

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(1) Número de publicación: 2 638 664

51 Int. Cl.:

A61B 17/072 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 26.08.2014 E 14182234 (6)
Fecha y número de publicación de la concesión europea: 09.08.2017 EP 2853204

(54) Título: Conjunto de asidero quirúrgico electromecánico de mano para usar con efectores finales quirúrgicos y métodos de uso

(30) Prioridad:

27.08.2013 US 201361870324 P 08.04.2014 US 201414247312

Fecha de publicación y mención en BOPI de la traducción de la patente: 23.10.2017

(73) Titular/es:

COVIDIEN LP (100.0%) 15 Hampshire Street Mansfield, MA 02048, US

(72) Inventor/es:

COLLINGS, PETER T.; CHEN, XINGRUI; DUSSAN, LUIS y VALENTINE, KELLY

74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Conjunto de asidero quirúrgico electromecánico de mano para usar con efectores finales quirúrgicos y métodos de uso

Antecedentes

1. Campo técnico

La presente descripción está relacionada con sistemas y/o dispositivos quirúrgicos y sus métodos de uso. Más específicamente, la presente descripción está relacionada con conjuntos de asidero quirúrgicos alimentados electromecánicos de mano para uso con efectores finales quirúrgicos que pueden sujetar, cortar y/o grapar tejido y métodos de uso de los mismos.

2. Antecedentes de la técnica relacionada

Un tipo de dispositivo quirúrgico es un dispositivo de grapado, corte y sujeción lineal. Un dispositivo de este tipo se puede emplear en un procedimiento quirúrgico para resecar un tejido canceroso o anómalo de un tracto gastrointestinal. Instrumentos convencionales de grapado, corte y sujeción lineales incluyen una estructura a estilo de empuñadura de pistola que tiene un vástago alargado y una parte distal. La parte distal incluye una pareja de elementos de agarre a estilo de tijeras, que sujetan cerrando los extremos abiertos del colon. En este dispositivo, uno de los dos elementos de agarre a estilo de tijeras, tal como la parte de yunque, se mueve o pivota respecto a la estructura en conjunto, mientras que el otro elemento de agarre permanece fijo respecto a la estructura en conjunto. El accionamiento de este dispositivo de tijeras (el pivote de la parte de yunque) es controlado por un gatillo de agarre mantenido en el asidero.

Además del dispositivo de tijeras, la parte distal también incluye un mecanismo de grapado. El elemento de agarre fijo del mecanismo de tijeras incluye una región de recepción de cartucho de grapas y un mecanismo para impulsar las grapas a través del extremo sujetado del tejido contra la parte de yunque, sellando de ese modo el extremo previamente abierto. Los elementos de tijeras pueden formarse integralmente con el vástago o pueden ser desconectables de manera que diversos elementos de tijeras y grapado pueden ser intercambiables.

Varios fabricantes de dispositivos quirúrgicos han desarrollado líneas de productos con sistemas impulsores en propiedad para hacer funcionar y/o manipular el dispositivo quirúrgico. En muchos casos los dispositivos quirúrgicos incluyen un conjunto de asidero, que es reutilizable, y un efector final desechable o algo semejante que se conecta selectivamente al conjunto de asidero antes del uso y luego se desconecta del efector final después del uso con el fin de ser desechado o, en algunos casos, esterilizado para la reutilización.

Los conjuntos de asidero vienen en una variedad de configuraciones y/u orientaciones, típicamente en una configuración de empuñadura de pistola o una configuración en línea. Un cirujano selecciona configuración del conjunto de asidero sobre la base de comodidad de uso o necesidades que existen para realizar el procedimiento quirúrgico. Si se necesita, un cirujano puede tener un conjunto de asidero de empuñadura de pistola y un conjunto de asidero en línea disponibles y puede intercambiar los conjuntos de asidero durante el procedimiento quirúrgico según sea necesario o desee. El documento US2009/031842 describe una unidad de trabajo de un manipulador médico equipado con un vástago de conexión hueco, alambres de un miembro de transmisión de fuerza de movimiento dispuestos en el vástago de conexión, y una unidad de trabajo de extremo distal dispuesta en un extremo del vástago de conexión y que es movida por los alambres.

A la vista de lo anterior, sería sumamente ventajoso proporcionar un sistema quirúrgico que incluya un conjunto de asidero que pueda cambiar una configuración del sistema quirúrgico entre al menos una configuración de empuñadura de pistola o una configuración en línea, en donde el conjunto de asidero es adaptable para acomodar diferentes métodos de sujeción y manejo del sistema quirúrgico en funcionamiento.

Compendio

30

35

40

45

50

55

La presente descripción está relacionada con conjuntos de asidero quirúrgicos alimentados electromecánicos de mano para uso con efectores finales quirúrgicos que pueden sujetar, cortar y/o grapar tejido y métodos de uso de los mismos.

Según un aspecto de la presente descripción, un dispositivo quirúrgico electromecánico, de mano, alimentado incluye un conjunto de asidero que incluye un alojamiento de asidero que define un eje longitudinal, el alojamiento de asidero incluye una primera característica de conexión y una segunda característica de conexión; una placa de circuitos dispuesta dentro del alojamiento de asidero; una batería dispuesta dentro del alojamiento de asidero y que está en comunicación eléctrica con la placa de circuitos; al menos un contacto eléctrica con la placa de circuitos y la batería; al menos un contacto eléctrico asociado con la segunda característica de conexión del alojamiento de asidero y que está en comunicación eléctrica con la placa de circuitos y que está en comunicación eléctrica con la placa de circuitos y la batería; y al menos un primer botón para accionamiento por un dedo de un usuario, cada botón de disparo está en comunicación eléctrica con la placa de circuitos.

El dispositivo quirúrgico incluye además un conjunto de unidad de impulsión conectable de manera retirable y selectivamente a una seleccionada de la primera característica de conexión y la segunda característica de conexión del conjunto de asidero. El conjunto de unidad de impulsión incluye un alojamiento de unidad de impulsión que define un eje longitudinal, el alojamiento de unidad de impulsión incluye una característica de conexión configurada y adaptada para emparejarse con una seleccionada de la primera característica de conexión y la segunda característica de conexión del conjunto de asidero; un motor dispuesto dentro del alojamiento de unidad de impulsión; un vástago de impulsión soportado rotatoriamente en el alojamiento de unidad de impulsión y que se extiende desde ese, el vástago de impulsión es impulsado por el motor; y al menos un contacto eléctrico asociado con la característica de conexión del alojamiento de unidad de impulsión y que está en comunicación eléctrica con el motor.

10

15

20

30

40

45

50

55

Según un aspecto de la presente descripción, cuando el conjunto de unidad de impulsión se conecta a la primera característica de conexión del conjunto de asidero un contacto eléctrico asociado con la característica de conexión del alojamiento de unidad de impulsión forma una interfaz eléctrica con un contacto eléctrico de la primera característica de conexión del alojamiento de asidero; y el eje longitudinal del conjunto de unidad de impulsión está paralelo respecto al eje longitudinal del alojamiento de asidero.

También según un aspecto de la presente descripción, cuando el conjunto de unidad de impulsión se conecta a la segunda característica de conexión del conjunto de asidero un contacto eléctrico asociado con la característica de conexión del alojamiento de unidad de impulsión forma una interfaz eléctrica con un contacto eléctrico de la segunda característica de conexión del alojamiento de asidero; y el eje longitudinal del conjunto de unidad de impulsión está angulado respecto al eje longitudinal del alojamiento de asidero.

El conjunto de asidero puede incluir al menos un segundo botón para accionamiento por un pulgar del usuario.

El conjunto de unidad de impulsión puede incluir una pluralidad de vástagos de impulsión soportados rotatoriamente en el alojamiento de unidad de impulsión y que se extienden desde ese, en donde cada vástago de impulsión es impulsado por el motor.

La primera característica de conexión se puede ubicar en la superficie más distal longitudinalmente del alojamiento de asidero. La segunda característica de conexión se puede ubicar en una superficie lateral del alojamiento de asidero.

El conjunto de asidero puede incluir una característica de sujeción asociada con cada una de la primera característica de conexión y la segunda característica de conexión. El conjunto de unidad de impulsión puede incluir una característica de sujeción configurada para conexión selectiva a una seleccionada de las características de sujeción del conjunto de asidero.

Cada característica de sujeción del conjunto de asidero puede incluir un rebaje formado en una superficie del conjunto de asidero. La característica de sujeción del conjunto de unidad de impulsión puede incluir un conjunto de enganche configurado para recepción selectiva en un rebaje seleccionado del conjunto de asidero.

35 El conjunto de asidero y el conjunto de unidad de impulsión pueden estar en comunicación inalámbrica entre sí.

Según otro aspecto de la presente descripción, se proporciona un método para configurar un dispositivo quirúrgico electromecánico, de mano, alimentado. El método incluye la etapa de proporcionar un conjunto de asidero. El conjunto de asidero incluye un alojamiento de asidero que define un eje longitudinal, el alojamiento de asidero incluye una primera característica de conexión y una segunda característica de conexión; una placa de circuitos dispuesta dentro del alojamiento de asidero; una batería dispuesta dentro del alojamiento de asidero y que está en comunicación eléctrica con la placa de circuitos; al menos un contacto eléctrica con la placa de circuitos y la batería; y al menos un contacto eléctrico asociado con la segunda característica de conexión del alojamiento de asidero y que está en comunicación eléctrica con la placa de circuitos y la batería; al menos un primer botón para accionamiento por un dedo de un usuario, cada botón de disparo que está en comunicación eléctrica con la placa de circuitos.

El método incluye además la etapa de proporcionar un conjunto de unidad de impulsión conectable de manera retirable y selectivamente a la seleccionada de la primera característica de conexión y la segunda característica de conexión del conjunto de asidero. El conjunto de unidad de impulsión incluye un alojamiento de unidad de impulsión que define un eje longitudinal, el alojamiento de unidad de impulsión incluye una característica de conexión configurada y adaptada para emparejarse con una seleccionada de la primera característica de conexión y la segunda característica de conexión del conjunto de asidero; un motor dispuesto dentro del alojamiento de unidad de impulsión; un vástago de impulsión soportado rotatoriamente en el alojamiento de unidad de impulsión y que se extiende desde ese, el vástago de impulsión es impulsado por el motor; y al menos un contacto eléctrico asociado con la característica de conexión del alojamiento de unidad de impulsión y que está en comunicación eléctrica con el motor.

El método incluye además las etapas de conectar el conjunto de unidad de impulsión a la primera característica de

conexión del conjunto de asidero, en donde el eje longitudinal del conjunto de unidad de impulsión está paralelo respecto al eje longitudinal del alojamiento de asidero, cuando se desea una configuración en línea del dispositivo quirúrgico; y conectar el conjunto de unidad de impulsión a la segunda característica de conexión del conjunto de asidero, en donde el eje longitudinal del conjunto de unidad de impulsión está angulado respecto al eje longitudinal del alojamiento de asidero, cuando se desea una configuración de empuñadura de pistola del dispositivo quirúrgico.

El método puede incluir además la etapa de formar una interfaz eléctrica de un contacto eléctrico asociado con la característica de conexión del alojamiento de unidad de impulsión con un contacto eléctrico de la primera característica de conexión del alojamiento de asidero cuando el conjunto de unidad de impulsión se conecta a la primera característica de conexión del conjunto de asidero.

- El método puede incluir además la etapa de formar una interfaz eléctrica de un contacto eléctrico asociado con la característica de conexión del alojamiento de unidad de impulsión con un contacto eléctrico de la segunda característica de conexión del alojamiento de asidero cuando el conjunto de unidad de impulsión se conecta a la segunda característica de conexión del conjunto de asidero.
- El método puede incluir además la etapa de conectar un efector final al vástago de impulsión del conjunto de unidad de impulsión.

El método puede incluir además las etapas de conectar un adaptador al vástago de impulsión del conjunto de unidad de impulsión; y conectar un efector final al adaptador. El adaptador puede transmitir una fuerza rotatoria desde el vástago de impulsión del motor al efector final.

El conjunto de asidero y el conjunto de unidad de impulsión pueden estar en comunicación inalámbrica entre sí.

20 Breve descripción de los dibujos

5

30

40

45

50

En esta memoria se describen realizaciones de la presente descripción con referencia a los dibujos adjuntos, en donde:

La figura 1 es una ilustración esquemática trasera, en perspectiva, de un conjunto de asidero de un dispositivo quirúrgico de la presente descripción;

La figura 2 es una ilustración esquemática trasera, en perspectiva, de un conjunto de unidad de impulsión del dispositivo quirúrgico de la presente descripción;

La figura 3 es una ilustración esquemática en perspectiva del dispositivo quirúrgico de la presente descripción, mostrado en una primera configuración;

La figura 4 es una ilustración esquemática en perspectiva del dispositivo quirúrgico de la presente descripción, mostrado en una segunda configuración;

La figura 5 es una vista esquemática en alzado lateral del dispositivo quirúrgico que se ilustra en la figura 4, con partes del mismo mostrado en sección transversal;

La figura 6 es una vista en perspectiva de un conjunto de adaptador y un efector final de la técnica anterior para uso con el dispositivo quirúrgico de la presente descripción; y

La figura 7 es una vista en perspectiva en despiece ordenado del efector final de la técnica anterior de la figura 6.

Descripción detallada de realizaciones

Realizaciones de sistemas quirúrgicos y/o conjuntos de asidero divulgados actualmente se describen en detalle con referencia a los dibujos, en los que numerales de referencia semejantes designan elementos idénticos o correspondientes en cada una de las varias vistas. Tal como se emplea en esta memoria, el término "distal" se refiere a la parte del sistema quirúrgico y/o conjunto de asidero, o componente de los mismos, más alejada del usuario, mientras que el término "proximal" se refiere a la parte del sistema quirúrgico y/o conjunto de asidero, o componente de los mismos, más cercana al usuario.

Un dispositivo quirúrgico, según una realización de la presente descripción, se designa generalmente como 100, y es en forma de conjunto de asidero electromecánico de mano alimentado configurado para la sujeción selectiva de una pluralidad de diferentes efectores finales al mismo, ya sea directamente al mismo o a través de un adaptador, que están configurados cada uno para el accionamiento y la manipulación por parte del dispositivo quirúrgico electromecánico de mano alimentado.

Como se ilustra en las figuras 1 y 3-5, el dispositivo quirúrgico 100 incluye una empuñadura de mano o conjunto de asidero 102 configurados para el agarre con la mano de un usuario o cirujano. El conjunto de asidero 102 incluye un alojamiento 104 que define un eje longitudinal "X1" y un eje transversal "Y1".

ES 2 638 664 T3

El alojamiento 104 del conjunto de asidero 102 aloja una placa de circuitos 150. La placa de circuitos 150 está configurada para controlar las diversas operaciones del dispositivo quirúrgico 100.

El alojamiento 104 del conjunto de asidero 102 también aloja de manera retirable o de manera no retirable una batería 156 en el mismo. La batería 156 puede ser recargable, no recargable, reutilizable y/o desechable. La batería 156 está configurada para suministrar energía a cualquiera de los componentes eléctricos del dispositivo quirúrgico 100.

5

El alojamiento 104 del conjunto de asidero 102 soporta al menos un gatillo o botón 106 en una superficie o lado del mismo para acoplamiento con un dedo índice del usuario o cirujano. El alojamiento 104 del conjunto de asidero 102 soporta además al menos otro gatillo o botón 108 en una superficie o lado del mismo para acoplamiento con un pulgar del usuario o cirujano.

Se contempla que el gatillo y/o botón 106, 108 pueda ser en forma de interruptores de gatillo, interruptores de efecto Hall, interruptores de presión, interruptores de contacto, plaquitas táctiles, interruptores de inductancia, graduadores, basculador, oscilador, ruedas y similares.

El accionamiento del gatillo 106 o 108 provoca que la placa de circuitos 150 proporcione señales apropiadas a un conjunto de unidad de impulsión 200 (como se tratará con mayor detalle más adelante) para cerrar un conjunto de herramienta 304 del efector final 300 (véanse las figuras 5 y 6) y/o para disparar un cartucho de grapado/corte dentro del conjunto de herramienta 304 del efector final 300, para abrir el conjunto de herramienta 304, para articular el conjunto de herramienta 304 respecto a la parte de cuerpo 302, y/o para rotar el conjunto de herramienta 304 respecto al alojamiento de asidero 102.

Como se puede ver en las figuras 1 y 3-5, el alojamiento 104 del conjunto de asidero 102 incluye una primera característica o conjunto de conexión 110 formado o proporcionado en/sobre una primera superficie o lado del mismo, y una segunda característica o conjunto de conexión 120 formado o proporcionado en/sobre una segunda superficie o lado del mismo. Cada característica de conexión 110, 120 incluye un terminal o contacto eléctrico respectivo 112, 122 asociado con el mismo que está en comunicación eléctrica con la placa de circuitos 150 y la batería 156.

Con referencia a las figuras 2-5, el dispositivo quirúrgico 100 incluye además un conjunto de unidad de impulsión 200 conectable selectivamente ya sea a la primera característica de conexión 110 o a la segunda característica de conexión 120 del conjunto de asidero 102. Específicamente, el conjunto de unidad de impulsión 200 incluye un alojamiento 202 que define un eje longitudinal "X2".

El alojamiento 202 del conjunto de unidad de impulsión 200 incluye una característica de conexión 210 configurada y adaptada para conectarse selectivamente y de manera retirable ya sea con la primera característica de conexión 110 o la segunda característica de conexión 120 del conjunto de asidero 102. La característica de conexión 210 incluye un terminal o contacto eléctrico respectivo 212 asociado con el mismo que está en comunicación eléctrica con un motor 230 (como se tratará con mayor detalle más adelante).

Por ejemplo, en una realización, cada característica de conexión 110, 120 del conjunto de asidero 102 puede ser en forma de un enchufe macho para la inserción en la característica de conexión 210 del conjunto de unidad de impulsión 200 que puede ser en forma de receptáculo hembra, o viceversa. Se concibe que la interfaz entre la característica de conexión 210 del conjunto de unidad de impulsión 200 y ya sea la primera característica de conexión 110 o la segunda característica de conexión 120 del conjunto de asidero 102 pueda ser en forma de conexión de encaje por salto elástico, conexión tipo bayoneta o algo semejante.

40 Como se puede ver en la figura 3, cuando el conjunto de unidad de impulsión 200 se conecta a la primera característica de conexión 110 del conjunto de asidero 102, el eje longitudinal "X2" del conjunto de unidad de impulsión 200 se orienta sustancialmente paralelo o coaxial con el eje longitudinal "X1" del alojamiento de asidero 104 del conjunto de asidero 102.

Además, como se puede ver en la figura 4, cuando el conjunto de unidad de impulsión 200 se conecta a la segunda característica de conexión 120 del conjunto de asidero 102, el eje longitudinal "X2" del conjunto de unidad de impulsión 200 se orienta en un ángulo "θ", entre aproximadamente 45° y aproximadamente 135°, respecto al eje longitudinal "X1" del alojamiento de asidero 104 del conjunto de asidero 102. Como alternativa, como también se puede ver en la figura 4, cuando el conjunto de unidad de impulsión 200 se conecta a la segunda característica de conexión 120 del conjunto de asidero 102, el eje longitudinal "X2" del conjunto de unidad de impulsión 200 se puede orientar sustancialmente paralelo o coaxial con el eje transversal "Y1" del alojamiento de asidero 104 del conjunto de asidero 102.

El alojamiento 202 del conjunto de unidad de impulsión 200 soporta al menos un motor 230 en el mismo. El motor 230 puede ser de escobillas o sin escobillas. El alojamiento 202 puede incluir características de disipación de calor en forma de rendijas, agujeros o algo semejante formadas en el mismo, o en forma de disipadores térmicos.

El alojamiento 202 de unidad de impulsión del conjunto de unidad de impulsión 200 soporta al menos un contacto eléctrico o receptáculo 212 para conexión eléctrica selectiva a un terminal o contacto eléctrico 112, 122 respectivo

de la característica de conexión 110, 120 del conjunto de asidero 102 cuando el conjunto de unidad de impulsión 200 se conecta al conjunto de asidero 102. El contacto eléctrico 212 está en comunicación eléctrica con el motor 230. De esta manera, cuando el conjunto de unidad de impulsión 200 se conecta al conjunto de asidero 102, el motor 230 está en comunicación eléctrica con la placa de circuitos 150 y la batería 156 del conjunto de asidero 102.

- 5 Como se ilustra en la figura 5, el conjunto de asidero 102 y el conjunto de unidad de impulsión 200 incluyen características de sujeción complementarias que permiten la conexión/desconexión selectiva del conjunto de asidero 102 y el conjunto de unidad de impulsión 200 entre sí. Específicamente, el conjunto de asidero 102 puede incluir un primer rebaje de sujeción 114 asociado con la característica de conexión 110 del conjunto de asidero 102, y un segundo rebaje de sujeción 124 asociado con la característica de conexión 120 del conjunto de asidero 102. 10 Adicionalmente, la característica de sujeción del conjunto de unidad de impulsión 200 puede incluir un conjunto de enganche 214 asociado con la característica de conexión 210. El conjunto de enganche 214 puede incluir al menos un enganche 214a que es predispuesto a una posición radialmente hacia fuera por un miembro de predisposición 216 o algo semejante (es decir, resorte). Cada enganche 214a se puede mover radialmente hacia dentro, contra la predisposición del miembro de predisposición 216, de modo que dedos 214b de los enganches 214a entran en el 15 seleccionado del primer rebaje de sujeción 114 o el segundo rebaje de sujeción 124 del conjunto de asidero 102. Después de eso, cada enganche 214a puede ser liberado para completar la conexión del conjunto de asidero 102 y el conjunto de unidad de impulsión 200. Se contempla que el conjunto de enganche 214 se pueda configurar como conjunto de enganche-salto elástico en donde dedos 214b hacen de leva en rebajes 114, 124 respectivos simplemente al aproximar el conjunto de unidad de impulsión 200.
- Si bien un conjunto de enganche 214 se muestra soportado sobre el conjunto de unidad de impulsión 200, se contempla que se puedan proporcionar múltiples conjuntos de enganche en el conjunto de asidero y que se pueda proporcionar un rebaje complementario en el conjunto de unidad de impulsión. Adicionalmente, se contempla que la conexión/desconexión selectiva del conjunto de asidero 102 y el conjunto de unidad de impulsión 200 entre sí pueda lograrse usando cualquier número de características, incluidas y no limitadas a una disposición de pasador/varilla/poste de trabado, una disposición de collarín retráctil y pasador de bolas y similares.
 - Como se puede ver en las figuras 2-5, el alojamiento 202 de unidad de impulsión del conjunto de unidad de impulsión 200 define una parte de conexión distal 202a configurada para aceptar un conjunto de acoplamiento de impulsión 410 correspondiente de un conjunto de adaptador 400 (véase la figura 6) o de un efector final 300 (véanse las figuras 6 y 7). La construcción y funcionamiento específicos de un conjunto de adaptador 400 ejemplar, para uso con el conjunto de unidad de impulsión 200 y el dispositivo quirúrgico 100 de la presente descripción, se muestran y describen en la solicitud de patente de EE. UU. n.º de serie 13/904.497, presentada el 29 de mayo de 2013, (Patente de EE. UU. n.º de publicación 2014-0012237 A1), o la solicitud de patente de EE. UU. n.º de serie 13/875.571, presentada el 2 de mayo de 2013, (Patente de EE. UU. n.º de publicación 2013-0324978 A1). El conjunto de adaptador 400 se configura para convertir una fuerza rotatoria de cada vástago de impulsión rotatorio del conjunto de unidad de impulsión 200 en una fuerza de traslación axial útil para hacer funcionar un conjunto de impulsión 360 y/o un enlace de articulación 366 del efector final 300, como se ilustra en la figura 7.

30

35

40

45

60

La parte de conexión 202a del alojamiento 202 de unidad de impulsión puede definir un rebaje cilíndrico que recibe un conjunto de acoplamiento de impulsión 410 del conjunto adaptador 400 cuando el conjunto de adaptador 400 está emparejado con el alojamiento 202 de unidad de impulsión. La parte de conexión 202a del alojamiento 202 de unidad de impulsión soporta rotatoriamente al menos un vástago de impulsión rotatorio 204 (véase la figura 3) que se extiende desde el motor 230 o que está impulsado por este.

Cuando el conjunto de adaptador 400 se empareja a la parte de conexión 202a del alojamiento 202 de unidad de impulsión, cada uno de los vástagos de impulsión rotatorios 204 de la parte de conexión 202a del alojamiento 202 de unidad de impulsión se acopla con un manguito conector rotatorio correspondiente (no se muestra) del conjunto de adaptador 400. Específicamente, por ejemplo, la interfaz entre un vástago de impulsión 204 correspondiente y un manguito conector encaja con guía de manera que la rotación del vástago de impulsión 204 de la parte de conexión 202a del alojamiento 202 de unidad de impulsión provoca una rotación correspondiente del manguito conector correspondiente del conjunto de adaptador 400.

El emparejamiento de cada uno de los vástagos de impulsión 204 de la parte de conexión 202a del alojamiento 202 de unidad de impulsión con manguitos conectores correspondientes del conjunto de adaptador 400 permite transmitir independientemente fuerzas rotacionales por medio de cada una de las interfaces de conector respectivas. Los vástagos de impulsión 204 de la parte de conexión 202a del alojamiento 202 de unidad de impulsión se pueden configurar para ser rotados independientemente por el motor 230. Si se proporcionan múltiples vástagos de impulsión, el conjunto de unidad de impulsión 200 puede incluir un módulo de selección de función (no se muestra) que funciona para seleccionar qué vástago de impulsión del vástagos de impulsión 204 de la parte de conexión 202a del alojamiento 202 de unidad de impulsión va a ser impulsado por el motor 230.

Cada uno de los vástagos de impulsión 204 de la parte de conexión 202a del alojamiento 202 de unidad de impulsión tiene una interfaz encajada guiada y/o sustancialmente no rotatoria con manguitos conectores respectivos del adaptador, en donde cuando el adaptador se acopla al conjunto de unidad de impulsión 200, fuerzas rotacionales son transferidas selectivamente desde el motor 230 del conjunto de unidad de impulsión 200 al adaptador.

La rotación selectiva de los vástagos de impulsión 204 de la parte de conexión 202a del alojamiento 202 de unidad de impulsión permite al dispositivo quirúrgico 100 accionar selectivamente diferentes funciones del efector final. Como se describirá con mayor detalle más adelante, la rotación selectiva e independiente de un primer vástago de impulsión de los vástagos de impulsión 204 de la parte de conexión 202a del alojamiento 202 de unidad de impulsión puede corresponder a la apertura y cierre selectivos e independientes de un conjunto de herramienta del efector final, e impulsión de un componente de grapado/corte del conjunto de herramienta del efector final.

5

10

25

40

45

50

55

También, la rotación selectiva e independiente de un segundo vástago de impulsión (no mostrado) de los vástagos de impulsión 204 de la parte de conexión 202a del alojamiento 202 de unidad de impulsión puede corresponder a la articulación selectiva e independiente del conjunto de herramienta 304 del efector final 300 transversal al eje longitudinal "X2" del conjunto de unidad de impulsión 200 (véanse las figuras 2-5). Adicionalmente, la rotación selectiva e independiente de un tercer vástago de impulsión (no se muestra) de los vástagos de impulsión 204 de la parte de conexión 202a del alojamiento 202 de unidad de impulsión puede corresponder a la rotación selectiva e independiente del efector final 300 alrededor del eje longitudinal "X2" del conjunto de unidad de impulsión 200.

En uso, dependiendo del procedimiento quirúrgico particular, dependiendo de los efectores finales particulares a utilizar para el procedimiento quirúrgico, y dependiendo de la empuñadura de mano deseada que prefiere, desea o necesita el cirujano con el fin de realizar el procedimiento quirúrgico, el cirujano (u otro técnico de quirófano) conecta selectivamente el conjunto de unidad de impulsión 200 ya sea a la primera característica o conjunto de conexión 110 formado o proporcionado en/sobre la primera superficie o lado del conjunto de asidero 102 o la segunda característica o conjunto de conexión 120 formado o proporcionado en/sobre la segunda superficie o lado del conjunto de asidero 102.

Cuando el conjunto de unidad de impulsión 200 se conecta a la primera característica o conjunto de conexión 110 formado o proporcionado en/sobre la primera superficie o lado del conjunto de asidero 102, el cirujano puede agarrar el dispositivo quirúrgico 100 como empuñadura de apretón de manos en línea. Cuando el conjunto de unidad de impulsión 200 se conecta a la segunda característica o conjunto de conexión 120 formado o proporcionado en/sobre la segunda superficie o lado del conjunto de asidero 102, el cirujano puede agarrar el dispositivo quirúrgico 100 como empuñadura de pistola.

Como se ilustra en las figuras 6 y 7, el efector final está designado como 300. El efector final 300 se configura y dimensiona para inserción endoscópica a través de una cánula, trocar o algo semejante. En particular, el efector final 300 puede atravesar una cánula o trocar cuando el efector final 300 está en un estado cerrado.

30 El efector final 300 incluye una parte de cuerpo proximal 302 y un conjunto de herramienta 304. La parte de cuerpo proximal 302 se sujeta de manera liberable a un acoplamiento distal del adaptador y el conjunto de herramienta 304 se sujeta de manera pivotante a un extremo distal de la parte de cuerpo proximal 302. El conjunto de herramienta 304 incluye un conjunto de yunque 306 y un conjunto de cartucho 308. El conjunto de cartucho 308 es pivotante con respecto al conjunto de yunque 306 y es movible entre una posición de apertura o sin sujeción y una posición de 35 cierre o con sujeción para la inserción a través de una cánula de un trocar.

La parte de cuerpo proximal 302 incluye al menos un conjunto de impulsión 360 y una varilla de articulación 366.

Se puede hacer referencia a la patente de EE. UU. nº de publicación 2009/0314821, presentada el 31 de agosto de 2009, titulada "TOOL ASSEMBLY FOR A SURGICAL STAPLING DEVICE", cuyo entero contenido se incorpora en la presente memoria por referencia, o la solicitud de patente de EE. UU. n.º de serie 13/904.497, presentada el 29 de mayo de 2013 (patente de EE. UU. n.º de publicación 2014-0012237 A1, para tener una exposición detallada de la construcción y el funcionamiento del efector final 300.

En una realización, se contempla que el conjunto de asidero 102 y el conjunto de unidad de impulsión 200 puedan estar provistos de componentes de comunicación inalámbrica de manera que la placa de circuitos 150 del conjunto de asidero 102 se pueda comunicar inalámbricamente con el motor 230 del conjunto de unidad de impulsión 200. Ejemplos de componentes de comunicación inalámbrica incluyen, y no se limitan a, Bluetooth, WIFI 802,11, zigby, etc.

Según la presente descripción, información que puede ser comunicada entre el conjunto de asidero 102 y el conjunto de unidad de impulsión 200 incluye, y no se limita a información acerca de control de motor (es decir, corriente, velocidad, vueltas, par), acerca de fuerzas, acerca de activación por conmutador, acerca de estado de sistema (es decir, error/fallo); información acerca de identificación de componentes, acerca de información de apuntes/contadores de uso; información acerca del ambiente (es decir, temperatura, presión, humedad); información acerca de propiedades de tejido (es decir, niveles de oxígeno, flujo sanguíneo, grosor de tejido); información de vídeo/imagenología; y/o información acerca de duración/energía de la batería.

Se entenderá que se pueden hacer diversas modificaciones a las realizaciones de los conjuntos de adaptador descritos actualmente. Por lo tanto, la descripción anterior no se debe interpretar como limitadora, sino meramente como ejemplos de realizaciones. Los expertos en la técnica concebirán otras modificaciones dentro del alcance de la presente descripción.

REIVINDICACIONES

1. Un dispositivo quirúrgico electromecánico, de mano, alimentado (100), que comprende:

un conjunto de asidero (102) que incluye:

5

20

30

un alojamiento de asidero (104) que define un eje longitudinal, el alojamiento de asidero incluye una primera característica de conexión (110) y una segunda característica de conexión (120);

una placa de circuitos (150) dispuesta dentro del alojamiento de asidero;

una batería (156) dispuesta dentro del alojamiento de asidero y que está en comunicación eléctrica con la placa de circuitos:

al menos un contacto eléctrico (112) asociado con la primera característica de conexión del alojamiento de asidero y 10 que está en comunicación eléctrica con la placa de circuitos y la batería;

al menos un contacto eléctrico (122) asociado con la segunda característica de conexión del alojamiento de asidero y que está en comunicación eléctrica con la placa de circuitos y la batería; y

al menos un primer botón (106) para accionamiento por un dedo de un usuario, cada botón de disparo está en comunicación eléctrica con la placa de circuitos; y

un conjunto de unidad de impulsión (200) conectable de manera retirable y selectivamente a una seleccionada de la primera característica de conexión y la segunda característica de conexión del conjunto de asidero, el conjunto de unidad de impulsión incluye:

un alojamiento (202) de unidad de impulsión que define un eje longitudinal, el alojamiento de unidad de impulsión incluye una característica de conexión (210) configurada y adaptada para emparejarse con una seleccionada de la primera característica de conexión y la segunda característica de conexión del conjunto de asidero;

un motor (230) dispuesto dentro del alojamiento de unidad de impulsión; un vástago de impulsión (204) soportado rotatoriamente en el alojamiento de unidad de impulsión y que se extiende desde ese, el vástago de impulsión es impulsado por el motor; y

al menos un contacto eléctrico (212) asociado con la característica de conexión del alojamiento de unidad de impulsión y que está en comunicación eléctrica con el motor;

en donde, cuando el conjunto de unidad de impulsión se conecta a la primera característica de conexión del conjunto de asidero:

un contacto eléctrico (212) asociado con la característica de conexión del alojamiento de unidad de impulsión forma una interfaz eléctrica con un contacto eléctrico (112) de la primera característica de conexión del alojamiento de asidero; y

el eje longitudinal del conjunto de unidad de impulsión es paralelo respecto al eje longitudinal del alojamiento de asidero; y

en donde, cuando el conjunto de unidad de impulsión se conecta a la segunda característica de conexión del conjunto de asidero:

un contacto eléctrico (212) asociado con la característica de conexión del alojamiento de unidad de impulsión forma una interfaz eléctrica con un contacto eléctrico (122) de la segunda característica de conexión del alojamiento de asidero; y

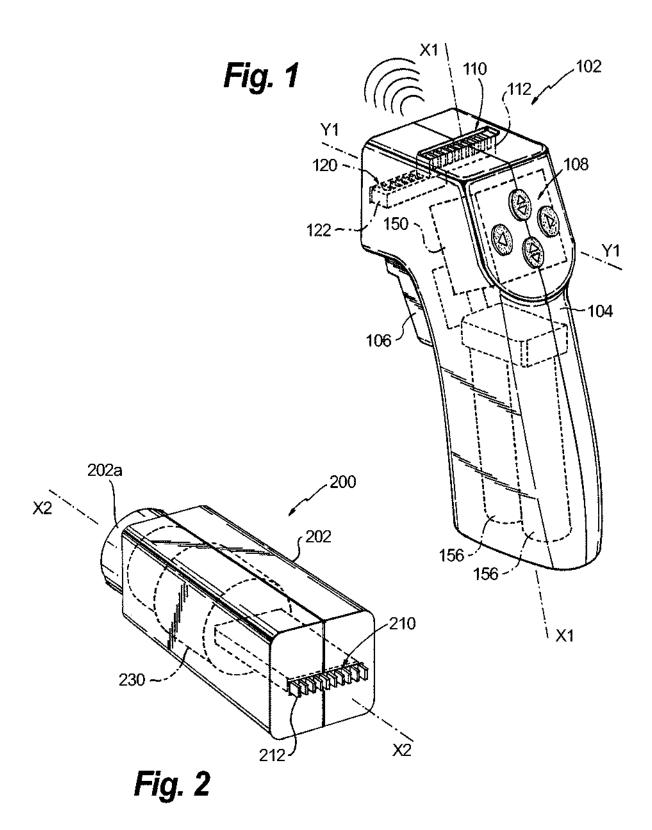
el eje longitudinal del conjunto de unidad de impulsión está angulado respecto al eje longitudinal del alojamiento de asidero.

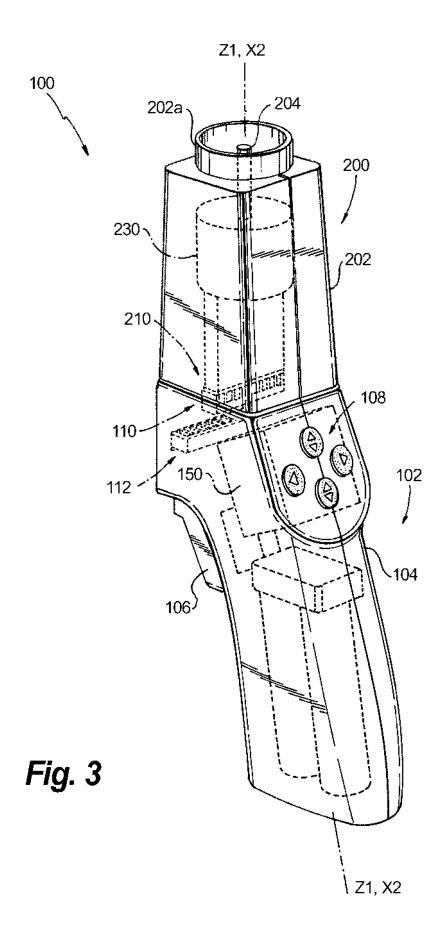
- 40 2. El dispositivo quirúrgico según la reivindicación 1, en donde el conjunto de asidero incluye al menos un segundo botón (108) para accionamiento por un pulgar del usuario.
 - 3. El dispositivo quirúrgico según la reivindicación 1 o la reivindicación 2, en donde el conjunto de unidad de impulsión incluye una pluralidad de vástagos de impulsión (204) soportados rotatoriamente en el alojamiento de unidad de impulsión y que se extienden desde ese, en donde cada vástago de impulsión es impulsado por el motor.
- 45 4. El dispositivo quirúrgico según cualquier reivindicación precedente, en donde la primera característica de conexión se ubica en la superficie longitudinalmente más distal del alojamiento de asidero.
 - 5. El dispositivo quirúrgico según la reivindicación 4, en donde la segunda característica de conexión se ubica en una superficie lateral del alojamiento de asidero.

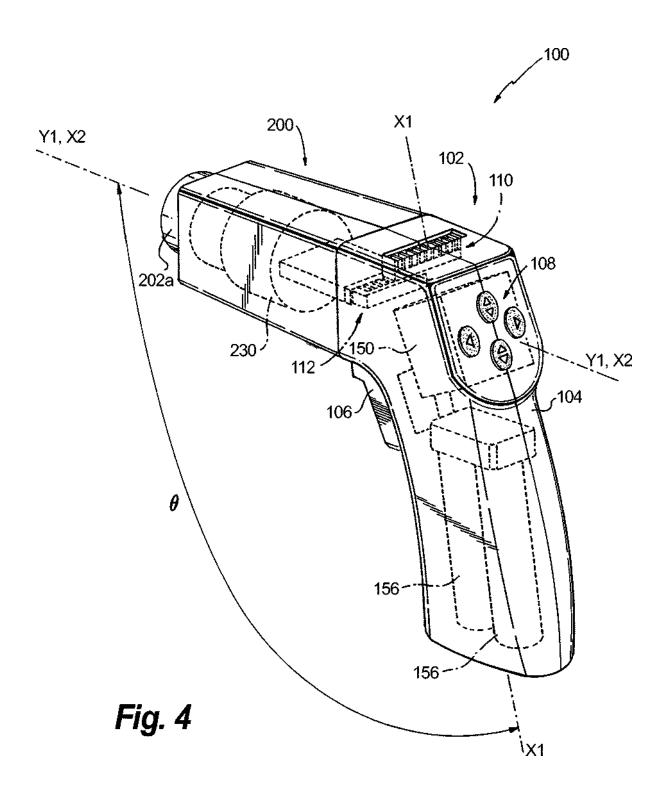
ES 2 638 664 T3

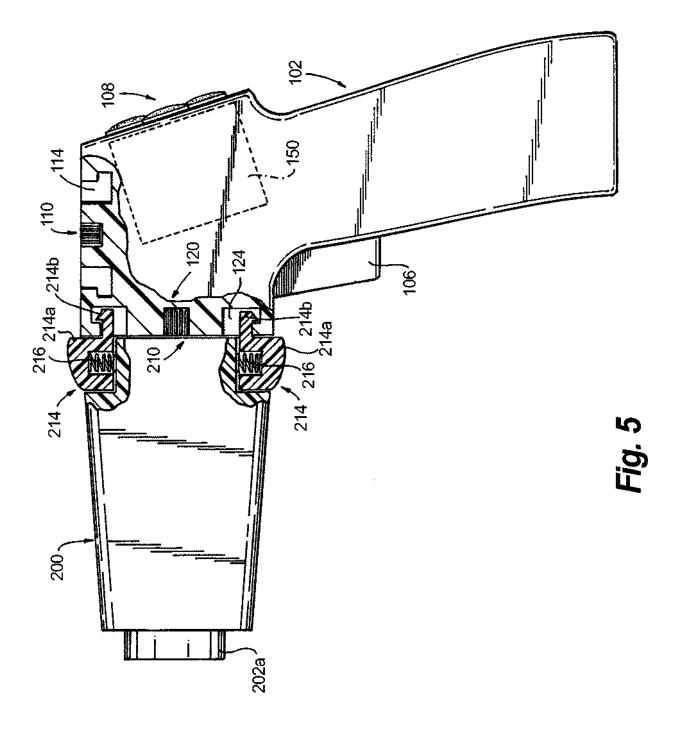
- 6. El dispositivo quirúrgico según cualquier reivindicación precedente, en donde el conjunto de asidero incluye una característica de sujeción asociado con cada una de la primera característica de conexión y la segunda característica de conexión, y el conjunto de unidad de impulsión incluye una característica de sujeción configurada para conexión selectiva a una seleccionada de la características de sujeción del conjunto de asidero.
- 5 7. El dispositivo quirúrgico según la reivindicación 6, en donde cada característica de sujeción del conjunto de asidero comprende un rebaje (114, 124) formado en una superficie del conjunto de asidero.
 - 8. El dispositivo quirúrgico según la reivindicación 6 o la reivindicación 7, en donde la característica de sujeción del conjunto de unidad de impulsión incluye un conjunto de enganche (214) configurado para recepción selectiva en un rebaje seleccionado del conjunto de asidero.
- 10 9. El dispositivo quirúrgico según cualquier reivindicación precedente, en donde el conjunto de asidero y el conjunto de unidad de impulsión están en comunicación inalámbrica entre sí.
 - 10. Un método para configurar un dispositivo quirúrgico electromecánico, de mano, alimentado (100), el método comprende las etapas de:
 - proporcionar un conjunto de asidero (102) que incluye:

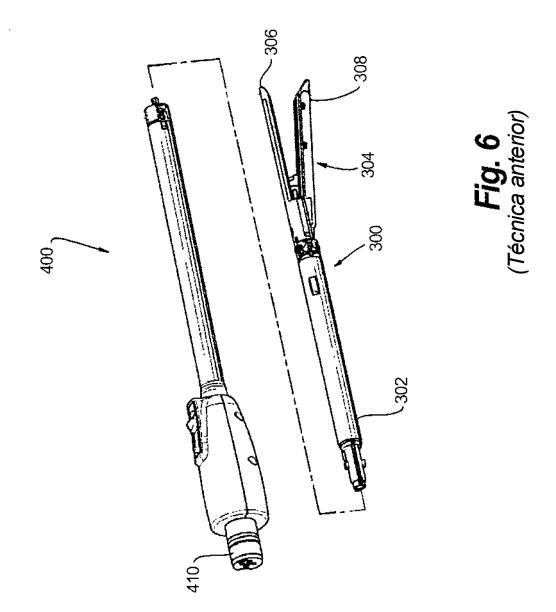
45


50


- un alojamiento de asidero (104) que define un eje longitudinal, el alojamiento de asidero incluye una primera característica de conexión (110) y una segunda característica de conexión (120);
 - una placa de circuitos (150) dispuesta dentro del alojamiento de asidero;
 - una batería (156) dispuesta dentro del alojamiento de asidero y que está en comunicación eléctrica con la placa de circuitos;
- al menos un contacto eléctrico (112) asociado con la primera característica de conexión del alojamiento de asidero y que está en comunicación eléctrica con la placa de circuitos y la batería;
 - al menos un contacto eléctrico (122) asociado con la segunda característica de conexión del alojamiento de asidero y que está en comunicación eléctrica con la placa de circuitos y la batería; y
- al menos un primer botón (106) para accionamiento por un dedo de un usuario, cada botón de disparo está en comunicación eléctrica con la placa de circuitos; y
 - proporcionar un conjunto de unidad de impulsión (200) conectable de manera retirable y selectivamente a una seleccionada de la primera característica de conexión y la segunda característica de conexión del conjunto de asidero, el conjunto de unidad de impulsión incluye:
- un alojamiento (202) de unidad de impulsión que define un eje longitudinal, el alojamiento de unidad de impulsión incluye una característica de conexión (210) configurada y adaptada para emparejarse con una seleccionada de la primera característica de conexión y la segunda característica de conexión del conjunto de asidero;
 - un motor (230) dispuesto dentro del alojamiento de unidad de impulsión; un vástago de impulsión (204) soportado rotatoriamente en el alojamiento de unidad de impulsión y que se extiende desde ese, el vástago de impulsión es impulsado por el motor; y
- al menos un contacto eléctrico (212) asociado con la característica de conexión del alojamiento de unidad de impulsión y que está en comunicación eléctrica con el motor;
 - conectar el conjunto de unidad de impulsión (200) a la primera característica de conexión (110) del conjunto de asidero, en donde el eje longitudinal del conjunto de unidad de impulsión está paralelo respecto al eje longitudinal del alojamiento de asidero, cuando se desea una configuración en línea del dispositivo guirúrgico; y
- do conectar el conjunto de unidad de impulsión (200) a la segunda característica de conexión (120) del conjunto de asidero, en donde el eje longitudinal del conjunto de unidad de impulsión está angulado respecto al eje longitudinal del alojamiento de asidero, cuando se desea una configuración de empuñadura de pistola del dispositivo quirúrgico.
 - 11. El método según la reivindicación 10, que comprende además la etapa de formar una interfaz eléctrica de un contacto eléctrico (212) asociado con la característica de conexión del alojamiento de unidad de impulsión con un contacto eléctrico (112) de la primera característica de conexión del alojamiento de asidero cuando el conjunto de unidad de impulsión se conecta a la primera característica de conexión del conjunto de asidero.
 - 12. El método según la reivindicación 10 o la reivindicación 11, que comprende además la etapa de formar una interfaz eléctrica de un contacto eléctrico (212) asociado con la característica de conexión del alojamiento de unidad de impulsión con un contacto eléctrico (122) de la segunda característica de conexión del alojamiento de asidero cuando el conjunto de unidad de impulsión se conecta a la segunda característica de conexión del conjunto de


ES 2 638 664 T3


asidero.


- 13. El método según cualquiera de las reivindicaciones 10 a 12, que comprende además la etapa de conectar un efector final (300) al vástago de impulsión del conjunto de unidad de impulsión.
- 14. El método según cualquiera de las reivindicaciones 10 a 13, que comprende además las etapas de:
- 5 conectar un adaptador (400) al vástago de impulsión del conjunto de unidad de impulsión; y conectar un efector final (300) al adaptador;
 - en donde el adaptador transmite una fuerza rotatoria desde el vástago de impulsión del motor al efector final.
 - 15. El método según cualquiera de las reivindicaciones 10 a 14, en donde el conjunto de asidero (102) y el conjunto de unidad de impulsión (200) están en comunicación inalámbrica entre sí.

