

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 639 850

51 Int. CI.:

H04L 1/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 05.12.2008 E 08170868 (7)
Fecha y número de publicación de la concesión europea: 14.06.2017 EP 2086143

(54) Título: Procedimiento para determinar el tamaño de bloque de transporte y procedimiento de transmisión de la señal que usa el mismo

(30) Prioridad:

31.01.2008 US 24914 P 06.10.2008 KR 20080097705 05.02.2008 US 26143 P

Fecha de publicación y mención en BOPI de la traducción de la patente: **30.10.2017**

(73) Titular/es:

LG ELECTRONICS INC. (100.0%) 20 YEOUIDO-DONG, YEONGDEUNGPO-KU SEOUL 150-721, KR

(72) Inventor/es:

KIM, BONG HOE; KIM, KI JUN; AHN, JOON KUI Y SEO, DONG YOUN

(74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Procedimiento para determinar el tamaño de bloque de transporte y procedimiento de transmisión de la señal que usa el mismo

Antecedentes de la invención

5 Campo de la invención

10

15

20

25

30

35

40

45

50

La presente invención se refiere a un procedimiento y a un dispositivo para determinar, de manera eficaz, el tamaño de un bloque de datos o un bloque de transporte en un sistema de comunicación inalámbrica.

Descripción de los antecedentes

Generalmente, en un sistema de comunicación, un extremo de transmisión del sistema de comunicación codifica la información de transmisión usando un código de corrección de errores hacia adelante o en recepción, y transmite la información codificada a un extremo de recepción del sistema de comunicación, de manera que los errores causados por un canal puedan ser corregidos en la Información recibida en el extremo de recepción. El extremo de recepción demodula una señal de recepción, decodifica un código de corrección de errores hacia delante y recupera la información de transmisión transferida desde el extremo de transmisión. Durante este procedimiento de decodificación, pueden corregirse los errores en la señal de recepción causados por un canal.

Hay varios tipos de códigos de corrección de errores hacia adelante que pueden ser usados. En aras de la conveniencia de la descripción, a continuación, se describirá un turbo código como un ejemplo del código de corrección de errores hacia delante. El turbo código incluye un codificador de convolución sistemático recursivo y un entrelazador. En el caso de implementar realmente el turbo código, el entrelazador facilita una decodificación paralela, y un ejemplo de este entrelazador puede ser un entrelazador de permutación polinomial cuadrática (Quadratic Polynomial Permutation, QPP). Es bien conocido en la técnica que este entrelazador QPP mantiene una capacidad de procesamiento o un rendimiento superiores en sólo un bloque de datos de tamaño específico. En este caso, la expresión "bloque de datos" hace referencia a datos de unidad de bloque codificados por el codificador. Si se piensa que los datos de unidades de bloques transferidos desde una capa superior a una capa física son codificados sin la segmentación descrita más adelante, este bloque de datos puede denominarse también bloque de transporte (Transport Block, TB). Por otra parte, si se piensa que la segmentación del bloque de transporte es codificada, este bloque de datos puede equipararse a "un bloque de código".

El documento US 2004/0014447 describe un sistema de procesamiento compuesto de transporte de capa física que comprende una pluralidad de bloques de procesamiento interconectados entre sí por medio de un bus de datos de lectura, un bus de datos de escritura y un bus de control.

En general, cuanto mayor es el tamaño del bloque de datos, mayor será el rendimiento del turbo código. Un bloque de datos mayor de un tamaño específico es segmentado en una pluralidad de bloques de datos de pequeño tamaño mediante un sistema de comunicación real, de manera que los bloques de datos de pequeño tamaño se codifiquen para la conveniencia de la implementación real. Los bloques de datos de pequeño tamaño divididos se denominan bloques de código. Generalmente, aunque estos bloques de código tienen el mismo tamaño, uno de entre varios bloques de código puede tener otro tamaño debido a la limitación del tamaño del entrelazador QPP. Un procedimiento de codificación de corrección de errores hacia adelante en base a un bloque de código de un tamaño de entrelazador predeterminado se realiza sobre los bloques de datos de pequeño tamaño, y los bloques de datos resultantes son transferidos a continuación a un canal de RF (Radio Frecuencia). En este caso, puede producirse un error de ráfaga en el procedimiento anterior de transferencia de los bloques de datos resultantes al canal de RF, de manera que los bloques de datos resultantes anteriores se entrelazan para reducir la influencia del error de ráfaga. Los bloques de datos entrelazados son asignados a recursos de radio reales, de manera que se transfiere el resultado asignado.

Una cantidad de recursos de radio usados en un procedimiento de transmisión real es constante, de manera que debería realizarse un procedimiento de adaptación de velocidad en los bloques de código codificados debido a la cantidad constante de recursos de radio. Generalmente, el procedimiento de adaptación de velocidad se implementa mediante una eliminación selectiva o una repetición. Por ejemplo, la adaptación de velocidad puede realizarse también en base a un bloque de código codificado de la misma manera que en un WCDMA de 3GPP. Para otro ejemplo, una parte sistemática y una parte de paridad del bloque de código codificado pueden estar separadas una de la otra. El procedimiento de adaptación de velocidad puede realizarse en la parte sistemática y en la parte de paridad de manera conjunta. Por otra parte, el procedimiento de adaptación de velocidad puede realizarse también de manera independiente en cada una de entre la parte sistemática y la parte de paridad.

La Fig. 1 es un diagrama conceptual que ilustra las operaciones básicas de un turbo codificador.

Tal como se muestra en la Fig. 1, si un turbo codificador recibe un bloque de código, divide el bloque de código recibido en una parte (S) sistemática y partes (P1 y P2) de paridad. La parte S sistemática y las partes P1 y P2 de paridad pasan a través de entrelazadores de sub-bloques individuales, respectivamente. De esta manera, la parte S sistemática y las partes P1 y P2 de paridad pueden ser entrelazadas por medio de diferentes entrelazadores de sub-bloque y el resultado entrelazado se almacena en una memoria intermedia circular.

Tal como puede verse en la Fig. 1, la parte sistemática y las partes de paridad del bloque de código pueden estar separadas una de la otra, y el procedimiento de adaptación de velocidad se realiza sobre las partes separadas individuales, pero el ejemplo de la Fig. 1 se ha descrito sólo con propósitos ilustrativos y el alcance de la presente invención no se limita a este ejemplo y puede aplicarse también a otros ejemplos. Para la conveniencia de la descripción, se supone que una tasa de código es un valor de 1/3.

Aunque pueden definirse una diversidad de tamaños de bloque de transporte según las categorías de servicio de una capa superior, es preferible que los tamaños de bloque de transporte puedan ser cuantificados para realizar eficazmente la señalización de los diversos tamaños de bloque de transporte. El documento WO02/089376 describe un procedimiento de transmisión en una red de telecomunicación móvil que usa ráfagas SACCH. Durante el procedimiento de cuantificación, con el fin de adaptar un bloque de datos fuente transferido desde una capa superior al tamaño de un bloque de datos de una capa física, se añade un bit ficticio ("dummy") al bloque de datos fuente. Durante este procedimiento de cuantificación, es preferible minimizar la cantidad de bits ficticios añadidos.

El documento US 2003/123409 A1 se refiere a un sistema de comunicación W-CDMA (Wideband Code Division Multiple Access, Acceso múltiple por división de código de banda ancha) que usa un esquema HSDPA (High Speed Downlink Packet Access, acceso de enlace descendente de alta velocidad). El documento US 2006/041820 A1 se refiere a un procedimiento y a un aparato para recibir un canal de control en un sistema de comunicación inalámbrico.

Sumario de la invención

5

10

15

20

25

30

35

40

Para conseguir estos objetivos y otras ventajas y según el propósito de la invención, tal como se ha llevado a la práctica y descrito en la presente memoria, se presentan un procedimiento y un dispositivo de transmisión de señales según las reivindicaciones 1 y 8, respectivamente.

El tamaño de bloque del entrelazador interno del turbo codificador puede ser predeterminado como una combinación de longitudes de bits predeterminadas.

Bajo la suposición indicada anteriormente, si el número de bloques de código a usar para transmitir el bloque de transporte es 1, el tamaño de bloque de transporte específico puede ser cualquiera de las combinaciones de tamaños de bloque de transporte predeterminadas en las que uno cualquiera de los tamaños de bloque de transporte predeterminados corresponde a la suma de una longitud de CRC y los tamaños de bloque del entrelazador interno predeterminado.

Bajo la misma suposición, si el número de bloques de código a usar para transmitir el bloque de transporte es al menos 2, el bloque de transporte se segmenta en al menos dos bloques de código que tienen la misma longitud, y se asigna a los al menos dos bloques de código.

Las operaciones indicadas anteriormente pueden generalizarse como la expresión siguiente.

Si el tamaño específico del bloque de transporte es N, el número de los bloques de código a usar para transmitir el bloque de transporte es M, la longitud de cada uno de los M bloques de código es N_c , Y la longitud del CRC es L, el tamaño N de bloque de transporte específico puede satisfacer una ecuación representada por $N = M^*N_C$ -L, y el tamaño de bloque de transporte específico puede corresponder a una cualquiera de las combinaciones de tamaños de bloque de transporte predeterminadas en las que un valor de $N_c + L$ corresponde a los tamaños de bloque de entrelazador interno predeterminados como una combinación de longitudes de bits predeterminadas.

Más detalladamente, el tamaño de bloque del entrelazador interno del turbo codificador puede ser predeterminado como un valor "K" según un índice (i) en la Tabla 1 siguiente:

45 [Tabla 1]

i	K	i	К	i	К	i	K
1	40	48	416	95	1120	142	3200

			,	•			
2	48	49	424	96	1152	143	3264
3	56	50	432	97	1184	144	3328
4	64	51	440	98	1216	145	3392
5	72	52	448	99	1248	146	3456
6	80	53	456	100	1280	147	3520
7	88	54	464	101	1312	148	3584
8	96	55	472	102	1344	149	3648
9	104	56	480	103	1376	150	3712
10	112	57	488	104	1408	151	3776
11	120	58	496	105	1440	152	3840
12	128	59	504	106	1472	153	3904
13	136	60	512	107	1504	154	3968
14	144	61	528	108	1536	155	4032
15	152	62	544	109	1568	156	4096
16	160	63	560	110	1600	157	4160
17	168	64	576	111	1632	158	4224
18	176	65	592	112	1664	158	4288
19	184	66	608	113	1696	160	4352
20	192	67	624	114	1728	161	4416
21	200	68	640	115	1760	162	4480
22	208	69	656	116	1792	163	4544
23	216	70	672	117	1824	164	4608
24	224	71	688	118	1856	165	4672
25	232	72	704	119	1888	166	4736
26	240	73	720	120	1920	167	4800
27	248	74	736	121	1952	168	4864
28	256	75	752	122	1984	169	4928
29	264	76	768	123	2016	170	4992
30	272	77	784	124	2048	171	5056
31	280	78	800	125	2112	172	5120
32	288	79	816	126	2176	173	5184
33	296	80	832	127	2240	174	5248

34	304	81	848	128	2304	175	5312
0.	00.	0.	0.0	0		., •	33.1
35	312	82	864	129	2368	176	5376
36	320	83	880	130	2432	177	5440
37	328	84	896	131	2496	178	5504
38	336	85	912	132	2560	179	5568
39	344	86	928	133	2624	180	5632
40	352	87	944	134	2688	181	5696
41	360	88	960	135	2752	182	5760
42	368	89	976	136	2816	183	5824
43	376	90	992	137	2880	184	5888
44	384	91	1008	138	2944	185	5952
45	392	92	1024	139	3008	186	6016
46	400	93	1056	140	3072	187	6080
47	408	94	1088	141	3136	188	6144

Bajo la suposición indicada anteriormente, si el número de bloques de código a usar para transmitir el bloque de transporte es 1, el tamaño de bloque de transporte específico puede ser una cualquiera de las combinaciones de tamaños de bloque de transporte en las que cualquier tamaño de bloque de transporte corresponde a la suma de un valor K mostrado en la Tabla 1 y una longitud de CRC.

Las operaciones indicadas anteriormente pueden generalizarse como la expresión siguiente.

5

10

15

Si el tamaño específico del bloque de transporte es N, el número de los bloques de código a usar para transmitir el bloque de transporte es M, la longitud de cada uno de los M bloques de código es N_c, y la longitud del CRC es L, el tamaño N de bloque de transporte específico puede satisfacer una ecuación indicada por N = M*N_C-L, y el tamaño de bloque de transporte específico puede corresponder a una cualquiera de las combinaciones de tamaños de bloque de transporte en las que un valor de Nc + L corresponde al valor K mostrado en la Tabla 1 anterior.

El tamaño N específico del bloque de transporte puede establecerse a una longitud seleccionada de entre las combinaciones mostradas en la Tabla 2 siguiente según el número M de los bloques de código a usar para transmitir el bloque de transporte.

[Tabla 2]

М	N	М	N	М	N	М	N	М	N	М	N	М	N
2	6200	2	11448	4	19080	5	30576	8	48424	13	74544	19	112608
2	6328	2	11576	4	19336	6	30936	8	48936	13	75376	19	113824
2	6456	2	11704	4	19592	6	31320	9	49296	13	76208	19	115040
2	6584	2	11832	4	19848	6	31704	9	49872	13	77040	19	116256
2	6712	2	11960	4	20104	6	32088	9	50448	13	77872	30	117256
2	6840	2	12088	4	20360	6	32472	9	51024	13	78704	20	118536

	0000		10010	4	00010	_	00050		E4000	10	70500	00	110010
2	6968	2	12216	4	20616	6	32856	9	51600	13	79536	20	119816
2	7096	3	12384	4	20872	6	33240	9	52176	14	80280	20	121096
2	7224	3	12576	4	21128	6	33624	9	52752	14	81176	20	122376
2	7352	3	12768	4	21384	6	34008	9	53328	14	82072	21	123120
2	7480	3	12960	4	21640	6	34392	9	53904	14	82968	21	124464
2	7608	3	13152	4	21896	6	34776	9	54480	14	83864	21	125808
2	7736	3	13344	4	22152	6	35160	9	55056	14	84760	21	127152
2	7864	3	13536	4	22408	6	35544	10	55416	14	85656	21	128496
2	7992	3	13728	4	22664	6	35928	10	56056	15	86016	22	130392
2	8120	3	13920	4	22920	6	36312	10	56696	15	86976	22	131800
2	8248	3	14112	4	23176	6	36696	10	57336	15	87936	22	133208
2	8376	3	14304	4	23432	7	36992	10	57976	15	88896	22	134616
2	8504	3	14496	4	23688	7	37440	10	58616	15	89856	23	134848
2	8632	3	14688	4	23944	7	37888	10	59256	15	90816	23	136320
2	8760	3	14880	4	24200	7	38336	10	59896	15	91776	23	137792
2	8888	3	15072	4	24456	7	38784	10	60536	16	92776	23	139264
2	9016	3	15264	5	24496	7	39232	10	61176	16	93800	23	140736
2	9144	3	15456	5	24816	7	39680	11	61664	16	84824	24	142248
2	9272	3	15648	5	25136	7	40128	11	62368	16	95848	24	143784
2	9400	3	15840	5	25456	7	40576	11	63072	16	96872	24	145320
2	9528	3	16032	5	25776	7	41024	11	63776	16	97896	24	146856
2	9656	3	16224	5	26096	7	41472	11	64480	17	98576	25	148176
2	9784	3	16416	5	26416	7	41920	11	65184	17	99664	25	149776
2	9912	3	16608	5	26736	7	42368	11	65888	17	100752	25	151376
2	10040	3	16800	5	27056	7	42816	11	66592	17	101840	25	152976
2	10168	3	16992	5	27376	8	43304	11	67296	17	102928		
2	10296	3	17184	5	27696	8	43816	12	68040	17	104016		
2	10424	3	17376	5	28016	8	44328	12	68808	17	104376		
2	10552	3	17568	5	28336	8	44840	12	69576	18	105528		
2	10680	3	17760	5	38656	8	45352	12	70344	18	106680		
2	10808	3	17952	5	28976	8	45864	12	71112	18	107832		
2	10936	3	18144	5	29296	8	46376	12	71880	18	108984		
			l										

2	11064	3	18336	5	29616	8	46888	1 2	72648	18	110136	
2	11192	4	18568	5	29936	8	47400	1 2	73416	19	110176	
2	11320	4	18824	5	30256	8	47912	1 3	73712	19	111392	

El procedimiento puede comprender, además: recibir información que indica un esquema de modulación y de codificación (Modulation and Coding Scheme, MCS) y un tamaño de área de recurso disponible desde un extremo de recepción; y determinar el tamaño de bloque de transporte específico en base a la información recibida desde las combinaciones de tamaños de bloque de transporte predeterminadas.

Y, si el valor del tamaño del bloque de transporte basado en la información recibida no está contenido en las combinaciones de tamaños de bloque de transporte predeterminadas, puede usarse como el tamaño de bloque de transporte específico un tamaño de bloque de transporte máximo en las combinaciones de tamaños de bloque de transporte predeterminadas, que es igual o menor que el valor del tamaño de bloque de transporte basado en la información recibida; un tamaño de bloque de transporte mínimo en las combinaciones de tamaños de bloque de transporte predeterminadas, que es mayor que el valor de tamaño de bloque de transporte basado en la información recibida; o un tamaño de bloque de transporte específico en las combinaciones de tamaños de bloque de transporte predeterminadas, que tiene una diferencia mínima con el valor de tamaño de bloque de transporte basado en la información recibida.

En otro aspecto de la presente invención, se proporciona un procedimiento de transmisión de señales que comprende: adjuntar una primera verificación por redundancia cíclica (Cyclic Redundancy Check, CRC) que tiene una longitud de L a un bloque de transporte que tiene una longitud de N; segmentar el bloque de transporte al que se adjunta el primer CRC en M números de bloques de código, cada uno de los cuales tiene una longitud de N_c ; adjuntar una segunda verificación por redundancia cíclica (CRC) que tiene una longitud de L a cada uno de los M bloques de código; codificar, por medio de un turbo codificador que comprende un entrelazador interno, los M bloques de código, cada uno de los cuales tiene el segundo CRC; y transmitir los M bloques de código codificados, en el que el tamaño N de bloque de transporte satisface una ecuación indicada por $N = M^*N_C$ -L (en la que N, N_c , M y L son números naturales), donde un valor de N_c + L tiene uno cualquiera de los tamaños de bloque del entrelazador interno del turbo codificador.

En otro aspecto de la presente invención, se proporciona un procedimiento de transmisión de señales que comprende: asignar un bloque de transporte que tiene una longitud de N para al menos un bloque de código; codificar el al menos un bloque de código por medio de un turbo codificador que comprende un entrelazador interno; y transmitir el bloque de código codificado, en el que el tamaño N de bloque de transporte se selecciona de entre una combinación de tamaños de bloque de transporte que comprende todos o algunos de los valores mostrados en la Tabla 3 siguiente.

30 [Tabla 3]

5

10

15

20

16	392	1096	3176	6200	12216	22152	37440	62368	101840
24	400	1128	3240	6328	12384	22408	37888	63072	102928
32	408	1160	3304	6456	12576	22664	38336	63776	104016
40	416	1192	3368	6584	12768	22920	38784	64480	104376
48	424	1224	3432	6712	12960	23176	39232	65184	105528
56	432	1256	3496	6840	13152	23432	39680	65888	106680
64	440	1288	3560	6968	13344	23688	40128	66592	107832
72	448	1320	3624	7096	13536	23944	40576	67296	108984
80	456	1352	3688	7224	13728	24200	41024	68040	110136
88	464	1384	3752	7352	13920	24456	41472	68808	110176

104					`	JOI 11.)				
112 488 1480 3944 7736 14496 25136 42816 71112 113824 120 504 1512 4008 7864 14688 25456 43304 71880 115040 128 520 1544 4072 7992 14880 25776 43816 72648 116256 136 536 1576 4136 8120 15072 26096 44328 73416 117256 144 552 1608 4200 8248 15264 26416 44840 73712 118536 152 568 1640 4264 8376 15456 26736 45352 74544 119816 160 584 1672 4328 8504 15648 27056 45864 75376 121966 168 600 1704 4392 8632 15840 27376 46376 75208 122376 176 616 1736 4456	96	472	1416	3816	7480	14112	24496	41920	69576	111392
120 504 1512 4008 7864 14688 25456 43304 71880 115040 128 520 1544 4072 7992 14880 25776 43816 72648 116256 136 536 1576 4136 8120 15072 26096 44328 73416 117256 144 552 1608 4200 8248 15264 26416 44840 73712 118536 152 568 1640 4264 8376 15456 26736 45352 74544 119816 160 584 1672 4328 8504 15648 27056 45864 75376 121096 168 600 1704 4392 8632 15840 27376 46376 76208 122376 176 616 1736 4456 8760 16032 27696 46888 77040 123120 184 632 1768 4520	104	480	1448	3880	7608	14304	24816	42368	70344	112608
128 520 1544 4072 7992 14880 25776 43816 72648 116256 136 536 1576 4136 8120 15072 26096 44328 73416 117256 144 552 1608 4200 8248 15264 26416 44840 73712 118536 152 568 1640 4264 8376 15456 26736 45352 74544 119816 160 584 1672 4328 8504 15648 27056 45864 75376 121096 168 600 1704 4392 8632 15840 27376 46376 76208 122376 176 616 1736 4456 8760 16032 27696 46888 77040 123120 184 632 1768 4520 8888 16224 28016 47400 77872 124464 192 648 1800 4584	112	488	1480	3944	7736	14496	25136	42816	71112	113824
136 536 1576 4136 8120 15072 26096 44328 73416 117256 144 552 1608 4200 8248 15264 26416 44840 73712 118536 152 568 1640 4264 8376 15456 26736 45352 74544 119816 160 584 1672 4328 8504 15648 27056 45864 75376 121096 168 600 1704 4392 8632 15840 27376 46376 76208 122376 176 616 1736 4456 8760 16032 27696 46888 77040 123120 184 632 1768 4520 8888 16224 28016 47400 77872 124464 192 648 1800 4584 9016 16416 28336 47912 78704 125808 200 664 1832 4648	120	504	1512	4008	7864	14688	25456	43304	71880	115040
144 552 1608 4200 8248 15264 26416 44840 73712 118536 152 568 1640 4264 8376 15456 26736 45352 74544 119816 160 584 1672 4328 8504 15648 27056 45864 75376 121096 168 600 1704 4392 8632 15840 27376 46376 76208 122376 176 616 1736 4456 8760 16032 27696 46888 77040 123120 184 632 1768 4520 8888 16224 28016 47400 77872 124464 192 648 1800 4584 9016 16416 28336 47912 78704 125808 200 664 1832 4648 9144 16608 28656 48424 79536 127152 208 680 1864 47712	128	520	1544	4072	7992	14880	25776	43816	72648	116256
152 568 1640 4264 8376 15456 26736 45352 74544 119816 160 584 1672 4328 8504 15648 27056 45864 75376 121096 168 600 1704 4392 8632 15840 27376 46376 76208 122376 176 616 1736 4456 8760 16032 27696 46888 77040 123120 184 632 1768 4520 8888 16224 28016 47400 77872 124464 192 648 1800 4584 9016 16416 28336 47912 78704 125808 200 664 1832 4648 9144 16608 28656 48424 79536 127152 208 680 1864 47712 9272 16800 28976 48936 80280 128496 216 696 1896 4776	136	536	1576	4136	8120	15072	26096	44328	73416	117256
160 584 1672 4328 8504 15648 27056 45864 75376 121096 168 600 1704 4392 8632 15840 27376 46376 76208 122376 176 616 1736 4456 8760 16032 27696 46888 77040 123120 184 632 1768 4520 8888 16224 28016 47400 77872 124464 192 648 1800 4584 9016 16416 28336 47912 78704 125808 200 664 1832 4648 9144 16608 28656 48424 79536 127152 208 680 1864 47712 9272 16800 28976 48936 80280 128496 216 696 1896 4776 9400 16992 29296 49296 81176 130392 224 712 1928 4840	144	552	1608	4200	8248	15264	26416	44840	73712	118536
168 600 1704 4392 8632 15840 27376 46376 76208 122376 176 616 1736 4456 8760 16032 27696 46888 77040 123120 184 632 1768 4520 8888 16224 28016 47400 77872 124464 192 648 1800 4584 9016 16416 28336 47912 78704 125808 200 664 1832 4648 9144 16608 28656 48424 79536 127152 208 680 1864 4712 9272 16800 28976 48936 80280 128496 216 696 1896 4776 9400 16992 29296 49296 81176 130392 224 712 1928 4840 9528 17184 29616 49872 82072 131800 232 728 1960 4904	152	568	1640	4264	8376	15456	26736	45352	74544	119816
176 616 1736 4456 8760 16032 27696 46888 77040 123120 184 632 1768 4520 8888 16224 28016 47400 77872 124464 192 648 1800 4584 9016 16416 28336 47912 78704 125808 200 664 1832 4648 9144 16608 28656 48424 79536 127152 208 680 1864 4712 9272 16800 28976 48936 80280 128496 216 696 1896 4776 9400 16992 29296 49296 81176 130392 224 712 1928 4840 9528 17184 29616 49872 82072 131800 232 728 1960 4904 9656 17376 29936 50448 82968 133208 248 760 2024 5032	160	584	1672	4328	8504	15648	27056	45864	75376	121096
184 632 1768 4520 8888 16224 28016 47400 77872 124464 192 648 1800 4584 9016 16416 28336 47912 78704 125808 200 664 1832 4648 9144 16608 28656 48424 79536 127152 208 680 1864 4712 9272 16800 28976 48936 80280 128496 216 696 1896 4776 9400 16992 29296 49296 81176 130392 224 712 1928 4840 9528 17184 29616 49872 82072 131800 232 728 1960 4904 9656 17376 29936 50448 82968 133208 240 744 1992 4968 9784 17568 30256 51024 83864 134616 248 760 2024 5032	168	600	1704	4392	8632	15840	27376	46376	76208	122376
192 648 1800 4584 9016 16416 28336 47912 78704 125808 200 664 1832 4648 9144 16608 28656 48424 79536 127152 208 680 1864 4712 9272 16800 28976 48936 80280 128496 216 696 1896 4776 9400 16992 29296 49296 81176 130392 224 712 1928 4840 9528 17184 29616 49872 82072 131800 232 728 1960 4904 9656 17376 29936 50448 82968 133208 240 744 1992 4968 9784 17568 30256 51024 83864 134616 248 760 2024 5032 9912 17760 30576 51600 84760 134848 256 776 2088 5096	176	616	1736	4456	8760	16032	27696	46888	77040	123120
200 664 1832 4648 9144 16608 28656 48424 79536 127152 208 680 1864 4712 9272 16800 28976 48936 80280 128496 216 696 1896 4776 9400 16992 29296 49296 81176 130392 224 712 1928 4840 9528 17184 29616 49872 82072 131800 232 728 1960 4904 9656 17376 29936 50448 82968 133208 240 744 1992 4968 9784 17568 30256 51024 83864 134616 248 760 2024 5032 9912 17760 30576 51600 84760 134848 256 776 2088 5096 10040 17952 30936 52176 85656 136320 272 808 2216 5224	184	632	1768	4520	8888	16224	28016	47400	77872	124464
208 680 1864 4712 9272 16800 28976 48936 80280 128496 216 696 1896 4776 9400 16992 29296 49296 81176 130392 224 712 1928 4840 9528 17184 29616 49872 82072 131800 232 728 1960 4904 9656 17376 29936 50448 82968 133208 240 744 1992 4968 9784 17568 30256 51024 83864 134616 248 760 2024 5032 9912 17760 30576 51600 84760 134848 256 776 2088 5096 10040 17952 30936 52176 85656 136320 264 792 2152 5160 10168 18144 31320 52752 86016 137792 272 808 2216 5224	192	648	1800	4584	9016	16416	28336	47912	78704	125808
216 696 1896 4776 9400 16992 29296 49296 81176 130392 224 712 1928 4840 9528 17184 29616 49872 82072 131800 232 728 1960 4904 9656 17376 29936 50448 82968 133208 240 744 1992 4968 9784 17568 30256 51024 83864 134616 248 760 2024 5032 9912 17760 30576 51600 84760 134848 256 776 2088 5096 10040 17952 30936 52176 85656 136320 264 792 2152 5160 10168 18144 31320 52752 86016 137792 272 808 2216 5224 10296 18336 31704 53328 86976 139264 280 824 2280 5288	200	664	1832	4648	9144	16608	28656	48424	79536	127152
224 712 1928 4840 9528 17184 29616 49872 82072 131800 232 728 1960 4904 9656 17376 29936 50448 82968 133208 240 744 1992 4968 9784 17568 30256 51024 83864 134616 248 760 2024 5032 9912 17760 30576 51600 84760 134848 256 776 2088 5096 10040 17952 30936 52176 85656 136320 264 792 2152 5160 10168 18144 31320 52752 86016 137792 272 808 2216 5224 10296 18336 31704 53328 86976 139264 280 824 2280 5288 10424 18568 32088 53904 87936 140736 288 840 2344 5352	208	680	1864	4712	9272	16800	28976	48936	80280	128496
232 728 1960 4904 9656 17376 29936 50448 82968 133208 240 744 1992 4968 9784 17568 30256 51024 83864 134616 248 760 2024 5032 9912 17760 30576 51600 84760 134848 256 776 2088 5096 10040 17952 30936 52176 85656 136320 264 792 2152 5160 10168 18144 31320 52752 86016 137792 272 808 2216 5224 10296 18336 31704 53328 86976 139264 280 824 2280 5288 10424 18568 32088 53904 87936 140736 288 840 2344 5352 10552 18824 32472 54480 88896 142248 296 856 2408 5416	216	696	1896	4776	9400	16992	29296	49296	81176	130392
240 744 1992 4968 9784 17568 30256 51024 83864 134616 248 760 2024 5032 9912 17760 30576 51600 84760 134848 256 776 2088 5096 10040 17952 30936 52176 85656 136320 264 792 2152 5160 10168 18144 31320 52752 86016 137792 272 808 2216 5224 10296 18336 31704 53328 86976 139264 280 824 2280 5288 10424 18568 32088 53904 87936 140736 288 840 2344 5352 10552 18824 32472 54480 88896 142248 296 856 2408 5416 10680 19080 32856 55056 89856 143784 304 872 2472 5480	224	712	1928	4840	9528	17184	29616	49872	82072	131800
248 760 2024 5032 9912 17760 30576 51600 84760 134848 256 776 2088 5096 10040 17952 30936 52176 85656 136320 264 792 2152 5160 10168 18144 31320 52752 86016 137792 272 808 2216 5224 10296 18336 31704 53328 86976 139264 280 824 2280 5288 10424 18568 32088 53904 87936 140736 288 840 2344 5352 10552 18824 32472 54480 88896 142248 296 856 2408 5416 10680 19080 32856 55056 89856 143784 304 872 2472 5480 10808 19336 33240 55416 90816 145320 312 888 2536 5544 <td>232</td> <td>728</td> <td>1960</td> <td>4904</td> <td>9656</td> <td>17376</td> <td>29936</td> <td>50448</td> <td>82968</td> <td>133208</td>	232	728	1960	4904	9656	17376	29936	50448	82968	133208
256 776 2088 5096 10040 17952 30936 52176 85656 136320 264 792 2152 5160 10168 18144 31320 52752 86016 137792 272 808 2216 5224 10296 18336 31704 53328 86976 139264 280 824 2280 5288 10424 18568 32088 53904 87936 140736 288 840 2344 5352 10552 18824 32472 54480 88896 142248 296 856 2408 5416 10680 19080 32856 55056 89856 143784 304 872 2472 5480 10808 19336 33240 55416 90816 145320 312 888 2536 5544 10936 19592 33624 56056 91776 146856 320 904 2600 5608 <td>240</td> <td>744</td> <td>1992</td> <td>4968</td> <td>9784</td> <td>17568</td> <td>30256</td> <td>51024</td> <td>83864</td> <td>134616</td>	240	744	1992	4968	9784	17568	30256	51024	83864	134616
264 792 2152 5160 10168 18144 31320 52752 86016 137792 272 808 2216 5224 10296 18336 31704 53328 86976 139264 280 824 2280 5288 10424 18568 32088 53904 87936 140736 288 840 2344 5352 10552 18824 32472 54480 88896 142248 296 856 2408 5416 10680 19080 32856 55056 89856 143784 304 872 2472 5480 10808 19336 33240 55416 90816 145320 312 888 2536 5544 10936 19592 33624 56056 91776 146856 320 904 2600 5608 11064 19848 34008 56696 92776 148176 328 920 2664 5672 <td>248</td> <td>760</td> <td>2024</td> <td>5032</td> <td>9912</td> <td>17760</td> <td>30576</td> <td>51600</td> <td>84760</td> <td>134848</td>	248	760	2024	5032	9912	17760	30576	51600	84760	134848
272 808 2216 5224 10296 18336 31704 53328 86976 139264 280 824 2280 5288 10424 18568 32088 53904 87936 140736 288 840 2344 5352 10552 18824 32472 54480 88896 142248 296 856 2408 5416 10680 19080 32856 55056 89856 143784 304 872 2472 5480 10808 19336 33240 55416 90816 145320 312 888 2536 5544 10936 19592 33624 56056 91776 146856 320 904 2600 5608 11064 19848 34008 56696 92776 148176 328 920 2664 5672 11192 20104 34392 57336 93800 149776 336 936 2728 5736 <td>256</td> <td>776</td> <td>2088</td> <td>5096</td> <td>10040</td> <td>17952</td> <td>30936</td> <td>52176</td> <td>85656</td> <td>136320</td>	256	776	2088	5096	10040	17952	30936	52176	85656	136320
280 824 2280 5288 10424 18568 32088 53904 87936 140736 288 840 2344 5352 10552 18824 32472 54480 88896 142248 296 856 2408 5416 10680 19080 32856 55056 89856 143784 304 872 2472 5480 10808 19336 33240 55416 90816 145320 312 888 2536 5544 10936 19592 33624 56056 91776 146856 320 904 2600 5608 11064 19848 34008 56696 92776 148176 328 920 2664 5672 11192 20104 34392 57336 93800 149776 336 936 2728 5736 11320 20360 34776 57976 94824 151376	264	792	2152	5160	10168	18144	31320	52752	86016	137792
288 840 2344 5352 10552 18824 32472 54480 88896 142248 296 856 2408 5416 10680 19080 32856 55056 89856 143784 304 872 2472 5480 10808 19336 33240 55416 90816 145320 312 888 2536 5544 10936 19592 33624 56056 91776 146856 320 904 2600 5608 11064 19848 34008 56696 92776 148176 328 920 2664 5672 11192 20104 34392 57336 93800 149776 336 936 2728 5736 11320 20360 34776 57976 94824 151376	272	808	2216	5224	10296	18336	31704	53328	86976	139264
296 856 2408 5416 10680 19080 32856 55056 89856 143784 304 872 2472 5480 10808 19336 33240 55416 90816 145320 312 888 2536 5544 10936 19592 33624 56056 91776 146856 320 904 2600 5608 11064 19848 34008 56696 92776 148176 328 920 2664 5672 11192 20104 34392 57336 93800 149776 336 936 2728 5736 11320 20360 34776 57976 94824 151376	280	824	2280	5288	10424	18568	32088	53904	87936	140736
304 872 2472 5480 10808 19336 33240 55416 90816 145320 312 888 2536 5544 10936 19592 33624 56056 91776 146856 320 904 2600 5608 11064 19848 34008 56696 92776 148176 328 920 2664 5672 11192 20104 34392 57336 93800 149776 336 936 2728 5736 11320 20360 34776 57976 94824 151376	288	840	2344	5352	10552	18824	32472	54480	88896	142248
312 888 2536 5544 10936 19592 33624 56056 91776 146856 320 904 2600 5608 11064 19848 34008 56696 92776 148176 328 920 2664 5672 11192 20104 34392 57336 93800 149776 336 936 2728 5736 11320 20360 34776 57976 94824 151376	296	856	2408	5416	10680	19080	32856	55056	89856	143784
320 904 2600 5608 11064 19848 34008 56696 92776 148176 328 920 2664 5672 11192 20104 34392 57336 93800 149776 336 936 2728 5736 11320 20360 34776 57976 94824 151376	304	872	2472	5480	10808	19336	33240	55416	90816	145320
328 920 2664 5672 11192 20104 34392 57336 93800 149776 336 936 2728 5736 11320 20360 34776 57976 94824 151376	312	888	2536	5544	10936	19592	33624	56056	91776	146856
336 936 2728 5736 11320 20360 34776 57976 94824 151376	320	904	2600	5608	11064	19848	34008	56696	92776	148176
	328	920	2664	5672	11192	20104	34392	57336	93800	149776
014 050 0700 5000 44440 00040 05400 50040 05940 450070	336	936	2728	5736	11320	20360	34776	57976	94824	151376
344 952 2792 5800 11448 20616 35160 58616 95848 152976	344	952	2792	5800	11448	20616	35160	58616	95848	152976

352	968	2856	5864	11576	20872	35544	59256	96872	
360	984	2920	5928	11704	21128	35928	59896	97896	
368	1000	2984	5992	11832	21384	36312	60536	98576	
376	1032	3048	6056	11960	21640	36696	61176	99664	
384	1064	3112	6120	12088	21896	36992	61664	100752	

donde, el valor de N es un número natural.

Según las realizaciones indicadas anteriormente de la presente invención, si un bloque de transporte recibido desde una capa superior es segmentado en una pluralidad de bloques de código, y los bloques de código son codificados por un turbo codificador, la presente invención es capaz de evitar la adición de bits ficticios debido a la longitud de un bit de entrada de un entrelazador interno del turbo codificador, de manera que pueda transmitir señales de manera efectiva.

Descripción de los dibujos

Los dibujos adjuntos, que se incluyen para proporcionar una comprensión adicional de la invención, ilustran realizaciones de la invención y, junto con la descripción, sirven para explicar el principio de la invención.

En los dibujos:

5

10

15

25

30

35

40

La Fig. 1 es un diagrama conceptual que ilustra las operaciones básicas de un turbo codificador según la presente invención:

Las Figs. 2 y 3 son diagramas conceptuales que ilustran un procedimiento para dividir un bloque de transporte largo en una pluralidad de bloques de transporte cortos en un sistema 3GPP y para adjuntar un CRC a los bloques de transporte cortos según la presente invención;

La Fig. 4 es un diagrama conceptual que ilustra un principio de establecimiento del tamaño del bloque de transporte según una realización de la presente invención; y

La Fig. 5 muestra un ejemplo de una estructura de recursos según la presente invención.

20 Descripción detallada de la invención

A continuación, se hará referencia en detalle a las realizaciones preferidas de la presente invención, cuyos ejemplos se ilustran en los dibujos adjuntos. Siempre que sea posible, se usarán los mismos números de referencia a lo largo de los dibujos para hacer referencia a las mismas partes o a partes similares. Antes de describir la presente invención, cabe señalar que la mayoría de los términos descritos en la presente invención corresponden a términos generales bien conocidos en la técnica, pero algunos términos han sido seleccionados por el presente solicitante como necesarios y se describirán más adelante en la descripción siguiente de la presente invención. Por lo tanto, es preferible que los términos definidos por el presente solicitante se entiendan en base a sus significados en la presente invención.

En aras de la descripción y de una mejor comprensión de la presente invención, la descripción detallada siguiente describirá una diversidad de realizaciones y modificaciones de la presente invención. En algunos casos, con el fin de prevenir la ocurrencia de conceptos ambiguos de la presente invención, los dispositivos o aparatos convencionales bien conocidos por las personas con conocimientos en la materia se omitirán y se indicarán en forma de diagrama de bloques en base a las funciones importantes de la presente invención. Siempre que sea posible, se usarán los mismos números de referencia a lo largo de los dibujos para hacer referencia a las mismas partes o a partes similares.

Tal como se ha descrito anteriormente, las personas con conocimientos en la materia saben que el entrelazador interno del turbo código tiene un rendimiento superior sólo en un bloque de datos de tamaño específico. Si el tamaño de bloque de datos es mayor que un tamaño predeterminado, un bloque de transporte o un bloque de datos es segmentado en una pluralidad de bloques de código, y este procedimiento se denomina segmentación. Debido a la limitación del tamaño del entrelazador, es posible que el bloque de transporte o de datos no sea segmentado en bloques de código del mismo tamaño.

Sin embargo, en el caso de un enlace descendente, debe aplicarse un indicador de calidad de canal a todos los bloques de código segmentados a partir del bloque de datos, de manera que sea preferible que el bloque de transporte

o de datos sea segmentado en bloques de código del mismo tamaño. Si el tamaño de bloque de datos o el tamaño de bloque de código segmentado es diferente del tamaño de entrelazador interno del turbo código, se inserta un bit ficticio de manera que se reduce la eficiencia de transmisión. Con el fin de resolver este problema, es preferible que el procedimiento de segmentación se realice de manera que no requiera este bit ficticio.

- Para las operaciones indicadas anteriormente, es necesaria una consideración del tamaño de bloque del codificador interno del turbo codificador causado por el bit ficticio insertado. Con el fin de realizar la codificación de canal, se adjunta un CRC a un bloque de transporte o bloques de código segmentados a partir del bloque de transporte y, al mismo tiempo, la longitud de cada bloque de datos se cambia a otra longitud, de manera que es necesaria una consideración de la codificación de canal.
- 10 En primer lugar, a continuación, se describirá en detalle el procedimiento para adjuntar el CRC indicado anteriormente.

15

35

40

- El CRC para detectar errores es adjuntado al bloque de transporte recibido desde una capa superior. En aras de la conveniencia de la implementación, puede ser adjuntado también a cada uno de los bloques de código segmentados.
- Las Figs. 2 y 3 son diagramas conceptuales que ilustran un procedimiento para dividir un bloque de transporte largo en una pluralidad de bloques de código de longitud corta en un sistema 3GPP, y adjuntar un CRC a los bloques de código cortos según la presente invención.
- El sistema 3GPP segmenta un bloque (TB) de transporte largo en una pluralidad de bloques de código cortos, codifica los bloques de código cortos, recopila los bloques de código cortos codificados y transmite los bloques de código cortos recopilados. A continuación, se proporcionarán descripciones detalladas de las operaciones anteriores del sistema 3GPP, con referencia a la Fig. 2.
- Con referencia a la Fig. 2, al bloque de transporte largo se le adjunta un CRC, es decir, un CRC es adjuntado al bloque de transporte en la etapa S101. A continuación, el bloque de transporte con CRC adjuntado es segmentado en una pluralidad de bloques de código cortos en la etapa S102. De manera similar, tal como se muestra en los números de referencia 201 ~ 203 de la Fig. 3, el CRC es adjuntado al bloque de transporte largo, y el bloque de transporte con CRC adjuntado es segmentado en una pluralidad de bloques de código. Sin embargo, si la longitud del bloque de transporte recibido desde la capa superior es igual o menor que una longitud predeterminada capaz de ser construida por un bloque de código, es decir, una longitud máxima del entrelazador interno del turbo codificador, puede omitirse la segmentación del bloque de transporte. En este caso, puede omitirse también el procedimiento para adjuntar un CB CRC.
- Mientras, a cada uno de los bloques de código cortos se adjunta un CRC, es decir, a continuación, se realiza el procedimiento para adjuntar un CRC a cada uno de los bloques de código en la etapa S103. Más detalladamente, tal como se muestra en el número de referencia 204 de la Fig. 3, cada uno de los bloques de código incluye un CRC.
 - Además, los bloques de código, cada uno de los cuales incluye el CRC, son aplicados a un codificador de canal, de manera que el procedimiento de codificación de canal es realizado sobre los bloques de código resultantes en la etapa S104. A continuación, el procedimiento S105 de adaptación de velocidad y el procedimiento S106 de concatenación de bloques de código y de entrelazado de canal se aplican secuencialmente a los bloques de código individuales, de manera que los bloques de código resultantes sean transmitidos a un extremo de recepción.
 - Por lo tanto, según la siguiente realización, se propone un procedimiento para determinar el tamaño de un bloque de transporte en consideración del procedimiento para adjuntar el CRC, de dos etapas. En el caso en el que el tamaño de un bloque de transporte es menor un tamaño predeterminado (tal como, el tamaño máximo del entrelazador interno) y este bloque de transporte es asignado a un bloque de código, la realización de la presente invención proporciona un procedimiento para establecer el bloque de transporte en consideración de un único CRC.
 - Bajo la suposición indicada anteriormente, a continuación, se describirá un procedimiento para asignar el bloque de transporte a un bloque de código. Con el fin de eliminar la necesidad de la técnica convencional de adjuntar el bit ficticio con la condición de que el bloque de transporte sea asignado a una palabra de código, esta realización de la presente invención permite que la suma del tamaño (N) del bloque de transporte y un tamaño de CRC sea igual a un tamaño de bloque del entrelazador interno del turbo entrelazador. La Tabla 1 siguiente representa una combinación de tamaños de bloque del entrelazador interno del turbo codificador.

[Tabla 1]

			-				
i	K	i	K	i	K	i	К
1	40	48	416	95	1120	142	3200
2	48	49	424	96	1152	143	3264
3	56	50	432	97	1184	144	3328
4	64	51	440	98	1216	145	3392
5	72	52	448	99	1248	146	3456
6	80	53	456	100	1280	147	3520
7	88	54	464	101	1312	148	3584
8	96	55	472	102	1344	149	3648
9	104	56	480	103	1376	150	3712
10	112	57	488	104	1408	151	3776
11	120	58	496	105	1440	152	3840
12	128	59	504	106	1472	153	3904
13	136	60	512	107	1504	154	3968
14	144	61	528	108	1536	155	4032
15	152	62	544	109	1568	156	4096
16	160	63	560	110	1600	157	4160
17	168	64	576	111	1632	158	4224
18	176	65	592	112	1664	158	4288
19	184	66	608	113	1696	160	4352
20	192	67	624	114	1728	161	4416
21	200	68	640	115	1760	162	4480
22	208	69	656	116	1792	163	4544
23	216	70	672	117	1824	164	4608
24	224	71	688	118	1856	165	4672
25	232	72	704	119	1888	166	4736
26	240	73	720	120	1920	167	4800
27	248	74	736	121	1952	168	4864
28	256	75	752	122	1984	169	4928
29	264	76	768	123	2016	170	4992
30	272	77	784	124	2048	171	5056
31	280	78	800	125	2112	172	5120
			l				

(Cont.)

32	288	79	816	126	2176	173	5184
33	296	80	832	127	2240	174	5248
34	304	81	848	128	2304	175	5312
35	312	82	864	129	2368	176	5376
36	320	83	880	130	2432	177	5440
37	328	84	896	131	2496	178	5504
38	336	85	912	132	2560	179	5568
39	344	86	928	133	2624	180	5632
40	352	87	944	134	2688	181	5696
41	360	88	960	135	2752	182	5760
42	368	89	976	136	2816	183	5824
43	376	90	992	137	2880	184	5888
44	384	91	1008	138	2944	185	5952
45	392	92	1024	139	3008	186	6016
46	400	93	1056	140	3072	187	6080
47	408	94	1088	141	3136	188	6144

Por lo tanto, tal como se muestra en la Tabla 1, si el bloque de transporte es asignado a un bloque de código, es preferible que el bloque de transporte tenga una longitud específica adquirida cuando la longitud de un CRC adjuntado al bloque de transporte es restada de un tamaño (K) de bloque del entrelazador interno. Siempre que la longitud de un CRC adjuntado al bloque de transporte sea de 24 bits, el tamaño (N) de bloque de transporte adquirido cuando el bloque de transporte es asignado a un bloque de código puede ser un K-24. Es decir, el tamaño del bloque de transporte según esta realización puede seleccionarse a partir de las combinaciones de la Tabla 4 siguiente.

[Tabla 4]

i	N	i	N	i	N	i	N
1	16	48	392	95	1096	142	3176
2	24	49	400	96	1128	143	3240
3	32	50	408	97	1160	144	3304
4	40	51	416	98	1192	145	3368
5	48	52	424	99	1224	146	3432
6	56	53	432	100	1256	147	3496
7	64	54	440	101	1288	148	3560
8	72	55	448	102	1320	149	3624
9	80	56	456	103	1352	150	3688

			,	•			
10	88	57	464	104	1384	151	3752
11	96	58	472	105	1416	152	3816
12	104	59	480	106	1448	153	3880
13	112	60	488	107	1480	154	3944
14	120	61	504	108	1512	155	4008
15	128	62	520	109	1544	156	4072
16	136	63	536	110	1576	157	4136
17	144	64	552	111	1608	158	4200
18	152	65	568	112	1640	159	4264
19	160	66	584	113	1672	160	4328
20	168	67	600	114	1704	161	4392
21	176	68	616	115	1736	162	4456
22	184	69	632	116	1768	163	4520
23	192	70	648	117	1800	164	4584
24	200	71	664	118	1832	165	4648
25	208	72	680	119	1864	166	4712
26	216	73	696	120	1896	167	4776
27	224	74	712	121	1928	168	4840
28	232	75	728	122	1960	169	4904
29	240	76	744	123	1992	170	4968
30	248	77	760	124	2024	171	5032
31	256	78	776	125	2088	172	5096
32	264	79	792	126	2152	173	5160
33	272	80	808	127	2216	174	5224
34	280	81	824	128	2280	175	5288
35	288	82	840	129	2344	176	5352
36	296	83	856	130	2408	177	5416
37	304	84	872	131	2472	178	5480
38	312	85	888	132	2536	179	5544
39	320	86	904	133	2600	180	5608
40	328	87	920	134	2664	181	5672
41	336	88	936	135	2728	182	5736
1	I		l .	l .	ı		1

42	344	89	952	136	2792	183	5800
43	352	90	968	137	2856	184	5864
44	360	91	984	138	2920	185	5928
45	368	92	1000	139	2984	186	5992
46	376	93	1032	140	3048	187	6056
47	384	94	1064	141	3112	188	6120

A continuación, se describirá detalladamente un procedimiento para segmentar un bloque de transporte en dos o más bloques de código y para realizar un procedimiento de asignación sobre los bloques de código segmentados.

Si un bloque de transporte es segmentado en dos o más bloques de código, un CRC para el bloque de transporte es adjuntado al bloque de transporte tal como se muestra en las Figs. 2 y 3, y un CRC para cada bloque de código es adjuntado a cada uno de los bloques de código segmentados. Bajo esta suposición, con el fin de evitar la práctica convencional de añadir bits ficticios, es preferible que la suma del tamaño de un bloque de código segmentado cualquiera y el tamaño de un CRC adjuntado a un bloque de código correspondiente sea igual a un tamaño de bits de entrada del entrelazador interno, tal como se muestra en la Tabla 1.

Además, esta realización de la presente invención permite que cada una de las palabras de código segmentadas tenga el mismo tamaño. Los bloques de código de diferentes tamaños creados por la segmentación del bloque de transporte son causados por la limitación del tamaño del entrelazador interno del turbo codificador. Si el tamaño del bloque de transporte se establece previamente teniendo en cuenta el tamaño del entrelazador interno del turbo codificador, tal como se describe en esta realización, no hay necesidad de que los bloques de código individuales tengan tamaños diferentes.

Bajo la suposición indicada anteriormente, a continuación, se describirá en detalle un procedimiento para establecer el tamaño del bloque de transporte según esta realización.

La Fig. 4 es un diagrama conceptual que ilustra un principio de establecimiento del tamaño del bloque de transporte según una realización de la presente invención.

En primer lugar, se supone que un CRC de tamaño L es adjuntado a un bloque (TB) de transporte de tamaño N. Si el tamaño del bloque (TB) de transporte con CRC adjuntado es mayor que la longitud máxima del entrelazador interno, el bloque de transporte es segmentado en una pluralidad de bloques (CBs) de código. Tal como puede verse en la Fig. 4, el tamaño del bloque (TB) de transporte es segmentado en M (CB $_1$ - CB $_M$), cada uno de los cuales tiene la misma longitud de N $_C$ bits.

Mientras, el CRC de tamaño L es adjuntado a cada uno de los M bloques de código.

De esta manera, siempre que cada uno de los bloques de código segmentados tenga la misma longitud y se tengan en cuenta las longitudes de dos CRC adjuntados, el tamaño N de bloque de transporte puede ser representado por la Ecuación 1 siguiente:

30 [Ecuación 1]

5

10

15

20

25

35

$$N + L^*M + L = M^*(N_c + L) \rightarrow N = M^*N_c - L$$

Si se usa el CRC de 24 bits, la Ecuación 1 anterior puede representarse por otra Ecuación N = M*N₀ - 24.

Cada uno de los bloques de código segmentados incluye el CRC, de manera que los bloques de código con CRC adjuntado son aplicados al entrelazador interno del turbo codificador. Por lo tanto, tal como se muestra en la Fig. 4, la longitud de los bloques de código con CRC adjuntado es igual al tamaño (K) de bloque del entrelazador interno mostrado en la Tabla 1, tal como se representa mediante la Ecuación 2 siguiente:

[Ecuación 2]

$$N_C + L = K$$

En base a la descripción indicada anteriormente, esta realización proporciona un procedimiento para usar los tamaños de bloque de transporte siguientes mostrados en la Tabla 2 siguiente. La Tabla 2 siguiente muestra una diversidad de casos que ilustran una relación entre un único bloque de transporte y un máximo de 25 bloques de código asignados a este único bloque de transporte.

5 [Tabla 2]

М	N	М	N	М	N	М	N	М	N	М	N	М	N
2	6200	2	11448	4	19080	5	30576	8	48424	13	74544	19	112608
2	6328	2	11576	4	19336	6	30936	8	48936	13	75376	19	113824
2	6456	2	11704	4	19592	6	31320	9	49296	13	76208	19	115040
2	6584	2	11832	4	19848	6	31704	9	49872	13	77040	19	116256
2	6712	2	11960	4	20104	6	32088	9	50448	13	77872	30	117256
2	6840	2	12088	4	20360	6	32472	9	51024	13	78704	20	118536
2	6968	2	12216	4	20616	6	32856	9	51600	13	79536	20	119816
2	7096	3	12384	4	20872	6	33240	9	52176	14	80280	20	121096
2	7224	3	12576	4	21128	6	33624	9	52752	14	81176	20	122376
2	7352	3	12768	4	21384	6	34008	9	53328	14	82072	21	123120
2	7480	3	12960	4	21640	6	34392	9	53904	14	82968	21	124464
2	7608	3	13152	4	21896	6	34776	9	54480	14	83864	21	125808
2	7736	3	13344	4	22152	6	35160	9	55056	14	84760	21	127152
2	7864	3	13536	4	22408	6	35544	10	55416	14	85656	21	128496
2	7992	3	13728	4	22664	6	35928	10	56056	15	86016	22	130392
2	8120	3	13920	4	22920	6	36312	10	56696	15	86976	22	131800
2	8248	3	14112	4	23176	6	36696	10	57336	15	87936	22	133208
2	8376	3	14304	4	23432	7	36992	10	57976	15	88896	22	134616
2	8504	3	14496	4	23688	7	37440	10	58616	15	89856	23	134848
2	8632	3	14688	4	23944	7	37888	10	59256	15	90816	23	136320
2	8760	3	14880	4	24200	7	38336	10	59896	15	91776	23	137792
2	8888	3	15072	4	24456	7	38784	10	60536	16	92776	23	139264
2	9016	3	15264	5	24496	7	39232	10	61176	16	93800	23	140736
2	9144	3	15456	5	24816	7	39680	11	61664	16	84824	24	142248
2	9272	3	15648	5	25136	7	40128	11	62368	16	95848	24	143784
2	9400	3	15840	5	25456	7	40576	11	63072	16	96872	24	145320
2	9528	3	16032	5	25776	7	41024	11	63776	16	97896	24	146856
2	9656	3	16224	5	26096	7	41472	11	64480	17	98576	25	148176

2	9784	3	16416	5	26416	7	41920	11	65184	17	99664	25	149776
2	9912	3	16608	5	26736	7	42368	11	65888	17	100752	25	151376
2	10040	3	16800	5	27056	7	42816	11	66592	17	101840	25	152976
2	10168	3	16992	5	27376	8	43304	11	67296	17	102928		
2	10296	3	17184	5	27696	8	43816	12	68040	17	104016		
2	10424	3	17376	5	28016	8	44328	12	68808	17	104376		
2	10552	3	17568	5	28336	8	44840	12	69576	18	105528		
2	10680	3	17760	5	38656	8	45352	12	70344	18	106680		
2	10808	3	17952	5	28976	8	45864	12	71112	18	107832		
2	10936	3	18144	5	29296	8	46376	12	71880	18	108984		
2	11064	3	18336	5	29616	8	46888	12	72648	18	110136		
2	11192	4	18568	5	29936	8	47400	12	73416	19	110176		
2	11320	4	18824	5	30256	8	47912	13	73712	19	111392		

La Tabla 2 satisface las Ecuaciones 1 y 2 anteriores y muestra hasta el caso en el que un bloque de transporte es segmentado en 25 bloques de código. Dentro del alcance de satisfacer las ecuaciones 1 y 2, las personas con conocimientos en la materia pueden apreciar fácilmente un tamaño (TB) de bloque de transporte adicional en la analogía de los valores mostrados en la Tabla 2.

Debido a que la transmisión de señal es realizada mediante la realización indicada anteriormente de la presente invención, puede eliminarse la adición de bits ficticios debido a la limitación del tamaño de bloque del turbo codificador, de manera que puede aumentarse el rendimiento o la capacidad de procesamiento del sistema.

Mientras, en el caso en el que no se considera sólo un primer caso en el que un bloque de transporte es asignado a un bloque de código, sino también un segundo caso en el que un bloque de transporte es segmentado en dos o más bloques de código, el tamaño de un bloque de transporte disponible puede ser representado por la Tabla 3 siguiente.

[Tabla 3]

16	392	1096	3176	6200	12216	22152	37440	62368	101840
24	400	1128	3240	6328	12384	22408	37888	63072	102928
32	408	1160	3304	6456	12576	22664	38336	63776	104016
40	416	1192	3368	6584	12768	22920	38784	64480	104376
48	424	1224	3432	6712	12960	23176	39232	65184	105528
56	432	1256	3496	6840	13152	23432	39680	65888	106680
64	440	1288	3560	6968	13344	23688	40128	66592	107832
72	448	1320	3624	7096	13536	23944	40576	67296	108984
80	456	1352	3688	7224	13728	24200	41024	68040	110136
88	464	1384	3752	7352	13920	24456	41472	68808	110176

				,	,				
96	472	1416	3816	7480	14112	24496	41920	69576	111392
104	480	1448	3880	7608	14304	24816	42368	70344	112608
112	488	1480	3944	7736	14496	25136	42816	71112	113824
120	504	1512	4008	7864	14688	25456	43304	71880	115040
128	520	1544	4072	7992	14880	25776	43816	72648	116256
136	536	1576	4136	8120	15072	26096	44328	73416	117256
144	552	1608	4200	8248	15264	26416	44840	73712	118536
152	568	1640	4264	8376	15456	26736	45352	74544	119816
160	584	1672	4328	8504	15648	27056	45864	75376	121096
168	600	1704	4392	8632	15840	27376	46376	76208	122376
176	616	1736	4456	8760	16032	27696	46888	77040	123120
184	632	1768	4520	8888	16224	28016	47400	77872	124464
192	648	1800	4584	9016	16416	28336	47912	78704	125808
200	664	1832	4648	9144	16608	28656	48424	79536	127152
208	680	1864	4712	9272	16800	28976	48936	80280	128496
216	696	1896	4776	9400	16992	29296	49296	81176	130392
224	712	1928	4840	9528	17184	29616	49872	82072	131800
232	728	1960	4904	9656	17376	29936	50448	82968	133208
240	744	1992	4968	9784	17568	30256	51024	83864	134616
248	760	2024	5032	9912	17760	30576	51600	84760	134848
256	776	2088	5096	10040	17952	30936	52176	85656	136320
264	792	2152	5160	10168	18144	31320	52752	86016	137792
272	808	2216	5224	10296	18336	31704	53328	86976	139264
280	824	2280	5288	10424	18568	32088	53904	87936	140736
288	840	2344	5352	10552	18824	32472	54480	88896	142248
296	856	2408	5416	10680	19080	32856	55056	89856	143784
304	872	2472	5480	10808	19336	33240	55416	90816	145320
312	888	2536	5544	10936	19592	33624	56056	91776	146856
320	904	2600	5608	11064	19848	34008	56696	92776	148176
328	920	2664	5672	11192	20104	34392	57336	93800	149776
336	936	2728	5736	11320	20360	34776	57976	94824	151376
344	952	2792	5800	11448	20616	35160	58616	95848	152976
	I.	I.		1	1			1	1

3	52	968	2856	5864	11576	20872	35544	59256	96872	
3	60	984	2920	5928	11704	21128	35928	59896	97896	
3	68	1000	2984	5992	11832	21384	36312	60536	98576	
3	76	1032	3048	6056	11960	21640	36696	61176	99664	
3	84	1064	3112	6120	12088	21896	36992	61664	100752	

Cuando se implementa la metodología descrita anteriormente, cuando un terminal identifica que la longitud del bloque de transporte con CRC adjuntado es mayor que el tamaño de bloque de entrelazador más grande, el terminal puede determinar el número predeterminado de bloques de código a partir de una tabla de consulta o puede calcular el número predeterminado de bloques de código en base a una fórmula. El cálculo puede incluir el cálculo del número predeterminado de bloques de código en base a la ecuación siguiente:

$$C = \lceil B/(Z-L) \rceil$$
, en la que

10 representa una función techo,

5

25

30

35

C es el número predeterminado de bloques de código.

B es la longitud del bloque de transporte con CRC adjuntado,

Z es el tamaño de bloque de entrelazador más grande, y

L es la primera longitud de CRC.

Un procedimiento y un dispositivo de transmisión de señal según esta realización permiten que el bloque de transporte tenga una longitud predeterminada correspondiente a uno cualquiera de los diversos valores mostrados en la Tabla 3. La Tabla 3 muestra los tamaños de bloque (TB) de transporte disponibles que evitan la necesidad de la práctica convencional de insertar el bit ficticio en la señal. El procedimiento de transmisión de señales puede permitir que subconjuntos de la Tabla 3 sean compartidos entre un extremo de transmisión y un extremo de recepción en teniendo en cuenta la sobrecarga ("overhead") de señalización y similares, en lugar de usar todos los valores de la Tabla 36.

Mientras, con el fin de informar al extremo de recepción acerca del tamaño del bloque de transporte, el extremo de transmisión puede representar el tamaño del bloque de transporte mediante una combinación de un esquema de modulación y de codificación (MCS) y el tamaño de los recursos asignados. Mediante un indicador de calidad de canal transferido desde el extremo de recepción, un planificador decide el MCS. El tamaño de los recursos asignados se decide teniendo en cuenta no sólo los recursos para transferir la información de control sino también otros recursos para una señal de referencia para la estimación de canal.

La Fig. 5 muestra un ejemplo de una estructura de recursos según la presente invención.

Con referencia a la Fig. 5, un eje horizontal indica un dominio del tiempo, y un eje vertical indica un dominio de la frecuencia. Suponiendo que se usa la estructura de recursos de la Fig. 5, se supone que los recursos para transferir la información de control corresponden a 3 símbolos y se usan dos antenas (Tx) de transmisión, un bloque (RB) de recursos incluye 120 elementos (REs) de recurso que pueden ser usados para transmitir datos.

En este caso, si se supone que la tasa de modulación es 64QAM, la tasa de codificación es 0,6504, y el número de bloques de recursos (RBs) asignados es 10, el tamaño de un bloque de datos que puede ser transmitido es de 4.658 bits. Estos 4658 bits están entre los 4.608 bits y los 4.672 bits de la Tabla 1. Si se supone que el tamaño del bloque de datos transmisible se establece a los 4.608 bits o a los 4.672 bits, el tamaño del bloque de datos puede ser decidido para diversas tasas de modulación y de codificación y el tamaño de los recursos asignados.

Tal como se ha descrito anteriormente en el ejemplo indicado anteriormente, si el tamaño de un bloque de datos realmente transmisible es diferente del tamaño de un bloque de datos soportable, el tamaño del bloque de datos realmente transmisible puede ser decidido mediante cualquiera de las reglas i) ~ iii) siguientes:

Un procedimiento para decidir el tamaño de bloque de datos transmisible realmente como un tamaño de bloque de datos con máxima aceptación que es igual o menor que el tamaño de bloque de datos transmisible realmente;

Un procedimiento para decidir el tamaño de bloque de datos transmisible realmente como un tamaño de bloque de datos más grande con mínima aceptación que el tamaño de bloque de datos transmisible realmente; y

- 5 Un procedimiento para decidir el tamaño de bloque de datos transmisible realmente como un tamaño de bloque de datos soportable que tiene una diferencia mínima con el tamaño de bloque de datos transmisible realmente.
 - En este caso, si un bloque de transporte es transferido por medio de un bloque de código, el bloque de datos puede corresponder al bloque de transporte. Por el contrario, si un bloque de transporte es transferido por medio de dos o más bloques de código, puede considerarse que el bloque de datos son bloques de código.
- Será evidente para las personas con conocimientos en la materia que pueden realizarse diversas modificaciones y variaciones en la presente invención sin apartarse del alcance de la invención. De esta manera, se pretende que la presente invención cubra las modificaciones y las variantes de esta invención siempre que se encuentren dentro del alcance de las reivindicaciones adjuntas y sus equivalentes. Por ejemplo, aunque el procedimiento de transmisión de señales según la presente invención se ha descrito en base al sistema 3GPP LTE, puede aplicarse también a otros sistemas de comunicación, cada uno de los cuales tiene una limitación en el tamaño de bloque durante el procedimiento de codificación y usa una combinación de tamaños de bloque de transporte predeterminados.

20

Si un bloque de transporte recibido desde una capa superior es segmentado en una pluralidad de bloques de código, y los bloques de código son codificados por un turbo codificador, el procedimiento de transmisión de señales según la presente invención es capaz de eliminar los bits ficticios añadidos causados por una limitación del tamaño de bloque del entrelazador interno del turbo codificador, de manera que pueda transmitir señales de manera eficaz.

REIVINDICACIONES

- 1. Un procedimiento para realizar, por parte de un primer dispositivo, una codificación de canal para transmitir datos a un segundo dispositivo, en el que el procedimiento comprende:
 - adjuntar (S101) a un bloque de transporte de tamaño de N bits un primer código CRC para producir un bloque de transporte con CRC adjunto;
 - segmentar (S102) el bloque de transporte con CRC adjunto en una pluralidad de M bloques de código si un tamaño del bloque de transporte con CRC adjunto es mayor que un tamaño predeterminado;
 - adjuntar (S103) a cada uno de entre la pluralidad de M bloques de código un segundo código CRC para producir bloques de transporte con CRC adjunto, y
 - codificar (S104) los bloques de transporte con CRC adjunto por medio de un turbo codificador, y

caracterizado por que

5

10

el tamaño N específico del bloque de transporte se establece a una longitud seleccionado de entre las combinaciones representadas en la tabla siguiente según el número M de los bloques de código a usar para transmitir el bloque de transporte:

М	N	М	N	М	N	М	N
2	6200	3	12576	5	26416	10	59256
2	6456	3	12960	5	27376	11	61664
2	6712	3	13536	5	28336	11	63776
2	6968	3	14112	5	29296	11	66592
2	7224	3	14688	5	30576	12	68808
2	7480	3	15264	6	31704	12	71112
2	7736	3	15840	6	32856	13	75376
2	7992	3	16416	6	34008		
2	8248	3	16992	6	35160		
2	8504	3	17568	6	36696		
2	8760	3	18336	7	37888		
2	9144	4	19080	7	39232		
2	9528	4	19848	7	40576		
2	9912	4	20616	7	42368		
2	10296	4	21384	8	43816		
2	10680	4	22152	8	45352		
2	11064	4	22920	8	46888		
2	11448	4	23688	9	51024		
2	11832	5	24496	9	52752		
2	12216	5	25456	10	57336		

2. Procedimiento según la reivindicación 1, en el que el tamaño predeterminado es de 6.144 bits, y en el que el tamaño de cada uno de los códigos CRC primero y segundo es de 24 bits.

- 3. Procedimiento según la reivindicación 2, en el que el tamaño predeterminado corresponde a un tamaño de bloque máximo de un entrelazador interno dentro del turbo codificador.
- 4. Procedimiento según una cualquiera de las reivindicaciones 1 a 3, en el que un número de entre la pluralidad de M bloques de código es igual a un valor x, en el que $25 \ge x > 2$.
- 5. Procedimiento según una cualquiera de las reivindicaciones 1 a 4, que comprende, además:
 - realizar la adaptación de velocidad en los bloques de código codificados;
 - realizar la concatenación de bloques de código y el entrelazado de canales en los bloques de códigos con velocidad adaptada; y
 - transmitir los bloques de código con entrelazamiento de canal y bloques concatenados.
- 10 6. Procedimiento según una cualquiera de las reivindicaciones 1 a 5, en el que el primer dispositivo es un terminal móvil y el segundo dispositivo es una estación base.
 - 7. Procedimiento según una cualquiera de las reivindicaciones 1 a 5, en el que el primer dispositivo es una estación base y el segundo dispositivo es un terminal móvil.
 - 8. Dispositivo para realizar la codificación de canal para transmitir datos a un dispositivo externo, en el que el dispositivo comprende:

un procesador configurado para

15

20

25

- adjuntar a un bloque de transporte de tamaño de N bits un primer código CRC para producir un bloque de transporte con CRC adjunto;
- segmentar el bloque de transporte con CRC adjunto en una pluralidad de M bloques de código si un tamaño del bloque de transporte con CRC adjunto es mayor que un tamaño predeterminado; y
- adjuntar a cada uno de entre la pluralidad de M bloques de código un segundo código CRC para producir bloques de transporte con CRC adjunto; y

un turbo codificador configurado para codificar los bloques de transporte con CRC adjunto,

caracterizado por que

el tamaño N del bloque de transporte se establece a una longitud seleccionada de entre las combinaciones representadas en la tabla siguiente según el número M de los bloques de código a usar para transmitir el bloque de transporte:

М	N	М	N	М	N	М	N
2	6200	3	12576	5	26416	10	59256
2	6456	3	12960	5	27376	11	61664
2	6712	3	13536	5	28336	11	63776
2	6968	3	14112	5	29296	11	66592
2	7224	3	14688	5	30576	12	68808
2	7480	3	15264	6	31704	12	71112
2	7736	3	15840	6	32856	13	75376
2	7992	3	16416	6	34008		
2	8248	3	16992	6	35160		
2	8504	3	17568	6	36696		

2	8760	3	18336	7	37888	
2	9144	4	19080	7	39232	
2	9528	4	19848	7	40576	
2	9912	4	20616	7	42368	
2	10296	4	21384	8	43816	
2	10680	4	22152	8	45352	
2	11064	4	22920	8	46888	
2	11448	4	23688	9	51024	
2	11832	5	24496	9	52752	
2	12216	5	25456	10	57336	

- 9. Dispositivo según la reivindicación 8, en el que el tamaño predeterminado es de 6.144 bits, y en el que un tamaño de cada uno de los códigos CRC primero y segundo es de 24 bits.
- 5 10. Dispositivo según la reivindicación 9, en el que el tamaño predeterminado corresponde a un tamaño de bloque máximo de un entrelazador interno dentro del turbo codificador.
 - 11. Dispositivo según una cualquiera de las reivindicaciones 8 a 10, en el que un número de la pluralidad de M bloques de código es igual a un valor x, en el que 25 > x > 2.
 - 12. Dispositivo según una cualquiera de las reivindicaciones 8 a 11, que comprende, además:
- 10 un transmisor configurado para transmitir los bloques de código codificados.
 - 13. Dispositivo según una cualquiera de las reivindicaciones 8 a 12, en el que el dispositivo es un terminal móvil y el dispositivo externo es una estación base.
 - 14. Dispositivo según una cualquiera de las reivindicaciones 8 a 12, en el que el dispositivo es una estación base y el dispositivo externo es un terminal móvil.

FIG. 1

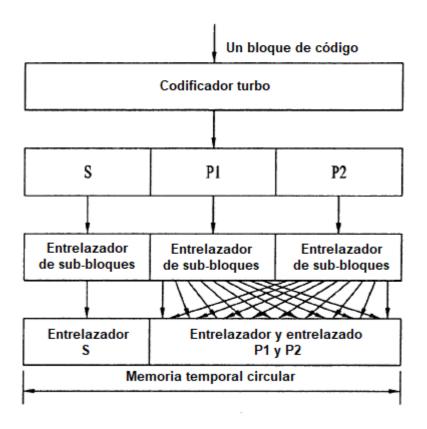
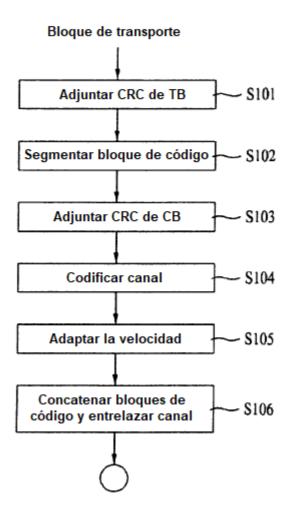



FIG. 2

~203 CBC : : ΤB ΤB CB2 ළි ĝ Adjuntar CRC de TB Adjuntar CRC de CB Segmentar

25

FIG. 4

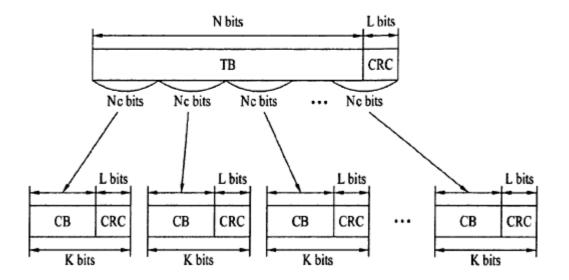


FIG. 5

	Ranu	га сог	n num	eraci	ón pa	г	Ranura con numeración impar						ar
ŢĹ	(T3)	D	D	T2	D	D	Ţį:	T4	D	D	T2	D	D
D	D	D	D	D	D	D	D	D	D	D	D	D	D
D	D	D	D	D	D	D	D	D	D	D	D	D	D
T2	T4	D	D	Ţį.	D	D	T2	T3)	D	D	Ţί	D	D
D	D	D	D	D	D	D	D	D	D	D	D	D	D
D	D	D	D	D	D	D	D	D	D	D	D	D	D
Ţĺ	(1)	· D	D	T2	D	D	Ţί	T4	D	D	T2	D	D
D	D	Ď	D	D	D	D	D	D	D	D	D	D	D
D	D	D	D	D	D	D	D	D	D	D	D	D	D
T2	T4	D	D	ΤĹ	D	D	T2	Ξ	D	D	ŢĹ	D	D
D	D	D	D	D	D	D	D	D	D	D	D	D	D
D	D	D	D	D	D	D	D	D	D	D	D	D	D

Señal de referencia para antena TX 1

T3

Señal de referencia para antena TX 2

T4

Señal de referencia para antena TX 4

D Datos