

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 639 020

(51) Int. CI.:

C12N 15/12 C07K 14/51 (2006.01) **G01N 33/53**

(2006.01) A01K 67/027

(2006.01) (2006.01)

C07K 14/495 C12N 15/63

(2006.01) (2006.01)

C12N 5/10

(2006.01)

C07K 16/22

(2006.01)

C12Q 1/68

C12N 15/62 A61K 38/18 (2006.01) (2006.01)

A61P 19/10

(2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 24.11.1999

E 10008049 (8)

(97) Fecha y número de publicación de la concesión europea:

EP 2261335

(54) Título: Composiciones y métodos para incrementar la mineralización de la substancia ósea

(30) Prioridad:

27.11.1998 US 110283 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 25.10.2017

(73) Titular/es:

UCB PHARMA S.A. (100.0%) Allee de la Recherche 60 1070 Bruxelles, BE

(72) Inventor/es:

BRUNKOW, MARY E.; GALAS, DAVID J.; KOVACEVICH, BRIAN; **MULLIGAN, JOHN T.;** PAEPER, BRYAN W.; VAN NESS, JEFFREY y WINKLER, DAVID G.

(74) Agente/Representante:

UNGRÍA LÓPEZ, Javier

DESCRIPCIÓN

Composiciones y métodos para incrementar la mineralización de la substancia ósea

5 Campo técnico

10

30

35

40

45

50

55

La presente invención se refiere en general a productos y métodos farmacéuticos, y, más concretamente, a composiciones adecuados para incrementar el contenido mineral del hueso. Tales composiciones pueden ser utilizados para tratar una amplia variedad de afecciones, incluyendo por ejemplo, osteopenia, osteoporosis, fracturas y otros trastornos en los cuales la densidad mineral del hueso es un sello de la enfermedad.

Antecedentes de la invención

A lo largo de la vida se pueden producir dos o tres fases distintas de cambios para la masa ósea de un individuo (ver Riggs, West J. Med. 154:63-77, 1991). La primera fase se produce tanto en hombres como en mujeres, y prosigue hasta la consecución de una masa ósea pico. Esta primera fase se logra por medio del crecimiento lineal de las placas de crecimiento endocondrales, y del crecimiento radial debido a una tasa de aposición perióstica. La segunda fase comienza alrededor de los 30 años para el hueso trabecular (huesos planos tales como las vértebras y la pelvis) y alrededor de los 40 años para el hueso cortical (p.ej., huesos largos encontrados en las extremidades) y continúa durante la edad adulta. Esta fase se caracteriza por una pérdida ósea lenta, y se produce tanto en hombres como en mujeres. En mujeres, también se produce una tercera fase de pérdida de hueso, muy probablemente debido a las deficiencias de estrógenos post-menopáusicas. Solo durante esta fase, las mujeres pueden perder un 10% adicional de masa ósea del hueso cortical y un 25% del compartimento trabecular (ver Riggs, supra).

La pérdida de contenido mineral del hueso puede estar causada por una amplia variedad de afecciones, y puede producir problemas médicos significativos. Por ejemplo, la osteoporosis es una enfermedad debilitante en humanos caracterizada por descensos marcados de masa de hueso esquelético y densidad mineral, deterioro estructural del hueso incluyendo la degeneración de la microarquitectura ósea y los correspondientes incrementos de la fragilidad del hueso y la susceptibilidad a la fractura en los individuos afectados. La osteoporosis en humanos está precedida de osteopenia clínica (densidad mineral del hueso que es mayor de una desviación típica pero menor de 2,5 desviaciones típicas por debajo del valor medio para hueso adulto joven), un estado encontrado en aproximadamente 25 millones de personas en los Estados Unidos. Otros 7-8 millones de pacientes en los Estados Unidos han sido diagnosticados de osteoporosis clínica (definida como un contenido mineral del hueso mayor de 2,5 desviaciones típicas por debajo de la del hueso adulto joven maduro). La osteoporosis es una de las enfermedades más costosas para el sistema sanitario, costando decenas de millardos de dólares anualmente en los Estados Unidos. Además de los costes relacionados con el cuidado de la salud, el cuidado residencial a largo plazo y la pérdida de días de trabajo son añadidos a los costes financieros y sociales de esta enfermedad. En todo el mundo aproximadamente 75 millones de personas están en riesgo de osteoporosis.

La frecuencia de osteoporosis en la población humana aumenta con la edad, y entre los Caucásicos es predominante en las mujeres (que comprenden el 80% de la reserva de pacientes con osteoporosis en los Estados Unidos). El aumento de fragilidad y susceptibilidad a la fractura del hueso esquelético en las personas de edad se agrava por el mayor riesgo de caídas accidentales en esta población. Se ha informado sobre más de 1,5 millones de fracturas óseas relacionadas con la osteoporosis en los Estados Unidos cada año. Las caderas, muñecas, y vértebras fracturadas están entre las lesiones más comunes asociadas con la osteoporosis. Las fracturas de cadera en particular son extremadamente incómodas y costosas para el paciente, y para las mujeres se correlacionan con elevadas tasas de mortalidad y morbilidad.

Aunque la osteoporosis ha sido definida como un incremento del riesgo de fractura debido a un descenso de la masa ósea, ninguno de los tratamientos disponibles en la actualidad para los trastornos óseos puede incrementar sustancialmente la densidad ósea de los adultos. Existe la percepción entre todos los médicos de que se necesitan fármacos que puedan incrementar la densidad ósea en adultos, particularmente en los huesos de la muñeca, la columna vertebral y la cadera que están en riesgo de osteopenia y osteoporosis.

Las estrategias actuales para la prevención de la osteoporosis pueden ofrecer algún beneficio pero no pueden asegurar la resolución de la enfermedad. Entre estas estrategias se incluyen la actividad física moderada (particularmente en actividades de soporte de pesos) con el inicio de la edad avanzada, incluyendo calcio adecuado en la dieta, y evitando el consumo de productos que contienen alcohol o tabaco. Para los pacientes que presentan osteopenia clínica u osteoporosis, todos los fármacos terapéuticos y estrategias actuales están dirigidos a reducir adicionalmente la pérdida de masa ósea inhibiendo el proceso de absorción ósea, un componente natural del proceso de remodelación ósea que se produce constitutivamente.

Por ejemplo, ahora se están prescribiendo estrógenos para retardar la pérdida de hueso. No obstante, hay cierta controversia sobre si existe un beneficio a largo plazo para los pacientes y si existe algún efecto en todos los pacientes de más de 75 años de edad. Por otra parte, se cree que el uso de estrógenos aumenta el riesgo de cáncer de mama o endometrio.

5

También se han sugerido dosis elevadas de calcio en la dieta, con o sin vitamina D para mujeres postmenopáusicas. No obstante, a menudo las dosis elevadas de calcio tienen efectos secundarios gastrointestinales desagradables, y los niveles de calcio en suero deben ser controlados continuamente (ver Khosla y Riggs, Mayo Clin. Proc. 70:978-982, 1995).

10

15

Entre otros agentes terapéuticos que han sido sugeridos se incluyen calcitonina, bifosfonatos, esteroides anabólicos y fluoruro de boro. Tales agentes terapéuticos sin embargo, tienen efectos secundarios no deseables (p.ej., la calcitonina y los esteroides pueden causar náuseas y provocar una reacción inmunitaria, los bifosfonatos y el fluoruro de sodio pueden inhibir la reparación de las fracturas, incluso aunque la densidad ósea aumente moderadamente) que pueden evitar su uso (ver Khosla y Riggs, supra).

Ning inter 20 pued

Ninguna estrategia terapéutica puesta en práctica en la actualidad implica un fármaco que estimule o intensifique el crecimiento de nueva masa ósea. La presente invención proporciona composiciones que pueden ser utilizadas para incrementar la mineralización ósea, y de este modo pueden ser utilizadas para tratar una amplia variedad de afecciones en las que se desea incrementar la masa ósea. Adicionalmente, la presente invención proporciona otras ventajas relacionadas.

Compendio de la invención

25

35

Como se ha indicado más arriba, la presente proporciona un anticuerpo o fragmento del mismo que se une a una proteína codificada por el SEQ ID NO. 1.

Dentro de un aspecto de la presente descripción, se proporcionan moléculas de ácido nucleico aisladas, en donde dichas moléculas de ácido nucleico se seleccionan del grupo que consiste en:

(a) una molécula de ácido nucleico aislada que comprende los ID de secuencia NO: 1, 5, 7, 9, 11, 13, o 15, o una secuencia complemetaria de los mismos;

(b) una molécula de ácido nucleico aislda que hibrida específicamente con la molécula de ácido nucleico de (a) en condiciones muy restrictivas; y

(c) un ácido nucleico aislado que codifica una proteína de unión a TGF-beta de acuerdo con (a) o (b);

40 45 nucleico aisladas basadas en la hibridación a una porción solamente de una de las secuencias identificadas antes (p.ej., para (a) la hibridación puede ser con una sonda de al menos 20, 25, 50 o 100 nucleótidos seleccionados entre los nucleótidos 156 a 539 o 555 a 687 del ID de secuencia NO. 1). Como debe resultar fácilmente evidente, las condiciones restrictivas necesarias que se van a utilizar para la hibridación pueden variar basándose en el tamaño de la sonda. Por ejemplo, para una sonda de 25-meros entre las condiciones muy restrictivas se podrían incluir Tris 60 mM pH 8,0, EDTA 2 mM, 5x solución de Denhardt, 6x SSC, N-laurilsarcosina al 0,1% (p/v), NP-40 al 0,5% (p/v) (nonidet P-40) durante la noche a 45 grados centígrados, seguido de dos lavados con 0,2x SSC/SDS al 0,1% a 45-50 grados. Para una sonda de 100-meros en condiciones poco restrictivas, entre las condiciones adecuadas se podrían incluir las siguientes: 5x SSPE, 5x Denhardt y SDS al 0,5% durante la noche a 42-50 grados, seguido de dos lavados con 2x SSPE (o 2x SSC)/SDS al 0,1% a 42-50 grados.

Dentro de los aspectos relacionados de la presente descripción, se proporcionan moléculas de ácido

50

<u>Dentro de aspectos relacionados de la presente descripción, se proporcionan</u> moléculas de ácido nucleico aisladas que tienen homología con los ID de Secuencia Núm. 1, 5, 7, 9, 11, 13 o 15, a un nivel de homología del 50%, 60%, 75%, 80%, 90%, 95% o 98% utilizando un algoritmo de Wibur-Lipman. Entre los ejemplos representativos de tales moléculas de ácido nucleico aisladas se incluyen, por ejemplo, moléculas de ácido nucleico que codifican una proteína que comprende los ID de Secuencia Núm. 2, 6, 10, 12, 14, o 16, o tienen homología con estas secuencias a un nivel del 50%, 60%, 75%, 80%, 90%, 95%, o 98% de nivel de homología utilizando un algoritmo de Lipman-Pearson.

60

65

55

Las moléculas de ácido nucleico aisladas tienen típicamente un tamaño de menos de 100 kb, y en ciertas realizaciones, menos de 50 kb, 25 kb, 10 kb, o incluso 5 kb de tamaño. Adicionalmente, las moléculas de ácido nucleico aisladas, en otras realizaciones, no existen en una "genoteca" de otras moléculas de ácido nucleico no relacionado (p.ej., un subclon BAC tal como se describe en el Núm. de Acceso de GenBank AC003098 y el Núm. EMB AQ171546). No obstante, las moléculas de ácido nucleico aisladas pueden ser encontradas en genotecas de moléculas relacionadas (p.ej., para transposición genética, tal como se describe en las Patentes de los Estados Unidos Núm. 5.837.458, 5.830.721; y 5.811.238). Finalmente, las moléculas de ácido nucleico aisladas como se describen en la presente memoria no incluyen moléculas de ácido nucleico que codifican Dan, Cerberus, Gremlin, o SCGF (Patente de los Estados Unidos Núm.

5.780.263).

10

35

40

45

También son proporcionados por la presente descripción vectores de clonación que contienen las moléculas de ácido nucleico indicadas antes, y vectores de expresión que comprenden un promotor (p.ej., una secuencia reguladora) conectada operablemente a una de las moléculas de ácido nucleico indicada antes. Entre los ejemplos representativos de los promotores adecuados se incluyen promotores específicos de tejidos, y promotores basados en virus (p.ej., promotores basados en CMV tales como 1-E de CMV, el promotor temprano de SV40, y LTR de MuLV). Los vectores de expresión también pueden estar basados en, o derivados de virus (p.ej., un "vector viral"). Entre los ejemplos representativos de los vectores virales se incluyen los vectores virales del herpes simplex, los vectores adenovirales, los vectores virales asociados con adenovirus y los vectores retrovirales. También son proporcionadas por la descripción células anfitrionas que contienen cualquiera de los vectores indicados antes (incluyendo por ejemplo, células anfitrionas de origen humano, de mono, de perro, de rata, o de ratón).

En otros aspectos de la presente <u>descripción</u>, se proporcionan métodos de producción de proteínas de unión a TGF-beta, que comprenden la etapa de cultivar la célula anfitriona anteriormente mencionada que contiene el vector en unas condiciones y durante un tiempo suficiente para producir la proteína de unión a TGF-beta. En realizaciones adicionales <u>de la descripción</u>, la proteína producida mediante estos métodos puede ser purificada adicionalmente (p.ej., mediante cromatografía en columna, purificación de afinidad, y similares). Por tanto, las proteínas aisladas que son codificadas por las moléculas de ácido nucleico indicadas antes (p.ej., Secuencias de ID Núm. 2, 4, 6, 8, 10, 12, 14 o 16) pueden ser fácilmente producidas dada la descripción de la solicitud sujeto.

También se <u>debe observar</u> que las proteínas mencionadas antes, o fragmentos de las mismas, pueden ser producidas como proteínas de fusión. Por ejemplo, en un aspecto <u>de la descripción</u> se proporcionan proteínas de fusión que comprenden un primer segmento polipeptídico de una proteína de unión a TGF-beta codificada por una molécula de ácido nucleico como se ha descrito antes, o una porción de la misma de al menos 10, 20, 30, 50, o 100 aminoácidos de longitud, y un segundo segmento polipeptídico que comprende una proteína que no es de unión a TGF-beta. El segundo polipéptido puede ser una etiqueta adecuada para la purificación o el reconocimiento (*p.ej.*, un polipéptido que comprende múltiples restos aminoácido aniónicos - ver la Patente de los Estados Unidos Núm. 4.851.341), un marcador (*p.ej.*, la proteína verde fluorescente, o la fosfatasa alcalina), o una molécula tóxica (*p.ej.*, ricina).

En otro aspecto de la presente invención, se proporcionan anticuerpos o fragmentos de los mismos que son capaces de unirse específicamente a una proteína codificada por el SEQ ID NO. 1.

En <u>diversas</u> realizaciones, el anticuerpo <u>puede ser un anticuerpo policional</u> <u>o un anticuerpo monocional</u> (p.ej. de origen humano o murino). <u>En realizaciones adicionales el anticuerpo</u> es un fragmento de un anticuerpo que conserva las características de unión de un anticuerpo completo (p.ej., un fragmento F(ab')₂, F(ab)₂, Fab', Fab, o Fv, o incluso una CDR). Asimismo se proporcionan hibridomas y otras células que son capaces de producir o expresar los anticuerpos anteriormente mencionados.

En aspectos relacionados de la invención, se proporcionan métodos que detectan una proteína de unión a TGF-beta, que comprenden las etapas de incubar un anticuerpo como se ha descrito antes en unas condiciones y durante un tiempo suficiente para permitir que dicho anticuerpo se una a una proteína de unión a TGF-beta, y detectar la unión. En varias realizaciones el anticuerpo puede ser unido a un soporte sólido para facilitar el lavado o la separación, y/o marcado (p.ej., con un marcador seleccionado del grupo formado por las enzimas, las proteínas fluorescentes, y los radioisótopos).

50 En otros aspectos de la presente descripción, se proporcionan oligonucleótidos aislados que hibridan con una molécula de ácido nucleico de acuerdo con los <u>ID de Secuencia NO</u>. 1, 3, 5, 7, 9, 11, 13, 15, 17, 0 18 o su complemento, en condiciones muy restrictivas. En realizaciones adicionales de la descripción, el oligonucleótido puede ser encontrado en la secuencia que codifica los ID de Secuencia NO. 2, 4, 6, 8, 10, 12, 14, o 16. En ciertas realizaciones de la descripción, el oligonucleótido tiene una longitud de al menos 15, 20, 30, 50, o 100 nucleótidos. En realizaciones adicionales de la descripción, el oligonucleótido está 55 marcado con otra molécula (p.ej., una enzima, molécula fluorescente, o radioisótopo). Asimismo se proporcionan por la descripción, cebadores que son capaces de amplificar específicamente toda o una porción de las moléculas de ácido nucleico mencionadas antes que codifican proteínas de unión de TGFbeta. Según se utiliza en la presente memoria, se debe entender que el término "amplificar 60 específicamente" hace referencia a cebadores que amplifican las proteínas de unión a TGF-betas mencionadas antes, y no otras proteínas de unión a TGF-beta tales como Dan, Cerberus, Gremlin, o SCGF (patente de los Estados Unidos Núm. 5.780.263).

En aspectos relacionados de la presente <u>descripción</u>, se proporcionan métodos para detectar una molécula de ácido nucleico que codifica una proteína de unión a TGF-beta, que comprende las etapas de incubar un oligonucleótido como se ha descrito antes en condiciones muy restrictivas, y detectar la hibridación de dicho oligonucleótido. En ciertas realizaciones, el oligonucleótido puede estar marcado y/o

unido a un soporte sólido.

10

25

30

35

40

65

En otros aspectos de la presente descripción, se proporcionan ribozimas que son capaces de escindir ARN que codifica una de las proteínas de unión a TGF-beta (p.ej. <u>ID de Secuencia NO</u>. 2, 6, 8, 10, 12, 14, o 16). Tales ribozimas pueden estar compuestas por ADN, ARN (incluyendo ácidos 2'-O-metilrribonucleicos), análogos de ácido nucleico (p.ej., ácidos nucleicos que tienen enlaces fosforotioato) o mezclas de los mismos. Asimismo se proporcionan por <u>la descripción</u> moléculas de ácido nucleico (p.ej., ADN o ADNc) que codifican estas ribozimas, y vectores que son capaces de expresar o producir las ribozimas. Entre los ejemplos representativos de los vectores se incluyen plásmidos, retrotransposones, cósmidos, y vectores basados en virus (p.ej., vectores virales generados al menos en parte a partir de un retrovirus, adenovirus, o virus adeno-asociado). También se proporcionan por la descripción células anfitrionas (p.ej., células humanas, de perro, de rata o de ratón) que contienen estos vectores. En ciertas realizaciones, la célula anfitriona puede ser transformada establemente con el vector.

En aspectos adicionales de la descripción, se proporcionan métodos para producir ribozimas o bien sintéticamente, o bien mediante transcripción in vitro o in vivo. En realizaciones adicionales_de la descripción, las ribozimas así producidas pueden ser purificadas adicionalmente y/o formuladas en composiciones farmacéuticas (p.ej., la ribozima o la molécula de ácido nucleico que codifica la ribozima junto con un portador o diluyente farmacéuticamente aceptable). De un modo similar, los oligonucleótidos antisentido y los anticuerpos u otras moléculas seleccionadas descritas en la presente memoria pueden ser formuladas en composiciones farmacéuticas.

En otros aspectos de la presente descripción, se proporcionan oligonucleótidos antisentido que comprenden una molécula de ácido nucleico que hibrida con una molécula de ácido nucleico de acuerdo con los SEC ID Núm. 1, 3, 5, 7, 9, 11, 13, o 15, o el complemento de esta, y donde dicho oligonucleótido inhibe la expresión de la proteína de unión a TGF-beta como se describe en la presente memoria (p.ej., BEER humana). En diversos aspectos, el oligonucleótido tiene una longitud de 15, 20, 25, 30, 35, 40, o 50 nucleótidos. Preferiblemente, el oligonucleótido tiene menos de 100, 75 o 60 nucleótidos de longitud. Como debe resultar fácilmente evidente, el oligonucleótido puede constar de uno o más análogos de ácido nucleico, ácidos ribonucleicos, o ácidos desoxirribonucleicos. Adicionalmente, el oligonucleótido puede ser modificado por uno o más enlaces, incluyendo por ejemplo, enlaces covalentes tales como un enlace fosforotioato, un enlace fosfotriéster, un enlace metilfosfonato, un enlace metilen(imino), un enlace morfolino, un enlace amido, un enlace poliamido, un enlace interazúcar alquílico de cadena corta, un enlace interazúcar cicloalquílico, un enlace interazúcar heteroatómico de cadena corta y un enlace interazúcar heterocíclico. Un ejemplo representativo de un oligonucleótido quimérico es proporcionado en la Patente de los Estados Unidos Núm. 5.989.912.

<u>En otro</u> aspecto más de la presente descripción, se <u>proporcionan métodos</u> para incrementar la mineralización ósea, que <u>comprenden introducir en</u> un animal de sangre caliente una cantidad eficaz de la ribozima en el animal. En aspectos relacionados, tales <u>métodos</u> <u>comprenden la etapa de introducir</u> en un paciente una cantidad eficaz de la molécula de ácido nucleico o vector descritos en la presente memoria que es capaz de producir la ribozima deseada, en condiciones que favorecen la transcripción de la molécula de ácido nucleico para producir la ribozima.

45 En otros aspectos de la descripción se proporcionan animales no humanos, transgénicos. En una realización de la descripción se proporciona un animal transgénico cuyas células germinales y células somáticas contienen una molécula de ácido nucleico que codifica una proteína de unión a TGF-beta donde el acido nucleico es una molecula de acido nucleico que comprende la SEC ID Núm. 1, 3, 5, 9, 11, 13 o 15 antes que está conectada operablemente a un promotor efectivo para la expresión del gen, 50 siendo introducido el gen en el animal, o ancestro del animal, en una fase embrionaria, con la condición de que dicho animal no sea humano. En otras realizaciones, se proporcionan animales modificados genéticamente transgénicos, que comprenden un animal cuyas células germinales y células somáticas comprenden una desorganización de al menos un alelo de una molécula de ácido nucleico endógena que hibrida con una molécula de ácido nucleico que codifica una proteína de unión a TGF-beta donde el acido nucleico endógeno es un acido nucleico que comprende la SEC IND NO. 1, 5, 9, 11, 13 or 15, donde la 55 desorganización evita la transcripción del ARN mensajero a partir de dicho alelo en comparación con un animal sin la desorganización, con la condición de que el animal no sea un humano. En varias realizaciones, la desorganización es una deleción, sustitución o inserción en el ácido nucleico. En otras realizaciones el animal transgénico es un ratón, rata, oveja, cerdo o perro. 60

En aspectos adicionales de la descripción, se proporcionan kits para la detección de la expresión de la proteína de unión a TGF-beta, que comprenden un recipiente que comprende una molécula de ácido nucleico, donde la molécula de ácido nucleico se selecciona del grupo formado por (a) una molécula de ácido nucleico que comprende la secuencia de nucleótidos de los SEC ID NO: 1, 3, 5, 7, 9, 11, 13 o 15; (b) una molécula de ácido nucleico que comprende el complemento de la secuencia de nucleótidos de (a); (c) una molécula de ácido nucleico que es un fragmento de (a) o (b) de al menos 15, 20, 30, 50, 75, o 100 nucleótidos de longitud. Asimismo son proporcionados por la invención kits para la detección de una

proteína de unión a TGF-beta que comprenden un recipiente que comprende uno de los anticuerpos para la proteína de unión a TGF-beta descritos en la presente memoria.

Por ejemplo, en un aspecto de la presente descripción se proporcionan métodos para determinar si una molécula seleccionada es capaz de incrementar el contenido mineral del hueso, que comprenden las etapas de (a) mezclar una o más moléculas candidato con la proteína de unión a TGF-beta codificada por la molécula de ácido nucleico según la reivindicación 1 y un miembro seleccionado de la familia de proteínas del TGF-beta (p.ej., BMP 5 o 6), (b) determinar si la molécula candidato altera la señalización del miembro de la familia del TGF-beta, altera o unión de la proteína de unión a TGF-beta al miembro de la familia del TGF-beta. En ciertas realizaciones de la descripción, la molécula altera la capacidad de TGF-beta para funcionar como regulador positivo de la diferenciación de las células del mesénquima. En este aspecto de la presente descripción, la molécula o las moléculas candidato pueden alterar la señalización o la unión, por ejemplo, disminuyendo (p.ej., inhibiendo), o incrementando (p.ej., intensificando) la señalización o la unión.

10

15

20

25

30

50

55

En otro aspecto más de la siguiente descripción, se proporcionan los métodos para determinar si una molécula seleccionada es capaz de incrementar el contenido mineral del hueso, comprendiendo la etapa de determinar si una molécula seleccionada inhibe la unión de la proteína de unión a TGF-beta al hueso, o un análogo de la misma. Entre los ejemplos representativos de hueso o de los análogos del mismo se incluyen hidroxiapatita y muestras de hueso humano primario obtenidas mediante biopsia.

En ciertas realizaciones de los métodos citados antes, <u>de la descripción</u>, la molécula seleccionada está contenida en una mezcla de moléculas y los métodos pueden comprender adicionalmente la etapa de aislar una o más moléculas que son funcionales en el análisis. En otras realizaciones más de la descripción, la familia de proteínas del TGF-beta está unida a un soporte sólido y se mide la unión a TGF-beta o las proteínas de unión a TGF-beta están unidas a un soporte sólido y se mide la unión de las proteínas de unión a TGF-beta.

Utilizando métodos tales como los divulgados antes, se pueden analizar una amplia variedad de moléculas en cuanto a su capacidad para incrementar el contenido mineral del hueso inhibiendo la unión de la proteína de unión a TGF-beta a la familia de las proteínas de TGF-beta. Entre los ejemplos representativos de tales moléculas se incluyen proteínas o péptidos, moléculas orgánicas, y moléculas de ácido nucleico.

En otros aspectos relacionados la descripción se proporcionan métodos para aumentar el contenido mineral del hueso en un animal de sangre caliente, <u>que comprende la etapa de</u> administrar a un animal de sangre caliente una cantidad terapéuticamente eficaz de una molécula identificada a partir de los análisis citados en la presente memoria. <u>Se describen métodos para aumetar el contenido mineral de hueso</u> en un animal de sangre caliente, <u>que comprende la etapa de administrar a un animal de sangre caliente una</u>

40 cantidad terapéuticamente eficaz de una molécula que inhibe la unión de la proteína de unión a TGF-beta a la superfamilia de proteínas de TGF-beta incluyendo la superfamilia de proteínas de TGF-beta, incluyendo las proteínas morfogénicas óseas (BMP). Los ejemplos representativos de las moléculas adecuadas incluyen moléculas antisentido, ribozimas, genes de ribozimas y anticuerpos (p.ej., un anticuerpo humanizado) que reconocen específicamente y alteran la actividad de la proteína de unión a TGF-beta.

Se describen métodos para aumentr el contenido mineral de hueso en un animal de sangre caliente, que comprenden las etapas de (a) introducir en las células que anidan en el hueso un vector que dirige la expresión de una molécula que inhibe la unión de la proteína de unión a TGF-beta a la familia de proteínas del TGF-beta y proteínas morfogénicas del hueso (BMP), y (b) administrar las células que contienen el vector a un animal de sangre caliente. Según se utiliza en la presente memoria, se debe entender que las "células anidan en el hueso" si localizan la matriz del hueso después de la administración periférica. Tales métodos pueden comprender adicionalmente, antes de la etapa de introducción, el aislamiento de células de la médula del hueso que anidan en el hueso. Las células que anidan en el hueso se pueden seleccionar del grupo formado por las células CD34+ y los osteoblastos.

En otros aspectos de la presente descripción, se proporcionan moléculas (preferiblemente aisladas) que inhiben la unión de la proteína de unión a TGF-beta a la súper-familia de proteínas del TGF-beta.

60 Las moléculas pueden ser proporcionadas en forma de una composición, y pueden comprender adicionalmente un inhibidor de la resorción ósea. Entre los ejemplos representativos de tales inhibidores se incluyen calcitonina, estrógeno, un bisfosfonato, un factor de crecimiento que tenga actividad antiresorción y tamoxifeno.

Entre los ejemplos representativos de las moléculas que pueden ser utilizadas en los contextos terapéuticos anteriormente mencionados se incluyen, anticuerpos (p.ej., anticuerpos humanizados). Tales moléculas pueden ser utilizadas, dependiendo de su selección, para alterar, ejercer un efecto antagónico

o ejercer un efecto agonístico de la señalización o la unión de un miembro de la familia de proteínas de unión a TGF-beta como se ha descrito en la presente memoria.

Las moléculas y los métodos de tratamiento o prevención descritos anteriormente pueden ser utilizados en afecciones tales como osteoporosis, osteomalasia, enfermedad periodontal, escorbuto, enfermedad de Cushing, fractura de huesos y afecciones debidas a la inmovilización de miembros y uso de esteroides. Estos y otros aspectos de la presente invención se harán evidentes tras la referencia a la siguiente descripción detallada y dibujos adjuntos. Además, se muestran en la presente memoria diversas referencias que describen con más detalle ciertos procedimientos o composiciones (p.ej., plásmidos, etc.), y por lo tanto se incorporan a la presente memoria como referencia en su totalidad.

Breve descripción de los dibujos

15

20

25

30

35

40

45

50

60

La Figura 1 es una ilustración esquemática que compara la secuencia de aminoácidos de Dan Humana; Gremlin Humana; Cerberus Humana y Beer Humana. Las flechas indican el esqueleto de Cisteína.

La Figura 2 resume los resultados obtenidos partir de la inspección de una variedad de tejidos humanos para la expresión de un gen de la proteína de unión a TGF-beta, específicamente, el gen Beer Humano. Se utilizó un procedimiento de transcripción Inversa-Reacción en Cadena de la Polimerasa semi-cuantitativo (RT-PCR) para amplificar una porción del gen de ADNc de la primera hebra sintetizada a partir del ARN total (descrito con más detalle en el EJEMPLO 2A).

La Figura 3 resume los resultados obtenidos a partir del ARN la hibridación in situ de secciones de embrión de ratón, utilizando una sonda de ARNc que es complementaria al transcrito Beer de ratón (descrito con más detalle en el EJEMPLO 2B). El panel A es una sección transversal de embriones de 10,5 dpc. El panel B es una sección sagital de embriones de 12,5 dpc y los paneles C y D son secciones sagitales de embriones de 15,5 dpc.

La Figura 4 ilustra, mediante análisis de transferencia western, la especificidad de tres anticuerpos policionales diferentes para sus respectivos antígenos (descrito con más detalle en el EJEMPLO 4). La Figura 4A muestra la reactividad específica de un anticuerpo anti-H. Beer para el antígeno H. Beer, pero no H. Dan o H. Gremlin. La Figura 4B muestra la reactividad de un anticuerpo anti-H. Gremlin para el antígeno H. Gremlin, pero no H. Beer o H. Dan. La Figura 4C muestra la reactividad de un anticuerpo anti-H. Dan para H. Dan, pero no para H. Beer o H. Gremlin.

La Figura 5 ilustra, mediante análisis de transferencia western, la selectividad de la proteína de unión a TGF-beta, Beer, para BMP-5 y BMP-6, pero no BMP-4 (descrito con más detalle en el EJEMPLO 5).

La Figura 6 demuestra que la interacción iónica entre la proteína de unión a TGF-beta, Beer, y BMP-5 tiene una constante de disociación en el intervalo de 15-30 nM.

Descripción detalladea de la invención

Definiciones

Antes de exponer la invención con detalle, puede servir de ayuda para la comprensión de la misma mostrar las definiciones de ciertos términos y enumerar y definir las abreviaturas que se utilizarán más adelante.

Se debe entender que "molécula" incluye proteínas o péptidos (p.ej., anticuerpos, pares de unión recombinantes, péptidos con una afinidad de unión deseada), ácidos nucleicos (p.ej., ADN, ARN, moléculas de ácido nucleico quiméricas, y análogos de ácidos nucleicos tales como PNA); y compuestos orgánicos e inorgánicos.

Se debe entender que "<u>TGF-beta</u>" incluye cualquier miembro conocido o novedoso de la súper-familia del TGF-beta, lo que también incluye las proteínas morfogénicas del hueso (BMP).

Se debe entender que "<u>receptor del TGF-beta</u>" hace referencia al receptor específico para un miembro concreto de la super-familia del TGF-beta (incluyendo las proteínas morfogénicas del hueso (BMP)).

Se debe entender que "proteína de unión a TGF-beta" hace referencia a una proteína con una afinidad de unión específica para un miembro concreto o subgrupo de miembros de la super-familia del TGF-beta (incluyendo las proteínas morfogénicas del hueso (BMP)). Entre los ejemplos específicos de las proteínas de unión a TGF-beta se incluyen las proteínas codificadas por los ID de Secuencia Núm. 1, 5, 7, 9, 11, 13 y 15.

Se debe entender que "<u>la unión de la proteína de unión a TGF-beta a la familia de proteínas del TGF-beta y las proteínas morfogénicas del hueso (BMP)</u>" hace referencia a moléculas que permiten la activación de TGF-beta o proteínas morfogénicas del hueso (BMP), o permiten la unión de miembros de la familia del TGF-beta incluyendo las proteínas morfogénicas del hueso (BMP) a sus respectivos receptores,

separando o evitando la unión del TGF-beta con la proteína de unión a TGF-beta. Semejante inhibición puede ser completada, por ejemplo, mediante moléculas que inhiben la unión de la proteína de unión a TGF-beta a miembros específicos de la súper-familia del TGF-beta.

"Vector" hace referencia a un ensamblaje que es capaz de dirigir la expresión de la proteína deseada. El vector debe incluir elementos promotores transcripcionales que estén conectados operablemente al gen o los genes de interés. El vector puede constar de ácidos desoxirribonucleicos ("ADN"), ácidos ribonucleicos ("ARN"), o una combinación de los dos (p.ej. quimérico de ADN-ARN). Opcionalmente, el vector puede incluir una secuencia de poliadenilación, uno o más sitios de restricción, así como uno o más marcadores seleccionables tales como neomicina-fosfotransferasa o higromicina-fosfotransferasa. Adicionalmente, dependiendo de la célula anfitriona elegida y del vector empleado, también se pueden incorporar otros elementos genéticos tales como un origen de replicación, sitios de restricción de ácidos nucleicos adicionales, intensificadores, secuencias que confieran inducibilidad de transcripción, y también se pueden incorporar marcadores seleccionables en los vectores descritos en la presente memoria.

15

20

Una "molécula de ácido nucleico aislada" es una molécula de ácido nucleico que no está integrada en el ADN genómico de un organismo. Por ejemplo, una molécula de ADN que codifica una proteína de unión a TGF que ha sido separada del ADN genómico de una célula eucariótica es una molécula de ADN aislada. Otro ejemplo de una molécula de ácido nucleico aislada es una molécula de ácido nucleico sintetizada químicamente que no está integrada en el genoma del organismo. La molécula de ácido nucleico aislada puede ser de ADN genómico, ADNc, ARN, o constar de al menos una parte de análogos de ácido nucleico.

Un "polipéptido aislado" es un polipéptido que está esencialmente libre de componentes celulares contaminantes, tales como carbohidratos, lípidos u otras impurezas proteináceas asociadas con el polipéptido en la naturaleza. En ciertas realizaciones, una separación de proteínas concreta contiene un polipéptido aislado si éste aparece nominalmente como una única banda sobre el gel de SDS-PAGE con tinción de Azul Coomassie. "Aislado" cuando se refiere a moléculas orgánicas significa que los compuestos son puros en más del 90 por ciento utilizando métodos que son bien conocidos en la técnica (p.ej., RMN, punto de fusión).

30

35

"<u>Esclerosteosis</u>". Esclerosteosis es un término que fue aplicado por Hansen (1967) (Hansen, H.G., Sklerosteose. En: Opitz, H., Schmid, F., Handbuch der Kinderheilkunde. Berlín: Springer (pub.) 6 1967. págs. 351-355) a un trastorno similar a hiperostosis cortical generalizada de van Buchem pero posiblemente difiriendo en la apariencia radiológica de los cambios del hueso y en la presencia de sindactilia cutánea asimétrica de los dedos índice y medio en muchos casos. La mandíbula tiene una apariencia inusualmente cuadrada en esta afección.

40

Los "anticuerpos humanizados" son proteínas recombinantes en las cuales las regiones determinantes de la complementariedad de ratón de los anticuerpos monoclonales han sido transferidas de cadenas variables pesadas y ligeras de la inmunoglobulina de ratón a un dominio variable humano.

Según se utiliza en la presente memoria, un "<u>fragmento de anticuerpo</u>" es una porción de un anticuerpo tal como F(ab')₂, F(ab)₂, Fab', y similar. Sin tener en cuenta la estructura, un fragmento de anticuerpo se une con el mismo antígeno que es reconocido por el anticuerpo intacto. Por ejemplo, un fragmento de un anticuerpo monoclonal para la proteína de unión a TGF-beta se une con un epítopo de la proteína de unión a TGF-beta.

50

45

El término "fragmento de anticuerpo" también incluye cualquier proteína sintética o diseñada genéticamente que actúa como un anticuerpo uniéndose a un antígeno específico para formar un complejo. Por ejemplo, entre los fragmentos de anticuerpo se incluyen fragmentos aislados que constan de la región variable de la cadena ligera, fragmentos "Fv" que constan de las regiones variables de las cadenas pesadas y ligeras, moléculas polipeptídicas de una única cadena recombinante en las cuales las regiones variables ligeras y pesadas están conectadas por un conector peptídico ("proteínas sFv"), y unidades de reconocimiento mínimas que constan de los restos aminoácido que imitan la región hipervariable.

55

Una "<u>marca detectable</u>" es una molécula o átomo que puede ser conjugada con un radical de un anticuerpo para producir una molécula útil para las diagnosis. Entre los ejemplos de las marcas se incluyen quelantes, agentes fotoactivos, radioisótopos, agentes fluorescentes, iones paramagnéticos, enzimas, y otros radicales marcadores.

60

Según se utiliza en la presente memoria, un "producto <u>inmunoconjugado</u>" es una molécula que comprende un anticuerpo anti-proteína de unión a TGF-beta, o un fragmento de anticuerpo, y una marca detectable. Un producto inmunoconjugado tiene más o menos la misma capacidad, o una capacidad solo ligeramente reducida para unirse a la proteína de unión a TGF-beta después de la conjugación que antes de la conjugación.

<u>Abreviaturas</u>: TGF-beta - "Factor de Crecimiento Transformante-beta"; TGF-bBP - "Proteína de unión al Factor de Crecimiento Transformante-beta" (una TGF-bBP representativa se denomina "H. Beer"); BMP - "proteína morfogénica del hueso"; PCR - "reacción en cadena de la polimerasa"; RT-PCR - procedimiento de PCR en el cual el ARN es transcrito primero a ADN en la primera etapa utilizando la transcriptasa inversa (RT); ADNc - cualquier ADN elaborado copiando una secuencia de ARN en forma de ADN.

Como se ha indicado antes, la presente descripción proporciona una clase novedosa de proteínas de unión a TGF-beta, así como medicamentos y composiciones para incrementar el contenido mineral del hueso en animales de sangre caliente. Brevemente, las presentes descripciones se basan en el descubrimiento inesperado de que una mutación en el gen que codifica un miembro novedoso de la familia de las proteínas de unión a TGF-beta produce una rara afección (esclerosteosis) caracterizada por contenidos minerales de los huesos que son una a cuatro veces superiores que en individuos normales. De este modo, como se discute con más detalle más abajo este descubrimiento ha conducido al desarrollo de análisis que pueden ser utilizados para seleccionar moléculas que inhiben la unión de la proteína del unión a TGF-beta a la familia de proteínas del TGF-beta y las proteínas morfogénica del hueso (BMP), y tales moléculas para su uso para incrementar el contenido de material óseo de animales de sangre caliente (incluyendo por ejemplo, seres humanos).

Estudio de la enfermedad conocida como esclerosteosis

Esclerosteosis es un término que fue aplicado por Hansen (1967) (Hansen, H.G., Sklerosteose. Opitz, H., Schmid, F., Handbuch der Kinderheilkunde. Berlín: Springer (pub.) 6 1967. págs. 351-355) a un trastorno similar a la hiperostosis cortical generalizada de van Buchem pero posiblemente difiriendo en la apariencia

radiológica de los cambios del hueso y en la presencia de sindactilia cutánea asimétrica de los dedos

25 índice y medio en muchos casos.

Se sabe ahora que la esclerosteosis es una alteración semi-dominante autosómica que está caracterizada por lesiones escleróticas ampliamente diseminadas del hueso en el adulto. La afección es progresiva. La esclerosteosis también tiene un aspecto evolutivo que está asociado con la sindactilia (dos o más dedos están juntos). El Síndrome de Esclerosteosis está asociado con una gran estatura y muchos individuos afectados alcanzan una altura de uno con ochenta y tres metros (seis pies) o más. El contenido mineral del hueso de los homozigotos puede ser de 1 a 6 veces por encima de los individuos normales y la densidad mineral del hueso puede ser de 1 a 4 veces por encima de los valores normales (p.ej., de hermanos no gemelos).

35

30

5

10

15

20

El Síndrome de Esclerosteosis se produce principalmente en Afrikaaners de descendencia Alemana en Sudáfrica. Aproximadamente 1/140 individuos de la población Afrikaaner son portadores del gen mutado (heterozigotos). La mutación muestra una penetrancia del 100%. Existen informes anecdóticos de aumento de la densidad mineral del huso en heterozigotos con patologías no asociadas (sindactilia o

40 sobrecrecimiento de la cabeza ósea).

En la actualidad parece que no hay anomalía del eje de la pituitaria-hipotálamo en la Esclerosteosis. En particular, no parece haber sobre-producción de la hormona del crecimiento ni de la cortisona. Además, los niveles de hormonas sexuales son normales en los individuos afectados. No obstante, los marcadores de recambio óseo (fosfatasa alcalina específica de osteoblastos, osteocalcina, propéptido C' de procolágeno de tipo I (PICP), y fosfatasa alcalina total, (ver Comier, C., Curr. Opin. In Rheu. 7:243, 1995) indican que existe actividad hiperosteoblástica asociada con la enfermedad pero que hay una actividad osteoclástica normal a débilmente disminuida medida mediante marcadores de resorción ósea (piridinolina, desoxipiridinolina, N-telopéptido, hidroxiprolina urinaria, fosfatasas ácidas resistentes al ácido en plasma y galactosilhidroxilisina (ver Coomier, supra)).

50

45

La esclerosteosis se caracteriza por el depósito continuo de hueso a lo largo de todo el esqueleto durante la vida de los individuos afectados. En homozigotos el depósito continuo de mineral del hueso conduce a un sobrecrecimiento del hueso en las áreas del esqueleto en las que hay una ausencia de mecanorreceptores (cabeza ósea, mandíbula, cráneo). En homozigotos con Esclerosteosis, el sobrecrecimiento de los huesos de la cabeza ósea conduce a una compresión craneal y eventualmente a la muerte debido a una presión hidrostática excesiva sobre el tallo encefálico. En todas las demás partes del esqueleto existe una esclerosis generalizada y difusa. Las áreas corticales de los huesos largos están enormemente engrosadas dando como resultado un incremento sustancial en la resistencia del hueso. Las conexiones trabeculares tienen un grosor incrementado que a su vez aumenta la fuerza del hueso trabecular. Los huesos escleróticos aparecen normalmente opacos a los rayos x.

60

65

55

Como se describe con más detalle en el Ejemplo 1, la rara mutación genética que es responsable del Síndrome de Esclerosteosis ha sido localizada hacia la región del cromosoma humano 17 que codifica un miembros novedoso de la familia de las proteínas de unión a TGF-beta (un ejemplo representativo del cual es denominado "H. Beer"). Como se describe con más detalle más abajo, basándose en este descubrimiento, el mecanismo de mineralización ósea se comprende más completamente, permitiendo el

desarrollo de análisis para moléculas que incrementan la mineralización ósea, y el uso de tales moléculas para incrementar el contenido mineral del hueso, y en el tratamiento o la prevención de un amplio número de enfermedades.

5 Superfamilia de TGF-beta

10

15

20

40

45

50

55

60

65

La súper-familia del Factor de Crecimiento Transformante-beta (TGF-beta) contiene una variedad de factores de crecimiento que comparten elementos de la secuencia comunes y unidades estructurales (a los niveles tanto secundarios como terciarios). Se sabe que esta familia de proteínas ejerce un amplio espectro de respuestas biológicas sobre una gran variedad de tipos celulares. Muchas de ellas tienen importantes funciones durante el desarrollo embrionario en la formación del patrón y la especificación de tejidos; en adultos, están implicadas, p.ej., en la curación de heridas y la reparación ósea y la remodelación ósea, y en la modulación del sistema inmunitario. Además de los tres TGF-beta, en la súper-familia se incluyen las Proteínas Morfogénicas del Hueso (BMP), Activinas, Inhibinas, Factores de Crecimiento y Diferenciación (GDF), y Factores Neurotróficos Derivados de la Glía. La clasificación primaria es establecida por medio de rasgos de la secuencia general que vinculan una proteína específica a una sub-familia general. La estratificación adicional dentro de la sub-familia es posible debido a una conservación de la secuencia más estricta entre los miembros de un grupo más pequeño. En ciertos casos, tales como BMP-5, BMP-6 y BMP-7, esta puede ser tan elevada como el 75 por ciento de homología de aminoácidos entre los miembros del grupo más pequeño. Este nivel de identidad permite que una única secuencia representativa ilustre los elementos bioquímicos clave del sub-grupo que la separa de los otros miembros de la familia más grande.

El TGF-beta señala induciendo la formación de complejos hetero-oligoméricos de los receptores tipo I y de tipo II. La estructura cristalina del TGF-beta2 ha sido determinada. El plegado general del monómero de TGF-beta2 contiene una estructura de tipo nudo de cisteína, compacto, estable formado por tres puentes disulfuro. La dimerización, estabilizada por un puente disulfuro, es antiparalela.

Los miembros de la familia del TGF-beta inician su acción celular uniéndose a receptores con una actividad serina/treonina quinasa intrínseca. Esta familia de receptores consta de dos subfamilias, denominadas receptores de tipo I de tipo II. Cada miembro de la familia del TGF-beta se une a una combinación característica de receptores de tipo I y de tipo II, ambos los cuales son necesarios para la señalización. En el modelo actual para la activación del TGF-beta, el TGF-beta se une primero al receptor de tipo II (TbR-II), que aparece en la membrana celular en una forma oligomérica con quinasa activada.

35 Después de eso, el receptor de tipo I (TbR-I), que no puede unirse al ligando en ausencia de TbR-II, es reclutado en el complejo. Después TbR-II fosforila TbR-I predominantemente en un dominio rico en restos glicina y serina (dominio GS) en la región de la yuxtamembrana, y de ese modo activa TbR-I.

Hasta ahora se han identificado siete receptores de tipo I y cinco receptores de tipo II.

Las proteínas morfogénicas de hueso (BMP) son proteínas reguladoras clave en la determinación de la densidad mineral del hueso en seres humanos

Un avance principal en la comprensión de la formación de hueso fue la identificación de las proteínas morfogénicas del hueso (BMP), también conocidas como proteínas osteogénicas (OP), que regulan la diferenciación del cartílago y el hueso in vivo. Las BMP/OP inducen la diferenciación del hueso endocondral por medio de una cascada de eventos que incluyen la formación de cartílago, la hipertrofia y la calcificación del cartílago, la invasión vascular, la diferenciación de osteoblastos, y la formación de hueso. Como se ha descrito antes, las BMP/OP (BMP 2-14, y proteínas osteogénicas 1 y 2, OP-1 y OP-2) son miembros de la súper-familia del TGF-beta. La sorprendente conservación evolutiva entre los miembros de la sub-familia de BMP/OP sugiere que son críticos en el desarrollo y la función normal de los animales. Por otra parte, la presencia de múltiples formas de BMP/OP plantea una cuestión importante acerca de la relevancia biológica de esta aparente redundancia. Además de la condrogénesis y la osteogénesis post-fetal, las BMP/OP juegan múltiples papeles en la esqueletogénesis (incluyendo el desarrollo de los tejidos craneofaciales y dentales) y en el desarrollo embriónico y a organogénesis de los órganos parenquimatosos, incluyendo el riñón. Se sabe ahora que la naturaleza cuenta con mecanismos moleculares comunes (y escasos) adaptados para proporcionar la emergencia de tejidos y órganos especializados. La súper-familia de BMP/OP es un elegante ejemplo de parsimonia natural en la programación de múltiples funciones especializadas que despliegan isoformas moleculares con una variación minoritaria en las unidades de aminoácidos dentro de regiones carboxi terminales altamente conservadas.

Antagonismo de BMP

Las sub-familias de las BMP y la Activina están sujetas a una regulación post-traduccional significativa. Existe un sistema de control extracelular intrincado, por medio del cual se sintetiza y se exporta un antagonista de elevada afinidad, y con posterioridad forma complejos selectivamente con las BMP o las

activinas para desorganizar su actividad biológica (W.C. Smith (1999) TIG 15(1) 3-6). Han sido identificados algunos de estos antagonistas naturales, y basándose en la divergencia de la secuencia parecen haber evolucionado independientemente debido a la carencia de conservación de la secuencia primaria. No ha habido un trabajo estructural hasta la fecha sobre esta clase de proteínas. Los estudios de estos antagonistas han destacado una clara diferencia para interaccionar y neutralizar BMP-2 y BMP-4. Además, el mecanismo de inhibición parece diferir para los diferentes antagonistas (S. Iemura et al. (1998) Proc. Natl. Acad. Sci. USA 95 9337-9342).

Proteínas de unión a TGF-beta novedosas

10

15

20

25

30

35

40

45

50

55

60

65

1. Antecedente re: proteínas de unión a TGF-beta

Como se ha observado antes, la presente descripción proporciona un clase novedosa de proteínas de unión a TGF-beta que posee un armazón de cisteína (disulfuro) casi idéntico cuando se comparaba con DAN Humana, Gremlin Humana, y Cerberus Humana, y SCGF (Patente de los estados Unidos Núm. 5.780.263) pero no posee casi homología a nivel de nucleótidos (para la información antecedente, ver generalmente Hsu, D.R., Economides, A.N., Wang, X., Eimon, P.M., Harland, R.M., "The Xenopus Dorsalizing Factor Gremlin Identifies a Novel Family of Secreted Proteins that Antagonize BMP Activities", Molecular Cell 1:673-683, 1998).

Un ejemplo representativo de la clase novedosa de proteínas de unión a TGF-beta se describe en los ID de Secuencia Núm. 1, 5, 9, 11, 13, y 15. Se debe entender que los miembros representativos de esta clase de proteínas de unión incluyen variantes de la proteína de unión a TGF-beta (p.ej., los ID de Secuencia Núm. 5 y 7). Según se utiliza en la presente memoria, un "gen variante de la proteína de unión a TGF-beta" hace referencia a moléculas de ácido nucleico que codifican un polipéptido que tiene una secuencia de aminoácidos que es una modificación de los ID de Secuencia Núm. 2, 10, 12, 14 o 16. Entre tales variantes se incluyen los polimorfismos de origen natural o las variantes alélicas de los genes de la proteína de unión a TGF-beta, así como genes sintéticos que contienen sustituciones de aminoácidos conservativas de estas secuencias de aminoácidos. Las formas variantes adicionales de un gen de la proteína de unión a TGF-beta son moléculas de ácido nucleico que contienen inserciones o deleciones de las secuencias de nucleótidos descritas en la presente memoria. Los genes variantes de la proteína de unión a TGF-beta pueden ser identificados determinando si los genes hibridan con una molécula de ácido nucleico que tenga la secuencia de nucleótidos de los ID de Secuencia Núm. 1, 5, 7, 9, 11, 13, o 15 en condiciones restrictivas. Además, los genes variantes de la proteína de unión a TGF-beta deben codificar una proteína que tenga un esqueleto de cisteína.

Como alternativa, se pueden identificar genes variantes de la proteína de unión a TGF-beta mediante comparación de la secuencia. Según se utiliza en la presente memoria, dos secuencias de aminoácidos tienen una "identidad de secuencia del 100%" si los restos aminoácido de las dos secuencias de aminoácidos son iguales cuando se alinean para una máxima correspondencia. De un modo similar, dos secuencias de nucleótidos tienen una "identidad de secuencia del 100%" si los restos nucleotídicos de las dos secuencias de nucleótidos son iguales cuando se alinean para una máxima correspondencia. Las comparaciones de la secuencia se pueden realizar utilizando programas de soporte lógico normalizados tales como los incluidos en la Suite de computación bioinformática LASERGENE, que es producida por DNASTAR (Madison, Wisconsin). Otros métodos para comparar dos secuencias de nucleótidos o de aminoácidos mediante la determinación del alineamiento óptimo son bien conocidos por los expertos en la técnica (ver, por ejemplo, Peruski y Peruski, The Internet and the New Biology: Tools for Genomic and Molecular Research (ASM Press. Inc. 1997), Wu y col, (eds.), "Information Superhighway and Computer Databases of Nucleic Acids and Proteins", en Methods in Gene Biotechnology, páginas 123-151 (CRC Press, Inc. 1997), y Bishop (ed.), Guide to Human Genome Computing, 2ª Edición (Academic Press, Inc. 1998)).

Una proteína de unión a TGF-beta variante debe tener al menos una identidad de secuencia de aminoácidos del 50% con los ID de Secuencia Núm. 2, 6, 10, 12, 14, o 16 y preferiblemente, una identidad de más del 60%, 65%, 70%, 80%, 85%, 90%, o 95%. Alternativamente, las variantes de la proteína de unión a TGF-beta pueden ser identificadas por tener una identidad de secuencia de nucleótidos de al menos el 70% con los ID de Secuencia Núm. 1, 5, 9, 11, 13 o 15. Por otra parte, la presente descripción contempla las variantes del gen de la proteína de unión a TGF-beta que tienen una identidad de más del 75%, 80%, 85%, 90%, o 95% con el SEQ ID NO. 1. Sin hacer caso del método concreto utilizado para identificar un gen variante de una proteína de unión a TGF-beta o una proteína de unión a TGF-beta, una proteína de unión a TGF-beta variante o un polipéptido codificado por un gen de la proteína de unión a TGF-beta variante puede ser caracterizado funcionalmente, por ejemplo, mediante su capacidad para unirse a y/o inhibir la señalización de un miembro seleccionado de la familia de proteínas del TGF-beta, o mediante su capacidad para unirse específicamente a un anticuerpo de una proteína de unión a TGF-beta

En la presente descripción se incluyen fragmentos funcionales de los genes de las proteínas de unión a

TGF-beta. En el contexto de esta descripción, un "fragmento funcional" de un gen de una proteína de unión a TGF-beta hace referencia a una molécula de ácido nucleico que codifica una porción de un polipéptido de la proteína de unión a TGF-beta que o bien posee (1) la actividad funcional indicada antes, o bien (2) se une específicamente con un anticuerpo de una proteína de unión a TGF-beta. Por ejemplo, un fragmento funcional de un gen de una proteína de unión a TGF-beta descrito en la presente memoria comprende una porción de la secuencia de nucleótidos de las SEC ID Núm: 1, 5, 9, 11, 13, o 15.

2. Aislamiento del gen de la proteína de unión a TGF-beta

25

30

45

- Se pueden obtener moléculas de ADN que codifican un gen de una proteína de unión rastreando una genoteca deADNc o genómico humano utilizando sondas polinucleotídicas basadas, por ejemplo, en la SEC ID NO: 1.
- Por ejemplo, la primera etapa en la preparación de una genoteca deADNc es aislar el ARN utilizando métodos bien conocidos por los expertos en la técnica. En general, las técnicas de aislamiento de ARN deben proporcionar un método para romper las células, un medio para inhibir la degradación de ARN dirigida por la ARNasa, y un método para separar el ARN del ADN, la proteína y los polisacáridos contaminantes. Por ejemplo, se puede aislar el ARN total congelando el tejido en nitrógeno líquido, triturando el tejido congelado con un mortero y una mano de mortero para lisar las células, extrayendo el tejido triturado con una solución de fenol/cloroformo para separar las proteínas, y separando el ARN de las impurezas restantes mediante precipitación selectiva con cloruro de litio (ver, por ejemplo, Ausubel et al. (eds.), Short Protocols in Molecular Biology, 3ª Edición, páginas 4-1 a 4-6 (John Wiley & Sons 1995) ["Ausubel (1995)"]; Wu et al., Methods in Gene Biotechnology, páginas 33-41] (CRC Press, Inc. 1997) ["Wu (1997)"]).
 - Alternativamente, el ARN total puede ser aislado extrayendo el tejido triturado con isotiocianato de guanidinio, extrayendo con disolventes orgánicos, y separando el ARN de los contaminantes utilizando la centrifugación diferencial (ver, por ejemplo, Ausubel (1995) en las páginas 4-1 a 4-6; Wu (1997) en las páginas 33-41).
 - Con el fin de construir una genoteca deADNc, se debe aislar ARN poli(A)⁺ de la preparación de ARN total. El ARN poli(A)⁺ puede ser aislado del ARN total utilizando la técnica normalizada de la cromatografía en oligo(dT)-celulosa (ver, por ejemplo, Ausubel (1995) en las páginas 4-11 a 4-12).
- Las moléculas de ADNc de doble hebra son sintetizadas a partir de ARN poli(A)⁺ utilizando mecanismos bien conocidos por los expertos en la técnica (ver, por ejemplo, Wu (1997) en las páginas 41-46). Por otra parte, se pueden utilizar kits asequibles comercialmente para sintetizar moléculas de ADNc de doble hebra. Por ejemplo, tales kits son asequibles de Life Technologies, Inc. (Gaithersburg, Maryland), CLONTECH Laboratories, Inc. (Palo Alto, California), Promega Corporation (Madison, Wisconsin) y Stratagene Cloning Systems (La Jolla, California).
 - El enfoque básico para obtener clones de ADNc de la proteína de unión a TGF-beta puede ser modificado construyendo una genoteca deADNc sustraída que esté enriquecido en moléculas de ADNc específicas de la proteína de unión a TGF. Los mecanismos para construir genotecas sustraídas son bien conocidos por los expertos en la técnica (ver, por ejemplo, Sargent, "Isolation of Differentially Expressed Genes" en Meth. Enzymol. 152:423, 1987, y Wu et al., (eds.) "Construction and Screening of Substracted and Complete Expression cDNA Libraries", en Methods in Gene Biotechnology, páginas 29-65 (CRC Press, Inc. 1997)).
- Diversos vectores de clonación son apropiados para la construcción de una genoteca deADNc. Por ejemplo, se puede preparar una genoteca deADNc en un vector derivado de bacteriófagos, tal como un vector λgt10 (ver, por ejemplo, Huynh et al., "Construction and Screening cDNA in λgt10 and λgt11", en DNA Cloning: A Practical Approach Vol. I, Glover (ed.) página 49 (IRL Press, 1985); Wu (1997) en las páginas 47-52).
 - Alternativamente, se pueden insertar moléculas de ADNc de doble hebra en un vector plasmídico, tal como un vector pBluescript (Stratagene Cloning Systems; La Jolla, California), LambdaGEM-4 (Promega Corp.; Madison, Wisconsin) u otros vectores asequibles comercialmente. Los vectores de clonación adecuados también pueden ser obtenidos de la American Type Culture Collection (Rockville, Maryland).
- Con el fin de amplificar las moléculas de ADNc clonadas, la genoteca deADNc es insertada en un anfitrión procariótico, utilizando mecanismos normalizados. Por ejemplo, se puede introducir una genoteca deADNc en células E. coli DH5 competentes, que pueden ser obtenidas de Life Technologies, Inc. (Gaithersburg, Maryland).
- 65 Se puede preparar una genoteca de ADN genómico humano por métodos bien conocidos en la técnica (ver, por ejemplo, Ausubel (1995) en las páginas 5-1 a 5-6; Wu (1997) en las páginas 307-327). Se puede aislar ADN genómico lisando tejido con el detergente Sarkosyl, digiriendo el producto lisado con

proteinasa K, aclarando los restos insolubles del producto lisado mediante centrifugación, precipitando el ácido nucleico del producto lisado utilizando isopropanol, y purificando el ADN resuspendido en un gradiente de densidad de cloruro de cesio.

Los fragmentos de ADN que son adecuados para la producción de un genoteca genómica pueden ser obtenidos sometiendo a cizalla al azar el ADN genómico o mediante digestión parcial del ADN genómico con endonucleasas de restricción. Los fragmentos de ADN genómico pueden ser insertados en un vector, tal como un vector bacteriófago o cosmídico, de acuerdo con los mecanismos convencionales, tal como el uso de la digestión con enzimas de restricción para proporcionar extremos apropiados, el uso del tratamiento con fosfatasa alcalina para evitar la unión no deseada de moléculas de ADN, y la ligadura con ligasa apropiadas. Los mecanismos para semejante manipulación son bien conocidos en la técnica (ver, por ejemplo, Ausubel (1995) en las páginas 5-1 a 5-6; Wu (1997) en las páginas 307-327).

Las moléculas de ácido nucleico que codifican un gen de la proteína de unión a TGF-beta también pueden ser obtenidas utilizando la reacción en cadena de la polimerasa (PCR) con cebadores oligonucleotídicos que tengan secuencias de nucleótidos del gen de la proteína de unión a TGF-beta humano, como se describe en la presente memoria. Los métodos generales para rastrear genotecas con PCR son proporcionados por ejemplo, por Yu et al., "Use of the Polymerase Chain Reaction to Screen Phage Libraries", en Methods in Molecular Biology, Vol. 15: PCR Protocols: Current Methods and Applications, White (ed.) páginas 211-215 (Humana Press, Inc. 1993). Por otra parte, describen mecanismos para utilizar la PCR para aislar genes relacionados, por ejemplo, Preston, "Use of Degenerate Oligonucleotide Primers and the Polymerase Chain Reaction to Clone Gene Family Members", in Methods in Molecular Biology, Vol. 15: PCR Protocols: Current Methods and Applications, White (ed.), páginas 317-337 (Humana Press, Inc. 1993).

Alternativamente, se pueden obtener genotecas genómicas humanas de fuentes comerciales tales como Research Genetics (Huntsville, AL) y American Type Culture Collection (Rockville, Maryland).

Se puede rastrear una genoteca que contiene ADNc o clones genómicos con una o más sondas polinucleotídicas basadas en el SEC ID NÚM: 1, utilizando métodos normalizados (ver, por ejemplo, Ausubel (1995) en las páginas 6-1 a 6-11).

Los anticuerpos anti-proteína de unión a TGF-beta, producidos como se describe más abajo, también pueden ser utilizados para aislar secuencias de ADN que codifican los genes de la proteína de unión a TGF-beta de las genotecas de ADNc. Por ejemplo, los anticuerpos pueden ser utilizados para rastrear genotecas de expresión de λ gt11, o se pueden utilizar los anticuerpos para el inmunorescrutinio después de la selección y la traducción de híbridos (ver, por ejemplo, Ausubel (1995) en las páginas 6-12 a 6-16; Margolis et al., "Screening λ expression libraries with antibody and protein probes", en DNA Cloning 2: Expression Systems, 2^a Edición, Glover et al., (eds.) páginas 1-14 (Oxford University Press 1995)).

La secuencia de un ADNc de una proteína de unión a TGF-beta o de un fragmento genómico de la proteína de unión a TGF-beta puede ser determinada utilizando métodos normalizados. Por otra parte, la identificación de fragmentos genómicos que contienen un promotor o un elemento regulador de la proteína de unión a TGF-beta puede ser lograda utilizando mecanismos bien establecidos, tales como análisis de deleción (ver, generalmente, Ausubel (1995)).

Como alternativa, se puede obtener un gen de una proteína de unión a TGF-beta sintetizando moléculas de ADN utilizando oligonucleótidos largos mutuamente cebadores y secuencias de nucleótidos descritas en la presente memoria (ver, por ejemplo, Ausubel (1995) en las páginas 8-8 a 8-9). Los mecanismos establecidos que utilizan la reacción en cadena de la polimerasa proporcionan la capacidad de sintetizar moléculas de ADN de al menos dos kilobases de longitud (Adang et al., Plant Molec. Biol. 21:1131, 1993; Bambot et al., PCR Methods and Applications 2:266, 1993; Dilton et al., "Use of the Polymerase Chain Reaction for the Rapid Construction of Synthetic Genes", en Methods in Molecular Biology, Vol. 15: PCR Protocols Current Methods and Applications, White (ed.), páginas 263-268, (Humana Press, Inc., 1993); Holowachuk et al., PCR Methods Appl. 4:299, 1995).

3. Producción de genes de la proteína de unión a TGF-beta

25

35

40

45

50

55

Se pueden obtener moléculas de ácido nucleico que codifican genes de proteína de unión a TGF-beta variantes rastreando diversas genotecas de ADNc o genómico con sondas oligonucleotídicas que tienen secuencias de nucleótidos basadas en los SEC ID NO: 1, 5, 9, 11, 13, o 15, utilizando los procedimientos descritos antes. Las variantes del gen de la proteína de unión a TGF-beta también pueden ser construidas sintéticamente. Por ejemplo, se puede idear una molécula de ácido nucleico que codifique un polipéptido que tenga un cambio de aminoácido conservativo, en comparación con la secuencia de aminoácidos de los SEC ID NO: 2, 6, 8, 10, 12, 14, o 16. Esto es, se pueden obtener variantes que contengan una o más sustituciones de aminoácidos de los SEC ID NO: 2, 6, 8, 10, 12, 14 o 16, en las cuales un aminoácido alguílico está sustituido por un aminoácido alguílico en una secuencia de aminoácidos de la proteína de

unión a TGF-beta, un aminoácido aromático está sustituido por un aminoácido aromático en una secuencia de aminoácidos de la proteína de unión a TGF-beta, un aminoácido que contiene azufre es sustituido por un aminoácido que contiene azufre en una secuencia de aminoácidos de la proteína de unión a TGF-beta, un aminoácido que contiene hidroxi es sustituido por un aminoácido que contiene azufre en una secuencia de aminoácidos de la proteína de unión a TGF-beta, un aminoácido ácido es sustituido por un aminoácido ácido en una secuencia de aminoácidos de la proteína de unión a TGF-beta, un aminoácido alcalino es sustituido por un aminoácido alcalino en una secuencia de aminoácidos de la proteína de unión a TGF-beta, o un aminoácido monocarboxílico dibásico es sustituido por un aminoácido monocarboxílico dibásico en una secuencia de aminoácidos de la proteína de unión a TGF-beta.

10

Entre los aminoácidos comunes, por ejemplo, una "sustitución de aminoácidos conservativa" es ilustrada por una sustitución entre aminoácidos dentro de cada uno de los siguientes grupos: (1) glicina, alanina, valina, leucina, e isoleucina, (2) fenilalanina, tirosina, y triptófano, (3) serina y treonina, (4) aspartato y glutamato, (5) glutamina y asparragina, y (6) lisina, arginina e histidina. Al realizar tales sustituciones, es importante, cuando sea posible mantener el esqueleto de cisteína esbozado en la Figura 1.

20

15

Los cambios de aminoácidos conservativos en el gen de la proteína de unión a TGF-beta pueden ser introducidos sustituyendo nucleótidos por los nucleótidos citados en el SEC ID NO: 1. Tales "variantes de aminoácido conservativo" pueden ser obtenidas, por ejemplo, mediante mutagénesis dirigida al sitio, y similar (ver Ausubel (1995) en las páginas 8-10 a 8-22, y McPherson (ed.), Directed Mutagenesis: A Practical Approach (IRL Press 1991)). La capacidad funcional de tales variantes puede ser determinada utilizando un método normalizado, tal como el análisis descrito en la presente memoria. Alternativamente, un polipéptido de la proteína de unión a TGF-beta variante puede ser identificado mediante la capacidad de unirse específicamente a anticuerpos anti-proteína de unión a TGF-beta.

25

30

Se pueden realizar análisis de deleción rutinarios de moléculas de ácido nucleico para obtener "fragmentos funcionales" de una molécula de ácido nucleico que codifica un polipéptido de la proteína de unión a TGF-beta. Como ilustración, se pueden digerir moléculas de ADN que tienen la secuencia de nucleótidos del SEC ID NO: 1 con la nucleasa *Bal*31 para obtener una serie de deleciones encajadas. Después los fragmentos son insertados en vectores de expresión en un marco de lectura apropiado, y los polipéptidos expresados son aislados y sometidos a ensayo en cuanto a su actividad, o en cuanto a la capacidad de unirse a anticuerpos anti-proteína de unión a TGF-beta. Una alternativa a la digestión con exonucleasa es la utilización de la mutagénesis dirigida al oligonucleótido para introducir deleciones o codones de terminación para especificar la producción de un fragmento deseado. Alternativamente, se pueden sintetizar fragmentos concretos de un gen de la proteína del unión a TGF-beta utilizando la reacción en cadena de la polimerasa.

35

40

Los mecanismos normalizados para el análisis funcional de las proteína son descritos, por ejemplo, por Treuter et al., Molec. Gen. Genet. 240:113, 1993; Content et al., "Espression and preliminay deletion analysis of the 42 kea 2-5A synthesise induced by human interferon", en Biological Interferon Systems, Proceedings of ISIR-TNO Meeting on Interferon Systems, Cantell (ed.), páginas 65-72 (Nijhoff 1987); Herschman, "The EGF Receptor", en Control of Animal Cell Proliferation, Vol. I, Boynton et al., (eds.) páginas 169-199 (Academic Press 1985); Coumailleau et al., J. Biol. Chem. 270-29270, 1995; Fukunaga et al., J. Biol. Chem. 270:25291, 1995; Yamaguchi et al., Biochem. Pharmacol. 50:1295, 1995; y Meisel et al., Plant Molec. Biol. 30:1, 1996.

45

La presente descripción también contempla fragmentos funcionales de un gen de la proteína de unión a TGF-beta que tienen cambios de aminoácidos conservativos.

55

50

Un gen variante de la proteína de unión a TGF-beta puede ser identificado basándose en la estructura determinando el nivel de identidad con las secuencias de nucleótidos y aminoácidos de los SEC ID NO: 1, 5, 9, 11, 13, o 15 y 2, 6, 10, 12, 14, o 16, como se ha discutido antes. Un enfoque alternativo para identificar un gen variante basándose en la estructura consiste en determinar si una molécula de ácido nucleico que codifica un gen de la proteína de unión a TGF-beta variantes puede hibridar en condiciones restrictivas con una molécula de ácido nucleico que tiene la secuencia de nucleótidos de los SEC ID NO: 1, 5, 9, 11, 13, o 15, o una porción de la misma de una longitud de al menos 15 o 20 nucleótidos. Como ilustración de las condiciones de hibridación restrictivas, se puede unir una molécula de ácido nucleico que tenga una secuencia de la proteína de unión a TGF-beta variante con un fragmento de una molécula de ácido nucleico que tenga una secuencia de la SEC ID NO: 1 en un tampón que contenga, por ejemplo, 5xSSPE (1xSSPE = cloruro de sodio 180 mM, fosfato de sodio 10 mM, EDTA 1 mM (pH 7,7), 5xsolución de Denhardt (100xDenhardt = seralbúmina bovina al 2% (p/v), Ficoll al 2% (p/v), polivinilpirrolidona al 2% (p/v) y SDS al 0,5% incubado durante la noche a 55-60°C. Los lavados post-hibridación con una alta restricción se realizan típicamente en 0,5xSSC (1xSSC = cloruro de sodio 150 mM, citrato de sodio 15 mM) o en 0.5xSSPE a 55-60°C.

65

60

Con independencia de la secuencia de nucleótidos concreta de un gen de la proteína de unión a TGF-beta variante, el gen codifica un polipéptido que puede ser caracterizado por su actividad funcional, o por la

capacidad de unirse específicamente a un anticuerpo anti-proteína de unión a TGF-beta. Más específicamente, los genes de la proteína de unión a TGF-beta variantes codifican polipéptidos que muestran al menos un 50%, y preferiblemente, más del 60, 70, 80 o 90% de la actividad de los polipéptidos codificados por el gen de la proteína de unión a TGF-beta humano descrito en la presente memoria.

4. Producción de la proteína de unión a TGF-beta en Células Cultivadas

5

10

15

20

35

Para expresar un gen de una proteína de unión a TGF-beta, una molécula de ácido nucleico que codifica el polipéptido debe ser conectada operablemente a secuencias reguladoras que controlan la expresión transcripcional en un vector de expresión y después introducida en una célula anfitriona. Además de las secuencias reguladoras de la transcripción, tales como promotores e intensificadores, los vectores de expresión pueden incluir secuencia reguladoras de la traducción y un gen marcador que sea adecuado para la selección de células que portan el vector de expresión.

Los vectores de expresión que son adecuados para la producción de una proteína foránea en células eucarióticas contienen típicamente (1) elementos de ADN procariótico que codifican un origen de replicación bacteriano y un marcador de resistencia a antibióticos para proporcionar el crecimiento y la selección del vector de expresión en un anfitrión bacteriano; (2) elementos de ADN eucariótico que controlan el inicio de la transcripción, tal como un promotor, y (3) elementos de ADN que controlan la maduración de los transcritos, tales como una secuencia de terminación de la transcripción/poliadenilación.

Las proteínas de unión a TGF-beta de la presente descripción son expresadas preferiblemente en células de mamífero. Entre los ejemplos de las células anfitrionas de mamífero se incluyen células de riñón de mono verde Africano (Vero; ATCC CRL 1587, células de riñón embriónico humano ((293-HEK; ATCC CRL 1573), células de riñón de cría de hámster (BHK-21; ATCC CRL 8544), células de riñón caninas (MDCK; ATCC CCL 34), células de ovario de hámster Chino (CHO-K1; ATCC CCL61), células de pituitaria de rata (GH1; ATCC CCL82), células HeLa S3 (ATCC CCL2.2), células de hepatoma de rata (H-4-II-E; ATCC CRL 1548), células de riñón de mono transformadas con SV40 (COS-1; ATCC CRL 1650) y células embriónicas de ratóns (NIH-3T3; ATCC CRL 1658).

Para un anfitrión mamífero, las señales reguladoras de la transcripción y la traducción pueden derivar de fuentes virales, tales como adenovirus, virus de papiloma bovino, virus de simios, o similar, en los cuales las señales reguladoras están asociadas con un gen concreto que tiene un elevado nivel de expresión. Las secuencias reguladoras transcripcionales y traduccionales también pueden ser obtenidas de genes de mamíferos, tales como los genes de actina, colágeno, miosina, y metalotioneína.

Entre las secuencias reguladoras transcripcionales se incluyen una región promotora suficiente para dirigir el inicio de la síntesis de ARN. Entre los promotores eucarióticos adecuados se incluyen el promotor del gen de la metalotioneína I de ratón [Hamer et al., J. Molec. Appl. Genet. I:273,1982], el promotor TK del Herpes virus [McKnight, Cell 31:355, 1982], el promotor temprano de SV40 [Benoist et al., Nature 290:304,1981], el promotor del virus del Sarcoma de Rous [Gorman et al., Proc. Natl. Acad. Sci. USA 9:6777, 1982], el promotor de citomegalovirus [Foecking et al., Gene 45, 101, 1980], y el promotor del virus del tumor mamario de ratón (ver, generalmente, Etcheverry, "Expression of Engineered Proteins in Mammalian Cell Culture", en Protein Engineering Principles and Practice, Cleland et al. (eds.), páginas 163-181 (John Wiley & Sons, Inc. 1996)).

Alternativamente, se puede utilizar un promotor procariótico, tal como el promotor de la ARN polimerasa del bacteriófago T3 para controlar la expresión del gen de la proteína de unión a TGF-beta en células de mamífero si el promotor procariótico está regulado por un promotor eucariótico (Zhou et al., Mol. Cell. Biol. 10:4529, 1990; Kaufman et al., Nucl. Acids Res. 19:4485, 1991).

Los genes de la proteína de unión a TGF-beta también pueden ser expresados en células bacterianas, de levadura, de insectos o de plantas. Los promotores adecuados que pueden ser utilizados para expresar los polipéptidos de la proteína de unión a TGF-beta en un anfitrión procariótico son bien conocidos por los expertos en la técnica e incluyen promotores capaces de reconocer las polimerasas de T4, T3, Sp6 y T7, los promotores P_R y P_I del bacteriófago lambda, los promotores *trp, rec*A, del choque térmico, *lacUV5, tac, lpp-lacSpr, phoA*, y *lacZ* de *E. coli*, los promotores de *B. subtilis*, los promotores de los bacteriófagos de *Bacillus*, los promotores de *Streptomyces*, el promotor int del bacteriófago lambda, el promotor *bla* de pBR322, y el promotor CAT del gen de la cloramfenicol acetil transferasa. Los promotores procarióticos han sido revisados por Glick, J. Ind. Microbiol. 1:277, 1987, Watson et al., Molecular Biology of the Gene, 4ª Ed. (Benjamin Cummins 1987), y por Ausubel et al., (1995).

Entre los anfitriones procarióticos preferidos se incluyen *E. coli* y *Bacillus subtilis*. Entre las cepas adecuadas de *E. coli* se incluyen BL21(DE3), BL2(DE3)pLysS, BL21(DE3)pLysE, DH1, DH4, DH5, DH51, DH51F', DH51MCR, DH10B, DH10B/p3, DH11S, C600, HB101, JM101, JM105, JM109, JM110, K38,RR1,

Y1088, Y1089, CSH18, ER1451, y ER1647 (ver, por ejemplo, Brown (Ed.), Molecular Biology Labfax (Academic Press 1991)). Entre las cepas adecuadas de *Bacillus subtilis* se incluyen BR151, YB886, M1119, M1120, y B170 (ver, por ejemplo, Hardy, "Bacillus Cloning Methods", en DNA Cloning: A Practical Approach, Glover (Ed.) (IRL Press 1985)).

5

10

Los métodos para expresar proteínas en anfitriones procarióticos son bien conocidos para los expertos en la técnica (ver, por ejemplo, Williams et al., "Expression of foreign proteins in E. coli using plasmid vectors and purification of specific polyclonal antibodies", en DNA Cloning 2: Expression Systems, 2ª Edición, Glover et al. (eds.) página 15 (Oxford University Press 1995), Ward et al., "Genetic Manipulation and Expression of Antibodies", en Monoclonal Antibodies: Principles and Applications, página 137 (Wiley-Liss, Inc. 1995); y Georgiou, "Expression of Proteins in Bacteria", en Protein Engineering: Principles and Practice, Cleland et al., (eds.), página 101 (John Wiley & Sons, Inc. 1996).c

El sistema de baculovirus proporciona un medio eficaz de introducir genes de la proteína de unión a TGF-15 beta clonada en células de insecto. Los vectores de expresión adecuados están basados en el virus de la polihedrosis nuclear múltiple de Autographa californica (AcMNPV), y contienen promotores bien conocidos tales como el promotor 70 de la proteína del choque térmico de Drosophila (hsp), el promotor del gen temprano inmediato (ie-1) y el promotor 39K temprano retardado de Autographa californica, el promotor p10 de baculovirus, y el promotor de la metalotioneína de Drosophila. Entre las células anfitrionas e 20 insecto adecuadas se incluyen líneas celulares derivadas de IPLB-Sf-21, una línea celular de ovario de pulpa de Spodoptera frugiperda, tal como Sf9 (ATCC CRL 1711), Sf21AE, y Sf21 (Invitrogen Corporation, San Diego, CA), así como células Schneider-2 de Drosophila. Las técnicas establecidas para producir proteínas recombinantes en sistemas de baculovirus son proporcionadas por Bailey et al., "Manipulation of Baculovirus Vectors", en Methods in Molecular Biology, Volumen 7: Gene Transfer and Expression Protocols, Murray (ed.), páginas 147-168 (The Humana Prees, Inc. 1991), por Patel et al., "The 25 baculovirus expression system", en DNA Cloning 2: Expression Systems, 2ª Edición, Glover et al., (eds.), páginas 205-244 (Oxford University Press 1995), por Ausubel (1995) en las páginas 16-37 a 16-57, por Richardson (ed.), Baculovirus Expression Protocols (The Humana Press, Inc. 1995), y por Lucknow, "Insect Cell Expression Technology", en Protein Engineering: Principles and Practice, Cleland et al. (eds.), 30 páginas 183-218 (John Wiley & Sons, Inc. 1996).

Entre los promotores para la expresión en levaduras se incluyen promotores de *GAL1* (galactosa), *PGK* (fosfoglicerato quinasa), *ADH* (alcohol deshidrogenasa), *AOX1* (alcohol oxidasa), HIS4 (histidinol deshidrogenasa), y similares. Se han diseñado muchos vectores de clonación de levaduras y son asequibles fácilmente. Entre estos vectores se incluyen vectores basados en YIp, tales como YIp5, vectores YRp, tales como YRp17, vectores YEp tales como YEp13 y vectores YCp, tales como YCp19. Un experto en la técnica apreciará que hay una amplia variedad de vectores adecuados para la expresión en células de levadura.

Los vectores de expresión también pueden ser introducidos en protoplastos de plantas, tejidos vegetales intactos, o células vegetales aisladas. Los métodos generales para cultivar tejidos vegetales son proporcionados, por ejemplo, por Miki et al., "Procedures for Introducing Foreign DNA into Plants", en Methods in Plant Molecular Biology and Biotechnology, Glick et al. (eds.), páginas 67-88 (CRC Press, 1993).

45

50

55

35

Un vector de expresión puede ser introducido en células anfitrionas utilizando una variedad de mecanismos normalizados incluyendo la transfección con fosfato de calcio, la transfección mediada por liposomas, el reparto mediado por microproyectiles, la electroporación, y similares. Preferiblemente, las células transfectadas son seleccionadas y propagadas para proporcionar células anfitrionas recombinantes que comprendan el vector de expresión integrado establemente en el genoma de la célula anfitriona. Las técnicas para introducir vectores en células eucarióticas y las técnicas para seleccionar tales transformantes estables utilizando un marcador seleccionable dominante son descritas, por ejemplo, por Ausubel (1995) y por Murray (ed.), Gene Transfer and Expression Protocols (Humana Press 1991). Los métodos para introducir vectores de expresión en células bacterianas, de levadura, de insectos, y vegetales también son proporcionados por Ausubel (1995).

Los métodos generales para expresar y recuperar la proteína foránea producida por un sistema celular de mamífero son proporcionados por ejemplo, por Etcheverry, "Expression of Engineered Proteins in Mammalian Cell Culture", en "Protein Engineering: Principles and Practice, Cleland et al., (eds.), páginas 163 (Wiley-Liss, Inc. 1996). Los mecanismos normalizados para recuperar la proteína producida por un sistema bacteriano son proporcionados, por ejemplo, por Grisshammer et al., "Purification of overproduced proteins from E. coli cells", en DNA Cloning 2: Expression Systems, 2ª Edición, Glover et al. (eds.), páginas 59-92 (Oxford University Press 1995). Los métodos establecidos para el aislamiento de proteínas recombinante a partir de un sistema de baculovirus son descritos por Richardson (ed.), Baculovirus Expression Protocols (The Humana Press, Inc., 1995).

Más generalmente, la proteína de unión a TGF-beta puede ser aislada mediante mecanismos

normalizados, tales como la cromatografía de afinidad, la cromatografía de exclusión por tamaños, la cromatografía de intercambio iónico, la HPLC y similares. Se pueden idear variaciones adicionales en el aislamiento y la purificación de la proteína de unión a TGF-beta por parte de aquellos expertos en la técnica. Por ejemplo, se pueden utilizar anticuerpos anti-proteína de unión a TGF-beta, obtenidos como se describe más abajo, para aislar grandes cantidades de proteína mediante purificación por inmunoafinidad.

5. Producción de Anticuerpos para las proteínas de unión a TGF-beta

5

10

15

20

30

35

40

45

50

55

60

65

Los anticuerpos para la proteína de unión a TGF-beta pueden ser obtenidos, por ejemplo, utilizando el producto de una expresión como antígeno. Los anticuerpos anti-proteína de unión a TGF-beta particularmente útiles se "unen específicamente" con la proteína de unión a TGF-beta de los SEC ID Núm. 2, 6, 10, 12, 14, o 16, pero no a otras proteínas de unión a TGF-beta tales como Dan, Cerberus, SCGF, o Gremlin. Los anticuerpos de la presente invención (incluyendo los fragmentos de los mismos) son monoclonal. El anticuerpo puede pertenecer a cualquier clase de inmunoglobulina, y puede ser por ejemplo un anticuerpo IgG, por ejemplo IgG₁, IgG₂, IgG₃, IgG₄, IgE, IgM, o IgA. Puede ser de origen animal, por ejemplo de mamífero, y puede ser por ejemplo un anticuerpo de ratón, de rata, humano o de otro primate. Cuando se desea el anticuerpo puede ser un anticuerpo internalizante.

Los anticuerpos policlonales para la proteína de unión a TGF-beta recombinante pueden ser preparados utilizando métodos bien conocidos por los expertos en la técnica (ver, por ejemplo, Green et al. "Production of Polyclonal Antisera", en Immunochemical Protocols (Manson, ed.), páginas 1-5 (Humana Press 1992); Williams et al., "Expression of foreign proteins in E. coli using plasmid vectors and purification of specific polyclonal antibodies", en DNA Cloning 2: Expression Systems, 2ª Edición, Glover et al. (eds.), página 15 (Oxford University Press 1995)). Aunque los anticuerpos policionales se originan típicamente en 25 animales tales como ratas, ratones, conejos, cabras, u ovejas, un anticuerpo anti-proteína de unión a TGF de la presente invención también puede derivar de un anticuerpo de primate sub-humano. Los mecanismos generales para originar anticuerpos útiles para el diagnóstico y la terapia en babuinos fueron encontrados, por ejemplo, en Goldenberg et al., publicación de patente internacional Núm. WO 91/11465 (1991), y en Losman et al., Int. J. Cancer 46:310, 1990.

El anticuerpo debe comprender al menos un dominio de la región variable. El dominio de la región variable puede ser de cualquier tamaño o composición de aminoácidos y generalmente comprenderá al menos una secuencia de aminoácidos hipervariable responsable de la unión al antígeno embebido en una secuencia marco. En términos generales el dominio de la región variable (V) puede ser cualquier ordenación adecuada de dominios variables de la cadena pesada (V_H) y/o ligera (V_L) de inmunoglobulina. De este modo por ejemplo el dominio de la región V puede ser monomérico y ser un dominio V_H o V_L donde estos sean capaces de unirse independientemente con una afinidad aceptable. Alternativamente el dominio de la región V puede ser dimérico y contener dímeros V_H-V_H, V_H-V_L, o V_L-V_L en los cuales las cadenas V_H y V_L están asociadas no covalentemente (abreviado en adelante como F_V). Cuando se desea, no obstante, las cadenas pueden estar acopladas covalentemente o bien directamente, por ejemplo por medio de un enlace disulfuro entre los dos dominios variables, o a través de un ligador, por ejemplo un ligador peptídico, para formar un dominio de cadena sencilla (abreviado en adelante como scF_V).

El dominio de la región variable puede ser cualquier dominio variable de origen natural o una versión diseñada del mismo. Por versión diseñada se quiere significar un dominio de la región variable que ha sido creado utilizando mecanismos de diseño de ADN recombinante. Entre tales versiones diseñadas se incluyen aquellas creadas por ejemplo a partir de regiones variables de anticuerpos naturales mediante inserciones, deleciones o cambios en las secuencias de aminoácidos de los anticuerpos naturales. Entre los ejemplos concretos de este tipo se incluyen aquellos dominios de la región variable diseñados que contienen al menos una CDR y opcionalmente uno o más aminoácidos marco de un anticuerpo y el resto del dominio de la región variable de un segundo anticuerpo.

El dominio de la región variable puede estar anclado covalentemente en un aminoácido C-terminal a al menos otro dominio del anticuerpo o un fragmento del mismo. De este modo, por ejemplo cuando un dominio V_H está presente en el dominio de la región variable este puede estar conectado a un dominio C_H1 de la inmunoglobulina o un fragmento del mismo. De un modo similar un dominio V_⊥ puede estar conectado a un dominio C_K o un fragmento del mismo. De este modo por ejemplo el anticuerpo puede ser un fragmento Fab en el que el dominio de unión al antígeno contiene dominios V_H y V_L asociados conectados en sus extremos C a un dominio CH1 y CK respectivamente. El dominio CH1 puede ser prolongado con aminoácido adicionales, por ejemplo para proporcionar un dominio de la región bisagra como el encontrado en un fragmento Fab', o para proporcionar dominios adicionales, tales como los dominios CH2 v CH3 del anticuerpo.

Otra forma de fragmento de anticuerpo es un péptido que codifica una única región determinante de la complementariedad (CDR). Los péptidos CDR ("unidades mínimas de reconocimiento") pueden ser obtenidos construyendo genes que codifiquen la CDR de un anticuerpo de interés. Tales genes son preparados, por ejemplo, utilizando la reacción en cadena de la polimerasa para sintetizar la región

variable a partir de ARN de células productoras de anticuerpos (ver, por ejemplo, Larrick et al., Methods: A Companion to Methods en Enzimology 2:106, 1991; Courtenay-Luck, "Genetic Manipulation of Monoclonal Antibodies", en Monoclonal Antibodies: Production, Engineering and Clinical Application, Ritter et al. (eds.), página 166 (Cambridge Universisty Press 1995); y Ward et al., "Genetic Manipulation and Expression of Antibodies", en Monoclonal Antibodies: Principles and Applications, Birch et al., (eds.), página 137 (Wiley-Liss, Inc. 1995)).

Anticuerpos monoclonales para su uso en la invención pueden ser preparados mediante inmunización convencional y procedimientos de fusión celular Fragmentos, pueden ser derivados de allí utilizando cualquier mecanismo químico normalizado adecuado p.ej., reducción o escisión enzimática y/o digestión, por ejemplo mediante tratamiento con pepsina.

10

15

20

25

40

45

50

55

60

65

Más específicamente, los anticuerpos anti-proteína de unión a TGF-beta monoclonales pueden ser generados utilizando una variedad de técnicas. Los anticuerpos monoclonales de roedor para antígenos específicos pueden ser obtenidos mediante métodos conocidos por los expertos en la técnica (ver, por ejemplo, Kohler et al., Nature 256:495, 1975; y Coligan et al. (eds.) Current Protocols in Immunology, 1:2.5-1.2.7 (John Wiley & Sons 1991) ["Coligan"], Picksley et al., "Production of monoclonal antibodies against proteins expresed in E. coli", en DNA Cloning 2: Expression Systems, 2ª Edición, Glover et al., (eds.), página 93 (Oxford University Press 1995)).

En resumen, se pueden obtener anticuerpos monoclonales inyectando en ratones una composición que comprende un producto génico de la proteína de unión a TGF-beta, verificando la presencia de producción de anticuerpo mediante la separación de una muestra de suero, separación del bazo para obtener B-linfocitos, fusión de los B-linfocitos con células de mieloma para producir hibridomas, clonación de los hibridomas, selección de clones positivos que producen anticuerpos para el antígeno, cultivo de los clones que producen los anticuerpos para el antígeno, y aislamiento de lo anticuerpos de los cultivos de hibridoma.

Además, un anticuerpo anti-proteína de unión a TGF-beta de la presente invención puede derivar de un anticuerpo monoclonal humano. Los anticuerpos monoclonales humanos son obtenidos a partir de ratones transgénicos que han sido diseñados para producir anticuerpos humanos específicos en respuesta a una sensibilización antigénica. En esta técnica, se introducen elementos del locus de la cadena pesada y ligera humana en cepas de ratones derivadas de líneas de células madre embriónicas que contienen desorganizaciones redireccionadas de los loci de la cadena pesada y de la cadena ligera endógenas. Los ratones transgénicos pueden sintetizar anticuerpos humanos específicos para antígenos humanos, y los ratones pueden ser utilizados para producir hibridomas de escrutinio de anticuerpos humanos. Los métodos para obtener anticuerpos humanos a partir de ratones transgénicos se describen, por ejemplo, Green et al., Nature Genet. 7:13, 1994; Lonberg et al., Nature 368:856, 1994; y Taylor et al., Int. Immun. 6:579, 1994.

Los anticuerpos monoclonales pueden ser aislados y purificados a partir de cultivos de hibridoma mediante una variedad de mecanismos bien establecidos. Entre tales mecanismos de aislamiento se incluyen la cromatografía de afinidad con Proteína A-Sepharose, la cromatografía de exclusión pro tamaños, y la cromatografía de intercambio iónico (ver, por ejemplo, Coligan en las páginas 2.7.1-2.7.12 y páginas 2.9.1-2.9.3; Baines et al., "Purification of Immunoglobulin G (IgG)", en Methods in Molecular Biology, Vol. 10, páginas 79-104 (The Human Press, Inc. 1992)).

Para usos concretos, puede ser deseable preparar fragmentos de anticuerpos anti-proteína de unión a TGF-beta. Tales fragmentos de anticuerpo pueden ser obtenidos, por ejemplo, mediante hidrólisis proteolítica del anticuerpo. Los fragmentos de anticuerpo pueden ser obtenidos mediante digestión con pepsina o papaína de los anticuerpos completos mediante métodos convencionales. Como ilustración, se pueden producir fragmentos de anticuerpo mediante escisión enzimática de anticuerpos con pepsina para proporcionar un fragmento 5S denominado F(ab')₂. Este fragmento puede ser escindido adicionalmente utilizando un agente reductor de tiol para producir fragmentos monovalentes Fab' de 3,5S. Opcionalmente, la reacción de escisión puede ser realizada utilizando un grupo bloqueador para los grupos sulfhidrilo que resultan de la escisión de los enlaces disulfuro. Como alternativa, una escisión enzimática en la que se utiliza pepsina produce dos fragmentos Fab monovalentes y un fragmento Fc directamente. Estos métodos son descritos por ejemplo, por Goldenberg, Patente de los Estados Unidos Núm. 4.331.647, Nisonoff et al., Arch. Biochem. Biophys. 89:230, 1960, Porter, Biochem. J. 73:119, 1959, Edelman et al., en Methods in Enzymology 1:422 (Academic Press 1967), y por Coligan en las páginas 2.8.1-2.8.10 y 2.10-2.10.4.

También se pueden utilizar otros métodos de escisión de anticuerpos, tales como la separación de cadenas pesadas para formar fragmentos de cadena ligera monovalentes, escisión adicional de fragmentos, u otras técnicas enzimáticas, químicas o genéticas, con tal que los fragmentos se unan al antígeno que sea reconocido por el anticuerpo intacto.

Alternativamente, el anticuerpo puede ser un anticuerpo recombinante o diseñado genéticamente obtenido mediante el uso mecanismos de ADN recombinante que implican la manipulación y la re-expresión del ADN que codifica las regiones variable y/o constante del anticuerpo. Semejante ADN es conocido y/o es fácilmente asequible de genotecas de ADN incluyendo por ejemplo genotecas de anticuerpos de fagos (ver Chiswell, D.J. y McCafferty, J. Tibtech. 10/2 80-84 (1992)) o se puede sintetizar cuando se desee. Los procedimientos de la biología molecular y/o la química normalizados pueden ser utilizados para secuenciar y manipular el ADN, por ejemplo, para introducir codones para crear restos cisteína, para modificar, añadir o suprimir otros aminoácidos o dominios según se desee.

10 A partir de en la presente memoria, uno o más vectores de expresión replicables que contengan el ADN y pueden ser preparados y utilizados para transformar una línea celular apropiada, p.ej. una línea celular de mieloma no productora, tal como una línea NSO de ratón o una línea bacteriana, p.ej. de E. coli, en la cual tendrá lugar la producción del anticuerpo. Con el fin de obtener una transcripción y una traducción eficaz, una secuencia de ADN de cada vector debe incluir secuencias reguladoras apropiadas, concretamente un 15 promotor y una secuencia líder conectada operablemente a la secuencia de dominio variable. Los métodos concretos para producir anticuerpos de esta manera son generalmente bien conocidos y utilizados rutinariamente. Por ejemplo, describen procedimientos de la biología molecular básicos Maniatis et al. (Molecular Cloning, Cold Spring Harbor Laboratory, New York, 1989); la secuenciación del ADN se puede realizar como describen Sanger et al. (PNAS 74, 5463, (1977)) y el manual de secuenciación plc de 20 Amersham International; y la mutagénesis dirigida al sitio se puede llevar a cabo según el método de Kramer et al. (Nucl. Acids Res. 12, 9441, (1984)) y el manual Anglian Biotechnology Ltd. Adicionalmente, existen numerosas publicaciones, que detallan técnicas adecuadas para la preparación de anticuerpos mediante la manipulación del ADN, la creación de vectores de expresión y la transformación de células apropiadas, por ejemplo como revisan Mountain A y Adair, J R in Biotechnology and Genetic Engineering Reviews (ed. Tombs, M P, 10, Capítulo 1, 1992, Intercept, Andover, UK) y en la Memoria de la Patente 25 Internacional Núm. WO 91/09967.

Cuando se desea, el anticuerpo según la invención puede tener una o más moléculas efectoras o informadoras ancladas a él y la invención se amplía a tales proteínas modificadas. Las moléculas efectoras o informadoras pueden estar ancladas al anticuerpo a través de cualquier cadena lateral de aminoácido disponible, aminoácido amino terminal o, cuando esté presente un grupo funcional carbohidrato localizado en el anticuerpo, siempre que, por supuesto, este no afecte adversamente a las propiedades de unión y a la utilidad eventual de la molécula. Entre los grupos funcionales concretos se incluyen, por ejemplo cualquier grupo amino, imino, tiol, hidroxilo, carboxilo o aldehído libre. El anclaje del anticuerpo y la molécula o las moléculas efectoras y/o informadoras puede ser logrado vía tales grupos y un grupo funcional apropiado en las moléculas efectoras o informadoras. La conexión puede ser directa o indirecta, por medio de grupo espaciadores o formadores de puentes.

30

35

40

45

50

55

60

65

Entre las moléculas efectoras se incluyen, por ejemplo, agentes antineoplásicos, toxinas (tales como toxinas farmacéuticamente activas de origen bacteriano o vegetal y fragmentos de las mismas p.ej. ricina y fragmentos de la misma), proteínas biológicamente activas, por ejemplo enzimas, ácidos nucleicos y fragmentos de los mismos, p.ej., ADN, ARN y fragmentos de los mismos, polímeros de origen natural y sintético p.ej. polisacáridos y polímeros de polialquileno tales como poli(etilenglicol) y derivados del mismo, radionúclidos, concretamente radioyoduro, y metales quelantes. Entre los grupos informadores adecuados se incluyen metales quelados, compuestos fluorescentes o compuestos que pueden ser detectados mediante espectroscopía de RMN o ESR.

Entre los agentes antineoplásicos concretos se incluyen agentes citotóxicos y cistostáticos, por ejemplo, agentes alquilantes, tales como mostazas nitrogenadas (p.ej., clorambucil, melfalan, mecloretamina, ciclofosfamida, o mostaza de uracilo) y los derivados de los mismos, trietilenfosforamida, trietilentiofosforamida, busulfan, o cisplatino; antimetabolitos, tales como metotrexato, fluorouracilo, floxuridina, citarabina, mercaptopurina, tioguanina, ácido fluoroacético o ácido fluorocítrico, antibióticos, tales como bleomicinas (p.ej. sulfato de bleomicina), doxorrubicina, daunorrubicina, mitomicinas (p.ej. mitomicina C), actinomicinas (p.ej. dactinomicinas), plicamicina, calicamicina y derivados de la misma, o esperamicina y derivados de la misma, inhibidores mitóticos, tales como etoposido, vincristina o vinblastina y derivados de los mismos, alcaloides, tales como elipticina; polioles tales como taxicina-l o taxicina-ll, hormonas tales como andrógenos (p.ej. dromostanolona o testolactona), progestinas (p.ej. acetato de megestrol o acetato de medroxiprogesterona), estrógenos (p.ej., difosfato de dimetilestilbestrol, fosfato de poliestradiol o fosfato de estramustina) o antiestrógenos (p.ej. tamoxifeno); antraquinonas, tales como mitoxantrona, ureas, tales como hidroxiurea, hidrazinas, tales como procarbazina, o imidazoles, tales como dacarbazina.

Son grupos efectores particularmente útiles la calicamicina y los derivados de la misma (ver por ejemplo las Memorias de Patente Surafricanas Núm. 85/8794, 88(8127 y 90/2839).

Entre los metales quelados se incluyen quelatos de metales di- o tri-positivos que tienen un número de coordinación de 2 a 8 inclusive. Entre los ejemplos concretos de tales metales se incluyen tecnecio (Tc),

renio (Re), cobalto (Co), cobre (Cu), oro (Au), plata (Ag), plomo (Pb), bismuto (Bi), indio (In), galio (Ga), itrio (Y), terbio (Tb), gadolinio (Gd) y escandio (Sc). En general el metal es preferiblemente un radionúclido. Entre los radionúclidos concretos se incluyen Tc^{99m} , Re^{186} , Co^{58} , Co^{60} , Cu^{67} , Au^{195} , Au^{199} , Au^{110} , Pb^{203} , Bi^{206} , Bi^{207} , In^{111} , Ga^{67} , Ga^{68} , Y^{88} , Y^{90} , Tb^{160} , Gd^{153} y Sc^{47} .

El metal quelado puede ser por ejemplo uno de los tipos de metal quelado anteriores con cualquier agente quelante polidentado adecuado, por ejemplo poliaminas acíclicas o cíclicas, poliéteres, (p.ej. éteres corona y derivados de los mismos), poliamidas, porfirinas, y derivados carbocíclicos.

En general, el tipo de agente quelante dependerá del metal que se use. Un grupo particularmente útil de agentes quelantes en los productos conjugados según la invención, no obstante, son las poliaminas acíclicas y cíclicas, especialmente los ácidos poliaminocarboxílicos, por ejemplo el ácido dietilentriaminopentaacético y derivados de los mismos, y aminas macrocíclicas, p.ej., derivados tri-aza y tetra-aza cíclicos (por ejemplo como se describe en la Memoria de la Patente Internacional Núm. WO 92/22583); y poliamidas, especialmente desferrioxiamina y derivados de la misma.

De este modo por ejemplo cuando se desee utilizar un grupo tiol en el anticuerpo como punto de anclaje esto puede ser logrado por medio de una reacción con un grupo reactivo con tiol presente en la molécula efectora o informadora. Entre los ejemplos de tales grupos se incluyen un ácido o éster a-halocarboxílico, p.ej., yodoacetamida, una imida, p.ej., maleimida, una vinilsulfona, o un disulfuro. Estos y otros procedimientos de unión adecuados se describen generalmente y más concretamente en las Memorias de Patente Internacional Núm. WO 93/06231, WO 92/22583, WO 90/091195 y WO 89/01476.

Análisis para seleccionar moléculas que incrementn la densidad ósea

20

25

30

35

40

45

50

55

60

65

Como se ha discutido antes, la presente descripción proporciona métodos para seleccionar y/o aislar compuestos que son capaces de incrementar la densidad ósea. Por ejemplo, en un aspecto de la presente descripción se proporcionan métodos para determinar si una molécula seleccionada es capaz de incrementar el contenido mineral del hueso, que comprende las etapas de (a) mezclar una molécula seleccionada con proteína de unión a TGF-beta y un miembro seleccionado de la familia de proteínas TGF-beta, (b) determinar si la molécula seleccionada estimula la señalización por la familia de proteínas del TGF-beta, o inhibe la unión de la proteína de unión a TGF-beta a la familia de proteínas del TGF-beta. En ciertas realizaciones de la descripción, la molécula intensifica la capacidad del TGF-beta para funcionar como regulador positivo de la diferenciación de las células del mesénquima.

En otros aspectos de la descripción, se proporcionan métodos para determinar si una molécula seleccionada es capaz de incrementar el contenido mineral del hueso, comprendiendo las etapas de (a) exponer una molécula seleccionada a células que expresen la proteína de unión a TGF-beta y (b) determinar si la expresión (o actividad) de la proteína de unión a TGF-beta de dichas células expuestas disminuye, y determinar a partir de allí si el compuesto es capaz de incrementar el contenido mineral del hueso. En una realización de la descripción las células son seleccionadas del grupo formado por hueso humano normal transformado espontáneamente o no transformado de biopsias óseas y osteoblastos de hueso parietal de rata. Semejantes métodos pueden ser completados en una variedad de formatos de análisis incluyendo, por ejemplo, la Inmunoelectroforesis Contracorriente (CIEP), los Radio-inmunoanálisis, las Radioinmunoprecipitaciones, los Análisis de Absorción con Enzima Ligada (ELISA), y los análisis sandwich (ver, las Patentes de los Estados Unidos Núm. 4.376.110 y 4.486.530, ver también Antibodies: A Laboratory Manual, supra).

Las realizaciones representativas de tales análisis son proporcionadas más abajo en los Ejemplos 5 y 6. En resumen, un miembro de la familia de la súper-familia de TGF-beta o una proteína de unión de TGF-beta se une primero a una fase sólida, seguido de la adición de una molécula candidato. El miembro de la familia marcado de la súper-familia del TGF-beta o la proteína de unión a TGF-beta es añadido después al análisis, la fase sólida lavada, y la cantidad de miembro de la súper-familia de TGF-beta unido o marcado o de proteína de unión a TGF-beta del soporte sólido es determinada. Las moléculas que son adecuadas para su uso en el aumento del contenido mineral del hueso como se describe en la presente memoria son aquellas moléculas que disminuyen la unión de proteína de unión a TGF-beta a un miembro o miembros de la súper-familia del TGF-beta de una manera estadísticamente significativa. Obviamente, los análisis adecuados para su uso en la presente descripción no deben estar limitados a las realizaciones descritas en los Ejemplos 2 y 3. En particular, se pueden alterar numerosos parámetros, por ejemplo uniendo el TGF-beta a una fase sólida, o eliminando completamente la fase sólida.

En otros aspectos de la descripción, se proporcionan métodos para determinar si una molécula seleccionada es capaz de incrementar el contenido mineral del hueso, que comprende las etapas de (a) exponer una molécula seleccionada a células que expresan el TGF-beta y (b) determinar si la actividad de TGF-beta a partir de dichas células expuestas es alterada, y determinar a partir de allí si el compuesto es capaz de incrementar el contenido mineral del hueso. De un modo similar a los métodos descritos antes, se pueden utilizar una amplia variedad de métodos para evaluar los cambios de expresión de la proteína

de unión a TGF-beta debidos a un compuesto de ensavo seleccionado.

Por ejemplo, en un aspecto de la presente descripción se proporcionan métodos para determinar su una molécula seleccionada es capaz de incrementar el contenido mineral del hueso, que comprenden las etapas de (a) mezclar una molécula seleccionada con proteína de unión a TGF-beta y un miembro seleccionado de la familia de proteínas de TGF-beta, (b) determinar si la molécula seleccionada sobreregula la señalización de la familia de proteínas del TGF-beta, o inhibe la unión de la proteína de unión a TGF-beta a la familia de proteínas del TGF-beta. En ciertas realizaciones de la descripción, la molécula intensifica la capacidad del TGF-beta para funcionar como regulador positivo de la diferenciación de las células del mesénguima.

De un modo similar a los métodos descritos antes, se puede utilizar una amplia variedad de métodos para evaluar la estimulación de TGF-beta debida a un compuesto de ensayo seleccionado. Uno de tales métodos representativos se proporciona más abajo en el Ejemplo 6 (ver también Durham et al., Endo, 136:1374-1380.

En otros aspectos más de la presente descripción, se proporcionan los métodos para determinar si una molécula seleccionada es capaz de incrementar el contenido mineral del hueso, comprendiendo la etapa de determinar si una molécula seleccionada inhibe la unión de la proteína de unión a TGF-beta al hueso, o un análogo del mismo. Según se utiliza en la presente memoria, se debe entender que el hueso o los análogos del mismo hacen referencia a hidroxiapatita o una superficie compuesta por una forma en polvo de hueso, hueso triturado o hueso intacto. De un modo similar a los métodos descritos antes, se pueden utilizar una amplia variedad de métodos para evaluar la inhibición de la localización de la proteína de unión a TGF-beta en la matriz ósea. Uno de tales métodos representativos se proporciona más abajo en el Ejemplo 7.

Se debe observar que mientras los métodos citados en la presente memoria pueden hacer referencia al análisis de una molécula de ensayo individual, la presente descripción no debe estar limitada a ellos. En particular, la molécula seleccionada puede estar contenida en una mezcla de compuestos. Por tanto, los métodos citados pueden comprender adicionalmente la etapa de aislar una molécula que inhiba la unión de la proteína de unión a TGF-beta a un miembro de la familia del TGF-beta.

Moléculas candidato

10

15

20

25

30

50

55

60

65

35 Se pueden analizar una amplia variedad de moléculas en cuanto a su capacidad para inhibir la unión de la proteína de unión a TGF-beta a un miembro de la familia de TGF-beta. Entre los ejemplos representativos que se discuten con más detalle más abajo, se incluyen moléculas orgánicas, proteínas o péptidos, y moléculas de ácido nucleico. Aunque debe ser evidente a partir del estudio de más abajo que las moléculas candidato descritas en la presente memoria pueden ser utilizadas en los análisis descritos en la presente memoria, debe ser fácilmente evidente que tales moléculas también pueden ser utilizadas en una variedad de entornos de diagnóstico y terapéuticos.

1. Moléculas Orgánicas

45 Se pueden analizar numerosas moléculas orgánicas en cuanto a su capacidad para inhibir la unión de la proteína de unión a TGF-beta a un miembro de la familia del TGF-beta.

Por ejemplo, en una realización de la descripción se pueden seleccionar moléculas orgánicas adecuadas o bien a partir de una genoteca química, donde los agentes químicos son analizados individualmente, o bien a partir de genotecas químicas combinatorias en los que se analizan múltiples compuestos de una vez, después se descifran para determinar y aislar la mayor parte de los compuestos activos.

Entre los ejemplos representativos de tales genotecas químicas combinatorias se incluyen los descritos por Agrafiotis et al., "System and method of automatically generating chemical compounds with desired properties", Patente de los Estados Unidos Núm. 5.463.564; Armstrong, R.W., "Synthesis of combinatorial arrays of organic compounds through the use of multiple component combinatorial array syntheses", WO 95/02566; Baldwin, J.J. et al., "Sulfonamide derivatives and their use", WO 95/24186; Baldwin, J.J. et al., "Combinatorial dihydrobenzopyran library", WO 95/30642; Brenner, S., "New kit for preparing combinatorial libraries", WO 95/16918; Chenera, B. et al., "Preparation of library of resin-bound aromatic carbocyclic compounds", WO 95/16712; Ellman, J.A., "Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support", Patente de los Estados Unidos Núm. 5.288.514; Felder, E. et al., "Novel combinatorial compound libraries", WO 95/16209; Lerner, R. et al., "Encoded combinatorial chemical libraries", WO 93/20242; Pavia, M.R. et al., "A method for preparing and selecting pharmaceutically useful non-peptide compounds from a structurally diverse universal library", WO 95/04277; Summerton, J.E. y D.D. Weller, "Morpholino-subunit combinatorial library and method", Patente de los Estados Unidos Núm. 5.506.337; Holmes, C., "Methods for the Solid Phase Synthesis of Thiazolidinones, Metathiazonones, and Derivatives therof", WO 96/00148; Phillips, G.B. y G.P. Wei, "Solid-

phase Synthesis of Benzimidazoles", Tet. Letters 37:4887-90, 1996; Ruhland, B. et al., "Solid-supported Combinatorial Synthesis of Structurally Diverse β -Lactams", J. Amer. Chem. Soc. 111:253-4, 1996; Look, G.C. et al., "The Indentification of Cyclooxigenase-I Inhibitors form 4-Thiazolidonone Combinatorial Libraries", Bioorg. and Med. Chem. Letters 6:707-12, 1996.

2. Proteínas y Péptidos

Del mismo modo se pueden utilizar una amplia gama de proteínas y péptidos como moléculas candidato para inhibidores de la unión de la proteína de unión a un miembro de la familia del TGF-beta.

a. Genotecas Peptídicas Combinatorias

Las moléculas peptídicas que son supuestos inhibidores de la unión de la proteína de unión a TGF-beta a un miembro de la familia del TGF-beta pueden ser obtenidas a través del escrutinio de genotecas peptídicas combinatorias. Tales genotecas pueden ser preparadas por un experto en la técnica (ver p.ej., Patentes de los Estados Unidos Núm. 4.528.266 y 4.359.535, y Publicación del Tratado de Cooperación de Patentes Núm. WO 92/15679, WO 92/15677, WO 90/07862, WO 90/02809, o adquiridos de fuentes asequibles comercialmente (p.ej. New England Biolabs Ph.D.® Phage Display Peptide Library Kit).

20 b. Anticuerpos

10

15

25

30

35

45

60

65

Los anticuerpos que inhiben la unión de la proteína de unión a TGF-beta a un miembro de la familia del TGF-beta puede ser fácilmente preparada dada la descripción proporcionada en la presente memoria. En el contexto de la presente descripción, se entiende que los anticuerpos incluyen anticuerpos monoclonales, anticuerpos policlonales, anticuerpos anti-idiotípicos y fragmentos de anticuerpos (p.ej., Fab, y F(ab')₂, regiones variables F_{ν} , o regiones determinantes de la complementariedad). Como se ha estudiado antes, se entiende que los anticuerpos son específicos contra la proteína de unión a TGF-beta, o contra un miembro de la familia del TGF-beta específico, si se unen con una K_a mayor o igual a 10^8 M $^{-1}$, y no se unen a otras proteínas de unión a TGF-beta, o, se unen con una K_a menor o igual a 10^6 M $^{-1}$. Además, los anticuerpos de la presente descripción deben bloquear o inhibir la unión de la proteína de unión a TGF-beta a un miembro de la familia de unión a TGF-beta.

La afinidad de un anticuerpo monoclonal o un patrón de unión; así como la inhibición de la unión se pueden determinar fácilmente por un experto normal en la técnica (ver, Scatchard, Ann. N.Y. Acad. Sci. 51:660-672, 1949).

En resumen, los anticuerpos monoclonales pueden ser generados fácilmente por un experto en la técnica a partir de una variedad de animales de sangre caliente tales como caballos, vacas, diversas aves, conejos, ratones o ratas. Típicamente, la proteína de unión a TGF-beta o un péptido único de la misma de 13-20 aminoácidos (conjugado preferiblemente con hemocianina de lapa ojo de cerradura mediante entrecruzamiento con glutaraldehído) es utilizada para inmunizar al animal a través de inyecciones intraperitoneales, intramusculares, intraoculares, o subcutáneas, junto con un coadyuvante tal como el coadyuvante completo o incompleto de Freund. Después de varias inmunizaciones de refuerzo, se recogen las muestras de suero y se someten a ensayo en cuanto a la reactividad con la proteína o péptido. Los antisueros policionales particularmente preferidos darán una señal en uno de estos análisis que es al menos tres veces mayor que el fondo. Una vez que el título del animal ha alcanzado una meseta en términos su reactividad con la proteína, se pueden obtener fácilmente cantidades mayores de antisueros o bien mediante tomas de sangre semanales, o bien mediante exanguinación del animal.

Los anticuerpos monoclonales también pueden ser generados fácilmente utilizando mecanismos convencionales (ver las Patentes de los Estados Unidos Núm. RE 32.011, 4.902.614, 4.543.439, y 4.411.993, que se incorporan a la presente memoria como referencia; ver también Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analyses, Plenum Press, Kenett, McKearn, and Bechtol (eds.), 1980, y Antibodies: A Laboratory Manual, Harlow and Lane (eds.), Cold Spring Harbor Laboratory Press, 1988, que también se incorporan a la presente memoria como referencia).

En resumen, en una realización se inmuniza un sujeto animal tal como una rata o ratón con la proteína de unión a TGF-beta o una porción de la misma como se ha descrito antes. La proteínas puede ser mezclada con un coadyuvante tal como coadyuvante completo o incompleto de Freund con el fin de incrementar la respuesta inmune resultante. Entre una y tres semanas después de la inmunización inicial el animal puede ser inmunizado de nuevo con otra inmunización de refuerzo, y sometido a ensayo en cuanto a la reactividad con la proteína utilizando los análisis descritos antes. Una vez que el animal ha alcanzado una meseta en su reactividad con la proteína inyectada, éste se sacrifica, y los órganos que contienen un gran número de células B tales como el bazo y los nódulos linfáticos se cosechan.

Las células que se obtienen del animal inmunizado pueden ser inmortalizadas mediante infección con un virus tal como el virus de Epstein-Barr (EBV) (ver Glasky and Reading, Hybridoma 8(4):377-389, 1989).

Alternativamente, en una realización preferida, las suspensiones del bazo y/o los nódulos linfáticos cosechados son fusionadas con una célula de mieloma adecuada con el fin de crear un "hibridoma" que secrete anticuerpo monoclonal. Entre las líneas de mieloma adecuadas se incluye, por ejemplo, NS-1 (ATCC Núm. TIB 18), y P3X63 - Aq 8.653 (ATCC Núm. CRL 1580).

5

10

15

20

25

30

Tras la fusión, las células son colocadas en placas para el cultivo de tejidos conteniendo un medio adecuado, tal como RPMI 1640, o DMEM (Medio de Eagle Modificado de Dulbecco) (JRH Biosciences, Lenexa, Kansas), así como ingredientes adicionales, tales como suero bovino fetal (FBS, es decir, de Hyclone, Logan, Utah, o JRH Biosciences). Adicionalmente, el medio debe contener un reactivo que permita selectivamente el crecimiento de células de bazo y mieloma fusionadas tales como HAT (hipoxantina, aminopterina, y timidina) (Sigma Chemical Co., St. Louis, Missouri). Después de aproximadamente siete días, las células fusionadas resultantes o hibridomas pueden ser rastreados con el fin de determinar la presencia de anticuerpos que sean reactivos contra la proteína de unión a TGF-beta (dependiendo del antígeno utilizado), y que bloqueen o inhiban la unión de la proteína de unión a TGF-beta a un miembro de la familia del TGF-beta.

Se pueden utilizar una amplia variedad de análisis para determinar la presencia de anticuerpos que sean reactivos contra las proteínas de la presente invención, incluyendo por ejemplo la inmunoelectroforesis contracorriente, los radioinmunoanálisis, las radioinmunoprecipitaciones, los análisis de absorción con enzima ligada (ELISA), los análisis de transferencia puntual, las transferencias Western, la inmunoprecipitación, los análisis de inhibición o competitivos, y los análisis sandwich (ver las Patentes de los Estados Unidos Núm. 4.376.110 y 4.486.530; ver también Antibodies: A Laboratory manual, Harlow and Lane (eds.), Cold Spring Harbor Laboratory Press, 1988). Tras numerosas diluciones y re-análisis clónicas, se puede aislar un hibridoma que produzca anticuerpos reactivos contra la proteína deseada.

Asimismo se pueden utilizar otras técnicas para construir anticuerpos monoclonales (ver William D. Huse et al., "Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda", Science 246:1275-1281, Diciembre de 1989; ver también L. Sastry et al., "Cloning of the Immunological Repertoire in Escherichia coli for Generation of Monoclonal Catalytic Antibodies: Construction of a Heavy Chain Variable Region-Specific cDNA Library", Proc. Natl. Acad. Sci. USA 86:5728-5732, Agosto de 1989; ver también Michelle Alting-Mees et al., "Monoclonal Antibody Expression Libraries: A Rapid Alternative to Hybridomas", Strategies in Molecular Biology 3:1-9, Enero 1990). Estas referencias describen un sistema comercial asequible de Stratagene (La Jolla, California) que permite la producción de anticuerpos por medio de mecanismos de recombinación. En resumen, el ARNm es aislado de una población de células B, y utilizado para crear genotecas de expresión de ADNc de immunoglobulinas de cadena pesada y ligera en los vectores λImmunoZap(H) e ImmunoZap(L). Estos vectores pueden ser rastreados individualmente o expresados simultáneamente para formar fragmentos Fab o anticuerpos (ver Huse et al., supra; ver también Sastry et al., supra). Las placas positivas pueden ser convertidas con posterioridad en un plásmido no lítico que permita un elevado nivel de expresión de los fragmentos de anticuerpo

40

45

50

55

35

De un modo similar, también se pueden construir porciones o fragmentos, tales como fragmentos Fab y Fv, de anticuerpos utilizando mecanismos de digestión enzimática o de recombinación de ADN convencionales para incorporar las regiones variables de un gen que codifica un anticuerpo que se une específicamente. En una realización, los genes que codifican la región variable de un hibridoma que produce el anticuerpo monoclonal de interés son ampliados utilizando cebadores nucleotídicos para la región variable. Estos cebadores pueden ser sintetizados por un experto normal en la técnica, o pueden ser adquiridos de fuentes asequibles comercialmente. Stratagene (La Jolla) vende cebadores para regiones variables de ratón y de humano incluyendo, entre otros, cebadores para las regiones V_{Ha}, V_{Hb}, V_{Hc}, V_{Hd}, C_{H1}, V_L y C_L. Estos cebadores pueden ser utilizados para amplificar las regiones variables de la cadena pesada o ligera, que pueden ser insertadas después en vectores tales como ImmunoZAP ImmunoZAP® L (Stratagene), respectivamente. Estos vectores pueden ser introducidos después en E. coli, levaduras, o sistemas de expresión basados en mamíferos. Utilizando estos mecanismos, se pueden producir grandes cantidades de una proteína de cadena sencilla conteniendo una fusión de los dominios V_H y V_L (ver Bird et al., Science 242:423-426, 1988). Además, semejantes técnicas pueden ser utilizadas para cambiar un anticuerpo "de ratón" por un anticuerpo "humano", sin alterar la especificidad de unión del anticuerpo.

Una vez que se han obtenido anticuerpos adecuados, éstos pueden ser aislados o purificados por medio de muchos mecanismos bien conocidos por los expertos normales en la técnica (ver Antibodies: A Laboratory Manual, Harlow y Lane (eds.), Cold Spring Harbor Laboratory Press, 1988). Entre los mecanismos adecuados se incluyen columnas de afinidad de péptidos o proteínas, HPLC o RP-HPLC, purificación en columnas de proteína A o proteína G, o cualquier combinación de estos mecanismos.

c. Proteínas de unión a TGF-beta mutantes

monocional a partir de E. coli.

65

Como se describe en la presente memoria y más abajo en los Ejemplos (p.ej., Ejemplos 8 y 9), las versiones alteradas de la proteína de unión a TGF-beta que compiten con la capacidad de la proteína de

unión a TGF-beta nativa para bloquear la actividad de un miembro de la familia de I TGF-beta concreto deben conducir a un incremento de la densidad ósea. De este modo, los mutantes de la proteína de unión a TGF-beta que se unen al miembro de la familia del TGF-beta pero no inhiben la función del miembro de la familia del TGF-beta satisfarían el criterio. Las versiones mutantes deben competir eficazmente con las funciones inhibidoras endógenas de la proteína de unión a TGF-beta.

d. Producción de proteínas

5

30

45

60

65

Aunque en la presente memoria se proporcionan varios genes (o porciones de los mismos), se debe 10 entender que en el contexto de la presente descripción, la referencia a uno o más de estos genes incluye los derivados de los genes que son sustancialmente similares a los genes (y, cuando sea apropiado, las proteínas (incluyendo péptidos y polipéptidos) que están codificadas por los genes y sus derivados). Según se utiliza en la presente memoria, se cree que una secuencia de nucleótidos es "sustancialmente similar" si: (a) la secuencia de nucleótidos está derivada de la región codificante de los genes descritos 15 antes e incluye, por ejemplo, porciones de la secuencia o variaciones alélicas de las secuencias comentadas antes, o alternativamente, codifica una molécula que inhibe la unión de la proteína de unión a TGF-beta a un miembro de la familia del TGF-beta, (b) la secuencia de nucleótidos es susceptible de hibridación con las secuencias de nucleótidos de la presente invención en condiciones moderadamente restrictivas, altamente restrictivas o muy restrictivas (ver Sambrook et al., Molecular Cloning: A Laboratory 20 Manual, 2^a ed., Cold Spring Harbor Laboratory Press, NY, 1989); o (c) las secuencias de ADN son degeneradas como resultado del código genético de las secuencias de ADN definidas en (a) o (b). Adicionalmente, la molécula de ácido nucleico descrita en la presente memoria incluye secuencias tanto complementarias como no complementarias, siempre que las secuencias satisfagan de otro modo los criterios expuestos en la presente memoria. En el contexto de la presente descripción, unas condiciones 25 altamente restrictivas representan condiciones de hibridación normalizadas (p.ej., 5XSSPE, SDS al 0,5% a 65°C, o equivalente).

La estructura de las proteínas codificadas por las moléculas de ácido nucleico descritas en la presente memoria puede ser pronosticada a partir de los productos de la traducción primarios utilizando la función de trazado del carácter hidrófobo, por ejemplo, de P/C Gene o Intelligenetics Suite (Intelligenetics, Mountain View, California), o de acuerdo con los métodos descritos por Kyte y Doolittle (J. Mol. Biol. 157:105-132, 1982).

Las proteínas de la presente descripción pueden ser preparadas en forma de sales ácidas o alcalinas, o en forma neutra. Además, se pueden modificar los restos aminoácido individuales mediante oxidación o reducción. Además, se pueden realizar diversas sustituciones, deleciones, o adiciones en las secuencias de aminoácidos o de ácido nucleico, cuyo efecto neto es conservar o intensificar o reducir adicionalmente la actividad biológica de la proteína mutante o de tipo natural. Por otra parte, debido a la degeneración del código genético, por ejemplo, puede haber una considerable variación en las secuencias de nucleótidos que codifican la misma secuencia de aminoácidos.

Entre otros derivados de las proteínas descritas en la presente memoria se incluyen los productos conjugados de las proteínas junto con otras proteínas o polipéptidos. Esto se puede lograr, por ejemplo, mediante la síntesis de proteínas de fusión N-terminales o C-terminales que pueden ser añadidas para facilitar la purificación o identificación de proteínas (ver la Patente de los Estados Unidos Núm. 4.851.341, ver también, Hopp et al., Bio/Technology 6:1204, 1988). Alternativamente, se pueden construir proteínas de fusión tales como Flag/proteína de unión a TGF-beta con el fin de ayudar a la identificación, expresión y análisis de la proteína.

Las proteínas de la presente descripción pueden ser construidas utilizando una amplia variedad de mecanismos descritos en la presente memoria. Adicionalmente, se pueden introducir mutaciones en loci concretos sintetizando oligonucleótidos que contienen una secuencia mutante, flanqueada por sitios de restricción que permiten la ligadura a fragmentos que contienen una secuencia natural. Tras la ligadura, la secuencia reconstruida resultante codifica un derivado que tiene la inserción, sustitución, o deleción deseada.

Alternativamente, se pueden emplear procedimientos de mutagénesis de sitio específico (o de segmento específico) dirigidas al oligonucleótido para proporcionar un gen alterado que tenga codones concretos alterados según la sustitución, deleción, o inserción requerida. Los métodos ejemplares de elaboración de las alteraciones mostradas antes son descritas por Walder et al. (Gene 42:133, 1986); Bauer et al., (Gene 37:73, 1985); Craik (BioTechniques, Enero 1985, 12-19); Smith et al., (Genetic Engineering; Principles and Methods, Plenum Press, 1981); y Sambrook et al., (supra). Los derivados por deleción o truncamiento de proteínas (p.ej. una porción extracelular soluble) también pueden ser construidos utilizando sitios para endonucleasas de restricción convenientes adyacentes a la deleción deseada. Después de la restricción, los salientes pueden ser rellenados, y el ADN religado. Los métodos ejemplares de elaboración de alteraciones mostrados antes son descritos por Sambrook et al., (Molecular Cloning: A Laboratory Manual, 2ª Ed., Cold Spring Harbor Laboratory Press, 1989).

Las mutaciones que se realizan en las moléculas de ácido nucleico de la presente descripción conservan preferiblemente el marco de lectura de las secuencias codificantes. Además, las mutaciones no crearán preferiblemente regiones complementarias que hibriden para producir estructuras de ARNm secundarias, tales como bucles u horquillas, que afectarían adversamente a la traducción de ARNm. Aunque se puede pre-determinar el sitio de la mutación, no es necesario que la naturaleza de la mutación sea predeterminada per se. Por ejemplo, con el fin de seleccionar características óptimas de los mutantes en un sitio dado, se puede realizar una mutagénesis al azar en el codón diana y los mutantes expresados rastreados en cuanto a una actividad biológica indicativa. Alternativamente, se pueden introducir mutaciones en loci concretos sintetizando oligonucleótidos que contengan una secuencia mutante, flanqueada por sitios de restricción que permitan la ligadura a fragmentos de la secuencia natural. Tras la ligadura, la secuencia reconstruida resultante codifica un derivado que tiene la inserción, sustitución, o deleción de aminoácidos deseada.

Las moléculas de ácido nucleico que codifican las proteínas de la presente descripción también pueden ser construidas utilizando mecanismos de mutagénesis por PCR, mutagénesis química (Drinkwater y Klinedinst, PNAS 83:34022-3406, 1986), mediante la incorporación errónea de un nucleótido forzada (p.ej., Liao y Wise Gene 88:107-111, 1990), o mediante el uso de oligonucleótidos mutagenizados al azar (Horwitz et al., Genome 3:112-117, 1989).

La presente descripción también proporciona la manipulación y la expresión de los genes descritos antes cultivando células anfitrionas que contienen un vector capaz de expresar los genes descritos antes. Entre tales vectores o constructos de vectores se incluyen moléculas de ácido nucleico derivadas de ADNc o sintéticas que codifican la proteína deseada, que están conectadas operablemente a elementos reguladores de la transcripción o la traducción adecuados. Los elementos reguladores adecuados pueden estar derivados de una variedad de fuentes, incluyendo genes bacterianos, fúngicos, virales, de mamífero, de insecto, o vegetales. La selección de los elementos reguladores apropiados depende de una de las células anfitrionas seleccionadas, y puede ser completada fácilmente por un experto normal en la técnica. Entre los ejemplos de los elementos reguladores se incluyen: un promotor y un intensificador transcripcionales o una secuencia de unión a la ARN polimerasa, un terminador transcripcional, y una secuencia de unión al ribosoma, incluyendo una señal de inicio de la traducción.

Las moléculas de ácido nucleico que codifican cualquiera de las proteínas descritas antes pueden ser fácilmente expresadas por una amplia variedad de células anfitrionas procarióticas o eucarióticas, incluyendo células bacterianas, de mamífero, levaduras u otros hongos, virales, de insecto, o vegetales. Los métodos para transformar o transfectar tales células para expresar el ADN foráneo son bien conocidos en la técnica (ver, p.ej., Itakura et al., Patente de los Estados Unidos Núm. 4.704.362; Hinnen et al., Proc. Natl. Acad. Sci. USA 75:1929-1933, 1978; Murray et al., Patente de los Estados Unidos Núm.4.801.542; Upshall et al., Patente de los Estados Unidos Núm. 4.935.349; Hagen et al., Patente de los Estados Unidos Núm. 4.784.950; Axel et al., Patente de los Estados Unidos Núm. 4.399.216; Goeddel et al., Patente de los Estados Unidos Núm. 4.766.075; y Sambrook et al., Molecular Cloning: A Laboratory Manual, 2ª ed., Cold Spring Harbor Laboratory Press, 1989; para células vegetales ver Czako y Marton, Plant Physiol. 104:1067-1071, 1994; y Paszkowski et al., Biotech. 24:387-392, 1992).

35

40

65

Entre las células anfitrionas bacterianas adecuadas para llevar a cabo la presente invención se incluyen *E. coli, B. subtilis, Salmonella typhimurium*, y diversas especies de los géneros *Pseudomonas, Streptomyces,* y *Staphylococcus*, así como muchas otras especies bacterianas bien conocidas por un experto normal en la técnica. Entre los ejemplos representativos de las células anfitrionas bacterianas se incluyen DH5α (Stratagene, La Jolla, California).

Los vectores de expresión bacteriana comprenden preferiblemente un promotor que funcione en la célula anfitriona, uno o más marcadores fenotípicos seleccionables, y un origen de replicación bacteriano. Entre los promotores representativos se incluye la β-lactamasa (penicilinasa) y el sistema promotor de la lactosa (ver Chang et al., Nature 275:615, 1978), el promotor de la ARN polimerasa de T7 (Studier et al., Meth. Enzymol. 185:60-89, 1990) el promotor lambda (Elvin et al., Gene 87:123-126, 1990), el promotor trp (Nichols y Yanofsky, Meth. In Enzymology 101::155, 1983) y el promotor tac (Russell et al., Gene 20:231, 1982). Entre los marcadores seleccionables representativos se incluyen diversos marcadores de resistencia a antibióticos tales como los genes de resistencia a kanamicina o ampicilina. Muchos plásmidos adecuados para transformar células anfitrionas son bien conocidos en la técnica, incluyendo entre otros, pBR322 (ver Bolivar et al., Gene 2:95, 1977), los plásmidos de pUC pUC18, pUC19, pUC118, pUC119 (ver Messing, Meth. in Enzimology 101:20-77, 1983 y Vieira y Messing, Gene 19:259-268, 1982), y pNH8A, pNH16a, pNH18a, y Bluescript M13 (Stratagene, La Jolla, California).

Entre las células anfitrionas de levaduras y hongos adecuadas para llevar a cabo la presente invención se incluyen, entre otros, *Saccharomyces pombe, Saccharomyces cerevisiae*, los géneros *Pichia* o *Kluyveromyces* y diversas especies del género *Aspergillus* (McKnight et al., Patente de los Estados Unidos Núm. 4.935.349). Entre los vectores de expresión adecuados para las levaduras y hongos se incluyen, entre otros, YCp50 (ATCC Núm. 37419) para levaduras, y el vector de clonación de amdS pV3

(Turnbull, Bio/Technology 7:169, 1989), YRp7 (Struhl et al., Proc. Natl. Acad. Sci. USA 76:1035-1039, 1978), YEp13 (Broach et al., Gene 8:121-133, 1979), pJDB249 y pJDB219 (Beggs, Nature 275:104-108, 1978) y derivados de los mismos.

- Entre los promotores preferidos para su uso en levaduras se incluyen los promotores de genes glicolíticos de levaduras (Hitzeman et al., J. Biol. Chem. 255:12073-12080, 1980; Alber y Kawasaki, J. Mol. Appl. Genet. 1:419-934, 1982) o genes de la alcohol deshidrogenasa (Young et al., en Genetic Engineering of Microorganisms for Chemicals, Hollaender et al., (eds.), pág. 355, Plenum Nueva York, 1982; Ammerer, Meth. Enzymol, 101:192-201, 1983). Entre los ejemplos útiles de los promotores de hongos se incluyen aquellos derivados de los genes glicolíticos de Aspergillus nidulans, tales como el promotor adh3 (McKnight et al., EMBO J. 4:2093-2099, 1985). Las unidades de expresión también pueden incluir un terminador transcripcional. Un ejemplo de un terminador adecuado es el terminador adh3 (McKnight et al., ibid., 1985).
- Como con los vectores bacterianos, los vectores de levadura incluirán generalmente un marcador seleccionable, que puede ser uno de los numerosos genes que muestran un fenotipo dominante para el cual existe un análisis fenotípico para permitir la selección de los transformantes. Los marcadores seleccionables preferidos son aquellos que complementan la auxotrofia de la célula anfitriona, proporcionan resistencia a antibióticos o permiten a una célula utilizar fuentes de carbono específicas, e incluyen leu2 (Broach et al., ibid.), ura3 (Botstein et al., Gene 8:17, 1979), o his3 (Struhl et al., ibid.). Otro marcador seleccionable adecuado es el gen cat, que confiere resistencia al cloramfenicol a células de levadura.
- Las técnicas para transformar hongos son bien conocidas en la literatura, y han sido descritas, por ejemplo, por Beggs (ibid.), Hinnen et al., (Proc. Natl. Acad. Sci. USA 75:1929-1933, 1978), Yelton et al. (Proc. Natl. Acad. Sci. USA 81:1740-1747, 1984), y Russell (Nature 301:167-169, 1983). El genotipo de la célula anfitriona puede contener un defecto genético que sea complementado por el marcador seleccionable presente en el vector de expresión. La elección de un anfitrión y un marcador seleccionable concretos está dentro del nivel del experto normal en la técnica.
 - Los protocolos para la transformación de levaduras son bien conocidos por los expertos normales en la técnica. Por ejemplo, se puede completar fácilmente o bien la preparación de esferoplastos de levadura con ADN (ver Hinnen et al., PNAS USA 75:1929, 1978) o mediante tratamiento con sales alcalinas tales como LiCl (ver Itoh et al., J. Bacteriology 153:163, 1983). La transformación de hongos también se puede llevar a cabo utilizando polietilenglicol como describen Cullen et al., (Bio/Technology 5:369,1987).

35

40

45

50

Entre los vectores virales se incluyen aquellos que comprenden un promotor que dirige la expresión de una molécula de ácido nucleico aislado que codifica una proteína deseada como se ha descrito antes. Se puede utilizar una amplia variedad de promotores en el contexto de la presente invención, incluyendo por ejemplo, promotores tales como MoMLV LTR, RSV LTR, Friend MuLV LTR, promotores adenovirales (Ohno et al., Science 265:781-784, 1994), el promotor/intensificador de la fosfotransferasa de neomicina, el promotor del parvovirus tardío (Koering et al., Hum. Gene Therap. 5:457-463, 1994), el promotor TK del Herpes, el promotor de SV40, el intensificador/promotor del gen lla de la metalotioneína, el promotor temprano inmediato de citomegalovirus, y el promotor tardío inmediato de citomegalovirus. En las realizaciones particularmente preferidas de la descripción, el promotor es un promotor específico del tejido (ver, p.ej., WO 91/02805; EP 0.415.731; y WO 90/07936). Entre los ejemplos representativos de los promotores específicos de tejidos adecuados se incluyen el promotor de la enolasa específica neural, el promotor del factor de crecimiento beta derivado de plaquetas, el promotor de la proteína morfogénica del hueso, el promotor de la alfa1-quimerina humana, el promotor de la sinapsina I y el promotor de la sinapsina II. Además de los promotores indicados antes, se pueden utilizar otros promotores específicos de virus (p.ej., promotores retrovirales, (incluyendo los indicados antes, así como otros tales como los promotores del HIV), promotores específicos de la hepatitis, el herpes (p.ej., EBV), y bacterianos, fúngicos o parasíticos (p.ej., malaria) con el fin de elegir como diana una célula o tejido específico que esté infectado con un virus, bacteria, hongo o parásito.

Entre las células de mamífero adecuadas para llevar a cabo la presente descripción se incluyen, entre otros COS, CHO, SaOS, osteosarcomas, KS483, MG-63, osteoblastos primarios, y estroma de médula ósea de humano o mamífero. Entre los vectores de expresión en mamíferos para su uso en la realización de la presente descripción se incluirán un promotor capaz e dirigir la transcripción de un gen clonado o un ADNc. Entre los promotores preferidos se incluyen promotores virales y promotores celulares. Entre los promotores específicos del hueso se incluyen la sialo-proteína ósea y el promotor de la osteocalcina. Entre los promotores virales se incluyen el promotor temprano inmediato de citomegalovirus (Boshart et al., Cell 41:521-530, 1985), el promotor tardío inmediato de citomegalovirus, el promotor de SV40 (Subramani et al., Mol. Cell. Biol. 1:854-864, 1981), MMTV LTR, RSV LTR, metalotioneína-1, adenovirus E1a. Entre los promotores celulares se incluyen el promotor de la metalotioneína-1 de ratón (Palmiter et al., Patente de los Estados Unidos Núm. 4.579.821), un promotor V_K de ratón (Bergman et al., Proc. Natl. Acad. Sci. USA 81:7041-7045, 1983; Grant et al., Nucl. Acids Res. 15:5496, 1987) y un promotor V_H de

ratón (Loh et al., Cell 33:85-93, 1983). La elección del promotor dependerá, al menos en parte, del nivel de expresión deseado o de la línea celular receptora que vaya a ser transfectada.

Tales vectores de expresión también pueden contener un grupo de sitios de empalme de ARN localizados aguas abajo del promotor y aguas arriba de la secuencia de ADN que codifica el péptido o la proteína de interés. Los sitios de empalme de ARN preferidos pueden ser obtenidos a partir de adenovirus y/o genes de inmunoglobulina. También se encuentra contenida en el vector de expresión una señal de poliadenilación localizada aguas abajo de la secuencia codificante de interés. Entre las señales de poliadenilación adecuadas se incluyen las señales de poliadenilación temprana o tardía de SV40 (Kaufman y Sharp, ibid.), la señal de poliadenilación de la región E1B de Adenovirus 5 y el terminador del gen de la hormona de crecimiento humana (De Noto et al., Nucl. Acids Res. 9:3719-3730, 1981). Los vectores de expresión pueden incluir una secuencia líder viral no codificante, tal como el líder tripartito de Adenovirus 2, localizado entre el promotor y los sitios de empalme del ARN. Entre los vectores preferidos se pueden incluir también secuencias intensificadoras, tales como el intensificador de SV40. Los vectores de expresión también pueden incluir secuencias que codifican los ARN Va de adenovirus. Los vectores de expresión adecuados pueden ser obtenidos a partir de fuentes comerciales (p.ej., Stragene, La Jolla, California).

Los constructos vectores que comprenden secuencias de ADN clonadas pueden ser introducidos en células de mamífero, por ejemplo, mediante transfección mediada por fosfato de calcio (Wigler et al., Cell 14:725; Corsar y Pearson, Somatic Cell Genetics 7:603,1981; Graham y Vand der Eb, Virology 52:456, 1973), electroporación (Neumann et al., EMBO J. 1:841-845, 1982), o transfección mediada por DEAE-dextrano (Ausubel et al., (eds.), Current Protocols in Molecular Biology, John Wiley and Sons, Inc., NY, 1987). Para identificar células que tengan integrado establemente el ADNc clonado, generalmente se introduce un marcador seleccionable en las células junto con el gen o el ADNc de interés. Entre los marcadores seleccionables preferidos para su uso en células de mamífero cultivadas se incluyen los genes que confieren resistencia a fármacos, tales como neomicina, higromicina, y metotrexato. El marcador seleccionable puede ser un marcador seleccionable amplificable. Los marcadores seleccionables amplificables preferidos son el gen DHFR y el gen de resistencia a la neomicina. Los marcadores seleccionables son revisados por Thilly (Mammalian Cell Technology, Butterworth Publishers, Stoneham, Massachusetts.

20

25

30

35

40

55

60

65

Las células de mamífero que contienen un vector adecuado se dejan crecer durante un período de tiempo, típicamente 1-2 días, para empezar a expresar la secuencia o las secuencias de ADN de interés. La selección del fármaco es aplicada después para seleccionar el crecimiento de las células que están expresando el marcador seleccionable de una manera estable. Para las células que han sido transfectadas con un marcador amplificable, seleccionable se puede incrementar la concentración de fármaco por etapas para seleccionar el número de copias de las secuencias aumentado de las secuencias clonadas, incrementando de ese modo los niveles de expresión. Las células que expresan las secuencias introducidas son seleccionadas y rastreadas en cuanto a la producción de la proteína de interés en la forma deseada o al nivel deseado. Las células que satisfacen estos criterios pueden ser clonadas después y aumentadas a escala para la producción.

Los protocolos para la transfección de células de mamífero son bien conocidos por los expertos normales en la técnica. Entre los métodos representativos se incluyen la transfección con fosfato de calcio, la electroporación, la lipofección, la transfección mediada por fusión retroviral, adenoviral y de protoplastos (ver Sambrook et al., supra). Asimismo pueden ser absorbidos constructos vectores desnudos por las células musculares u otras células adecuadas después de la inyección en el músculo de un mamífero (u otro animal).

Numerosas células anfitrionas de insecto conocidas en la técnica pueden resultar útiles en la presente descripción, a la luz de la memoria sujeto. Por ejemplo, el uso de baculovirus como vectores para expresar secuencias de ADN heterólogo en células de insecto ha sido revisado por Atkinson et al. (Pestic. Sci. 28:215-224, 1990).

Numerosas células anfitrionas vegetales conocidas en la técnica pueden asimismo resultar útiles en la presente descripción a la luz de la memoria sujeto. Por ejemplo, el uso de *Agrobacterium rhizogenes* como vector para expresar genes en células vegetales ha sido revisado por Sinkar et al. (J. Biosci. (Bangadore) 11:47-58, 1987).

En aspectos relacionados de la presente descripción, las proteínas de la presente descripción pueden ser expresadas en un animal transgénico cuyas células germinales y células somáticas contienen un gen que codifica la proteína deseada y que están conectadas operablemente a un promotor eficaz para la expresión del gen. Alternativamente, de una manera similar se puede preparar animales transgénicos que carezcan del gen deseado (p.ej., ratones con un gen desactivado). Semejantes transgénicos pueden ser preparados en una variedad de animales no humanos, incluyendo ratones, ratas, conejos, ovejas, perros, cabras y cerdos (ver Hammer et al., Nature 315:680-683, 1985, Palmiter et al., Science 222:809-814,

1983, Brinster et al., Proc. Natl. Acad. Sci. USA 82:4438-4442, 1985, Palmiter y Brinster, Cell 41:343-345, 1985, y Patentes de los Estados Unidos Núm. 5.175.383, 5.087.751, 4.736.866, 5.387.742, 5.347.075, 5.221.778, y 5.175.384). Brevemente, un vector de expresión, incluyendo una molécula de ácido nucleico que va a ser expresada junto con secuencias para el control de la expresión situadas adecuadamente, es introducido en pronúcleos de huevos fertilizados, por ejemplo, mediante microinyección. La integración del ADN inyectado es detectada mediante análisis de transferencia de ADN desde las muestras de tejido. Se prefiere que el ADN introducido sea incorporado a la línea germinal del animal de manera que pase a la progenie del animal. La expresión específica de tejidos puede ser lograda por medio del uso de un promotor específico de tejidos, o por medio del uso de un promotor inducible, tal como el gen promotor de la metalotioneína (Palmiter et al., 1983, ibid.), que permita la expresión regulada del transgen.

Las proteínas pueden ser aisladas, entre otros métodos, cultivando sistemas anfitriones y vectores adecuados para producir los productos de traducción recombinantes de la presente invención. Los sobrenadantes de tales líneas celulares, o las inclusiones de proteína o las células completas en las que la proteína es excretada al sobrenadante, pueden ser preparados después mediante una variedad de procedimientos de purificación con el fin de aislar las proteínas deseadas. Por ejemplo, el sobrenadante puede ser concentrado primero utilizando filtros de concentración de proteínas asequibles comercialmente, tales como una unidad de ultrafiltración Amicon o Millipore Pellicon. Tras la concentración, el producto concentrado puede ser aplicado a una matriz de purificación adecuada tal como, por ejemplo, un anticuerpo anti-proteína unido a un soporte adecuado. Alternativamente, se pueden emplear resinas de intercambio aniónico o catiónico con el fin de purificar la proteína. Como alternativa adicional, se pueden emplear una o más etapas de cromatografía de líquidos de alta resolución en fase reversa (RP-HPLC) para purificar adicionalmente la proteína. Otros métodos de aislamiento de las proteína de la presente descripción son bien conocidos por los expertos en la técnica.

Se cree que una proteína está "aislada" en el contexto de la presente descripción si no se detecta otra proteína (no deseada) conforme al análisis de SDS-PAGE seguido de tinción con azul de Coomassie. En otras realizaciones, de la descripción, la proteína deseada puede ser aislada de manera que no se detecte otra proteína (no deseada) conforme al análisis de SDS-PAGE seguido de tinción con plata.

3. Moléculas de Acido Nucleico

10

15

20

25

30

35

40

45

50

55

60

65

En otros aspectos de la descripción, se proporcionan moléculas de ácido nucleico que son capaces de inhibir la unión de la proteína de unión a TGF-beta a un miembro de la familia del TGF-beta. Por ejemplo, en una realización de la descripción se proporcionan moléculas oligonucleotídicas antisentido que inhiben específicamente la expresión de las secuencias de ácido nucleico de la proteína de unión a TGF-beta (ver generalmente, Hirashima et al., en Molecular Biology of ARN: New Perspectives (M. Inouye y B.S. Dudock, eds., 1987 Academic Press, San Diego, pág. 401); Oligonucleotides: Antisense Inhibitors of Gene Expression (J.S. Cohen, ed., 1989 MacMillan Press, Londres); Stein y Cheng, Science 261:1004-1012, 1993; WO 95/10607; Patente de los Estados Unidos Núm. 5.359.051; WO 92/06693; y EP-A2-612844). Brevemente, tales moléculas son construidas de manera que sean complementarias, y sean capaces de formar pares de bases de Watson-Crick, con una región de secuencia de ARNm de la proteína de unión a TGF-beta transcrita. El ácido de doble hebra resultante interfiere en la posterior maduración del ARNm, evitando de ese modo la síntesis de proteínas (ver Ejemplo 10).

En otros aspectos de la descripción se proporcionan ribozimas que son capaces de inhibir la unión de la proteína de unión a TGF-beta a un miembro de la familia del TGF-beta. Según se utiliza en la presente memoria, se pretende que "ribozimas" incluya moléculas de ARN que contengan secuencias antisentido para el reconocimiento específico, y una actividad enzimática de escisión del ARN. La hebra catalítica escinde un sitio específico en un ARN diana a una concentración mayor de la estequiométrica. Se pueden utilizar una amplia variedad de ribozimas en el contexto de la presente descripción, incluyendo por ejemplo, la ribozima cabeza de martillo (por ejemplo, como describen Forster y Symons, Cell 48:211-220, 1987; Haseloff y Gerlach, Nature 328:596-600, 1988; Walbot y Bruening, Nature 334:196, 1988; Haseloff y Gerlach, Nature 334:585, 1988); la ribozima en horquilla (por ejemplo, como describen Haseloff et al., Patente de los Estados Unidos Núm. 5.254.678, expedida el 19 de Octubre de 1993, y Hempel et al., Solicitud de Patente Europea Núm. 0.360.257, publicada el 26 de Marzo de 1990); y ribozimas basadas en el ARN ribosomal de Tetrahymena (ver Cech et al., Patente de los Estados Unidos Núm. 4.987.071). Las ribozimas de la presente descripción constan típicamente de ARN, pero también pueden estar compuestas por ADN, análogos de ácido nucleico (p.ej., fosforotioatos), o quiméricos de los mismos (p.ej., ADN/ARN/ARN).

4. Marcas

El producto génico o cualquiera de las moléculas candidato descritas antes y más abajo, pueden estar marcadas con una variedad de compuestos, incluyendo por ejemplo, moléculas fluorescentes, toxinas, y radionúclidos. Entre los ejemplos representativos de moléculas fluorescentes se incluyen fluoresceína, proteínas Phycobili, tales como ficoeritrina, rodamina, rojo Texas y luciferasa. Entre los ejemplos

representativos de las toxinas se incluyen ricina, abrina, toxina de la difteria, toxina del cólera, gelonina, proteína antiviral de Phytolacca americana ("pokeweed"), tritina, toxina de Sigella, y exotoxina A de Pseudomonas. Entre los ejemplos representativos de los radionúclidos se incluyen Cu-64, Ga-67, Ga-68, Zr-89,Ru-97, Tc-99m, Ph-105, Pd-109, In-111, I-123, I-125, I-131, Re-186, Re-188, Au-198, Au-199, Pb-203, At-211, Pb-212 y Bi-212. Además, los anticuerpos descritos antes también pueden ser marcados o conjugados con un pareja de un par de unión al ligando. Entre los ejemplos representativos se incluyen avidina-biotina, y riboflavina-proteína de unión a riboflavina.

Los métodos para conjugar o marcar las moléculas descritas en la presente memoria con las marcas representativas mostradas antes pueden ser fácilmente completados por un experto normal en la técnica (ver Trichothecene Antibody Conjugate, Patente de los Estados Unidos Núm. 4.744.981; Antibody Conjugate, Patente de los Estados Unidos Núm. 5.106.951; Fluorogenic Materials and Labeling Techniques, Patente de los Estados Unidos Núm. 4.018.884; Metal Radionuclide Labeled Proteins for Diagnosis and Therapy, Patente de los Estados Unidos Núm. 4.897.255; y Metal Radionuclide Chelating Compounds for Improved Chelation Kinetics, Patente de los Estados Unidos Núm. 4.988.496; ver también Inman, Methods In Enzymlogy, Vol. 34, Affinity Techniques, Enzyme Purification: Part B, Jackoby y Wilchek (eds.), Academic Press, Nueva York, pág. 30, 1974; ver también Wilchek y Bayer, "The Avidin-Biotin Complex in Bioanalytical Applications", Anal. Biochem. 171:1-32, 1988).

Composiciones farmacéuticas

20

25

30

35

40

Como se ha observado antes, la presente descripción también proporciona una variedad de composiciones farmacéuticas, que comprenden una de las moléculas descritas antes que inhibe la unión de la proteína de unión a TGF-beta a un miembro de la familia del TGF-beta junto con un portador farmacéutica o fisiológicamente aceptable, excipientes o diluyentes. Generalmente, tales portadores pueden ser no tóxicos para los receptores a las dosificaciones y concentraciones empleadas. Normalmente, la preparación de tales composiciones abarca combinar el agente terapéutico con tampones, antioxidantes tales como ácido ascórbico, polipéptidos de bajo peso molecular (menos de aproximadamente 10 restos), proteínas, aminoácidos, carbohidratos incluyendo glucosa, sacarosa o dextrinas, agentes quelantes tales como EDTA, glutation y otros estabilizantes y excipientes. La solución salina tamponada neutra o la solución salina mezclada con seralbúmina no específica son diluyentes apropiados ejemplares.

Además, las composiciones farmacéuticas de la presente descripción pueden ser preparadas para su administración mediante una variedad de rutas diferentes. Además, las composiciones farmacéuticas pueden ser colocadas en recipientes, junto con material de envasado que proporcione instrucciones referentes al uso de tales composiciones farmacéuticas. Generalmente, semejantes instrucciones incluirán una expresión tangible describiendo la concentración de reactivo, así como ciertas realizaciones, cantidades relativas de ingredientes excipientes o diluyentes (p.ej., agua, solución salina o PBS) que pueden ser necesarias para reconstituir la composición farmacéutica.

Tratamiento

La presente invención también proporciona el incremento del contenido mineral y la densidad mineral del hueso. En resumen, numerosas afecciones dan como resultado la pérdida de contenido mineral del hueso, incluyendo por ejemplo, las enfermedades, la predisposición genética, los accidentes que producen la pérdida de uso de un hueso (p.ej. debido a una fractura), los agentes terapéuticos que afectan a la resorción ósea, o que eliminan células formadoras de hueso y el envejecimiento normal. Por medio del uso de las moléculas descritas en la presente memoria que inhiben la unión de la proteína de unión a TGF-beta a un miembro de la familia del TGF-beta se pueden tratar o prevenir tales afecciones. Según se utiliza en la presente memoria, se debe entender que el contenido mineral del hueso ha aumentado, si el contenido mineral del hueso ha aumentado de una manera estadísticamente significativa (p.ej., mayor de media desviación estándar), en un sitio seleccionado.

Una amplia variedad de afecciones que dan como resultado la pérdida de contenido mineral del hueso pueden ser tratadas con las moléculas descritas en la presente memoria. Los pacientes con tales afecciones pueden ser identificados a través de la diagnosis clínica utilizando mecanismos bien conocidos (ver, p.ej., Harrison's Principles of Internal Medicine, McGraw-Hill, Inc.). Entre los ejemplos representativos de las enfermedades que pueden ser tratadas se incluyen las displasias, en las que existe un crecimiento o desarrollo anormal del hueso. Entre los ejemplos representativos de tales afecciones se incluyen acondroplasia, disostosis cleidocraneal, encondromatosis, displasia fibrosa, enfermedad de Gaucher, raquitismo hipofosfatémico, enfermedad de Marfan, exostosis hereditaria múltiple, neurofibromatosis, osteogénesis imperfecta, osteopetrosis, osteopoikilosis, lesiones escleróticas, fracturas, enfermedad periodontal, pseudoartrosis y osteomielitis piogénica.

Entre otras afecciones que pueden ser tratadas o evitadas se incluyen una amplia variedad de causas de osteopenia (es decir, una afección que ocasiona una desviación estándar mayor de uno de contenido

mineral o densidad del hueso por debajo del contenido mineral esquelético pico en la juventud). Entre los ejemplos representativos de tales afecciones se incluyen los estados anémicos, las afecciones causadas por esteroides, las afecciones causadas por heparina, trastornos de la médula ósea, escorbuto, malnutrición, deficiencia en calcio, osteoporosis idiopática, osteopenia y osteoporosis congénita, alcoholismo, enfermedad crónica del hígado, senectud, estado post-menopáusico, oligomenorrea, amenorrea, embarazo, diabetes melitus, hipertiroidismo, enfermedad de Cushing, acromegalia, hipogonadismo, inmovilización o desuso, síndrome de distrofia simpática refleja, osteoporosis regional transitoria y osteomalacia.

En un aspecto de la presente descripción proporciona, se puede incrementar el contenido mineral o la densidad de hueso administrando a un animal de sanger caliente una cantidad terapéuticamente eficaz de una molécula que inhibe la unión de la proteína de unión a TGF-beta a un miembro de la familia del TGF-beta. Entre los ejemplos de los animales de sangre caliente que se pueden tratar se incluyen tanto vertebrados como mamíferos, incluyendo por ejemplo, caballos, vacas, cerdos, ovejas, perros, gatos, ratas y ratones. Entre los ejemplos representativos de las moléculas terapéuticas se incluyen ribozimas, genes de ribozimas, oligonucleótidos antisentido y anticuerpos (p.ej., anticuerpos humanizados).

En otros aspectos de la presente descripción se proporcionan métodos para incrementar la densidad de hueso que comprende la etapa de introducir en las células que anidan en el hueso un vector que dirige la expresión de una molécula que inhibe la unión de una proteína de unión a TGF-beta a un miembro de la familia del TGF-beta, y administrar las células que contienen el vector a un animal de sangre caliente. Brevemente, las células que anidan en el hueso pueden ser obtenidas directamente a partir del hueso de pacientes (p.ej., células obtenidas a partir de médula ósea tales como CD34+, osteoblastos, osteocitos, y similares), a partir de sangre periférica, o a partir de cultivos.

20

25

30

35

40

60

65

Un vector que dirige la expresión de una molécula que inhibe la unión de una proteína de unión a TGFbeta a un miembro de la familia del TGF-beta es introducido en las células. Entre los ejemplos representativos de los vectores adecuados se incluyen vectores virales tales como vectores virales del herpes (p.ej., Patente de los Estados Unidos Núm. 5.288.641), vectores adenovirales (p.ej., WO 94/26914, WO 93/9191; Kolls et al., PNAS 91(1):215-219, 1994; Kass-Eisler et al., PNAS 90(24):11498-502, 1993; Guzman et al., Circulation 88(6):2838-48, 1993; Guzman et al., Cir. Res. 73(6):1202-1207, 1993; Zabner et al., Cell 75(2):207-216, 1993; Li et al., Hum Gene Ther. 4(4):403-409, 1993; Caillaud et al., Eur. J. Neurosci. 5(10):1287-1291, 1993; Vincent et al., Nat. Genet. 5(2):130-134, 1993; Jaffe et al., Nat. Genet. 1(5):372-378, 1992; y Levrero et al., Gene 101(2):195-202, 1991), vectores virales adenoasociados (WO 95/13365; Flotte et al., PNAS 90(22):10613-10617, 1993), vectores de baculovirus, vectores de parvovirus (Koering et al., Hum. Gene Therap. 5:457-463, 1994), vectores de poxvirus (Panicali y Paoletti, PNAS 79:4927-4931, 1982; y Ozaki et al., Biochem. Biophys. Res. Comm. 193(2):653-660, 1993), y retrovirus (p.ej., EP 0.415.731; WO 90/07936; WO 91/0285; WO 94/03622; WO 93/25698; WO 93/25234; Patente de los Estados Unidos Núm. 5.219.740; WO 93/11239; WO 93/10218). Del mismo modo se pueden construir vectores virales que contengan una mezcla de elementos diferentes (p.ej., promotores, secuencias de la envuelta y similares) de diferentes virus, o fuentes no virales. En varias realizaciones, se puede utilizar o bien el propio vector viral, o bien una partícula viral que contenga el vector viral en los métodos y composiciones descritos más abajo.

En otras realizaciones de la descripción, las moléculas de ácido nucleico que codifican una molécula que inhibe la unión de una proteína de unión a TGF-beta a un miembro de la familia del TGF-beta por sí mismas pueden ser administradas mediante una variedad de técnicas, incluyendo, por ejemplo, la administración a asialomucoide (ASOR) conjugado con complejos de poli-L-lisina ADN (Cistano et al., PNAS 92122-92126, 1993), ADN unido a adenovirus muerto (Curiel et al., Hum. Gene Ther. 3(2):147-154, 1992), introducción mediada por citofectina (DMRIE-DOPE, Vical, California), inyección de ADN directa (Acsadi et al., Nature 352:815-818, 1991); ligandos de ADN (Wu et al., J. of Biol. Chem. 264:16985-16987, 1989); lipofección (Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417, 1989); liposomas (Pickering et al., Circ. 89(1):13-21, 1994; y Wang et al., PNAS 84:7851-7855, 1987); bombardeo con microproyectiles (Williams et al., PNAS 88:2726-2730, 1991); y liberación directa de ácido nucleicos que codifican la propia proteína ya sea sola (Vile y Hart, Cancer Res. 53:3860-3864, 1993) o utilizando complejos de PEG-ácido nucleico.

Entre los ejemplos representativos de las moléculas que pueden ser expresadas por los vectores de la presente descripción se incluyen ribozimas y moléculas antisentido, cada uno de las cuales se ha discutido con más detalle antes.

La determinación del contenido mineral del hueso incrementado puede ser resuelta directamente por medio del uso de los rayos x (p.ej., Dual Energy X-ray Absorptometry o "DEXA"), o mediante inferencia a través de marcadores de recambio óseo (fosfatasa alcalina específica de osteoblastos, osteocalcina, procolágeno de tipo 1, propéptido C' (PICP), y fosfatasa alcalina total; ver Comier, C., Curr. Opin. In Rheu. 7:243, 1995), o marcadores de resorción ósea (piridinolina, desoxipiridinolina, N-telopéptido, hidroxiprolina urinaria, fosfatasas ácidas tartrato-resistentes del plasma y galactosilhidroxilisina; ver Comier, *supra*). La

cantidad de masa ósea puede ser calculada a partir de los pesos corporales, o utilizando otros métodos (ver Guiness-Hey, Metab. Bone Dis. And Rel. Res. 5:177-181, 1984).

Como resultará evidente para un experto en la técnica, la cantidad y la frecuencia de la administración dependerán, por supuesto, de factores tales como la naturaleza y gravedad de la indicación que esté siendo tratada, de la respuesta deseada, de la condición del paciente, etcétera. Típicamente, las composiciones pueden ser administradas mediante una variedad de técnicas, como se ha indicado antes. Los siguientes ejemplos se ofrecen a modo de ilustración, y no a modo de limitación.

10 Ejemplos

15

20

25

30

35

40

45

50

55

60

65

Ejemplos 1

Mapas de esclerosteosis para el brazo largo del cromosoma 17 humano

El cartografiado genético del defecto responsable de la esclerosteosis en humanos localizó el gen responsable de este trastorno en la región del cromosoma 17 humano que codifica un miembro novedoso de la familia de la proteína de unión a TGF-beta. En la esclerosteosis, el hueso esquelético presenta un incremento sustancial en la densidad mineral en relación con la de los individuos no afectados. El hueso de la cabeza también presenta un sobrecrecimiento. Los pacientes con esclerosteosis son generalmente sanos aunque pueden mostrar grados variables de sindactilia al nacer y grados variables de compresión craneal y compresión nerviosa en el cráneo.

El análisis de conexión del defecto del gen asociado con la esclerosteosis fue realizado aplicando el método del cartografiado por homozigosidad a muestras de ADN recogidas de 24 familias de Afrikaaner de Suráfrica en las cuales se producía la enfermedad. (Sheffield et al., 1994, Human Molecular Genetics 3:1331-1335. "Identification of a Badet-Biedl syndrome locus on chromosome 3 and evaluation of an efficient approach to homozygosity mapping"). La población Afrikaaner de Suráfrica es generalmente homogénea; la población desciende de un pequeño número de fundadores que colonizaron el área hace varios siglos, y ha estado aislada por barreras geográficas y sociales desde su fundación. La esclerosteosis es rara en todo el mundo fuera de la comunidad Afrikaaner, lo que sugiere que se encontraba presente una mutación en el gen en la población fundadora y ha aumentado de número junto con el crecimiento de la población. El uso del cartografiado de homozigosidad se basa en la suposición de que es probable que los marcadores del cartografiado del ADN adyacentes a un mutación recesiva sean homozigotos en los individuos afectados de familias consanguíneas y en poblaciones aisladas.

Se seleccionó un grupo de 371 marcadores microsatélites (Research Genetics, Set 6) de los cromosomas autosómicos para tipificar reservas de ADN de muestras de pacientes con esclerosteosis. Las muestras de ADN para este análisis procedían de 29 pacientes con esclerosteosis de 24 familias, 59 miembros de familias no afectadas y un grupo de individuos de control no emparentados de la misma población. Las reservas constaban de 4-6 individuos, individuos afectados, individuos afectados de familias consanguíneas, padres y hermanos no afectados, o controles no emparentados. En las reservas de individuos no relacionados y en la mayor parte de las reservas con individuos afectados o miembros de la familia, los análisis de los marcadores demostraron numerosos tamaños de alelos para cada marcador. Un marcador, D17S1299, mostraba una indicación de homozigosidad: una banda en algunas de las reservas de individuos afectados.

Las 24 familias con esclerosteosis fueron tipificadas con un total de 19 marcadores en la región D17S1299 (en 17q12-q21). Los individuos afectados de cada familia demostraron ser homozigotos en esta región, y 25 de los 29 individuos eran homozigotos para un haplotipo central; cada uno tenía los mismos alelos entre D17S1787 y D17S930. Los otros cuatro individuos tenían un cromosoma que se emparejaba con este haplotipo y un segundo que no. En suma, los datos sugerían de modo convincente que esta región de 3 megabases contenía la mutación de la esclerosteosis. El análisis de la secuencia de la mayor parte de los exones de esta región de 3 megabases identificaba una mutación terminadora en la secuencia codificante de la proteína de unión a TGF novedosa (mutación C>T en la posición 117 del SEQ ID NO. 1 da como resultado un codón de terminación). Se demostró que esta mutación era única para los pacientes con esclerosteosis y los portadores de los descendientes de Afrikaaner. La identidad del gen fue confirmada adicionalmente identificando una mutación en su intrón (mutación A>T en la posición +3 del intrón) que da como resultado una maduración del ARNm inapropiada en un paciente no emparentado, individual con esclerosteosis diagnosticada.

Ejemplo 2

Especificidad de tejidos de la expresión del gen de la proteína de unión a TGF-beta

A. Expresión del Gen Beer Humano mediante RT-PCR

Se preparó un ADNc de primera hebra a partir de las siguientes muestras de ARN total utilizando un kit asequible comercialmente ("Superscript Preamplification System for First Strand cDNA Synthesis", Life Technologies, Rockville, MD): cerebro humano, hígado humano, bazo humano, timo humano, placenta humana, músculo esquelético humano, tiroides humano, pituitaria humana, osteoblastos humanos (NHOst de Clonetics Corp., San Diego, CA), línea celular de osteosarcoma humano (Saos-2, ATCC# HTB-85), hueso humano, médula ósea humana, cartílago humano, hueso de mono Vervet, Saccharomyces cerevisiae y monocitos de sangre periférica humana. Todas las muestras de ARN fueron adquiridas de una fuente comercial (Clontech, Palo Alto, CA), excepto las siguientes que fueron preparadas por la empresa: osteoblasto humano, línea celular de osteosarcoma humano, hueso humano, cartílago humano y hueso de mono Vervet. Estas muestras de ARN preparadas en la empresa fueron preparadas utilizando un kit asequible comercialmente ("TRI Reagent", Molecular Research Center, Inc., Cincinnati, OH).

La PCR fue realizada sobre estas muestras, y adicionalmente sobre una muestra genómica como control. El oligonucleótido Beer efector tenía la secuencia 5'-CCGGAGCTGGAGAACAACAAG-3' (SEC ID NO: 19). El cebador oligonucleotídico Beer antisentido tenía la secuencia 5'-GCACTGGCCGGAGCACACC-3' (SEC ID NO: 20). Además, se realizó la PCR utilizando cebadores para el gen de la beta-actina humana, como control. El cebador oligonucleotídico de la beta-actina-efector tenía la secuencia 5'-AGGCCAACCGCGAGAAGATGA CC-3' (SEC ID NO: 21). El cebador oligonucleotídico de la beta-actina antisentido tenía la secuencia 5'-GAAGT CCAGGGCGACGTAGCA-3' (SEC ID NO: 22). La PCR se realizó utilizando condiciones normalizadas en reacciones de 25 μl, con una temperatura de hibridación de 61 grados Celsius. Se llevaron a cabo 32 ciclos de PCR con los cebadores Beer y veinticuatro ciclos con los cebadores de la beta-actina.

Tras la amplificación, se analizaron 12 μl de cada reacción mediante electroforesis en gel de agarosa y tinción con bromuro de etidio. Ver Figura 2A.

B. Hibridación In-situ de ARN de Secciones Embrionarias de Ratón:

El ADNc Beer de ratón completo (Secuencia de ID Núm: 11) fue clonado en el vector pCR2.1 (Invitrogen, Carlsbad, CA) en las direcciones antisentido y efectora utilizando el protocolo del fabricante. Los transcritos efector y antisentido de ARNc marcado con S³⁵-alfa-GTP fueron sintetizados utilizando reactivos de transcripción in vitro suministrados por Ambion, Inc. (Austin, TX). La hibridación in situ fue realizada de acuerdo con los protocolos de Lyons et al. (J. Cell Biol. 111:2427-2436, 1990).

La sonda de ARNc Beer de ratón detectaba un mensaje específico expresado en el tubo neural, los blastemas, los vasos sanguíneos y los cartílagos de osificación de los embriones de ratón en desarrollo. El Panel A de la Figura 3 muestra expresión en la cresta ectodérmica apical (aer en sus siglas en inglés) del blastema (I en sus siglas en inglés), los vasos sanguíneos (bv en sus siglas en inglés) y el tubo neural (nt en sus siglas en inglés). El panel B muestra la expresión en el 4º ventrículo del cerebro (4). El Panel C muestra la expresión en la mandíbula (ma), en las vértebras cervicales (cv), el hueso occipital (oc), el paladar (pa) y los vasos sanguíneos (bv). El panel D muestra la expresión en las costillas (r) y en la válvula del corazón (va). El panel A es una sección transversal de embrión de 10,5 dpc. El panel B es una sección sagital de embrión de 12,5 dpc y los paneles C y D son secciones sagitales de embriones de 15,5 dpc. Ba= arco branquial, h=corazón, te=telencéfalo (prosencéfalo), b=cerebro, f=masa frontal, g=intestino, j=mandíbula, li=hígado, lu=pulmón, ot=vesícula ótica, ao=, sc=médula espinal, skm=músculo esquelético, na=seno nasal, th=timo, to=lengua, fl=miembro anterior, di=diafragma.

Ejemplo 3

55

65

10

15

20

25

50 Expresión y purificación de proteína beer recombinante

A. Expresión en células COS-1:

La secuencia de ADN que codifica la proteína Beer humana completa fue amplificada utilizando los siguientes cebadores oligonucleotídicos para PCR. El cebador oligonucleotídico 5' tenía la secuencia 5'-AAGCTTGGTACCATGCAGCTCCCAC-3' (SEC ID NO: 23) y contenía un sitio para la enzima de restricción HindIII (en negrita) seguido de 19 nucleótidos del gen Beer empezando 6 pares de bases antes del presunto codón de iniciación amino terminal (ATG). El cebador oligonucleotídico 3' tenía la secuencia 5'-AAGCTTCTACTTGTCATCGTCGTCCT TGTAGTCGTAGGCGTTCTCCAGCT-3' (SEC ID NO: 24) y contenía un sitio para la enzima de restricción HindIII (en negrita) seguido de un codón de terminación complementario inverso (CTA) seguido del complemento inverso del epítopo FALG (subrayado, Sigma-Aldrich Co., St. Louis, MO) flanqueado por el complemento inverso de nucleótidos que codifican los 5 aminoácidos carboxi terminales de Beer. El producto de la PCR fue clonado con TA ("Original TA Cloning Kit", Invitrogen, Carlsbad, CA) y los clones individuales fueron rastreados mediante secuenciación del ADN. Un clon de secuencia verificada fue digerido después por HindIII y purificado sobre gel de agarosa al 1,5% utilizando reactivos asequibles comercialmente ("Qiaquick Gel Extraction Kit", Qiagen Inc., Valencia, CA). Este fragmento fue ligado después al plásmido pcDNA3.1 tratado con fosfatasa, digerido

con HindIII y cultivado en placa sobre placas LB con 100 μ g/ml de ampicilina. Las colonias que portaban el recombinante deseado en la orientación apropiada fueron identificados mediante escrutinio basado en PCR, utilizando un cebador 5' correspondiente al sitio promotor/cebador de T7 en pcDNA3.1 y un cebador 3' con la secuencia 5'-GCACTGGCCGGAGCACACC-3' (SEC ID NO: 25) que corresponde al complemento inverso de la secuencia BEER interna. La secuencia del fragmento clonado fue confirmada mediante secuenciación del ADN.

Se utilizaron células COS-1 (ATCC #CRL-1650) para la transfección. Se transfectaron 50 µg del plásmido de expresión pcDNA-Beer-Flag utilizando un kit asequible comercialmente siguiendo los protocolos suministrados por el fabricante ("DEAE-Dextran Transfection Kit", Sigma Chemical Co., St. Louis, MO). El medio final tras la transfección era DMEM (Life Technologies, Rockville, MD) conteniendo Suero Bovino Fetal al 0,1%. Al cabo de 4 días de cultivo, el medio se separó. La expresión de BEER recombinante fue analizada mediante SDS-PAGE y Transferencia Western utilizando anticuerpo monoclonal M2 anti-FLAG (Sigma-Aldrich Co., St. Louis, MO). La purificación de la proteína BEER recombinante se realizó utilizando una columna de afinidad M2 anti-FLAG ("Mammalian Transient Expression System", Sigma-Aldrich Co., St. Louis, MO). El perfil de la columna fue analizado vía SDS-PAGE y Transferencia Western utilizando anticuerpo monoclonal M2 anti-FLAG.

B. Expresión en células de insecto SF9

20

25

30

35

40

10

15

La secuencia del gen Beer humano fue amplificada utilizando la PCR con condiciones normalizadas y los siguientes cebadores:

Cebador efector: 5'-GTCGTCGGATCCATGGGGTGGCAGGCGTTCAAGAAT-GAT-3' (SEC ID NO: 26)

Cebador antisentido: 5'-GTCGTCAAGCTTCTACTTGTCATCGTCCTTGTAGTCTA
GGCGTTCTCCAGCTCGGC-3' (SEC ID NO: 27)

El ADNc resultante contenía la región codificante de Beer con dos modificaciones. La señal de secreción N-terminal se había eliminado y la etiqueta del epítopo FLAG (Sigma) estaba fusionada en marco con el extremo C-terminal del inserto. Se añadieron los sitios de clonación BamHI y HindIII y el gen fue subclonado en el vector pMelBac (Invitrogen) para la transferencia a un vector baculoviral utilizando métodos normalizados.

Los baculovirus recombinantes que expresaban la proteína Beer fueron elaborados utilizando el kit de transfección Ba-N-blue (Invitrogen) y purificados según las instrucciones de los fabricantes.

Las células SF9 (Invitrogen) fueron mantenidas en medio TNM_FH (Invitrogen) conteniendo suero de ternera fetal al 10%. Para la expresión de la proteína, los cultivos de SF9 en matraces con extensor de centrifugación ("Spinner") a una MOI de más de 10. Las muestras de los medios y de las células fueron tomadas diariamente durante cinco días, y la expresión de Beer fue controlada mediante transferencia Western utilizando anticuerpo monoclonal M2 anti-FLAG (Sigma) o antisuero policional de conejo anti-Beer.

Al cabo de cinco días las células SF9 infectadas con baculovirus fueron recogidas mediante centrifugación y la proteína asociada a las células fue extraída del sedimento celular utilizando un tampón de extracción de elevada contenido de sal (NaCl 1,5 M, Tris 50 mM pH 7,5). El extracto (20 ml por 300 ml de cultivo) fue aclarado mediante centrifugación, sometido a diálisis tres veces frente a cuatro litros de solución salina tamponada con Tris (NaCl 150 mM, Tris 50 mM pH 7,5), y aclarado de nuevo mediante centrifugación. Esta fracción con elevado contenido de sal fue aplicada a Hitrap Heparin (Pharmacia: 5 ml de volumen de lecho), lavada extensamente con solución salina tamponada con HEPES (HEPES 25 mM 7,5, NaCl 150 mM) y las proteínas unidas se hicieron eluir con un gradiente de NaCl 150 mM a NaCl 1200 mM. La elución de Beer fue observada a un NaCl aproximadamente 800 mM. Las fracciones que contenían Beer fueron suplementadas con glicerol al 10% y DTT 1 mM y congeladas a -80°C.

55 **Ejemplo 4**

Preparación y ensayo de anticuerpos policionales para Beer, Gremlin, y Dan

A. Preparación de antígeno

60

Las secuencias de ADN de *Beer* humana, *Gremlin* humana, y *Dan* humana fueron amplificadas utilizando métodos de PCR normalizados con los siguientes cebadores oligonucleotídicos:

Beer H

65 Efector: 5'-GACTTGGATCCCAGGGGTGGCAGGCGTTC-3' (SEC ID NO: 28)
Antisentido: 5'-AGCATAAGCTTCTAGTAGGCGTTCTCCAG-3' (SEC ID NO: 29)

Gremlin H.

Efector: 5'-GACTTGGATCCGAAGGGAAAAAGAAAGGG-3' (SEC ID NO: 30)
Antisentido: 5'-AGCATAAGCTTTTAATCCAAATCGATGGA-3' (SEC ID NO: 31)

Dan H.

5

25

30

35

45

50

55

60

65

Efector: 5'-ACTACGAGCTCGGCCCCACCACCATCAACAAG-3' (SEC ID NO: 32)
Antisentido: 5'-ACTTAGAAGCTTTCAGTCCTCAGCCCCCTCTTTCC-3' (SEC ID NO: 33)

En cada caso los cebadores enumerados amplificaban la región codificante completa menos la secuencia señal de secreción. Entre estos se incluyen los sitios de restricción para la subclonación en el vector de expresión bacteriano pQE-30 (Qiagen Inc., Valencia) en los sitios BamHI/HindIII para Beer y Gremlin, y en los sitios Sacl/HindIII para Dan. pQE30 contiene una secuencia codificante para la etiqueta 6x His en el extremo 5' de la región de clonación. Los constructos completados fueron transformados en E. coli cepa M-15/pRep (Qiagen Inc.) y los clones individuales fueron verificados por secuenciación. La expresión de la proteína en M-15/pRep y la purificación (unión de la etiqueta de afinidad 6xHis a Ni-NTA acoplado con Sepharose) fueron realizadas como describen los fabricantes (Qiagen, The QIAexpressionist).

La proteína Beer derivada de E. coli fue recuperada en una cantidad significativa utilizando la solubilización en guanidina 6M y sometida a diálisis a 2-4M para evitar la precipitación durante el almacenamiento. Las proteínas Gremlin y Dan fueron recuperadas en una cantidad superior con solubilización en guanidina 6M y una concentración de guanidina post-purificación de 0,5M.

B. Producción y ensayo de anticuerpos policionales

Se produjeron anticuerpos policionales para cada uno de los tres antígenos en anfitriones como conejo y pollo utilizando los protocolos normalizados (R & R Antibody, Stanwood, WA; protocolo normalizado para inmunización de conejo y recuperación de antisuero; Short Protocols in Molecular Biology, 2ª edición, 1992. 11.37-11.41. Contributors Helen M. Cooper and Yvonne Paterson; el suero de pollo fue generado con Strategic Biosolutions Ramona, CA).

El antisuero de conejo y la fracción IgY de huevo de pollo fueron rastreados en cuanto a la actividad vía transferencia Western. Cada uno de los tres antígenos fue separado mediante PAGE y transferido a nitrocelulosa de 0,45 μm (Novex, San Diego, CA). La membrana fue cortada en tiras conteniendo cada tira aproximadamente 75 ng de antígeno. Las tiras fueron bloqueadas en Blottig Grade Block al 3% (Bio-Rad Laboratories, Hercules, CA) y lavadas 3 veces en 1X solución salina tamponada con Tris (TBS)/tampón Tween al 0,02%. El anticuerpo primario (tomas de sangre pre-inmunización, antisuero de conejo o IgY de huevo de pollo en diluciones que oscilaban de 1:100 a 1:10.000 en tampón de bloqueo) fue incubado con las tiras durante una hora con un balanceo suave. Una segunda serie de tres lavados 1X TBS/TWEEN al 0,02% estuvo seguida de una incubación de una hora con el anticuerpo secundario (anti-conejo de burro conjugado con peroxidasa, Amersham Life Science, Piscataway, NJ; o anti-polli de burro conjugado con peroxidasa, Jackson ImmunoResearch, West Grove, PA). Se realizó un ciclo final de 3X lavados de 1X TBS/TWEEN al 0,02% y las tiras fueron desarrolladas con Lumi-Light Western Blotting Substrate (Roche Molecular Biochemicals, Mannheim, Alemania).

C. Ensayo de reactividad cruzada con anticuerpo:

Siguiendo el protocolo descrito en la sección anterior, se incubaron tiras de Beer, Gremlin o Dan con diluciones (1:5000 y 1:10.000) de sus respectivos antisueros de conejo o IgY de huevo de pollo así como antisuero o Igy de huevo de pollo (diluciones 1:1000 y 1:5000) elaborados para los dos antígenos restantes. Los niveles incrementados de anticuerpos que no se emparejaban fueron realizados para detectar la unión de baja afinidad por los anticuerpos que pueden ser observados solamente a una concentración elevada. El protocolo y la duración del desarrollo son los mismos para los tres eventos de unión utilizando el protocolo descrito antes. No se observaba reactividad cruzada con el antígeno para ninguno de los antígenos sometidos a ensayo.

Ejemplo 5

Interacción de Beer con proteínas de la superfamilia de TGF-beta

La interacción de Beer con las proteínas de diferentes ramas filogenéticas de la súper-familia del TGF- β fue estudiada utilizando métodos de inmunoprecipitación. Se obtuvieron TGF β -1, TGF β -2, TGF β -3, BMP-4, BMP-5, BMP-6 y GDNF a partir de fuentes comerciales (R & D systems; Minneapolis, MN). Un protocolo representativo es el siguiente. Se sometió a diálisis Beer parcialmente purificada en solución salina tamponada con HEPES (HEPES 25 mM 7,5, NaCl 150 mM). Las inmunoprecipitaciones fueron realizadas en 300 μ l de tampón IP (NaCl 150 mM, Tris 25 mM, pH 7,5, EDTA 1 mM, β -mercaptoetanol 1,4 mM, triton X-100 al 0,5%, y glicerol al 10%). Se aplicaron 30 ng de proteína BMP-5 humana recombinante

 $(R \& D \ systems)$ a 15 μI de matriz de afinidad FLAG (Sigma, St. Louis MO)) en presencia y ausencia de 500 ng de Beer marcada con el epítopo FLAG. Las proteínas fueron incubadas durante 4 horas @ 4°C y después las proteínas asociadas con la matriz de afinidad fueron lavadas cinco veces en tampón IP (1 ml por lavado). Las proteínas unidas se hicieron eluir de la matriz de afinidad en 60 microlitros de 1X tampón de muestra SDS PAGE. La proteínas fueron resueltas mediante SDS PAGE y la Beer asociada con BMP-5 fue detectada mediante transferencia Western utilizando antisuero anti-BMP-5 (Research Diagnostics, Inc.) (ver la Figura 5).

Análisis de Unión al Ligando Beer

La proteína FLAG-Beer (20 ng) es añadida a 100 µl de PBS/BSA al 0,2% y adsorbida en cada pocillo de una placa de microtitulación de 96 pocillos previamente recubierta con anticuerpo monoclonal anti-FLAG (Sigma; St Louis MO) y bloqueada con BSA en PBS al 10%. Esto se realiza a la temperatura ambiente durante 60 minutos. Esta solución de proteína se separa y los pocillos se lavan para separar la proteína no unida. Se añade BMP-5 a cada pocillo a concentraciones que oscilan de 10 pM a 500 nM en PBS/BSA al 0,2% y se incuba durante 2 horas a la temperatura ambiente. La solución de unión se separa y la placa se lava tres veces con volúmenes de 200 µl de PBS/BSA al 0,2%. Los niveles e BMP-5 son detectados utilizando anti-suero BMP-5 vía ELISA (F.M. Ausubel et al. (1998) Current Protocols in Mol. Biol. Vol. 2 11.2.1-11.2.22). La unión específica se calcula sustrayendo la unión no específica de la unión total y se analiza mediante el programa LIGAND (Munson y Podbard, Anal. Biochem., 107, pág. 220-239, (1980). En una variación de este método, se diseña Beer y se expresa como una proteína de fusión con Fc human. Del mismo modo el BMP ligando se diseña y se expresa como una fusión con Fc de ratón. Estas proteínas son incubadas juntas y el análisis es realizado como describe Mellor et al. utilizando la detección de fluorescencia de resolución con el tiempo (G.W. Mellor et al., J. of Biomol Screening, 3(2) 91-99, 1998).

Ejemplo 6

10

15

20

25

30

35

40

45

50

55

60

65

Análisis de escrutinio para la inhibición de la unión de la proteína de unión a TGF-beta a miembros de la familia de TGF-beta

El análisis descrito antes se repite con dos excepciones. Primero, la concentración de BMP se mantiene fija a la Kd determinada previamente. Segundo, se añade una colección de candidatos antagonistas a una concentración fijada(20 μM en el caso de las colecciones de moléculas orgánicas pequeñas y 1 μM en estudios con anticuerpo). Entre estas moléculas candidato (antagonistas) de la unión a la proteína de unión de TGF-beta se incluyen compuestos orgánicos derivados de colecciones comerciales o internas que representan diversas estructuras químicas. Estos compuestos son preparados en forma de soluciones de partida en DMSO y son añadidas a pocillos de análisis a ≤ 1% del volumen final en condiciones de análisis normalizadas. Estas son incubadas durante 2 horas a la temperatura ambiente con BMP y Beer, la solución es separada y el BMP unido es cuantificado como se ha descrito. Los agentes que inhiben el 40% de la unión a BMP observada en ausencia de compuesto o anticuerpo son considerados antagonistas de esta interacción. Estos son evaluados adicionalmente como inhibidores potenciales basándose en estudios de titulación para determinar sus constantes d inhibición y su influencia sobre la afinidad de unión de la proteína de unión a TGF-beta. Asimismo se pueden llevar a cabo análisis de control de la especificidad comparables para establecer el perfil de selectividad para el antagonista identificado a través de estudios en los que se utilizan análisis dependientes de la acción del ligando BMP (p.ej., estudio de competición BMP/receptor de BMP).

Ejemplo 7

Inhibición de la localización de la proteína de unión a TGF-beta a la matriza del hueso

La evaluación de la inhibición de la localización en la matriz del hueso (hidroxiapatita) se realiza utilizando modificaciones del método de Nicolas (Nicolas, V. Calcif Tissue Int. 57:206, 1995). Brevemente, la proteína de unión a TGF-beta marcada con I¹²⁵ es preparada como describe Nicolas (supra). La hidroxiapatita es añadida a cada pocillo de una placa de microtitulación de 96 pocillos equipada con una membrana de filtración de polipropileno (Polyfiltronic, Weymouth MA). La proteína de unión a TGF-beta es añadida a albúmina al 0,2% en tampón PBS. Los pocillos que contienen la matriz son lavados 3 veces con este tampón. La proteína de unión a TGF-beta adsorbida se hace eluir utilizando NaOH 0,3M y se cuantifica.

La identificación del inhibidor de lleva a cabo por medio de la incubación de la proteína de unión a TGF-beta con moléculas de ensayo y aplicando la mezcla a la matriz como se ha descrito antes. La matriz se lava 3 veces con albúmina al 0,2% en tampón PBS. La proteína de unión a TGF-beta adsorbida se hace eluir utilizando NaOh 0,3M y se cuantifica. Los agentes que inhiben el 40% de la unión de la proteína de unión a TGF-beta observada en ausencia de compuesto o anticuerpo son considerados inhibidores de la localización ósea. Estos inhibidores se caracterizan adicionalmente por los estudios dosis-respuesta para determinar sus constantes de inhibición y su influencia sobre la afinidad de unión de la proteína de unión a

TGF-beta.

Ejemplo 8

10

15

20

25

35

45

50

55

60

65

Construcción de mutantes de la proteína de unión a TGF-beta

A. Mutagénesis

Un ADNc de la proteína de unión a TGF-beta completo en pBluescript SK sirve como molde para la mutagénesis. En resumen, los cebadores apropiados (ver el estudio proporcionado en la presente memoria) son utilizados para generar el fragmento de ADN mediante la reacción en cadena de la polimerasa utilizando la polimerasa Vent DNA (New England Biolabs, Beverly, MA). La reacción en cadena de la polimerasa se hace funcionar durante 23 ciclos en tampones proporcionados por el fabricante utilizando una temperatura hibridación de 57°C. El producto es expuesto después a dos enzimas de restricción y tras el aislamiento utilizando electroforesis en gel de agarosa, ligado de nuevo en pRBP4-503 del cual se ha separado la secuencia de emparejamiento mediante digestión enzimática. La integridad del mutante es verificada mediante secuenciación del ADN.

B. Expresión en Células de Mamífero y Aislamiento de la Proteína de unión a TGF-beta mutante:

Los ADNc de la proteína de unión a TGF-beta mutante son transferidos al vector de expresión de mamífero pcDNA3.1 descrito en el Ejemplo 3. Después de verificar la secuencia, los constructos resultantes son transfectados en células COS-1, y la proteína secretada es purificada como se describe en el EJEMPLO 3.

Ejemplo 9

Modelos animales

30 Generación de ratones transgénicos que expresan en exceso el gen Beer

El clon BAC de ~200 kilobases (kb) 15G5, aislado dla genoteca de ADN genómico de ratón CTIB (distribuido por Research Genetics, Huntsville, AL) fue utilizado para determinar la secuencia completa del gen Beer de ratón y sus regiones limítrofes 5' y 3'. Un fragmento Sall de 41 kb, conteniendo el cuerpo del gen completo, más ~17 kb de la secuencia limítrofe 5' y ~20 kb de la secuencia limítrofe 3' fue subclonado en el sitio BamHI del vector cosmídico SuperCos1 (Stratagene, La Jolla, CA) y propagado en la cepa DH101B de E. coli. De este constructo cosmídico, un fragmento de restricción Mlul-AvIII de 35 kb (Secuencia Núm. 6), incluyendo el gen Beer de ratón completo, así como la secuencia limítrofe de 17 kb y de 14 kb 5' y 3', respectivamente, fue purificado después en gel, utilizando medios convencionales, y utilizado para la microinyección en zigotos de ratón (DNX Transgenics; Patente de los Estados Unidos Núm. 4.873.191). Los animales fundadores en los que el fragmento de ADN clonado había sido integrado al azar en el genoma fueron obtenidos a una frecuencia del 5-30% de las crías que nacen vivas. La presencia del transgen fue determinada realizando el análisis de transferencia Southern del ADN genómico extraído de una pequeña cantidad de tejido de ratón, tal como la punta de una cola. El ADN fue extraído utilizando el siguiente protocolo: el tejido fue digerido durante la noche a 55°C en tampón de lisis conteniendo NaCl 200 mM, Tris 100 mM pH 8,5, EDTA 5 mM, SDS al 0,2% y 0,5 mg/ml de Proteinasa K. Al día siguiente, el ADN fue extraído una vez con fenol/cloroformo (50:50), una vez con cloroformo/alcohol isoamílico (24:1) y precipitado con etanol. Tras la re-suspensión en TE (Tris 10 mM pH 7,5, EDTA 1,5 mM), 8-10 μg de cada muestra de ADN fueron digeridos con una endonucleasa de restricción, tal como EcoRI, sometidos a electroforesis en gel y transferidos a una membrana de nailon cargada, tal como HybondN+ (Amersham, Arlington Heigths, IL). El filtro resultante fue hibridado después con un fragmento marcado radiactivamente de ADN derivado del locus del gen Beer de ratón, y susceptible de reconocer tanto un fragmento del locus del gen endógeno como un fragmento de un tamaño diferente derivado del transgen. Los animales fundadores fueron criados hasta ratones no transgénicos normales para generar un número suficiente de progenie transgénica y no transgénica en la cual determinar los efectos de la sobre-expresión del gen Beer. Para estos estudios, animales de diversas edades (por ejemplo, 1, día, 3 semanas, 6 semanas, 4 meses) son sometidos a numerosos análisis diferentes diseñados para averiguar la formación esquelética grosera, la densidad mineral del hueso, el contenido mineral del hueso, la actividad de osteoclastos y osteoblastos, el grado de osificación endocondral, la formación de cartílago, etc. La actividad transcripcional del transgen puede ser determinada extrayendo el ARN de diversos tejidos, y utilizando un análisis de RT-PCR que obtenga ventaja de los polimorfismos de nucleótidos individuales entre la cepa de ratón de la cual deriva el transgen (129Sv/J) y la cepa de ratones utilizada para la microinyección de ADN [(C57BL5/J x SJL/J)F2].

Modelos animales II

Desorganización del gen Beer de ratón mediante recombinación homóloga

La recombinación homóloga en células madre (ES) embriónicas puede ser utilizada para inactivar el gen Beer endógeno de ratón y generar con posterioridad animales que porten la mutación con pérdida de función. Un gen informador, tal como el gen de la β-galactosidasa de *E. coli*, fue diseñado en el vector de redireccionamiento de manera que su expresión estuviera controlada por el promotor del gen *Beer* endógeno y la señal de iniciación de la traducción. De este modo, los patrones espaciales y temporales de la expresión del gen *Beer* pueden ser determinados en animales que portan un alelo elegido como diana.

El vector de redireccionamiento fue construido clonando primero la casete del gen resistente a la 10 neomicina (neo) dirigido por el promotor de la fosfoglicerato quinasa (PGK) seleccionable por fármaco de pGT-N29 (New England Biolabs, Beverly, MA) en el vector de clonación pSP72 (Promega, Madson, WI). Se utilizó la PCR para flanquear la casete PGKneo con sitios P1 1oxP de bacteriófago, que son los sitios de reconocimiento para la recombinasa P1 Cre (Hoess et al., PNAS USA, 79:3398, 1982). Esto permite la posterior eliminación del marcador de resistencia a neo en las células ES redireccionadas en animales 15 derivados con células ES (Patente de los Estados Unidos 4.959.317). Los cebadores de la PCR estaban comprendidos por una secuencia de 34 nucleótidos (ntd) loxP, 15-25 ntd complementarios a los extremos 5' y 3' de la casete PGKneo, así como sitios para el reconocimiento por la enzima de restricción (BamHI en el cebador efector y EcoRI en el cebador anti-sentido) para la clonación en pSP72. La secuencia del cebador efector era 5'-AATCTGGATCCATAACTTCGTÁTAGCATACATTATACGAAGTTATCTGCAGGA 20 TTCGAGGGCCCCT-3' (SEC ID NO: 34); la secuencia del cebador anti-sentido era 5'-AATCTGAATTCCACCGGTGTTAATTAAATAACTTCGT ATAATGTATGCTATACGAAGTTATAGATCTAGAG TCAGCTTCTGA-3' (SEC ID NO: 35).

La siguiente etapa fue clonar un fragmento de Xhol-HindIII de 3,6 kb, conteniendo el gen de la β -25 qalactosidasa de E. coli y la señal de poliadenilación de SV40 de pSVB (Clontech, Palo Alto, CA) en el plásmido pSP72-PGKneo. El "brazo corto" de la homología del locus del gen *Beer* de ratón fue generado amplificando un fragmento del clon BAC 15G5. El extremo 3' del fragmento coincidía con el sitio de inicio de la traducción del gen Beer, y el cebador anti-sentido utilizado en la PCR también incluía 30 ntd complementarios al extremo 5' del gen de la \(\beta\)-galatosidasa de manera que su región codificante pudiera 30 ser fusionada con el sitio de iniciación de Beer en marco. El enfogue escogido para introducir el "brazo corto" en el plásmido pSP72-βgal-PGKneo fue linealizar el plásmido en un sitio aguas arriba del gen β-gal y después co-transformar este fragmento con el producto de la PCR del "brazo corto" y seleccionar los plásmidos en los cuales estaba integrado el producto de la PCR mediante recombinación homóloga. El cebador efector para la amplificación del "brazo corto" incluía 30 ntd complementarios al vector pSP72 35 para permitir este evento de recombinación. La secuencia del cebador efector era 5'-ATTTAGGTGACACTATAGAACTCGAGCAGCTGAA GCTTAACCACATGGTGGCTCACAACCAT-3' (SEC ID NO: 36) y la secuencia del cebador anti-sentido era 5'-AACGACGGCCAGTGAATCCGTA ATCATGGTCATGCTGCCAGGTGGAGGAGGGCA-3' (SEC ID NO: 37).

El "brazo largo" del locus del gen Beer fue generado amplificando un fragmento de 6,1 kb del clon BAC 15G5 con cebadores que también introducían los sitios para las enzimas de restricción de corte poco común ("rare-cutting") SgrAl, Fsel, Ascl y Pacl. Específicamente, la secuencia del cebador efector era 5'-ATTACCACCGGTGACACCC GCTTCCTGACAG-3' (SEC ID NO: 38); la secuencia del cebador efector era 5'-ATTACTTAATTAACATGGCGCGCCCATATGGCC GGCCCCTAATTGCGGCGCATCGTTAATT-3'
 (SEC ID NO: 39). El producto de la PCR resultante fue clonado en el vector TA (Invitrogen, Carlsbad, CA) como una etapa intermedia.

El constructo de redireccionamiento al gen *Beer* de ratón también incluía un segundo marcador seleccionable, el gen de la *timidina quinasa* del virus *herpes simplex 1* (HSVTK) bajo el control del elemento de la larga repetición terminal del virus del sarcoma de Rous (RSV LTR). La expresión de este gen vuelve las células de mamífero sensibles (e inviables) al ganciclovir, es por lo tanto un modo conveniente de seleccionar frente a células resistentes a la neomicina en las cuales ha sido integrado el constructo mediante un evento no homólogo (Patente de los Estados Unidos 5.464.764). La casete RSVLTR-HSVTK fue amplificada de pSP1337 utilizando los cebadores que permiten la posterior clonación en los sitios Fsel y Ascl del "brazo largo"-plásmido vector TA. Para esta PCR, la secuencia del cebador efector era 5'-ATTACGGCCGCCCCAAAGG AATTCAAGA TCTGA-3' (SEC ID NO: 40); la secuencia del cebador antisentido era 5'-ATTACGGCGCGCCCCCTCACAGGCCGCACCC AGCT-3' (SEC ID NO: 41).

La etapa final en la construcción del vector de redireccionamiento implicaba la clonación del fragmento Sgrl-Ascl de 8,8 kb que contenía el "brazo largo" y el gen RSVLTR-HSVTK en los sitios SgrAl y Ascl del plásmido pSP72-"brazo corto"-βgal-PGK neo. Este vector redireccionado fue linealizado mediante digestión o bien con Ascl o Pacl antes de la electroporación en células ES.

Ejemplo 10

65

50

55

60

Inactivación de Beer mediada por antisentido

Se preparan oligonucleótidos antisentido de 17 nucleótidos en un formato solapante, de tal manera que el

extremo 5' del primer oligonucleótido se solape con el AUG de inicio de la traducción del transcrito Beer, y los extremos 5' de los sucesivos oligonucleótidos se produzcan en incrementos de 5 nucleótidos moviéndose en dirección 5' (hasta 50 nucleótidos más allá), en relación con el AUG de Beer. Se diseñan los correspondientes oligonucleótidos de control y se preparan utilizando composiciones de bases equivalentes pero redistribuidas en la secuencia para inhibir cualquier hibridación significativa para el ARNm codificante. La liberación del reactivo para el sistema de ensayo celular se lleva a cabo a través de un reparto de lípidos catiónicos (P.L. Felgner, Proc. Natl. Acad. Sci. USA 84:7413, 1987). Se añaden 2 µg de oligonucleótido antisentido a 100 µl de medio con el suero reducido (medio con suero reducido Opti-MEM 1; Life Technologies Gaithersburg MD) y este se mezcla con reactivo Lipofectin (6 μl) (Life Technologies, Gaithersburg MD) en los 100 μl de medio con suero reducido. Estos se mezclan, se permite 10 que formen complejos durante 30 minutos a la temperatura ambiente y la mezcla se añade a células MC3T3E21 o KS483 sembradas previamente. Estas células se cultivan y el ARNm se recupera. El ARNm de Beer se controla utilizando RT-PCR junto con cebadores específicos de Beer. Además, se recogen los pocillos experimentales separados y los niveles de proteína se caracterizan por medio de métodos de transferencia western descritos en el Ejemplo 4. Las células son cosechadas, resuspendidas en tampón 15 de lisis (Tris 50 mM pH 7,5, NaCl 20 mM, EDTA 1 mM, SDS al 1%) y la proteína soluble se recoge. Este material se aplica a SDS PAGE en un gradiente desnaturalizante al 10=20). Las proteínas separadas son transferidas a nitrocelulosa y la transferencia western es realizada como antes utilizando los reactivos anticuerpo descritos. Paralelamente, se añaden los oligonucleótidos de control a cultivos idénticos y se 20 repiten las condiciones experimentales. El descenso en los niveles de ARNm o proteína Beer se considera significativo si el tratamiento con el oligonucleótido antisentido da como resultado un cambio del 50% en cualquier caso comparado con el oligonucleótido con las mismas bases orientadas de manera azarosa ("scrambled") de control. Esta metodología permite la inactivación selectiva del gen y la posterior caracterización del fenotipo de los nódulos mineralizados en el modelo de cultivo de tejidos.

SECUENCIAS

ID de Secuencia Núm. 1: ADNc de BEER Humano (región codificante completa más UTR 5' y 3')

AGASCOTGTSCTACTGGAAGGTGGCGTGCCCTCCTCTGGCTGGTACCATGCAGCTCCCACTGGCCCTGTGTCTCGTCTGC CTGCTGGTACACACAGCCTTCCGTGTAGTGGAGGGCCAGGGGTGGCAGGCGTTCAAGAATGATGCCACGGAAATCATCCC CTCCCCACCACCCCTTGAGACCAAAGACGTGTCCGAGTACAGCTGCCGCGAGCTGCACTTCACCCGCTACGTGACCGAT GRECCGTGCCGCAGCGCCAAGCCGGTCACCGAGCTGGTGTGCTCCGGCCAGTGCGGCCCGGCGCGCCGCCTGCTGCCCAACGC CATOGGCGGGGCAAGTGGTGGCGACCTAGTGGGCCCGACTTCCGCTGCATCCCGACCGCTACCGCGCGCAGCGCGTGC AGCTSCTSTSTCCCGGTGGTGAGGCGCGCGCGCGCGCAAGGTGCGCCTGGTGGCCTGCTGCAAGTGCAASCECCTCACC GCCCGGCCCTGAACCCGCGCCCCACATTTCTGTCCTCTGCGCGTGGTTTGATTGTTTATATTTCATTGTAAATGCCTGC RACCCAGGGCAGGGGCTGAGACCTTCCAGGCCTGAGGAATCCCGGGCGCGAAGGCCCCCCTCAGCCCGCCAGCTG AGGGTCCCACGGGGCAGGGGAGGGAATTGAGAGTCACAGACACTGAGCCACGCAGCCCCGCCTCTGGGGCCGCCTACCT TTGCTGGTCCCACTTCAGAGGAGGCAGAAATGGAAGCATTTTCACCGCCCTGGGGTTTTAAGGGAGCGGTGTGGGAAGTGG GAAAGTCCAGGGACTGGTTAAGAAAGTTGGATAAGATTCCCCCTTGCACCTGCCCCATCAGAAAGCCTGAGGCGTGC CCAGAGCACAAGACTGGGGGCAACTGTAGATGTGGTTTCTAGTCCTGGCTCTGCCACTAACTTGCTGTGTAACCTTGAAC TACACAATTCTCCTTCGGGACCTCAATTTCCACTTTGTAAAATGAGGGTGGAGGTGGGAATAGGATCTCGAGGAGACTAT CAGTTGCATTGATTCAGTGCCAAGGTCACTTCCAGAATTCAGAGTTGTGATGCTCTCTTCTGACAGCCAAAGATGAAAAA CAA-CAGAA--AAAAAAGTAAAGAGTCTATTTATGGCTGACATATTTACGGCTGACAAACTCCTGGAAGAAGCTATGCTG CTTCCCAGCCTGGCTTCCCCGGATGTTTGGCTACCTCCACCCCTCCATCTCAAAGAAATAACATCCATTGGGGTAGA AGCCATCACAAACTCACAGACCAGCACATCCCTTTTGAGACACCGCCTTCTGCCCACCACTCACGGACACATTTCTGCCT AGAAAACAGCTTCTTACTGCTCTTACATGTGATGGCATATCTTACACTAAAAGAATATTATTGGGGGAAAAAACTACAAGT GCTGTACATATGCTGAGAAACTGCAGAGCATAATAGCTGCCACCCAAAAATCTTTTTGAAAATCATTTCCAGACAACCTC TTACTTTCTGTGTAGTTTTTAATTGTTAAAAAAAAAAAGTTTTAAACAGAAGCACATGACATATGAAAGCCTGCAGGACT GGTCGTTTTTTTGGCAATTCTTCCACGTGGGACTTGTCCACAAGAATGAAAGTAGTGGTTTTTAAAGAGTTAAGTTACAT ATTTATTTTCTCACTTAAGTTATTTATGCAAAAGTTTTTCTTGTAGAGAATGACAATGTTAATATTGCTTTATGAATTAA CAGTCTGTTCTTCCAGAGTCCAGAGACATTGTTAATAAAGACAATGAATCATGACCGAAAG

ID de Secuencia Núm. 2: Proteína BEER Humana (secuencia completa)

MQLFLALCLVCLLVHTAFRVVEGQGWQAFKNDATEIIFELGEYFEFFFELENNKTMNRAENGGREFHHEFETKDVSEYSC RELHFTRYVTDGFCRSAKPVTELVCSGQCGFARLLENAIGRGKWWRFSGFDFRCIFDRYRAQRVQLLCFGGEAFRARKVR LVASCKCKRLTRFHNQSELKDFGTEAARPQKGRKPRPRARSAKANQAELENAY

ID de Secuencia Núm. 3: Proteína BEER Humana conteniendo mutación terminadora de Esclerosteosis

5

CGAGCTCGGAGAGTACCCCGAGCCTCCACCGGAGCTGGAGAACAACAAGACCATGAACCGGGCGGAGAACGGAGGGCGGC CTCCCCACCACCACCCCTTTGAGACCAAAGACGTGTCCGAGTACAGCTGCCGCGAGCTGCACTTCACCCGCTACGTGACCGAT AGCTGCTGTGTCCCGGTGGTGAGGCGCCGCGGCGCGCAAGGTGCGCCTGGTGGCAAGTGCAAGCGCCTCACC CGCTTCCACAACCAGTCGGAGCTCAAGGACTTCGGGACCGAGGCCGCTCGGCCGCAGAAGGGCCGGAAGCCGCGGCCCCG CGCCCGGAGCGCCAAAGCCAACCAGGCCGAGCTGGAGAACGCCTACTAGAGCCCGCCGCCGCCCTCCCCACCGGCGGGC GCCCGGCCTGAACCCGCGCCCCACATTTCTGTCCTCTGCGCGTGGTTTGATTGTTTATATTTCATTGTAAATGCCTGC AACCCAGGGCAGGGGGCTGAGACCTTCCAGGCCCTGAGGAATCCCGGGCGCCGGCAAGGCCCCCCTCAGCCCGCCAGCTG ACGGGTCCCACGGGGCAGGGGAGGGAATTGAGAGTCACAGACACTGAGCCACGCAGCCCCGCCTCTGGGGCCGCCTACCT TTGCTGGTCCCACTTCAGAGGAGGCAGAAATGGAAGCATTTTCACCGCCCTGGGGTTTTAAGGGAGCGGTGTGGGAGTGG GAAAGTCCAGGGACTGGTTAAGAAAGTTGGATAAGATTCCCCCTTGCACCTCGCTGCCCATCAGAAAGCCTGAGGCGTGC CCAGAGCACAAGACTGGGGGCAACTGTAGATGTGGTTTCTAGTCCTGGCTCTGCCACTAACTTGCTGTAACCTTGAAC TACACAATTCTCCTTCGGGACCTCAATTTCCACTTTGTAAAATGAGGGTGGAGGTGGGAATAGGATCTCGAGGAGACTAT CAGTTGCATTCAGTGCCAAGGTCACTTCCAGAATTCAGAGTTGTGATGCTCTCTTGACAGCCAAAGATGAAAAA CAAACAGAAAAAAAAGTAAAGGGCTTATTTATGGCTGACATATTTACGGCTGACAAACTCCTGGAAGAAGCTATGCTG CTTCCCAGCCTGGCTTCCCCGGATGTTTGGCTACCTCCACCCCTCCATCTCAAAGAAATAACATCATCCATTGGGGTAGA ACCCATAGCCATGTTTTAAAGTCACCTTCCGAAGAGAAGTGAAAGGTTCAAGGACACTGGCCTTGCAGGCCCGAGGGAGC AGCCATCACAAACTCACAGACCAGCACATCCCTTTTGAGACACCGCCTTCTGCCCACCACCACCACGGACACATTTCTGCCT AGAAAACAGCTTCTTACTGCTCTTACATGTGATGGCATATCTTACACTAAAAGAATATTATTGGGGGAAAAACTACAAGT GCTGTACATATGCTGAGAAACTGCAGAGAGCATAATAGCTGCCACCCAAAAATCTTTTTGAAAATCATTTCCAGACAACCTC ID de Secuencia Núm. 4: Proteína BEER Humana Truncada de Esclerosteosis

MQLFLALCLVCLLVHTAFRVVEG*

5

ID de Secuencia Núm. 5: ADNc de BEER Humano que codifica la Variante de la Proteína (V10I)

AGAGCCTGTGCTACTGGAAGGTGGCGTGCCCTCTGTGGCTGCTACCATGCAGCTCCCACTGGCCCTGTGTCTCATCTGC CTGCTGGTACACACACCCTTCCGTGTAGTGGAGGGCCAGGGGTGGCAGGCGTTCAAGAATGATGCCACGGAAATCATCCG CTCCCCACCCCTTTGAGACCAAAGACGTGTCCGAGTACAGCTGCCGCGAGCTGCACTTCACCCGCTACGTGACCGAT CATCGGCCGGCAAGTGGTGGCGACCTAGTGGGCCCGACTTCCGCTGCATCCCCGACCGCTACCGCGCGCAGCGCGTGC CGCTTCCACAACCAGTCGGAGCTCAAGGACTTCGGGACCGAGGCCGCTCGGCCGCAGAAGGGCCGGAAAGCGCCGCGGCCCCG GCCCCGGCCCTGAACCCGCGCCCCACATTTCTGTCCTCTGCGCGTGGTTTGATTGTTATATTTCATTGTAAATGCCTGC AACCCAGGGCAGGGGGCTGAGACCTTCCAGGCCCTGAGGAATCCCGGGCGCGGCAAGGCCCCCTCAGCCCGCCAGCTG AGGGGTCCCACGGGGCAGGGGAGGGAATTGAGAGTCACAGACACTGAGCCACGCAGCCCCGCCTCTGGGGCCGCCTACCTTTGCTGGTCCCACTTCAGAGGAGGCAGAAATGGAAGCATTTTCACCGCCCTGGGGTTTTAAGGGAGCGGTGTGGGAGTGG GAAAGTCCAGGGACTGGTTAAGAAAGTTGGATAAGATTCCCCCTTGCACCTCGCTGCCCATCAGAAAGCCTGAGGCGTGC TACACAATTCTCCTTCGGGACCTCAATTTCCACTTTGTAAAATGAGGGTGGAGGTGGGAATAGGATCTCGAGGAGACTAT CAGTTGCATTGATTCAGTGCCAAGGTCACTTCCAGAATTCAGAGTTGTGATGCTCTCTTGTGACAGCCAAAGATGAAAAA CAAACAGAAAAAAAAAAGAGTCTATTTATGGCTGACATATTTACGGCTGACAAACTCCTGGAAGAAGCTATGCTG CTTCCCAGCCTGGCTTCCCCGGATGTTTGGCTACCTCCACCCCTCCATCTCAAAGAAATAACATCATCCATTGGGGTAGA ACCCATAGCCATGTTTTAAAGTCACCTTCCGAAGAGAAGTGAAAGGTTCAAGGACACTGGCCTTGCAGGCCCGAGGGAGC

ID de Secuencia Núm. 6: Variante de la Proteína BEER Humana (V10I)

MQLFLALCLICLLVHTAFRVVEGQGWQAFKNDATEIIRELGEYFEFFFELENNKTMNRAENGGRPPHHFFETKDVSEYSC RELHFTRYVTDGFCRSAKEVTELVCSGQCGFARLLFNAIGRGKWWRESGFDFRCIFDRYRAQRVQLLCFGGEAFRARKVR LVASCKCKRLTRFHNQSELKDFGTEAARFQKGRKFRFRARSAKANQAELENAY

ID de Secuencia Núm. 7: ADNc Beer Humano que codifica la Proteína Variante (P38R)

5

ASAGCCTGTGCTACTGGAAGGTGGCCTGCCCTCTGGCTGGTACCATGCAGCTCCCACTGGCCCTGTGTCTCGTCTGC CTGCTGGTACACACACCCTTCCGTGTAGTGGAGGGCCAGGGGTGGCAGGCGTTCAAGAATGATGCCACGGAAATCATCCG CGAGCTCGGAGAGTACCCCGAGCCTCCACCGGAGCTGGAGAACAAGACCATGAACCGGGCGGAGAACGGAGGGCGGC CTCCCCACCACCCTTTGAGACCAAAGACGTGTCCGAGTACAGCTGCCGCGAGCTGCACTTCACCCGCTACGTGACCGAT GGGCCGTGCCGCAGCGCCAAGCCGGTCACCGAGCTGTTGTTCCCGGCCAGTGCGGCCCGGCGCGCCTGCTGCCCAACGC AGCTGCTGTGTCCCGGTGGTGAGGCGCCGCGCGCGCGCAAGGTGCGCCTGGTGGCCTCGTGCAAGTGCAAGCGCCTCACC CGCTTCCACAACCAGTCGGAGCTCAAGGACTTCGGGACCGAGGCCGCTCGGCCGCAGAAGGGCCGGAAGCCGCGGCCCCG GCCCGGCCCTGAACCCGCGCCCCACATTTCTGTCCTCTGCGCGTGGTTTGATTGTTTATATTTCATTGTAAATGCCTGC AACCCAGGGCAGGGGGTGAGACCTTCCAGGCCCTGAGGAATCCCGGGCGCCAAGGCCCCCCTCAGCCCGCCAGCTG AGGGGTCCCACGGGGCAGGGGAGGGAATTGAGAGTCACAGACACTGAGCCACGCAGCCCCGCCTCTGGGGCCGCCTACCT TTGCTGGTCCCACTTCAGAGGAGGCAGAAATGGAAGCATTTTCACCGCCCTGGGGTTTTAAGGGAGCGGTGTGGGGAGTGG GAAAGTCCAGGGACTGGTTAAGAAAGTTGGATAAGATTCCCCCTTGCACCTCGCTGCCCATCAGAAAGCCTGAGGCGTGC CCAGAGCACAAGACTGGGGGCAACTGTAGATGTGGTTTCTAGTCCTGGCTCTGCCACTAACTTGCTGTAACCTTGAAC TACACAATTCTCCTTCGGGACCTCAATTTCCACTTTGTAAAATGAGGGTGGAGGTGGGAATAGGATCTCGAGGAGACTAT

CAGTCTGTTCTTCCAGAGTCCAGAGACATTGTTAATAAAGACAATGAATCATGACCGAAAG

ID de Secuencia Núm. 8: Variante de la Proteína BEER Humana (P38R)

MQLFLALCLVCLLVHTAFRVVEGQGWQAFKNDATEIIRELGEYFEFFFELENNKTMNRAENGGRFFHHFFETKDVSEYSC RELHFTRYVTDGFCRSAKFVTELVCSGQCGFARLLFNAIGRGKWWRESGFDFRCIFDRYRAQRVQLLCFGGEAFRARKVR LVASCKCKRLTRFHNQSELKDFGTEAARFQKGRKFRFRARSAKANQAELENAY

5

ID de Secuencia Núm. 9: ADNc de BEER de Vervet (región codificante completa)

10 ID de Secuencia Núm. 10: Proteína BEER de Vervet (secuencia codificante completa)

MQLFLALCLVCLLVHAAFRVVEGQGWQAFKNDATEIIFELGEYFEFFFELENNKTMNRAENGGRFFHHFFETKDVSEYSC RELHFTRYVTDGFCRSAKFVTELVGSGQCGFARLLFNAIGRGKWWRFFGFDFRCIFDRYRAQRVQLLCFGGAAFRARKVR LVASCKCKRLTRFHNQSELKDFGFEAARFQKGRKFRFRARGAKANQASLENAY

ID de Secuencia Núm. 11: ADNc de BEER de Ratón (región codificante completa)

ID de Secuencia Núm. 12: Proteína BEER de Ratón (secuencia completa)

MQFSLAFCLICLLVHAAFCAVEGQGWQAFRNDATEVIFGLGEYFEFFFENNQTMNRAENGGRFFHHFYDAKDVSEYSCRE LHYTRFLTDGFCRSAKFVTELVCSGQCGFARLLFNAIGRVKWWRFNGFDFRCIFDRYRAQRVQLLCFGGAAFRSRKVRLV ASCKCKRLTRFHNQSELKDFGFETARFQKGRKFRFGARGAKANQAELENAY

5

ID de Secuencia Núm. 13: ADNc de BEER de Rata (región codificante completa más UTR 5')

TOGGAGOTCAAGGACTTCGGACCTGAGACCGCGCGCGCGCGCAGAAGGGTCGCAAGCCGCGCGCCCCGCGCCCGGGGA 300AA AGCCAACCAGGCGGAGCTGGAGAAACGCCTACTAG

ID de Secuencia Núm. 14: Proteína BEER de Rata (secuencia completa)

MQLSLAFCLACLLVHAAFVAVESQSWQAFKHDATEIIFGLREYFEFFQELENNQTMIRAENGGRFFHHFYDTKDWSEYSC RELHYTRFVTDGFCRSAKEVTELVCSGQCGFARLLFNAIGRVKWWRFNGFDFRCIFDRYRAQRVQLLCFGGAAFRSRKVA LVASCHCKRLTRFHNQSELKDFGFETARFQKGRKFRFRARGAKANQAELENAY

5

ID de Secuencia Núm. 15: ADNc de BEER Bovina (región codificante parcial)

10

ID de Secuencia Núm. 16: Proteína BEER Bovina (secuencia parcial -- secuencia señal perdida y últimos 6 restos)

HDATELLEELGEYEEFLEELNNKTMNRAENGGREEHHEFETKDASEYSCRELHETRYVTDGECRSAKEVTELVCSGQCGE ARLLENALGAGKWWRESGEDERCLEDRYRAQRVQLLCEGGAAFRARKVRLVASCKCKRLTREHNQSELKDEGPEAAREQT GRRLRERARGTKASRA

15

ID de Secuencia Núm. 17: Fragmento de Restricción MliI-AvIII utilizado para elaborar transgen de Beer de ratón

 $\tt CGCGTTTTGGTGAGCAGCAATATTGCGCTTCGATGAGCCTTGGCGTTGAGATTGATACCTCTGCTGCACAAAAGGCAATC$

TGATCGCAAATGGTGCTATCCACGCAGCGGCAATCGAAAACCCTCAGCCGGTGACCAATATCTACAACATCAGCCTTGGT ATCCTGCGTGATGAGCCAGCGCAGAACAAGGTAACCGTCAGTGCCGATAAGTTCAAAGTTAAACCTGGTGTTGATACCAA CATTGAAACGTTGATCGAAAAACGCGCTGAAAAACGCTGCTGAATGTCGCGGCTGGATGTCACAAAGCAAATGGCAGCAG ACAAGAAAGCGATGGATGAACTGGCTTCCTATGTCCGCACGGCCATCATG1ATGGAATGTTTCCCCGGTGGTGTTATCTGG CAGCAGTGCCGTCGATAGTATCCAATTGATAATTATCATTTCCGGGGTCCTTTCCGGGCGATCCGCCTTGTTACGGGGC GGCGACCTCGCGGGTTTTCGCTATTTATGAAAATTTTCCGGTTTAAGGCGTTTCCGTTCTTCTTCGTCATAACTTAATGT TTTTATTTAAAATACCCTCTGAAAAGAAAGGAAACGACAGGTGCTGAAAGGGAGCTTTTTGGCCCTCTGTCGTTTCCTTTC TCTGTTTTTTGTCCGTGGAATGAACAATGGAAGTCAACAAAAAGCAGAGCTTATCGATGATAAGCGGTCAAAACATGAGAAAAA TCGCGGCCGCATAATACGACTCACTATAGGGATCGACGCCTACTCCCCGCGCATGAAGCGGAGGAGCTGGACTCCGCATG CCCAGAGACCCCCCAACCCCCAAAGTGCCTGACCTCAGCCTCTACCAGCTCTGGCTTGGGCTTGGGCGGGGGTCAAGGC TACCACGTTCTCTTAACAGGTGGCTGGGCTGTCTCTTGGCCGCGCTCATGTGACAGCTGCCTAGTTCTGCAGTGAGGTC ACCGTGGAATGTCTGCCTTCGTTGCCATGGCAACGGGATGACGTTACAATCTGGGTGTGGAAGCTTTTCCTGTCCGTGTCA GGAAATCCAAATACCCTAAAATACCCTAGAAGAGGAAGTAGCTGAGCCAAGGCTTTCCTGGCTTCTCCAGATAAAGTTTG ACTTAGATGGAAAAAAACAAAATGATAAAGACCCGAGCCATCTGAAAATTCCTCCTAATTGCACCACTAGGAAAATGTGTA TATTATTGAGCTCGTATGTTCTTATTTTAAAAAGAAAACTTTAGTCATGTTATTAATAAGAATTTCTCAGCAGTGGGA GAGAACCAATATTAACACCAAGATAAAAGTTGGCATGATCCACATTGCAGGAAGATCCACGTTGGGTTTTCATGAATGTG *AGACCCCATTTATTAAAGTCCTAAGCTCTGTTTTTTGCACACTAGGAAGCGATGGCCGGGATGGCTGAGGGGCTGTAAGG ATCTTTCAATGTCTTACATGTGTGTTTCCTGTCCTGCACCTAGGACCTGCCTAGCCTAGCCTAGCAGAGCCAGAGCCAGAGGGGGTT TCACATGATTAGTCTCAGACACTTGGGGGCAGGTTGCATGTACTGCATCGCTTATTTCCATACGGAGCACCTACTATGTG TCAAACACCATATGGTGTTCACTCTTCAGAACGGTGGTGGTCATCATGGTGCATTTGCTGACGGTTGGATTGGTGGTAGA GAGCTGAGATATATGGACGCACTCTTCAGCATTCTGTCAACGTGGCTGTGCATTCTTGCTCCTGAGCAAGTGGCTAAACA GACTCACAGGGTCAGCCTCCAGCCCAGTCGCTGCATAGTCTTAGGGAACCTCTCCCAGTCCTCCCTACCTCAACTATCCA AGGCATAGTGTCAGGACTGATGGCTGCCTTGGAGAACACATCCTTTGCCCTCTATGCAAATCTGACCTTGACATGGGGGGC GCTGCTCAGCTGGGAGGATCAACTGCATACCTAAAGCCAAGCCTAAAGCTTCTTCGTCCACCTGAAACTCCTGGACCAAG GGGCTTCCGGCACATCCTCTCAGGCCAGTGAGGGAGTCTGTGTGAGCTGCACTTTCCAATCTCAGGGCGTGAGAGGCAGA GGGAGGTGGGGGCAGAGCCTTGCAGCTCTTTCCTCCCATCTGGACAGCGCTCTGGCTCAGCAGCCCCATATGAGCACAGGC TATCCTCTCTTAGGTAGACACGACTCTGCAGGAGACACTCCTTTGTAAGATACTGCAGGTTTAAATTTTGGATGTTGTAAGG GGAAAGCGAAGGGCCTCTTTGACCATTCAGTCAAGGTACCTTCTAACTCCCATCGTATTGGGGGGGCTACTCTAGTGCTAG ACATTGCAGAGAGCCTCAGAACTGTAGTTACCAGTGTGGTAGGATTGATCCTTCAGGGAGCCTGACATGTGACAGTTCCA CAAAGAACTGACAGACCGAAGCCTTGGAATATAAACACCAAAGCATCAGGCTCTGCCAACAGAACACTCTTTAACACTCA GGCCCTTTAACACTCAGGACCCCCACCCCCACCCCAAGCAGTTGGCACTGCTATCCACATTTTACAGAGAGGGAAAAAACTA GGCACAGGACGATATAAGTGGCTTGCTTAAGCTTGTCTGCATGGTAAATGGCAGGGCTGGATTGAGACCCAGACATTCCA

ACTCTAGGGTCTATTTTTCTTTTTTTCTCGTTGTTCGAATCTGGGTCTACTGGGTAAACTCAGGCTAGCCTCACACTCAT ATCCTTCTCCCATGGCTTACGAGTGCTAGGATTCCAGGTGTGTGCTACCATGTCTGACTCCCTGTAGCTTGTCTATACCA TOCTOACAACATAGGAATTGTGATAGCAGCACACACACGGAAGGAGGTGGGGAAATCCCACAGAGGGCTCCGCAGGATG ACAGGCGAATGCCTACACAGAAGGTGGGGAAGGGAAGCAGAGCAGGGAACAGCATGGGCGTGGGACCACAAGTCTATTTGGGG TACGGGCTCCTTATTGCCAAGAGGCTCGGATCTTCCTCCTCCTCCTCCTCCTCCTGCGGGCTGCCTGTTCATTTTCCACCACTG COTOCOATCCAGGTCTGTGGCTCAGGACATCACCCAGCTGCAGAAACTGGGCATCACCCACGTCCTGAATGCTGCCGAGG SCAMOTOCTTCATGCACGTCAACACCAGTGCTAGCTTCTACGAGGATTCTGGCATCACCTACTTGGGCATCAAGGCCAAT GATACGCAGGAGTTCAACCTCAGTGCTTACTTTGAAAGGGCCACAGATTTCATTGACCAGGCGCTGGCCCATAAAAATGG TAAGGAACGTACATTCCGGCACCCATGGAGCGTAAGCCCTCTGGGACCTGCTTCCTCCAAAAGGCCCCCACTTGAAAAA SSTTCCAGAAAGATCCCAAAATATGCCACCAACTAGGGATTAAGTGTCCTACATGTGAGCCGATGGGGGCCACTGCATAT ASTCTSTSCCATAGACATGACAATGGATAATAATATTTCAGACAGAGAGCAGGAGTTAGGTAGCTGTGCTCCTTTCCCTT STOTTCAATOSTTOCCOACCCACCTTATTTTTTGAGGCAGGGTCTCTTCCCTGATCCTGGGGCTCATTGGTTTATCTAG OTTOCTGGCCAGTGAGCTCTGGAGTTCTGCTTTTCTCTACCTCCCTAGCCCTGGGACTGCAGGGGCATGTGCTGGGCCAG SCTTTTATGTOGOGTTGGGGATCTGAACTTAGGTCCCTAGGCCTGAGCACCGTAAAGACTCTGCCACATCCCCAGCCTGT TTGAGCAAGTGAACCATTCCCCAGAATTCCCCCAGTGGGGCTTTCCTACCCTTTATTGGCTAGGCATTCATGAGTGGTG SCTCCCTGCAGCCGCAGACAGAAAGTAGGACTGAATGAGAGCTGGCTAGTGGTCAGACAGGACAGAAGAGGCTGAGAGAGGGTC ACAGGGCAGATGTCAGCAGAGCAGACAGGTTCTCCCTCTGTGGGGGAGGGGTGGCCCACTGCAGGTGTAATTGGCCTTCT TTGTGCTCCATAGAGGCTTCCTGGGTACACAGCAGCTTCCCTGTCCTGGTGATTCCCAAAGAGAACTCCCTACCACTGGA CTTACAGAAGTTCTATTGACTGGTGTAACGGTTCAACAGCTTTGGCTCTTGGTGGACGGTGCATACTGCTGTATCAGCTC DCTCAGTGACTGGGCATTTCTGAACATCCCTGAAGTTAGCACACATTTCCCTCTGGTGTTCCCTGGCTTAACACCCTTCTAA ATCTATATTTTATCTTTGCTGCCCTGTTACCTTCTGAGAAGCCCCTAGGGCCACTTCCCTTCGCACCTACATTGCTGGAT GGTTTCTCTCCTGCAGCTCTTAAATCTGATCCCTCTGCCTCTGAGCCATGGGAACAGCCCAATAACTGAGTTAGACATAA <u>ALACGTCTCTAGCCAAAACTTCAGCTAAATTTAGACAATAAATCTTACTGGTTGTGGAAATCCTTAAGATTCTTCATGACC</u> TCCTTCACATGGCACGAGTATGAAGCTTTATTACAATTGTTTATTGATCAAAACTCATAAAAAGCCAGTTGTCTTTC ACCTGCTCAAGGAAGGAACAAATTCATCCTTAACTGATCTGTGCACCATGCACAATCCATACGAATATCTTAAGAGTAC TAAGATTTTGGTTGTGAGAGTCACATGTTACAGAATGTACAGCTTTGACAAGGTGCATCCTTGGGATGCCGAAGTGACCT GCTGTTCCAGCCCCCTACCTTCTGAGGCTGTTTTGGAAGCAATGCTCTGGAAGCAACTTTAGGAGGTAGGATGCTGGAAC AGCGGGTCACTTCAGCATCCCGATGACGAATCCCGTCAAAGCTGTACATTCTGTAACAGACTGGGAAAGCTGCAGACTTT AAGGCCAGGGCCCTATGGTCCCTCTTAATCCCTGTCACACCCAACCCGAGCCCTTCTCCTCCAGCCGTTCTGTGCTTCTC CCTCATTCAGGGAACTCTGGGGCATTCTGCCTTTTACTTCCTCTTTTTGGACTACAGGGAATATATGCTGACTTGTTTTGA CCTTGTGTATGGGGAGACTGGATCTTTGGTCTGGAATGTTTCCCTGCTAGTTTTTCCCCATCCTTTGGCAACCCTATCTA

TATCTTACCACTAGGCATAGTGGCCCTCGTTCTGGA3CCTGCCTTCAGGCTGGTTCTCGGGGGACCATGTCCCTGGTTTCT CCCCAGCATATGGTGTTCACAGTGTTCACTGCGGGTGGTTGCTGAACAPAGCGGGGGTTGCATCCCAGAGCTCCGGTGCC TGCTAAGATAAAATGGATACTGGCCTCTCTCTATCCACTTGCAGGACTCTAGGGAACAGGAATCCATTACTGAGAAAACC AGGGGCTAGGAGCAGGGAGGTAGCTGGGCAGCTGAAGTGCTTGGCGACTAACCAATGAATACCAGAGTTTGGATCTCTAG AATACTCTTAAAATCTGGGTGGGCAGAGTGGCCTGCCTGTAATCCCAGAACTCGGGAGGCGGAGACAGGGAATCATCAGA TAAAACATTGAAGAGACAGTAGATGCCAATTTTAAGCCCCCACATGCACATGGACAAGTGTGCGCTTTGAACACACATAT TTTGTGTATAAGAGGGAGCCATCATGTGTTTCTAAGGAGGGGGTGTGAAGGAGGCGTTGTGTGGGGCTGGGACTGGAACCAT GGTTGTAACTGAGCATGCTCCCTGTGGGGAAACAGGAGGGTGGCCACCCTGCAGAGGGTCCCACTGTCCAGCGGGATCAGT GAGGATCTGGGCAAGTAGAGGTGCGTTTGAGGTAGAAAAAGGGGTGCAGAGGAGATGCTCTTAATTCTGGGTCAGCAGTT TGCTGGAAATGGCCGAGCATCAACCCTGGCTCTGGAAGAACTCCATCTTTCAGAAGGAGAGTGGATCTGTGTATGGCCAG CGGGGTCACAGGTGCTTGGGGGCCCCTGGGGGACTCCTAGCACTGGTGATGTTTATCGAGTGCTCTTGTGTGCCAGGCAC TOCTTTCTTCCCACCATTGCTTTCCTTGTCCTTGAGAAATTCTGAGTTTCCACTTGATGCAGAGGGAAACAGA GTGTGTGCCTGCATGAGTTCATGTGTGCCACGTGTGTGCGGGAACCCTTGGAGGCCACAAGGGGGCATCTGATCCCCTGG AACTGGAGTTGGAGGAGGTTGTGAGTCCCCTGACATGTTTGCTGGGAACTGAACCCCGGTCCTATGCAAGAGCAGGAAGT GCAGTTATCTGCTGAGCCATCTCCCAGTCCTGAAATCCATTCTCTTAAAATACACGTGGCAGAGACATGATGGGGATTTA CGTATGGATTTAATGTGGCGGTCATTAAGTTCCGGCACAGGCAAGCACCTGTAAAGCCATCACCACAACCGCAACAGTGA ATGTGACCATCACCCCCATGTTCTTCATGTCCCCTGTCCCCTCCATCCTCCATTCTCAAGCACCTCTTGCTCTGCCTCTG TCGCTGGAGAACAGTGTGCATCTGCACACTCTTATGTCAGTGAAGTCACACAGGCTGCACCCCTTCCTGGTCTGAGTATT GTGTATGCACATGTGCCACATGTGTACAGATACTATGGAGGCCAGAAGAGGGCCATGGCCGTCCCTGGAGCTGGAGTTACA

TCTCAGTACCCTTCTTCATTTCTCCGCCTGGGTTCCATTGTATGGACACATGTAGCTAGAATATCTTGCTTATCTAATTA TGTACATTGTTTTGTGCTAASAGAGAGTAATSCTCTATAGCCTGAGCTGACCTCAACCTTGCCATCCTGCCTCASCC TCCTCCTCCTGAGTGCTAGGATGACAGGCGAGTGGTAACTTACATGGTTTCATGTTTTGTTCAAGACTGAAGGATAACAT TCATACAGAGAAAGGTCTGGGTCACAAAAGTGTGCAGTTCACTGAATGGCACAACCCGTGATCAAGAAACAAAACTCAGGGG CTGGAGAGTGGCACTGACTGCTCCCAGAGGTCCGGAGTTCAATTCCCAGCAACCACATGGTGGCTCACAGCCATCTA ACCACTSTTCAGGCTTCTAACAACCTGGTTTACTTGGGCCTCTTTTCTGCTCTGTGGAGCCACACATTTGTGTGCCTCAT CCATGCATGCACAGTGTGTGGGGATGTCAGAGTATTGTGAACAGGGGACAGTTCTTTTCTTCAATCATGTGGGTTCCAG AGGTGGGGGCTTGTTCCATAGCCCAAACTGGCTTTGCACTTGCAGTTCAAAGTGACTCCCTGTCTCCACCTCTTAGAGTA TGAAGGATGACTGGACTGGACATGAGCGTGGAAGCCAGAGAACAGCTTCAGTCTAATGCTCTCCCAACTGAGCTATTTC GGTTTGCCAGAGAACAACTTACAGAAAGTTCTCAGTGCCATGTGGATTCGGGGGTTGGAGTTCAACTCATCAGCTTGACAT TGGCTCCTCTACCCACTGAGCCTTCTCACTACTCTACCTAGATCATTAATTCTTTTTTAAAAAAGACTTATTAGGGGGC TGGAGAGATGGCTCAGCCGTTAAGAGCACCGAATGCCCTTCCAGAGGTCCTGAGTTCAATTCCCAGCATGCCATTGCTGG GCAGTAGGGGGCGCAGGTGTTCAACGTGAGTAGCTGTTGCCAGTTTTCCGCGGTGGAGAACCTCTTGACACCCTGCTGTC ccrearce transfer and a restrict aCAGTTACCACGTCTCCCCTGTTTCTTGCAGGCCGGGTGCTTGTCCATTGCCGCGAGGGCTACAGCCGCTCCCCAACGCTA GTTATCGCCTACCTCATGATGCGGCAGAAGATGGACGTCAAGTCTGCTCTGAGTACTGTGAGGCAGAATCGTGAGATCGG CCCCAACGATGGCTTCCTGGCCCAACTCTGCCAGCTCAATGACAGACTAGCCAAGGAGGGCAAGGTGAAACTCTAGGGTG ACCACCAGACACGTGCCCACATCTGTCCCACTCTGGTCCTCGGGGGCCACTCCACCCTTAGGGAGCACATGAAGAAGCTC TCTGTGGCATAGATACATCTCAGTGACCCAGGGTGGGAGGGCTATCAGGGTGCATGGCCCGGGACACGGGCACTCTTCAT GACCCCTCCCCACCTGGGTTCTTCCTGTGTGGTCCAGAACCACGAGCCTGGTAAAGGAACTATGCAAACACAGGCCCTG ACCTCCCATGTCTGTTCCTGGTCCTCACAGCCCGACACGCCCTGCTGAGGCAGACGAATGACATTAAGTTCTGAAGCAG AGATACTACATAGGGGCCCTTGGGTAAGCAAATCCATTTTTCCCAGAGGCTATCTTGATTCTTTGGAATGTTTAAAGTGT GCCTTGCCAGAGAGCTTACGATCTATATCTGCTGCTTCAGAGCCTTCCCTGAGGATGGCTCTGTTCCTTTGCTTGTTAGA CAAACAAACAAAGGACCTCCATTTGGAGAATTGCAAGGATTTTATCCTGAATTATAGTGTTGGTGAGTTCAAGTCATCAC ${\tt GCCAAGTGCTTGCCATCCTGGTTGCTATTCTAAGAATAATTAGGAGGAGGAGCCTAGCCAATTGCAGCTCATGTCCGTGG}$ GTGTGTGCACGGGTGCATATGTTGGAAGGGGTGCCTGTCCCCTTGGGGACAGAAGGAAAATGAAAGGCCCCTCTGCTCAC

CCTGGCCATTTACGGGAGGCTCTGCTGGTTCCACGGTGTCTGTGCAGGATCCTGAAACTGACTCGCTGGACAGAAAACAGAG TGAACCTCGCTGGACCTTGTATGTGTGCACATTTGCCAGAGATTGAACATAATCCTCTTGGGACCTTCACGTTCTCATTAT TTGTATGTCTCCGGGGTCACGCAGAGCCGTCAGCCACCACCCCAGCACCCGGCACATAGGCGTCTCATAAAAGCCCATTT ATATTTCAPATTCAGCTTTAAGTGTAAGACTCAGCAGTGTTCATGGTTAAGGTAAGGAACATGCCTTTTCCAGAGCTGCT TTTTTTTTTTTTTTTTTTTTGGCCCAGAATGAAGTGACCATAGCCAAGTTGTGTACCTCAGTCTTTAGTTTCCAAGCGGCT GCCCAGTTCATGAGAGGCAGAGACAGGACGGCCGAAAGGTCAAGGATAGCATGGTCTACGTATCGAGACACCAGCCA GGGCTACGGTCCCAAGATCCTAGGTTTTGGATTTTGGGCTTTGGTTTTTGAGACAGGGTTTCTCTGTGTAGCCCTGGCTG TCCTGGAACTCGCTCTGTAGACCAGGCTGGCCTCAAACTTAGAGATCTGCCTTGACTCTGCCTTTGAGGGGCTGGGACGAAT GTAGAAGCAGTCTCAGGCCTGCTTGAGGCTGTTCTTGGCTTGGACCTGAAATCTGCCCCCAACAGTGTCCAAGTGCCA CATGACTTTGAGCCATCTCCAGAGAAGGAAGGTGAAAATTGTGGCTCCCCAGTCGATTGGGACACAGTCTCTCTTTGTCTA ACCCCATAGGACAGCCACAGGACAGTCACTAGCACCTACTGGAAACCTCTTTGTGGGAACATGAAGAAAAGAGCCTTTGGG TTCTTCAGGTAAAATACCGATGTTGTGGAAAAGCCAACCCGTGGCTGCCCGTGAGTAGGGGGTGGGGTTGGGAATCCTG CCACTTTCTATGACTTATAAACATCCAGGTAAAAATTACAAACATAAAAATGGTTTCTCTTCTCAATCTTCTAAAGTCTG CCTGCCTTTTCCAGGGGTAGGTCTGTTTCTTTTGCTGTTCTATTGTCTTGAGAGCACAGACTAACACTTACCAAATGAGGG AACTCTTGGCCCATACTAAGGCTCTTCTGGGCTCCAGCACTCTTAAGTTATTTTAAGAATTCTCACTTGGCCTTTAGCAC ACCCGCCACCCCAAGTGGGTGTGGATAATGCCATGGCCAGCAGGGGGGCACTGTTGAGGCGGGTGCCTTTCCACCTTAAG TTGCTTATAGTATTAAGATGCTAAATGTTTTAATCAAGAGAAGCACTGATCTTATAATACGAGGATAAGAGATTTTCTC TGTATI'CCATTTTCCTCTCCCAGCGTTAGGTTAACTCCGTAAAAAGTGATTCAGTGGACCGAAGAGGCTCAGAGGGCAGG GGATGGTGGGGTGAGGCAGAGCACTGTCACCTGCCAGGCATGGGAGGTCCTGCCATCCGGGAGGAAAAGGAAAGTTTAGC TGTTTCCTTTTGTGTGTGTTTGGGCTTTTTATGTGTGCTTTATAACTGCTGTGGTGGTGCTGTTGTTAGTTTTGAGGTAGGA AAAAGCACATGCCACCACACCAGTACAGCATTTTTCTAACATTTAAAAATAATCACCTAGGGGCTGGAGAGAGGGGTTCCA GCTAAGAGTGCACACTGCTCTTGGGTAGGACCTGAGTTTAGTTCCCAGAACCTATACTGGGTGGCTCCAGGTCCAGAGGA

CTTTAAAAACCTCCTAAAACCTAGCCCTTGGAGGTACGACTCTGGAAAGCTGGCATACTGTGTAAGTCCATCTCATGGTG TTCTGGCTAACGTAAGACTTACAGAGACAGAAAAGAACTCAGGGTGTGCTGGGGGTTGGGATGGAGGAAGAGGATGAGT AGGGGGAGCACGGGGAACTTGGGCAATGAAAATTCTTTBCAGGACACTAGAGGAGGATAAATACCAGTCATTGCACCCAC TACTGGACAACTCCAGGGAATTATGCTGGGTGAAAAGAGAAAGGCCCCAGGTATTGGCTGCATTGGCTGCATTTGCGTAAC ATTTTTTAAATTGAAAAGAAAAAAATGTAAATCAASSTTAGATGAGTGGTTGCTGTGAGCTGAGAGCTGGGGCTGAGCTGA GROATGTGGACACTCCATCAAAAAGCGACAGAAAGAACGGGTGTGGTGACAGCTACCTCTAATCTCCACCTCCGGGAG GTGATCAAGGTTAGCCCTCAGCTAGCCTGTGGTGGATGAGACCCTGTTTCAAAAACTTTAATAAAGAAATAATGAAAAAA GACATCAGGGCAGATCCTTGGGGCCCAAAGGCGGACAGCCGAGTCTCGTGGTAAGGTCGTGTAGAAAGCGGATGCATGAGCA CGTSCCSCAGGCATCATGAGAGA ECCCTAGGTAAGTAAG SATGGATGTGAGTCTGTCGGCGTCGGCGCACTGCACGTCCT GGCTGTGGTGCTGGACTGGCATCTTTTGGTGASCTGTSSASGGGAAATGGGTAGGGAGATCATAAAATCCCTCCGAATTAT GTGGTGTGCACCTATAGCCACGGCCACTTGGARAGCTCCACGCAGAGATGGCGAGTTTGAAGGTATCTGGGGCTGTACA GCAAGACCGTCGTCCCCAAACCAAACCAAACAGCAAACUCATTATGTCACACAAGAGTGTTTATAGTGAGCGGCCTCGCT GAGAGCATGGGGTGGGGGTGGGGGACAGAAATATCTAAACTGCAGTCAATAGGGATCCACTGAGACCCTGGGGGC TTGACTGCAGCTTAACCTTGGGAAATGATAAGGGTTTTTGTGTTGAGTAAAAGCATCGATTACTGACTTAACCTCAAATGA AGRARAGARARARARAACARCARRAGCCARACCARGGGCTGATGACTCAGTGGCTAAGAGCACCCGACTGC TCTTCCGAAGGTCCAGAGTTCAAATCCCAGCAACCACATGGTGGCTCACAACCATCTGTAACGAGATATGATGCCCTCTT CATGGGCCGAGGGGGCCCAGAGABATAGGCTGGTAABCTCAGTTTCTCTGTATACCCTTTTTCTTGTTGACACTACTTC <u>AATTACAGATAAAATAACAAATAAAACAAAATCTAGAGCCTGGCCACTCTCTGCTTGATTTTTTCCTGTTACGTCCAG</u> CAGGTGGCGGAAGTGTTCCAAGGACAGATCGCATCATTAAGGTGGCCAGCATAATCTCCCATCAGCAGGTGGTGCTGTGA GAACCATTATGGTGCTCACAGAATCCCGGGCCCAGGAGCTGCCCTCTCCCAAGTCTGGAGCAATAGGAAAGCTTTCTGGC CCAGACAGGGTTAACAGTCCACATTCCAGAGCAGGGGAPAAGGAGACTGGAGGACAAAAAAGGGCCAGCTTCTAAC AACTTCACAGCTCTGGTAGGAGAGATAGATCACCCCCAACAATGGCCACAGCTGGTTTTGTCTGCCCCGAAGGAAACTGA GTGTGGGTGACAGAAGATGAAAAGGAGGACCCAGGCAGATCGCCACACACGCCCACTTACAAGTCGAGGCAGGTG GCAGAGCCTTGCAGAAGCTCTGCAGGTGGACGACACTGATTCATTACCCAGTTAGCATACCACAGCGGGCTAGGCGGACC ACAGCCTCCTTCCCAGGCTTCCAGGGCTGGGGAGTCCTCCAACCTTCTGTCTCAGTGCAGCTTCCGCCAGCCCCTCC ATGAGTTCGAATCCCCAGCAACCATGTGGAAAAATAACCTTCTAACCTCAGAGTTGAGGGGAAAGGCAGGTGGATTCTGG

ATGAGGGAAATGATTTTTTGCTAAGAAATGAAATTCT3TGTTGGCCGCAAGAAGCTTGGCCAAGGAACTGCCTTTG GCACACCAGCCTATAAGTCACCATGAGTTCCCTGGCTAAGAATCACATGTAATAGAGCCCAGGTCCCTCTTGCCTGGTGG TGGGGTCAATGGGATTCCTTTAAAGGCATCCTTCCCAGGGCTGGGTCATACTTCAATAGTAGGGTGCTTGCACAGCAAGC GAGCAAACACCTTTAACTAAGACCATTAGCTGGCAGGGGTAACAAATGACCTTGGCTAGAGGAATTTGGTCAAGCTGGAT GGAGCCAGACAATTAAAAGCCAAGCTCATTTTGATATCTGAAAACCACAGCCTGACTGCCCTGCCGTGGGAGGTACTGG AGGCCT MACTAGGCCUGTGCCTCATCTGCCTACTTGTGCAGGCTGCCTTCTGTGCTGTGGAGGGGCAGGGGTGGCAAGCC TTOAUGAATOATGCCACAGAGGTCATCCCAGGGCTTGGAGAGTACCCCGAGCCTCCTGAGAAACAACCAGACCATGAA COMMINGUIDADA TUCAGGORGA COTOCOCACO CATOCOTATGA COCOARAGO TACOGGA TORA GRAGA A CATOCOTATA GRAGA CATOCOTATGA COCOARAGO TACOGGA TORA GRAGA A CATOCOTATA GRAGA CATOCOTATA GRAGA COCOARAGO TORA GRAGA CATOCOTATA GRAGA COCOARAGO TORA GRAGA CATOCOTATA GRAGA COCOARAGO TORA GRAGA CATOCOTATA GRAGA CATOCOARAGO TORA GRAGA CATOCOTATA GRAGA CATOCOTATA GRAGA CATOCOTATA GRAGA CATOCOTATA GRAGA CATOCOTATA GRAGA CATOCOTATA CATO CONTROL PRODUCT TO CONGRAGA A TACTAGCA CAGCATTAGA A CONGRAGGG CAGCATT GGGGGGC TGGT AGAGAGC AD PARAMOUNTANTEGRAGOTGRAGGTORGCGRAGOTGGCATTARCROGGCATGGGCTTGTATGATGGTCCAGAGRATC TOTTOTTAAAAATATGAGGACACAGGTCAGATCTAGCTGCTGACCAGTGGGGAAGTGATATGGTGAGGCTGGATGCCAGATG CCATCCATURETURACTATATCCCACATGACCACCACAGAGGGGTAAAGAAGGCCCCAGCTTGAAGATGGAGAAACCGAGA GOOTCOTISAGAT ALACITOACOTGGGAGTAAGAAGAGCTGAGACTGGAAGCTGGTTTGATCCAGATGCAAGGCAACCCTAG ATTIMETTY: ROTGSUAACCTGAAGCCAGGAGGAATCCCTTTAGTTCCCCCTTGCCCAGGGTCTGCTCAATGAGCCCAGA GWSTTAMCATTALAMGAACAGGGTTTGTAGGTGGCATGTGACATGAGGGGCAGCTGAGTGAAATGTCCCCTGTATGAGCA CAGCTGGAGGACACTCCAGAGAAATGACCTTGCTGGTCACCATTTGTGTGGGAGAGAGCTCATTTTCCAGCTTGCCAC CAMATGUTUTCUCTCCTGTCTCCTAGCCAGTAAGGGATGTGGAGGAAAGGGCCACCCCAAAGGAGCATGCAATGCAGTCA CGTTTTTTCCACAGGAAGTGCTTGACCTAAGGGCACTATTCTTGGAAAGCCCCAAAACTAGTCCTTCCCTGGGCAAACAGG TTATOTCATATTGATCCTGACACCATGGAACTTTTGGAGGTAGACAGGACCCACACGTGGATTAGTTAAAAGCCTCCCAT ${\tt CCAACCCAATCTCCTTCCCCGGAGAACAGACTCTAAGTCAGATCCAGCCACCCTTGAGTAACCAGCTCAAGGTACACAGA}$ ACAAGAGTCTGGTATACAGCAGGTGCTAAACAATGCTTGTGGTAGCAAAAGCTATAGGTTTTGGGTCAGAACTCCGA

TTTGGGGCAAGTTCTTTTCTCAGCCTGGACCTGTGATAATGAGGGGGTTGGACGCGCCCCTTTGGTCGCTTTCAAGTCT AATGAATTCTTATCCCTACCACCTGCCCTTCTACCCCGCTCCTCCACAGCAGCTGTCCTGATTTATTACCTTCAATTAAC GTGTGGCTAGAGGCTACCAGGCAGGGCTGGGGGATGAGGAGCTAAACTGGAAGAGTGTTTGGTTAGTAGGCACAAAGCCTT TTGAGGCCAGCCTGGGCTACATAAAAACCCAATCTCAAAAGCTGCCAATTCTGATTCTGTGCCACGTAGTGCCCGATGTA ATASTGGATGAASTCGTTGAATCCTGGGGCAACCTATTTTACAGATGTGGGGAAAAGCAACTTTAAGTACCCTGCCCACA AT CTCACTGCTCCCCGGTGCCTCCTTCCTATAATCCATACAGATTCGAAAGCGCAGGGCAGGGTTTGGAAAAAGAGAGAAA GSTGGAAGGAGCAGACCAGTCTGGCCTAGGCTGCAGCCCCTCACGCATCCCTCTCTCCGCAGATGTGTCCGAGTACAGCT COTOSTSTTEASOCACTRODOS ACTOS OF ACTOS O CT9CATCCCGGATCGCTACCGCGCGCAGCGGGTGCAGCTGCTGTGCCCCGGGGGGCGCGGCGCCGCGCTCGCGCAAGGTGC GTCTGGTGGCCTCGTGCAAGTGCAAGCGCCTCACCGCTTCCACAACCAGTCGGAGCTCAAGGACTTCGGGCCGGAGACC ATODOAADADOTOAADDOBAOOAAOUDAAAOODBODOOCODDDOOCODDOOTOBAADADOTOBDAADAODOOTOBDOOCODO CTAGAGCGAGCCGCGCCTATGCAGCCCCGCGCGATCCGATTCGTTTTCAGTGTAAAGCCTGCAGCCCAGGCCAGGGGT GCCAAACTTTCCAGACCGTGTGGAGTTCCCAGCCCAGTAGAGACCGCAGGTCCTTCTGCCCGCTGCGGGGGGATGGGGGAAG GGGTGGGGTTCCCGCGGGCCAGGAGAGGAAGCTTGAGTCCCAGACTCTGCCTAGCCCCGGGTGGGATGGGGGTCTTTCTA CCCTCGCCGGACCTATACAGGACAAGGCAGTGTTTCCACCTTAAAGGGAAGGGAGTGTGGAACGAAAGACCTGGGACTGG TTATGGACGTACAGTAAGATCTACTCCTTCCACCCAAATGTAAAGCCTGCGTGGGCTAGATAGGGTTTCTGACCCTGACC TGGCCACTGAGTGTGATGTTGGGCTACGTGGTTCTTTTTGGTACGGTCTTTTTTGTAAAATAGGGACCGGAACTCTGCT TCAPATCTGCCTTCAPATCCATATCTGGGATAGGGAAGGCCAGGGTCCGAGAGATGGTGGAAGGGCCAGAAATCACACTC CTGGCCCCCGAAGAGCAGTGTCCCGCCCCCAACTGCCTTGTCATATTGTAAAGGGATTTTCTACACAACAGTTTAAGGT ACACATTTCTGTCTAGAAACAGAGCGTCGTCGTGCTGTCCTCTGAGACAGCATATCTTACATTAAAAAGAATAATACGGG GGGGGGGGGGGAGGGCGCAAGTGTTATACATATGCTGAGAAGCTGTCAGGCGCCACAGCACCACCACAATCTTTTTGT ${\tt GCACATGGAGGGGGGGTAGGGGGTTGGGGCTGAGTTTGGCGAACTTTCCATGTGAGACTCATCCACAAAGACTGA}$ GTCATCTCACTCCCTTCCCTTGGTCACAAGACCCAAACCTTGACAACACCTCCGACTGCTCTCTGGTAGCCCTTGTGGGA ATACGTGTTTCCTTTGAAAAGTCACATTCATCCTTTCCTTTGCAAAACCTGGCTCCATTCCCCAGCTGGGTCATCGTCAT ACCCTCACCCCAGCCTCCCTTTAGCTGACCACTCTCCACACTGTCTTCCAAAAGTGCACGTTTCACCGAGCCAGTTCCCT

GGTCCAGGTCATCCCATTGCTCCTTGCTGCAGAGCCCTTCTCCCACAAAGATGTTCATCTCCCACTCCATCAAGCCCC AGGTTCATGGAACTCTTGCCTGCCCTGAACCTTCCAGGACTGTCCCAGCGTCTGATGTGTCCTCTTTTTAAAGCCC CACCCCACTATTTGATTCCCAATTCTAGATCTTCCCTTGTTCATTCCTTCACGGGATAGTGTCTCATCTGGCCAAGTCCT GCTTGATATTGGGATAAATGCAAAGCCAAGTACAATTGAGGACCAGTTCATCATTGGGCCAAGCTTTTTCAAAATGTGAA TTTTACACCTATAGAAGTGTAAAAGCCTTCCAAAGCAGAGGCAATGCCTGGCTCTTCCAACATCAGGGCTCCTGCTT TATGGGTCTGGTGGGGTAGTACATTCATAAACCCAACACTAGGGGTGTGAAAGCAAGATGATTGGGAGTTCGAGGCCAAT CTTGGCTATGAGGCCCTGTCTCAACCTCTCCTCCCTCCTCCAGGGTTTTGTTTTGTTTTTGTTTTTTAAAACTG CAACACTTTAAATCCAGTCAAGTGCATCTTTGCGTGAGGGGAACTCTATCCCTAATATAAGCTTCCATCTTGATTTGTGT ATGTGCACACTGGGGGTTGAACCTGGGCCTTTGTACCTGCCGGGCAAGCTCTACTGCTCTAAACCCAGCCCTCACTGG CTTTCTGTTTCAACTCCCAATGAATTCCCCTAAATGAATTATCAATATCATGTCTTTGAAAAATACCATTGAGTGCTGCT GGTGTCCCTSTGGTTCCAGGTTCCAGGAAGGACTTTTCAGGGAATCCAGGCATCCTGAAGAATGTCTTAGAGCAGGGC CATGGAGACCTTGGCCAGCCCCACAAGGCAGTGTGGTGCAGAGGGGTGAGGATGGAGGAGGCTTGCAATTGAAGCTGAGA CAGGGTACTCAGGATTAAAAAGCTTCCCCCAAAACAATTCCAAGATCAGTTCCTGGTACTTGCACCTGTTCAGCTATGCA GAGCCCAGTGGGCATAGGTGAAGACACCGGTTGTACTGTCATGTACTAACTGTGCTTCAGAGCCGGCAGAGACAAATAAT GTCCCAGACTCTCTAAGCAAAGACTCCACTCACATAAAGACACAGGCTGAGCAGAGCTGGCCGTGGATGCAGGGAGGCCCA TOCACCATCCTTTAGCATGCCCTTGTATTCCCATCACATGCCAGGGGTGAGGGGGCATCAGAGAGTCCAAGTGATGCCCAA ACCCAAACACCTAGGACTTGCTTTCTGGGACAGACAGATGCAGGAGAGACTAGGTTGGGCTGTGATCCCATTACCACA AACAACAGGCTGATCTGGGAGGGGTGGTACTCTATGGCAGGGAGCACGTGTGCTTGGGGTACAGCCAGACACGGGGCTTG ATTCCTCCTCATAAAGGAGACAAAGTTGCAGAAACCCAAAAGAGCCACAGGGTCCCCACTCTCTTGAAATGACTTGGAĆ TTGTTGCAGGGAAGACAGAGGGGTCTGCAGAGGCTTCCTGGGTGACCCAGAGCCACAGACACTGAAATCTGGTGCTGAGA CCTGTATALACCCTCTTCCACAGGTTCCCTGAAAGGAGCCCACATTCCCCLACCCTGTCTCCTGACCACTGAGGATGAGA GCACTTGGGCCTTCCCCATTCTTGGAGTGCACCCTGGTTTCCCCATCTGAGGGCACATGAGGTCTCAGGTCTTGGGAAAG TTCCACAGTATTGAAAGTGTTCTTGTTTTGTTTTGTGATTTAATTTAGGTGTATGAGTGCTTTTGCTTGAATATATGCCT GTGTAGCATTTACAAGCCTGGTGCCTGAGGAGATCAGAAGATGGCATCAGATACCCTGGAACTGGACTTGCAGACAGTTA TCACTGAGGTTCTTTCTGTGGCTAAAGAGACAGGAGACAAAGGAGAGTTTCTTTAGTCAATAGGACCATGAATGTTCCT CGTAACGTGAGACTAGGGCAGGGTGATCCCCCAGTGACACCGATGGCCCTGTGTAGTTATTAGCAGCTCTAGTCTTATTC $\tt CTTAATAAGTCCCAGTTTGGGGCAGGAGATATGTATTCCCTGCTTTGAAGTGGCTGAGGTCCAGTTATCTACTTCCAAGT$ TTTCCCTGAGCAGTCAGGCCAGTCCAAAGCCCTTCAATTTAGCTTTCATAAGGAACACCCCTTTTGTTGGGTGGAGGTAG

TAGACTAAAAGACTCGGGAAAGCAGGTCTCTCTCTTTTTCTCATCCGGACACACCCAGAACCAGATGTATGGAAGATGGC TAATGTGCTGCAGTTGCACATCTGGGGCTGGGTTGGATTGGTTAGATGGCATGGGCTGGGTTGCGTTACGATGACTGCAGG AGCAAGGAGTATGTGGTGCATAGCAAACGAGGAAGTTTGCACAGAACAACAACTGTGTGTACTGATGTGCAGGTATGGGGCA TTGGCCTGGAGCTTGCCAACTGGGCTGGGCTAGCTTGTAGGTCCCAGGGATCTGCATATCTCTGCCTCCCTAGTGC TGGGATTACAGTCATATATGAGCACACCTGGCTTTTTTATGTGGGTTCTGGGGCTTTTGAACCCAGATCTGAGTGCTTGCAA AGCCCCTGCCCTGCACTCAGCAGTTCTTAGGCCTGCTGAGAGTCAAGTGGGGAGTGAGAGCAAGCCTCGAGACCCCATC AGCGAAGCAGAGGACAAAGAAATGAAAAACTTGGGATTCGAGGCTCGGGATATGGAGATACAGAAAAGGGTCAGGGAAAGGAA ATGAACCAGATGAATAGAGGCAGGAAGGGTAGGGCCCTGCATACATGGAACCTGGTGTACATGTTATCTGCATGGGGTTT GCATTGCAATGGCTCTTCAGCAGGTTCACCACACTGGGAAACAGAAGCCAAAAAGAAGAAGAAGTGGTGTTGGAAGTCAGA TACTGTCAGTCATGCCTGAAGAAATGGAAGCAATTAACGATGCGCCGCAATTAGGATATTAGCTCCCTGAAGAAAGCAA GAAGCTGGGCTGTGGGCACTGAAGGGAGCTTTGAATGATGTCACATTCTCTGTATGCCTAGCAGGGCAGTATTGGAGACCT GAGACTTGACTTGTGTGTCCATATGATTCCTCCTTTTCCTACAGTCATCTGGGGCTCCTGAGCTTCGTCCTTGTCCAAGA AGAGGACCACCGACCTCTGCTGCCTGACAAAGCTGCAGGACCAGTCTCCTACAGATGGGAGACAGAGGCGAGAGATGA ATSGTCAGGGGAGGAGTCAGAGAAAGGAGAGGGTGAGGCAGAGACCAAAGGAGGAAACACTTGTGCTCTACAGCTACTG ACTGAGTACCAGCTGCGTGGCAGACAGCCAATGCCAAGGCTCGGCTGATCATGGCACCTCGTGGGACTCCTAGCCCAGTG TCTCTGTATCACCCTAGCTGTCCTGGAACTCACTCTGTAGACCAGGCTGGCCTCGAACTCAGAAATCCCCCCTGCCTCTGC TATTATAATTCCAGGTTATAGTTCATTGCTGTAGAATTGGAGTCTTCATATTCCAGGTAATCTCCCACAGACATGCCACA AAACAACCTGTTCTACGAAATCTCTCATGGACTCCCTTCCCCAGTAATTCTAAACTGTGTCAAATCTACAAGAAATAGTG ACAGTCACAGTCTCTAACGTTTTGGGCATGAGTCTGAAGTCTCATTGCTAAGTACTGGGAAGATGAAAACTTTACCTAGT GTCAGCATTTGGAGCAGAGCCTTTGGGATTTGAGATGGTCTTTTGCAGAGCTCCTAATGGCTACATGGAGAGAGGGGGCC TGGGAGACCCATACACCTTTTGCTGCCTTATGTCACCTGACCTGCTCCTTGGGAAGCTCTAGCAAGAAGGCCTTCCCT GGATCACCCACCATGCACCTCCAGAACTCAGAGCCAAATTAAACTTTCTTGTTACTGTCGAAAGCACAGTCGGTC GCGAGTAAGGTGTAAATGTTCATGGATGTAAATGGGCCCATATATGAGGGTCTGGGGTAACAAGAAGGCCTGTGAATATA

ATTGTGTGATT STGTGTGACTCTGATGTCACATGCTCATCTTGCCCTATGAGTTGAAAACCAAATGGCCCCTGAGAGG TGCAGCAGACTACATATGCTCAGCCCTGAAGTCCTTCTAGGGTGCATGTCTCAGAAATTTCAGAAAGTCATCTGTGGC TCCAGGACCGCCTGCACTCTCCCTCTGCCGCGAGGCTGCAGACTCTAGGCTGGGGTGGAAGCAACGCTTACCTCTGGGAC TCCTCCCGTCCACTTAGTTCTCAACAATAACTACTCTGAGAGCACTTATTAATAGGTGGCTTAGACATAAGCTTTGGCTC TGGTGGCACTUTGGGAGTTCAAAGCCAGCCTGATCTACACAGCAAGCTCUAGGGATATCCAGGGCAATGTTGGGAAAACCT TTCTCAAACAAAAAAAAGGGGTTCAGTTGTCAGGAGGAGACCCATGGGTTAAGAAGTCTAGACGAGCCATGGTGATGCATA CCTTTCATCCAAGCACTTAGGAGGCAAAGAAAGGTGAAACTCTTTGACTTTGAGGCCAGCTAGGTTACATAGTGATACCC ACTCCCTAGAACTAGAGTCATAGACAGTTGTGACACTCCCCAACCCCCCACCATGTGGGTGCTTGAAGCTAAACTCCTGT CCTTTGTALAGCAGCAGGTGTCTATGAACCCTGAACCATCTCTCCAGTCTCCAGATGTGCATTCTCAAAGAGGAGTGCTT CATATTTCCCTALACTGAACATCCTTATCAGTGAGCATCCTCGAGTCACCAAAGCTACTGCAAACCCTCTAGGGAACAT CAAAAGCATGCATGTACACCATTCTTATTAGACTATGCTTTGCTAAAAGACTTTCCTAGATACTTTAAAAACATCACTTCT GCCTTTTGGTGGGCAGGTTCCAAGATTGGTACTGGCGTACTGGAAACTGAACAAGGTAGAGATCTAGAAATCACAGCAGG TCAGAAGGGCCAGCCTGTACAAGAGAGAGTTCCACACCTTCCAGGAACACTGAGCAGGGGGGCTGGGACCTTGCCTCTCAG $\tt CCCAAGAAACTAGTGCGTTTCCTGTATGCATGCCTCTCAGAGATTCCATAAGATCTGCCTTCTGCCATAAGATCTCCTGC$ ATCCAGACAAGCCTAGGGGAAGTTGAGAGGCTGCCTGAGTCTCTCCCACAGGCCCCTTCTTGCCTGGCAGTATTTTTTTA AACTGATCTAGGGAGCTGGCTCAGCAGTTAAGAGTTCTGGCTGCCCTTGCTTCAGATCTTGCTTTGATTCCCAGCACCCA CATGATGGCTTTCAACTGTATCTCTGCTTCCAGGGGATCCAACAGCCTCTTCTGACCTCCATAGACAAGACCTAGTCCTC TGCAAGAGCACCAAATGCTCTTATCTGTTGATCCATCTCTTAGCCTCATGCCAGATCATTTAAAACTACTGGACACTGT CCTCAPACTTCCCACACATGTGCTGTGGCTTATGTGTAACCCCAATAAGTAAAGATAGTTTTAAACACTACATAAGGTAG GGTTTCTTCATGACCCCAAGGAATGATGCCCCTGATAGAGCTTATGCTGAAACCCCATCTCCATTGTGCCATCTGGAAAG AGACAATTGCATCCCGGAAACAGAATCTTCATGAATGGATTAATGAGCTATTAAGAAAGTGGCTTGGTTATTGCACATGC TGGCGGCGTAATGACCTCCACCATGATGTTATCCAGCATGAAGGTCCTCACCAGAAGTCATACAAATCTTCTTAGGCTTC CAGAGTCGTGAGCAAAAAAGCACACCTCTAAATAAATTAACTAGCCTCAGGTAGTTAACCACCGAAAATGAACCAAGGC AGTTCTAATACLAAACCACTTCCCTTTCCAAACCACAGTGCCCTATTATCTAAAAGATAAACTTCAAGCCAAGCT TTTAGGTTGCCAGTATTTATGTAACAACAAGGCCCGTTGACACACATCTGTAACTCCTAGTACTGGGCCTCAGGGGCAGA

AGGATATCTGATATTGACTTCTGGCCAACACACACACCCTTCTGCACATCTGTAGTTGCAAGCCTTTTGCACTAAGTTTG GCCAGAGTCAGAGTTTGCAAGTGTTTGTGGACTGAATGCACGTGTTGCTGGTGATCTACAAAGTCACCCTCCTTCTCAAG CTAGCAGCACTGGCTCGGCCAGCTGCTCATTCAAGCCTCTTTGCAGAGTCATCACGGGGATGGGGGAGCAGGGCCCCTC CCTAGAACACCAAGCCTGTGGTTGTTTATTCAGGACATTATTGAGGGCCAAGATGACAGATAACTCTATCACTTGGCCAA TTTTTCATTCAGGCAACTAGATTCCGTGGTACAAAAGGTCCCTGGGGAACAAGGCCGGGACAGGCGGGCTCCTGAGTCG CACCOGREGAGGGGGGGGGGGGGGAAAGCCCTGGTCCTCTACGGGCGAAAGGGGGGAAGCTGTCGGCCCAC TGACTTTTTCCCCTTTCTCTTTTTTTTAGAAACCAGTCTCAATTTAAGATAATGAGTCTCCTCATTCACGTGTGCTCACT AAAATGTGGCTGGACCGTGTGCCGGCACGAAACCAGFGATGGCGGTCTAAGTTACATGCTCTCTGCCAGCCCGGGTGCCT TTTCCTTTCGGAAAGGAGACCCGGAGGTAAAACGAAGTTGCCAACTTTTGATGATGGTGTGCGCCGGGTGACTCTTTAAA ATGTCATCCATACCTGGGATAGGGAAGGCTCTTCAGGGAGTCATCTAGCCTTCCCTTCAGGAAAAGATTCCACTTCCGGT TTGCCCTTTTAGTTCCTAGAAAGCAGCACCGTAGTCTTGGCAGGTGGGCCATTGGTCACTCCGCTACCACTGTTACCATG TGAGAACTGGAGTTCAATTCCCAGCACATGGATGTATTTCCAGCACCTGGAAGGCAGGGAGCAGAGATCTTAAAGCTCCT GCTCTTGTCACCCCACTAAGGCTTCAACTTCTTCTATTTCTTCATCTTGACTCCTCTGTACTTTGCATGCCTTTTCCAG AAGYAGTCCAACCTCTCTGGTGCTGTACCCTGGACCCTGGCTTCACCACAGCTCCTCCATGCTACCCAGCCCTGCAAACC TTCAGCCTAGCCTCTGGTTCTCCAACCAGCACAGGCCCAGTCTGGCTTCTATGTCCTAGAAATCTCCTTCATTCTCTCCA TTTCCCTCCTGAATCTACCACCTTCTTTCTCCCTTCTCCTGACCTCTAATGTCTTGGTCAAACGATTACAAGGAAGCCAA TGAAATTAGCAGTTTGGGGTACCTCAGAGTCAGCAGGGGGAGCTGGGATGAATTCACATTTCCAGGCCTTTGCTTTGCTCC CCGGATTCTGACAGGCAGTTCCGAAGCTGAGTCCAGGAAGCTGAATTTAAAATCACACTCCAGCTGGGTTCTGAGGCAGC GTGGTGGTGGTGGTGGTGGTGGTGTGTGTGTGTGTTTTTCTGCTTTTACAAAACTTTTCTAATTCTTATACAAAG GACAAATCTGCCTCATATAGGCAGAAAGATGACTTATGCCTATATAAGATATAAAGATGACTTTATGCCACTTATTAGCA ATAGTTACTGTCAAAAGTTATTCTATTTATACACCCTTATACATGGTATTGCTTTTGTTGGAGACTCTAAAATCCAGATT ATGTATTTAAAAAAAATTCCCCAGTCCTTAAAAGGTGAAGAATGGACCCAGATAGAAGGTCACGGCACAAGTATGGAGT CGGAGTGTGGAGTCCTGCCAATGGTCTGGACAGAAGCATCCAGAGAGGGTCCAAGACAAATGCCTCGCCTCCTAAGGAAC ACTGGCAGCCCTGATGAGGTACCAGAGATTGCTAAGTGGAGGGAATACAGGATCAGACCCATGGAGGGGCTTAAAGCGTGA

ID de Secuencia Núm. 18: Secuencia Genómica de BEER Humana (Este gen tiene dos exones, en las posiciones 161-427 y 3186-5219)

5

tagaggagaa gtetttgggg agggtttget etgageacae ecettteeet eceteegggg 60

ctgagggaaa catgggacca geeetgeeee ageetgteet eattggetgg catgaageag 120

agaggggett taaaaaggeg acegtgtete ggetggagae eagageetgt getactggaa 180

ggtggegtge ecteetetgg etggtaceat geageteeea etggeeetgt gtetegtetg 240

ectgetggta cacacageet teegtgtagt ggagggeeag gggtggeagg egtteaagaa 300

tgatgeeacg gaaateatee eegagetegg agagtaceee gageeteeae eggagetgga 360

gaacaacaag aceatgaace gggeggagaa eggagggegg eeteeceaee aceeetttga 420

gaccaaaggt atggggtgga ggagagaatt ettagtaaaa gateetgggg aggttttaga 480

aacttctctt tgggaggctt ggaagactgg ggtagaccca gtgaagattg ctggcctctg 540 ccagcactgg tcgaggaaca gtcttgcctg gaggtggggg aagaatggct cgctggtgca 600 gccttcaaat tcaggtgcag aggcatgagg caacagacgc tggtgagagc ccagggcagg 660 gaggacgetg gggtggtgag ggtatggcat cagggcatca gaacaggctc aggggctcag 720 aaaagaaaag gtttcaaaga atctcctcct gggaatatag gagccacgtc cagctgctgg 780 taccactggg aagggaacaa ggtaagggag ceteceatee acagaacage acetgtgggg 840 caccggacac totatgotgg tggtggctgt coccaccaca cagacccaca tcatggaatc 900 cccaggaggt gaacccccag ctcgaagggg aagaaacagg ttccaggcac tcagtaactt 960 ggtagtgaga agagctgagg tgtgaacctg gtttgatcca actgcaagat agccctggtg 1020 tgtggggggg tgtgggggac agatctccac aaagcagtgg ggaggaaggc cagagaggca 1080 cccctgcagt gtgcattgcc catggcctgc ccagggagct ggcacttgaa ggaatgggag 1140 ttttcggcac agttttagcc cctgacatgg gtgcagctga gtccaggccc tggaggggag 1200 agcagcatcc tetgtgcagg agtagggaca tetgteetca gcagecacce cagteccaac 1260 cttgcctcat tccaggggag ggagaaggaa gaggaaccct.gggttcctgg tcaggcctgc 1320 acagagaage ccaggtgaca gtgtgcatet ggctctataa ttggcaggaa teetgaggee 1380 atqqqqqqqt ctgaaafgac acttcagact dagagcttcc olylectety gocattatcc 1440 aggiggcaga gaagiccaci gcccaggcic ciggacccca gccciccccg ccicacaacc 1500 tgttgggact atggggtgct aaaaagggca actgcatggg aggccagcca ggaccctccg 1560

tetteaaaat ggaggacaag ggegeeteee cecacagete eeettetagg caaggteage 1620 tgggctccag cgactgcctg aagggctgta aggaacccaa acacaaaatg tccaccttgc 1680 tggactccca cgagaggcca cagcccctga ggaagccaca tgctcaaaac aaagtcatga 1740 tetgeagagg aagtgeetgg eetaggggeg etattetega aaageegeaa aatgeeeet 1800 tecetgggea aatgeeece tgaccacaca cacattecag eeetgeagag gtgaggatge 1860 aaaccagccc acagaccaga aagcagccc agacgatggc agtggccaca totoccctgc 1920 tgtgcttgct cttcagagtg ggggtggggg gtggccttct ctgtcccctc tctggtttgg 1980 tottaagact attittcatt ctttcttgtc acattggaac tatccccatg aaacctttgg 2040 gggtggactg gtactcacac gacgaccagc tatttaaaaa gctcccaccc atctaagtcc 2100 accataggag acatggtcaa ggtgtgtgca ggggatcagg ccaggcctcg gagcccaatc 2160 tetgeetgee cagggagtat caccatgagg egeccattea gataacacag aacaagaaat 2220 gtgcccagca gagagccagg tcaatgtttg tggcagctga acctgtaggt tttgggtcag 2280 ageteaggge ecetatggta ggaaagtaae gacagtaaaa agcageeete ageteeatee 2340 cccagcccag cctcccatgg atgctcgaac gcagagcctc cactcttgcc ggagccaaaa 2400 ggtgctggga-ccccagggaa gtggagtccg gagatgcagc ccagcctttt gggcaagttc 2460 ttttctctgg ctgggcctca gtattctcat tgataatgag ggggttggac acactgcctt 2520 tgattccttt caagtctaat gaattcctgt cctgatcacc tccccttcag tccctcqcct 2580 ccacagcagc tgccctgatt tattaccttc aattaacctc tactcctttc tccatcccct 2640

gtccacccct cccaagtggc tggaaaagga atttgggaga agccagagcc aggcagaagg 2700 tgtgctgagt acttaccctg cccaggccag ggaccctgcg gcacaagtgt ggcttaaatc 2760 ataagaagac cccagaagag aaatgataat aataatacat aacagccgac gctttcagct 2820 atatgtgcca aatggtattt tetgeattge gtgtgtaatg gattaaeteg caatgettgg 2880 ggcggcccat tttgcagaca ggaagaagag agaggttaag gaacttqccc aaqatqacac 2940 ctgcagtgag cgatggagcc ctggtgtttg aaccccagca gtcatttggc tccgagggga 3000 cagggtgcgc aggagagctt tecaccaget ctagagcate tgggacette etgcaataga 3060 tgttcagggg caaaagcete tggagacagg ettggcaaaa gcagggetgg ggtggagaga 3120 gacgggccgg tccagggcag gggtggccag gcgggcggcc accctcacgc gcgcctctct 3180 ccacagacgt gtccgagtac agctgccgcg agctgcactt cacccgctac gtgaccgatg 3240 ggccgtgccg cagcgccaag ccggtcaccg agctggtgtg ctccggccag tgcggcccgg 3300 cgcgcctgct gcccaacgcc atcggccgcg gcaagtggtg gcgacctagt gggcccgact 3360 teegetgeat eecegacege taeegegege agegegtgea getgetgtgt eeeggtggtg 3420 aggegeegeg egegegeaag gtgegeetgg tggeetegtg caagtgeaag egeeteacce 3480 gcttccacaa ccagtcggag ctcaaggact tcgggaccga ggccgctcgg ccgcagaagg 3540 geoggaagee geggeeeege geeeggageg ecaaageeaa ecaggeegag etggagaaeg 3600 cetactagag eccgeegeg ecceteceea eeggegggeg ecceggeeet gaaceegege 3660 cccacatttc tgtcctctgc gcgtggtttg attgtttata tttcattgta aatgcctgca 3720 .

acccaqqqca gggggctgag accttccagg ccctgaggaa tcccgggcgc cggcaaggcc 3780 cccctcagcc cgccagctga ggggtcccac ggggcagggg agggaattga gagtcacaga 3840 cactgageca egeageceeg cetetgggge egectacett tgetggtece actteagagg 3900 aggcagaaat ggaagcattt tcaccgccct ggggttttaa gggagcggtg tgggagtggg 3960 aaagtccagg gactggttaa gaaagttgga taagattccc ccttgcacct cgctgcccat 4020 cagaaageet gaggegtgee cagageacaa gaetggggge aactgtagat gtggttteta 4080 gtcctggctc tgccactaac ttgctgtgta accttgaact acacaattct ccttcgggac 4140 ctcaatttcc actttgtaaa atgagggtgg aggtgggaat aggatctcga ggagactatt 4200 ggcatatgat tccaaggact ccagtgcctt ttgaatgggc agaggtgaga gagagagaga 4260 gaaagagaga gaatgaatgc agttgcattg attcagtgcc aaggtcactt ccagaattca 4320 qaqttqtqat qctctcttct gacagccaaa gatgaaaaac aaacagaaaa aaaaaagtaa 4380 agagtetatt tatggetgac atatttaegg etgacaaact eetggaagaa getatgetge 4440 ttcccagcct ggcttccccg gatgtttggc tacctccacc cctccatctc aaagaaataa 4500 catcatccat tggggtagaa aaggagaggg tccgagggtg gtgggaggga tagaaatcac 4560 atccgccca acttcccaaa gagcagcatc cctcccccga cccatagcca tgttttaaag 4620 tcaccttccg aagagaagtg aaaggttcaa ggacactggc éttgcaggcc cgagggagca 4680 gecateacaa acteacagae cageacatee ettttgagae acegeettet geccaecaet 4740 cacggacaca tttctgccta gaaaacagct tcttactgct cttacatgtg atggcatatc 4800

ttacactaaa agaatattat tgggggaaaa actacaagtg ctgtacatat gctgagaaac 4860 tgcagagcat aatagctgcc acccaaaaat ctttttgaaa atcatttcca gacaacctct 4920 tactttctgt gtagttttta attgttaaaa aaaaaaagtt ttaaacagaa gcacatgaca 4980 tatgaaagcc tgcaggactg gtcgtttttt tggcaattct tccacgtggg acttgtccac 5040 aagaatgaaa gtagtggttt ttaaagagtt aagttacata tttattttct cacttaagtt 5100 atttatgcaa aagtttttct tgtagagaat gacaatgtta atattgcttt atqaattaac 5160 agtotgttot tocagagtoo agagacattg ttaataaaga caatgaatoa tqaccqaaaq 5220 gatgtggtct cattttgtca accacacatg acgtcatttc tgtcaaagtt gacacccttc 5280 tettggteae tagageteea acettggaea cacetttgae tgetetetgg tggeeettgt 5340 ggcaattatg tetteettig aaaagteatg titateeett eettteeaaa eecagaeege 5400 atttetteae ceagggeatg gtaataacet cageettgta teettttage ageeteeeet 5460 ccatgctggc ttccaaaatg ctgttctcat tgtatcactc ccctgctcaa aagccttcca 5520 tagetecece tigeceagga teaagigeag titecetate tgacatggga ggeetietet 5580 gettgaetee caceteecae tecaceaage tteetaetga etecaaatgg teatgeagat 5640 ccctgcttcc ttagtttgcc atccacactt agcaccccca ataactaatc ctctttcttt 5700 aggatteaca tractigies teleffece Lascerteca gagatgitee aateteeest 5760 gatecetete teetetgagg ttscageece ttttgtetac accaetaett tggtteetaa 5820 ttctgttttc catttgacag tcattcatgg aggaccagcc tggccaagtc ctgcttagta 5880

ctggcataga caacacaaag ccaagtacaa ttcaggacca gctcacagga aacttcatct 5940 tettegaagt gtggatttga tgeeteetgg gtagaaatgt aggatettea aaagtgggee 6000 agectectge actietetea aagtetegee teeceaaggt gtettaatag tgetggatge 6060 tagctgagtt agcatcttca gatgaagagt aaccctaaag ttactcttca gttgccctaa 6120 ggtgggatgg tcaactggaa agctttaaat taagtccagc ctaccttggg ggaacccacc 6180 cccacaaaga aagctgaggt ccctcctgat gacttgtcag tttaactacc aataacccac 6240 ttgaattaat catcatcatc aagtctttga taggtgtgag tgggtatcag tggccggtcc 6300 cttcctgggg ctccagcccc cgaggaggcc tcagtgagcc cctgcagaaa atccatgcat 6360 catgagtgtc tcagggccca gaatatgaga gcaggtagga aacagagaca tcttccatcc 6420 ctgagaggca gtgcggtcca gtgggtgggg acacgggctc tgggtcaggt ttgtgttgtt 6480 tgtttgtttg ttttgagaca gagtctcgct ctattgccca ggctggagtg cagtgtcaca 6540 atctcggctt actgcaactt ctgccttccc ggattcaagt gattctcctg cctcagcctc 6600 cagagtagct gggattacag gtgcgtgcca ccacgcctgg ctaatttttg tatttttgat 6660 agagacgggg tttcaccatg ttggccaggc tagtctcgaa ctcttgacct caagtgatct 6720 gcctgcctcg gcctcccaaa gtgctgggat tacaggcgtg agccaccacá cccaqcccca 6780 ggttggtgtt tgaatctgag gagactgaag caccaagggg ttaaatgttt tgcccacagc 6840 catacttggg ctcagttcct tgccctaccc ctcacttgag ctgcttagaa cctggtgggc 6900 acatgggcaa taaccaggtc acactgtttt gtaccaagtg ttatgggaat ccaagatagg 6960

agtaatttgc tctgtggagg ggatgaggga tagtggttag ggaaagcttc acaaagtggg 7020 tgttgcttag agattttcca ggtggagaag ggggcttcta ggcagaaggc atagcccaag 7080 caaagactgc aagtgcatgg ctgctcatgg gtagaagaga atccaccatt cctcaacatg 7140 taccgagtcc ttgccatgtg caaggcaaca tgggggtacc aggaattcca agcaatgtcc 7200 aaacctaggg tctgctttct gggacctgaa gatacaggat ggatcagccc aggctgcaat 7260 cccattacca cgagggggaa aaaaacctga aggctaaatt gtaggtcggg ttagaggtta 7320 tttatggaaa gttatattot acctacatgg ggtctataag cctggcgcca atcagaaaag 7380 gaacaaacaa cagacctagc tgggaggggc agcattttgt tgtagggggc ggggcacatg 7440 ttctgggggt acagccagac tcagggcttg tattaatagt ctgagagtaa gacagacaga 7500 tctctcacac acacacag acacacaca acgctctgta ggggtctact tatgctccaa 7620 gtacaaatca ggccacattt acacaaggag gtaaaggaaa agaacgttgg aggagccaca 7680 ggaccccaaa attccctgtt ttccttgaat caggcaggac ttacgcagct gggagggtgg 7740 agageetgea gaageeacet gegagtaage caagtteaga gteacagaca ceaaaagetg 7800 gtgccatgtc ccacacccgc ccacctccca cctgctcctt gacacagccc tgtgctccac 7860 aacceggete ecagateatt gallalayel elggggeerg cacegreert ectgeeacat 7920 ccccaccca ttcttggaac ctgccctctg tcttctccct tgtccaaggg caggcaaggg 7980 ctcagctatt gggcagcttt gaccaacagc tgaggctcct tttgtggctg gagatgcagg 8040

aggcagggga atattectet tagteaatge gaccatgtge etggtttgee cagggtggte 8100 tegtttacae etgtaggeea agegtaatta ttaacagete ceaettetae tetaaaaaat 8160 qacccaatct gggcagtaaa ttatatggtg cccatgctat taagagctqc aacttqctgg 8220 gcgtggtggc tcacacctgt aatcccagta ctttgggacg tcaaggcggg tggatcacct 8280 gaggtcacga gttagagact ggcctggcca gcatggcaaa accccatctt tactaaaaat 8340 acaaaaatta gcaaggcatg gtggcatgca cctgtaatcc caggtactcg ggaggctgag 8400 acaggagaat ggcttgaacc caggaggcag aggttgcagt gagccaagat tgtgccactg 8460 ccctccagcc ctggcaacag agcaagactt catctcaaaa gaaaaaggat actgtcaatc 8520 actgcaggaa gaacccaggt aatgaatgag gagaagagag gggctgagtc accatagtgg 8580 cagcaccgac teetgeagga aaggegagae aetgggteat gggtaetgaa gggtgeeetg 8640 aatgacgttc tgctttagag accgaacctg agccctgaaa gtgcatgcct gttcatgggt 8700 gagagactaa attcatcatt ccttggcagg tactgaatcc tttcttacgg ctgccctcca 8760 atgcccaatt tccctacaat tgtctggggt gcctaagett ctgcccacca agagggccag 8820 agctggcagc gagcagctgc aggtaggaga gataggtacc_cataagggag gtgggaaaga 8880 gagatggaag gagaggggtg cagagcacac acctcccctg cctgacaact tcctgagggc 8940 tggtcatgcc agcagattta aggcggaggc aggggagatg gggcgggaga ggaagtgaaa 9000 aaggagaggg tggggatgga gaggaagaga gggtgatcat tcattcattc cattgctact 9060 gactggatgc cagctgtgag ccaggcacca ccctagctct gggcatgtgg ttgtaatctt 9120

ggagcctcat	ggagctcaca	gggagtgctg	gcaaggagat	ggataatgga	cggataacaa	9180
ataaacattt	agtacaatgt	ccgggaatgg	aaagttctcg	aaagaaaaat	aaagctggtg	9240
agcatataga	cagccctgaa	ggcggccagg	ccaggcattt	ctgaggaggt	ggcatttgag	9300
С						9301

LISTADO DE SECUENCIAS

<110>Brunkow, Mary E. Galas, David J.
5 Kovacevich, Brian Mulligan, John T. Paeper, Bryan W. Van Ness, Jeffrey Winkler, David G.

10

<120> COMPOSICIONES Y METODOS PARA INCREMENTAR LA MINERALIZACION OSEA

<130> 240083.508

15 <140> US

<141> 1999-11-24

<160>41

20 <170> FastSEQ para Windows Versión 3.0

<210> 1

<211> 2301

<212> ADN

25 <213> Homo sapiens

<400> 1

agagectgtg ctactggaag gtggegtgee etectetgee tggtaceatg cageteecae 60
tggeectgtg tetegtetge etgetggtae acacageett eegtgagtg gagggeeagg 120
ggtggeagge gtteaagaat gatgeeaegg aaateateee egageteega gagtaceeeg 180
ageeteeaee ggagetggag aacaacaaga eeatgaaeeg ggeggagaae ggagggegge 240
eteeeeaea eeeettgag accaaagaeg tgteegagta eagetgeege gagetgeaet 300
teaeeegeta egtgaeegat gggeegtgee geagegeeaa geeggteaee gagetggtgt 360

```
qctccqqcca gtgcqqcccg gcgcgcctgc tgcccaacgc catcqqccqc qqcaaqtqqt
                                                                    420
qqcqacctaq tqqqcccqac ttccqctqca tccccqaccq ctaccqcqcq caqcqcqtqc
                                                                    480
agetgetgtg teeeggtggt gaggegeege gegegegeaa ggtgegeetg gtggeetegt
                                                                    540
gcaagtgcaa gcgcctcacc cgcttccaca accagtcgga gctcaaggac ttcggqaccg
                                                                    600
aggccgctcg gccgcagaag ggccggaagc cgcgggccccg cgcccggagc qccaaaqcca
                                                                    660
accaggeega getggagaac geetactaga geeegeege geeetteec accggeggge
                                                                    720
qccccqqccc tgaacccgcg ccccacattt ctgtcctctg cqcqtqqttt qattqtttat
                                                                    780
atttcattgt aaatgeetge aacccaggge agggggetga gacetteeag geeetgagga
                                                                    840
atcccgggcg ccggcaaggc ccccctcagc ccgccagctg aggggtccca cggggcaggg
                                                                    900
gagggaattg agagteacag acactgagee acgeageeee geetetgggg cegeetacet
                                                                    960
ttgctggtcc cacttcagag gaggcagaaa tggaagcatt ttcaccgccc tggggtttta
                                                                   1020
agggagcggt gtgggagtgg gaaagtccag ggactggtta agaaagttqq ataaqattcc
                                                                   1080
cccttgcacc tcgctgccca tcagaaagcc tgaggcgtgc ccagagcaca agactggggg
                                                                   1140
caactgtaga tgtggtttct agtcctggct ctgccactaa cttgctgtgt aaccttgaac
                                                                   1200
tacacaattc tccttcggga cctcaatttc cactttgtaa aatgagggtg gaggtgggaa
                                                                   1260
taggateteg aggagaetat tggeatatga ttecaaggae tecagtgeet tttgaatggg
                                                                   1320
1380
caaggtcact tccagaattc agagttgtga tgctctcttc tgacagccaa agatgaaaaa
                                                                   1440
caaacagaaa aaaaaaagta aagagtctat ttatggctga catatttacg gctgacaaac
                                                                   1500
tcctggaaga agctatgctg cttcccagcc tggcttcccc ggatgtttgg ctacctccac
                                                                   1560
ccctccatct caaagaaata acatcatcca ttggggtaga aaaggagagg gtccgagggt
                                                                   1620
ggtgggaggg atagaaatca catccgcccc aacttcccaa agagcagcat ccctcccccg-
                                                                   1680
acccatagec atgttttaaa gteacettee gaagagaagt gaaaggttea aggacaetgg
                                                                   1740
ccttgcaggc ccgagggagc agccatcaca aactcacaga ccagcacatc ccttttgaga
                                                                   1800
caccgccttc tgcccaccac tcacggacac atttctgcct agaaaacagc ttcttactgc
                                                                   1860
tcttacatgt gatggcatat cttacactaa aagaatatta ttgggggaaa aactacaagt
                                                                   1920
gctgtacata tgctgagaaa ctgcagagca taatagctgc cacccaaaaa tctttttgaa
                                                                   1980
aatcatttcc agacaacctc ttactttctg tgtagttttt aattgttaaa aaaaaaaagt
                                                                   2040
tttaaacaga agcacatgac atatgaaagc ctgcaggact ggtcgttttt ttggcaattc
                                                                   2100
ttccacgtgg gacttgtcca caagaatgaa agtagtggtt tttaaagagt taagttacat
                                                                   2160
atttattttc tcacttaagt tatttatgca aaagtttttc ttgtagagaa tgacaatgtt
                                                                   2220
aatattgctt tatgaattaa cagtctgttc ttccagagtc cagagacatt gttaataaag
                                                                   2280
acaatgaatc atgaccgaaa g
                                                                   2301
```

<210> 2

<211> 213

5 <212> PRT

<213> Homo sapiens

<400> 2

Met	Gln	Leu	Pro	Leu	Ala	Leu	Cys	Leu	Val	Cys	Leu	Leu	Val	His	Thr
1				5					10					15	
Ala	Phe	Arg	Val	Val	Glu	Gly	Gln	Gly	Trp	Gln	Ala	Phe	Lys	Asn	Asp
			20					25					30		
Ala	Thr	Glu	Ile	Ile	Pro	Glu	Leu	Gly	Glu	Tyr	Pro	Glu	Pro	Pro	Pro
		35					40					45			
Glu	Leu	Glu	Asn	Asn	Lys	Thr	Met	Asn	Arg	Ala	Glu	Asn	Gly	Gly	Arg
	50					55					60				
Pro	Pro	His	His	Pro	Phe	Glu	Thr	Lys	Asp	Val	Ser	Glu	Tyr	Ser	Cys
65					70					75					80
Arg	Glu	Leu	His	Phe	Thr	Arg	Tyr	Val	Thr	Asp	Gly	Pro	Cys	Arg	Ser
				85					90					95	
Ala	Lys	Pro	Val	Thr	Glu	Leu	Val	Cys	Ser	Gly	Gln	Cys	Cly	Pro	Ala
			100					105					110		
Arg	Leu	Leu	Pro	Asn	Ala	Ile	Gly	Arg	Gly	Lys	Trp	Trp	Arg	Pro	Ser
		115					120					125			
Gly	Pro	Asp	Phe	Arg	Cys	Ile	Pro	Asp	Arg	Tyr	Arg	Ala	Gln	Arg	Val
	130					135					140				
Gln	Leu	Leu	Cys	Pro	Gly	Gly	Glu	Ala	Pro	Arg	Ala	Arg	rys	Val	Arg
145					150					155					160
Leu	Val	Ala	Ser	Cys	Lys	Cys	Lys	Arg	Leu	Thr	Arg	Phe	His	Asn	Gln
				165					170		-			175	
Ser	Glu	Leu	Lys	Asp	Phe	Gly	Thr	Glu	Ala	Ala	Arg	Pro	Gln	ГÀг	Gly
			180)				185					190		
Arg	Lys	Pro	Arg	Pro	Arg	Ala	Arg	Ser	Ala	Lys	Ala	Asn	Gln	Ala	Glu
		195					200	+				205			
Leu	Glu	Asr	Ala	a Tyr	:										
	210)								-					

<210> 2 <211> 2301 5 <212> ADN

<213> Homo sapiens

<400> 3

	agagcctgtg	ctactggaag	gtggcgtgcc	ctcctctggc	tggtaccatg	cagctcccac	60
	tggccctgtg	tctcgtctgc	ctgctggtac	acacagcctt	ccgtgtagtg	gagggctagg	120
	ggtggcaggc	gttcaagaat	gatgccacgg	aaatcatccc	cgagctcgga	gagtaccccg	180
	agcctccacc	ggagctggag	aacaacaaga	ccatgaaccg	ggcggagaac	ggagggcggc	240
	ctccccacca	cccctttgag	accaaagacg	tgtccgagta	cagctgccgc	gagctgcact	300
	tcacccgcta	cgtgaccgat	gggccgtgcc	gcagcgccaa	gccggtcacc	gagctggtgt	360
-	_ gctccggcca	gtgcggcccg	gcgcgcctgc	tgcccaacgc	catcggccgc	ggcaagtggt	420
	ggcgacctag	tgggcccgac	ttccgctgca	tccccgaccg	ctaccgcgcg	cagcgcgtgc	480
	agctgctgtg	tcccggtggt	gaggcgccgc	gcgcgcgcaa	ggtgcgcctg	gtggcctcgt	540
	gcaagtgcaa	gcgcctcacc	cgcttccaca	accagtcgga	gctcaaggac	ttcgggaccg	600
	aggccgctcg	gccgcagaag	ggccggaagc	cgcggccccg	cgcccggagc	gccaaagcca	660
	accaggccga	gctggagaac	gcctactaga	gcccgcccgc	gcccctcccc	accggcgggc	720
	gccccggccc	tgaacccgcg	ccccacattt	ctgtcctctg	cgcgtggttt	gattgtttat	780
	atttcattgt	aaatgcctgc	aacccagggc	agggggctga	gaccttccag	gccctgagga	840
	atcccgggcg	ccggcaaggc	cccctcagc	ccgccagctg	aggggtccca	cggggcaggg	900
	gagggaattg	agagtcacag	acactgagcc	acgcagcccc	gcctctgggg	ccgcctacct	960
	ttgctggtcc	cacttcagag	gaggcagaaa	tggaagcatt	ttcaccgccc	tggggtttta	1020
	agggagcggt	gtgggagtgg	gaaagtccag	ggactggtta	agaaagttgg	ataagattcc	1080
	cccttgcacc	tcgctgccca	tcagaaagcc	tgaggcgtgc	ccagagcaca	agactggggg	1140
	caactgtaga	tgtggtttct	agtcctggct	ctgccactaa	cttgctgtgt	aaccttgaac	1200
	tacacaattc	tccttcggga	cctcaatttc	cactttgtaa	aatgagggtg	gaggtgggaa	1260
	taggatctcg	aggagactat	tggcatatga	ttccaaggac	tccagtgcct	tttgaatggg	1320
	cagaggtgag	agagagagag	agaaagagag	agaatgaatg	cagttgcatt	gattcagtgc	1380
	caaggtcact	tccagaattc	agagttgtga	tgctctcttc	tgacagccaa	agatgaaaaa	1440
	caaacagaaa	aaaaaagta	aagagtctat	ttatggctga	catatttacg	gctgacaaac	1500
	tcctggaaga	agctatgctg	cttcccagcc	tggcttcccc	ggatgtttgg	ctacctccac	1560
	ccctccatct	caaagaaata	acatcatcca	ttggggtaga	aaaggagagg	gtccgagggt	1620
	ggtgggaggg	atagaaatca	catccgcccc	āācttcccaa	ayaycaycai	coccocccg	1680
	acccatagcc	atgttttaaa	gtcaccttcc	gaagagaagt	gaaaggttca	aggacactgg	1740
	ccttgcaggc	ccgagggagc	agccatcaca	aactcacaga	ccagcacatc	ccttttgaga	1800
	caccgccttc	tgcccaccac	tcacggacac	atttctgcct	agaaaacagc	ttcttactgc	1860
	tcttacatgt	gatggcatat	cttacactaa	aagaatatta	ttgggggaaa	aactacaagt	1920
	gctgtacata	tgctgagaaa	ctgcagagca	taatagctgc	cacccaaaaa	tctttttgaa	1980

	aatcatttcc agacaacctc ttac	tttctg tgtagttttt	aattgttaaa	aaaaaaagt	2040
	tttaaacaga agcacatgac atat	gaaagc ctgcaggact	ggtcgttttt	ttggcaattc	2100
	ttccacgtgg gacttgtcca caag	aatgaa agtagtggtt	tttaaagagt	taagttacat	2160
	atttattttc tcacttaagt tatt	tatgca aaagtttttc	ttgtagagaa	tgacaatgtt	2220
	aatattgctt tatgaattaa cagt	ctgttc ttccagagtc	cagagacatt	gttaataaag	2280
	acaatgaatc atgaccgaaa g				2301
5	<210> 4 <211> 23 <212> PRT <213> Homo sapiens				
	<400> 4				
	Met Gln Leu Pro Leu Ala	Leu Cys Leu V	al Cys Leu	Leu Val His	Thr
	1 5	10	ס	15	
	Ala Phe Arg Val Val Glu	Gly			
10	20				
15	<210> 5 <211> 2301 <212> ADN <213> Homo sapiens				
	<400> 5				
	agagcctgtg ctactggaag gtgg	egtgee etectetgge	tggtaccatg	cagctcccac	60
	tggccctgtg tctcatctgc ctgc	ggtac acacageett	ccgtgtagtg	gagggccagg	120
	ggtggcaggc gttcaagaat gatg	cacgg aaatcatccg	çgagctcgga	gagtaccccg	. 180
	agcetecace ggagetggag aaca	acaaga ccatgaaccg	ggcggagaac	ggagggcggc	240
	ctccccacca cccctttgag acca	aagacg tgtccgagta	cagctgccgc	gagctgcact	300
	tcacccgcta cgtgaccgat gggc	egtgee geagegeeaa	gccggtcacc	gagctggtgt	<u> 360</u>
	gctccggcca gtgcggcccg gcgc	geetge tgeecaaege	catcggccgc	ggcaagtggt	420
	ggcgacctag tgggcccgac ttcc	getgea teeeegaeeg	ctaccgcgcg	cagcgcgtgc -	480
	agctgctgtg tcccggtggt gagg	cgccgc gcgcgcgcaa	ggtgcgcctg	gtggcctcgt	540
	gcaagtgcaa gcgcctcacc cgct -	ccaca accagtegga	gctcaaggac	ttcgggaccg	600
	aggccgctcg gccgcagaag ggcc	ggaagc cgcggccccg	cgcccggagc	gccaaagcca	660

accaggeega getggagaac geetactaga geeegeegg geeeeteece accggeggge

720

```
geoceggeee tgaaccegeg ecceacattt etgteetetg egegtggttt gattgtttat
                                                                      780
 atttcattgt aaatgcctgc aacccagggc agggggctga gaccttccag gccctgagga
                                                                      840
 atcccgggcg ccggcaaggc ccccctcagc ccgccagctg aggggtccca cggggcaggg
                                                                      900
 gagggaattg agagtcacag acactgagcc acgcagcccc gcctctgggg ccgcctacct
                                                                      960
 ttgctggtcc cacttcagag gaggcagaaa tggaagcatt ttcaccgccc tggggtttta
                                                                    1020
 agggagcggt gtgggagtgg gaaagtccag ggactggtta agaaagttgg ataagattcc
                                                                    1080
 cccttgcacc tcgctgccca tcagaaagcc tgaggcgtgc ccagagcaca agactggggg
                                                                    1140
 caactgtaga tgtggtttct agtcctggct ctgccactaa cttgctgtgt aaccttgaac
                                                                    1200
 tacacaattc tccttcggga cctcaatttc cactttgtaa aatgagggtg gaggtgggaa
                                                                    1260
-taggateteg aggagactat tggcatatga tfccaaggac tccagtgcct tttgaatggg
                                                                    1320
 1380
 caaggtcact tccagaattc agagttgtga tgctctcttc tgacagccaa agatgaaaaa
                                                                    1440
 caaacagaaa aaaaaaagta aagagtctat ttatggctga catatttacg gctgacaaac
                                                                    1500
 tectggaaga agetatgetg etteccagee tggetteece ggatgtttgg etaceteeae
                                                                    1560
 ccctccatct caaagaaata acatcatcca ttggggtaga aaaggagagg gtccgagggt
                                                                    1620
 ggtgggaggg atagaaatca catccgcccc aacttcccaa agagcagcat ccctccccg
                                                                    1680
 acccatagce atgttttaaa gtcaccttcc gaagagaagt gaaaggttca aggacactgg
                                                                    1740
 ccttgcaggc ccgagggagc agccatcaca aactcacaga ccagcacatc ccttttgaga
                                                                    1800
 caccgccttc tgcccaccac tcacggacac atttctgcct agaaaacagc ttcttactgc
                                                                    1860
 tcttacatgt gatggcatat cttacactaa aagaatatta ttgggggaaa aactacaagt
                                                                    1920
 gctgtacata tgctgagaaa ctgcagagca taatagctgc cacccaaaaa tctttttgaa
                                                                    1980
 aatcatttcc agacaacctc ttactttctg tgtagttttt aattgttaaa aaaaaaaagt
                                                                    2040
 tttaaacaga agcacatgac atatgaaagc ctgcaggact ggtcgttttt ttggcaattc
                                                                    2100
 ttccacgtgg gacttgtcca caagaatgaa agtagtggtt tttaaaagagt taagttacat
                                                                    2160
 atttattttc tcacttaagt tatttatgca aaagtttttc ttgtagagaa tgacaatgtt
                                                                    2220
 aatattgctt tatgaattaa cagtctgttc ttccagagtc cagagacatt gttaataaag
                                                                    2280
 acaatgaatc atgaccgaaa g
                                                                    2301
```

<210> 6 <211> 213

<212> PRT

5 <213> Homo sapiens

<400>6

Met Gln Leu Pro Leu Ala Leu Cys Leu Ile Cys Leu Leu Val His Thr

1 5 10 15

	Ala	Phe	Arg	Val	Val	Glu	Gly	Gln	Gly	Trp	Gln	Ala	Phe	Lys	Asn	Asp
				20					25					30		
	Ala	Thr	Glu	Ile	Ile	Arg	Glu	Leu	Gly	Glu	Tyr	Pro	Glu	Pro	Pro	Pro
			35					40					45			
	Glu	Leu	Glu	Asn	Asn	Lys	Thr	Met	Asn	Arg	Ala	Glu	Asn	Gly	Gly	Arg
		50					55					60				
	Pro	Pro	His	His	Pro	Phe	Glu	Thr	Lys	Asp	Val	Ser	Glu	Tyr	Ser	Cys
	65					70					75					80
	Arg	Glu	Leu	His	Phe	Thr	Arg	Tyr	Val	Thr	Asp	Gly	Pro	Cys	Arg	Ser
					85					90					95	
	Ala	Lys	Pro	Val	Thr	Glu	Leu	Val	Cys	Ser	Gly	Gln	Cys	Gly	Pro	Ala
				100					105					110		
	Arg	Leu	Leu	Pro	Asn	Ala	Ile	Gly	Arg	Gly	Lys	Trp	Trp	Arg	Pro	Ser
			115					120					125			
	Gly	Pro	Asp	Phe	Arg	Cys	Ile	Pro	Asp	Arg	Tyr	Arg	Ala	Gln	Arg	Val
		130					135					140				
	Gln	Leu	Leu	Cys	Pro	Gly	Gly	Glu	Ala	Pro	Arg	Ala	Arg	Lys	Val	Arg
	145					150	_				155					160
	Leu	Val	Ala	Ser	Cys	Lys	Cys	Lys	Arg	Leu	Thr	Arg	Phe	His	Asn	Gln
					165					170					175	
	Ser	Glu	Leu	Lys	Asp	Phe	Gly	Thr		Ala	Ala	Arg	Pro		Lys	Gly
				180					185					190		
	Arg	Lys		Arg	Pro	Arg	Ala		Ser	Ala	Lys	Ala		Gln	Ala	Glu
			195		_			200					205			
	Leu			Ala	Tyr					_						
		210														
	210> 7 211> 2 212> <i>F</i> 213> F	2301 ADN	sapier	ns												
-	400> 7	7														
	agag	cctgt	g ct	actgo	aag	gtggc	gtgc	c ctc	ctctg	ggc t	ggtad	catg	cago	ctccc	ac	60
				tcgtc				-								120

180

ggtggcaggc gttcaagaat gatgccacgg aaatcatccg cgagctcgga gagtaccccg

```
agcetecace ggagetggag aacaacaaga ceatgaaceg ggeggagaac ggagggegge
                                                                      240
 ctccccacca cccctttgag accaaagacg tgtccgagta cagctgccgc gagctgcact
                                                                      300
 teaccegeta egigacegat gggeegigee geagegeeaa geeggicace gageiggigt
                                                                      360
 gctccggcca gtgcggcccg gcgcgcctgc tgcccaacqc catcqqccqc qqcaaqtqqt
                                                                      420
 ggcgacctag tgggcccgac ttccgctgca tccccgaccg ctaccgcgcg cagcgcgtgc
                                                                      480
 agetgetgtg teceggtggt gaggegeege gegegegeaa ggtgegeetg gtggeetegt
                                                                      540
 gcaagtgcaa gcgcctcacc cgcttccaca accagtcgga gctcaaggac ttcgggaccg
                                                                      600
 aggccgctcg gccgcagaag ggccggaagc cgcggccccq cqcccggagc qccaaaqcca
                                                                      660
 accaggooga gotggagaac gootactaga goocgoocgo goocotocoo accqqqqqo
                                                                      720
gccccggccc tgaacccgcg ccccacattt ctgtcctctg cgcgtggttt gattgtttat
                                                                      780
 atttcattgt aaatgcctgc aacccagggc agggggctga gaccttccag gccctgagga
                                                                      840
 attecegggeg ceggeaagge ceeetteage cegecagetg aggggteeca eggggeaqqq
                                                                      900
 gagggaattg agagtcacag acactgagcc acgcagcccc gcctctgggg ccgcctacct
                                                                      960
 ttgctggtcc cacttcagag gaggcagaaa tggaagcatt ttcaccgccc tggggtttta
                                                                     1020
 agggagcggt gtgggagtgg gaaagtccag ggactggtta agaaagttgg ataaqattcc
                                                                     1080
 cccttgcacc tcgctgccca tcagaaagcc tgaggcgtgc ccagagcaca agactggggg
                                                                     1140
 caactgtaga tgtggtttct agtcctggct ctgccactaa cttgctgtgt aaccttgaac
                                                                    1200
 tacacaattc tccttcggga cctcaatttc cactttgtaa aatgagggtg gaggtgggaa
                                                                     1260
 taggateteg aggagaetat tggeatatga ttecaaggae tecagtgeet tttgaatggg
                                                                     1320
 1380
 caaggtcact tccagaattc agagttgtga tgctctcttc tgacagccaa agatgaaaaa
                                                                     1440
 caaacagaaa aaaaaaagta aagagtctat ttatggctga catatttacg gctgacaaac
                                                                     1500
 tectggaaga agetatgetg etteceagee tggetteece ggatgtttgg etaceteeae
                                                                     1560
 ccctccatct caaagaaata acatcatcca ttggggtaga aaaggagagg gtccgagggt
                                                                     1620
 ggtgggaggg atagaaatca catccgcccc aacttcccaa agagcagcat ccctcccccg
                                                                    1680
 acccatagee atgitttaaa gicaccitee gaagagaagi gaaaggitea aggacacigg
                                                                    1740
 ccttgcaggc ccgagggagc agccatcaca aactcacaga ccagcacatc ccttttgaga
                                                                     1800
caccgccttc tgcccaccac tcacggacac atttctgcct agaaaacagc ttcttactgc
                                                                    1860
 tcttacatgt gatggcatat cttacactaa aagaatatta ttgggggaaa aactacaagt
                                                                    1920
 gctgtacata tgctgagaaa ctgcagagca taatagctgc cacccaaaaa tctttttgaa
                                                                    1980
 aatcatttoc agacaacoto ttactttorg rgtagttttt aattgttaaa aaaaaaaagt
                                                                    2040
 tttaaacaga agcacatgac atatgaaagc ctgcaggact ggtcgttttt ttggcaattc
                                                                    2100
 ttccacgtgg gacttgtcca caagaatgaa agtagtggtt tttaaagagt taagttacat
                                                                    2160
atttattttc tcacttaagt tatttatgca aaagtttttc ttgtagagaa tgacaatgtt
                                                                    2220
aatattgctt tatgaattaa cagtctgttc ttccagagtc cagagacatt gttaataaag
                                                                    2280
acaatqaatc atqaccqaaa q
                                                                    2301
```

<210>8

<211> 213

<212> PRT

5 <213> Homo sapiens

<400> 8

Met	Gln	Leu	Pro	Leu	Ala	Leu	Cys	Leu	Val	Cys	Leu	Leu	Val	His	Thr
1				5				•	10					15	
Ala	Phe	Arg	Val	Val	Glu	Gly	Gln	Gly	Trp	Gln	Ala	Phe	Lys	Asn	Asp
			20					25					30		
Ala	Thr	Glu	Ile	Ile	Arg	Glu	Leu	Gly	Glu	Tyr	Pro	Glu	Pro	Pro	Pro
		35					40					45			
Glu	Leu	Glu	Asn	Asn	Lys	Thr	Met	Asn	Arg	Ala	Glu	Asn	Gly	Gly	Arg
	50					55					60				
Pro	Pro	His	His	Pro	Phe	Glu	Thr	Lys	Asp	Val	Ser	Glu	Tyr	Ser	Cys
65					70					75					80
Arg	Glu	Leu	His	Phe	Thr	Arg	Tyr	Val	Thr	Asp	Gly	Pro	Cys	Arg	Ser
				85					90					95	
Ala	Lys	Pro	Val	Thr	Glu	Leu	Val	Cys	Ser	Gly	Gln	Cys	Gly	Pro	Ala
			100					105					110		
Arg	Leu	Leu	Pro	Asn	Ala	Ile	Gly	Arg	Gly	Lys	Trp	Trp	Arg	Pro	Ser
		115					120					125			
Gly	Pro	Asp	Phe	Arg	Cys	Ile	Pro	Asp	Arg	Tyr	Arg	Ala	Gln	Arg	Val
	130					135					140				
Gln	Leu	Leu	Cys	Pro	Gly	Gly	Glu	Ala	Pro	Arg	Ala	Arg	Lys	Val	Arg
145					150					155					160
Leu	Val	Ala	Ser	Cys	Lys	Cys	Lys	Arg	Leu	Thr	Arg	Phe	His	Asn	Gln
				165	-				170					175	
Ser	Glu	Leu	Lys	Asp	Phe	Gly	Thr	Glu	Ala	Ala	Arg	Pro	Gln	Lys	Gly
			180					185					190		
Arg	Lys	Pro	Arg	Pro	Arg	Ala	Arg	Ser	Ala	Lys	Ala	Asn	Gĺn	Ala	Glu
		195				-	200					205			
Leu	Ġlu	Asn	Ala	Tyr											
	210		٠								-		•		

5	<210> 9 <211> 6 <212> 7 <213> 0	642 ADN	oithecu	ıs pyg	erythri	us										
3	<400> 9)														
	atgc	agctc	c ca	ctggc	cct	gtgtc	ctgt	tgc	ctgc	tgg t	acac	gcago	ctt	ccgt	gta	60
	gtgga	agggc	c ag	gggtg	gca	ggcct	tcaaq	g aat	gatg	cca c	ggaa	atcat	CCC	cgago	ctc	120
	ggaga	agtac	c cc	gagco	tcc	accgg	gaget	g gag	aacaa	aca a	gacc	atgaa	ccg	ggcgg	jag	180
	aatg	gaggg	c gg	cctcc	cca	ccacc	cctt	. gag	асса	aag a	cgtg	tccga	gta	caget	.gc	240
	cgaga	agctg	c act	tcac	ccg	ctacg	tgac	gat	gggc	egt g	ccgc	agcgc	caa	gccac	jtc	300
	accga	agttg	g tgi	gctc	cgg	ccagt	gcgg	ccg	gcac	gcc t	gctg	cccaa	cgc	catco	gc	360
	cgcgg	gcaag	t ggt	ggcg	ccc	gagtg	ggccd	gac	ttcc	gct g	catc	cccga	ccg	ctacc	:gc	420
	gcgca	agcgt	g tgo	cagct	gct	gtgtc	ccggt	ggt	gccg	cgc c	gege	gcgcg	caa	ggtgc	:gc	480
	ctggt															540
	gactt	cggt	c cc	gaggc	cgc	tcggc	cgcag	g aag	ggccg	gga a	gccg	eggee	ccg	egece	:gg	600
	gggg	caaa	g cca	atca	ggc	cgago	tggag	g aac	gccta	act a	g					642
10	<210> 1 <211> 2 <212> F <213> 0 <400> 1	213 PRT Cercop	oithecu	ıs pygı	erythru	us										
15	Met	Gln	Leu	Pro	Leu	Ala	Leu	Cys	Leu	Val	Cys	Leu	Leu	Val	His	Ala
	1				5					10	_				15	
	Ala	Phe	Ara	Val	Val	Glu	Glv	Gln	Gly	Trn	·Gln	בות	Pho	Tvo		7
			3	20			0-7	01	25	115	0111	AIG	rne	-	ASII	ASP
	27.	mb	03		- 3 -	5	a 1	_			_			30		
	Ala	ınr		TTE	ite	Pro	GIU	Leu	Gly	Glu	Tyr	Pro	Glu	Pro	Pro	Pro
			35					40					45			
	Glu	Leu	Glu	Asn	Asn	rňs	Thr	Mer	Aşn	Arg	Ala	GJū	Asn	Gly	Gly	λrg
		50					55				-	60				
	Pro	Pro	His	His	Pro	Phe	Glu	Thr	Lys	Asp	Val	Ser	Glu	Tyr	Ser	Cys
	65					70					75			-		80
	Arq	Glu	Leu	His	Phe	Thr	Arq	Tyr	Val	Thr		Glv	Pro	Cvs	Ara	
					85			-	. =	90		1		-15	95	
										20					,,	

	Ala	Lys	Pro	Val	Thr	Glu	Leu	Val	Cys	Ser	Gly	Gln	Cys	Gly	Pro	Ala
				100					105					110		
	Arg	Leu	Leu	Pro	Asn	Ala	Ile	Gly	Arg	Gly	Lys	Trp	Trp	Arg	Pro	Ser
			115					120					125			
	Gly	Pro	Asp	Phe	Arg	Cys	Ile	Pro	Asp	Arg	Tyr	Arg	Ala	Gln	Arg	Val
		130					135					140				
	Gln	Leu	Leu	Cys	Pro	Gly	Gly	Ala	Ala	Pro	Arg	Ala	Arg	Lys	Val	Arg
	145					150					155					160
	Leu	Val	Ala	Ser	Cys	Lys	Cys	Lys	Arg	Leu	Thr	Arg	Phe	His	Asn	Gln
					165					170					175	
	Ser	Glu	Leu	Lys	Asp	Phe	Gly	Pro	Glu	Ala	Ala	Arg	Pro	Gln	Lys	Gly
				180					185					190		
	Arg	Lys	Pro	Arg	Pro	Arg	Ala	Arg	Gly	Ala	Lys	Ala	Asn	Gln	Ala	Glu
			195					200					205			
	Leu	Glu	Asn	Ala	Tyr											
		210														
21: 21:	1> 638 2> AD 3> Mu 0> 11	N	sculus													
					~~ ~!	- ~ ~ ~ ~ +		+~~					a		~ t-	
	_				_					_	gcacg agagg	_				120
_					_	_		_	_		gaacc					180
			_	_		_	_		_		cgagt			_	_	240
											cgcca					300
t t	ggtg	tgct	ccgo	gccag	tg c	ggccc	cgcg	cgg	tgct	gc c	caacg	ccat	cggg	gcgcg	tg	360
aa	gtgg	tggc	gcc	gaac	gg a	ccgga	tttc	cgct	gcat	cc c	ggato	gcta	ccg	gcgc	ag	420
ςį	ggtg	cagc	tgct	gtgc	cc c	39999	gegeg	gcg	cgcg	ct c	gcgca	aggt	gcgt	ctgg	tg	480
g	ctcg	tgca	agt	gcaag	cg c	ctcad	ccgc	ttc	cacaa	сс а	gtcgç	gagct	caag	gact	tc	540
gg	ggccg	gaga	ccg	cgcgg	cc g	cagaa	agggt	cgca	agco	gc g	gcccg	gcgc	ccgg	gggag	CC	600
aa	agco	aacc	agg	cggag	ct g	gagaa	acgcc	tacı	agag	Ī						638
21 21:	0> 12 1> 21 ⁻ 2> PR 3> Mu	T	culue													

<400> 12

10

Met	Gln	Pro	Ser	Leu	Ala	Pro	Cys	Leu	Ile	Cys	Leu	Leu	Val	His	Ala	
1				5					10					15		
Ala	Phe	Cys	Ala	Val	Glu	Gly	Gln	Gly	Trp	Gln	Ala	Phe	Arg	Asn	Asp	
			20					25					30			
Ala	Thr	Glu	Val	Ile	Pro	Gly	Leu	Gly	Glu	Tyr	Pro	Glu	Pro	Pro	Pro	
		35					40					45				
Glu	Asn	Asn	Gln	Thr	Met	Asn	Arg	Ala	Glu	Asn	Gly	Gly	Arg	Pro	Pro	
	50					55					60					
His	His	Pro	Туг	Asp	Ala	Lys	Asp	Val	Ser	Glu	Tyr	Ser	Cys	Arg	Glu	
65					70					75					80	
Leu	His	Tyr	Thr	Arg	Phe	Leu	Thr	Asp	Gly	Pro	Cys	Arg	Ser	Ala	Lys	
				85					90					95		
Pro	Val	Thr	Glu	Leu	Val	Cys	Ser	Gly	Gln	Cys	Gly	Pro	Ala	Arg	Leu	
			100					105					110			
Leu	Pro	Asn	Ala	Ile	Gly	Arg	Val	Lys	Trp	Trp	Arg	Pro	Asn	Gly	Pro	
		115					120					125				
Asp	Phe	Arg	Cys	Ile	Pro	Asp	Arg	Tyr	Arg	Ala	Gln	Arg	Val	Gln	Leu	
	130					135					140					
Leu	Cys	Pro	Gly	Gly	Ala	Ala	Pro	Arg	Ser	Arg	Lys	Val	Arg	Leu	Val	
145					150					155					160	
Ala	Ser	Cys	Lys	Cys	Lys	Arg	Leu	Thr	Arg	Phe	His	Asn	Gln	Ser	Glu	
				165					170					175		
Leu	Lys	Asp	Phe	Gly	Pro	Glu	Thr	Ala	Arg	Pro.	Gln	Гуs	Gly	Arg	Lys	
			180					185					190			
Pro	Arg	Pro	Gly	Ala	Arg	Gly	Ala	Lys	Ala	Asn	Gln	Ala	Glu	Leu	Glu	
		195					5ÙŨ					205				
Asn	Ala	Tyr														
	210									_						
<211> <212>	210> 13 211> 674 212> ADN 213> Rattus norvegicus															

79

5

<400> 13

gaggaccgag	tgcccttcct	ccttctggca	ccatgcagct	ctcactagcc	ccttgccttg	60
cctgcctgct	tgtacatgca	gccttcgttg	ctgtggagag	ccaggggtgg	caagccttca	120
agaatgatgc	cacagaaatc	atcccgggac	tcagagagta	cccagagcct	cctcaggaac	180
tagagaacaa	ccagaccatg	aaccgggccg	agaacggagg	cagacccccc	caccatcctt	240
atgacaccaa	agacgtgtcc	gagtacagct	gccgcgagct	gcactacacc	cgcttcgtga	300
ccgacggccc	gtgccgcagt	gccaagccgg	tcaccgagtt	ggtgtgctcg	ggccagtgcg	360
gccccgcgcg	gctgctgccc	aacgccatcg	ggcgcgtgaa	gtggtggcgc	ccgaacggac	420
ccgacttccg	ctgcatcccg	gatcgctacc	gcgcgcagcg	ggtgcagctg	ctgtgccccg	480
gcggcgcggc	gccgcgctcg	cgcaaggtgc	gtctggtggc	ctcgtgcaag	tgcaagcgcc	540
tcacccgctt	ccacaaccag	tcggagctca	aggacttcgg	acctgagacc	gcgcggccgc	600
agaagggtcg	caagccgcgg	ccccgcgccc	ggggagccaa	agccaaccag	gcggagctgg	660
agaacgccta	ctag					674
10> 14 11> 213 12> PRT						

<2 <2

<213> Rattus norvegicus

<400> 5

Met Gln Leu Ser Leu Ala Pro Cys Leu Ala Cys Leu Leu Val His Ala Ala Phe Val Ala Val Glu Ser Gln Gly Trp Gln Ala Phe Lys Asn Asp 20 25 30 Ala Thr Glu Ile Ile Pro Gly Leu Arg Glu Tyr Pro Glu Pro Pro Gln 40 Glu Leu Glu Asn Asn Gln Thr Met Asn Arg Ala Glu Asn Gly Gly Arg 55 60 -Pro Pro His His Pro Tyr Asp Thr Lys Asp Val Ser Glu Tyr Ser Cys 75 80 Arg Glu Leu His Tyr Thr Arg Phe Val Thr Asp Gly Pro Cys Arg Ser 85 90

Ala Lys Pro Val Thr Glu Leu Val Cys Ser Gly Gln Cys Gly Pro Ala

			100					105					110		
Arg	Leu	Leu	Pro	Asn	Ala	Ile	Gly	Arg	Val	Lys	Trp	Trp	Arg	Pro	Asn
		115					120					125			
Gly	Pro	Asp	Phe	Arg	Cys	Ile	Pro	Asp	Arg	Tyr	Arg	Ala	Gln	Arg	Val
_	130					135					140				
Gln	Leu	Leu	Cys	Pro	Gly	Gly	Ala	Ala	Pro	Arq	Ser	Arg	Lvs	Val	Arq
145			_		150	_				155			-		160
Leu	Val	Ala	Ser	Cvs	Lys	Cvs	Lvs	Arq	Leu	Thr	Ara	Phe	His	Asn	Gln
70-				165		-1-			170		5			175	
Ser	-Glu-	-Len	-bvs		-Pha-	Glv	Pro	Gាប		ΔĪā	Ara	Pro	Gln		Gly
502	020	200	180			0-7		185		,,,,	*** 9		190	Dy S	OLY
Ara	Lve	Pro	Arg	Pro	Ara	Δla	λrα		Δla	Tare	λla	Δen		בות	Glu
ALG	цуз	195	ar 9	110	9	r.i.a	200	Gry	nia	БУS	MIG	205	GIII	Ala	Giu
Lou	Glu		Ala	Tur			200					203			
neu	210	ASII	ALG	ıyı											
	210														
<210> < < 211> 2 < < 212> 7 < < 213> 1	2301 ADN	sanier	าร												
<400> !		capioi	.0												
		ור כפו	cagaa	atc :	at ccc	caaaa	r taa	acaac	rta c	cccaa	acct	ctac	C2 C 2C	76	. 60
_			ccatg							_	_	-		-	120
			cctcc												180
			gcagc					_							240
cggc	gcgcc	t gc	tgccc	aac q	gccat	cggc	gcg	gcaag	ıtg g	tggcg	ccca	agcg	ggcc	cg	300
actt	ccgct	g ca	tcccc	gac	cgcta	ccgcg	g cgc	agcgg	ıgt g	cagct	gttg	tgtc	ctgg	eg	360
gcgc	ggcgc	c gc	gcgcg	cgc i	aaggt	gcgcd	tgg	tggc	tc g	tgcaa	gtgc	aagc	gcct	ca	420
ctcg	cttcc	ca ca	accag	tcc	gagct	caago	g act	tcggg	icc c	gaggo	cgcg	cggc	cgcaa	aa	480
cggg	ccqqa	a qc	tácáā	CCC	cacac	იივვე	g gda	ccaaa	igo c	agccg	ggcc	ÿā			532
<210> 1 <211> 1 <212> 1 <213> 1 <400> 1	176 PRT Bos to	rus													

Asn Asp Ala Thr Glu Ile Ile Pro Glu Leu Gly Glu Tyr Pro Glu Pro 15 1 Leu Pro Glu Leu Asn Asn Lys Thr Met Asn Arg Ala Glu Asn Gly Gly 20 25 Arg Pro Pro His His Pro Phe Glu Thr Lys Asp Ala Ser Glu Tyr Ser 40 Cys Arg Glu Leu His Phe Thr Arg Tyr Val Thr Asp Gly Pro Cys Arg Ser Ala Lys Pro Val Thr Glu Leu Val Cys Ser Gly Gln Cys Gly Pro 75 Ala Arg Leu Leu Pro Asn Ala Ile Gly Arg Gly Lys Trp Trp Arg Pro 85 90 95 Ser Gly Pro Asp Phe Arg Cys Ile Pro Asp Arg Tyr Arg Ala Gln Arg 100 105 Val Gln Leu Cys Pro Gly Gly Ala Ala Pro Arg Ala Arg Lys Val 120 125 115 Arg Leu Val Ala Ser Cys Lys Cys Lys Arg Leu Thr Arg Phe His Asn 140 135 Gln Ser Glu Leu Lys Asp Phe Gly Pro Glu Ala Ala Arg Pro Gln Thr 150 155 160 145 Gly Arg Lys Leu Arg Pro Arg Ala Arg Gly Thr Lys Ala Ser Arg Ala 170 165 175

<210> 17

<211> 35828

<212> ADN

5 <213> Mus musculus

<220>

<221> rasgos_misc

<222> (1)...(35828)

10 <223> n=A,T,C o G

<400> 17

cgcgttttgg	tgagcagcaa	tattgcgctt	cgatgagcct	tggcgttgag	attgatacct	60
ctgctgcaca	aaaggcaatc	gaccgagctg	gaccagcgca	ttcgtgacac	cgtctccttc	120
gaacttattc	gcaatggagt	gtcattcatc	aaggacngcc	tgatcgcaaa	tggtgctatc	180
cacgcagcgg	caatcgaaaa	ccctcagccg	gtgaccaata	tctacaacat	cagccttggt	240
atcctgcgtg	atgagccagc	gcagaacaag	gtaaccgtca	gtgccgataa	gttcaaagtt	300
aaacctggtg	ttgataccaa	cattgaaacg	ttgatcgaaa	acgcgctgaa	aaacgctgct	360
gaatgtgcgg	cgctggatgt	cacaaagcaa	atggcagcag	acaagaaagc	gatggatgaa	420
ctggcttcct	atgtccgcac	ggccatcatg	atggaatgtt	tccccggtgg	tgttatctgg	480
cagcagtgcc	gtcgatagta	tgcaattgat	aattattatc	atttgcgggt	cctttccggc	540
gateegeett	g tta cggggc	ggcgacctcg	cgggttttcg	ctatttatga	aaattttccg	600
gtttaaggcg	tttccgttct	tcttcgtcat	aacttaatgt	ttttatttaa	aataccctct	660
gaaaagaaag	gaaacgacag	gtgctgaaag	cgagcttttt	ggcctctgtc	gtttcctttc	720
tctgtttttg	tccgtggaat	gaacaatgga	agtcaacaaa	aagcagagct	tatcgatgat	780
aagcggtcaa	acatgagaat	tegeggeege	ataatacgac	tcactatagg	gatcgacgcc	840
tactccccgc	gcatgaagcg	gaggagctgg	actccgcatg	cccagagacg	cccccaacc	900
cccaaagtgc	ctgacctcag	cctctaccag	ctctggcttg	ggcttgggcg	gggtcaaggc	960
taccacgttc	tcttaacagg	tggctgggct	gtctcttggc	cgcgcgtcat	gtgacagctg	1020
cctagttctg	cagtgaggtc	accgtggaat	gtctgccttc	gttgccatgg	caacgggatg	1080
acgttacaat	ctgggtgtgg	agcttttcct	gtccgtgtca	ggaaatccaa	ataccctaaa	1140
ataccctaga	agaggaagta	gctgagccaa	ggctttcctg	gcttctccag	ataaagtttg	1200
acttagatgg	aaaaaacaa	aatgataaag	acccgagcca	tctgaaaatt	cctcctaatt	1260
gcaccactag	gaaatgtgta	tattattgag	ctcgtatgtg	ttcttattt	aaaaagaaaa -	1320
ctttagtcat	gttattaata	agaatttctc	agcagtggga	gagaaccaat	attaacacca	1380
agataaaagt	tggcatgatc	cacattgcag	gaagatccac	gttgggtttt	catgaatgtg	1440
		cctaagctct				1500
		atctttcaat				1560
taggacctgc	tgcctagcct	gcagcagagc	cagaggggtt	tcacatgatt	agtctcagac	1620
		tactgcatcg				1680
tcaaacacca	tatggtgttc	actcttcaga	acggtggtgg	tcatcatggt	gcatttgctg	1740
acggttggat	tggtggtaga	gagctgagat	atatggacgc	actcttcagc	attctgtcaa	1800
cgtggctqtq	cattcttgct	cctgagcaag	rggchaaaca	gactcacagg	gtcagcctcc	1860
agctcagtcg	ctgcatagtc	ttagggaacc	tctcccagtc	ctccctacct	caactatcca	1920
agaagccagg	gggcttggcg	gtctcaggag	cctgcttgct	gggggacagg	ttgttgagtt	1980
ttatcigcag	taggttgcct	aggcatagtg	tcaggactga	tggctgcctt	ggagaacaca	2040
tcctttgccc	tctatgcaaa	tctgaccttg	acatgggggc	gctgctcagc	tgggaggatc	2100
aactgcatac	ctaaagccaa	gcctaaagct	tcttcgtcca	cctgaaactc	ctggaccaag	2160

gggcttccgg cacatcctct	caggccagtg	agggagtctg	tgtgagctgc	actttccaat	2220
ctcagggcgt gagaggcaga	gggaggtggg	ggcagagcct	tgcagctctt	tcctcccatc	2280
tggacagcgc tctggctcag	cagcccatat	gagcacaggc	acatccccac	cccaccccca	2340
cctttcctgt cctgcagaat	ttaggctctg	ttcacggggg	9999999999	ggggcagtcc	2400
tatcctctct taggtagaca	ggactctgca	ggagacactg	ctttgtaaga	tactgcagtt	2460
taaatttgga tgttgtgagg	ggaaagcgaa	gggcctcttt	gaccattcag	tcaaggtacc	2520
ttctaactcc catcgtattg	gggggctact	ctagtgctag	acattgcaga	gagcctcaga	2580
actgtagtta ccagtgtggt	aggattgatc	cttcagggag	cctgacatgt	gacagttcca	2640
ttcttcaccc agtcaccgaa	catttattca	gtacctaccc	cgtaacaggc	accgtagcag	2700
gtactgaggg acggaccact	caaagaactg	acagaccgaa	gccttggaat	ataaacacca	2760
aagcatcagg ctctgccaac	agaacactct	ttaacactca	ggccctttaa	cactcaggac	2820
ccccaccccc accccaagca	gttggcactg	ctatccacat	tttacagaga	ggaaaaacta	2880
ggcacaggac gatataagtg	gcttgcttaa	gcttgtctgc	atggtaaatg	gcagggctgg	2940
attgagaccc agacattcca	actctagggt	ctattttct	tttttctcgt	tgttcgaatc	3000
tgggtcttac tgggtaaact	caggctagcc	tcacactcat	atccttctcc	catggcttac	3060
gagtgctagg attccaggtg	tgtgctacca	tgtctgactc	cctgtagctt	gtctatacca	3120
tcctcacaac ataggaattg	tgatagcagc	acacacaccg	gaaggagctg	gggaaatccc	3180
acagagggct ccgcaggatg	acaggcgaat	gcctacacag	aaggt gggga	agggaagcag	3240
agggaacagc atgggcgtgg	gaccacaagt	ctatttgggg	aagctgccgg	taaccgtata	3300
tggctggggt gaggggagag	gtcatgagat	gaggcaggaa	gagccacagc	aggcagcggg	3360
tacgggctcc ttattgccaa	gaggctcgga	tcttcctcct	cttcctcctt	ccggggctgc	3420
ctgttcattt tccaccactg	cctcccatcc	aggtctgtgg	ctcaggacat	cacccagctg	3480
cagaaactgg gcatcaccca	cgtcctgaat	gctgccgagg	gcaggtcctt	catgcacgtc	3540
aacaccagtg ctagcttcta	cgaggattct	ggcatcacct	acttgggcat	caaggccaat	3600
gatacgcagg agttcaacct	cagtgcttac	tttgaaaggg	ccacagattt	cattgaccag	3660
gcgctggccc ataaaaatgg	taaggaacgt	acattccggc	acccatggag	cgtaagccct	3720
ctgggacctg cttcctccaa	agaggccccc	acttgaaaaa	ggttccagaa	agatcccaaa	3780
atatgccacc aactagggat	taagtgtcct	acatgtgagc	cgatgggggc	cactgcatat	3840
agtctgtgcc atagacatga	caatggataa	taatatttca	gacagagagc	aggagttagg	3900
tagctgtgct cctttccctt	taattgagtg	tgcccatttt	tttattcatg	tatgtgtata	3960
catgtgtgtg cacacatgcc	ataggttgat	actgaacacc	gtcttcaatc	gttccccacc	4020
ccaccttatt ttttgaggca	gggtctcttc	cctgatcctg	gggctcattg	gtttatctag	4080
gctgctggcc agtgagctct	ggagttctgc	ttttctctac	ctccctagcc	ctgggactgc	4140
aggggcatgt gctgggccag	gcttttatgt	cgcgttgggg	atctgaactt	aggtccctag	4200
gcctgagcac cgtaaagact	ctgccacatc	cccagcctgt	ttgagcaagt	gaaccattcc	4260
ccagaattcc cccagtgggg	ctttcctacc	cttttattgg	ctaggcattc	atgagtggtc	4320

acctcgccag	aggaatgagt	ggccacgact	ggctcagggt	cagcagccta	gagatactgg	4380
gttaagtctt	cctgccgctc	gctccctgca	gccgcagaca	gaaagtagga	ctgaatgaga	4440
gctggctagt	ggtcagacag	gacagaaggc	tgagagggtc	acagggcaga	tgtcagcaga	4500
gcagacaggt	tctccctctg	tgggggaggg	gtggcccact	gcaggtgtaa	ttggccttct	4560
ttgtgctcca	tagaggcttc	ctgggtacac	agcagcttcc	ctgtcctggt	gattcccaaa	4620
gagaactccc	taccactgga	cttacagaag	ttctattgac	tggtgtaacg	gttcaacagc	4680
tttggctctt	ggtggacggt	gcatactgct	gtatcagctc	aagagctcat	tcacgaatga	4740
acacacacac	acacacacac	acacacacac	acacaagcta	attttgatat	gccttaacta	4800
gctcagtgac	tgggcatttc	tgaacatccc	tgaagttagc	acacatttcc	ctctggtgtt	4860
ectggettaa	caecttetaa	atctatattt	tatctttgct	gccctgttac	cttctgagaa	4920
gcccctaggg	ccacttccct	tcgcacctac	attgctggat	ggtttctctc	ctgcagctct	4980
taaatctgat	ccctctgcct	ctgagccatg	ggaacagccc	aataactgag	ttagacataa	5040
aaacgtctct	agccaaaact	tcagctaaat	ttagacaata	aatcttactg	gttgtggaat	5100
ccttaagatt	cttcatgacc	tccttcacat	ggcacgagta	tgaagcttta	ttacaattgt	5160
ttattgatca	aactaactca	taaaaagcca	gttgtctttc	acctgctcaa	ggaaggaaca	5220
aaattcatcc	ttaactgatc	tgtgcacctt	gcacaatcca	tacgaatatc	ttaagagtac	5280
taagattttg	gttgtgagag	tcacatgtta	cagaatgtac	agctttgaca	aggtgcatcc	5340
ttgggatgcc	gaagtgacct	gctgttccag	ccccctacct	tctgaggctg	ttttggaagc	5400
aatgctctgg	aagcaacttt	aggaggtagg	atgctggaac	agcgggtcac	ttcagcatcc	5460
cgatgacgaa	tcccgtcaaa	gctgtacatt	ctgtaacaga	ctgggaaagc	tgcagacttt	5520
aaggccaggg	ccctatggtc	cctcttaatc	cctgtcacac	ccaacccgag	cccttctcct	5580
ccagccgttc	tgtgcttctc	actctggata	gatggagaac	acggccttgc	tagttaaagg	5640
agtgaggctt	cacccttctc	acatggcagt	ggttggtcat	cctcattcag	ggaactctgg	5700
ggcattctgc	ctttacttcc	tctttttgga	ctacagggaa	tatatgctga	cttgttttga	5760
ccttgtgtat	ggggagactg	gatctttggt	ctggaatgtt	tcctgctagt	ttttccccat	5820
cctttggcaa	accctatcta	tatcttacca	ctaggcatag	tggccctcgt	tctggagcct	5880
gccttcaggc	tggttctcgg	ggaccatgtc	cctggtttct	ccccagcata	tggtgttcac	5940
agtgttcact	gcgggtggtt	gctgaacaaa	gcggggattg	catcccagag	ctccggtgcc	6000
ttgtgggtac	actgctaaga	taaaatggat	actggcctct	ctctgaccac	ttgcagagct	6060
ctggtgcctt	gtgggtacac	tgctaagata	aaatggatac	tggcctctct	ctatccactt	6120
gcaggactct	aggqaacaqq	aatccattac	tgagaaaacc	aggggctagg	agcagggagg	6180
tagctgggca	gctgaagtgc	ttggcgacta	accaatgaat	accagagttt	ggatctctag	6240
aatactctta	aaatctgggt	gggcagagtg	gcctgcctgt	aatcccagaa	ctcgggaggc	63 0 0
ggagacaggg	aatcatcaga	gcaaactggc	taaccagaat	agcaaaacac	tgagctctgg	6360
gctctgtgag	agatectgee	ttaacatata	agagagagaa	taaaacattg	aagaagacag	6420
tagatgccaa	ttttaagccc	ccacatgcac	atggacaagt	gtgcgtttga	acacacatat	6480

	gcactcatgt	gaaccaggca	tgcacactcg	ggcttatcac	acacataatt	tgaaagagag	6540
	agtgagagag	gagagtgcac	attagagttc	acaggaaagt	gtgagtgagc	acacccatgc	6600
	acacagacat	gtgtgccagg	gagtaggaaa	ggagcctggg	tttgtgtata	agagggagcc	6660
	atcatgtgtt	tctaaggagg	gcgtgtgaag	gaggcgttgt	gtgggctggg	actggagcat	6720
	ggttgtaact	gagcatgctc	cctgtgggaa	acaggagggt	ggccaccctg	cagagggtcc	6780
	cactgtccag	cgggatcagt	aaaagcccct	gctgagaact	ttaggtaata	gccagagaga	6840
	gaaaggtagg	aaagtggggg	gactcccatc	tctgatgtag	gaggatctgg	gcaagtagag	6900
	gtgcgtttga	ggtagaaaga	ggggtgcaga	ggagatgctc	ttaattctgg	gtcagcagtt	6960
	tctttccaaa	taatgcctgt	gaggaggtgt	aggtggtggc	cattcactca	ctcagcagag	7020
	ggatgatgat	gcccggtgga	tgctggaaat	ggccgagcat	caaccctggc	tctggaagaa	7080
	ctccatcttt	cagaaggaga	gtggatctgt	gtatggccag	cggggtcaca	ggtgcttggg	7140
	gcccctgggg	gactcctagc	actgggtgat	gtttatcgag	tgctcttgtg	tgccaggcac	7200
	tggcctgggg	ctttgtttct	gtctctgttt	tgtttcgttt	tttgagacag	actcttgcta	7260
	tgtatccgtg	tcaatcttgg	aatctcactg	catagcccag	gctgcggaga	gaggggaggg	7320
	caataggcct	tgtaagcaag	ccacacttca	gagactagac	tccaccctgc	gaatgatgac	7380
	aggtcagagc	tgagttccgg	aagattttt	ttccagctgc	caggtggagt	gtggagtggc	7440
	agctagcggc	aagggtagag	ggcgagctcc	ctgtgcagga	gaaatgcaag	caagagatgg	7500
	caagccagtg	agttaagcat	tctgtgtggg	gagcaggtgg	atgaagagag	aggctgggct	7560
	ttcgcctctg	ggggggggt	gaggggtggg	gatgaggtga	gaggagggca	gctccctgca	7620
	gtgtgatgag	atttttcctg	acagtgacct	ttggcctctc	cctcccccac	ttcccttctt	7680
	tcctttcttc	ccaccattgc	tttccttgtc	cttgagaaat	tctgagtttc	cacttcactg	7740
	gtgatgcaga	cggaaacaga	agccgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	7800
	gtgtgtgtgt	ttgtgtgtat	gtgtgtgtgt	gtgtttgtgt	gtatgtgtgt	cagtgggaat	7860
	ggctcatagt	ctgcaggaag	gtgggcagga	aggaataagc	tgtaggctga	ggcagtgtgg	7920
	gatgcaggga	gagaggagag	gagggatacc	agagaaggaa	attaagggag	ctacaagagg	7980
	gcattgttgg	ggtgtgtgtg	tgtgtgtgtt	gtttatattt	gtattggaaa	tacattcttt	8040
	taaaaaatac	ttatccattt	atttatttt	atgtgcacgt	gtgtgtgcct	gcatgagttc	8100
•	atgtgtgcca	cgtgtgtgcg	ggaacccttg	gaggccacaa	gggggcatct	gatcccctgg	8160
	aactggagtt	ggaggaggtt	gtgagtcccc	tgacatgtţt	gctgggaact	gaaccccggt	8220
	cctatgcaag	agcaggaagt	gcagttatct	gctgagccat	ctctccagtc	ctgaaatcca	8280
	ttctcttaaa	atacacgtgg	cagagacatg	atgggattta	cgtatggatt	taatgtggcg	8340
	gtcattaagt	tccggcacag	gcaagcacct	gtaaagccat	caccacaacc	gcaacagtga	- 8400
	atgtgaccat	cacccccatg	ttcttcatgt	cccctgtccc	ctccatcctc	cattctcaag	8460
	cacctcttgc	tctgcctctg	tcgctggaga	acagtgtgca	tctgcacact	cttatgtcag	8520
	tgaagtcaca	cagcctgcac	cccttcctgg	tctgagtatt	tgggttctga	ctctgctatc	8580
	acacactact	gtactgcatt	ctctcgctct	cttttttaa	acatatttt	atttgtttgt	8640

```
gtgtatgcac atgtgccaca tgtgtacaga tactatggag gccagaagag gccatggccg
                                                                     8700
 tccctggagc tggagttaca ggcagcgtgt gagctgcctg gtgtgggtgc tgggaaccaa
                                                                     8760
 actigaatot aaagcaagca ciittaacig cigaggcagc ictcagtacc ciicticati
                                                                     8820
 teteegeetg ggtteeattg tatggacaca tgtagetaga atatettget tatetaatta
                                                                     8880
 tgtacattgt tttgtgctaa gagagagtaa tgctctatag cctgagctgg cctcaacctt
                                                                     8940
 gecatectee tgeeteagee tecteeteet gagtgetagg atgacaggeg agtggtaact
                                                                     9000
 tacatggttt catgttttgt tcaagactga aggataacat tcatacagag aaggtctggg
                                                                     9060
 tcacaaagtg tgcagttcac tgaatggcac aacccgtgat caagaaacaa aactcagggg
                                                                     9120
 ctggagagat ggcactgact gctcttccag aggtccggag ttcaattccc agcaaccaca
                                                                     9180
tggtggctca cagccatcta taacgagatc tgacgccctc ttctggtgtg tctgaagaca
                                                                     9240
 9300
 caccccagaa agcccactcc atgttccctc ccacgtctct gcctacagta ctcccaggtt
                                                                     9360
 accactgite aggettetaa caacciggit tactigggee tettitetge teigiggage
                                                                     9420
 cacacatttg tgtgcctcat acacgttctt tctagtaagt tgcatattac tctgcgtttt
                                                                     9480
 tacatgtatt tatttattgt agttgtgtgt gcgtgtgggc ccatgcatgg cacagtgtgt
                                                                     9540
 ggggatgtca gagtattgtg aacaggggac agttcttttc ttcaatcatg tgggttccag
                                                                     9600
 aggitgaact caggicatca igigiggcag caaaigccii tacccaciga gacaicicca
                                                                     9660
 tattettttt titteeeetg aggigggge tigiteeata geecaaacig getiigeaci
                                                                     9720
 tgcagttcaa agtgactccc tgtctccacc tettagagta ttggaattac gatgtgtact
                                                                     9780
 accacacctg actggatcat taattetttg atgggggcgg ggaagcgcac atgctgcagg
                                                                     9840
 tgaagggatg actggactgg acatgagcgt ggaagccaga gaacagcttc agtctaatgc
                                                                     9900
 tctcccaact gagctatttc ggtttgccag agaacaactt acagaaagtt ctcagtgcca
                                                                    9960
 tgtggattcg gggttggagt tcaactcatc agcttgacat tggctcctct acccactgag
                                                                   10020
 ccttctcact actctctacc tagatcatta attcttttt aaaaagactt attagggggc
                                                                   10080
 tggagagatg gctcagccgt taagagcacc gaatgccctt ccagaggtcc tgagttcaat
                                                                   10140
 teccageatg ceattgetgg geagtagggg gegeaggtgt teaaegtgag tagetgttge
                                                                   10200
 cagttttccg cggtggagaa cctcttgaca ccctgctgtc cctggtcatt ctgggtgggt
                                                                   10260
gcatggtgat atgcttgttg tatggaagac tttgactgtt acagtgaagt tgggcttcca
                                                                   10320
 cagttaccac gecteccetg tetetegeag geegggeget tgeecatege egegaggget
                                                                   10380
acageegete eccaaegeta gttategeet aceteatgat geggeagaag atggaegtea
                                                                   10440
agtotgotot gagtactgtg aggcagaatc qtqagatcgg coccaacgat ggcttootgg
                                                                   10500
eccaactetg ecageteaat gacagactag ecaaggaggg caaggtgaaa etetagggtg
                                                                   10560
cccacageet ettitgeaga ggtetgaetg ggagggeeet ggeageeatg tttaggaaac
                                                                   10620
acagtatace caetecetge accaecagae aegtgeecae atetgteeca etetggteet
                                                                   10680
cgggggccac tccaccctta gggagcacat gaagaagctc cctaagaagt tctgctcctt
                                                                   10740
agccatcett teetgtaatt tatgtetete eetgaggtga ggtteaggtt tatgteeetg
                                                                   10800
```

tctgtggcat	agatacatct	cagtgaccca	gggtgggagg	gctatcaggg	tgcatggccc	10860
gggacacggg	cactcttcat	gacccctccc	ccacctgggt	tcttcctgtg	tggtccagaa	10920
ccacgagcct	ggtaaaggaa	ctatgcaaac	acaggccctg	acctccccat	gtctgttcct	10980
ggtcctcaca	gcccgacacg	ccctgctgag	gcagacgaat	gacattaagt	tctgaagcag	11040
agtggagata	gattagtgac	tagatttcca	aaaagaagga	aaaaaaaggc	tgcattttaa	11100
aattatttcc	ttagaattaa	agatactaca	taggggccct	tgggtaagca	aatccatttt	11160
tcccagaggc	tatcttgatt	ctttggaatg	tttaaagtgt	gccttgccag	agagcttacg	11220
atctatatct	gctgcttcag	agccttccct	gaggatggct	ctgttccttt	gcttgttaga	11280
agagcgatgc	cttgggcagg	gtttccccct	tttcagaata	cagggtgtaa	agtccagcct	11340
attacaaaca	aacaaacaaa	caaacaaaca	aaggacctcc	atttggagaa	ttgcaaggat	11400
tttatcctga	attatagtgt	tggtgagttc	aagtcatcac	gccaagtgct	tgccatcctg	11460
gttgctattc	taagaataat	taggaggagg	aacctagcca	attgcagctc	atgtccgtgg	11520
gtgtgtgcac	gggtgcatat	gttggaaggg	gtgcctgtcc	ccttggggac	agaaggaaaa	11580
tgaaaggccc	ctctgctcac	cctggccatt	tacgggaggc	tctgctggtt	ccacggtgtc	11640
tgtgcaggat	cctgaaactg	actcgctgga	cagaaacgag	acttggcggc	accatgagaa	11700
tggagagaga	gagagcaaag	aaagaaacag	cctttaaaag	aactttctaa	gggtggtttt	11760
tgaacctcgc	tggaccttgt	atgtgtgcac	atttgccaga	gattgaacat	aatcctcttg	11820
ggacttcacg	ttctcattat	ttgtatgtct	ccggggtcac	gcagagccgt	cagccaccac	11880
cccagcaccc	ggcacatagg	cgtctcataa	aagcccattt	tatgagaacc	agagctgttt	11940
gagtaccccg	tgtatagaga	gagttgttgt	cgtggggcac	ccggatccca	gcagcctggt	12000
tgcctgcctg	taggatgtct	tacaggagtt	tgcagagaaa	ccttccttgg	agggaaagaa	12060
atatcaggga	tttttgttga	atatttcaaa	ttcagcttta	agtgtaagac	tcagcagtgt	12120
tcatggttaa	ggtaaggaac	atgccttttc	cagagctgct	gcaagaggca	ggagaagcag	12180
acctgtctta	ggatgtcact	cccagggtaa	agacctctga	tcacagcagg	agcagagctg	12240
tgcagcctgg	atggtcattg	tcccctattc	tgtgtgacca	cagcaaccct	ggtcacatag	12300
ggctggtcat	ccttttttt	tttttttt	ttttttttg	gcccagaatg	aagtgaccat	12360
agccaagttg	tgtacctcag	tctttagttt	ccaagcggct	ctcttgctca	atacaatgtg	12420
catttcaaaa	taacactgta	gagttgacag	aactggttca	tgtgttatga	gagaggaaaa	12480
gagaggaaag	aacaaaacaa	aacaaaacac	cacaaaccaa	aaacatctgg	gctagccagg	12540
catgattgca	atgtctacag	gcccagttca	tgagaggcag	agacaggaag	accgccgaaa	12600
ggtcaaggat	agcatggtct	acgtatcgag	acticageca	gggctacggt	cccaagatcc	12660
taggttttgg	attttgggct	ttggtttttg	agacagggtt	tctctgtgta	gccctggctg	12720
tcctggaact	cgctctgtag	accaggctgg	cctcaaactt	agagatctgc	ctgactctgc	12780
ctttgagggc	tgggacgaat	gccaccactg	cccaactaag	attccattaa	aaaaaaaaa	12840
agttcaagat	aattaagagt	tgccagctcg	ttaaagctaa	gtagaagcag	tctcaggcct	12900
gctgcttgag	gctgttcttg	gcttggacct	gaaatctgcc	cccaacagtg	tccaagtgca	12960

catgactttg	agccatctcc	agagaaggaa	gtgaaaattg	tggctcccca	gtcgattggg	13020
acacagtete	tctttgtcta	ggtaacacat	ggtgacacat	agcattgaac	tctccactct	13080
gagggtgggt	ttccctcccc	ctgcctcttc	tgggttggtc	accccatagg	acagccacag	13140
gacagtcact	agcacctact	ggaaacctct	ttgtgggaac	atgaagaaag	agcctttggg	13200
agattcctgg	ctttccatta	gggctgaaag	tacaacggtt	cttggttggc	tttgcctcgt	13260
gtttataaaa	ctagctacta	ttcttcaggt	aaaataccga	tgttgtggaa	aagccaaccc	13320
cgtggctgcc	cgtgagtagg	gggtggggtt	gggaatcctg	gatagtgttc	tatccatgga	13380
aagtggtgga	ataggaatta	agggtgttcc	cccccccc	aacctcttcc	tcagacccag	13440
ccactttcta	tgacttataa	acatccaggt	aaaaattaca	aacataaaaa	tggtttctct	13500
 teteaatett	ctaaagtctg	cctgcctttt	ccaggggtag	gtctgtttct	ttgctgttct	13560
attgtcttga	gagcacagac	taacacttac	caaatgaggg	aactcttggc	ccatactaag	13620
gctcttctgg	gctccagcac	tcttaagtta	ttttaagaat	tctcacttgg	cctttagcac	13680
acccgccacc	cccaagtggg	tgtggataat	gccatggcca	gcagggggca	ctgttgaggc	13740
gggtgccttt	ccaccttaag	ttgcttatag	tatttaagat	gctaaatgtt	ttaatcaaga	13800
gaagcactga	tcttataata	cgaggataag	agattttctc	acaggaaatt	gtctttttca	13860
taattcttt	acaggctttg	tcctgatcgt	agcatagaga	gaatagctgg	atatttaact	13920
tgtattccat	tttcctctgc	cagcgttagg	ttaactccgt	aaaaagtgat	tcagtggacc	13980
gaagaggctc	agagggcagg	ggatggtggg	gtgaggcaga	gcactgtcac	ctgccaggca	14040
tgggaggtcc	tgccatccgg	gaggaaaagg	aaagtttagc	ctctagtcta	ccaccagtgt	14100
taacgcactc	taaagttgta	accaaaataa	atgtcttaca	ttacaaagac	gtctgttttg	14160
tgtttccttt	tgtgtgtttg	ggctttttat	gtgtgcttta	taactgctgt	ggtggtgctg	14220
ttgttagttt	tgaggtagga	tctcaggctg	gccttgaact	tctgatcgcc	tgcccctgcc	14280
cctgcccctg	cccctgtccc	tgcctccaag	tgctaggact	aaaagcacat	gccaccacac	14340
cagtacagca	tttttctaac	atttaaaaat	aatcacctag	gggctggaga	gagggttcca	14400
gctaagagtg	cacactgctc	ttgggtagga	cctgagttta	gttcccagaa	cctatactgg	14460
gtggctccag	gtccagagga	tccaggacct	ctggcctcca	tgggcatctg	ctcttagcac	14520
atacccacat	acagatacac	acataaaaat	aaaatgaagc	ctttaaaaac	ctcctaaaac	14580
ctagcccttg	gaggtacgac	tctggaaagc	tggcatactg	tgtaagtcca	tctcatggtg	14640
ttctggctaa	cgtaagactt	acagagacag	aaaagaactc	agggtgtgct	gggggttggg	14700
atggaggaag	agggatgagt	agggggagca	cggggaactt	gggcagtgaa	aattctttgc	14760
aggacactaq	aggaggataa	ataccagtca	ttgcacccac	tactggacaa	ctccāģģģaa	14820
ttatgctggg	tgaaaagaga	aggccccagg	tattggctgc	attggctgca	tttgcgtaac	14880
attttttaa	attgaaaaga	aaaagatgta	aatcaaggtt	agatgagtgg	ttgctgtgag	14940
ctgagagctg	gggtgagtga	gacatgtgga	caactccatc	aaaaagcgac	agaaagaacg	15000
ggctgtggtg	acagctacct	ctaatctcca	cctccgggag	gtgatcaagg	ttagccctca	15060
gctagcctgt	ggtgcatgag	accctgtttc	aaaaacttta	ataaagaaat	aatgaaaaaa	15120
			•			

gacatcaggg	cagatccttg	gggccaaagg	cggacaggcg	agtctcgtgg	taaggtcgtg	15180
tagaagcgga	tgcatgagca	cgtgccgcag	gcatcatgag	agagccctag	gtaagtaagg	15240
atggatgtga	gtgtgtcggc	gtcggcgcac	tgcacgtcct	ggctgtggtg	ctggactggc	15300
atctttggtg	agctgtggag	gggaaatggg	tagggagatc	ataaaatccc	tccgaattat	15360
ttcaagaact	gtctattaca	attatctcaa	aatattaaaa	aaaaagaaga	attaaaaaac	15420
aaaaaaccta	tccaggtgtg	gtggtgtgca	cctatagcca	cgggcacttg	gaaagctgga	15480
gcaagaggat	ggcgagtttg	aaggtatctg	gggctgtaca	gcaagaccgt	cgtccccaaa	15540
ccaaaccaaa	cagcaaaccc	attatgtcac	acaagagtgt	ttatagtgag	cggcctcgct	15600
gagagcatgg	ggtgggggtg	ggggtggggg	acagaaatat	ctaaactgca	gtcaataggg	15660
atccactgag	accctggggc	ttgactgcag	cttaaccttg	ggaaatgata	agggttttgt	15720
gttgagtaaa	agcatcgatt	actgacttaa	cctcaaatga	agaaaaagaa	aaaaagaaaa	15780
caacaaaagc	caaaccaagg	ggctggtgag	atggctcagt	gggtaagagc	acccgactgc	15840
tcttccgaag	gtccagagtt	caaatcccag	caaccacatg	gtggctcaca	accatctgta	15900
acgagatatg	atgccctctt	ctggtgtgtc	tgaagacagc	tacagtgtac	ttacatataa	15960
taaataaatc	ttaaaaaaaa	aaaaaaaaa	aaaagccaaa	ccgagcaaac	caggccccca '	16020
aacagaaggc	aggcacgacg	gcaggcacca	cgagccatcc	tgtgaaaagg	cagggctacc	16080
catgggccga	ggagggtcca	gagagatagg	ctggtaagct	cagtttctct	gtataccctt	16140
tttcttgttg	acactacttc	aattacagat	aaaataacaa	ataaacaaaa	tctagagcct	16200
ggccactctc	tgctcgcttg	atttttcctg	ttacgtccag	caggtggcgg	aagtgttcca	16260
aggacagatc	gcatcattaa	ggtggccagc	ataatctccc	atcagcaggt	ggtgctgtga	16320
gaaccattat	ggtgctcaca	gaatcccggg	cccaggagct	gccctctccc	aagtctggag	16380
caataggaaa	gctttctggc	ccagacaggg	ttaacagtcc	acattccaga	gcaggggaaa	16440
	aggtcacaga					16500
	cacccccaac					16560
cttaggaagc	aggtatcaga	gtccccttcc	tgaggggact	tctgtctgcc	ttgtaaagct	16620
gtcagagcag	ctgcattgat	gtgtgggtga	cagaagatga	aaaggaggac	ccaggcagat	16680
cgccacagat	ggaccggcca	cttacaagtc	gaggcaggtg	gcagagcctt	gcágaagctc	16740.
tgcaggtgga	cgacactgat	tcattaccca	gttagcatac	cacageggge	taggcggacc	16800
	tcccagtctt					16860
cagcttccgc	cagcccctcc	tccttttgca	cctcaggtgt	gaaccctccc	tcctctcctt	16920
ctccctgtgg	catggccctc	ctgctactgc	aggctgagca	ttggatttct	ttgtgcttag	16980
atagacctga	gatggctttc	tgatttatat	atatatatcc	atcccttgga	tcttacatct	17040
aggacccaga	gctgtttgtg	ataccataag	aggctgggga	gatgatatgg	taagagtgct	17100
tgctgtacaa	gcatgaagac	atgagttcga	atccccagca	accatgtgga	aaaataacct	17160
tctaacctca	gagttgaggg	gaaaggcagg	tggattctgg	gggcttactg	gccagctagc	17220
cagcctaacc	taaatgtctc	agtcagagat	cctgtctcag-	ggaataactt	gggagaatga	17280

ctgagaaaga	cacctcctca	ggtctcccat	gcacccacac	agacacacgg	gggggggta	17340
atgtaataag	ctaagaaata	atgagggaaa	tgattttttg	ctaagaaatg	aaattctgtg	17400
ttggccgcaa	gaagcctggc	cagggaagga	actgcctttg	gcacaccagc	ctataagtca	17460
ccatgagttc	cctggctaag	aatcacatgt	aatggagccc	aggtccctct	tgcctggtgg	17520
ttgcctctcc	cactggtttt	gaagagaaat	tcaagagaga	tctccttggt	cagaattgta	17580
ggtgctgagc	aatgtggagc	tggggtcaat	gggattcctt	taaaggcatc	cttcccaggg	17640
ctgggtcata	cttcaatagt	agggtgcttg	cacagcaagc	gtgagaccct	aggttagagt	17700
ccccagaatc	tgcccccaac	ccccaaaaa	ggcatccttc	tgcctctggg	tgggtggggg	17760
gagcaaacac	ctttaactaa	gaccattagc	tggcaggggt	aacaaatgac	cttggctaga	17820
ggaatttggt	caagctggat	tccgccttct	gtagaagccc	cacttgtttc	ctttgttaag	17880
ctggcccaca	gtttgttttg	agaatgcctg	aggggcccag	ggagccagac	aattaaaagc	17940
caagctcatt	ttgatatctg	aaaaccacag	cctgactgcc	ctgcccgtgg	gaggtactgg	18000
gagagctggc	tgtgtccctg	cctcaccaac	gcccccccc	ccaacacaca	ctcctcgggt	18060
cacctgggag	gtgccagcag	caatttggaa	gtttactgag	cttgagaagt	cttgggaggg	18120
ctgacgctaa	gcacacccct	tctccacccc	ccccacccc	acccccgtga	ggaggagggt	18180
gaggaaacat	gggaccagcc	ctgctccagc	ccgtccttat	tggctggcat	gaggcagagg	18240
gggctttaaa	aaggcaaccg	tatctaggct	ggacactgga	gcctgtgcta	ccgagtgccc	18300
tcctccacct	ggcagcatgc	agccctcact	agccccgtgc	ctcatctgcc	tacttgtgca	18360
cgctgccttc	tgtgctgtgg	agggccaggg	gtggcaagcc	ttcaggaatg	atgccacaga	18420
ggtcatccca	gggcttggag	agtaccccga	gcctcctcct	gagaacaacc	agaccatgaa	18480
ccgggcggag	aatggaggca	gacctcccca	ccatccctat	gacgccaaag	gtacgggatg	18540
aagaagcaca	ttagtggggg	gggggtcct	gggaggtgac	tggggtggtt	ttagcatctt	18600
cttcagaggt	ttgtgtgggt	ggctagcctc	tgctacatca	gggcagągac	acatttgcct	18660
ggaagaatac	tagcacagca	ttagaacctg	gagggcagca	ttggggggct	ggtagagagc	18720
acccaaggca	gggtggaggc	tgaggtcagc	cgaagctggc	attaacacgg	gcatgggctt	18780
gtatgatggt	ccagagaatc	tcctcctaag	gatgaggaca	caggtcagat	ctagctgctg	18840
accagtgggg	aagtgatatg	gtgaggctgg	atgccagatg	ccatccatgg	ctgtactata	18900
tcccacatga	ccaccacatg	aggtaaagaa	ggccccagct	tgaagatgga	gaaaccgaga	18960
ggctcctgag	ataaagtcac	ctgggagtaa	gaagagctga	gactggaagc	tggtttgatc	19020
cagatgcaag	gcaaccctag	attgggtttg	ggtgggaacc	tgaagccagg	aggaatccct	19080
ttagttcccc	cttgcccagg	gtotgotoaa	tgageccaga	ğggilagcat	taaaagaaca	19140
gggtttgtag	gtggcatgtg	acatgagggg	cagctgagtg	aaatgtcccc	tgtatgagca	19200
caggtggcac	cacttgccct	gagcttgcac	cctgacccca	gctttgcctc	attcctgagg	19260
	ctgtggaggc					19320
	gaactagcag					19380
	ttgctggtca					19440

cacatgctgt	ccctcctgtc	tcctagccag	taagggatgt	ggaggaaagg	gccaccccaa	19500
aggagcatgc	aatgcagtca	cgtttttgca	gaggaagtgc	ttgacctaag	ggcactattc	19560
ttggaaagcc	ccaaaactag	tccttccctg	ggcaaacagg	cctcccccac	ataccacctc	19620
tgcaggggtg	agtaaattaa	gccagccaca	gaagggtggc	aaggcctaca	cctccccct	19680
gttgtgcccc	cccccccc	gtgaaggtgc	atcctggcct	ctgcccctct	ggctttggta	19740
ctgggatttt	ttttttcctt	ttatgtcata	ttgatcctga	caccatggaa	cttttggagg	19800
tagacaggac	ccacacatgg	attagttaaa	agcctcccat	ccatctaagc	tcatggtagg	19860
agatagagca	tgtccaagag	aggagggcag	gcatcagacc	tagaagatat	ggctgggcat	19920
ccaacccaat	ctccttcccc	ggagaacaga	ctctaagtca	gatccagcca	cccttgagta	19980
accagctcaa	ggtacacaga	acaagagagt	ctggtataca	gcaggtgcta	aacaaatgct	20040
tgtggtagca	aaagctatag	gttttgggtc	agaactccga	cccaagtcgc	gagtgaagag	20100
cgaaaggccc	tctactcgcc	accgccccgc	ccccacctgg	ggtcctataa	cagatcactt	20160
tcacccttgc	gggagccaga	gagccctggc	atcctaggta	gcccccccg	cccccccc	20220
gcaagcagcc	cagccctgcc	tttggggcaa	gttcttttct	cagcctggac	ctgtgataat	20280
gagggggttg	gacgcgccgc	ctttggtcgc	tttcaagtct	aatgaattct	tatccctacc	20340
acctgccctt	ctaccccgct	cctccacagc	agctgtcctg	atttattacc	ttcaattaac	20400
ctccactcct	ttctccatct	cctgggatac	cgcccctgtc	ccagtggctg	gtaaaggagc	20460
ttaggaagga	ccagagccag	gtgtggctag	aggctaccag	gcagggctgg	ggatgaggag	20520
ctaaactgga	agagtgtttg	gttagtaggc	acaaagcctt	gggtgggatc	cctagtaccg	20580
gagaagtgga	gatgggcgct	gagaagttca	agaccatcca	tccttaacta	cacagccagt	20640
ttgaggccag	cctgggctac	ataaaaaccc	aatctcaaaa	gctgccaatt	ctgattctgt	20700
gccacgtagt	gcccgatgta	atagtggatg	aagtcgttga	atcctggggc	aacctatttt	20760
acagatgtgg	ggaaaagcaa	ctttaagtac	cctgcccaca	gatcacaaag	aaagtaagtg	20820
acagagetee	agtgtttcat	ccctgggttc	caaggacagg	gagagagaag	ccagggtggg	20880
atctcactgo	: tccccggtgc	ctccttccta	taatccatac	agattcgaaa	gcgcagggca	20940
ggtttggaaa	aagagagaag	ggtggaagga	gcagaccagt	ctggcctagg	ctgcagcccc	21000
tcacgcatco	ctctctccgc	agatgtgtcc	gagtacagct	gccgcgagct	gcactacacc	21060
cgcttcctga	cagacggccc	atgccgcagc	gccaagccgg	tcaccgagtt	ggtgtgctcc	21120
ggccagtgcg	g gccccgcgcg	gctgctgccc	aacgccatcg	ggcgcgtgaa	gtggtggcgc	21180
ccgaacggad	c cggatttccg	ctgcatcccg	gategetace	gcgcgcagcg	ggtgcagctg	21240
ctgtgccccg	g ggggcgcggg	gccgcgctcg	cgcaaggtgc	gtctggtggc	ctcgtgcaag	21300
tgcaagcgc	tcacccgctt	ccacaaccag	tcggagctca	aggacttcgg	gccggagacc	21360
gcgcggccg	c agaagggtcg	caageegegg	cccggcgccc	ggggagccaa	agccaaccag	21420
gcggagctg	g agaacgccta	ctagagcgag	cccgcgccta	tgcagccccc	gcgcgatccg	21480
attcgtttt	c agtgtaaagc	ctgcagccca	ggccaggggt	gccaaacttt	ccagaccgtg	21540
tggagttcc	c agcccagtag	agaccgcagg	tccttctgcc	cgctgcgggg	gatggggagg	21600

gggtggggtt	cccgcgggcc	aggagaggaa	gcttgagtcc	cagactctgc	ctagccccgg	21660	
gtgggatggg	ggtctttcta	ccctcgccgg	acctatacag	gacaaggcag	tgtttccacc	21720	
ttaaagggaa	gggagtgtgg	aacgaaagac	ctgggactgg	ttatggacgt	acagtaagat	21780	
ctactccttc	cacccaaatg	taaagcctgc	gtgggctaga	tagggtttct	gaccctgacc	21840	
tggccactga	gtgtgatgtt	gggctacgtg	gttctctttt	ggtacggtct	tctttgtaaa	21900	
atagggaccg	gaactctgct	gagattccaa	ggattggggt	accccgtgta	gactggtgag	21960	
agagaggaga	acaggggagg	ggttagggga	gagattgtgg	tgggcaaccg	cctagaagaa	22020	
gctgtttgtt	ggctcccagc	ctcgccgcct	cagaggtttg	gcttccccca	ctccttcctc	22080	
tcaaatctgc	cttcaaatcc	atatctggga	tagggaaggc	cagggtccga	gagatggtgg	22140	
 aagggccaga	aatcacactc	ctggcccccc	gaagagcagt	gtcccgcccc	caactgcctt	22200	
gtcatattgt	aaagggattt	tctacacaac	agtttaaggt	cgttggagga	aactgggctt	22260	
gccagtcacc	tcccatcctt	gtcccttgcc	aggacaccac	ctcctgcctg	ccacccacgg	22320	
acacatttct	gtctagaaac	agagcgtcgt	cgtgctgtcc	tctgagacag	catatcttac	22380	
attaaaaaga	ataatacggg	aaaaaaaaac	ggagggcgca	agtgttatac	atatgctgag	22440	
aagctgtcag	gcgccacagc	accacccaca	atctttttgt	aaatcatttc	cagacacctc	22500	
ttactttctg	tgtagatttt	aattgttaaa	aggggaggag	agagagcgtt	tgtaacagaa	22560	
gcacatggag	ggggggtag	gggggttggg	gctggtgagt	ttggcgaact	ttccatgtga	22620	
gactcatcca	caaagactga	aagccgcgtt	tttttttta	agagttcagt	gacatattta	22680	
ttttctcatt	taagttattt	atgccaacat	ttttttcttg	tagagaaagg	cagtgttaat	22740	
atcgctttgt	gaagcacaag	tgtgtgtggt	tttttgtttt	ttgtttttc	cccgaccaga	22800	
ggcattgtta	ataaagacaa	tgaatctcga	gcaggaggct	gtggtcttgt	tttgtcaacc	22860	
acacacaatg	tctcgccact	gtcatctcac	tcccttccct	tggtcacaag	acccaaacct	22920	
tgacaacacc	tccgactgct	ctctggtagc	ccttgtggca	atacgtgttt	cctttgaaaa	22980	
gtcacattca	tcctttcctt	tgcaaacctg	gctctcattc	cccagctggg	tcatcgtcat	23040	
accctcaccc	cagcetecet	ttagctgacc	actctccaca	ctgtcttcca	aaagtgcacg	23100	
tttcaccgag	ccagttccct	ggtccaggtc	atcccattgc	tcctccttgc	tccagaccct	23160	
tctcccacaa	agatgttcat	ctcccactcc	atcaagcccc	agtggccctg	cggctatccc	23220	
tgtctcttca	gttagctgaa	tctacttgct	gacaccacat	gaattccttc	ccctgtctta	23280	
aggttcatgg	aactcttgcc	tgcccctgaa	ccttccagga	ctgtcccagc	gtctgatgtg	23340	
tcctctctct	tgtaaagccc	caccccacta	tttgattccc	aattctagat	cttcccttgt	23400.	
tcattccttc	acgggatagt	gteteatetg	gccaagtcct	gcttgatall	gggataaatg	23460	
caaagccaag	tacaattgag	gaccagttca	tcattgggcc	aagctttttc	aaaatgtgaa	23:520	
ttttacacct	atagaagtgt	aaaagccttc	caaagcagag	gcaatgcctg	gctcttcctt	23580	
caacatcagg	gctcctgctt	tatgggtctg	gtggggtagt	acattcataa	acccaacact	23640	
aggggtgtga	aagcaagatg	attgggagtţ	cgaggccaat	cttggctatg	aggccctgtc	23700	:
tcaacctctc	ctccctccct	ccagggtttt	gttttgttt	gtttttttga	tttgaaactg	23760	

caacacttta	aatccagtca	agtgcatctt	tgcgtgaggg	gaactctatc	cctaatataa	23820
gcttccatct	tgatttgtgt	atgtgcacac	tgggggttga	acctgggcct	ttgtacctgc	23880
cgggcaagct	ctctactgct	ctaaacccag	ccctcactgg	ctttctgttt	caactcccaa	23940
tgaattcccc	taaatgaatt	atcaatatca	tgtctttgaa	aaataccatt	gagtgctgct	24000
ggtgtccctg	tggttccaga	ttccaggaag	gacttttcag	ggaatccagg	catcctgaag	24060
aatgtcttag	agcaggaggc	catggagacc	ttggccagcc	ccacaaggca	gtgtggtgca	24120
gagggtgagg	atggaggcag	gcttgcaatt	gaagctgaga	cagggtactc	aggattaaaa	24180
agcttccccc	aaaacaattc	caagatcagt	tcctggtact	tgcacctgtt	cagctatgca	24240
gagcccagtg	ggcataggtg	aagacaccgg	ttgtactgtc	atgtactaac	tgtgcttcag	24300
agccggcaga	gacaaataat	gttatggtga	ccccagggga	cagtgattcc	agaaggaaca	24360
cagaagagag	tgctgctaga	ggctgcctga	aggagaaggg	gtcccagact	ctctaagcaa	24420
agactccact	cacataaaga	cacaggctga	gcagagctgg	ccgtggatgc	agggagccca	24480
tccaccatcc	tttagcatgc	ccttgtattc	ccatcacatg	ccagggatga	ggggcatcag	24540
	tgatgcccaa					24600
	actaggttgg					24660
	aacaaaaaaa					24720
	gagtttattt					24780
	agaaagaaca					24840
	tgcttggggt					24900
	gagagtcaag					24960
	cacacacaca					25020
	agaacaaacc					25080
	ggtccccact					25140
	aggcttcctg					25200
	ccctcttcca					25260
	gaggatgaga					25320
	gggcacatga					25380
	gtttgtgatt					25440
	tacaagcctg					25500
	cagacagtta					25560
	agacagccag					25620
	caggagacaa					25680
	gactagggca					25740 .
	agtcttattc					25800
	tggctgaggt					25860
ttggggaagc	tccctgcctg	cctgtaaatg	tgtccattct	tcaaccttag	acaagatcac	25920

tttccctgag cagtcaggcc agtccaaagc ccttcaattt a	gctttcata	aggaacaccc	25980
cttttgttgg gtggaggtag cacttgcctt gaatcccagc a	attaagaagg	cagagacagt	26040
cggatctctg tgagttcaca gccagectgg tctacggagt g	gagttccaag	acagccaggc	26100
ctacacagag aaaccctgtc tcgaaaaaaa caaaaacaaa a	ngaaataaag	aaaaagaaaa	26160
caaaaacgaa caaacagaaa aacaagccag agtgtttgtc c	ccgtattt	attaatcata	26220
tttttgtccc tttgccattt tagactaaaa gactcgggaa a	gcaggtctc	tctctgtttc	26280
tcatccggac acacccagaa ccagatgtat ggaagatggc ta	aatgtgctg	cagttgcaca	26340
totggggotg ggtggattgg ttagatggca tgggotgggt g	jtggttacga	tgactgcagg	26400
agcaaggagt atgtggtgca tagcaaacga ggaagtttgc a	cagaacaac	actgtgtgta	26460
etgatgtgca ggtatgggca catgcaagca gaagccaagg g	jacagcctta	gggtagtgtt	26520
tecaeagace ecteecect tttaacatgg geatetetea te	tggcctgga	gcttgccaac	26580
tgggctgggc tggctagctt gtaggtccca gggatctgca ta	atctctgcc	tccctagtgc	26640
tgggattaca gtcatatatg agcacacctg gcttttttat g	tgggttctg	ggctttgaac	26700
ccagatetga gtgettgeaa ggeaateggt tgaatgaetg e	ttcatctcc	ccagaccctg	26760
ggattctact ttctattaaa gtatttctat taaatcaatg ag	gcccctgcc	cctgcactca	26820
gcagttetta ggeetgetga gagteaagtg gggagtgaga g	caageeteg	agaccccatc	26880
agcgaagcag aggacaaaga aatgaaaact tgggattcga g	gctcgggat	atggagatac	26940
agaaagggtc agggaaggaa atgaaccaga tgaatagagg c	aggaagggt	agggccctgc	27000
atacatggaa cctggtgtac atgttatctg catggggttt g	gcattgcaat	ggctcttcag	27060
caggttcacc acactgggaa acagaagcca aaaagaagag t	aggtggtgt	tggagtcaga	27120
tactgtcagt catgcctgaa gaaatggaag caattaacga t	gcgccgcaa	ttaggatatt	27180
agctccctga agaaaggcaa gaagctgggc tgtgggcact ga	aagggagct	ttgaatgatg	27240
tcacattoto tgtatgoota goagggoagt attggagact g	gagacttg a c	ttgtgtgtcc	27300
atatgattcc tccttttcct acagtcatct ggggctcctg ag	gcttcgtcc	ttgtccaaga	27360
acctggagct ggcagtgggc agctgcagtg atagatgtct g	ıcaagaaaga	tctgaaaaga ·	27420
gggaggaaga tgaaggaccc agaggaccac cgacctctgc t	gcctgacaa	agctgcagga	27480
ccagtetete etacagatgg gagacagagg egagagatga a	tggtcaggg	gaggagtcag	27540
agaaaggaga gggtgaggca gagaccaaag gagggaaaca c	ttgtgctct	acagctactg	27600
actgagtacc agctgcgtgg cagacagcca atgccaaggc to	cggctgatc	atggcacctc	27660 .
gtgggactcc tagcccagtg ctggcagagg ggagtgctga a	tggtgcatg	gtttggatat	27720
gatotgaatq tqqtccaqcc ctagtttcct tccagttgct g	ggataaagc	accetgacea	27780
aagctacttt tttgtttgtt tgttttggtt tggttttgtt t	ggtttttcg	aggcagggtt	27840
tetetgtate accetagetg teetggaact cactetgtag a	ccaggctgg	cctcgaactc	27900
agaaatcccc ctgcctctgc ctcctaagtg ctggaattaa a	ggcctgcgc	caccactgcc	27960
ggcccaaagc tactttaaga gagagagagg aatgtataag ta	attataatt	ccaggttata	28020
gttcattgct gtagaattgg agtcttcata ttccaggtaa t	ctcccacag	acatgccaca	28080

aaacaacctg	ttctacgaaa	tctctcatgg	actcccttcc	ccagtaattc	taaactgtgt	28140
caaatctaca	agaaatagtg	acagtcacag	tctctaacgt	tttgggcatg	agtctgaagt	28200
ctcattgcta	agtactggga	agatgaaaac	tttacctagt	gtcagcattt	ggagcagagc	28260
ctttgggatt	tgagatggtc	ttttgcagag	ctcctaatgg	ctacatggag	agaggggcc	28320
tgggagagac	ccatacacct	tttgctgcct	tatgtcacct	gacctgctcc	ttgggaagct	28380
ctagcaagaa	ggccttccct	ggatcaccca	ccaccttgca	cctccagaac	tcagagccaa	28440
attaaacttt	cttgttactg	tcgtcaaagc	acagtcggtc	tgggttgtat	cactgtcaat	28500
gggaaacaga	cttgcctgga	tggataactt	gtacattgca	taatgtctag	aaatgaaaag	28560
tcctatagag	aaaaagaaaa	ttagctggca	cacagataga	ggccctggag	gaggctggct	28620
ttgtcctccc	cgaggaggtg	gcgagtaagg	tgtaaatgtt	catggatgta	aatgggccca	28680
tatatgaggg	tctggggtaa	caagaaggcc	tgtgaatata	aagcactgaa	ggtatgtcta	28740
gtctggagaa	ggtcactaca	gagagttctc	caactcagtg	cccatacaca	cacacacaca	28800
cacacacaca	cacacacaca	cacacacaca	ccacaaagaa	aaaaaggaag	aaaaatctga	28860
gagcaagtac	agtacttaaa	attgtgtgat	tgtgtgtgtg	actctgatgt	cacatgctca	28920
tcttgcccta	tgagttgaaa	accaaatggc	ccctgagagg	cataacaacc	acactgttgg	28980
ctgtgtgctc	acgtttttct	taaagcgtct	gtctggtttg	ctgctagcat	caggcagact	29040
tgcagcagac	tacatatgct	cagccctgaa	gtccttctag	ggtgcatgtc	tcttcagaat	29100
ttcagaaagt	catctgtggc	tccaggaccg	cctgcactct	ccctctgccg	cgaggctgca	29160
gactctaggc	tggggtggaa	gcaacgctta	cctctgggac	aagtataaca	tgttggcttt	29220
tctttccctc	tgtggctcca	acctggacat	aaaatagatg	caagctgtgt	aataaatatt	29280
tcctcccgtc	cacttagttc	tcaacaataa	ctactctgag	agcacttatt	aataggtggc	29340
ttagacataa	gctttggctc	attcccccac	tagctcttac	ttctttaact	ctttcaaacc	29400
attctgtgtc	ttccacatgg	ttagttacct	ctccttccat	cctggttcgc	ttcttccttc	29460
gagtcgccct	cagtgtctct	aggtgatgct	tgtaagatat	tctttctaca	aagctgagag	29520
tggtggcact	ctgggagttc	aaagccagcc	tgatctacac	agcaagctcc	aggatatcca	29580
gggcaatgtt	gggaaaacct	ttctcaaaca	aaaagagggg	ttcagttgtc	aggaggagac	29640
ccatgggtta	agaagtctag	acgagccatg	gtgatgcata	cctttcatcc	aagcacttag	29700
gaggcaaaga	aaggtgaaac	tctttgactt	tgaggccagc	taggttacat	agtgataccc	29760
tgcttagtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtaatt	taaaagtcta	29820
aaaatgcatt	cttttaaaaa	tatgtataag	tatttgcctg	cacatatgta	tgtatgtatg	29880
tataccatgt	gtgtgtctgg	tgctgaagga	ctaggcatag	actccctaga	actagagtca	29940
tagacagitg	tgacactccc	caacccccca	ccatgtgggt	gcttgaagct	aaactcctgt	30000
cctttgtaaa	gcagcaggtg	tctatgaacc	ctgaaccatc	tctccagtct	ccagatgtgc	30060
attctcaaag	aggagtcctt	catatttccc	taaactgaac	atccttatca	gtgagcatcc	30120
tcgagtcacc	aaagctactg	caaaccctct	tagggaacat	tcactattca	cttctacttg	30180
gctcatgaaa	cttaagtaca	cacacacaaa	cacacacaca	cacacagagt	catgcactca	30240

caaaagcatg	catgtacacc	attcttatta	gactatgctt	tgctaaaaga	ctttcctaga	30300
tactttaaaa	catcacttct	gccttttggt	gggcaggttc	caagattggt	actggcgtac	30360
tggaaactga	acaaggtaga	gatctagaaa	tcacagcagg	tcagaagggc	cagcctgtac	30420
aagagagagt	tccacacctt	ccaggaacac	tgagcagggg	gctgggacct	tgcctctcag	30480
cccaagaaac	tagtgcgttt	cctgtatgca	tgcctctcag	agattccata	agatetgeet	30540
tctgccataa	gatctcctgc	atccagacaa	gcctagggga	agttgagagg	ctgcctgagt	30600
ctctcccaca	ggccccttct	tgcctggcag	tatttttta	tctggaggag	aggaatcagg	30660
gtgggaatga	tcaaatacaa	ttatcaagga	aaaagtaaaa	aacatatata	tatatatatt	30720
aactgatcta	gggagctggc	tcagcagtta	agagttctgg	ctgcccttgc	ttcagatctt	30780
 gctttgattc	ccagcaccca	catgatggct	ttcaactgta	tctctgcttc	caggggatcc	30840
aacagcctct	tctgacctcc	atagacaaga	cctagtcctc	tgcaagagca	ccaaatgctc	30900
ttatctgttg	atccatctct	ctagcctcat	gccagatcat	ttaaaactac	tggacactgt	30960
cccattttac	gaagatgtca	ctgcccagtc	atttgccatg	agtggatatt	tcgattcttt	31020
ctatgttctc	acccttgcaa	tttataagaa	agatatctgc	atttgtctcc	tgagagaaca	31080
aagggtggag	ggctactgag	atggctctag	gggtaaaggt	gcttgccaca	aaatctgaca	31140
acttaagttt	ggtcttggaa	tccacatggt	ggagagagag	aagagattcc	cgtaagttgt	31200
cctcaaactt	cccacacatg	tgctgtggct	tatgtgtaac	cccaataagt	aaagatagtt	31260
ttaaacacta	cataaggtag	ggtttcttca	tgaccccaag	gaatgatgcc	cctgatagag	31320
cttatgctga	aaccccatct	ccattgtgcc	atctggaaag	agacaattgc	atcccggaaa	31380
cagaatcttc	atgaatggat	taatgagcta	ttaagaaagt	ggcttggtta	ttgcacatgc	31440
tggcggcgta	atgacctcca	ccatgatgtt	atccagcatg	aaggtcctca	ccagaagtca	31500
tacaaatctt	cttaggcttc	cagagtcgtg	agcaaaaaaa	gcacacctct	aaataaatta	31560
actagcctca	ggtagttaac	caccgaaaat	gaaccaaggc	agttctaata	caaaaccact	31620
tcccttccct	gttcaaacca	cagtgcccta	ttatctaaaa	gataaacttc	aagccaagct	31680
tttaggttgc	cagtatttat	gtaacaacaa	ggcccgttga	cacacatctg	taactcctag	31740
tactgggcct	caggggcaga	gacaggtgga	gccctggagt	ttgaattcca	ggttctgtga	31800
gaaactctgt	ctgaaaagac	aatatggtga	gtgacccggg	aggatatctg	atattgactt	31860
ctggccaaca	cacagccatc	tctgcacatc	tgtagttgca	agccttttgc	actaagtttg	31920
gccagagtca	gagtttgcaa	gtgtttgtgg	actgaatgca	cgtgttgctg	gtgatctaca	31980
aagtcaccct	ccttctcaag	ctagcagcac	tggcttcggc	cagctgctca	ttcaagcctc	32040
tttgcagagt	catcacgggg	atgggggagc	agggeceete	cctagaacac	caageetgtg	32100
gttgtttatt	caggacatta	ttgagggcca	agatgacaga	taactctatc	acttggccaa	32160
cagtcgggtg	ttgcggtgtt	aggttatttc	tgtgtctgca	gaaaacagtg	caacctggac	32220
aaaagaaata	aatgatatca	tttttcattc	aggcaactag	attccgtggt	acaaaaggct	32280
ccctggggaa	cgaggccggg	acagcgcggc	tcctgagt.cg	ctatttccgt	ctgtcaactt	32340
ctctaatctc	ttgatttcct	ccctctgtct	gtttccttcc	tcttgctggg	gcccagtgga	32400

gtctgtgtac tcacagggag	gagggtggca	aagccctggt	cctctacggg	ctgggggaag	32460
gggggaagct gtcggcccag	tgactttttc	ccctttctct	ttttcttaga	aaccagtctc	32520
aatttaagat aatgagtctc	ctcattcacg	tgtgctcact	attcataggg	acttatccac	32580
ccccgccctg tcaatctggc	taagtaagac	aagtcaaatt	taaaagggaa	cgtttttcta	32640
aaaatgtggc tggaccgtgt	gccggcacga	aaccagggat	ggcggtctaa	gttacatgct	32700
ctctgccagc cccggtgcct	tttcctttcg	gaaaggagac	ccggaggtaa	aacgaagttg	32760
ccaacttttg atgatggtgt	gcgccgggtg	actctttaaa	atgtcatcca	tacctgggat	32820
agggaaggct cttcagggag	tcatctagcc	ctcccttcag	gaaaagattc	cacttccggt	32880
ttagttagct tccacctggt	cccttatccg	ctgtctctgc	ccactagtcc	tcatccatcc	32940
ggtttccgcc ctcatccacc	ttgccctttt	agttcctaga	aagcagcacc	gtagtcttgg	33000
caggtgggcc attggtcact	ccgctaccac	tgttaccatg	gccaccaagg	tgtcatttaa	33060
atatgagete actgagteet	gcgggatggc	ttggttggta	atatgcttgc	tgcaaaatcg	33120
tgagaactgg agttcaattc	ccagcacatg	gatgtatttc	cagcacctgg	aaggcaggga	33180
gcagagatct taaagctcct	ggccagacag	cccagcctaa	ttagtaatca	gtgagagacc	33240
ctgtctcaag aaacaagatg	gaacatcaaa	ggtcaacctc	ttgtctccac	acacacaaat	33300
acacacatgc acatacatcc	acacacaggc	aaacacatgc	acacacctga	acaccctcca	33360
caaatacata cataaaaaaa	taaatacata	cacacataca	tacatacacc	aacattccct	33420
ctccttagtc tcctggctac	gctcttgtca	ccccactaa	ggcttcaact	tcttctattt	33480
cttcatcttg actcctctgt	actttgcatg	ccttttccag	caaaggcttt	tctttaaatc	33540
tccgtcattc ataaactccc	tctaaatttc	ttcccctgcc	cttttcttc	tctctaggga	33600
gataaagaca cacactacaa	agtcaccgtg	ggaccagttt	attcacccac	ccacccctgc	33660
ttctgttcat ccggccagct	aagtagtcca	acctctctgg	tgctgtaccc	tggaccctgg	33720
cttcaccaca gctcctccat	gctacccagc	cctgcaaacc	ttcagcctag	cctctggttc	33780
tccaaccage acaggeecag	tctggcttct	atgtcctaga	aatctccttc	attctctcca	33840
tttccctcct gaatctacca	ccttctttct	cccttctcct	gacctctaat	gtcttggtca	33900
aacgattaca aggaagccaa	tgaaattagc	agtttggggt	acctcagagt	cagcagggga	33960
gctgggatga attcacattt	ccaggccttt	gctttgctcc	ccggattctg	acaggcagtt	34020
ccgaagctga gtccaggaag	, ctgaatttaa	aatcacactc	cagctgggtt	ctgaggcagc	34080
cctaccacat cagctggccd	: tgactgagct	gtgtctgggt	ggcagtggtg	ctggtggtgc	34140
tggtggtgct ggtggtggtg	g gtggtggtgg	tggtggtggt	ggtggtggtg	tgtgtgtgtg	34200
ttttctgctt ttacaaaact	tttctaattc	ttatacaaag	gacaaatctg	cctcatatag	34260
gcagaaagat gacttatgco	tatataagat	ataaagatga	ctttatgcca	cttattagca	34320
atagttactg tcaaaagtaa	a ttctatttat	acacccttat	acatggtatt	gcttttgttg	34380
gagactctaa aatccagatt	atgtatttaa	aaaaaaatto	cccagtcctt	aaaaggtgaa	34440
gaatggaccc agatagaag	g tcacggcaca	r agtatggagt	cggagtgtgg	agtcctgcca	34500
atggtctgga cagaagcat	c cagagagggt	ccaagacaaa	tgcctcgcct	cctaaggaac	34560

•	actggcagcc	ctgatgaggt	accagagatt	gctaagtgga	ggaatacagg	atcagaccca	34620
	tggaggggct	taaagcgtga	ctgtagcagc	cctccgctga	ggggctccag	gtgggcgccc	34680
	aaggtgctgc	agtgggagcc	acatgagagg	tgatgtcttg	gagtcacctc	gggtaccatt	34740
	gtttagggag	gtggggattt	gtggtgtgga	gacaggcagc	ctcaaggatg	cttttcaaca	34800
	atggttgatg	agttggaact	aaaacagggg	ccatcacact	ggctcccata	gctctgggct	34860
	tgccagcttc	cacatctgcc	ccccaccccc	tgtctggcac	cagctcaagc	tctgtgattc	34920
	tacacatcca	aaagaggaag	agtagcctac	tgggcatgcc	acctcttctg	gaccatcagg	34980
	tgagagtgtg	gcaagcccta	ggctcctgtc	caggatgcag	ggctgccaga	taggatgctc	35040
	agctatctcc	tgagctggaa	ctattttagg	aataaggatt	atgcccgccc	ggggttggcc	35100
	agcaccccag	cagcctgtgc	ttgcgtaaaa	gcaagtgctg	ttgatttatc	taaaaacaga	35160
	gccgtggacc	cacccacagg	acaagtatgt	atgcatctgt	ttcatgtatc	tgaaaagcga	35220
	cacaaccatt	tttcacatca	tggcatcttc	ctaaccccca	ttcttttttg	ttttgtttt	35280
	ttgagacagg	gtttctctgt	gtagtcctgg	ctgtcctgga	actcactttg	tagaccaggc	35340
	tggcctcgaa	ctcagaaatc	ctgggattaa	aggtgtgtgc	caccacgccc	ggccctaacc	35400
	cccattctta	atggtgatcc	agtggttgaa	atttcgggcc	acacacatgt	ccattaggga	35460
	ttagctgctg	tcttctgagc	tacctggtac	aatctttatc	ccctggggcc	tgggctcctg	35520
	atccctgact	cgggcccgat	caagtccagt	tcctgggccc	gatcaagtcc	agttcctggg	35580
	cccgaacaag	tccagtccct	agctcgatta	gctcatcctg	gctccctggc	ctgttcttac	35640
	ttacactctt	ccccttgctc	tggacttgtt	gctttcttta	ctcaagttgt	ctgccacagt	35700
	ccctaagcca	cctctgtaag	acaactaaga	taatacttcc	ctcaagcacg	gaaagtcctg	35760
	agtcaccaca	ccctctggag	gtgtgtggac	acatgttcat	gcgtgtggtt	gcgcttacgt	35820
	acgtgtgc						35828
<	210> 18 211> 9301 212> ADN 213> Homo sa 400> 18	piens					
		_, *, . ,					60
		gtctttgggg					60
		catgggacca					120
		taaaaaggcg					180
		cctcctctgg					240
		cacacagcct					300
	tgatgccaeg	gaaatcatcc	ccgagctcgg	agagtacccc	gagcctccac	cggagctgga	360
	G22C22C22G	accatonacc	aaacaaaaaa	caasaaacaa	cctccccacc	acceptte	420

gaacaacaag accatgaacc gggcggagaa cggagggcgg cctccccacc acccctttga

ga	accaaaggt	atggggtgga	ggagagaatt	cttagtaaaa	gatcctgggg	aggttttaga	480
aa	acttctctt	tgggaggctt	ggaagactgg	ggtagaccca	gtgaagattg	ctggcctctg	540
C	cagcactgg	tcgaggaaca	gtcttgcctg	gaggtggggg	aagaatggct	cgctggtgca	600
g	cttcaaat	tcaggtgcag	aggcatgagg	caacagacgc	tggtgagagc	ccagggcagg	660
gá	aggacgctg	gggtggtgag	ggtatggcat	cagggcatca	gaacaggctc	aggggctcag	720
aa	aaagaaaag	gtttcaaaga	atctcctcct	gggaatatag	gagccacgtc	cagctgctgg	780
ta	accactggg	aagggaacaa	ggtaagggag	cctcccatcc	acagaacagc	acctgtgggg	840
Cá	accggacac	tctatgctgg	tggtggctgt	ccccaccaca	cagacccaca	tcatggaatc	900
C	ccaggaggt	gaacccccag	ctcgaagggg	aagaaacagg	ttccaggcac	tcagtaactt	960
. g	gtagtgaga	agagctgagg	tgtgaacctg	gtttgatcca	actgcaagat	agccctggtg	1020
t	gtgggggg	tgtgggggac	agatctccac	aaagcagtgg	ggaggaaggc	cagagaggca	1080
C	ccctgcagt	gtgcattgcc	catggcctgc	ccagggagct	ggcacttgaa	ggaatgggag	1140
t	tttcggcac	agttttagcc	cctgacatgg	gtgcagctga	gtccaggccc	tggaggggag	1200
a	gcagcatcc	tctgtgcagg	agtagggaca	tctgtcctca	gcagccaccc	cagtcccaac	1260
C	ttgcctcat	tccaggggag	ggagaaggaa	gaggaaccct	gggttcctgg	tcaggcctgc	1320
a	cagagaagc	ccaggtgaca	gtgtgcatct	ggctctataa	ttggcaggaa	tcctgaggcc	1380
a	tgggggcgt	ctgaaatgac	acttcagact	aagagcttcc	ctgtcctctg	gccattatcc	1440
a	ggtggcaga	gaagtccact	gcccaggctc	ctggacccca	gccctccccg	cctcacaacc	1500
t	gttgggact	atggggtgct	aaaaagggca	actgcatggg	aggccagcca	ggaccctccg	1560
t	cttcaaaat	ggaggacaag	ggcgcctccc	cccacagete	cccttctagg	caaggtcagc	1620
t	gggctccag	cgactgcctg	aagggctgta	aggaacccaa	acacaaaatg	tccaccttgc	1680
t	ggactccca	cgagaggcca	cagcccctga	ggaagccaca	tgctcaaaac	aaagtcatga	1740
t	ctgcagagg	aagtgcctgg	cctaggggcg	ctattctcga	aaagccgcaa	aatgccccct	1800
t	ccctgggca	aatgccccc	tgaccacaca	cacattccag	ccctgcagag	gtgaggatgc	1860
a	aaccagccc	acagaccaga	aagcagcccc	agacgatggc	agtggccaca	tctcccctgc	1920
t	gtgcttgct	cttcagagtg	ggggtggggg	gtggccttct	ctgtcccctc	tctggtttgg	1980
t	cttaagact	atttttcatt	ctttcttgtc	acattggaac	tatccccatg	aaacctttgg	2040
g	ggtggactg	gtactcacac	gacgaccagc	tatttaaaaa	gctcccaccc	atctaagtcc	2100
a	ccataggag	acatggtcaa	ggtġtgtgca	ggggatcagg	ccaggcctcg	gagcccaatc	2160
t	ctgcctgcc	cagggagtat	caccatgagg	cgcccattca	gataacacag	aacaagaaaat	2220
g	tgcccagca	gagagccagg	tcaatgtttg	tggcagctga	acctgtaggt	tttgggtcag	2280
a	.gctcagggc	ccctatggta	ggaaagtaac	gacagtaaaa	agcagccctc	agctccatcc	2-340
С	ccagcccag	cctcccatgg	atgctcgaac	gcagagcctc	cactettgee	ggagccaaaa	2400
g	gtgctggga	ccccagggaa	gtggagtccg	gagatgcagc	ccagcctttt	gggcaagttc	2460
t	tttctctgg	ctgggcctca	gtattctcat	tgataatgag	ggggttggac	acactgcctt	2520
t	gattccttt	caagtctaat	gaattcctgt	cctgatcacc	tccccttcag	tccctcgcct	2580

ccacagcagc tgccctgatt	tattaccttc	aattaacctc	tactcctttc	tccatcccct	2640
gtccacccct cccaagtggc	tggaaaagga	atttgggaga	agccagagcc	aggcagaagg	2700
tgtgctgagt acttaccctg	cccaggccag	ggaccctgcg	gcacaagtgt	ggcttaaatc	2760
ataagaagac cccagaagag	aaatgataat	aataatacat	aacagccgac	gctttcagct	2820
atatgtgcca aatggtattt	tctgcattgc	gtgtgtaatg	gattaactcg	caatgcttgg	2880
ggcggcccat tttgcagaca	ggaagaagag	agaggttaag	gaacttgccc	aagatgacac	2940
ctgcagtgag cgatggagcc	ctggtgtttg	aaccccagca	gtcatttggc	tccgagggga	3000
cagggtgcgc aggagagctt	tccaccagct	ctagagcatc	tgggaccttc	ctgcaataga	3060
tgttcagggg caaaagcctc	tggagacagg	cttggcaaaa	gcagggctgg	ggtggagaga	3120
gacgggccgg tccagggcag	gggtggccag	gcgggcggcc	accctcacgc	gcgcctctct	3180
ccacagacgt gtccgagtac	agctgccgcg	agctgcactt	cacccgctac	gtgaccgatg	3240
ggccgtgccg cagcgccaag	ccggtcaccg	agctggtgtg	ctccggccag	tgcggcccgg	3300
cgcgcctgct gcccaacgcc	atcggccgcg	gcaagtggtg	gcgacctagt	gggcccgact	3360
tccgctgcat ccccgaccgc	taccgcgcgc	agcgcgtgca	gctgctgtgt	cccggtggtg	3420
aggcgccgcg cgcgcgcaag	gtgcgcctgg	tggcctcgtg	caagtgcaag	cgcctcaccc	3480
gcttccacaa ccagtcggag	ctcaaggact	tcgggaccga	ggccgctcgg	ccgcagaagg	3540
gccggaagcc gcggccccgc	gcccggagcg	ccaaagccaa	ccaggccgag	ctggagaacg	3600
cctactagag cccgcccgcg	cccctcccca	ccggcgggcg	ccccggccct	gaacccgcgc	3660
cccacatttc tgtcctctgc	gcgtggtttg	attgtttata	tttcattgta	aatgcctgca	3720
acccagggca gggggctgag	accttccagg	ccctgaggaa	tcccgggcgc	cggcaaggcc	3780
cccctcagcc cgccagctga	ggggtcccac	ggggcagggg	agggaattga	gagtcacaga	3840
cactgagcca cgcagecccg	cctctggggc	cgcctacctt	tgctggtccc	acttcagagg	3900
aggcagaaat ggaagcattt	tcaccgccct	ggggttttaa	gggagcggtg	tgggagtggg	3960
aaagtccagg gactggttaa	gaaagttgga	taagattccc	ccttgcacct	cgctgcccat	4020
cagaaagcct gaggcgtgcc	cagagcacaa	gactgggggc	aactgtagat	gtggtttcta	4080
gtcctggctc tgccactaac	ttgctgtgta	accttgaact	acacaattct	ccttcgggac	4140
ctcaatttcc actttgtaaa	atgagggtgg	aggtgggaat	aggatctcga	ggagactatt	4200
ggcatatgat tccaaggact	ccagtgcctt	ttgaatgggc	agaggtgaga	gagagaga	4260
gaaagagaga gaatgaatgc	agttgcattg	attcagtgcc	aaggtcactt	ccagaattca	4320
gagttgtgat gctctcttct	gacagccaaa	gatgaaaaac	aaacagaaaa	aaaaaagtaa	4380
agagtotatt tatggotgac	atatttacgg	ctgacaaacl	cctyyaayaa	gctatgctgc	4440
ttcccagcct ggcttccccġ	gatgtttggc	tacctccacc	cctccatctc	aaagaaataa	4500
catcatccat tggggtagaa	aaggagaggg	tccgagggtg	gtgggaggga	tagaaatcac	4560
ateegeecca aetteecaaa	gagcagcatc	cctcccccga	cccatagcca	tgttttaaag	4620 .
tcaccttccg aagagaagtg	aaaggttcaa	ggacactggc	cttgcaggcc	cgagggagca	4680
gccatcacaa actcacagac	cagcacatcc	cttttgagac	accgccttct	gcccaccact	4740

cacggacaca ttt	ctgccta gaaaacagct	tcttactgct	cttacatgtg	atggcatatc	4800
ttacactaaa agaa	atattat tgggggaaaa	actacaagtg	ctgtacatat	gctgagaaac	4860
tgcagagcat aat	agctgcc acccaaaaat	ctttttgaaa	atcatttcca	gacaacctct	4920
tactttctgt gtag	gttttta attgttaaaa	aaaaaaagtt	ttaaacagaa	gcacatgaca	4980
tatgaaagcc tgc	aggactg gtcgttttt	tggcaattct	tccacgtggg	acttgtccac	5040
aagaatgaaa gta	gtggttt ttaaagagtt	aagttacata	tttattttct	cacttaagtt	5100
atttatgcaa aag	tttttct tgtagagaa	gacaatgtta	atattgcttt	atgaattaac	5160
agtotgttot too	agagtcc agagacatte	g ttaataaaga	caatgaatca	tgaccgaaag	5220
gatgtggtct cat	tttgtca accacacat	g acgtcatttc	tgtcaaagtt	gacacccttc	5280
tcttggtcac tag	agctcca accttggaca	a cacctttgac	tgctctctgg	tggcccttgt	5340
ggcaattatg tct	tcctttg aaaagtcat	g tttatccctt	cctttccaaa	cccagaccgc	5400
atttcttcac cca	gggcatg gtaataacc	cagccttgta	tccttttagc	agcctcccct	5460
ccatgctggc ttc	caaaatg ctgttctca	tgtatcactc	ccctgctcaa	aagccttcca	5520
tagctccccc ttg	cccagga tcaagtgca	g tttccctatc	tgacatggga	ggccttctct	5580
gcttgactcc cac	ctcccac tccaccaag	c ttcctactga	ctccaaatgg	tcatgcagat	5640
ccctgcttcc tta	gtttgcc atccacact	agcaccccca	ataactaatc	ctctttcttt	5700
aggattcaca tta	cttgtca tctcttccc	taaccttcca	gagatgttcc	aatctcccat	5760
gatecetete tee	tetgagg ttecagege	c ttttgtctac	accactactt	tggttcctaa	5820
ttctgttttc cat	ttgacag tcattcatg	g aggaccagcc	tggccaagtc	ctgcttagta	5880
ctggcataga caa	cacaaag ccaagtaca	a ttcaggacca	gctcacagga	aacttcatct	5940
tcttcgaagt gtg	gatttga tgcctcctg	g gtagaaatgt	aggatcttca	aaagtgggcc	6000
agcctcctgc act	tctctca aagtctcgc	c tccccaaggt	gtcttaatag	tgctggatgc	6060
tagctgagtt ago	atcttca gatgaagag	t aaccctaaag	ttactcttca	gttgccctaa	6120
ggtgggatgg tca	aactggaa agctttaaa	t taagtccagc	ctaccttggg	ggaacccacc	6180
cccacaaaga aag	getgaggt ceeteetga	t gacttgtcag	tttaactacc	aataacccac	6240
ttgaattaat cat	catcatc aagtctttg	a taggtgtgag	tgggtatcag	tggccggtcc	6300
cttcctgggg ctc	ccageeee egaggagge	c tcagtgagcc	cctgcagaaa	atccatgcat	6360
catgagtgtc tca	agggccca gaatatgag	a gcaggtagga	aacagagaca	tcttccatcc	6420
ctgagaggca gtg	gcggtcca gtgggtggg	g acacgggctc	tgggtcaggt	ttgtgttgtt	6480
tgtttgtttg ttt	ttgagaca gagtctcgc	t ctattgccca	ggctggagtg	cagtgtcaca	6540
atctcggctt act	tgcaactt ctgccttco	c ggattcaagt	gattctcctg	cctcagcctc	6600
cagagtagct ggg	gattacag gtgcgtgcd	a ccacgeetge	ctaatttttg	, tatttttgat	6660
agagacgggg tt	tcaccatg ttggccagg	c tagtictegaa	ctcttgacct	caagtgatct	6720
gcctgcctcg gc	ctcccaaa gtgctggga	t tacaggcgtg	agccaccaca	cccagcccca	6780
ggttggtgtt tg	aatctgag gagactgaa	ıg caccaagggg	ttaaatgttt	tgcccacagc	6840
catacttggg ct	cagttcct tgccctaco	c ctcacttgag	ctgcttagaa	a cctggtgggc	6900

acatgggcaa taacca	iggtc acactgtttt	gtaccaagtg	ttatgggaat	ccaagatagg	6960
agtaatttgc tctgtg	gagg ggatgaggga	tagtggttag	ggaaagcttc	acaaagtggg	7020
tgttgcttag agattt	tcca ggtggagaag	ggggcttcta	ggcagaaggc	atagcccaag	7080
caaagactgc aagtgc	atgg ctgctcatgg	gtagaagaga	atccaccatt	cctcaacatg	7140
taccgagtcc ttgcca	tgtg caaggcaaca	tgggggtacc	aggaattcca	agcaatgtcc	7200
aaacctaggg tctgct	ttct gggacctgaa	gatacaggat	ggatcagccc	aggctgcaat	7260
cccattacca cgaggg	ggaa aaaaacctga	aggctaaatt	gtaggtcggg	ttagaggtta	7320
tttatggaaa gttata	ttct acctacatgo	ggtctataag	cctggcgcca	atcagaaaag	7380
gaacaaacaa cagacc	tagc tgggagggg	agcattttgt	tgtagggggc	ggggcacatg	7440
ttctggggt acagcc	agac tcagggcttg	tattaatagt	ctgagagtaa	gacagacaga	7500
gggatagaag gaaata	ggtc cetttetet	tctctctc	tctctctctc	actctctctc	7560
tctctcacac acacac	acag acacacaca	acgctctgta	ggggtctact	tatgctccaa	7620
gtacaaatca ggccac	attt acacaaggag	gtaaaggaaa	agaacgttgg	aggagccaca	7680
ggaccccaaa attccc	tgtt ttccttgaat	caggcaggac	ttacgcagct	gggagggtgg	7740
agageetgea gaagee	acct gcgagtaago	caagttcaga	gtcacagaca	ccaaaagctg	7800
gtgccatgtc ccacac	ccgc ccacctccca	cctgctcctt	gacacagccc	tgtgctccac	7860
aacccggctc ccagat	catt gattatagct	ctggggcctg	caccgtcctt	cctgccacat	7920
ccccacccca ttcttg	gaac ctgccctctg	tottotocot	tgtccaaggg	caggcaaggg	7980
ctcagctatt gggcag	cttt gaccaacago	tgaggctcct	tttgtggctg	gagatgcagg	8040
aggcagggga atatto	ctct tagtcaatgo	gaccatgtgc	ctggtttgcc	cagggtggtc	8100
tcgtttacac ctgtag	gcca agcgtaatta	ttaacagctc	ccacttctac	tctaaaaaat	8160
gacccaatct gggcag	rtaaa ttatatggtg	cccatgctat	taagagctgc	aacttgctgg	8220
gcgtggtggc tcacac	ctgt aatcccagta	ctttgggacg	tcaaggcggg	tggatcacct	8280
gaggtcacga gttaga	igact ggcctggcca	gcatggcaaa	accccatctt	tactaaaaat	8340
acaaaaatta gcaagg	catg gtggcatgca	cctgtaatcc	caggtactcg	ggaggctgag	8400
acaggagaat ggcttg	aacc caggaggcag	aggttgcagt	gagccaagat	tgtgccactg	8460
ccctccagcc ctggca	acag agcaagactt	catctcaaaa	gaaaaaggat	actgtcaatc	8520
actgcaggaa gaaccc	aggt aatgaatgag	gagaagagag	gggctgagtc	accatagtgg	8580
cagcaccgac tcctgo	agga aaggcgagac	actgggtcat	gggtactgaa	gggtgccctg	8640
aatgacgttc tgcttt	agag accgaaccto	agccctgaaa	gtgcatgcct	gttcatgggt	8700
gagagactaa attoat	catt cottggcagg	tactgaatcc	tilcitacgg	ctgccctcca	8760
atgcccaatt tcccta	caat tgtctggggt	gcctaagctt	ctgcccacca	agagggccag	8820
agctggcagc gagcag	jctgc aggtaggaga	gataggtacc	cataagggag	gtgggaaaga	8880
gagatggaag gagagg	gggtg cagagcacac	acctcccctg	cctgacaact	_tcctgagggc	8940
tggtcatgcc agcaga	attta aggcggaggd	aggggagatg	gggcgggaga	ggaagtgaaa	9000
aaggagaggg tgggga	atgga gaggaagaga	gggtgatcat	tcattcattc	cattgctact	9060

	gactggatgc cagctgtgag ccaggcacca	ccctagctct	gggcatgtgg	ttgtaatctt	9120
	ggagcctcat ggagctcaca gggagtgctg	gcaaggagat	ggataatgga	cggataacaa	9180
	ataaacattt agtacaatgt ccgggaatgg	aaagttctcg	aaagaaaaat	aaagctggtg	9240
	agcatataga cagccctgaa ggcggccagg	ccaggcattt	ctgaggaggt	ggcatttgag	9300
	С				9301
5	<210> 19 <211> 21 <212> ADN <213> Secuencia Artificial				
10	<220> <223> Cebador para PCR				
10	<400> 19				
	ccggagctgg agaacaacaa g				21
15	<210> 20 <211> 19 <212> ADN <213> Secuencia Artificial				
20	<220> <223> Cebador para PCR				
	<400> 20				
25	gcactggccg gagcacacc				19
	<210> 21 <211> 23 <212> ADN <213> Secuencia Artificial				
30	<220> <223> Cebador para PCR				
35	<400> 21				
	aggccaaccg cgagaagatg acc <210> 22 <211> 21				23
40	<212> ADN <213> Secuencia Artificial				
	<220> <223> Cebador para PCR				
45	<400> 22				
50	gaagtccagg gcgacgtagc a <210> 23 <211> 25 <212> ADN <213> Secuencia Artificial				21
55	<220> <223> Cebador para PCR				

	aagcttggta ccatgcagct cccac	25
5	<210> 24 <211> 50 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador para PCR	
10	<400> 24	
15	aagcttctac ttgtcatcgt cgtccttgta gtcgtaggcg ttctccagct <210> 25 <211> 19 <212> ADN <213> Secuencia Artificial	50
20	<220> <223> Cebador para PCR	
20	<400> 25 gcactggccg gagcacacc	19
25	<210> 26 <211> 39 <212> ADN <213> Secuencia Artificial	
30	<220> <223> Cebador para PCR	
	<400> 26 gtcgtcggat ccatggggtg gcaggcgttc aagaatgat	39
35	<210> 27 <211> 57 <212> ADN <213> Secuencia Artificial	
40	<220> <223> Cebador para PCR	
	<400> 27	
	gtcgtcaagc ttctacttgt catcgtcctt gtagtcgtag gcgttctcca gctcggc	57
45	<210> 28 <211> 29 <212> ADN <213> Secuencia Artificial	
50	<220> <223> Cebador para PCR	
	<400> 28 gacttggatc ccaggggtgg caggcgttc	29
55	<210> 29 <211> 29 <212> ADN <213> Secuencia Artificial	
60	<220> <223> Cebador para PCR	

	<400> 29	
	agcataagct tctagtaggc gttctccag	29
5	<210> 30 <211> 29 <212> ADN <213> Secuencia Artificial	-
10	<220> <223> Cebador para PCR	
	<400> 30	
	gacttggatc cgaagggaaa aagaaaggg	29
15	<210> 31 <211> 29 <212> ADN <213> Secuencia Artificial	
20	<220> <223> Cebador para PCR	
	<400> 31	
	agcataagct tttaatccaa atcgatgga	29
25	<210> 32 <211> 33 <212> ADN <213> Secuencia Artificial	
30	<220> <223> Cebador para PCR	
	<400> 32	
35	actacgaget eggeeceace acceateaae aag	33
33	<210> 33 <211> 34	
40	<212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador para PCR	
	<400> 33	
45	acttagaage tttcagteet cageceete ttee	34
50	<210> 34 <211> 66 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador para PCR	
55	<400>34 aatctggatc cataacttcg tatagcatac attatacgaa gttatctgca ggattcgagg	60
	gccct	66

	<210> 35 <211> 82 <212> ADN <213> Secuencia Artificial	
5	<220> <223> Cebador para PCR	
	<400>35 aatctgaatt ccaccggtgt taattaaata acttcgtata atgtatgcta tacgaagtta	60
10	tagatctaga gtcagcttct ga	82
15	<210> 36 <211> 62 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador para PCR	
20	<400> 36	
	atttaggtga cactatagaa ctcgagcagc tgaagcttaa ccacatggtg gctcacaacc at	60 62
25	<210> 37 <211> 54 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador para PCR	
30	<400> 37	
	aacgacggcc agtgaatccg taatcatggt catgctgcca ggtggaggag ggca	54
35	<210> 38 <211> 31 <212> ADN <213> Secuencia Artificial	
40	<220> <223> Cebador para PCR	
40	<400>38 attaccaccg gtgacacccg cttcctgaca g	31
	<210> 39 <211> 61	
45	<212> ADN <213> Secuencia Artificial	
50	<220> <223> Cebador para PCR	
	<400> 39	
	attacttaat taaacatgge gegeeatatg geeggeeeet aattgeggeg categttaat	60 61
55	<210> 40 <211> 34 <212> ADN	

	<213> Secuencia Artificial	
5	<220> <223> Cebador para PCR	
5	<400> 40	
	attacggccg gccgcaaagg aattcaagat ctga	34
10	<210> 41 <211> 34 <212> ADN	
	<213> Secuencia Artificial	
15	<220> <223> Cebador para PCR	
15	<400> 41	
	attacggcgc gcccctcaca ggccgcaccc agct	34
20		

REIVINDICACIONES

- 1. Un anticuerpo o fragmento del mismo que se unen a una proteína codificada por el SEQ ID NO: 1.
- 2. El anticuerpo o fragmento de la reivindicación 1, en donde la proteína codificada es la del SEQ ID NO:
 2.
 - 3. El anticuerpo o fragmento de la reivindicación 1 ó 2, en donde el anticuerpo o fragmento se unen a dicha proteína cuando son expresados por células de insecto.
 - 4. El anticuerpo o fragmento de la reivindicación 3, en donde el anticuerpo o fragmento se unen a dicha proteína cuando son expresados utilizando un sistema de baculovirus en células Sf9.
- 5. El anticuerpo o fragmento de la reivindicación 1 ó 2, en donde el anticuerpo o fragmento se unen a dicha proteína cuando son expresados por células de mamífero.
 - 6. El anticuerpo o fragmento de la reivindicación 1 ó 2, en donde el anticuerpo o fragmento se unen a dicha proteína cuando son expresados por células de riñón embrionario humano u osteoblastos primarios.
- 7. El anticuerpo o fragmento de la reivindicación 6, en donde las células de riñón embrionario humano son células 293-HEK.
 - 8. Un anticuerpo o fragmento del mismo que se unen a una proteína que tiene una identidad de al menos 80% con el SEQ ID NO: 2 y que aumentan el contenido mineral del hueso.
 - 9. El fragmento de anticuerpo de una cualquiera de las reivindicaciones anteriores, que es un $F(ab')_2$, $F(ab)_2$, Fab', Fab, o Fv.
 - 10. El anticuerpo o fragmento de una cualquiera de las reivindicaciones anteriores, que son monoclonales.
 - 11. El anticuerpo o fragmento de la reivindicación 10, que son murinos o humanos.

10

25

30

50

65

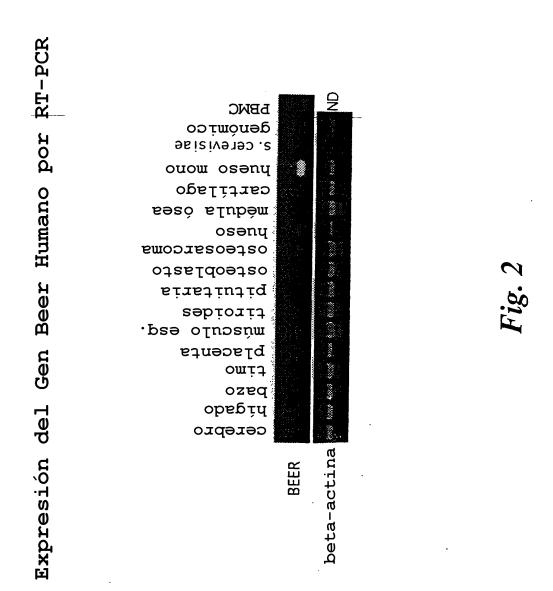
- 12. El anticuerpo o fragmento de una cualquiera de las reivindicaciones 1 a 10, que están humanizados.
- 35 13. El anticuerpo o fragmento de una cualquiera de las reivindicaciones 1 a 8, que son policionales.
 - 14. El anticuerpo o fragmento de una cualquiera de las reivindicaciones anteriores, que son un anticuerpo o fragmento de la clase IgG.
- 40 15. El anticuerpo o fragmento de la reivindicación 14, en donde la clase de IgG es IgG₂ o IgG₄.
 - 16. El anticuerpo o fragmento de una cualquiera de las reivindicaciones 1 a 13, en donde el anticuerpo o fragmento son un anticuerpo o fragmento IgE, IgM o IgA.
- 45 17. El anticuerpo o fragmento de una cualquiera de las reivindicaciones anteriores, que están conjugados con una molécula efectora o informadora.
 - 18. El anticuerpo o fragmento de la reivindicación 17, en donde el anticuerpo o fragmento están conjugados con un polímero.
 - 19. El anticuerpo o fragmento de la reivindicación 18, en donde el anticuerpo o fragmento están conjugados con polietilenglicol.
- 20. Una molécula de ácido nucleico que codifica un anticuerpo o fragmento de una cualquiera de las reivindicaciones 1 a 12.
 - 21. Un vector de expresión que comprende una molécula de ácido nucleico de la reivindicación 20.
- 22. Una célula que produce un anticuerpo o fragmento de una cualquiera de las reivindicaciones 1 a 12.
 - 23. La célula de acuerdo con la reivindicación 22, que es un hibridoma.
 - 24. Un método para producir un hibridoma que produce un anticuerpo monoclonal como se define en la reivindicación 10, comprendiendo el método:
 - (i) inmunizar una rata o ratón con una proteína codificada por el SEQ ID NO: 1 o una porción de la misma:

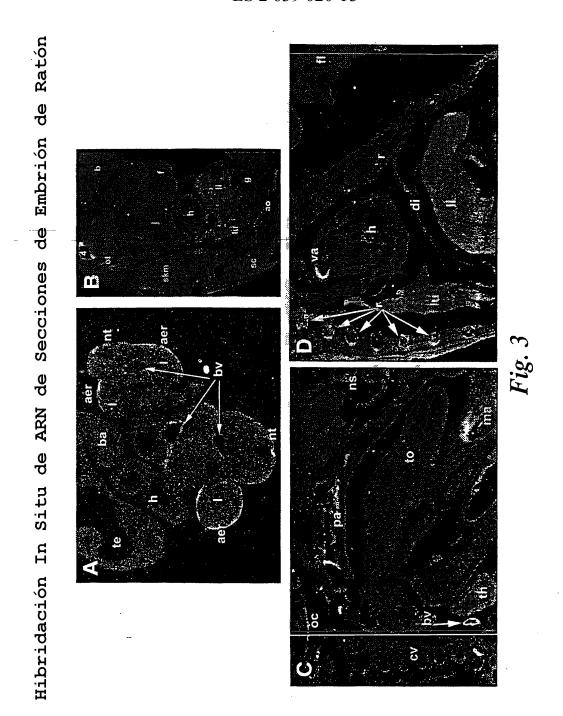
- (ii) sacrificar la rata o ratón y recoger el bazo y/o los gánglios linfáticos de la rata o ratón; y
- (iii) fusionar las suspensiones de células de bazo o gánglio linfático con células de mieloma para generar hibridomas.
- 5 25. El método de la reivindicación 24, en donde el método comprende adicionalmente escrutar los hibridomas para identificar un hibridoma que produce un anticuerpo contra dicha proteína.

10

15

35


45


- 26. El método de la reivindicación 24, en donde el ratón ha sido modificado genéticamente para producir anticuerpos humanos.
- 27. Un método para producir un anticuerpo monoclonal o un fragmento de anticuerpo de acuerdo con la reivindicación 10, que comprende aislar y purificar el anticuerpo o fragmento de un hibridoma como se define en la reivindicación 23, o preparar uno o más vectores de expresión replicables que contienen ADN que codifica las regiones variable y/o constante del anticuerpo y transformar una línea celular apropiada en la que tiene lugar la producción del anticuerpo.
 - 28. El anticuerpo o fragmento de una cualquiera de las reivindicaciones 1 a 19, para su uso en un método para incrementar la mineralización ósea en un animal de sangre caliente.
- 29. El anticuerpo o fragmento para el uso de la reivindicación 28, en donde el animal de sangre caliente tiene osteopenia o fractura ósea.
- 30. El anticuerpo o fragmento para el uso de la reivindicación 29, donde la osteopenia está causada por un estado anémico, esteroides, heparina, un trastorno de la médula ósea, escorbuto, malnutrición, deficiencia de calcio, osteoporosis idiopática, osteopenia y osteoporosis congénitas, alcoholismo, enfermedad crónica del hígado, senectud, estado post-menopáusico, oligomenorrea, amenorrea, embarazo, diabetes melitus, hipertiroidismo, enfermedad de Cushing, acromegalia, hipogonadismo, inmovilización o desuso, síndrome de distrofia simpática refleja, osteoporosis regional transitoria u osteomalacia.
 30
 - 31. El anticuerpo o fragmento para el uso de la reivindicación 28, en donde el animal tiene osteoporosis.
 - 32. El anticuerpo o fragmento para el uso de la reivindicación 28, en donde el animal el animal tiene acondroplasia.
 - 33. El anticuerpo o fragmento para el uso de una cualquiera de las reivindicaciones 28 a 32, en donde el animal de sangre caliente es un ser humano.
- 34. Una composición farmacéutica, que comprende un anticuerpo o fragmento de anticuerpo de una cualquiera de las reivindicaciones 1 a 19 y un portador o diluyente farmacéuticamente aceptables.
 - 35. Un método *in vitro* para detectar una proteína codificada por el SEQ ID NO: 1, que comprende incubar un anticuerpo o fragmento de acuerdo con una cualquiera de las reivindicaciones 1 a194 en condiciones y durante un tiempo suficiente para permitir que dicho anticuerpo o fragmento se unan a dicha proteína, y detectar dicha unión.
 - 36. El método de la reivindicación 35, en donde dicho anticuerpo o fragmento están unidos a un soporte sólido.
- 50 37. El método de acuerdo con la reivindicación 36, en donde dicho anticuerpo o fragmento están marcados.
 - 38. El método de la reivindicación 37, en donde dicho anticuerpo o fragmento están marcados con un marcador seleccionado entre una enzima, una proteína fluorescente y un radioisótopo.
 - 39. Un kit para la detección de una proteína codificada por el SEQ ID NO: 1, que comprende un anticuerpo o fragmento de una cualquiera de las reivindicaciones 1 a 19.
- 40. El uso de un anticuerpo o fragmento de una cualquiera de las reivindicaciones 1 a 19, para la fabricación de un medicamento para incrementar la mineralización ósea en un mamífero de sangre caliente.
 - 41. El uso de acuerdo con la reivindicación 40, en donde el mamífero tiene osteopenia o fractura ósea.
- 65 42. El uso de acuerdo con la reivindicación 40, en donde el mamífero tiene osteoporosis.


Esqueleto de Cisteína Común

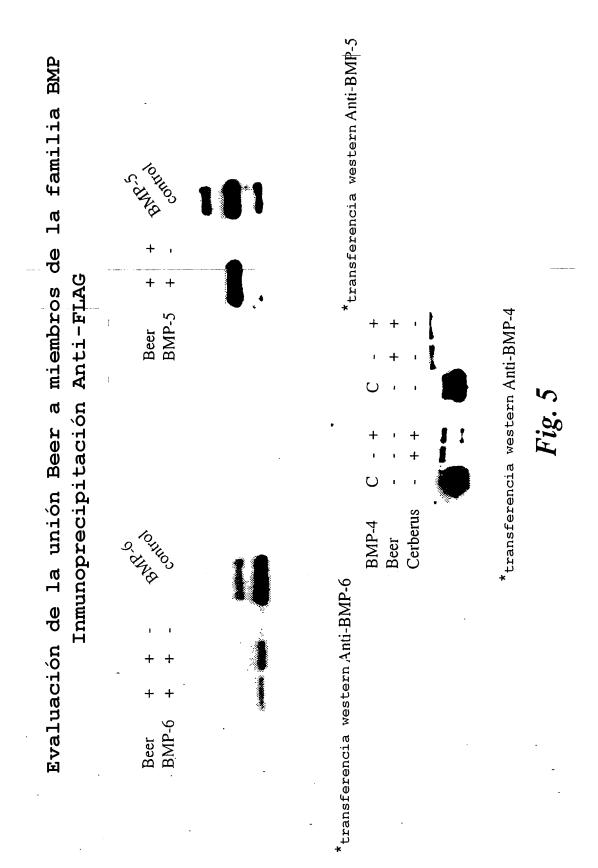

1				50	
human_gremlin.pro	~~~~~~~		~~~~~~	~~~~~~	
human_cerberus.pro				SPVLLPRNQR	
human_dan.pro	~~~~~~	~~~~~~~	~~~~~~		
human_beer.pro	~~~~~~~	~~~~~~~			~~~~~~
	51				100
human_gremlin.pro	~~~~~~	~~~~M	SRTAYTVGAL	LLLLGTLLPA	AEGKKKGSQG
human_cerberus.pro	EEKPDLFVAV	PHLVAT.SPA	GEGQRQREKM	LSRFGRFWKK	PEREMHPSRD
human_dan.pro	~~~~~~~			~~~~~~	~~~~~~
human_beer.pro	~~~~~~	~~~~~~		MQLPLA	LCLVCLLVHT
	101				150
human_gremlin.pro	AI.PPPDKAQ	HNDSEQTQSP	QQPGSRNRGR	GQGRGTAMPG	EEVLESSQEA
human_cerberus.pro	SDSEPFPPGT	QSLIQPID.G	MKMEKSPLRE	EAKKFWHHFM	FRKTPASQGV
human dan.pro	~~~~~~			MLRVLVGAVL	PAMLLAAPPP
human_beer.pro	AFRVVEGQGW	QAFKNDATEI	IPELGEYPEP	PPELENNKTM	NRAENGGRPP
	151	Ψ	Ψ	Ψ	¥ 200
human gremlin.pro	LHVTERKYLK	RDWCKTOPLK	OTTHEEGCNS	RTIINRF.CY	•
human_cerberus.pro				VVVQNNL.CF	
human dan.pro	INKLALFPOK	SAWCEAKNIT	OTVGHSGCEA	KSIONRA CI.	GOCESYSVEN
human_dan.pro human beer.pro				KSIQNRA.CL AKPVTELVCS	
human_dan.pro human_beer.pro				KSIQNRA.CL AKPVTELVCS	
				_	
	HHPFETKDVS	eyscrelhft ψ	RYVTDGPCRS	AKPVTELVCS	GQCGPARLLP 250
human_beer.pro	HHPFETKDVS 201 HIRKEEGSFQ	EYSCRELHFT V SCSFCKP	RYVTDGPCRS KKFTTMMVTL	AKPVTELVCS V NCPELQPPTK	GQCGPARLLP 250 K.KRVTRVKQ
human_beer.pro human_gremlin.pro human_cerberus.pro	HHPFETKDVS 201 HIRKEEGSFQ GAAQHSHT	EYSCRELHFT	RYVTDGPCRS KKFTTMMVTL AKFTTMHLPL	AKPVTELVCS V NCPELQPPTK NCTELSSVIK	GQCGPARLLP 250 K.KRVTRVKQ VVMLVEE
human_beer.pro human_gremlin.pro	HHPFETKDVS 201 HIRKEEGSFQGAAQHSHT TFPQSTESLV	EYSCRELHFT V SCSFCKP SCSHCLP HCDSCMP	RYVTDGPCRS KKFTTMMVTL AKFTTMHLPL AQSMWEIVTL	AKPVTELVCS V NCPELQPPTK NCTELSSVIK ECPGHEEVPR	QCGPARLLP 250 K.KRVTRVKQ VVMLVEE VDKLVEKILH
human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro	HHPFETKDVS 201 HIRKEEGSFQGAAQHSHT TFPQSTESLV	EYSCRELHFT V SCSFCKP SCSHCLP HCDSCMP	RYVTDGPCRS KKFTTMMVTL AKFTTMHLPL AQSMWEIVTL	AKPVTELVCS V NCPELQPPTK NCTELSSVIK	QCGPARLLP 250 K.KRVTRVKQ VVMLVEE VDKLVEKILH
human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro	HHPFETKDVS 201 HIRKEEGSFQGAAQHSHT TFPQSTESLV	EYSCRELHFT V SCSFCKP SCSHCLP HCDSCMP	RYVTDGPCRS KKFTTMMVTL AKFTTMHLPL AQSMWEIVTL	AKPVTELVCS V NCPELQPPTK NCTELSSVIK ECPGHEEVPR	QCGPARLLP 250 K.KRVTRVKQ VVMLVEE VDKLVEKILH
human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro	HHPFETKDVS 201 HIRKEEGSFQGAAQHSHT TFPQSTESLV NAIGRGKWWR	EYSCRELHFT V SCSFCKP SCSHCLP HCDSCMP PSGPDFRCIP	RYVTDGPCRS KKFTTMMVTL AKFTTMHLPL AQSMWEIVTL DRYRAQRVQL	AKPVTELVCS V NCPELQPPTK NCTELSSVIK ECPGHEEVPR	250 K.KRVTRVKQ VVMLVEE VDKLVEKILH RKVRLVAS
human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro human_beer.pro	HHPFETKDVS 201 HIRKEEGSFQGAAQHSHT TFPQSTESLV NAIGRGKWWR WSW CRC.ISIDLD	EYSCRELHFT V SCSFCKP SCSHCLP HCDSCMP PSGPDFRCIP	RYVTDGPCRS KKFTTMMVTL AKFTTMHLPL AQSMWEIVTL DRYRAQRVQL	AKPVTELVCS V NCPELQPPTK NCTELSSVIK ECPGHEEVPR LCPGGEAPRA	250 K.KRVTRVKQ VVMLVEE VDKLVEKILH RKVRLVAS
human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro human_beer.pro human_beer.pro	HHPFETKDVS 201 HIRKEEGSFQGAAQHSHT TFPQSTESLV NAIGRGKWWR VSV CRC.ISIDLD CQCKVKTEHE	EYSCRELHFT V SCSFCKP SCSHCLP HCDSCMP PSGPDFRCIP DGHILHAGSQ	RYVTDGPCRS KKFTTMMVTL AKFTTMHLPL AQSMWEIVTL DRYRAQRVQL DSFIPGVSA-	AKPVTELVCS V NCPELQPPTK NCTELSSVIK ECPGHEEVPR LCPGGEAPRA	250 K.KRVTRVKQ VVMLVEE VDKLVEKILH RKVRLVAS
human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro human_beer.pro human_beer.pro	HHPFETKDVS 201 HIRKEEGSFQGAAQHSHT TFPQSTESLV NAIGRGKWWR CRC.ISIDLD CQCKVKTEHE CSCQACGKEP	EYSCRELHFT V SCSFCKP SCSHCLP HCDSCMP PSGPDFRCIP DGHILHAGSQ SHEGLSVYVQ	RYVTDGPCRS KKFTTMMVTL AKFTTMHLPL AQSMWEIVTL DRYRAQRVQL DSFIPGVSA- GEDGPGSQPG	AKPVTELVCS V NCPELQPPTK NCTELSSVIK ECPGHEEVPR LCPGGEAPRA	250 K.KRVTRVKQ VVMLVEE VDKLVEKILH RKVRLVAS
human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro human_beer.pro human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro	HHPFETKDVS 201 HIRKEEGSFQGAAQHSHT TFPQSTESLV NAIGRGKWWR WSV CRC.ISIDLD CQCKVKTEHE CSCQACGKEP CKCKRLTRFH	EYSCRELHFT V SCSFCKP SCSHCLP HCDSCMP PSGPDFRCIP DGHILHAGSQ SHEGLSVYVQ	RYVTDGPCRS KKFTTMMVTL AKFTTMHLPL AQSMWEIVTL DRYRAQRVQL DSFIPGVSA- GEDGPGSQPG	AKPVTELVCS V NCPELQPPTK NCTELSSVIK ECPGHEEVPR LCPGGEAPRA THPHPHPHPH	250 K.KRVTRVKQ VVMLVEE VDKLVEKILH RKVRLVAS
human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro human_beer.pro human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro	HHPFETKDVS 201 HIRKEEGSFQGAAQHSHT TFPQSTESLV NAIGRGKWWR WSV CRC.ISIDLD CQCKVKTEHE CSCQACGKEP CKCKRLTRFH	EYSCRELHFT V SCSFCKP SCSHCLP HCDSCMP PSGPDFRCIP DGHILHAGSQ SHEGLSVYVQ NQSELKDFGT 314	RYVTDGPCRS KKFTTMMVTL AKFTTMHLPL AQSMWEIVTL DRYRAQRVQL DSFIPGVSA- GEDGPGSQPG	AKPVTELVCS V NCPELQPPTK NCTELSSVIK ECPGHEEVPR LCPGGEAPRA THPHPHPHPH	250 K.KRVTRVKQ VVMLVEE VDKLVEKILH RKVRLVAS
human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro human_beer.pro human_beer.pro human_cerberus.pro human_dan.pro human_dan.pro human_beer.pro	HHPFETKDVS 201 HIRKEEGSFQGAAQHSHT TFPQSTESLV NAIGRGKWWR WSV CRC.ISIDLD CQCKVKTEHE CSCQACGKEP CKCKRLTRFH 301	EYSCRELHFT V SCSFCKP SCSHCLP HCDSCMP PSGPDFRCIP DGHILHAGSQ SHEGLSVYVQ NQSELKDFGT 314	RYVTDGPCRS KKFTTMMVTL AKFTTMHLPL AQSMWEIVTL DRYRAQRVQL DSFIPGVSA- GEDGPGSQPG	AKPVTELVCS V NCPELQPPTK NCTELSSVIK ECPGHEEVPR LCPGGEAPRA THPHPHPHPH	250 K.KRVTRVKQ VVMLVEE VDKLVEKILH RKVRLVAS
human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro human_beer.pro human_beer.pro	HHPFETKDVS 201 HIRKEEGSFQGAAQHSHT TFPQSTESLV NAIGRGKWWR CRC.ISIDLD CQCKVKTEHE CSCQACGKEP CKCKRLTRFH 301	EYSCRELHFT V SCSFCKP SCSHCLP HCDSCMP PSGPDFRCIP DGHILHAGSQ SHEGLSVYVQ NQSELKDFGT 314	RYVTDGPCRS KKFTTMMVTL AKFTTMHLPL AQSMWEIVTL DRYRAQRVQL DSFIPGVSA- GEDGPGSQPG	AKPVTELVCS V NCPELQPPTK NCTELSSVIK ECPGHEEVPR LCPGGEAPRA THPHPHPHPH	250 K.KRVTRVKQ VVMLVEE VDKLVEKILH RKVRLVAS
human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro human_beer.pro human_gremlin.pro human_cerberus.pro human_dan.pro human_beer.pro human_beer.pro	HHPFETKDVS 201 HIRKEEGSFQGAAQHSHT TFPQSTESLV NAIGRGKWWR CRC.ISIDLD CQCKVKTEHE CSCQACGKEP CKCKRLTRFH 301	EYSCRELHFT V SCSFCKP SCSHCLP HCDSCMP PSGPDFRCIP DGHILHAGSQ SHEGLSVYVQ NQSELKDFGT 314 GAED	RYVTDGPCRS KKFTTMMVTL AKFTTMHLPL AQSMWEIVTL DRYRAQRVQL DSFIPGVSA- GEDGPGSQPG	AKPVTELVCS V NCPELQPPTK NCTELSSVIK ECPGHEEVPR LCPGGEAPRA THPHPHPHPH	250 K.KRVTRVKQ VVMLVEE VDKLVEKILH RKVRLVAS

Figura 1

Caracterización de la Constante de Disociación de BMP-5/Beer

,75 1,5 7,5 15 30 60 120 nM BMP-5

*Inmunoprecipitación Anti-FLAG *Transferencia western anti-BMP-5

Desorganización Iónica de la Unión BMP-5/Beer

NaCl(mM)	200	150	150	BMB
Beer	+	+	•	3
BMP-5	+	+	+	80

* Inmunopreciptación anti-FLAG * Western anti-BMP-5

Fig. 6