(73) Titular/es:

BAYER HEALTHCARE LLC (100.0%) 100 Bayer Boulevard, PO Box 915 Whippany, NJ 07981, US

(72) Inventor/es:

CHAN, SHAM-YUEN; TANG, HSINYI, YVETTE; TAO, YIWEN; **KELLY, RUTH v** WU, YONGJIAN

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Uso de chaperonas moleculares para la producción potenciada de proteínas secretadas, recombinantes, en células de mamífero

Campo de la invención

20

25

30

35

40

45

50

55

La presente invención se refiere al campo general de producción de proteínas recombinantes en una célula huésped de mamífero. Específicamente, la presente invención se refiere a la producción potenciada de una proteína de Factor VIII recombinante coexpresando al menos una proteína chaperona de calnexina en la célula huésped de mamífero.

Antecedentes de la invención

En células tanto procarióticas como eucariotas, las proteínas chaperonas moleculares catalizan intercambio de enlaces disulfuro y ayudan al plegamiento apropiado de proteínas de nueva síntesis. Esta observación ha conducido a un gran número de estudios y usos propuestos para estas proteínas de control de calidad. Por ejemplo, el aumento de la actividad de pDI (proteína disulfuro isomerasa) en sistemas de expresión celular bacterianos, de levadura y de insectos puede tener efectos beneficiosos en la solubilidad y el plegamiento de proteínas y, en algunos casos, puede conducir a un aumento de la secreción de proteínas heterólogas (1-7). Además, otros estudios han mostrado que las chaperonas moleculares proteína de unión a cadena pesada de inmunoglobulina (BiP, también denominada proteína regulada por glucosa) y proteína de choque térmico humana 70 (Hsp 70) tienen un efecto beneficioso en una expresión de proteína recombinante en sistemas celulares de insectos (5, 8-12).

Las chaperonas moleculares no han tenido el mismo nivel de éxito en la expresión y secreción de proteínas recombinantes en sistemas celulares de mamífero. Por ejemplo, la sobreexpresión de la chaperona pDI en células de ovario de hámster Chino (CHO) no solamente no tuvo ningún efecto en los niveles de secreción de IL-15, sino que también provocó una reducción de la secreción, y un aumento en la retención celular de una proteína de fusión de receptor de factor de necrosis tumoral-Fc (TNFR:Fc) (13). Otros estudios han mostrado que la sobreexpresión de la chaperona BiP en células de mamífero puede conducir a un aumento de la retención celular y reducción de la secreción de proteínas recombinantes (14-15 y Patente de Estados Unidos n.º 4.912.040). Los mecanismos reguladores implicados en el procesamiento de proteínas dentro de la célula de mamífero son complejos, y probablemente implican la cooperación de muchas de estas proteínas chaperonas. Por lo tanto, se puede predecir si una chaperona particular conducirá a un aumento en la producción de una cierta proteína recombinante.

Debido a la enseñanza contradictoria en el campo, el efecto de las proteínas chaperonas en la producción de un producto proteico recombinante secretado no se entiende ni se aprecia. La Patente de Estados Unidos n.º 6.451.597 (la patente 597) describe un procedimiento para potenciar la producción de partículas víricas, y especula sobre el efecto de las chaperonas en la mejora del rendimiento de una proteína recombinante en células eucariotas. Sin embargo, no se desvela ninguna expresión real de una proteína recombinante. Sin embargo, otros estudios han descubierto que la sobreexpresión de chaperonas en líneas celulares eucariotas no tuvo ningún efecto en los rendimientos de producto o tuvo secreción reducida de proteínas recombinantes (14, 15). Véase también Patente de Estados Unidos n.º 4.912.040. A la luz de las enseñanzas contradictorias en el campo, la patente 597 no permite que un experto en la materia use chaperonas para mejorar la producción y secreción de una proteína recombinante en células eucariotas. El estado de la técnica no enseña a predecir qué efecto tendrá una chaperona particular en la producción y secreción de una proteína recombinante dada en modelos de cultivo celular tales como los descritos en el presente documento. Los solicitantes se sorprendieron por tanto al encontrar que cuando las chaperonas descritas en este estudio se transfectaron en líneas celulares de mamífero que expresaban una proteína recombinante, secretada, el efecto resultante fue un aumento general de la producción de la proteína secretada.

Sumario de la invención

En un aspecto de la invención, se proporciona una célula huésped de mamífero para expresión potenciada de un producto proteico de Factor VIII recombinante, teniendo dicha célula de mamífero material genético que codifica la expresión de dicha proteína de Factor VIII recombinante y transformada con al menos un vector de expresión que comprende ADN que codifica proteína chaperona calnexina.

En una realización del primer aspecto de la invención, se secreta el producto proteico recombinante.

En otra realización de la invención, el material genético que codifica la expresión de dicho producto proteico recombinante se integra en el ADN de células huésped.

En otra realización de la invención, la célula huésped de mamífero se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína de glutamina sintetasa.

En un segundo aspecto de la invención, se proporciona un procedimiento para producir una célula huésped de mamífero de la reivindicación 1, en el que el procedimiento comprende proporcionar una célula de mamífero que tiene material genético que codifica la expresión de una proteína recombinante diana o fragmento de la misma; y

transformar la célula de mamífero con al menos un vector de expresión que comprende ADN que codifica la proteína chaperona calnexina.

En una realización del segundo aspecto de la invención, se secreta el producto proteico recombinante.

En otra realización de este aspecto de la invención, el material genético que codifica la expresión de dicho producto proteico recombinante se integra en el ADN de células huésped.

En otra realización de este aspecto de la invención, la célula huésped de mamífero se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.

En un tercer aspecto de la invención, se proporciona un procedimiento para producir un producto proteico recombinante secretado, comprendiendo el procedimiento las etapas de: cultivar una célula huésped de mamífero de la reivindicación 1, y recuperar del medio de cultivo el producto proteico recombinante producido y secretado de este modo.

En otra realización de la invención, el material genético que codifica la expresión de dicho producto proteico recombinante se integra en el ADN de células huésped.

En otra realización de la invención, la célula huésped de mamífero se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.

En un cuarto aspecto de la invención, se proporciona un procedimiento para potenciar el rendimiento de una proteína recombinante, comprendiendo el procedimiento las etapas como se definen en la reivindicación 11.

En una realización de la cuarta de la invención, se secreta el producto proteico recombinante.

En otra realización del cuarto aspecto de la invención, el material genético que codifica la expresión de dicho producto proteico recombinante se integra en el ADN de la primera línea celular.

En otra realización de este aspecto de la invención, la segunda línea celular se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.

En otra realización de este aspecto de la invención, se produce al menos una segunda línea celular a partir de dicha primera línea celular seleccionando una parte de dicha primera línea celular que muestra integración del vector de expresión de proteína chaperona en ADN huésped.

Breve descripción de los dibujos

10

20

25

30

40

La invención se entenderá mejor a partir de una consideración de la siguiente descripción detallada y las reivindicaciones, tomadas junto con los dibujos, en los que:

La Figura 1 representa las secuencias de cebadores de RT-PCR usados para amplificar ADNc de chaperonas ER de una biblioteca de ADNc humano. El subrayado indica un sitio de restricción EcoRI (cebador 5') o Xbal (cebador 3') integrado. CNX: calnexina; CRT: calreticulina;

La Figura **2A** representa las secuencias de nucleótidos y aminoácidos completas de calnexina clonada por RT-PCR. Los sitios EcoRI 5' y Xbal 3' dentro de los cebadores están subrayados. El codón de inicio y el codón de terminación se muestran en texto en negrita;

La Figura **2B** representa las secuencias de nucleótidos y aminoácidos completas de calreticulina clonada por RT-PCR. Los sitios EcoRI 5' y Xbal 3' están subrayados. El codón de inicio y el codón de terminación se muestran en texto en negrita;

La Figura **2C** representa las secuencias de nucleótidos y aminoácidos completas de Erp57 clonado por RT-PCR. Los sitios EcoRI 5' y XbaI 3' están subrayados. El codón de inicio y el codón de terminación se muestran en texto en negrita;

La Figura **2D** representa las secuencias de nucleótidos y aminoácidos completas de la región codificante del gen de Hsp70 humano;

La Figura **2E** representa las secuencias de nucleótidos y aminoácidos completas de la región codificante del gen de Hsp40 humano. El codón de inicio se muestra en texto en negrita y subrayado;

La Figura **2F** representa las secuencias de nucleótidos y aminoácidos completas de la región codificante del gen de la glutamina sintetasa. El codón de inicio se muestra en texto en negrita y subrayado;

La Figura **3** es una ilustración de la sobreexpresión de bikunina en clones supertransfectados con calnexina (X4.14:5, X4/14:30), Hsp70 (7-3) o Erp57 (X4/19:62). La velocidad de producción de Bikunina específica para todas las líneas celulares se expresa como pg de Bikunina/células/día (SPR). Cada día se recogieron células y

se transfirieron a medio nuevo y se incubaron durante 24 horas a 37 °C en matraces de agitación. Al día siguiente, las células se recogieron de nuevo, se recontaron y se resuspendieron en medio nuevo del mismo volumen y se incubaron de forma similar durante otras 24 horas. Se realizaron mediciones de la actividad de bikunina (pg/célula/día) en muestras del medio gastado. El mismo procedimiento se repitió cada día hasta que comenzó a reducirse el número y la viabilidad de las células. La línea celular de control (CF9-20) expresa bikunina pero no expresa ninguna de las proteínas chaperonas;

La Figura 4 es una ilustración de la sobreexpresión de bikunina en clones supertransfectados con Hsp70. Todos los clones excepto CF9-20 (células de control) están supertransfectados con Hsp70. El procedimiento del experimento es el mismo que el descrito en la Figura 3; y

La Figura 5 representa la secuencia de aminoácidos de bikunina.

Descripción detallada de la invención

5

10

15

20

25

30

35

40

45

En una realización de la invención, se proporciona una célula huésped de mamífero para expresión potenciada de un producto proteico de Factor VIII recombinante, en el que dicha célula de mamífero comprende material genético que codifica la expresión de dicho producto proteico recombinante y se transforma adicionalmente con al menos un vector de expresión que comprende ADN que codifica proteína chaperona calnexina.

En otra realización de la invención, la célula huésped de mamífero se transforma de forma estable con el material genético que codifica la expresión de dicho producto proteico recombinante.

La expresión "célula huésped de mamífero" se usa para hacer referencia a una célula de mamífero que se ha transfectado, o es capaz de transfectarse con una secuencia de ácido nucleico y después de expresar un gen seleccionado de interés. La expresión incluye la descendencia de la célula parental, tanto si la descendencia es idéntica en morfología o en composición genética al parental original, como si no, siempre que esté presente el gen seleccionado.

Las células de mamífero adecuadas para su uso en la presente invención incluyen, pero sin limitación, células de ovario de hámster chino (CHO), células de riñón de cría de hámster (BHK), células HeLa humanas, célula COS-1 de mono, células 293 de riñón embrionario humano, NSO de mieloma de ratón y células HKB humanas (Patente de Estados Unidos n.º 6.136.599). Las otras líneas celulares están fácilmente disponibles de la ATCC.

El término "transfección" se usa para hacer referencia a la captación de ADN ajeno o exógeno por una célula, y una célula se ha "transfectado" cuando el ADN exógeno se ha introducido dentro de la membrana celular. Se conocen bien en este campo varias técnicas de transfección y se desvelan en el presente documento. Véase, por ejemplo, Graham y col., 1973, Virology 52: 456; Sambrook y col., Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratories, 1989); Davis y col., Basic Methods in Molecular Biology (Elsevier, 1986); y Chu y col., 1981, Gene 13: 197. Dichas técnicas pueden usarse para introducir uno o más restos de ADN exógeno en células huésped adecuadas

Las técnicas adecuadas para transfección para uso en la presente invención incluyen, pero sin limitación, transfección mediada por fosfato cálcico, transfección mediada por DEAE-dextrano y electroporación. También puede usarse transfección de lípidos catiónicos usando reactivos disponibles en el mercado, incluyendo el Reactivo de Transfección Boehringer Mannheim (N-> 1-(2,3-dioleoiloxi)propil-N,N,N-trimetilamoniometilsulfato, Boehringer Mannheim, Indianápolis, Ind.) o reactivo LIPOFECTIN o LIPOFECTAMIN o DMRIE (GIBCO-BRL, Gaithersburg, MD).

Como se usa en el presente documento, la expresión "supertransfección" se refiere a transfectar más de un vector de expresión a una célula huésped que ya expresa un gen recombinante.

El término "transformación" como se usa en el presente documento se refiere a un cambio en las características genéticas de una célula, y una célula se ha transformado cuando se ha modificado para contener un nuevo ADN. Por ejemplo, una célula se transforma cuando se modifica genéticamente de su estado nativo. Después de la transfección, el ADN transformante puede recombinarse con el de la célula integrándose físicamente en un cromosoma de la célula, puede mantenerse de forma transitoria como un elemento episómico sin replicarse o puede replicarse independientemente como un plásmido. Se considera que una célula se ha transformado de forma estable cuando el ADN se replica con la división de la célula.

Como se usa en el presente documento la expresión "línea celular modificada" se refiere a una línea celular transformada bien de forma transitoria o bien de forma estable con una o más construcciones de ADN.

Pueden aislarse polinucleótidos, material genético, moléculas de ADN recombinante, vectores de expresión y similares, usados en la práctica de la presente invención usando procedimientos de clonación convencionales tales como los descritos en Sambrook y col. (Molecular Cloning: A Laboratory Manual, Segunda Edición, Cold Spring Harbor, N. Y., 1989). Como alternativa, los polinucleótidos que codifican un producto proteico recombinante de la presente invención pueden sintetizarse usando técnicas convencionales que se conocen bien en este campo, tales como por síntesis en un sintetizador de ADN automático. Por ejemplo, usando los cebadores representados en la

Figura 1, se sintetizan secuencias de ADN que codifican la proteína calnexina mediante RT-PCR.

5

10

15

20

25

50

55

Como se usa en el presente documento, un "vector de expresión" se refiere a una molécula de ADN, o un clon de dicha molécula, que se ha modificado mediante la intervención humana para contener segmentos de ADN combinados y yuxtapuestos de una manera que no existiría por lo demás en la naturaleza. Pueden modificarse técnicamente construcciones de ADN para incluir un primer segmento de ADN que codifica un polipéptido de la presente invención unido operativamente con segmentos de ADN adicionales requeridos para la expresión del primer segmento de ADN. Dentro del contexto de la presente invención los segmentos de ADN adicionales incluirán, en general, promotores y terminadores de la transcripción y pueden incluir adicionalmente potenciadores y otros elementos. También pueden incluirse uno o más marcadores seleccionables. Pueden prepararse construcciones de ADN útiles para expresar segmentos de ADN clonados en una diversidad de células huéspedes procariotas y eucariotas a partir de componentes fácilmente disponibles u obtenerse de proveedores comerciales.

Las construcciones de ADN también pueden contener segmentos de ADN necesarios para dirigir la secreción de un polipéptido o una proteína de interés. Dichos segmentos de ADN pueden incluir al menos una secuencia señal secretora. Las secuencias señal secretoras, también denominadas secuencias líderes, secuencias prepro y/o secuencias pre, son secuencias de aminoácidos que actúan para dirigir la secreción de polipéptidos o proteínas maduros de una célula. Dichas secuencias se caracterizan por un núcleo de aminoácidos hidrófobos y se encuentran típicamente (pero no exclusivamente) en los extremos amino terminales de proteínas de nueva síntesis. Con mucha frecuencia el péptido secretor se escinde de la proteína madura durante la secreción. Dichos péptidos secretores contienen sitios de procesamiento que permiten la escisión del péptido secretor de la proteína madura a medida que pasa a través de la ruta secretora. Una proteína recombinante puede contener una secuencia señal secretora en su secuencia de aminoácidos original, o puede modificarse técnicamente para convertirse en una proteína secretada insertando una secuencia señal secretora modificada técnicamente en su secuencia de aminoácidos original. La elección de promotores, terminadores y señales secretoras adecuados está dentro del nivel de experiencia habitual en la técnica. La expresión de genes clonados en células de mamífero cultivadas y en *E. coli*, por ejemplo, se analiza en detalle en Sambrook y col. (Molecular Cloning: A Laboratory Manual, Segunda Edición, Cold Spring Harbor, N. Y., 1989).

Como se usa en el presente documento, la expresión "producto proteico recombinante" se refiere a una proteína recombinante o fragmento de la misma expresado a partir de material genético introducido en la célula de mamífero huésped.

Después de la transfección, la célula puede mantenerse transformada de forma transitoria o transformada de forma estable con dicha construcción de ADN. La introducción de múltiples construcciones de ADN, y selección de células que contienen las múltiples construcciones de ADN, puede realizarse bien simultáneamente o, más preferentemente, de forma secuencial. La técnica para establecer una línea celular transformada de forma estable con un material genético o vector de expresión se conoce bien en este campo (Current Protocols in Molecular Biology). En general, después de la transfección, el medio de cultivo seleccionará células que contengan la construcción de ADN mediante, por ejemplo, selección farmacológica o deficiencia de un nutriente esencial, que se complementa por un marcador seleccionable en la construcción de ADN o se cotransfecta con la construcción de ADN. Las células de mamífero cultivadas se cultivan en general en medio que contiene suero o medio sin suero disponibles en el mercado. La selección de un medio apropiado para la célula huésped particular usada está dentro del nivel de la experiencia habitual en la técnica.

Los marcadores seleccionables adecuados para selección farmacológica usados en la presente invención incluyen, pero sin limitación, neomicina (G418), higromicina, puromicina, zeocina, colchina, metotrexato y metionina sulfoximina.

Una vez que se ha establecido una población celular resistente a fármacos, pueden seleccionarse clones individuales y explorarse con respecto a clones de alta expresión. Se conocen bien en la técnica procedimientos para establecer líneas celulares clonadas, incluyendo, pero sin limitación, uso de un cilindro de clonación, o por dilución limitante. La expresión del producto recombinante de interés de cada clon puede medirse por procedimientos tales como, pero sin limitación, inmunoensayo, ensayo enzimático o ensayo cromogénico.

Después puede usarse una línea celular transformada de forma estable con una primera construcción de ADN como una célula huésped para transfección con una segunda o más construcciones de ADN, y someterse a diferentes selecciones farmacológicas.

Como se usa en el presente documento el término "bikunina" se refiere a cualquier proteína, que tenga al menos un dominio Kunitz. Se han descrito dominios de tipo Kunitz en referencias tales como Laskowski y col., 1980, Ann Rev Biochem. 49: 593-626; y Patente de Estados Unidos n.º 5.914.315 (22 de junio de 1999). En una realización preferida, el término bikunina usado en el presente documento se refiere a la secuencia de aminoácidos mostrada en la Figura 5. Se describen otras proteínas de bikunina y fragmentos de las mismas en las Solicitudes de Estados Unidos número de serie 09/144.428, 09/974.026, 09/218.913 y 09/441.966, y Solicitud de PCT número de serie US97/03894, publicada como WO 97/33996, y US99/04381, publicada como WO 00/37099.

En otra realización de la invención, la invención proporciona una célula huésped de mamífero con expresión y secreción de proteína de Factor VIII potenciada de acuerdo con la reivindicación 1, y la célula huésped de mamífero se transforma adicionalmente con al menos un vector de expresión que comprende ADN que codifica proteína chaperona calnexina.

5 En una realización preferida, la proteína de Factor VIII tiene la secuencia representada en la Patente de Estados Unidos n.º 4.965.199.

En otra realización preferida más, la célula huésped de mamífero con expresión y secreción potenciada de Factor VIII es una célula BHK.

En una realización preferida, la proteína IL2SA tiene la secuencia representada en la Patente de Estados Unidos n.º 6.348.192.

En otra realización más de la invención, la célula huésped de mamífero se transforma adicionalmente con un vector de expresión que codifica una proteína de glutamina sintetasa.

La presente invención también proporciona un procedimiento para producir una célula huésped de mamífero para expresión potenciada de dicha proteína recombinante diana que comprende: proporcionar una célula de mamífero que tiene material genético que codifica la expresión de una proteína recombinante diana o fragmento de la misma; y transformar la célula de mamífero con al menos un vector de expresión que comprende ADN que codifica proteína chaperona calnexina.

En una realización de la invención, el material genético que codifica expresión de dicho producto proteico recombinante se integra en el ADN de la célula huésped.

20 En otra realización de la invención, la célula huésped de mamífero se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.

El producto proteico recombinante es Factor VIII y la transformación se produce con un vector de expresión que comprende ADN que codifica calnexina.

En una realización de la invención, el procedimiento para producir un producto proteico recombinante secretado comprende cultivar una célula huésped de mamífero, en el que la célula huésped de mamífero se transforma de forma estable con un material genético que codifica la expresión de dicho producto recombinante.

En otra realización de la invención, el procedimiento para producir un producto proteico recombinante secretado comprende además transfectar la célula huésped de mamífero con un vector de expresión que codifica una proteína glutamina sintetasa.

También se desvela un procedimiento para potenciar la producción de una proteína de Factor VIII recombinante en células BHK, en el que se ha introducido previamente un material genético que codifica la expresión de dicho Factor VIII recombinante en una primera línea celular BHK, que comprende las etapas de: insertar al menos un vector de expresión de proteína chaperona en dicha primera línea celular BHK para formar una línea celular BHK modificada; y seleccionar de dicha línea celular BHK modificada al menos una segunda célula que muestra rendimiento potenciado de la proteína de Factor VIII recombinante.

También se desvela un procedimiento para potenciar el rendimiento de Factor VIII recombinante en una línea celular BHK que comprende introducir un material genético para dicho Factor VIII en una línea celular BHK, en el que la línea celular BHK muestra expresión de proteína chaperona potenciada.

Se pretende que los siguientes ejemplos sean solamente para fines de ilustración, y no deberían interpretarse como limitantes del alcance de la invención de ninguna manera.

Ejemplos

45

15

Ejemplo 1. Clonación de ADNc de chaperona.

Todas las secuencias de chaperonas se clonan a partir de bibliotecas de ADNc humanas seguido de verificación de las secuencias de nucleótidos. Se clonaron secuencias de ADN que representaban las tres chaperonas de ER por RT-PCR de una biblioteca de ADNc humana. Los cebadores de RT-PCR usados en estas reacciones se diseñaron para amplificar la región codificante completa usando las secuencias apropiadas obtenidas de Genbank. Cada par de cebadores 5' y 3' incluyen un sitio de restricción EcoRI (cebador 5') o Xbal (cebador 3') (Figura 1) para facilitar la clonación del producto de PCR en el vector de expresión, pCl-neo (Promega).

Las reacciones de PCR se realizaron usando enzima PFU de alta fidelidad (Stratagene). Se purificaron bandas del tamaño esperado, se digirieron con EcoR I y Xba I y se clonaron en el vector pCl-neo digerido de forma similar. Se propagaron vectores recombinantes de esta etapa en *E. coli* seguido de aislamiento y purificación de las secuencias de vectores. Los insertos de secuencia que representan las chaperonas se secuenciaron usando cebadores que se

unían fuera de los sitios de clonación múltiple del vector así como dentro de la secuencia de chaperona. Se realizó secuenciación usando el procedimiento de terminador Big Dye en termociclador de MJ Research y se analizó usando un analizador genético ABI 310. Las secuencias de ADNc de calnexina humana, clarreticulina y Erp57 se muestran en las Figuras 2A-2C.

El fragmento de ADNc de Hsp70 humano de longitud completa se obtuvo por RT-PCR usando ARN poliA⁺ de cerebro humano (CLONTECH Cat: 6516-1) y dos cebadores designados F-Hsp70 = 5' AGG GAA CCG CAT GGC CAA AG y R-Hsp70 = 5' GAA AGG CCCCTA ATC TAC CTC CTC A. Las secuencias de cebadores de Hsp70 se obtuvieron de la secuencia previamente publicada para el gen de la proteína de choque térmico humana (Hsp70) [9]. Los cebadores F-Hsp70 y R-Hsp70 incluyeron una secuencia EcoRI o XbaI respectivamente. El fragmento de PCR deseado se purificó por electroforesis en gel de agarosa y se confirmó por secuenciación de nucleótidos. El fragmento de ADNc de Hsp70 humano de longitud completa se insertó después en los sitios de clonación EcoRI y XbaI del vector pCI-neo para formar el vector pCI-neo-Hsp70. El vector pCI-neo-Hsp70 se propagó en *E. coli* seguido de aislamiento y purificación de las secuencias de vectores. Se secuenció el ADN del plásmido pCI-neo-Hsp70 mediante Analizador Genético ABI PRISM 310. La secuencia de Hsp70 humano se muestra en la Figura 2D.

Ejemplo 2. La producción de bikunina aumenta en células CHO después de transfección de una chaperona ER, tal como calnexina, calreticulina, Erp57 o Hsp70.

20

25

30

35

40

45

Se supertransfectó una línea celular CHO que secretaba la proteína recombinante Bikunina (Solicitud de Patente de Estados Unidos n.º de serie 09/441654) con diversas combinaciones de las chaperonas ER, calnexina (CNX), calreticulina (CRT), ERp57 o Hsp70 seguido de selección con G418. Se obtuvieron poblaciones y se exploraron por ensayo de calicreína (Solicitud de Patente de Estados Unidos n.º de Serie 09/441.654). Brevemente, se diluyeron en serie patrones de bikunina o fluido de cultivo y se incubaron con un volumen igual de calicreína a 37 °C durante 30 minutos, después de lo cual se añadió un sustrato cromogénico, N-benzoil-Pro-Phe-Arg-pNA. La reacción se incubó durante 15 minutos antes de la adición de ácido acético al 50 %. La cantidad de p-nitroanilida liberada se midió a 405 nM. Las poblaciones que mostraban los mayores títulos de Bikunina se clonaron después a partir de una única célula y se cultivaron en expansión durante un periodo de varias semanas. Los clones que mostraban títulos de Bikunina uniformemente mayores (2-4x) en relación con las células de control CF9-20 se conservaron y se expandieron a matraces de agitación para análisis adicional. Estos clones se redujeron adicionalmente basándose en títulos de Bikunina y características de crecimiento demostradas mientras crecían en el ambiente del matraz de agitación. Se seleccionaron clones candidatos finales después de varios ciclos y análisis exhaustivo en el estadio de matraz de agitación.

La velocidad de producción de Bikunina específica para todas las líneas celulares se expresa como pg de Bikunina/célula/día (SPR). Cada día se recogieron células y se transfirieron a medio nuevo y se incubaron durante 24 horas a 37 °C en matraces de agitación. Al día siguiente, las células se recogieron de nuevo, se contaron y se resuspendieron en medio nuevo del mismo volumen y se incubaron de forma similar durante otras 24 horas. Se realizaron mediciones de la actividad de bikunina (pg/célula/día) en muestras del medio gastado. El mismo procedimiento se repitió cada día hasta que el número y la viabilidad de las células comenzaron a reducirse.

El efecto de las proteínas chaperonas en la expresión de bikunina se muestra en las Figuras 3 y 4. La línea celular de control (CF9-20) expresa Bikunina pero no expresa ninguna de las proteínas chaperonas. El efecto de calnexina, calreticulina y Erp57 en la expresión de bikunina se resume adicionalmente en la Tabla 1.

Tabla 1. Los niveles de producción de Bikunina generales son 2-4 veces mayores en clones que se han supertransfectado con una chaperona

Clon	Aumento de Bikunina en Relación con el Control	Chaperona
X4/14:5	2-4	CNX
X4/14:30	2-4	CNX
X4/19:62	2-4	ERp57
T4/13:22	1,5-2	CRT

Las mediciones del factor de actividad son en relación con una línea celular de control que expresa Bikunina pero no expresa ninguna de las proteínas chaperonas. Las células se cultivaron en medio sin suero en cultivos de matraces de agitación.

Ejemplo 3. La producción de Factor VIII recombinante aumenta en células BHK después de la transfección con chaperonas ER.

Se transfectaron células productoras de Factor VIII estable (MWCB1) (Patente de Estados Unidos n.º 4.965.199, ATCC n.º CRL 8544) con vectores de expresión de chaperonas además de pPUR, un vector que contiene gen

resistente a puromicina, en una relación 10:1. Aproximadamente 4 x 10⁶ células MWCB 1 se transfectaron con un total de 5 µg de ADN usando el reactivo DMRIE-C y medio OPTI-MEM (Life Technology, MD) en placas de 6 pocillos. Tres días después de la transfección, se sembraron 100.000 células en placas de 6 pocillos y después se seleccionaron en presencia de puromicina 1-2 µg/ml con medio OPTI-MEM que contenía FBS al 2 % durante 2 semanas. Las colonias resistentes a puromicina se seleccionaron manualmente y se sembraron en placas de 96 pocillos y se expandieron sin la presencia de fármaco. Se exploraron poblaciones clonales individuales con respecto a producción de Factor VIII usando un kit COATEST (Chromogenix, Italia) según las instrucciones del fabricante. Los clones de alta producción se expandieron secuencialmente a partir de la placa de 6 pocillos, a un matraz T75, seguido de estadio de matraz de agitación para ensayos de estabilidad y productividad. Las chaperonas Calnexina (CNX), Calreticulina (CRT), Erp57, Hsp40 y Hsp70 se transfectaron después en células individualmente o en combinaciones de dos. Se observó un aumento significativo de 2 a 3 veces de la productividad del Factor VIII en clones transfectados con CNX, CRT y Erp57, Hsp70 y Hsp40 mientras que el control de vector vacío (PCI-Neo) no mostró ninguna diferencia en comparación con las células MWCB 1 parentales (Tabla 2).

Tabla 2. Productividad de Factor VIII recombinante en clones

	Factor VIII (U/ml)	Factor de Inc (SPR)
MWCB1(27000JC)	0,11	1,00
PCI-Neo + pPUR	0,09	1,00
CNX + pPUR	0,31	2,88
CRT + pPUR	0,13	1,25
Erp57 + pPUR	0,05	0,91
CRT, Erp57 + pPUR	0,29	2,50
Hsp70 + pPUR	0,37	2,50
Hsp40 + pPUR	0,11	1,00
Hsp70, 40 + pPUR	0,28	1,66

15

20

25

30

35

40

10

Las células se sembraron a 1 x 10 6 por ml, un total 15 ml en matraz de agitación de 2 días

Ejemplo 4. La coexpresión de BiP y PDI no potencia la expresión del Factor VIII y el anticuerpo anti TNF en células BHK y CHO.

Se supertransfectaron células CHO recombinantes (como se ha descrito en el Ejemplo 2) que expresaban altos niveles de bikunina, y células BHK recombinantes (como se ha descrito en el Ejemplo 3) que expresaban altos niveles de Factor VIII recombinante (rFVIII) con pHyg (plásmido que confiere resistencia a higromicina) y pBiP. Las condiciones transfectantes y condiciones de selección fueron iguales que en el Ejemplo 2. Después de la selección en higromicina y clonación con dilución limitante, los clones se evaluaron con respecto a productividad para actividad de bikunina y rFVIII. No hubo diferencias significativas en la productividad específica de clones derivados de células transfectadas solamente con el vector de control (pHyg) y clones derivados de células transfectadas con pBiP.

Ejemplo 5. Transfección de clon productor de IL2SA con glutamina sintetasa (GS) y Hsp70.

Se cotransfectó la línea celular CHO productora de IL2SA (agonista selectivo de IL2, Patente de Estados Unidos n.º 6.348.192), 49-19-H42 (una variante clonal del depósito de la ATCC PTA-8), con PCI-GS y PCI-neo-Hsp70. Se transfectaron 4 x 10⁶ células con 2,5 μg de ADN plasmídico usando reactivos DMRIE-C y medio OPTI-MEM (Life Technology, MD) en placas de 6 pocillos según las instrucciones del fabricante. Tres días después de la transfección, las células se sembraron en placas de 150 mm y 96 pocillos y después se seleccionaron en presencia de MSX (metionina sulfoxinimina) 10 μM y G418 250 μg/ml con medio DME:F12 (1:1) deficiente en glutamina que contenía FBS dializado 2 % durante 2 semanas. Se seleccionaron colonias de células individuales y se volvieron a sembrar en 96 pocillos. Los clones se seleccionaron durante otra semana con concentraciones mayores de MSX (20 μΜ) y G418 (400 μg/ml). Se genera un grupo a partir de una placa de 150 mm después de selección de 3 semanas. El grupo y los clones se expandieron gradualmente a matraces de agitación y se exploraron con respecto a productividad de IL2 usando ELISA. La expresión de proteínas GS y Hsp70 se confirmó mediante análisis de FACS usando un citómetro de flujo. Las células "GS positivas" se cultivaron en un complemento de medio sin glutamina con glutamato 5,6 mM y glucosa 4 g/l. El tiempo de duplicación de estos clones varió de 24 a 48 horas. Se muestra una comparación de la productividad del parental y los clones en la Tabla 3. Se observó un factor de

aumento de 2-4 en el título general y un factor de aumento de 2-3 en la productividad específica en todos los clones de células individuales en comparación con el grupo o la línea parental.

Tabla 3. Productividad de células productoras de IL2SA

	Título (µg/ml)	Densidad celular (106/ml)	SPR (pg/c/d)	GS	Hsp70
Línea parental 49-19H42	18,78	3,51	2,67	(-)	(-)
49-19H42 GShsp70-SC n.º 12	33,87	2,63	6,44	+++	+++
49-19H42 GShsp70-SC n.º 14	22,08	1,83	6,03	+++	+++
49-19H42 GShsp70-SC n.º 17	64,00	3,05	10,50	+++	+++
49-19H42 GShsp70-grupo	10,59	1,74	3,04	+++	+

Las células se sembraron a 1 millón por ml el día 0 en 15 ml de medio completo (para la línea parental) o medio sin glutamina. Se tomaron muestras a los 2 días después de la siembra y se analizaron usando ELISA. Para expresión de GS y Hsp70, las células se fijaron con EtOH 70 %, se marcaron con anticuerpos apropiados y se analizaron por FACS

+++ = todas las células expresaron GS o Hsp70; + = 30 % de las células expresaron GS o Hsp70; (-) = sin expresión.

Referencias

10

15

25

- (1) Wunderlich, M.; Glockshuber, R. In vivo control of redox potential during protein folding catalyzed by bacterial protein disulfide-isomerase (DsbA). J. Biol. Chem. 1993, 268, 24547-24550.
- (2) Glockshuber, R.; Wunderlich, M.; Skerra, A.; Rudolph, R. Increasing the yield of disulfide-bridged heterologous proteins secreted from transgenic microorganisms. Eur. Pat. No. 92-106978 920423 1995.
 - (3) Tuite, M. F.; Freedman, R. B.; Schultz, L. D.; Ellis, R. W.; Markus, H. Z.; Montgomery, D. L. Method for increasing production of disulfide bonded recombinant proteins by saccharomyces cerevisiae. Patente Australiana n.º AU679448B2 1997.
- (4) Ostermeier, M.; De Sutter, K.; Georgiou, G. Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yield of a heterologous secreted protein with disulfide bonds. J. Biol. Chem. 1996,271, 10616-10622.
 - (5) Shusta, E. V.; Raines, R. T.; Pluckthun, A.; Wittrup, K. D. Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat. Bio-technol. 1998, 16, 773-777.
 - (6) Robinson, A. S.; Hines, V.; Wittrup, K. D. Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Biotechnology (N.Y) 1994,12, 381-384.
 - (7) Dunn, A.; Luz, J. M.; Natalia, D.; Gamble, J. A.; Freedman, R. B.; Tuite, M. F. Protein disulphide isomerase (PDI) is required for the secretion of a native disulphide-bonded protein from Saccharomyces cerevisiae. Biochem. Soc. Trans. 1995, 23, 78S.
 - (8) Hsu, T. A.; Watson, S.; Eiden, J. J.; Betenbaugh, M. J. Rescue of immunoglobulins from insolubility is facilitated by PDI in the baculovirus expression system. Protein Expr. Purif.1996, 7, 281-288.
 - (9) Hsu, T. A.; Betenbaugh, M. J. Co-expression of molecular chaperone BiP improves immunoglobulin solubility and IgG secretion from Trichoplusia in insect cells. Biotechnol. Prog. 1997, 13,96-104.
 - (10) Hsu, T. A.; Eiden, J. J.; Bourgarel, P.; Meo, T.; Betenbaugh, M. J. Effects of coexpressing chaperone BiP on functional antibody production in the baculovirus system. Protein Expr. Purif. 1994, 5, 595-603.
- 35 (11) Ailor, E.; Betenbaugh, M. J. Overexpression of a cytosolic chaperone to improve solubility and secretion of a recombinant IgG protein in insect cells. Biotechnol. Bioeng. 1998, 58, 196-203.
 - (12) Ailor, E.; Betenbaugh, M. J. Modifying secretion and post-translational processing in insect cells. Curr. Opin. Biotechnol. 1999, 10, 142-145.
 - (13) Davis, R., Schooley, K., Rasmussen, B., Thomas, J., Reddy, P. Effect of PDI Overexpression on

Recombinant Protein Secretion in CHO Cells. Biotechnol. Prog. 2000, 16, 736-743.

- (14) Dorner, A. J.; Wasley, L. C.; Raney, P.; Haugejorden, S.; Green, M.; Kaufman, R. J. The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. J. Biol. Chem. 1990, 265, 22029-22034.
- 5 (15) Dorner, A. J.; Wasley, L. C.; Kaufman, R. J. Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J. 1992, 11, 1563-1571.
 - (16) Current Protocols in Molecular Biology, 2003, John Wiley & Sons, Inc.

También se desvelan en el presente documento las siguientes realizaciones:

15

25

40

- 1. Una célula huésped de mamífero para expresión potenciada de un producto proteico recombinante, teniendo dicha célula de mamífero material genético que codifica la expresión de dicho producto proteico recombinante y transformado con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona seleccionada del grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 y Hsp70.
 - 2. La célula huésped de mamífero de acuerdo con la realización 1, en la que se secreta el producto proteico recombinante.
 - 3. La célula huésped de mamífero de acuerdo con la realización 2, en la que el material genético que codifica la expresión de dicho producto proteico recombinante se integra en el ADN de la célula huésped.
 - 4. La célula huésped de mamífero de acuerdo con la realización 3, transformada además con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
- 5. La célula huésped de mamífero de acuerdo con la realización 2, en la que el producto proteico recombinante es bikunina o fragmento de la misma.
 - 6. La célula huésped de mamífero de acuerdo con la realización 5, en la que la transformación se produce con un vector de expresión que comprende ADN que codifica calnexina.
 - 7. La célula huésped de mamífero de acuerdo con la realización 5, en la que la transformación se produce con un vector de expresión que comprende ADN que codifica Erp57.
 - 8. La célula huésped de mamífero de acuerdo con la realización 5, en la que la transformación se produce con un vector de expresión que comprende ADN que codifica calreticulina.
 - 9. La célula huésped de mamífero de acuerdo con la realización 5, en la que la transformación se produce con un vector de expresión que comprende ADN que codifica Hsp70.
- 30 10. La célula huésped de mamífero de acuerdo con la realización 2, en la que el producto proteico recombinante es Factor VIII o fragmento del mismo.
 - 11. La célula huésped de mamífero de acuerdo con la realización 10, en la que dicha transformación se produce con un primer vector de expresión que comprende ADN que codifica calreticulina y un segundo vector de expresión que comprende ADN que codifica Erp57.
- 35 12. La célula huésped de mamífero de acuerdo con la realización 10, en la que dicha transformación se produce con un vector de expresión que comprende ADN que codifica calnexina.
 - 13. La célula huésped de mamífero de acuerdo con la realización 10, en la que dicha transformación se produce con un vector de expresión que comprende ADN que codifica Hsp70.
 - 14. La célula huésped de mamífero de acuerdo con la realización 2, en la que el producto proteico recombinante es IL2SA o fragmento del mismo.
 - 15. La célula huésped de mamífero de acuerdo con la realización 14, en la que dicha transformación se produce con un vector de expresión que comprende ADN que codifica Hsp70.
 - 16. Una célula huésped de mamífero para expresión potenciada de bikunina o fragmento de la misma, teniendo dicha célula de mamífero material genético que codifica la expresión de bikunina o fragmento de la misma y transformado con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona seleccionada del grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 y Hsp70.
 - 17. La célula huésped de mamífero de acuerdo con la realización 16, en la que el material genético que codifica la expresión de bikunina o fragmento de la misma se integra en el ADN de la célula huésped.

- 18. La célula huésped de mamífero de acuerdo con la realización 16, transformada además con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
- 19. Una célula huésped de mamífero para expresión potenciada de Factor VIII o fragmento del mismo, teniendo dicha célula de mamífero material genético que codifica la expresión de Factor VIII o fragmento del mismo y transformado con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona seleccionada del grupo que consiste en calnexina, calreticulina, Erp57, hsp40 y Hsp70.
- 20. La célula huésped de mamífero de acuerdo con la realización 19, en la que el material genético que codifica la expresión de Factor VIII o fragmento del mismo se integra en el ADN de la célula huésped.
- 21. La célula huésped de mamífero de acuerdo con la realización 20, transformada además con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
 - 22. Una célula huésped de mamífero para expresión potenciada de IL2SA o fragmento del mismo, teniendo dicha célula de mamífero material genético que codifica la expresión de IL2SA o fragmento del mismo y transformado con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona seleccionada del grupo que consiste en calnexina, calreticulina, Erp57, hsp40 y Hsp70.
- 23. La célula huésped de mamífero de acuerdo con la realización 22, en la que el material genético que codifica la expresión de IL2SA o fragmento del mismo se integra en el ADN de la célula huésped.
 - 24. La célula huésped de mamífero de acuerdo con la realización 23, transformada además con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
- 25. Un procedimiento para producir una célula huésped de mamífero para expresión potenciada de una proteína recombinante diana o fragmento de la misma que comprende proporcionar una célula de mamífero que tiene material genético que codifica la expresión de una proteína recombinante diana o fragmento de la misma; y transformar la célula de mamífero con al menos un vector de expresión que comprende
 - ADN que codifica una proteína chaperona seleccionada del grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 y Hsp70.
 - 26. El procedimiento de acuerdo con la realización 25 en el que se secreta el producto proteico recombinante.
 - 27. El procedimiento de acuerdo con la realización 26, en el que el material genético que codifica la expresión de dicho producto proteico recombinante se integra en el ADN de la célula huésped.
 - 28. El procedimiento de acuerdo con la realización 28, transformado además con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
 - 29. El procedimiento de acuerdo con la realización 26, en el que el producto proteico recombinante es bikunina o fragmento de la misma.
 - 30. El procedimiento 1 de acuerdo con la realización 29, en el que la transformación se produce con un vector de expresión que comprende ADN que codifica calnexina.
- 35 31. El procedimiento de acuerdo con la realización 29, en el que la transformación se produce con un vector de expresión que comprende ADN que codifica Erp57.
 - 32. El procedimiento de acuerdo con la realización 29, en el que la transformación se produce con un vector de expresión que comprende ADN que codifica calreticulina.
 - 33. El procedimiento de acuerdo con la realización 29, en el que la transformación se produce con un vector de expresión que comprende ADN que codifica Hsp70.
 - 34. El procedimiento de acuerdo con la realización 26, en el que el producto proteico recombinante es Factor VIII o fragmento del mismo.
 - 35. El procedimiento de acuerdo con la realización 34, en el que dicha transformación se produce con un primer vector de expresión que comprende ADN que codifica calreticulina y un segundo vector de expresión que comprende ADN que codifica Erp57.
 - 36. El procedimiento de acuerdo con la realización 34, en el que dicha transformación se produce con un vector de expresión que comprende ADN que codifica calnexina.
 - 37. El procedimiento de acuerdo con la realización 34, en el que dicha transformación se produce con un vector de expresión que comprende ADN que codifica Hsp70.

5

10

25

30

40

- 38. El procedimiento de acuerdo con la realización 26, en el que el producto proteico recombinante es IL25A o fragmento del mismo.
- 39. El procedimiento de acuerdo con la realización 38, en el que dicha transformación se produce con un vector de expresión que comprende ADN que codifica Hsp70.
- 5 40. Un procedimiento para producir un producto proteico recombinante secretado que comprende las etapas de:
 - cultivar una célula huésped de mamífero, teniendo dicha célula huésped de mamífero material genético que codifica la expresión de dicho producto proteico recombinante y transformado con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona seleccionada del grupo que consiste en calnexina, calreticulina, Erp57, hsp40 y Hsp70; y
 - recuperar del medio de cultivo el producto proteico recombinante producido y secretado de este modo.

10

15

30

35

40

- 41. El procedimiento de acuerdo con la realización 40, en el que el material genético que codifica la expresión de dicho producto proteico recombinante se integra en el ADN de la célula huésped.
- 42. El procedimiento de acuerdo con la realización 41, en el que dicha célula huésped de mamífero se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
- 43. Un procedimiento para producir una proteína bikunina o fragmento de la misma que comprende cultivar la célula huésped de mamífero de acuerdo con la realización 5 y recuperar del medio de cultivo la proteína bikunina o fragmento de la misma producida y secretada de este modo.
- 44. El procedimiento de acuerdo con la realización 43, en el que dicha célula huésped de mamífero se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
 - 45. Un procedimiento para producir una proteína de Factor VIII o fragmento de la misma que comprende cultivar la célula huésped de mamífero de acuerdo con la realización 10 y recuperar del medio de cultivo la proteína de Factor VIII o fragmento de la misma producida y secretada de este modo.
- 46. El procedimiento de acuerdo con la realización 45, en el que dicha célula huésped de mamífero se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
 - 47. Un procedimiento para producir una proteína IL2SA o fragmento de la misma que comprende cultivar la célula huésped de mamífero de acuerdo con la realización 14 y recuperar del medio de cultivo la proteína IL2SA o fragmento de la misma producida y secretada de este modo.
 - 48. El procedimiento de acuerdo con la realización 47, en el que dicha célula huésped de mamífero se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína de glutamina sintetasa.
 - 49. Un procedimiento para potenciar el rendimiento de proteína bikunina recombinante en una línea celular CHO, en el que se ha introducido previamente material genético que codifica la expresión de dicha bikunina recombinante en una primera línea celular CHO, comprendiendo dicho procedimiento las etapas de:
 - insertar al menos un vector de expresión de proteína chaperona en dicha primera línea celular CHO para formar una línea celular CHO modificada; y seleccionar de dicha línea celular CHO modificada al menos una segunda línea celular que muestra rendimiento potenciado de la proteína bikunina recombinante.
 - 50. El procedimiento de acuerdo con la realización 49, en el que el material genético que codifica la expresión de dicha bikunina recombinante se integra en el ADN de la primera célula CHO.
 - 51. El procedimiento de acuerdo con la realización 50, en el que la segunda línea celular se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
- 45 52. El procedimiento de acuerdo con la realización 49, en el que se produce al menos una segunda línea celular a partir de dicha primera línea celular seleccionando una parte de dicha primera línea celular que muestra integración del vector de expresión de proteína chaperona en ADN del huésped.
 - 53. El procedimiento de acuerdo con la realización 49, en el que dicho vector de expresión de proteína chaperona comprende ADN que codifica una proteína chaperona seleccionada del grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 y Hsp70.

- 54. El procedimiento de acuerdo con la realización 49, en el que dicha selección se produce en presencia de G418.
- 55. Un procedimiento para potenciar el rendimiento del factor VIII recombinante en una línea celular de riñón de cría de hámster (BHK), en el que se ha introducido previamente material genético que codifica la expresión de dicho Factor VIII recombinante en una primera línea celular BHK, comprendiendo dicho procedimiento las etapas de:

5

10

20

30

35

50

insertar al menos un vector de expresión de proteína chaperona en dicha primera línea celular BHK para formar una línea celular BHK modificada; y

- seleccionar de dicha línea celular BHK modificada al menos una segunda línea celular que muestra rendimiento potenciado del producto de Factor VIII recombinante.
- 56. El procedimiento de acuerdo con la realización 55, en el que el material genético que codifica la expresión de dicho Factor VIII recombinante se integra en el ADN de la primera célula BHK.
- 57. El procedimiento de acuerdo con la realización 55, en el que dicha segunda línea celular se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
- 15 58. El procedimiento de acuerdo con la realización 55, en el que al menos una segunda línea celular se produce a partir de dicha primera línea celular seleccionando una parte de dicha primera línea celular que muestra integración del vector de expresión de proteína chaperona en ADN del huésped.
 - 59. El procedimiento de acuerdo con la realización 55, en el que dicho vector de expresión de proteína chaperona comprende ADN que codifica una proteína chaperona seleccionada del grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 o Hsp70.
 - 60. El procedimiento de acuerdo con la realización 55, en el que dicha célula BHK se transfecta adicionalmente con un vector que incluye un gen resistente a puromicina.
 - 61. El procedimiento de acuerdo con la realización 55, en el que la selección se produce en presencia de puromicina.
- 62. Un procedimiento para potenciar el rendimiento de proteínas IL2SA recombinantes en una línea celular CHO, en la que se ha introducido previamente material genético que codifica la expresión de dicho IL2SA recombinante en una primera línea celular CHO, comprendiendo dicho procedimiento las etapas de:
 - insertar al menos un vector de expresión de proteína chaperona en dicha primera línea celular CHO para formar una línea celular CHO modificada; y
 - seleccionar de dicha línea celular CHO modificada al menos una segunda línea celular que muestra rendimiento potenciado de la proteína IL2SA recombinante.
 - 63. El procedimiento de acuerdo con la realización 62, en el que el material genético que codifica la expresión de dicho IL2SA recombinante se integra en el ADN de la primera célula CHO.
 - 64. El procedimiento de acuerdo con la realización 63, en el que la segunda línea celular se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
 - 65. El procedimiento de acuerdo con la realización 62, en el que dicho vector de expresión de proteína chaperona comprende ADN que codifica una proteína chaperona seleccionada del grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 y Hsp70.
- 66. Un procedimiento para potenciar el rendimiento de una bikunina recombinante o fragmento en una línea celular CHO que comprende introducir material genético que codifica bikunina o fragmento de la misma en una línea celular CHO que muestra expresión de proteína chaperona potenciada.
 - 67. El procedimiento de acuerdo con la realización 66, en el que la línea celular CHO se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
- 68. Un procedimiento para potenciar el rendimiento de un Factor VIII recombinante o fragmento del mismo en una línea celular BHK que comprende introducir material genético que codifica dicho Factor VIII o fragmento del mismo en una línea celular BHK que muestra expresión de proteína chaperona potenciada.
 - 69. El procedimiento de acuerdo con la realización 68, en el que la línea celular BHK se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
 - 70. Un procedimiento para potenciar el rendimiento de un IL2SA recombinante o fragmento del mismo en una línea celular CHO que comprende introducir material genético que codifica dicho IL2SA en una línea celular CHO

que muestra expresión de proteína chaperona potenciada.

71. El procedimiento de acuerdo con la realización 70, en el que la línea celular CHO se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.

```
LISTADO DE SECUENCIAS
 5
         <110> Chan, Sham-Yuen Tang, Hsinyi Y Tao, Yiwen Wu, Yongjian Kelly, Ruth
         <120> Uso de chaperonas moleculares para la producción potenciada de proteínas secretadas, recombinantes,
         en células de mamífero
10
          <130> 03-302-A
         <140> 10/792.571
          <141> 04-03-2004
15
         <150> 60/483.505
          <151> 27-06-2003
          <160> 22
20
          <170> PatentIn versión 3.3
          <210> 1
          <211> 28
25
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Oligonucleótido sintético
30
          <400> 1
         atgaattccg ggaggctaga gatcatgg
                                               28
          <210> 2
35
          <211> 28
          <212> ADN
          <213> Secuencia artificial
          <220>
40
          <223> Oligonucleótido sintético
          <400> 2
         attctagatg caggggagga gggagaag
                                               28
45
          <210> 3
          <211> 28
          <212> ADN
          <213> Secuencia artificial
50
          <223> Oligonucleótido sintético
          <400>3
                                               28
         atgaattccc gccatgctgc tatccgtg
55
          <210>4
         <211> 28
          <212> ADN
          <213> Secuencia artificial
60
          <220>
          <223> Oligonucleótido sintético
```

<400> 4

	attctagact ggaggcaggc ctctctac 28	
5	<210> 5 <211> 28 <212> ADN <213> Secuencia artificial	
10	<220> <223> Oligonucleótido sintético	
10	<400> 5 atgaattcct ccgcagtccc agccgagc 28	
15	<210> 6 <211> 28 <212> ADN <213> Secuencia artificial	
20	<220> <223> Oligonucleótido sintético	
	<400> 6 attctagact ctcggccctg agaggtaa 28	
25	<210> 7 <211> 1856 <212> ADN <213> Homo sapiens	
30	<220> <221> CDS <222> (23)(1801)	
35	<400> 7	
	gaattooggg aggotagaga to atg gaa ggg aag tgg ttg otg tgt atg tta Met Glu Gly Lys Trp Leu Leu Cys Met Leu 1 5 10	52
	ctg gtg ctt gga act gct att gtt gag gct cat gat gga cat gat gat Leu Val Leu Gly Thr Ala Ile Val Glu Ala His Asp Gly His Asp Asp 15 20 25	100
	gat gtg att gat att gag gat gac ctt gac gat gtc att gaa gag gta Asp Val Ile Asp Ile Glu Asp Asp Leu Asp Asp Val Ile Glu Glu Val 30 35 40	148
	gaa gac tca aaa cca gat acc act gct cct cct tca tct ccc aag gtt Glu Asp Ser Lys Pro Asp Thr Thr Ala Pro Pro Ser Ser Pro Lys Val 45 50 55	196
	act tac aaa gct cca gtt cca aca ggg gaa gta tat ttt gct gat tct Thr Tyr Lys Ala Pro Val Pro Thr Gly Glu Val Tyr Phe Ala Asp Ser 60 65 70	244

					ctg Leu 80											292
_	_		_	_	gaa Glu		_			_		_			_	340
	_	_	_		tca Ser	_				_					_	388
					cat His											436
	-		-		aag Lys				_	-			-			484
					tgt Cys 160											532
		_			ctg Leu	_	_			_	_				_	580
	_				gat Asp		_			_			_			628
		-			aac Asn			_				_	-			676
					gca Ala											724
					cta Leu 240		_			_		_		_		772
					gtg Val											820
					cct Pro											868
_			_		gat Asp	_	_					_		_	_	916
					tgg Trp											964
					ccc Pro 320											1012

_	cct Pro	_		_	_					_		_	_	-	_	1060
	gga Gly															1108
-	cct Pro		_		_		_	_				-				1156
	aaa Lys 380															1204
	atc Ile										-			-	-	1252
_	gaa Glu			_	_				_	_			_		_	1300
	tcc Ser															1348
	cga Arg															1396
	gct Ala 460	_	_		_	_				_			_	_		1444
	gca Ala	_	_		_	_		_		-	_					1492
-	gcc Ala					_	_				_	-			-	1540
	cag Gln		_		_			_			_	_			_	1588
			510	9-1		0_0	-1-	515	цуз	1111	Asp	Ата	520	GIII		
_	gtg Val	_	510 gaa	gag	gaa	gaa	gag	515 aag	gaa	gag	gaa	aag	520 gac	aag	gga	1636
Asp gat		Lys 525 gag	510 gaa Glu gag	gag Glu gaa	gaa Glu gga	gaa Glu gaa	gag Glu 530 gag	515 aag Lys aaa	gaa Glu ctt	gag Glu gaa	gaa Glu gag	aag Lys 535 aaa	520 gac Asp cag	aag Lys aaa	gga Gly agt	1636 1684
Asp gat Asp	Val gag Glu	Lys 525 gag Glu gaa	510 gaa Glu gag Glu	gag Glu gaa Glu gat	gaa Glu gga Gly ggt	gaa Glu gaa Glu 545 ggc	gag Glu 530 gag Glu	515 aag Lys aaa Lys	gaa Glu ctt Leu agt	gag Glu gaa Glu caa	gaa Glu gag Glu 550	aag Lys 535 aaa Lys	520 gac Asp cag Gln	aag Lys aaa Lys gac	gga Gly agt Ser aga	

aga aag cca cga aga gag tga aacaatctta agagcttgat ctgtgatttc 1831

	Arg Lys Pro Arg Glu 590																
	t	tetec	ctcc	tec	cctgc	at c	taga										1856
5	<210> 8 <211> 5 <212> P <213> F	92 PRT	apiens	S													
	<400> 8																
		Met 1	Glu	Gly	Lys	Trp 5	Leu	Leu	Cys	Met	Leu 10	Leu	Val	Leu	Gly	Thr 15	Ala
		Ile	Val	Glu	Ala 20	His	Asp	Gly	His	Asp 25	Asp	Asp	Val	Ile	Asp 30	Ile	Glu
		Asp	Asp	Leu 35	Asp	Asp	Val	Ile	Glu 40	Glu	Val	Glu	Asp	Ser 45	Lys	Pro	Asp
		Thr	Thr 50	Ala	Pro	Pro	Ser	Ser 55	Pro	Lys	Val	Thr	Tyr 60	Lys	Ala	Pro	Val
		Pro 65	Thr	Gly	Glu	Val	Tyr 70	Phe	Ala	Asp	Ser	Phe 75	Asp	Arg	Gly	Thr	Leu 80
		Ser	Gly	Trp	Ile	Leu 85	Ser	Lys	Ala	Lys	Lys 90	Asp	Asp	Thr	Asp	Asp 95	Glu
		Ile	Ala	Lys	Tyr 100	Asp	Gly	Lys	Trp	Glu 105	Val	Glu	Glu	Met	Lys 110	Glu	Ser
		Lys	Leu	Pro 115	Gly	Asp	Lys	Gly	Leu 120	Val	Leu	Met	Ser	Arg 125	Ala	Lys	His
		His	Ala 130	Ile	Ser	Ala	Lys	Leu 135	Asn	Lys	Pro	Phe	Leu 140	Phe	Asp	Thr	Lys
		Pro 145	Leu	Ile	Val	Gln	Tyr 150	Glu	Val	As n	Phe	Gln 155	Asn	Gly	Ile	Glu	Cys 160
		Gly	Gly	Ala	Tyr	Val 165	Lys	Leu	Leu	Ser	Lys 170	Thr	Pro	Glu	Leu	As n 175	Leu
10		Asp	Gln	Phe	His 180	Asp	Lys	Thr	Pro	Tyr 185	Thr	Ile	Met.	Phe	Gly 190	Pro	Asp

Lys	Cys	Gly 195	Glu	Asp	Tyr	Lys	Leu 200	His	Phe	Ile	Phe	Arg 205	His	Lys	Asn
Pro	Lys 210	Thr	Gly	Ile	Tyr	Glu 215	Glu	Lys	His	Ala	Lys 220	Arg	Pro	Asp	Ala
Asp 225	Leu	Lys	Thr	Tyr	Phe 230	Thr	Asp	Lys	Lys	Thr 235	His	Leu	Tyr	Thr	Leu 240
Ile	Leu	Asn	Pro	Asp 245	Asn	Ser	Phe	Glu	Ile 250	Leu	Val	Asp	Gln	Ser 255	Val
Val	Asn	Ser	Gly 260	Asn	Leu	Leu	Asn	Asp 265	Met	Thr	Pro	Pro	Val 270	Asn	Pro
Ser	Arg	G1u 275	Ile	Glu	Asp	Pro	Glu 280	Asp	Arg	Lys	Pro	Glu 285	Asp	Trp	Asp
Glu	Arg 290	Pro	Lys	Ile	Pro	Asp 295	Pro	Glu	Ala	Val	Lys 300	Pro	Asp	Asp	Trp
Asp 305	Glu	Asp	Ala	Pro	Ala 310	Lys	Ile	Pro	Asp	Glu 315	Glu	Ala	Thr	Lys	Pro 320
Glu	Gly	Trp	Leu	Asp 325	Asp	Glu	Pro	Glu	Tyr 330	Val	Pro	Asp	Pro	Asp 335	Ala
Glu	Lys	Pro	Glu 340	Asp	Trp	Asp	Glu	Asp 345	Met	Asp	Gly	Glu	Trp 350	Glu	Ala
Pro	Gln	11e 355		Asn	Pro		Суs 360		Ser	Ala	Pro	Gly 365		Gly	Val
Trp	Gln 370	Arg	Pro	Val	Ile	Asp 375	Asn	Pro	Asn	Tyr	Lys 380	Gly	Lys	Trp	Lys
Pro 385	Pro	Met	Ile	Asp	Asn 390	Pro	Ser	Tyr	Gln	G1 y 395	Ile	Trp	Lys	Pro	A rg 400
Lys	Ile	Pro	Asn	Pro 405	Asp	Phe	Phe	Glu	Asp 410	Leu	Glu	Pro	Phe	Arg 415	Met
Thr	Pro	Phe	Ser 420	Ala	Ile	Gly	Leu	Glu 42 5	Leu	Trp	Ser	Met	Thr 430	Ser	Asp
Ile	Phe	Phe	Asp	Asn	Phe	Ile	Ile	Cys	Ala	Asp	Arg	Arg	Ile	Val	Asp

	As	p Tr 45		la i	Asn	Asp	Gly	Trp 455	Gly	Leu	Lys	Lys	Ala 460	Ala	Asp	Gly	Ala
	A1 46		u P	ro (Gly	Val	Val 470	Gly	Gln	Met	Ile	Glu 475	Ala	Ala	Glu	Glu	Arg 480
	Pr	o Tr	p L	eu !	Trp	Val 485	Val	Tyr	Ile	Leu	Thr 490	Val	Ala	Leu	Pro	Val 495	Phe
	Lę	u Va	.l I		L e u 500	Phe	Cys	Cys	Ser	Gly 505	Lys	Lys	Gln	Thr	Ser 510	Gly	Met
	Gl	u Ty		ys 1 15	Lys	Thr	Asp	Ala	Pro 520	Gln	Pro	Asp	Val	Lys 525	Glu	Glu	Glu
	Gl	u G1 53		ys (Glu	Glu	Glu	Lys 535	Asp	Lys	Gly	Asp	Glu 540	Glu	Glu	Glu	Gly
	G1 54		u L	ys 1	Leu	Glu	Glu 550	Lys	Gln	Lys	Ser	Asp 555	Ala	Glu	Glu	Asp	Gly 560
	Gl	y Th	r V	al:	Ser	Gln 565	Glu	Glu	Glu	Asp	Arg 570	Lys	Pro	Lys	Ala	Glu 575	Glu
	As	p G1	u I		Leu 580	Asn	Arg	Ser	Pro	Arg 585	Asn	Arg	Lys	Pro	Ar g 590	Arg	Glu
<210><211><211><212><213>	1287 ADN	sapie	ens														
<220> <221> <222>	CDS	(1265))														
<400>	9																
	gaat	tece	ge e		-	_			_	_	_	ctc Leu			_	-	50
	Leu										Lys (gag c Glu G 25					98
		-					-			Glu :		aaa c Lys H		_	_	p	146
												ac g Tyr G					194

				50					55					60		
	_			_	cag Gln		_	_	_	_	_			_	_	242
-	-	-			cct Pro		-				-	-	_			290
_		_			cat His		_			_	_					338
	_	_			aat Asn 115	_	_	_	_		-	_			_	38€
	_				atg Met				_		_					434
-	-	-		-	atc Ile				-		-			-		482
	_	-		_	tgc Cys	-	-	_					_			530
					gac Asp											578
					tcc Ser 195											62 <i>6</i>
					cct Pro											674
	_	_		Asp	gat Asp	Pro		Asp	Ser	Lys			_	Trp	•	722
_					cct Pro	-		_	_	_	_			_		770
					gga Gly											818
		_			tgg Trp 275	_			_		_			_		866
-					cac His		-		_							914
gat	ccc	agt	atc	tat	acc	tat	gat	aac	ttt	aac	ata	cta	aac	cta	gac	962

	Asp	Pro	Ser	11e 305	Tyr	Ala	Tyr	Asp	Asn 310	Phe	Gly	Val	Leu	Gly 315	Leu	Asp	
			-	-	_				atc Ile		_						1010
		_		_		-			ttt Phe				_			-	1058
		_	_	-				_	aag Lys	_		-	-			-	1106
									aag Lys								1154
	_		_	_		-	_		gac Asp 390		-		_			-	1202
									gag Glu								1250
	_	gac Asp 415		_	tag	agaç	ggaat	ige (ctcca	agtct	a ga	1					1287
)																	
1	•																
	RT mo s	apien	s														
_			-														

<210> 10 <211> 41 <212> PR <213> Ho

<400> 10

5

Met Leu Leu Ser Val Pro Leu Leu Gly Leu Leu Gly Leu Ala Val

Ala Glu Pro Ala Val Tyr Phe Lys Glu Gln Phe Leu Asp Gly Asp Gly

Trp Thr Ser Arg Trp Ile Glu Ser Lys His Lys Ser Asp Phe Gly Lys

Phe Val Leu Ser Ser Gly Lys Phe Tyr Gly Asp Glu Glu Lys Asp Lys

Gly Leu Gln Thr Ser Gln Asp Ala Arg Phe Tyr Ala Leu Ser Ala Ser 70 65

Phe Glu Pro Phe Ser Asn Lys Gly Gln Thr Leu Val Val Gln Phe Thr 85 90

Val	Lys	His	Glu 100	Gln	Asn	Ile	Asp	Cys 105	Gly	Gly	Gly	Tyr	Val 110	Lys	Leu
Phe	Pro	Asn 115	Ser	Leu	Asp	Gln	Thr 120	Asp	Met	His	Gly	Asp 125	Ser	Glu	Tyr
Asn	Ile 130	Met	Phe	Gly	Pro	Asp 135	Ile	Cys	Gly	Pro	Gly 140	Thr	Lys	Lys	Val
His 145	Val	Ile	Phe	Asn	Tyr 150	Lys	Gly	Lys	Asn	Val 155	Leu	Ile	Asn	Lys	Asp 160
Ile	Arg	Cys	Lys	Asp 165	Asp	Glu	Phe	Thr	His 170	Leu	Tyr	Thr	Leu	Ile 175	Val
Arg	Pro	Asp	As n 180	Thr	Tyr	Glu	Val	Lys 185	Ile	Asp	Asn	Ser	Gln 190	Val	Glu
Ser	Gly	Ser 195	Leu	Glu	Asp	Asp	Trp 200	Asp	Phe	Leu	Pro	Pro 205	Lys	Lys	Ile
Lys	Asp 210	Pro	Asp	Ala	Ser	Lys 215	Pro	Glu	Asp	Trp	Asp 220	Glu	Arg	Ala	Lys
Ile 225	Asp	Asp	Pro	Thr	Asp 230	Ser	Lys	Pro	Glu	Asp 235	Trp	Asp	Lys	Pro	Glu 2 4 0
His	Ile	Pro	Asp	Pro 245	Asp	Ala	Lys	Lys	Pro 250	Glu	Asp	Trp	Asp	Glu 255	Glu
Met	Asp	Gly	Glu 260	-	Glu	Pro	Pro	Val 265		Gln	Asn	Pro	Glu 270	Tyr	Lys
Gly	Glu	Trp 275	Lys	Pro	Arg	Gln	11e 280	Asp	Asn	Pro	Asp	Tyr 285	Lys	Gly	Thr
Trp	Ile 290	His	Pro	Glu	Ile	Asp 295	Asn	Pro	Glu	Tyr	Ser 300	Pro	Asp	Pro	Ser
Ile 305	Tyr	Ala	Tyr	Asp	As n 310	Phe	Gly	Val	Leu	Gly 315	Leu	Asp	Leu	Trp	Gln 320
Val	Lys	Ser	Gly	Thr 325	Ile	Phę	Asp	Asn	Phe 330	Leu	Ile	Thr	Asn	Asp 335	Glu
Ala	Tyr	Ala	Glu 340	Glu	Phe	Gly	Asn	Glu 345		Trp	Gly	Val	Thr 350	Lys	Ala

	Ala	a Gl		ys (55	Gln	Met	Lys	Asp	Lys 360	Gln	Asp	Glu	Glu	G1r 365		g Leu	Lys
	Glı	u G1 37		lu (€lu	Asp	Lys	Lys 375	Arg	Lys	Glu	Glu	Glu 380		ı Al	a Glu	Asp
	Ly: 38!		.u A	sp A	Asp	Glu	Asp 390	Lys	Asp	Glu	Asp	Glu 395	Glu	Asp	Gl	u Glu	Asp 400
	Ly	s Gl	.u G	lu A	_	Glu 405	Glu	Glu	Asp	Val	Pro 410	Gly	Gln	Ala	ı Ly	s Asp 415	
	Lei	ц															
<210><211><211><212><213>	1696	o sapi	iens														
<220> <221> <222>		(1582	2)														
<400>	· 11																
	gaati	tcct	cc ç	gcag	taca	ag c	cgag	cgc	g acc	ectto	cgg	ccgt	cccc	ac c	ccac	ctcgc:	60
	gaati cgcc	atg	cgo	ct	c cg	c cg	c cta	a gc	g etç	, ttc	ccg	ggt	gtg	gcg	ctç	_	60 109
	_	atg Met 1 gcc	gcg Ard	g Lei	c cg u Ar	c cg g Ar 5	c cta g Len	a gcq u Ala	g cto a Lei gcc	tcc	ccg Pro 10	ggt Gly gtg	gtg Val	gcg Ala gaa Glu	ctç Lev ctc	ctt Leu 15	
	cgcc	atg Met 1 gcc Ala	gcg Ala	gcc Ala	c cg u Ar cgc Arg 20	c cg g Ar 5 ctc Leu agt Ser	gcc Ala	gct Ala	g cto a Let gcc Ala tcc Ser	tcc Ser 25 gac Asp	ccg Pro 10 gac Asp	ggt Gly gtg Val	gtg Val cta (Leu (tct (Ser)	gcg Ala gaa Glu gcg	ctc Leu 30	ctt Leu 15 acg Thr	109
	ctt (Leu i	atg Met 1 gcc Ala gac Asp	gcg Ala aac Asn	gcc Ala ttc Phe 35	c cg u Ar cgc Arg 20 gag Glu	c cg g Ar 5 ctc Leu agt Ser	g Len gcc Ala egc Arg	gct Ala	g ctq a Let gcc Ala tcc Ser 40	tcc Ser 25 gac Asp	ccg Pro 10 gac Asp acg Thr	ggt Gly gtg Val ggc Gly	gtg Val cta (Leu (tct (Ser l	gcg Ala gaa Glu gcg Ala 45	ctc Leu 30 ggc Gly	ctt Leu 15 acg Thr	109 157
	cgcc ctt (Leu i gac (Asp i atg (Met i	atg Met 1 gcc Ala gac Asp ctc	gcg Ala aac Asn gtc Val 50	gcc Ala ttc Phe 35 gag Glu	c cgu Ar cgc Arg 20 gag Glu ttc Phe	c cg g Ar 5 ctc Leu agt Ser ttc Phe	gcc Ala cgc Arg gct Ala	gct Ala atc Ile ccc Pro 55	g cto a Let gcc Ala tcc Ser 40 tgg Trp	tcc Ser 25 gac Asp tgt Cys	ccg Pro 10 gac Asp acg Thr	ggt Gly Val ggc Gly cac His	gtg Val cta (Leu (tct (Ser 1 tgc a Cys 1	gcg Ala gaa Glu gcg Ala 45 aag Lys	ctc Leu 30 ggc Gly aga Arg	ctt Leu 15 acg Thr ctc Leu ctt Leu	109 157 205
	cgcc ctt (Leu i gac (Asp i atg (Met i	atg Met 1 gcc Ala gac Asp ctcu cct Pro 65	gcg Arc gcg Ala aac Asn gtc Val 50 gag Glu	gcc Ala ttc Phe 35 gag Glu tat Tyr	c cgu Ar cgc Arg 20 gag Glu ttc Phe gaa Glu	c cg g Ar 5 ctc Leu agt Ser ttc Phe gct Ala	gcc Ala cgc Arg gct Ala gca Ala 70 act	gct Ala atc Ile ccc Pro 55 gct Ala	gcc Ala tcc Ser 40 tgg Trp	tcc Ser 25 gac Asp tgt Cys aga Arg	c ccg Pro 10 gac Asp acg Thr gga Gly tta Leu	ggt Gly gtg Val ggc Gly cac His aaa Lys 75	gtg Val cta (Leu (tct (Ser 1 tgc a Cys 1 60 gga a Gly :	gcg Ala gcg Ala 45 aag Lys ata Ile	ctc Leu ctc Leu 30 ggc Gly aga Arg	ctt Leu 15 acg Thr ctc Leu ctt Leu ctt Leu ctt	109 157 205 253
	cgcc ctt (Leu i gac (Asp i atg (Met :	atg Met 1 gcc Ala gac pasp cteu cto 65 gca ala	gcg Arc gcg Ala aac Asn gtc Val 50 gag Glu aag Lys	gcc Ala ttc Phe 35 gag Glu tat Tyr gtt Val	c cgc Arg 20 gag Glu ttc Phe gaa Glu gat Asp tat	c cg g Ar 5 ctc Leu agt Ser ttc Phe gct Ala tgc Cys 85 cca Pro	gcc Ala cgc Arg gct Ala 70 act Thr	gct Ala atc Ile ccc Pro 55 gct Ala gcc Ala ctg	gcc Ala tcc Ser 40 tgg Trp acc Thr aac Asn	tcc Ser 25 gac Asp tgt Cys aga Arg	ccg Pro 10 gac Asp acg Thr gga Gly tta Leu aac Asn 90 ttt	ggt Gly gtg Val ggc Gly cac His aaa Lys 75 acc Thr	gtg Val cta (Leu (tct (Ser (tgc a Cys (Gly) tgt a Cys (gga	gcg Ala Glu gcg Ala 45 aag Lys ata Ile aat Asn	ctc Leu 30 ggc Gly aga Arg gtc Val	ctt Leu 15 acg Thr ctc Leu ctt Leu ctt Tyr 95	109 157 205 253 301

Ala	Gly	Ala	Tyr 115	Asp	Gly	Pro	Arg	Thr 120	Ala	Asp	Gly	Ile	Val 125	Ser	His	
			cag Gln													493
_		_	aaa Lys			_	_		_	_			_			541
	-	_	tca Ser		_		_							-	-	589
			agg Arg													637
-			gag Glu 195		-	-									_	685
			ctc Leu			-			-	_		-	-			733
			atg Met		_					_			_	_		781
			atc Ile	_			_		_	_			_	_		829
			gac Asp													877
	-		ggt Gly 275					_			-	_	_		_	925
			ctg Leu													973
_			ttt Phe	-		_			_			_		_		1021
			att Ile													1069
			cag Gln													1117
			gat Asp 355													1165

		cct Pro															1213
		aat Asn 385		-	-					-			-		_		1261
	-	ttt Phe		-			-			-	-		-			-	1309
		aaa Lys	_				_		-		-				-		1357
	_	aag Lys	_	_	_		_		_						_	-	1405
	•	ggt Gly									•		•	•			1453
		aag Lys 465															1501
		caa Gln	_	_	_					_			_	-			1549
	-	aag Lys	_	_	-	-	-		-		taa	agca	agtaç	gec a	aaac	accact	1602
	ttgt	aaaa	agg a	actct	teca	at ca	agaga	atgg	g aaa	aacca	attg	ggga	aggad	cta q	ggac	catat	1662
	ggga	aatta	att a	acct	ctcaq	gg ga	ccga	gagto	taq	ga.							1696
>	12																

<210> 12 <211> 505

5

<211> 505 <212> PRT

<213> Homo sapiens

<400> 12

Met Arg Leu Arg Arg Leu Ala Leu Phe Pro Gly Val Ala Leu Leu Leu 1 5 10 15

Ala Ala Arg Leu Ala Ala Ala Ser Asp Val Leu Glu Leu Thr Asp 20 25 30

Asp Asn Phe Glu Ser Arg Ile Ser Asp Thr Gly Ser Ala Gly Leu Met 35 40 45

Leu Val Glu Phe Phe Ala Pro Trp Cys Gly His Cys Lys Arg Leu Ala 50 55 60

Pro 65	Glu	Туг	Glu	Ala	A la 70	Ala	Thr	Arg	Leu	Lys 75	Gly	Ile	Val	Pro	Leu 80
Ala	Lys	Val	Asp	Cys 85	Thr	Ala	Asn	Thr	Asn 90	Thr	Cys	Asn	Lys	Tyr 95	Gly
Val	Ser	Gly	Tyr 100	Pro	Thr	Leu	Lys	Ile 105	Phe	Arg	Asp	Gly	Glu 110	Glu	Ala
Gly	Ala	Туг 115	Asp	Gly	Pro	Arg	Thr 120	Ala	Asp	Gly	Ile	Val 125	Ser	His	Leu
Lys	Lys 130	Gln	Ala	Gly	Pro	Ala 135	Ser	Val	Pro	Leu	Arg 140	Thr	Glu	Glu	Glu
Phe 145	Lys	Lys	Phe	Ile	Ser 150	Asp	Lys	Asp	Ala	Ser 155	Ile	Val	Gly	Phe	Phe 160
Asp	Asp	Ser	Phe	Ser 165	Glu	Ala	His	Ser	Glu 170	Phe	Leu	Lys	Ala	Ala 175	Ser
Asn	Leu	Arg	Asp 180	Asn	Tyr	Arg	Phe	Ala 185	His	Thr	Asn	Val	Glu 190	Ser	Leu
Val	Asn	Glu 195	Tyr	Asp	Asp	Asn	Gly 200	Glu	Gly	Ile	Ile	Leu 205	Phe	Arg	Pro
Ser	His 210	Leu	Thr	Asn	Lys	Phe 215	Glu	Asp	Lys	Thr	Val 220	Ala	Tyr	Thr	Glu
Gln 225		Met	Thr	Ser	Gly 230		Ile	Lys	Lys	Phe 235		Gln	Glu	Asn	11e 240
Phe	Gly	Ile	Cys	Pro 245	His	Met	Thr	Glu	As p 250	Asn	Lys	Asp	Leu	I1e 255	Gln
Gly	Lys	Asp	Leu 260	Leu	Ile	Ala	Tyr	Tyr 265	Asp	Val	Asp	Tyr	Glu 270	Lys	Asn
Ala	Lys	Gly 275	Ser	Asn	Tyr	Trp	Arg 280	Asn	Arg	Val	Met	Met 285	Val	Ala	Lys
Lys	Phe 290	Leu	Asp	Ala	Gly	His 295	Lys	Leu	Asn	Phe	Ala 300	Val	Ala	Ser	Arg
Lys 305	Thr	Phe	Ser	His	Glu 310	Leu	Ser	Asp	Phe	Gly	Leu	Glu	Ser	Thr	Ala 320

	Gly	Glu	Ile	Pro	Val 325	Val	Ala	Ile	Arg	Thr 330	Ala	Lys	Gly	Glu	Lys 335	Phe
	Val	Met	Gln	Glu 340	Glu	Phe	Ser	Arg	Asp 345	Gly	Lys	Ala	Leu	Glu 350	Arg	Phe
	Leu	Gln	Asp 355	Tyr	Phe	Asp	Gly	Asn 360	Leu	Lys	Arg	Tyr	Leu 365	Lys	Ser	Glu
	Pro	Ile 370	Pro	Glu	Ser	Asn	Asp 375	Gly	Pro	Val	Lys	Val 380	Val	Val	Ala	Glu
	Asn 385	Phe	Asp	Glu	Ile	Val 390	Asn	Asn	Glu	Asn	Lys 395	Asp	Val	Leu	Ile	Glu 400
	Phe	Tyr	Ala	Pro	Trp 405	Cys	Gly	His	Cys	Lys 410	Asn	Leu	Glu	Pro	Lys 415	Tyr
	Lys	Glu	Leu	Gly 420	Glu	Lys	Leu	Ser	Lys 425	Asp	Pro	Asn	Ile	Val 430	Ile	Ala
	Lys	Met	Asp 435	Ala	Thr	Ala	Asn	Asp 440	Val	Pro	Ser	Pro	Tyr 445	Glu	Val	Arg
	Gly	Phe 450	Pro	Thr	Ile	Tyr	Phe 455	Ser	Pro	Ala	Asn	Lys 460	Lys	Leu	Asn	Pro
	Lys 465	Lys	Tyr	Glu	Gly	Gly 470	Arg	Glu	Leu	Ser	Asp 475	Phe	Ile	Ser	Tyr	Leu 480
	Gln	Arg	Glu	Ala	Thr 485	Asn	Pro	Pro	Val	Ile 490	Gln	Glu	Glu	Lys	Pro 495	Lys
	Lys	Lys	Lys	Lys 500	Ala	Gln	Glu	Asp	Leu 505							
<210> 1 <211> 1 <212> H <213> H	1926 ADN	sapien	s													
<220h																

atg gcc aaa gcc gcg gcg atc ggc atc gac ctg ggc acc acc tac tcc

Met Ala Lys Ala Ala Ala Ile Gly Ile Asp Leu Gly Thr Thr Tyr Ser

5

10

<220> <221> CDS

<400> 13

<222> (1)..(1926)

1				5					10					15		
					caa Gln											96
_			_		acc Thr		_			_		_	_			144
				-	gcg Ala	-	_		_			_		_	_	192
					gcg Ala 70											240
					gac Asp											288
_		_	_		aag Lys		_		_		_				_	336
					gag Glu											384
					tac Tyr											432
		_	_		ttc Phe 150		_	_	_	_	_	_		_	-	480
					ggg Gly				_							528
					gcc Ala		Gly									576
_					ttt Phe	_	_						_			624
	_	_		_	gac As p						_	-	_	-		672
					ggg Gly 230											720
					aag Lys	-			-	_	-		-	-		768
аас	coa	acc	ata	agg	caa	cto	cac	acc	acc	tac	gag	agg	acc	ааσ	agg	816

Lys	Arg	Ala	Val 260	Arg	Arg	Leu	Arg	Thr 265	Ala	Cys	Glu	Arg	Ala 270	Lys	Arg	
	ctg Leu	_		_		_	_	_	_			_		_		864
	ggc Gly 290															912
	tgc Cys															960
	cgc Arg															1008
-	G1y ggg				_			_		_	_	_	_	_	-	1056
	ttc Phe															1104
	gcc Ala 370						_		_		_	_		_	_	1152
	gag Glu			_	_	_	_	_	_	_		_		_	_	1200
	ggg Gly															1248
	tcc Ser					_	_	_	_							1296
	aac Asn															1344
	acg Thr 450															1392
	ccg															1440
	gcc Ala															1488
_	gcc Ala		_						-	_		_	_	_	_	1536

					-	-		cag Gln 520				_					-	1584
	Asp							gtg Val										1632
	tac Fyr 2 545	gcc Ala	ttc Phe	aac Asn	atg Met	aag Lys 550	agc Ser	gcc Ala	gtg Val	gag Glu	gat Asp 555	gag Glu	ggg Gly	ctc Leu	aag Lys	ggg Gl ₃ 560	?	1680
	-		-		-	-	-	aag Lys	-		_	_	_	-		Gli		1728
								aac Asn							Glu			1776
								gag Glu 600										1824
	Gly :							ggt Gly										1872
(GJÅ ååå									L	1920
	gat Asp	tag																1926
<210> 1- <211> 6- <212> P- <213> H- <400> 1-	41 RT Iomo	sapie	ens															
		: A l	a Ly	ys A	la 1	Ala .	Ala	Ile	Gly	Il€	As _j	p Le	u Gl	Ly T	hr!	Thr	Tyr 15	Ser
	Сув	s Va	1 G		al I	Phe	Gln	His	Gly	Lys 25	Va.	l Gl	u II	le I		Ala 30	Asn	Asp
	Gln	ı Gl	y A:		rg !	Thr	Thr	Pro	Ser 40	Tyr	Va.	l Al	a Pl		hr . 5	Asp	Thr	Glu
	Arg	, Le 50		le G	ly A	Asp .	Ala	Ala 55	Lys	Aşn	Gl:	n Va	1 A1		eu .	Aşn	Pro	Gln

5

10

Asn Thr Val Phe Asp Ala Lys Arg Leu Ile Gly Arg Lys Phe Gly Asp 65 70 75 80

Pro	Val	Val	Gln	Ser 85	Asp	Met	Lys	His	Trp 90	Pro	Phe	Gln	Val	Ile 95	Asr
Asp	Gly	Asp	Lys 100	Pro	Lys	Val	Gln	Val 105	Ser	Tyr	Lys	Gly	Glu 110	Thr	Lys
Ala	Phe	Туг 115	Pro	Glu	Glu	Ile	Ser 120	Ser	Met	Val	Leu	Thr 125	Lys	Met	Lys
Glu	Ile 130	Ala	Glu	Ala	Tyr	Leu 135	Gly	Tyr	Pro	Val	Thr 140	Asn	Ala	Val	Ile
Thr 145	Val	Pro	Ala	Tyr	Phe 150	Asn	Asp	Ser	Gln	Arg 155	Gln	Ala	Thr	Lys	Asp 160
Ala	Gly	Val	Ile	Ala 165	Gly	Leu	Asn	Val	Leu 170	Arg	Ile	Ile	Asn	Glu 175	Pro
			180			_		185					Lys 190		
-		195				_	200	-	_	-		205	Asp		
	210					215					220		Thr		
225					230					235			Val		240
				245	-	_	-		250	-	-		Ser	255	
			260					265					Ala 270 Ser		
		275					280					285	Phe		
	290					295					300		Glu		
305	_				310					315			Leu	_	320
	9			22F	u	P	-13		330			P		33E	

Val	Gly	Gly	Ser 340	Thr	Arg	Ile	Pro	Lys 345	Val	Gln	Lys	Leu	Leu 350	Gln	Asp
Phe	Phe	A sn 355	Gly	Arg	Asp	Leu	Asn 360	Lys	Ser	Ile	Asn	Pro 3 6 5	Asp	Glu	Ala
Val	A la 370	Tyr	Gly	Ala	Ala	V al 375	Gln	Ala	Ala	Ile	Leu 380	Met	Gly	Asp	Lys
Ser 385	Glu	Asn	Val	Gln	Asp 390	Leu	Leu	Leu	Leu	Asp 395	Val	Ala	Pro	Leu	Ser 400
Leu	Gly	Leu	Glu	Thr 405	Ala	G1 y	Gly	Val	Met 410	Thr	Ala	Leu	Ile	Lys 415	Arg
Asn	Ser	Thr	Ile 420	Pro	Thr	Lys	Gln	Thr 425	Gln	Ile	Phe	Thr	Thr 430	Tyr	Ser
Asp	Asn	Gln 435	Pro	Gly	Val	Leu	Ile 440	Gln	Val	Tyr	Glu	Gly 445	Glu	Arg	Ala
Met	Thr 450	Lys	Asp	Asn	Asn	Leu 455	Leu	Gly	Arg	Phe	Glu 460	Leu	Ser	Gly	Ile
Pro 46 5	Pro	Ala	Pro	Arg	Gly 470	Val	Pro	Gln	Ile	Glu 475	Val	Thr	Phe	Asp	Ile 480
Asp	Ala	Asn	Gly	Ile 485	Leu	Asn	Val	Thr	Ala 490	Thr	Asp	Lys	Ser	Thr 495	Gly
Lys	Ala	Asn	Lys 500	Ile	Thr	Ile	Thr	Asn 505	Asp	Lys	Gly	Arg	Leu 510	Ser	Lys
Glu	Glu	Ile 515	Glu	Arg	Met	Val	Gln 520	Glu	Ala	Glu	Lys	Tyr 525	Lys	Ala	Glu
Asp	Glu 530	Val	Gln	Arg	Glu	A rg 535	Val	Ser	Ala	Lys	A sn 540	Ala	Leu	Glu	Ser
Tyr 545	Ala	Phe	Asn	Met	Lys 550	Ser	Ala	Val	Glu	Asp 555	Glu	Gly	Leu	Lys	Gly 560
Lys	Ile	Ser	Glu	Ala 565	Asp	Lys	Lys	Lys	Val 570	Leu	Asp	Lys	Cys	Gln 575	Glu
Val	Ile	Ser	Trp	Leu	Asp	Ala	Asn	Thr	Leu	Ala	Glu	Lys	Asp	Glu	Phe

		Glu	His	Ly:		g L	ys (Glu	Leu	Glu 600	Glπ	va	1 C	ys i	Asn	Pro 605	Ile	Ile	Ser
		Gly	Leu 610	_	r Gl	n Gl	Ly i	Ala	Gly 615	Gly	Pro	Gl;	у Р:		Gly 620	Gly	Phe	Gly	Ala
		Gln 625	Gly	Pro) Ly	s Gl	_	Gl y 630	Ser	Gly	Ser	Gl;		ro ! 35	Thr	Ile	Glu	Glu	Val 640
		Asp																	
5	<210> 1 <211> 1 <212> A <213> B	023 ADN	sapier	ıs															
10	<220> <221> 0 <222> (_	23)																
	<400> 1	5																	
																gcg Ala 15			48
																tac Tyr			96
																gag Glu			144
																g atc Ile			192
						Glu										ggc Gly			240
					Gly											cat His 95			288
																ccc Pro			336
															Asp	att Ile			384
		gac	CCS	ttc	tet	aac	ttc	act	ato	aac	ato	aat	aac	tta	. acc	. 220	ata		432

Asp	Pro 130	Phe	\$er	Gly	Phe	Pro 135	Met	Gly	Met	Gly	Gly 140	Phe	Thr	Asn	Val	
											gcc Ala					480
_			-			_		_	-		ctt Leu	-				528
_		-		_	_	_					aag Lys					576
-		-	-		-		-	-			ttg Leu			_		624
_	_				_						ttc Phe 220		_	-		672
_	_							_	-		gtc Val		_		_	720
											tct Ser					768
											ggc Gly					816
_			_	_			_			-	gta Val			-	-	864
											gaa Glu 300					912
											att Ile					960
											acc Thr					1008
-	ctt Leu			tag												1023

<210> 16 <211> 340

<212> PRT

5

<213> Homo sapiens

<400> 16

Met 1	Gly	Lys	Asp	Tyr 5	Tyr	Gln	Thr	Leu	Gly 10	Leu	Ala	Arg	Gly	Ala 15	Sei
Asp	Glu	Glu	Ile 20	Lys	Arg	Ala	Tyr	Arg 25	Arg	Gln	Ala	Leu	Arg 30	Tyr	His
Pro	Asp	Lys 35	Asn	Lys	Glu	Pro	Gly 40	Ala	Glu	Glu	Lys	Phe 45	Lys	Glu	Ile
Ala	Glu 50	Ala	Tyr	Asp	Val	Leu 55	Ser	Asp	Pro	Arg	Lys 60	Arg	Glu	Ile	Phe
Asp 65	Arg	Tyr	Gly	Glu	Glu 70	Gly	Leu	Lys	Gly	Ser 75	Gly	Pro	Ser	Gly	Gly 80
Ser	Gly	Gly	Gly	Ala 85	Asn	Gly	Thr	Ser	Phe 90	Ser	Tyr	Thr	Phe	His 95	G13
Asp	Pro	His	Ala 100	Met	Phe	Ala	Glu	Phe 105	Phe	Gly	Gly	Arg	As n 110	Pro	Phe
Asp	Thr	Phe 115	Phe	Gly	Gln	Arg	Asn 120	Gly	Glu	Glu	Gly	Met 125	Asp	Ile	Ast
Asp	Pro 130	Phe	Ser	Gly	Phe	Pro 135	Met.	Gly	Met	Gly	Gly 140	Phe	Thr	Asn	Val
Asn 145	Phe	Gly	Arg	Ser	Arg 150	Ser	Ala	Gln	Glu	Pro 155	Ala	Arg	Lys	Lys	Glr 160
Asp	Pro	Pro	Val	Thr 165	His	Asp	Leu	_	Val 170		Leu	Glu	Glu	Ile 175	_
Ser	Gly	Сув	Thr 180	Lys	Lys	Met	Lys	Ile 185	Ser	His	Lys	Arg	Leu 190	Asn	Pro
Asp	Gly	Lys 195	Ser	Ile	Arg	Asn	Glu 200	Asp	Lys	Ile	Leu	Thr 205	Ile	Glu	Val
Lys	Lys 210	G1y	Trp	Lys	Glu	Gly 215	Thr	Lys	Ile	Thr	Phe 220	Pro	Lys	G1u	G1y
Asp 225	Gln	Thr	Ser	Asn	Asn 230	Ile	Pro	Ala	Asp	Ile 235	Val	Phe	Val	Leu	Lys 240
Asp	Lys	Pro	His	Asn 245	Ile	Phe	Lys	Arg	Asp	Gly	Ser	Asp	Val	Ile	Тул

E	?ro	Ala	Arg	11d		er I	Leu	Arg	Glu	Ala 265		u C	ys	Gly	Cys	Thr 270	Val	Asn
7	/al	Pro	Thr 275		u As	sp 0	31y	Arg	Thr 280	Ile	Pr	o V	al	Val	Phe 285	Lys	Asp	Val
1	Ίę	Arg 290	Pro	G1	y Me	et Z	Arg	Arg 295	Lys	Val	. Pr	o G		Glu 300	Gly	Leu	Pro	Leu
	Pro 305	Lys	Thr	Pr	o G :		lys 310	Arg	Gly	Asp	Le		1e 15	Ile	Gl u	Phe	Glu	Val 320
1	[le	Phe	Pro	Gl		rg 1 25	le	Pro	Gln	Thr	: Se 33		rg	Thr	Val	Leu	Gl u 335	Gln
,	/al	Leu	Pro	114 34														
<210> 17 <211> 112 <212> ADI <213> Hor	N mo sa	apiens	S															
<221> CD <222> (1). <400> 17	_	22)																
															cag Gln 15			48
															atc Ile			96
															ctg Leu			144
															gat Asp			192
					_						_	_	-		ctc Leu			240
		_	-	_			-			-	_	-			aag Lys 95	_		288
			Cys												acc Thr			336

	agg Ar g														384
	tgg Trp 130		 _		_					_			-		432
	ccc Pro		 									-			480
	tac Tyr	-	 		-	-	-	-				-			528
	gcc Ala			_	_	_		_		_	_				576
	aat Asn	-	 _	_		-	_		-		-				624
_	gaa Glu 210		_	_		-					-	_			672
	cat His														720
_	ccc Pro							_		_					768
	acc Thr														816
_	att Ile			_	_			_				_	_		864
_	ccc Pro 290	_	 	_	_		_	_	_						912
_	acc Thr				-			-		-	-		_	_	960
	agc Ser														1008
	gaa Glu														1056
_	gcc Ala		_	_	_				_			Āsp			1104
	cag Gln 370			taa											1122

<210> 18

5	<211> 3 <212> P <213> h	RT	apiens	5													
5	<400> 1	8															
		Met 1	Thr	Thr	Ser	Ala 5	Ser	Ser	His	Leu	Asn 10	Lys	Gly	Ile	Lys	Gln 15	Val
		Tyr	Met	Ser	Leu 20	Pro	Gln	Gly	Glu	Lys 25	Val	Gln	Ala	Met	Tyr 30	Ile	Trp
		Ile	Asp	Gly 35	Thr	Gly	Glu	Gly	Leu 40	Arg	Cys	Lys	Thr	Arg 45	Thr	Leu	Asp
		Ser	Glu 50	Pro	Lys	Cys	Val	Glu 55	Glu	Leu	Pro	Glu	Trp 60	Asn	Phe	Asp	Gly
		Ser 65	Ser	Thr	Leu	Gln	Ser 70	Glu	Gly	Ser	Asn	Ser 75	Asp	Met	Tyr	Leu	Val 80
		Pro	Ala	Ala	Met	Phe 85	Arg	Asp	Pro	Phe	Arg 90	Lys	Asp	Pro	Asn	Lys 95	Leu
		Val	Leu	Cys	Glu 100	Val	Phe	Lys	Tyr	Asn 105	Arg	Arg	Pro	Ala	Glu 110	Thr	Asn
		Leu	Arg	His 115	Thr	Cys	Lys	Arg	Ile 120	Met	Asp	Met	Val	Ser 125	Asn	Gln	His
		Pro	Trp 130	Phe	Gly	Met	Glu	Gln 135	Glu	Tyr	Thr	Leu	Met 140	Gly	Thr	Asp	Gly
		His 145	Pro	Phe	Gly	Trp	Pro 150	Ser	Asn	Gly	Phe	Pro 155	Gly	Pro	Gln	Gly	Pro 160
		Tyr	Tyr	Cys	Gly	Val 165	Gly	Ala	Asp	Arg	Ala 170	Tyr	Gly	Arg	Asp	Ile 175	Val
		Glu	Ala	His	Tyr 180	Arg	Ala	Cys	Leu	Tyr 185	Ala	Gly	Val	Lys	Ile 190	Ala	Gly

Thr Asn Ala Glu Val Met Pro Ala Gln Trp Glu Phe Gln Ile Gly Pro

		195					200					205			
Cys	Glu 210	Gly	Ile	Ser	Met	Gly 215	Asp	His	Leu	Trp	Val 220	Ala	Arg	Phe	Ile
Leu 225	His	Arg	Val	Cys	Glu 230	Asp	Phe	Gly	Val	Ile 235	Ala	Thr	Phe	Asp	Pro 240
Lys	Pro	Ile	Pro	Gly 245	Asn	Trp	Aşn	Gly	Ala 250	Gly	Cys	His	Thr	Asn 255	Phe
Ser	Thr	Lys	Ala 260	Met	Arg	Glu	Glu	Asn 265	Gly	Leu	Lys	Tyr	Ile 270	Glu	Glu
Ala	Ile	Glu 275	Lys	Leu	Ser	Lys	Arg 280	His	Gln	Tyr	His	Ile 285	Arg	Ala	Tyr
Asp	Pro 290	Lys	Gly	Gly	Leu	Asp 295	Asn	Ala	Arg	Arg	L e u 300	Thr	Gly	Phe	His
Glu 305	Thr	Ser	Asn	Ile	Asn 310	Asp	Phe	Ser	Ala	Gly 315	Val	Ala	Asn	Arg	Ser 320
Ala	Ser	Ile	Arg	11e 325	Pro	Arg	Thr	Val	Gly 330	Gln	Glu	Lys	Lys	Gly 335	Tyr
Phe	Glu	Asp	Arg 340	Arg	Pro	Ser	Ala	Asn 345	Cys	Asp	Pro	Phe	Ser 350	Val	Thr
Glu	Ala	Leu 355	Ile	Arg	Thr	Cys	Leu 360		Asn	Glu	Thr	Gly 365	Asp	Glu	Pro
Phe	Gln 370	Tyr	Lys	Asn											
19 170 PRT <i>Homo</i> s	apien	s													

<210> <211> <212> <213>

<400> 19

5

Ala Asp Arg Glu Arg Ser Ile His Asp Phe Cys Leu Val Ser Lys Val 1 $$ 5 $$ 10 $$ 15

		Val	Gly	Arg	Cys 20	Arg	Ala	Ser	Met	Pro 25	Arg	Trp	Trp	Tyr	Asn 30	Val	Thr
		Asp	Gly		Cys	Gln	Leu	Phe		Tyr	Gly	Gly	Cys		Gly	Asn	Ser
				35					40					45			
		Asn	Asn 50	Tyr	Leu	Thr	Lys	Glu 55	Glu	Cys	Leu	Lys	Lys 60	Cys	Ala	Thr	Val
		Thr 65	Glu	Asn	Ala	Thr	Gly 70	Asp	Leu	Ala	Thr	Ser 75	Arg	Asn	Ala	Ala	Asp 80
		Ser	Ser	Val	Pro	Ser 85	Ala	Pro	Arg	Arg	Gln 90	Asp	Ser	Glu	Asp	His 95	Ser
		Ser	Asp	Met	Phe 100	Asn	Tyr	Glu	Glu	Tyr 105	Cys	Thr	Ala	Asn	Ala 110	Val	Thr
		Gly	Pro	Cys 115	Arg	Ala	Ser	Phe	Pro 120	Arg	Trp	Tyr	Phe	Asp 125	Val	Glu	Arg
		Asn	Ser 130	Cys	Asn	Asn	Phe	Ile 135	Tyr	Gly	Gly	Cys	Arg 140	Gly	Asn	Lys	Asn
		Ser 145	Tyr	Arg	Ser	Glu	Glu 150	Ala	Cys	Met	Leu	Arg 155	Cys	Phe	Arg	Gln	Gln 160
		Glu	Asn	Pro	Pro	Leu 165	Pro	Leu	Gly	Ser	Lys 170						
5	<210> 20 <211> 20 <212> ADN <213> Secue	encia :	artifici	al													
40	<220> <223> Oligor	nucleá	itido s	sintétic	co												
10	<400> 20 agggaaccgc	atggc	caaag	9	20												
15	<210> 21 <211> 25 <212> ADN <213> Secue	encia :	artifici	al													
20	<220> <223> Oligor	nucleá	otido s	sintétio	co												
	<400> 21 gaaaggcccc t	taatct	acct c	ectca			25										

	<210> 22 <211> 3 <212> PRT	
5	<213> Secuencia artificial	
	<220> <223> Péptido sintético	
10	<220> <221> MISC_FEATURE <222> (1)(1) <223> N-benzoílo	
15	<220> <221> MISC_FEATURE <222> (3)(3) <223> Xaa es Arg-pNA	
	<400> 22	
20		Pro Phe Xaa 1

REIVINDICACIONES

- 1. Una célula huésped de mamífero para la expresión potenciada de un producto proteico recombinante, teniendo dicha célula de mamífero material genético que codifica la expresión de dicho producto proteico recombinante y transformado con al menos un vector de expresión que comprende ADN que codifica la proteína chaperona calnexina, en la que dicho producto proteico recombinante es Factor VIII.
- 2. La célula huésped de mamífero de acuerdo con la reivindicación 1, en la que se secreta el producto proteico recombinante.
- 3. La célula huésped de mamífero de acuerdo con la reivindicación 2, en la que el material genético que codifica la expresión de dicho producto proteico recombinante está integrado en el ADN de la célula huésped.
- 4. La célula huésped de mamífero de acuerdo con la reivindicación 3, transformada además con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
 - 5. Un procedimiento de producción de una célula huésped de mamífero de la reivindicación 1, comprendiendo el procedimiento:
- proporcionar una célula de mamífero que tiene material genético que codifica la expresión de una proteína recombinante diana o fragmento de la misma; y transformar la célula de mamífero con al menos un vector de expresión que comprende ADN que codifica la proteína chaperona calnexina.
 - 6. El procedimiento de acuerdo con la reivindicación 5, en el que se secreta el producto proteico recombinante.
- 7. El procedimiento de acuerdo con la reivindicación 6, en el que el material genético que codifica la expresión de dicho producto proteico recombinante se integra en el ADN de la célula huésped.
 - 8. El procedimiento de acuerdo con la reivindicación 5, transformado además con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
 - 9. Un procedimiento de producción de un producto proteico recombinante secretado que comprende las etapas de:
 - cultivar una célula huésped de mamífero de la reivindicación 1; y
 - recuperar del medio de cultivo el producto proteico recombinante producido y secretado de este modo.
 - 10. El procedimiento de acuerdo con la reivindicación 9, en el que el material genético que codifica la expresión de dicho producto proteico recombinante se integra en el ADN de la célula huésped; preferentemente en el que dicha célula huésped de mamífero se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
- 30 11. Un procedimiento para potenciar el rendimiento de proteína recombinante, comprendiendo dicho procedimiento las etapas de:
 - insertar al menos un vector de expresión de proteína chaperona en una primera línea celular para formar una línea celular modificada, en el que previamente se ha introducido material genético que codifica la expresión de dicha proteína recombinante en la línea celular para formar la primera línea celular, en el que la proteína chaperona es calnexina y en el que la proteína recombinante es Factor VIII; y seleccionar de dicha línea celular modificada al menos una segunda línea celular que muestra rendimiento potenciado de la proteína recombinante.
 - 12. El procedimiento de acuerdo con la reivindicación 11, en el que el material genético que codifica la expresión de dicha proteína recombinante se integra en el ADN de la primera línea celular;
- 40 preferentemente en el que la segunda línea celular se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína glutamina sintetasa.
 - 13. El procedimiento de acuerdo con la reivindicación 11, en el que al menos una segunda línea celular se produce a partir de dicha primera línea celular seleccionando una parte de dicha primera línea celular que muestra integración del vector de expresión de proteína chaperona en el ADN del huésped.

45

35

25

5

CNX:	cebador 5': ATGAATTCCGGGAGGCTAGAGATCATGG
	cebador 3': ATTCTAGATGCAGGGGAGGAGGAGAAC
CRT:	cebador 5': ATGAATTCCCGCCATGCTGCTATCCGTG
	cebador 3': ATTCTAGACTGGAGGCAGGCCTCTCTAC
Erp57:	cebador 5': ATGAATTCCTCCGCAGTCCCAGCCGAGC
<u>-</u>	ochodor 21. ATTOTAGACTOTOGGCCCTGAGAGGTAA

FIG. 1

		M E G K W L
1	GAATTCCGGG AGGCTAGAGA	TCATGGAAGG GAAGTGGTTG
	L C M L L V L	G T A I V E A
41	CTGTGTATGT TACTGGTGCT	TGGAACTGCT ATTGTTGAGG
	· H D G H D D	D V I D I E D·
81	CTCATGATGG ACATGATGAT	GATGTGATTG ATATTGAGGA
	· D L D D V I F	E E V E D S K
121	TGACCTTGAC GATGTCATTG	AAGAGGTAGA AGACTCAAAA
	P D T T A P P	SSP KVTY
161	CCAGATACCA CTGCTCCTCC	TTCATCTCCC AAGGTTACTT
	· K A P V P T	G E V Y F A D ·
201	ACAAAGCTCC AGTTCCAACA	GGGGAAGTAT ATTTTGCTGA
	· S F D R G T I	S G W I L S
241	TTCTTTTGAC AGAGGAACTC	TGTCAGGGTG GATTTTATCC
	K A K K D D T	D D E I A K Y ·
281	AAAGCCAAGA AAGACGATAC	CGATGATGAA ATTGCCAAAT
	· D G K W E V	E E M K E S K·
321	ATGATGGAAA GTGGGAGGTA	GAGGAAATGA AGGAGTCAAA
		J V L M S R A
361	GCTTCCAGGT GATAAAGGAC	
	K H H A I S A	
401		
	· F D T K P L	
441		
	~	C G G A Y V K
481		GTGGTGGTGC CTATGTGAAA
		L N L D Q F H ·
52I	CTGCTTTCTA AAACACCAGA	
	· D K T P Y T	
	ATGACAAGAC CCCTTATACG	
	· C G E D Y K I	
60T	ATGTGGAGAG GACTATAAAC	
C 4 7		Y E E K H A K
641	AAAAACCCCA AAACGGGTAT	
cor		K T Y F T D K
ρβΙ	AGAGGCCAGA TGCAGATCTG	AAGACCTATT TTACTGATAA
	- n 1 144 L. V 'l' 1	

FIG. 2A

```
721 GAAAACACAT CTTTACACAC TAATCTTGAA TCCAGATAAT
     S F E I L V D Q S V V N S
 761 AGTTTTGAAA TACTGGTTGA CCAATCTGTG GTGAATAGTG
    · N L L N D M T P P V N P
 801 GAAATCTGCT CAATGACATG ACTCCTCCTG TAAATCCTTC
    · R E I E D P E D R K P E D
 841 ACGTGAAATT GAGGACCCAG AAGACCGGAA GCCCGAGGAT
     W D E R P K I P D P E A V
 881 TGGGATGAAA GACCAAAAAT CCCAGATCCA GAAGCTGTCA
    · P D D W D E D A P A K I
 921 AGCCAGATGA CTGGGATGAA GATGCCCCTG CTAAGATTCC
    · D E E A T K P E G W L D D
 961 AGATGAAGAG GCCACAAAAC CCGAAGGCTG GTTAGATGAT
     E P E Y V P D P D A E K P
1001 GAGCCTGAGT ACGTACCTGA TCCAGACGCA GAGAAACCTG
    · D W D
              E D M D G E W E A
1041 AGGATTGGGA TGAAGACATG GATGGAGAAT GGGAGGCTCC
    · O I A N P R C E S A P G C
1081 TCAGATTGCC AACCCTAGAT GTGAGTCAGC TCCTGGATGT
    G V W Q R P V I D N P N Y K ·
1121 GGTGTCTGGC AGCGACCTGT GATTGACAAC CCCAATTATA
    · G K W K P P M I D N P S Y ·
1161 AAGGCAAATG GAAGCCTCCT ATGATTGACA ATCCCAGTTA
    · Q G I W K P R K I P
                                N P D
1201 CCAGGGAATC TGGAAACCCA GGAAAATACC AAATCCAGAT
    FFED LEP FRM TPF
1241 TTCTTTGAAG ATCTGGAACC TTTCAGAATG ACTCCTTTTA
    · A I G L E L W S M T S D
1281 GTGCTATTGG TTTGGAGCTG TGGTCCATGA CCTCTGACAT
    · F F D N F I I C A D R R I
1321 TTTTTTGAC AACTTTATCA TTTGTGCTGA TCGAAGAATA
    V D D W A N D G W G L K K
1361 GTTGATGATT GGGCCAATGA TGGATGGGGC CTGAAGAAAG
    · A D G A A E P G V V G Q
1401 CTGCTGATGG GGCTGCTGAG CCAGGCGTTG TGGGGCAGAT
    ·IEA
             A E E R P W L
1441 GATCGAGGCA GCTGAAGAGC GCCCGTGGCT GTGGGTAGTC
    Y I L T V A L P V F
                                L V I
1481 TATATTCTAA CTGTAGCCCT TCCTGTGTTC CTGGTTATCC
      F C C
              S G K
                      K O T S
                                  G M E .
```

FIG. 2A (Continuación)

1521	TCTTCTGCTG	TTCTGGAAAG	AAACAGACCA	GTGGTATGGA
	· Y K K	T D A I	P Q P D	V K E
1561	GTATAAGAAA	ACTGATGCAC	CTCAACCGGA	TGTGAAGGAA
	E E E	E K E E	E K D	K G D E
1601	GAGGAAGAAG	AGAAGGAAGA	GGAAAAGGAC	AAGGGAGATG
	\cdot E E E	G E E	K L E E	K Q K ·
1641	AGGAGGAGGA	AGGAGAAGAG	AAACTTGAAG	AGAAACAGAA
	· S D A	EEDO	G T V	S Q E
1681	AAGTGATGCT	GAAGAAGATG	GTGGCACTGT	CAGTCAAGAG
	E E D]	R K P K	A E E	D E I L
1721	GAGGAAGACA	GAAAACCTAA	AGCAGAGGAG	GATGAAATTT
	· N R S	P R N	R K P F	R E * •
1761	TGAACAGATC	ACCAAGAAAC	AGAAAGCCAC	GAAGAGAG TG
	. *			
1801	${\bf A} {\bf A} {\bf A} {\bf C} {\bf A} {\bf A} {\bf T} {\bf C} {\bf T} {\bf T}$	AAGAGCTTGA	TCTGTGATTT	CTTCTCCCTC
1841	CTCCCCTGCA	TCTAGA		

FIG. 2A (Continuación)

```
M L L S V P L L L G ·
 1 GAATTCCCGC CATGCTGCTA TCCGTGCCGC TGCTGCTCGG
   · L L G L A V A E P A V Y F
 41 CCTCCTCGGC CTGGCCGTCG CCGAGCCTGC CGTCTACTTC
    KEQF LDG DGW
                             TSRW.
 81 AAGGAGCAGT TTCTGGACGG AGACGGGTGG ACTTCCCGCT
   · I E S K H K S D F G K F V ·
121 GGATCGAATC CAAACACAAG TCAGATTTTG GCAAATTCGT
   ·LSSGKFYGDEEKD
161 TCTCAGTTCC GGCAAGTTCT ACGGTGACGA GGAGAAAGAT
             T S O
                     DAR FYAL·
    KGLO
201 AAAGGTTTGC AGACAAGCCA GGATGCACGC TTTTATGCTC
   · S A S
            FEP FSNK G Q T ·
241 TGTCGGCCAG TTTCGAGCCT TTCAGCAACA AAGGCCAGAC
   · L V V Q F T V K H E Q N I
281 GCTGGTGGTG CAGTTCACGG TGAAACATGA GCAGAACATC
    D C G G Y V K L F P N S L ·
321 GACTGTGGGG GCGGCTATGT GAAGCTGTTT CCTAATAGTT
   · D Q T
            D M H
                     GDSE
                               Y N
361 TGGACCAGAC AGACATGCAC GGAGACTCAG AATACAACAT
   · M F G P D I C G P G
                               T K K
401 CATGTTTGGT CCCGACATCT GTGGCCCTGG CACCAAGAAG
             F N Y K G K
   V H V I
                             N V L
441 GTTCATGTCA TCTTCAACTA CAAGGGCAAG AACGTGCTGA
   · N K D I R C K D D E F T H ·
481 TCAACAAGGA CATCCGTTGC AAGGATGATG AGTTTACACA
            LIVRPDN
   · ь у т
521 CCTGTACACA CTGATTGTGC GGCCAGACAA CACCTATGAG
   V K I D N S Q V E S G S L
561 GTGAAGATTG ACAACAGCCA GGTGGAGTCC GGCTCCTTGG
   · D D W D F L P P K K
                               I K D ·
601 AAGACGATTG GGACTTCCTG CCACCCAAGA AGATAAAGGA
   · P D A
            SKPE
                       D W D
641 TCCTGATGCT TCAAAACCGG AAGACTGGGA TGAGCGGGCC
   KIDD
             P T D S K P
                             E D W
681 AAGATCGATG ATCCCACAGA CTCCAAGCCT GAGGACTGGG
   · KPE HIP DPDA KKP·
721 ACAAGCCCGA GCATATCCCT GACCCTGATG CTAAGAAGCC
   · E D W D E E M D G E W E P
```

FIG. 2B

761	CGAGGACTGG GATGAAGAGA	TGGACGGAGA	GTGGGAACCC
	P V I Q N P E	Y K G	E W K P
801	CCAGTGATTC AGAACCCTGA	GTACAAGGGT	GAGTGGAAGC
	· R Q I D N P	D Y K (· I W T
841	CCCGGCAGAT CGACAACCCA	GATTACAAGG	GCACTTGGAT
	· H P E I D N	P E Y S	P D P
881	CCACCCAGAA ATTGACAACC	CCGAGTATTC	TCCCGATCCC
	S I Y A Y D N	F G V	L G L D
921	AGTATCTATG CCTATGATAA	CTTTGGCGTG	CTGGGCCTGG
	· L W Q V K S	GTII	F D N F ·
961	ACCTCTGGCA GGTCAAGTCT	GGCACCATCT	TTGACAACTT
	· L I T N D E .	A Y A E	E F G
1001	CCTCATCACC AACGATGAGG	CATACGCTGA	GGAGTTTGGC
	NETW GVT	K A A	E K Q M
1041	AACGAGACGT GGGGCGTAAC	AAAGGCAGCA	GAGAAACAAA
	· K D K Q D E		
1081	TGAAGGACAA ACAGGACGAG	GAGCAGAGGC	TTAAGGAGGA
	· E E D K K R		E A E
1121	GGAAGAAGAC AAGAAACGCA		
		K D E	DEED
1161	GACAAGGAGG ATGATGAGGA		
	· E E D K E E		
1201	ATGAGGAGGA CAAGGAGGAA		AAGATGTCCC
	· G Q A K D E		
	CGGCCAGGCC AAGGACGAGC	TGTAGAGAGG	CCTGCCTCCA
T28T	GTCTAGA		

FIG. 2B (Continuación)

GAATTCCTCC GCAGTCCCAG CCGAGCCGCG ACCCTTCCGG M R L R R L · 41 CCGTCCCCAC CCCACCTCGC CGCCATGCGC CTCCGCCGCC · A L F P G V A L L L A A A · 81 TAGCGCTGTT CCCGGGTGTG GCGCTGCTTC TTGCCGCGGC · R L A A A S D V L E L T D 121 CCGCCTCGCC GCTGCCTCCG ACGTGCTAGA ACTCACGGAC DNFE SRI SDT GSAG. 161 GACAACTTCG AGAGTCGCAT CTCCGACACG GGCTCTGCGG · L M L V E F F A P W C G H · 201 GCCTCATGCT CGTCGAGTTC TTCGCTCCCT GGTGTGGACA · C K R L A P E Y E A A A T 241 CTGCAAGAGA CTTGCACCTG AGTATGAAGC TGCAGCTACC R L K G I V P L A K V D C T · 281 AGATTAAAAG GAATAGTCCC ATTAGCAAAG GTTGATTGCA · ANT NTCNKYG VSG· 321 CTGCCAACAC TAACACCTGT AATAAATATG GAGTCAGTGG · Y P T L K I F R D G E E A 361 ATATCCAACC CTGAAGATAT TTAGAGATGG TGAAGAAGCA GAYD GPR TAD GIVS. 401 GGTGCTTATG ATGGACCTAG GACTGCTGAT GGAATTGTCA · H L K K O A G P A S V P L · 441 GCCACTTGAA GAAGCAGGCA GGACCAGCTT CAGTGCCTCT · R T E E E F K K F I S D K 481 CAGGACTGAG GAAGAATTTA AGAAATTCAT TAGTGATAAA DASIVGFFDDSFSE. 521 GATGCCTCTA TAGTAGGTTT TTTCGATGAT TCATTCAGTG · A H S E F L K A A S N L R · 561 AGGCTCACTC CGAGTTCCTA AAAGCAGCCA GCAACTTGAG · D N Y R F A H T N V E S L 601 GGATAACTAC CGATTTGCAC ATACGAATGT TGAGTCTCTG V N E Y D D N G E G I I L F · 641 GTGAACGAGT ATGATGATAA TGGAGAGGGT ATCATCTTAT · R P S H L T N K F E D K T · 681 TTCGTCCTTC ACATCTCACT AACAAGTTTG AGGACAAGAC · V A Y T E Q K M T S G K I 721 TGTGGCATAT ACAGAGCAAA AAATGACCAG TGGCAAAATT K K F I O E N I F G I C P H · 761 AAAAAGTTTA TCCAGGAAAA CATTTTTGGT ATCTGCCCTC · M T E D N K D L I O G K D ·

FIG. 2C

```
801 ACATGACAGA AGACAATAAA GATTTGATAC AGGGCAAGGA
    \cdot L L I
             A Y Y D
                       VDYEKN
 841 CTTACTTATT GCTTACTATG ATGTGGACTA TGAAAAGAAC
     A K G S N Y W R N R
                               V M M
 881 GCTAAAGGTT CCAACTACTG GAGAAACAGG GTAATGATGG
      AKKFLD
                      A G H K
 921 TGGCAAAGAA ATTCCTGGAT GCTGGGCACA AACTCAACTT
    · A V A S R K T F S H
                                 E L
 961 TGCTGTAGCT AGCCGCAAAA CCTTTAGCCA TGAACTTTCT
                               I P V
    D F G L E S T A G E
1001 GATTTTGGCT TGGAGAGCAC TGCTGGAGAG ATTCCTGTTG
    - AIR TAK GEKF V M
1041 TTGCTATCAG AACTGCTAAA GGAGAGAGT TTGTCATGCA
    · E E F S R D G K A L
                                 E R
1081 GGAGGAGTTC TCGCGTGATG GGAAGGCTCT GGAGAGGTTC
    L Q D Y F D G N L K
                               R Y L
1121 CTGCAGGATT ACTTTGATGG CAATCTGAAG AGATACCTGA
    · SEPIPE SNDG PVK·
1161 AGTCTGAACC TATCCCAGAG AGCAATGATG GGCCTGTGAA
    · V V V A E N F D E I
                                V N N
1201 GGTAGTGGTA GCAGAGAATT TTGATGAAAT AGTGAATAAT
                      E F Y
     ENKDVLI
                                A P W
1241 GAAAATAAAG ATGTGCTGAT TGAATTTTAT GCCCCTTGGT
              K N L
                      E P K Y
    · G H C
                                 K E L·
1281 GTGGTCATTG TAAGAACCTG GAGCCCAAGT ATAAAGAACT
    · G E K L S K D P N I V I A
1321 TGGCGAGAAG CTCAGCAAAG ACCCAAATAT CGTCATAGCC
    K M D A
              TANDVP
                               S P Y
1361 AAGATGGATG CCACAGCCAA TGATGTGCCT TCTCCATATG
    · V R G F P T I Y F S
                                 P A N ·
1401 AAGTCAGAGG TTTTCCTACC ATATACTTCT CTCCAGCCAA
    · K K L N P K K Y E G
                                 GRE
1441 CAAGAAGCTA AATCCAAAGA AATATGAAGG TGGCCGTGAA
    L S D F I S Y L Q R
                               EΑ
1481 TTAAGTGATT TTATTAGCTA TCTACAAAGA GAAGCTACAA
              I Q E E K P K K K K ·
    · P P V
```

FIG. 2C (Continuación)

1521	ACCCCCTGT	AATTCAAGAA GAAAAACCCA	AGAAGAAGAA
	· K A Q	E D L *	
1561	GAAGGCACAG	GAGGATCTCT AAAGCAGTAG	CCAAACACCA
1601	CTTTGTAAAA	GGACTCTTCC ATCAGAGATG	GGAAAACCAT
1641	TGGGGAGGAC	TAGGACCCAT ATGGGAATTA	TTACCTCTCA
	GGGCCGAGAG		

FIG. 2C (Continuación)

```
MAKAAAI GID LGTT YSC.
     ATGGCCAAAG CCGCGGCGAT CGGCATCGAC CTGGGCACCA CCTACTCCTG
     · V G V F Q H G K V E I I A N D Q G ·
 51
     CGTGGGGGTG TTCCAACACG GCAAGGTGGA GATCATCGCC AACGACCAGG
     · NRT TPS YVAF TDT ERL
     GCAACCGCAC CACCCCAGC TACGTGGCCT TCACGGACAC CGAGCGGCTC
 101
     IGDAAKN QVA LNPQ NTV.
     ATCGGGGATG CGGCCAAGAA CCAGGTGGCG CTGAACCCGC AGAACACCGT
 151
     · F D A K R L I G R K F G D P V V Q ·
     GTTTGACGCG AAGCGGCTGA TCGGCCGCAA GTTCGGCGAC CCGGTGGTGC
 201
     · S D M K H W P F Q V I N D
                                          G D K
     AGTCGGACAT GAAGCACTGG CCTTTCCAGG TGATCAACGA CGGAGACAAG
 251
     PKVQ VSY KGE TKAF Y PE
     CCCAAGGTGC AGGTGAGCTA CAAGGGGGAG ACCAAGGCAT TCTACCCCGA
301
     · E I S S M V L T K M K E I A E A Y ·
     GGAGATCTCG TCCATGGTGC TGACCAAGAT GAAGGAGATC GCCGAGGCGT
351
     · L G Y P V T N A V I T V P A Y F
401
     ACCTGGGCTA CCCGGTGACC AACGCGGTGA TCACCGTGCC GGCCTACTTC
     N D S Q R Q A T K D A G V I A G L ·
     AACGACTCGC AGCGCCAGGC CACCAAGGAT GCGGGTGTGA TCGCGGGGCT
451
     · N V L R I I N E P T A A A I A Y G ·
501
     CAACGTGCTG CGGATCATCA ACGAGCCCAC GGCCGCCC ATCGCCTACG
     · L D R T G K G E R N V L I F D L
     GCCTGGACAG AACGGGCAAG GGGGAGCGCA ACGTGCTCAT CTTTGACCTG
551
     GGGT FDV SIL TIDD GIF.
     GGCGGGGGCA CCTTCGACGT GTCCATCCTG ACGATCGACG ACGCCATCTT
     · E V K A T A G D T H L G G E D F D ·
651
     CGAGGTGAAG GCCACGGCCG GGGACACCCA CCTGGGTGGG GAGGACTTTG
     · N R L V N H F V E E F K R K H K
     ACAACAGGCT GGTGAACCAC TTCGTGGAGG AGTTCAAGAG AAAACACAAG
701
     K D I S Q N K R A V R R L R T A C
     AAGGACATCA GCCAGAACAA GCGAGCCGTG AGGCGGCTGC GCACCGCCTG
751
     · E R A K R T L S S S T Q A S L E I ·
     CGAGAGGGCC AAGAGGACCC TGTCGTCCAG CACCCAGGCC AGCCTGGAGA
801
     · DSL FEG IDFY TSI TRA
851
     TCGACTCCCT GTTTGAGGGC ATCGACTTCT ACACGTCCAT CACCAGGGCG
     RFEELCS DLF RSTL EPV.
     AGGTTCGAGG AGCTGTGCTC CGACCTGTTC CGAAGCACCC TGGAGCCCGT
901
     · E K A L R D A K L D K A Q I H D L ·
951
     GGAGAAGGCT CTGCGCGACG CCAAGCTGGA CAAGGCCCAG ATTCACGACC
     · V L V G G S T R I P K V Q K L L
     TGGTCCTGGT CGGGGGCTCC ACCCGCATCC CCAAGGTGCA GAAGCTGCTG
1001
     Q D F F N G R D L N K S I N P D E ·
     CAGGACTTCT TCAACGGGCG CGACCTGAAC AAGAGCATCA ACCCCGACGA
1051
     · A V A Y G A A V Q A A I L M G D K ·
     GGCTGTGGCC TACGGGGCGG CGGTGCAGGC GGCCATCCTG ATGGGGGACA
1101
     \cdot SEN V Q D L L L L D V A P L S
    AGTCCGAGAA CGTGCAGGAC CTGCTGCTGC TGGACGTGGC TCCCCTGTCG
1151
```

FIG. 2D

	LGLETAGGVMTALLKRN
1201	
	·STIPTKQTQIFTT YSDN·
1251	CTCCACCATC CCCACCAAGC AGACGCAGAT CTTCACCACC TACTCCGACA
	· Q P G V L I Q V Y E G E R A M T
1301	ACCAACCCGG GGTGCTGATC CAGGTGTACG AGGGCGAGAG GGCCATGACG
	K D N N L L G R F E L S G I P P A ·
1351	AAAGACAACA ATCTGTTGGG GCGCTTCGAG CTGAGCGGCA TCCCTCCGGC
	· P R G V P Q I E V T F D I D A N G ·
1401	
	· I L N V T A T D K S T G K A N K
1451	GCATCCTGAA CGTCACGGCC ACGGACAAGA GCACCGGCAA GGCCAACAAG
	ITIT N D K G R L S K E E I E R ·
1501	ATCACCATCA CCAACGACAA GGGCCGCCTG AGCAAGGAGG AGATCGAGCG
	· M V Q E A E K Y K A E D E V Q R E ·
1551	CATGGTGCAG GAGGCGGAGA AGTACAAAGC GGAGGACGAG GTGCAGCGCG
	· R V S A K N A L E S Y A F N M K
1601	AGAGGGTGTC AGCCAAGAAC GCCCTGGAGT CCTACGCCTT CAACATGAAG
	SAVE DEG LKG KISE ADK.
1651	AGCGCCGTGG AGGATGAGGG GCTCAAGGGC AAGATCAGCG AGGCCGACAA
	· K K V L D K C Q E V I S W L D A N ·
1701	GAAGAAGGTG CTGGACAAGT GTCAAGAGGT CATCTCGTGG CTGGACGCCA
	· T L A E K D E F E H K R K E L E
1751	ACACCTTGGC CGAGAAGGAC GAGTTTGAGC ACAAGAGGAA GGAGCTGGAG
	Q V C N P I I S G L Y Q G A G G P ·
1801	CAGGTGTGTA ACCCCATCAT CAGCGGACTG TACCAGGGTG CCGGTGGTCC
	-GPGGFGAQGPKGGSGSG-
1851	CGGGCCTGGG GGCTTCGGGG CTCAGGGTCC CAAGGGAGGG TCTGGGTCAG
	· PTIEEVD*
1901	GCCCCACCAT TGAGGAGGTA GATTAG

FIG. 2D (Continuación)

	M G K D Y Y Q T L G L A R G A S	D -
1	ATGGGTAAAG ACTACTACCA GACGTTGGGC CTGGCCCGCG GCGCGT	CGGA
	· E E I K R A Y R R Q A L R Y H	P D
51	CGAGGAGATC AAGCGGGCCT ACCGCCGCCA GGCGCTGCGC TACCAC	CCGG
	· KNKEPGAEEKFKE I A	E
101	ACAAGAACAA GGAGCCCGGC GCCGAGGAGA AGTTCAAGGA GATCGC	IGAG
	AYDVLSDPRKREIFDI	R Y ·
151	GCCTACGACG TGCTCAGCGA CCCGCGCAAG CGCGAGATCT TCGACCC	GCTA
	· G E E G L K G S G P S G G S G	G G
201	CGGGGAGGAA GGCCTAAAGG GGAGTGGCCC CAGTGGCGGT AGCGGCC	GGTG
	· ANG TSFSYTFHGDPH	A
251	GTGCCAATGG TACCTCTTTC AGCTACACAT TCCATGGAGA CCCTCAT	IGCC
	M F A E F F G G R N P F D T F 1	F G·
301	ATGTTTGCTG AGTTCTTCGG TGGCAGAAAT CCCTTTGACA CCTTTT	ITGG
	QRNGEEGMDIDDPFS	G F
351	GCAGCGGAAC GGGGAGGAAG GCATGGACAT TGATGACCCA TTCTCTC	GGCT ·
	· P M G M G G F T N V N F G R S	R
401	TCCCTATGGG CATGGGTGGC TTCACCAACG TGAACTTTGG CCGCTCC	CCGC
		H D .
451		
	·LRVSLEEIYSGCTKK	
501	CCTTCGAGTC TCCCTTGAAG AGATCTACAG CGGCTGTACC AAGAAGA	
	· I S H K R L N P D G K S I R N	
551	AAATCTCCCA CAAGCGGCTA AACCCCGACG GAAAGAGCAT TCGAAAG	
	DKIL TIEVKK GWKE G	
601	GACAAAATAT TGACCATCGA AGTGAAGAAG GGGTGGAAAG AAGGAAG	
	· I T F P K E G D Q T S N N I P	
651	AATCACTTTC CCCAAGGAAG GAGACCAGAC CTCCAACAAC ATTCCAC	
	· I V F V L K D K P H N I F K R	
701	ATATCGTCTT TGTTTTAAAG GACAAGCCCC ACAATATCTT TAAGAGA	λGAT

FIG. 2E

	G S D	Y I Y	P	A R I	SLR	E A L C .
751	GGCTCTGATG	TCATTTA	TCC TG	CCAGGATC	AGCCTCCGGG	AGGCTCTGTG
	· G C T	V N	V P	T L D	G R T	I P V V
801	TGGCTGCACA	GTGAACG	TCC CC	ACTCTGGA	CGGCAGGACG	ATACCCGTCG
	· F K D	V I	R P	G M	R R K V	P G E
851	TATTCAAAGA	TGTTATC	AGG CC	TGGCATGC	GGCGAAAAGT	TCCTGGAGAA
	G L P I	L P K	Т	PEK	R G D	L I I E ·
901	GGCCTCCCCC	TCCCCAA	AAC AC	CCGAGAAA	CGTGGGGACC	TCATTATTGA
	· F E V	I F	PΕ	R I P	Q T S	R T V L
951	GTTTGAAGTG	ATCTTCC	CCG AA	AGGATTCC	CCAGACATCA	AGAACCGTAC
	· E Q V	L P	I *			
1001	TTGAGCA	GGT TCTI	CCAATA	TAG		

FIG. 2E (Continuación)

	M	\mathbf{T}	Т	S	A	s s	S H	L	N	K	G	I	K	Q	V	Y	•
1	<u>ATG</u> A	CCA	CCT	CAG	CAAC	STTC	CCA	CTTA	TAA	AAAG	GCA	TCA	AGC	AGG'	TGT.	A	
	• M	S	Ŀ	P	Q	G :	E I	v v	Q	A	M	Y	I	M	I	D	
51	CATG	TCC	CTG	CCT	CAGO	GTG	AGAZ	AAGT	CCA	GGCC	ATG	TAT	ATC'	TGG:	ATC	G	
	· G	T	G	Ε	G	L	R	C I	Χ .	r R	. Т	L	D	S	E		
101	ATGG	TAC	TGG	AGAZ	AGGA	ACTG	CGCT	GCAZ	AGA	CCCG	GAC	CCT	GGA	CAG	TGA	G	
	P	K	C 7	V]	E E	E L	P	E	W	N	F	D (3	s s	S	т .	
151	CCCA	AGT	GTG	TGG	AAGA	AGTT	GCCI	GAG'	ГGG	AATT	TCG	ATG	GCT(CCA	GTA	С	
	· L	Q	S	E	G	S I	71 5	S D	M	Y	L	V	P	A	A	M	
201	TTTA	.CAG	TCT	GAG	GGT'I	CCA	ACAC	TGA	CAT	GTAT	CTC	GTG	CCT	GCT(GCC.	A	
	· F	R	. D	P	F	R	K	D I	? 1	N K	L	V	L	С	Ε		
251	TGTT	TCG	GGA	CCC	CTTC	CCGT	AAG	GACC	CTA	ACAA	GCT	GGT	GTT	ATG	TGA.	A	
	V	F	K 3	Y 1	N F	R	P	A	E	${f T}$	N	L I	3	Н :	f T	С .	
301										ACCA							
	· K	R	I	M	D	M	V 5	N	.Q	H	P	W	F	G	M	Ε	•
351	TAAA	.CGG	ATA	ATG	GACA	TGG	TGAG	CAA	CCA	GCAC	CCC'	TGG	TTT(GGC2	ATG	G	
	· Q			Т						3 H							
401	AGCA															*. v	
										Υ							
451	TCCA.																
	• D		A							A							•
POT	AGAC.																
										A I							
05I	TGTA																
501										G							
501																	
cen										V							•
DI	TCTC'																
701	י באידיי									erree							

FIG. 2F

	G	C	H	${f T}$	N	F	S	\mathbf{T}	K	A	M	R	E	E	N	G	Ŀ	•
751	GGC	TGC	CAT	A CCA	ACT	TCA	G (CACC	AAG	GCC	ATG	CGG	GAGG	aga	OTAA	GT	CT	
	· K	Y	I	E	E	A	I	E	K	L	S	K	R	Н	Q	Y	H.	
801	GAA	GTA	CAT	C GAG	GAG	GCC.	A T	rtga(GAA	ACT	AAG	CAA(3CGG	CAC	CCAC	ATE	CC	
		I :	R I	A. Y	r D	P		K (G	G I	L .	D 1	1 A	. I	R F	S I		
851	ACA	TCC	GTG	C CTA	TGA	TCC	C A	\AGG(GAG	GCC	TGG	ACA	ATGC	CCC	GACC	FTCI	ΓA	
	\mathbf{T}	G	F	Н	E	T	S	N	I	N	D	F	S	A	G	V	A	
901	ACT	GGA'	TTC	C ATC	AAA	.CCT	C (CAAC	ATC	AAC	GAC'	TTT:	rcte	CTC	GGT(ATE	3C	
	· N	R	S	A	S	I	R	I	P	R	Т	V	G	Q	E	K	K	
951	CAA	TCG'	TAG	C GCC	AGC	ATA	C	CAT'	rcc	CCG	GAC'	rgt:	rggc	CAC	GGA(JAAC	ΞA	
	•	G	Y]	F E	D	R		R I	P	S A	A]	N (C D)]	P E	F 5	3	
1001	AGG	GTT.	ACT:	I TGA	AGA	TCG	T (CGCC	CCT	CTG	CCA	ACT(GCGA	CCC	CCTI	TTT	CG ·	
• ·	V	\mathbf{T}	. E	A	L	I :	R	\mathbf{T}	$C_{\underline{i}}$	Ļ	L	N	E	Т	G	D	E	
1051	GTG	ACA	GAA(G CCC	TCA	TCC	G (CACG	IGT	CTT	CTC	YAAT	GAAA	CCC	GGC(ATO	3A	
	· P	F	Q	Y	K	N	*											
101	add		777	7 m2 C	ת ת ת	7 7 171	יל ידי	70										

FIG. 2F (Continuación)

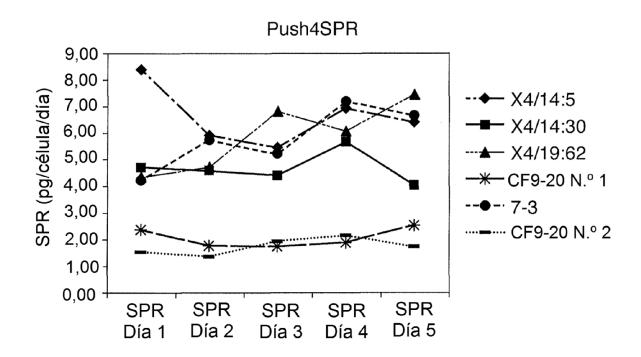


FIG. 3

Productividad específica

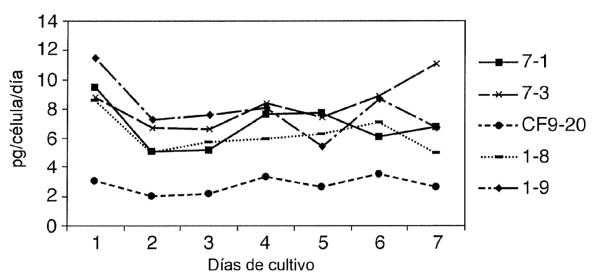


FIG. 4

ADRERSIHDF	CLVSKVVGRC	RASMPRWWYN	30
VTDGSCQLFV	YGGCDGNSNN	YLTKEECLKK	60
CATVTENATG	DLATSRNAAD	SSVPSAPRRQ	90
DSEDHSSDMF	NYEEYCTANA	VTGPCRASFP	120
RWYFDVERNS	CNNFIYGGCR	GNKNSYRSEE	150
ACMLRCFRQQ	ENPPLPLGSK		170

FIG. 5