

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 636 470

51 Int. Cl.:

C12Q 1/68 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 07.04.2005 E 15173816 (8)
 Fecha y número de publicación de la concesión europea: 12.07.2017 EP 2947160

(54) Título: Marcadores de expresión génica para predecir la respuesta a la quimioterapia

(30) Prioridad:

09.04.2004 US 561035 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **05.10.2017**

(73) Titular/es:

GENOMIC HEALTH, INC. (100.0%) 301 Penobscot Drive Redwood City, CA 94063, US

(72) Inventor/es:

BAKER, JOFFRE; SHAK, STEVEN y GIANNI, LUCA

(74) Agente/Representante:

UNGRÍA LÓPEZ, Javier

DESCRIPCIÓN

Marcadores de expresión génica para predecir la respuesta a la quimioterapia

- La presente invención proporciona conjuntos de genes cuya expresión es importante en el pronóstico del cáncer. En particular, la invención proporciona información sobre expresión génica, útil para predecir si los pacientes con cáncer tendrán probablemente una respuesta positiva al tratamiento con quimioterapia. Los oncólogos disponen de diversas opciones de tratamientos, incluyendo distintas combinaciones de fármacos quimioterapéuticos que son considerados como "protocolo de tratamiento", y diversos fármacos 10 no identificados para tratar un cáncer en particular, pero de los que hay evidencia de eficacia en ese cáncer. La mayor probabilidad de un buen resultado del tratamiento requiere que los pacientes sean asignados al tratamiento contra el cáncer óptimo disponible, y que esta asignación se haga lo antes posible tras el diagnóstico. En particular, es importante determinar la probabilidad de respuesta del paciente a la quimioterapia "protocolo de tratamiento", porque los fármacos quimioterapéuticos, tales 15 como antraciclinas y taxanos, tienen una eficacia limitada y son tóxicos. La identificación de los pacientes con la mayor o menor probabilidad de respuesta podría incrementar el beneficio neto que pueden ofrecer esos fármacos, y reducir la morbilidad y toxicidad netas, a través de una selección de pacientes más inteligente.
- En la actualidad, las pruebas diagnósticas utilizadas en la práctica clínica son de analito único, y por consiguiente no captan el potencial valor de conocer las relaciones entre docenas de marcadores distintos. Además, frecuentemente las pruebas diagnósticas no son cuantitativas, apoyándose en la inmunohistoquímica. A menudo este método proporciona distintos resultados en diferentes laboratorios, en parte debido a que los reactivos no están estandarizados, y en parte porque las interpretaciones son subjetivas y no se pueden cuantificar fácilmente. Las pruebas basadas en ARN no son utilizadas frecuentemente por el problema de la degradación del ARN a lo largo del tiempo, y porque resulta difícil obtener de los pacientes muestras de tejido fresco para su análisis. El tejido embebido en parafina fijado es más fácil de obtener y se han establecido métodos para detectar ARN en tejido fijado. No obstante, en general estos métodos no permiten estudiar grandes números de genes (ADN o ARN) en pequeñas cantidades de material. Por ello, tradicionalmente el tejido fijado se ha utilizado con poca frecuencia, aparte de para la detección inmunohistoquímica de proteínas.
 - En los últimos años, varios grupos han publicado estudios sobre la clasificación de diversos tipos de cáncer por análisis de expresión génica de microarrays (ver, ej. Golub et al, Science286:531-537 (1999); Bhattacharjae et al, Proc. Natl. Acad Sci. USA 98:13790-13795 (2001); Chen-Hsiang et al, Bioinformatics 17 (Suppl. 1):S316-S322 (2001); Ramaswamy et al., Proc.Natl. Acad. Sci. USA 98:15149-15154 (2001)).
- También se han presentado ciertas clasificaciones de cánceres de mama humanos basadas en patrones de expresión génica(Martin et al, Cancer Res. 60:2232- 2238 (2000); West et al., Proc. Natl. Acad. Sci. USA 98:11462-11467 (2001); Sorlie et al, Proc. Natl. Acad. Sci. USA 98:10869-10874 (2001); Yan et al, Cancer Res. 61:8375-8380 (2001). No obstante, estos estudios van en su mayoría enfocados a mejorar y refinar la clasificación ya establecida de diversos tipos de cáncer, incluyendo el cáncer de mama, y en general no aportan nuevos conocimientos sobre las relaciones de de los genes expresados diferencialmente, y no vinculan los resultados a estrategias de tratamiento para mejorar el resultado clínico de la terapia contra el cáncer.
 - Aunque la moderna biología y bioquímica molecular ha descubierto centenares de genes cuya actividad influye en la conducta de las células tumorales, su estado de diferenciación y su sensibilidad o resistencia a determinados fármacos terapéuticos, con algunas excepciones, el estado de esos genes no ha sido explotado con la finalidad de tomar decisiones clínicas rutinarias sobre tratamientos farmacológicos. Una notable excepción es el uso de la expresión de proteínas de receptores estrogénicos (RE) en el carcinoma de mama para seleccionar a las pacientes para ser tratadas con fármacos antiestrógenos, como el tamoxifen. Otro ejemplo excepcional es el uso de la expresión de la proteína ErbB2 (Her2) en los carcinomas de mama para seleccionar a pacientes para el fármaco antagonista Her2 Herceptin® (Genentech, Inc., South SanFrancisco, CA).

45

50

55

60

- A pesar de los recientes avances, el problema en el tratamiento del cáncer sigue siendo identificar regímenes de tratamiento específicos para tipos de tumores patogénicamente distintos, y por último personalizar el tratamiento del tumor para optimizar los resultados. Por tanto, se necesitan tests que proporcionen simultáneamente información predictiva sobre la respuesta del paciente a las diversas opciones de tratamiento. Esto es especialmente patente en el caso del cáncer de mama, cuya biología es poco conocida. Es evidente que la clasificación del cáncer de mama en unos cuantos subgrupos, como el subgrupo ErbB2 positivo, y subgrupos caracterizados por la baja o ausente expresión génica del receptor estrogénico (RE) y unos cuantos factores transcripcionales adicionales (Perou et al., Nature 406:747-752 (2000)), no refleja la heterogeneidad celular y molecular del cáncer de mama, y no permite diseñar estrategias de tratamiento que maximicen la respuesta del paciente.
- El cáncer de mama es el tipo de cáncer más frecuente entre las mujeres en los Estados Unidos, y es la principal causa de muertes por cáncer entre las mujeres de 40 59 años. En consecuencia, existe una necesidad particularmente importante de disponer de un test para el cáncer de mama clínicamente validado, predictivo de la respuesta de la paciente a la quimioterapia.

La presente invención proporciona conjuntos de genes útiles para predecir la respuesta del cáncer a la

quimioterapia, por ej. pacientes con cáncer de mama. Además, la invención proporciona un test clínicamente validado para el cáncer, por ej. cáncer de mama, predictivo de la respuesta del paciente a la quimioterapia, utilizando análisis multigen de ARN. La presente invención permite el uso de material de biopsia embebido en parafina guardado para el ensayo de todos los marcadores en los conjuntos de genes pertinentes, y por tanto es compatible con el tipo de material de biopsia más ampliamente disponible.

En un aspecto, la presente invención se refiere a un método para la predicción de la respuesta a la quimioterapia en un sujeto diagnosticado de cáncer, comprendiendo la determinación del nivel de expresión de una o más transcritos de ARN de pronóstico o sus productos de expresión en una muestra biológica conteniendo células cancerosas obtenidas de dicho sujeto, donde el transcrito de ARN predictivo es el transcrito de uno o más genes seleccionados del grupo compuesto por TBP; ILT2; ABCC5; CD18; GATA3; DICER 1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; ID2; G.Catenina; FBX05; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Hepsina; CRABP1; AK055699; Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt5a; PTPD1; RAB6C; TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1 donde

20

25

30

50

65

(a) por cada unidad de expresión aumentada de uno o más de ILT2; CD18;GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBX05; CDC20; HLA.DPB1; CGA; MMP12;CDC25B; IL6; CYBA; DR4; CRABP1; Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 y CD68; o el correspondiente producto de expresión, se pronostica que dicho sujeto tendrá una mayor probabilidad de respuesta a la quimioterapia, y

(b) por cada unidad de expresión aumentada de uno o más de TBP; ABCC5;GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; G.Catenina; FHIT; MTA1; ErbB4;FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Hepsina; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKTI; COL1A2; Wnt.5a; PTPD1; RAB6C; GSTM1, BCL2,ESR1; o el correspondiente producto de expresión, se pronostica que dicho sujeto tendrá una menor probabilidad de respuesta a la quimioterapia.

En una realización particular, en el método anterior el transcrito de ARN predictivo es el transcrito de uno o más genes seleccionados del grupo compuesto por TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; ID2; G,Catenina; FBX05; FHTT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1;

SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Hepsina; CRABP1; AK055699; Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt5a; PTPD1; RAB6C; y TK1.

En otra realización, la respuesta es una respuesta patológica completa.

45 En una realización preferente, el sujeto es un paciente humano.

El cáncer puede ser cualquier tipo de cáncer, pero de preferencia es un tumor sólido, como cáncer de mama, cáncer de ovario, cáncer gástrico, cáncer de colon, cáncer de páncreas, cáncer de próstata y cáncer de pulmón.

Si el tumor es cáncer de mama, puede ser, por ejemplo, cáncer de mama invasivo, o cáncer de mama estadio II o estadio III.

En una realización particular, la quimioterapia es quimioterapia adyuvante.

En otra realización, la quimioterapia es quimioterapia neoadyuvante.

La quimioterapia neoadyuvante puede comprender, por ejemplo, la administración de un derivado de taxano, como docetaxel y/o paclitaxel, y/u otros agentes anticancerígenos, como los que pertenecen a la clase de las antraciclinas, doxorubicina, inhibidores de la topoisomerasa, etc.

El método puede implicar la determinación de los niveles de expresión de por lo menos dos, o por lo menos cinco, o por lo menos diez, o por lo menos 15 de los transcritos de pronóstico que se enumeran más arriba, o sus productos de expresión.

60 La muestra biológica puede ser, ej. una muestra de tejido comprendiendo células cancerosas, donde el tejido puede ser fijado, embebido en parafina, o fresco o congelado.

En una realización particular, el tejido procede de una biopsia por aspiración con aguja fina, punción conaguja gruesa u otros tipos de biopsia.

En otra realización, la muestra de tejido se obtiene por biopsia de aspiración con aguja fina, lavado bronquial o transbronquial.

El nivel de expresión de dicho transcrito o transcritos de ARN de pronóstico puede ser determinados, por ejemplo, por RT-PCR (reacción en cadena de la polimerasa en tiempo real) u otro método basado en

- PCR, inmunohistoquímica, técnicas proteómicas, o cualquier otro método conocido por los expertos, o su combinación.
- En una realización, el ensayo para la medición de dichos transcritos de ARN de pronóstico o susproductos de expresión, se proporciona en forma de un kit o kits.
- En otro aspecto, la invención se refiere a un conjunto que comprende polinucleótidos hibridando conla mayoría de los siguientes genes: TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; ID2; G.Catenina; FBX05; FHIT; MTA1; ERBB4; FUS; BBC3;IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS;
- MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Hepsina; CRABP1; AK055699; Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt.5a; PTPD1; RAB6C; TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1.
- En una realización, la serie comprende polinucleótidos que hibridan conla mayoría de los siguientes genes: TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; ID2; G. Catenina; FBX05; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Hepsina; CRABP1; AK055699;
- Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2;SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt.5a; PTPD1; RAB6C; TK1.
 En otra realización, la serie comprende polinucleótidos que hibridan conla mayoría de los siguientes
- genes: ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBX05; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig.51037; VCAM1;FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2
- 25 MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 y CD68.
 Y en otra realización, la serie comprende polinucleótidos que hibridan conla mayoría de los siguientes
- Y en otra realización, la serie comprende polinucleótidos que hibridan conla mayoría de los siguientes genes: ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBX05; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1
 - Y aún en otra realización, la serie comprende polinucleótidos quehibridan conla mayoría de los siguientes genes: TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; G.Catenina; FHTT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT;
- CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Hepsina; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1.
 - En otra realización, la serie comprende polinucleótidos que hibridan conla mayoría de los siguientes genes: TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; G.Catenina; FHIT; MTA1; ErbB4; FUS;
- BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Hepsina; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C.
 - En varias realizaciones, el conjunto comprende como mínimo cinco, o como mínimo 10, o como mínimo 15, o como mínimo 10 de tales polinucleótidos.
- 45 En una realización particular, la serie comprende polinucleótidos que hibridan con todos los genes enumerados más arriba.
 - En otra realización particular, la serie comprende más de un polinucleótido que hibrida con el mismo gen. En otra realización, por lo menos uno de los nucleótidos comprende una secuencia basada en intrón cuya expresión se correlaciona con la expresión de una secuencia exón correspondiente.
- En varias realizaciones, los polinucleótidos pueden ser ADNc u oligonucleótidos.

 En otro aspecto, la invención se refiere a un método de preparación de un perfil genómico personalizado para un paciente, comprendiendo los pasos de:
- (a) determinar los niveles de expresión normalizados de los transcritos de ARN, o los productos de expresión de un gen o conjunto de genes seleccionados del grupo compuesto por TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A.Catenina; CEGP1; NPD009;MAPK14; RUNX1; ID2; G.Catenina; FBX05; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R;CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLADPB1;SGCB; GGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Hepsina; CRABP1; AK055699; Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1;AKT1; COL1A2; STAT1; Wnt.5a; PTPD1; RAB6C; TK1, ErbB2, CCNB1, BIRC5, STK6,MKI67, MYBL2, MMP11, GTSL2, CD68, GSTM1, BCL2, ESR1, en una célula cancerosa obtenida de dicho paciente; γ
- (b) crear un informe resumiendo los datos obtenidos por el análisis de expresión génica.

En una realización específica, si se determina una expresión aumentada de uno o más de ELT.2; CD18;

GBP1;CD3z; fasl; MCM6; E2F1; ID2; FBX05; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 y CD68; o el correspondiente producto de expresión, el informe incluye la predicción de que dicho sujeto tiene una mayor probabilidad de respuesta a la quimioterapia. En este caso, en una realización particular, el método incluye el paso adicional de tratar al paciente con un agente quimioterapéutico.
En el anterior método, si se determina una expresión aumentada de uno o más de TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; G.Catenina; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Hepsina; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1; o el correspondiente producto de expresión, el informe incluye una predicción de que dicho sujeto tiene una menor probabilidad de respuesta a la quimioterapia. En otro aspecto, la invención se refiere a un método para determinar la probabilidad de respuesta de un paciente a la quimioterapia, comprendiendo:

(a) determinar los niveles de expresión de los transcritos de ARN de los siguientes genes,ACTB, BAG1, BCL2, CCNB1, CD68, SCUBE2, CTSL2, ESR1, GAPD, GRB7, GSTM1, GUSB, ERBB2, MKI67, MYBL2, PGR, RPLPO, STK6, MMP11, BIRC5, TFRC, o sus productos de expresión, y

(b) calcular la puntuación de recurrencia (Recurrence Score, RS).

En una realización, los pacientes con una RS > 50 están en el percentil 50 superior de los pacientes con probable respuesta a la quimioterapia.

En otra realización, los pacientes con una RS < 35 están en el percentil 50 inferior de los pacientes con probable respuesta a la quimioterapia.

25 En aún otra realización, se determina la RS creando los siguientes subconjuntos de genes:

```
(I)subconjunto de factor del crecimiento: GRB7 y HER2;
```

(II)subconjunto de receptor estrogénico: ER, PR, Bc12, y CEGP1;

(III)subconjunto de proliferación: SURV, Ki.67, MYBL2, CCNB1, y STK15; y

(IV)subconjunto de invasión: CTSL2, y STMY3;.

donde un gen en cualquiera de los subconjuntos (i)-(iv) puede ser sustituido por un gen sustituto que coexpresa con dicho gen en dicho tumor con un coeficiente de Pearson≥0,40; y

(c) calcular la puntuación de recurrencia (RS) de dicho sujeto, ponderando las contribuciones de cada uno de los subconjuntos (i) - (iv), a la recurrencia del cáncer de mama.

El anterior método puede comprender además la determinación de los transcritos de ARN de CD68,GSTM1 y BAG1 o sus productos de expresión, o los correspondientes genes sustitutos o sus productos de expresión, e incluyendo la contribución de dichos genes o genes sustitutos a la recurrencia del cáncer de mama en el cálculo de la RS.

La RS puede ser determinada, por ejemplo, aplicando la siguiente ecuación:

```
RS = (0,23 \text{ a } 0,70) \text{ x umbr ejeGRB7} - (0,17 \text{ a } 0,55) \text{ x eje ER} + (0,52 \text{ a } 1,56) \text{ x} umbr eje prolif + (0,07 \text{ a } 0,21) \text{ x eje invasión} + (0,03 \text{ a } 0,15) \text{ x CD68} - (0,04 \text{ a } 0,25) \text{ x} GSTM1 - (0,05 \text{ a } 0,22) \text{ x BAG1}
```

donde

20

30

35

40

45

60

65

```
(I)eje GRB7 = (0,45 a 1,35) x GRB7 + (0,05 a 0,15) x HER2;

(II)si eje GRB7< -2, umbr eje GRB7 = -2, y si eje GRB7 ≥ -2, umbr eje GRB7 = eje GRB7;

(III)eje ER - (Est1 + PR + Bc12 + CEGP1)/4;

(IV)eje prolif = (SURV + Ki.67 + MYBL2 + CCNB1 + STK15)/5;

(V)si eje prolif < -3.5, umbr eje prolif = -3.5, si eje prolif≥ -3,5, umbr eje prolif = eje prolif ; y

(VI)eje invasión = (CTSL2 + STMY3)/2,
```

donde las contribuciones individuales de los genes en (iii), (iv) y (vi) son ponderadas por un factor de 0,5 a 1,5, y donde una RS mayor representa una mayor probabilidad de recurrencia del cáncer de mama. En otra realización, se determina la RS aplicando la siguiente ecuación:

```
RS (rango, 0 -+ 0,47 x Puntuación de Grupo HER2
100) = - 0,34x Puntuación de Grupo ER
+1,04 x Puntuación de Grupo Proliferación
+ 0,10 x Puntuación de Grupo Invasión
+ 0,05 x CD68
0,08 x GSTM1
0,07 x BAG1
```

La Figura 1 muestra la relación entre la puntuación de recurrencia (RS) y la probabilidad de respuesta del

paciente a la quimioterapia, basado en resultados de un ensayo clínico con la variable de respuesta patológica completa.

La Tabla 1 muestra una lista de genes, cuya expresión se correlaciona positiva o negativamente con la respuesta del cáncer de mama a la quimioterapia neoadyuvante con adriamicina y taxano. Resultados de un ensayo clínico con la variable de respuesta patológica completa. El análisis estadístico utilizó modelos lineales generalizados univariados con una función de enlace probit.

La Tabla 2 presenta una lista de genes, cuya expresión predice la respuesta del cáncer de mama a la quimioterapia. Resultados de un ensayo clínico retrospectivo. La tabla incluye los números de accesión de los genes, las secuencias de cebadores directos e inversos (designados con "f" y "r", respectivamente), y sondas (designadas con "p") utilizadas para la amplificación PCR.

La Tabla 3 muestra las secuencias de amplicón utilizadas en la amplificación PCR de los genes indicados.

A. Definiciones

10

30

35

40

45

50

55

60

65

Salvo que se definan de otro modo, los términos técnicos y científicos utilizados aquí tienen el mismo significado que el que entiende habitualmente alguien con conocimientos ordinarios en la técnica al que pertenece la presente invención. Singleton *et al*, Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley&Sons (New York, NY 1994), y March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, NY 1992), proporcionan a los expertos en la técnica una quía general para muchos de los términos utilizados en la presente solicitud.

Un experto en la técnica entenderá que existen muchos métodos y materiales similares o equivalentes a los descritos aquí, que podrían ser utilizados en la práctica de la presente invención. Sin duda, la presente invención no se limita en modo alguno a los métodos y materiales descritos. A los efectos de la presente invención, los siguientes términos se definen a continuación.

El término "microarray" se refiere a una disposición ordenada de elementos de unconjuntohibridizable, de preferencia sondas de polinucleótidos, sobre un sustrato.

El término "polinucleótido", utilizado en singular o plural, se refiere en general a cualquier polirribonucleótido o polidesoxirribonucleótido, que puede ser ARN o ADN no modificado, o ARN o ADN modificado. Así, por ejemplo, los polinucleótidos como se definen aquí incluyen, sin limitación, ADN de cadena simple y doble, ADN incluyendo regiones de cadena simple y doble, ARN de cadena simple y doble, y ARN incluyendo regiones de cadena simple y doble, moléculas híbridas comprendiendo ADN y ARN que pueden ser de cadena simple o, más típicamente, de cadena doble, o incluyendo regiones de cadena simple y doble. Además, el término "polinucleótido", como se utiliza aquí, se refiere a regiones de cadena triple, comprendiendo ARN o ADN, o ARN y ADN. Las cadenas en tales regiones pueden ser de la misma molécula o de moléculas distintas. Las regiones pueden incluir la totalidad de una o más de las moléculas, pero más típicamente incluyen solamente una región de algunas de las moléculas. Una de las moléculas de una región de triple hélice es frecuentemente un oligonucleótido. El término "polinucleótido" incluye específicamente ADNc. El término incluye ADN (incluyendo ADNc) y ARN que contienen una o más bases modificadas. Por tanto, ADN o ARN con espina troncal modificada para mayor estabilidad o por otras razones, son "polinucleótidos" según se entiende aquí el término. Además, ADN o ARN que comprenden bases inusuales, como iosina, o bases modificadas, como bases tritiadas, están incluidos en el término "polinucleótidos" como se define aquí. En general, el término "polinucleótido" engloba todas las formas modificadas ya sea química, enzimática y/o metabólicamente de polinucleótidos no modificados, así como las formas químicas de ADN y ARN características de virus y células, incluyendo células simples

El término "oligonucleótido" se refiere a un polinucleótido relativamente corto, incluyendo, sin limitación, desoxirribonucleótidos de cadena simple, ribonucleótidos de cadena simple o doble, híbridos RNA:DNA y ADN de cadena doble. Los oligonucleótidos, como los oligonucleótidos sonda de ADN de cadena simple, son con frecuencia sintetizados por métodos químicos, por ejemplo utilizando sintetizadores automáticos de oligonucleótidos, que pueden obtenerse en el comercio. No obstante, los oligonucleótidos pueden hacerse mediante diversos métodos, incluyendo técnicas in vitromediadas por ADN recombinante, y por expresión de ADN en células y organismos.

Los términos "gen expresado diferencialmente", "expresión génica diferencial" y sus sinónimos, que son utilizados de forma intercambiable, se refieren a un gen cuya expresión es activada a un nivel superior o inferior en un sujeto que padece una enfermedad, específicamente un cáncer, como cáncer de mama, en relación con su expresión en un sujeto normal o control. Los términos incluyen también genes cuya expresión es activadaa un nivel superior o inferior en diferentes estadios de la misma enfermedad. Se entiende también que un gen expresado diferencialmente puede ser activado o inhibido más bien a nivel de ácido nucleico o nivel proteico, o puede ser sometido a empalme alternativo dando un producto polipeptídico distinto. Tales diferencias pueden evidenciarse por un cambio en los niveles de ARNtn, expresión de superficie, secreción u otra división de un polipéptido, por ejemplo. La expresión génicadiferencial puede incluir una comparación de la expresión entre dos o más genes o sus productos génicos, o una comparación de los cocientes de la expresión entre dos o más genes o sus productos génicos, o incluso una comparación de dos productos del mismo gen procesados de forma distinta, que difieren entre sujetos normales y sujetos con una enfermedad, específicamente cáncer, o entre varios estadios de la misma enfermedad. La expresión diferencial incluye diferencias, tanto cuantitativas como cualitativas, en el patrón de expresión temporal o celular en un gen o susproductos de expresión entre,

por ejemplo, células normales o enfermas, o entre células que han pasado por distintos episodios o estadios de la enfermedad. A efectos de la presente invención, se considera presencia de "expresión génica diferencial" cuando hay una diferencia de por lo menos unas dos veces, de preferencia por lo menos unas cuatro veces, y mejor de por lomenos unas seis veces, y aún mejor de por lo menos diez veces entre la expresión de un gen determinado en sujetos normales y enfermos, o en varios estadios de la evolución de la enfermedad en un sujeto enfermo.

El término "normalizado" respecto a un transcrito de gen o un producto de expresión génica se refiere al nivel del transcrito o producto de expresión génica en relación a los niveles medios de transcritos/ productos de un conjunto de genes de referencia, donde los genes de referencia son seleccionados en base a su variación mínima entre pacientes, tejidos o tratamientos ("genes de limpieza"), o los genes de referencia son la totalidad de los genes comprobados. En este último caso, que se denomina generalmente "normalización global", es importante que el número total de genes comprobados sea relativamente amplio, de preferencia superior a 50. Específicamente, el término "normalizado" respecto a un transcrito de ARN se refiere al nivel de transcrito en relación con la media de niveles de transcrito de un conjunto de genes de referencia. Más específicamente, el nivel medio de un transcrito de ARN medido con TaqMan® RT-PCR se refiere al valor Ct menos los valores Ct medios de un conjunto de transcritos génicos de referencia.

10

15

20

25

30

35

40

50

55

60

65

Los términos "umbral de expresión" y "umbral de expresión definido" se utilizan de forma intercambiable, y se refieren al nivel de un gen o producto génico en cuestión por encima del cual el gen o producto génico sirven como marcador predictivo de la respuesta o resistencia de un paciente a un fármaco. Típicamente, el umbral se define experimentalmente en estudios clínicos. El umbral de expresión puede ser seleccionado para sensibilidad máxima (por ejemplo, para detectar todos los respondedores a un fármaco), o para selectividad máxima (por ejemplo, para detectar solamente los respondedores a un fármaco), o para un error mínimo.

La frase "amplificación génica" se refiere a un proceso por el que se forman múltiples copias de un gen o fragmento génico en una célula o línea celular determinadas. La región duplicada (un segmento de ADN amplificado) es denominada frecuentemente "amplicón." Con frecuencia, la cantidad de ARN mensajero (ARNm) producida, es decir, el nivel de expresión génica, aumenta también en proporción al número de copias hechas del gen concreto.

El término "pronóstico" se utiliza aquí en relación con la predicción de la probabilidad de muerte atribuible al cáncer o progresión, incluyendo recurrencia, diseminación metastásica y resistencia farmacológica de una enfermedad neoplásica, como el cáncer de mama. El término "predicción" se utiliza aquí respecto a la probabilidad de que un paciente responda favorable o desfavorablemente a un fármaco o conjunto de fármacos, y también al grado de tales respuestas, o que un paciente sobreviva, tras la extirpación quirúrgica del tumor primario y/o quimioterapia, durante determinado periodo de tiempo sin recurrencia del cáncer. Los métodos de predicción de la presente invención pueden utilizarse clínicamente para tomar decisiones de tratamientos, al elegir las modalidades de tratamiento para un paciente determinado. Los métodos de predicción de la presente invención constituyen valiosas herramientas para predecir si es probable que un paciente responda favorablemente a un régimen de tratamiento, como una intervención quirúrgica, quimioterapia con un fármaco o combinación de fármacos determinados, y/o radioterapia, o si es probable la supervivencia a largo plazo del paciente, tras la cirugía y/o finalización del ciclo de quimioterapia u otras modalidades de tratamiento.

El término supervivencia "a largo plazo" se utiliza aquí en referencia a una supervivencia de cómo mínimo 3 años, de preferencia un mínimo de 8 años, y más preferiblemente de cómo mínimo 10 años tras la cirugía u otro tratamiento.

El término "tumor", como se utiliza aquí, se refiere a todo crecimiento y proliferación neoplásica, maligna o benigna, y toda célula o tejido precancerosos y cancerosos.

Los términos "cáncer" y "canceroso" se refieren a o describen el estado fisiológico en mamíferos que se caracteriza típicamente por un crecimiento celular no regulado. Ejemplos de cáncer incluyen, pero sin limitación, cáncer de mama, cáncer de colon, cáncer de pulmón, cáncer de próstata, cáncer hepatocelular, cáncer gástrico, cáncer de páncreas, cáncer cervical, cáncer de ovario, cáncer hepático, cáncer de vejiga, cáncer del tracto urinario, cáncer de tiroides, cáncer renal, carcinoma, melanoma, y cáncer cerebral.

La "patología" del cáncer incluye todos los fenómenos que ponen en peligro el bienestar del paciente. Esto incluye, sin limitación, el crecimiento celular anormal o incontrolable, las metástasis, la interferencia en el funcionamiento normal de las células vecinas, la liberación de citoquinas u otros productos de secreción a niveles anormales, la supresión o agravación de la respuesta inflamatoria o inmune, neoplasia, lesión premaligna, lesión maligna, la invasión de tejidos u órganos circundantes o distantes, como nódulos linfáticos, etc.

La "respuesta del paciente" puede ser evaluada utilizando cualquier variable que indique un beneficio para el paciente, incluyendo, sin limitación, (1) la inhibición, hasta cierta medida, del crecimiento tumoral, incluyendo el enlentecimiento o la completa detención del crecimiento; (2) la reducción del número de células tumorales; (3) la reducción del tamaño del tumor; (4) la inhibición (es decir, reducción, enlentecimiento o parada total) de la infiltración de células tumorales en órganos y/o tejidos periféricos adyacentes; (5) la inhibición (es decir, reducción, enlentecimiento o parada total) de metástasis; (6) el incremento de la respuesta inmune antitumoral, que puede, pero no tiene que resultar en la regresión o rechazo del tumor; (7) el alivio, hasta cierta medida, de uno o más de los síntomas asociados al tumor; (8)

el aumento de la supervivencia tras el tratamiento; y/o (9) el descenso en la mortalidad en un momento determinado tras el tratamiento.

La "terapia neoadyuvante" es terapia adicional o adyuvante administrada antes de la terapia primaria (principal). La terapia neoadyuvante incluye, por ejemplo, quimioterapia, radioterapia y hormonoterapia. Así, se puede administrar quimioterapia antes de la cirugía para reducir el tamaño del tumor, de forma que la cirugía pueda resultar más efectiva, o posible, en el caso de tumores previamente inoperables.

El "rigor" de las reacciones de hibridación puede ser determinado fácilmente por alguien con conocimientos ordinarios de la técnica, y en general es un cálculo empírico dependiente de la longitud de la sonda, la temperatura de lavado y la concentración de sal. Generalmente, sondas más largas requieren temperaturas superiores para un adecuado templado, mientras que sondas más cortas necesitan temperaturas más bajas. La hibridación depende generalmente de la capacidad del ADN desnaturalizado para un segundo templado cuando están presentes cadenas complementarias en un entorno por debajo de su temperatura de fusión. Cuanto mayor sea el grado de homología deseada entre la sonda y la secuencia hibridizable, tanto mayor es la temperatura relativa que se puede aplicar. El resultado es que se entiende que temperaturas relativas superiores tenderán a hacer más rigurosas las condiciones de reacción, mientras que con temperaturas inferiores lo son menos. Para detalles adicionales sobre explicación del rigor de las reacciones de hibridación, ver Ausubel et al., Current ProtocolsinMolecular Biology. Wiley Interscience Publishers, (1995).

"Condiciones rigurosas" o "condiciones de alta rigurosidad", como se definen aquí, típicamente: (1) se emplea baja fuerza iónica y alta temperatura para el lavado, por ejemplo cloruro sódico 0,015 M/ citrato sódico 0,0015 M/ dodecil sulfato sódico 1% a 50°C; (2) se emplea durante la hibridación un agente desnaturalizante, como formamida, por ejemplo, formamida 50% (v/v) con albúmina de suero bovino 1%/Ficoll 0,1%/polivinilpirrolidona 0,1% /tampón fosfato sódico 50mM a pH 6.5 con cloruro sódico 750 mM, citrato sódico 75 mM a 42°C; o(3) se emplea formamida 50%, 5 x SSC (NaCl 0,75, citrato sódico 0,075 M), fosfato sódico 50 mM (pH6.8), pirofosfato sódico 0,1%, 5 x solución Denhardt, ADN de esperma de salmón sonicado (50 µg/ml),SDS0,1%y sulfato dextrano 10% a 42°C, con lavados a 42°C en 0,2 x SSC (cloruro sódico/citrato sódico) y formamida 50% a 55°C, seguido de un lavado de alta rigurosidad consistente en 0,1 x SSC conteniendo EDTA a 55°C.

Las "condiciones moderadamente rigurosas" pueden identificarse como se describen Sambrook et al,Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Press, 1989, e incluyen el uso de solución de lavado y condiciones de hibridación (ej., temperatura, fuerza iónica y %SDS) menos rigurosas que las descritas más arriba. Un ejemplo de condiciones moderadamente rigurosas es la incubación durante la noche a 37°C en una solución con: formamida 20%, 5 x SSC (NaCl 150 mM, citrato trisódico 15 mM), fosfato sódico 50 mM (pH 7.6), 5 x

Solución Denhardt, sulfato dextrano 10%, y 20 mg/ml de ADN de esperma de salmón cortado desnaturalizado, seguido de lavado de los filtros en 1 x SSC a aproximadamente 37-50°C. Los expertos sabrán como ajustar la temperatura, la fuerza iónica, etc. según sea necesario para tener en cuenta factores tales como la longitud de la sonda y semejantes.

40 En el contexto de la presente invención, la referencia a "por lo menos uno", "por lo menos dos", "por lo menos cinco", etc. de los genes enumerados en cualquier conjunto de genes específico significa uno cualquiera, o cualquiera y todas las combinaciones de los genes enumerados.

B. Descripción detallada

45

50

55

60

65

10

15

En la práctica de la presente invención se emplearán, salvo que se indique lo contrario, técnicas convencionales de biología molecular (incluyendo técnicas recombinantes), microbiología, biología celular, y bioquímica que son parte conocida del procedimiento. Tales técnicas se explican ampliamente en la literatura, como "Molecular Cloning: A Laboratory Manual", 2 edición (Sambrook et al., 1989); "Oligonucleotide Synthesis" (M.J. Gait, ed., 1984); "Animal CellCulture" (R.I. Freshney, ed., 1987); "Methods in Enzymology" (Academic Press, Inc.); "Handbook of Experimental Immunology", 4 edición (D.M. Weir & C.C. Blackwell, eds., Blackwell Science Inc., 1987); "Gene Transfer Vectors for Mammalian Cells" (J.M. Miller & M.P. Calos, eds., 1987); "Current Protocols in Molecular Biology" (F.M. Ausubel et al., eds., 1987); y "PCR: The Polymerase Chain Reaction", (Mullis et al., eds., 1994).

1. Perfilado de expresión génica

Los métodos de perfilado de expresión génica incluyen métodos basados en el análisis de hibridación de polinucleótidos, métodos basados en la secuenciación de polinucleótidos, y métodos basados en proteómica. Los métodos más habitualmente usados y conocidos por los técnicos para la cuantificación de la expresión de ARNm en una muestra incluyen northern blotting e hibridaciónin situ (Parker & Baines, Methods in Molecular Biology 106:247-283 (1999)); ensayos de protección de ARNsc (Hod, Biotechniques 13:852-854 (1992)); y métodos basados en PCR, como la reacción en cadena de polimerasa de transcripción inversa (RT-PCR) (Weis et al, Trends in Genetics 8:263-264 (1992)). Alternativamente, pueden emplearse anticuerpos que puedan reconocer dúplex específicos, incluyendo dúplex de ADN, dúplex de ARN, y dúplex híbridos ADN-ARN o dúplex de ADN-proteína. Los métodos representativos para el análisis de expresión génica basado en la secuenciación incluyen el Análisis Serial

de Expresión Génica (Serial Analysis of Gene Expression, SAGE), y el análisis de expresión génica por secuenciación de firma paralela masiva (MPSS).

2. Métodos de perfilado de expresión génica basados en PCR

5 a.PCR de transcriptasa inversa (RT-PCR)

10

15

20

25

30

35

Uno de los métodos de perfilado de expresión génica cuantitativos basados en PCR más sensibles y flexibles es la RT-PCR, que puede ser utilizado para comparar los niveles de ARNm en distintas poblaciones de muestra, en tejidos normales y tumorales, con o sin tratamiento farmacológico, para caracterizar patrones de expresión génica, discriminar entre ARNm estrechamente relacionados y analizar la estructura de ARN.

El primer paso es aislar el ARNm de una muestra diana. El material de partida es típicamente ARN total aislado de tumores humanos olíneas de células tumorales, y los correspondientes tejidos o líneas celulares normales, respectivamente. En consecuencia, se puede aislar ARN de diversos tumores primarios, incluyendo tumores o líneas de células tumorales de mama, pulmón, colon, próstata, cerebro, hígado, riñón, páncreas, bazo, timo, testículo, ovario, útero, etc., con ADN combinado de donantes sanos. Si la fuente de ARNm es un tumor primario, se puede extraer ARNm, por ejemplo, de muestras de tejido congeladas o embebidas en parafina y fijadas (ej. fijadas con formalina) guardadas.

Los métodos generales de extracción del ARNm son bien conocidos por los expertos y se divulgan en libros de texto estándar de biología molecular, incluyendo Ausubel et al., Current Protocols ofMolecular Biology. John Wiley and Sons (1997). Se divulgan métodos para la extracción de ARN de tejidos embebidos en parafina, por ejemplo, en Rupp and Locker, Lab Invest. 56:A67 (1987), y De Andres et al., BioTechniques 18:42044 (1995). En especial, el aislamiento de ARN puede realizarse utilizando un kit de purificación, serie de tampones y proteasa de fabricantes comerciales, como Qiagen, según las instrucciones del fabricante.Por ejemplo, se puede aislar ARN total de células en cultivo utilizando minicolumnas Qiagen RNeasy. Otros kits de aislamiento de ARN disponibles en el comercio son MasterPure™ Complete DNA y RNA Purification Kit(EPICENTRE®, 10 Madison, WI), y Paraffin Block RNA Isolation Kit (Ambion, Inc.). ARN total de muestras de tejido puede aislarse utilizando RNA Stat-60 (Tel-Test). ARN preparado de tumor puede ser aislado, por ejemplo, por centrifugado de gradiente de densidad de cloruro de cesio.

Como el ARN no puede servir de plantilla para PCR, el primer paso en el perfilado de expresión génica por RT-PCR es la transcripción inversa de la plantilla de ARN en ADNc, seguido de su amplificación exponencial en una reacción PCR. Las dos transcriptasas inversas más comúnmente usadas son la transcriptasa inversa de virus de mieloblastosis aviar (AMV-RT), y la transcriptasa inversa de virus de leucemia murina Moloney (MMLV-RT). El paso de la transcripción inversa es cebado típicamente utilizando cebadores específicos, hexámeros aleatorios, o cebadores oligo dt, dependiendo de las circunstancias y el objetivo del perfilado de expresión. Por ejemplo, ARN extraído puede ser transcrito inversamente utilizando un kit GeneAmp RNA PCR (Perkin Elmer, CA, USA), siguiendo las instrucciones del fabricante. El ADNc derivado puede ser usado entonces como plantilla en la posterior reacción PCR.

Aunque en el paso de PCR se puede usar una variedad de ADN polimerasas dependientes de ADN termostable, típicamente se emplea Taq ADN polimerasa, que tiene una actividad 5'-3' nucleasa, pero carece de actividad de endonucleasa lectura de prueba (proofreading) 3 '-5 '. Así, TaqMan® PCR utiliza típicamente la actividad de nucleasa 5', de polimerasa Taq o Tth para hidrolizar una sonda de hibridación unida a su amplicón diana, pero se puede usar cualquier enzima con actividad de nucleasa5' equivalente.

Dos cebadores oligonucleótidos son utilizados para generar un amplicón típico de una reacción PCR. Un tercer oligonucleótido, o sonda, está diseñado para detectar una secuencia de nucleótido localizada entre los dos cebadores PCR.La sonda no es extensible por el enzima Taq ADN polimerasa, y es marcada con uncolorante fluorescente reporter, y uncolorante fluorescente inhibidor. Toda emisión inducida por láser del colorante reporter es inhibida por el colorante inhibidor cuando los dos colorantes se colocan juntos en la sonda. Durante la reacción de amplificación, el enzima Taq ADN polimerasa escinde la sonda de modo dependiente de la plantilla. Los fragmentos de sonda resultantes se disocian en solución, y la señal del colorante reporter liberado está libre del efecto inhibidor del segundo fluoroforo. Una molécula de colorante reporter es liberada para cada nueva molécula sintetizada, y la detección del colorante reporter

no inhibido proporciona la base para la interpretación cuantitativa de los datos.

Se puede realizar TaqMan® RT-PCR utilizando equipo disponible en el comercio, como por ejemplo, ABI PRISM 7700™ Sequence Detection System™ (Perkin-Elmer-Applied Biosystems, Foster City, CA, EE UU), o Lightcycler (Roche Molecular Biochemicals, Mannheim, Alemania). En una realización preferente, el procedimiento de la nucleasa 5' se desarrolla en un dispositivo PCR cuantitativo de tiempo real como el ABI PRISM 7700™ Sequence Detection System™. El sistema está compuesto por un termociclador, láser, dispositivo con carga acoplada (CCD), cámara y ordenador. El sistema amplifica muestras en un formato de 96 pocillos en un termociclador. Durante la amplificación, la señal fluorescente inducida por láser es recogida en tiempo real por cables de fibra óptica para todos los 96 pocillos, y es detectada en el CCD. El sistema incluye software para operar el instrumento y para analizar los datos.

Los datos del ensayo nucleasa 5' son expresados inicialmente como Ct, o ciclo umbral. Como se ha comentado más arriba, los valores de fluorescencia son registrados durante cada ciclo, y representan la cantidad de producto amplificado hasta ese punto en la reacción de amplificación. El punto cuando la señal fluorescente es registrada por primera vez como estadísticamente significativa es el ciclo umbral

(Ct).

10

15

20

25

30

35

40

45

50

Para minimizar los errores y el efecto de variación entre muestras, se realiza habitualmente RT-PCR utilizando un ARN de referencia que idealmente se expresa a un nivel constante entre distintos tejidos, y no resulta afectado por el tratamiento experimental. Los ARN usados más frecuentemente para normalizar patrones de expresión génica son ARNmde los genes de limpieza gliceraldehido-3-fosfato-deshidrogenasa (GAPD) y β-actina(ACTB).

Una variación más reciente de la técnica RT-PCR es la PCR cuantitativa en tiempo real, que mide la acumulación de producto PCR mediante una sonda fluorigénica de doble marcado (es decir, sonda TaqMan®). La PCR de tiempo real es compatible con la PCR cuantitativa competitiva, donde se utiliza el competidor interno de cada secuencia diana para la normalización, y con la PCR comparativa cuantitativa utilizando un gen de normalización contenido dentro de la muestra, o un gen limpiador para RT-PCR. Para más detalles ver, ej. Held et al, Genome Research 6:986-994 (1996).

b. Sistema MassARRAY

En el método de perfilado de expresión génica basado en MassARRAY, desarrollado por Sequenom, Inc. (San Diego, CA), tras aislar el ARN y la transcripción inversa, el ADNc obtenido es unidoa una molécula de ADN sintético (competidor), que coincide con la región de ADNc diana en todas las posiciones, excepto en una sola base, y sirve de estándar interno. La mezcla de ADNc/competidores amplificada PCR y sometida a un tratamiento post-PCR con enzima de fosfatasa alcalina de camarón (SAP), lo que resulta en la desfosforilación de los nucleótidos restantes. Tras la inactivación de la fosfatasa alcalina, los productos PCR del competidor y del ADNc son sometidos a extensión de cebador,lo que genera distintas señales de masa para los productos PCR derivados del competidor y del ADNc.Tras la purificación, estos productos se disponen en una matriz de chips, precargada con los componentes necesarios para el análisis con espectrometría de masas TOF láser (Tiempo de vuelo) de desorción/ionizaciónasistido por matriz (MALDI-TOF MS). El ADNc presente en la reacción es entonces cuantificado analizando las relaciones de las áreas pico en el espectro de masas generado. Para más detalles ver, ej. Ding and Cantor, Proc. Natl. Acad. Sci. USA 100:3059-3064 (2003).

c.Otros métodos basados en PCR

Otras técnicas basadas en PCR incluyen, por ejemplo , display diferencial (Liang and Pardee, Science 257:967-971 (1992)); polimorfismo en la longitud de fragmentos amplificados (iAFLP) (Kawamotoet al., Genome Res. 12:1305-1312 (1999));tecnología de BeadArray™ (Illumina, San Diego, CA; Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002; Ferguson et al., Analytical Chemistry 72:5618 (2000)); BeadsArray for Detection of Gene Expression (BADGE), utilizar el sistema disponible en el comercio Luminex¹00 LabMAP y microesferas múltiples codificadas por color (Luminex Corp., Austin, TX) en un ensayo rápido de expresión génica (Yang et al., Genome Res. 11:1888-1898 (2001)); y análisis de perfilado de expresión de alta cobertura (HiCEP) (Fukumura et al., Nucl.Acids. Res. 31(16) e94 (2003)).

3. Microarrays

La expresión génica diferencial puede ser también identificada o confirmada utilizando la técnica de microarrays. Así, el perfil de expresión de los genes asociados al cáncer de mama puede ser medido en tejido tumoral fresco o embebido en parafina, utilizando la tecnología de microarray. En este método, secuencias de nucleótidos de interés (incluyendo ADNc y oligonucleótidos) se colocan en placas o se disponensobre un sustrato de microchip. Las secuencias dispuestas son entonces hibridadas con sondas de ADN específicas procedentes de células o tejidos de interés. Igual que en el método RT-PCR, típicamente la fuente de ARNm es ARN total aislado de tumores o líneas celulares tumorales humanas, y los correspondientes tejidos o líneas celulares normales. Así, se puede aislar ARN de diversos tumores primarios o líneas celulares tumorales. Si la fuente de ARNm es un tumor primario, se puede extraer ARNm, por ejemplo, de muestras de tejidos congeladas o embebidas en parafina y fijadas (ej., fijadas en formalina) guardadas, que son preparadas y conservadas rutinariamente en la práctica clínica diaria.

55

60

65

En una realización específica de la técnica de microarray, se aplican inserciones amplificadas por PCR de clones de ADNc a un sustrato en una matriz densa. De preferencia, se aplican por lo menos 10 000 secuencias de nucleótidos al sustrato. Los genes en microarray, inmovilizados sobre el microchip a 10 000 elementos cada uno, son adecuados para la hibridación en condiciones rigurosas. Se pueden generar sondas de ADNc marcadas con fluorescente mediante incorporación de nucleótidos fluorescentes por transcripción inversa de ARN extraído de tejidos de interés. Sondas marcadas de ADNc aplicadas al chip se hibridan con especificidaden cada punto de ADN sobre la matriz. Tras el riguroso lavado para eliminar sondas unidas no específicamente, el chip es escaneado con microscopio láser confocal o por otro método de detección, como puede ser una cámara CCD. La cuantificación de la hibridación de cada elemento en matrizpermite la evaluación de la correspondiente abundancia de ARNm. Con fluorescencia de doble color, las sondas de ADNc marcadas por separado generadas a partir de dos fuentes de ARN son hibridadas apareadas a la matriz.La abundancia relativa de los transcritos de las dos fuentes

correspondientes a cada gen especificado es determinada así simultáneamente. La escala miniaturizada de la hibridación permite la cómoda y rápida evaluación del patrón de expresión para grandes números de genes. Tales métodos han demostrado tener la sensibilidad requerida para detectar transcritos raros, que son expresados en unas pocas copias por célula, y detectar de forma reproducible por lo menos aproximadamente diferencias dobles en los niveles de expresión (Schena etal, Proc. Nail Acad. Sci.USA 93(2):106-149 (1996)). El análisis de microarray puede realizarse con los equipos disponibles en el comercio, siguiendo los protocolos del fabricante, como utilizar la tecnología Affymetrix GenChip, o la tecnología de microarray lhcyte.

El desarrollo de métodos de microarray para el análisis a gran escala de expresión génica hace posible la búsqueda sistemática de marcadores moleculares de clasificación del cáncer y predicción de resultado en diversos tipos tumorales.

4. Análisis en serie de expresión génica (SAGE)

10

25

30

35

40

45

50

65

El análisis en serie de expresión génica (SAGE) es un método que permite el análisis simultáneo y cuantitativo de un gran número de transcritos génicos, sin necesidad de proporcionar una sonda de hibridación individual para cada transcripción. Primero, se genera una etiqueta de secuencia corta (aproximadamente 10-14 bp) que contiene suficiente información para identificar de forma exclusiva un transcrito, siempre y cuando la etiqueta se obtenga de una posición única en cada transcrito. Entonces se unen juntas muchas transcripciones para formar largas moléculas en serie, que pueden ser secuenciadas, revelando la identidad de las múltiples etiquetas simultáneamente. El patrón de expresión de cualquier población de transcritos puede ser evaluado cuantitativamente determinando la abundancia de etiquetas individuales, e identificando el gen correspondiente a cada etiqueta. Para más detalles ver, ej. Velculescu et al., Science 270:484-487 (1995); y Velculescu et al., Cell 88:243-51 (1997).

5. Análisis de expresión génica por secuenciación de firma paralela masiva (MPSS)

Este método, descrito por Brenner etal, Nature Biotechnology 18:630-634 (2000), es un enfoque secuencial que combina secuenciación de firma no basada en gel, con clonación in vitrode millones de plantillas en microperlas de 5 µm de diámetro separadas. Primero se construye una biblioteca de microperlas de plantillas de ADN mediante clonación in vitro. Sigue a esto el ensamblaje de una matriz plana de las microperlas conteniendo plantillas en una célula de flujo a alta densidad (típicamente superior a 3 x10⁶ microperlas /cm²). Los extremos libres de las plantillas clonadas en cada microperla son analizados simultáneamente, utilizando un método de secuenciación de firma basado en fluorescencia que no requiere separación de fragmentos de ADN. Este método ha demostrado proporcionar de forma simultánea y precisa, en una única operación, cientos de miles de secuencias de firmas génicas de una biblioteca de ADNc de levadura.

6. Inmunohistoquímica

Los métodos de inmunohistoquímica son también adecuados para detectar los niveles de expresión de los marcadores pronósticos de la presente invención. Así, se utilizan para detectar la expresión anticuerpos o antisueros, de preferencia antisueros policlonales, y aún más preferible anticuerpos monoclonales específicos para cada marcador. Los anticuerpos pueden ser detectados por etiquetado directo de los propios anticuerpos, por ejemplo, con etiquetas radiactivas, etiquetas fluorescentes, etiquetas de hapteno, como biotina, o un enzima, como peroxidasa de rábano picante o fosfatasa alcalina. Alternativamente, se utiliza un anticuerpo primario no etiquetado junto con un anticuerpo secundario etiquetado, comprendiendo antisueros, anticuerpos policlonales o un anticuerpo monoclonal específico para el anticuerpo primario. Los protocolos y kits de inmunohistoquímica son bien conocidos por los expertos y están disponibles en el comercio.

7. Proteómica

El término "proteoma" se define como la totalidad de las proteínas presentes en una muestra (ej. tejido, organismo o cultivo celular) en un momento determinado. La proteómica incluye, entre otras cosas, el estudio de los cambios globales de la expresión de proteínas en una muestra (denominada también "proteómica de expresión"). La proteómica comprende típicamente los siguientes pasos: (1) separación de proteínas individuales en una muestra por electroforesis en gel 2-D (2-D PAGE); (2) identificación de las proteínas individuales recuperadas del gel, ej. por espectrometría de masas o secuenciación N terminal, y (3) análisis de los datos utilizando bioinformática. Los métodos proteómicos son valiosos suplementos de otros métodos de perfilado de expresión génica, y pueden ser utilizados, solos o en combinación con otros métodos, para detectar los productos de los marcadores pronósticos de la presente invención.

8. Descripción general de aislamiento, purificación y amplificación de ARNm

Este paso de un protocolo representativo para el perfilado de expresión génica utilizando tejidos fijados, embebidos en parafina, como fuente de ARN, incluyendo aislamiento, purificación, extensión de cebador y

amplificación, se comenta en varios artículos publicados en revistas (por ejemplo: T.E. Godfrey et al. J. Molec. Diagnostics 2: 84-91 [2000]; K. Specht et al. Am. J. Pathol 158: 419-29 [2001]). Resumiendo, un proceso representativo comienza cortando secciones de muestras de tejido tumoral de aproximadamente un grosor de 10 µm. Se extrae entonces el ARN, y se eliminan la proteína y el ADN. Tras el análisis de la concentración de ARN, se pueden incluir pasos de reparación y/o amplificación de ARN, si es necesario, y el ARN se transcribe inversamente utilizando promotores específicos de gen, seguido de RT-PCR. Finalmente, se analizan los datos para identificar la mejor opción u opciones de tratamiento disponibles para el paciente en base al patrón de expresión génica característico identificado en la muestra tumoral examinada.

9. Quimioterapia del cáncer

10

15

20

25

30

35

40

45

50

55

60

65

Los agentes quimioterapéuticos utilizados en el tratamiento del cáncer pueden dividirse en varios grupos, dependiendo de su mecanismo de acción. Algunos agentes quimioterapéuticos dañan directamente el ADN y el ARN. Alterando la replicación del ADN, tales agentes o detienen totalmente la replicación, o tienen como resultado la producción de ADN o ARN carentes de sentido. Esta categoría incluye, por ejemplo, cisplatino (Platinol®), daunorubicina (Cerubidine®), doxorubicina (Adriamycin®), y etopósido (VePesid®). Otro grupo de agentes quimioterapéuticos anticáncer interfieren en la formación de nucleótidos o desoxirribonucleótidos, de forma que se bloquea la síntesis de ARN y la replicación celular. Los ejemplos de fármacos de esta clase incluyen metotrexato (Abitrexate®), mercaptopurina (Purinethol®), fluorouracilo (Adrucil®), e hidroxiurea (Hydrea®). Una tercera clase de agentes quimioterapéuticos afecta a la síntesis o descomposición de los husos mitóticos y, como resultado, interrumpen la división celular. Son ejemplos de fármacos de esta clase vinblastina (Velban®), vincristina (Oncovin®) y taxanos, tales como pacitaxel (Taxol®), y tocetaxel (Taxotere®). Tocetaxel está actualmente autorizado en los Estados Unidos para tratar a pacientes con cáncer de mama localmente avanzado o metastásico, tras el fracaso de quimioterapia previa, y pacientes con cáncer de pulmón de célula no pequeña localmente avanzado o metastásico, tras el fracaso de quimioterapia previa basada en platino. Un frecuente problema de la quimioterapia es la elevada toxicidad de los agentes quimioterapéuticos tales como antraciclinas y taxenos, lo que limita los beneficios clínicosde este método de tratamiento.

A la mayoría de los pacientes se les administra quimioterapia inmediatamente después de la resección quirúrgica del tumor. Este enfoque es denominado habitualmente terapia adyuvante. No obstante, la quimioterapia se puede administrar también antes de la cirugía, en lo que se denomina tratamiento neoadyuvante. Aunque el uso de quimioterapia neoadyuvante deriva del tratamiento de cáncer de mama avanzado e inoperable, ha ido ganando aceptación también en el tratamiento de otros tipos de cáncer. La eficacia de la quimioterapia neoadyuvante ha sido comprobada en varios ensayos clínicos. En el ensayo multicéntrico National Surgical Adjuvant Breast and Bowel Project B-18 (NSAB B-18) (Fisher et al., J. Clin. Oncology 15:2002-2004 (1997); Fisher et al., J. Clin. Oncology 16:2672-2685 (1998)) se utilizó terapia neoadyuvante con una combinación de adriamicina y ciclofosfamida ("régimen AC "). En otro ensayo clínico se administró quimioterapia con una combinación de 5-fluorouracilo, epirubicinay ciclofosfamida ("régimen FEC") (van Der Hage et al., J. Clin. Oncol. 19:4224-4237 (2001)). En ensayos clínicos más recientes se han utilizado también pautas de tratamiento neoadyuvante conteniendo taxanos. Ver, ej. Holmes et al., J. Natl. Cancer Inst.83:1797-1805 (1991) y Moliterni et al., Seminars in Oncology, 24:S17-10-S-17-14 (1999). Para más información sobre quimioterapia neoadyuvante para cáncer de mama ver, Cleator et al., Endocrine-Related Cancer 9:183-195 (2002).

10. Conjuntos de genes de cáncer. Subsecuencias génicas ensayadas y aplicación clínica de los datos de expresión génica

Un aspecto importante de la presente invención es usar la expresión medida de ciertos genes en tejido de cáncer de mama para proporcionar información pronóstica. A este efecto es necesario corregir (normalizar) diferencias en la cantidad de ARN ensayado, variabilidad en la calidad del ARN utilizado, y otros factores tales como diferencias en máquinas y operadores. En consecuencia, el ensayo típicamente mide e incorpora el uso de ARN de referencia, incluyendo los transcritos de genes limpiadores bien conocidos, tales como GAPD y ACTB. Se da un método preciso de normalización de datos de expresión génica en "User Bulletin #2" para ABI PRISM 7700Sequence Detection System (Applied Biosystems; 1997). Alternativamente, la normalización puede basarse en la señal media o mediana (Ct) de todos los genes ensayados o un amplio subconjunto de ellos (enfoque de normalización global). En el estudio descrito en el siguiente ejemplo, se utilizó la denominada estrategia de normalización central, donde se empleó un subgrupo de los genes cribados, seleccionados en base a la falta de correlación con el resultado clínico, para normalización.

11. Puntuaciones de recurrencia y respuesta a la terapia y sus aplicaciones

La solicitud en tramitación Nº de serie 60/486.302, presentada el 10 de julio de 2003, describe un test de pronóstico basado en un algoritmo, para determinar la probabilidad de recurrencia del cáncer y/o la probabilidad de que un paciente responda bien a una modalidad de tratamiento. Las características del algoritmo que lo distinguen de otros métodos de pronóstico del cáncer incluyen: 1) un único conjunto de

ARNm de test (o los correspondientes productos de expresión génica) utilizado para determinar la probabilidad de recurrencia, 2) determinados pesos utilizados para combinar en una fórmula los datos de expresión, y 3) los umbrales utilizados para dividir a los pacientes en grupos de distintos niveles de riesgo, como grupos de riesgo bajo, medio y alto. El algoritmo proporciona una puntuación de recurrencia (RS) numérica o, si se evalúa la respuesta al tratamiento, la puntuación de respuesta a la terapia (RTS).

El test requiere un ensayo de laboratorio para medir los niveles de los ARNm especificados o sus productos de expresión, pero se pueden utilizar cantidades muy pequeñas de tejido fresco, tejido congelado, o muestras de biopsia de tumor embebidas en parafina y fijadas que haya sido ya necesario obtener de pacientes y se hayan guardado. Por tanto, el test puede no ser invasivo. Es también compatible con distintos métodos de obtención de tejido tumoral, por ejemplo mediante biopsia por punción con aguja gruesa o aspiración con aguja fina.

Según este método, la puntuación de recurrencia del cáncer (RS) se determina:

- a) sometiendo una muestra biológica conteniendo células cancerosas obtenida de dicho sujeto al perfilado de expresión génica o proteica;
 - b) cuantificando el nivel de expresión de múltiples genes individuales [es decir, niveles de ARNm o proteínas] para determinar un valor de expresión para cada gen;
 - c) creando subconjuntos de los valores de expresión génica, comprendiendo cada subconjunto valores de expresión de genes unidos por una función biológica relacionada con el cáncer y/o por coexpresión;
 - d) multiplicando el nivel de expresión de cada gen de un subconjunto por un coeficiente que refleje su contribución relativa a la recurrencia del cáncer o la respuesta a la terapia dentro de dicho subconjunto, y sumando los productos de la multiplicación para obtener un término para dicho subconjunto:
 - e) multiplicando el término de cada subconjunto por un factor que refleje su contribución a la recurrencia del cáncer o la respuesta a la terapia; y
 - f) procediendo a la suma de términos para cada subconjunto multiplicado por dicho factor para obtener una puntuación de recurrencia (RS), o una puntuación de respuesta a la terapia (RTS),
- donde la contribución de cada subconjunto que no muestre una correlación lineal con la recurrencia del cáncer o la respuesta a la terapia se incluye solo por encima de un nivel umbral predeterminado, y donde a los subconjuntos en los que la expresión aumentada de los genes especificados reduce el riesgo de recurrencia del cáncer se les asigna un valor negativo, y a los subconjuntos en los que la expresión de los genes especificados incrementa el riesgo de recurrencia del cáncer se les asigna un valor positivo. En una realización particular, la RS se establece:
 - a) determinando los niveles de expresión de GRB7, HER2, EstR1, PR, Bcl2, CEGP1, SURV, Ki.67, MYBL2, CCNB1, STK15, CTSL2, STMY3, CD68, GSTM1, y BAG1, o de sus productos de expresión, en una muestra biológica conteniendo células tumorales obtenidas de dicho sujeto, y b) calculando la puntuación de recurrencia (RS) mediante la siguiente ecuación:
 - RS = (0,23 a 0,70) x umbr eje GRB7 (0,17 a 0,51) x eje ER + (0,53 a 1,56) x umbr eje prolif + (0,07 a0,21) x eje invasión + (0,03 a 0,15) x CD68 - (0,04 a 0,25) x GSTM1 - (0,05 a 0,22)

x BAG1

45 Donde

10

15

20

25

30

35

40

50

55

60

(I)eje GRB7 = (0,45 a 1,35) x GRB7 + (0,05 a 0,15) x HER2; (II)si eje GRB7< -2, umbr eje GRB7 = -2, y si eje GRB7 ≥ -2, umbreje GRB7 = eje GRB7; (III)eje ER = (Est1 + PR + Bcl2 + CEGP1)/4; (IV)eje prolif = (SURV + Ki.67 + MYBL2 + CCNB1 + STK15)/5; (V)si eje prolif < -3,5, umbr eje prolif = -3,5, si eje prolif ≥ -3,5, umbr eje prolif = eje prolif; y (VI)eje invasión - (CTSL2 + STMY3)/2

donde los términos de todos los genes individuales para quienes no se muestran específicamente rangos, pueden variar entre aproximadamente 0,5 y 1,5, y donde una RS mayor representa un incremento en la probabilidad de recurrencia del cáncer.

Más detalles de la invención se describen en el siguiente ejemplo no limitante.

<u>Ejemplo</u>

A. Un estudio retrospectivo de quimioterapia neoadyuvante en cáncer de mama invasivo: Perfilado de expresión génica de un tejidoextraído de biopsia por punción con aguja gruesaembebido en parafina

Fue un estudio colaborativo implicando a Genomic Health, Inc., (Redwood City California), y el Institute Tumori, Milan, Italia. El objetivo primario del estudio fue explorar la correlación entre los perfiles moleculares pretratamiento y la repuesta patológica completa (pCR) a la quimioterapia neoadyuvante en un cáncer de mama localmente avanzado.

Criterios de inclusión de pacientes:

Diagnóstico histológico de cáncer de mama invasivo (fecha de la cirugía 1998-2002); diagnóstico de cáncer de mama localmente avanzado definido por infiltración de la piel y/o afectación axilar N2, y/o ganglios homolaterales supraclaviculares positivos; biopsia por punción con aguja gruesa, quimioterapia neoadyuvante y resección quirúrgica realizadas en el Istituto Nazionale Tumori, Milan; consentimiento informado firmado de que el material biológico obtenido para diagnóstico histológico o procedimientos diagnósticos puedan ser utilizados para la investigación; y evaluación histopatológica indicando cantidades adecuadas de tejido tumoral para inclusión en este estudio de investigación.

Criterios de exclusión:

10

15

25

30

35

40

45

60

65

Metástasis distantes; sin bloque tumoral disponible de la biopsia por punción con aguja gruesa inicial, o de la resección quirúrgica; o tumor muy pequeño(<5% del tejido total en la placa) en bloque en la medida que se evalúa por examen de la placa H&E por el patólogo.

Diseño del estudio

Ochenta y nueve paciente evaluables (de un conjunto de 96 pacientes clínicamente evaluables) fueron identificadas y estudiadas. Se midieron por RT-PCR los niveles de 384 especies de ARNm, representando a productos de genes relacionados con el cáncer candidatos que fueron seleccionados de la literatura de investigación biomédica. Solo se perdió un gen debido a señal inadecuada.

Las características de las pacientes fueron las siguientes: Media de edad : 50 años; Grado tumoral: 24% bien, 55% moderado y 21% malo; 63% de las pacientes fueron ER positivas {por inmunohistoquímica}; 70% de las pacientes tenían nódulos linfáticos positivos.

Se administró a todas las pacientes quimioterapia neoadyuvante primaria: Doxorubicin + Taxol 3 semanas/3 ciclos seguido de Taxol® (paclitaxel) 1 semana/12 ciclos. Extracción quirúrgica del tumor tras finalización de la quimioterapia. Se tomaron muestras de biopsia de tumorextraído por punción con aguja gruesa antes del inicio de la quimioterapia, y sirvieron como fuente de ARN para el ensayo de RT-PCR.

Materiales y métodos

El tejido tumoral embebido en parafina y fijado (PE) se obtuvo por biopsia antes y después de la quimioterapia. Las biopsias por punción con aguja gruesa se tomaron antes de la quimioterapia. En este caso, el patólogo seleccionó el bloque de tumor primario más representativo, y presentó nueve secciones de 10 micraspara el análisis de ARN. Específicamente, se prepararon un total de 9 secciones (de 10 micras de grosor cada una) y se colocaron en tres tubos Costar Brand Microcentrifuge (tubos de polipropileno, 1,7 ml, transparentes; 3 secciones en cada tubo) y se agruparon.

Se extrajo el ARN mensajero utilizando el MasterPure ™ RNA Purification Kit (Epicentre Technologies) y cuantificado por el método de fluorescencia RiboGreen® (sondas moleculares). Se realizaron ensayos moleculares de expresión génica cuantitativa por RT-PCR, utilizando el ABI PRISM 7900™ Sequence Detection System™ (Perkin-Elmer-Applied Biosystems, Foster City, CA, EE UU). El ABI PRISM 7900™ está compuesto por termociclador, láser, dispositivo con carga acoplada (CCD), cámara y ordenador. El sistema amplifica muestras en un formato de 384 pocillos, en un termociclador. Durante la amplificación, se recoge la señal fluorescente inducida por láser en tiempo real para todos los 384 pocillos, y detectada en el CCD. El sistema incluye software para operar el instrumento y para analizar los datos.

Análisis y resultados

El tejido tumoral fue analizado respecto a 384 genes. Los valores de ciclo umbral (Ct) de cada paciente fueron normalizados en base a la media de un subconjunto de los genes cribados de esa paciente concreta, seleccionada en base a la falta de correlación con el resultado clínico (estrategia de normalización central). La respuesta positiva a la quimioterapia fue definida como respuesta patológica completa (pCR). Las pacientes fueron evaluadas formalmente en cuanto a la respuesta al finalizar el ciclo de quimioterapia.

Una respuesta clínica completa (cCR) requiere la total desaparición de toda enfermedad clínicamente detectable, mediante examen físico o por imagen diagnóstica de mama.

Una respuesta patológica completa (pCR) requiere la ausencia de cáncer de mama residual por examen histológico de tejido mamario biopsiado, muestras de lumpectomía o mastectomía tras quimioterapia primaria. Puede haber presencia de carcinoma ductal in situ (CDIS). No puede haber presencia de cáncer residual en nódulos regionales. De las 89 pacientes evaluables 11 (12%) tuvieron respuesta patológica completa (pCR). Siete de esas pacientes fueron ER negativas.

Una respuesta clínica parcial fue definida como una reducción ≥50% del área tumoral (suma de los productos de los diámetros perpendiculares más largos), o una reducción≥ 50% en la suma de los productos de los diámetros perpendiculares más largos de lesiones múltiples en la mama y la axila. Ningún área de enfermedad puede aumentar > 25% y no pueden aparecer nuevas lesiones.

Se realizó un análisis comparando la relación entre la expresión génica normalizada y los resultados

binarios de pCR o no pCR. Se utilizaron modelos generalizados univariados con funciones de enlace probit o logit.Ver, ej. Van K. Borooah, LOGIT and PROBFT, Ordered Multinominal Models, Sage University Paper, 2002.

La Tabla 1 muestra correlaciones de la respuesta patológica con la expresión génica, y presenta una lista de los 86 genes en los que el valor p de las diferencias entre los grupos fue <0,1. La segunda columna (con el título "dirección") muestra si el incremento de la expresión se correlaciona con la reducción o el aumento de la probabilidad de respuesta a la quimioterapia. La significación estadística del valor predictivo de cada gen viene dado por el valor P (columna de la derecha).

10

	Enlace probit			
Gen	Dirección	Intercept	Pendiente	Valor P
TBP	Reducción	0,0575	2,4354	0,0000
ILT.2	Aumento	0,5273	-0,9489	0,0003
ABCC5	Reducción	0,9872	0,8181	0,0003
CD18	Aumento	3,4735	-1,0787	0,0007
GAT A3	Reducción	0,6175	0,2975	0,0008
DICER1	Reducción	-0,9149	1,4875	0,0013
MSH3	Reducción	2,6875	0,9270	0,0013
GBP1	Aumento	1,7649	-0,5410	0,0014
IRS1	Reducción	1,3576	0,5214	0,0016
CD3z	Aumento	0,1567	-0,5162	0,0018
Fasl	Aumento	-0,6351	-0,4050	0,0019
TUBB	Reducción	1,2745	0,8267	0,0025
BAD	Reducción	0,9993	1,1325	0,0033
ERCC1	Reducción	0,0327	1,0784	0,0039
MCM6	Aumento	0,1371	-0,8008	0,0052
PR	Reducción	1,6079	0,1764	0,0054
APC	Reducción	0,7264	1,0972	0,0061
GGPS1	Reducción	1,0906	0,8124	0,0062
KRT18	Reducción	-0,8029	0,4506	0,0063
ESRRG	Reducción	2,0198	0,2262	0,0063
E2F1	Aumento	0,2188	-0,5277	0,0068
AKT2	Reducción	-1,3566	1,1902	0,0074
A.Catenina	Reducción	-0,6859	0,9279	0,0079
CEGP1	Reducción	1,3355	0,1875	0,0091
NPD009	Reducción	1,3996	0,2971	0,0092
MAPK14	Reducción	2,6253	1,6007	0,0093
RUNX1	Reducción	-0,4138	0,7214	0,0103
ID 2	Aumento	1,7326	-0,7032	0,0104
G.Catenina	Reducción	-0,1221	0,5954	0,0110
FBX05	Aumento	0,3421	-0,4935	0,0110
FHIT	Reducción	1,9966	0,4989	0,0113
MTA1	Reducción	0,3127	0,6069	0,0133
ERBB4	Reducción	1,4591	0,1436	0,0135
FUS	Reducción	-0,6150	0,9415	0,0137
BBC3	Reducción	2,4796	0,6495	0,0138
IGF1R	Reducción	1,1998	0,3116	0,0147
CD9	Reducción	0,9292	0,5747	0,0156
TP53BP1	Reducción	1,4325	0,8122	0,0169
MUC1	Reducción	0,8881	0,2140	0,0175
IGFBP5	Reducción	-0,6180	0,4880	0,0181
rhoC	Reducción	-0,1726	0,6860	0,0184
RALBP1	Reducción	0,2383	0,9509	0,0185
CDC20	Aumento	1,3204	-0,4390	0,0186
STAT3	Reducción	-0,9763	0,7023	0,0194
ERK1	Reducción	0,8577	0,6496	0,0198
HLA.DPB1	Aumento	3,6300	-0,6035	0,0202
SGCB	Reducción	0,6171	0,7823	0,0208
CGA	Aumento	0,0168	-0,1450	0,0209
		•	•	•

Enlace Probit					
Gen	Dirección	Intercept	Pendiente	Valor P	
DHPS	Reducción	0,2957	0,7840	0,0216	
MGMT	Reducción	0,9238	0,6876	0,0226	
CRIP2	Reducción	0,5524	0,4394	0,0230	
MMP12	Aumento	0,4208	-0,2419	0,0231	
ErbB3	Reducción	0,9438	0,2798	0,0233	
RAP1GDS1	Reducción	0,2817	0,7672	0,0235	
CDC25B	Aumento	1,6965	-0,5356	0,0264	
IL6	Aumento	0,0592	-0,2388	0,0272	
CCND1	Reducción	0,2260	0,2992	0,0272	
CYBA	Aumento	2,6493	-0,5175	0,0287	
PRKCD	Reducción	0,2125	0,6745	0,0291	
DR4	Aumento	0,3039	-0,5321	0,0316	
Hepsina	Reducción	1,9211	0,1873	0,0318	
CRABP1	Aumento	1,0309	-0,1287	0,0320	
AK055699	Reducción	2,0442	0,1765	0,0343	
Contig.51037	Aumento	0,7857	-0,1131	0,0346	
VCAM1	Aumento	1,1866	-0,3560	0,0346	
FYN	Aumento	1,5502	-0,5624	0,0359	
GRB7	Aumento	1,3592	-0,1646	0,0375	
AKAP.2	Aumento	1,7946	-0,7008	0,0382	
RASSF1	Aumento	1,1972	-0,0390	0,0384	
MCP1	Aumento	1,3700	-0,3805	0,0388	
ZNF38	Reducción	1,7957	0,4993	0,0395	
MCM2	Aumento	1,0574	-0,4695	0,0426	
GBP2	Aumento	1,4095	-0,4559	0,0439	
SEMA3F	Reducción	1,2706	0,3725	0,0455	
CD31	Aumento	1,9913	-0,5955	0,0459	
COL1A1	Reducción	-1,9861	0,3812	0,0466	
ER2	Aumento	-0,5204	-0,2617	0,0471	
BAG1	Reducción	0,6731	0,5070	0,0472	
AKT1	Reducción	-0,4467	0,5768	0,0480	
COL1A2	Reducción	-1,0233	0,3804	0,0490	
STAT1	Aumento	1,9447	-0,4062	0,0498	
Wnt.5a	Reducción	2,2244	0,2983	0,0518	
PTPD1	Reducción	1,2950	0,4834	0,0552	
RAB6C	Reducción	0,4841	0,5635	0,0717	
TK1	Aumento	0,6127	-0,3625	0,0886	
Bcl2	Reducción	1,1459	0,2509	0,0959	

En base a los datos presentados en la Tabla 1, la expresión aumentada de los siguientes genes se correlaciona con una mayor probabilidad de respuesta patológica completa al tratamiento: ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBX05; *CDC20;* HLA.DPB1; CGA; MMP12;CDC25B; IL6; CYBA; DR4; CRABP1; Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; mientras que la expresión aumentada de los siguientes genes se correlaciona con una menor probabilidad de respuesta patológica completa al tratamiento:

20

TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; G.Catenina; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Hepsina; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C; Bcl2.

También se investigó la relación entre el algoritmo del riesgo de recurrencia (descrito en la solicitud en trámite USA Nº de Serie 60/486 302) y la pCR. El algoritmo incorpora los niveles medidos de 21 especies de ARNm.16 ARNm(detallados más abajo) fueron marcadores clínicos candidatos, y los restantes 5 (ACTB, GAPD, GUSB, RPLPO, y TFRC) fueron genes de referencia. Las mediciones de expresión normalizada de referencia oscilan de 0 a15, donde un incremento de una unidad refleja un doble incremento en ARN.

La puntuación de recurrencia (RS) se calcula a partir de la expresión cuantitativa de cuatro grupos de genes marcadores (un grupo de 4 genes de receptores estrogénicos —ESR1, PGR, BCL2, y SCUBE2; un grupo de proliferación de 5 genes—MKI67, MYBL2, BIRC5, CCNB1, y STK6; un grupo de 2 genes de HER2 —ERBB2 y GRB7, un grupo de invasión de 2 genes —MMP11 y CTSL2) y 3 otros genes individuales —GSTM1, BAG1, y CD68.

Aunque los genes y los factores de multiplicación utilizados en la ecuación pueden variar, en una realización típica se puede aplicar la siguiente ecuación para calcular la RS:

RS (rango, 0 -+ 0,47 x Puntuación Grupo HER2 100) =- 0,34 x Puntuación Grupo ER +1,04 x Puntuación Grupo Proliferación + 0,10 x Puntuación Grupo Invasión + 0,05 x CD68 0,08x GSTM1 0,07 x BAG1

5

10

15

20

25

La aplicación de este algoritmo para el estudio de los conjuntos de datos clínicos y de expresión génica da una curva continua relacionando la RS con los valores de pCR, como se muestra en la Figura 1. El examen de estos datos demuestra que las pacientes con RS > 50 están situadas en el percentil 50 superior de los pacientes en términos de probabilidad de respuesta a la quimioterapia, y que los pacientes con RS < 35 se sitúan en el percentil 50 inferior de los pacientes en términos de probabilidad de respuesta a la quimioterapia.

Si bien la invención ha sido descrita poniendo de relieve determinadas realizaciones específicas, resulta evidente para los expertos en la técnica que son posibles variaciones y modificaciones en los métodos y técnicas específicos. Por tanto, esta invención incluye todas las modificaciones comprendidas en el espíritu y el alcance de la invención tal como viene definida por las siguientes reivindicaciones.

TABLA 2

A-Catenin		CGTTCCGATCCTCTATACTGCAT	23
A-Catenin	NM_00190 S2139/A-Cate.r2	AGGTCCCTGTTGGCCTTATAGG	22
A-Catenin	NM_00190 S4725/A'-Cate.p2	ATGCCTACAGCACCCTGATGTCGCA	25
ABCC5	NM_00568 S5605/ABCC5.f1	TGCAGACTGTACCATGCTGA	20
ABCC5	NM_00568 S5606/ABCC5.r1	GGCCAGCACCATAATCCTAT	20
ABCC5	NM_00568 S5607/ABCC5.p1	CTGCACACGGTTCTAGGCTCCG	22
AK055699	AK055699 S2097/AK0556.f1	CTGCATGTGATTGAATAAGAAACAAGA	27
AK055699	AK055699 S2098/AK0556.r1	TGTGGACCTGATCCCTGTACAC	22
AK055699	AK055699 S5057/AK0556.p1	TGACCACACCAAAGCCTCCCTGG	23
AKAP-2	NM_00720 S1374/AKAP-2.f1	ACGAATTGTCGGTGAGGTCT	20
AKAP-2	NM_00720 S1375/AKAP-2.r1	GTCCATGCTGAAATCATTGG	20
AKAP-2	NM_00720 S4934/AKAP-2.p1	CAGGATACCACAGTCCTGGAGACCC	25
AKT1	NM_00516 S0010/AKT1.f3	CGCTTCTATGGCGCTGAGAT	20
AKT1	NM_00516 S0012/AKT1.r3	TCCCGGTACACCACGTTCTT	20
AKT1	NM_00516 S4776/AKT1.p3	CAGCCCTGGACTACCTGCACTCGG	24
AKT2	NM_00162 S0828/AKT2.f3	TCCTGCCACCCTTCAAACC	19
AKT2	NM_00162 S0829/AKT2.r3	GGCGGTAAATTCATCATCGAA	21
AKT2	NM_00162 S4727/AKT2.p3	CAGGTCACGTCCGAGGTCGACACA	24
APC	NM 00003 S0022/APC.f4	GGACAGCAGGAATGTGTTTC	20
APC	NM 00003 S0024/APC.r4	ACCCACTCGATTTGTTTCTG	. 20
APC	NM 00003 S4888/APC.p4	CATTGGCTCCCCGTGACCTGTA	22
BAD.	NM 03298 S2011/BAD.f1	GGGTCAGGTGCCTCGAGAT	19
BAD	NM 03298 S2012/BAD.r1	CTGCTCACTCGGCTGAAACTC	. 21
BAD	NM 03298 S5058/BAD.p1	TGGGCCCAGAGCATGTTCCAGATC	24
BAG1	NM 00432 S1386/BAG1.f2	CGTTGTCAGCACTTGGAATACAA	. 23
BAG1	NM 00432 S1387/BAG1.r2	GTTCAACCTCTTCCTGTGGACTGT	24
BAG1	NM_00432 S4731/BAG1.p2	CCCAATTAACATGACCCGGCAACCAT	26
BBC3	NM 01441 S1584/BBC3.f2	CCTGGAGGGTCCTGTACAAT	20
BBC3	NM_01441 S1585/BBC3.r2	CTAATTGGGCTCCATCTCG	. 19
BBC3	NM_01441 S4890/BBC3.p2	CATCATGGGACTCCTGCCCTTACC	24
Bcl2	NM 00063 S0043/Bcl2.f2	CAGATGGACCTAGTACCCACTGAGA	25
Bcl2	NM 00063 S0045/Bcl2.r2	CCTATGATTTAAGGGCATTTTTCC	24
Bcl2	NM_00063 S4732/Bcl2.p2	TTCCACGCCGAAGGACAGCGAT	22
CCND1	NM_00175 S0058/CCND1.f3	GCATGTTCGTGGCCTCTAAGA	. 21
CCND1	NM 00175 S0060/CCND1.r3	CGGTGTAGATGCACAGCTTCTC	22
CCND1	NM_00175 S4986/CCND1.p3	AAGGAGACCATCCCCCTGACGGC	23
CD18	NM 00021 S0061/CD18.f2	CGTCAGGACCCACCATGTCT	20
CD18	NM 00021 S0063/CD18.r2	GGTTAATTGGTGACATCCTCAAGA	24
CD18	NM_00021 S4987/CD18.p2	CGCGGCCGAGACATGGCTTG	20
CD31	NM_00044 S1407/CD31.f3	TGTATTTCAAGACCTCTGTGCACTT	25
CD31	NM_00044 S1408/CD31.r3	TTAGCCTGAGGAATTGCTGTGTT	23
CD31	NM 00044 S4939/CD31.p3	TTTATGAACCTGCCCTGCTCCCACA	25
CD3z	NM_00073 S0064/CD3z.f1	AGATGAAGTGGAAGGCGCTT	20
CD3z	NM_00073 S0066/CD3z.r1	TGCCTCTGTAATCGGCAACTG	21
CD3z	NM_00073 S4988/CD3z.p1	CACCGCGCCATCCTGCA	18
	NM_00176 S0686/CD9.f1	GGGCGTGGAACAGTTTATCT	20
CD9	NM_00176 S0687/CD9.r1	CACGGTGAAGGTTTCGAGT	19
CD9	NM_00176 S4792/CD9.p1	AGACATCTGCCCAAGAAGGACGT	24
CDC20	NM_00125 S4447/CDC20.f1	TGGATTGGAGTTCTGGGAATG	.21
CDC20	NM_00125 S4448/CDC20.r1	GCTTGCACTCCACAGGTACACA	22
	NM 00125 S4449/CDC20.p1	ACTGGCCGTGGCACTGGACAACA	
CDC20	NM_02187 S1160/CDC25B.f1	AAACGAGCAGTTTGCCATCAG	23
CDC25B	NIMI_02 101 31 100/CDC238.[]	AMOUNGINIONS .	21

	. NIA 00407.04464 <i>8</i>	COCCED -4	07700704707700044004	
CDC25B	NM_02187 S1161/		GTTGGTGATGTTCCGAAGCA	20
CDC25B	NM_02187 S4842/		CCTCACCGGCATAGACTGGAAGCG	24
CEGP1	NM_02097 S1494/		TGACAATCAGCACCACCTGCAT	21
CEGP1	NM_02097 S1495/		TGTGACTACAGCCGTGATCCTTA	23
CEGP1	NM_02097 S4735/		CAGGCCTCTTCCGAGCGGT	20
CGA (CH	SNM_00127 S3221/	(C.13	CTGAAGGAGCTCCAAGACCT	20
CGA (CH	SNM_00127 S3222/	CGA (C.rs	CAAAACCGCTGTGTTTCTTC	20
	SNM_00127 S3254/		TGCTGATGTGCCCTCTCCTTGG	22
COL1A1	NM_00008 S4531/		GTGGCCATCCAGCTGACC	18
COL1A1	NM_00008 \$4532		CAGTGGTAGGTGATGTTCTGGGA	23
COL1A1	NM_00008 \$4533		TCCTGCGCCTGATGTCCACCG	21
COL1A2			CAGCCAAGAACTGGTATAGGAGCT	24
COL1A2	NM_00008 \$4535		AAACTGGCTGCCAGCATTG	19
COL1A2	NM_00008 S4536		TCTCCTAGCCAGACGTGTTTCTTGTCCTTG	30
Contig 51	0 XM_05894 S2070.	/Contig.f1	CGACAGTTGCGATGAAAGTTCTAA	24
Contig 51	0 XM_05894 S2071.	/Contig.r1 .	GGCTGCTAGAGACCATGGACAT	22
Contig 51	0 XM_05894 S5059		CCTCCTCTGTTGCTGCCACTAATGCT	27
CRABP1	NM_00437 S5441.		AACTTCAAGGTCGGAGAAGG ·	20
CRABP1	NM_00437 S5442		TGGCTAAACTCCTGCACTTG	20
CRABP1	NM_00437 S5443		CCGTCCACGGTCTCCTCCA	21
CRIP2	NM_00131 S5676		GTGCTACGCCACCCTGTT	18
CRIP2	NM_00131 S5677		CAGGGGCTTCTCGTAGATGT	20
CRIP2	NM_00131 S5678	3/CRIP2.p3	CCGATGTTCACGCCTTTGGGTC	22
.CYBA	NM_00010 \$5300	CYBA.f1	GGTGCCTACTCCATTGTGG	19
CYBA	NM_00010 \$5301	I/CYBA.r1	GTGGAGCCCTTCTTCCTCTT	20
CYBA	NM_00010 S5302	2/CYBA.p1	TACTCCAGCAGGCACACACACACG	24
DHPS	NM_01340 S4519		GGGAGAACGGGATCAATAGGAT	22
DHPS	NM_01340 S4520	D/DHPS.r3	GCATCAGCCAGTCCTCAAACT	21
DHPS	NM_01340 S4521	1/DHPS.p3	CTCATTGGGCACCAGCAGGTTTCC ·	24
DICER1	NM_17743 S5294	4/DICER1.f2	TCCAATTCCAGCATCACTGT	20
DICER1	NM_17743 S5295	5/DICER1.r2	GGCAGTGAAGGCGATAAAGT	20
DICER1	NM_17743 S5296	5/DICER1.p2	AGAAAAGCTGTTTGTCTCCCCAGCA	25
DR4	NM_00384 S2532	2/DR4.f2	TGCACAGAGGGTGTGGGTTAC	21
DR4	NM_00384 \$2533	3/DR4.r2	TCTTCATCTGATTTACAAGCTGTACATG	28
DR4	NM_00384 S4981	1/DR4.p2	CAATGCTTCCAACAATTTGTTTGCTTGCC	29
E2F1	NM-00522 \$3063	3/E2F1.f3	ACTCCCTCTACCCTTGAGCA	20
E2F1	NM_00522 S3064	4/E2F1.r3	CAGGCCTCAGTTCCTTCAGT	20
E2F1	NM 00522 S4821	1/E2F1.p3	CAGAAGAACAGCTCAGGGACCCCT	24
ER2	NM 00143 S0109	9/ER2.f2	TGGTCCATCGCCAGTTATCA	20
ER2	NM_00143 S011		TGTTCTAGCGATCTTGCTTCACA	23
ER2	NM_00143 S500		ATCTGTATGCGGAACCTCAAAAGAGTCCCT	30
ErbB3	NM 00198 S0112		CGGTTATGTCATGCCAGATACAC	23
ErbB3	NM_00198 S0114		GAACTGAGACCCACTGAAGAAAGG	24
ErbB3	NM_00198 S5002		CCTCAAAGGTACTCCCTCCTCCCGG	25
ERBB4	NM 00523 S123		TGGCTCTTAATCAGTTTCGTTACCT	25
ERBB4	NM 00523 S123		CAAGGCATATCGATCCTCATAAAGT	. 25
ERBB4	NM_00523 S489		TGTCCCACGAATAATGCGTAAATTCTCCAG	30
ERCC1	NM 00198 S243		GTCCAGGTGGATGTGAAAGA	20
ERCC1	NM_00198 S243		CGGCCAGGATACACATCTTA	20
ERCC1	NM_00198 S492		CAGCAGGCCCTCAAGGAGCTG	21
		0/ERK1.f3	ACGGATCACAGTGGAGGAAG	. 20
ERK1		1/ERK1.r3	CTCATCCGTCGGGTCATAGT	20
ERK1	∠11090 3130	HERNEIS	O LOW LOOP OF TAKEN	~5

EDIZ4	744606 04000 Eby4 0		
ERK1	Z11696 S4882/ERK1.p3	CGCTGGCTCACCCCTACCTG	20
ESRRG	NM_00143 S6130/ESRRG.f3	CCAGCACCATTGTTGAAGAT	20
ESRRG	NM_00143 S6131/ESRRG.r3	AGTCTCTTGGGCATCGAGTT	20
ESRRG	NM_00143 S6132/ESRRG.p3	CCCCAGACCAAGTGTGAATACATGCT	26
fasi .	NM_00063 S0121/fasl.f2	GCACTITGGGATTCTTTCCATTAT	24
fasi	NM_00063 S0123/fasl.r2	GCATGTAAGAAGACCCTCACTGAA	24
fasi	NM_00063 S5004/fasl.p2	ACAACATTCTCGGTGCCTGTAACAAAGAA	.29
FBXQ5	NM_01217 S2017/FBXO5.r1	GGATTGTAGACTGTCACCGAAATTC	25
FBXO5	NM_01217 S2018/FBXO5.f1	GGCTATTCCTCATTTTCTCTACAAAGTG	28
FBXO5	NM_01217 S5061/FBXO5.p1	CCTCCAGGAGGCTACCTTCTTCATGTTCAC	-30
FHIT	NM_00201 S2443/FHIT.f1	CCAGTGGAGCGCTTCCAT	18
FHIT	NM_00201 S2444/FHIT.r1	CTCTCTGGGTCGTCTGAAACAA	22
FHIT	NM_00201 S4921/FHIT.p1	TCGGCCACTTCATCAGGACGCAG	23
FUS	NM_00496 S2936/FUS.f1	GGATAATTCAGACAACACACCATCT	26
FUS	NM_00496 S2937/FUS.r1	TGAAGTAATCAGCCACAGACTCAAT	25
FUS	NM_00496 S4801/FUS.p1	TCAATTGTAACATTCTCACCCAGGCCTTG	29
FYN	NM_00203 S5695/FYN.f3	GAAGCGCAGATCATGAAGAA	20
FYN	NM_00203 S5696/FYN.r3	CTCCTCAGACACCACTGCAT	20
FYN	NM_00203 S5697/FYN.p3	CTGAAGCACGACAAGCTGGTCCAG	24
	NM_00223 S2153/G-Cate.f1	TCAGCAGCAAGGGCATCAT	19
	NM_00223 S2154/G-Cate.r1	GGTGGTTTTCTTGAGCGTGTACT	23
	NM_00223 S5044/G-Cate.p1	CGCCGCAGGCCTCATCCT	19
GATA3	NM_00205 S0127/GATA3.f3	CAAAGGAGCTCACTGTGGTGTCT	23
GATA3	NM_00205 S0129/GATA3.r3	GAGTCAGAATGGCTTATTCACAGATG	26
GATA3	NM_00205 S5005/GATA3.p3	TGTTCCAACCACTGAATCTGGACC	24
GBP1	NM_00205 S5698/GBP1.f1	TTGGGAAATATTTGGGCATT	20
GBP1	NM_00205 S5699/GBP1.r1	AGAAGCTAGGGTGGTTGTCC	20
GBP1	NM_00205 S5700/GBP1.p1	TTGGGACATTGTAGACTTGGCCAGAC	26
GBP2	NM_00412 S5707/GBP2.f2	GCATGGGAACCATCAACCA	19
GBP2	NM_00412 S5708/GBP2.r2	TGAGGAGTTTGCCTTGATTCG	21
GBP2	NM_00412 S5709/GBP2.p2	CCATGGACCAACTTCACTATGTGACAGAGC	30
GGPS1	NM_00483 S1590/GGPS1.f1	CTCCGACGTGGCTTTCCA	18
GGPS1	NM_00483 S1591/GGPS1.r1	CGTAATTGGCAGAATTGATGACA	23
GGPS1	NM_00483 S4896/GGPS1.p1	TGGCCCACAGCATCTATGGAATCCC	25 25
GRB7	NM_00531 S0130/GRB7.f2	CCATCTGCATCCATCTTGTT	20
GRB7	NM 00531 S0132/GRB7.r2	GGCCACCAGGGTATTATCTG	
GRB7	NM_00531 S4726/GRB7.p2	CTCCCACCTTGAGAAGTGCCT	20
Hepsin	NM_00215 S2269/Hepsin.f1	AGGCTGCTGGAGGTCATCTC	23
Hepsin	NM_00215 S2270/Hepsin.r1		20
•	NM_00215 S2271/Hepsin.p1	CTTCCTGCGGCCACAGTCT CCAGAGGCCGTTTCTTGGCCG	19
Hepsin	NM_00213 S227 1/Hepsin.p1 31 NM_00212 S4573/HLA-DP.f1	•	. 21
		TCCATGATGGTTCTGCAGGTT	21
	81 NM_00212 S4574/HLA-DP.r1	TGAGCAGCACCATCAGTAACG	21.
	31 NM_00212 S4575/HLA-DP.p1	CCCCGGACAGTGGCTCTGACG	21
ID2	NM_00216 S0151/ID2.f4	AACGACTGCTACTCCAAGCTCAA	23
ID2 '	NM_00216 S0153/ID2.r4	GGATTTCCATCTTGCTCACCTT	22
ID2	NM_00216 S5009/ID2.p4	TGCCCAGCATCCCCCAGAACAA	22
IGF1R	NM_00087 S1249/IGF1R.f3	GCATGGTAGCCGAAGATTTCA	21
IGF1R	NM_00087 S1250/IGF1R.r3	TTTCCGGTAATAGTCTGTCTCATAGATATC	30
IGF1R	NM_00087 S4895/IGF1R.p3	CGCGTCATACCAAAATCTCCGATTTTGA	28
IL6	NM_00060 S0760/IL6.f3	CCTGAACCTTCCAAAGATGG	20
IL6	NM_00060 S0761/IL6.r3	ACCAGGCAAGTCTCCTCATT	20
IL6	NM_00060 S4800/IL6.p3	CCAGATTGGAAGCATCCATCTTTTCA	27
	•		

ILT-2	NM_00666 S1611/ILT-2.f2	AGCCATCACTCTCAGTGCAG	-
ILT-2	NM_00666 S1612/ILT-2.r2	ACTGCAGAGTCAGGGTCTCC	20
ILT-2	NM_00666 S4904/ILT-2.p2	CAGGTCCTATCGTGGCCCCTGA	20
IRS1	NM_00554 S1943/IRS1.f3	CCACAGCTCACCTTCTGTCA	22
IRS1	· NM_00554 S1944/JRS1.r3	CCTCAGTGCCAGTCTCTCC	20
IRS1	NM_00554 S5050/IRS1.p3	TCCATCCCAGCTCCAGCCAG	20
KRT18	NM_00022 S1710/KRT18.f2	AGAGATCGAGGCTCTCAAGG	20
KRT18	NM_00022 S1711/KRT18.r2		20
	NM_00022 S4762/KRT18.p2	GGCCTTTTACTTCCTCTTCG	20
KRŢ18 MAPK14	NM_13901 S5557/MAPK14.f2	TGGTTCTTCATGAAGAGCAGCTCC	27
	NM_13901 S5558/MAPK14.r2	TGAGTGGAAAAGCCTGACCTATG	23
MAPK14 MAPK14	NM_13901 S5559/MAPK14.p2	GGACTCCATCTCTTCTTGGTCAA	23
		TGAAGTCATCAGCTTTGTGCCACCACC	27
MCM2	NM_00452 S1602/MCM2:f2	GACTITIGCCCGCTACCTITC	21
MCM2	NM_00452 S1603/MCM2.r2	GCCACTAACTGCTTCAGTATGAAGAG	26
MCM2	NM_00452 S4900/MCM2.p2	ACAGCTCATTGTTGTCACGCCGGA	24
MCM6	NM_00591 S1704/MCM6.f3	TGATGGTCCTATGTGTCACATTCA	24
MCM6	NM_00591 S1705/MCM6.r3	TGGGACAGGAAACACACGAA	20
MCM6	NM_00591 S4919/MCM6.p3	CAGGTTTCATACCAACACAGGCTTCAGCAC	30
MCP1	NM_00298 S1955/MCP1.f1	CGCTCAGCCAGATGCAATC	19
MCP1	NM_00298 S1956/MCP1.r1	GCACTGAGATCTTCCTATTGGTGAA	25
MCP1	NM_00298 S5052/MCP1.p1	TGCCCAGTCACCTGCTGTTA	21
MGMT	NM_00241 S1922/MGMT.f1	GTGAAATGAAACGCACCACA	20
MGMT	NM_00241 S1923/MGMT.r1	GACCCTGCTCACAACCAGAC	20
MGMT	NM_00241 S5045/MGMT.p1	CAGCCCTTTGGGGAAGCTGG	20
MMP12	NM_00242 S4381/MMP12.f2	CCAACGCTTGCCAAATCCT	19
MMP12	NM_00242 S4382/MMP12.r2	ACGGTAGTGACAGCATCAAAACTC	24
MMP12	NM_00242 S4383/MMP12.p2	AACCAGCTCTCTGTGACCCCAATT	24
MSH3	NM_00243 S5940/MSH3,f2	TGATTACCATCATGGCTCAGA	21
MSH3	NM_00243 S5941/MSH3.r2	CTTGTGAAAATGCCATCCAC	20
MSH3	NM_00243 S5942/MSH3.p2	TCCCAATTGTCGCTTCTTCTGCAG	24
'MTA1	NM_00468 S2369/MTA1.f1	CCGCCTCACCTGAAGAGA	19
MŢA1	NM_00468 S2370/MTA1.r1	GGAATAAGTTAGCCGCGCTTCT	22
MTA1	NM_00468 S4855/MTA1.p1	CCCAGTGTCCGCCAAGGAGCG	21
MUC1	NM_00245 S0782/MUC1.f2	GGCCAGGATCTGTGGTGGTA	20
MUC1	NM_00245 S0783/MUC1.r2	CTCCACGTCGTGGACATTGA	20
MUC1	NM_00245 S4807/MUC1.p2	CTCTGGCCTTCCGAGAAGGTACC	23
	(ANM_02068 S4474/NPD009.f3	GGCTGTGGCTGAGGCTGTAG	20
	(ANM_02068 S4475/NPD009.r3	GGAGCATTCGAGGTCAAATCA	. 21
	(ANM_02068 S4476/NPD009.p3		28
PR	NM_00092 S1336/PR.f6	GCATCAGGCTGTCATTATGG	20
PR	NM_00092 S1337/PR.r6	AGTAGTTGTGCTGCCCTTCC	20
PR	NM_00092 S4743/PR.p6	TGTCCTTACCTGTGGGAGCTGTAAGGTC	28
PRKCD	NM_00625 S1738/PRKCD.f2	CTGACACTTGCCGCAGAGAA	20
PRKCD	NM_00625 S1739/PRKCD.r2	AGGTGGTCCTTGGTCTGGAA	_. 20
PRKCD	NM_00625 S4923/PRKCD.p2	CCCTTTCTCACCCACCTCATCTGCAC	26
PTPD1	NM_00703 S3069/PTPD1.f2	CGCTTGCCTAACTCATACTTTCC	23
PTPD1	NM_00703 S3070/PTPD1.r2	CCATTCAGACTGCGCCACTT	20
P.TPD1	NM_00703 S4822/PTPD1.p2	TCCACGCAGCGTGGCACTG	19
RAB6C	NM_03214 S5535/RAB6C.f1	GCGACAGCTCCTCTAGTTCCA	21
RAB6C	NM_03214 S5537/RAB6C.p1	TTCCCGAAGTCTCCGCCCG	19
RAB6C	NM_03214 S5538/RAB6C.r1	GGAACACCAGCTTGAATTTCCT	22
RALBP1	NM_00678 S5853/RALBP1.f1	GGTGTCAGATATAAATGTGCAAATGC	26
		·	

RALBP1	NM_00678 S5854/RALBP1.r1	TTEGATATTGCCAGCAGCTATAAA	24 .
RALBP1	NM_00678 S5855/RALBP1.p1	TGCTGTCCTGTCGGTCTCAGTACGTTCA	28
RAP1GDS	S NM_02115 S5306/RAP1GD.f2	TGTGGATGCTGGATTGATTT	20
	S NM_02115.S5307/RAP1GD.r2	AAGCAGCACTTCCTGGTCTT-	20
	S NM_02115 S5308/RAP1GD.p2	CCACTGGTGCAGCTGCTAAATAGCA	25
RASSF1	NM_00718 S2393/RASSF1.f3	AGTGGGAGACACCTGACCTT	. 20
RASSF1	NM_00718 S2394/RASSF1.r3	TGATCTGGGCATTGTACTCC	20
RASSF1	NM_00718 S4909/RASSF1.p3	TTGATCTTCTGCTCAATCTCAGCTTGAGA	29
rhoC.	NM_00516 S2162/rhoC.f1	CCCGTTCGGTCTGAGGAA	18
rhoC	NM_00516 S2163/rhoC.r1	GAGCACTCAAGGTAGCCAAAGG	22
rhoC	NM_00516 S5042/rhoC.p1	TCCGGTTCGCCATGTCCCG	19
RUNX1	NM_00175 S4588/RUNX1.f2	AACAGAGACATTGCCAACCA	20
RUNX1	NM_00175 S4589/RUNX1.r2	GTGATTTGCCCAGGAAGTTT	20
RUNX1	NM_00175 S4590/RUNX1.p2	TTGGATCTGCTTGCTGTCCAAACC	24
SEMA3F	NM_00418 S2857/SEMA3F.f3	CGCGAGCCCTCATTATACA	20
SEMA3F	NM_00418 S2858/SEMA3F.r3	CACTCGCCGTTGACATCCT	19
SEMA3F	NM_00418 S4972/SEMA3F.p3	CTCCCACAGCGCATCGAGGAA	22
SGCB	NM_00023 S5752/SGCB.f1	CAGTGGAGACCAGTTGGGTAGTG	. 23
SGCB	NM_00023 S5753/SGCB.r1 .	CCTTGAAGAGCGTCCCATCA	20
SGCB	NM_00023 S5754/SGCB.p1	CACACATGCAGAGCTTGTAGCGTACCCA	. 28
STAT1	NM: 00731 S1542/STAT1.f3	GGGCTCAGCTTTCAGAAGTG	20
STAT1	NM_00731 S1543/STAT1.r3	ACATGTTCAGCTGGTCCACA	20
STAT1	NM_00731 S4878/STAT1.p3	TGGCAGTTTTCTTCTGTCACCAAAA	25
STAT3	NM_00315 S1545/STAT3.f1	TCACATGCCACTTTGGTGTT	20
STAT3	NM_00315 S1546/STAT3.r1	CTTGCAGGAAGCGGCTATAC	20
STAT3	NM_00315 S4881/STAT3.p1	TCCTGGGAGAGATTGACCAGCA	22
TBP	NM_00319 S0262/TBP.f1	GCCCGAAACGCCGAATATA	19
TBP	NM_00319 S0264/TBP.r1	CGTGGCTCTCTTATCCTCATGAT	23
TBP	NM_00319 S4751/TBP.p1	TACCGCAGCAAACCGCTTGGG	21
TK1	NM_00325 S0866/TK1.f2	GCCGGAAGACCGTAATTGT	20
TK1	NM_00325 S0927/TK1.r2	CAGCGGCACCAGGTTCAG	18
TK1	NM_00325 S4798/TK1.p2	CAAATGGCTTCCTCTGGAAGGTCCCA	26
TP53BP1	NM_00565 S1747/TP53BP.f2	TGCTGTTGCTGAGTCTGTTG	20
TP53BP1	NM_00565 S1748/TP53BP.r2	CTTGCCTGGCTTCACAGATA	20
TP53BP1	NM_00565 S4924/TP53BP.p2	CCAGTCCCCAGAAGACCATGTCTG	24
TUBB TUBB	NM_00106 S5826/TUBB.f3	TGTGGTGAGGAAGGAGTCAG	20
TUBB	NM_00106 S5827/TUBB.r3	CCCAGAGAGTGGGTCAGC	18
	NM_00106 \$5828/TUBB.p3	CTGTGACTGTCTCCAGGGCTTCCA	24
VCAM1 VCAM1	NM_00107 S3505/VCAM1.f1	TGGCTTCAGGAGCTGAATACC	21
VCAM1	NM_00107 S3506/VCAM1.r1 NM_00107 S3507/VCAM1.p1	TGCTGTCGTGATGAGAAAATAGTG	. 24
	NM_00339 S6183/Wnt-5a.f1	CAGGCACACAGGTGGGACACAAAT	26
Wnt-5a Wnt-5a	NM_00339 S6184/Wnt-5a.r1	GTATCAGGACCACATGCAGTACATC	25
Wnt-5a	NM_00339 S6185/Wnt-5a.p1	TGTCGGAATTGATACTGGCATT	22
ZNF38	NM_14591 S5593/ZNF38.f3	TTGATGCCTGTCTTCGCGCCTTCT	24
ZNF38	NM_14591 S5594/ZNF38.r3	TTTCCAAACATCAGCGAGTC	20
ZNF38	NM_14591 S5595/ZNF38.p3	ACAGGAGCGCTTGAAAGTT	20
LINESO	HINT HOS I GOOSOIE HEODO	ACGGTGCTTCTCCCTCTCCAGTG	23

Secuencia

nm_01217 gectattcctcattttctgtacaaagt6gcctcagtgaacatgaagaaggtagcctcctggaggagatttcggggacagtgtäcaatcc NM_02187 AAACGAGCAGTTTGCCATCAGACGCTTCCAGTCTATGCCGGTGAGGCTGCTGGGGCCACAGCCCCGTGCTTCGGAACATCACCAAC NM_00523 TGGCTCTTAATCAGTTTCGTTACCTGCCTCTGGAGAATTTACGCATTATTCGTGGGACAAAACTTTATGAGGATCGATATGCCTTG NM_01441 CCTGGAGGGTCCTGTACAATCTCATCATGGGACTCCTGCCCTTACCCAGGGGCCACAGAGCCCCCGAGATGGAGCCCCAATTAG 00412 GCATGGGAACCATCAACCAGCAGGCCATGGACCAACTTCACTATGTGACAGAGCTGACAGATCGAAŤCAAGGCAAACTCCTCA NM_00175 GCATGTTCGTGGCCTCTAAGATGAAGGAGACCATCCCCCTGACGGCCGAGAAGCTGTGCATCTACACCG NM_00021 CGTCAGGACCCACCATGTCTGCCCCCATCACGCGGCCGAGACATGGCTTGGCCACAGCTCTTGAGGATGTCACCAATTAACC COL1AZ NM_00008 CAGCCAAGAACTGGTATAGGAGCTCCAAGGACAAGACGTCTGGCTAGGAGAAACTATCAATGCTGGCAGGCCAGTTT CONING 510 XM_05894 CGACAGTTGCGATGAAAGTTCTAATCCTCCCTCCTGTTGCTGCCACTAATGCTGATGCTGATGTCCATGGTCTAGCAGCC NM_00498 GGATAATTCAGACAACAACACCATCTTTGTGCAAGGCCTGGGTGAGAATGTTACAATTGAGTCTGTGGCTGATTACTTCA NM_00143 CCAGCACCATTGTTGAAGATCCCCAGACCAAGTGTGAATACATGCTCAACTCGATGCCCAAGAGACT NM_00063 GCACTTTGGGATTCTTTCATTATGATTCTTTGTTACAGGCACCGAGAATGTTGTATTCAGTGAGGGTCTTCTTACATGC NM_00010 GGTGCCTACTCCATTGTGGCGGGCGTGTTTGTGTGCCTGCTGGAGTACCCCCGGGGGAAGAGAGAAGAGGGCTCCAC NM_01340 GGGAGAACGGGATCAATAGGATCGGAAACCTGCTGGTGCCCAATGAGAATTACTGCAAGTTTGAGGACTGGCTGATGC CGA (CHENM_00127 CTGAAGGAGCTCCAAGACCTCGCTCTCCAAGGCGCCCAAGGAGAGGGGCACATCAGCAGAAGAAACACAGGGGTTTTG COL1A1 NM_00008 GTGGCCATCCAGCTTCTTCCTGCGCCTGATGTCCACCGAGGCCTCCCAGAACATCACTACCATTG COL1A2 NM_00008 CAGCCAAGAACTGGTATAGGAGCTCCAAGGACAAGAACACGTCTGGCTAGGAAACTATCAATGCTGGCAGCAG NIM 00190 CGTTCCGATCCTCTATACTGCATCCCAGGCATGCCTACAGCACCCTGATGTCGCAGCCTATAAGGCCAACAGGGACCT NM_00131 GTGCTACGCCACCCTGTTCGGACCCAAAGGCGTGAACATCGGGGGCGGGGGGCTCCTACATCTACGAGAAGCCCCTG NM_02087 TGACAATCAGCACACCTGCATTCACCGCTCGGAAGAGGGCCTGAGCTGCATGAATAAGGATCACGGCTGTAGTCACA NM_00588 TGCAGACTGTACCATGCTGACCATTGCCCATCGCCTGCACAGGTTCTAGGCTCCGATAGGATTATGGTGCTGGCC NM_00522 ACTCCCTCTACCCTTGAGCAAGGGCAGGGGTCCCTGAGCTGTTCTTCTGCCCCATACTGAAGGAACTGAGGCCTG NIN_00143 TGGTCCATCGCCAGTTATCACATCTGTATGCGGAACCTCAAAAGAGTCCCTGGTGTGAAGCAAGATCGCTAGAACA NM_00205 CAAAGGAGCTCACTGTGTGTCTGTGTTCCAACCACTGAATCTGGACCCCATCTGTGAATAAGCCATTCTGACTC NM_03288 GGGTCAGGTGCCTCGAGATCGGGCTTGGGCCCAGAGCATGTTCCAGATCCCCAGAGTTTGAGCCGAGTGAGCAG NM_00044 TGTATTTCAAGACCTCTGTGCACTTATTTATGAACCTGCCCTGCTCCCACAGAACACAGCAATTCCTCAGGCTAA NM_00063 CAGATGGACCTAGTACCCACTGAGATTTCCACGCCGAAGGACAGCGATGGGAAAAATGCCCTTAAATCATAGG NM_00205 TTGGGAAATATTTGGGCATTGGTCTGGCCAAGTCTACAATGTCCCAATATCAAGGACAACCACCCTAGCTTCT NM_00412 GCATGGGAACCATCAACCAGGCCATGGACCAACTTCACTATGTGACAGAGGAGCAAGATCAAGG NM_00518 CGCTTCTATGGCGCTGAGATTGTGTCAGCCCTGGACTACCTGCACTCGGAGAAGAACGTGGGTGTACCGGGA NM_00162 TCCTGCCACCCTTCAAACCTCAGGTCACGTCCGAGGTCGACACAAGGTACTTCGATGATGAATTTACCGCC NM_00223 TCAGCAGCAAGGGCATCATGGAGGAGGATGAGGCCTGCGGGCGCCAGTACACGCTCAAGAAAACCACC NM_00203 GAAGCGCAGATCATGAAGAAGCTGAAGCACGACAAGCTGGTCCAGCTCTATGCAGTGGTGTCTGAGGAG NM_00003 GGACAGCAGGAATGTGTTTCTCCATACAGGTCACGGGGAGCCAATGGTTCAGAAACAAATCGAGTGGT NM_00125TGGATTGGAGTTCTGGGAATGTACTGGCCGTGGCACTGGACACAGTGTGTACCTGTGGAGTGCAAGC NM_00201 CCAGTGGAGCGCTTCCATGACCTGCGTCCTGATGAAGTGGCCGATTTGTTTCAGACGACGAGAGAG **ACGGATCACAGTGGAAGCGCTGGCTCACCCTACCTGGAGCAGTACTATGACCCCGACGGATGAG** NM_00198 GTCCAGGTGGATGTGAAAGATCCCCAGCAGGCCTCAAGGAGCTGGCTAAGATGTGTATCCTGGCCG NM_00720 ACGAATTGTCGGTGAGGTCTCAGGATACCACAGTCCTGGAGACCCTATCCAATGATTTCAGCATGGAC NM_17743 TCCAATTCCAGCATCACTGTGGAGAAAAGCTGTTTGTCTCCCCAGCATACTTTATCGCCTTCACTGCC NM_00073 AGATGAAGTGGAAGGCGCTTTTCACCGCGGCCATCCTGCAGGCACAGTTGCCGATTACAGAGGCA NM_00176 GGGCGTGGAACAGTTTATCTCAGACATCTGCCCCAAGAAGGACGTACTCGAAAGCTTCACCGTG AK055699 CRABP1 CRIP2 APC BAD BAG1 BAG2 BBC3 BBC3 CCND1 CCND1 CD32 CD32 CD32 CD26 CD26 CDC26 CYBA DHPS DICER1 DR4 EZF1 ER2 EMB3 ERB84 ERCC1 ERB4 AKAP-2 fasi FBXO5 AKT2

Continuació

NM D0531 CCATCTGCATCCATCTTGTTTGGGCTCCCCACCCTTGAGAAGTGCCTCAGATAATACCCTGGTGGCCC

NM_00107 TGGCTTCAGGAGGTGAATACCCTCCCAGGCACACACAGGTGGGACACAATAAGGGTTTTGGAACCACTATTTTCTCATCACGACAGCA NM_00418 CGCGAGCCCCTCATTATACACTGGGCAGCCTCCCCACAGCGCATCGAGGAATGCGTGCTCTCAGGCAAGGATGTCAACGGCGAGTG NM_00215 AGGCTGCTGGAGGTCATCTCCGTGTGGATTGCCCCAGAGGCCGTTTCTTGGCCGCCATCTGCCAAGACTGTGGCCGCAGAAG NM 00325 GCCGGGAAGACCGTAATTGTGGCTGCACTGGATGGGACCTTCCAGAGGAAGCCATTTGGGGCCATCCTGAACCTGGTGCCGTG NM 00092 GCATCAGGCTGTCATTATGGTGTCCTTACCTGTGGGGGGCTGTAAGGTCTTCTTTAAGAGGGCAATGGAAGGGCAGCACACTACT NM 00678 GGTGTCAGATATAAATGTGCAAATGCCTTCTTGCTGTCCGGTCTCCAGTACGTTCACTTTATAGCTGCTGGCAATATCGAA NM_00243 TGATTACCATCATGGCTCAGATTGGCTCCTATGTTCCTGCAGAGGAGCGACAATTGGGATTGTGGATGGCATTTTCACAAG NM 00703 CGCTTGCCTAACTCATACTTTCCCGTTGACACTTGATCCACGCAGCGTGGCACTTGGGACGTAAGTGGCGCAGTCTGAATGG NM_00591 TGATGGTCCTATGTGTCACATTCATCACAGGTTTCATACCAACACAGGCTTCAGCACTTCCTTTGGTGTTTCCTGTCCCA NM_00731 GGGCTCAGCTTTCAGAAGTGCTGAGTTGGCAGTTTTCTTCTGTCACCAAAAGAGGTCTCAATGTGGACCAGCTGAACATGT NM_00488 CCGCCCTCACCTGAAGAGAACGCGCTCCTTGGCGGACACTGGGGGGAGGAGGAGGAAGAGAGCGCGGCTAACTTATTCC NIM 03214 GCGAGAGGCTOCTCTAGTTCCACCATGTCCGCGGGCGGAGACTTCGGGAATCCGCTGAGGAAATTCAAGCTGGTGTTCC NM_D0216 AACGACTGCTACTCCAAGCTCAAGGAGCTGGTGCCAGCATCCCCCAGAACAAGAAGAAGGTGAGCAAGATGGAAATCC NM_00242 CCAACGCTTGCCAAAT@CTGACAATTCAGAACCAGCTCTGTGTGACCCCCAATTTGAGTTTTGATGCTGTCACTACCGT 13901 TGAGTGGAAAAGCCTGACCTATGATGAAGTCATCAGCTTTGTGCCACCACCACCCTTGACCAAGAAGAGAGATGGAGTCC 00338 GTATCAGGACCACATGCAGTACATCGGAGAAGGCGCGAAGACAGGCATCAAAGAATGCCAGTATCAATTCCGACA NM 00565 TGCTGTTGCTGAGTCTGTTGCCAGTCCCCAGAAGACCATGTCTGTGTTGAGCTGTATCTGTGAAGCCAGGCAAG NM_00212 TCCATGATGGTTCTGCAGGTTTCTGCGGCCCCCCGGACAGTGGCTCTGACGGCGTTACTGATGGTGCTGCTCA NM 00718 AGTGGGAGACACCTGACCTTTCTCAAGCTGAGATTGAGGAGATCAAGGAGTACAATGCCCAGATCA WM 00315TCACATGCCACTTTGGTGTTTCATAATCTCCTGGGAGAGATTGACCAGCAGTATAGCCGCTTCCTGCAAG NM_00518 CCCGTTCGGTCTGAGGAAAGGCCGGGACATGGCGAACCGGATCAGTGCCTTTGGCTACCTTGAGTGCTC WM_00175 AACAGAGACATTGCCAACCATATTGGATCTGCTTGCTGTCCAAACCAGCAAACTTCCTGGGCAAATCAC NM_00108 TGTGGTGAGGAAGGAGTCAGAGAGCTGTGCACTGTCTCCAGGGCTTCCAGCTGACCCACTCTCTGGG NM 02115 TGTGGATGCTGGATTGATTTCACCACTGGTGCAGCTGCTAAATAGCAAAGACCAGGAAGTGCTGCTT 00319 GCCCGAAACGCCGAATATAATCCCAAGCGGTTTGCTGCGGTAATCATGAGGGATAAGAGAGCCACG NM 14591 TTTCCAAACATCAGCGAGTCCACACTGGAGAGGGAGAAGCACCGTAACTTTCAAGCTCCTGTT RAP (GDS | RASSF1 TK1 IP538P1 IU88 RABBC RALBP1 SEMAJE RUNX1 SGCB STAT1. STAT3 D2 IGF1R Ş

Según otro aspecto de la presente invención, se proporciona un método de predicción de la respuesta a la quimioterapia de un sujeto diagnosticado de cáncer, conteniendo la determinación del nivel de expresión de uno o más transcritosde ARN de pronóstico o sus productos de expresión, en una muestra biológica comprendiendo células cancerosas obtenidas de dicho sujeto, donde el transcrito de ARN predictivo es el

transcrito de uno o más genes seleccionados del grupo compuesto por TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3;GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPSI; KRT18; ESRRG; E2F1; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; ID2; G.Catenina; FBX05;FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1;CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Hepsina; CRABP1; AK055699; Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STATI; Wnt.5a; PTPD1; RAB6C;TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1,BCL2, ESR1 donde

10

45

60

- (a) por cada unidad de expresión aumentada de uno o más de ILT.2; CD18; GBP1;CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1;MCM2; GBP2; CD31; ER2; STAT1; TK1 ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2,
- MMP11, CTSL2 y CD68; o el correspondiente producto de expresión, se prevé que dicho sujeto tenga una mayor probabilidad de respuesta a la quimioterapia; y
 (b) por cada unidad de expresión aumentada de uno o más de TBP; ABCC5; GATA3; DICER1; MSH3; IRS1;.TUBB; BAD; ERCC1; PR; APC; GGPSI; KRT18; ESRRG; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; G.Catenina; FHIT; MTA1; ErbB4; FUS;BBC3; IGF1R; CD9; TP53BP1; MUC1;
 IGFBP5; rhoC; RALBP1; STAT3; ERK.1; SGCB;DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Hepsina; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C; GSTM1, BCL2,ESR1; o el correspondiente producto de expresión, se prevé que dicho sujeto tenga una menor probabilidad de respuesta a la quimioterapia.
- El transcrito de ARN predictivo puede ser el transcrito de uno o más genes seleccionados del grupo compuesto por TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fesl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; ID2;G.Catenina; FBX05; FHIT; MTA1; ERBB4; PUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2;
- MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Hepsina; CRABP1; AK055699; Contig.51037; VCAMI; FYN; GRB7; AKAP.2; RASSF1; MCP1;ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STATI; Wnt.5a; PTPD1; RAB6C; y TK1.

La respuesta puede ser una respuesta patológica completa.

El sujeto puede ser un paciente humano.

35 El cáncer puede ser seleccionado del grupo compuesto por cáncer de mama, cáncer de ovario, cáncer gástrico, cáncer de colon, cáncer de páncreas, cáncer de próstata y cáncer de pulmón.

El cáncer puede ser cáncer de mama invasivo.

El cáncer puede ser cáncer de mama de estadio II o estadio III.

La quimioterapia puede ser quimioterapia adyuvante.

- 40 La quimioterapia puede ser quimioterapia neoadyuvante.
 - La quimioterapia neoadyuvante puede comprender la administración de un derivado de taxano.

El taxano puede ser docetaxel o paclitaxel.

- La quimioterapia puede comprender además la administración de un agente anticáncer adicional.
- El agente anticáncer adicional puede ser un miembro de la clase de agentes anticáncer de las antraciclinas.
 - El agente anticáncer adicional puede ser doxorubicina.
 - El agente anticáncer adicional puede ser un inhibidor de la topoisomerasa.
- El método puede comprender la determinación de los niveles de expresión de por lo menos dos de dichos transcritos de pronóstico de sus productos de expresión.
 - El método puede comprender la determinación de los niveles de expresión de por lo menos cinco de dichos transcritos de pronóstico de sus productos de expresión.
 - El método puede comprender la determinación de los niveles de expresión de todos los transcritos de pronóstico mencionados, o sus productos de expresión.
- La muestra biológica puede ser una muestra de tejido comprendiendo células cancerosas.
 - El tejido puede ser fijado, embebido en parafina, o fresco, o congelado.
 - El tejido puede proceder de una biopsia por aspiración con aguja fina, punción con aguja gruesa u otros tipos de biopsia.
 - La muestra de tejido puede obtenerse por aspiración con aguja fina, lavado bronquial o biopsia transbronquial.
 - El nivel de expresión de dicho transcrito o transcritos de ARN de pronóstico puede ser determinado por RT-PCR u otro método basado en PCR.
 - El nivel de expresión de dicho producto o productos de expresión puede ser determinado por inmunohistoquímica.
- 65 El nivel de expresión de dicho producto o productos de expresión puede ser determinado por técnicas proteómicas.
 - . El ensayo para la medición de dichos transcritos de ARN de pronóstico o sus productos de expresión

puede proporcionarse en forma de un kit o kits.

El transcrito predictivo puede comprender una secuencia basada en intrón, cuya expresión se correlacione con la expresión de una secuencia de exón correspondiente.

- Según otro aspecto de la presente invención, se proporciona un conjunto de polinucleótidos que hibridan con varios de los siguientes genes: TBP; 1LT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl;TUBB; BAD; ERCC1; MCM6; PR; APC; GGPSI; KRT18; ESRRG; E2F1; AKT2; A.Catenina; CEGPI;NPD009; MAPK14; RUNX1; ID2; G.Catenina; FBX05; FHIT; MTA1; ERBB4; FUS; BBC3; IGFIR; CD9; TP53BP1; MUCI; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAPIGDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Hepsina;
- CRABP1; AK055699; Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSFI; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt5a; PTPD1; RAB6C; TK1,ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1. La serie puede comprender polinucleótidos que hibridan con la mayoría de los siguientes genes: TBP;
- ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6;
 PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; ID2;
 G.Catenina; FBX05; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC;
 RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3;
 RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Hepsina; CRABP1; AK055699; Contig.51037;
 VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2;
- BAG1; AKT1; COL1A2; STAT1; Wnt5a; PTPD1; RAB6C; TK1.

 La serie puede comprender polinucleótidos que hibridan con la mayoría de los siguientes genes: ILT.2; CD18; GBP1; CD3z; fesl; MCM6; E2F1; ID2; FBX05; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; EL6; CYBA; DR4; CRABP1; Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 y CD68.
- La serie puede comprender polinucleótidos que hibridan con la mayoría de los siguientes genes: ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBX05; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1.
- La serie puede comprender polinucleótidos que hibridan con la mayoría de los siguientes genes: TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; G.Catenina; FHTT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Hepsina; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1.

La serie puede comprender polinucleótidos que hibridan con la mayoría de los siguientes genes: TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; G.Catenina; FHTT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3;

- 40 RAP1GDS1; CCND1; PRKCD; Hepsina; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1;RAB6C.
 - La serie puede comprender por lo menos cinco de dichos polinucleótidos.
 - La serie puede comprender por lo menos 10 de dichos polinucleótidos.
 - La serie puede comprender por lo menos 15 de dichos polinucleótidos.
- La serie puede comprender polinucleótidos que hibridan con todos los genes mencionados.
 - La serie puede comprender más de un polinucleótido que hibridan con el mismo gen.
 - Por lo menos uno de los polinucleótidos mencionados puede comprender una secuencia basada en intrón, cuya expresión se correlaciona con la expresión de una secuencia de exón correspondiente. Los polinucleótidos pueden ser ADNc.
- 50 Los polinucleótidos pueden ser oligonucleótidos.

35

65

- Según otro aspecto de la presente invención, se proporciona un método de preparación de un perfil genómico personalizado para un paciente, comprendiendo los siguientes pasos:
- a) determinar los niveles de expresión normalizados de los transcritos de ARN o los productos de expresión de un gen o conjunto de genes seleccionados del grupo consistente en TBP; ILT.2; ABCC5;
 55 CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; ID2; G.Catenina; FBX05; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R;
 CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1;SGCB; CGA;
- DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; *IL6;* CCND1; CYBA; PRKCD; DR4; Hepsina; CRABP1; AK055699; Contig.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt.5a; PTPD1; RAB6C; TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1, en una célula cancerosa obtenida de dicho paciente, y
 - b) crear un informe que recoja los datos obtenidos por dicho análisis de expresión génica.

La célula cancerosa puede obtenerse de un tumor sólido.

El tumor sólido puede ser seleccionado de entre un grupo compuesto por cáncer de mama, cáncer de

ovario, cáncer gástrico, cáncer de colon, cáncer de páncreas, cáncer de próstata y cáncer de pulmón. La célula cancerosa puede ser obtenida de una muestra de biopsia fijada, embebida enparafina, de dicho tumor.

El ARN puede ser fragmentado.

El informe puede incluir la recomendación de una modalidad de tratamiento para dicho paciente. En una realización del método, si se determina la expresión aumentada de uno o más de ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ED2; FBX05; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig.51037; VCAM1; FYN; GRB7; AKAP.2;RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BJRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 y CD68; o el correspondiente producto de expresión, dicho informe incluye la predicción de que dicho sujeto tiene una

correspondiente producto de expresion, dicho informe incluye la prediccion de que dicho sujeto tiene i mayor probabilidad de respuesta a la quimioterapia.

El método puede comprender el paso de tratar a dicho paciente con un agente quimioterapéutico.

El paciente puede ser sometido a quimioterapia adyuvante.

El paciente puede ser sometido a quimioterapia neoadyuvante.

- La quimioterapia neoadyuvante puede comprender la administración de un derivado de taxano. El taxano puede ser docetaxel o paclitaxel.
 - La quimioterapia puede comprender además la administración de un agente anticáncer adicional.
 - El agente anticáncer adicional puede ser un miembro de la clase de agentes anticáncer de las antraciclinas.
- 20 El agente anticáncer es doxorubicina.
 - El agente anticáncer adicional puede ser un inhibidor de la topoisomerasa.
 - En una realización del método si se determina una expresión aumentada de uno o más de TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; BSRRG; AKT2; A.Catenina; CEGP1; NPD009; MAPK14; RUNX1; G.Catenina; FHIT; MTA1; EibB4; FUS; BBC3; IGF1R;
- CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAPIGDSI; CCND1; PRKCD; Hepsina; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1; o el correspondiente producto de expresión, dicho informe incluye la predicción de que dicho sujeto tiene una menor probabilidad de respuesta a la quimioterapia.
- El transcrito de ARN puede comprender una secuencia basada en intrón, cuya expresión se correlaciona con la expresión de una secuencia de exón correspondiente.
 - Según otro aspecto de la presente invención, se proporciona un método para determinar la probabilidad de respuesta de un paciente a la quimioterapia, comprendiendo:
- (a) determinar los niveles de expresión de los transcritos de ARN de los siguientes genes ACTB, BAG1, BCL2, CCNB1, CD68, SCUBE2, CTSL2, ESR1, GAPD, GRB7, GSTM1, GUSB, ERBB2, MKI67, MYBL2, PGR, RPLPO, STK6, MMP11, BIRC5, TFRC, o sus productos de expresión, y (b) calcular la puntuación de recurrencia (RS).
- 40 En una realización, los pacientes con una RS > 50 están situados en el percentil 50 superior de los pacientes con probabilidad de respuesta a la quimioterapia.

En una realización, los pacientes con una RS < 35 se sitúan en el percentil 50 inferior de los pacientes con probabilidad de respuesta a la quimioterapia.

La RS puede ser determinada por los siguientes subconjuntos de genes:

45

- (i) subconjunto de factor de crecimiento: GRB7 y HER2;
- (ii) subconjunto de receptor estrogénico: ER, PR, Bcl2, y CEGP1;
- (iii) subconjunto de proliferación: SURV, Ki.67, MYBL2, CCNB1, y STK15; y
- (iv) subconjunto de invasión: CTSL2, y STMY3;

50

donde un gen en cualquiera de los subconjuntos (i)-(iv) puede ser sustituido por un gen sustituto que coexpresa con dicho gen en dicho tumor con un coeficiente de correlación de Pearson ≥ 0,40; y calcular la puntuación de recurrencia (RS) para dicho sujeto ponderando las contribuciones de cada uno de los subconjuntos (i) - (iv), a la recurrencia del cáncer de mama.

El método puede comprender además la determinación de los transcritos de ARN de CD68, GSTM1 y BAG1 o sus productos de expresión, o los genes sustitutos correspondientes o sus productos de expresión, incluyendo la contribución de tales genes o genes sustitutos a la recurrencia del cáncer de mama en el cálculo de la RS.

La RS puede determinarse aplicando la siguiente ecuación:

60

RS = (0.23 a 0.70) x umbr eje GRB7 - (0.17 a 0.55) x eje ER + (0.52 a 1.56) x umbr eje prolif. + (0.07 a 0.21) x eje invasión + (0.03 a 0.15) x CD68 - (0.04 a 0.25) x GSTM1 - (0.05 a 0.22) x BAG1

65 Donde

I) eje GKB7 = $(0.45 \text{ a } 1.35) \times \text{GRB7} + (0.05 \text{ a } 0.15) \times \text{HER2};$

```
II) si eje GRB7 < -2, umbr eje GRB7 =-2, y si eje GRB7 ≥ -2, umbr eje GRB7 = eje GRB7; III) eje ER = (Est1 +PR + Bcl2 + CEGP1)/4; IV) eje prolif = (SURV + Ki.67 + MYBL2 + CCNB1 + STK15)/5; V) si eje prolif < -3,5, umbr eje prolif = -3,5, si eje prolif ≥ -3,5, umbr eje prolif = eje prolif; y (VI) eje invasión = (CTSL2 + STMY3)/2,3
```

donde las contribuciones individuales de los genes de (iii), (iv) y (vi) son ponderados por un factor de ponderación de 0,5 a 1,5, y donde una RS mayor representa una mayor probabilidad de recurrencia del cáncer de mama.

10 La RS se puede determinar aplicando la siguiente ecuación:

5

15

25

30

45

65

RS (rango, 0 -100) =+0,47x Puntuación Grupo HER2 - 0,34 x Puntuación Grupo ER + 1,04 x Puntuación Grupo Proliferación + 0,10 x Puntuación Grupo Invasión + 0,05 x CD68 - 0,08 x GSTM1

El transcrito de ARN puede comprender una secuencia basada en intrón, cuya expresión correlaciona con la expresión de una secuencia de exón correspondiente.

Según otro aspecto de la presente invención, se proporciona un método de predicción de la respuesta a la quimioterapia de un sujeto diagnosticado de cáncer, comprendiendo la determinación del nivel de expresión de un transcrito de ARN de pronóstico o su producto de expresión, en una muestra biológica conteniendo células cancerosas obtenidas de dicho sujeto, donde el transcrito de ARN predictivo es el transcrito de BAG1, donde por cada unidad de expresión aumentada de BAG1 o el producto de expresión correspondiente, se prevé que dicho sujeto tenga una menor probabilidad de respuesta a la quimioterapia.

correspondiente, se prevé que dicho sujeto tenga una menor probabilidad de respuesta a la quimioterapia. El cáncer puede ser cáncer de mama y/o el sujeto puede ser un paciente humano.

La quimioterapia puede ser quimioterapia neoadyuvante, especialmente donde dicha quimioterapia neoadyuvante comprende la administración de un miembro o miembros de la clase de agentes anticáncer de las antraciclinas.

La quimioterapia neoadyuvante puede comprender la administración de doxorubicina.

La quimioterapia neoadyuvante puede comprender la administración de un derivado del taxano, en especial donde el taxano es docetaxel y/o paclitaxel.

La muestra biológica puede ser fijada, embebida en parafina, o fresca o congelada.

35 El ARN puede ser aislado de una muestra de tejido de cáncer de mama fijada, embebida en parafina, de dicho paciente.

La respuesta positiva puede ser una respuesta clínica completa.

La respuesta positiva puede ser una respuesta patológica completa.

- 0.07 x BAG1

El nivel de expresión de dicho transcrito de ARN puede ser determinado por RT-PCR.

- 40 Según otro aspecto de la presente invención, se proporciona un método para la determinación de la probabilidad de respuesta de un paciente a la quimioterapia, comprendiendo:
 - (a) determinación de los niveles de expresión de los transcritos de ARN de los siguientes genes BAG1, ACTB, BCL2, CCNB1, CD68, SCUBE2, CTSL2, ESR1, GAPD, GRB7, GSTM1,GUSB, ERBB2, MKI67, MYBL2, PGR, RPLPO, STK6, MMP11, BIRC5, TFRC, o sus productos de expresión, y
 - b) cálculo de la puntuación de recurrencia (RS).

La RS puede determinarse creando los siguientes subconjuntos de genes:

50 I) subconjunto de factor de crecimiento: GRB7 y HER2;

(II) subconjunto de receptor estrogénico: ER, PR, Bcl2, y CEGPI;

(III) subconjunto de proliferación: SURV, Ki.67, MYBL2, CCNB1, y STK15; y

(IV) subconjunto de invasión: CTSL2, y STMY3;

donde un gen en cualquiera de los subconjuntos (i)-(iv) puede ser sustituido por un gen sustituto que coexpresa con dicho gen en dicho tumor con un coeficiente de correlación de Pearson de ≥ 0,40; y calcular la RS de dicho sujeto ponderando las contribuciones de cada subconjunto (i)-(iv) a la recurrencia del cáncer de mama.

El método puede comprender además la determinación de los transcritos de ARN de CD68, GSTM1 y BAG1, o sus productos de expresión, o los correspondientes genes sustituto o sus productos de expresión, e incluyendo la contribución de dichos genes o genes sustituto a la recurrencia del cáncer de mama en el cálculo de la RS.

La RS puede determinarse aplicando la siguiente ecuación:

RS = (0,23 a 0,70) x umbr eje GRB7 - (0,17 a 0,55) x eje ER + (0,52 a 1,56) x umbr eje prolif + (0,07 a 0,21) x eje invasión + (0,03 a 0,15) x CD68 - (0,04 a 0,25) x GSTM1 - (0,05 a 0,22) x BAG1

Donde

<211> 25

```
(I) eje GRB7 = (0.45 \text{ a } 1.35) \times \text{GRB7} + (0.05 \text{ a } 0.15) \times \text{HER2};
             (II) si eje GRB7 < -2, umbr eje GRB7 = -2, y si eje GRB7 > -2, umbr eje GRB7 = eje GRB7;
             (III) eje ER = (Est1 +PR + Bcl2 + CEGP1)/4;
 5
             (IV) eje prolif = (SURV + Ki.67 + MYBL2 +CCNB1 + STK15)/5;
             (V) si eje prolif < -3,5, umbr eje prolif = -3,5, sieje prolif > -3,5, umbr eje prolif = eje prolif; y
             (VI) eje invasión = (CTSL2 + STMY3)/2,
      donde las contribuciones individuales de los genes en (iii), (iv) y (vi) son ponderadas por un factor de 0,5 a
10
       1,5, y donde una RS mayor representa una mayor probabilidad de recurrencia del cáncer de mama.
      La RS puede ser determinada aplicando la siguiente ecuación:
                                 RS (rango, 0 - 100) =+ 0,47 x Puntuación Grupo HER2
                                 - 0,34 x PuntuaciónGrupo ER
15
                                 +1,04 x Puntuación Grupo Proliferación
                                 + 0,10 x Puntuación Grupo Invasión
                                 + 0.05 x CD68
                                 - 0,08 x GSTM1
                                 - 0,07 x BAG1
20
      LISTADO DE SECUENCIAS
      <110> GENOMIC HEALTH, INC.
             FONDAZIONE IRCCS ISTITUTO NAZIONALE DEI TUMORI
25
      <120> MARCADORES DE EXPRESIÓN GÉNICA PARA LA PREDICCIÓN DE RESPUESTA A LA
      QUIMIOTERAPIA
30
      <130> KE/N32061
      <140> Divisional de 09014283.7
      <141> 2005-04-07
35
      <150> EE UU 60/561,035
      <151> 2004-04-09
      <160> 340
      <170> FastSEQ para Windows versión 4.0
40
      <210> 1
      <211> 23
      <212> ADN
       <213> Secuencia artificial
45
      <223> Cebador directo de oligonucleótido sintético
        <400> 1
                                                                                                         23
        cgttccgatc ctctatactg cat
50
      <210>2
      <211>22
      <212> ADN
      <213> Secuencia artificial
55
      <223> Cebador inverso de oligonucleótido sintético
       <400> 2
       aggtccctgt tggccttata gg
                                                                                                            22
60
       <210>3
```

	<212> ADN <213> Secuencia artificial	
5	<220> <223> Sonda sintética de oligonucleótido	
	<400> 3 atgcctacag caccctgatg tcgca	25
10	<210> 4 <211>20 <212> ADN <213> Secuencia artificial	
15	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 4	
	tgcagactgt accatgctga	20
20	<210> 5 <211> 20 <212> ADN <213> Secuencia artificial	
25	<220> <223> Cebador inverso de oligonucleótido sintético <400> 5 ggccagcacc ataatcctat	20
30	<210> 6 <211> 22 <212> ADN <213>Secuencia artificial	
35	<220> <223>Sonda sintética de oligonucleótido	
	<400> 6 ctgcacacgg ttctaggctc cg	22
40	<210> 7 <211> 27 <212> ADN <213>Secuencia artificial	
45	<220> <223>Cebador directo de oligonucleótido sintético	
	<400> 7 ctgcatgtga ttgaataaga aacaaga	27
50	<210> 8 <211> 22 <212> ADN <213>Secuencia artificial	
55	<220> <223>Cebador inverso de oligonucleótido sintético	
	<400> 8 tgtggacctg atccctgtac ac	22

5	<210> 9 <211> 23 <212> ADN <213>Secuencia artificial	
	<220> <223>Sonda sintética de oligonucleótido	
10	<400> 9 tgaccaccc aaagcctccc tgg	23
	<210>10 <211>20 <212> ADN	
15	<213> Secuencia artificial	
	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 10 acgaattgtc ggtgaggtct	20
20	<210>11 <211>20 <212> ADN	
25	<213> Secuencia artificial <220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 11 gtccatgctg aaatcattgg	20
30	<210> 12 <211> 25 <212> ADN <213> Secuencia artificial	
35	<220> <223> Sonda sintética de oligonucleótido	
	<400> 12 caggatacca cagtectgga gaece	25
40	<210> 13 <211> 20 <212> ADN <213> Secuencia artificial	
45	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 13 cgcttctatg gcgctgagat	20
50	<210> 14 <211> 20 <212> ADN <213> Secuencia artificial	
55	<220> <223> Synthetic Oligonucleotide Reverse Primer	

	<400> 14 tcccggtaca ccacgttctt	20
5	<210> 15 <211> 24 <212> ADN <213> Secuencia artificial	
	<220> <223> Sonda sintética de oligonucleótido <400> 15 cagccctgga ctacctgcac tcgg	24
10	<210> 16 <211> 19 <212> ADN <213> Secuencia artificial	
15	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 16 tcctgccacc cttcaaacc	19
20	<210> 17 <211> 21 <212> ADN <213> Secuencia artificial	
25	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 17 ggcggtaaat tcatcatcga a	21
30	<210> 18 <211> 24 <212> ADN <213> Secuencia artificial	
35	<220> <223> Sonda sintética de oligonucleótido	
	<400> 18 caggtcacgt ccgaggtcga caca	24
40	<210> 19 <211> 20 <212> ADN	
40	<213> Secuencia artificial <220> <223> Cebador directo de oligonucleótido sintético	
45	<400> 19 ggacagcagg aatgtgtttc	20
-	<210> 20 <211> 20 <212> ADN <213> Secuencia artificial	
50	<220> <223>Cebador inverso de oligonucleótido sintético	

5	<400> 20 acccactcga tttgtttctg <210> 21 <211> 22 <212> ADN <213> Secuencia artificial	20
	<220> <223> Sonda sintética de oligonucleótido	
10	<400> 21 cattggctcc ccgtgacctg ta <210> 22 <211> 19	22
15	<212> ADN <213> Secuencia artificial	
	<220> <223> Cebador directo de oligonucleótido sintético <400> 22	
20	gggtcaggtg cctcgagat <210> 23	19
O.E.	<211> 21 <212> ADN <213> Secuencia artificial	
25	<220> <223>Cebador inverso de oligonucleótido sintético	
	<400> 23 ctgctcactc ggctcaaact c	21
30	<210> 24 <211> 24 <212> ADN <213> Secuencia artificial	
35	<220> <223> Sonda sintética de oligonucleótido	
	<400> 24 tgggcccaga gcatgttcca gatc	24
40	<210> 25 <211> 23 <212> ADN <213> Secuencia artificial	
45	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 25 cgttgtcagc acttggaata caa	23
50	<210> 26 <211> 24 <212> ADN <213> Secuencia artificial	
	<220>	

<223>Cebador inverso de oligonucleótido sintético

5	<400> 26 gttcaacctc ttcctgtgga ctgt <210> 27 <211> 26 <212> ADN	24
10	<213> Secuencia artificial <220> <223> Sonda sintética de oligonucleótido	
	<400> 27 cccaattaac atgacccggc aaccat	26
15	<210> 28 <211> 20 <212> ADN <213> Secuencia artificial	
20	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 28 cctggagggt cctgtacaat	20
25	<210> 29 <211> 19 <212> ADN <213> Secuencia artificial	
	<220> <223>Cebador inverso de oligonucleótido sintético	
30	<400> 29 ctaattgggc tccatctcg <210> 30	19
0.5	<211> 24 <212> ADN <213> Secuencia artificial	
35	<220> <223> Sonda sintética de oligonucleótido	
	<400> 30 catcatggga ctcctgccct tacc	24
40	<210> 31 <211> 25 <212> ADN <213> Secuencia artificial	
45	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 31 cagatggacc tagtacccac tgaga	25
50	<210> 32 <211> 24 <212> ADN <213> Secuencia artificial	
	<220>	

<223>Cebador inverso de oligonucleótido sintético

	<400> 32 cctatgattt aagggcattt ttcc	24
5	<210> 33 <211> 22 <212> ADN <213> Secuencia artificial	
10	<220> <223> Sonda sintética de oligonucleótido	
	<400> 33 ttccacgccg aaggacagcg at	22
15	<210> 34 <211> 21 <212> ADN <213> Secuencia artificial	
20	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 34 gcatgttcgt ggcctctaag a	21
25	<210> 35 <211> 22 <212> ADN <213> Secuencia artificial	
	<220> <223> Cebador inverso de oligonucleótido sintético	
30	<400> 35 cggtgtagat gcacagcttc tc	22
35	<210> 36 <211> 23 <212> ADN <213> Secuencia artificial	
	<220> <223> Sonda sintética de oligonucleótido	
40	<400> 36 aaggagacca tccccctgac ggc	23
	<210> 37 <211> 20 <212> ADN <213> Secuencia artificial	
45	<220> <223> Cebador directo de oligonucleótido sintético	
50	<400> 37 cgtcaggacc caccatgtct <210> 38 <211> 24 <212> ADN <213> Secuencia artificial	20
55	<220>	

<223> Cebador inverso de oligonucleótido sintético

	<400> 38 ggttaattgg tgacatcctc aaga	24
5	<210> 39 <211> 20 <212> ADN <213> Secuencia artificial	
10	<220> <223> Sonda sintética de oligonucleótido	
	<400> 39 cgcggccgag acatggcttg	20
15	<210> 40 <211> 25 <212> ADN <213> Secuencia artificial	
20	<220> <223> Cebador directo de oligonucleótido sintético	
20	<400> 40 tgtatttcaa gacctctgtg cactt	25
25	<210> 41 <211> 23 <212> ADN <213> Secuencia artificial	
	<220> <223> Cebador inverso de oligonucleótido sintético	
30	<400> 41 ttagcctgag gaattgctgt gtt	23
	<210> 42 <211> 25 <212> ADN <213> Secuencia artificial	
35	<220> <223> Sonda sintética de oligonucleótido	
	<400> 42 tttatgaacc tgccctgctc ccaca	25
40	<210> 43 <211> 20 <212> ADN <213> Secuencia artificial	
45	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 43	
	agatgaagtg gaaggcgctt	20
50	<210> 44	
	<211> 21	
	<212> ADN <213> Secuencia artificial	
55		

	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 44 tgcctctgta atcggcaact g	21
5	<210> 45 <211> 18 <212> ADN <213> Secuencia artificial	
10	<220> <223> Sonda sintética de oligonucleótido	
	<400> 45 caccgcggcc atcctgca	18
15	<210> 46 <211> 20 <212> ADN <213> Secuencia artificial	
20	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 46 gggcgtggaa cagtttatct	20
25	<210> 47 <211> 19 <212> ADN <213> Secuencia artificial	
30	<220> <223>Cebador inverso de oligonucleótido sintético	
	<400> 47 cacggtgaag gtttcgagt	19
35	<210> 48 <211> 24 <212> ADN <213> Secuencia artificial	
40	<220> <223> Sonda sintética de oligonucleótido	
	<400> 48 agacatctgc cccaagaagg acgt	24
45	<210> 49 <211> 21 <212> ADN <213> Secuencia artificial	
	<220> <223> Cebador directo de oligonucleótido sintético	
50	<400> 49 tggattggag ttctgggaat g	21
	<210> 50 <211> 22 <212> ADN <213> Secuencia artificial	

	<220> <223>Cebador inverso de oligonucleótido sintético	
	<400> 50 gcttgcactc cacaggtaca ca	22
5	<210> 51 <211> 23 <212> ADN	
10	<213> Secuencia artificial	
10	<220> <223> Sonda sintética de oligonucleótido	
	<400> 51 actggccgtg gcactggaca aca	23
15	<210> 52 <211> 21	
	<2112 ADN <213> Secuencia artificial	
20	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 52 aaacgagcag tttgccatca g	21
05	<210> 53	
25	<211> 20 <212> ADN <213> Secuencia artificial	
30	<220> <223>Cebador inverso de oligonucleótido sintético	
	<400> 53 gttggtgatg ttccgaagca	20
	<210> 54	
35	<211> 24 <212> ADN <213> Secuencia artificial	
	<220>	
40	<223> Sonda sintética de oligonucleótido	
	<400> 54 cctcaccggc atagactgga agcg	24
	<210> 55 <211> 21	
45	<212> ADN <213> Secuencia artificial	
	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 55	
50	tgacaatcag cacacctgca t <210> 56 <211> 23	21
	<212> ADN <213> Secuencia artificial	
55		

<220> <223> Cebador inverso de oligonucleótido sintético	
<400> 56 tgtgactaca gccgtgatcc tta	23
<211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> Sonda sintética de oligonucleótido	
<400> 57 caggccctct tccgagcggt	20
<210> 58 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> Cebador directo de oligonucleótido sintético	
<400> 58 ctgaaggagc tccaagacct	20
<210> 59 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223>Cebador inverso de oligonucleótido sintético	
<400> 59 caaaaccgct gtgtttcttc	20
<210> 60 <211> 22 <212> ADN <213> Secuencia artificial	
<220> <223> Sonda sintética de oligonucleótido	
<400> 60 tgctgatgtg ccctctcctt gg <210> 61 <211> 18	22
<212> ADN <213> Secuencia artificial	
<220> <223> Cebador directo de oligonucleótido sintético	
<400> 61 gtggccatcc agctgacc <210> 62 <211> 23 <212> ADN	18
<212> ADN <213> Secuencia artificial <220>	
	<223> Cebador inverso de oligonucleótido sintético <400> 56 tytgactaca gocgtgatoc tta <210- 57 <211> 20 <212> ADN <213- Secuencia artificial <220> <223> Sonda sintética de oligonucleótido <400> 57 caggocotot tocgagogt <210- 58 <211> 20 <212> ADN <213- Secuencia artificial <210- 58 <212- ADN <213- Secuencia artificial <220> <223- Cebador directo de oligonucleótido sintético <400 > 58 ctgaaggago tocaagacot <210- 59 <211- 20 <212- ADN <213- Secuencia artificial <220- <223- Cebador inverso de oligonucleótido sintético <400 > 59 <aaaacacgot gtgttotto<="" p=""> <210- 60 <211- 20 <212- ADN <213- Secuencia artificial <200- 61 <211- 20 <213- Secuencia artificial <200- 60 <210- 61 <211- 18 <210- 62 <211- 20 <223- Cebador directo de oligonucleótido sintético <400 > 60 togotgatogo cototoctot gg <210- 61 <211- 18 <210- 62 <211- 21 ×213- Secuencia artificial <220- Cebador directo de oligonucleótido sintético <400 > 61 <</aaaacacgot>

	<223> Cebador inverso de oligonucleótido sintético	
	<400> 62 cagtggtagg tgatgttctg gga	23
5	<210> 63 <211> 21 <212> ADN <213> Secuencia artificial	
10	<220> <223> Sonda sintética de oligonucleótido	
15	<400> 63 tcctgcgcct gatgtccacc g <210> 64 <211> 24 <212> ADN <213> Secuencia artificial	21
	<220> <223> Cebador directo de oligonucleótido sintético	
20	<400> 64 cagccaagaa ctggtatagg agct	24
	<210> 65 <211> 19 <212> ADN <213> Secuencia artificial	
25	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 65 aaactggctg ccagcattg	19
30	<210> 66 <211> 30 <212> ADN <213> Secuencia artificial	
35	<400> 66 tctcctagcc agacgtgttt cttgtccttg <210> 67 <211> 24 <212> ADN	30
40	<213> Secuencia artificial <220> <223> Cebador directo de oligonucleótido sintético	
	<400> 67 cgacagttgc gatgaaagtt ctaa	24
45	<210> 68 <211> 22 <212> ADN <213> Secuencia artificial	

22

<223>Cebador inverso de oligonucleótido sintético

ggctgctaga gaccatggac at

50

<400> 68

	<210> 69 <211> 27 <212> ADN <213> Secuencia artificial	
5	<220> <223> Sonda sintética de oligonucleótido	
	<400> 69 cctcctcctg ttgctgccac taatgct	27
10	<210> 70 <211> 20 <212> ADN <213> Secuencia artificial	
15	<220> <223> Cebador directo de oligonucleótido sintético	
20	<400> 70 aacttcaagg tcggagaagg <210> 71 <211> 20 <212> ADN <213> Secuencia artificial	20
25	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 71 tggctaaact cctgcacttg	20
30	<210> 72 <211> 21 <212> ADN <213> Secuencia artificial	
	<220> <223> Sonda sintética de oligonucleótido	
35	<400> 72 ccgtccacgg tctcctcctc a <210> 73 <211> 18 <212> ADN <213> Secuencia artificial	21
40	<220> <223>Cebador directo de oligonucleótido sintético	
	<400> 73 gtgctacgcc accctgtt	18
45	<210> 74 <211> 20 <212> ADN <213> Secuencia artificial	
50	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 74 caggggcttc tcgtagatgt	20
55	<210> 75 <211> 22	

	<212> ADN <213> Secuencia artificial	
5	<220> <223> Sonda sintética de oligonucleótido	
	<400> 75 ccgatgttca cgcctttggg tc	22
10	<210> 76 <211> 19 <212> ADN <213> Secuencia artificial	
15	<220> <223>Cebador directo de oligonucleótido sintético	
10	<400> 76 ggtgcctact ccattgtgg	19
20	<210> 77 <211> 20 <212> ADN <213> Secuencia artificial	
25	<220> <223>Cebador inverso de oligonucleótido sintético	
30	<400> 77 gtggagccct tcttcctctt <210> 78 <211> 24 <212> ADN <213> Secuencia artificial	20
	<220> <223> Sonda sintética de oligonucleótido	
35	<400> 78 tactccagca ggcacacaaa cacg <210> 79 <211> 22 <212> ADN <213> Secuencia artificial	24
40	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 79 gggagaacgg gatcaatagg at	22
45	<210> 80 <211> 21 <212> ADN <213> Secuencia artificial	
50	<220> <223>Cebador inverso de oligonucleótido sintético	
	<400> 80 gcatcagcca gtcctcaaac t	21
55	<210> 81 <211> 24	

	<212> ADN <213> Secuencia artificial	
5	<220> <223> Sonda sintética de oligonucleótido	
	<400> 81 ctcattgggc accagcaggt ttcc <210>82	24
10	<211> 20 <212> ADN <213> Secuencia artificial	
15	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 82 tccaattcca gcatcactgt	20
20	<210> 83 <211> 20 <212> ADN <213> Secuencia artificial	
	<220> <223>Cebador inverso de oligonucleótido sintético <400> 83 ggcagtgaag gcgataaagt	20
25	<210> 84 <211> 25 <212> ADN <213> Secuencia artificial	
30	<220> <223> Sonda sintética de oligonucleótido	
	<400> 84 agaaaagctg tttgtctccc cagca	25
35	<210> 85 <211> 21 <212> ADN <213> Secuencia artificial	
40	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 85 tgcacagagg gtgtgggtta c	21
45	<210> 86 <211> 28 <212> ADN <213> Secuencia artificial	
50	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 86 tetteatetg atttacaage tgtacatg	28
	<210> 87 <211> 29 <212> ADN	
55	<213> Secuencia artificial	

	<220> <223> Sonda sintética de oligonucleótido	
5	<400> 87 caatgettee aacaatttgt ttgettgee <210>88 <211>20 <212> ADN	29
10	<213> Secuencia artificial <220> <223> Cebador directo de oligonucleótido sintético	
	<400> 88 actccctcta cccttgagca	20
15	<210> 89 <211> 20 <212> ADN <213> Secuencia artificial	
20	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 89 caggcctcag ttccttcagt	20
25	<210> 90 <211> 24 <212> ADN <213> Secuencia artificial	
30	<220> <223> Sonda sintética de oligonucleótido	
	<400> 90 cagaagaaca gctcagggac ccct	24
35	<210> 91 <211> 20 <212> ADN <213> Secuencia artificial	
40	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 91 tggtccatcg ccagttatca	20
45	<210> 92 <211> 23 <212> ADN <213> Secuencia artificial	
50	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 92 tgttctagcg atcttgcttc aca	23
55	<210> 93 <211> 30	

	<212> ADN <213> Secuencia artificial	
5	<220> <223> Sonda sintética de oligonucleótido	
	<400> 93 atctgtatgc ggaacctcaa aagagtccct	30
10	<210> 94 <211> 23 <212> ADN <213> Secuencia artificial	
15	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 94 cggttatgtc atgccagata cac	23
20	<210> 95 <211> 24 <212> ADN <213> Secuencia artificial	
	<220> <223>Cebador inverso de oligonucleótido sintético	
25	<400> 95 gaactgagac ccactgaaga aagg	24
	<210> 96 <211> 25 <212> ADN <213> Secuencia artificial	
30	<220> <223> Sonda sintética de oligonucleótido	
	<400> 96 cctcaaaggt actccctcct cccgg	25
35	<210> 97 <211> 25 <212> ADN <213> Secuencia artificial	
40	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 97 tggctcttaa tcagtttcgt tacct	25
45	<210> 98 <211> 25 <212> ADN <213> Secuencia artificial	
50	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 98 caaggcatat cgatcctcat aaagt	25

5	<210> 99 <211> 30 <212> ADN <213> Secuencia artificial	
	<220> <223> Sonda sintética de oligonucleótido	
	<400> 99 tgtcccacga ataatgcgta aattctccag	30
10	<210>100 <211>20 <212> ADN <213> Secuencia artificial	
15	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 100 gtccaggtgg atgtgaaaga	20
20	<211> 20 <212> ADN <213> Secuencia artificial	
25	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 101 cggccaggat acacatctta	20
30	<210> 102 <211> 21 <212> ADN <213> Secuencia artificial	
	<220> <223> Sonda sintética de oligonucleótido	
35	<400> 102 cagcaggccc tcaaggagct g <210> 103	21
	<211> 20 <212> ADN <213> Secuencia artificial	
40	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 103 acggatcaca gtggaggaag	20
45	<210> 104 <211> 20 <212> ADN <213> Secuencia artificial	
50	<220> <223>Cebador inverso de oligonucleótido sintético	
	<400> 104 ctcatccgtc gggtcatagt	20

	<210> 105 <211> 20 <212> ADN <213> Secuencia artificial	
5	<220> <223> Sonda sintética de oligonucleótido	
	<400> 105 cgctggctca cccctacctg	20
10	<210> 106 <211> 20 <212> ADN <213> Secuencia artificial	
15	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 106	
	ccagcaccat tgttgaagat	20
20	<210> 107 <211> 20 <212> ADN <213> Secuencia artificial	
25	<220> <223> Cebador inverso de oligonucleótido sintético <400> 107 agtctcttgg gcatcgagtt	20
30	<210> 108 <211> 26 <212> ADN <213> Secuencia artificial	
35	<220> <223> Sonda sintética de oligonucleótido	
	<400> 108 ccccagacca agtgtgaata catgct	26
40	<210> 109 <211> 24 <212> ADN <213> Secuencia artificial	
	<220> <223> Cebador directo de oligonucleótido sintético	
45	<400> 109 gcactttggg attctttcca ttat	24
45	<210>110 <211> 24 <212> ADN <213> Secuencia artificial	
50	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 110 gcatgtaaga agaccctcac tgaa	24
55	<210>111	

	<211> 29 <212> ADN <213> Secuencia artificial <220>	
5	<223> Sonda sintética de oligonucleótido	
	<400> 111 acaacattct cggtgcctgt aacaaagaa	29
	<210> 112	
10	<211> 25	
	<212> ADN <213> Secuencia artificial	
15	<220> <223>Cebador inverso de oligonucleótido sintético	
	<400> 112	0.5
	ggattgtaga ctgtcaccga aattc <210> 113	25
	<211> 28	
20	<212> ADN <213> Secuencia artificial	
	<220> <223> Cebador directo de oligonucleótido sintético	
25	42237 Gebaudi uli eeto de diigorideleotido siritetico	
	<400> 113	00
	ggctattcct cattttctct acaaagtg	28
	<210> 114	
30	<211> 30 <212> ADN	
	<213> Secuencia artificial	
	<220>	
35	<223> Sonda sintética de oligonucleótido	
	<400> 114	
	cctccaggag gctaccttct tcatgttcac	30
	<210> 115	
40	<211> 18 <212> ADN	
10	<213> Secuencia artificial	
	<220>	
45	<223> Cebador directo de oligonucleótido sintético	
	<400> 115	
	ccagtggagc gcttccat	18
	<210> 116	
50	<211> 22 <212> ADN	
50	<213> Secuencia artificial	
	<220>	
55	<223> Cebador inverso de oligonucleótido sintético	
55	<400> 116	
	ctctctgggt cgtctgaaac aa	22

	<210> 117 <211> 23 <212> ADN	
5	<213> Secuencia artificial <220>	
	<223> Sonda sintética de oligonucleótido	
	<400> 117 tcggccactt catcaggacg cag	23
10	<210> 118 <211> 26 <212> DNA <213> Secuencia artificial	
15	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 118 ggataattca gacaacaaca ccatct	26
20	<210> 119 <211> 25 <212> ADN <213> Secuencia artificial	
	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 119 tgaagtaatc agccacagac tcaat	25
25	<210> 120 <211> 29 <212> ADN <213> Secuencia artificial	
30	<220> <223> Sonda sintética de oligonucleótido	
	<400> 120 tcaattgtaa cattctcacc caggccttg	29
35	<210> 121 <211> 20 <212> ADN <213> Secuencia artificial	_0
40	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 121 gaagcgcaga tcatgaagaa	20
45	<210> 122 <211> 20 <212> ADN <213> Secuencia artificial <220>	
	<223> Cebador inverso de oligonucleótido sintético	
50	<400> 122 ctcctcagac accactgcat	20
	<210> 123 <211> 24 <212> ADN	
55	<213> Secuencia artificial	

	<220> <223> Sonda sintética de oligonucleótido	
5	<400> 123 ctgaagcacg acaagctggt ccag	24
J	<210> 124 <211> 19	
10	<212> ADN <213> Secuencia artificial	
	<220> <223> Cebador directo de oligonucleótido sintético	
15	<400> 124 tcagcagcaa gggcatcat	19
	<210> 125 <211> 23 <212> ADN	
20	<213> Secuencia artificial	
	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 125 ggtggttttc ttgagcgtgt act	23
25		23
	<210> 126 <211> 19 <212> ADN	
30	<213> Secuencia artificial	
	<220> <223> Sonda sintética de oligonucleótido	
	<400> 126	
35	cgcccgcagg cctcatcct	19
55	<210> 127 <211> 23 <212> ADN	
40	<213> Secuencia artificial	
40	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 127	
45	caaaggagct cactgtggtg tct	23
10	<210> 128 <211> 26 <212> ADN	
50	<212> ADN <213> Secuencia artificial	
50	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 128	
5.F	gagtcagaat ggcttattca cagatg	26
55	<210> 129	

	<211> 24 <212> ADN <213> Secuencia artificial	
5	<220> <223> Sonda sintética de oligonucleótido	
	<400> 129 tgttccaacc actgaatctg gacc	24
10	<210> 130 <211> 20 <212> ADN <213> Secuencia artificial	
15	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 130 ttgggaaata tttgggcatt	20
20	<210> 131 <211> 20 <212> ADN <213> Secuencia artificial	
25	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 131 agaagctagg gtggttgtcc	20
30	<210> 132 <211> 26 <212> ADN <213> Secuencia artificial	
35	<220> <223> Sonda sintética de oligonucleótido	
	<400> 132 ttgggacatt gtagacttgg ccagac	26
40	<210> 133 <211> 19 <212> ADN <213> Secuencia artificial	
45	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 133 gcatgggaac catcaacca	19
50	<210> 134 <211> 21 <212> ADN <213> Secuencia artificial	
55	<220> <223> Cebador inverso de oligonucleótido sintético	

	<400> 134 tgaggagttt gccttgattc g	21
5	<210> 135 <211> 30 <212> ADN <213> Secuencia artificial	
10	<220> <223> Sonda sintética de oligonucleótido	
	<400> 135 ccatggacca acttcactat gtgacagagc	30
15	<210> 136 <211> 18 <212> ADN <213> Secuencia artificial	
20	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 136 ctccgacgtg gctttcca	18
25	<210> 137 <211> 23 <212> ADN <213> Secuencia artificial	
30	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 137 cgtaattggc agaattgatg aca	23
35	<210> 138 <211> 25 <212> ADN <213> Secuencia artificial	
40	<220> <223> Sonda sintética de oligonucleótido	
	<400> 138 tggcccacag catctatgga atccc	25
45	<210> 139 <211> 20 <212> ADN <213> Secuencia artificial	
50	<220> <223> Cebador directo de oligonucleótido sintético	
50	<400> 139 ccatctgcat ccatcttgtt	20
	<210> 140 <211> 20	

	<212> ADN <213> Secuencia artificial	
5	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 140 ggccaccagg gtattatctg	20
10	<210> 141 <211> 23 <212> ADN <213> Secuencia artificial	
15	<220> <223> Sonda sintética de oligonucleótido	
	<400> 141 ctccccaccc ttgagaagtg cct	23
20	<210> 142 <211> 20 <212> ADN <213> Secuencia artificial	
25	<220> <223> Cebador directo de oligonucleótido sintético	
20	<400> 142 aggctgctgg aggtcatctc <210> 143 <211> 19 <212> ADN	20
30	<213> Secuencia artificial <220> <223> Cebador inverso de oligonucleótido sintético	
35	<400> 143 cttcctgcgg ccacagtct <210> 144 <211> 21	19
40	<212> ADN <213> Secuencia artificial <220>	
	<223> Sonda sintética de oligonucleótido <400> 144	
45	ccagaggccg tttcttggcc g <210> 145 <211> 21 <212> ADN <213> Secuencia artificial	21
50	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 145 tccatgatgg ttctgcaggt t	21
	<210> 146	

	<211> 21 <212> ADN <213> Secuencia artificial	
5	<220> <223>Cebador inverso de oligonucleótido sintético	
	<400> 146 tgagcagcac catcagtaac g	21
10	<210> 147 <211> 21 <212> ADN <213> Secuencia artificial	
15	<220> <223> Sonda sintética de oligonucleótido	
	<400> 147 ccccggacag tggctctgac g	21
20	<210> 148 <211> 23 <212> ADN <213> Secuencia artificial	
25	<220> <223> Cebador directo de oligonucleótido sintético	
20	<400> 148 aacgactgct actccaagct caa	23
30	<210> 149 <211> 22 <212> ADN <213> Secuencia artificial	
35	<220> <223> Cebador inverso de oligonucleótido sintético	
33	<400> 149 ggatttccat cttgctcacc tt <210> 150 <211> 22 <212> ADN	22
40	<213> Secuencia artificial <220>	
	<223> Sonda sintética de oligonucleótido <400> 150	
45	tgcccagcat cccccagaac aa	22
50	<210> 151 <211> 21 <212> ADN <213> Secuencia artificial	
00	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 151	
55	gcatggtagc cgaagatttc a	21

	<210> 152 <211> 30 <212> ADN	
5	<213> Secuencia artificial <220>	
	<223> Cebador inverso de oligonucleótido sintético	
	<400> 152 tttccggtaa tagtctgtct catagatatc	30
10	<210> 153 <211> 28 <212> ADN <213> Secuencia artificial	
15	<220> <223> Sonda sintética de oligonucleótido	
	<400> 153 cgcgtcatac caaaatctcc gattttga	28
20	<210> 154 <211> 20 <212> ADN <213> Secuencia artificial	
25	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 154 cctgaacctt ccaaagatgg	20
	<210> 155 <211> 20	
30	<212> ADN <213> Secuencia artificial	
35	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 155 accaggcaag tctcctcatt	20
40	<210> 156 <211> 27 <212> ADN	
40	<213> Secuencia artificial	
45	<220> <223> Sonda sintética de oligonucleótido	
40	<400> 156 ccagattgga agcatccatc tttttca	27
50	<210> 157 <211> 20 <212> ADN	
50	<213> Secuencia artificial	
55	<220> <223> Cebador directo de oligonucleótido sintético	
つつ		

	< 40 0> 157	
	agccatcact ctcagtgcag	20
	<210> 158	
	<211> 20	
	<212> ADN	
5	<213> Secuencia artificial	
	<220>	
	<223> Cebador inverso de oligonucleótido sintético	
	<400> 158	
10	actgcagagt cagggtctcc	20
10		
	<210> 159	
	<211> 22 <212> ADN	
15	<213> Secuencia artificial	
	1000	
	<220> <223> Sonda sintética de oligonucleótido	
	220 Coniac omicales de origonacionado	
	<400> 159	
	caggtectat egtggeeeet ga	22
20		
	<210> 160	
	<211> 20 <212> ADN	
25	<213> Secuencia artificial	
	<220>	
	<223>Cebador directo de oligonucleótido sintético	
	<400> 160	
	ccacagetea cettetgtea	20
30	<210> 161	
	<211> 20	
	<212> ADN <213> Secuencia artificial	
35	<2137 Secuencia artificial	
	<220>	
	<223> Cebador inverso de oligonucleótido sintético	
	<400> 161	
	cctcagtgcc agtctcttcc	20
		_*
40	<210> 162 <211> 20	
	<211> 20 <212> ADN	
	<213> Secuencia artificial	
45	<220>	
40	<223> Sonda sintética de oligonucleótido	
	<400> 162	••
	tccatcccag ctccagccag	20
	<210> 163	
50	<211> 20	
	<212> ADN <213> Secuencia artificial	

	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 163 agagatcgag gctctcaagg	20
5	<210> 164 <211> 20	
10	<212> ADN <213> Secuencia artificial	
10	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 164 ggccttttac ttcctcttcg	20
15	<210> 165 <211> 27 <212> ADN <213> Secuencia artificial	
20	<220> <223> Sonda sintética de oligonucleótido	
	<400> 165 tggttcttct tcatgaagag cagctcc	27
25	<210> 166 <211> 23 <212> ADN <213> Secuencia artificial	
30	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 166 tgagtggaaa agcctgacct atg	23
35	<210> 167 <211> 23 <212> ADN <213> Secuencia artificial	
40	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 167 ggactccatc tcttcttggt caa	23
45	<210> 168 <211> 27 <212> ADN <213> Secuencia artificial	
50	<220> <223> Sonda sintética de oligonucleótido	
	<400> 168 tgaagtcatc agctttgtgc caccacc	27
55	<210> 169 <211> 21	

	<212> ADN <213> Secuencia artificial		
5	<220> <223> Cebador directo de oligonucleótido sintético		
	<400> 169		
	gacttttgcc cgctaccttt c		21
10	<210> 170 <211> 26 <212> ADN <213> Secuencia artificial		
15	<220> <223> Cebador inverso de oligonucleótido sintético		
	<400> 170 gccactaact gcttcagtat gaagag		26
20	<210> 171 <211> 24 <212> ADN <213> Secuencia artificial		
25	<220> <223> Sonda sintética de oligonucleótido		
	<400> 171 acagctcatt gttgtcacgc cgga	24	
30	<210> 172 <211> 24 <212> ADN <213> Secuencia artificial		
35	<220> <223> Cebador directo de oligonucleótido sintético		
	<400> 172 tgatggtcct atgtgtcaca ttca		24
40	<210> 173 <211> 20 <212> ADN <213> Secuencia artificial		
45	<220> <223> Cebador inverso de oligonucleótido sintético		
	<400> 173 tgggacagga aacaccaa		20
50	<210> 174 <211> 30 <212> ADN <213> Secuencia artificial		
55	<220> <223> Sonda sintética de oligonucleótido		
	<400> 174 caggtttcat accaacacag gcttcagcac		30

	<210> 175	
	<211> 19	
5	<212> ADN <213> Secuencia artificial	
5	12 132 Secuencia artificial	
	<220>	
	<223> Cebador directo de oligonucleótido sintético	
	4400. 175	
	<400> 175	19
10	cgctcagcca gatgcaatc	13
	<210> 176	
	<211> 25	
	<212> ADN	
15	<213> Secuencia artificial	
	<220>	
	<223> Cebador inverso de oligonucleótido sintético	
	<400> 176	
	gcactgagat cttcctattg gtgaa	25
20	godoogagaa oooooaaaag gogaa	19
	<210> 177	
	<211> 21	
	<212> ADN	
25	<213> Secuencia artificial	
	<220>	
	<223> Sonda sintética de oligonucleótido	
	<400> 177	0.1
30	tgccccagtc acctgctgtt a	21
	<210> 178	
	<211> 20 <212> ADN	
	<213> Secuencia artificial	
35		
	<220>	
	<223> Cebador directo de oligonucleótido sintético	
	<400> 178	
	gtgaaatgaa acgcaccaca	20
40		
40	<210> 179	
	<211> 20	
	<212> ADN	
45	<213> Secuencia artificial	
43	<220>	
	<223> Cebador inverso de oligonucleótido sintético	
	4400- 170	
	<400> 179	20
	gaccetgete acaaccagae	20
50	<210> 180	
	<211> 20	
	<212> ADN <213> Secuencia artificial	
55	<220> <223> Sonda sintética de oligonucleótido	
	SZZSZ SODOR SIDIEUCA DE OUDODUCIEDIDO	

	<400> 180 cagccctttg gggaagctgg	20
5	<210> 181 <211> 19 <212> ADN <213> Secuencia artificial	
10	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 181 ccaacgcttg ccaaatcct	19
15	<210> 182 <211> 24 <212> ADN <213> Secuencia artificial	
20	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 182 acggtagtga cagcatcaaa actc	24
25	<210> 183 <211> 24 <212> ADN <213> Secuencia artificial	
30	<220> <223> Sonda sintética de oligonucleótido	
	<400> 183 aaccagctct ctgtgacccc aatt	24
35	<210> 184 <211> 21 <212> ADN <213> Secuencia artificial	
40	<220> <223> Cebador directo de oligonucleótido sintético	
.0	<400> 184 tgattaccat catggctcag a	21
45	<210> 185 <211> 20	
45	<212> ADN <213> Secuencia artificial	
50	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 185 cttgtgaaaa tgccatccac	20
55	<210> 186 <211> 24 <212> ADN	
55	<213> Secuencia artificial	

	<220> <223> Sonda sintética de oligonucleótido	
5	<400> 186 teceaattgt egettettet geag	24
	<210> 187 <211> 19 <212> ADN	
10	<213> Secuencia artificial	
	<220> <223>Cebador directo de oligonucleótido sintético	
	<400> 187	
15	ccgccctcac ctgaagaga	19
	<210> 188 <211> 22 <212> ADN	
20	<213> Secuencia artificial	
	<220> <223>Cebador inverso de oligonucleótido sintético	
	<400> 188 ggaataagtt agccgcgctt ct	22
25	<210> 189	22
	<211> 21 <212> ADN <213> Secuencia artificial	
30		
	<220> <223> Sonda sintética de oligonucleótido	
	<400> 189	
0.5	cccagtgtcc gccaaggagc g	21
35	<210> 190 <211> 20	
	<212> ADN <213> Secuencia artificial	
40	<220>	
	<223> Cebador directo de oligonucleótido sintético	
	<400> 190 ggccaggatc tgtggtggta	20
45	<210> 191 <211> 20	
	<212> ADN <213> Secuencia artificial	
50	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 191	
	ctccacgtcg tggacattga	20
55	<210> 192 <211> 23 <212> ADN	

	<213> Secuencia artificial	
5	<220> <223> Sonda sintética de oligonucleótido	
	<400> 192 ctctggcctt ccgagaaggt acc	23
10	<210> 193 <211> 20 <212> ADN <213> Secuencia artificial	
15	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 193 ggctgtggct gaggctgtag	20
20	<210> 194 <211> 21 <212> ADN <213> Secuencia artificial	
25	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 194 ggagcattcg aggtcaaatc a	21
30	<210> 195 <211> 28 <212> ADN <213> Secuencia artificial	
35	<220> <223> Sonda sintética de oligonucleótido	
	<400> 195 ttcccagagt gtctcacctc cagcagag	28
40	<210> 196 <211> 20 <212> ADN <213> Secuencia artificial	
45	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 196 gcatcaggct gtcattatgg	20
50	<210> 197 <211> 20 <212> ADN <213> Secuencia artificial	
55	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 197 agtagttgtg ctgcccttcc	20

	<210> 198	
	<211> 28	
	<212> ADN	
	<213> Secuencia artificial	
5		
	<220>	
	<223> Sonda sintética de oligonucleótido	
	<400> 198	
	tgtccttacc tgtgggagct gtaaggtc	28
10	3 333 3 3 33	
. •	<210> 199	
	<211> 20	
	<212> ADN	
	<213> Secuencia artificial	
15		
	<220>	
	<223> Cebador directo de oligonucleótido sintético	
	<400> 199	
	ctgacacttg ccgcagagaa	20
20		
	<210>200	
	<211>20	
	<212> ADN	
	<213> Secuencia artificial	
25		
	<220>	
	<223> Cebador inverso de oligonucleótido sintético	
	<400> 200	
	aggtggtcct tggtctggaa	20
30	ayyoyyooo oyyoooyyaa	
30	<210> 201	
	<211> 26	
	<212> ADN	
	<213> Secuencia artificial	
35		
	<220>	
	<223> Sonda sintética de oligonucleótido	
	<400> 201	
		26
	ccctttctca cccacctcat ctgcac	20
40	<210> 202	
	<211> 23	
	<212> ADN	
	<213> Secuencia artificial	
45	<220>	
70	<223> Cebador directo de oligonucleótido sintético	
	-220 Cobador directo de origonidocado cirrolado	
	<400> 202	
		23
	cgcttgccta actcatactt tcc	23
50	<210> 203	
	<211> 20	
	<212> ADN	
	<213> Secuencia artificial	
55	<220>	
	<223> Cehador inverso de oligonucleótido sintético	

	<400> 203 ccattcagac tgcgccactt	20
5	<210> 204 <211> 19 <212> ADN <213> Secuencia artificial	
10	<220> <223> Sonda sintética de oligonucleótido	
	<400> 204 tccacgcagc gtggcactg	19
15	<210> 205 <211> 21 <212> ADN <213> Secuencia artificial	
20	<220> <223> Cebador directo de oligonucleótido sintético	
20	<400> 205 gcgacagctc ctctagttcc a	21
25	<210> 206 <211> 19 <212> ADN <213> Secuencia artificial	
30	<220> <223> Sonda sintética de oligonucleótido	
	<400> 206 ttcccgaagt ctccgcccg	19
35	<210> 207 <211> 22 <212> ADN <213> Secuencia artificial	
40	<220> <223>Cebador inverso de oligonucleótido sintético	
	<400> 207 ggaacaccag cttgaatttc ct	22
45	<210> 208 <211> 26 <212> ADN <213> Secuencia artificial	
50	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 208 ggtgtcagat ataaatgtgc aaatgc	26
55	<210> 209 <211> 24 <212> ADN <213> Secuencia artificial	

	<220> <223>Cebador inverso de oligonucleótido sintético <400> 209 ttcgatattg ccagcagcta taaa	24
E	cocyacaccy coaycayeta caaa	2-3
5	<210> 210 <211> 28 <212> ADN	
10	<213> Secuencia artificial	
	<220> <223> Sonda sintética de oligonucleótido	
	<400> 210 tgctgtcctg tcggtctcag tacgttca	28
15	<210>211 <211>20 <212> ADN <213> Secuencia artificial	
20	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 211 tgtggatgct ggattgattt	20
25	<210> 212 <211> 20 <212> ADN <213> Secuencia artificial	
30	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 212 aagcagcact tcctggtctt	20
35	<210> 213 <211> 25 <212> ADN <213> Secuencia artificial	
40	<220> <223> Sonda sintética de oligonucleótido	
	<400> 213 ccactggtgc agctgctaaa tagca	25
45	<210> 214 <211> 20 <212> ADN <213> Secuencia artificial	
50	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 214 agtgggagac acctgacctt	20
55	<210> 215	

	<211> 20 <212> ADN <213> Secuencia artificial	
5	<220> <223>Cebador inverso de oligonucleótido sintético	
	<400> 215 tgatctgggc attgtactcc	20
10	<210> 216 <211> 29 <212> ADN <213> Secuencia artificial <220>	
15	<223> Sonda sintética de oligonucleótido	
	<400> 216 ttgatcttct gctcaatctc agcttgaga	29
20	<210> 217 <211> 18 <212> ADN <213> Secuencia artificial	
25	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 217 cccgttcggt ctgaggaa	18
30	<210> 218 <211> 22 <212> ADN <213> Secuencia artificial	
35	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 218 gagcactcaa ggtagccaaa gg	22
40	<210> 219 <211> 19 <212> ADN <213> Secuencia artificial	
	<220> <223> Sonda sintética de oligonucleótido <400> 219	
45	tccggttcgc catgtcccg	19
50	<210> 220 <211> 20 <212> ADN <213> Secuencia artificial	
	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 220	
55	aacagagaca ttgccaacca	20

5	<210> 221 <211> 20 <212> ADN <213> Secuencia artificial	
	<220> <223> Cebador inverso de oligonucleótido sintético	
10	<400> 221 gtgatttgcc caggaagttt	20
	<210> 222 <211> 24 <212> ADN	
15	<213> Secuencia artificial	
	<220> <223> Sonda sintética de oligonucleótido	
	<400> 222	
20	ttggatctgc ttgctgtcca aacc	24
	<210> 223 <211> 20 <212> ADN	
25	<213> Secuencia artificial	
	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 223	
30	cgcgagcccc tcattataca	20
	<210> 224 <211> 19 <212> ADN	
35	<213> Secuencia artificial	
	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 224	
40	cactcgccgt tgacatcct	19
	<210> 225 <211> 22 <212> ADN	
45	<213> Secuencia artificial	
	<220> <223> Sonda sintética de oligonucleótido	
50	<400> 225 ctccccacag cgcatcgagg aa	22
	<210> 226 <211> 23	
55	<211> 23 <212> ADN <213> Secuencia artificial	
	<220> <223> Cebador directo de oligonucleótido sintético	

	<400> 226 cagtggagac cagttgggta gtg	23
	<210> 27	
5	<211> 20	
	<212> ADN	
	<213> Secuencia artificial	
40	<220>	
10	<223> Cebador inverso de oligonucleótido sintético	
	<400> 227	
	ccttgaagag cgtcccatca	20
	<210> 228	
15	<211> 28	
. •	<212> ADN	
	<213> Secuencia artificial	
	<220>	
20	<223> Sonda sintética de oligonucleótido	
	<400> 228	
	cacacatgca gagcttgtag cgtaccca	28
	<210> 229	
25	<211> 20	
	<212> ADN	
	<213> Secuencia artificial	
00	<220>	
30	<223> Cebador directo de oligonucleótido sintético	
	<400> 229	
	gggctcagct ttcagaagtg	20
	<210> 230	
35	<210> 230 <211> 20	
00	<212> ADN	
	<213> Secuencia artificial	
	<220>	
40	<223> Cebador inverso de oligonucleótido sintético	
	<400> 230	
	acatgttcag ctggtccaca	20
	<210> 231	
45	<211> 25	
	<212> ADN	
	<213> Secuencia artificial	
F0	<220>	
50	<223> Sonda sintética de oligonucleótido	
	<400> 231	
	tggcagtttt cttctgtcac caaaa	25
	040 000	
55		
JJ		
55		2

	<213> Secuencia artificial	
5	<220> <223> Cebador directo de oligonucleótido sintético <400> 232	
	tcacatgcca ctttggtgtt	20
10	<210> 233 <211> 20 <212> ADN <213> Secuencia artificial	
15	<220> <223> Cebador inverso de oligonucleótido sintético	
20	<400> 233 cttgcaggaa gcggctatac <210> 234 <211> 22 <212> ADN <213> Secuencia artificial	20
25	<220> <223> Sonda sintética de oligonucleótido <400> 234 tcctgggaga gattgaccag ca	22
30	<210> 235 <211> 19 <212> ADN <213> Secuencia artificial	
35	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 235 gcccgaaacg ccgaatata	19
40	<210> 236 <211> 23 <212> ADN <213> Secuencia artificial	
45	<220> <223> Cebador inverso de oligonucleótido sintético	
10	<400> 236 cgtggctctc ttatcctcat gat	23
50	<210> 237 <211> 21 <212> ADN <213> Secuencia artificial	
	<220> <223> Sonda sintética de oligonucleótido	
55	<400> 237 taccgcagca aaccgcttgg g	21
	<210> 238	

	<211> 20 <212> ADN <213> Secuencia artificial	
5	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 238 gccgggaaga ccgtaattgt	20
10	<210> 239 <211> 18 <212> ADN <213> Secuencia artificial	
15	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 239 cagcggcacc aggttcag	18
20	<210> 240 <211> 26 <212> ADN <213> Secuencia artificial	
25	<220> <223> Sonda sintética de oligonucleótido <400> 240 caaatggctt cctctggaag gtccca	26
30	<210> 241 <211> 20 <212> ADN <213> Secuencia artificial	
35	<220> <223> Cebador directo de oligonucleótido sintético	
	<400> 241 tgctgttgct gagtctgttg	20
40	<210> 242 <211> 20 <212> ADN <213> Secuencia artificial	
45	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 242 cttgcctggc ttcacagata	20
50	<210> 243 <211> 24 <212> ADN <213> Secuencia artificial	
55	<220> <223> Sonda sintética de oligonucleótido	

	<400> 243	
	ccagtcccca gaagaccatg tctg	24
	<210> 244	
_	<211> 20	
5	<212> ADN <213> Secuencia artificial	
	<220>	
10	<223> Cebador directo de oligonucleótido sintético	
	<400> 244	
	tgtggtgagg aaggagtcag	20
	<210> 245	
15	<211> 18 <212> ADN	
10	<213> Secuencia artificial	
	<220>	
	<223> Cebador inverso de oligonucleótido sintético	
20	ŭ	
	<400> 245	
	cccagagagt gggtcagc	18
	<210> 246	
	<211> 24	
25	<212> ADN	
	<213> Secuencia artificial	
	<220>	
30	<223> Sonda sintética de oligonucleótido	
50	<400> 246	
	ctgtgactgt ctccagggct tcca	24
	<210> 247	
35	<211> 21 <212> ADN	
33	<213> Secuencia artificial	
	<220> <223> Cebador directo de oligonucleótido sintético	
40	220 Cobador anosto do engonacionado entendo	
	<400> 247	
	tggcttcagg agctgaatac c	21
	22405-240	
	<210> 248 <211> 24	
45	<212> ADN	
	<213> Secuencia artificial	
	<220>	
50	<223> Cebador inverso de oligonucleótido sintético	
50	<400> 248	
	<400> 248 tgctgtcgtg atgagaaaat agtg	24
	<210> 249	23
	<211> 26	
	<212> ADN	
55	<213> Secuencia artificial	

	<220> <223> Sonda sintética de oligonucleótido	
5	<400> 249 caggcacaca caggtgggac acaaat	26
	<210> 250 <211> 25 <212> ADN	
10	<213> Secuencia artificial	
	<220> <223> Cebador directo de oligonucleótido sintético	
15	<400> 250 gtatcaggac cacatgcagt acatc	25
	<210> 251 <211> 22 <212> ADN	
20	<213> Secuencia artificial	
	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 251	
25	tgtcggaatt gatactggca tt	22
	<210> 252 <211> 24	
30	<212> ADN <213> Secuencia artificial	
	<220> <223> Sonda sintética de oligonucleótido	
	<400> 252	
35	ttgatgcctg tcttcgcgcc ttct	24
	<210> 253 <211> 20 <212> ADN	
40	<213> Secuencia artificial	
	<220> <223> Cebador directo de oligonucleótido sintético	
45	<400> 253 tttccaaaca tcagcgagtc	20
	<210> 254 <211> 20	
50	<212> ADN <213> Secuencia artificial	
	<220> <223> Cebador inverso de oligonucleótido sintético	
	<400> 254	
55	aacaggagcg cttgaaagtt	20
	<210> 255	

	<211> 23 <212> ADN <213> Secuencia	artificial					
5	<400> 255 acggtgcttc	tccctctcca	gtg			2	23
10	<210> 256 <211> 78 <212> ADN <213> Secuencia	artificial					
	<220> <223> Amplicon						
15	<400> 256 cgttccgatc taaggccaac	_	catcccaggc	atgcctacag	caccctgatg	tcgcagccta	. 60 78
20	<210> 257 <211> 76 <212> ADN <213> Secuencia	artificial					
	<220> <223> Amplicon						
25	<400> 257 tgcagactgt gattatggtg		ccattgccca	tcgcctgcac	acggttctag	gctccgatag	60 76
30	<210> 258 <211> 78 <212> ADN <213> Secuencia	artificial					
	<220> <223> Amplicon <400> 258 ctgcatgtga acagggatca		aacaagaaag	tgaccacacc	aaagcctccc	tggctggtgt	60 78
35	<210> 259 <211>68 <212> ADN <213> Secuencia	artificial					
40	<220> <223> Amplicon <400> 259 acgaattgtc gcatggac	ggtgaggtct	caggatacca	cagtcctgga	gaccctatcc	aatgatttca	60 68
45	<210> 260 <211> 71 <212> ADN <213> Secuencia	artificial					
50	<220> <223> Amplicon						
	<400> 260 cgcttctatg gtgtaccggg		tgtgtcagcc	ctggactacc	tgcactcgga	gaagaacgto	g 60 71

```
<210> 261
     <211> 71
     <212> ADN
     <213> Secuencia artificial
5
     <220>
     <223> Amplicon
     <400> 261
     tectgecace etteaaacet caggteacgt eegaggtega cacaaggtae ttegatgatg 60
                                                                                    71
     aatttaccgc c
10
     <210> 262
     <211>69
     <212> ADN
     <213> Secuencia artificial
15
     <220>
     <223> Amplicon
      <400> 262
      ggacagcagg aatgtgtttc tccatacagg tcacggggag ccaatggttc agaaacaaat 60
      cgagtgggt
                                                                                   69
     <210> 263
20
     <211> 73
     <212> ADN
     <213> Secuencia artificial
     <220>
25
     <223> Amplicon
     <400> 263
     gggtcaggtg cctcgagatc gggcttgggc ccagagcatg ttccagatcc cagagtttga 60
                                                                                      73
     gccgagtgag cag
     <210> 264
30
     <211>81
     <212> ADN
     <213> Secuencia artificial
     <220>
35
     <223> Amplicon
     <400> 264
     cgttgtcagc acttggaata caagatggtt gccgggtcat gttaattggg aaaaagaaca 60
     gtccacagga agaggttgaa c
                                                                                     81
     <210> 265
40
     <211>83
     <212> ADN
     <213> Secuencia artificial
     <220>
45
     <223> Amplicon
     <400> 265
     cctggagggt cctgtacaat ctcatcatgg gactcctgcc cttacccagg ggccacagag 60
     cccccgagat ggagcccaat tag
                                                                                     83
     <210> 266
     <211> 73
     <212> ADN
50
     <213> Secuencia artificial
```

```
<220>
     <223> Amplicon
      <400> 266
      cagatggacc tagtacccac tgagatttcc acgccgaagg acagcgatgg gaaaaatgcc 60
                                                                                    73
     cttaaatcat agg
5
     <210> 267
     <211>69
     <212> ADN
     <213> Secuencia artificial
10
     <220>
     <223> Amplicon
      <400> 267
      gcatgttcgt ggcctctaag atgaaggaga ccatccccct gacggccgag aagctgtgca 60
      tctacaccg
                                                                                     69
15
     <210> 268
     <211>81
     <212> ADN
     <213> Secuencia artificial
20
     <220>
     <223> Amplicon
     <400> 268
     cgtcaggacc caccatgtct gccccatcac gcggccgaga catggcttgg ccacagctct 60
     tgaggatgtc accaattaac c
25
     <210> 269
     <211> 75
     <212> ADN
     <213> Secuencia artificial
30
     <220>
     <223> Amplicon
      <400> 269
      tgtatttcaa gacctctgtg cacttattta tgaacctgcc ctgctcccac agaacacagc 60
                                                                                      75
      aattcctcag gctaa
35
     <210> 270
     <211> 65
     <212> ADN
     <213> Secuencia artificial
40
     <220>
     <223> Amplicon
      <400> 270
      agatgaagtg gaaggcgctt ttcaccgcgg ccatcctgca ggcacagttg ccgattacag 60
      aggca
                                                                                    65
45
     <210> 271
     <211> 64
     <212> ADN
     <213> Secuencia artificial
50
     <220>
     <223> Amplicon
```

	<400> 271 gggcgtggaa cgtg	cagtttatct	cagacatctg	ccccaagaag	gacgtactcg	aaaccttcac	60 64
5	<210> 272 <211>68 <212> ADN <213> Secuencia	artificial					
10	<220> <223> Amplicon						
10	<400> 272 tggattggag gtgcaagc	ttctgggaat	gtactggccg	tggcactgga	caacagtgtg	tacctgtgga	60 68
15	<210> 273 <211> 85 <212> ADN <213> Secuencia	artificial					
20	<220> <223> Amplicon						
		tttgccatca cggaacatca		gtctatgccg	gtgaggctgc	tgggccacag	60 85
25	<210> 274 <211> 77 <212> ADN <213> Secuencia	artificial					
30	<220> <223> Amplicon						
30	<400> 274 tgacaatcag tcacggctgt		ttcaccgctc	ggaagagggc	ctgagctgca	tgaataagga	60 77
35	<210> 275 <211> 76 <212> ADN <213> Secuencia	artificial					
40	<220> <223> Amplicon						
40	<400> 275 ctgaaggagc aaacacagcg	_	cgctctccaa	ggcgccaagg	agagggcaca	tcagcagaag	60 76
45	<210> 276 <211>68 <212> ADN <213> Secuencia	artificial					
50	<220> <223> Amplicon						
30	<400> 276 gtggccatcc taccactq	agctgacctt	cctgcgcctg	atgtccaccg	aggeeteeca		60 68

```
<210> 277
     <211> 80
     <212> ADN
     <213> Secuencia artificial
     <220>
     <223> Amplicon
     <400> 277
     cagccaagaa ctggtatagg agctccaagg acaagaaaca cgtctggcta ggagaaacta 60
     tcaatgctgg cagccagttt
10
     <210> 278
     <211> 81
     <212> ADN
     <213> Secuencia artificial
15
     <220>
     <223> Amplicon
     <400> 278
     cgacagttgc gatgaaagtt ctaatctctt ccctcctcct gttgctgcca ctaatgctga 60
     tgtccatggt ctctagcagc c
                                                                                    81
20
     <210> 279
     <211>67
     <212> ADN
     <213> Secuencia artificial
25
     <220>
     <223> Amplicon
      <400> 279
      aacttcaagg tcggagaagg ctttgaggag gagaccgtgg acggacgcaa gtgcaggagt 60
                                                                                     67
      ttagcca
30
     <210> 280
     <211> 76
     <212> ADN
     <213> Secuencia artificial
35
     <220>
     <223> Amplicon
     <400> 280
     gtgctacgcc accetgttcg gacceaaagg cgtgaacatc gggggcgcgg gctcctacat 60
                                                                                    76
     ctacgagaag cccctg
40
     <210> 281
     <211> 77
     <212> ADN
     <213> Secuencia artificial
45
     <220>
     <223> Amplicon
     <400> 281
     ggtgcctact ccattgtggc gggcgtgttt gtgtgcctgc tggagtaccc ccgggggaag 60
                                                                                     77
     aggaagaagg gctccac
50
     <210> 282
     <211> 78
     <212> ADN
     <213> Secuencia artificial
```

	<220> <223> Amplicon
5	<400> 282 gggagaacgg gatcaatagg atcggaaacc tgctggtgcc caatgagaat tactgcaagt 6 ttgaggactg gctgatgc 78
10	<210> 283 <211>68 <212> ADN <213> Secuencia artificial
	<220> <223> Amplicon
15	<400> 283 tccaattcca gcatcactgt ggagaaaagc tgtttgtctc cccagcatac tttatcgcct 6 tcactgcc
20	<210> 284 <211> 83 <212> ADN <213> Secuencia artificial
	<220> <223> Amplicon
25	<400> 284 tgcacagagg gtgtgggtta caccaatgct tccaacaatt tgtttgcttg cctcccatgt 60 acagcttgta aatcagatga aga 83
30	<210> 285 <211> 75 <212> ADN <213> Secuencia artificial
	<220> <223> Amplicon
35	<400> 285 actccctcta cccttgagca agggcagggg tccctgagct gttcttctgc cccatactga 60 aggaactgag gcctg
40	<210> 286 <211> 76 <212> ADN <213> Secuencia artificial
	<220> <223> Amplicon
45	<400> 286 tggtccatcg ccagttatca catctgtatg cggaacctca aaagagtccc tggtgtgaag 6 caagatcgct agaaca 7
50	<210> 287 <211> 81 <212> ADN
50	<213> Secuencia artificial
	<220>

	<223> Amplicon						
	<400> 287 cggttatgtc at ttcttcagtg gg	-		aggtactccc	tcctcccggg	aaggcaccct	60 81
5	<210> 288 <211> 86 <212> ADN <213> Secuencia artif	ficial					
10	<220> <223> Amplicon <400> 288 tggctcttaa tc aactttatga gg			tggagaattt	acgcattatt	cgtgggacaa	60 8 <i>6</i>
15	<210> 289 <211> 67 <212> ADN <213> Secuencia artif	ficial					
20	<220> <223> Amplicon						
	<400> 289 gtccaggtgg at ctggccg	gtgaaaga	tececageag	gccctcaagg	agctggctaa	gatgtgtatc	60 67
25	<210> 290 <211> 67 <212> ADN <213> Secuencia artif	ficial					
30	<220> <223> Amplicon						
	<400> 290 acggatcaca gt ggatgag	ggaggaag	cgctggctca	cccctacctg	gagcagtact		60 67
35	<210> 291 <211> 67 <212> ADN <213> Secuencia artii	ficial					
40	<220> <223> Amplicon						
	<400> 291 ccagcaccat tg agagact	ttgaagat	ccccagacca	agtgtgaata	catgctcaac	tcgatgccca	60 67
45	<210> 292 <211> 80 <212> ADN <213> Secuencia artif	ficial					
50	<220> <223> Amplicon						

	<pre><400> 292 gcactttggg gtgagggtct</pre>		ttatgattct	ttgttacagg	caccgagaat	gttgtattca	. 60 80
5	<210> 293 <211> 90 <212> ADN <213> Secuencia	artificial					
10	<220> <223> Amplicon						
10	<400> 293 ggctattcct gaggagaatt			ctcagtgaac	atgaagaagg t		60 90
15	<210> 294 <211> 67 <212> ADN <213> Secuencia	artificial					
20	<220> <223> Amplicon						
20	<400> 294 ccagtggagc cagagag	gcttccatga	cctgcgtcct	gatgaagtgg	ccgatttgtt	tcagacgacc	60 67
25	<210> 295 <211> 80 <212> ADN <213> Secuencia	artificial					
30	<220> <223> Amplicon						
		gacaacaaca gattacttca		gcaaggcctg	ggtgagaatg	ttacaattga	60 80
35	<210> 296 <211> 69 <212> ADN <213> Secuencia	artificial					
40	<220> <223> Amplicon						
	<400> 296 gaagcgcaga tctgaggag	tcatgaagaa	gctgaagcac	gacaagctgg	tccagctcta	tgcagtggtg	л 60 69
45	<210> 297 <211>68 <212> ADN <213> Secuencia	artificial					
50	<220> <223> Amplicon						
	<400> 297						

	tcagcagcaa aaaccacc	gggcatcatg	gaggaggatg	aggcctgcgg	gcgccagtac	acgctcaaga	60 68
5	<210> 298 <211> 75 <212> ADN <213> Secuencia	ı artificial					
10	<220> <223> Amplicon						
	<400> 298 caaaggagct aagccattct	cactgtggtg gactc	tctgtgttcc	aaccactgaa	tctggacccc	: atctgtgaat	60 75
15	<210> 299 <211> 73 <212> ADN <213> Secuencia	ı artificial					
20	<220> <223> Amplicon						
	<400> 299 ttgggaaata caccctagct	tttgggcatt tct	. ggtctggcca	agtctacaat	gtcccaatat	caaggacaac	: 60 73
25	<210> 300 <211> 83 <212> ADN <213> Secuencia	ı artificial					
30	<220> <223> Amplicon						
		catcaaccag ggcaaactcc		accaacttca	ctatgtgaca	gagctgacag	60 83
35	<210> 301 <211> 70 <212> ADN <213> Secuencia	ı artificial					
40	<220> <223> Amplicon						
	<400> 301 ctccgacgtg gccaattacg	gctttccagt	ggcccacagc	atctatggaa	tcccatctgt	catcaattct	60 70
45	<210> 302 <211> 67 <212> ADN <213> Secuencia	ı artificial					
50	<220> <223> Amplicon						

	ccatctgcat ggtggcc	ccatcttgtt	tgggctcccc	acccttgaga	agtgcctcag	ataataccc	t 60 67
5	<210> 303 <211> 84 <212> ADN <213> Secuencia	artificial					
40	<220> <223> Amplicon						
10	<400> 303 aggctgctgg tgccaagact		cgtgtgtgat gaag	tgccccagag	gccgtttctt	ggccgccatc	60 84
15	<210> 304 <211> 73 <212> ADN <213> Secuencia	artificial					
20	<220> <223> Amplicon						
20	<400> 304 tccatgatgg atggtgctgc		ttctgcggcc	ccccggacag	tggctctgac	ggcgttactg	60 73
25	<210> 305 <211> 76 <212> ADN <213> Secuencia	artificial					
30	<220> <223> Amplicon						
50	<400> 305 aacgactgct agcaagatgg		caaggagctg	gtgcccagca	tcccccagaa	caagaaggtg	60 76
35	<210> 306 <211> 83 <212> ADN <213> Secuencia	artificial					
40	<220> <223> Amplicon						
-1 ∪		cgaagatttc ctattaccgg	acagtcaaaa aaa	tcggagattt	tggtatgacg	cgagatatct	60 83
45	<210> 307 <211> 72 <212> ADN <213> Secuencia	artificial					
	<220> <223> Amplicon						

	<400> 307 cctgaacctt gacttgcctg		ctgaaaaaga	tggatgcttc	caatctggat	tcaatgagga	60 72
5	<210> 308 <211> 63 <212> ADN <213> Secuencia	artificial					
	<220> <223> Amplicon						
10	<400> 308 agccatcact agt	ctcagtgcag	ccaggtccta	tegtggeeee	tgaggagacc	ctgactctgc	60 63
15	<210> 309 <211> 74 <212> ADN <213> Secuencia	artificial					
	<220> <223> Amplicon						
20	<400> 309 ccacagctca gactggcact		ggtgtccatc	ccagctccag	ccagctccca	gagaggaaga	. 60 74
25	<210> 310 <211>68 <212> ADN <213> Secuencia	artificial					
	<220> <223> Amplicon						
30	<400> 310 agagatcgag aaaaggcc	gctctcaagg	aggagctgct	cttcatgaag	aagaaccacg	aagaggaagt	60 68
	<210> 311 <211> 76 <212> ADN						
35	<213> Secuencia <220> <223> Amplicon	artificial					
40	<400> 311 tgagtggaaa agaagagatg		atgatgaagt	catcagcttt	gtgccaccac	cccttgacca	60 76
45	<210> 312 <211> 75 <212> ADN <213> Secuencia	artificial					
-1 0	<220> <223> Amplicon	ai unoidi					

	<400> 312 gacttttgcc gaagcagtta	cgctaccttt gtggc	cattccggcg	tgacaacaat	gagctgttgc	tcttcatact	60 75
5	<210> 313 <211> 82 <212> ADN <213> Secuencia	artificial					
10	<220> <223> Amplicon						
10		atgtgtcaca tttcctgtcc	_	gtttcatacc	aacacaggct	tcagcacttc	: 60 82
15	<210> 314 <211> 71 <212> ADN <213> Secuencia	artificial					
20	<220> <223> Amplicon						
20	<400> 314 cgctcagcca gatctcagtg	gatgcaatca c	atgccccagt	cacctgctgt	tataacttca	. ccaatagga	a 60 71
25	<210> 315 <211> 69 <212> ADN <213> Secuencia	artificial					
30	<220> <223> Amplicon						
30	<400> 315 gtgaaatgaa agcagggtc	acgcaccaca	ctggacagcc	ctttggggaa	gctggagctg	tctggttgtc	g 60 69
35	<210> 316 <211> 78 <212> ADN <213> Secuencia	artificial					
40	<220> <223> Amplicon						
40	<400> 316 ccaacgcttg tgatgctgtc	ccaaatcctg actaccgt	acaattcaga	accagctctc	tgtgacccca	atttgagttt	: 60 78
45	<210> 317 <211> 82 <212> ADN <213> Secuencia	artificial					
	<220> <223> Amplicon						

		catggctcag cattttcaca		atgttcctgc	agaagaagcg	acaattggga	60 82
5	<210> 318 <211> 77 <212> ADN <213> Secuencia	artificial					
40	<220> <223> Amplicon						
10	<400> 318						
	ccgccctcac cgcggctaac		acgcgctcct	tggcggacac	tgggggagga	gaggaagaag	60 77
15	<210> 319 <211> 71 <212> ADN <213> Secuencia	artificial					
20	<220> <223> Amplicon						
	<400> 319 ggccaggatc acgacgtgga		caattgactc	tggccttccg	agaaggtacc	: atcaatgtco	c 60 71
25	<210> 320 <211> 73 <212> ADN <213> Secuencia	artificial					
30	<220> <223> Amplicon						
	<400> 320 ggctgtggct cctcgaatgc		catctctgct	ggaggtgaga	cactctggga	actgatttga	60 73
35	<210> 321 <211> 85 <212> ADN <213> Secuencia	artificial					
40	<220> <223> Amplicon						
		gtcattatgg ggcagcacaa	_	tgtgggagct	gtaaggtctt	ctttaagagg	60 85
45	<210> 322 <211>68 <212> ADN <213> Secuencia	artificial					
50	<220> <223> Amplicon						

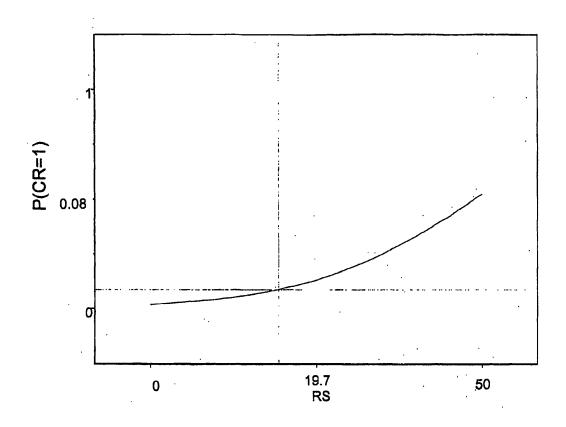
	<400> 322 ctgacacttg gaccacct	ccgcagagaa	tecetttete	acccacctca	tctgcacctt	ccagaccaag	60 68
5	<210> 323 <211> 81 <212> ADN <213> Secuencia	artificial					
10	<220> <223> Amplicon						
10		actcatactt agtctgaatg		acttgatcca	cgcagcgtgg	cactgggacg	60 81
15	<210> 324 <211> 78 <212> ADN <213> Secuencia	artificial					
20	<220> <223> Amplicon						
	<400> 324 gcgacagctc aattcaagct		accatgtccg	cgggcggaga	cttcgggaat	ccgctgagga	60 78
25	<210> 325 <211> 84 <212> ADN <213> Secuencia	artificial					
30	<220> <223> Amplicon						
		ataaatgtgc ctggcaatat	_	ttgctgtcct	gtcggtctca	gtacgttcac	60 84
35	<210> 326 <211> 67 <212> ADN <213> Secuencia	artificial					
40	<220> <223> Amplicon						
	<400> 326 tgtggatgct gctgctt	ggattgattt	caccactggt	gcagctgcta a	aatagcaaag a	accaggaagt 6 6	50 57
45	<210> 327 <211> 69 <212> ADN <213> Secuencia	artificial					
50	<220> <223> Amplicon						

	<400> 327 agtgggagac cccagatca	acctgacctt	tctcaagctg	agattgagca	gaagatcaag	gagtacaatg	60 69
5	<210> 328 <211>68 <212> ADN <213> Secuencia	artificial					
10	<220> <223> Amplicon						
10	<400> 328 cccgttcggt gagtgctc	ctgaggaagg	ccgggacatg	gcgaaccgga	tcagtgcctt	tggctacctt	60 68
15	<210> 329 <211> 69 <212> ADN						
	<213> Secuencia	artificial					
20	<220> <223> Amplicon						
	<400> 329 aacagagaca gcaaatcac	ttgccaacca	tattggatct	gcttgctgtc	caaaccagca	aacttcctgg	60 69
25	<210> 330 <211> 86 <212> ADN <213> Secuencia	artificial					
30	<220> <223> Amplicon						
		tcattataca atgtcaacgg		tccccacagc	gcatcgagga	atgcgtgctc	60 86
35	<210> 331 <211> 77 <212> ADN	artificial					
	<213> Secuencia <220> <223> Amplicon	ai iiiiviai					
40	<400> 331		gtggtgactg g	gtacgctac aa	agctctgca tg	tgtgctga 60 77	
45	<210> 332 <211> 81 <212> ADN <213> Secuencia	artificial					
50	<220> <223> Amplicon						

	<400> 332 gggctcagct ttcagaagtg ctgagttggc agttttcttc tgtcaccaaa agaggtctca 60 atgtggacca gctgaacatg t 81	
5	 <210> 333 <211> 70 <212> ADN <213> Secuencia artificial 	
10	<220> <223> Amplicon	
	<400> 333 tcacatgcca ctttggtgtt tcataatctc ctgggagaga ttgaccagca gtatagccgc ttcctgcaag	60 70
15	<210> 334 <211> 65 <212> ADN <213> Secuencia artificial	
	<223> Amplicon	
	<400> 334 gcccgaaacg ccgaatataa tcccaagcgg tttgctgcgg taatcatgag gataagagag 60 ccacg	
20	 <210> 335 <211> 84 <212> ADN <213> Secuencia artificial 	
25	<220> <223> Amplicon	
	<400> 335 gccgggaaga ccgtaattgt ggctgcactg gatgggacct tccagaggaa gccatttggg 6 gccatcctga acctggtgcc gctg	0 4
30	 210> 336 211> 74 212> ADN 213> Secuencia artificial 	
35	<220> <223> Amplicon	
	<pre><400> 336 tgctgttgct gagtctgttg ccagtcccca gaagaccatg tctgtgttga gctgtatctg 6 tgaagccagg caag</pre>	
40	 <210> 337 <211> 66 <212> ADN <213> Secuencia artificial 	
45	<220> <223> Amplicon	
	<400> 337 tgtggtgagg aaggagtcag agagctgtga ctgtctccag ggcttccagc tgacccactc 60 tctggg	
	c210> 338	

	<211> 89 <212> ADN <213> Secuencia	artificial					
5	<220> <223> Amplicon						
	<400> 338						
	tggcttcagg ggaaccacta			acacacaggt	gggacacaaa	taagggtttt	60 89
10	<210> 339 <211> 75 <212> ADN <213> Secuencia	artificial					
15	<220> <223> Amplicon						
	<400> 399						
	gtatcaggac gtatcaattc		acatcggaga	aggcgcgaag	acaggcatca	aagaatgcca	60 75
20	<210> 340						
	<211> 65						
	<212> ADN <213> Secuencia	t:f:_:_					
25	<213> Secuencia	artiliciai					
	<220> <223> Amplicon						
	<400> 340						
	tttccaaaca ctgtt	tcagcgagtc	cacactggag	agggagaagc	accgtaactt	tcaagcgctc	60 65
30							

REIVINDICACIONES


- 1. Un método para predecir la probabilidad de respuesta a la quimioterapia de un paciente humano diagnosticado de cáncer de mama, comprendiendo;
- 5 medir el nivel de expresión de un transcrito de ARN de GBP1 en una muestra comprendiendo células cancerosas obtenidas de dicho paciente antes de la quimioterapia, y
 - normalizar el nivel del transcrito de ARN de GBP1 para obtener un nivel de expresión de GBP1 normalizado.
- donde el nivel de expresión de GBP1 normalizado del paciente va asociado a una mayor probabilidad de respuesta a la quimioterapia, si el nivel de expresión de GBP1 normalizado del paciente es mayor comparado con el nivel de expresión de GBP1 normalizado en pacientes con cáncer de mama, de muestras sin posterior respuesta patológica a la quimioterapia.
 - 2. El método, como se expone en la reivindicación 1, donde el cáncer es cáncer de mama invasivo.
 - 3. El método como se expone en la reivindicación 1 o 2, donde la quimioterapia es quimioterapia adyuvante.
 - 4. El método como se expone en la reivindicación 1, 2 o 3, donde la quimioterapia es quimioterapia neoadyuvante.
 - 5. El método como se expone en la reivindicación 4, donde la quimioterapia neoadyuvante comprende la administración de un derivado del taxano.
- 20 6. El método como se expone en la reivindicación 5, donde el derivado de taxano es docetaxel o paclitaxel.
 - 7. El método como se expone en la reivindicación 1 o 2, donde la quimioterapia comprende además la administración de un agente anticáncer adicional.
 - 8. El método como se expone en la reivindicación 7, donde el agente anticáncer adicional es un miembro de la clase de agentes anticáncer de las antraciclinas.
 - 9. El método como se expone en la reivindicación 8, donde el agente anticáncer adicional es doxorubicina.
 - 10. El método como se expone en la reivindicación 7, donde el agente anticáncer adicional es un inhibidor de la topoisomerasa.
- 11. El método como se expone en cualquier reivindicación precedente, donde la muestra es tejido fijado, embebido en parafina (PET).
 - 12. El método como se expone en cualquier reivindicación precedente, donde el nivel de expresión del transcrito de ARN es determinado por un método basado en PCR.
 - 13. El método como se expone en la reivindicación 12, donde el nivel de expresión del tanscrito de ARN es determinado por RT-PCR.

35

15

25

FIG. 1

