

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 635 019

(51) Int. CI.:

A61K 39/145 (2006.01) C07K 14/11 (2006.01) C12N 15/869 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

17.10.2011 PCT/EP2011/068073 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 26.04.2012 WO12052384

(96) Fecha de presentación y número de la solicitud europea: 17.10.2011 E 11771123 (4)

(97) Fecha y número de publicación de la concesión europea: 07.06.2017 EP 2629794

(54) Título: Vacuna con vector del herpesvirus de pavo contra la gripe aviar en aves de corral

(30) Prioridad:

28.10.2010 US 407724 P 18.10.2010 EP 10187948

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 02.10.2017

(73) Titular/es:

INTERVET INTERNATIONAL B.V. (100.0%) Wim de Körverstraat 35 5831 AN Boxmeer, NL

(72) Inventor/es:

SONDERMEIJER, PAULUS JACOBUS ANTONIUS VERSTEGEN, IWAN

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Vacuna con vector del herpesvirus de pavo contra la gripe aviar en aves de corral

15

20

25

30

35

40

45

50

La presente solicitud se aplica al campo de las vacunas veterinarias, en particular de vacunas para aves de corral contra la gripe aviar. La vacuna se basa en un vector vírico recombinante que expresa la proteína hemaglutinina de un virus de gripe aviar, en el que el vector es herpesvirus de pavo (HVT) y el gen de la hemaglutinina está conducido por un promotor génico de glucoproteína B de un herpesvirus de mamífero. Puede usarse una vacuna que comprende este vector de HVT+HA para inducir una respuesta inmunitaria protectora contra gripe aviar en aves de corral, y para reducir la propagación de VGA. La invención también se refiere a métodos, usos y vacunas que implican el vector de HVT+HA.

El herpesvirus de pavo (HVT) se describió alrededor de 1970 como un herpesvirus que infecta pavos y que tiene elementos antigénicos en común con el virus de la enfermedad de Marek (VEM). Mientras que VEM es altamente patógeno para pollos, HVT es apatógeno para pollos y podría usarse para vacunación eficaz contra infección y enfermedad provocada por VEM (Okazaki et al., 1970, Avian Diseases, vol. 14, p. 413-429). Desde entonces, la vacunación de pollos contra VEM usando HVT se ha convertido en parte del programa de vacunación convencional de miles de millones de pollos producidos en todo el mundo cada año. Fue muy útil a este respecto el hallazgo de que el HVT, a diferencia del VEM, puede purificarse a partir de las células hospedadoras en las que se produjo, por ejemplo por ultrasonidos, y puede comercializarse como una vacuna estable y liofilizada.

El HVT se replica en los linfocitos de aves, en particular en los linfocitos de sangre periférica (PBL), por lo tanto es un virus sistémico. Induce una respuesta inmunitaria de larga duración, que se dirige principalmente al sistema inmunitario celular, no al humoral.

Las vacunas de HVT pueden aplicarse a pollos en una edad temprana, que es un resultado combinado de la naturaleza apatógena del HVT, así como su insensibilidad relativa a anticuerpos derivados por vía materna contra VEM o HVT. En consecuencia, las vacunas de HVT pueden inocularse en polluelos el día de la eclosión del huevo (día uno), o incluso antes de la eclosión, cuando aún están en el huevo. Este último enfoque, vacunación en el huevo, se aplica habitualmente el día 18 del desarrollo embrionario (DE), que es aproximadamente 3 días antes de la eclosión.

El HVT se clasifica en la actualidad en la subfamilia de alphaherpesvirinae, y también se conoce como: herpesvirus meleágrido 1, herpesvirus de pavo o virus de enfermedad de Marek de serotipo 3.

El virión del HVT tiene todos los elementos de un herpesvirus típico, y es de aproximadamente 160 nm de tamaño en su forma con envoltura. Dentro de la cápsida comprende un genoma grande de ADN bicatenario lineal. La secuencia completa de genoma vírico de aproximadamente 159 kb se conoce desde 2001 (número de referencia de Genbank AF291866).

Sin embargo, mucho antes de esto, se había estudiado y manipulado el genoma del HVT, particularmente sus propiedades apatógenas han conducido a investigación sobre el uso del HVT como un vector vírico para expresión y suministro de diversas proteínas a un pollo hospedador que se ha inoculado con el HVT recombinante. Son ejemplos la expresión de genes que codifican antígenos de otros patógenos de aves de corral tales como: virus de bursitis infecciosa (VBI) (Darteil *et al.*, 1995, Virology, vol. 211, p. 481-490) y virus de la enfermedad de Newcastle (VEN) (Sondermeijer *et al.*, 1993, Vaccine, vol. 11, p. 349-358). Sin embargo también se ha descrito la expresión de un antígeno parasitario (Cronenberg *et al.*, 1999, Acta Virol., vol. 43, p. 192-197), o de una citocina, para manipular la respuesta inmunitaria del pollo (documento WO 2009/156.367; Tarpey *et al.*, 2007, Vaccine, vol. 25, p. 8529-8535).

Se han investigado muchas localizaciones para inserción del gen heterólogo en el genoma del HVT en loci no esenciales adecuados, por ejemplo, en la región corta única del genoma del HVT (documento EP 431.668); o en la región larga única (documento EP 794.257).

Se han descrito varios métodos para insertar ácidos nucleicos heterólogos en HVT: uso de recombinación homóloga (Sondermeijer *et al.*, mencionado anteriormente), regeneración de cósmidos (documento US 5.961.982) o bácmidos (cromosomas artificiales bacterianos) (Baigent *et al.*, 2006, J. of Gen. Virol., vol. 87, p. 769-776).

Para producción a gran escala se produce habitualmente HVT *in vitro*, en cultivos de células fibroblásticas de embrión de pollo (FEP). Estas son células primarias preparadas por tripsinización de embriones de pollo. Los FEP se siembran en monocapas y se infectan con el HVT. Este se replica después en estas células fibroblásticas, incluso aunque HVT *in vivo* se replica en células linfoides.

En la actualidad están disponibles varios productos de vacunas comerciales que comprenden un vector de HVT que expresa un antígeno heterólogo. Por ejemplo: el antígeno F de VEN: Innovax®-ND-SB (MSD Animal Health) y Vectormune® HVT-VEN (Ceva); el antígeno VP2 de VBI: Vaxxitek® HVT+IBD (Merial) y Vectormune® HVT-IBD

(Ceva); o antígenos de virus de laringotraqueítis infecciosa: Innovax®-ILT (MSD Animal Health).

La aplicación de dichas vacunas de vectores de HVT a aves de corral generará una respuesta inmunitaria contra el gen heterólogo expresado, así como contra HVT/VEM. Debido a la virulencia del VEM las cepas de campo han aumentado a lo largo del tiempo, una vacunación típica contra VEM en la actualidad incorpora un componente de vacuna de MVD adicional además del virus o vector de HVT, tal como una cepa de vacuna de VEM de serotipo 1 o 2, por ejemplo una cepa de VEM Rispens o VEM SB1 respectivamente.

El virus de la gripe (VG) es un ortomixovirus que es infeccioso para muchas especies de hospedadores. A partir de la partícula gripal en sí misma no es totalmente posible determinar qué tipo de hospedador se ha infectado, o se infectará en el futuro. Por lo tanto, en la práctica, un virus de la gripe que puede infectar y replicarse en una cierta especie se indica habitualmente como perteneciente a esa especie, aunque se producen regularmente infecciones cruzadas con otras especies, por ejemplo: de aves acuáticas a pollos; de pollos a cerdos, a gatos o a seres humanos; de seres humanos a caballos, etc. En consecuencia, el virus de gripe aviar (VGA) se refiere al virus que puede infectar aves. El VGA puede provocar la enfermedad: gripe aviar (GA), que también se conoce como "peste aviar" o "gripe de las aves" y es una enfermedad de notificación obligatoria en muchos países. Dependiendo del patotipo del VGA infeccioso y el estado inmunitario de las aves infectadas, la enfermedad puede variar de un resultado subclínico, a uno respiratorio leve, a uno altamente letal.

20 La gripe aviar en aves de corral comerciales se contrarresta habitualmente por vacunación en las áreas del mundo en las que el VGA es endémico, por ejemplo en Asia y Oriente Medio. En otras áreas, tales como Europa y Norteamérica, la vacunación está regulada por el gobierno y solamente se permite en casos de brotes, y en combinación con medidas de cuarentena y erradicación.

Son especialmente preocupantes los virus de VGA de tipo denominado altamente patógeno (AP), ya que presentan importantes riesgos zoonóticos de propagación de aves a otras especies, incluyendo seres humanos. El VGA AP posee una proteína HA que contiene un número de aminoácidos básicos en el sitio de escisión de las partes HA1 y HA2 de la proteína HA. La presencia de estos aminoácidos básicos hace que la activación de la proteína HA por escisión pueda realizarse por una proteasa que aparece también en órganos distintos del tracto respiratorio donde se replican VGA patógenos bajos. Esto da como resultado la viremia más sistémica y la gravedad de infección por VGA AP.

Un virión de gripe de tipo A, tal como VGA, comprende un genoma que consiste en ADN monocatenario de polaridad negativa, dividido en 8 segmentos, que codifica 10 proteínas. Las proteínas víricas más relevantes para fines inmunológicos son la hemaglutinina (HA) y neuraminidasa (N). La HA es el principal antígeno, que puede inducir una respuesta inmunitaria humoral protectora. Los VGA se clasifican por la variante de serotipo de sus proteínas HA y N: H1 - H16 y N1 - N9 se han descrito hasta la fecha. Los VGA AP son siempre del subtipo H5 o H7.

Incluso aunque una partícula gripal no está limitada a infección de una especie específica, sí parece haber una prevalencia de ciertos serotipos de VG en ciertas especies: serotipos de VG H1 y H3 en cerdos; H3 y H7 en caballos; H3 en perros; H5 en gatos; H7 y H9 en pavos; y H5, H7 y H9 en pollos.

Debido a que una respuesta inmunitaria contra la gripe es específica de serotipo, las vacunas contra la gripe generalmente coinciden con el subtipo inmunológico del VG en circulación en el campo. Las vacunas de GA comerciales comprenden VGA inactivado completo en una emulsión con aceite como adyuvante, o una cepa de vacuna de VGA atenuada viva.

No obstante, se producen cambios en el virus de campo VG a lo largo del tiempo, conocidos como "deriva genética". En la práctica, una cepa de VG que difiera de cepas existentes en más del 90 % en la identidad de secuencia de aminoácidos de su proteína HA se designará como una nueva clase antigénica, y obtendrá un nuevo número de "clado". Este fenómeno puede enfrentar a una población diana con un VG que ha cambiado más o menos su perfil inmunológico desde la última infección o vacunación. Esto puede hacer a las vacunas existentes, incluso cuando son del subtipo correcto, menos eficaces a lo largo del tiempo, lo que requiere por lo tanto una actualización del virus de vacuna. Entre otras razones, se han desarrollado vacunas de la gripe basadas en técnicas de ADN recombinante para facilitar dicha actualización. Por ejemplo una vacuna de una subunidad VG-HA que se expresa mediante el sistema de vector de expresión de baculovirus. Por medio de técnicas biológicas moleculares rutinarias, el gen de HA H5 expresado puede cambiarse por uno más reciente, cuando se requiera.

De forma similar, se han desarrollado vacunas de vectores para GA que expresan una proteína HA en el contexto de un microorganismo transportador vivo. Son ejemplos de dichos vectores virus tales como: virus de laringotraqueítis infecciosa (VLTI) (Lüschow *et al.*, 2001, Vaccine, vol. 19, p. 4249-59); virus de la peste bovina (Walsh *et al.*, 2000, J. Virol., vol. 74, p. 10165-10175); virus de la estomatitis vesicular (Roberts *et al.*, 1998, J. Virol., vol. 247, p. 4704-4711); virus de la viruela aviar (Swayne *et al.*, 2000, Vaccine, vol. 18, p. 1088-1095); adenovirus (Toro *et al.*, 2010, Avian Diseases, vol. 54, p. 224-231) y VEN (Veits *et al.*, 2006, PNAS USA, vol. 103, p. 8197-8202).

De estos, la vacuna de VHA-H5 Trovac® basada en el vector de viruela aviar (Merial), está disponible en el

3

65

35

45

50

55

mercado.

20

25

30

35

40

Se pretende por supuesto que una vacuna de GA para aves de corral proteja al animal vacunado contra síntomas de la gripe aviar, y contra la reinfección en el futuro. Sin embargo, es casi igualmente relevante para una enfermedad vírica con potencial zoonótico y pandémico como VGA la capacidad de la vacuna para reducir la propagación del virus de tipo silvestre en el ambiente, por ejemplo a otros rebaños, a aves silvestres migratorias o indígenas o a otras especies animales. Puede obtenerse reducción de la propagación vírica induciendo una respuesta inmunitaria muy eficaz en el ave vacunada.

Las vacunas de GA que son vacunas de subunidades o de vector tienen la ventaja de que pueden aplicarse en un enfoque de DIVA: "diferenciación de animales infectados y vacunados", también conocido como: 'vacunas marcadoras". Esto se aplica porque las vacunas recombinantes solamente inducen anticuerpos contra la proteína vírica expresada, no para otras proteínas víricas como aparecería en el caso de infección con un virus completo. DIVA es importante para los países o sectores económicos que desean mantener y certificar un estado libre de VGA, por ejemplo para fines de exportación.

Las vacunas actuales que se basan en VGA inactivado completo en una emulsión de aceite con adyuvante no permiten la distinción por DIVA. En el peor de los casos, las aves de corral vacunadas con dichas vacunas portarán un amplio espectro de anticuerpos contra VGA, pero si estos no son completamente protectores, las aves aún podrían ser portadores de VGA infeccioso vivo, aunque no se observaría.

Un vector vírico recombinante vivo para la expresión y suministro de un antígeno heterólogo debe ser capaz de superar varias tensiones biológicas sobre su estabilidad y eficacia: en primer lugar la capacidad de generar descendencia después de la transfección. Esto indica que el virus recombinante es viable. A continuación, la capacidad de replicarse *in vitro* en una línea celular hospedadora durante muchos ciclos manteniendo al mismo tiempo la expresión del gen heterólogo. Esto indica que el recombinante no se vio atenuado por la inserción, y el inserto se replica y expresa de forma estable. Después, la replicación y expresión *in vivo*. Esto indica que el recombinante puede superar la presión de selección significativa en un animal vivo, tal como la que presenta el sistema inmunitario. En general, la pérdida de expresión del gen ajeno favorece una replicación más rápida en el animal; dichos "mutantes de escape" tienen mutaciones adquiridas, o supresiones importantes en el gen ajeno, y crecen más que los vectores intactos. Finalmente, la replicación en el animal necesita poder generar tal respuesta inmunitaria eficaz que el animal inoculado esté protegido.

Es especialmente importante con respecto a la eficacia *in vivo*, el comportamiento de la vacuna de vector vírico en animales que ya poseen anticuerpos; contra el vector y/o el gen heterólogo que expresa. Para animales jóvenes estos anticuerpos derivan principalmente de sus madres que se han vacunado exhaustivamente contra patógenos habituales; de ahí su designación como anticuerpos derivados por vía materna (ADM). Dichos anticuerpos pueden alterar la replicación del vector y/o la expresión del gen ajeno, porque pueden estimular el sistema inmunitario de los animales para la eliminación (no pretendida) de la vacuna del vector.

Se han descrito construcciones de vectores víricos recombinantes de un vector de HVT con un inserto génico de VGA-HA: la compañía CEVA ha anunciado un producto "VECTORMUNE HVT-A1" en un sitio web (http://www.ce-va.com/en/Responsibility/Contributions), pero no están aún disponibles detalles.

Lan et al. (2009, Acta Microbiologica Sinica, vol. 49, p. 78-84) describen un vector de HVT con un inserto génico de VGA-HA H5, generado usando una técnica mejorada de recombinación de bácmidos. A partir de una traducción de este artículo (que está en chino) así como de un artículo correspondiente sobre la tecnología de recombinación que se usó para VEM (Cui et al., 2009, J. of Virol. Meth., vol. 156, p. 66-72), resulta evidente que Lan et al. construyeron su HVT recombinante por inserción de un casete de expresión en el gen Us2 de HVT; el casete de expresión contenía un gen de H5 HA de VGA bajo el control del promotor de gen temprano inmediato de citomegalovirus humano (IE-hCMV). El casete contiene elementos adicionales necesarios para el proceso de clonación y selección. El artículo de Lan et al. solamente describe la clonación y el rescate de un recombinante de HVT+H5; no se indica ningún ensayo animal, ni ningún dato de eficacia o estabilidad a partir de ensayos in vitro o in vivo.

Como alternativa, Zhou *et al.* (2010, Vaccine, vol. 28, p. 3990-3996) menciona el uso de un promotor de gB para la expresión de VP2 de VBI, a partir del locus Us10 de MDV1. Notablemente este elemento se menciona brevemente en el resumen, pero el resto del artículo describe la construcción y el uso de un vector de MDV1 que expresa lacZ y VP2 conducido por el promotor hCMV-IE a partir del locus Us2.

Sonoda *et al.* (2000, J. of Virol., vol. 74, p. 3217-3226) describen el uso de un promotor génico de gB de MDV1 para conducir la expresión de un gen F de VEN, a partir del locus Us10 de MDV1.

Takekoshi *et al.* (1998, Tokai J. Exp. Clin. Med., vol. 23, p. 39-44) describen el uso de un promotor génico de gB a partir de hCMV para la expresión de genes heterólogos en hCMV.

El documento US2008/0241188 describe el uso del promotor génico de IE de CMV para conducir un gen de HA de

4

65

VGA en un vector de HVT.

5

30

35

40

45

50

55

60

65

El documento WO2007/022151 describe el uso de un promotor génico temprano de hCMV para conducir un gen de HA de VGA en un vector de adenovirus humano.

El documento WO01/05988 describe el uso del promotor génico de IE de mCMV y el promotor de SV40 para conducir genes de virus de leucosis aviar en un vector de HVT.

Sonoda *et al.* (J. of Virol., vol. 74, p. 3217) describen el uso del promotor génico de gB de MDV1 para conducir el gen de F de VEN en un vector de MDV1.

El documento WO2010/119112 describe (en los ejemplos 23-25) el uso de un promotor génico de IE de CMV para conducir la expresión de un gen de HA de tipo H5 de VGA en el contexto de un vector de HVT.

15 Es un objetivo de la presente invención generar una vacuna de GA basada en un vector de HVT; la vacuna de vector debería inducir una protección inmunitaria eficaz contra infección y enfermedad provocada por VGA en aves de corral.

El principal requisito de dicho producto de vacuna de vector inmunológica y económicamente factible es que sea estable, tanto en replicación del vector como en la expresión del gen heterólogo insertado. Esta combinación permite los ciclos extensivos de replicación *in vitro* que son necesarios para producción a gran escala, así como la expresión y presentación continuada al sistema inmunitario del hospedador del gen ajeno insertado, cuando la vacuna de vector se replica en un animal hospedador inoculado. Además, la estabilidad permitirá que la vacuna del vector cumpla los estándares muy altos de seguridad y estabilidad biológica que debe cumplir un virus recombinante que se va a introducir en el campo, para obtener una autorización de comercialización de autoridades gubernamentales nacionales.

Los inventores se sorprendieron al descubrir que los promotores que se habían usado en la técnica anterior para conducir la expresión de genes heterólogos en HVT, no podían usarse para la expresión de un vector de HA de VGA en el contexto de un vector de HVT.

Se ensayaron varios promotores: un promotor de repetición terminal larga del virus de sarcoma de Rous (LTR de VSR) (como se describe en el documento EP 431.668: pRSVcat derivado (Gorman *et al.*, 1982, PNAS USA, vol. 79, p. 6777-6781)); y un promotor génico de IE de hCMV (derivado de pl17: Cox *et al.*, 2002, Scand. J. Immunol., vol. 55, p. 14-23), para conducir la expresión de un gen de HA H5 de VGA, en el locus Us10 del genoma de HVT. El vector con el promotor de IE de hCMV produjo placas después de la transfección, sin embargo estas no pudieron amplificarse durante varios ciclos; el vector de HVT con promotor de LTR produjo placas que pudieron amplificarse, sin embargo estas solamente mostraron expresión de HA muy débil, y cuando se ensayaron en animales como virus recombinante HVP142, no proporcionaron un efecto protector significativo en un periodo de 2-3 (véanse los Ejemplos).

En esta situación, era totalmente inesperado que un promotor génico de gB de un herpesvirus de mamífero, que no se había descrito antes para la conducción de expresión de genes heterólogos en HVT, ni para la expresión de un gen de HA de VGA, podría usarse para construir una vacuna de vector de HVT que expresara un inserto génico de HA de VGA, que mostraba provechosamente estabilidad en replicación de vector y eficacia inmunológica en la expresión de genes aienos.

Sin desear quedar ligado a la teoría, los inventores especulan que el promotor génico de gB de un herpesvirus de mamífero, cuando se usa para la expresión de un gen de HA de VGA en el contexto de un vector de HVT, proporciona el equilibrio justo entre la fuerza de expresión del gen heterólogo y la tensión que esto pone en la capacidad replicativa del HVT recombinante.

Por lo tanto, la invención se refiere a un vector de HVT que comprende un ácido nucleico heterólogo que comprende una secuencia de nucleótidos que codifica una proteína HA de VGA, caracterizada porque dicha secuencia de nucleótidos está unida operativamente a un promotor génico de glucoproteína B (gB) de un herpesvirus de mamífero.

El vector de HVT de acuerdo con la invención es estable en replicación, y proporciona una expresión sostenida del gen de HA de VGA insertado, tanto *in vitro* como *in vivo*. El vector de HVT+HA cuando se usa en una vacuna para aves de corral indujo una respuesta inmunitaria fuerte que podría proteger a las aves contra la enfermedad provocada por una infección de exposición a VGA grave, y podría reducir significativamente la propagación del virus de exposición al ambiente.

Un "vector" para la invención es un microorganismo vehículo recombinante vivo, en el presente documento un HVT.

Un "ácido nucleico heterólogo" para la invención es un ácido nucleico que no aparecía en el HVT parental que se

usó para generar el vector de HVT recombinante de acuerdo con la invención.

15

25

30

35

40

45

50

55

60

Una "proteína" para la invención es una cadena molecular de aminoácidos. La proteína puede modificarse, si se requiere, *in vivo* o *in vitro*, mediante, por ejemplo, glucosilación, amidación, carboxidación, fosforilación, pegilación o cambios en el plegamiento espacial. Una proteína puede ser de origen biológico o sintético. La proteína puede ser una proteína nativa o madura, una pre o proproteína, o un fragmento funcional de una proteína. Entre otros, se incluyen dentro de la definición de proteína péptidos, oligopéptidos y polipéptidos inmunológicamente activos.

Se sabe bien que un "promotor" es una región funcional en el genoma de un organismo que dirige la transcripción de una región codificante cadena abajo. Un promotor es por lo tanto un fragmento de ADN que se sitúa cadena arriba, es decir hacia el lado 5', de una fase abierta de lectura, normalmente un gen.

Como se sabe bien, un promotor inicia la síntesis de ARNm del gen que controla, partiendo del "sitio de inicio de la transcripción" (SIT). El ARNm producido se traduce a su vez en proteína partiendo del codón de inicio del gen, que es la primera secuencia de ATG en la fase abierta de lectura (el primer AUG en el ARNm). Normalmente el SIT se localiza a 30-40 nucleótidos cadena arriba del codón de inicio. Un SIT puede determinarse secuenciando el extremo 5' del ARNm de un gen, por ejemplo por la técnica de RACE.

Un promotor no tiene una longitud específica, sin embargo en promotores generales está comprendido a una distancia de 1.000 nucleótidos cadena arriba de la posición de la A del codón de inicio, que generalmente se indica como A+1; la mayoría de los promotores se sitúan entre -500 y A+1, normalmente entre los nucleótidos -250 y A+1.

Además, los promotores no tienen una secuencia de nucleótidos fija, pero sí contienen varios elementos de secuencia conservados, reconocibles; estos elementos están implicados en la unión a factores de transcripción, y la dirección de la ARN polimerasa, pero también en la regulación del tiempo, la duración, las condiciones y el nivel de transcripción a continuación. De este modo el promotor es sensible a señales de elementos reguladores tales como potenciadores, o a factores de unión a ADN tales como fármacos, hormonas, metabolitos, etc. Un elemento promotor conservado bien conocido es la caja TATA, normalmente situada dentro de los 50 nucleótidos cadena arriba del SIT, habitualmente aproximadamente de 30 nt cadena arriba del SIT. Otros ejemplos de elementos promotores conservados son la caja CAAT, normalmente a aproximadamente 75 nt cadena arriba del SIT, y la caja GC normalmente a aproximadamente 90 nt cadena arriba del SIT.

La localización y el tamaño de un promotor pueden determinarse convenientemente usando ensayos convencionales, tales como la expresión de un gen marcador mediante secciones mayores o menores subclonadas de un promotor sospechado. De una manera similar, ensayando la expresión de un gen marcador (detectando ARN o producción de proteínas), la fuerza relativa de promotores diferentes puede determinarse y compararse.

En la práctica un promotor puede simplemente seleccionarse por subclonación de la región entre dos genes consecutivos, por ejemplo de la señal de poli A del gen cadena arriba al SIT del gen cadena abajo, seguido del recorte del área clonada cuando sea apropiado.

Debido a que un promotor está adyacente al gen del que controla la expresión en el contexto nativo, el conocimiento de la localización de un gen, o el inicio de la transcripción de su ARNm, desvela inherentemente la posición de su promotor adjunto. Esto se aplica también en la invención, donde el "promotor génico de gB de un herpesvirus de mamífero" se refiere al promotor que conduce la expresión de un gen de gB de herpesvirus, y se sitúa inmediatamente cadena arriba de ese gen de gB. La proteína de gB en replicación de herpesvirus normal está implicada en la entrada en células y la propagación celular. Debido a que el gen de gB es un gen tan bien documentado y claramente reconocible, y debido a que los genomas de muchos herpesvirideae se han secuenciado (completamente o en parte), el experto en la materia puede identificar fácilmente y obtener dicho promotor por técnicas rutinarias.

Se presentó una revisión de proteínas gB de herpesvirus en Perreira (1994, Infect. Agents Dis., vol. 3, p. 9-28). El promotor del gen de gB de VHS1 se estudió en detalle en Pederson *et al.* (1992, J. of Virol., vol. 66, p. 6226-6232). Ninguno de estos, sin embargo, describe o sugiere el uso de un promotor de gB de herpesvirus para conducir la expresión de gen heterólogo, ni en HVT ni en ningún otro sistema de vector de expresión.

Para la invención, es necesario que el promotor génico de gB de un herpesvirus de mamífero sea capaz de conducir la expresión del gen de HA. Esto se indica habitualmente como que el promotor está "unido operativamente" al gen o que el gen está "bajo el control del" promotor. Esto significa habitualmente que en la construcción de vector de HVT final el promotor génico de gB y el gen de HA están conectados en el mismo ADN, en proximidad efectiva, y sin señales o secuencias entre ellos que interferirían con una transcripción y traducción eficaz.

En las construcciones de vector de la invención, el gen de HA proporciona el codón de partida. Además las construcciones de vector preparadas fueron tan limpias como fue posible, lo que indica que excepto por algunos sitios de enzimas de restricción, no hubo ningún elemento ajeno sustancial en la construcción de vector recombinante tal como un casete de expresión con elementos heterólogos requeridos para clonación o selección de

recombinantes.

35

40

45

50

Aunque no es estrictamente necesario, en una realización preferida el gen de HA se construye para contener una señal de poliA cadena abajo, por ejemplo de SV40. Dicha señal puede proporcionar una terminación de la transcripción más completa y poliadenilación del transcrito para traducción.

La generación de la construcción del vector de HVT+HA puede realizarse por técnicas biológicas moleculares bien conocidas, que implican clonación, transfección, recombinación, selección y amplificación.

- 10 Un "herpesvirus de mamífero" para la invención se refiere a un herpesvirus que infecta habitualmente y se replica en una especie de mamífero. Preferentemente estas son de la subfamilia taxonómica de Alphaherpesvirinae. Por ejemplo: herpesvirus 1 humano (virus del herpes simple 1), herpesvirus bovino 1, herpesvirus felino 1, herpesvirus equino 1 (HVE) o virus de pseudorrabia (VPR, también conocido como herpesvirus suid 1).
- 15 Los promotores génicos de gB de dichos herpesvirus de mamífero se usan provechosamente para la invención.

Por lo tanto, en una realización preferida el promotor génico de gB de un herpesvirus de mamífero para la invención es de VPR o HVE.

20 Se ha demostrado que los vectores de HVT que comprenden estos promotores génicos de gB son suficientemente estables tanto *in vitro* como *in vivo*, y cuando se usan en una vacuna para aves de corral fueron inmunológicamente muy eficaces en la protección de aves de corral de GA y reducción de la propagación del VGA.

Dichos promotores pueden obtenerse convenientemente de la técnica anterior, tal como de Genbank, por ejemplo para:

- VPR, de n.º de referencia de Genbank: BK001744, región 20139 19596 (el gen de gB VPR es UI 27 o gII), o
- HVE de n.º de referencia de Genbank: AY665713, región 60709 61570 (el gen de gB de HVE1 es ORF 33).
- 30 Además, el n.º de referencia de Genbank pfam00606 representa convenientemente un grupo de proteínas gB de herpesvirus.

La construcción del vector HVP311 como se describe en los ejemplos contenía el promotor génico gB de HVE (SEQ ID NO: 1) y demostró estabilidad *in vitro* e *in vivo*. Cuando se usó como una vacuna, esta construcción mostró una buena protección inmunitaria y reducción de la propagación del virus, véanse los Ejemplos.

Para mejorar la eficacia del promotor génico de gB de un herpesvirus de mamífero para la invención aún más, manteniendo al mismo tiempo su estabilidad, se adaptó el promotor. La adaptación fue una elongación de la secuencia promotora, de modo que ahora no terminaba antes de A+1, sino que se extendía cadena abajo de A+1 del codón de inicio del gen de gB, a la región codificante del gen de gB que normalmente se traduce en proteína.

Un resultado fue que el promotor extendido comprendía ahora uno o más codones ATG, concretamente el codón de inicio original y posiblemente otros tripletes codificantes de metionina. Dichos codones ATG, en esta posición cadena abajo de la caja TATA en el promotor podrían interpretarse por la maquinaria de transcripción celular como un codón de inicio, lo que conduce a inicio prematuro indeseado de la traducción. Por lo tanto los codones ATG cadena abajo de la caja TATA del promotor génico de gB, que estaban comprendidos ahora en la secuencia promotora extendida se modificaron por mutación para hacer a dichos ATG no funcionales como un codón de inicio potencial. Esto permitió que el promotor de gB para la invención incorporara nucleótidos que abarcaban el codón de inicio de gB nativo y se extienden a la región traducida del gen de gB, sin embargo estos nucleótidos adicionales no se están traduciendo, sino que actúan como la secuencia líder extendida.

En consecuencia, se construyeron secuencias promotoras que contenían nucleótidos de la región codificante de gB cadena abajo del A+1 original.

- Por lo tanto, en una realización más preferida el promotor génico de gB de un herpesvirus de mamífero comprende secuencias de nucleótidos de la región traducida de dicho gen de gB, en el que cualquier secuencia de nucleótidos ATG se había cambiado.
- El "cambio" de la secuencia de nucleótidos ATG en el promotor extendido para la invención, se realiza preferentemente por mutación. La secuencia de nucleótidos ATG puede cambiarse en principio a cualquier otro triplete, siempre que esto no reduzca la estabilidad de la replicación, o la expresión de la construcción del vector.

Preferentemente el cambio es por un único nucleótido, preferentemente de ATG a TTG.

El número de nucleótidos cadena abajo de ATG que están comprendidos en un promotor de gB extendido para la invención es de al menos 10, preferentemente de al menos 20, 30, 50, 75 o 100, en ese orden de preferencia. En la

práctica, el número de nucleótidos cadena abajo de A+1 que se incorporan en el promotor extendido para la invención pueden tomarse convenientemente como la secuencia de A+1 hasta, pero sin incluir, el siguiente codón ATG cadena abajo. En ese caso solamente es necesario cambiar por mutación una secuencia ATG (la del codón de inicio).

5

10

La construcción del vector HVP310 como se describe en los ejemplos contiene un promotor génico de gB de VPR extendido en 129 nt más allá de A+1. La única secuencia ATG comprendida en la secuencia extendida fue del codón de inicio original, esta se cambió a TTG por mutación. Este vector mostró una eficacia y estabilidad *in vitro* similares al promotor génico de gB de HVE inadaptado, sin embargo con una eficacia muy mejorada *in vivo*, véanse los Ejemplos.

El promotor génico de gB de VPR extendido es como se presenta en: SEQ ID NO: 2.

Por lo tanto en una realización preferida adicional del promotor génico de gB de un herpesvirus de mamífero de acuerdo con la invención, el promotor tiene una secuencia de nucleótidos como en SEQ ID NO: 2, o su equivalente.

El gen de HA que está comprendido en un vector de HVT de acuerdo con la invención, puede en principio ser cualquier gen de HA de virus de la gripe aviar, por lo tanto en principio de cualquier VGA, y de cualquier serotipo H1 - H16, o genes de HA similares descritos en el futuro.

20

25

Para eficacia óptima de la vacuna para aves de corral contra GA que se basa en el vector de HVT de la invención, el gen de HA insertado es preferentemente un gen de HA de tipo altamente patógeno (AP), que comprende por lo tanto los aminoácidos básicos en el sitio de escisión HA1-HA2. La expresión de un gen HA AP proporciona la posibilidad de vacunar aves de corral eficazmente contra una infección con un VGA de tipo AP, y reducir la propagación adicional al ambiente.

Por lo tanto, en una realización adicional preferida del vector de HVT de acuerdo con la invención, la secuencia de nucleótidos que codifica una proteína HA de VGA derivó de un VGA AP.

30 Se conoce bien en la técnica que VGA se clasifica como AP, y están públicamente disponibles muchas secuencias. Además, pueden obtenerse fácilmente genes de HA AP en la invención a partir de aislados de campo de VGA AP, de diferentes especies de hospedadores, usando técnicas de biología molecular rutinarias tales como RT-PCR.

Preferentemente, la HA de tipo AP para la invención se obtiene a partir de un VGA AP.

35

60

65

NB: El trabajo con aislados de VGA AP vivos requerirá instalaciones de laboratorio de un nivel de contención apropiado.

Para mejorar adicionalmente la eficacia de una vacuna para aves de corral que comprende el vector de HVT de acuerdo con la invención, el gen de HA comprendido en este vector se sometió a optimización de codones. El proceso de optimización de codones se conoce bien en la técnica, e implica la adaptación de una secuencia de nucleótidos que codifica una proteína para codificar los mismos aminoácidos que la secuencia codificante original, aunque sea con otros nucleótidos, es decir las mutaciones son esencialmente silenciosas. Esto mejora el nivel al que se expresa la secuencia codificante en un contexto que difiere del origen del gen expresado. Por ejemplo cuando se expresa un cierto gen en el nuevo contexto de un sistema de expresión recombinante, el uso de codón adaptado se ajusta después a la preferencia codónica del nuevo sistema. En la práctica esto significará que aunque la mayoría de aminoácidos permanecerán iguales, la secuencia de nucleótidos codificante puede diferir considerablemente (hasta el 25 % de identidad) de la secuencia original.

Para la invención, la secuencia codificante del ADNc del gen de HA de VGA usado en la invención se optimizó para expresión en un vector vírico eucariota, tal como HVT.

Son ejemplos de secuencias génicas de HA de VGA de tipo AP, cuyos codones se han optimizado para la invención: SEQ ID NO: 3 y 3, de los genes de HA H5 y H7 respectivamente, y las proteínas HA codificadas correspondientes en SEQ ID NO: 4 y 6. Como se conoce bien, se considera habitualmente que las proteínas HA que están en un 90 % de identidad de secuencia de aminoácidos de estos genes son de la misma clase antigénica.

Por lo tanto, en una realización más preferida de la secuencia de nucleótidos que codifica la proteína HA de VGA para el vector de HVT de acuerdo con la invención, la proteína HA de VGA codificada tiene al menos 90 % de identidad de secuencia de aminoácidos con la secuencia de aminoácidos como en SEQ ID NO 4 o 6. Aún más preferentemente 95, 96, 97, 98, 99 o 100 %, en ese orden de preferencia.

En una realización preferida adicional, la secuencia de nucleótidos que codifica la proteína HA de VGA de la invención tiene una secuencia de nucleótidos que tiene al menos el 90 % de identidad de secuencia de nucleótidos con la secuencia de nucleótidos como en SEQ ID NO: 3 o 5, aún más preferentemente 95, 96, 97, 98, 99, o 100 %, en ese orden de preferencia.

El vector de HVT más preferido de acuerdo con la invención comprende un ácido nucleico heterólogo que comprende un promotor génico de gB extendido, de VPR (por ejemplo, SEQ ID NO: 2) y un gen de HA de VGA con codones optimizados, de un tipo H5 (por ejemplo, SEQ ID NO: 3), por lo que este ácido nucleico heterólogo se inserta en el genoma de HVT en el locus Us2.

Un ejemplo de dicho virus de vector de HVT+HA se representa por la construcción de vector HVP310 (véase Ejemplos), que proporcionó la mayor eficacia de inmunización y reducción de propagación vírica medida.

- La secuencia de nucleótidos de un ácido nucleico heterólogo que puede usarse para ensamblar dicho virus de vector de HVT+HA recombinante por técnicas rutinarias es como se presenta en SEQ ID NO: 7. La secuencia puede convenientemente incorporarse en un plásmido vehículo convencional tal como está disponible en el mercado de la serie pUC. El plásmido resultante se denomina entonces habitualmente "vector de transferencia", y es adecuado para uso en protocolos de transfección.
- 15 Como se ha descrito, en la construcción de vector de HVT+HA de acuerdo con la invención puede generarse por técnicas convencionales bien conocidas en este campo. Es central para estas técnicas la integración en el genoma de un HVT, de un ácido nucleico heterólogo que comprende un promotor génico de gB de un herpesvirus de mamífero y un gen HA de VGA, ambos de acuerdo con la invención.
- Por lo tanto un aspecto adicional de la invención se refiere a un método para la preparación del vector de HVT de acuerdo con la invención, que comprende la integración en el genoma de un HVT de un ácido nucleico heterólogo que comprende una secuencia de nucleótidos que codifica una proteína HA de VGA, en el que dicha secuencia de nucleótidos está unida operativamente a un promotor génico de gB de un herpesvirus de mamífero.
- El uso ventajoso del vector de HVT +HA de acuerdo con la invención es en una vacuna para aves de corral contra GA; proteger las aves y su entorno de la infección y enfermedad provocada por VGA.
 - Por lo tanto, en un aspecto adicional la invención se refiere al vector de HVT de acuerdo con la invención, o al vector de HVT como puede obtenerse por el método de la invención, para su uso en la vacunación de aves de corral contra GA.
 - Dicho uso en la vacunación de acuerdo con la invención se realiza provechosamente usando una composición de vacuna que comprende el vector de HVT de acuerdo con la invención.
- Por lo tanto, en un aspecto adicional la invención se refiere al vector de HVT de acuerdo con la invención, o al vector de HVT como puede obtenerse por el método de la invención, para uso en una vacuna contra GA en aves de corral.
 - Dicho uso del vector de acuerdo con la invención se realiza en una vacuna para aves de corral.

30

- 40 Por lo tanto en un aspecto adicional la invención se refiere a una vacuna contra GA en aves de corral, que comprende el vector de HVT de acuerdo con la invención, o como puede obtenerse por el método de la invención, y un vehículo farmacéuticamente aceptable.
- Se sabe bien que una vacuna es una composición que comprende un compuesto inmunológicamente activo en un vehículo farmacéuticamente aceptable. El "compuesto inmunológicamente activo" o "antígeno" es una molécula que es reconocida por el sistema inmunitario de la diana e induce una respuesta inmunológica. La respuesta puede originarse del sistema inmunitario innato o el adquirido, y puede ser del tipo celular y/o humoral. Para la presente invención, el antígeno es una proteína.
- En general una vacuna induce una respuesta inmunitaria que ayuda a prevenir, aliviar, reducir la sensibilidad a, o el tratamiento de una enfermedad o un trastorno resultante de infección con un microorganismo. La protección se consigue como resultado de administrar al menos un antígeno derivado de ese microorganismo. Esto provocará que el animal diana muestre una reducción en el número, o en la intensidad de señales clínicas provocadas por el microorganismo. Esto puede ser el resultado de una invasión, colonización o tasa de infección por el microorganismo reducida, lo que conduce a una reducción del número o la gravedad de lesiones y efectos que están provocados por el microorganismo o por la respuesta de la diana al mismo.
- Se pretende que el "vehículo farmacéuticamente aceptable" ayude a la administración eficaz de un compuesto, sin provocar efectos adversos (graves) para la salud del animal al que se administra. Dicho vehículo puede ser por ejemplo agua estéril o una solución salina fisiológica estéril. En una forma más compleja el vehículo puede ser, por ejemplo, un tampón, que puede comprender aditivos adicionales, tales como estabilizadores o conservantes. Se describen, por ejemplo, detalles y ejemplos en manuales bien conocidos tales como: "Remington: the science and practice of pharmacy" (2000, Lippincot, Estados Unidos, ISBN: 683306472) y "Veterinary vaccinology" (P. Pastoret et al. ed., 1997, Elsevier, Ámsterdam, ISBN 0444819681).

La vacuna de acuerdo con la invención se prepara a partir de partículas de vectores víricos HVT+HA vivos de

acuerdo con la invención por métodos descritos en el presente documento, que son fácilmente aplicables por un experto habitual en la materia. Por ejemplo, el vector de HVT+HA de acuerdo con la invención se construye por transfección y recombinación y el vector de HVT recombinante deseado se selecciona como se describe en el presente documento. A continuación los virus de vector de HVT se producen industrialmente en volúmenes mayores o menores. Aunque es posible la producción en animales hospedadores, se prefiere la proliferación en cultivos *in vitro*, por ejemplo en FEP. Después de recoger una suspensión que comprende el virus, bien células completas o un producto celular de ultrasonidos, esta suspensión se formula en una vacuna y se envasa el producto final. Después de ensayos extensivos con respecto a calidad, cantidad y esterilidad dichos productos de vacuna se publican para su venta.

10

- Se conocen bien en este campo técnicas generales y consideraciones que se aplican a vacunología y se describen por ejemplo en regulaciones gubernamentales (farmacopea) y en manuales tales como: "Veterinary vaccinology" y "Remington" (ambos mencionados anteriormente).
- La vacuna de vector de HVT+HA de acuerdo con la presente invención en principio puede proporcionarse a aves de corral diana por diferentes vías de aplicación, y en diferentes puntos en su tiempo de vida, siempre que el virus de vector de HVT+HA inoculado pueda establecer una infección protectora.
- Sin embargo, debido a que una infección con VGA puede establecerse ya a una edad muy temprana, es ventajoso aplicar la vacuna de acuerdo con la invención tan pronto como sea posible. Por lo tanto, la vacuna de acuerdo con la invención se aplica preferentemente en el día de la eclosión ("día 1") o en el huevo, por ejemplo a los 18 días DE. Además, la aplicación es preferentemente por un método de vacunación masiva. Esto proporciona la protección más temprana posible, minimizando al mismo tiempo el coste de trabajo.
- Son métodos bien conocidos para dichas vías de aplicación en masa aplicables a edad temprana: por pulverización gruesa el día 1, o por inyección automática en el huevo. Está disponible en el mercado equipamiento adecuado para aplicación a escala industrial.
- Por lo tanto, en una realización preferida adicional, la vacuna de acuerdo con la invención puede aplicarse en el 30 huevo.
 - Se conocen diferentes vías de inoculación en el huevo, tales como en el saco vitelino, el embrión o la cavidad del líquido alantoideo; estos pueden optimizarse según se requiera. Preferentemente la inoculación es en la cavidad de líquido alantoideo.

35

50

60

65

- Como alternativa, cuando la vacuna de acuerdo con la invención va a combinarse con un componente antigénico adicional, puede requerirse una aplicación parenteral, por ejemplo, mediante inyección en o a través de la piel: por ejemplo, intramuscular, intraperitoneal, subcutánea, etc.
- 40 Son formulaciones de la vacuna de acuerdo con la invención por ejemplo una suspensión, solución, dispersión o emulsión.
- Cuando se aplica por vacunación de pulverización, el tamaño de las gotas usado es importante; en general se aplica una pulverización gruesa (tamaño de gota de más de 50 µm), que es en efecto una aplicación por vía oral, nasal y/u ocular.
 - Dependiendo de la vía de aplicación de la vacuna de acuerdo con la invención, puede ser necesario adaptar la composición de vacuna. Esto está dentro de las capacidades de un experto en la materia, y generalmente implica el ajuste de la eficacia o la seguridad de la vacuna. Esto puede realizarse adaptando la dosis, cantidad, frecuencia, vía de vacuna, usando la vacuna en otra forma o formulación o adaptando los otros constituyentes de la vacuna (por ejemplo un estabilizador o un adyuvante).
- Por ejemplo, para que sea adecuada para aplicación en el huevo, se requiere que la composición de vacuna sea muy suave, para no reducir la capacidad de eclosión de los huevos. Puede ser aceptable algo de reducción de la capacidad de eclosión, por ejemplo en 10 %, más preferentemente 5, 4, 3, 2, 1 o 0 % en ese orden de preferencia.
 - En general la seguridad de la vacuna de acuerdo con la invención se proporciona por el empleo como virus de HVT parental para la construcción de vector de acuerdo con la invención, una cepa de vacuna de HVT segura establecida, tal como una cepa de HVT PB1 o FC126. Estos están en general disponibles y se sabe que son adecuados para inoculación en el huevo. La incorporación de un ácido nucleico heterólogo probablemente no aumente su virulencia o patogenicidad (por el contrario), y no es aplicable un retorno a la virulencia.
 - La cantidad exacta de virus de vector de HVT de acuerdo con la invención en una dosis de vacuna no es tan crítica como sería para una vacuna de tipo emulsión inactivada, porque el virus de vector de HVT se replicará y por lo tanto multiplicará en el hospedador hasta un nivel de viremia que es biológicamente sostenible. Solo es necesario que la dosis de vacuna sea suficiente para generar dicha infección productora. Una dosis de inóculo mayor apenas acorta

el tiempo que se tarda en alcanzar la viremia óptima en el hospedador; dosis muy altas no son eficaces porque la viremia que establecen no puede ser mayor que el óptimo natural, además dicha dosis de inóculo muy alto no es atractiva por razones económicas.

- Una dosis de inóculo preferida es por lo tanto entre 1x10⁰ y 1x10⁶ unidades formadoras de placas (ufp) de virus de vector de HVT por dosis de animal, más preferentemente entre 1x10¹ y 1x⁵ ufp/dosis, aún más preferentemente entre 1x10² y 1x10⁴ ufp/ dosis; más preferentemente entre 500 y 5.000 ufp/dosis.
- La determinación de la cantidad inmunológicamente eficaz de la vacuna de acuerdo con la invención está dentro del alcance del experto en la materia, por ejemplo supervisando la respuesta inmunológica después de vacunación, o después de una infección de exposición, por ejemplo volviendo a aislar el patógeno o supervisando las señales clínicas de enfermedad de las dianas, o parámetros serológicos, y comparando estas con respuestas vistas en animales no vacunados.
- El esquema de dosis para aplicar la vacuna de acuerdo con la invención a un organismo diana puede ser en una o múltiples dosis, que pueden proporcionarse al mismo tiempo o secuencialmente, de una manera compatible con la formulación de la vacuna, y en una cantidad tal que sea inmunológicamente eficaz.
- La vacuna de acuerdo con la invención puede usarse para tratamiento tanto profiláctico como terapéutico, y por lo tanto interfiere con el establecimiento y/o con la progresión de una infección o sus síntomas clínicos de enfermedad.
 - La vacuna de acuerdo con la invención puede actuar eficazmente como una vacunación de sensibilización, que después puede seguirse y amplificarse por una vacunación de refuerzo, por ejemplo con un virus inactivado completo clásico, virus con adyuvante.
 - El protocolo para la administración de la vacuna de acuerdo con la invención está integrado idealmente en programas de vacunación existentes de otras vacunas.
- Preferentemente la vacuna de acuerdo con la invención se aplica solamente una vez, en el momento de la eclosión, 30 o en el huevo.
 - El volumen por dosis de animal de la vacuna del vector de HVT+HA de acuerdo con la invención puede optimizarse de acuerdo con la vía pretendida de aplicación: se aplica habitualmente inoculación en el huevo con un volumen de entre 0,05 y 0,5 ml/huevo, y se realiza habitualmente inyección parenteral con un volumen de entre 0,1 y 1 ml/ave.
 - La determinación y la optimización del volumen de dosificación están dentro de las capacidades del experto en la materia.
- Es altamente eficaz formular la vacuna de acuerdo con la invención como una vacuna de combinación, ya que de esta manera pueden administrarse múltiples agentes inmunológicos a la vez, proporcionando reducción de costes de tiempo y trabajo, así como reducción de la incomodidad para los animales diana vacunados. Una vacuna de combinación comprende además de la vacuna de acuerdo con la invención, otro compuesto antigénico. En principio esto puede ser cualquier microorganismo vivo o muerto o producto de subunidades, siempre que esto no reduzca la estabilidad en replicación o la expresión de la construcción de vector de HVT+HA. El componente o los componentes inmunoactivos adicionales pueden ser un antígeno, una sustancia potenciadora inmunitaria, una citocina y/o una vacuna.
 - Como alternativa, la vacuna de acuerdo con la invención puede añadirse en sí misma a una vacuna.
- Por lo tanto, en una realización preferida adicional, la vacuna de acuerdo con la invención se caracteriza porque la vacuna comprende uno o más componentes inmunoactivos adicionales.
 - En una realización más preferida la vacuna de acuerdo con la invención es una vacuna de combinación, que comprende al menos un antígeno adicional de un microorganismo que es patógeno para aves de corral.
 - Preferentemente el antígeno adicional de un microorganismo que es patógeno para aves de corral se selecciona de los grupos que consisten en:
- virus: virus de la bronquitis infecciosa, virus de la enfermedad de Newcastle, adenovirus, virus del síndrome de caída del huevo, virus de bursitis infecciosa (es decir gumborovirus), virus de anemia de pollo, virus de encefalomielitis aviar, virus de viruela aviar, virus de rinotraqueítis de pavo, virus de peste de los patos (enteritis vírica de pato), virus de viruela de paloma, VEM, virus de leucosis aviar, VLTI, pneumovirus aviar y reovirus;
 - bacterias: Escherichia coli, Salmonella spec., Ornitobacterium rhinotracheale, Haemophilis paragallinarum, Pasteurella multocida, Erysipelothrix rhusiopathiae, Erysipelas spec., Mycoplasma spec. y Clostridium spec.;
- 65 parásitos: Eimeria spec.; y

25

35

55

- hongos: por ejemplo Aspergillus spec.

Se prefieren más VEM, VLTI, VBI y VEN.

Los animales diana de aves de corral preferidos para aplicación de la vacuna de acuerdo con la invención son pollos. Dichos pollos pueden ser ponedores, reproductores, razas de combinación o líneas parentales de cualquiera de dichas razas de pollos.

La edad, el peso, el sexo, el estado inmunológico y otros parámetros del ave de corral para vacunar no son críticos, aunque es evidentemente favorable vacunar a dianas sanas, y vacunar tan pronto como sea posible para evitar cualquier infección de campo.

10

La vacuna de acuerdo con la invención se usa provechosamente en un enfoque de DIVA, como una "vacuna marcadora". Una vacuna marcadora se conoce como una vacuna que permite la diferenciación entre sujetos vacunados e infectados en campo. Esto puede detectarse convenientemente por un ensayo serológico tal como un ensayo ELISA o de inmunofluorescencia.

15

Por lo tanto, en una realización preferida, la vacuna de acuerdo con la invención es una vacuna marcadora.

Como se describe, hay varios modos en que la vacuna de acuerdo con la invención puede componerse y formularse, dependiendo de la vía deseada de aplicación, combinación antigénica, etc.

20

- Por lo tanto, en un aspecto adicional la invención se refiere al uso del vector de HVT de acuerdo con la invención o al vector de HVT como puede obtenerse por el método de la invención, para la fabricación de una vacuna contra GA en aves de corral.
- Como alternativa, en un aspecto adicional la invención se refiere a un método para la preparación de la vacuna de acuerdo con la invención, comprendiendo el método la mezcla del vector de HVT de acuerdo con la invención o con el vector de HVT como se puede obtener por el método de la invención y un vehículo farmacéuticamente aceptable.
- Debido a las propiedades ventajosas de HVT, la vacuna fabricada de acuerdo con el uso o el método de la invención puede presentarse en diferentes formas, en particular en forma sin células o asociada a células. Para obtener la forma asociada a células, el virus del vector de HVT+HA se recoge junto con sus células hospedadoras en las que se produjo, por ejemplo FEP. En la forma sin células, las células de producción hospedadoras se someten a ultrasonidos en una solución estabilizadora, y el HVT sin células se recoge como sobrenadante del producto de ultrasonidos.

35

45

- La vacuna de acuerdo con la invención puede fabricarse para contener uno o más componentes que ayudan a la viabilidad y calidad del vector de HVT de acuerdo con la invención, promoviendo de este modo la replicación productiva y el establecimiento de una infección protectora en aves de corral diana.
- 40 Por lo tanto, en una realización preferida, la vacuna fabricada de acuerdo con el uso o el método de la invención comprende un estabilizador.
 - Los estabilizantes son compuestos que estabilizan la cantidad y la calidad del vector de HVT de acuerdo con la invención durante el almacenamiento, la manipulación y la inoculación, tal como por inyección o ingestión. En general estas son moléculas grandes de alto peso molecular, tales como lípidos, carbohidratos o proteínas; por ejemplo leche en polvo, gelatina, albúmina de suero, sorbitol, trehalosa, espermidina, dextrano o polivinilpirrolidona.

También pueden añadirse conservantes, tales como timerosal, mertiolato, compuestos fenólicos o gentamicina.

- 50 En una realización preferida, los compuestos usados para la fabricación de la composición de vacuna de acuerdo con la invención son sin suero (es decir sin suero animal); sin proteínas (sin proteína animal, pero pueden contener otros componentes derivados de animales); sin compuestos animales (SCA; que no contiene ningún componente derivado de un animal); o incluso "químicamente definidos", en ese orden de preferencia.
- Resulta evidente que la mezcla de otros compuestos, tales como vehículos, diluyentes, emulsiones y similares con vacunas de acuerdo con la invención también están dentro del alcance de la invención. Dichos aditivos se describen en manuales bien conocidos tales como: "Remington" y "Veterinary Vaccinology" (ambos mencionados anteriormente).
- Por razones de estabilidad o economía, una vacuna de acuerdo con la invención puede fabricarse en forma liofilizada. En general esto permitirá almacenamiento prolongado a temperaturas por encima de cero °C, por ejemplo a 4 °C. Los expertos en la materia conocen procedimientos para liofilización, y está disponible en el mercado equipamiento para liofilización a diferentes escalas.
- Por lo tanto, en una realización preferida adicional, la vacuna fabricada de acuerdo con el uso o con el método de la invención está en forma liofilizada.

Para reconstituir una composición de vacuna liofilizada, se suspende habitualmente en un diluyente fisiológicamente aceptable. Dicho diluyente puede ser, por ejemplo, tan sencillo como agua estéril, o una solución salina fisiológica, por ejemplo solución salina tamponada con fosfato (PBS); como alternativa el diluyente puede contener un compuesto adyuvante, tal como tocoferol, como se describe en el documento EP 382.271. En una forma más compleja la vacuna liofilizada puede suspenderse en una emulsión por ejemplo como se describe en el documento EP 1.140.152.

Como se ha descrito, la vacuna de acuerdo con la invención puede aplicarse provechosamente a aves de corral por un método de vacunación tal como por pulverización, inoculación o aplicación en huevo.

Por lo tanto, en un aspecto adicional la invención se refiere a un método de vacunación de aves de corral contra la gripe aviar, que comprende la etapa de inocular dichas aves de corral con una vacuna de acuerdo con la invención.

Ejemplos

, ,

10

15

35

40

45

50

55

1. Ensamblaje de construcciones de vector

1.1. HVP142

20 Los virus de vector de HVT de HVP142 portan como un inserto heterólogo un gen de VGA H5, conducido por el promotor de LTR de VSR. El casete de transfección se insertó en el locus US10 de la cepa de HVT PB1, usando la técnica de recombinación homóloga. El gen de H5 se obtuvo de un aislado de VGA H5N2 de 1998.

Los métodos para transfección, recombinación, selección y amplificación fueron esencialmente como se describe en Sondermeijer *et al.*, 2003 (mencionado anteriormente) y documento EP 431.668.

El antisuero usado para selección de placas de expresión de HA fue un antisuero de pollo policional contra una cepa de VGA de tipo H5N6.

30 **1.2. HVP310**

Los virus de vector de HVP310 comprendían un gen de H5 con codones optimizados (SEQ ID NO: 3), que se condujo por un promotor génico de gB de VPR que se había extendido cadena abajo del codón de inicio ATG del gen de gB (SEQ ID NO: 2). La construcción heteróloga se insertó en el locus Us2 del genoma de HVT de la cepa FC126, usando una técnica de regeneración de clon de cósmido. La construcción de expresión total fue como se representa en la SEQ ID NO: 7.

El gen de H5 se originó a partir de un aislado de H5N1 AP tomado de un gato asiático de 2005. Este se había corregido mediante optimización de uso codónico para expresión en un sistema de vector de expresión vírica.

Los métodos para transfección, recombinación, selección y amplificación fueron esencialmente como se describe en el documento US 5.961.982. Se sembraron células FEP transfectadas después de recombinación en placas de cultivo tisular de 10 cm; después de aproximadamente una semana las placas se volvieron claramente visibles. Las placas se tiñeron con colorante de contraste con azul de Evans, y las placas pudieron seleccionarse directamente de las placas de siembra. Se comprobó rutinariamente el ADN de virus de vectores de HVT recombinantes con respecto a corrección de recombinación e inserción del gen de HA y promotor por análisis de enzimas de restricción.

Se realizó expresión del gen de HA integrado por ensayos de inmunofluorescencia en placas de microtitulación, usando antisuero policlonal de pollo H5N6.

1.3. HVP311

Los virus de vector de HVP311 comprendían un gen de H5 con codones optimizados, que se condujo por un promotor génico de gB de HVE (SEQ ID NO: 1). La construcción, recombinación y selección fue similar a la del virus HVP310. Además, se usó el mismo inserto de gen de HA H5 con codones optimizados.

1.4. Ensayos de estabilidad in vitro

Para determinar la estabilidad *in vitro*, se pasaron virus de vector de HVT recombinantes HVP142, 310 y 311 al menos 15 veces en monocapas de FEP. Después de seleccionarse una placa, esta se amplificó durante 15 ciclos.

Finalmente, las placas de 10 cm se inocularon y después de la incubación, se tiñeron con antisuero H5N6 de pollo para un ensayo de inmunofluorescencia (EIF). Se contó el número de placas que mostraban inmunofluorescencia positiva por número total de placas. Se descubrió que todos los recombinantes ensayados eran completamente estables en cultivos *in vitro* ya que el 100 % de las placas presentaban fluorescencia positiva. Esto significó que en primer lugar el inserto de HA se había replicado correctamente a través de los más de 15 pases de cultivo celular, y

en segundo lugar, que el gen de HA aún estaba intacto y se estaba expresando correctamente.

2. Ensayo animal en pollos SPE

10

20

25

40

2.1. Preparación del ensayo animal

El experimento animal se preparó para determinar la eficacia de recombinantes HVT+HA después de vacunación de polluelos de engorde de un día de edad sin patógenos específicos (SPE). Se evaluó la eficacia protectora por exposición-infección con un virus HPAI H5N1 a las dos o tres semanas después de la vacunación (p.v.). Se observaron los polluelos diariamente con respecto a la aparición de señales clínicas de infección por gripe aviar o mortalidad. Además, se recogieron hisopos traqueales y cloacales para evaluar la excreción de virus de exposición por PCR.

Se colocaron grupos de 10 polluelos de engorde SPE en aislantes de presión negativa en las instalaciones de alta contención del instituto veterinario central (Lelystad, NL). Se tomaron muestras de sangre semanalmente durante el transcurso de la prueba.

Las vacunas ensayadas fueron los virus de vector de HVT recombinantes HVP142, 310 y 311, junto a una vacuna de emulsión inactivada convencional de tipo H5, y un grupo vacunado de forma simulada que recibió solamente PBS. Las vacunas de HVT recombinantes se habían preparado como preparaciones asociadas a células a aproximadamente 5x10⁵ ufp/ml, que se almacenaron en nitrógeno líquido hasta su uso.

Los pollos se colocaron, se marcaron individualmente y se vacunaron; se administró HVT por vía intramuscular, con 0,2 ml/dosis a 2000 ufp/polluelo.

Después de dos o tres semanas los polluelos se expusieron a 10^{6,0} DIH50 por polluelo de virus de exposición VGA H5N1 AP (H5N1 Pavo/Pavo/01/05 Clado 2.2), con 0,1 ml mediante la vía nasal y 0,1 ml mediante la vía intratraqueal.

30 Después de exposición los pollos se observaron diariamente con respecto a señales de GA. Las puntuaciones clínicas se clasificaron variando de 0 a 3 (ninguna - grave) para síntomas de GA típicos tales como depresión, descarga oronasal, dificultad respiratoria, señales neurológicas, diarrea, etc. Los polluelos gravemente enfermos se sacrificaron. Los polluelos muertos se ensayaron por histopatología con respecto a la causa de la muerte.

Las muestras de suero de antes de la exposición y desde 14 días después de la exposición se determinaron por ensayo de inhibición de hemaglutinación (IH) usando principalmente el virus de exposición de tipo H5 HPAI.

Para evaluación de propagación del virus de exposición, se tomaron hisopos de la tráquea y la cloaca de cada pollo a los 2, 3, 4, 7 y 14 días después de la exposición. Los hisopos se examinaron individualmente por Q-PCR en el gen de proteína de matriz de VGA, para comparar si, y cuanto (valor Ct) del virus de exposición se desprendió por los pollos vacunados y de control.

2.2. Resultados

Los resultados de los ensayos en pollos SPE se presentan en las Tablas 1-3.

Con respecto a la "protección de señales clínicas" como se presenta en la Tabla 2, solamente se puntuaron los animales que no mostraron ninguna señal clínica de GA como protegidos.

En la Tabla 3, el "positivo en reaislamiento vírico" indica de qué animales fue posible reaislar el virus; solamente si un animal fue positivo durante dos días consecutivos se listó como positivo en reaislamiento de virus. Como ninguna de las muestras de hisopo de cloaca fue positiva, solamente se presentan resultados de hisopo de tráquea.

Tabla 1: títulos de IH antes de la exposición, en SPE vacunados i.m. a un día de edad

Vacuna	n.º de animales	IH (log2, ag. H5N1 AP)								
		Exp. a las 2 semanas p.v.	Exp. a las 3 semanas p.v.							
HVP142	20	<4	<4							
HVP310	20	5,9	8,6							
HVP311	20	4,2	8,1							
H5 inac	20	<4 *)	<4 *)							
diluyente	10	<4	<4							

*) Cuando se ensaya en un ensayo de IH con otro antígeno de tipo H5, hubo una prueba clara de seroconversión, con títulos de IH de 6,7 y 8,6, a las 2 y 3 semanas p.v. respectivamente.

Tabla 2: protección contra señales clínicas de GA, en SPE, vacunados i.m. a un día de edad, después de exposición letal (<48 h) con H5N1 de VGA AP.

Vacuna	n.º de animales	Protección contra señales clínicas						
		Exp. a las 2 semanas p.v.	Exp. a las 3 semanas p.v.					
HVP142	20	0/10	1/10					
HVP310	19	10/10	9/9					
HVP311	20	10/10	10/10					
H5 inac	20	3/10	8/10					
diluyente	10	0/5	0/5					

5 Tabla 3: protección contra reaislamiento de virus, en SPE, vacunados i.m. a un día de edad, después de exposición letal (<48 h) con VGA HSN1 AP.

Vacuna	n.º de animales	Positivo en reaislamiento de virus (tráquea)							
		Exp. a las 2 semanas p.v.	Exp. a las 3 semanas p.v.						
HVP142	20	10/10	10/10						
HVP310	20	6/10	1/10						
HVP311	20	6/10	2/10						
H5 inac	20	10/10	10/10						
diluyente *)	0								

^{*)} No se pudieron tomar hisopos de animales en el grupo de diluyente ya que todos murieron en un periodo de 48 horas después de la exposición

3. Ensayo animal en pollos MDA+

10 3.1. Preparación de ensayo animal

La disposición del ensayo animal en polluelos de engorde MDA+ fue en general la misma que para el ensayo de pollos SPE excepto que no se incluyó vacuna de vector HVP142. Los polluelos de engorde MDA+ derivaron de progenitores que se habían vacunado dos veces con una vacuna de emulsión H5N2 inactivada convencional; los polluelos tuvieron títulos de IH de H5 de partida entre 5 y 6.

3.2. Resultados

Los resultados de los ensayos en pollos MDA+ se presentan en las Tablas 4-6.

Para las Tablas 5 y 6 se aplican las mismas observaciones que para las Tablas 2 y 3 anteriores.

Tabla 4: títulos de IH el día de la exposición, en MDA+ vacunados i.m. a un día de edad

Vacuna	n.º de animales	IH (log2, ag. H5N1 AP)						
		Exp. a las 2 semanas p.v.	Exp. a las 3 semanas p.v.					
HVP310	20	<4	5,4					
HVP311	20	<4	4,4					
H5 inac	20	<4	<4					
diluyente	10	<4	<4					

15

20

Tabla 5: protección contra señales clínicas de GA en MDA+, vacunados i.m. a un día de edad, después de exposición letal (<120 h) con VGA H5N1 AP.

Vacuna	n.º de animales	Protección contra señales clínicas					
		Exp. a las 2 semanas p.v.	Exp. a las 3 semanas p.v.				
HVP310	20	1/10	9/10				
HVP311	19	0/10	4/9				
H5 inac	18	0/9	0/9				
diluyente	20	0/10	0/10				

Tabla 6: protección contra reaislamiento de virus, en MDA+, vacunados i.m. a un día de edad, después de exposición letal (<120 h) con VGA H5N1 AP.

Vacuna	n.º de animales	Positivo en reaislamiento de virus (tráquea)							
		Exp. a las 2 semanas p.v.	Exp. a las 3 semanas p.v.						
HVP310	20	10/10	7/10						
HVP311	19	10/10	9/9						
H5 inac	18	9/9	9/9						
diluyente	20	10/10	10/10						

3.3. Cuantificación por Q-PCR

En el ensayo animal en el que se expusieron pollos MDA+, se obtuvieron muestras de reaislamiento de virus tomando hisopos de la tráquea el día 2 y 3 después de la exposición. A continuación se extrajeron ácidos nucleicos, y se realizaron ensayos de RT-PCR en tiempo real como se describe en Maas *et al.* (2007, Emerging Infectious Diseases, vol. 13, p. 1219-1221). Los valores umbral (Ct) se expresaron en números de copias relativos y se compararon con el valor medido en aves que no se vacunaron (control) o se vacunaron con una vacuna de emulsión. El número de copias correspondiente al menor valor de Ct en este grupo se estableció arbitrariamente en 1000.

La Figura 1 presenta los resultados: una reducción de replicación del virus de exposición de aproximadamente 250 veces con la cepa HVP310.

20 4. Conclusiones de los resultados de ensayos animales

4.1. General:

25

30

5

- HVP142 carecía de eficacia en ensayo de SPE y no se incluyó en el ensayo de MDA+.
- Los virus de vectores de HVP310 y 311 se replicaron bien, en polluelos tanto SPE como MDA+, lo que indica su constitución estable, viable. La expresión del gen de HA insertado fue igualmente estable y eficaz, como se demuestra por la respuesta inmunitaria altamente eficaz que se generó.
 - La infección de exposición aplicada resultó ser extremadamente pesada, considerando que todos los controles y muchas de las vacunas con vacuna de emulsión convencional murieron. Sin embargo, esto permitió que las vacunas de vector de HVT+HA demostraran sus capacidades protectoras en las condiciones más rigurosas.

4.2. Ensayo de SPE:

- La protección clínica inducida en polluelos SPE fue muy espectacular: los polluelos SPE vacunados con HVP310 y 311 se protegieron completamente contra todas y cada una de las señales clínicas de GA, ya a las 2 semanas después de la vacunación, mientras que la vacuna de emulsión proporcionó solamente protección parcial, y los polluelos no vacunados murieron en un periodo de 48 horas.
- Los polluelos SPE también se protegieron completamente de la propagación del virus de exposición, como se demostró por los resultados de reaislamiento del virus; se alcanzó reducción del aislamiento del virus del 80 y 90 % para HVP 311 y 310 respectivamente, mientras que no pudo alcanzarse ninguna reducción de la propagación del virus por la vacuna de emulsión.
 - La eficacia de los vectores HVP310 y 311 en polluelos SPE difirió por tanto solamente de forma mínima.

4.3. Ensayo MDA+:

5

30

45

60

- La protección de polluelos MDA+ de señales clínicas de GA después de exposición fue mucho mejor a las 3 semanas p.v. que a las 2 semanas p.v. HVP 310 pudo proteger al 90 % de los polluelos MDA+ de la aparición de ninguna señal clínica; HVP311 alcanzó solamente 45 % de protección, mientras que la vacuna de emulsión no proporcionó protección. Todos los polluelos MDA+ no vacunados murieron en un periodo de 120 horas.
- En las condiciones duras del ensayo, la vacuna de vector HVP310 aún pudo conseguir reducir la propagación vírica en polluelos MDA+ en un 30 % a las 3 semanas después de la vacunación, mientras que no pudo alcanzarse ninguna reducción de la propagación del virus por las vacunas de HVP311 o emulsión.
- La reducción de la supresión vírica inducida por el vector de vacuna HVP310, en relación con las aves vacunadas con emulsión y vacunadas con control, fue un factor 250 el día 2 después de la exposición.
 - 5. Ensayo de estabilidad de virus de vacuna reaislado:
- Se volverán a aislar vacunas de vector HVP310 y HVP311 de pollos a las 2 y 3 semanas después de la vacunación. El virus se sembrará en placas de 10 cm de FEP, y se dejarán infectar. A los 5-7 días, las placas se teñirán por EIF con antisuero H5N6 de pollo, como se ha descrito. El número de placas frente al número de placas positivas fluorescentes indicará si todos los virus aún contienen y expresan el gen de HA insertado.
- 20 6. Seguridad de uso para vacunación en huevo:

Para sellar la seguridad para uso en huevo de la vacuna del vector de HVT HVP310 y 311, estas se usarán en el huevo.

25 Tres días antes del inicio del experimento (t = -3 días) se inocularán tres grupos de 40 huevos de pollo embrionados de 18 días de edad con las vacunas de vector HVP310 y 311, de la siguiente manera:

antes de la vacunación los huevos se examinarán al trasluz. El extremo romo de huevos embrionados de 18 días de edad se desinfectarán con etanol al 70 %. Se taladrará un orificio en la cáscara del huevo usando un taladro de huevo. Los huevos se vacunarán insertando una aguja (jeringas de 1 ml Becton & Dickinson Plastipak® y agujas de 0,6x25, 23G, Microlance®) verticalmente en el huevo e inyectando 0,05 ml de las vacunas. Posteriormente los orificios se sellarán con pegamento y los huevos se colocarán en incubadoras, en condiciones apropiadas.

A continuación los huevos eclosionarán en tres incubadoras en instalaciones animales. Después de su eclosión, se anillarán 25 pollos por grupo y se colocarán en el grupo 1 a 3 (t = 1 día), y se alojarán en tres aislantes respectivamente, y se observarán durante otra semana.

Los números resultantes y la salud de los pollos nacidos se supervisarán para determinar si se produce cualquier efecto en la capacidad de eclosión o salud por la inoculación en el huevo de la vacuna de vector de HVT HVP310 y 311.

7. <u>Diferencia de las propiedades de promotores génicos de gB derivados de herpesvirus aviares o de mamíferos, cuando se usa en un vector de HVT</u>

Cuando se ensayaron promotores diferentes con respecto a su idoneidad para conducir la expresión de un gen heterólogo en el contexto de un vector vírico de HVT, el promotor génico de gB de MDV1 demostró ser ineficaz en HVT. Por otra parte, el promotor génico de gB del herpesvirus equino (HVE) fue operativo en HVT.

Las construcciones usadas para este fin se ensamblaron esencialmente como se ha descrito en el Ejemplo 1, y comprendían un gen de un parásito *Eimeria tenella*, el gen Etsc2. Este gen codifica un antígeno de aproximadamente 37 kDa, que es el homólogo del antígeno Easc2 de *Eimeria acervulina* que se describe por ejemplo en el documento EP 775.746. Se prepararon construcciones de vector de transferencia que contenían el gen de Etsc2 bajo el control del promotor génico de gB de HVE1 (en construcción de vector de transferencia pVEC102), o de MDV1 (construcción pVEC103).

Se generaron HVT recombinantes por transfección y recombinación homóloga, y se sembraron en monocapas FEP como se ha descrito. Se seleccionaron placas de HVT recombinantes, y estas se ensayaron con respecto a expresión del antígeno Etsc2, por ensayo de inmunofluorescencia en placas de 96 pocillos con monocapas de células FEP. A partir de ambas construcciones se ensayaron dos placas, y cada placa se ensayó por duplicado. Se usó un antisuero de conejo anti Etsc2 como anticuerpo primario, seguido de un anticuerpo secundario conjugado con FITC. Esta exploración inicial reveló fluorescencia débilmente positiva para recombinantes de pVEC102, pero no fluorescencia de recombinantes de pVEC103.

A continuación se amplificaron las cuatro placas, y se repitió el IFA. Esta vez todas las placas de pVEC102 (usando el promotor génico de gB de HVE) fueron claramente positivas para expresión de antígeno Etsc2; sin embargo, las

placas recombinantes de pVEC103 permanecieron negativas para expresión de antígeno Etsc2, incluso aunque fueron claramente visibles placas de HVT.

Se concluyó que el promotor génico de gB de MDV1 no es eficaz en el contexto de un virus de vector de HVT recombinante, mientras que el promotor génico de gB de HVE sí lo es.

Leyenda de las figuras

Figura 1:

10

Se vacunaron pollos MDA positivos a un día de edad, y posteriormente se expusieron. Se descubrió que la reducción de supresión vírica inducida por el vector de vacuna HVP310, en relación con aves vacunadas con emulsión y vacunadas con control era de un factor 250 el día 2 después de la exposición.

15 LISTADO DE SECUENCIAS

<110> Intervet

<120> Vacuna con vector del herpesvirus de pavo contra la gripe aviar en aves de corral

20 <130> 2010-025-EP-PD

<160>7

25 <170> PatentIn versión 3.5

<210> 1

<211>723

<212> ADN

30 <213> Herpesvirus equino 1

<400> 1

60 ggcgactgcg gatgcttcgc agcgcaggcg catgtacgcg gagcgtctgt caaagcgttc 120 categocagt ttggggeget gegtgegega acagegaaga gaactagaaa aaaceetgag agttaacgtg tatggcgaag tgctgctaca tacgtacgta tcgtcctaca acgggttttg 180 240 cgccaggcgc gggttttgcg cggcggtgag tcgagcgggt accatcatag ataaccgctc tagcacgtcc gcgttcgact cgcatcagtt catgaaggcg gcgctgcttc gccaccccat 300 tgaccagtcg ctcatgccgt ccataacaca caagtttttc gagctgatca acgggcccgt 360 gtttgacaac gctggccaca actttgcgca gccgccaaac acggcattat attacagcgt 420 480 tgaaaacgtt gggttgttac cgcatctcaa ggaggaacta gctcggttta tgattactgc ggctaaaggt gattggtcaa ttagcgagtt tcaaaggttt tattgctttg agggagtgac 540 600 aggtqtqacg gccacqcagc ggctqgcgtg gaaatatatc ggggagctca tcctaqccgc cgcagtattc tcctcggttt tccactgtgg agaggtgcgc ctcctgcgcg cagatcgtac 660 ctacccggac tccagcggcg cacagcgctg cgtgagcggc atttacataa cctacgaggc 720 gtc 723

35

<210> 2 <211> 674 <212> ADN <213> Virus de pseudorrabia

40 <400> 2

cgctgctgca	cacgtacgtg	gcggtggccg	ccgggttccg	cgcacggcgc	gcgttctgcg	60
aggeegeege	gcgcgcgggc	accgtcgtgg	acgagcgcga	gacgggctgc	ttcgacgcgc	120
acagcttcat	gaaggccacg	gtgcagcgcc	accccgtgga	cgccgcgctc	eteceggege	180
tcacgcacaa	gttcttcgag	ctcgtcaacg	ggccgctctt	cgcgcacgac	acgcacgcct	240
tegeceagte	ccccaacacg	gcgctctact	ttgcggtgga	gaacgtgggc	etectgeege	300
acctgaagga	ggagetggeg	cgcttcatgg	tggcccgcga	ttggtgcgtc	agtgagttcc	360
geggetteta	ccgcttccag	acggccggcg	taaccgccac	ccagcggcag	gcctggcgat	420
atatccgcga	gctggtgctg	gcggttgcag	tcttcaggtc	cgtcttccac	tgcggggacg	480
tegaggteet	ccgcgcggat	cgcttcgccg	gacgcgacgg	gctgtacctg	acctacgagg	540
cgtcttgccc	gctggtggcg	gtctttggcg	cgggccccgc	gggcatcggc	ccgggcacca	600
cggcggtgct	ggcctcggac	gtctttggcc	tgctccacac	cacgctgctg	ctgcgcgggg	660
cgccgtcgcg	ctag					674

<210> 3 <211> 1707 <212> ADN

<213> Secuencia artificial

<220>

<223> Gen de HA H5 de VGA AP con codones optimizados

10

5

<220> <221> CDS <222> (1)..(1704)

15 <400> 3

	gag Glu													48
_	cag Gln		-					_					_	 96
	acc Thr													144
	gag Glu 50													192
	ctg Leu		_	_	_	-			_			_		240
	atg Met													288
	aag Lys													336
_	tac Tyr				_		_			_				 384
_	atc Ile 130	_				_					_		_	432
_	ggt Gly			_	_	_			_		_	_		480

_	aac Asn	-			_		_	_	-		_					528
	cgc A rg															576
	atc Ile															624
	cct Pro 210		_									_		_		672
_	gtg Val		_		_				_	_			_			720
	atg Met															768
	gag Glu															816
_	aag Lys	_		_				_	_			_				864
	tgc Cys 290			_	_	_					_					912
_	cct Pro							_					_		_	960
	gtc Val	_			_	_	-	_	_			_	_			1008
	cag Gln															1056
	ggc Gly															1104
	tac Tyr 370															1152
	tct Ser		_	_	_		_		_			_				1200
	atc Ile	-	_	_			_			-						1248

	aac Asn	_		_	_			_	_	_	_		_	1296
	ttc Phe													1344
	aac Asn 450													1392
	gac Asp	_	-	_		-	_	_	_	_		_		1440
	ggt Gly													1488
	gtg Val													1536
	ctc L e u													1584
	tac Tyr 530													1632
	gct Ala													1680
_	ctg L e u	_	_	_		_	taa							1707

<210> 4

<211> 568

<212> PRT

<213> Secuencia artificial

<220>

<223> Construcción sintética

10 <400> 4

5

Met Glu Lys Ile Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser 1 5 10 15

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val 20 25 30

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys 50 55 60

Pro 65	Leu	Ile	Leu	Arg	Asp 70	Суз	Ser	Val	Ala	Gly 75	Trp	Leu	Leu	Gly	Asr 80
Pro	Met	Cys	Asp	Glu 85	Phe	Leu	Asn	Val	Pro 90	Glu	Trp	Ser	Tyr	11e 95	Val
Glu	Lys	Ile	Asn 100	Pro	Ala	Asn	Asp	Leu 105	Cys	Tyr	Pro	Gly	Asn 110	Phe	Asr
Asp	Tyr	Glu 115	Glu	Leu	Lys	His	Leu 120	Leu	Ser	Arg	Ile	Asn 125	His	Phe	Glu
Lys	11e 130	Gln	Ile	Ile	Pro	Lys 135	Ser	Ser	Trp	Ser	Asp 140	His	Glu	Ala	Ser
Ser 145	Gly	Val	Ser	Ser	Ala 150	Cys	Pro	Tyr	Gln	Gly 155	Arg	Ser	Ser	Phe	Phe 160
Arg	Asn	Val	Val	Trp 165	Leu	Ile	Lys	Lys	Asp 170	Asn	Ala	Tyr	Pro	Thr 175	Ile
Lys	Arg	Ser	туг 180	Asn	Asn	Thr	Asn	Gln 185	Glu	Asp	Leu	Leu	Val 190	Leu	Trp
Gly	Ile	His 195	His	Pro	Asn	Asp	Ala 200	Ala	Glu	Gln	Thr	Arg 205	Leu	Tyr	Glr
Asn	Pro 210	Thr	Ser	Tyr	Ile	Ser 215	Val	Gly	Thr	Ser	Thr 220	Leu	Asn	Gln	Arç
Leu 225	Val	Pro	Lys		Ala 230		Arg	Ser	Lys	Val 235	Asn	Gly	Gln	Ser	Gl ₃ 24(
Arg	Met	Glu	Phe	Phe 245	Trp	Thr	Ile	Leu	Lys 250	Pro	Asn	Asp	Ala	Ile 255	Asr
Phe	Glu	Ser	Asn 260	Gly	Asn	Phe	Ile	Ala 265	Pro	Glu	Asn	Ala	Tyr 270	Lys	Il€
Val	Lys	Lys 275	Gly	Asp	Ser	Thr	Ile 280	Met	Lys	Ser	Glu	Leu 285	Glu	Tyr	Gly
Asn	Cys 290	Asn	Thr	Lys	Cys	Gln 295	Thr	Pro	Ile	Gly	Ala 300	Ile	Asn	Ser	Ser
Met 305	Pro	Phe	His	Asn	Ile 310	His	Pro	Leu	Thr	Ile 315	Gly	Glu	Cys	Pro	Lys 320

Tyr	Val	Lys	Ser	Asn 325	Arg	Leu	Val	Leu	Ala 330	Thr	Gly	Leu	Arg	Asn 335	Ser
Pro	Gln	Gly	Glu 340	Arg	Arg	Arg	Lys	Lys 345	Arg	Gly	Leu	Phe	Gly 350	Ala	Ile
Ala	Gly	Phe 355	Ile	Glu	Gly	Gly	Trp 360	Gln	Gly	Met	Val	Asp 365	Gly	Trp	Туг
Gly	Tyr 370	His	His	Ser	Asn	Glu 375	Gln	Gly	Ser	Gly	Tyr 380	Ala	Ala	Asp	Lys
Glu 385	Ser	Thr	Gln	Lys	Ala 390	Ile	Asp	Gly	Val	Thr 395	Asn	Lys	Val	Asn	Ser 400
Ile	Ile	Asp	Lys	Met 405	Asn	Thr	Gln	Phe	Glu 410	Ala	Val	Gly	Arg	Glu 415	Phe
Asn	Asn	Leu	Glu 420	Arg	Arg	Ile	Glu	Asn 425	Leu	Asn	Lys	Lys	Met 430	Glu	Asp
Gly	Phe	Leu 435	Asp	Val	Trp	Thr	Tyr 440	Asn	Ala	Glu	Leu	Leu 445	Val	Leu	Met
Glu	Asn 450	Glu	Arg	Thr	Leu	Asp 455	Phe	His	Asp	Ser	Asn 460	Val	Lys	Asn	Leu
Tyr 465	Asp	Lys	Val	Arg	Leu 470	Gln	Leu	Arg	Asp	Asn 475	Ala	Lys	Glu	Leu	G1 <u>s</u>
Asn	Gly	Cys	Phe	Glu 485	Phe	Tyr	His	Arg	Cys 490	Asp	Asn	Glu	Сув	Met 495	Glu
Ser	Val	Arg	Asn 500	Gly	Thr	Tyr	Asp	Tyr 505	Pro	Gln	Tyr	Ser	Glu 510	Glu	Ala
Arg	Leu	Lys 515	Arg	Glu	Glu	Ile	Ser 520	Gly	Val	Arg	Leu	Glu 525	Ser	Ile	Gly
Thr	Tyr 530	Gln	Ile	Leu	Ser	Ile 535	Tyr	Ser	Thr	Val	A la 540	Ser	Ser	Leu	Ala
Leu 545	Ala	Ile	Met	Val	Ala 550	Gly	Leu	Ser	Leu	Trp 555	Met	Суз	Ser	Asn	G1 <u>y</u> 560
Ser	Leu	Gln	Cys	Lys 565	Ile	Cys	Ile								

<210>5

	<211> 1 <212> 7 <213> 3	ADN	ncia a	rtificia	I											
5	<220> <223> 0	Gen de	e HA F	H7 de	VGA A	AP cor	n codo	nes o	ptimiz	ados						
10	<220> <221> 0 <222> (680)													
		aac Asn													48	}
	1				5	+~~				10	 ***	+~~	 15	~~+	96	
		gcc Ala													96	,
		gtc Val													144	i
		acc Thr 50													192	:
		acc Thr													240)
		ccc Pro													288	ţ
		cgt Arg													336	ì
		gag Glu													384	Ļ
		acc Thr 130													432	•
		gct Ala													480)
		ctg L e u													528	}
		aag Lys													576	ì
		tcc Ser													624	ı

_				-	~ ~					cag Gln	-					672
			_	_		_				cag Gln 235			_		_	720
										act Thr						768
		-			-		_	-	-	agc Ser		_	-		_	816
										gac Asp						864
										agc Ser						912
			_	-	-	_		-	-	cct Pro 315	-		_	_	_	960
		_	_	_	-			_	_	aac Asn						1008
-		-		•			-		•	ggt Gly						1056
										ttc Phe						1104
										agc Ser						1152
_	_				_	_		_		atc Ile 395		_			_	1200
_					-					gag Glu	-		_	_		1248
										atg Met						1296
		-				-	-	-		aac Asn	-				-	1344
										gag Glu						1392

				gct Ala											1440
				gac Asp 485											1488
				tac Tyr											1536
_		_	_	ctg Leu	_	_			_	_		_			1584
				tcc Ser											1632
				gtg Val											1680
taa															1683
<210> 6 <211> 5 <212> F <213> 5	660 PRT	ncia a	rtificia	I											
<220> <223> 0	Constr	ucciór	n sinté	tica											
<400> 6	6														
	Me 1	t As	n Th	r Gl	n Il 5	e Le	u Va	l Ph	e Al	a Le 10	l Al	a Il	e Il	e Pro Thr 15	

5

10

Asn Ala Asp Lys Ile Cys Leu Gly His His Ala Val Ser Asn Gly Thr 20

Lys Val Asn Thr Leu Thr Glu Arg Gly Val Glu Val Val Asn Ala Thr 35 40

Glu Thr Val Glu Arg Thr Asn Val Pro Arg Ile Cys Ser Lys Gly Lys 50

Arg Thr Val Asp Leu Gly Gln Cys Gly Leu Leu Gly Thr Ile Thr Gly 65

Pro Pro Gln Cys Asp Gln Phe Leu Glu Phe Ser Ala Asp Leu Ile Ile

Glu Arg Arg Glu Gly Ser Asp Val Cys Tyr Pro Gly Lys Phe Val Asn 105

Glu	Glu	Ala 115	Leu	Arg	Gln	Ile	Leu 120	Arg	Glu	Ser	Gly	Gly 125	Ile	Asp	Lys
Glu	Thr 130	Met	G1y	Phe	Thr	Tyr 135	Ser	Gly	Ile	Arg	Thr 140	Asn	Gly	Ala	Thr
Ser 145	Ala	Cys	Arg	Arg	Ser 150	Gly	Ser	Ser	Phe	Tyr 155	Ala	Glu	Met	Lys	Trp 160
Leu	Leu	Ser	Ser	Thr 165	Asp	Asn	Ala	Ala	Phe 170	Pro	Gln	Met	Thr	Lys 175	Ser
Туг	Lys	Asn	Thr 180	Arg	Lys	Asp	Pro	Ala 185	Leu	Ile	Ile	Trp	Gly 190	Ile	His
His	Ser	Gly 195	Ser	Thr	Thr	Glu	G1n 200	Thr	Lys	Leu	Tyr	G1y 205	Ser	G1y	Asn
Lys	Leu 210	Ile	Thr	Val	Gly	Ser 215	Ser	Asn	Tyr	Gln	Gln 220	Ser	Phe	Ile	Pro
225			Ala		230					235					240
		_	Leu	245					250					255	
			Phe 260					265					270		
		275	Ile				280					285			
-	290	-				295					300				
305			Ser		310					315					320
			Met	325			-		330					335	
			G1y 340					345					350		
тrр	GIU	355	Leu	тте	Asp	стĀ	360	Tyr	стÀ	rne	Arg	365	GIN	Asn	ALA

Gln Gly Glu Gly Thr Ala Ala Asp Tyr Lys Ser Thr Gln Ser Ala Ile

			370					375					380				
		Asp 385	Gln	Ile	Thr	Gly	Lys 390	Leu	Asn	Arg	Leu	Ile 395	Glu	Lys	Thr	Asn	Gln 400
		Gln	Phe	Glu	Leu	Ile 405	Asp	Asn	Glu	Phe	Thr 410	Glu	Val	Glu	Lys	Gln 415	Ile
		Gly	Asn	Val	Ile 420	Asn	Trp	Thr	Arg	Asp 425	Ser	Met	Thr	Glu	Val 430	Trp	Ser
		Tyr	Asn	Ala 435	Glu	Leu	Leu	Val	Ala 440	Met	Glu	Asn	Gln	His 445	Thr	Ile	Asp
		Leu	Ala 450	Asp	Ser	Glu	Met	Asn 455	Lys	Leu	Tyr	Glu	Arg 460	Val	Arg	Arg	Gln
		Leu 465	Arg	Glu	Asn	Ala	Glu 470	Glu	Asp	Gly	Thr	Gly 475	Cys	Phe	Glu	Ile	Phe 480
		His	Lys	Cys	Asp	Asp 485	Asp	Cys	Met	Ala	Ser 490	Ile	Arg	Asn	Asn	Thr 495	Tyr
		Asp	His	Ser	Lys 500	Tyr	Arg	Glu	Glu	Ala 505	Met	Gln	Asn	Arg	Ile 510	Gln	Ile
		Asp	Pro	Val 515	Lys	Leu	Ser	Ser	Gly 520	Tyr	Lys	Asp	Val	Ile 525	Leu	Trp	Phe
		Ser	Phe 530	Gly	Ala	Ser	Cys	Phe 535	Ile	Leu	Leu	Ala	Ile 540	Ala	Met	Gly	Leu
		Val 545	Phe	Ile	Cys	Val	Lys 550	Asn	Gly	Asn	Met	Arg 555	Cys	Thr	Ile	Cys	Ile 560
5	<210> 7 <211> 97 <212> Al <213> So	DN	ia artif	icial													
40	<220> <223> In	serto E	coR-E	coRI	HVP3	10											
10	<220> <221> m <222> (1 <223> Å)(366	1)	na arı	iba de	e HVT											
15 20	<220> <221> m <222> (3 <223> Pr	683)(4	4357)	3 de F	PRV, e	extend	ido										

gaattccaga	ctaaatgccc	cggcccaatt	tgtcaagtgt	gcagtcacgg	aggcgtcgac	60
cgtgtccccg	gcattaaaca	ggaaagcgtt	aaagtttttg	aatgttaggt	cacaggtaca	120
aacataaatg	tttgtacaaa	caggtaacag	gtacaaacat	aaatgccccg	gcataaatgt	180
cccttacggc	ggatcgaaac	gacattaggc	atactcgggt	accattttgc	attccgatca	240
gcacggatga	aattaggcag	gaatgcggtt	tatattatgc	ggcattggac	aaacgatatg	300
gcattgattg	gcagtttatg	aatgtcttca	tgttgggcgt	aaacggattc	ctattggttc	360
agaagacaac	gacgatatat	ttagagagaa	aaagctaccc	agcataggat	aaacacacat	420
tgagcattga	gagacatagg	tatcggtatg	gatgggaaaa	ctacacacgt	gaacaccaaa	480
cgacttatat	actcgagcgg	tgatactact	gagcaagaat	gcactgcatc	tgagccactg	540
aatgaagact	gtgatgaaaa	tgtgaccatc	gatggaattg	gagaagaata	tgcgcagttc	600
ttcatgtccc	cgcaatgggt	cccaaatcta	catcgcttga	gcgaggatac	caaaaaggta	660
taccgatgta	tggtttccaa	cagactcaat	tattttccct	attatgaggc	gttcaggcgg	720
tctttgtttg	atatgtatat	gctaggtcgg	ttggggcgtc	gacttaagcg	atctgactgg	780
gagactatta	tgcatctgtc	accaacgcaa	agtcggcgtc	tacatagaac	tttaagattt	840
gtggagcgta	gaattatccc	atctaacagt	tatatacgca	categggeea	cgttccgcct	900
tegagggeae	ttccgacaga	tacgaattta	aagatggatg	aataattaaa	ttggaaagag	960
taactacatt	aatcgagcgt	catgacggcg	tcccgtgaaa	atgggaattt	tctactcgaa	1020
acaccgtgac	atttgacaga	cctggaattg	ttattctgat	atatagtggg	tgtgtctggc	1080
cggcaacata	cataatgtgc	atgcgaaacc	actttttcag	tgtacgctga	cattgtgcaa	1140
cacggagggg	tagcatctac	atacaatata	tgttgattaa	tgattggaga	aaaaactatg	1200
cagetegeeg	atcatatggc	taactcgcct	tegtetatat	ggcggacccc	gcgggaaaaa	1260
tegaegtaee	atctgattta	caacaccagt	aatgaacatg	tegeatecet	gcccagatct	1320
gtgcgcccat	tggcgcggat	cgttgtgaat	gccgccgaaa	cacttcaggt	cggtatgaga	1380
gccgggaggc	cgccatcagc	aggagtttgg	cgagaggtgt	ttgatagaat	gatgacagcc	1440
ttccgtgacc	acgagectae	tgcgacattt	aatgctgcaa	atcccattag	aaaaatggtc	1500
gagacagttc	tacagaataa	tgaagagccc	ccgcggacgc	atgctgaaat	gggtaatcgc	1560
cttatcaaca	ttatotacto	atattactta	aaacacacaa	gagaatggtg	gatatgggag	1620

ttgtacgaga	cgaatcaggc	cattttaagt	ttattagatg	aagtggttat	cggcacaaca	1680
aatccctttt	gcaccctcga	gcaatactgg	aagccattat	gcaccgcaat	cgccaacaag	1740
gggacctcat	cgcttgttga	ggatgccaaa	gtggccgagt	acctggttag	catgcgcaaa	1800
ttgatataac	ataggcacgc	tctgatgtta	cagaccacaa	taccgcatac	atttattgta	1860
aggttgttaa	taaaggttta	ttctatgtaa	gactacaata	ctttcgacat	tgcttgtata	1920
catattaaat	actttctcaa	gttcctatta	cataaaatgg	gatctatcat	tacattcgtt	1980
aagagtctgg	ataattttac	tgtttgccag	cttcgatctt	ggaacgtact	gtggatagtg	2040
ccttacttgg	aatcgtgaaa	atttgaaacg	tccattattt	ggatatcttc	cggttgtccc	2100
atatecegee	ctggtaccgc	tcggatacct	tgcccgtatg	gattcgtatt	gacagtcgcg	2160
caatcgggga	ccaacaacgc	gtgggtccac	actcattcgg	aaattttccg	atgattctga	2220
atatttattg	ccgctcgtta	cgagtcgttg	gacatatctg	taatacattt	cttcttctga	2280
aggatcgctg	cacatttgat	ctatacattg	gccaggatgt	tcaagtctca	gatgttgcat	2340
tctggcacag	cacaacttta	tggcatttcc	gatgtaatcg	teeggeagee	ctgggggagt	2400
tctatattcg	catattggga	tggtaaggac	aatagcagat	ctcgcaacct	ccagggaggc	2460
tataataacg	tttttaaagg	atggatttct	cataaaaatc	tgtcgcaaat	tacactgaga	2520
atateettta	ctagcgccga	ttgagagcat	cgtcgtccaa	ttttctaaat	ggaaagaaaa	2580
caaggcgggc	aagagtgttc	caaacatttt	cattttcggc	gaatctctca	aatcccatgg	2640
cgtgcaattg	attgcaaaat	tggcacttcc	gttcacgttt	gtatctccaa	actctaagac	2700
acttttaatt	gaaaaactac	gttctagtgt	ggaaagaaac	ctataggcag	accatagaac	2760
tatttgacac	cacatatctt	tttgtatgtc	aaactgacca	tgatcgtatg	ttgctgaatg	2820
cactagggca	attegetege	gcgactccat	acattgaata	attccacacg	tcagctcatc	2880
ggttagcaag	gtccagtagt	tgaagtcatt	tatttttccc	cgcggctggc	caaatctacc	2940
tctgggaata	tccaagttgt	cgaatatgat	cgcaccggct	ctggtcatgg	tgaaggaact	3000
gtagcataaa	gacgcaggta	tcataggggt	aatattttt	tattcactca	catactaaaa	3060
gtaacgcata	ttagcaccat	gtatgggcta	tcaattgaca	tttgcgtagc	actacatcac	3120
gattatgtac	aacataatgg	gacaacatat	ggcaagtaga	tgcaatttcc	tcacactagt	3180
tgggtttatc	tactattgaa	ttttccccta	tctgtgatac	acttgggagc	ctctacaagc	3240
atattgccat	catgtacgtt	tttatctact	gtcttaacgc	ccatgggaac	ggaggcgtcg	3300
tcgtcatgta	ttggacggca	acataggcag	caacacaaat	tgcgtttagg	tggggtgcat	3360
gtggactcga	taccaagccc	ctgcagctgg	ggaacgtctg	gtggagagcc	gataatttga	3420
tatacgcacg	ccatattact	gtcgttgaag	tacgccttat	cttctatgtt	ttcaaattta	3480
ggttcccaag	tggacgtgag	aagtgtttgt	atctcacatg	gaatggccca	aggcattcca	3540

gcccaggtgc	ctggtacttt	aatggcaaac	aaacgttttg	gtagaggtat	tgattctatt	3600
gcagttctgc	agatatotgo	agccccgagt	atccacaggc	tatacgatac	gttatcggag	3660
gcaagcttgg	cgcgccggat	ctcgctgctg	cacacgtacg	tggcggtggc	cgccgggttc	3720
cgcgcacggc	gcgcgttctg	cgaggccgcc	gcgcgcgcgg	gcaccgtcgt	ggacgagcgc	3780
gagacgggct	gcttcgacgc	gcacagette	atgaaggcca	cggtgcagcg	ccaccccgtg	3840
gaegeegege	teeteeegge	gctcacgcac	aagttcttcg	agctcgtcaa	egggeegete	3900
ttcgcgcacg	acacgcacgc	cttcgcccag	tcccccaaca	cggcgctcta	ctttgcggtg	3960
gagaacgtgg	gcetectgce	gcacctgaag	gaggagetgg	cgcgcttcat	ggtggcccgc	4020
gattggtgcg	tcagtgagtt	ecgcggette	taccgcttcc	agacggccgg	cgtaaccgcc	4080
acccagcggc	aggcctggcg	atatatccgc	gagctggtgc	tggcggttgc	agtcttcagg	4140
tccgtcttcc	actgcgggga	cgtcgaggtc	ctccgcgcgg	atcgcttcgc	cggacgcgac	4200
gggctgtacc	tgacctacga	ggcgtcttgc	cccgctggtg	gcggtctttg	gegegggeee	4260
cgcgggcatc	ggecegggea	ccacggcggt	gctggcctcg	gacgtetttg	gectgeteca	4320
caccacgctg	ctgctgcgcg	gggcgccgtc	gcgctagaga	tccaagatat	caaagccatg	4380
gagaagatcg	tectectget	ggctatcgtc	tccctggtca	agagcgacca	gatctgcatc	4440
ggetaceaeg	ccaacaactc	taccgagcag	gtggacacca	tcatggagaa	gaacgtgacc	4500
gtcactcacg	cccaggacat	cctcgagaag	actcacaacg	gaaagctctg	cgacctcgac	4560
ggcgtcaagc	ctctgatcct	gcgtgactgc	tccgtggctg	gttggctcct	gggcaacccc	4620
atgtgcgacg	agttcctcaa	cgtgcccgag	tggtcctaca	togtogagaa	gatcaacccc	4680
gccaacgacc	tgtgctaccc	tggcaacttc	aacgactacg	aggageteaa	geacetgete	4740
tcccgtatca	accacttcga	gaagatccag	atcatcccca	agtectectg	gtccgaccac	4800
gaggcttcta	gcggtgtgtc	cagcgcttgc	ccctaccagg	gccgctccag	cttcttccgc	4860
aacgtcgtgt	ggctgatcaa	gaaggacaac	gcttacccaa	ctatcaagcg	cagetacaac	4920
aacactaacc	aggaggacct	gctggtgctg	tggggcatcc	accaccctaa	cgacgccgct	4980
gagcagactc	gtctctacca	gaaccctact	agctacatct	ccgtgggaac	ctctaccctg	5040
aaccagaggc	tggtgcccaa	gategetace	aggtccaagg	tcaacggtca	gtctggtagg	5100
atggagttct	tctggactat	cctgaagccc	aacgacgcta	tcaacttcga	gtctaacggt	5160
aacttcatcg	ctcctgagaa	cgcctacaag	ategteaaga	agggtgactc	tactatcatg	5220
aagtctgagc	tggagtacgg	taactgcaac	accaagtgcc	agacccctat	cggtgccatc	5280
aactcctcta	tgcctttcca	caacatccac	cccctgacca	tcggtgagtg	ccctaagtac	5340
gtcaagtcta	accgtctggt	cctggctact	ggactgcgta	actetececa	gggtgagcgc	5400
cgtcgtaaga	agaggggcct	cttcggtgcc	atcgctggct	tcatcgaggg	tggatggcag	5460
ggcatggtgg	acggctggta	eggttaceae	cacagcaacg	agcagggctc	eggttaeget	5520

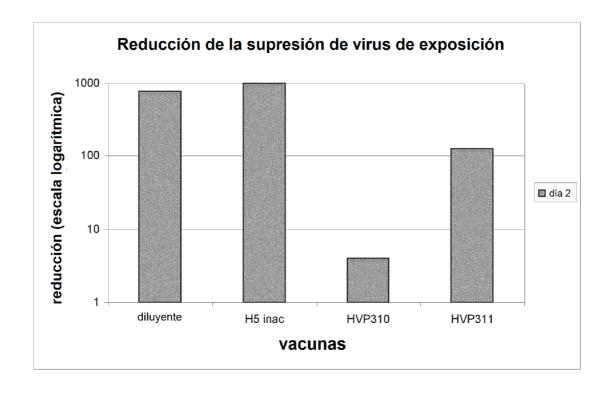
gccgacaagg	agtctaccca	gaaggctatc	gacggcgtca	ccaacaaggt	gaactccatc	5580
atcgacaaga	tgaacaccca	gttcgaggct	gtgggcaggg	agttcaacaa	cctggagcgt	5640
cgtatcgaga	acctgaacaa	gaagatggag	gacggtttcc	tggacgtctg	gacttacaac	5700
gccgagctcc	tggtgctgat	ggagaacgag	cgcaccctgg	acttccacga	ctccaacgtg	5760
aagaacctct	acgacaaggt	ccgcctccag	ctccgcgaca	acgctaagga	gctgggtaac	5820
ggttgcttcg	agttetacea	caggtgcgac	aacgagtgca	tggagteegt	gegtaaegge	5880
acctacgact	acccccagta	ctccgaggag	gecegtetea	agagggagga	gatctccggt	5940
gtgcgcctgg	agagcatcgg	tacttaccag	atcctctcca	tctactccac	cgtcgccagc	6000
tecetegece	tggctatcat	ggtggctggc	ctctccctgt	ggatgtgete	caacggcagc	6060
ctgcagtgca	agatctgcat	ctaactggat	atcaaggatc	tctcgaggat	atcctgcagg	6120
tcgactctag	gaagettgee	teegatteta	gcattacata	gccggtcagt	agatectgee	6180
attcggtagc	gcaaccggct	acatcttcaa	acagteteae	gataaatgca	tetetegtte	6240
ctgccaatcc	ggaaccgggc	ataccactcc	cgcctgccga	tttaattctc	acaattgggc	6300
gatgccggcg	gggcaaaacg	aatgtggatt	tggcaaaccg	acacaggtct	gctgtacgga	6360
ctaatatggg	cacacccaca	tcattcttca	gatgctccat	gcattgttct	atgagaaaga	6420
tccatagggt	ggaggcagcg	tcacgagatc	gcccaggcaa	tcgatcgcat	tcgtctagta	6480
aagtgacgag	agttatcatg	cacacaccca	tgcccacgcc	ttccgaataa	ctggagctgt	6540
ggaagatcgg	aaacgtcttt	ttgactgccg	gtctcgtact	actttcgcac	aggtgtatac	6600
ccggacgcgt	actatatatt	ttatatcatc	caacgtccga	aattacatac	gtggcggcga	6660
tggaagtaga	tgttgagtct	togaaagtaa	gtgcctcgaa	tatgggtatt	gtctgtgaaa	6720
atatcgaaag	cggtacgacg	gttgcagaac	cgtcgatgtc	gccagatact	agtaacaata	6780
gcttcgataa	cgaagacttc	cgtgggcctg	aatacgatgt	ggagataaat	accagaaaat	6840
ctgctaatct	tgatcgtatg	gaatcttcgt	gccgtgaaca	acgagcggcg	tgcgaacttc	6900
gaaagtgttc	gtgtcctacg	tetgeegtge	gcatgcaata	cagtattctt	tcatctctcg	6960
ctccgggttc	agagggtcat	gtatatatat	gtactagata	cggggacgcg	gaccaaaaaa	7020
aatgcatagt	gaaggcagtc	gttggaggaa	agaatcccgg	gagggaagtg	gatattttaa	7080
aaaccatctc	acataaatca	attataaaat	taatccatgc	ctataaatgg	aaaaatgttg	7140
tgtgtatggc	aatgcgtgta	tatcgttatg	atcttttcac	atatattgac	ggagtcggcc	7200
ctatgcccct	tcaacagatg	atctatattc	aacgtggact	actagaggcg	ctagcataca	7260
tacatgaaag	gggcatcatt	caccgagacg	taaagacgga	gaatatattc	ttggataatc	7320
acgaaaatgc	agttttgggt	gacttcggtg	ctgcatgcca	actaggagat	tgtatagata	7380
cgccccaatg	ttacggttgg	agcggaactg	tggaaacaaa	ttcgccggaa	ttatctgcac	7440

ttgatccgta	ttgcacaaaa	acagatattt	ggagtgccgg	attggttcta	tatgagatgg	7500
caattaaaaa	tgtaccattg	tttagtaagc	aggtgaaaag	ttcgggatct	cagctgagat	7560
ccataatacg	gtgcatgcaa	gtgcatgaac	tggagtttcc	ccgcaacgat	tctaccaacc	7620
tctgtaaaca	tttcaaacaa	tatgcggttc	gtgtacgacc	gccttatacc	attcctcgag	7680
ttataagaaa	tggggggatg	ccaatggatg	ttgaatatgt	catttctaaa	atgettaegt	7740
ttgaccagga	gttcagacct	tctgctaagg	aaatattgaa	tatgccccta	tttactaagg	7800
cgccgattaa	cctgcttaat	atcacaccct	ctgacagtgt	ctaacggtat	acaggcggga	7860
gegggtegtg	gcgtcatcat	caccacttga	gaatttatat	tttgaattgt	tgattgataa	7920
attaacctga	ttcattgaga	actgaaacgc	catattggtt	tcttggatat	gtctacaaca	7980
attagttaaa	ttgctatgtt	ctactgcgag	taacatttga	taagttgtaa	gagacgggcg	8040
actcatgtcg	aagttgacga	atataaagta	cataacgtgt	ttagaatacc	cagaatccga	8100
atagtccgcg	ggggcgtctt	ctcgcgtgag	taccaaatac	tgagttgaac	ttgaaaatgc	8160
taaatctgtg	acactctttg	tgtgatgatt	attgtcacca	cttcgaagat	ggcttcgaca	8220
ttcatgatgt	tctggtgttt	gtttggaatc	gtaatagcgc	ttgtttcgtc	caagtetgae	8280
aacaaagaaa	atctgaagaa	ttatatcacg	gataagtcaa	ccaatattag	aatacccacg	8340
ccattatttg	tatcaacgga	aaactcttat	cccacaaaac	atgtaatcta	cgatgaaaac	8400
tgtggcttcg	ctgtactcaa	tcctataagt	gaccccaaat	atgtcctttt	gagccagctt	8460
ctaatgggaa	ggcgcaaata	tgatgegaeg	gtcgcgtggt	ttgttctcgg	taaaatgtgt	8520
gccagattaa	tatatttgcg	cgaattttat	aactgctcga	caaatgagcc	ttttggcaca	8580
tgttctatga	geteteetgg	atggtgggac	aggegetaeg	tctcaaccag	tttcatttct	8640
cgcgacgaat	tacagetggt	ttttgcagcg	cegtcccgag	aattagatgg	tttatatacg	8700
cgcgtagtag	ttgtcaacgg	ggactttact	acggccgata	taatgtttaa	tgttaaagtg	8760
gcatgtgcct	tttcaaagac	tggaatagaa	gatgatacat	tatgcaaacc	ctttcatttc	8820
tttgccaatg	caacattgca	caatttaacc	atgattagat	cggtaactct	tcgagcgcac	8880
gaaagccatt	taaaggaatg	ggtggcacgg	agaggtggta	acgtccctgc	agtgctactt	8940
gagtctacca	tgtatcatgc	atccaatctg	cctagaaatt	tcagggattt	ctacataaag	9000
tctccagatg	attataagta	taatcaccta	gatgggccat	ctgtaatgct	catcactgac	9060
agacctagtg	aagatttgga	tgggaggete	gttcaccaaa	gtgacatttt	tactactaca	9120
agtcctataa	aacaggtccg	gtatgaagag	catcagtcac	atacaaagca	gtatcctgta	9180
aacaaaatac	aagctataat	ttttttgata	gggttaggct	cgttcattgg	aagcatattc	9240
gtagttttgg	tagtatggat	tatacgcaga	tattgcaatg	gagcgcggag	tgggggaacg	9300
cccccagtc	ctcgccggta	tgtgtatacc	aggctatgat	cacgtgtgaa	acttgggcgg	9360
acctgtatca	tatgtacacc	gtccctattc	gtttatagcc	agtacgtgtt	atctgcacat	9420

agaggaacat	gtgtcatact	gggatcgcat	gcatggtatg	tgtgactcta	atattattct	9480
gtatcataat	aaaaacacag	tgcatggtat	atagaggatc	gctggtaagc	actacggtag	9540
accaatcggc	tcagattgca	ttctttggca	tcgataccgt	tgttaattta	tatggcaaag	9600
tcttgttcat	gggagatcag	tatttggagg	aaatatactc	tggaacgatg	gaaatactca	9660
aatggaatca	agctaaccgc	tgctattcta	ttgcgcatgc	aacatattac	gccgactgtc	9720
ctataatcag	ttctacggta	ttcagaggat	gccgggacgc	cgttgtttat	actaggcccc	9780
acagcagaat.	tc					9792

REIVINDICACIONES

- 1. Vector de herpesvirus de pavo (HVT) que comprende un ácido nucleico heterólogo que comprende una secuencia de nucleótidos que codifica una proteína hemaglutinina (HA) de virus de la gripe aviar (VGA), **caracterizado por que** dicha secuencia de nucleótidos está unida operativamente a un promotor génico de glucoproteína B (gB) de un herpesvirus de mamífero.
- 2. El vector de HVT de acuerdo con la reivindicación 1, **caracterizado por que** el promotor génico de gB de un herpesvirus de mamífero comprende secuencias de nucleótidos de la región traducida de dicho gen de gB, en el que se cambió cualquier secuencia de nucleótidos ATG.
- 3. El vector de HVT de acuerdo con la reivindicación 2, **caracterizado por que** el promotor génico de gB de un herpesvirus de mamífero tiene una secuencia de nucleótidos como en la SEQ ID NO: 2.
- 4. El vector de HVT de acuerdo con una cualquiera de las reivindicaciones 1-3, **caracterizado por que** la secuencia de nucleótidos que codifica una proteína HA de VGA derivó de un VGA altamente patógeno.
- 5. El vector de HVT de acuerdo con la reivindicación 4, **caracterizado por que** la secuencia de nucleótidos que codifica la proteína HA de VGA codifica una proteína HA de VGA que tiene al menos 90 % de identidad de secuencia de aminoácidos con la secuencia de aminoácidos como en las SEQ ID NO: 4 o 6.
 - 6. El vector de HVT de acuerdo con las reivindicaciones 4 o 5, **caracterizado por que** la secuencia de nucleótidos que codifica la proteína HA de VGA tiene una secuencia de nucleótidos que tiene al menos 90 % de identidad de secuencia de nucleótidos con la secuencia de nucleótidos como en las SEQ ID NO: 3 o 5.
 - 7. Método para la preparación del vector de HVT de acuerdo con una cualquiera de las reivindicaciones 1-6, que comprende la integración en el genoma de un HVT de un ácido nucleico heterólogo que comprende una secuencia de nucleótidos que codifica una proteína HA de VGA, en el que dicha secuencia de nucleótidos está unida operativamente a un promotor génico de gB de un herpesvirus de mamífero.
 - 8. El vector de HVT de acuerdo con una cualquiera de las reivindicaciones 1-6, o como puede obtenerse por el método de la reivindicación 7, para uso en la vacunación de aves de corral contra la gripe aviar.
- 9. El vector de HVT de acuerdo con una cualquiera de las reivindicaciones 1-6, o como puede obtenerse por el método de la reivindicación 7, para uso en una vacuna contra la gripe aviar en aves de corral.
 - 10. Vacuna contra la gripe aviar en aves de corral, que comprende el vector de HVT de acuerdo con una cualquiera de las reivindicaciones 1-6 o como puede obtenerse por el método de la reivindicación 7, y un vehículo farmacéuticamente aceptable.
 - 11. Vacuna de acuerdo con la reivindicación 10, caracterizada por que la vacuna puede aplicarse en el huevo.
 - 12. Uso del vector de HVT de acuerdo con una cualquiera de las reivindicaciones 1-6, o como puede obtenerse por el método de la reivindicación 7, para la fabricación de una vacuna contra la gripe aviar en aves de corral.
 - 13. Método para la preparación de la vacuna de acuerdo con las reivindicaciones 10 u 11, comprendiendo dicho método la mezcla del vector de HVT de acuerdo con una cualquiera de las reivindicaciones 1-6, o como puede obtenerse por el método de la reivindicación 7, y un vehículo farmacéuticamente aceptable.


25

10

30

40

Figura 1

