

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 640 817

51 Int. Cl.:

C07K 14/705 (2006.01) G01N 33/68 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 02.02.2009 PCT/US2009/032902

(87) Fecha y número de publicación internacional: 05.08.2010 WO10087864

96 Fecha de presentación y número de la solicitud europea: 02.02.2009 E 09789449 (7)

(97) Fecha y número de publicación de la concesión europea: 26.07.2017 EP 2391647

(54) Título: Líneas celulares que expresan Nav y métodos para su utilización

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **06.11.2017**

(73) Titular/es:

CHROMOCELL CORPORATION (100.0%) 685 U.S. Highway One North Brunswick, NJ 08902, US

(72) Inventor/es:

SHEKDAR, KAMBIZ y DEDOVA, OLGA

74 Agente/Representante:

PONS ARIÑO, Ángel

DESCRIPCIÓN

Líneas celulares que expresan Nav y métodos para su utilización

5 Antecedentes de la invención

La familia de canales de sodio activados por voltaje conocidos como familia NaV son moléculas grandes y complejas que se expresan en el sistema nervioso central, incluido el cerebro, en el sistema nervioso periférico y en músculo, incluido el músculo cardiaco. Todos los elementos de la familia son importantes blancos u objetivos clínicos en el tratamiento de una diversidad de condiciones que incluyen epilepsia, parálisis muscular y dolor. Los canales NaV son proteínas incrustadas en la membrana celular que tienen una subunidad alfa y una o más subunidades beta. Se han identificado genes que codifican para diez subunidades alfa y cuatro subunidades beta (véase, por ejemplo, Catterall et al., Pharmacol Rev. 55:575-578 (2003); Isom, Neuroscientist, 7:42-54 (2001)). La subunidad alfa forma el poro iónico y se piensa que es el responsable de la conducción selectiva del sodio y de la activación e inactivación dependiente del voltaje (véase, por ejemplo, Liu et al., Assay Drug Dev Tech, 4(1):37-48 (2006)). Se ha demostrado que las subunidades beta modifican los niveles de expresión y las características biofísicas de algunas subunidades alfa. Liu et al., supra. Las subunidades alfa y beta se expresan de manera diferencial en diferentes tejidos. Id.

El descubrimiento de nuevos y mejores agentes terapéuticos que se dirigen específicamente a los elementos de la familia NaV se ha obstaculizado por la ausencia sistemas celulares y en especial sistemas celulares que sean sensibles a formatos de alta productividad para identificar y analizar moduladores de NaV. Los sistemas celulares se prefieren para la investigación de medicamentos y validación porque permiten la aplicación de un ensayo funcional para un compuesto al contrario de los sistemas que no tienen células, los cuales solo permiten un ensayo de unión. Por otra parte, los sistemas celulares tienen la ventaja de que al mismo tiempo se evalúa la citotoxicidad. La presente invención se enfoca a esta necesidad.

El documento WO 2007/109324 desvela ensayos para la identificación de bloqueantes del canal Nav 1.7.

Resumen de la invención

Hemos descubierto células y líneas celulares nuevas y útiles que expresan varias formas de NaV, que incluyen los NaV funcionales y varias combinaciones de subunidades de NaV. Estas células y líneas celulares son útiles en ensayos celulares, en particular en ensayos de alta productividad para estudiar las funciones de los NaV y seleccionar respecto a los moduladores de NaV.

35

10

15

20

25

30

En consecuencia, la invención proporciona una célula o línea celular manipulada genéticamente (alterada) para expresar establemente un NaV 1.7 humano que comprende una subunidad alfa 9 de NaV, una subunidad beta 1 de NaV y una unidad beta 2 de NaV en la que la línea celular se produce mediante un método como se define en la reivindicación 1, y en la que esta célula o línea celular produce en un ensayo un factor Z' de al menos 0,6. En algunas realizaciones, el factor Z' puede ser de al menos 0.65, 0.70, 0.75, 0.80 o 0.85. Las células y líneas celulares de la invención pueden proliferar (por ejemplo, mantenidas) en cultivo en ausencia de presión selectiva y pueden seguir expresando el NaV durante al menos 15, 30, 45, 60, 75, 100, 120 o 150 días a pesar de la ausencia de presión selectiva. En algunas realizaciones, las células o líneas celulares que proliferan en ausencia de presión selectiva expresan NaV en un nivel uniforme durante al menos 15, 30, 45, 60, 75, 100, 120 o 150 días.

45

40

En algunas realizaciones, el NaV comprende al menos una subunidad que se exprese a partir de un ácido nucleico introducido que lo codifica y/o comprender al menos una subunidad NaV que se exprese a partir de un gen endógeno activado por activación génica. En algunas realizaciones, el NaV es nativo, por ejemplo, no contiene una etiqueta polipeptídica.

50

55

60

65

Las células o líneas celulares de la invención pueden ser células eucariotas (por ejemplo, células de mamífero) y pueden opcionalmente no expresar NAV en forma endógena (o en el caso de activación génica, no expresar NAV en forma endógena antes de la activación génica). Las células pueden ser células primarias o inmortalizadas y pueden ser, por ejemplo, células de primate (por ejemplo, humanas o de mono), de roedor (por ejemplo, ratón, rata o hámster) o de insecto (por ejemplo, mosca de la fruta).

La subunidad NaV alfa es

una subunidad alfa 9 que tiene la secuencia de aminoácidos establecida en la SEQ ID NO. 27;

un polipéptido con al menos 95% de identidad de secuencia o prácticamente idéntico a la SEQ ID NO: 27, en donde el polipéptido puede formar un canal iónico activado por voltaje; y

un polipéptido que es una variante alélica respecto a la SEQ ID NO: 27.

En otras realizaciones, la subunidad alfa está codificada por una secuencia de ácido nucleico SEQ ID NO: 13; una secuencia de ácido nucleico que se hibrida en condiciones rigurosas con la SEQ ID NO: 13; una secuencia de ácido nucleico con al menos 95% de identidad de secuencia o prácticamente idéntica a la SEQ ID NO: 13 y una secuencia de ácido nucleico que es una variante alélica de la SEQ ID NO: 13.

La subunidad beta del NaV se selecciona a partir del grupo formado por:

una subunidad beta 1 que tiene la secuencia de aminoácidos establecida en la SEQ ID NO. 30; una subunidad beta 2 que tiene la secuencia de aminoácidos establecida en la SEQ ID NO. 31; un polipéptido con al menos 95% de identidad de secuencia o prácticamente idéntico a cualquiera de las SEQ ID NOS. 30-31, en donde el polipéptido puede modular un canal iónico activado por voltaje; y un polipéptido que es una variante alélica respecto a cualquiera de las SEQ ID NOS: 30-31.

En otras realizaciones, la subunidad beta está codificada por una secuencia de ácido nucleico seleccionada en 10 forma individual a partir del grupo formado por: SEQ ID NOS. 16-17; una secuencia de ácido nucleico que se hibrida en condiciones de rigor (stringent) con cualquiera de las SEQ ID NOS. 16-17; una secuencia de ácido nucleico con al menos 95% de identidad de secuencia o prácticamente idéntica a cualquiera de las SEQ ID NOS. 16-17 y una secuencia de ácido nucleico que es una variante alélica de cualquiera. Como se reivindica el Nav 1.7 comprende 15 una subunidad alfa 9 de NaV 1.7, una subunidad beta 1 humana y una subunidad beta 2 humana. La subunidad alfa 9 humana puede comprender: (1) la secuencia de aminoácidos establecida en la SEQ ID NO. 27; o (2) una secuencia de aminoácidos codificada por una secuencia de ácido nucleico establecida en la SEQ ID NO. 13. La subunidad beta 1 humana puede comprender (1) la secuencia de aminoácidos establecida en la SEQ ID NO. 30 o (2) una secuencia de aminoácidos codificada por una secuencia de ácido nucleico establecida en la SEQ ID NO. 16. 20 La subunidad beta 2 humana puede comprender (1) la secuencia de aminoácidos establecida en la SEQ ID NO. 31 o (2) una secuencia de aminoácidos establecida en la SEQ ID NO. 17. En algunas realizaciones, el NaV nativo puede comprender un polipéptido que contenga una secuencia de aminoácidos establecida en la SEQ ID NO. 27; un polipéptido que contenga la secuencia de aminoácidos establecida en la SEQ ID NO. 30; y un polipéptido que contenga la secuencia de aminoácidos establecida en la SEQ ID NO. 31.

25

30

5

La invención también proporciona un método para identificar un modulador de NaV 1.7 humano, como se define en la reivindicación 4, que consta de los siguientes pasos: poner en contacto una célula, una línea celular o una colección de líneas celulares de la invención con un compuesto de prueba; y detectar un cambio en la función del NaV 1.7 en un célula en comparación con una célula que no está en contacto con el compuesto de prueba, en donde un cambio en la función indica que el compuesto de prueba es un modulador de NaV 1.7 humano. El compuesto de prueba puede ser una molécula pequeña, un polipéptido, un péptido o un anticuerpo o una fracción de unión al antígeno del mismo. El compuesto de prueba puede estar en una biblioteca de compuestos. La biblioteca puede ser una biblioteca de moléculas pequeñas, una biblioteca de combinaciones, una biblioteca de péptidos o una biblioteca de anticuerpos. En el método de la presente, el paso de detección se puede seleccionar a partir de un ensayo de potencial de membrana, un ensayo de electrofisiología, un ensayo de unión y los métodos se pueden implementar para alta productividad.

35

40

45

La invención también proporciona una colección de células manipulada genéticamente para que exprese en forma estable un NaV 1.7 humano que comprende una subunidad alfa 9 de NaV, una subunidad beta 1 de Nav y una subunidad beta 2 de NaV a un nivel uniforme a través del tiempo, como se define en la reivindicación 7, la célula se trabaja por un método que consta de los siguientes pasos: (a) proporcionar a pluralidad de células que expresan mRNA(s) que codifican el NaV 1.7 humano; (b) dispersar las células individualmente en tubos de cultivo individual, para obtener una pluralidad de cultivos celulares por separado; (c) cultivar las células con un conjunto de condiciones de cultivo deseadas utilizando métodos de cultivo celular automatizados caracterizados porque las condiciones son prácticamente idénticas para cada uno de los cultivos celulares individuales, durante las cuales se normaliza el cultivo del número de células por cada cultivo celular individual y en donde los cultivos individuales se subcultivan en el mismo esquema; (d) evaluar los cultivos celulares individuales para medir la expresión del NaV 1.7 humano al menos dos veces; e (e) identificar un cultivo celular individual que exprese el NaV 1.7 humano a un nivel uniforme en los dos ensayos, y obtener así la célula.

50

Breve descripción de las figuras

55

La Figura 1 es una gráfica de barras que representa la expresión relativa de las subunidades NaV 1.7 α, β1 y β2 en líneas celulares que expresan NaV 1.7 en forma estable. Los niveles de expresión se analizaron por RT-PCR cuantitativa y se normalizaron respecto al nivel de expresión de un gen GAPDH de control. las barras (+) indican que las reacciones se hicieron con adición de enzima transcriptasa inversa y las barras (-) indican que las reacciones se hicieron sin adición de enzima transcriptasa inversa.

La Figura 2 muestra la regulación de la expresión de la subunidad NaV 1.7 α por subunidades auxiliares β. La RT-PCR comparativa ilustra el aumento en la detección de la expresión de la subunidad α en células seleccionadas en función de medicamentos, cuando las tres subunidades NaV 1.7 se cotransfectaron, comparadas con células transfectadas solo con la subunidad α.

60

65

Las Figuras 3A-C muestran datos de electrofisiología de una línea celular producida que expresa establemente las tres subunidades NaV 1.7, indicando la respuesta distintiva para NaV 1.7. La Figura 3A muestra las corrientes de sodio como respuesta a 20 ms (milisegundos) de pulsos de despolarización de -80 mV a +50 mV. La Figura 3B muestra la relación entre corriente y voltaje resultante (I-V) para las corrientes pico de canales de sodio. La Figura 3C muestra la gráfica de inactivación para el canal de sodio.

La Figura 4 muestra que las células que expresan establemente las tres subunidades NaV 1.7 respondieron a dos activadores de NaV conocidos, veratridina y veneno de alacrán, mientras que las células de control no lo hicieron. La respuesta se midió mediante un ensayo celular del potencial de membrana funcional.

Las Figuras 5A y 5B muestran la activación de células que expresan establemente NaV 1.7 como respuesta a los compuestos de prueba. La Figura 5A representa la respuesta de activación del clon C44 (células que expresan las tres subunidades NaV 1.7) cuando se expone a los compuestos de prueba C18 y K21. La Figura 5B representa la respuesta totalmente bloqueada a los mismos compuestos de prueba del clon 60 (células que expresan solo una subunidad alfa NaV 1.7). El % de control se calculó con relación a la respuesta de dos clones solamente a un amortiguador (es decir, sin compuestos de prueba adicionados).

Descripción detallada de la invención

5

10

15

20

40

45

55

60

65

A menos que se defina de otro modo, todos los términos técnicos y científicos utilizados en la presente tienen el mismo significado que comúnmente tienen para la persona con experiencia ordinaria en la técnica a la que pertenece la invención. En caso de conflicto, la presente especificación, incluidas las definiciones, funcionarán como control. A lo largo de esta especificación y reivindicaciones, se deberá entender que la palabra "comprende" o sus variaciones como "que comprende" implican la inclusión de un número entero o grupo de números enteros determinado pero no la exclusión de cualquier otro número entero o grupo de números enteros. Los materiales, métodos y ejemplos son solo ilustrativos y no pretenden ser limitativos.

A fin de que la presente invención se pueda comprender con mayor facilidad, primero redefinirán algunos términos. Otras definiciones se establecen a través de la especificación.

En el sentido que se utiliza en la presente, el término proteína "nativa" (por ejemplo, proteína de canal iónico) se 25 refiere a una proteína que no tiene una secuencia de aminoácidos añadida o insertada. Por ejemplo, el "NaV nativo" utilizado aquí, incluye proteínas NaV que no tienen una secuencia etiqueta que se exprese en un nivel de polipéptido. En algunas realizaciones, un NaV nativo comprende todas las subunidades de un NaV que se presenta en forma natural en el que las subunidades están intactas y correctamente ensambladas.

30 El término "estable" o "que expresa establemente o en forma estable" se refiere a distinguir las células y líneas celulares de la invención de células con expresión transitoria tal como la persona experta en la técnica entendería los términos "expresión estable" y "expresión transitoria"

El término "línea celular" o "línea celular clonal" se refiere a una población de células que son todas progenie de una sola célula original. En el sentido que se utiliza en la presente, las líneas celulares se mantienen in vitro en un cultivo 35 celular y se pueden congelar en alícuotas para generar bancos de células clonales.

El término "condiciones de rigor (stringent)" o "condiciones de hibridación rigurosas (stringent)" describen condiciones de temperatura y salinas para hibridar uno o más sondas de ácidos nucleicos con una muestra de ácido nucleico y eliminar mediante lavados sondas que no se han unido específicamente a ácidos nucleicos elegidos como objetivo en la muestra. Las condiciones de rigor son conocidas para los expertos en la técnica y se pueden encontrar en . En la referencia se describen métodos en medio acuoso y no acuoso y se puede utilizar cualquiera de ellos. Un ejemplo de condiciones de hibridación rigurosas es la hibridación en 6X SSC a una temperatura cercana a 45°C, seguida de un lavado en 0.2X SSC, 0.1% SDS a 60°C. Otro ejemplo de condiciones de hibridación de rigor lo constituye la hibridación en 6X SSC a una temperatura alrededor de 45°C, seguida de al menos un lavado en 0.2X SSC, 0.1% SDS a 65°C. Las condiciones de rigor incluyen la hibridación en fosfato de sodio 0.5 M, 7% SDS a 65°C, seguida de al menos uno

La frase "por ciento idéntica" o "por ciento de identidad" con relación a secuencias de aminoácidos y/o ácidos 50 nucleicos, se refiere a la similitud entre al menos dos secuencias diferentes. Este por ciento de identidad se puede determinar mediante algoritmos de alineamiento estándar, por ejemplo, la herramienta Basic Local Alignment Tool (BLAST) descrita por Altshul et al. ((1990) J. Mol. Biol., 215: 403-410); el algoritmo de Needleman et al. ((1970) J. Mol. Biol., 48: 444-453); o el algoritmo de Meyers et al. ((1988) Comput. Appl. Biosci., 4: 11-17). Un conjunto de parámetros puede ser la matriz de puntuación Blosum 62 con una penalización por brecha (gap) de 12, una penalización ampliada por brecha de 4 y una penalización por brecha en la pauta de lectura de 5. El por ciento de identidad entre dos secuencias de aminoácidos o nucleótidos también se puede determinar mediante el algoritmo de E. Meyers y W. Miller ((1989) CABIOS, 4:11-17) que se ha incorporado en el programa ALIGN (versión 2.0), utilizando una tabla de residuos por peso PAM120, una penalización por longitud de brecha de 12 y una penalización por brecha de 4. El por ciento de identidad por lo general se calcula comparando secuencias de longitud similar. El software para análisis de proteínas empareja secuencias similares empleando medidas de similitud asignadas a varias sustituciones, deleciones y otras modificaciones, que incluyen sustituciones de aminoácidos conservados. Por ejemplo, el software GCG contiene programas como "Gap" y "Bestfit" que se pueden usar parámetros predefinidos para determinar la homología de secuencia o la identidad de secuencia entre polipéptidos que guardan estrecha relación, por ejemplo, polipéptidos homólogos de diferentes especies de organismos o entre una proteína natural y una muteína de la misma. Véase, por ejemplo, GCG Versión 6.1. Las secuencias de polipéptidos también se pueden comparar mediante el uso de FASTA con parámetros

predeterminados o recomendados, un programa en GCG Versión 6.1. FASTA (por ejemplo, FASTA2 y FASTA3) proporciona alineamientos y por ciento de identidad de secuencia de las regiones de mejor traslape entre las secuencias de consulta y de búsqueda (Pearson, Methods Enzymol. 183:63-98 (1990); Pearson, Methods Mol. Biol. 132:185-219 (2000)). La longitud de las secuencias de polipéptidos comparadas para su homología serán, por lo general, de al menos alrededor de 16 residuos de aminoácidos, por lo general, de al menos alrededor de 20 residuos, más comúnmente al menos alrededor de 24 residuos, normalmente al menos alrededor de 28 residuos y de preferencia más de alrededor de 35 residuos.

Los términos "prácticamente como lo establecido", "prácticamente idéntica" o "prácticamente homóloga", se refieren a que la secuencia de aminoácidos o nucleótidos correspondiente será idéntica o tendrá diferencias insignificantes (a través de las sustituciones de aminoácidos conservados) con respecto a las secuencias propuestas. Las diferencias insignificantes incluyen cambios menores en los aminoácidos, como de 1 o 2 sustituciones en una secuencia de 50 aminoácidos de una región especificada.

El término "modulador" de NaV se refiere a un compuesto que altera la actividad biológica de un NaV, por ejemplo, la conductancia iónica a través del NaV. Un modulador de NaV puede actuar sobre todos o sobre un subconjunto específico de NaV o subunidades NaV. Los moduladores incluyen, entre otros, agonistas (potenciadores o activadores) y antagonistas (inhibidores o bloqueadores). Un agonista de NaV se refiere a un compuesto que aumenta la actividad biológica de un NaV. Un antagonista de NaV se refiere a un compuesto que disminuye la actividad biológica de un NaV.

Un "NaV funcional" se refiere a un NaV que tiene una o más actividades biológicas de un NaV natural o que se expresa en forma exógena. Las actividades biológicas del NaV incluyen, entre otras, la conductancia de sodio dependiente del voltaje, y se puede evaluar a través de respuestas farmacológicas como la inhibición por lidocaína y tetrodotoxina (TTX). Otros compuestos que son farmacológicamente activos en los NaV y que se pueden usar para evaluar la funcionalidad de un NaV introducido, incluyen los compuestos que abren los canales de sodio que mantienen el canal en su estado de apertura, por ejemplo, veratridina y veneno de alacrán y otros venenos.

25

55

60

65

El término subunidad NaV "heteróloga" o "introducida" se refiere a que la subunidad NaV es codificada por un polinucleótido introducido en una célula huésped o por una secuencia que codifica NaV endógeno cuya expresión se activa (por ejemplo, por tecnología de activación génica) mediante factores introducidos por vía externa, como los elementos reguladores de transcripción. El término "NaV heterólogo" se refiere a un NaV que comprende una o más subunidades NaV heterólogas.

35 En un primer aspecto, la invención como se define en la reivindicación 1 proporciona células (por ejemplo, células aisladas, células clonales o mezclas de células clonales) y líneas celulares que expresan (por ejemplo, establemente) una o más subunidades de NaV 1.7 humano heterólogas (introducidas) (por ejemplo, subunidades NaV 1.7 nativas). Las células y líneas celulares pueden expresar constitutivamente las subunidades NaV. Las células y líneas celulares se pueden modular por agentes de apertura como la veratridina y el veneno de alacrán o 40 por cambios en el voltaje de membrana. En realizaciones relacionadas, las células o líneas celulares expresan en forma estable un NaV 1.7 heterólogo funcional. Las células y líneas celulares NaV 1.7 de la invención tienen propiedades mejoradas en comparación con las células y líneas celulares obtenidas por los métodos convencionales. Por ejemplo, las células y líneas celulares NaV 1.7 tienen mejor estabilidad de expresión (incluso cuando se mantienen en cultivo sin presión selectiva como antibióticos) y tienen valores Z' altos en ensayos 45 celulares. Las células y líneas celulares de la invención proporcionan relaciones detectables entre señal y ruido, por ejemplo, una relación entre señal y ruido mayor de 1:1. Las células y líneas celulares de la invención proporcionan lecturas confiables cuando se usan en ensayos de alta productividad como los ensayos de potencial de membrana, que producen resultados que pueden emparejarse con los de ensayos considerados como métodos de referencia en el campo pero demasiado laboriosos para llevarse a cabo en forma intensiva (por ejemplo, los ensayos 50 electrofisiológicos).

En varias realizaciones, las células o líneas celulares de la invención expresan el NaV 1.7 humano a un nivel uniforme de expresión durante al menos 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200 días o más de 200 días, en donde la expresión uniforme se refiere a un nivel de expresión que no varía más de: 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% 9% o 10% durante 2 a 4 días de cultivo celular continuo;; 2%, 4%, 6%, 8%, 10% o 12% durante 5 a 15 días de cultivo celular continuo; 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18% o 20% durante 16 a 20 días de cultivo celular continuo; 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28% o 30% durante 30 a 40 días de cultivo celular continuo; 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28% o 30% durante 41 a 45 días de cultivo celular continuo; 2%, 4%, 6%, 8%, 10%, 12%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28% o 30% durante 41 a 45 días de cultivo celular continuo; 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 30% o 35% durante 45 a 50 días de cultivo celular continuo; 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 30% o 35% durante 45 a 50 días de cultivo celular continuo; 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 30% o 35% durante 50 a 55 días de cultivo celular continuo; 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 30% o 35% durante 50 a 55 días de cultivo celular continuo; 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%, 35% o 40% durante 50 a 55 días de cultivo celular continuo; 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%, 35% o 40% durante 50 a 55 días de cultivo celular continuo; 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%, 35% o 40%

durante 55 a 75 días de cultivo celular continuo; 1%, 2%, 3%, 4%, 5%, 6%, 10%, 15%, 20%, 25%, 30%, 35%, 40% o 45% durante 75 a 100 días de cultivo celular continuo; 1%, 2%, 3%, 4%, 5%, 6%, 10%, 15%, 20%, 25%, 30%, 35%, 40% o 45% durante 101 a 125 días de cultivo celular continuo; 1%, 2%, 3%, 4%, 5%, 6%, 10%, 15%, 20%, 25%, 30%, 35%, 40% o 45% durante 126 a 150 días de cultivo celular continuo; 1%, 2%, 3%, 4%, 5%, 6%, 10%, 15%, 20%, 25%, 30%, 35%, 40% o 45% durante 151 a 175 días de cultivo celular continuo; 1%, 2%, 3%, 4%, 5%, 6%, 10%, 15%, 20%, 25%, 30%, 35%, 40% o 45% durante 176 a 200 días de cultivo celular continuo; 0 1%, 2%, 3%, 4%, 5%, 6%, 10%, 15%, 20%, 25%, 30%, 35%, 40% o 45% durante más de 200 días de cultivo celular continuo.

Como se define en la reivindicación 1, las células se transfectan tres veces con ácidos nucleicos que codifican y expresan una subunidad alfa 9/SCN9A NaV humano, una subunidad betal/SCN1B NaV humana y una subunidad beta 2/SCN2B NaV humana. En algunas realizaciones, se colocan en el mismo vector secuencias codificantes para dos o más de las subunidades NaV introducidas. En otras realizaciones, cada secuencia codificante de la subunidad se coloca en diferente vector.

También se desvela en el presente documento, las células y líneas celulares de la presente expresan una subunidad alfa introducida, seleccionada entre cualquiera de las subunidades alfa 1-11 y una subunidad beta introducida, seleccionada entre cualquiera de las subunidades beta 1-4, cada una de estas combinaciones se indica con "+" en la siguiente tabla:

	Beta 1	Beta 2	Beta 3	Beta 4
Alfa 1	+	+	+	+
Alfa 2	+	+	+	+
Alfa 3	+	+	+	+
Alfa 4	+	+	+	+
Alfa 5	+	+	+	+
Alfa 7	+	+	+	+
Alfa 8	+	+	+	+
Alfa 9	+	+	+	+
Alfa 10	+	+	+	+
Alfa 11	+	+	+	+

20

Estas células y líneas celulares también pueden expresar una o más subunidades beta introducidas, seleccionadas en forma independiente a partir de cualquiera de las subunidades beta 1-4. También se desvela en el presente documento, las células y líneas celulares de la invención expresan un canal NaV que incluye una combinación de subunidades alfa y beta tal como se muestran en la tabla anterior y el canal NaV en estas líneas celulares también comprende una o más subunidades beta seleccionadas entre cualquiera de las subunidades beta 1-4.

30

25

El ácido nucleico que codifica la subunidad NaV puede ser ADN genómico o ADNc. En algunas realizaciones, el ácido nucleico que codifica la subunidad NaV comprende una o más sustituciones, inserciones o deleciones que pueden o no dar como resultado una sustitución de aminoácido. Las subunidades NaV con modificaciones que están dentro del alcance de la invención, conservan al menos una propiedad biológica, por ejemplo, su habilidad para funcionar canal de sodio activado por voltaje o modularlo o responder a agentes de apertura de canal iónico como la veratridina y el veneno de alacrán y otros venenos y bloqueadores de canal como la lidocaína y la tetrodotoxina (TTX). Por lo tanto, las secuencias de ácido nucleico prácticamente idénticas (por ejemplo, al menos con alrededor de 85% de identidad de secuencia) u homólogas (por ejemplo, al menos con alrededor de 85% de homología de secuencia) a las secuencias expuestas aquí, también quedan comprendidas en esta invención. En algún modo, la identidad de secuencia puede ser de alrededor de 85%, 90%, 95%, 96%, 97%, 98%, 99% o más. Como alternativa, existe identidad u homología considerable cuando los segmentos de ácido nucleico se hibriden en condiciones de hibridación rigurosas (por ejemplo, condiciones de hibridación muy rigurosas) con el complemento de la secuencia de referencia.

40

35

En algunas realizaciones, cuando la mutación de nucleótido implica una sustitución de aminoácido, el aminoácido nativo puede reemplazarse con una sustitución conservativa o no conservativa. En algunas realizaciones, la identidad de secuencia entre las secuencias de polipéptidos originales y modificadas puede ser al menos de 85%, 90%, 95%, 96%, 97%, 98%, 99% o más. Los expertos en la técnica comprenderán que la sustitución conservativa de aminoácidos es aquella en la cual las cadenas laterales de aminoácidos son similares en estructura y/o propiedades químicas y la sustitución no deberá cambiar en forma considerable las características estructurales de la secuencia natural. En realizaciones que usan un ácido nucleico que incluye una mutación, la mutación puede ser una mutación al azar o una mutación en un sitio específico.

50

Las modificaciones conservativas producirán receptores de NaV que tienen características funcionales y químicas similares a las del receptor de NaV sin modificar. Una "sustitución de aminoácidos conservativa" es aquella en la que el residuo de aminoácido se sustituye con otro residuo de aminoácido que tiene una cadena lateral (grupo R) con características químicas similares (por ejemplo, carga o hidrofobicidad). En general, una sustitución de aminoácidos

conservativa no cambiará de manera considerable las propiedades funcionales de una proteína. En casos en los que dos o más secuencias de aminoácidos difieren entre sí por sustituciones conservativas, el por ciento de identidad de secuencia o grado de similitud se puede ajustar en forma ascendente para corregir la naturaleza conservativa de la sustitución. Los medios para hacer este ajuste son muy conocidos para los expertos en la técnica. Véase, por ejemplo, Pearson, Methods Mol. Biol. 243:307-31 (1994).

Ejemplos de grupos de aminoácidos que tienen cadenas laterales como propiedades químicas similares incluyen 1) cadenas alifáticas laterales: glicina, alanina, valina, leucina e isoleucina; 2) cadenas laterales hidroxil alifáticas: serina y treonina; 3) cadenas laterales que contienen amida: asparagina y glutamina; 4) cadenas laterales aromáticas: fenilalanina, tirosina y triptofano; 5) cadenas laterals básicas: lisina, arginina e histidina; 6) cadenas laterales ácidas: ácido aspártico y ácido glutámico; y 7) cadenas laterals que contienen azufre: cisteína y metionina. Los grupos de sustitución de aminoácidos conservados preferidos son: valina-leucina-isoleucina, fenilalanina-tirosina, lisina-arginina, alanina-valina, glutamato-aspartato y asparagina-glutamina. Como alternativa, un reemplazo conservativo es cualquier cambio que tenga un valor positivo en la matriz de probabilidad logarítmica PAM250 publicada por Gonnet et al., Science 256:1443-45 (1992). Un reemplazo "moderadamente conservativo" es cualquier cambio que tenga un valor no negativo en la matriz de probabilidad logarítmica PAM250.

10

15

20

25

30

65

En algunas realizaciones, la secuencia de ácido nucleico que codifica la subunidad NaV, también comprende una etiqueta de epítope. Estas etiquetas pueden codificar, por ejemplo, proteína fluorescente amarilla (YFP - yellow fluorescent protein), proteína fluorescente verde (GFP - green fluorescent protein), 6x-HIS (SEQ ID NO: 35), myc, FLAG o hemaglutinina (HA), S-tag, tiorredoxina, proteínas autofluorescentes, GST, V5, TAP, CBP, BCCP, etiqueta de proteína de unión a maltosa, Nus-tag, Softag 1, Softag 3, Strep-tag o alguna variante de las mencionadas. Una etiqueta se puede usar como marcador para determinar los niveles de expresión, la localización intracelular, la interacción proteína-proteína, regulación y función del NaV o una subunidad del mismo. Una etiqueta también se puede usar para facilitar la purificación y fraccionación de la proteína. Estas y otras secuencias etiqueta son conocidas para el experto en la técnica y por lo general corresponden a secuencias de aminoácidos que se pueden incorporar en productos de proteína expresados y con frecuencia seleccionarse con base en la disponibilidad de anticuerpos robustos o reactante de detección de proteína que se pueden utilizar para reportar su presencia. Sin embargo, las secuencias etiqueta descritas aquí no se refieren solamente a secuencias que se pueden utilizar para modificar, a nivel de aminoácidos, productos de proteína codificados por los ARN que están etiquetados o para ayudar en la posterior detección de cualquiera de estos productos de proteína modificados por el uso del correspondiente anticuerpo o reactantes de detección de proteínas. Véase, por ejemplo, más adelante, los comentarios con respecto al uso de etiquetas de ARN empleadas como "faros moleculares".

35 Las células huésped utilizadas para producir una línea celular de la invención pueden expresar una o más proteínas NaV endógenas o expresar la ausencia de una o más de cualquiera de las proteínas NaV. La célula huésped puede ser una célula primaria, germinal o una célula precursora que incluye una célula precursora embrionaria. La célula huésped también puede ser una célula inmortalizada. La célula huésped se puede derivar de una célula primaria o inmortalizada de capas de mesodermo, ectodermo o endodermo. La célula huésped puede ser célula endotelial, 40 epidérmica, mesenquimatosa, neural, renal, hepática, hematopoyética o inmune. Por ejemplo, las células huésped pueden ser células de la cripta intestinal o de vellosidades intestinales, células clara, células de colon, células intestinales, células calciformes, células enterocromafínicas, células enteroendocrinas. Las células huésped pueden ser células eucariotas, procariotas, de mamíferos, humanas, de primate, de bovinos, de porcinos, felinos, roedores, marsupiales, murinas u otras células. Las células huésped también pueden ser de origen no mamífero, por ejemplo, 45 de levadura, insectos, hongos, vegetales, eucariotas y procariotas de organismos inferiores. Estas células huésped pueden proporcionar antecedentes que sean más divergentes para evaluar con mayor probabilidad la ausencia de productos de expresión producidos por la célula que tenga interacción con el objetivo o blanco. En realizaciones preferidas, la célula huésped es una célula de mamífero. Ejemplos de células de mamífero que se pueden usar para la línea celular de la invención incluyen, entre otras: Células ováricas de hámster chino (CHO), líneas celulares 50 neuronales establecidas, feocromocitomas, neuroblastomas fibroblastos, rabdomiosarcomas, células de la raíz posterior de ganglio nervioso, CV-1 (ATCC CCL 70), COS-1 (ATCC CRL 1650), COS-7 (ATCC CRL 1651), CHO-K1 (ATCC CCL 61), 3T3 (ATCC CCL 92), NIH/3T3 (ATCC CRL 1658), HeLa (ATCC CCL 2), C127I (ATCC CRL 1616), BS-C-1 (ATCC CCL 26), MRC-5 (ATCC CCL 171), células L, HEK-293 (ATCC CRL1573), PC12 (ATCC CRL-1721), HEK293T (ATCC CRL-11268), RBL (ATCC CRL-1378), SH-SY5Y (ATCC CRL-2266), MDCK (ATCC CCL-34), SJ-RH30 (ATCC CRL-2061), HepG2 (ATCC HB-8065), ND7/23 (ECACC 92090903), CHO (ECACC 85050302), Vero 55 (ATCC CCL 81), Caco-2 (ATCC HTB 37), K562 (ATCC CCL 243), Jurkat (ATCC TIB-152), Per.C6 (Crucell, Leiden, Holanda), Huvec (ATCC Human Primary PCS 100-010, Mouse CRL 2514, CRL 2515, CRL 2516), HuH-7D12 (ECACC 01042712), 293 (ATCC CRL 10852), A549 (ATCC CCL 185), IMR-90 (ATCC CCL 186), MCF-7 (ATC HTB-22), U-2 OS (ATCC HTB-96), T84 (ATCC CCL 248) o cualquier línea celular establecida (polarizada o no polarizada) o cualquier línea celular disponible con depositarios como The American Type Culture Collection (ATCC, 10801 60 University Blvd. Manassas, Va. 20110-2209 EE.UU.) o la colección European Collection of Cell Cultures (ECACC, Salisbury Wiltshire SP4 0JG Inglaterra). La persona con experiencia ordinaria en la técnica comprenderá que existe la posibilidad de que diferentes factores adicionales conocidos y desconocidos interactúen con la función o expresión del blanco o las alteren dependiendo de la elección del tipo de célula huésped.

En una realización, la célula huésped es una célula precursora embrionaria que se utiliza luego como base para la

generación de animales transgénicos. Las células precursoras embrionarias que expresan en forma estable al menos una subunidad NaV y de preferencia u receptor NaV heterólogo funcional, se pueden implantar en los organismos directamente o sus núcleos se pueden transferir en otras células recipientes y luego éstas se pueden implantar *in vivo* para estudiar proliferación y desarrollo. Las células precursoras también se pueden usar para crear animales transgénicos.

Como comprenderán los expertos en la técnica, cualquier vector que sea adecuado para usarse con las células huésped se puede utilizar para introducir un ácido nucleico que codifique una subunidad NaV alfa o beta a la célula huésped. Los vectores que comprenden las subunidades alfa y cada una de las beta pueden ser del mismo tipo o de diferentes tipos. Ejemplos de vectores que se pueden usar para introducir los ácidos nucleicos que codifican la subunidad NaV a las células huésped incluyen, entre otros, plásmidos, virus, incluidos los retrovirus y los lentivirus, cósmidos, cromosomas artificiales y pueden incluir, por ejemplo, pFN11A (BIND) Flexi®, pGL4.31, pFC14A (HaloTag® 7) CMV Flexi®, pFC14K (HaloTag® 7) CMV Flexi®, pFN24A (HaloTag® 7) CMVd3 Flexi®, pFN24K (HaloTag® 7) CMVd3 Flexi®, HaloTag™ pHT2, pACT, pAdVAntage™, pALTER®-MAX, pBIND, pCAT®3-Basic, pCAT®3-Control, pCAT®3-Enhancer, pCAT®3-Promoter, pCI,pCMVTNT™, pG51uc, pSI, pTARGET™, pTNT™, pF12A RM Flexi®, pF12K RM Flexi®, pReg neo, pYES2/GS, pAd/CMV/V5-DEST Gateway® Vector, pAd/PL-DEST™ Gateway® Vector, Gateway® pDEST™27 Vector, Gateway® pEF-DEST51 Vector, Gateway® pcDNA™-DEST47 vector, pCMV/Bsd Vector, pEF6/His A, B, & C, pcDNA™6.2-DEST, pLenti6/TR, pLP-AcGFPI-C, pLPS-AcGFP1-N, pLP-IRESneo, pLP-TRE2, pLP-RevTRE, pLP-LNCX, pLP-CMV-HA, pLP-CMV-Myc, pLP-RetroQ, pLP-CMVneo, pCMV-Script, pcDNA3.1 Hygro, pcDNA3.1neo, pcDNA3.1puro, pSV2neo, pIRES puro y pSV2 zeo. En algunas realizaciones, los vectores comprenden secuencias de control de expresión como los promotores constitutivos o condicionales. La persona con experiencia ordinaria en la técnica podrá seleccionar estas secuencias. Por ejemplo, los promotores adecuados incluyen, entre otros, CMV, TK, SV40 y EF-1α. En algunas realizaciones, los promotores son inducibles, regulados por temperatura, específicos de tejido, suprimibles, de choque térmico, de desarrollo, específicos de un linaje celular, susceptibles de expresarse en células procariotas y/o eucariotas o promotores temporales o una combinación o recombinación de secuencias reordenadas no modificadas o mutagenizadas, aleatorizadas de una o más de las anteriores. Los ácidos nucleicos que codifican subunidades NaV, de preferencia se expresan de manera constitutiva.

10

15

20

25

50

55

60

65

En algunas realizaciones, el vector carece de un marcador seleccionable o un gen de resistencia a medicamentos. 30 En otras realizaciones, el vector comprende en forma opcional un ácido nucleico que codifica un marcador seleccionable, por ejemplo, una proteína que confiera resistencia a medicamentos o antibióticos. Cada vector para una secuencia que codifica una subunidad NaV diferente, puede tener igual o diferente resistencia a medicamentos u otro marcador seleccionable. Si existen dos o más marcadores de resistencia a medicamentos iguales, la 35 selección simultánea se puede lograr aumentando la concentración del medicamento. Los marcadores adecuados son muy conocidos para el experto en la técnica e incluyen, entre otros, genes que confieren resistencia a cualquiera de los siguientes: Neomicina/G418, Puromicina, higromicina, Zeocina, metotrexato y blasticidina. Aunque la selección del medicamento (o la selección mediante cualquier otro marcador de selección adecuado) no sea un paso requerido, se puede utilizar si se quiere, para enriquecer la población de células transfectadas en células 40 transfectadas en forma estable, siempre que los constructos transfectados sean diseñados para conferir resistencia a medicamentos. Si la selección se lleva a cabo utilizando sondas de señalización, la selección realizada demasiado pronto después de la transfección puede dar lugar a algunas células positivas que se transfecten solo de manera transitoria y no en forma estable. Sin embargo, esto se puede minimizar permitiendo suficiente subcultivo celular, que permita la dilución de células transfectadas de manera transitoria, células integradas en forma estable que no expresen al ADN introducido o células que generen ARN que no pueda ser detectado eficientemente por las sondas 45 de señalización.

En otro aspecto de la invención, las células y líneas celulares de la invención expresan de manera estable NaV 1.7 humano o una subunidad de NaV 1.7. Para identificar la expresión estable, la expresión de la línea celular de cada subunidad NaV se mide con respecto a un periodo de tiempo y se comparan los niveles de expresión. Las líneas celulares estable seguirán expresando las subunidades NaV 1.7 humano a través del tiempo prácticamente al mismo nivel (por ejemplo, no habrá más de 40%, 30%, 20%, 15%, 10%, 5% o 2% de variación). En algunos aspectos de la invención, el periodo de tiempo puede ser de al menos una semana, dos semanas, tres semanas o cuatro semanas; o al menos uno, dos, tres, cuatro, cinco, seis, siete, ocho o nueve meses o al menos cualquier lapso de tiempo que se ubique entre éstos. Las células aisladas se pueden caracterizar, por ejemplo, por qRT-PCR y RT-PCR con punto de terminación único para determinar las cantidades absolutas o relativas de cada subunidad NaV que se exprese o por cualquier otro método convencional de análisis de expresión de proteínas.

Las células y líneas celulares de la invención tienen la conveniente propiedad adicional de permitir ensayos con alta reproducibilidad como se hace evidente por su factor Z'. Véase, Zhang JH, Chung TD, Oldenburg KR, "A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays." J. Biomol. Screen. 1999;4(2):67-73. Los valores Z' corresponden a la calidad de una célula o línea celular porque reflejan el grado en el que una célula o línea celular responderá en forma uniforme a los moduladores. El valor Z' es un cálculo estadístico que toma en cuenta el intervalo entre señal y ruido y la variabilidad de señal (es decir, de pocillo a pocillo) de la respuesta funcional a un compuesto de referencia en toda una placa multipocillos. Z' se calcula con datos obtenidos de varios pocillos con un control positivo y varios pocillos con control negativo. La relación entre sus desviaciones

estándar combinadas multiplicada por tres y la diferencia en sus valores medios se respuesta de uno para obtener el factor Z', según la siguiente ecuación:

Factor Z' = 1 - (($3\sigma_{control\ positivo} + 3\sigma_{control\ negativo}$)/ ($\mu_{control\ positivo} - \mu_{control\ negativo}$))

5

10

45

50

55

60

El factor Z' máximo teórico es 1.0, que indicaría un ensayo ideal sin variabilidad e intervalo dinámico sin límites. En el sentido que se utiliza en la presente, un valor "Z' alto" se refiere a un factor Z' de Z' de al menos 0.6, al menos 0.7, al menos 0.75 o al menos 0.8 o cualquier decimal entre 0.6 y 1.0. Un valor menor de 0 es indeseable porque indica que existe un traslape entre los controles positivo y negativo. En la industria, para ensayos celulares simples, valores Z' hasta de 0.3 se consideran puntuaciones marginales, valores Z' entre 0.3 y 0.5 se consideran aceptables y valores Z' por arriba de 0.5 se consideran excelentes. Ensayos no celulares o bioquímicos puede alcanzar puntuaciones Z' más altas, pero las puntuaciones Z' para los sistemas celulares tienden a ser menores porque los sistemas celulares son complejos.

Como admitirán las personas con experiencia ordinaria en la técnica, históricamente los ensavos en células que 15 utilizan células que expresan una proteína monocatenaria, por lo general, no alcanzan un valor Z' mayor de 0.5 a 0.6. Estas células no serían confiables para utilizarse en un ensayo debido a que los resultados no son reproducibles. Por otra parte, las células y líneas celulares de la invención, tienen valores Z' altos y en forma conveniente producen resultados uniformes en los ensayos. Las células y líneas celulares NaV de la invención aportan la base para ensayos compatibles de tamizaje alta productividad (HTS - high throughput screening) debido a 20 que por lo general tienen factores Z' mínimos de 0.7. En algunos aspectos de la invención, las células y líneas celulares dan valores Z' de al menos 0.3, al menos 0.4, al menos 0.5, al menos 0.6, al menos 0.7 o al menos 0.8. En otros aspectos de la invención, las células y líneas celulares de la invención dan como resultado un valor Z' de al menos 0.7. al menos 0.75 o al menos 0.8 mantenido durante múltiples subcultivos, por ejemplo, entre 5 y 20 25 subcultivos, incluido cualquier número entero entre 5 y 20. En algunos aspectos de la invención, las células y líneas celulares dan como estado valores Z' de al menos 0.7, al menos 0.75 o al menos 0.8 mantenidos durante 1, 2, 3, 4 o 5 semanas o 2, 3, 4, 5, 6, 7, 8 o 9 meses, incluido cualquier lapso de tiempo entre ellos.

También según la invención, las células y líneas celulares que expresan una forma recombinante de un 30 heteromultímero NaV natural (en comparación con líneas celulares que expresan combinaciones que no se presentan en forma natural de subunidades alfa y beta o que expresan solo las subunidades alfa o beta) se pueden caracterizar respecto a funciones NaV, por ejemplo, conductancia de ión sodio. En algunas realizaciones, las células u líneas celulares de la invención muestran la actividad "fisiológicamente importante" de un canal iónico introducido. En el sentido que se utiliza en la presente, el término "fisiológicamente importante" se refiere a la propiedad de una 35 célula o línea celular que expresa un canal iónico introducido por lo que el canal iónico introducido se comporta, por ejemplo, responde a un modulador, prácticamente en la misma forma que lo hace un canal natural del mismo tipo, por ejemplo, un receptor natural que también la misma combinación de subunidades alfa y beta. Las células y líneas celulares de esta invención, de preferencia, demuestran una función comparable a la de las células que normalmente expresan NaV endógeno (nativo) (por ejemplo, células primarias) en un ensayo adecuado, por 40 ejemplo, un ensayo de potencial de membrana que utiliza sodio como activador del NaV, un ensayo electrofisiológico y un ensayo panorámico o de unión. Estas comparaciones se usan para determinar la importancia fisiológica de una célula o línea celular.

En otro aspecto de la invención, se pueden usar moduladores identificados con las líneas celulares de la invención, en ensayos adicionales para confirmar la funcionalidad. Otra propiedad ventajosa de las células y líneas celulares de la invención es que los moduladores identificados en tamizaje inicial son funcionales en ensayos funcionales secundarios, por ejemplo, en ensayo de potencial de membrana o ensayo electrofisiológico. Como admitirán las personas con experiencia ordinaria en la técnica, los compuestos identificados en ensayos de tamizaje inicial, por lo general, tienen que modificarse, por ejemplo, por química combinatoria, química médica o química de síntesis, para que sus derivados o análogos sean funcionales en ensayos funcionales secundarios. Sin embargo, debido a la alta importancia fisiológica de las células y líneas celulares de la presente, es posible que los compuestos identificados con ellos no requieran tal afinación "gruesa".

En algunas realizaciones, las células y líneas celulares de la invención tienen sensibilidad aumentada para los moduladores de NaV. Las células y líneas celulares de la invención responden a moduladores con valores EC₅₀ o IC₅₀ en el intervalo fisiológico para NaV. En el sentido que se utiliza en la presente, EC₅₀ se refiere a la concentración de un compuesto o sustancia requerida para inducir una respuesta activadora a la mitad de la máxima en las células o líneas celulares. En el sentido que se utiliza en la presente, IC₅₀ se refiere a la concentración de un compuesto o sustancia requerida para inducir una respuesta inhibidora a la mitad de la máxima en las células o líneas celulares. Los valores EC₅₀ e IC₅₀ se pueden determinar mediante técnicas que son muy conocidas en la técnica, por ejemplo, una curva de respuesta a la dosis que correlaciona la concentración de un compuesto o sustancia con la línea celular que expresa el NaV. Por ejemplo, la IC₅₀ para tetrodotoxina (TTX) en una línea celular de la invención es alrededor de 1-100 nM, por ejemplo 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80 o 90 nM.

65 En algunas realizaciones, propiedades de las células y líneas celulares de la invención, como estabilidad, importancia fisiológica, reproducibilidad en un ensayo (Z') o valores EC₅₀ o IC₅₀ fisiológicos, son susceptibles de

lograrse en condiciones de cultivo específicas. En algunas realizaciones, las condiciones de cultivo específicas se normalizan y se mantienen en forma rigurosa sin variación, por ejemplo, por automatización. Las condiciones de cultivo pueden incluir cualquier condición adecuada en la cual proliferen las células o líneas celulares y pueden incluir las conocidas en la técnica. Una variedad de condiciones de cultivo pueden dar como resultado propiedades biológicas convenientes para el NAV o sus mutantes o variantes alélicas.

En otras realizaciones, las células y líneas celulares de la invención con propiedades deseadas, como estabilidad, importancia fisiológica, reproducibilidad en un ensayo (Z') o valores EC_{50} o IC_{50} fisiológicos, se pueden obtener en un mes o menos. Por ejemplo, las células o líneas celulares se pueden obtener en 2, 3, 4, 5 o 6 días o en 1, 2, 3 o 4 semanas o cualquier lapso de tiempo intermedio.

10

15

50

55

60

65

Las células y líneas celulares de la presente se pueden usar en una colección o panel, cada conjunto de células o cada línea celular expresan una forma de NaV [por ejemplo, NaV constituido por varias combinaciones (por ejemplo, dímeros, trímeros, etc.) de subunidades alfa y beta o variantes (por ejemplo, mutantes, fragmentos o variantes de corte y empalme) de las subunidades o un mono o multímero de solo una subunidad alfa o beta]. La colección puede incluir, por ejemplo, líneas celulares que expresen dos o más de los receptores de NaV anteriormente mencionados. En algunas realizaciones, la colección o panel también puede comprender elementos que expresen el mismo NaV o que expresen proteínas de control.

20 Cuando las colecciones o paneles de células o líneas celulares se producen, por ejemplo, para tamizaje con medicamentos, las células o líneas celulares en la colección o panel pueden emparejarse de tal manera que sean Rgules (o también prácticamente iguales) con respecto a una o más propiedades fisiológicas selectivas. La frase "propiedad fisiológica igual" en este contexto se refiere a que la propiedad fisiológico seleccionada es lo suficientemente similar entre los elementos en la colección o panel para que la colección o panel de células puedan 25 dar resultados confiables en los ensayos de tamizaje para medicamentos; por ejemplo, las variaciones en lecturas en un ensayo de tamizaje para medicamentos se deberán, por ejemplo, a las diferentes actividades biológicas de los compuestos de prueba en células que expresan diferentes formas de NaV, más que a variaciones inherentes a las células. Por ejemplo, las células o líneas celulares se pueden emparejar para que tengan la misma velocidad e proliferación, es decir, índices de proliferación con no más de uno, dos, tres, cuatro o cinco horas de diferencia entre 30 los elementos de la colección o panel de células. Esto se puede lograr, por ejemplo, células ordenadas (binning) por su velocidad de proliferación en cinco, seis, siete, ocho, nueve o diez grupos y formando un panel con células a partir de este grupo ordenado (binned). Los métodos para determinar la velocidad o índice de proliferación celular son muy conocidos en la técnica. Las células o líneas celulares en un panel también se pueden emparejar para que tengan el mismo factor Z' (por ejemplo, factores Z' que no sean diferentes por más de 0.1), el nivel de expresión de NaV (por ejemplo, niveles de expresión de NaV que no se distingan por más de 5%, 10%, 15%, 20%, 25% o 30%), 35 adherencia a las superficies del cultivo de tejido. Las células y líneas celulares emparejadas pueden proliferar en condiciones idénticas, que se logran, por ejemplo, por procesamiento paralelo automatizado, para mantener la propiedad fisiológica seleccionada.

Los paneles de células emparejadas de la invención se pueden usar, por ejemplo, para identificar moduladores con actividad definida (por ejemplo, agonista o antagonista) en un NaV; para generar el perfil de actividad del compuesto frente a diferentes formas de NaV; para identificar moduladores activos en solo una forma de NaV; y para identificar moduladores activos sobre un solo subconjunto de NaV. Los paneles celulares emparejados de la invención permiten tamizaje de alta productividad. Los tamizajes que se utilizan que consumen meses para realizarse ahora se puede llevar a cabo en semanas.

Para obtener las células y líneas celulares de la invención, uno puede usar, por ejemplo, la tecnología descrita en la Patente de los Estados Unidos Núm. y en 6,692,965 y WO/2005/079462. Esta tecnología permite la evaluación en tiempo real de millones de células y de cualquier número de clones que se desee (desde cientos hasta miles de clones). Mediante técnicas de separación celular, como la citometría de flujo (por ejemplo, con un aparato FACS) o separación celular magnética (por ejemplo, con un aparato MACS), se deposita en un frasco de cultivo y de manera automática una célula por pocillo con alta confianza estadística (por ejemplo, en una placa de cultivo de 96 pocillos). La velocidad y automatización de la tecnología permite aislar con facilidad líneas celulares recombinantes multigénicas.

Utilizando la tecnología, la secuencia de ARN para cada subunidad NaV, se puede detectar mediante una sonda de

señalización, también conocida como faro molecular o sonda fluorogénica. En algunas realizaciones, el vector que contiene la secuencia codificante de la subunidad NaV tiene una secuencia adicional que codifica una secuencia etiqueta ARN. La "secuencia etiqueta" se refiere a una secuencia de ácido nucleico que es un ARN expresado o una fracción de un ARN que se va a detectar mediante una sonda de señalización. Las sondas de señalización pueden detectar una variedad de secuencias ARN, de las cuales cualquiera se puede utilizar como etiqueta, incluidas aquellas que codifican etiquetas peptídicas y proteicas descritas en lo anterior. Las sondas de señalización se pueden dirigir a la etiqueta al diseñar las sondas para que incluyan una fracción que sea complementaria a la secuencia de la etiqueta. La secuencia etiqueta puede ser un región sin traducir 3' del plásmido que se transcribe

simultáneamente con un transcrito NaV y comprende una secuencia objetivo para la unión de la sonda de señalización. La secuencia etiqueta puede estar en el marco de lectura con la fracción codificante para la proteína

del mensaje del gen o fuera del marco de lectura respecto a éste, dependiendo de si se quiere etiquetar la proteína producida. Así, la secuencia etiqueta no tiene que ser traducida para la detección por la sonda de señalización. Las secuencias etiqueta pueden comprender varias secuencias blanco u objetivo que sean iguales o diferentes, en donde una sonda de señalización se hibrida a cada secuencia objetivo. La secuencia etiqueta puede estar ubicada dentro del ARN que codifica el gen de interés o bien, la secuencia etiqueta puede estar ubicada dentro de una región 5'- o 3'-no traducida. Las secuencias etiqueta pueden ser un ARN que tenga estructura secundaria. La estructura puede ser una estructura de tres ramas. En algunas realizaciones, la sonda de señalización detecta una secuencia dentro de la secuencia que codifica la subunidad NaV.

10 Ácidos nucleicos que comprendan una secuencia que codifica una subunidad NaV, opcionalmente una secuencia que codifique para una secuencia etiqueta y como opción un ácido nucleico que codifique para un marcador seleccionable, se pueden introducir en las células huésped seleccionadas utilizando métodos muy conocidos en la técnica. Los métodos incluyen transfección, incorporación viral, inserción mediada por proteína o péptido, métodos de coprecipitación, reactantes de incorporación de lípidos (lipofección), citofección, incorporación de lipopoliamina, 15 rectantes de incorporación de dendrímeros, electroporación o incorporación mecánica. Ejemplos de reactantes de transfección son: GenePORTER, GenePORTER2, LipofectaminA, LipofectaminA 2000, ÓligofectaminA, Transfast, Transfectam, GeneSHUTTLE, Trojene, GeneSilencer, X-tremeGENE, PerFectinA, CltofectinA, siPORT, UniFECTOR, FUGENE 6, FUGENE HD, TFX-10, TFX-20, TFX-50, siFECTOR, TransIT-LT1, TransIT-LT2, TransIT-Express, iFECT, RNAi Shuttle, MetafectenO, LyoVec, LipoTAXI, GeneEraser, GeneJuice, CytoPure, JetSI, JetPEI, Megafectin, Polyfect, TransMessanger, RNAiFect, SuperFect, Effectene, Tf-PEI-Kit, CLONfectinA y MetafectinA. 20

Después de la transfección de los constructos de ADN en las células y la posterior selección frente a medicamentos (si es el caso) o después de la activación génica según se describe en lo anterior, se pueden introducir en las células faros moleculares (por ejemplo, sondas fluorogénicas) cada uno de los cuales se direcciona a una secuencia etiqueta diferente y marcada diferencialmente y para aislar las células positivas por sus señales se utiliza la separación celular por citometría de flujo (se pueden realizar varias corridas de separación). En una realización, la separación celular por citometría de flujo es un aparato FACS. También se puede utilizar la técnica MACS (separación celular magnética) o ablación láser de células negativas mediante análisis y procesamiento habilitado con láser. También se pueden emplear otros lectores de placa de fluorescencia, incluidos aquellos que son compatibles con el tamizaje de alta productividad. Las células positivas a la señal han captado y posiblmente integrado en sus genomas al menos una copia de la secuencia o secuencias NaV introducidas. Se identifican las células introducidas con una o más de las subunidades NaV. Como ejemplo, las secuencias de las subunidades NaV se pueden integrar a la célula en diferentes ubicaciones del genoma. El nivel de expresión de los genes introducidos que codifican las subunidades NaV puede variar con base en el número de copias o sitio de integración. Por otra parte, se pueden obtener células que comprendan una o más de las subunidades NaV, en donde uno o más de los genes introducidos que codifican una subunidad NaV son epidermisómicos o resultan de la activación génica.

25

30

35

40

45

55

Las sondas de señalización útiles en esta invención son conocidas en la técnica y por lo general son oligonucleótidos que comprenden una secuencia complementaria a una secuencia blanco u objetivo y un sistema emisor de señal dispuesto de manera que no se emita la señal cuando la sonda no está unida a la secuencia objetivo y se emita una señal cuando la sonda se una a la secuencia objetivo. Como ilustración no limitativa, la sonda de señalización puede comprender un fluoróforo y un inactivador ubicado en la sonda para que el inactivador y el fluoróforo entren en contacto en la sonda sin unir. Durante la unión entre la sonda y la secuencia objetivo, el inactivador y el fluoróforo se separan dando lugar a la emisión de la señal. La publicación internacional WO/2005/079462, por ejemplo, describe varias sondas de señalización que se pueden usar en la producción de las células y líneas celulares de la presente. Los métodos descritos en lo anterior para introducir ácidos nucleicos a las células se pueden utilizar para introducir sondas de señalización.

Cuando se usan las secuencias etiqueta, el vector para cada subunidad NaV puede tener la misma secuencia 50 etiqueta o una diferente. Sean las secuencias etiqueta iguales o diferentes, las sondas de señalización pueden tener diferentes emisores de señal, por ejemplo, fluoróforos de diferentes colores de tal manera que la expresión de cada subunidad se puede detectar por separado. Como ilustración, la sonda de señalización que detecta específicamente el ARNm de la subunidad alfa NaV puede comprender un fluoróforo rojo, la sonda que detecta la primera subunidad beta NaV puede contener un fluoróforo verde y la sonda que detecta la segunda subunidad beta NaV puede contener un fluoróforo azul. Los expertos en la técnica se percatarán de que existen otros medios para detectar de manera diferencial la expresión de las tres subunidades con una sonda de señalización en una célula triplemente transfectada.

En una realización, las sondas de señalización se diseñan para que sean complementaria a una fracción del ARN que codifica una subunidad NaV o a fracciones de sus regiones 5' o 3' sin traducir. Incluso, si la sonda de 60 señalización diseñada para reconocer un ARN mensajero de interés, es capaz de detectar secuencias objetivo expresadas en forma endógena ficticia, la proporción éstas en comparación con la proporción de la secuencia de interés producida por células transfectadas es tal que la separación es apta para discriminar los dos tipos de células.

El nivel de expresión de una subunidad NaV introducida puede variar de línea celular a línea celular. El nivel de 65 expresión en una línea celular también puede disminuir a través del tiempo debido a eventos epigenéticos como la

mutilación del ADN y el silenciamiento génico y pesada de copias transgénicas. Estas variaciones se pueden atribuir a una diversidad de factores, por ejemplo, el número de copia del transgén captado por la célula, el sitio de la integración genómica del transgén y la integridad del transgén después de la integración genómica. Uno puede usar FACS para evaluar los niveles de expresión. Las células que expresen una subunidad NaV introducida a los niveles deseados, se pueden aislar, por ejemplo, por FACS. Las sondas de señalización también se pueden volver a aplicar a células o líneas celulares generadas previamente, por ejemplo, para determinar si las células todavía son positivas y a qué grado, para uno o más de los ARN para los cuales se aislaron originalmente.

Una vez que las células que expresan las tres subunidades NaV se aíslan, se pueden cultivar durante un periodo de tiempo suficiente para identificar aquellas que expresan en forma estable todas las subunidades deseadas. En otra realización de la invención, las células adherentes se pueden adaptar a la suspensión antes o después de la separación celular y aislar células solas. En otras realizaciones, las células aisladas se pueden proliferar en forma individual o mezcladas para generar poblaciones de células. Las líneas celulares también se pueden hacer proliferar en forma individual o mezcladas. Si se produce una mezcla de líneas celulares con una actividad deseada o una propiedades deseada, ésta se puede fraccionar después hasta que se identifique la línea celular o grupo de líneas celulares que tenga este efecto. La mezcla de células o líneas celulares puede facilitar el mantenimiento de gran número de líneas celulares sin la necesidad de mantenerlas cada una por separado. Así, una mezcla de células o líneas celulares se puede enriquecer en cuanto a células positivas. Una mezcla enriquecida puede tener al menos 50%, al menos 60%, al menos 70%, al menos 80%, al menos 90% o 100% de células positivas frente a la propiedad o actividad deseada.

10

15

20

40

45

50

En otro aspecto, la invención proporciona un método para producir las células y líneas celulares de la invención como se define en la reivindicación 8.

Según el método, las células se cultivan bajo un conjunto de condiciones de cultivo deseadas. Las condiciones pueden ser cualquier condición deseada. Los expertos en la técnica sabrán qué parámetros están comprendidos dentro un conjunto de condiciones de cultivo. Por ejemplo, las condiciones de cultivo incluyen, entre otras: el medio (medio base (DMEM, MEM, RPMI, libre de suero, con suero, plenamente definido químicamente, sin componentes de origen animal), concentración de iones mono y divalentes (sodio, potasio, calcio, magnesio), componentes adicionales añadidos (aminoácidos, antibióticos, glutamina, glucosa u otras fuentes de carbono, HEPES, bloqueadores de canal, moduladores de otros blancos, vitaminas, microelementos, metales pesados, cofactores, factores de crecimiento, reactantes antiapoptosis), medio tal cual o acondicionado, con HEPES, pH, carente de ciertos nutrientes o limitado (aminoácidos, fuente de carbono)), nivel de confluencia al que se permite a las células llegar antes de corte-empalme/subcultivo, capas alimentadoras de células o células irradiada con rayos gamma, CO2, sistema de tres gases (oxígeno, nitrógeno, dióxido de carbono), humedad, temperatura, en reposo o en un agitador, las cuales son muy conocidas para los expertos en la técnica.

Las condiciones de cultivo celular se pueden elegir por conveniencia dado un uso particular deseado para las células. En forma ventajosa, la invención proporciona células y líneas celulares que están preparadas en forma óptima para un uso particular deseado. Es decir, en realizaciones de la invención en los que las células se cultivan en condiciones para un uso deseado particular, las células se seleccionan en función de que tengan las características deseadas en la condición para el uso deseado. Como ilustración, si las células se utilizan en ensayos en placas en donde es conveniente que las células sean adherentes, se pueden seleccionar las células que muestran adherencia en las condiciones del ensayo. Del mismo modo, si las células se van a utilizar para la producción de proteínas, las células se pueden cultivar en condiciones apropiadas para la producción de proteínas y seleccionarse respecto a propiedades ventajosas para este uso.

En algunas realizaciones, el método comprende el paso adicional de medir los índices de proliferación de los cultivos celulares individuales. Los índices de proliferación se pueden determinar mediante alguno entre una variedad de técnicas que serán muy conocidas para los expertos en la técnica. Estas técnicas incluyen, entre otras, medición de ATP, confluencia celular, dispersión luminosa, densidad óptica (por ejemplo, DO 260 para ADN). De preferencia, los índices de proliferación se determinan con medios que reduzcan al mínimo la cantidad de tiempo que consumen los cultivos fuera de las condiciones de cultivo seleccionadas.

En algunas realizaciones, se mide la confluencia celular y se calculan los índices de proliferación celular a partir de los valores de confluencia. En algunas realizaciones, las células se dispersan y los aglomerados se eliminan antes de medir la confluencia celular para obtener mayor exactitud. Los medios para las células monodispersantes son muy conocidos y se pueden obtener, por ejemplo, mediante la adición de un reactante dispersante a un cultivo que se va a medir. Los agentes dispersantes son muy conocidos y de fácil disponibilidad e incluyen, entre otros, agentes dispersantes enzimáticos, como tripsina y agentes dispersantes con base en EDTA. Los índices de proliferación se pueden calcular a partir de datos de confluencia mediante un software comercial para el fin, por ejemplo, HAMILTON VECTOR. La medición de confluencia automatizada, por ejemplo, la que utiliza un lector de placa microscópico automatizado, es en particular muy útil. Los lectores de placa que miden la confluencia están disponibles en el mercado e incluyen, entre otros, el CLONE SELECT IMAGER (Genetix). Por lo general, se hacen al menos 2 mediciones de confluencia celular antes de calcular un índice de proliferación. El número de valores de confluencia utilizados para determinar el índice de proliferación puede ser cualquier número que sea conveniente o adecuado

para el cultivo. Por ejemplo, la confluencia se puede medir varias veces durante, por ejemplo, una semana, 2 semanas, 3 semanas o cualquier periodo de tiempo y a cualquier frecuencia deseada.

Cuando se conocen los índices de proliferación, según el método, la pluralidad de cultivos celulares individuales se dividen en grupos por similitud entre los índices de proliferación. Al agrupar los cultivos en compartimientos por índice de proliferación, se pueden manipular juntos los cultivos en el grupo, obteniendo con ello otro nivel de normalización que reduce la variación entre cultivos. Por ejemplo, los cultivos en un compartimiento se pueden subcultivar al mismo tiempo, tratarse con un reactante dado al mismo tiempo, etc. Por otra parte, los resultados de ensayos funcionales, por lo general, dependen de la densidad celular en un pocillo de ensayo. Una comparación real de clones individuales solo se lleva a cabo al tenerlos depositados y evaluados a la misma densidad. Al agrupar en cohortes con índice de proliferación específico se facilita el depósito de clones a una densidad específica que permite que se les caracterice por su funcionalidad en un formato de alta productividad.

El intervalo de índices de proliferación en cada grupo puede ser cualquier intervalo conveniente. Es en particular conveniente seleccionar un intervalo de índices de proliferación que permita a las células subcultivarse al mismo tiempo y evitar la renormalización frecuente de números de células. Los grupos de índice de proliferación pueden incluir un intervalo muy estrecho para un agrupamiento compacto, por ejemplo, un promedio de tiempos suplicados en lapsos de una hora entre sí. Pero según el método, el intervalo puede ser hasta de 2 horas, hasta de 3 horas, hasta de 4 horas, hasta de 5 horas o hasta de 10 horas entre sí o incluso intervalos más amplios. La necesidad de renormalización surge cuando los índices de proliferación en un compartimiento no son iguales de manera que el número de células en algunos cultivos aumenta más rápido que en otros. Para mantener condiciones prácticamente idénticas para todos los cultivos en un compartimiento, es necesario eliminar células en forma periódica para renormalizar los números en el compartimiento. Mientras más divergentes son los índices de proliferación, la necesidad de renormalización es más frecuente.

25

30

35

40

45

50

55

60

65

20

10

15

Las células y líneas celulares se pueden evaluar y seleccionar respecto a cualquier propiedad fisiológica que incluye: un cambio en un proceso celular codificado por el genoma; un cambio en un proceso celular regulado por el genoma; un cambio en un patrón de actividad cromosómica; un cambio en un patrón de silenciamiento cromosómico; un cambio en un patrón de silenciamiento génico; un cambio en un patrón o en la eficiencia de la activación génica; un cambio en un patrón o en la eficiencia de la expresión génica; un cambio en un patrón o en la eficiencia de la expresión de ARN; un cambio en un patrón o en la eficiencia de la expresión de ARNi; un cambio en un patrón o en la eficiencia de procesamiento de ARN; un cambio en un patrón o en la eficiencia del transporte de ARN; un cambio en un patrón o en la eficiencia de la traducción de proteína; un cambio en un patrón o en la eficiencia del plegamiento de proteína; un cambio en un patrón o en la eficiencia del ensamblado de proteína; un cambio en un patrón o en la eficiencia de la modificación de proteína; un cambio en un patrón o en la eficiencia del transporte de proteína: un cambio en un patrón o en la eficiencia de transportar una proteína de membrana a una superficie celular; un cambio en el índice de proliferación; un cambio en el tamaño de la célula; un cambio en la forma de la célula; un cambio en la morfología de la célula; un cambio en el contenido de ARN en %; un cambio en contenido de proteína en %; un cambio en contenido de agua en %; un cambio contenido de lípidos en %; un cambio contenido ribosómico; un cambio en contenido mitocondrial; un cambio masa ER; un cambio en el área superficial de la membrana plasmática; un cambio volumen celular; un cambio composición lipídica de la membrana plasmática; un cambio composición lipídica de la envoltura nuclear; un cambio composición proteica de la membrana plasmática; un cambio en la proteína; composición de la envoltura nuclear; un cambio en el número de vesículas secretoras; un cambio en el número de lisosomas; un cambio en el número de vacuolas; un cambio en la capacidad o potencial de una célula para: producción de proteína, secreción de proteína, plegamiento de la proteína, ensamblado de proteínas, modificación de la proteína, modificación enzimática de la proteína, glucosilación de la proteína, fosforilación de la proteína, defosforilación de la proteína, biosíntesis de metabolitos, biosíntesis de lípidos, síntesis de ADN, síntesis de ARN, síntesis de proteínas, absorción de nutrientes, proliferación celular, mitosis, meiosis, división celular, para desdiferenciarse, para transformación en una célula precursora, para transformación en células pluripotentes, para transformación en una célula omnipotente, para transformación en una célula tipo precursora en cualquier órgano (por ejemplo, hígado, pulmón, piel, músculo, páncreas, cerebro, testículos, ovario, sangre, sistema inmune, sistema nervioso, huesos, sistema cardiovascular, sistema nervioso central, tracto gastrointestinal, estómago, tiroides, lengua, vesícula biliar, riñón, nariz, ojo, uñas, pelo, papilas gustativas), para transformación en cualquier tipo de célula diferenciada (por ejemplo, de músculo, de músculo cardiaco, neurona, piel, pancreática, de sangre, inmune, eritrocito, leucocito, célula T asesina, célula enteroendocrina, célula de papila gustativa, célula secretora, célula de riñón, célula epitelial, célula endotelial, también se incluye cualquiera de los tipos de células animales o humanas ya enlistadas que se puedan utilizar para la introducción de secuencias de ácido nucleico), para captar ADN, para captar moléculas pequeñas, para captar sondas fluorogénicas, para captar ARN, para adherirse a superficie sólida, para adaptarse a condiciones en las que no hay suero, para adaptarse a condiciones en suspensión libre de suero, para adaptarse a cultivo celular incrementado, para usarse en el cultivo celular a gran escala, para usarse en el descubrimiento de medicamentos, para usarse en tamizaje de alta productividad, para usarse en un ensayo celular funcional, para usarse en ensayos de potencial de membrana, para usarse en ensayos con células reporteras, para usarse en estudios ELISA, para usarse en ensayos in vitro, para usarse en aplicaciones in vivo, para usarse en análisis secundario, para usarse en evaluación de compuestos, para usarse en ensayo de unión, para usarse en ensayos panorámicos, para usarse en un ensayo panorámico de anticuerpos, para usarse en ensayos de imagen, para usarse en ensayos de imagen microscópicos, para usarse en placas multipocillos, para

adaptación a cultivos celulares automatizados, para adaptación a cultivos celulares automatizados, para adaptación a cultivos celulares a gran escala automatizados, para adaptación a cultivos celulares en placas multipocillos (6, 12, 24, 48, 96, 384, 1536 o densidad mayor), para usarse chips celulares, para usarse en portaobjetos, para usarse portaobjetos de vidrio, para micromatrices en portaobjetos o portaobjetos de vidrio, para usarse en producción de biológicos y usarse en la producción de reactantes para investigación.

Las pruebas que se pueden usar para caracterizar las células y líneas celulares de la invención y/o paneles emparejados de la invención incluyen, entre otras: análisis de aminoácidos, secuenciación de ADN, secuenciación de proteínas, NMR, prueba para el transporte de proteínas, prueba para el transporte nucelocitoplásmico, prueba para localización subcelular de proteínas, prueba para localización subcelular de ácidos nucleicos, análisis microscópico, análisis submicroscópico, microscopía de fluorescencia, microscopía electrónica, microscopía confocal, tecnología de ablación con láser, cuenta celular y diálisis. El experto sabría como utilizar cualquiera de las pruebas mencionadas en lo anterior.

10

40

45

50

55

60

65

Según el método, las células se pueden cultivar en cualquier formato de cultivo celular siempre que las células o líneas celulares se dispersen en cultivos individuales antes de realizar el paso de medición de los índices de proliferación. Por ejemplo, por conveniencia, las células inicialmente se pueden combinar para el cultivo en las condiciones deseadas y luego separar células individuales para depositar una célula por pocillo o depósito. Las células se pueden cultivar en placas de cultivo de tejidos de pocillos múltiples. Estas placas se encuentran con facilidad en el comercio y son muy conocidas para el experto en la técnica. En algunos casos, las células, de preferencia, se pueden cultivar en viales o en cualquier otro formato conveniente, los diversos formatos son muy conocidos para el experto en la técnica y fácilmente se encuentran en el comercio.

En realizaciones que incluyen el paso que consiste en medir el índice de proliferación, antes de medir los índices de proliferación, las células se cultivan durante un periodo de tiempo suficientemente largo para que se aclimaten a las condiciones de cultivo. Como se percatará el experto, la cantidad de tiempo variará dependiendo de varios factores como el tipo de célula, las condiciones elegidas, el formato de cultivo y puede ser cualquier cantidad de tiempo, desde un día hasta unos cuantos días, una semana o más.

De preferencia, cada cultivo individual en la piad de cultivos celulares individuales se mantiene en condiciones prácticamente idénticas según lo que se expone adelante y que incluye un esquema de mantenimiento normalizado. Otra particularidad conveniente del método es que se puede mantener al mismo tiempo un número grande de cultivos individuales, de tal manera que una célula con un determinado conjunto de atributos se puede identificar incluso si fuera muy escasa. Por estas y otras razones, de conformidad con la invención, la pluralidad de cultivos celulares individuales se cultivan por medio métodos de cultivo celular automatizado así que las condiciones son prácticamente idénticas para cada pocillo. El cultivo celular automatizado previene la inevitable variabilidad inherente al cultivo celular manual.

Se puede usar cualquier sistema de cultivo celular en el método de la invención. En el comercio se encuentran disponibles varios sistemas de cultivo celular automatizado y serán muy conocidos para el técnico experimentado. En algunas realizaciones, el sistema automatizado es un sistema robótico. De preferencia, el sistema incluye canales que se mueven de manera independiente, un cabezal de canales múltiples (por ejemplo, un cabezal de 96 puntas) y un brazo con abrazadera o grúa y un dispositivo de filtración HEPA para mantener la esterilidad durante el procedimiento. El número de canales en la pipeta debe ser el adecuado para el formato del cultivo. Las pipetas adecuadas tienen, por ejemplo, 96 o 384 canales. Estos sistemas son conocidos y se encuentran disponibles en el comercio. Por ejemplo, se puede usar un instrumento MICROLAB STAR™ (Hamilton) en el método de la invención. El sistema automatizado debe ser capaz de realizar una variedad de operaciones de cultivo celular. Estas operaciones son conocidas para el experto en la técnica. Éstas incluyen, entre otras: eliminar el medio, reemplazar el medio, adicionar reactantes, lavado celular, eliminar la solución de lavado, adicionar agente dispersante, eliminar células del frasco de cultivo, adicionar células a un frasco de cultivo y lo similar.

La producción de una célula o línea celular de la invención puede incluir cualquier número de cultivos celulares individuales. Sin embargo, las ventajas proporcionadas por el método aumentan a medida que aumenta el número de células. No existe un límite teórico superior para el número de células o de cultivos celulares individuales que se pueda utilizar en el método. Según la invención, el número de cultivos celulares individuales puede ser de dos o más pero tiene más ventajas que sea al menos de 3, 4, 5, 6, 7, 8, 9, 10 o más cultivos celulares individuales, por ejemplo, al menos 12, al menos 15, al menos 20, al menos 24, al menos 30, al menos 30, al menos 35, al menos 40, al menos 45, al menos 48, al menos 50, al menos 75, al menos 96, al menos 100, al menos 200, al menos 300, al menos 384, al menos 400, al menos 500, al menos 1000, al menos 10,000, al menos 100,000, al menos 500,000 o más.

La facilidad para aislar y volver a aislar a partir de una población de células mixta aquellas células que tienen las propiedades deseadas (por ejemplo, que expresen los ARN deseados a los niveles apropiados) hace posible mantener líneas celulares a una presión de selección con medicamentos mínima o nula. La presión de selección se aplica en un cultivo celular para seleccionar células con secuencias o atributos deseados y por lo general se logra ligando la expresión de un polipéptido de interés con la expresión de un marcador de selección que imparta a las

células resistencia a un correspondiente agente o presión selectiva. La selección con antibióticos incluye, entre otros, el uso de antibióticos (por ejemplo, puromicina, neomicina, G418, higromicina, bleomicina). La selección no antibiótica incluye, entre otros, el uso de carencia de nutrientes, exposición a temperaturas selectivas, exposición a condiciones mutagénicas y expresión de marcadores fluorescentes en donde el marcador de selección puede ser, por ejemplo, glutamina sintetasa, dihidrofolato reductasa (DHFR), oabaína, timidina cinasa (TK), hipoxantin guanina fosfororribosiltransferasa (HGPRT) o una proteína fluorescente como GFP. En los aspectos inmediatos de la invención, ninguno de estos pasos de selección se aplican a las células en cultivo. En algunas realizaciones preferidas, las células y líneas celulares de la invención, se mantienen en cultivo sin ninguna presión selectiva. En otras realizaciones, las células y líneas celulares se mantienen sin ningún antibiótico. En el sentido que se utiliza en la presente, el mantenimiento de las células se refiere a cultivar las células después de que se han seleccionado par su expresión de NaV, por ejemplo, a través de separación celular. El mantenimiento no se refiere al paso opcional de desarrollar las células en un medicamento selectivo (por ejemplo, un antibiótico) antes de la clasificación celular en donde el o los marcadores de resistencia a medicamentos introducido a las células permite el enriquecimiento de transfectantes estables en una población mixta.

15

20

25

30

35

40

45

50

55

60

65

10

El mantenimiento de las células sin medicamento tiene varias ventajas. Por ejemplo, las células resistentes a medicamentos no siempre expresan el transgén cotransfectado de interés a los niveles adecuados, porque la selección se basa en la supervivencia de las células que han captado el gen resistente al medicamento, con o sin el transgén. Por otra parte, los medicamentos selectivos con frecuencia son mutagénicos o interfieren de algún otro modo con la fisiología de las células, lo que conduce a resultados sesgados en los ensayos celulares. Por ejemplo, los medicamentos selectivos pueden disminuir la susceptibilidad a la apoptosis (Robinson et al., Biochemistry, 36(37): 1169-11178 (1997)), aumentar la reparación de ADN y el metabolismo del medicamento (Deffie et al., Cancer Res. 48(13): 3595-3602 (1988)), aumentar el pH celular (Thiebaut et al., J Histochem Cytochem. 38(5): 685-690 (1990); Roepe et al., Biochemistry. 32(41): 1042-11056 (1993); Simon et al., Proc Natl Acad Sci USA. 91(3): 1128-1132 (1994)), disminuir el pH lisosómico y endosómico (Schindler *et al.*, Biochemistry. 35(9): 2811-2817 (1996); Altan *et al.*, J Exp Med. 187(10): 1583-1598 (1998)), disminuir el potencial de la membrana plasmática (Roepe et al., Biochemistry, 32(41):11042-11056 (1993)), aumentar la conductancia de la membrana plasmática al cloruro (Gill et al., Cell. 71(1):23-32 (1992)) and ATP (Abraham et al., Proc Natl Acad Sci USA. 90(1):312-316 (1993)) y aumentar las velocidades del transporte vesicular (Altan et al., Proc Natl Acad Sci USA. 96(8): 4432-4437 (1999)). La GFP que es un marcador selectivo no antibiótico de uso común puede provocar la muerte celular en ciertas líneas celulares (Hanazono et al., Hum Gene Ther. 8(11): 1313-1319 (1997)). Así, las células y líneas celulares de esta invención permiten ensayos de tamizaje que están libres de cualquier artefacto ocasionado por los medicamentos o marcadores selectivos. En algunas realizaciones preferidas, las células no se cultivan con medicamentos selectivos como los antibióticos antes o después de la separación celular, de manera que las células con las propiedades deseadas se aíslan por separación incluso sin comenzar con una población celular enriquecida.

En el presente documento también se desvelan métodos para usar las células y líneas celulares de la invención. Las células o líneas celulares de la invención se pueden usar en cualquier aplicación para la cual se requiera una o varias subunidades funcionales NaV o el canal iónico NaV completo. Las células y líneas celulares se pueden usar, por ejemplo, en un ensayo celular *in vitro* o en un ensayo celular *in vivo* en el que las células se implanten en un animal (por ejemplo, un mamífero no humano) para, por ejemplo, tamizar moduladores de NaV; producir proteína para estudios de cristalografía y unión; e investigar selectividad y dosificación de un compuesto, cinética y estabilidad de unión de un compuesto y su receptor y efectos de la expresión del receptor en la fisiología celular (por ejemplo, electrofsiología, tráfico de pinas, plegamiento de proteínas y regulación de proteínas). Las células y líneas celulares de la presente también se pueden usar en estudios de silenciamiento para investigar las funciones de subunidades NaV específicas.

Las líneas celulares que expresan varias combinaciones de subunidades alfa y beta (por ejemplo, heterotrímeros naturales o heterotrímeros que no se encuentran de manera natural) se pueden usar juntas o separadas como una colección para identificar moduladores de NaV, incluidos los específicos para una NaV particular, una subunidad de un NaV particular o una combinación particular de subunidades NaV y para obtener información acerca de las actividades de subunidades individuales. La invención también proporciona métodos para usar moduladores específicos para formas modificadas particulares; esta información puede ser útil para determinar si el NaV tiene formas modificadas que se encuentran en forma natural. Utilizar las células y líneas celulares de la presente puede ayudar a determinar si las diferentes formas de NaV participan en diferentes patologías relacionadas con el NaV y permiten la selección de moduladores NaV específicos para la enfermedad o e tejido para tratamiento muy dirigido de patologías relacionadas con el NaV.

En el sentido que se utiliza en la presente, un "modulador" incluye cualquier sustancia o compuesto que tenga una actividad moduladora con respecto a por lo menos una subunidad NaV. El modulador puede ser un agonista de NaV (potenciador o activador) o un antagonistas (inhibidor o bloqueador), incluidos los agonistas o antagonistas parciales, agonistas o antagonistas selectivos y agonistas inversos y puede ser un modulador alostérico. Una sustancia o compuesto es un modulador incluso si su actividad moduladora cambia en función de diferentes condiciones o concentraciones. En algunos aspectos de la invención, el modulador altera la selectividad de un canal iónico. Por ejemplo, un modulador puede afectar qué iones son aptos para pasar a través de un canal iónico.

Para identificar un modulador de NaV, uno puede exponer una línea celular de la invención a un compuesto de prueba en condiciones en las que se esperaría que el NaV sea funcional y detecte un cambio estadísticamente significativo (por ejemplo, p < 0.05) en la actividad del NaV en comparación con un control adecuado, por ejemplo, células de la línea celular que no está en contacto con el compuesto de prueba. Como alternativa o de manera adicional, se pueden usar controles positivos y/o negativos utilizando agonistas o antagonistas conocidos, células que expresen diferentes combinaciones de subunidades NaV. En algunas realizaciones, la actividad del NaV que se detecta y/o se mide es la despolarización de membrana, el cambio en el potencial de membrana o la fluorescencia que resulta de estos cambios en la membrana.

En algunas realizaciones, se exponen una o más líneas celulares de la invención a una pluralidad de compuestos de prueba, por ejemplo, una biblioteca de compuestos de prueba. Una biblioteca de compuestos de prueba se puede tamizar mediante el uso de las líneas celulares de la invención para identificar uno o más moduladores. Los compuestos de prueba pueden ser entidades químicas que incluyen moléculas pequeñas, polipéptidos, péptidos, pseudopéptidos, anticuerpos o sus fracciones de unión al antígeno. En el caso de anticuerpos, éstos pueden ser anticuerpos no humanos, anticuerpos quiméricos, anticuerpos humanizados o anticuerpos totalmente humanos. Los anticuerpos pueden ser anticuerpos intactos que comprenden todo el complemento de cadenas pesada y ligera o fracciones de unión al antígeno, incluidos los fragmentos de anticuerpos (como Fab y Fab, Fab', F(ab')₂, Fd, Fv, dAb), anticuerpos de una sola subunidad (scFv), anticuerpos de dominio simple, toda o una fracción de unión al antígeno de una cadena pesada o ligera.

20

25

En el presente documento también se desvelan, en algunas realizaciones, antes de la exposición a un compuesto de prueba, las células se pueden modificar mediante pretratamiento, por ejemplo, con enzimas, incluidas las enzimas provenientes de mamífero o de otros animales, enzimas vegetales, enzimas bacterianas, enzimas que modifican proteínas y enzimas que modifican lípidos y enzimáticas de la cavidad bucal, el tracto gastrointestinal, el estómago o la saliva. Estas enzimas pueden incluir, por ejemplo, cinasas, proteasas, fosfatasas, glicosidasas, oxidorreductasas, transferasss, hidrolasas, liasas, isomerasas, ligasas. Por ejemplo, en algunas realizaciones, las células se someten a pretratamiento con al menos una enzima proteolítica como tripsina o furina. Como alternativa, las células se pueden exponer primero al compuesto de prueba y después a tratamiento para identificar compuestos que alteren la modificación del NaV por el tratamiento.

30

35

40

En el presente documento también se desvela, se evalúan grandes colecciones de compuestos respecto a la actividad moduladora de NaV en un prueba de tamizaje celular de alta productividad (HTS - high-throughput screen), funcional, por ejemplo, utilizando un formato de pocillos de 96, 384, 1536 o mayor densidad. Los aciertos a partir del tamizaje HTS se pueden evaluar después en ensayos adicionales para confirmar la función, por ejemplo, ensayos de determinación de sus estructuras químicas, evaluación de compuestos con estructuras relacionadas para optimizar la actividad y la especificidad y posterior evaluación en modelos animales. En el presente documento también se desvela, el potencial terapéutico de los moduladores se prueba en modelos animales para evaluar su utilidad en el tratamiento de enfermedades y padecimientos humanos, incluyendo epilepsia, parálisis periódica, cardiopatías, enfermedades del sistema nervioso central, ataxia y dolor (crónico o agudo), pérdida de la capacidad para sentir dolor. Como ejemplo, una línea celular de la invención que expresa NaV 1.7, se puede usar para identificar un antagonista de NaV 1.7 para utilizarlo como un analgésico y reducir o eliminar dolor.

Estas y otras realizaciones de la invención se pueden ilustrar también en lo siguientes ejemplos no limitativos.

45 Ejemplos

Ejemplo 1 Generar una línea celular que expresa un heterotrímero NaV 1.7 estable

Generar constructos de expresión

50

55

Se generaron vectores de expresión plásmidos que permiten clonación *streamlined*, con base en pCMV-SCRIPT (Stratagene) y con varios componentes necesarios para transcripción y traducción de un gen de interés. Promotores eucariotas CMV y SV40; secuencias de poliadenilación SV40 y HSV-TK; múltiples sitios de clonación; secuencias Kozak; y casetes de respuesta a neomicina/kanamicina (o casetes de resistencia a ampicilina, higromicina, puromicina, zeocina).

Generación de líneas celulares

65

60

Se cotransfectaron células 293T con tres plásmidos individuales, uno que codifica para una subunidad NaV 1.7 a (SEQ ID NO: 13), otro que codifica para una NaV 1.7 β1 humana (SEQ ID NO: 16), y otro que codifica para una NaV 1.7 β2 humana (SEQ ID NO: 17)), por medio de las técnicas estándar. (Ejemplos de reactantes que se pueden usar para introducir ácidos nucleicos a las células huésped incluyen, entre otros, LIPOFECTAMINE™, LIPOFECTAMINE™, reactantes TFX™, FUGENE® 6, DOTAP/DOPE, Metafectine o FECTURIN™.).

Aunque la selección de medicamentos es opcional para producir las células o líneas celulares de la invención,

incluimos un marcador de resistencia a medicamento por plásmido. Las secuencias se sometieron al control del promotor CMV. Una secuencia sin traducir que codifica una secuencia objetivo o blanco para la detección por sonda de señalización también estuvo presente junto con la secuencia que codifica para el marcador de respuesta a medicamentos. Las secuencias blanco utilizadas fueron la secuencia blanco 1 (SEQ ID NO: 1), secuencia blanco 2 (SEQ ID NO: 2), y secuencia blanco 3 (SEQ ID NO: 3). En este ejemplo, el vector que contiene el gen de la subunidad NaV 1.7 α comprende la secuencia blanco 1 (SEQ ID NO: 1); el vector que contiene el gen de la subunidad NaV 1.7 β1 comprende la secuencia blanco 2 (SEQ ID NO: 2); y el vector que contiene el gen de la subunidad NaV 1.7 β2 comprende la secuencia blanco 3 (SEQ ID NO: 3).

Las células transfectadas se hicieron proliferar durante 2 días en medio DMEM-FBS, seguidos de 10 días en medio DMEM-FBS con antibiótico. Durante el periodo con antibiótico, los antibióticos se adicionaron al medio en la forma siguiente: puromicina (0.1 μg/ml), higromicina (100 μg/ml) y zeocina (200 μg/ml).

Después del enriquecimiento en antibiótico, las células se subcultivaron 6 a 18 veces en ausencia de la selección de antibiótico para que hubiera tiempo para que la expresión que era estable durante el periodo de tiempo seleccionado se asentara.

Las células se cosecharon y transfectaron con sondas de señalización (SEQ ID NOS: 4, 5, 34) mediante el uso de las técnicas estándar. (Ejemplos de reactantes que se pueden usar para introducir ácidos nucleicos a las células huésped incluyen, entre otros, LIPOFECTAMINE™, LIPOFECTAMINE™ 2000, OLIGOFECTAMINE™, reactantes TFX™, FUGENE® 6, DOTAP/DOPE, Metafectine o FECTURIN™.).

Sonda de señalización 1 (SEQ ID NO: 4), unida a secuencia blanco 1 (SEQ ID NO: 1); sonda de señalización 2 (SEQ ID NO: 5), unida a secuencia blanco 2 (SEQ ID NO: 2); y sonda de señalización 3 (SEQ ID NO: 34), unida a secuencia blanco 3 (SEQ ID NO: 3). Luego, las células se disociaron y se recolectaron para análisis y separación utilizando un separador celular activado por fluorescencia.

Secuencias blanco detectadas por las sondas de señalización

30 Se utilizaron las siguientes secuencias etiqueta para los transgenes de la subunidad NaV 1.7.

Secuencia blanco 1

5'-GTTCTTAAGGCACAGGAACTGGGAC-3' (SEQ ID NO: 1) (subunidad NaV 1.7 α)

Secuencia blanco 2

5'-GAAGTTAACCCTGTCgttctgcgac-3' (SEQ ID NO: 2) (subunidad NaV 1.7 β1))

Secuencia blanco 3

5'-GTTCTATAGGGTCTGCTTGTCGCTC-3' (SEQ ID NO: 3) (subunidad NaV 1.7 β2))

Sondas de señalización

Suministradas como reservas de 100 µM.

40

Sonda de señalización 1 - Esta sonda se une a la secuencia blanco 1.

5' - Cy5 GCCAGTCCCAGTTCCTGTGCCTTAAGAACCTCGC BHQ3 quench -3' (SEQ ID NO: 4)

Sonda de señalización 2 - Esta sonda se une a la secuencia blanco 2.

5'- Cy5.5 CGAGTCGCAGAACGACAGGGTTAACTTCCTCGC BHQ3 quench -3' (SEQ ID NO: 5)

Sonda de señalización 3 - Esta sonda se une a la secuencia blanco 3.

5'- Fam CGAGAGCGACAAGCAGACCCTATAGAACCTCGC BHQ1 quench -3' (SEQ ID NO: 34)

50 BHQ3 en las sondas de señalización 1 y 2 se puede reemplazar con BHQ2 o una partícula de oro. BHQ1 en la sonda de señalización 3 se puede reemplazar con BHQ2, una particular de oro o DABCYL.

Por otra parte, una sonda similar utilizando un colorante Quasar[®] Dye (BioSearch) con propiedades espectrales similares al Cy5 se usó en ciertos experimentos. En algunos experimentos, se usaron las sondas 5-MedC y 2-amino dA *mixmer*, en lugar de sondas de ADN.

Se utilizaron métodos analíticos estándar para células compuerta (*gate cells*) que fluorescen por arriba de la línea de fondo y aislar células que quedan dentro de la compuerta definida, directamente en las placas de 96 pocillos. La separación celular por citometría de flujo se manejó de manera que se depositara una sola célula por pocillo. Después de la selección, las células se expandieron en medio carente de medicamento. Se utilizó la siguiente jerarquía de compuerta (*gatting*):

compuerta de coincidencia → compuerta *singlets* → compuerta *live* → compuerta *sort* en la gráfica FAM vs. Cy5: 0.1 – 1.0% de células vivas.

Los pasos anteriores se repitieron para obtener un mayor número de células. Por lo menos se completaron cuatro

65

25

35

45

55

60

rondas independientes de los pasos anteriores y para cada una de estas rondas, se realizaron al menos dos ciclos internos de subcultivo celular y aislamiento.

Las placas se transfirieron a un manejador de líquidos automatizado Microlabstar (Hamilton Robotics). Las células se incubaron durante 5 a 7 días en una mezcla 1:1 de medio de cultivo completo nuevo (DMEM/10% FBS) y 2 a 3 días con medio de cultivo acondicionado, suplementado con 100 unidades/ml de penicilina y 0.1mg/ml de estreptomicina. Luego, las células se dispersaron por tripsinización para reducir al mínimo los agregados y se transfirieron a placas de 96 pocillos. Después de que los clones se dispersaron, las placas se analizaron por imagen para determinar la confluencia de los pocillos (Genetix). Se enfocó cada placa para la adquisición de imágenes confiables en toda la placa. Confluencias reportadas mayores a 70% no contaron. Las mediciones de confluencia se obtuvieron 3 veces al día durante 9 días (es decir, entre los días 1 y 10 posteriores a la dispersión) y se usaron para calcular los índices de proliferación.

Las células se ordenaron (se agruparon de manera independiente y se depositaron como cohorte) según el índice de proliferación entre 10 y 11 días después de la operación de dispersión en el paso 7. Los *bins* fueron recolectados independientemente y depositados en placas de 96 pocillos individuales para el manejo descendente; algunos *bins* de proliferación resultaron en más de una placa de 96 pocillos. Los *bins* se calcularon considerando la dispersión de los índices de proliferación y englobando un alto porcentaje del número total de población de células. Dependiendo de la reiteración de separación descrita en el paso 5, se utilizaron entre 5 y 9 *bins* de proliferación con una partición de 1 a 4 días. Por lo tanto, cada *bin* corresponde a un índice de proliferación o un tiempo de duplicación de población entre 8 y 14.4 horas dependido de la reiteración.

Las células pueden tener tiempos de duplicación de menos de 1 día a más de 2 semanas. Con el fin de procesar los clones más diversos que al mismo tiempo pueden ser razonablemente procesados (*binned*) según el índice de proliferación, es preferible usar de 3 a 9 *bins* con un tiempo de duplicación de 0.25 a 0.7 días por *bin*. El experto en la técnica observará que la estrechez de los *bins* y el número de *bins* se puede ajustar para la situación particular y que la estrechez y número de *bins* se puede ajustar después si las células se sincronizan respecto a su ciclo celular.

Las placas se incubaron en condiciones estándar y fijas (humidificadas a 37°C, 5%CO2) en medio DMEM-10%FBS 30 sin antibiótico. Las placas de células se dividieron para obtener 4 juegos de placas blanco. Estos 4 juegos de placas comprendían todas las placas con todos los bins de proliferación para garantizar que hubiera 4 réplicas del grupo inicial. Hasta 3 placas blanco fueron asignadas para crioconservación (descrita en el paso 10) y el juego restante se trabajó a escala y otra réplica se depositó en la placa para subcultivos y experimentos de ensayo funcional. Se usaron distintos e independientes reactantes de cultivo de tejidos, incubadores, personal y fuentes de dióxido de 35 carbono para placas réplica descendentes. Se realizaron pasos de control de calidad para asegurar la adecuada producción y calidad de todos los reactantes de cultivo de tejidos; cada componente adicionado a cada frasco de medio preparado para utilizarse fue adicionado por una persona designada en una campana designada solo con ese reactante en la campana mientras una segunda persona designada monitoreaba para evitar errores. Las condiciones para el manejo de líquidos se establecieron para eliminar contaminación cruzada entre los pocillos. En 40 todos los pasos se utilizaron puntas nuevas o se utilizaron protocolos rigurosos de lavado con puntas. Las condiciones de manejo de líquidos se establecieron para transferencia de volumen exacto, manipulación eficiente de células, ciclos de lavado, velocidades y ubicaciones de pipeta, número de ciclos de pipeteo para dispersión celular y posición relativa de la punta con la placa.

Tres grupos de placas se congelaron de -70 a 80°C. Las placas en cada juego se dejaron primero llegar a confluencias de 70 a 80%. El medio se aspiró y se adicionó FBS 90% y DMSO 5-10%. Las placas se sellaron herméticamente con Parafilm, en forma individual se rodearon con 1 a 5 cm de espuma y luego se colocaron en un congelador a -80°C.

El juego restante de placas se mantuvo tal como se describe en el paso 9. Toda la división celular se realizó mediante operaciones de manejo de líquidos automatizadas, que incluyen eliminación del medio, lavado celular, adición de tripsina e incubación, inactivación y pasos de dispersión celular. En algunas operaciones de depósito en el ensayo, las células se disociaron con amortiguador (por ejemplo, CDB, Invitrogen o CellStripper, CellGro) en lugar de tripsina.

Se controló la uniformidad y normalización de la célula y las condiciones de cultivo para todas las poblaciones de células. Las diferentes entre las placas debida a ligeras diferencias en índices de proliferación se controló mediante normalización periódica del número de células en las placas cada 2 a 8 subcultivos. Las poblaciones de células que dieron valores atípicos se detectaron y se eliminaron.

Las células se mantuvieron durante 3 a 8 semanas para permitir su evolución *in vitro* en estas condiciones. Durante este tiempo, observamos tamaño, morfología, fragilidad, respuesta a tripsinización o disociación, redondez/circularidad promedio posterior a la disociación, porcentaje de viabilidad, tendencia a la microconfluencia u otros aspectos del mantenimiento celular como adherencia a las superficies de la placa de cultivo.

Las poblaciones de células se evaluaron de acuerdo a criterios funcionales. Los estuches para ensayo de potencial

65

60

10

25

de membrana (Molecular Devices/MDS) se utilizaron según las instrucciones del fabricante. Las células se evaluaron a varias densidades diferentes en placas de 96 o 384 pocillos y se analizaron las respuestas. Se utilizaron varios puntos de evaluación posteriores a la aplicación en placa, por ejemplo, 12 a 48 horas después de hacer la aplicación en placa. También se evaluaron diferentes densidades de aplicación en placa para analizar las diferencias en la respuesta.

Las respuestas funcionales a partir de los experimentos realizados números de subcultivos con bajos y altos, se compararon para identificar células con las respuestas más uniformes durante periodos de tiempo definidos, que variaron entre 3 y 9 semanas. También se observaron otras características de las células que cambiaron a través del tiempo.

10

15

20

25

30

35

40

45

50

55

65

Las poblaciones de células que cumplieron con los criterios funcionales y otros criterios se evaluaron también para determinar aquellas más aptas para la producción de líneas celulares viables, estables y funcionales. Las poblaciones seleccionadas de células se expandieron en frascos más grandes para cultivo de tejidos y los pasos de caracterización descritos en lo anterior se continuaron o repitieron en esas condiciones. En este punto, se introdujeron operaciones de normalización adicionales, como diferentes densidades celulares de aplicación en la placa, tiempo de subcultivo, formato y tamaño de la caja de cultivo y recubrimiento, optimización de fluidos, optimización de la disociación celar (por ejemplo, tipo, volumen utilizado y amplitud del tiempo) y operaciones de lavado, para obtener subcultivos uniformes y confiables. También se usaron diferencias de temperatura para la normalización (es decir, 30°C vs. 37°C).

Por otra parte, se determinó la viabilidad de las células en cada subcultivo. Se incrementó la intervención manual y las células se observaron más de cerca y se monitorearon. Esta información se usó para ayudar a identificar y seleccionar líneas celulares finales que conservaron las propiedades deseadas. Se seleccionaron las líneas celulares finales y líneas celulares de respaldo que mostraron proliferación uniforme, adherencia adecuada y respuesta funcional.

Las placas congeladas de subcultivos bajos descritas en lo anterior correspondientes a las líneas celulares finales y líneas celulares de respaldo, se descongelaron a 37°C, se lavaron dos veces con DMEM-10% FBS y se incubaron y humidificaron en condiciones de 37°C/5% CO2. Las células se expandieron luego durante un periodo de 2 a 3 semanas. Se establecieron bancos de células para cada línea celular final y de respaldo consistieron de 15 a 20 viales

También se puede realizar la siguiente operación para confirmar que las líneas celulares son viables, estables y funcionales. Al menos un vial del banco de células se descongeló y se expandió en el cultivo. Las células resultantes se evaluaron para determinar si presentaban las mismas características por las cuales originalmente se seleccionaron.

Ejemplo 2 Caracterización de la expresión relativa de subunidades NaV 1.7 heterólogas en líneas celulares que expresan NaV 1.7

Se utilizó RT-PCR cuantitativa (qRT-PCR) para determinar la expresión relativa de las subunidades NaV 1.7 α , β 1 y β 2 en las líneas celulares producidas que expresan NaV 1.7 estable. El ARN total se purificó a partir de 1-3 x 10^6 células de mamíferos por medio de un estuche de extracción de ARN (RNeasy Mini Kit, Qiagen). El tratamiento con DNasa se hizo según el protocolo de tratamiento riguroso con DNasa (TURBO DNA-free Kit, Ambion). La síntesis de la primera hebra de ADNc se realizó utilizando un estuche de transcriptasa inversa (SuperScript III, Invitrogen) en un volumen de reacción de 20 μ 1 con 1 μ 9 de ARN total libre de ADN y 250 ng Random Primers (Invitrogen). Muestras sin transcriptasa inversa y muestras sin ARN se usaron como controles negativos en esta reacción. La síntesis se hizo en un incubador térmico (Mastercycler, Eppendorf) en las siguientes condiciones: 5 min a 25°C, 60 min a 50°C; la terminación de la reacción se llevó a cabo durante 15 min a 70°C.

Para el análisis de la expresión génica, se diseñaron cebadores y sondas para qRT-PCR (sondas MGB TaqMan, Applied Biosystems) para aparearse específicamente con las secuencias blanco u objetivo (SEQ ID NOS: 1 - 3). Para la normalización de la muestra, se utilizaron reactantes control (gliceraldehído 3-fosfato deshidrogenasa (GAPDH)) Pre-Developed Assay (TaqMaN, Applied Biosystems). Las reacciones, incluidos los controles negativos y positivos (ADN plásmido), se realizaron por triplicado con 40 ng de ADNc en un volumen de reacción de 50 µl. Se determinaron las cantidades relativas de cada una de las tres subunidades NaV 1.7 que se expresaron. Como se muestra en la **Figura 1**, las tres subunidades se expresaron en forma satisfactoria en la línea celular estable que expresa NaV 1.7.

60 Ejemplo 3 Caracterización de líneas celulares que expresan NaV 1.7 estable para la función de NaV nativo mediante la aplicación de un ensayo electrofisiológico

Se usó un sistema *patch-clamp* (técnica de pinzamiento zonal de membrana) automatizado para registrar corrientes de sodio a partir de las líneas celulares HEK293T estables que expresan subunidades NaV 1.7 α, β1 y β2. También se puede usar el siguiente protocolo ilustrado para sistemas QPatch, Sophion o Patchliner, Nanion. La solución de Ringer extracelular contenía 140 mM de NaCl, 4.7 mM de KCl, 2.6 mM de MgCl₂, 11 mM de glucosa y 5 mM de

HEPES, pH 7.4 a temperatura ambiente. La solución de Ringer intracelular contenía 120 mM de CsF, 20 mM de Cs-EGTA, 1 mM de CaCl₂, 1 mM de MgCl₂ y 10 mM de HEPES, pH 7.2. Los experimentos se realizaron a temperatura ambiente.

Las células que expresan en forma estable subunidades NaV 1.7 α, β1 y β2 se desarrollaron según los protocolos de cultivo estándar tal como se describe en el **Ejemplo 1**. Las células se cosecharon y se mantuvieron en suspensión con agitación continua hasta por 4 horas sin que hubiera un cambio significativo en la calidad o habilidad para pinzamiento (*patch*). Se realizó un experimento electrofisiológico (célula completa) utilizando la placa de pinzamiento estándar. El orificio de pinzamiento (patch-clamp) (micrograbado en el chip) tiene un diámetro de alrededor de 1 μm
 y una resistencia de ~2 MΩ. El potencial de membrana se fijó a un potencial de retención de -100 mV.

15

20

25

30

35

60

65

La relación entre corriente y voltaje y las características de inactivación del canal de sodio NaV 1.7 humano activado por voltaje y expresado en forma estable en células HEK293T , se muestra en las **Figuras 3A-C**. La **Figura 3A** muestra corrientes de sodio como respuesta a pulsos de despolarización durante 20 ms (milisegundos) de - 80 mV a +50 mV. El potencial de retención fue de -100 mV. La **Figura 3B** muestra la relación resultante entre corriente y voltaje (I-V) para corrientes pico del canal de sodio. El límite de activación fue -35 mV (punto medio de activación, Va = -24.9 mV +/- 3.7 mV) y la amplitud de corriente máxima se obtuvo a -10 mV. La **Figura 3C** muestra la gráfica de inactivación para el canal de sodio. El potencial de membrana se mantuvo a un potencial de retención de -100 mV, después se cambió a potenciales de acondicionamiento que variaron de -110 mV a +10 mV para 1000 ms y por último la corriente se midió a un paso de 0 mV. La amplitud de corriente resultante indica la fracción de canales de sodio en estado de inactivación. A potenciales más negativos que -85 mV, los canales estaban predominantemente cerrados, mientras que a potenciales superiores a -50 mV predominó el estado de inactivación. La curva representa el ajuste de Boltzmann a partir del cual se estimó que el valor V_{1/2} para inactivación en estado de equilibrio es -74 mV. El perfil de corriente - voltaje para las líneas celulares que expresan NaV 1.7 estable obtenidas es congruente con el perfil corriente - voltaje reportado con anterioridad (Va= - 28.0 mV ±1.1 mV; V_{1/2} = -71.3 mV ± 0.8 mV) (Sheets et al., J Physiol. 581(Pt 3):1019-1031. (2007)).

Ejemplo 4 Caracterización de líneas celulares que expresan NaV 1.7 estable para la función de NaV nativo mediante la aplicación de un ensayo de potencial de membrana

Las células estables producidas que expresan subunidades NaV 1.7 a, β1 y β2 se mantuvieron en condiciones de cultivo celular estándar en medio Eagles modificado de Dulbecco (Dulbecco's Modified Eagles) suplementado con suero fetal de bovino 10%, glutamina y HEPES. Un día antes del ensayo, las células se cosecharon a partir de las placas de reserva utilizando amortiguador de disociación celular, por ejemplo, CDB (GIBCO) o *cell-stripper* (Mediatech) y se aplicaron en una proporción de 10,000 a 25,000 células por pocillo en placas de 384 pocillos en medio de cultivo. Las placas de ensayo de mantuvieron en un incubador de cultivo celular a 37°C en 5%CO2 durante 22 a 24 horas. Luego, el medio se eliminó de las placas de ensayo y se adicionó colorante de potencial de membrana de fluorescencia azul (Molecular Devices Inc.) diluido en amortiguador de carga (137 mM de NaCl, 5 mM de KCl,1.25 mM de CaCl₂, 25 mM de HEPES, 10 mM de glucosa). Las células se incubaron con colorante de potencial de membrana azul durante 1 hora a 37°C. Las placas de ensayo se depositaron en un lector de placas fluorescente de alta productividad (Hamamastu FDSS). El lector de placas fluorescente midió la fluorescencia celular en imágenes tomadas a la placa con células una vez por segundo y los datos se expresaron como unidades de fluorescencia relativa.

45 La Figura 4 muestra la respuesta de ensayo de células que expresan NaV 1.7 estable y células control (células progenitoras HEK293T) a la adición de amortiguador y activadores de canal (por ejemplo, veratridina y veneno de alacrán (SV - scorpion venom). En una primera operación de adición (Adición 1 en la Figura 4), solo se añadió amortiguador, sin compuestos de prueba. Si se desea, prueba se pueden adicionar compuestos de prueba en este paso. En una segunda operación de adición, veratridina y veneno de alacrán, que son activadores de los canales de 50 sodio, se diluyeron en amortiguador de ensayo a la concentración deseada (es decir, 25 µM de veratridina y 5 - 25 µg/mL de veneno de alacrán) y se adicionaron en microplacas de microvaloración de polipropileno de 384 pocillos. Una vez unidas, la veratridina y las proteínas de veneno de alacrán modulan la actividad de los canales de sodio activados por voltaje a través de una combinación de mecanismos, entre los que se incluye una alteración de la cinética de activación e inactivación. La activación manifestada por los canales de sodio en células que expresan 55 NaV 1.7 cambia el potencial de membrana de las células y aumenta la señal fluorescente. También se puede usar el ensayo funcional descrito en lo anterior para caracterizar las potencias relativas de los compuestos de prueba en los canales iónicos NaV 1.7.

Ejemplo 5 Caracterización de la regulación de la subunidad NaV 1.7 alfa por las subunidades beta

Regulación de la expresión génica de la subunidad alfa por las subunidades beta

Mezclas de células HEK293T se manipularon para expresar varias mezclas en diferentes proporciones de subunidades α y β por manipulación de las relaciones molares de ADN plásmidos independientes o plásmidos α y de control (por ejemplo, α : β 1: β 2 = 1:1:1). Después de la selección con medicamentos, la expresión de subunidades en seis diferentes mezclas de células, se evaluó con qRT-PCR tal como se describe en el **Ejemplo 2**. El análisis qRT-

PCR indicó que la expresión de una subunidad α en detección de seleccionadas por medicamentos aumentó cuando las tres subunidades NaV 1.7 humanas (es decir, α , β 1 y β 2) se cotransfectaron (**Figura 2**, panel a la izquierda) en comparación con la subunidad α sola y el plásmido de control transfectado (**Figura 2**, panel a la derecha). La presencia de los transcritos de la subunidad β afecta la expresión génica de la subunidad α , lo que demuestra la importancia de coexpresar las tres subunidad NaV 1.7 en un ensayo funcional de importancia fisiológica.

Regulación de las propiedades farmacológicas por subunidades beta

Se utilizó un ensayo celular de potencial de membrana para medir la respuesta a los compuestos de prueba de las células que coexpresan de manera estable las tres subunidades NaV 1.7 (es decir, α, β1 y β2) y las células de control que expresan de manera estable solo una subunidad NaV 1.7 α. Los compuestos (**Figura 5**) (es decir, C18 y K21) se evaluaron en un ensayo de potencial de membrana realizado prácticamente según el protocolo del **Ejemplo 4**. Específicamente para este ejemplo, los compuestos de prueba se adicionaron en el primer paso de adición.

Como se muestra en la **Figura 5**, C18 y K21 potenciaron la respuesta del clon C44 (que expresa las subunidades NaV 1.7 α, β1 y β2, **Figura 5A**) y bloquearon la respuesta del clon C60 (que expresa la subunidad α de NaV 1.7, **Figura 5B**). La respuesta de ensayo de los dos compuestos de prueba se normalizaron con respecto a la respuesta del amortiguador solo para cada uno de los dos clones.

LISTADO DE SECUENCIAS

20

25

35

10

Secuencia objetivo 1

5'-GTTCTTAAGGCACAGGAACTGGGAC-3' (SEQ ID NO: 1)

Secuencia objetivo 2

5'-GAAGTTAACCCTGTCgttctgcgac-3' (SEQ ID NO: 2)

Secuencia objetivo 3

5'-GTTCTATAGGGTCTGCTTGTCGCTC-3' (SEQ ID NO: 3)

30 Sonda de señalización 1 (unión objetivo 1)

5' - Cy5 GCCAGTCCCAGTTCCTGTGCCTTAAGAACCTCGC BHQ3 quench -3' (SEQ ID NO: 4)

Sonda de señalización 2 – (unión objetivo 2)

5'- Cy5.5 GCGAGTCGCAGAACGACAGGGTTAACTTCCTCGC BHQ3 quench -3' (SEQ ID NO: 5)

Homo sapiens (H.s.) SCN1A

atggagcaaacagtgcttgtaccaccaggacctgacagcttcaacttcttcaccagagaatctcttgcggctattgaaagac gcattgcagaagaaaaggcaaagaatcccaaaccagacaaaaaggtgacgacgaaaatggcccaaagccaaatagtg acttggaagctggaaagaaccttccatttatttatggagaccattcctccagagatggtgtcagagcccctggaggacctggaccctactatatcaataagaaaacttttatagtattgaataaagggaaggccatcttccggttcagtgccacctctgccctgtac acaaactgtgtgtttatgacaatgagtaaccctcctgattggacaaagaatgtagaatacaccttcacaggaatatacttttg aatcacttataaaaattattgcaaggggattctgtttagaagattttactttccttcgggatccatggaactggctcgatttcactg t catta catt t g c g t a c g t c a c a g a g t t c t c g g c a t g t c t c g g c a t t g a g a c a t t c a g a g t t c t c g g c a t t g a g a c a t t c a g a g t t c t c g a g c a t t g a g a c a t t c a g a g t t c t c g a g c a t t g a g a c a t t c a g a g t t c t c g a g c a t t g a g a c a t t c a g a g t t c t c g a g c a t t g a g a c a t t c a g a g t t c t c g a g c a t t g a g a c a t t c a g a g t t c t c g a g c a t t g a g a c a t t c a g a g t t c t c g a g c a t t g a g a c a t t c a g a g t t c t c g a g c a t t g a g a c a t t c a g a g t t c t c g a g c a t t g a g a c a t t c a g a g t t c t c g a g c a t t g a g a c a t t c a g a g t c t c c g a g c a t t g a g a c a t t c a g a g t c t c c g a g c a t t g a g a c a t t c a g a g t c t c c g a g c a t t g a g a c a t t c a g a g t c t c c g a g c a t t g a g a c a t t c a g a g a c a t t c a g a g c a t t g a g a c a t t c a g a g a c a t cagacgatttcagtcattccaggcctgaaaaccattgtgggagccctgatccagtctgtgaagaagctctcagatgtaatgatc ctcccaccaatgcttccttggaggaacatagtatagaaaagaatataactgtgaattataatggtacacttataaatgaaactgt ctttgagtttgactggaagtcatatattcaagattcaagatatcattatttcctggagggttttttagatgcactactatgtggaaat taccttcagttgggcttttttgtccttgtttcgactaatgactcaggacttctgggaaaatctttatcaactgacattacgtgctgct gggaaaacgtacatgatattttttgtattggtcattttcttgggctcattctacctaataaatttgatcctggctgtggtggccatgg cctacgaggaacagaatcaggccaccttggaagaagaagaacagaaagaggccgaatttcagcagatgattgaacagct taaaaagcaacaggaggcagctcagcaggcagcaacggcaactgcctcagaacatgcccaggaggcccagtgcagcag

ggaggaaaggttttcgcttctccattgaagggaaccgattgacatatgaaaagaggtactcctcccacaccagtctttgttggettetgecagagggaacaaccactgaaactgaaatgagaaaggagaggtcaagttetttecacgtttecatggactttetag aagateetteecaaaggeaacgageaatgagtatageeagcattetaacaaatacagtagaagaacttgaagaateeagge agaaatgcccaccetgttggtataaattttccaacatattcttaatctgggactgttctccatattggttaaaagtgaaacatgttg tcaacctggttgtgatggacccatttgttgacctggccatcaccatctgtattgtcttaaatactcttttcatggccatggagcactatccaatgacggaccatttcaataatgtgcttacagtaggaaacttggttttcactgggatctttacagcagaaatgtttctgaa aattattgccatggatccttactattatttccaagaaggctggaatatctttgacggttttattgtgacgcttagcctggtagaactt ggactcgccaatgtggaaggattatctgttctccgttcatttcgattgctgcgagttttcaagttggcaaaatcttggccaacgtt aa at at gcta at aa ag at categg caat teegt ggg gg ctet ggg aa at tta acceteg tett gg ccate at egt ett catt tt tt ggeval at a consideration of the consideccgtggtcggcatgcagctctttggtaaaagctacaaagattgtgtctgcaagatcgccagtgattgtcaactcccacgctgg cacatgaatgacttcttccactccttcctgattgtgttccgcgtgctgtgtggggagtggatagagaccatgtggggactgtatg gaggttgctggtcaagccatgtgccttactgtcttcatgatggtcatggtgattggaaacctagtggtcctgaatctctttctggtaggatgcacaaaggagtagcttatgtgaaaagaaaaatatatgaatttattcaacagtccttcattaggaaacaaaagattttatgactatcttaaagatgtaaatggaactacaagtggtataggaactggcagcagtgttgaaaaatacattattgatgaaagtga ttacatgtcattcataaacaaccccagtcttactgtgactgtaccaattgctgtaggagaatctgactttgaaaatttaaacacgtgtggacatcggcgcacctgtagaagaacagccgtagtggaacctgaagaaactcttgaaccagaagcttgtttcactga egtgttteegaatagttgaacataactggtttgagacetteattgtttteatgatteteettagtagtggtgetetggcatttgaaga tata tatat at tgat cage gaa agae gat taagae gat tgagaa tat get gac aag gttt teact tacat tt teat tet ggaa at get gac ag gtt tt cact tacat tt teat tet ggaa at get gac ag gtt tt cact tacat tt teat tet ggaa at get gac ag gtt tt cact tacat tt teat tet ggaa at get gac ag gtt tt cact tacat tt teat tet ggaa at get gac ag gtt tt cact tacat tt teat tet ggaa at get gac ag gtt tt cact tacat tt teat tet ggaa at get gac ag gtt tt cact tacat tt teat tet ggaa at get gac ag gtt tt cact tacat tt teat tet ggaa at get gac ag gatctaaaatgggtggcatatggctatcaaacatatttcaccaatgcctggtgttggctggacttcttaattgttgatgtttcattggtggtggacttcttaattgttgatgtttcattggtggtggacttcttaattgttgatgtttcattggtggacttcttaattgttgatgtttcattggtggacttcttaattgttgatgtttcattggtggacttcttaattgttgatgtttcattggtggacttcttaattgttgatgtttcattggtgatgtttcattggtgatgtttcattggtgatgtttcattggtgatgtttcattggtgatgtttcattggtgatgtttcattggttgatgtttcattggtgatgtttcattggtgatgtttcattggttgatgtttcattggttgatgtttcattggttgatgtttcattgatgtttcattggttgatgtttcattggttgatgtttcattggttgatgtttcattggttgatgttgatgtttcattggttgatgtttcattggttgatgtttcattgatgttgatgtttcattgatgttgatgtttcattgatgttgatgtttcattgatgttgatgtttcattgatgttgatgtttcattgatgttgatgttgatgtttcattgatgttgatgttgatgtttcattgatgttgatgtttcattgatgttgatgttgatgttgatgtttcattgatgttgatgttgatgtttcattgatgtgatgttgatgtgatgttgatgttgatgttgatgttgatgtgatgttgatgttgatgttgatgttgatgttgatgttgatgttgatgttgatgttgatgtgatgttgatgttgatgttgatgttgatgttgatgtgcagtttaacagcaaatgcettgggttactcagaacttggagccatcaaatetctcaggacactaagagctetgagacctctaa at g cag cag t t g at tecaga a at g t against a tecaga cag cag tag tag tag the tecaga and thegacatetttatgacagaagaacagaagaatactataatgcaatgaaaaaattaggategaaaaaaccgcaaaagcetata cctcgaccaggaaacaaatttcaaggaatggtctttgacttcgtaaccagacaagtttttgacataagcatcatgattctcatcttggttgtcattctcccattgtaggtatgtttcttgccgagctgatagaaaagtatttcgtgtcccctaccctgttccgagtgatccgtcttgctaggattggccgaatcctacgtctgatcaaaggagcaaaggggatccgcacgctgctctttgctttgatgatgtcccttcctgcgttgtttaacatcggcctcctactcttcctagtcatgttcatctacgccatctttgggatgtccaactttgcctatgttaagaggaagttgggatcgatgacatgttcaactttgagacctttggcaacagcatgatctgcctattccaaattacaacctctgaccgcctctcaatctgccacaaccaaacaaactccagctcattgccatggatttgcccatggtgatggtgatcggatccaccgattcatggettccaatcettccaaggtetcctatcagccaatcactactactattaaaacgaaaacaagaggaagtatctgeta a aggt ggg cta at ctt ctt at aa aa gaa ga cat ga ta at t ga cagaa ta aa t ga aa ac t ct at t a cagaa aa aa ct ga t ct at t ac agaa aa aa ac t ct at t ac agaa aa aa ac t ct at t ac agaa aa aa ac t ct at t ac agaa aa aa ac t ct at t ac agaa aa aa ac t ct at t ac agaa aa aa ac t ct at t ac agaa aa aa ac t ct at t ac agaa aa aa ac t ct at t ac agaa aa aa ac t ct at t ac agaa aa aa ac t ct at t ac agaa aa aa ac t ct at t ac agaa aa aa ac t ct at t ac agaa aa aa ac t ct at ac agaa aa aa ac t ct at ac agaa ac agaagaccatgtccactgcagcttgtccaccttcctatgaccgggtgacaaagccaattgtggaaaaacatgagcaagaaggcaa agatgaaaaagccaaagggaaataa (SEQ ID NO: 6)

H.s. SCN2A

atggcacagtcagtgctggtaccgccaggacctgacagcttccgcttctttaccagggaatcccttgctgctattgaacaacagtgacttggaagcaggaaaatctcttccatttatttatggagacattcctccagagatggtgtcagtgcccttggaggatctggacccctactatat caataagaaaacgtt tatagtattgaataaagggaaagcaatctctcgattcagtgccacccctgcccttta catttta act ccct t caaccct attagaa aattag ctattaa gatttt t g ta cattctt tattcaat at gct cattat g ta cattct t tattcaat at gct cattat g ta cattat g ta cattct t tattcaat at gct cattat g ta cattettaeeaactgtgtatttatgaeeatgagtaaceeteeagactggaeaaagaatgtggagtataeetttaeaggaatttataettt aa a ca att t cag t catt c cag ge c t g a a ga c catt g t g g g g g c c c t g a t cag t cag t g a a g a g c t t c t g a t g t cat g a t cag t cag t g a g a g a g c t t c t g a t g t cat g a c catt g t g g g g g c c t g a t c cag t c a g t cag t g a g a g c c t t c t g a t g t c cag t c a g t c cag t c a g t c cag tccaga ta attette ett ttta acaatteette ttta acaatteetteagcatatttaactgggatgaatatattgaggataaaagtcacttttattttttagaggggcaaaatgatgctctgctttgtggcaa cagctcagatgcaggccagtgtcctgaaggatacatctgtgtgaaggctggtagaaaccccaactatggctacacgagctttgacacctttagttgggcctttttgtccttatttcgtctcatgactcaagacttctgggaaaacctttatcaactgacactacgtgct gttgaaaaagcaacaagaagatcaggcggcagctgcagccgcatctgctgaatcaagagacttcagtggtgctggtgggataggagttttttcagagagttcttcagtagcatctaagttgagctccaaaagtgaaaaagagctgaaaaacagaagaaa gaaaaagaaacagaagaacagtetggagaagaagaagaaaatgacagagtecgaaaateggaatetgaagacagcat aagaagaaaaggtttccgtttttccttggaaggaagtaggctgacatatgaaaagagattttcttctccacaccagtccttactgagcatccgtggctcccttttctcccaagacgcaacagtagggcgagccttttcagcttcagaggtcgagcaaaggacattgcaga catggaga acggcgcacag catgtcag cag cag cgtgctccag ggtgctcccatcctgccatgaatgggaagatgcatagcgctgtggactgcaatggtgtgtctccctggtcggggcccttctaccctcacatctgctgggcag agatecta cat caaggeaa agagea at gag tat age cag tat ttt gaccaa cac cat ggaagaa ctt gaagaa te cagacaa agatecta cat gag agaa ctt gaagaa te cagacaa cac cat gag agaa ctt gaagaa te cagacaa agaa cat gag agaa ctt gaagaa te cagacaa agaa cat gag agaagaa at geccaccat get gg tata a at t t get a at at gt gt t t gat t t gg act gt t gaa accat gg t t aa a gg t gaa accaet t t ge gaa at get gaa accaet gaa accaetgg cacatg catgact ttttccactccttcctg at cgtgttccgcgtgctgtgtggagagtggatagagaccatgtgggactgtatggaggtegetggccaaaccatgtgccttactgtcttcatgatggtcatggtgattggaaatctagtggttctgaacctcttcttggccttgcttttgagttccttcagttctgacaatcttgctgccactgatgatgataacgaaatgaataatctccagattgctgtggttagatgaa atta aaccgcttgaa gatcta aataa taaa aa agacagctg tatttccaaccataccaccatagaa ataggcaa catget at any attag age aca att ggt tegaa accett catt g tet cat gattet get gag cag t gg gg et et gg e et t gattet gattet gattet gattet gag en gattet gatteactgagagctttgtcccggtttgaaggaatgagggttgttgtaaatgctcttttaggagccattccatctatcatgaatgtacttcattatgtatgcagetgttgattcacgaaatgtagaattacaacccaagtatgaagacaacctgtacatgtatetttattttgtcatc caagacatttttatgacagaagaacagaagaaatactacaatgcaatgaaaaaactgggttcaaagaaaccacaaaaaaccc atacctegacetgetaacaaatteeaaggaatggtetttgattttgtaaccaaacaagtetttgatateagcatcatgateeteat tgtggtggtcattctctccattgtaggaatgtttctggctgaactgatagaaaagtattttgtgtcccctaccctgttccgagtgat ccgtcttgccaggattggccgaatcctacgtctgatcaaaggagcaaaggggatccgcacgctgctctttgctttgatgatgt ccettcctgcgttgtttaacatcggcctccttcttttcctggtcatgttcatctacgccatctttgggatgtccaattttgcctatgttaagagggaagttgggatcgatgacatgttcaactttgagacctttggcaacagcatgatctgcctgttccaaattacaacctct gctggctggattgctagcacctattcttaatagtggacctccagactgtgaccctgacaaagatcaccctggaagct ttct at gaggtt tgg agaagtt tgatcccg at gcgacccagtt tat agagtt tgccaaactt tct gatt tt gcagat gccct ggacccagtt tat agagt tt gcaaactt tct gatt tt gcagat gccct ggacccagt tat agagt tt gcaaactt tct gatt tt gcagat gccct ggacccagt tt gccagat gccct ggacccagt tt gccagat gccct ggacccagt tt gccagat gccct ggacccagt gccct ggacccagt tt gccagat gccct ggacccagt tt gccagat gccct ggacccagt tt gccagat gccct ggacccagt tt gccagat gccct ggacccagt gccct ggacccagt tt gccagat gccct ggacccagt tt gccagat gccct ggacccagt tt gccagat gccct ggacccagt gccct ggacccagt gccct ggacccagt gccct ggacccagt gccct ggacccagt gccct ggaccagt gccct gccagt gccccagt gccccagt gccagt gccccagt gccagt gccagt gccccagt gccagt gccccagt gccagt gccagt gccccagt gccagt gccagtcctcctcttccatagcaaaacccaacaaagtccagctcattgccatggatctgcccatggtgatggtgaccggatccactgattcatggcatcaaacccctccaaagtctcttatgagcccattacgaccacgttgaaacgcaaacaagaggaggtgtctgc gcaaagaatgtgatggaacacccatcaaagaagatactctcattgataaactgaatgagaattcaactccagagaaaaccg atatgacgcettccaccacgtctccaccctcgtatgatagtgtgaccaaaccagaaaaagaaaaatttgaaaaagacaaatc agaaaaggaagacaaagggaaagatatcagggaaagtaaaaagtaa (SEQ ID NO: 7)

H.s. SCN3A

atggcacaggcactgttggtaccccaggacctgaaagcttccgcctttttactagagaatctcttgctgctatcgaaaaacg tgctgcagaagagaaagccaagaagcccaaaaaggaacaagataatgatgatgagaacaaaccaaagccaaatagtga cct act at a taa aa aa aact ttt at ag taa t aa ag gaa aa g gaa at ttt ccg at t cag t g cca cct ct g cct t g tat at ttt cag t cag t g cag cca cct ct g cct g tat at ttt cag t cag t cag t cag cca cct ct g cct g tat at ttt cag t cta acteca eta aaccet gttaggaa aatt getate aa gatt tt g gta eattet tt atte ag eat get ta te at gt geae ta tt tt gae acte et at general te at general to general to general to general the grant the grant to general the grant the grant to general the grant tcaactgtgtatttatgacettgagcaaccetcctgactggacaaagaatgtagagtacacattcactggaatctatacetttga cattgtgatggcatatgtgacagagtttgtggacctgggcaatgtctcagcgttgagaacattcagagttctccgagcactgaunder and the contract of the contract ofaaacaatttcagtcattccaggtttaaagaccattgtgggggcctgatccagtcggtaaagaagctttctgatgtgatgatcc tgactgtgttetgtetgagegtgtttgeteteattgggetgeagetgtteatgggeaatetgaggaataaatgtttgeagtggeeagetttgacacetttagetgggettteetgtetetatttegacteatgacteaagactaetgggaaaatetttaceagttgacattacgtgctgctgggaaaacatacatgatattttttgtcctggtcattttcttgggctcattttatttggtgaatttgatcctggctgtggtggccatggcctatgaggagcagaatcaggccaccttggaagaagcagaacaaaaagaggccgaatttcagcagatgctc

5

tgggttaggagagctgttggaaagttcttcagaagcatcaaagttgagttccaaaagtgctaaagaatggaggaaccgaagttgttaggaggaaccgaagttgtaggaggaaccgaaggaaccaga cag cgt caa aaga ag cag ctt ccttt tet ceat gg at gg aa aa cag act ga cag t ga caa aa aa at tet get cee cteat ag act ga cag act ga caaaggatgttggatctgaaaatgactttgctgatgatgaacacagcacatttgaagacagcgaaagcaggagagactcactg tttgtgccgcacagacatggagagcgcacagtaacgttagtcaggccagtatgtcatccaggatggtgccagggctt ctactggacaacttccccagagggcaccaccacagaaacggaagtcagaaagagaggttaagctcttaccagatttca atggagatgctggaggattcctctggaaggcaaagagccgtgagcatagccagcattctgaccaacacaatggaagaact tgaagaatctagacagaaatgtccgccatgctggtatagatttgccaatgtgttcttgatctgggactgctgtgatgcatggtta aaagtaaaacatcttgtgaatttaattgttatggatccatttgttgatcttgccatcactatttgcattgtcttaaataccctctttatggccatggagcactaccccatgactgagcaattcagtagtgtgttgactgtaggaaacctggtctttactgggattttcacagc agaaatggttctcaagatcattgccatggatccttattactatttccaagaaggctggaatatctttgatggaattattgtcagcct cagtttaatggagcttggtctgtcaaatgtggagggattgtctgtactgcgatcattcagactgcttagagttttcaagttggca aaatcctggcccacactaaatatgctaattaagatcattggcaattctgtgggggctctaggaaacctcaccttggtgttggcc atcategtetteatttttgetgtggteggeatgeagetetttggtaagagetaeaaagaatgtgtetgeaagateaatgatgaet accatgtgggactgtatggaggtcgctggccaaaccatgtgccttattgttttcatgttggtcattggtcattggaaaccttgtgg gcagattgcagtaggaagaatgcaaaagggaattgattatgtgaaaaataagatgcgggagtgtttccaaaaagcctttttta gaaagccaaaagttatagaaatccatgaaggcaataagatagacagctgcatgtccaataatactggaattgaaataagca aagagettaattatettagagatgggaatggaaccaccagtggtgtaggtactggaagcagtgttgaaaaatacgtaatcga tgaaaatgattatatgteatteataaacaaccecageetcaccgteacagtgccaattgctgttggagagtetgactttgaaaaaagcacagttgatgttgttctaccccgagaaggtgaacaagctgaaactgaacccgaagaagaccttaaaccggaagcttg aaaaacctgctacagtattgttgagcacaactggtttgagactttcattgtgttcatgatccttctcagtagtggtgcattggccttctttggttagcctggtagccaatgctcttggctactcagaactcggtgccatcaaatcattacggacattaagagctttaagactcggtgccatcaaatcattacggacattaagagctttaagactcggtgccatcaaatcattacggacattaagagctttaagactcggtgccatcaaatcattacggacattaagagctttaagactcggtgccatcaaatcattacggacattaagagctttaagactcggtgccatcaaatcattacggacattaagagctttaagactcggtgccatcaaatcattacggacattaagagctttaagactcggtgccatcaaatcattacggacattaagagctttaagactcggtgccatcaaatcattacggacattaagagctttaagactcggtgccatcaaatcattacggacattaagagctttaagactcggtgccatcaaatcattacggacattaagagctttaagactcggtgccatcaaaatcattacggacattaagagctttaagactcggtgccatcaaaatcattacggacattaagagctttaagaactcggtgccatcaaaatcattacggacattaagagctttaagaactcggacattaagaactcgacattaagaactcgacattaagaactcgacattaagaactcgacattaagaactcgacattaagaactcgacattaagaactcgacattaagaactcgacattaagaactcgacattaagaactcgacattaagaactcgacattaagaactcgacattaagaactcgacattaactcgacattaactcgacattaactcgacattaactcgacattaactcgacattaactcgacacgg taacatgtt t gacattagt gat gat acaattt gag t gat cat gac gac tag gac aa gac tag gaa aa aa aa gat aa gac tag gac aa gac tag gac tag gac aa gac tag cagctgtt gatt cac gag at gttaaactt cagcctgtat at gaagaaaat ctgtacat gtatt tatacttt gtcatctt tatcat ctt gag and gag at general gag at genetgggt cattett cactet gaat ctatte att ggt gt cate at a gata actte a accage a gaa a a a gag gt cag ga cag ggeccagcaaacaattccaaggaatggtetttgattttgtaaccagacaagtetttgatatcagcatcatgatcctcatctgcet attgttctgttcactggagaatttgtgctgaagctcgtctccctcagacactactacttcactataggctggaacatctttgactttcgtettgecaggattggecgaatectaegtetgateaaaggageaaaggggateegeaegetgetetttgetttgatgatgtesparen and the state of the state ofcetteetgegttgtttaacateggeeteetgetetteetggteatgtttatetatgeeatetttgggatgteeaaetttgeetatgttacet cet ctet ctet at agcaa aa acceaa caa aagtee aget tat tge cat gg at cg gat cg gat cea ctg gat cat gg te ag t gg acc gg at cea ctg gat cat gg at cat gggtttatggcatcaaacccctccaaagtctcttatgagcctattacaaccactttgaaacgtaaacaagaggaggtgtctgccg ctatcattcagcgtaatttcagatgttatcttttaaagcaaaggttaaaaaatatatcaagtaactataacaaagaggcaattaaa gggaggattgacttacctataaaacaagacatgattattgacaaactaaatgggaactccactccagaaaaaacagatggg agttcctctaccacctctcctcctatgatagtgtaacaaaaccagacaaggaaaagtttgagaaagacaaaccagaaa aagaaagcaaaggaaaagaggtcagagaaaatcaaaagtaa (SEQ ID NO: 8)

H.s. SCN4A

atggccagaccatctctgtgcaccctggtgcctctgggccctgagtgcttgcgccccttcacccgggagtcactggcagccagc cacga agt gact tgg agg ctgg caaga acctacc cat gat ctacgg aga accccccg ccg gagg tcatcgg catccccctggaggacctggatccctactacagcaataagaagaccttcatcgtactcaacaagggcaaggccatcttccgcttctccgccacacctgctctacctgctgagccccttcagcgtagtcaggcgcggggccatcaaggtgctcatccatgcgctgttcageatgtteateatgateaceatettgaceaactgegtatteatgaceatgagtgaeeegeeteeetggteeaagaatgtggag tacacettea cagggateta cacetttg agteect cateaagata et ggeecg aggettet gt gt egacgaettea catteete accette accecgggacccctggaactggctggacttcagtgtcatcatgatggcgtacctgacagagtttgtggacttgggcaacatctcag ccctgaggaccttccgggtgctgcgggccctcaaaaccatcacggtcatcccagggctgaagacgatcgtgggggccct gatccagtcggtgaaaaagctgtcggatgtgatgatcctcactgtcttctgcctgagcgtcttttgcgctggtaggactgcagc tetteatgggaaacetgaggeagaagtgtgtgegetggeeeeegeegtteaacgacaceaacaceaegtggtacagcaat gacacgtggtacggcaatgacacatggtatggcaatgagatgtggtacggcaatgactcatggtatgccaacgacacgtg gaacagccatgcaagctgggccaccaacgatacetttgattgggacgcctacatcagtgatgaagggaacttctacttcctg gagggetecaacgatgecetgetetgtgggaacagcagtgatgetgggeactgeeetgagggttatgagtgeateaagae egggeggaaccccaactatggctacaccagctatgacaccttcagctgggccttcttggctctcttccgcctcatgacacag gactattgggagaacctcttccagctgacccttcgagcagctggcaagacctacatgatcttcttcgtggtcatcatcttcctg ggetetttetaeeteateaatetgateetggeegtggtggeeatggeatatgeegageagaatgaggeeaeeetggeegag gataaggagaaagaggaggtttcagcagatgcttgagaagttcaaaaagcaccaggaggagctggagaaggccaag gccgcccaagctctggaaggtggggaggcagatggggacccagcccatggcaaagactgcaatggcagcctggacac ategeaaggggagaagggggggageeeggaggeaggegggagaeggggaateteegaegeeatggaagaaetg gaagaggeccacaaaagtgcccaccatggtggtacaagtgcgccacaaagtgctcatatggaactgctgcgcccgt ggetgaagtteaagaacateatecacetgategteatggaeeegttegtggaeetgggeateaceatetgeategtgeteaa caccetetteatggceatggaacattaccceatgaeggagcaetttgacaacgtgeteaetgtgggcaacetggtetteaea ggcatcttcacagcagagatggttctgaagctgattgccatggacccctacgagtatttccagcagggttggaatatcttcga cagcateategteaeceteageetggtagagetaggeetggeeaaegtacagggaetgtetgtgetaegeteetteegtetg etgegggtetteaagetggeeaagtegtggeeaaegetgaacatgeteateaagateattggeaatteagtgggggegetg ggtaacctgacgctggtgctggctatcatcgtgttcatcttcgccgtggtgggcatgcagctgtttggcaagagctacaagg g cag cetegg at gag at gag at gaa caacet g cag at t gecategg geg cate a get t g geat can get t gecate gag at t gag atggcettcetcetggggetgctgcatggcaagatcetgagccccaaggacatcatgctcagcctcggggaggctgacggggccggggaggctggagaggcggggagactgccccgaggatgagaagaaggagcgccgcaggaggacctgaa gaagga caat cacate ctgaacca cat ggg cct gget gacgg ccccccate cag cct gag ctgacca cct taact teatcga cactt tet cagage ctgaggat ag cagaag cag ceg ceg cag cet ctet at gat gggaact cgt ceg tet geag cacagage consistency of the consistency of thecttcactgaggcctgcgtgcagcgctggccctgcctctacgtggacatctcccagggccgtgggaagaagtggtggactctgcgcagggcctgcttcaagattgtcgagcacaactggttcgagaccttcattgtcttcatgatcctgctcagcagtggggctctggccttcgaggacatctacattgagcagcggcgagtcattcgcaccatcctagaatatgccgacaaggtcttcacctacattgagcagcagtcattcgcaccatcctagaatatgccgacaaggtcttcacctacattgagcagcagtcattcgcaccatcctagaatatgccgacaaggtcttcacctacattgagcagcagtcattcgcaccatcctagaatatgccgacaaggtcttcacctacattgagcagcagtcattcgcaccatcctagaatatgccgacaaggtcttcacctacattgagcagcagtcattcgcaccatcctagaatatgccgacaaggtcttcacctacattgagcagcagtcattcgcaccatcctagaatatgccgacaaggtcttcacctacattgagcagcagtcattcgcaccatcctagaatatgccgacaaggtcttcacctacattgagcagcagatcattcgcaccatcctagaatatgccgacaaggtcttcacctacattgagcagcagatcattcgcaccatcctagaatatgccgacaaggtcttcacctacattgagcagatcattcgcaccatcctagaatatgccgacaaggtcttcacctacattgagaatatgccgacaaggtcttcacctacattgagaatatgccgacaaggtcttcacctacattgagaatatgccgacaaggtcttcacctacattgagaatatgccgacaaggtcttcacctacattgagaatatgccgacaaggtcattcacctacattgagaatatgccgacaaggtcattcacctacattgagaatatgccgacaaggtcattcacctacattgagaatatgccgacaaggtcattcacctacattgagaatatgccgacaaggtcattcaccattacattgagaatatgccgacaaggtcattcaccattcacattacattgagaatatgccgacaaggtcattcaccattcacattaca

tett cate atggag at get get caa atggg t ggeet ae gget t taa gg t g ta ct te accaa egeet gg t gg te gaet te cae ac geet gg te gaet te gaet te cae ac geet gg te gaet te cae ac geet gg te gaet te gaet te cae ac geet gg te gaet te gt categ tgg at g tete catea teaget tgg tgg cea a et gg et gg get acteg gag et gg gac ceatea a at ee et geg gac et gg gac et gac et gg gac et gg gac et gac et gg gac et gg gac et gacactgegggecctgegteccctgagggcactgtcccgattcgagggcatgagggtggtggtgaacgccctcctaggcgccgttetactactgeat caacaccaccacctet gag agg ttegacatctcc gag gteaacaacaa gtet gag tgegag ag ectement of the contract of the conatgcacacaggccaggtccgctggctcaatgtcaaggtcaactacgacaacgtgggtctgggctacctctcctcctgcag gtggccaccttcaagggttggatggacatcatgtatgcagccgtggactcccgggagaaggaggagcagccgcagtacg aggtgaacctetacatgtacctetactttgteatetteateatetttggeteettetteaeceteaacctetteattggegteateatt gacaacttcaaccagcagaagaagattaggggggaaagacatctttatgacggaggaacagaagaaatactataacg ccatgaagaagcttggctccaagaagcctcagaagccaattccccggccccagaacaagatccagggcatggtgtatga cetegtgaegaaggaegtetegaeateaceateatgateeteatetgeeteaacatggteaceatgatggtggagaeagae agatgctegecetgegecagtactacttcacegttggetggaacatetttgacttegtggtegteateetgteeattgtgggeet tgccctctctgacctgatccagaagtacttcgtgtcacccacgctgttccgtgtgatccgcctggcgcggattgggcgtgtccgeeteeteetetteetggteatgtteatetaeteeatetteggeatgteeaactttgeetaegteaagaaggagtegggeatega tgatatgtteaacttegagacetteggeaacageateatetgeetgttegagateaceaegteggeeggetgggaegggete eteaaccccatcctcaacagegggccccagactgtgaccccaacctggagaaccegggcaccagtgtcaagggtgact cateetggagaactteaatgtggccacagaggagagcagegagcccettggtgaagatgactttgagatgttetacgagac atgggagaagttegaeceegaegecaeceagtteategeetaeageegeeteteagaettegtggaeaeeetgeaggaae egetgaggattgecaageccaacaagatcaagetcatcacactggacttgeccatggtgecaggggacaagatccactge etggacateetetttgeeetgaceaaagaggteetgggtgactetggggaaatggacgceeteaageagaceatggagga gaagtteatggcagccaacccctccaaggtgtcctacgagcccatcaccaccaccaccaccaccaccacgaggaggtg tgcgccatcaagatccagagggcctaccgccggcacctgctacagcgctccatgaagcaggcatcctacatgtaccgcca cagcacgacggcagcggggatgacgccctgagaaggaggggtgcttgccaacaccatgagcaagatgtatggcc acgagaatgggaacagcagctegccaagcceggaggaggaggegggggaggcaggggacgccactatggggc tgatgcccatcagccctcagacactgcctggcctccgccctccccagggcagactgtgcgcccaggtgtcaagga gtctcttgtctag (SEQ ID NO: 9)

H.s. SCN5A

atggcaaacttcctattacctcggggcaccagcagcttccgcaggttcacacgggagtccctggcagccatcgagaagcgcatgg cag agaag caag cccg cgc t caac cactt g cag gag agac cgag ag ggc t g cccg ag gag gag ctcccccctggaggacctggaccccttctatagcacccaaaagactttcatcgtactgaataaaggcaagaccatcttccggttcagtggacccatggaactggctggactttagtgtgattatcatggcatacacaactgaatttgtggacctgggcaatgtctcagcctt acgeacetteegagteeteegggeeetgaaaactatateagteattteagggetgaagaceategtgggggeeetgateeagtctgtgaagaagctggctgatgtgatggtcctcacagtcttctgcctcagcgtctttgccctcatcggcctgcagctcttcat gggcaacctaaggcacaagtgcgtgcgcaacttcacagcgctcaacggcaccaacggctccgtggaggccgacggctt ggtetgggaateeetggacetttaceteagtgateeagaaaattacetgeteaagaaeggcacetetgatgtgttactgtgtg tggccgtggtcgcaatggcctatgaggagcaaaaccaagccaccatcgctgagaccgaggagaaaggaaaagcgcttccaggaggccatggaaatgctcaagaaagaacacgaggccctcaccatcaggggtgtggataccgtgtcccgtagctccttg

5

gagatgtcccctttggccccagtaaacagccatgagagaagaagcaagaggagaaaacggatgtcttcaggaactgagg agtgtggggaggacaggctccccaagtctgactcagaagatggtcccagagcaatgaatcatctcagcctcacccgtggc ctcag cagga cttctat gaag ccacgt tccag ccg cgg gag catttt cacctt tcg cag gcg agac ctg ggt tct gaag cannot be considered as a considered considered as a considered cgattttgcagatgatgataaacagcacagcgggggagagcgagagccaccacacatcactgctggtgccctggcccctgc gccggaccagtgccagggacagcccagtcccggaacctcggctcctggccacgccctccatggcaaaaagaacagcgeeetgtgatgetagageaccegeeagaeaegaecaegeeateggaggageeaggegggeeeeagatgetgaeeteee aggetcegtgtgtagatggettegaggagecaggageagggggecetcageggagteagegteeteaceageg caetggaagagttagaggagtetegeeacaagtgteeaccatgetggaaccgtetegeecagegetaeetgatetgggagt getgecegetgtggatgtecateaageagggagtgaagttggtggteatggaeeegtttaetgaeeteaeeateaetatgtg categta et caa cacactet teatggeget ggagea et a caa cat ga caa gt gaat te gag gag at get ge ag gt eggaa a categta et caa cacactet teat ggeget ggaga cacacactet teat ggeget ggaga et acacacte gag gag at get gagggaacatettegacagcateategteatecttageeteatggagetgggeetgteeegeatgageaacttgteggtgetgeg ctecttcegcetgetgegggtettcaagetggeeaaateatggeeeaceetgaacacactcateaagateategggaactcagaactacteggagetgagggacagegacteaggeetgetgeetegetggcacatgatggaettettteatgeetteeteate atetteegeateetetgtggagagtggategagaeeatgtgggaetgeatggagtgteggggeagteattatgeetgetgg tca cage ccetg at gaggacagagat gaaca acctecage tgg ccetg gcceg catecagagggg cetgegett tgt.cagetgcccagetgcattgccacccctactcccgccacccccagagaaggtgcctccacccgcaaggaa a caeggtt tgaggaag cagcaaccaggcaggcacccccggggatccagagcccgtgtgtgcccatcgctgtgaggaatcccagcctgtgtccggtggcccagaggcccctccggattccaggacctggagccaggtgtcagcgactgcctcctctgaggccgaggccagtgcatctcaggccgactggcggcagcagtggaaagcggaaccccaggccccagggtgcggtgagaccccagaggacagttgctccgagggcagcacagcagacatgaccaacaccgctgagctcctggagcagatcc ctg acctegg ceagg at gt caa gg acceag agg act get teact gaagg ctg tg teegg eget gt cet get gg tg teegg tg teegacacca can agg ccc cagg gaa gg tct gg tg cg ct gc can agac tg ctacca cat cg tg ag cac ag ct gg tt cg can agac tg ctacca cat cg tg ag cac ag ct gg tt cg cac ag ct gg tt cg cac ag ct gg tt cg cac ag cac ag ct gg tt cg cac ag cac ag ct gg tt cg cac ag ct gg tt cg cac ag ct gg tt cg cac ag cac ag ct gg tt cg cac ag cac aaga cat teat cate teat gate ctact cag cag t gg ag c g c t t c g ag ga cate t a cet ag ag ga g c g ga ag ac cate a consideration of the consideration of thcan gauga act teace a at get t g et get each teate gauga cette t et g et a get each teate gauga cette et a get each teate gauge ettgggetttgecgagatgggeeceateaagteaetgeggaegetgegtgeaeteegteetetgagagetetgteaegatttga gggcatgaggtggtggtcaatgccctggtgggcgccatcccgtccatcatgaacgtcctcctcgtctgcctcatcttctgg tga acta caccatcg tga acaa caa gag c cag tg tga g tccttga acttga ccgg agaattg tactggac caa gg tga aa gag tga acttga ccgg agaattg tactggac caa gg tga aa gag tga acttga ccgg agaattg tactggac caa gg tga aa gag tga acttga ccgg agaattg tactggac caa gg tga aa gag tga acttga ccgg agaattg tactggac caa gg tga aa gag tga acttga ccgg agaattg tactggac caa gg tga acttga ccgg agaattg acttga ccgg acttga ccgg agaattg acttga ccgg acttga acttga ccgg acttga acttga ccgg acttga acttga ccgg acttga acttgat caact tt gacaacg tggggccggg tacct ggccct tct gcagg tggcaacatt taa aggctggat ggacatt at gtat gcagg tggacatt at gacagg tggacat at gacagg tggacatt at gacagg tggacagg tggacatt at gacagg tggacagg tggacaggagctgtggactccagggggtatgaagagcagcctcagtgggaatacaacctctacatgtacatctattttgtcattttcatcatga cat ctt cat ga cag ag ga ga ga ag aa ga ag ta cta caat ga cat ga ag aa g ct ga ga cat ctt cat ga cag aa ga cat cat ga ag aa g cat ga ga ga cat ctt cat ga cag aa ga cat ctt cat ga cag aa g cat cat ga cat ga cat catteccacgg ccctgaacaag taccagg gctt catattcgacattgtgaccaag caggcctttgacgtcaccatcatgtttctgtettega ettegtggttgt cateetete categtgggea etgtgete tegga cateate caga ag ta ettette te ceega egetcttccg agt catccg cctg gcccg aat agg ccg catcct cag act gatccg agg gg gcca agg gg at ccg cac gct gct ctrick gatccg agg gg gcca agg gg gatccg cac gct gct ctrick gatccg agg gg gcca agg gg gcca agg gg gatccg cac gct gct ctrick gatccg gatccgttgccct cat gatgtccctgcctctt caa catcgggctgctgctcttcctcgtcatgttcatctactccatctttggcatggcca act teget tat g tea agt gg gag get gg catega ea act gt tea act te caga cette ge caa cag cat get gg cete get act the contraction of the contrttccagatcaccacgtcggctgggatggcctcctcagccccatcctcaacactgggccgccctactgcgaccccacctccttcctcatcgtggtcaacatgtacattgccatcatcctggagaacttcagcgtggccacggaggagagcaccgagcccctgagtgaggacgacttcgatatgttctatgagatctgggagaaatttgacccagaggccactcagtttattgagtattcggt cctgtctgactttgccgatgccctgtctgagccactccgtatcgccaagcccaaccagataagcctcatcaacatggacctgatggacgccetgaagatccagatggaggaggaagttcatggcagccaacccatccaagatctcctacgagcccatcaccac cacacteeggegeaageaggaggtgteggeeatggttateeagaggageetteegeaggeaeetgetgeaaegetettat ege ctac egt gat gag a gat act tet ce caccet t gee caccet te cacte cat tet ce cacte cat te caccet act te caccet to caccet the caccet the caccet to caccet the cactectatga cagtgt cactagage caccage gata acctecaggtgeggggtetgactacage cacagtgaag at tegescapt acceptance of the contraction ofcgacttcccccttctccggacagggaccgtgagtccatcgtgtga (SEQ ID NO: 10)

H.s. SCN7A

at gt t g g et teace aga acct a agg g c et t g t e cet teact a a aga g t et t t t g a act at a a a aca g cat at t g et a a a aca g cat at t g et a a aca g e cet g et a cat a cat a cat g et a cat a cat g e cet g eaaa atagaa caa tette agatte aatgegget tee at ett gt gt acatt gt et cett te aatt gt at tagaa gaa caa ct at ea agatte aatgege ett ett gt gt acatt gt ett ett ett gaa te gaa gaa caa et at ea agatte aatgege ett ett gt gt acatt gt ett ett gaa te gaa gaa ea act at ea agatte gaa ea act at ea agatteagaccag tattag agaat actttgcttggaatttacacatttgaaat acttgtaaaactctttgcaag aggtgtctgggcaggatuur acttgtaaaactcttgtaaaactctttgcaagaagatuur acttgtaaaactcttgtaaaaactcttgtaaaactcttgtaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaaactcttgtaaaactcttgtaaaactcttgtaaaactcttgtaaaactcttgtaaaactcttgtaaaactcttgtaaactcttgtaaactcttgtat catte caa eget teaa act geaaga act tt gaga at tt taaa aat tatteet ttaaa teaa gg tet gaa at ee ct t g tag gg gt ee catte caa eget teaa act geaaga act tt gaga at tt taaa at ea ag gt et gaa at ee ct t g tag gg gt ee catte caa eget teaa act geaaga act tt gaga at tt taaa at ea ag gt et gaa at ee ct t g tag gg gt ee catte caa eget teaa act geaaga act tt gaga at tt taaa at ea ag gt et gaa at ee ct t g tag gg gt ee catte caa eget teaa act geaaga act tt gaga at tt taaa at ea ag gt et gaa at ee ct t g tag gg gt ee catte caa eget et gaa at ee ct t g tag gg gt ee catte caa eget et gaa at ee ct t g tag gg gg te catte caa eget et gaa at ee ct t g tag gg gg te catte caa eget et gaa at ee ct t g tag gg gg te catte caa eget et gaa et ee catte catte caa eget et gaa en catte catte caa eget et gaa eget et gaa en catte caat attatat tegagaa aa cagaa aa cttttat tatt tegaa gagaa aa gatat geteet ette tegagaa aa cagaa cagaa gatat geteet tegagaa aa cagaa cagaattatttgccctatttcggttaatggctcaggattaccctgaagtactttatcaccagatactttatgcttctgggaaggtctacatg atattttttgtggtggtaagttttttgttttcettttatatggcaagtttgttcttaggcatacttgccatggcctatgaagaagaaaag cagagagttggtgaaatatctaagaagattgaaccaaaatttcaacagactggaaaagaacttcaagaaggaaatgaaaca gatgaggccaagaccatacaaatagaaatgaagaaaaggtcaccaatttccacagacacatcattggatgtgtggaagat gctactctcagacataaggaagaacttgaaaaatccaagaagatatgcccattatactggtataagtttgctaaaactttcttga ggttttcattggaattttcacagcagaaatgatttttaaaataattgcaatgcatccatatgggtatttccaagtaggttggaacat ttt tgatag catgatag tgtt catggtt taatag aacttt g tctag caa at gtt g cag gaat ggc tct tct tc gatt at tcag gatggc tct common description of the stage of the stagttaagaatttteaagttgggaaagtattggceaacattceagattttgatgtggtetettagtaacteatgggtggeeetgaaagacttggtcctgttgttgttcacattcatcttcttttctgctgcattcggcatgaagctgtttggtaagaattatgaagaatttgtctgc cacataga caa agact g t caactee cac g ctg g cacat g cat g act tittle cactee tteet g aat g t g t ce g aat te te t g g a cacataga cat g cacatagagagtgggtagagaccttgtgggactgtatggaggttgcaggccaatcctggtgtattcctttttacctgatggtcattttaatgatggtcattttaatgatggtagatggtgatggtagatggtgatggtagatggtgatggatggtgatggtgatggtgatggtgatggtgatggtgatggtgatggatggtgatggattggaaatttactggtactttacetgtttctggcattggtgagctcatttagttcatgcaaggatgtaacagctgaagagaataatgaatgteecaaaggacacatggaccatgtaaatgaggtatatgttaaagaagatatttetgaccataccetttetgaattgage aacacccaagattttetcaaagataaggaaaaaagcagtggcacagagaaaaacgctactgaaaatgagagccaatcact tateeceagteetagtgteteagaaactgtaceaattgetteaggagaatetgatatagaaaatetggataataaggagattea ta agtgttt tattgggett gttactet gete ageaet ggeaet teggetttt gaag at at at at at ggate ag gaa aagae aat tatt gget teggeaet teggett teggeaet teggeaa a att ttattaga at at get ga cat ga tettta ett ett ett ett ga aat get teta aa at gg at gg cat at gg tt tta ag ge cat at gg tt tt ta ag ge cat acaa a a caacet tacce act tt gaat g tt tett g tet g c t g at g at et g g c t g at tt tt a g tace t a t t t g c t a caa a caacet tacce act tt g at g g t t t t t g c t g at g c t g at tt t t g c t a caa a caacet tacce act tt g at g g t g at c t g c t g at g c t g at t t t g c t g at g c t g at t t t g c t g at g c t g at g c t g at t t t g c t g at g c t g at t t t g c t g at g c t g

ccttctgtttaacgaatccatgctatgggaaaatgcaaaaatgaactttgataatgttggaaatggtttcctttctctgcttcaagtaactttgataatgttggaaatggtttcctttctctgcttcaagtaactttgataatgttggaaatggtttcctttctctgcttcaagtaactttgataatgttggaaatggtttcctttctctgcttcaagtaactttgataatgttggaaatggtttcctttctctgcttcaagtaactttgataatgttggaaatggtttcctttctctgcttcaagtaactttgataatgttggaaatggtttcctttctctgcttcaagtaactttgataatgttggaaatggtttcctttctctgcttcaagtaactttgataatgttggaaatggtttcctttctctgcttcaagtaactttgataatgttggaaatggtttcctttctctgcttcaagtaactttgataatgttggaaatggataactttgataatgttggaaatggataactttgataatgttggaaatggataactttgataatgttggaaatggataactttgataatgttggaaatggataagca a cattta at ggat ggat cact at tat ga at teag ca at t gat teag tat tat ga at teag catt tat tat ga at teag catt tat tat ga at teag catt tat tat ga at teag cat ga at teag cat tat ga at teag cat ga at ga at teag cat ga at teag cat ga at teag cat ga at teag cat ga atgtatgaggattctcaaagaccagtacctcgcccattaaacaagctccaaggattcatctttgatgtggtaacaagccaagctt ttaatgtcattgttatggttcttatatgtttccaagcaatagccatgatgatagacactgatgttcagagtctacaaatgtccattgctctctactggattaactcaatttttgttatgctatatactatggaatgtatactgaagctcatcgctttccgttgtttttatttcaccat tgcgtggaacatttttgattttatggtggttattttctccatcacaggactatgtctgcctatgacagtaggatcctaccttgtgcctcetteaettgtgeaactgataetteteteaeggateatteaeatgetgegtettggaaaaggaceaaaggtgttteataatetgat getteetttgatgetgteeteecageattattgaacateattetteteatetteetggteatgtteatetatgeegtatttggaatgt ataattttgcctatgttaaaaaagaagctggaattaatgatgtgtctaattttgaaacctttggcaacagtatgctctgtcttttca agttgcaatatttgctggttgggatgggatgcttgatgcaattttcaacagtaaatggtctgatctgatactgataaaattaacc ctgggact caagttagaggagattgtgggaacccctctgttgggattttttattttgtcagttatatcctcatatcatggctgatcaagttagattgtggagattgttgggattttttattttgtcagttatatcctcatatcatggctgatcaagttagattgtgggattgtggattgtggattgtgggattgggattgggattgggattgggattgggattgggattgggattgggattgggattgggattgggattgggattggattgggattgggattgggattgggattgggattgggattgggattgggattgggattgggattggattgggattggattgggattgggattgggattgggattgggattgggattgggattgggattggattgggattgggattgggattgggattgggattgggattgggattgggattgggattgggattgggattggattggattgggattgggattgggattgggattgggattgggattgggattgggattgggattgggattggattggattgggattgggattgggattgggattgggattgggattggattgggattggattgggattggattgggattggattgggattgggattggattgggattggattgggattggattgggattgaaattettteaggtatggaaaaggtttgateetgataggaeecagtacatagaetetageaagettteagattttgeagetget cttg at cet cet ctttt cat g g caa aac caa ac aa g g g cea g ct cat t g ctt t g g ac c t cec cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t t g g g a cag a at t ce ce cat g g ct g t g g g a cag a at t ce ce cat g g ct g t g g g a cag a at t ce ce cat g g ct g t g g g a cag a at t ce ce cat g g ct g t g g a cag a at t ce ce cat g g ct g t g g a cag a at t ce ce cat g g ct g t g a cag a at t ce ce cat g g ct g t g a cag a at t ce ce cat g g ct g a cag a at t ce ce cat g g ct g a cag a at t ce ce cat g g ct g a cag a at t ce ce cat g g ct g a cag a at t ce ce cat g g ct g a cag a at t ce ce cat g g ct g a cag a at t ce ce cat g g ct g a cag a at t ce ce cat g c cag a cag a at t ce ce cat g c cag a cag a at t ce ce cat g c cag a cag a at t ce cat g cag a cag a at t ce cat g cag a cag a at t ce cat g cag a cag a at t ce cat g cag a cag a at t cat g cag a cag a at t cat g cag a cag a cag a at t cat g cag a cag acattgcctcgatatcttacttgcttttacaaagagagttatgggtcaagatgtgaggatggagaaagttgtttcagaaatagaatagaatagatggagatggagaaagatgtttcagaaatagacagggtttttgttagccaacccttttaagatcacatgtgagccaattacgactactttgaaacgaaaacaagaggcagtttcag caaccatcattcaacgtgcttataaaaattaccgcttgaggcgaaatgacaaaaatacatcagatattcatatgatagatggtg a caga gat gt t cat gc tacta a aga ag gt gc ct at tt t gaca a ag ct a ag gaa a ag t cac ct at t ca a ag cc ag at ct a ag consideration of the consideratio(SEQ ID NO: 11)

H.s. SCN8A

atggcagcgcggctgcttgcaccaccaggccctgatagtttcaagcctttcacccctgagtcactggcaaacattgagagg egeattgetgagageaageteaagaaaceaceaaaggeegatggcagteategggaggaegatgaggacageaagee caagccaaacagcgacctggaagcagggaagagtttgcctttcatctacgggggacatcccccaaggcctggttgcagttc ccctggaggactttgacccatactatttgacgcagaaaacctttgtagtattaaacagagggaaaactctcttcagatttagtg ccaegect geet t g tacatt t taag teet t taacet ga taag aag aat ag ctatta aa at t t t ga tacatt cag ta t taag aag aat ag ctatta aa at t t t ga tacatt cag ta t taag aag aa ag aat ag ctatta aa at t t t ga ta cat t cag ta t t t ag cat ga t a cat ga ta cat gacattatgtgcactattttgaccaactgtgtattcatgacttttagtaaccctcctgactggtcgaagaatgtggagtacacgttca cagggatttatacatttgaatcactagtgaaaatcattgcaagaggtttctgcatagatggctttacctttttacgggacccatgg aactggttagatttcagtgtcatcatgatggcgtatataacagagtttgtaaacctaggcaatgtttcagctctacgcactttcag ggtactgagggctttgaaaactatttcggtaatcccaggcctgaagacaattgtgggtgccctgattcagtctgtgaagaaac tgtcagatgtgatgatcctgacagtgttctgcctgagtgtttttgccttgatcggactgcagctgttcatggggaaccttcgaaa caagtgtgttgtgtggcccataaacttcaacgagagctatcttgaaaatggcaccaaaggctttgattgggaagagtatatca acaataaaacaaatttctacacagttcctggcatgctggaacctttactctgtgggaacagttctgatgctgggcaatgccca gcacaggetgctgcgatggccacttcagcaggaactgtctcagaagatgccatagaggaagaaggtgaagaaggaggg gaag caa aaggaact ctctgaaggaggagaaaggggatcccgagaaggtgtttaagt cagaagatggcatgagaaggaaggcetttcggctgccagacaacagaatagggaggaaattttccatcatgaatcagtcactgctcagcatcccaggetegecetteeteteegeea caa cageaa gageageatette agttte aggggaeet gggeggtteegagaeeegggaeet gggeggtteegagaeeegggaeet ggggaeet gggeggtteegagaeeegggaeet ggggaeet ggggaeet ggggaeet ggggaeet ggggaeet ggggaeet ggggaeet gggaeet gggaeetgetccgagaatgagttcgcggatgacgacagcacggtggaggaggaggaggaggaggaggactccctcttcatccttccccagcctgcggcgcagcgtgaagcgcaacagcaggtggactgcaacggcgtggtgtccctcatcggcggcccc

5

ggetcccacatcggcggcgtctcctgccagaggctacaactgaggtggaaattaagaagaaaggccctggatctcttttaaga actgga agagtct cagaga aagtgcccgccat gctggtata aatttgccaa cactttcct catctgggagtgccacccctactggataaaactgaaagagattgtgaacttgatagttatggacccttttgtggatttagccatcaccatctgcatcgtcctgaacttgatagttatggacccttttgtggatttagccatcaccatctgcatcgtcctgaacttgatagttatggacccttttgtggatttagccatcaccatctgcatcgtcctgaacttgatagttatggacccttttgtggatttagccatcaccatctgcatcgtcctgaacttgatagttatggacccttttgtggatttagccatcaccatctgcatcgtcctgaacttgatagttatggaccctttttgtggatttagccatcaccatctgcatcgtcctgaacttgatagttatggaccctttttgtggatttagccatcaccatctgcatcgtcctgaacttgatagttatggaccctttttgtggatttagccatcaccatctgcatcgtcctgaacttgatagttagcatcaccatctgcatcgtcctgaacttgatagttagcatcaccatctgcatcgtcctgaacttgatagttagcatcaccatctgcatcgtcctgaacttgatagttagcatcaccatctgcatcgtcctgaacttgatagttagcatcaccatctgcatcaccatcaccatctgcatcaccatcaccatctgcatcaccatcaccatctgcatcaccatcaccatctgcatcaccatcaccatcaccatctgcatcaccaatacactgtttatggcaatggagcaccatcctatgacaccacaatttgaacatgtcttggctgtaggaaatctggttttcactgg aattttcacageggaaatgttcctgaagetcatagccatggatccctactattatttccaagaaggttggaacatttttgacgga tetteaaattggccaaateetggccaccetgaacatgetaatcaagattattggaaatteagtgggtgccetgggcaacetg a cactggtgctggccattattgtcttcatctttgccgtggtggggatgcaactctttggaaaaagctacaaagagtgtgtctgcggagtggattgagaccatgtgggactgcatggaagtggcaggccaggccatgtgcctcattgtctttatgatggtcatggtg attggcaacttggtggtgctgaacctgtttctggccttgctcctgagctccttcagtgcagacaacctggctgccacagatga cgatggggaaatgaacaacetecagateteagtgatecgtateaagaagggtgtggeetggaccaaactaaaggtgeaeg gtategecaatcacaeggtgeagacatecaeeggaatggtgactteeagaagaatggeaatggeacaaeeageggeatt ggcagcagcgtggagaagtacatcattgatgaggaccacatgtccttcatcaacaaccccaacttgactgtacgggtaccc attgctgtgggcgagtctgactttgagaacctcaacacagaggatgttagcagcgagtcggatcctgaaggcagcaaagat aaactagatgacaccagctcctctgaaggaagcaccattgatatcaaaccagaagtagaagaggtccctgtggaacagcc gggctaggcaagtcttggtggatcctgcggaaaacctgcttcctcatcgtggagcacaactggtttgagaccttcatcatcttatgcctggtgttggctggacttcctcattgtggctgtctctttagtcagccttatagctaatgccctgggctactcggaactagg tgccataaagtcccttaggaccctaagagctttgagacccttaagagccttatcacgatttgaagggatgagggtggtg ttaacttgtttgcgggaaagtaccactactgctttaatgagacttctgaaatccgatttgaaattgaagatgtcaacaataaaact ga at gt ga aa ag ctt at gg ag gg aa caa ta cag ag at cag at gg aa ga ac gt ga ag at caa ctt t ga caa t gt t gg gg caa caa t gg ag ag at cag at ga ag at cag at cag at ga ag at cag at cag at ga ag at cag at ga ag at cag at ga ag at cag atgatgagcagcataagtatgaggacaatatctacatgtacatctattttgtcatcttcatcatcttcggctccttcttcaccctgaac gaagaagtactacaatgccatgaaaaagctgggctcaaagaagccacagaaacctattccccgcccttgaacaaaatcc tgtgtgctcaaaatgtttgcgttgaggcactactacttcaccattggctggaacatcttcgacttcgtggtagtcatcctctccattgtgggaatgttcctggcagatataattgagaaatactttgtttcccaaccctattccgagtcatccgattggcccgtattggg cgcatcttgcgtctgatcaaaggcgccaaagggattcgtaccctgctctttgccttaatgatgtccttgcctgctctgttcaacaatgacatgttcaactttgagacatttggcaacagcatgatctgcctgtttcaaatcacaacctcagctggttgggatggcctgc tgctgcccatcctaaaccgccccctgactgcagcctagataaggaacacccagggagtggctttaagggagattgtggg aacccctcagtgggcatcttcttctttgtaagctacatcatcatctctttcctaattgtcgtgaacatgtacattgccatcatcctg a agt tegac cegatge cacce agt teattg agt act gt a aget tg caga act ttg cagatge ctt gg age at cet et cegagt and the property of the propertygeceaageceaataceattgageteategetatggatetgecaatggtgageggggategeateeaetgettggacateett tttgccttcaccaagcggtcctgggagatagcggggagttggacatcctgcggcagcagcagatggaagagcggttcgtggc atccaatccttccaaagtgtcttacgagccaatcacaaccacatgcgtcgcaagcaggaggaggtatctgcagtggtcct gcagcgtgcctaccggggacatttggcaaggcggggcttcatctgcaaaaagacaacttctaataagctggagaatggag gcacacacgggagaaaaaaggggacacccatctacagcctcctcccgtcctatgacagtgtaactaaacctgaaaag gagaaacagcagcggcagaggaaggaagggaaagggcaaaagagccaaaagaggtcagagaatccaagtgtt ag (SEQ ID NO: 12)

H.s. SCN9A

atggcaatgttgcctccccaggacctcagagctttgtccatttcacaaaacagtctcttgccctcattgaacaacgcattgct getgg caaa caact gecet teat ctat gggga catteet ceeg geat ggtg teagag ceet ggaggaet t ggacceet act to be a support of the contract of the concett t cag teet cate agaa agaa ta tetata agatt t tag ta caet cett at teag cat get cate at get geact at tet gacaa act to the cate again tgcatatttatgaccatgaataacccgccggactggaccaaaaatgtcgagtacacttttactggaatatatacttttgaatcacttttttgegtatttaacagaatttgtaaacctaggcaatgttteagetettegaacttteagagtattgaagagetttgaaaactatttettgtetgagtgtgtttgcactaattggactacagetgttcatgggaaacetgaagcataaatgttttegaaattcaettgaaaataa tgaaacattagaaagcataatgaataccctagagagtgaagaagactttagaaaatatttttattacttggaaggatccaaaga tgctctctttgtggtttcagcacagattcaggtcagtgtccagaggggtacacctgtgtgaaaattggcagaaaccctgatta caacagatgttagaccgtcttaaaaaagagcaagaagaagctgaggcaattgcagcggcagcggctgaatatacaagtat taggagaagcagaattatgggcctctcagagagttcttctgaaacatccaaactgagctctaaaagtgctaaagaagaag aaacagaagaaagaaaaagaatcaaaagaagctctccagtggagaggaaaagggagatgctgagaaattgtcgaaatca gaatcagaggacagcatcagaagaaaaagtttccaccttggtgtcgaagggcataggcgagcacatgaaaagaggttgtc ggcagaggaagagatataggatctgagactgaatttgccgatgatgagcacagcatttttggagacaatgagagcagaag gggctcactgtttgtgccccacagaccccaggagcgcagcagcagtaacatcagccaagccagtaggtccccaccaatg etgeeggtgaaegggaaaatgeaeagtgetgtggaetgeaaeggtgtggteteeetggttgatggaegeteageeeteatg ctccccaatggacagcttctgccagagggcacgaccaatcaaatacacaagaaaaggcgttgtagttcctatctcctttcag tatggaacaccaccaatgactgaggaattcaaaaatgtacttgctataggaaatttggtctttactggaatctttgcagctgaa atggtattaaaactgattgccatggatccatatgagtatttccaagtaggctggaatatttttgacagccttattgtgactttaagtt get ce a eggt gg ca cat ga a ega et tet te caet cet te et gat t gt te eggt get get gg a ga gg a ga gg a egg a egg egg et get get gg a ga gg a ga gg a egg a ga gg a egg a ga gg a egg a egg a gg a egg a eaa acct att tet ggeet tatt att gaget catt tagt te agae aat et ta cage aat t gaag aagae cet gat geaaac aac et catt tet ggeet tatt at t gaget catt tagt te agae aat et cat gage aan et cat gage aan et cat gaget ggaagacagtgatggtcaatcatttattcacaatcccagcctcacagtgacagtgccaattgcacctggggaatccgatttgga a aatat gaat gct gag gaact tag cag t gat teg gat ag t gaat ac ag caa ag t gag at taa ac c gg t caa gct cct cag ag tag tag ac to gat ag tag actggcttttgaagatatttatattgaaaggaaaaagaccattaagattatcctggagtatgcagacaagatcttcacttacatctttgatgtttctttggttactttagtggcaaacactcttggctactcagatcttggccccattaaatcccttcggacactgagagcttt

acca cagatgggt cacggtttcctg caagtcaagttccaaatcgttccgaatgttttgcccttatgaatgttagtcaaaatgtgcaaaatgttccaaggaggtcaagacatctttatgacagaagaacagaagaaatactataatgcaatgaaaaagctggggtccaagaagccaca aaagccaattcctcgaccagggaacaaaatccaaggatgtatatttgacctagtgacaaatcaagcctttgatattagtatcat ggttcttatctgtctcaacatggtaaccatgatggtagaaaaggaggtcaaagtcaacatatgactgaagttttatattggata aatgtggtttttataatccttttcactggagaatgtgtgctaaaactgatctccctcagacactactacttcactgtaggatggaat gagtgatccgtcttgccaggattggccgaatcctacgtctagtcaaaggagcaaaggggatccgcacgctgctctttgcttt gatgatgteectteetgegttgtttaacateggeeteetgetetteetggteatgtteatetaegeeatetttggaatgteeaactttgcctatgttaaaaaggaaggaattaatgacatgttcaattttgagacctttggcaacagtatgatttgcctgttccaaattac gatgttctatgaggtttgggagaagtttgatcccgatgcgacccagtttatagagttctctaaactctctgattttgcagctgccc tggatcctcctcttccatagcaaaacccaacaaagtccagctcattgccatggatctgcccatggttagtggtgaccggatc aaggttcatgtctgcaaatccttccaaagtgtcctatgaacccatcacaaccacactaaaacggaaacaagaggatgtgtc gctactgtcattcagcgtgcttatagacgttaccgcttaaggcaaaatgtcaaaaatatatcaagtatatacataaaagatgga gacagagatgatgatttactcaataaaaaagatatggcttttgataatgttaatgagaactcaagtccagaaaaaaacagatgc cacttcatccaccacctctccaccttcatatgatagtgtaacaaagccagacaaagagaaatatgaacaagacagaacaga aaaggaagacaaaggaaagcaaggaaagcaaaaaatag (SEQ ID NO: 13)

H.s. SCN10A

ggatctagatccgttctacagcacacaccggacatttatggtgctgaacaaagggaggaccatttcccggtttagtgccacttta egg teact att tt t g g tta att g t g t g ea t g ac et g ea cat g ac et t e a g a g a a a att g a at at g t et t e a c g a g a a a att g a at at g t et t e a c g a g a a a att g a at at g t et t e a c g a g a a a att g a at at g t e t e a c g a g a a a att g a at at g a c e g a c gcetttgaagcettgataaagatactggcaagaggattttgtctaaatgagttcacgtacetgagagatcettggaactggetgg attttagegteattaeeetggeatatgttggeaeageaatagateteegtggggateteaggeetgeggaeatteagagttetta gagcattaaaaacagtttctgtgatcccaggcctgaaggtcattgtgggggccctgattcactcagtgaagaaactggctga acttctgaccccttactgtgtggcaatggatctgactcaggccactgccctgatggttatatctgccttaaaacttctgacaacc eggattttaactacaccagetttgatteetttgettgggettteeteteactgtteegeeteatgacacaggatteetgggaaege ctctaccagcagaccctgaggacttctgggaaaatctatatgatcttttttgtgctcgtaatcttcctgggatctttctacctggtc gaagtte caggaggee ctegagatge teeggaaggag caggaggtge tag cagcactagggattga cae acctete teegaagteer can be a considered and the considered can be a considered can be a considered and the considered can be a considered and the considered can be a considered can be a considered and the considered can be a consideredcactece a caatggat cacett taacetee aaaaatgee ag tagaa tagactccacagaagacaacaaatcacccgctctgatccttacaaccagcgcaggatgtcttttctaggcctcgcctctggaaaatgccctggagctgtcgatgtctcggcattcgatgcaggacaaaagaagactttcttgtcagcagaatacttagatgaaccttt

5

ccgggcccaaagggcaatgagtgttgtcagtatcataacctccgtccttgaggaactcgaggagtctgaacagaagtgcccaccetgettgaccagettgteteagaagtatetgatetgggattgetgeeceatgtgggtgaageteaagacaattetetttgggettgtgacggatccetttgcagagctcaccatcaccttgtgcatcgtggtgaacaccatcttcatggccatggagcaccatgg catgage cetacct tega age catge te caga tagge aa categ tett taccat at titt tactge t gaa at g g tette aa aa teget to tagge and the catagories of the catagcattgccttcgacccatactattatttccagaagaagtggaatatctttgactgcatcatcgtcactgtgagtctgctagagctgggegtggccaagaagggaagcetgtetgtgetgeggagetteegettgetgegegtatteaagetggccaaateetggce cacettaaacacacteatcaagateateggaaacteagtgggggcactggggaaccteaccateatcetggccateattgtc tttgtetttgetetggttggeaageageteetaggggaaaactaeegtaacaacegaaaaaatateteegegeeecatgaag actggcccgctggcacatgcacgacttcttccactctttcctcattgtcttccgtatcctctgtggagagtggattgagaacat gtgggcctgcatggaagttggccaaaaatccatatgcctcatccttttcttgacggtgatggtgctagggaacctggtggtgc ttaacetgtteategecetgetattgaactettteagtgetgaeaaceteaeageeeeggaggaegatggaggtgaacaacetgeaggtggccetggcaeggatecaggtetttggccategtaecaaacaggetetttgeagettetteagcaggteetge ccattccccagcccaaggcagagcctgagctggtggtgaaactcccactctccagctccaaggctgagaaccacattgc tgccaacactgccaggggggggtcttggagggctccaagctcccagaggccccagggatgagcacagtgacttcatcgct aatccgactgtgtgggtctctgtgcccattgctgagggtgaatctgatcttgatgacttggaggatgatggtggggaagatgc tcagagettccagcaggaagtgatccccaaaggacagcaggagcagctgcagcaggaggaggtgtggggaccacctgacacccaggagcccaggcactggaacatcttctgaggacctggctccatccctgggtgagacgtggaaagatgagtctg ttcctcaggtccctgctgaggagtggacgacacaagctcctctgagggcagcacggtggactgcctagatcctgaggaa atectgaggaagateettgagetggeagatgaeetggaagaaceagatgaetgetteacagaaggatgeattegeeaetgt ccctgctgcaaactggataccaccaagagtccatgggatgtgggctggcaggtggcgcaagacttgctaccgtatcgtgga gcacagetggtttgagagetteateatetteatgateetgeteageagtggatetetggeetttgaagaetattaeetggaceaggcetatggetteaaaaagtaetteaceaatgeetggtgetggetggaetteeteattgtgaatateteactgataagteteacaagteeteacgegaag at tetgaag t ggetee catea aag ee et tegaac eet tegage et et gegee tet tegage eet tegage eetettetgget catette ag cate at gggt gtgaacetette ge ag ggaag titt tit ggaggt ge at caactatae eg at ggagg ag titt tit ggaggt ge at caactatae eg at ggagg ag titt tit gagget ge at caactatae eg at ggggg ag titt tit grant titt grant granttttcccttgtacctttgtcgattgtgaataacaagtctgactgcaagattcaaaactccactggcagcttcttctgggtcaatgtga a a g t c a a c t t t g a t a g g t t a c c t t g c a g t g g c a a c c t t t a a a g g c t g g a t g g a c a t t a t g t a g g cgga catctt catga cag agga ga agaa aa tacta caatgc catga agaa gt t gg ctc caa gaa gc cccag aa gc cccag aa gc cccag aa gaa catctt catga cag agga catctt catga cag agga catctt catga cag agga cag aa gaa catctt catga cag agga catctt catga cag agga catctt catga cag agga cag aa gaa catctt catga cag agga cag aa gaa catctt catga cag agga cag aa gaa catct cat cat gaa cag agga cag aa gaa catct cat gaa cag agga cag aa gaa catct cat gaa cag agga cag aa gaa catct cat gaa cat gaa catct catca caat ccc acgg ccct gaa caa gttccag gg tttt gtcttt gac at cgt gac caga caa gctttt gac at caccat cat gg tcctc accat gg tcctc acatetgeeteaacatgateaceatgatggtggagactgatgaceaaagtgaagaaaaagaegaaaattetgggcaaaateaac getetteagagteateegeetggeecgaattggeegeateeteagaetgateegageggeeaaggggateegeacaetge tett t gee cteat gat g te cet gee ctett caa categ g g et g t t g tatteet t g teat g te categorie te tett g each gat g te categorie te te categorie te te categorie te te te categorie ttccagetttccccatgtgaggtgggaggetggcatcgacgacatgttcaacttccagacettegccaacagcatgetgtgccat etgcccaa cag caatg g caccag ag g g act g t g g ag c cag c g t ag catcat ctt ctt caccacct a catcat catctetcet teat categoriea a categoriea at tet categoriea at tete categoctgagtgaggacgactttgacatgttctatgagacctgggagaagtttgacccagaggccactcagtttattaccttttctgctcteteggactttgeagaeactetetetggteecetgagaateecaaaacceaategaaatataetgateeagatggaeetgeettctetgaaggcaaatatggaggagaagtttatggcaactaatetttcaaaatcatcctatgaaccaatagcaaccactctccgat ggaag caagaag acattt cag cact g teatt caa aag geet at eggag ctat g t get geac c get ceat g geact ctet a a geach geachcaccccatgtgtgcccagagctgaggaggaggctgcatcactcccagatgaaggttttgttgcattcacagcaaatgaaaattgtgtactcccagacaaatctgaaactgcttctgccacatcattcccaccgtcctatgagagtgtcactagaggccttagtgatagagt caa cat gagga cat ctaget caa tacaa aat gaagat gaag ccac cag tat gag ct gat t ge ccct ggg ccct agag can be compared to the compared to(SEQ ID NO: 14)

H.s. SCN11A

atggatgacagatgctacccagtaatctttccagatgagcggaatttccgcccttcacttccgactctctggctgcaattgaga ageggattgc catcca aa aggagaa aa aa agaagtcta aa gaccaga caggagaagtaccccagcctcggcct cagcttgacctaaaggcctccaggaagttgcccaagctctatggcgacattcctcgtgagctcataggaaagcctctggaagacttgg acceattctaccgaaatcataagacatttatggtgttaaacagaaagaggacaatctaccgcttcagtgccaagcatgccttg tggctggactccattgtcattggaatagcgattgtgtcatatattccaggaatcaccatcaaactattgcccctgcgtaccttccgtgtgttcagagctttgaaagcaatttcagtagtttcacgtctgaaggtcatcgtgggggccttgctacgctctgtgaagaagc attcaaaatgtgtggcatctggatgggtaacagtgcctgttccatacaatatgaatgtaagcacaccaaaattaatcctgacta taattatacgaattttgacaactttggctggtcttttcttgccatgttccggctgatgacccaagattcctgggagaagctttatca a caga ccct geg tactact ggg ctctact cag tettet tettet tettet tettet ggg ctc att ttcct ggg ctcct tetacct gattaact taacct gattaact taacct gattaact taacct gattaact taacct gattaact ggg ctc att tette ggg ctc att ttcct ggg ctcct tetacct gattaact taacct gattaact gattaact ggg ctc att ttcct ggg ctcct tetacct gattaact taacct gattaact gattaactctggctgttgttaccatggcatatgaggagcagaacaagaatgtagctgcagagatagaggccaaggaaaagatgtttcag a cat cat at titta ceccaa aa aa gagaa ag ctettiggtaa taagaa aa ggaa gteetittittig ag ag ag tet gggaa ag accept and the companion of the compctatcactggaccactttgatgagcatggagatcctctccaaaggcagagagcactgagtgctgtcagcatcctcaccatca ccatgaaggaacaagaaaatcacaagagccttgtctcccttgtggagaaaacctggcatccaagtacctcgtgtggaact ggttttcactagcatttttatagcagaaatgtgcctaaaaatcattgcgctcgatccctaccactactttcgccgaggctggaac tt cag agtget cag gg tette agttage caa at cet gg cea act tt ga ac ac act a at tag ga ta at egg caact et gt egg act et general tetter agt to general tettteceaa aagagtee aa aactet g taacee ga cag gee ega cag teteat gtta cg geact g geacat g g g g at ttet g geachte gegen and geachte gas geachte gegen gegen general gegen gegencactect tectag tgg tatteeg catect etgegggga atggategaa aatat g tggga atgtat g caagaa g egaat g catect etgegggga at g at g categories at g cacett tagca at gagaa aa tagaa aa tagaa ag gaga gaga caggaa aa acta aa g tee ag tagca ct ggat cgat tee act gagaa ag caggaa aa cag ag aa aa tagaa caggaa ag caggaa aa caggaa ag cegeegggetttttgtttgtgagacacactettgagcatttetgtcacaagtggtgcaggaagcaaaacttaccacagcaaaa agaggtggcaggaggctgtgctgcacaaagcaaagacatcattcccctggtcatggagatgaaaaggggctcagagacc tcatctgaccatacaggatccccgaaagaagtctgatgttaccagtatactatcagaatgtagcaccattgatcttcaggatgg ctttggatggttacctgagatggttcccaaaaagcaaccagagagatgtttgcccaaaggctttggttgctgctttccatgctgtagcgtggacaagagaaagcctccctgggtcatttggtggaacctgcggaaaacctgctaccaaatagtgaaacacagcta at ccaa ga at tacta a at t g tactga cat tat ttt tacacat at ttt ttacct g ga ga t g g tacta a a at g g g t a g c t t c g g at tt to take the tactga ga to tactga ga to take the tactga ga to tactga ga to tactga ga to tactga ga to tactga ga toggaaagtatttcaccagtgcctggtgctgccttgatttcatcattgtgattgtctctgtgaccaccctcattaacttaattggaattgcataggtgccatacetgccattetgaatgttttgcttgtctgcctcattttctggctcgtattttgtattctgggagtatacttcttttct ggaaaatttgggaaatgcattaatggaacagactcagttataaattataccatcattacaaataaaagtcaatgtgaaagtggc aatttetettggateaaceagaaagteaactttgacaatgtgggaaatgettacetegetetgetgeaagtggcaacatttaag ggetggatggatattatatatgeagetgttgatteeacagagaaaagaacaacagecagagtttgagageaatteacteggtta cattta cttcg tag tctttat catctt t get cattctt catct t gaat ctctt cattgg cgt tatcatt gacaactt caaccaa cag cattta ctt catct t gacaactt catct catct t gacaactt catca caaccaa cag cattta ctt cattgg cgt tatcatt gacaactt caaccaa cag cattta ctt cattgg cgt tatcatt gacaactt caaccaa cag cattta ctt cattgg cgt tatcatt gacaactt catca caaccaa cag cattta ctt cattgg cgt tatcatt gacaactt catca caaccaa cag cattta cattga caactt catca caaccaa cag catta cattga caacta cattga caacta catca caaccaa caaccaaggetggaatttatttgactgtgtgtgtgttctttccattgttagtacaatgatttctaccttggaaaatcaggagcacattcctt tccctccgacgctcttcagaattgtccgcttggctcggattggccgaatcctgaggcttgtccgggctgcacgaggaatcaggacteteetetttgetetgatgatgtegetteettetetgtteaaeattggtettetaetetttetgattatgttatetatgeeattetgggtatgaactggttttccaaagtgaatccagagtctggaatcgatgacatattcaacttcaagacttttgccagcagcatgctct gtctcttccagataagcacatcagcaggttgggattccctgctcagccccatgctgcgatcaaaagaatcatgtaactcttcct cagaaaactgccacetcctggcatagccacatcetactttgtcagttacattatcatctcctttctcattgttgtcaacatgtaca agtgtgggaaaagtttgacccagaagcaacacaatttatcaaatattctgccctttctgactttgctgatgccttgcctgagcct attettttegeetteacegetagggtaeteggtggetetgatggeetagatagtatgaaageaatgatggaagaagateatg tattcaaaaggcctttcgaaagtacatgatgaaggtgaccaagggtgaccaaaggtgaccaaaatgacttggaaaacgggc ctcattcaccactccagactctttgcaatggagacttgtctagctttggggtggccaagggcaaggtccactgtgactga (SEQ ID NO: 15)

H.s. SCN1B

Atgggaggetgetggcettagtggteggeggeggeactggtgtecteagetggggggtgggggggggagtggacteg gagacegaggecgtgtatgggatgacetteaaaattetttgeateteetgeaagegeggagecgagagaceaaegetgagacetteacegagtggacetteeggaggggttgtgaaggtttgteaagateetgegetatgagaatgaggtgttgeaget ggaggaggatgagegettegagggegetggtgtggaatggeacegggggeaceaaagacetgeaggatetgtetat etteateaceaatgteacetacaaceaetegggegactacgagtgecaegtetacegeetgetettettegaaaaetacgag cacaaacaceagegtegteaagaagatecacattgaggtagtggacaaagccaacagagacatggcatecategtgtetga gateatgatgtatgtgeteattgtggtgttgaccatatggetggcagaagatgatttactgetacaagaagategetgeege cacggagactgetgcacaggagaatgeeteggaatacetggceateacetetgaaagcaaagagaactgcacgggegte caggtggecgaatag (SEQ ID NO: 16)

H.s. SCN2B

H.s. SCN3B

5

10

H.s. SCN4B

Atgccegggetgggaeggaggeaaagcceeggegagatggetgggcaetgggettttgggcctetteetgeteece gtaaccetgtegetggggtgtetgtgggaaaggccaeegacatetaegetgteaatggeaeggagateetgetgeetge acetteteeagetgetttggettegaggaceteeaetteeggtggacetacaacageagtgaegcatteaagatteteataga ggggaetgtgaagaatgagaagtetgaeeceaaggtgaegttgaaagaegatgaeegcateaetetggtaggetetaeta aggagaaagtaacaacattteeattggetgagggaeetggagtteagegaacagggcaaatacaeetgeeatgtgaag aacceeaaggagaataateteeageaecaegecaeeatetteeteeaagtegttgatagaetggaagaagtggaeaacae agtgaeacteateateetgetgtgtgggggggteategggeteeteateeteateetgetgateaagaaacteatett cateetgaagaagaagaagaagaagaagagggttetegtgageteetegggaatgaeaacaeggagaaacggettg cetggeteeaaggagagagaaacaeetteaaaagtgtga (SEO ID NO: 19)

5 H.s. SCN1A

megtvlyppgpdsfnfftreslaaierriaeekaknpkpdkkdddengpkpnsdleagknlpfiygdippemysepl edldpyvinkktfivlnkgkaifrfsatsalviltpfnplrkiaikilvhslfsmlimctiltncvfmtmsnppdwtknvev tftgivtfeslikiiargfcledftflrdpwnwldftvitfavvtefvdlgnvsalrtfrvlralktisvipglktivgaligsvkkl sdymiltyfelsyfaliglqlfmgnlrnkeigwpptnasleehsieknitynyngtlinetyfefdwksyigdsryhyfle gfldallcgnssdagqcpegymcv kagrnpnygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraaghtymiffvlviflaggruphygytsfdtfswaflslfrlmtqdfwenlyqltlraaghtymiffvlviflaggruphygytsfdtfswaflslfrlwtyflaggruphygytsfdtfswaflaggruphygytgsfylinlilavvamayeeqnqatleeaeqkeaefqqmieqlkkqqeaaqqaatatasehsrepsaagrlsdssseaskl ssksakermrikkrkqkeqsggeekdedefqksesedsirrkgfrfsiegnrltyekryssphqsllsirgslfsprmsrts lfsfrgrakdvgsendfaddehstfednesrrdslfvprrhgerrnsnlsqtsrssrmlavfpangkmhstvdcngvvsl vggpsvptspvgqllpegtttetemrkrrsssfhvsmdfledpsqrqramsiasiltntveeleesrqkcppcwykfsni fliwdcspywlkvkhvvnlvvmdpfvdlaiticivlntlfmamehypmtdhfnnvltvgnlvftgiftaemflkiiam dpyyyfqegwnifdgfivtlslvelglanveglsvlrsfrllrvfklakswptlnmlikiignsvgalgnltlvlaiivfifav vgmqlfgksykdevckiasdcqlprwhmndffhsflivfrvlcgewietmwdemevagqameltvfmmvmvig nlvvlnlflalllss fs adnlaatdd dnemnnlqiav drmhkgvayvkr kiyefi qqsfirkqkilde ikplddlnnkkdscmsnhtae igkdldylkdvngttsgigtgssvekyi ides dymsfinnpsltvtv piav gesdfen Inted fsses dlees and the property of the property okeklnesssssegstvdig apveeqpvve peetle peacfteg cvqrfkccqinveegrgkqwwnlrrtc frivehnwfet fiv fmills sgalafed iyid qrktikt mleyadkv ftyifilem llkw vaygyqtyft nawcwld fliv dvsl vsl tan in the first formula of the control of theedvnnhtdelk liernet ar wknvkvnfdnvgfgylsll qvat fkgwmdimyaavds rnvel qpkyeeslymylyfing a starten fan de startvifiifgsfftlnlfigviidnfnqqkkkfggqdifmteeqkkyynamkklgskkpqkpiprpgnkfqgmvfdfvtrqvfdisimiliclnmvtmmvetddqseyvttilsrinlvfivlftgecvlklislrhyyftigwnifdfvvvilsivgmflaeli gnsmiclfqitts agwdgllapilnskppdcdpnkvnpgssvkgdcgnpsvgifffvsyiiis flyvvnmyiavilen fsvateesaeplseddfemfyevwekfdpdatqfmefeklsqfaaalepplnlpqpnklqliamdlpmvsgdrihcldil faftkrvlgesgemdalriqmeerfmasnpskvsyqpitttlkrkqeevsaviiqrayrrhllkrtvkqasftynknkikg ganllikedmiidrinensitektdltmstaacppsydrvtkpivekheqegkdekakgk (SEQ ID NO: 20)

10 H.s. SCN2A

magsvlyppgpdsfrfftreslaaiegriaeekakrpkgerkdeddengpkpnsdleagkslpfiygdippemvsvpl edldpyyinkktfivlnkgkaisrfsatpalyiltpfnpirklaikilvhslfnmlimctiltncvfmtmsnppdwtknve ytftgiytfeslikilargfcledftflrdpwnwldftvitfayvtefvdlgnvsalrtfrvlralktisvipglktivgaligsvk klsdvmiltvfclsvfaliglqlfmgnlrnkclqwppdnssfeinitsffnnsldgngttfnrtvsifnwdeyiedkshfyfl egqndallcgnssdagqcpegyicvkagrnpnygytsfdtfswaflslfrlmtqdfwenlyqltlraagktymiffvlvi flgsfylinlilayvamayeegngatleeaegkeaefggmleglkkggeeagaaaaaasaesrdfsgaggigyfsesss vasklssksekelknrrkkkkakeasgeeekndryrksesedsirrkgfrfslegsrltvekrfssphasllsirgslfsprr nsraslfsfrgrakdigsendfaddehstfedndsrrdslfyphrhgerrhsnysgasrasrylpilpmngkmhsayden gyvslyggpstltsagqllpegttteteirkrrsssyhvsmdlledptsrqramsiasiltntmeeleesrqkcppcwykfa nmcliwdcckpwlkvkhlvnlvvmdpfvdlaiticivlntlfmamehypmteqfssvlsvgnlvftgiftaemflkii amdpyyyfgegwnifdgfivslslmelglanveglsvlrsfrllrvfklakswptlnmlikiignsvgalgnltlvlaiivfi favvgmqlfgksykecvckisndcelprwhmhdffhsflivfrvlcgewietmwdcmevagqtmcltvfmmvm vignlvvlnlflalllssfssdnlaatdddnemnnlqiavgrmqkgidfvkrkirefiqkafvrkqkaldeikpledlnnk kdscisnhttieigkdlnylkdgngttsgigssvekyvvdesdymsfinnpsltvtvpiavgesdfenlnteefssesdm eeskeklnatsssegstvdigapaegeqpevepeeslepeacftedcvrkfkccqisieegkgklwwnlrktcykiveh nwfetfivfmillssgalafediyiegrktiktmleyadkvftyifilemllkwyaygfqyyftnawcwldfliydyslys ltanalgyselgaiksIrtlralrplralsrfegmryvvnallgaipsimnyllvclifwlifsimgynlfagkfyhcinyttg emfdvsvvnnyseckaliesnqtarwknvkvnfdnvglgylsllqvatfkgwmdimyaavdsrnvelqpkyednl ymylyfvifiifgsfftlnlfigviidnfnqqkkkfggqdifmteeqkkyynamkklgskkpqkpiprpankfqgmvf dfvtkqvfdisimiliclnmvtmmvetddqsqemtnilywinlvfivlftgecvlklislryyyftigwnifdfvvvilsi vgmflaelieky fvsptl frvirlari grilrlik gak girtll falmmslpal fniglll flvm fiyaifgmsn fayv krev girtlig falmmsl galfnigll flvm fiyaifgmsn fayv krev girtlig fayv fayt fram fayt galfnig fayt galfnig fayt galfnig fayt flym fiyaifgmsn fayt galfnig fayt gatt galfnig fayt galfnig fayt galfnig fayt galfnig fayt galfnig faddmfnfetfgnsmiclfqittsagwdgllapilnsgppdcdpdkdhpgssvkgdcgnpsvgifffvsyiiisflvvvnmyiavilenfsvateesaeplseddfemfyevwekfdpdatqfiefaklsdfadaldpplliakpnkvqliamdlpmv sgdrihcldilfaftkrvlgesgemdalriqmeerfmasnpskvsyepitttlkrkqeevsaiiiqrayrryllkqkvkkvs siykkdkgkecdgtpikedtlidklnenstpektdmtpsttsppsydsvtkpekekfekdksekedkgkdireskk(SEQ ID NO: 21)

H.s. SCN3A

magallyppgpesfrlftreslaaiekraaeekakkpkkeqdnddenkpkpnsdleagknlpfiygdippemyseple dldpyyinkktfivmnkgkaifrfsatsalyiltplnpvrkiaikilvhslfsmlimctiltncvfmtlsnppdwtknveyt ftgiytfeslikilarg feled ftflrdpwnwldfsvivm ayv tefvdlgnvsalrt frvlralktisvip glktiv galiqsvkkls dv miltv felsv faligl ql fmgnlrnkel qwpps dsafetnt tsyfngt mdsngt fvnvt mst fnwk dyigddshall fan de ffyvldgqkdpllcgngsdagqcpegyicvkagrnpnygytsfdtfswaflslfrlmtqdywenlyqltlraagktymiffvlviflgs fylvnlilav vamayeeqn qatlee ae qkeaef qqmleqlkkqqee aqavaaas aasrdfsgigglgelle fylviflgs fylvnlilav vamayeeqn qatlee ae qkeaef qqmleqlkkqqee aqavaaas aasrdfsgigglgelle fylviflgs fylvnlilav vamayeeqn qatlee ae qkeaef qqmleqlkkqqee aqavaaas aasrdfsgigglgelle fylviflgs fylvnlilav vamayeeqn qatlee ae qkeaef qqmleqlkkqqee aqavaaas aasrdfsgigglgelle fylviflgs fylvnlilav vamayeeqn qatlee ae qkeaef qqmleqlkkqqee aqavaaas aasrdfsgigglgelle fylviflgs fylvnlilav vamayeeqn qatlee ae qkeaef qqmleqlkkqqee aqavaaas aasrdfsgigglgelle fylviflgs fylvnlilav vamayeeqn qatlee ae qkeaef qqmleqlkkqqee aqavaaas aasrdfsgigglgelle fylviflgs fylvnlilav vamayeeqn qatlee ae qkeaef qqmleqlkkqqee aqavaaas aasrdfsgigglgelle fylviflgs fyssse asklssk sake wrn rrkkrr qrehlegnnk gerds fpkse seds vkrssflfsmdgnr lts dkkfcsphqsllsirgslfsprrnskts if sfrgrak dvg send fadde hst fedses rrdsl f v phrhgerrnsn v sqasms srm v pglpangkar statistick for the statistic statistmhstvdcngvvslvggpsaltsptgqlppegtttetevrkrrlssyqismemledssgrqravsia siltntmeeleesrqupper and the state of thkcppcwyrfanvfliwdccdawlkvkhlvnlivmdpfvdlaiticivlntlfmame hypmteqfssvltvgnlvftgiilden beginning and the property of the propeftaemvlkiiamdpyyyfqegwnifdgiivslslmelglsnveglsvlrsfrllrvfklakswptlnmlikiignsvgalg nltlvlaiivfifavvgmqlfgksykecvckinddctlprwhmndffhsflivfrvlcgewietmwdcmevagqtmcl ivfmlvmvignlvvlnlflalllssfssdnlaatdddnemnnlqiavgrmqkgidyvknkmrecfqkaffrkpkviei hegnkidscmsnntgieiskelnylrdgngttsgygtgssyekyvidendymsfinnpsltytypiavgesdfenlnte efsseseleeskeklnatsssegstydyvlpregegaetepeedlkpeacftegcikkfpfcqysteegkgkiwwnlrkt cysivehnwfetfivfmillssgalafediyieqrktiktmleyadkvftyifilemllkwvaygfqtyftnawcwldfli vdyslyslyanalgyselgaikslrtlralrplralsrfegmryyynalygaipsimnyllyclifwlifsimgynlfagkfy hcvnmttgnmfdisdynnlsdcgalgkgarwknykynfdnygagylallgyatfkgwmdimyaaydsrdyklgp vyeenlymylyfvifiifgsfftlnlfigviidnfnggkkkfgggdifmteegkkyynamkklgskkpgkpiprpankf ggmvfdfvtrqvfdisimiliclnmvtmmvetddggkymtlvlsrinlvfivlftgefvlklvslrhyyftigwnifdfv vvilsivgmflaemiekyfvsptlfrvirlarigrilrlikgakgirtllfalmmslpalfniglllflvmfiyaifgmsnfayv kkeagiddmfnfetfgnsmiclfqittsagwdgllapilnsappdcdpdtihpgssvkgdcgnpsvgifffvsyiiisflv vvnmyiavilenfsvateesaeplseddfemfyevwekfdpdatqfiefsklsdfaaaldpplliakpnkvqliamdlp mvsgdrihcldilfaftkrvlgesgemdalriqmedrfmasnpskvsyepitttlkrkgeevsaaiigrnfrcyllkgrlk nissnynkeaikgridlpikqdmiidklngnstpektdgsssttsppsydsvtkpdkekfekdkpekeskgkevrenq k (SEQ ID NO: 22)

H.s. SCN4A

marpslctlvplgpeclrpftreslaaieqraveeearlqrnkqmeieeperkprsdleagknlpmiygdpppevigipl edldpyysnkktfivlnkgkaifrfsatpalyllspfsvyrrgaikvlihalfsmfimitiltncvfmtmsdpppwsknve ytftgiytfeslikilargfevddftflrdpwnwldfsvimmayltefvdlgnisalrtfrvlralktitvipglktivgaligsv kklsdvmiltvfclsvfalvglqlfmgnlrqkcvrwpppfndtnttwysndtwygndtwygnemwygndswyan dtwnshaswatndtfdwdayisdegnfyflegsndallcgnssdaghcpegyeciktgrnpnygytsydtfswaflal frlmtgdywenlfgltlraagktymiffyviiflgsfylinlilavvamavaegneatlaedkekeeefggmlekfkkhg eelekakaaqaleggeadgdpahgkdcngsldtsqgekgaprqsssgdsgisdameeleeahqkcppwwykcah kvliwnccapwlkfkniihlivmdpfvdlgiticivlntlfmamehypmtehfdnvltvgnlvftgiftaemvlkliam dpyeyfqqgwnifdsiivtlslvelglanvqglsvlrsfrllrvfklakswptlnmlikiignsvgalgnltlvlaiivfifav vgmqlfgksykecvckialdcnlprwhmhdffhsflivfrilcgewietmwdcmevagqamcltvflmvmvignl vvlnlflalllssfsadslaasdedgemnnlqiaigriklgigfakafllgllhgkilspkdimlslgeadgageageageta pedekkeppeedlkkdnhilnhmgladgppssleldhlnfinnpyltigypiaseesdlempteeetdtfsepedskkp pqplydgnssvcstadykppeedpeeqaeenpegeqpeecfteacvqrwpclyvdisqgrgkkwwtlrracfkive hnwfetfivfmillssgalafediyieqrrvirtileyadkvftyifimemllkwvaygfkvyftnawcwldflivdvsiis lvanwlgyselgpikslrtlralrplralsrfegmrvvvnallgaipsimnvllvclifwlifsimgvnlfagkfyycinttts erf disevnnk seces lmht g qvrwlnvkvnydnvg lgylsll qvat f kgwmdimya avd sreke eqp qyevnlymylyfvifiifgsfftlnlfigviidnfnqqkkklggkdifmteeqkkyynamkklgskkpqkpiprpqnkiqgmvy dlvtkqafditimiliclnmvtmmvetdnqsqlkvdilyninmifiiiftgecvlkmlalrqyyftvgwnifdfvvvilsi vglalsd liqky fvsptl frvirlari grvlrlirgak girtll falmmsl palfnig lll flvm fiysif gmsn fayvkke sgidnig llflvm fiysif gmsn fayvkke sgidnig falm fall falmmsl palfnig lll flvm fiysif gmsn fayvkke sgidnig fall flvm fiysif gmsn fayvkke sgidnig fayvkke sgidnig fall flvm fiysif gmsn fayvkke sgidnig fayvkke sgidnigdmfnfetfgnsiiclfeittsagwdgllnpilnsgppdcdpnlenpgtsvkgdcgnpsigicffesyiiisflivvnmyiai ilen fn vatees sepl ged d fem fyet wek fdp dat q fia ysrls d fvdt l qepl riak pn kik lit l d l pm v pg d kih c land sepl ged d fem fyet wek fdp dat q fia ysrls d fvdt l qepl riak pn kik lit l d l pm v pg d kih c land sepl ged d fem fyet wek fdp dat q fia ysrls d fvdt l qepl riak pn kik lit l d l pm v pg d kih c land sepl ged d fem fyet wek fd pd at q fia ysrls d fvdt l qepl riak pn kik lit l d l pm v pg d kih c land sepl ged d fem fyet wek fd pd at q fia ysrls d fvdt l qepl riak pn kik lit l d l pm v pg d kih c land sepl ged d fem fyet wek fd pd at q fia ysrls d fvdt l qepl riak pn kik lit l d l pm v pg d kih c land sepl ged g for a fia ysrls d fvdt l qepl riak pn kik lit l d l pm v pg d kih c land sepl g for a fia ysrls d fvdt l qepl riak pn kik lit l d l pm v pg d kih c land sepl g for a fia ysrls d for a fia ysrls d fvdt l qepl riak pn kik lit l d l pm v pg d kih c land sepl g for a fia ysrls d for a fia ysrls ddilfaltkevlgdsgemdalkqtmeekfmaanpskvsyepitttlkrkheevcaikiqrayrrhllqrsmkqasymyrh shdgsgddapekegllantmskmyghengnssspspeekgeagdagptmglmpispsdtawppapppgqtvrp gvkeslv (SEQ ID NO: 23)

H.s. SCN5A

manfllprgtssfrrftreslaaiekrmaekqargsttlqesreglpeeeaprpqldlqaskklpdlygnppqeligepledl dpfystqktfivlnkgktifrfsatnalyvlspfhpirraavkilvhslfnmlimctiltncvfmaqhdpppwtkyveytft aiytfeslvkilargfclhaftflrdpwnwldfsviimayttefvdlgnvsalrtfrvlralktisvisglktivgaliqsvkkla dvmvltv fclsv faliglql fmgnlrhk cvrn ftalngtngsveadglvwesldlylsd penyllkngt sdvllcgnssdaller for the state of the following state of the state ofgtcpegyrclkagenpdhgytsfdsfawaflalfrlmtqdcwerlyqqtlrsagkiymiffmlviflgsfylvnlilavva mayeeqnqatiaeteekekrfqeamemlkkehealtirgvdtvsrsslemsplapvnsherrskrrkrmssgteecge drlpksdsedgpramnhlsltrglsrtsmkprssrgsiftfrrrdlgseadfaddenstageseshhtsllvpwplrrtsagg qpspgtsapghalhgkknstvdcngvvsllgagdpeatspgshllrpvmlehppdtttpseepggpqmltsqapevd gfeepgarqralsavsvltsaleeleesrhkeppewnrlaqryliweceplwmsikqgvklvvmdpftdltitmcivlnt lfmalehynmtsefeemlqvgnlvftgiftaemtfkiialdpyyyfqqgwnifdsiivilslmelglsrmsnlsvlrsfrll rvfklakswptlntlikiignsvgalgnltlvlaiivfifavvgmqlfgknyselrdsdsgllprwhmmdffhafliifrilc gewietmwdcmevsgqslcllvfllvmvignlvvlnlflalllssfsadnltapdedremnnlqlalariqrglrfvkrtt wdfccgllrqrpqkpaalaaqgqlpsciatpysppppetekvpptrketrfeegeqpgqgtpgdpepvcvpiavaesd tdd qee deen slgtee es skqqe sqpv sgg peappd srtw sqv satas sea eas as qadwr qqw kaepqap gcget to the square of the square ofpedscsegstadmtntaelleqipdlgqdvkdpedcftegcvrrcpccavdttqapgkvwwrlrktcyhivehswfet fiifmillssgalafediyleerktikvlleyadkmftyvfvlemllkwvaygfkkyftnawcwldflivdvslvslvantl gfaemgpikslrtlralrplralsrfegmryvvnalvgaipsimnvllyclifwlifsimgvnlfagkfgrcingtegdlpl nytivnnksqceslnltgelywtkykynfdnygagylallqyatfkgwmdimyaaydsrgyeeqpqweynlymyi yfyifiifgsfftlnlfigyiidnfnqqkkklggqdifmteeqkkyynamkklgskkpqkpiprplnkyqgfifdiytkq afdytimfliclnmytmmyetddgspekinilakinllfyaiftgeciyklaalrhyyftnswnifdfyyyilsiygtylsd iigkyffsptlfryirlarigrilrlirgakgirtllfalmmslpalfniglllflymfiysifgmanfayykweagiddmfnfq tfansmlclfqittsagwdgllspilntgppycdptlpnsngsrgdcgspavgilffttyiiisflivynmyiaiilenfsvat eesteplseddfdmfyeiwekfdpeatgfieysylsdfadalseplriakpngislinmdlpmysgdrihcmdilfaftk rylgesgemdalkigmeekfmaanpskisyepitttlrrkheevsamvigrafrrhllgrslkhasflfrggagsglseed aperegliavvmsenfsrplgppssssisstsfppsvdsvtratsdnlqvrgsdvshsedladfppspdrdresiv (SEO ID NO: 24)

H.s. SCN7A (ocasionalmente referida como SCN6A)

5

mlaspepkglvpftkesfelikqhiakthnedheeedlkptpdlevgkklpfiygnlsqgmvsepledvdpyyykkk ntfivlnknrtifrfnaasilctlspfncirrttikvlvhpffqlfilisvlidcvfmsltnlpkwrpvlentllgiytfeilvklfar gvwagsfsflgdpwnwldfsvtvfeviiryspldfiptlqtartlrilkiiplnqglkslvgvlihclkqligviiltlfflsifsli gmglfmgnlkhkcfrwpqenenetlhnrtgnpyyiretenfyylegeryallcgnrtdagqcpegyvcvkaginpdq gftnfdsfgwalfalfrlmaqdypevlyhqilyasgkvymiffvvvsflfsfymaslflgilamayeeekqrvgeiskki epkfqqtgkelqegnetdeaktiqiemkkrspistdtsldvledatlrhkeelekskkicplywykfaktfliwncspcw lklkefyhriimapftdlfliiciilnycfltlehypmskatntllnignlyfigiftaemifkijamhpygyfgygwnifds mivfhglielclanvagmallrlfrmlrifklgkywptfqilmwslsnswvalkdlvlllftfiffsaafgmklfgknyeef vchidkdcqlprwhmhdffhsflnvfrilcgewyetlwdcmeyaggswcipfylmvilignllylylflalyssfssck dvtaeenneaknlqlavarikkginvvllkilcktqnvpkdtmdhvnevvvkedisdhtlselsntqdflkdkekssgt eknatenesgslipspsysetypiasgesdienldnkeigsksgdggskekikgssssecstydiaiseeeemfyggers khlkngcrrgsslggisgaskkgkiwgnirktcckivennwfkcfiglytllstgtlafediymdgrktikilleyadmift yifilemllkwmaygfkayfsngwyrldfyyyivfclsligktreelkplismkflrplrylsqfermkyyyralikttlpt lnvflvclmiwlifsimgvdlfagrfyecidptsgerfpssevmnksrcesllfnesmlwenakmnfdnvgngflsllq vatfngwitimnsaidsvavniqphfevniymycyfinfiifgyflplsmlitviidnfnkhkiklggsnifitvkgrkgy rrlkklmyedsgrpyprplnklagfifdvytsgafnvivmylicfgaiammidtdygslgmsialywinsifymlytm ecilkliafrcfyftiawnifdfmyvifsitglclpmtygsylyppslyglillsriihmlrlgkgpkyfhnlmlplmlslpal lniilliflymfiyayfgmynfayykkeagindysnfetfgnsmlclfqyaifagwdgmldaifnskwsdcdpdkinp gtqvrgdcgnpsvgifyfvsyiliswliivnmyivvvmeflniaskkknktlseddfrkffqvwkrfdpdrtqyidsskl sdfaaaldpplfmakpnkgglialdlpmavgdriheldillaftkrymggdyrmekyvseiesgfllanpfkitcepittt lkrkgeavsatiigrayknyrlrrndkntsdihmidgdrdvhatkegayfdkakekspigsgi (SEQ ID NO: 25)

H.s. SCN8A

maarllappgpdsfkpftpeslanierriaesklkkppkadgshreddedskpkpnsdleagkslpfiygdipqglvav pledfdpyyltqktfvvlnrgktlfrfsatpalyilspfnlirriaikilihsvfsmiimctiltncvfmtfsnppdwsknvey tftgiytfeslvkiiargfcidgftflrdpwnwldfsvimmayitefvnlgnvsalrtfrvlralktisvipglktivgaliqsv kklsdvmiltvfclsvfaliglqlfmgnlrnkcvvwpinfnesylengtkgfdweeyinnktnfytvpgmlepllcgns sdagqcpegyqcmkagrnpnygytsfdtfswaflalfrlmtqdywenlyqltlraagktymiffvlvifvgsfylvnlil avvamayeeqnqatlee aeqkeaefkamleqlkkqqee aqaaamat sagtvsedaie eegeegggsprssse is klssele to be a proposition of the contraction of the contractiosksakerrnrrkkrkqkelsegeekgdpekvfksesedgmrrkafrlpdnrigrkfsimnqsllsipgspflsrhnskssi fsfrgpgrfrdpgsenefaddehstveesegrrdslfipirarerrssysgysgysggsrssrifpslrrsvkrnstvdcngv vsliggpgshiggrllpeatteveikkkgpgsllvsmdqlasygrkdrinsimsvvtntlveeleesqrkcppcwykfan tfliwechpywiklkeivnlivmdpfvdlaiticivlntlfmamehhpmtpqfehvlavgnlvftgiftaemflkliam dpyyyfqegwnifdgfivslslmelsladveglsvlrsfrllrvfklakswptlnmlikiignsvgalgnltlvlaiivfifav vgmqlfgksykecvckinqdcelprwhmhdffhsflivfrvlcgewietmwdcmevagqamclivfmmvmvi gnlvvlnlflalllssfsadnlaatdddgemnnlqisvirikkgvawtklkvhafmqahfkqreadevkpldelyekka ncianhtgadihrngdfqkngngttsgigssvekyiidedhmsfinnpnltvrvpiavgesdfenlntedvssesdpeg skdklddtsssegstidikpeveevpveqpeeyldpdacftegcvqrfkccqvnieeglgkswwilrktcflivehnwf etfiifmillssgalafediyieqrktirtileyadkvftyifilemllkwtaygfvkfftnawcwldflivavslvslianalg yselgaiksIrtlralrplralsrfegmrvvvnalvgaipsimnvllvclifwlifsimgvnlfagkyhycfnetseirfeied vnnkteceklmegnnteirwknykinfdnygagylallqyatfkgwmdimyaaydsrkpdeqpkyedniymyiy fvifiifgsfftlnlfigviidnfnqqkkkfggqdifmteeqkkyynamkklgskkpqkpiprplnkiqgivfdfvtqqa fdivimmlicInmvtmmvetdtqskqmenilywinlvfvifftcecvlkmfalrhyyftigwnifdfvvvilsivgmf ladiieky fvsptl frvirlari grilr lik gak girtll falmmsl palfnig lll flvm fifsif gmsn fayvkhea giddm fundamental framskall framskall framskall framskall falm framskall framskalnfetfgnsmiclfqittsagwdglllpilnrppdcsldkehpgsgfkgdcgnpsvgifffvsyiiisflivvnmyiaiilenf svateesadplseddfetfyeiwekfdpdatqfieyckladfadalehplrvpkpntieliamdlpmvsgdrihcldilfa ftkrvlgdsgeldilrqqmeerfvasnpskvsyepitttlrrkqeevsavvlqrayrghlarrgfickkttsnklenggthre kkestpstaslpsydsvtkpekekqqraeegrrerakrqkevreskc (SEQ ID NO: 26)

5

H.s. SCN9A

mamlpppgpgsfvhftkgslaliegriaerkskepkeekkdddeeapkpssdleagkglpfiygdippgmvsepled ldpyyadkktfivlnkgktifrfnatpalymlspfsplrrisikilvhslfsmlimctiltncifmtmnnppdwtknveytf tgiytfeslvkilargfevgeftflrdpwnwldfvvivfayltefvnlgnvsalrtfrvlralktisvipglktivgaliqsvkkl sdvmiltvfclsvfaliglqlfmgnlkhkcfrnslennetlesimntleseedfrkyfyylegskdallcgfstdsgqcpeg ytcvkigrnpdygytsfdtfswaflalfrlmtqdywenlyggtlraagktymiffvvviflgsfylinlilavvamayeeg nganieeakgkelefgamldrlkkegeeaeajaaaaaeytsirrsrimglsesssetsklssksakerrnrrkkkngkkls sgeekgdaeklsksesedsirrksfhlgveghrrahekrlstongsplsirgslfsarrssrtslfsfkgrgrdigsetefadde hsifgdnesrrgslfvphrpqerrssnisgasrsppmlpvngkmhsavdcngvvslvdgrsalmlpngqllpegttnqi hkkrrcssyllsedmlndpnlrgramsrasiltntveeleesrgkcppwwyrfahkfliwncspywikfkkciyfivm dpfvdlaiticivlntlfmamehhpmteefknvlaignlvftgifaaemvlkliamdpyeyfqvgwnifdslivtlslve lfladveglsvlrsfrllrvfklakswptlnmlikiignsvgalgnltlvlaiivfifavvgmglfgksykecyckinddctlp rwhmndffhsflivfrylcgewietmwdcmeyaggamclivymmymyignlyylnlflalllssfssdnltaieedp dannlqiavtrikkginyvkqtlrefilkafskkpkisreirqaedlntkkenyisnhtlaemskghnflkekdkisgfgss vdkhlmedsdggsfihnpsltytypiapgesdlenmnaeelssdsdseyskyrlnrssssecstydnplpgegeeaeae pmnsdepeacftdgcvrrfsccqvniesgkgkiwwnirktcykivehswfesfivlmillssgalafediyierkktikii leyadkiftyifilemllkwiaygyktyftnawcwldflivdvslvtlvantlgysdlgpikslrtlralrplralsrfegmrv vvnaligaipsimnvllvclifwlifsimgvnlfagkfyecinttdgsrfpasqvpnrsecfalmnvsqnvrwknlkvnf dnvglgylsllqvatfkgwtiimyaavdsvnvdkqpkyeyslymyiyfvvfiifgsfftlnlfigviidnfnqqkkklgg qdifmteeqkkyynamkklgskkpqkpiprpgnkiqgcifdlvtnqafdisimvliclnmvtmmvekegqsqhm tevlywinvvfiilftgecvlklislrhyyftvgwnifdfvvviisivgmfladlietyfvsptlfrvirlarigrilrlykgakg irtllfalmmslpalfniglllflvmfiyaifgmsnfayvkkedgindmfnfetfgnsmiclfqittsagwdgllapilnsk ppdcdpkkvhpgssvegdcgnpsvgifyfvsyiiisflvvvnmyiavilenfsvateesteplseddfemfyevwekf dpdatq fiefsklsd faa ald pplliak pn kvq liamdl<math>pmvsgdrihcldilfaftkrvlgesgemdslrsqmeer fmsan psk v syepitt tlkrk qed v satvi qrayrryr lrqnvknis siyik dgdr dddllnkk dmafdnvnen sspekt datvir qrayrryr lrqnvknis siyik dgdr dddllnk dmafdnvnen spekt datvir qrayrryr llag spekt datvir qrayrryr qrayr qrayr qrayr qrayrryr qrayrryr qrayrryr qrayr qrayr qrayr qrayr qrssttsppsydsvtkpdkekyeqdrtekedkgkdskeskk (SEQ ID NO: 27)

H.s. SCN10A

5

mefpigsletnnfrrftpeslveiekqiaakqgtkkarekhreqkdqeekprpqldlkacnqlpkfygelpaeligeple dldpfysthrtfmvlnkgrtisrfsatralwlfspfnlirrtaikvsvhswfslfitvtilvncvcmtrtdlpekieyvftviytf ealikilargfclneftylrdpwnwldfsvitlayvgtaidlrgisglrtfrvlralktvsvipglkvivgalihsvkkladvtilt ifelsvfalvglqlfkgnlknkcvkndmavnettnysshrkpdiyinkrgtsdpllcgngsdsghcpdgyielktsdnp dfnytsfdsfawaflslfrlmtqdswerlyqqtlrtsgkiymiffvlviflgsfylvnlilavvtmayeeqnqattdeieakekkfqealemlrkeqevlaalgidttslhshngspltsknaserrhrikprvsegstednksprsdpyngrrmsflglasgk rrashgsvfh frspgr dislpegvtddgvfpg dheshrgslllgggag qqpplprsplpqpsnpdsrhgedehqppptselapgavdvsafdagqkktflsaeyldepfraqramsvvsiitsvleeleeseqkcppcltslsqkyliwdccpmwvkl ktilfglvtdpfaeltitlcivvntifmamehhgmsptfeamlqignivftifftaemvfkiiafdpyyyfqkkwnifdcii vtvsllelgvakkgslsvlrsfrllrvfklakswptlntlikiignsvgalgnltiilaiivfvfalvgkqllgenyrnnrknisa phedwprwhmhdffhsflivfrilcgewienmwacmevgqksiclilfltvmvlgnlvvlnlfialllnsfsadnltap eddgevnnlqvalariqvfghrtkqalcsffsrscpfpqpkaepelvvklplssskaenhiaantargssgglqaprgprd ehsdfianptvwvsvpiaegesdlddleddggedaqsfqqevipkgqqeqlqqvercgdhltprspgtgtssedlapsl getwkdesvpqvpaegvddtsssegstvdcldpeeilrkipeladdleepddcftegcirhcpcckldttkspwdvgw qyrktcyriyehswfesfiifmillssgslafedyyldqkptykalleytdryftfifyfemllkwyaygfkkyftnawcw ldflivnislisltakileysevapikalrtlralrplralsrfegmrvvvdalvgaipsimnyllvclifwlifsimgvnlfag kfwrcinytdgefslyplsivnnksdckignstgsffwynykynfdnyamgylallqyatfkgwmdimyaaydsre vnmapkwednyymylyfyifiifggfftlnlfygyiidnfngqkkklgggdifmteegkkyynamkklgskkpqk piprplnkfqgfvfdivtrqafditimvliclnmitmmvetddqseektkilgkinqffvavftgecvmkmfalrqyvft ngwnvfdfivvvlsiaslifsailkslqsyfsptlfrvirlarigrilrliraakgirtllfalmmslpalfniglllflvmfiysifg mssfphyrweagiddmfnfqtfansmlclfqittsagwdgllspilntgppycdpnlpnsngtrgdcgspaygiifftty iiisflimvnmviavilenfnvateesteplseddfdmfyetwekfdpeatafitfsalsdfadtlsgplripkpnrnilig mdlplypgdkihcldilfaftknylgesgeldslkanmeekfmatnlskssyepiattlrwkgedisatviqkayrsyyl hrsmalsntpcvpraeeeaaslpdegfvaftanencvlpdksetasatsfppsyesvtrglsdrvnmrtsssignedeats meliapgp (SEO ID NO: 28)

H.s. SCN11A

mddrcypvifpdernfrpftsdslaaiekriaigkekkkskdqtgevpqprpqldlkasrklpklygdipreligkpledl dpfyrnhktfmvlnrkrtiyrfsakhalfifgpfnsirslairvsvhslfsmfiigtviincvfmatgpaknsnsnntdiaec vftgiyifealikilargfildefsflrdpwnwldsivigiaivsyipgitikllplrtfrvfralkaisvvsrlkvivgallrsvkk lvnviiltffclsifalvgqqlfmgslnlkcisrdcknisnpeaydhcfekkenspefkmcgiwmgnsacsiqyeckht kinpdynytnfdnfgwsflamfrlmtqdsweklyqqtlrttglysvfffivviflgsfylinltlavvtmayeeqnknvaa eieakekmfqeaqqllkeekealyamgidrssltsletsyftpkkrklfgnkkrksfflresgkdqppgsdsdedcqkk palleatkrlsanlsldhfdehgdplararalsavsiltitmkegeksgepclpcgenlaskylywnccpgwlcykkylr tymtdoftelaiticiiintyflamehhkmeasfekmlnignlyftsifiaemclkiialdpyhyfrrgwnifdsivallsfa dymncylgkrswpflrsfrylryfklakswptlntlikiignsygalgsltyylyiyififsyygmalfgrsfnsgkspklc nptgptysclrhwhmgdfwhsflyvfrilcgewienmwecmgeanassslcyiyfilityigklyvlnlfialllnsfsn eerngnlegearktkvqlaldrfrrafcfvrhtlehfchkwcrkqnlpqqkevaggcaaqskdiiplvmemkrgsetqe elgiltsvpktlgvrhdwtwlaplaeeeddvefsgednagritgpepeggayelhgenkkptsgrvgsveidmfsede phltiqdprkksdvtsilsecstidlqdgfgwlpemvpkkqperclpkgfgcefpccsvdkrkppwviwwnlrktcy qivkhswfesfiifvillssgalifedvhlenqpkiqellnctdiifthifilemvlkwvafgfgkyftsawccldfiivivsv ttlinlmelksfrtlralrplralsqfegmkyyynaligaipailnyllyclifwlyfcilgyyffsgkfgkcingtdsyinytii tnksqcesgnfswingkvnfdnvgnaylallqvatfkgwmdiiyaavdstekeqqpefesnslgyiyfvvfiifgsfftl ismmaesynqpkamksildhlnwvfvviftleclikifalrqyyftngwnlfdcvvvllsivstmistlengehipfpptl frivrlarigrilrlvraargirtllfalmmslpslfniglllflimfiyailgmnwfskvnpesgiddifnfktfassmlclfqi stsagwdsllspmlrskescnsssenchlpgiatsyfvsyiiisflivvnmyiavilenfntateesedplgeddfdifyev we kfd peat q fik ys als d fad alpep lrvak pn kyq flvmd lpm vsedrlhem dilfaftar vlggsd gldsm kamler fan de skriver fan de skmeekfmeanplkklyepivtttkrkeeergaaiiqkafrkymmkvtkgdqgdqndlengphsplqtlcngdlssfgv akgkvhcd (SEQ ID NO: 29)

H.s. SCN1B

Mgrllalvvgaalvssacggevevdseteavygmtfkilcisckrrsetnaetftewtfrqkgteefvkilryenevlqlee derfegrvvwngsrgtkdlqdlsifitnvtynhsgdyechvyrllffenyehntsvvkkihievvdkanrdmasivsei mmyvlivvltiwlvaemiycykkiaaatetaaqenaseylaitseskenctgvqvae (SEQ ID NO: 30)

H.s. SCN2B

Mhrdawlprpafsltglslffslyppgrsmevtypatlnvlngsdarlpctfnscytvnhkqfslnwtygecnncseem flqfrmkiinlklerfqdrvefsgnpskydvsvmlrnvqpedegiyncyimnppdrhrghgkihlqvlmeepperds tvavivgasvggflavvilvlmvvkcvrrkkegklstddlkteeegktdgegnpddgak (SEO ID NO: 31)

H.s. SCN3B

Mpafnrlfplaslvliywvsvcfpvcvevpseteavqgnpmklrciscmkreeveattvvewfyrpeggkdfliyey rnghgevespfggrlgwngskdlgdvsitvlnvtlndsglytcnvsrefefeahrpfvkttrliplrvteeagedftsvvse immyillvfltlwlliemiycyrkvskaeeaagenasdylaipsenkensavpvee (SEQ ID NO: 32)

H.s. SCN4B 15

Mpgagdggkaparwlgtgllglfllpvtlslevsvgkatdiyavngteillpctfsscfgfedlhfrwtynssdafkiliegtvkneksdpkvtlkdddritlvgstkekmnnisivlrdlefsdtgkytchvknpkennlqhhatiflqvvdrleevdntvtl iilavvggvigllilillikkliifilkktrekkkeclysssgndntenglpgskaeekppsky (SEQ ID NO: 33)

Sonda de señalización 3 – (unión objetivo 3) 5'- Fam GCGAGAGCGACAAGCAGACCCTATAGAACCTCGC BHQ1 quench -3' (SEQ ID NO: 34)

LISTADO DE SECUENCIAS

<110> CHROMOCELL CORPORATION

<120> LÍNEAS CELULARES QUE EXPRESAN NAV Y MÉTODOS PARA SU UTILIZACIÓN

<130> CHROMO/6 PCT 2 (002298-0013-WO2)

30 <140> PCT/US2009/032902 <141> 02-02-2009

42

5

10

20

25

	<160> 35
	<170> Patentln versión 3.5
5	<210> 1 <211> 25 <212> ADN <213> Secuencia artificial
10	<220>
	<221> fuente <223> /note="Descripción de secuencia artificial: oligonucleótido sintético"
15	<400> 1 gttcttaagg cacaggaact gggac 25
20	<210> 2 <211> 25 <212> ADN <213> Secuencia artificial
25	<220> <221> fuente <223> /note="Descripción de secuencia artificial: oligonucleótido sintético"
	<400> 2 gaagttaacc ctgtcgttct gcgac 25
30	<210> 3 <211> 25 <212> ADN <213> Secuencia artificial
35	<220> <221> fuente <223> /note="Descripción de secuencia artificial: oligonucleótido sintético"
40	<400> 3 gttctatagg gtctgcttgt cgctc 25
45	<210> 4 <211> 34 <212> ADN <213> Secuencia artificial
5 0	<220> <221> fuente <223> /note="Descripción de secuencia artificial: sonda sintética"
50	<400> 4 gccagtccca gttcctgtgc cttaagaacc tcgc 34
55	<210> 5 <211> 34 <212> ADN <213> Secuencia artificial
60	<220> <221> fuente <223> /note="Descripción de secuencia artificial: sonda sintética"
65	<400> 5 gcgagtcgca gaacgacagg gttaacttcc tcgc 34 <210> 6

<211> 5997 <212> ADN <213> Homo sapiens

5 <400>6

atggagcaaa cagtgcttgt accaccagga cctgacagct tcaacttctt caccagagaa 60 120 tctcttgcgg ctattgaaag acgcattgca gaagaaaagg caaagaatcc caaaccagac 180 aaaaaagatg acgacgaaaa tggcccaaag ccaaatagtg acttggaagc tggaaagaac 240 cttccattta tttatggaga cattcctcca gagatggtgt cagagcccct ggaggacctg gacccctact atatcaataa gaaaactttt atagtattga ataaagggaa ggccatcttc 300 cggttcagtg ccacctctgc cctgtacatt ttaactccct tcaatcctct taggaaaata 360 420 gctattaaga ttttggtaca ttcattattc agcatgctaa ttatgtgcac tattttgaca aactgtgtgt ttatgacaat gagtaaccct cctgattgga caaagaatgt agaatacacc 480 ttcacaqqaa tatatacttt tqaatcactt ataaaaatta ttqcaaqqqq attctqttta 540 gaagatttta ctttccttcg ggatccatgg aactggctcg atttcactgt cattacattt 600 gcgtacgtca cagagtttgt ggacctgggc aatgtctcgg cattgagaac attcagagtt 660 720 ctccgagcat tgaagacgat ttcagtcatt ccaggcctga aaaccattgt gggagccctg atccagtctg tgaagaagct ctcagatgta atgatcctga ctgtgttctg tctgagcgta 780 tttgctctaa ttgggctgca gctgttcatg ggcaacctga ggaataaatg tatacaatgg 840 900 cctcccacca atgcttcctt ggaggaacat agtatagaaa agaatataac tgtgaattat aatggtacac ttataaatga aactgtcttt gagtttgact ggaagtcata tattcaagat 960 tcaagatatc attatttcct ggagggtttt ttagatgcac tactatgtgg aaatagctct 1020 1080 gatgcaggcc aatgtccaga gggatatatg tgtgtgaaag ctggtagaaa tcccaattat ggctacacaa gctttgatac cttcagttgg gcttttttgt ccttgtttcg actaatgact 1140 caggacttct gggaaaatct ttatcaactg acattacgtg ctgctgggaa aacgtacatg 1200

atattttttg tattggtcat	tttcttgggc	tcattctacc	taataaattt	gatcctggct	1260
gtggtggcca tggcctacga	ggaacagaat	caggccacct	tggaagaagc	agaacagaaa	1320
gaggccgaat ttcagcagat	gattgaacag	cttaaaaagc	aacaggaggc	agctcagcag	1380
gcagcaacgg caactgcctc	agaacattcc	agagagccca	gtgcagcagg	caggctctca	1440
gacageteat etgaageete	taagttgagt	tccaagagtg	ctaaggaaag	aagaaatcgg	1500
aggaagaaaa gaaaacagaa	agagcagtct	ggtggggaag	agaaagatga	ggatgaattc	1560
caaaaatctg aatctgagga	cagcatcagg	aggaaaggtt	ttcgcttctc	cattgaaggg	1620
aaccgattga catatgaaaa	gaggtactcc	tecceacace	agtctttgtt	gagcatccgt	1680
ggctccctat tttcaccaag	gcgaaatagc	agaacaagcc	ttttcagctt	tagagggcga	1740
gcaaaggatg tgggatctga	gaacgacttc	gcagatgatg	agcacagcac	ctttgaggat	1800
aacgagagcc gtagagattc	cttgtttgtg	ccccgacgac	acggagagag	acgcaacagc	1860
aacctgagtc agaccagtag	gtcatcccgg	atgctggcag	tgtttccagc	gaatgggaag	1920
atgcacagca ctgtggattg	caatggtgtg	gtttccttgg	ttggtggacc	ttcagttcct	1980
acategeetg ttggaeaget	tctgccagag	ggaacaacca	ctgaaactga	aatgagaaag	2040
agaaggtcaa gttctttcca	cgtttccatg	gactttctag	aagateette	ccaaaggcaa	2100
cgagcaatga gtatagccag	cattctaaca	aatacagtag	aagaacttga	agaatccagg	2160
cagaaatgcc caccctgttg	gtataaattt	tccaacatat	tcttaatctg	ggactgttct	2220
ccatattggt taaaagtgaa	acatgttgtc				2280
ccatattggt taaaagtgaa		aacctggttg	tgatggaccc	atttgttgac	2280 2340
	tgtcttaaat	aacctggttg	tgatggaccc tggccatgga	atttgttgac gcactatcca	
ctggccatca ccatctgtat	tgtcttaaat tgtgcttaca	aacctggttg actcttttca gtaggaaact	tgatggaccc tggccatgga tggttttcac	atttgttgac gcactatcca tgggatcttt	2340
ctggccatca ccatctgtat	tgtcttaaat tgtgcttaca aattattgcc	aacctggttg actcttttca gtaggaaact atggatcctt	tgatggaccc tggccatgga tggttttcac actattattt	atttgttgac gcactatcca tgggatcttt ccaagaaggc	2340 2400
ctggccatca ccatctgtat atgacggacc atttcaataa acagcagaaa tgtttctgaa	tgtcttaaat tgtgcttaca aattattgcc tattgtgacg	aacctggttg actcttttca gtaggaaact atggatcctt cttagcctgg	tgatggaccc tggccatgga tggttttcac actattattt tagaacttgg	atttgttgac gcactatcca tgggatcttt ccaagaaggc actcgccaat	2340 2400 2460
ctggccatca ccatctgtat atgacggacc atttcaataa acagcagaaa tgtttctgaa tggaatatct ttgacggttt	tgtcttaaat tgtgcttaca aattattgcc tattgtgacg ccgttcattt	aacctggttg actcttttca gtaggaaact atggatcctt cttagcctgg cgattgctgc	tgatggaccc tggccatgga tggttttcac actattattt tagaacttgg gagttttcaa	atttgttgac gcactatcca tgggatcttt ccaagaaggc actcgccaat gttggcaaaa	2340 2400 2460 2520
ctggccatca ccatctgtat atgacggacc atttcaataa acagcagaaa tgtttctgaa tggaatatct ttgacggttt gtggaaggat tatctgttct	tgtcttaaat tgtgcttaca aattattgcc tattgtgacg ccgttcattt gctaataaag	aacctggttg actctttca gtaggaaact atggatcctt cttagcctgg cgattgctgc atcatcggca	tgatggaccc tggccatgga tggttttcac actattattt tagaacttgg gagttttcaa attccgtggg	atttgttgac gcactatcca tgggatcttt ccaagaaggc actcgccaat gttggcaaaa ggctctggga	2340 2400 2460 2520 2580
ctggccatca ccatctgtat atgacggacc atttcaataa acagcagaaa tgtttctgaa tggaatatct ttgacggttt gtggaaggat tatctgttct tcttggccaa cgttaaatat	tgtcttaaat tgtgcttaca aattattgcc tattgtgacg ccgttcattt gctaataaag catcatcgtc	aacctggttg actctttca gtaggaaact atggatcctt cttagcctgg cgattgctgc atcatcggca ttcatttttg	tgatggaccc tggccatgga tggttttcac actattattt tagaacttgg gagttttcaa attccgtggg ccgtggtcgg	atttgttgac gcactatcca tgggatcttt ccaagaaggc actcgccaat gttggcaaaa ggctctggga catgcagctc	2340 2400 2460 2520 2580 2640
ctggccatca ccatctgtat atgacggacc atttcaataa acagcagaaa tgtttctgaa tggaatatct ttgacggttt gtggaaggat tatctgttct tcttggccaa cgttaaatat aatttaaccc tcgtcttggc	tgtcttaaat tgtgcttaca aattattgcc tattgtgacg ccgttcattt gctaataaag catcatcgtc ttgtgtctgc	aacctggttg actctttca gtaggaaact atggatcctt cttagcctgg cgattgctgc atcatcggca ttcatttttg aagatcgcca	tgatggaccc tggccatgga tggttttcac actattattt tagaacttgg gagttttcaa attccgtggg ccgtggtcgg gtgattgtca	atttgttgac gcactatcca tgggatcttt ccaagaaggc actcgccaat gttggcaaaa ggctctggga catgcagctc actcccacgc	2340 2400 2460 2520 2580 2640 2700
ctggccatca ccatctgtat atgacggacc atttcaataa acagcagaaa tgtttctgaa tggaatatct ttgacggttt gtggaaggat tatctgttct tcttggccaa cgttaaatat aatttaaccc tcgtcttggc tttggtaaaa gctacaaaga	tgtcttaaat tgtgcttaca aattattgcc tattgtgacg ccgttcattt gctaataaag catcatcgtc ttgtgtctgc ccactccttc	aacctggttg actctttca gtaggaaact atggatcctt cttagcctgg cgattgctgc atcatcggca ttcatttttg aagatcgcca ctgattgtgt	tgatggaccc tggccatgga tggttttcac actattattt tagaacttgg gagttttcaa attccgtggg ccgtggtcgg gtgattgtca tccgcgtgct	atttgttgac gcactatcca tgggatcttt ccaagaaggc actcgccaat gttggcaaaa ggctctggga catgcagctc actcccacgc gtgtggggag	2340 2400 2460 2520 2580 2640 2700 2760
ctggccatca ccatctgtat atgacggacc atttcaataa acagcagaaa tgtttctgaa tggaatatct ttgacggttt gtggaaggat tatctgttct tcttggccaa cgttaaatat aatttaaccc tcgtcttggc tttggtaaaa gctacaaaga tggcacatga atgacttctt	tgtcttaaat tgtgcttaca aattattgcc tattgtgacg ccgttcattt gctaataaag catcatcgtc ttgtgtctgc ccactccttc ctgtatggag	aacctggttg actctttca gtaggaaact atggatcctt cttagcctgg cgattgctgc atcatcggca ttcattttg aagatcgcca ctgattgtgt	tgatggaccc tggccatgga tggttttcac actattattt tagaacttgg gagttttcaa attccgtggg ccgtggtcgg gtgattgtca tccgcgtgct aagccatgtg	atttgttgac gcactatcca tgggatcttt ccaagaaggc actcgccaat gttggcaaaa ggctctggga catgcagctc actcccacgc gtgtggggag ccttactgtc	2340 2400 2460 2520 2580 2640 2700 2760 2820
ctggccatca ccatctgtat atgacggacc atttcaataa acagcagaaa tgtttctgaa tggaatatct ttgacggttt gtggaaggat tatctgttct tcttggccaa cgttaaatat aatttaaccc tcgtcttggc tttggtaaaa gctacaaaga tggcacatga atgacttctt tggatagaga ccatgtggga	tgtcttaaat tgtgcttaca aattattgcc tattgtgacg ccgttcattt gctaataaag catcatcgtc ttgtgtctgc ccactccttc ctgtatggag tggaaaccta	aacctggttg actctttca gtaggaaact atggatcctt cttagcctgg cgattgctgc atcatcggca ttcattttg aagatcgcca ctgattgtgt gttgctggtc	tgatggaccc tggccatgga tggttttcac actattattt tagaacttgg gagttttcaa attccgtggg ccgtggtcgg gtgattgtca tccgcgtgct aagccatgtg atctcttct	atttgttgac gcactatcca tgggatcttt ccaagaaggc actcgccaat gttggcaaaa ggctctggga catgcagctc actcccacgc gtgtggggag ccttactgtc ggccttgctt	2340 2400 2460 2520 2580 2640 2700 2760 2820 2880
ctggccatca ccatctgtat atgacggacc atttcaataa acagcagaaa tgtttctgaa tggaatatct ttgacggttt gtggaaggat tatctgttct tcttggccaa cgttaaatat aatttaaccc tcgtcttggc tttggtaaaa gctacaaaga tggcacatga atgacttctt tggatagaga ccatgtggga ttcatgatgg tcatggtgat	tgtcttaaat tgtgcttaca aattattgcc tattgtgacg ccgttcattt gctaataaag catcatcgtc ttgtgtctgc ccactccttc ctgtatggag tggaaaccta caaccttgca	aacctggttg actctttca gtaggaaact atggatcctt cttagcctgg cgattgctgc atcatcggca ttcatttttg aagatcgcca ctgattgtgt gttgctggtc gtggtcctga gccactgatg	tgatggaccc tggccatgga tggttttcac actattattt tagaacttgg gagttttcaa attccgtggg ccgtggtcgg gtgattgtca tccgcgtgct aagccatgtg atctcttct atgataatga	atttgttgac gcactatcca tgggatcttt ccaagaaggc actcgccaat gttggcaaaa ggctctggga catgcagctc actcccacgc gtgtgggagg ccttactgtc ggccttgctt aatgaataat	2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940

gatgatctaa acaacaagaa agacagttgt atgtccaatc atacagcaga aattgggaaa	3180
gatettgaet atettaaaga tgtaaatgga aetacaagtg gtataggaae tggeageagt	3240
gttgaaaaat acattattga tgaaagtgat tacatgtcat tcataaacaa ccccagtctt	3300
actgtgactg taccaattgc tgtaggagaa tctgactttg aaaatttaaa cacggaagac	3360
tttagtagtg aatcggatct ggaagaaagc aaagagaaac tgaatgaaag cagtagctca	3420
tcagaaggta gcactgtgga catcggcgca cctgtagaag aacagcccgt agtggaacct	3480
gaagaaactc ttgaaccaga agcttgtttc actgaaggct gtgtacaaag attcaagtgt	3540
tgtcaaatca atgtggaaga aggcagagga aaacaatggt ggaacctgag aaggacgtgt	3600
ttccgaatag ttgaacataa ctggtttgag accttcattg ttttcatgat tctccttagt	3660
agtggtgctc tggcatttga agatatatat attgatcagc gaaagacgat taagacgatg	3720
ttggaatatg ctgacaaggt tttcacttac attttcattc tggaaatgct tctaaaatgg	3780
gtggcatatg gctatcaaac atatttcacc aatgcctggt gttggctgga cttcttaatt	3840
gttgatgttt cattggtcag tttaacagca aatgccttgg gttactcaga acttggagcc	3900
atcaaatctc tcaggacact aagagctctg agacctctaa gagccttatc tcgatttgaa	3960
gggatgaggg tggttgtgaa tgccctttta ggagcaattc catccatcat gaatgtgctt	4020
ctggtttgtc ttatattctg gctaattttc agcatcatgg gcgtaaattt gtttgctggc	4080
aaattctacc actgtattaa caccacaact ggtgacaggt ttgacatcga agacgtgaat	4140
aatcatactg attgcctaaa actaatagaa agaaatgaga ctgctcgatg gaaaaatgtg	4200
aaagtaaact ttgataatgt aggatttggg tatctctctt tgcttcaagt tgccacattc	4260
aaaggatgga tggatataat gtatgcagca gttgattcca gaaatgtgga actccagcct	4320
aagtatgaag aaagtetgta catgtatett taetttgtta tttteateat etttgggtee	4380
ttetteacet tgaacetgtt tattggtgte atcatagata attteaacea geagaaaaag	4440
aagtttggag gtcaagacat ctttatgaca gaagaacaga agaaatacta taatgcaatg	4500
aaaaaattag gatcgaaaaa accgcaaaag cctatacctc gaccaggaaa caaatttcaa	4560
ggaatggtct ttgacttcgt aaccagacaa gtttttgaca taagcatcat gattctcatc	4620
tgtcttaaca tggtcacaat gatggtggaa acagatgacc agagtgaata tgtgactacc	4680
attttgtcac gcatcaatct ggtgttcatt gtgctattta ctggagagtg tgtactgaaa	4740
ctcatctctc tacgccatta ttattttacc attggatgga atatttttga ttttgtggtt	4800
gtcattctct ccattgtagg tatgtttctt gccgagctga tagaaaagta tttcgtgtcc	4860
cetaccetgt teegagtgat cegtettget aggattggee gaateetaeg tetgateaaa	4920
ggagcaaagg ggatccgcac gctgctcttt gctttgatga tgtcccttcc tgcgttgttt	4980
aacatcggcc tectactett cetagtcatg ttcatctacg ccatctttgg gatgtccaac	5040
tttgcctatg ttaagaggga agttgggatc gatgacatgt tcaactttga gacctttggc	5100

aacagcatga tctgcctatt ccaaattaca acctctgctg gctgggatgg attgctagca 5160 5220 cccattctca acagtaagcc acccgactgt gaccctaata aagttaaccc tggaagctca gttaagggag actgtgggaa cccatctgtt ggaattttct tttttgtcag ttacatcatc 5280 5340 atatectice togttotogt quacatotae atecocogica teetogaqua etteagtott gctactgaag aaagtgcaga gcctctgagt gaggatgact ttgagatgtt ctatgaggtt 5400 5460 tgggagaagt ttgatcccga tgcaactcag ttcatggaat ttgaaaaatt atctcagttt 5520 gcagctgcgc ttgaaccgcc tctcaatctg ccacaaccaa acaaactcca gctcattgcc atggatttgc ccatggtgag tggtgaccgg atccactgtc ttgatatctt atttgctttt 5580 acaaagcggg ttctaggaga gagtggagag atggatgctc tacgaataca gatggaagag 5640 cgattcatgg cttccaatcc ttccaaggtc tcctatcagc caatcactac tactttaaaa 5700 cgaaaacaag aggaagtatc tgctgtcatt attcagcgtg cttacagacg ccacctttta 5760 aagcgaactg taaaacaagc ttcctttacg tacaataaaa acaaaatcaa aggtggggct 5820 aatcttctta taaaagaaga catgataatt gacagaataa atgaaaactc tattacagaa 5880 aaaactgatc tgaccatgtc cactgcagct tgtccacctt cctatgaccg ggtgacaaag 5940 ccaattgtgg aaaaacatga gcaagaaggc aaagatgaaa aagccaaagg gaaataa 5997

<210> 7 <211> 6018 <212> ADN <213> Homo sapiens

<400>7

5

atggcacagt cagtgctggt accgccagga cctgacagct tccgcttctt taccagggaa 60 tcccttgctg ctattgaaca acgcattgca gaagagaaag ctaagagacc caaacaggaa 120 cgcaaggatg aggatgatga aaatggccca aagccaaaca gtgacttgga agcaggaaaa 180 tctcttccat ttatttatgg agacattcct ccagagatgg tgtcagtgcc cctggaggat 240 300 ctggacccct actatatcaa taagaaaacg tttatagtat tgaataaagg gaaagcaatc totogattca gtgccacccc tgccctttac attttaactc ccttcaaccc tattagaaaa 360 ttagctatta agattttggt acattcttta ttcaatatgc tcattatgtg cacgattctt 420 accaactgtg tatttatgac catgagtaac cctccagact ggacaaagaa tgtggagtat 480 540 acctttacag gaatttatac ttttgaatca cttattaaaa tacttgcaag gggcttttgt 600 ttagaagatt tcacattttt acgggatcca tggaattggt tggatttcac agtcattact 660 tttgcatatg tgacagagtt tgtggacctg ggcaatgtct cagcgttgag aacattcaga gttctccgag cattgaaaac aatttcagtc attccaggcc tgaagaccat tgtgggggcc 720 780 ctgatccagt cagtgaagaa gctttctgat gtcatgatct tgactgtgtt ctgtctaagc gtgtttgcgc taataggatt gcagttgttc atgggcaacc tacgaaataa atgtttgcaa 840

10

tggcctccag ataattcttc	ctttgaaata	aatatcactt	ccttctttaa	caattcattg	900
gatgggaatg gtactacttt	caataggaca	gtgagcatat	ttaactggga	tgaatatatt	960
gaggataaaa gtcactttta	ttttttagag	gggcaaaatg	atgctctgct	ttgtggcaac	1020
agctcagatg caggccagtg	tcctgaagga	tacatctgtg	tgaaggctgg	tagaaacccc	1080
aactatggct acacgagctt	tgacaccttt	agttgggcct	ttttgtcctt	atttcgtctc	1140
atgactcaag acttctggga	aaacctttat	caactgacac	tacgtgctgc	tgggaaaacg	1200
tacatgatat tttttgtgct	ggtcattttc	ttgggctcat	tctatctaat	aaatttgatc	1260
ttggctgtgg tggccatggc	ctatgaggaa	cagaatcagg	ccacattgga	agaggctgaa	1320
cagaaggaag ctgaatttca	gcagatgctc	gaacagttga	aaaagcaaca	agaagaagct	1380
caggeggeag etgeageege	atctgctgaa	tcaagagact	tcagtggtgc	tggtgggata	1440
ggagtttttt cagagagttc	ttcagtagca	tctaagttga	gctccaaaag	tgaaaaagag	1500
ctgaaaaaca gaagaaagaa	aaagaaacag	aaagaacagt	ctggagaaga	agagaaaaat	1560
gacagagtcc gaaaatcgga	atctgaagac	agcataagaa	gaaaaggttt	ccgtttttcc	1620
ttggaaggaa gtaggctgac	atatgaaaag	agattttctt	ctccacacca	gtccttactg	1680
agcatecgtg getecetttt	ctctccaaga	cgcaacagta	gggcgagcct	tttcagcttc	1740
agaggtcgag caaaggacat	tggctctgag	aatgactttg	ctgatgatga	gcacagcacc	1800
tttgaggaca atgacagccg	aagagactct	ctgttcgtgc	cgcacagaca	tggagaacgg	1860
cgccacagca atgtcagcca	ggccagccgt	gcctccaggg	tgctccccat	cctgcccatg	1920
aatgggaaga tgcatagcgc	tgtggactgc	aatggtgtgg	tctccctggt	cgggggccct	1980
tctaccctca catctgctgg	gcagctccta	ccagagggca	caactactga	aacagaaata	2040
agaaagagac ggtccagttc	ttatcatgtt	tccatggatt	tattggaaga	tcctacatca	2100
aggcaaagag caatgagtat	agccagtatt	ttgaccaaca	ccatggaaga	acttgaagaa	2160
tccagacaga aatgcccacc	atgctggtat	aaatttgcta	atatgtgttt	gatttgggac	2220
tgttgtaaac catggttaaa	ggtgaaacac	cttgtcaacc	tggttgtaat	ggacccattt	2280
gttgacctgg ccatcaccat	ctgcattgtc	ttaaatacac	tcttcatggc	tatggagcac	2340
tatcccatga cggagcagtt	cagcagtgta	ctgtctgttg	gaaacctggt	cttcacaggg	2400
atcttcacag cagaaatgtt	tctcaagata	attgccatgg	atccatatta	ttactttcaa	2460
gaaggctgga atatttttga	tggttttatt	gtgagcctta	gtttaatgga	acttggtttg	2520
gcaaatgtgg aaggattgtc	agttctccga	tcattccggc	tgctccgagt	tttcaagttg	2580
gcaaaatctt ggccaactct	aaatatgcta	attaagatca	ttggcaattc	tgtgggggct	2640
ctaggaaacc tcaccttggt	attggccatc	atcgtcttca	tttttgctgt	ggtcggcatg	2700
cagetetttg gtaagageta	caaagaatgt	gtctgcaaga	tttccaatga	ttgtgaactc	2760

ccacgctggc	acatgcatga	ctttttccac	tccttcctga	tegtgtteeg	cgtgctgtgt	2820
ggagagtgga	tagagaccat	gtgggactgt	atggaggtcg	ctggccaaac	catgtgcctt	2880
actgtcttca	tgatggtcat	ggtgattgga	aatctagtgg	ttctgaacct	cttcttggcc	2940
ttgcttttga	gttccttcag	ttctgacaat	cttgctgcca	ctgatgatga	taacgaaatg	3000
aataatctcc	agattgctgt	gggaaggatg	cagaaaggaa	tcgattttgt	taaaagaaaa	3060
atacgtgaat	ttattcagaa	agcctttgtt	aggaagcaga	aagctttaga	tgaaattaaa	3120
ccgcttgaag	atctaaataa	taaaaaagac	agctgtattt	ccaaccatac	caccatagaa	3180
ataggcaaag	acctcaatta	tctcaaagac	ggaaatggaa	ctactagtgg	cataggcagc	3240
agtgtagaaa	aatatgtcgt	ggatgaaagt	gattacatgt	catttataaa	caaccctagc	3300
ctcactgtga	cagtaccaat	tgctgttgga	gaatctgact	ttgaaaattt	aaatactgaa	3360
gaattcagca	gcgagtcaga	tatggaggaa	agcaaagaga	agctaaatgc	aactagttca	3420
tctgaaggca	gcacggttga	tattggagct	cccgccgagg	gagaacagcc	tgaggttgaa	3480
cctgaggaat	cccttgaacc	tgaagcctgt	tttacagaag	actgtgtacg	gaagttcaag	3540
tgttgtcaga	taagcataga	agaaggcaaa	gggaaactct	ggtggaattt	gaggaaaaca	3600
tgctataaga	tagtggagca	caattggttc	gaaaccttca	ttgtcttcat	gattctgctg	3660
agcagtgggg	ctctggcctt	tgaagatata	tacattgagc	agcgaaaaac	cattaagacc	3720
atgttagaat	atgctgacaa	ggttttcact	tacatattca	ttctggaaat	gctgctaaag	3780
tgggttgcat	atggttttca	agtgtatttt	accaatgcct	ggtgctggct	agacttcctg	3840
attgttgatg	tctcactggt	tagcttaact	gcaaatgcct	tgggttactc	agaacttggt	3900
gccatcaaat	ccctcagaac	actaagagct	ctgaggccac	tgagagcttt	gtcccggttt	3960
gaaggaatga	gggttgttgt	aaatgctctt	ttaggagcca	ttccatctat	catgaatgta	4020
cttctggttt	gtctgatctt	ttggctaata	ttcagtatca	tgggagtgaa	tctctttgct	4080
ggcaagtttt	accattgtat	taattacacc	actggagaga	tgtttgatgt	aagcgtggtc	4140
aacaactaca	gtgagtgcaa	agctctcatt	gagagcaatc	aaactgccag	gtggaaaaat	4200
gtgaaagtaa	actttgataa	cgtaggactt	ggatatctgt	ctctacttca	agtagccacg	4260
tttaagggat	ggatggatat	tatgtatgca	gctgttgatt	cacgaaatgt	agaattacaa	4320
cccaagtatg	aagacaacct	gtacatgtat	ctttattttg	tcatctttat	tatttttggt	4380
tcattcttta	ccttgaatct	tttcattggt	gtcatcatag	ataacttcaa	ccaacagaaa	4440
aagaagtttg	gaggtcaaga	catttttatg	acagaagaac	agaagaaata	ctacaatgca	4500
atgaaaaaac	tgggttcaaa	gaaaccacaa	aaacccatac	ctcgacctgc	taacaaattc	4560
caaggaatgg	tctttgattt	tgtaaccaaa	caagtetttg	atatcagcat	catgateete	4620
atctgcctta	acatggtcac	catgatggtg	gaaaccgatg	accagagtca	agaaatgaca	4680
aacattctgt	actggattaa	tctggtgttt	attgttctgt	tcactggaga	atgtgtgctg	4740

aaactgatct	ctcttcgtta	ctactatttc	actattggat	ggaatatttt	tgattttgtg	4800
gtggtcattc	tctccattgt	aggaatgttt	ctggctgaac	tgatagaaaa	gtattttgtg	4860
tcccctaccc	tgttccgagt	gatccgtctt	gccaggattg	gccgaatcct	acgtctgatc	4920
aaaggagcaa	aggggatccg	cacgctgctc	tttgctttga	tgatgtccct	tectgegttg	4980
tttaacatcg	gcctccttct	tttcctggtc	atgttcatct	acgccatctt	tgggatgtcc	5040
aattttgcct	atgttaagag	ggaagttggg	atcgatgaca	tgttcaactt	tgagaccttt	5100
ggcaacagca	tgatctgcct	gttccaaatt	acaacctctg	ctggctggga	tggattgcta	5160
gcacctattc	ttaatagtgg	acctccagac	tgtgaccctg	acaaagatca	ccctggaagc	5220
tcagttaaag	gagactgtgg	gaacccatct	gttgggattt	tcttttttgt	cagttacatc	5280
atcatatcct	tcctggttgt	ggtgaacatg	tacatcgcgg	tcatcctgga	gaacttcagt	5340
gttgctactg	aagaaagtgc	agagcctctg	agtgaggatg	actttgagat	gttctatgag	5400
gtttgggaga	agtttgatcc	cgatgcgacc	cagtttatag	agtttgccaa	actttctgat	5460
tttgcagatg	ccctggatcc	tcctcttctc	atagcaaaac	ccaacaaagt	ccagctcatt	5520
gccatggatc	tgcccatggt	gagtggtgac	cggatccact	gtcttgacat	cttatttgct	5580
tttacaaagc	gtgttttggg	tgagagtgga	gagatggatg	cccttcgaat	acagatggaa	5640
gagcgattca	tggcatcaaa	cccctccaaa	gtctcttatg	agcccattac	gaccacgttg	5700
aaacgcaaac	aagaggaggt	gtctgctatt	attatccaga	gggcttacag	acgctacctc	5760
ttgaagcaaa	aagttaaaaa	ggtatcaagt	atatacaaga	aagacaaagg	caaagaatgt	5820
gatggaacac	ccatcaaaga	agatactctc	attgataaac	tgaatgagaa	ttcaactcca	5880
gagaaaaccg	atatgacgcc	ttccaccacg	tctccaccct	cgtatgatag	tgtgaccaaa	5940
ccagaaaaag	aaaaatttga	aaaagacaaa	tcagaaaagg	aagacaaagg	gaaagatatc	6000
agggaaagta	aaaagtaa					6018

<210> 8 <211> 6003

<212> ADN

<213> Homo sapiens

<400> 8

atggcacagg cactgttggt acccccagga cctgaaagct tccgcctttt tactagagaa 60
tctcttgctg ctatcgaaaa acgtgctgca gaagagaaag ccaagaagcc caaaaaggaa 120
caagataatg atgatgagaa caaaccaaag ccaaatagtg acttggaagc tggaaagaac 180
cttccattta tttatggaga cattcctcca gagatggtgt cagagcccct ggaggacctg 240
gatccctact atatcaataa gaaaactttt atagtaatga ataaaggaaa ggcaatttc 300
cgattcagtg ccacctctgc cttgtatatt ttaactccac taaaccctgt taggaaaatt 360
gctatcaaga tttttggtaca ttctttattc agcatgctta tcatgtgcac tattttgacc 420

10

5

aactgtgtat ttatgacctt	gagcaaccct	cctgactgga	caaagaatgt	agagtacaca	480
ttcactggaa tctatacctt	tgagtcactt	ataaaaatct	tggcaagagg	gttttgctta	540
gaagatttta cgtttcttcg	tgatccatgg	aactggctgg	atttcagtgt	cattgtgatg	600
gcatatgtga cagagtttgt	ggacctgggc	aatgtctcag	cgttgagaac	attcagagtt	660
ctccgagcac tgaaaacaat	ttcagtcatt	ccaggtttaa	agaccattgt	gggggccctg	720
atccagtcgg taaagaagct	ttctgatgtg	atgatcctga	ctgtgttctg	tctgagcgtg	780
tttgctctca ttgggctgca	gctgttcatg	ggcaatctga	ggaataaatg	tttgcagtgg	840
cccccaagcg attctgcttt	tgaaaccaac	accacttcct	actttaatgg	cacaatggat	900
tcaaatggga catttgttaa	tgtaacaatg	agcacattta	actggaagga	ttacattgga	960
gatgacagtc acttttatgt	tttggatggg	caaaaagacc	ctttactctg	tggaaatggc	1020
tcagatgcag gccagtgtcc	agaaggatac	atctgtgtga	aggctggtcg	aaaccccaac	1080
tatggctaca caagctttga	cacctttagc	tgggctttcc	tgtctctatt	tcgactcatg	1140
actcaagact actgggaaaa	tctttaccag	ttgacattac	gtgctgctgg	gaaaacatac	1200
atgatatttt ttgtcctggt	cattttcttg	ggctcatttt	atttggtgaa	tttgatcctg	1260
gctgtggtgg ccatggccta	tgaggagcag	aatcaggcca	ccttggaaga	agcagaacaa	1320
aaagaggccg aatttcagca	gatgctcgaa	cagcttaaaa	agcaacagga	agaagctcag	1380
gcagttgcgg cagcatcagc	tgcttcaaga	gatttcagtg	gaataggtgg	gttaggagag	1440
ctgttggaaa gttcttcaga	agcatcaaag	ttgagttcca	aaagtgctaa	agaatggagg	1500
aaccgaagga agaaaagaag	acagagagag	caccttgaag	gaaacaacaa	aggagagaga	1560
gacagettte ecaaateega	atctgaagac	agcgtcaaaa	gaagcagctt	ccttttctcc	1620
atggatggaa acagactgac	cagtgacaaa	aaattetget	cccctcatca	gtctctcttg	1680
agtatecgtg getecetgtt	ttccccaaga	cgcaatagca	aaacaagcat	tttcagtttc	1740
agaggtcggg caaaggatgt	tggatctgaa	aatgactttg	ctgatgatga	acacagcaca	1800
tttgaagaca gcgaaagcag	gagagactca	ctgtttgtgc	cgcacagaca	tggagagcga	1860
cgcaacagta acgttagtca	ggccagtatg	tcatccagga	tggtgccagg	gcttccagca	1920
aatgggaaga tgcacagcac	tgtggattgc	aatggtgtgg	tttccttggt	gggtggacct	1980
tcagctctaa cgtcacctac	tggacaactt	ccccagagg	gcaccaccac	agaaacggaa	2040
gtcagaaaga gaaggttaag	ctcttaccag	atttcaatgg	agatgctgga	ggattcctct	2100
ggaaggcaaa gagccgtgag	catagccagc	attctgacca	acacaatgga	agaacttgaa	2160
gaatctagac agaaatgtcc	gccatgctgg	tatagatttg	ccaatgtgtt	cttgatctgg	2220
gactgctgtg atgcatggtt	aaaagtaaaa	catcttgtga	atttaattgt	tatggatcca	2280
tttgttgatc ttgccatcac	tatttgcatt	gtcttaaata	ccctctttat	ggccatggag	2340

cactacccca	tgactgagca	attcagtagt	gtgttgactg	taggaaacct	ggtctttact	2400
gggattttca	cagcagaaat	ggttctcaag	atcattgcca	tggatcctta	ttactatttc	2460
caagaaggct	ggaatatctt	tgatggaatt	attgtcagcc	tcagtttaat	ggagcttggt	2520
ctgtcaaatg	tggagggatt	gtctgtactg	cgatcattca	gactgcttag	agttttcaag	2580
ttggcaaaat	cctggcccac	actaaatatg	ctaattaaga	tcattggcaa	ttctgtgggg	2640
gctctaggaa	acctcacctt	ggtgttggcc	atcatcgtct	tcatttttgc	tgtggtcggc	2700
atgcagctct	ttggtaagag	ctacaaagaa	tgtgtctgca	agatcaatga	tgactgtacg	2760
ctcccacggt	ggcacatgaa	cgacttcttc	cactccttcc	tgattgtgtt	ccgcgtgctg	2820
tgtggagagt	ggatagagac	catgtgggac	tgtatggagg	tcgctggcca	aaccatgtgc	2880
cttattgttt	tcatgttggt	catggtcatt	ggaaaccttg	tggttctgaa	cctctttctg	2940
gccttattgt	tgagttcatt	tagctcagac	aaccttgctg	ctactgatga	tgacaatgaa	3000
atgaataatc	tgcagattgc	agtaggaaga	atgcaaaagg	gaattgatta	tgtgaaaaat	3060
aagatgcggg	agtgtttcca	aaaagccttt	tttagaaagc	caaaagttat	agaaatccat	3120
gaaggcaata	agatagacag	ctgcatgtcc	aataatactg	gaattgaaat	aagcaaagag	3180
cttaattatc	ttagagatgg	gaatggaacc	accagtggtg	taggtactgg	aagcagtgtt	3240
gaaaaatacg	taatcgatga	aaatgattat	atgtcattca	taaacaaccc	cagcctcacc	3300
gtcacagtgc	caattgctgt	tggagagtct	gactttgaaa	acttaaatac	tgaagagttc	3360
agcagtgagt	cagaactaga	agaaagcaaa	gagaaattaa	atgcaaccag	ctcatctgaa	3420
ggaagcacag	ttgatgttgt	tctaccccga	gaaggtgaac	aagctgaaac	tgaacccgaa	3480
gaagacctta	aaccggaagc	ttgttttact	gaaggatgta	ttaaaaagtt	tccattctgt	3540
caagtaagta	cagaagaagg	caaagggaag	atctggtgga	atcttcgaaa	aacctgctac	3600
agtattgttg	agcacaactg	gtttgagact	ttcattgtgt	tcatgatcct	tctcagtagt	3660
ggtgcattgg	cctttgaaga	tatatacatt	gaacagcgaa	agactatcaa	aaccatgcta	3720
gaatatgctg	acaaagtctt	tacctatata	ttcattctgg	aaatgcttct	caaatgggtt	3780
gcttatggat	ttcaaacata	tttcactaat	gcctggtgct	ggctagattt	cttgatcgtt	3840
gatgtttctt	tggttagcct	ggtagccaat	gctcttggct	actcagaact	cggtgccatc	3900
aaatcattac	ggacattaag	agctttaaga	cctctaagag	ccttatcccg	gtttgaaggc	3960
atgagggtgg	ttgtgaatgc	tcttgttgga	gcaattccct	ctatcatgaa	tgtgctgttg	4020
gtctgtctca	tcttctggtt	gatctttagc	atcatgggtg	tgaatttgtt	tgctggcaag	4080
ttctaccact	gtgttaacat	gacaacgggt	aacatgtttg	acattagtga	tgttaacaat	4140
ttgagtgact	gtcaggctct	tggcaagcaa	gctcggtgga	aaaacgtgaa	agtaaacttt	4200
gataatgttg	gcgctggcta	tcttgcactg	cttcaagtgg	ccacatttaa	aggctggatg	4260
gatattatgt	atgcagctgt	tgattcacga	gatgttaaac	ttcagcctgt	atatgaagaa	4320

aatctgtaca tg	gtatttata	ctttgtcatc	tttatcatct	ttgggtcatt	cttcactctg	4380
aatctattca tt	ggtgtcat	catagataac	ttcaaccagc	agaaaaagaa	gtttggaggt	4440
caagacatct tt	atgacaga	ggaacagaaa	aaatattaca	atgcaatgaa	gaaacttgga	4500
tccaagaaac ct	cagaaacc	catacctcgc	ccagcaaaca	aattccaagg	aatggtcttt	4560
gattttgtaa co	agacaagt	ctttgatatc	agcatcatga	tcctcatctg	cctcaacatg	4620
gtcaccatga tg	ggtggaaac	ggatgaccag	ggcaaataca	tgaccctagt	tttgtcccgg	4680
atcaacctag to	gttcattgt	tctgttcact	ggagaatttg	tgctgaagct	cgtctccctc	4740
agacactact ac	ttcactat	aggctggaac	atctttgact	ttgtggtggt	gattctctcc	4800
attgtaggta tg	ıtttctggc	tgagatgata	gaaaagtatt	ttgtgtcccc	taccttgttc	4860
cgagtgatcc gt	cttgccag	gattggccga	atcctacgtc	tgatcaaagg	agcaaagggg	4920
atccgcacgc tg	getetttge	tttgatgatg	tecetteetg	cgttgtttaa	catcggcctc	4980
ctgctcttcc tg	gtcatgtt	tatctatgcc	atctttggga	tgtccaactt	tgcctatgtt	5040
aaaaaggaag ct	ggaattga	tgacatgttc	aactttgaga	cctttggcaa	cagcatgatc	5100
tgcttgttcc aa	attacaac	ctctgctggc	tgggatggat	tgctagcacc	tattcttaat	5160
agtgcaccac co	gactgtga	ccctgacaca	attcaccctg	gcagctcagt	taagggagac	5220
tgtgggaacc ca	ıtctgttgg	gattttcttt	tttgtcagtt	acatcatcat	atccttcctg	5280
gttgtggtga ac	atgtacat	cgcggtcatc	ctggagaact	tcagtgttgc	tactgaagaa	5340
agtgcagagc co	ctgagtga	ggatgacttt	gagatgttct	atgaggtttg	ggaaaagttt	5400
gatecegatg eg	gacccagtt	tatagagttc	tctaaactct	ctgattttgc	agctgccctg	5460
gatectecte tt	ctcatage	aaaacccaac	aaagtccagc	ttattgccat	ggatctgccc	5520
atggtcagtg gt	gaccggat	ccactgtctt	gatattttat	ttgcctttac	aaagcgtgtt	5580
ttgggtgaga gt	ggagagat	ggatgccctt	cgaatacaga	tggaagacag	gtttatggca	5640
tcaaacccct co	aaagtctc	ttatgagcct	attacaacca	ctttgaaacg	taaacaagag	5700
gaggtgtctg co	gctatcat	tcagcgtaat	ttcagatgtt	atcttttaaa	gcaaaggtta	5760
aaaaatatat ca	agtaacta	taacaaagag	gcaattaaag	ggaggattga	cttacctata	5820
aaacaagaca tg	gattattga	caaactaaat	gggaactcca	ctccagaaaa	aacagatggg	5880
agttcctcta co	acctctcc	tccttcctat	gatagtgtaa	caaaaccaga	caaggaaaag	5940
tttgagaaag ac	aaaccaga	aaaagaaagc	aaaggaaaag	aggtcagaga	aaatcaaaag	6000
taa						6003

<210> 9 <211> 5511 5 <212> ADN

<213> Homo sapiens

<400> 9

atggccagac catcto	ctgtg caccctggtg	cctctgggcc	ctgagtgctt	gcgccccttc	60
accegggagt cactg	gcagc catagaacaq	cgggcggtgg	aggaggaggc	ccggctgcag	120
cggaataagc agatg	gagat tgaggagcc	gaacggaagc	cacgaagtga	cttggaggct	180
ggcaagaacc taccca	atgat ctacggagad	cccccgccgg	aggtcatcgg	catccccctg	240
gaggacctgg atccc	tacta cagcaataaq	g aagaccttca	tcgtactcaa	caagggcaag	300
gccatcttcc gcttc	teege cacacetget	ctctacctgc	tgagcccctt	cagcgtagtc	360
aggcgcgggg ccatca	aaggt gctcatccat	gcgctgttca	gcatgttcat	catgatcacc	420
atcttgacca actgc	gtatt catgaccato	agtgacccgc	ctccctggtc	caagaatgtg	480
gagtacacct tcaca	gggat ctacaccttt	gagtccctca	tcaagatact	ggcccgaggc	540
ttctgtgtcg acgact	ttcac attcctccg	gacccctgga	actggctgga	cttcagtgtc	600
atcatgatgg cgtace	ctgac agagtttgtq	gacttgggca	acatctcagc	cctgaggacc	660
ttccgggtgc tgcgg	gccct caaaaccato	acggtcatcc	cagggctgaa	gacgatcgtg	720
ggggccctga tccag	teggt gaaaaagetç	ı teggatgtga	tgatcctcac	tgtcttctgc	780
ctgagcgtct ttgcg	ctggt aggactgcaq	ctcttcatgg	gaaacctgag	gcagaagtgt	840
gtgcgctggc ccccg	ccgtt caacgacac	aacaccacgt	ggtacagcaa	tgacacgtgg	900
tacggcaatg acaca	tggta tggcaatgaq	atgtggtacg	gcaatgactc	atggtatgcc	960
aacgacacgt ggaac	agcca tgcaagctg	gccaccaacg	atacctttga	ttgggacgcc	1020
tacatcagtg atgaag	gggaa cttctactto	ctggagggct	ccaacgatgc	cctgctctgt	1080
gggaacagca gtgat	gctgg gcactgccct	gagggttatg	agtgcatcaa	gaccgggcgg	1140
aaccccaact atggc	tacac cagctatgad	accttcagct	gggccttctt	ggctctcttc	1200
cgcctcatga cacag	gacta ttgggagaad	ctcttccagc	tgacccttcg	agcagctggc	1260
aagacctaca tgatc	ttett egtggteate	atcttcctgg	gctctttcta	cctcatcaat	1320
ctgatcctgg ccgtg	gtggc catggcatat	gccgagcaga	atgaggccac	cctggccgag	1380
gataaggaga aagag	gagga gtttcagcaç	atgcttgaga	agttcaaaaa	gcaccaggag	1440
gagetggaga aggee	aaggc cgcccaagct	ctggaaggtg	gggaggcaga	tggggaccca	1500
gcccatggca aagac	tgcaa tggcagcctq	gacacatcgc	aaggggagaa	gggagccccg	1560
aggcagagca gcagc	ggaga cagcggcato	tccgacgcca	tggaagaact	ggaagaggcc	1620
caccaaaagt gccca	ccatg gtggtacaaq	tgcgcccaca	aagtgctcat	atggaactgc	1680
tgcgccccgt ggctg	aagtt caagaacato	atccacctga	tcgtcatgga	cccgttcgtg	1740
gacctgggca tcacca	atctg catcgtgcto	aacaccctct	tcatggccat	ggaacattac	1800
cccatgacgg agcact	tttga caacgtgcto	actgtgggca	acctggtctt	cacaggcatc	1860
ttcacagcag agatg	gttct gaagctgatt	gccatggacc	cctacgagta	tttccagcag	1920

ggttggaata tcttcgacag	catcatcgtc	acceteagee	tggtagagct	aggcctggcc	1980
aacgtacagg gactgtctgt	gctacgctcc	ttccgtctgc	tgcgggtctt	caagctggcc	2040
aagtcgtggc caacgctgaa	catgctcatc	aagatcattg	gcaattcagt	gggggcgctg	2100
ggtaacctga cgctggtgct	ggctatcatc	gtgttcatct	tegeegtggt	gggcatgcag	2160
ctgtttggca agagctacaa	ggagtgcgtg	tgcaagattg	ccttggactg	caacctgccg	2220
cgctggcaca tgcatgattt	cttccactcc	ttcctcatcg	tcttccgcat	cctgtgcggg	2280
gagtggatcg agaccatgtg	ggactgcatg	gaggtggccg	gccaagccat	gtgcctcacc	2340
gtcttcctca tggtcatggt	catcggcaat	cttgtggtcc	tgaacctgtt	cctggctctg	2400
ctgctgagct ccttcagcgc	cgacagtctg	gcagcctcgg	atgaggatgg	cgagatgaac	2460
aacctgcaga ttgccatcgg	gcgcatcaag	ttgggcatcg	gctttgccaa	ggccttcctc	2520
ctggggctgc tgcatggcaa	gatcctgagc	cccaaggaca	tcatgctcag	cctcggggag	2580
gctgacgggg ccggggaggc	tggagaggcg	ggggagactg	cccccgagga	tgagaagaag	2640
gageegeeeg aggaggaeet	gaagaaggac	aatcacatcc	tgaaccacat	gggcctggct	2700
gacggccccc catccagcct	cgagctggac	caccttaact	tcatcaacaa	cccctacctg	2760
accatacagg tgcccatcgc	ctccgaggag	tccgacctgg	agatgcccac	cgaggaggaa	2820
accgacactt tctcagagcc	tgaggatagc	aagaagccgc	cgcagcctct	ctatgatggg	2880
aactcgtccg tctgcagcac	agctgactac	aagccccccg	aggaggaccc	tgaggagcag	2940
gcagaggaga accccgaggg	ggagcagcct	gaggagtgct	tcactgaggc	ctgcgtgcag	3000
cgctggccct gcctctacgt	ggacatetee	cagggccgtg	ggaagaagtg	gtggactctg	3060
cgcagggcct gcttcaagat	tgtcgagcac	aactggttcg	agaccttcat	tgtcttcatg	3120
atectgetea geagtgggge	tetggeette	gaggacatct	acattgagca	geggegagte	3180
attogcacca tootagaata	tgccgacaag	gtcttcacct	acatcttcat	catggagatg	3240
ctgctcaaat gggtggccta	cggctttaag	gtgtacttca	ccaacgcctg	gtgctggctc	3300
gacttcctca tcgtggatgt	ctccatcatc	agcttggtgg	ccaactggct	gggctactcg	3360
gagctgggac ccatcaaatc	cctgcggaca	ctgcgggccc	tgcgtcccct	gagggcactg	3420
tcccgattcg agggcatgag	ggtggtggtg	aacgccctcc	taggcgccat	cccctccatc	3480
atgaatgtgc tgcttgtctg	cctcatcttc	tggctgatct	tcagcatcat	gggtgtcaac	3540
ctgtttgccg gcaagttcta	ctactgcatc	aacaccacca	cctctgagag	gttcgacatc	3600
tccgaggtca acaacaagtc	tgagtgcgag	agcctcatgc	acacaggcca	ggtccgctgg	3660
ctcaatgtca aggtcaacta	cgacaacgtg	ggtetggget	acctctccct	cctgcaggtg	3720
gecacettea agggttggat	ggacatcatg	tatgcagccg	tggactcccg	ggagaaggag	3780
gagcagccgc agtacgaggt	gaacctctac	atgtacctct	actttgtcat	cttcatcatc	3840
tttggctcct tcttcaccct	caacctcttc	attggcgtca	tcattgacaa	cttcaaccag	3900

cagaagaaga	agttaggggg	gaaagacatc	tttatgacgg	aggaacagaa	gaaatactat	3960
aacgccatga	agaagcttgg	ctccaagaag	cctcagaagc	caattccccg	gccccagaac	4020
aagatccagg	gcatggtgta	tgacctcgtg	acgaagcagg	ccttcgacat	caccatcatg	4080
atcctcatct	gcctcaacat	ggtcaccatg	atggtggaga	cagacaacca	gagccagctc	4140
aaggtggaca	tcctgtacaa	catcaacatg	atcttcatca	tcatcttcac	aggggagtgc	4200
gtgctcaaga	tgctcgccct	gcgccagtac	tacttcaccg	ttggctggaa	catctttgac	4260
ttcgtggtcg	tcatcctgtc	cattgtgggc	cttgccctct	ctgacctgat	ccagaagtac	4320
ttcgtgtcac	ccacgctgtt	ccgtgtgatc	cgcctggcgc	ggattgggcg	tgtcctgcgg	4380
ctgatccgcg	gggccaaggg	catccggacg	ctgctgttcg	ccctcatgat	gtcgctgcct	4440
gccctcttca	acatcggcct	cctcctcttc	ctggtcatgt	tcatctactc	catcttcggc	4500
atgtccaact	ttgcctacgt	caagaaggag	tcgggcatcg	atgatatgtt	caacttcgag	4560
accttcggca	acagcatcat	ctgcctgttc	gagatcacca	cgtcggccgg	ctgggacggg	4620
ctcctcaacc	ccatcctcaa	cagcgggccc	ccagactgtg	accccaacct	ggagaacccg	4680
ggcaccagtg	tcaagggtga	ctgcggcaac	ccctccatcg	gcatctgctt	cttctgcagc	4740
tatatcatca	tctccttcct	catcgtggtc	aacatgtaca	tcgccatcat	cctggagaac	4800
ttcaatgtgg	ccacagagga	gagcagcgag	ccccttggtg	aagatgactt	tgagatgttc	4860
tacgagacat	gggagaagtt	cgaccccgac	gccacccagt	tcatcgccta	cagccgcctc	4920
tcagacttcg	tggacaccct	gcaggaaccg	ctgaggattg	ccaagcccaa	caagatcaag	4980
ctcatcacac	tggacttgcc	catggtgcca	ggggacaaga	tccactgcct	ggacatcctc	5040
tttgccctga	ccaaagaggt	cctgggtgac	tctggggaaa	tggacgccct	caagcagacc	5100
atggaggaga	agttcatggc	agccaacccc	tccaaggtgt	cctacgagcc	catcaccacc	5160
accctcaaga	ggaagcacga	ggaggtgtgc	gccatcaaga	tccagagggc	ctaccgccgg	5220
cacctgctac	agcgctccat	gaagcaggca	tcctacatgt	accgccacag	ccacgacggc	5280
agcggggatg	acgcccctga	gaaggaggg	ctgcttgcca	acaccatgag	caagatgtat	5340
ggccacgaga	atgggaacag	cagctcgcca	agcccggagg	agaagggcga	ggcaggggac	5400
gccggaccca	ctatggggct	gatgcccatc	agcccctcag	acactgcctg	gcctcccgcc	5460
cctcccccag	ggcagactgt	gcgcccaggt	gtcaaggagt	ctcttgtcta	g	5511
10 6051 ADN						

<210> 10 <211> 605 5 <212> AD

10

<213> Homo sapiens

<400> 10

atggcaaact teetattace teggggeace ageagettee geaggtteae aegggagtee 60 etggcageca tegagaageg catggcagag aageaageee geggeteaae cacettgcag 120

gagageegag aggggetgee	cgaggaggag	geteeeegge	cccagctgga	cctgcaggcc	180
tccaaaaagc tgccagatct	ctatggcaat	ccaccccaag	agctcatcgg	agagcccctg	240
gaggacctgg accccttcta	tagcacccaa	aagactttca	tcgtactgaa	taaaggcaag	300
accatcttcc ggttcagtgc	caccaacgcc	ttgtatgtcc	tcagtccctt	ccaccccatc	360
cggagagcgg ctgtgaagat	tctggttcac	tegetettea	acatgctcat	catgtgcacc	420
atcctcacca actgcgtgtt	catggcccag	cacgaccctc	caccctggac	caagtatgtc	480
gagtacacct tcaccgccat	ttacaccttt	gagtctctgg	tcaagattct	ggctcgaggc	540
ttctgcctgc acgcgttcac	tttccttcgg	gacccatgga	actggctgga	ctttagtgtg	600
attatcatgg catacacaac	tgaatttgtg	gacctgggca	atgtctcagc	cttacgcacc	660
ttccgagtcc tccgggccct	gaaaactata	tcagtcattt	cagggctgaa	gaccatcgtg	720
ggggccctga tccagtctgt	gaagaagctg	gctgatgtga	tggtcctcac	agtcttctgc	780
ctcagcgtct ttgccctcat	cggcctgcag	ctcttcatgg	gcaacctaag	gcacaagtgc	840
gtgcgcaact tcacagcgct	caacggcacc	aacggctccg	tggaggccga	cggcttggtc	900
tgggaatccc tggaccttta	cctcagtgat	ccagaaaatt	acctgctcaa	gaacggcacc	960
tctgatgtgt tactgtgtgg	gaacagetet	gacgctggga	catgtccgga	gggctaccgg	1020
tgcctaaagg caggcgagaa	ccccgaccac	ggctacacca	gcttcgattc	ctttgcctgg	1080
gcctttcttg cactcttccg	cctgatgacg	caggactgct	gggagegeet	ctatcagcag	1140
acceteaggt eegeagggaa	gatctacatg	atcttcttca	tgcttgtcat	cttcctgggg	1200
tecttetace tggtgaacet	gatectggee	gtggtcgcaa	tggcctatga	ggagcaaaac	1260
caagecacca tegetgagae	cgaggagaag	gaaaagcgct	tccaggaggc	catggaaatg	1320
ctcaagaaag aacacgaggc	cctcaccatc	aggggtgtgg	ataccgtgtc	ccgtagctcc	1380
ttggagatgt cccctttggc	cccagtaaac	agccatgaga	gaagaagcaa	gaggagaaaa	1440
cggatgtctt caggaactga	ggagtgtggg	gaggacaggc	tccccaagtc	tgactcagaa	1500
gatggtccca gagcaatgaa	tcatctcagc	ctcacccgtg	gcctcagcag	gacttctatg	1560
aagccacgtt ccagccgcgg	gagcattttc	acctttcgca	ggcgagacct	gggttctgaa	1620
gcagattttg cagatgatga	aaacagcaca	gcgggggaga	gcgagagcca	ccacacatca	1680
ctgctggtgc cctggcccct	gcgccggacc	agtgcccagg	gacagcccag	tcccggaacc	1740
teggeteetg gecaegeeet	ccatggcaaa	aagaacagca	ctgtggactg	caatggggtg	1800
gtctcattac tgggggcagg	cgacccagag	gccacatccc	caggaagcca	cctcctccgc	1860
cctgtgatgc tagagcaccc	gccagacacg	accacgccat	cggaggagcc	aggcgggccc	1920
cagatgctga cctcccaggc	tccgtgtgta	gatggcttcg	aggagccagg	agcacggcag	1980
egggeeetea gegeagteag	cgtcctcacc	agcgcactgg	aagagttaga	ggagtctcgc	2040

cacaagtgtc	caccatgctg	gaaccgtctc	gcccagcgct	acctgatctg	ggagtgctgc	2100
ccgctgtgga	tgtccatcaa	gcagggagtg	aagttggtgg	tcatggaccc	gtttactgac	2160
ctcaccatca	ctatgtgcat	cgtactcaac	acactcttca	tggcgctgga	gcactacaac	2220
atgacaagtg	aattcgagga	gatgctgcag	gtcggaaacc	tggtcttcac	agggattttc	2280
acagcagaga	tgaccttcaa	gatcattgcc	ctcgacccct	actactactt	ccaacagggc	2340
tggaacatct	tcgacagcat	catcgtcatc	cttagcctca	tggagctggg	cctgtcccgc	2400
atgagcaact	tgtcggtgct	gegeteette	cgcctgctgc	gggtcttcaa	gctggccaaa	2460
tcatggccca	ccctgaacac	actcatcaag	atcatcggga	actcagtggg	ggcactgggg	2520
aacctgacac	tggtgctagc	catcatcgtg	ttcatctttg	ctgtggtggg	catgcagctc	2580
tttggcaaga	actactcgga	gctgagggac	agcgactcag	gcctgctgcc	tegetggeae	2640
atgatggact	tctttcatgc	cttcctcatc	atcttccgca	tectetgtgg	agagtggatc	2700
gagaccatgt	gggactgcat	ggaggtgtcg	gggcagtcat	tatgcctgct	ggtcttcttg	2760
cttgttatgg	tcattggcaa	ccttgtggtc	ctgaatctct	tcctggcctt	gctgctcagc	2820
tccttcagtg	cagacaacct	cacagcccct	gatgaggaca	gagagatgaa	caacctccag	2880
ctggccctgg	cccgcatcca	gaggggcctg	cgctttgtca	agcggaccac	ctgggatttc	2940
tgctgtggtc	tectgeggea	gcggcctcag	aagcccgcag	cccttgccgc	ccagggccag	3000
ctgcccagct	gcattgccac	cccctactcc	ccgccacccc	cagagacgga	gaaggtgcct	3060
cccacccgca	aggaaacacg	gtttgaggaa	ggcgagcaac	caggccaggg	caccccggg	3120
gatecagage	ccgtgtgtgt	gcccatcgct	gtggccgagt	cagacacaga	tgaccaagaa	3180
gaagatgagg	agaacagcct	gggcacggag	gaggagtcca	gcaagcagca	ggaatcccag	3240
cctgtgtccg	gtggcccaga	ggeeeeteeg	gattccagga	cctggagcca	ggtgtcagcg	3300
actgcctcct	ctgaggccga	ggccagtgca	tctcaggccg	actggcggca	gcagtggaaa	3360
gcggaacccc	aggccccagg	gtgcggtgag	accccagagg	acagttgctc	cgagggcagc	3420
acagcagaca	tgaccaacac	cgctgagctc	ctggagcaga	tccctgacct	cggccaggat	3480
gtcaaggacc	cagaggactg	cttcactgaa	ggctgtgtcc	ggcgctgtcc	ctgctgtgcg	3540
gtggacacca	cacaggcccc	agggaaggtc	tggtggcggt	tgcgcaagac	ctgctaccac	3600
atcgtggagc	acagctggtt	cgagacattc	atcatcttca	tgatcctact	cagcagtgga	3660
gcgctggcct	tcgaggacat	ctacctagag	gagcggaaga	ccatcaaggt	tctgcttgag	3720
tatgccgaca	agatgttcac	atatgtcttc	gtgctggaga	tgctgctcaa	gtgggtggcc	3780
tacggcttca	agaagtactt	caccaatgcc	tggtgctggc	tcgacttcct	catcgtagac	3840
gtetetetgg	tcagcctggt	ggccaacacc	ctgggctttg	ccgagatggg	ccccatcaag	3900
tcactgcgga	cgctgcgtgc	actccgtcct	ctgagagctc	tgtcacgatt	tgagggcatg	3960
agggtggtgg	tcaatgccct	ggtgggcgcc	atcccgtcca	tcatgaacgt	cctcctcgtc	4020

```
tgcctcatct tctggctcat cttcagcatc atgggcgtga acctctttgc ggggaagttt
                                                                        4080
                                                                        4140
 gggaggtgca tcaaccagac agagggagac ttgcctttga actacaccat cgtgaacaac
                                                                        4200
 aagagccagt gtgagtcctt gaacttgacc ggagaattgt actggaccaa ggtgaaagtc
 aactttgaca acgtgggggc cgggtacctg gcccttctgc aggtggcaac atttaaaggc
                                                                        4260
                                                                        4320
 tggatggaca ttatgtatgc agctgtggac tccagggggt atgaagagca gcctcagtgg
 quatacaacc tetacatgta catetatttt gteattttea teatetttgg gtetttette
                                                                        4380
 accetgaace tetttattgg tgtcateatt gacaacttea accaacagaa gaaaaagtta
                                                                        4440
                                                                        4500
 gggggccagg acatcttcat gacagaggag cagaagaagt actacaatgc catgaagaag
 ctgggctcca agaagcccca gaagcccatc ccacggcccc tgaacaagta ccagggcttc
                                                                        4560
 atattegaca ttgtgaccaa geaggeettt gaegteacea teatgtttet gatetgettg
                                                                        4620
 aatatggtga ccatgatggt ggagacagat gaccaaagtc ctgagaaaat caacatcttg
                                                                        4680
                                                                        4740
 gccaagatca acctgctctt tgtggccatc ttcacaggcg agtgtattgt caagctggct
 gccctgcgcc actactactt caccaacagc tggaatatct tcgacttcgt ggttgtcatc
                                                                        4800
 ctctccatcq tqqqcactqt qctctcqqac atcatccaqa aqtacttctt ctccccqacq
                                                                        4860
 ctcttccgag tcatccgcct ggcccgaata ggccgcatcc tcagactgat ccgaggggcc
                                                                        4920
 aaggggatcc gcacgctgct ctttgccctc atgatgtccc tgcctgccct cttcaacatc
                                                                        4980
 gggctgctgc tcttcctcgt catgttcatc tactccatct ttggcatggc caacttcgct
                                                                        5040
 tatgtcaagt gggaggctgg catcgacgac atgttcaact tccagacctt cgccaacagc
                                                                        5100
                                                                        5160
 atgctgtgcc tcttccagat caccacgtcg gccggctggg atggcctcct cagccccatc
 ctcaacactg ggccgcccta ctgcgacccc actctgccca acagcaatgg ctctcggggg
                                                                        5220
                                                                        5280
 gactgcggga gcccagccgt gggcatcctc ttcttcacca cctacatcat catctccttc
 ctcatcgtgg tcaacatgta cattgccatc atcctggaga acttcagcgt ggccacggag
                                                                        5340
 qaqaqcaccq aqcccctqaq tqaqqacqac ttcqatatqt tctatqaqat ctqqqaqaaa
                                                                        5400
                                                                        5460
 tttgacccag aggccactca gtttattgag tattcggtcc tgtctgactt tgccgatgcc
                                                                        5520
 ctgtctgagc cactccgtat cgccaagccc aaccagataa gcctcatcaa catggacctg
 cccatggtga gtggggaccg catccattgc atggacattc tctttgcctt caccaaaagg
                                                                        5580
 gtcctggggg agtctgggga gatggacgcc ctgaagatcc agatggagga gaagttcatg
                                                                        5640
 qcaqccaacc catccaaqat ctcctacqaq cccatcacca ccacactccq qcqcaaqcac
                                                                        5700
 gaagaggtgt cggccatggt tatccagaga gccttccgca ggcacctgct gcaacgctct
                                                                        5760
 ttgaagcatg cctccttcct cttccgtcag caggcgggca gcggcctctc cgaagaggat
                                                                        5820
 gcccctgagc gagagggcct catcgcctac gtgatgagtg agaacttctc ccgacccctt
                                                                        5880
                                                                        5940
 ggcccacct ccagetecte catetectee acttecttee caecetecta tgacagtgte
actagageca ceagegataa cetecaggtg egggggtetg actacageca eagtgaagat
                                                                          6000
ctcgccgact tccccccttc tccggacagg gaccgtgagt ccatcgtgtg a
                                                                          6051
```

5 <210> 11 <211> 5049 <212> ADN <213> Homo sapiens

10 <400> 11

atgttggctt	caccagaacc	taagggcctt	gttcccttca	ctaaagagtc	ttttgaactt	60
ataaaacagc	atattgctaa	aacacataat	gaagaccatg	aagaagaaga	cttaaagcca	120
actcctgatt	tggaagttgg	caaaaagctt	ccatttattt	atggaaacct	ttctcaagga	180
atggtgtcag	agcccttgga	agatgtggac	ccatattact	acaagaaaaa	aaatactttc	240
atagtattaa	ataaaaatag	aacaatcttc	agattcaatg	cggcttccat	cttgtgtaca	300
ttgtctcctt	tcaattgtat	tagaagaaca	actatcaagg	ttttggtaca	tcccttttc	360
caactgttta	ttctaattag	tgtcctgatt	gattgcgtat	tcatgtccct	gactaatttg	420
ccaaaatgga	gaccagtatt	agagaatact	ttgcttggaa	tttacacatt	tgaaatactt	480
gtaaaactct	ttgcaagagg	tgtctgggca	ggatcatttt	ccttcctcgg	tgatccatgg	540
aactggctcg	atttcagcgt	aactgtgttt	gaggttatta	taagatactc	acctctggac	600
ttcattccaa	cgcttcaaac	tgcaagaact	ttgagaattt	taaaaattat	tcctttaaat	660
caaggtctga	aatcccttgt	aggggtcctg	atccactgct	tgaagcagct	tattggtgtc	720
attatcctaa	ctctgttttt	tctgagcata	ttttctctaa	ttgggatggg	gctcttcatg	780
ggcaacttga	aacataaatg	ttttcgatgg	ccccaagaga	atgaaaatga	aaccctgcac	840
aacagaactg	gaaacccata	ttatattcga	gaaacagaaa	acttttatta	tttggaagga	900
gaaagatatg	ctctcctttg	tggcaacagg	acagatgctg	gtcagtgtcc	tgaaggatat	960
gtgtgtgtaa	aagctggcat	aaatcctgat	caaggcttca	caaattttga	cagttttggc	1020
tgggccttat	ttgccctatt	tcggttaatg	gctcaggatt	accctgaagt	actttatcac	1080
cagatacttt	atgcttctgg	gaaggtctac	atgatatttt	ttgtggtggt	aagttttttg	1140
ttttcctttt	atatggcaag	tttgttctta	ggcatacttg	ccatggccta	tgaagaagaa	1200
aagcagagag	ttggtgaaat	atctaagaag	attgaaccaa	aatttcaaca	gactggaaaa	1260
gaacttcaag	aaggaaatga	aacagatgag	gccaagacca	tacaaataga	aatgaagaaa	1320
aggtcaccaa	tttccacaga	cacatcattg	gatgtgttgg	aagatgctac	tctcagacat	1380
aaggaagaac	ttgaaaaatc	caagaagata	tgcccattat	actggtataa	gtttgctaaa	1440
actttcttga	tctggaattg	ttctccctgt	tggttaaaat	tgaaagagtt	tgtccatagg	1500
attataatgg	caccatttac	tgatcttttc	cttatcatat	gcataatttt	aaacgtatgt	1560
tttctgacct	tggagcatta	tccaatgagt	aaacaaacta	acactcttct	caacattgga	1620

aacctggttt	tcattggaat	tttcacagca	gaaatgattt	ttaaaataat	tgcaatgcat	1680
ccatatgggt	atttccaagt	aggttggaac	atttttgata	gcatgatagt	gttccatggt	1740
ttaatagaac	tttgtctagc	aaatgttgca	ggaatggctc	ttcttcgatt	attcaggatg	1800
ttaagaattt	tcaagttggg	aaagtattgg	ccaacattcc	agattttgat	gtggtctctt	1860
agtaactcat	gggtggccct	gaaagacttg	gtcctgttgt	tgttcacatt	catcttcttt	1920
tctgctgcat	tcggcatgaa	gctgtttggt	aagaattatg	aagaatttgt	ctgccacata	1980
gacaaagact	gtcaactccc	acgctggcac	atgcatgact	ttttccactc	cttcctgaat	2040
gtgttccgaa	ttctctgtgg	agagtgggta	gagaccttgt	gggactgtat	ggaggttgca	2100
ggccaatcct	ggtgtattcc	tttttacctg	atggtcattt	taattggaaa	tttactggta	2160
ctttacctgt	ttctggcatt	ggtgagctca	tttagttcat	gcaaggatgt	aacagctgaa	2220
gagaataatg	aagcaaaaaa	tctccagctt	gcagtggcaa	gaattaaaaa	aggaataaac	2280
tatgtgcttc	ttaaaatact	atgcaaaaca	caaaatgtcc	caaaggacac	aatggaccat	2340
gtaaatgagg	tatatgttaa	agaagatatt	tctgaccata	ccctttctga	attgagcaac	2400
acccaagatt	ttctcaaaga	taaggaaaaa	agcagtggca	cagagaaaaa	cgctactgaa	2460
aatgagagcc	aatcacttat	ccccagtcct	agtgtctcag	aaactgtacc	aattgcttca	2520
ggagaatctg	atatagaaaa	tctggataat	aaggagattc	agagtaagtc	tggtgatgga	2580
ggcagcaaag	agaaaataaa	gcaatctagc	tcatctgaat	gcagtactgt	tgatattgct	2640
atctctgaag	aagaagaaat	gttctatgga	ggtgaaagat	caaagcatct	gaaaaatggt	2700
tgcagacgcg	gatcttcact	tggtcaaatc	agtggagcat	ccaagaaagg	aaaaatctgg	2760
cagaacatca	ggaaaacctg	ctgcaagatt	gtagagaaca	attggtttaa	gtgttttatt	2820
gggcttgtta	ctctgctcag	cactggcact	ctggcttttg	aagatatata	tatggatcag	2880
agaaagacaa	ttaaaatttt	attagaatat	gctgacatga	tctttactta	tatcttcatt	2940
ctggaaatgc	ttctaaaatg	gatggcatat	ggttttaagg	cctatttctc	taatggctgg	3000
tacaggctgg	acttcgtggt	tgttattgtg	ttttgtctta	gcttaatagg	caaaactcgg	3060
gaagaactaa	aacctcttat	ttccatgaaa	ttccttcggc	ccctcagagt	tctatctcaa	3120
tttgaaagaa	tgaaggtggt	tgtgagagct	ttgatcaaaa	caaccttacc	cactttgaat	3180
gtgtttcttg	tctgcctgat	gatctggctg	atttttagta	tcatgggagt	agacttattt	3240
gctggcagat	tctatgaatg	cattgaccca	acaagtggag	aaaggtttcc	ttcatctgaa	3300
gtcatgaata	agagtcggtg	tgaaagcctt	ctgtttaacg	aatccatgct	atgggaaaat	3360
gcaaaaatga	actttgataa	tgttggaaat	ggtttccttt	ctctgcttca	agtagcaaca	3420
tttaatggat	ggatcactat	tatgaattca	gcaattgatt	ctgttgctgt	taatatacag	3480
cctcattttg	aagtcaacat	ctacatgtat	tgttacttta	tcaactttat	tatatttgga	3540
gtatttctcc	ctctgagtat	gctgattact	gttattattg	ataatttcaa	caagcataaa	3600

ataaagctgg	gaggctcaaa	tatctttata	acggttaaac	agagaaaaca	gtaccgcagg	3660
ctgaagaagc	taatgtatga	ggattctcaa	agaccagtac	ctcgcccatt	aaacaagctc	3720
caaggattca	tctttgatgt	ggtaacaagc	caagctttta	atgtcattgt	tatggttctt	3780
atatgtttcc	aagcaatagc	catgatgata	gacactgatg	ttcagagtct	acaaatgtcc	3840
attgctctct	actggattaa	ctcaattttt	gttatgctat	atactatgga	atgtatactg	3900
aagctcatcg	ctttccgttg	ttttatttc	accattgcgt	ggaacatttt	tgattttatg	3960
gtggttattt	tctccatcac	aggactatgt	ctgcctatga	cagtaggatc	ctaccttgtg	4020
cctccttcac	ttgtgcaact	gatacttctc	tcacggatca	ttcacatgct	gcgtcttgga	4080
aaaggaccaa	aggtgtttca	taatctgatg	cttcctttga	tgctgtccct	cccagcatta	4140
ttgaacatca	ttcttctcat	cttcctggtc	atgttcatct	atgccgtatt	tggaatgtat	4200
aattttgcct	atgttaaaaa	agaagctgga	attaatgatg	tgtctaattt	tgaaaccttt	4260
ggcaacagta	tgctctgtct	ttttcaagtt	gcaatatttg	ctggttggga	tgggatgctt	4320
gatgcaattt	tcaacagtaa	atggtctgac	tgtgatcctg	ataaaattaa	ccctgggact	4380
caagttagag	gagattgtgg	gaacccctct	gttgggattt	tttattttgt	cagttatatc	4440
ctcatatcat	ggctgatcat	tgtaaatatg	tacattgttg	ttgtcatgga	gtttttaaat	4500
attgcttcta	agaagaaaaa	caagaccttg	agtgaagatg	attttaggaa	attctttcag	4560
gtatggaaaa	ggtttgatcc	tgataggacc	cagtacatag	actctagcaa	gctttcagat	4620
tttgcagctg	ctcttgatcc	tcctctttc	atggcaaaac	caaacaaggg	ccagctcatt	4680
gctttggacc	tccccatggc	tgttggggac	agaattcatt	gcctcgatat	cttacttgct	4740
tttacaaaga	gagttatggg	tcaagatgtg	aggatggaga	aagttgtttc	agaaatagaa	4800
tcagggtttt	tgttagccaa	cccttttaag	atcacatgtg	agccaattac	gactactttg	4860
aaacgaaaac	aagaggcagt	ttcagcaacc	atcattcaac	gtgcttataa	aaattaccgc	4920
ttgaggcgaa	atgacaaaaa	tacatcagat	attcatatga	tagatggtga	cagagatgtt	4980
catgctacta	aagaaggtgc	ctattttgac	aaagctaagg	aaaagtcacc	tattcaaagc	5040
cagatctaa						5049
12 5943						
ADN						

<210> 12

<211> 5943

<212> ADN

<213> Homo sapiens

<400> 12

atggcagcgc ggctgcttgc accaccaggc cctgatagtt tcaagccttt cacccctgag 60 tcactggcaa acattgagag gcgcattgct gagagcaagc tcaagaaacc accaaaggcc 120 gatggcagtc atcgggagga cgatgaggac agcaagccca agccaaacag cgacctggaa 180 gcagggaaga gtttgccttt catctacggg gacatccccc aaggcctggt tgcagttccc 240

10

5

ctggaggact	ttgacccata	ctatttgacg	cagaaaacct	ttgtagtatt	aaacagaggg	300
aaaactctct	tcagatttag	tgccacgcct	gccttgtaca	ttttaagtcc	ttttaacctg	360
ataagaagaa	tagctattaa	aattttgata	cattcagtat	ttagcatgat	cattatgtgc	420
actattttga	ccaactgtgt	attcatgact	tttagtaacc	ctcctgactg	gtcgaagaat	480
gtggagtaca	cgttcacagg	gatttataca	tttgaatcac	tagtgaaaat	cattgcaaga	540
ggtttctgca	tagatggctt	taccttttta	cgggacccat	ggaactggtt	agatttcagt	600
gtcatcatga	tggcgtatat	aacagagttt	gtaaacctag	gcaatgtttc	agctctacgc	660
actttcaggg	tactgagggc	tttgaaaact	atttcggtaa	tcccaggcct	gaagacaatt	720
gtgggtgccc	tgattcagtc	tgtgaagaaa	ctgtcagatg	tgatgatcct	gacagtgttc	780
tgcctgagtg	tttttgcctt	gatcggactg	cagctgttca	tggggaacct	tcgaaacaag	840
tgtgttgtgt	ggcccataaa	cttcaacgag	agctatcttg	aaaatggcac	caaaggcttt	900
gattgggaag	agtatatcaa	caataaaaca	aatttctaca	cagttcctgg	catgctggaa	960
cctttactct	gtgggaacag	ttctgatgct	gggcaatgcc	cagagggata	ccagtgtatg	1020
aaagcaggaa	ggaaccccaa	ctatggttac	acaagttttg	acacttttag	ctgggccttc	1080
ttggcattat	ttcgccttat	gacccaggac	tattgggaaa	acttgtatca	attgacttta	1140
cgagcagccg	ggaaaacata	catgatcttc	ttcgtcttgg	tcatctttgt	gggttctttc	1200
tatctggtga	acttgatctt	ggctgtggtg	gccatggctt	atgaagaaca	gaatcaggca	1260
acactggagg	aggcagaaca	aaaagaggct	gaatttaaag	caatgttgga	gcaacttaag	1320
aagcaacagg	aagaggcaca	ggctgctgcg	atggccactt	cagcaggaac	tgtctcagaa	1380
gatgccatag	aggaagaagg	tgaagaagga	gggggctccc	ctcggagctc	ttctgaaatc	1440
tctaaactca	gctcaaagag	tgcaaaggaa	agacgtaaca	ggagaaagaa	gaggaagcaa	1500
aaggaactct	ctgaaggaga	ggagaaaggg	gatcccgaga	aggtgtttaa	gtcagagtca	1560
gaagatggca	tgagaaggaa	ggcctttcgg	ctgccagaca	acagaatagg	gaggaaattt	1620
tccatcatga	atcagtcact	gctcagcatc	ccaggctcgc	ccttcctctc	ccgccacaac	1680
agcaagagca	gcatcttcag	tttcagggga	cctgggcggt	tccgagaccc	gggctccgag	1740
aatgagttcg	cggatgacga	gcacagcacg	gtggaggaga	gcgagggccg	ccgggactcc	1800
ctcttcatcc	ccatccgggc	ccgcgagcgc	cggagcagct	acagcggcta	cagcggctac	1860
agccagggca	geegeteete	gcgcatcttc	cccagcctgc	ggcgcagcgt	gaagcgcaac	1920
agcacggtgg	actgcaacgg	cgtggtgtcc	ctcatcggcg	gccccggctc	ccacatcggc	1980
gggcgtctcc	tgccagaggc	tacaactgag	gtggaaatta	agaagaaagg	ccctggatct	2040
cttttagttt	ccatggacca	attagcctcc	tacgggcgga	aggacagaat	caacagtata	2100
atgagtgttg	ttacaaatac	actagtagaa	gaactggaag	agtctcagag	aaagtgcccg	2160

ccatgctggt ataaatttgc	caacactttc	ctcatctggg	agtgccaccc	ctactggata	2220
aaactgaaag agattgtgaa	cttgatagtt	atggaccctt	ttgtggattt	agccatcacc	2280
atctgcatcg tcctgaatac	actgtttatg	gcaatggagc	accatcctat	gacaccacaa	2340
tttgaacatg tcttggctgt	aggaaatctg	gttttcactg	gaattttcac	agcggaaatg	2400
ttcctgaagc tcatagccat	ggatccctac	tattatttcc	aagaaggttg	gaacattttt	2460
gacggattta ttgtctccct	cagtttaatg	gaactgagtc	tagcagacgt	ggaggggctt	2520
tcagtgctgc gatctttccg	attgctccga	gtcttcaaat	tggccaaatc	ctggcccacc	2580
ctgaacatgc taatcaagat	tattggaaat	tcagtgggtg	ccctgggcaa	cctgacactg	2640
gtgctggcca ttattgtctt	catctttgcc	gtggtgggga	tgcaactctt	tggaaaaagc	2700
tacaaagagt gtgtctgcaa	gatcaaccag	gactgtgaac	tecetegetg	gcatatgcat	2760
gactttttcc attccttcct	cattgtcttt	cgagtgttgt	gcggggagtg	gattgagacc	2820
atgtgggact gcatggaagt	ggcaggccag	gccatgtgcc	tcattgtctt	tatgatggtc	2880
atggtgattg gcaacttggt	ggtgctgaac	ctgtttctgg	ccttgctcct	gagctccttc	2940
agtgcagaca acctggctgc	cacagatgac	gatggggaaa	tgaacaacct	ccagatctca	3000
gtgatccgta tcaagaaggg	tgtggcctgg	accaaactaa	aggtgcacgc	cttcatgcag	3060
gcccacttta agcagcgtga	ggctgatgag	gtgaagcctc	tggatgagtt	gtatgaaaag	3120
aaggccaact gtatcgccaa	tcacaccggt	gcagacatcc	accggaatgg	tgacttccag	3180
aagaatggca atggcacaac	cagcggcatt	ggcagcagcg	tggagaagta	catcattgat	3240
gaggaccaca tgtccttcat	caacaacccc	aacttgactg	tacgggtacc	cattgctgtg	3300
ggcgagtctg actttgagaa	cctcaacaca	gaggatgtta	gcagcgagtc	ggatcctgaa	3360
ggcagcaaag ataaactaga	tgacaccagc	tectetgaag	gaagcaccat	tgatatcaaa	3420
ccagaagtag aagaggtccc	tgtggaacag	cctgaggaat	acttggatcc	agatgcctgc	3480
ttcacagaag gttgtgtcca	gcggttcaag	tgctgccagg	tcaacatcga	ggaagggcta	3540
ggcaagtett ggtggateet	gcggaaaacc	tgcttcctca	tegtggagea	caactggttt	3600
gagacettea teatetteat	gattctgctg	agcagtggcg	ccctggcctt	cgaggacatc	3660
tacattgagc agagaaagac	catccgcacc	atcctggaat	atgctgacaa	agtcttcacc	3720
tatatcttca tcctggagat	gttgctcaag	tggacagcct	atggcttcgt	caagttcttc	3780
accaatgcct ggtgttggct	ggacttcctc	attgtggctg	tctctttagt	cagccttata	3840
gctaatgccc tgggctactc	ggaactaggt	gccataaagt	cccttaggac	cctaagagct	3900
ttgagaccct taagagcctt	atcacgattt	gaagggatga	gggtggtggt	gaatgccttg	3960
gtgggcgcca tcccctccat	catgaatgtg	ctgctggtgt	gtctcatctt	ctggctgatt	4020
ttcagcatca tgggagttaa	cttgtttgcg	ggaaagtacc	actactgctt	taatgagact	4080
tctgaaatcc gatttgaaat	tgaagatgtc	aacaataaaa	ctgaatgtga	aaagcttatg	4140

gaggggaaca	atacagagat	cagatggaag	aacgtgaaga	tcaactttga	caatgttggg	4200
gcaggatacc	tggcccttct	tcaagtagca	accttcaaag	gctggatgga	catcatgtat	4260
gcagctgtag	attcccggaa	gcctgatgag	cagcctaagt	atgaggacaa	tatctacatg	4320
tacatctatt	ttgtcatctt	catcatcttc	ggctccttct	tcaccctgaa	cctgttcatt	4380
ggtgtcatca	ttgataactt	caatcaacaa	aagaaaaagt	tcggaggtca	ggacatcttc	4440
atgaccgaag	aacagaagaa	gtactacaat	gccatgaaaa	agctgggctc	aaagaagcca	4500
cagaaaccta	ttccccgccc	cttgaacaaa	atccaaggaa	tcgtctttga	ttttgtcact	4560
cagcaagcct	ttgacattgt	tatcatgatg	ctcatctgcc	ttaacatggt	gacaatgatg	4620
gtggagacag	acactcaaag	caagcagatg	gagaacatcc	tctactggat	taacctggtg	4680
tttgttatct	tcttcacctg	tgagtgtgtg	ctcaaaatgt	ttgcgttgag	gcactactac	4740
ttcaccattg	gctggaacat	cttcgacttc	gtggtagtca	tcctctccat	tgtgggaatg	4800
ttcctggcag	atataattga	gaaatacttt	gtttccccaa	ccctattccg	agtcatccga	4860
ttggcccgta	ttgggcgcat	cttgcgtctg	atcaaaggcg	ccaaagggat	tcgtaccctg	4920
ctctttgcct	taatgatgtc	cttgcctgcc	ctgttcaaca	teggeettet	gctcttcctg	4980
gtcatgttca	tcttctccat	ttttgggatg	tccaattttg	catatgtgaa	gcacgaggct	5040
ggtatcgatg	acatgttcaa	ctttgagaca	tttggcaaca	gcatgatctg	cctgtttcaa	5100
atcacaacct	cagctggttg	ggatggcctg	ctgctgccca	tcctaaaccg	ccccctgac	5160
tgcagcctag	ataaggaaca	cccagggagt	ggctttaagg	gagattgtgg	gaacccctca	5220
gtgggcatct	tcttctttgt	aagctacatc	atcatctctt	tcctaattgt	cgtgaacatg	5280
tacattgcca	tcatcctgga	gaacttcagt	gtagccacag	aggaaagtgc	agaccctctg	5340
agtgaggatg	actttgagac	cttctatgag	atctgggaga	agttcgaccc	cgatgccacc	5400
cagttcattg	agtactgtaa	gctggcagac	tttgcagatg	ccttggagca	tcctctccga	5460
gtgcccaagc	ccaataccat	tgagctcatc	gctatggatc	tgccaatggt	gagcggggat	5520
cgcatccact	gcttggacat	cctttttgcc	ttcaccaagc	gggtcctggg	agatagcggg	5580
gagttggaca	tcctgcggca	gcagatggaa	gagcggttcg	tggcatccaa	tccttccaaa	5640
gtgtcttacg	agccaatcac	aaccacactg	cgtcgcaagc	aggaggaggt	atctgcagtg	5700
gtcctgcagc	gtgcctaccg	gggacatttg	gcaaggcggg	gcttcatctg	caaaaagaca	5760
acttctaata	agctggagaa	tggaggcaca	caccgggaga	aaaaagagag	caccccatct	5820
acagcctccc	tcccgtccta	tgacagtgta	actaaacctg	aaaaggagaa	acagcagcgg	5880
gcagaggaag	gaagaaggga	aagagccaaa	agacaaaaag	aggtcagaga	atccaagtgt	5940
tag						5943

<210> 13

5

<211> 5934

<212> ADN

<213> Homo sapiens

<400> 13

atggcaatgt	tgcctccccc	aggacctcag	agctttgtcc	atttcacaaa	acagtctctt	60
gccctcattg	aacaacgcat	tgctgaaaga	aaatcaaagg	aacccaaaga	agaaaagaaa	120
gatgatgatg	aagaagcccc	aaagccaagc	agtgacttgg	aagctggcaa	acaactgccc	180
ttcatctatg	gggacattcc	tcccggcatg	gtgtcagagc	ccctggagga	cttggacccc	240
tactatgcag	acaaaaagac	tttcatagta	ttgaacaaag	ggaaaacaat	cttccgtttc	300
aatgccacac	ctgctttata	tatgctttct	cctttcagtc	ctctaagaag	aatatctatt	360
aagattttag	tacactcctt	attcagcatg	ctcatcatgt	gcactattct	gacaaactgc	420
atatttatga	ccatgaataa	cccgccggac	tggaccaaaa	atgtcgagta	cacttttact	480
ggaatatata	cttttgaatc	acttgtaaaa	atccttgcaa	gaggcttctg	tgtaggagaa	540
ttcacttttc	ttcgtgaccc	gtggaactgg	ctggattttg	tcgtcattgt	ttttgcgtat	600
ttaacagaat	ttgtaaacct	aggcaatgtt	tcagctcttc	gaactttcag	agtattgaga	660
gctttgaaaa	ctatttctgt	aatcccaggc	ctgaagacaa	ttgtaggggc	tttgatccag	720
tcagtgaaga	agctttctga	tgtcatgatc	ctgactgtgt	tctgtctgag	tgtgtttgca	780
ctaattggac	tacagctgtt	catgggaaac	ctgaagcata	aatgttttcg	aaattcactt	840
gaaaataatg	aaacattaga	aagcataatg	aataccctag	agagtgaaga	agactttaga	900
aaatattttt	attacttgga	aggatccaaa	gatgctctcc	tttgtggttt	cagcacagat	960
tcaggtcagt	gtccagaggg	gtacacctgt	gtgaaaattg	gcagaaaccc	tgattatggc	1020
tacacgagct	ttgacacttt	cagctgggcc	ttcttagcct	tgtttaggct	aatgacccaa	1080
gattactggg	aaaaccttta	ccaacagacg	ctgcgtgctg	ctggcaaaac	ctacatgatc	1140
ttctttgtcg	tagtgatttt	cctgggctcc	ttttatctaa	taaacttgat	cctggctgtg	1200
gttgccatgg	catatgaaga	acagaaccag	gcaaacattg	aagaagctaa	acagaaagaa	1260
ttagaatttc	aacagatgtt	agaccgtctt	aaaaaagagc	aagaagaagc	tgaggcaatt	1320
gcagcggcag	cggctgaata	tacaagtatt	aggagaagca	gaattatggg	cctctcagag	1380
agttcttctg	aaacatccaa	actgagctct	aaaagtgcta	aagaaagaag	aaacagaaga	1440
aagaaaaaga	atcaaaagaa	gctctccagt	ggagaggaaa	agggagatgc	tgagaaattg	1500
tcgaaatcag	aatcagagga	cagcatcaga	agaaaaagtt	tccaccttgg	tgtcgaaggg	1560
cataggcgag	cacatgaaaa	gaggttgtct	acccccaatc	agtcaccact	cagcattcgt	1620
ggctccttgt	tttctgcaag	gcgaagcagc	agaacaagtc	tttttagttt	caaaggcaga	1680
ggaagagata	taggatctga	gactgaattt	gccgatgatg	agcacagcat	ttttggagac	1740
aatgagagca	gaaggggctc	actgtttgtg	ccccacagac	cccaggagcg	acgcagcagt	1800

aacatcagcc	aagccagtag	gtccccacca	atgctgccgg	tgaacgggaa	aatgcacagt	1860
gctgtggact	gcaacggtgt	ggtctccctg	gttgatggac	gctcagccct	catgctcccc	1920
aatggacagc	ttctgccaga	gggcacgacc	aatcaaatac	acaagaaaag	gcgttgtagt	1980
tcctatctcc	tttcagagga	tatgctgaat	gatcccaacc	tcagacagag	agcaatgagt	2040
agagcaagca	tattaacaaa	cactgtggaa	gaacttgaag	agtccagaca	aaaatgtcca	2100
ccttggtggt	acagatttgc	acacaaattc	ttgatctgga	attgctctcc	atattggata	2160
aaattcaaaa	agtgtatcta	ttttattgta	atggatcctt	ttgtagatct	tgcaattacc	2220
atttgcatag	ttttaaacac	attatttatg	gctatggaac	accacccaat	gactgaggaa	2280
ttcaaaaatg	tacttgctat	aggaaatttg	gtctttactg	gaatctttgc	agctgaaatg	2340
gtattaaaac	tgattgccat	ggatccatat	gagtatttcc	aagtaggctg	gaatatttt	2400
gacagcctta	ttgtgacttt	aagtttagtg	gagctctttc	tagcagatgt	ggaaggattg	2460
tcagttctgc	gatcattcag	actgctccga	gtcttcaagt	tggcaaaatc	ctggccaaca	2520
ttgaacatgc	tgattaagat	cattggtaac	tcagtagggg	ctctaggtaa	cctcacctta	2580
gtgttggcca	tcatcgtctt	catttttgct	gtggtcggca	tgcagctctt	tggtaagagc	2640
tacaaagaat	gtgtctgcaa	gatcaatgat	gactgtacgc	tcccacggtg	gcacatgaac	2700
gacttcttcc	actccttcct	gattgtgttc	cgcgtgctgt	gtggagagtg	gatagagacc	2760
atgtgggact	gtatggaggt	cgctggtcaa	gctatgtgcc	ttattgttta	catgatggtc	2820
atggtcattg	gaaacctggt	ggtcctaaac	ctatttctgg	ccttattatt	gagctcattt	2880
agttcagaca	atcttacagc	aattgaagaa	gaccctgatg	caaacaacct	ccagattgca	2940
gtgactagaa	ttaaaaaggg	aataaattat	gtgaaacaaa	ccttacgtga	atttattcta	3000
aaagcatttt	ccaaaaagcc	aaagatttcc	agggagataa	gacaagcaga	agatctgaat	3060
actaagaagg	aaaactatat	ttctaaccat	acacttgctg	aaatgagcaa	aggtcacaat	3120
ttcctcaagg	aaaaagataa	aatcagtggt	tttggaagca	gcgtggacaa	acacttgatg	3180
gaagacagtg	atggtcaatc	atttattcac	aatcccagcc	tcacagtgac	agtgccaatt	3240
gcacctgggg	aatccgattt	ggaaaatatg	aatgctgagg	aacttagcag	tgattcggat	3300
agtgaataca	gcaaagtgag	attaaaccgg	tcaagctcct	cagagtgcag	cacagttgat	3360
aaccctttgc	ctggagaagg	agaagaagca	gaggctgaac	ctatgaattc	cgatgagcca	3420
gaggcctgtt	tcacagatgg	ttgtgtacgg	aggttctcat	gctgccaagt	taacatagag	3480
tcagggaaag	gaaaaatctg	gtggaacatc	aggaaaacct	gctacaagat	tgttgaacac	3540
agttggtttg	aaagcttcat	tgtcctcatg	atcctgctca	gcagtggtgc	cctggctttt	3600
gaagatattt	atattgaaag	gaaaaagacc	attaagatta	tcctggagta	tgcagacaag	3660
atcttcactt	acatcttcat	tctggaaatg	cttctaaaat	ggatagcata	tggttataaa	3720
acatatttca	ccaatgcctg	gtgttggctg	gatttcctaa	ttgttgatgt	ttctttggtt	3780

	actttagtgg	caaacactct	tggctactca	gatcttggcc	ccattaaatc	ccttcggaca	3840
,	ctgagagctt	taagacctct	aagagcctta	tctagatttg	aaggaatgag	ggtcgttgtg	3900
	aatgcactca	taggagcaat	tecttecate	atgaatgtgc	tacttgtgtg	tcttatattc	3960
	tggctgatat	tcagcatcat	gggagtaaat	ttgtttgctg	gcaagttcta	tgagtgtatt	4020
	aacaccacag	atgggtcacg	gtttcctgca	agtcaagttc	caaatcgttc	cgaatgtttt	4080
4	gcccttatga	atgttagtca	aaatgtgcga	tggaaaaacc	tgaaagtgaa	ctttgataat	4140
4	gtcggacttg	gttacctatc	tctgcttcaa	gttgcaactt	ttaagggatg	gacgattatt	4200
	atgtatgcag	cagtggattc	tgttaatgta	gacaagcagc	ccaaatatga	atatagcctc	4260
	tacatgtata	tttattttgt	cgtctttatc	atctttgggt	cattcttcac	tttgaacttg	4320
•	ttcattggtg	tcatcataga	taatttcaac	caacagaaaa	agaagcttgg	aggtcaagac	4380
	atctttatga	cagaagaaca	gaagaaatac	tataatgcaa	tgaaaaagct	ggggtccaag	4440
	aagccacaaa	agccaattcc	tcgaccaggg	aacaaaatcc	aaggatgtat	atttgaccta	4500
4	gtgacaaatc	aagcctttga	tattagtatc	atggttctta	tctgtctcaa	catggtaacc	4560
	atgatggtag	aaaaggaggg	tcaaagtcaa	catatgactg	aagttttata	ttggataaat	4620
4	gtggttttta	taatcctttt	cactggagaa	tgtgtgctaa	aactgatctc	cctcagacac	4680
•	tactacttca	ctgtaggatg	gaatatttt	gattttgtgg	ttgtgattat	ctccattgta	4740
4	ggtatgtttc	tagctgattt	gattgaaacg	tattttgtgt	cccctaccct	gttccgagtg	4800
	atccgtcttg	ccaggattgg	ccgaatccta	cgtctagtca	aaggagcaaa	ggggateege	4860
	acgctgctct	ttgctttgat	gatgtccctt	cctgcgttgt	ttaacatcgg	cctcctgctc	4920
	ttcctggtca	tgttcatcta	cgccatcttt	ggaatgtcca	actttgccta	tgttaaaaag	4980
4	gaagatggaa	ttaatgacat	gttcaatttt	gagacctttg	gcaacagtat	gatttgcctg	5040
	ttccaaatta	caacctctgc	tggctgggat	ggattgctag	cacctattct	taacagtaag	5100
	ccacccgact	gtgacccaaa	aaaagttcat	cctggaagtt	cagttgaagg	agactgtggt	5160
	aacccatctg	ttggaatatt	ctactttgtt	agttatatca	tcatatcctt	cctggttgtg	5220
4	gtgaacatgt	acattgcagt	catactggag	aattttagtg	ttgccactga	agaaagtact	5280
4	gaacctctga	gtgaggatga	ctttgagatg	ttctatgagg	tttgggagaa	gtttgatccc	5340
4	gatgcgaccc	agtttataga	gttctctaaa	ctctctgatt	ttgcagctgc	cctggatcct	5400
	cctcttctca	tagcaaaacc	caacaaagtc	cagctcattg	ccatggatct	gcccatggtt	5460
	agtggtgacc	ggatccattg	tcttgacatc	ttatttgctt	ttacaaagcg	tgttttgggt	5520
4	gagagtgggg	agatggattc	tcttcgttca	cagatggaag	aaaggttcat	gtctgcaaat	5580
	ccttccaaag	tgtcctatga	acccatcaca	accacactaa	aacggaaaca	agaggatgtg	5640
	tctgctactg	tcattcagcg	tgcttataga	cgttaccgct	taaggcaaaa	tgtcaaaaat	5700
at	atcaagta t	atacataaa	agatggagac	agagatgatg	atttactcaa	ı taaaaaagat	5760
at	ggcttttg a	ıtaatgttaa '	tgagaactca	agtccagaaa	aaacagatgo	cacttcatcc	5820
ac	cacctctc c	accttcata	tgatagtgta	acaaagccag	acaaagagaa	a atatgaacaa	5880
ga	cagaacag a	ıaaaggaaga	caaagggaaa	gacagcaagg	aaagcaaaaa	ı atag	5934

<210> 14 <211> 5871

5

<212> ADN <213> Homo sapiens

<400> 14

5

atggaattcc	ccattggatc	cctcgaaact	aacaacttcc	gtcgctttac	tccggagtca	60
ctggtggaga	tagagaagca	aattgctgcc	aagcagggaa	caaagaaagc	cagagagaag	120
catagggagc	agaaggacca	agaagagaag	cctcggcccc	agctggactt	gaaagcctgc	180
aaccagctgc	ccaagttcta	tggtgagctc	ccagcagaac	tgatcgggga	gcccctggag	240
gatctagatc	cgttctacag	cacacaccgg	acatttatgg	tgctgaacaa	agggaggacc	300
atttcccggt	ttagtgccac	tegggeeetg	tggctattca	gtcctttcaa	cctgatcaga	360
agaacggcca	tcaaagtgtc	tgtccactcg	tggttcagtt	tatttattac	ggtcactatt	420
ttggttaatt	gtgtgtgcat	gacccgaact	gaccttccag	agaaaattga	atatgtcttc	480
actgtcattt	acacctttga	agccttgata	aagatactgg	caagaggatt	ttgtctaaat	540
gagttcacgt	acctgagaga	tccttggaac	tggctggatt	ttagcgtcat	taccctggca	600
tatgttggca	cagcaataga	tctccgtggg	atctcaggcc	tgcggacatt	cagagttctt	660
agagcattaa	aaacagtttc	tgtgatccca	ggcctgaagg	tcattgtggg	ggccctgatt	720
cactcagtga	agaaactggc	tgatgtgacc	atcctcacca	tcttctgcct	aagtgttttt	780
gccttggtgg	ggctgcaact	cttcaagggc	aacctcaaaa	ataaatgtgt	caagaatgac	840
atggctgtca	atgagacaac	caactactca	tctcacagaa	aaccagatat	ctacataaat	900
aagcgaggca	cttctgaccc	cttactgtgt	ggcaatggat	ctgactcagg	ccactgccct	960
gatggttata	tctgccttaa	aacttctgac	aacccggatt	ttaactacac	cagctttgat	1020
tcctttgctt	gggctttcct	ctcactgttc	cgcctcatga	cacaggattc	ctgggaacgc	1080
ctctaccagc	agaccctgag	gacttctggg	aaaatctata	tgatctttt	tgtgctcgta	1140
atcttcctgg	gatctttcta	cctggtcaac	ttgatcttgg	ctgtagtcac	catggcgtat	1200
gaggagcaga	accaggcaac	cactgatgaa	attgaagcaa	aggagaagaa	gttccaggag	1260
gccctcgaga	tgctccggaa	ggagcaggag	gtgctagcag	cactagggat	tgacacaacc	1320
tctctccact	cccacaatgg	atcaccttta	acctccaaaa	atgccagtga	gagaaggcat	1380
agaataaagc	caagagtgtc	agagggctcc	acagaagaca	acaaatcacc	ccgctctgat	1440
ccttacaacc	agcgcaggat	gtcttttcta	ggcctcgcct	ctggaaaacg	ccgggctagt	1500

catggcagtg	tgttccattt	ceggteecet	ggccgagata	tctcactccc	tgagggagtc	1560
acagatgatg	gagtetttee	tggagaccac	gaaagccatc	ggggctctct	gctgctgggt	1620
gggggtgctg	gccagcaagg	cccctccct	agaagccctc	ttcctcaacc	cagcaaccct	1680
gactccaggc	atggagaaga	tgaacaccaa	ccgccgccca	ctagtgagct	tgcccctgga	1740
gctgtcgatg	tctcggcatt	cgatgcagga	caaaagaaga	ctttcttgtc	agcagaatac	1800
ttagatgaac	ctttccgggc	ccaaagggca	atgagtgttg	tcagtatcat	aacctccgtc	1860
cttgaggaac	tcgaggagtc	tgaacagaag	tgcccaccct	gcttgaccag	cttgtctcag	1920
aagtatctga	tctgggattg	ctgccccatg	tgggtgaagc	tcaagacaat	tctctttggg	1980
cttgtgacgg	atccctttgc	agageteace	atcaccttgt	gcatcgtggt	gaacaccatc	2040
ttcatggcca	tggagcacca	tggcatgagc	cctaccttcg	aagccatgct	ccagataggc	2100
aacatcgtct	ttaccatatt	ttttactgct	gaaatggtct	tcaaaatcat	tgccttcgac	2160
ccatactatt	atttccagaa	gaagtggaat	atctttgact	gcatcatcgt	cactgtgagt	2220
ctgctagagc	tgggcgtggc	caagaaggga	agcctgtctg	tgctgcggag	cttccgcttg	2280
ctgcgcgtat	tcaagctggc	caaatcctgg	cccaccttaa	acacactcat	caagatcatc	2340
ggaaactcag	tgggggcact	ggggaacctc	accatcatcc	tggccatcat	tgtctttgtc	2400
tttgctctgg	ttggcaagca	gctcctaggg	gaaaactacc	gtaacaaccg	aaaaaatatc	2460
teegegeeee	atgaagactg	gccccgctgg	cacatgcacg	acttcttcca	ctctttcctc	2520
attgtcttcc	gtatectetg	tggagagtgg	attgagaaca	tgtgggcctg	catggaagtt	2580
ggccaaaaat	ccatatgcct	catccttttc	ttgacggtga	tggtgctagg	gaacctggtg	2640
gtgcttaacc	tgttcatcgc	cctgctattg	aactctttca	gtgctgacaa	cctcacagcc	2700
ccggaggacg	atggggaggt	gaacaacctg	caggtggccc	tggcacggat	ccaggtcttt	2760
ggccatcgta	ccaaacaggc	tctttgcagc	ttcttcagca	ggtcctgccc	attcccccag	2820
cccaaggcag	agcctgagct	ggtggtgaaa	ctcccactct	ccagctccaa	ggctgagaac	2880
cacattgctg	ccaacactgc	cagggggagc	tctggagggc	tccaagctcc	cagaggcccc	2940
agggatgagc	acagtgactt	catcgctaat	ccgactgtgt	gggtctctgt	gcccattgct	3000
gagggtgaat	ctgatcttga	tgacttggag	gatgatggtg	gggaagatgc	tcagagcttc	3060
cagcaggaag	tgatccccaa	aggacagcag	gagcagctgc	agcaagtcga	gaggtgtggg	3120
gaccacctga	cacccaggag	cccaggcact	ggaacatctt	ctgaggacct	ggctccatcc	3180
ctgggtgaga	cgtggaaaga	tgagtctgtt	cctcaggtcc	ctgctgaggg	agtggacgac	3240
acaagctcct	ctgagggcag	cacggtggac	tgcctagatc	ctgaggaaat	cctgaggaag	3300
atccctgagc	tggcagatga	cctggaagaa	ccagatgact	gcttcacaga	aggatgcatt	3360
cgccactgtc	cctgctgcaa	actggatacc	accaagagtc	catgggatgt	gggctggcag	3420
gtgcgcaaga	cttgctaccg	tatcgtggag	cacagctggt	ttgagagctt	catcatcttc	3480

atgatectge teageagtgg	atctctggcc	tttgaagact	attacctgga	ccagaagccc	3540
acggtgaaag ctttgctgga	gtacactgac	agggtcttca	cctttatctt	tgtgttcgag	3600
atgctgctta agtgggtggc	ctatggcttc	aaaaagtact	tcaccaatgc	ctggtgctgg	3660
ctggacttcc tcattgtgaa	tatctcactg	ataagtctca	cagcgaagat	tctggaatat	3720
tctgaagtgg ctcccatcaa	agcccttcga	accettegeg	ctctgcggcc	actgcgggct	3780
ctttctcgat ttgaaggcat	gcgggtggtg	gtggatgccc	tggtgggcgc	catcccatcc	3840
atcatgaatg tcctcctcgt	ctgcctcatc	ttctggctca	tcttcagcat	catgggtgtg	3900
aacctcttcg cagggaagtt	ttggaggtgc	atcaactata	ccgatggaga	gttttccctt	3960
gtacctttgt cgattgtgaa	taacaagtct	gactgcaaga	ttcaaaactc	cactggcagc	4020
ttcttctggg tcaatgtgaa	agtcaacttt	gataatgttg	caatgggtta	ccttgcactt	4080
ctgcaggtgg caacctttaa	aggctggatg	gacattatgt	atgcagctgt	tgattcccgg	4140
gaggtcaaca tgcaacccaa	gtgggaggac	aacgtgtaca	tgtatttgta	ctttgtcatc	4200
ttcatcattt ttggaggctt	cttcacactg	aatctctttg	ttggggtcat	aattgacaac	4260
ttcaatcaac agaaaaaaaa	gttagggggc	caggacatct	tcatgacaga	ggagcagaag	4320
aaatactaca atgccatgaa	gaagttgggc	tccaagaagc	cccagaagcc	catcccacgg	4380
cccctgaaca agttccaggg	ttttgtcttt	gacatcgtga	ccagacaagc	ttttgacatc	4440
accatcatgg tcctcatctg	cctcaacatg	atcaccatga	tggtggagac	tgatgaccaa	4500
agtgaagaaa agacgaaaat	tctgggcaaa	atcaaccagt	tetttgtgge	cgtcttcaca	4560
ggcgaatgtg tcatgaagat	gttcgctttg	aggcagtact	acttcacaaa	tggctggaat	4620
gtgtttgact tcattgtggt	ggttctctcc	attgcgagcc	tgatttttc	tgcaattctt	4680
aagtcacttc aaagttactt	ctccccaacg	ctcttcagag	tcatccgcct	ggcccgaatt	4740
ggccgcatcc tcagactgat	ccgagcggcc	aaggggatcc	gcacactgct	ctttgccctc	4800
atgatgtccc tgcctgccct	cttcaacatc	gggctgttgc	tattccttgt	catgttcatc	4860
tactctatct tcggtatgtc	cagctttccc	catgtgaggt	gggaggctgg	catcgacgac	4920
atgttcaact tccagacctt	cgccaacagc	atgctgtgcc	tcttccagat	taccacgtcg	4980
gccggctggg atggcctcct	cagccccatc	ctcaacacag	ggccccccta	ctgtgacccc	5040
aatctgccca acagcaatgg	caccagaggg	gactgtggga	gcccagccgt	aggcatcatc	5100
ttcttcacca cctacatcat	catctccttc	ctcatcatgg	tcaacatgta	cattgcagtg	5160
attctggaga acttcaatgt	ggccacggag	gagagcactg	agcccctgag	tgaggacgac	5220
tttgacatgt tctatgagac	ctgggagaag	tttgacccag	aggccactca	gtttattacc	5280
ttttctgctc tctcggactt	tgcagacact	ctctctggtc	ccctgagaat	cccaaaaccc	5340
aatcgaaata tactgatcca	gatggacctg	cctttggtcc	ctggagataa	gatccactgc	5400

ttggacatcc	tttttgcttt	caccaagaat	gtcctaggag	aatccgggga	gttggattct	5460
ctgaaggcaa	atatggagga	gaagtttatg	gcaactaatc	tttcaaaatc	atcctatgaa	5520
ccaatagcaa	ccactctccg	atggaagcaa	gaagacattt	cagccactgt	cattcaaaag	5580
gcctatcgga	gctatgtgct	gcaccgctcc	atggcactct	ctaacacccc	atgtgtgccc	5640
agagctgagg	aggaggctgc	atcactccca	gatgaaggtt	ttgttgcatt	cacagcaaat	5700
gaaaattgtg	tactcccaga	caaatctgaa	actgcttctg	ccacatcatt	cccaccgtcc	5760
tatgagagtg	tcactagagg	ccttagtgat	agagtcaaca	tgaggacatc	tagctcaata	5820
caaaatgaag	atgaagccac	cagtatggag	ctgattgccc	ctgggcccta	g	5871

<210> 15 5 <211> 5376

<212> ADN

<213> Homo sapiens

<400> 15

10

atggatgaca gatgctaccc agtaatcttt ccagatgagc ggaatttccg cccttcact 60 tccgactctc tggctgcaat tgagaagcgg attgccatcc aaaaggagaa aaagaagtct 120 aaagaccaga caggagaagt accccagcct cggcctcagc ttgacctaaa ggcctccagg 180 aagttgccca agctctatgg cgacattcct cgtgagctca taggaaagcc tctggaagac 240 300 ttggacccat tctaccgaaa tcataagaca tttatggtgt taaacagaaa gaggacaatc 360 taccgcttca gtgccaagca tgccttgttc atttttgggc ctttcaattc aatcagaagt ttagccatta gagtctcagt ccattcattg ttcagcatgt tcattatcgg caccgttatc 420 atcaactgcg tgttcatggc tacagggcct gctaaaaaca gcaacagtaa caatactgac 480 540 attgcagagt gtgtcttcac tgggatttat atttttgaag ctttgattaa aatattggca 600 agaggtttca ttctggatga gttttctttc cttcgagatc catggaactg gctggactcc 660 attgtcattg gaatagcgat tgtgtcatat attccaggaa tcaccatcaa actattgccc ctgcgtacct tccgtgtgtt cagagctttg aaagcaattt cagtagtttc acgtctgaag 720 gtcatcgtgg gggccttgct acgctctgtg aagaagctgg tcaacgtgat tatcctcacc 780 ttcttttgcc tcagcatctt tgccctggta ggtcagcagc tcttcatggg aagtctgaac 840 ctgaaatgca tctcgaggga ctgtaaaaat atcagtaacc cggaagctta tgaccattgc 900 960 tttgaaaaga aagaaaattc acctgaattc aaaatgtgtg gcatctggat gggtaacagt gcctgttcca tacaatatga atgtaagcac accaaaatta atcctgacta taattatacg 1020 aattttgaca actttggctg gtcttttctt gccatgttcc ggctgatgac ccaagattcc 1080 1140 tgggagaagc tttatcaaca gaccctgcgt actactgggc tctactcagt cttcttcttc 1200 attgtggtca ttttcctggg ctccttctac ctgattaact taaccctggc tgttgttacc 1260 atggcatatg aggagcagaa caagaatgta gctgcagaga tagaggccaa ggaaaagatg

tttcaggaag	cccagcagct	gttaaaggag	gaaaaggagg	ctctggttgc	catgggaatt	1320
gacagaagtt	cacttacttc	ccttgaaaca	tcatatttta	ccccaaaaaa	gagaaagctc	1380
tttggtaata	agaaaaggaa	gteettettt	ttgagagagt	ctgggaaaga	ccagcctcct	1440
gggtcagatt	ctgatgaaga	ttgccaaaaa	aagccacagc	tcctagagca	aaccaaacga	1500
ctgtcccaga	atctatcact	ggaccacttt	gatgagcatg	gagatcctct	ccaaaggcag	1560
agagcactga	gtgctgtcag	catcctcacc	atcaccatga	aggaacaaga	aaaatcacaa	1620
gagccttgtc	tecettgtgg	agaaaacctg	gcatccaagt	acctcgtgtg	gaactgttgc	1680
ccccagtggc	tgtgcgttaa	gaaggtcctg	agaactgtga	tgactgaccc	gtttactgag	1740
ctggccatca	ccatctgcat	catcatcaac	actgtcttct	tggccatgga	gcatcacaag	1800
atggaggcca	gttttgagaa	gatgttgaat	atagggaatt	tggttttcac	tagcattttt	1860
atagcagaaa	tgtgcctaaa	aatcattgcg	ctcgatccct	accactactt	tegeegagge	1920
tggaacattt	ttgacagcat	tgttgctctt	ctgagttttg	cagatgtaat	gaactgtgta	1980
cttcaaaaga	gaagctggcc	attcttgcgt	tccttcagag	tgctcagggt	cttcaagtta	2040
gccaaatcct	ggccaacttt	gaacacacta	attaagataa	tcggcaactc	tgtcggagcc	2100
cttggaagcc	tgactgtggt	cctggtcatt	gtgatcttta	ttttctcagt	agttggcatg	2160
cagctttttg	gccgtagctt	caattcccaa	aagagtccaa	aactctgtaa	cccgacaggc	2220
ccgacagtct	catgtttacg	gcactggcac	atgggggatt	tctggcactc	cttcctagtg	2280
gtattccgca	tectetgegg	ggaatggatc	gaaaatatgt	gggaatgtat	gcaagaagcg	2340
aatgcatcat	catcattgtg	tgttattgtc	ttcatattga	tcacggtgat	aggaaaactt	2400
gtggtgctca	acctcttcat	tgccttactg	ctcaattcct	ttagcaatga	ggaaagaaat	2460
ggaaacttag	aaggagaggc	caggaaaact	aaagtccagt	tagcactgga	tcgattccgc	2520
cgggcttttt	gttttgtgag	acacactctt	gagcatttct	gtcacaagtg	gtgcaggaag	2580
caaaacttac	cacagcaaaa	agaggtggca	ggaggctgtg	ctgcacaaag	caaagacatc	2640
attcccctgg	tcatggagat	gaaaaggggc	tcagagaccc	aggaggagct	tggtatacta	2700
acctctgtac	caaagaccct	gggcgtcagg	catgattgga	cttggttggc	accacttgcg	2760
gaggaggaag	atgacgttga	attttctggt	gaagataatg	cacagcgcat	cacacaacct	2820
gagcctgaac	aacaggccta	tgagctccat	caggagaaca	agaagcccac	gagccagaga	2880
gttcaaagtg	tggaaattga	catgttctct	gaagatgagc	ctcatctgac	catacaggat	2940
ccccgaaaga	agtctgatgt	taccagtata	ctatcagaat	gtagcaccat	tgatcttcag	3000
gatggctttg	gatggttacc	tgagatggtt	cccaaaaagc	aaccagagag	atgtttgccc	3060
aaaggctttg	gttgctgctt	tccatgctgt	agcgtggaca	agagaaagcc	tecetgggte	3120
atttggtgga	acctgcggaa	aacctgctac	caaatagtga	aacacagetg	gtttgagagc	3180
tttattatct	ttgtgattct	gctgagcagt	ggggcactga	tatttgaaga	tgttcacctt	3240

gagaaccaac ccaaaatcca agaattacta	aattgtactg	acattattt	tacacatatt	3300
tttatcctgg agatggtact aaaatgggta	geetteggat	ttggaaagta	tttcaccagt	3360
gcctggtgct gccttgattt catcattgtc	g attgtctctg	tgaccaccct	cattaactta	3420
atggaattga agteetteeg gaetetaega	gcactgaggc	ctcttcgtgc	gctgtcccag	3480
tttgaaggaa tgaaggtggt ggtcaatgct	ctcataggtg	ccatacctgc	cattctgaat	3540
gttttgcttg tctgcctcat tttctggctc	gtattttgta	ttctgggagt	atacttcttt	3600
tctggaaaat ttgggaaatg cattaatgga	acagactcag	ttataaatta	taccatcatt	3660
acaaataaaa gtcaatgtga aagtggcaat	ttctcttgga	tcaaccagaa	agtcaacttt	3720
gacaatgtgg gaaatgetta cetegetete	g ctgcaagtgg	caacatttaa	gggctggatg	3780
gatattatat atgcagctgt tgattccaca	gagaaagaac	aacagccaga	gtttgagagc	3840
aattcactcg gttacattta cttcgtagtc	tttatcatct	ttggctcatt	cttcactctg	3900
aatetettea ttggegttat cattgacaac	ttcaaccaac	agcagaaaaa	gttaggtggc	3960
caagacattt ttatgacaga agaacagaag	, aaatactata	atgcaatgaa	aaaattagga	4020
tccaaaaac ctcaaaaacc cattccacgo	g cctctgaaca	aatgtcaagg	tctcgtgttc	4080
gacatagtca caagccagat ctttgacatc	atcatcataa	gtctcattat	cctaaacatg	4140
attagcatga tggctgaatc atacaaccaa	cccaaagcca	tgaaatccat	ccttgaccat	4200
ctcaactggg tctttgtggt catctttacc	, ttagaatgtc	tcatcaaaat	ctttgctttg	4260
aggcaatact acttcaccaa tggctggaat	ttatttgact	gtgtggtcgt	gcttctttcc	4320
attgttagta caatgatttc taccttggaa	aatcaggagc	acattccttt	ccctccgacg	4380
ctcttcagaa ttgtccgctt ggctcggatt	ggccgaatcc	tgaggcttgt	ccgggctgca	4440
cgaggaatca ggacteteet etttgetete	g atgatgtcgc	tteettetet	gttcaacatt	4500
ggtcttctac tctttctgat tatgtttatc	tatgccattc	tgggtatgaa	ctggttttcc	4560
aaagtgaatc cagagtctgg aatcgatgac	atattcaact	tcaagacttt	tgccagcagc	4620
atgetetgte tettecagat aageacatea	gcaggttggg	attccctgct	cagccccatg	4680
ctgcgatcaa aagaatcatg taactcttcc	tcagaaaact	gccacctccc	tggcatagcc	4740
acatectact ttgtcagtta cattatcate	tcctttctca	ttgttgtcaa	catgtacatt	4800
gctgtgattt tagagaactt caatacagco	actgaagaaa	gtgaggaccc	tttgggtgaa	4860
gatgactttg acatatttta tgaagtgtgg	gaaaagtttg	acccagaagc	aacacaattt	4920
atcaaatatt ctgccctttc tgactttgct	gatgeettge	ctgagccttt	gcgtgtcgca	4980
aagccaaata aatatcaatt tctagtaatc	gacttgccca	tggtgagtga	agategeete	5040
cactgcatgg atattetttt egeetteace	gctagggtac	teggtggete	tgatggccta	5100
gatagtatga aagcaatgat ggaagagaag	, ttcatggaag	ccaatcctct	caagaagttg	5160
tatgaaccca tagtcaccac caccaagaga	aaggaagagg	aaagaggtg	tgctattatt	5220
caaaaggcct ttcgaaagta catgatgaag	gtgaccaagg	gtgaccaag	g tgaccaaaat	5280
gacttggaaa acgggcctca ttcaccactc	cagactcttt	gcaatggaga	cttgtctagc	5340
tttggggtgg ccaagggcaa ggtccactgt	gactga			5376

<210> 16 <211> 657

5

<212> ADN <213> Homo sapiens <400> 16 5 atggggaggc tgctggcctt agtggtcggc gcggcactgg tgtcctcagc ctgcgggggc tgcgtggagg tggactcgga gaccgaggcc gtgtatggga tgaccttcaa aattctttgc 120 atotoctgca agogocgcag cgagaccaac gotgagacct toaccgagtg gacottocgc 180 cagaagggca ctgaggagtt tgtcaagatc ctgcgctatg agaatgaggt gttgcagctg 240 300 gaggaggatg agcgcttcga gggccgcgtg gtgtggaatg gcagccgggg caccaaagac ctgcaggatc tgtctatctt catcaccaat gtcacctaca accactcggg cgactacgag 360 tgccacgtct accgcctgct cttcttcgaa aactacgagc acaacaccag cgtcgtcaag 420 aagatccaca ttgaggtagt ggacaaagcc aacagagaca tggcatccat cgtgtctgag 480 atcatgatgt atgtgctcat tgtggtgttg accatatggc tcgtggcaga gatgatttac 540 600 tgctacaaga agatcgctgc cgccacggag actgctgcac aggagaatgc ctcggaatac 657 ctggccatca cctctgaaag caaagagaac tgcacgggcg tccaggtggc cgaatag <210> 17 <211> 648 10 <212> ADN <213> Homo sapiens <400> 17 atgcacagag atgcctggct acctcgccct gccttcagcc tcacggggct cagtctcttt 60 ttctctttgg tgccaccagg acggagcatg gaggtcacag tacctgccac cctcaacgtc 120 ctcaatggct ctgacgcccg cctgccctgc accttcaact cctgctacac agtgaaccac 180 240 aaacagttct ccctgaactg gacttaccag gagtgcaaca actgctctga ggagatgttc ctccagttcc gcatgaagat cattaacctg aagctggagc ggtttcaaga ccgcgtggag 300 360 ttctcaggga accccagcaa gtacgatgtg tcggtgatgc tgagaaacgt gcagccggag gatgagggga tttacaactg ctacatcatg aacccccctg accgccaccg tggccatggc 420 aagatccatc tgcaggtcct catggaagag ccccctgagc gggactccac ggtggccgtg 480 attgtgggtg cctccgtcgg gggcttcctg gctgtggtca tcttggtgct gatggtggtc 540 600 aagtgtgtga ggagaaaaa agagcagaag ctgagcacag atgacctgaa gaccgaggag gagggcaaga cggacggtga aggcaacccg gatgatggcg ccaagtag 648 15 <210> 18 <211> 648 <212> ADN 20 <213> Homo sapiens <400> 18

atgcctgcct	tcaatagatt	gtttcccctg	gcttctctcg	tgcttatcta	ctgggtcagt	60
gtctgcttcc	ctgtgtgtgt	ggaagtgccc	tcggagacgg	aggccgtgca	gggcaacccc	120
atgaagctgc	gctgcatctc	ctgcatgaag	agagaggagg	tggaggccac	cacggtggtg	180
gaatggttct	acaggcccga	gggcggtaaa	gatttcctta	tttacgagta	tcggaatggc	240
caccaggagg	tggagagccc	ctttcagggg	cgcctgcagt	ggaatggcag	caaggacctg	300
caggacgtgt	ccatcactgt	gctcaacgtc	actctgaacg	actctggcct	ctacacctgc	360
aatgtgtccc	gggagtttga	gtttgaggcg	catcggccct	ttgtgaagac	gacgcggctg	420
atccccctaa	gagtcaccga	ggaggctgga	gaggacttca	cctctgtggt	ctcagaaatc	480
atgatgtaca	tccttctggt	cttcctcacc	ttgtggctgc	tcatcgagat	gatatattgc	540
tacagaaagg	tctcaaaagc	cgaagaggca	gcccaagaaa	acgcgtctga	ctaccttgcc	600
atcccatctg	agaacaagga	gaactctgcg	gtaccagtgg	aggaatag		648
9 887 ADN						

<210> 19 <211> 687 5 <212> ADN

<213> Homo sapiens

<400> 19

atgcccgggg ctggggacgg aggcaaagcc ccggcgagat ggctgggcac tgggcttttg 60 ggcctcttcc tgctccccgt aaccctgtcg ctggaggtgt ctgtgggaaa ggccaccgac 120 atctacgctg tcaatggcac ggagatcctg ctgccctgca ccttctccag ctgctttggc 180 ttcgaggacc tccacttccg gtggacctac aacagcagtg acgcattcaa gattctcata 240 300 gaggggactg tgaagaatga gaagtctgac cccaaggtga cgttgaaaga cgatgaccgc 360 atcactctgg taggctctac taaggagaag atgaacaaca tttccattgt gctgagggac 420 ctggagttca gcgacacggg caaatacacc tgccatgtga agaaccccaa ggagaataat 480 ctccagcacc acgccaccat cttcctccaa gtcgttgata gactggaaga agtggacaac acagtgacac tcatcatcct ggctgtcgtg ggcggggtca tcgggctcct catcctcatc 540 ctgctgatca agaaactcat catcttcatc ctgaagaaga ctcgggagaa gaagaaggag 600 tgtctcgtga gctcctcggg gaatgacaac acggagaacg gcttgcctgg ctccaaggca 660 687 gaggagaaac caccttcaaa agtgtga

10

<210> 20 <211> 1998 <212> PRT

15 <213> Homo sapiens

<400> 20

Met 1	Glu	Gln	Thr	Val 5	Leu	Val	Pro	Pro	Gly 10	Pro	Asp	Ser	Phe	Asn 15	Phe
Phe	Thr	Arg	Glu 20	Ser	Leu	Ala	Ala	Ile 25	Glu	Arg	Arg	Ile	Ala 30	Glu	Glu
Lys	Ala	Lys 35	Asn	Pro	Lys	Pro	Asp 40	Lys	Lys	Asp	Asp	Asp 45	Glu	Asn	Gly
Pro	Lys 50	Pro	Asn	Ser	Asp	Leu 55	Glu	Ala	Gly	Lys	Asn 60	Leu	Pro	Phe	Ile
Tyr 65	Gly	Asp	Ile	Pro	Pro 70	Glu	Met	Val	Ser	G1u 75	Pro	Leu	Glu	Asp	Leu 80
Asp	Pro	Tyr	Tyr	Ile 85	Asn	Lys	Lys	Thr	Phe 90	Ile	Val	Leu	Asn	Lys 95	Gly
Lys	Ala	Ile	Phe 100	Arg	Phe	Ser	Ala	Thr 105	Ser	Ala	Leu	Tyr	Ile 110	Leu	Thr
Pro	Phe	As n 115	Pro	Leu	Arg	Lys	Ile 120	Ala	Ile	Lys	Ile	Leu 125	Val	His	Ser
Leu	Phe 130	Ser	Met	Leu	Ile	Met 135	Суз	Thr	Ile	Leu	Thr 140	Asn	Суз	Val	Phe
Met 145	Thr	Met	Ser	Asn	Pro 150	Pro	Asp	Trp	Thr	Lys 155	Asn	Val	Glu	Tyr	Thr 160
Phe	Thr	Gly	Ile	Tyr 165	Thr	Phe	Glu	Ser	Leu 170	Ile	Lys	Ile	Ile	Ala 175	Arg
Gly	Phe	Cys	Leu 180	Glu	Asp	Phe	Thr	Phe 185	Leu	Arg	Asp	Pro	Trp 190	Asn	Trp
Leu	Asp	Phe 195	Thr	Val	Ile	Thr	Phe 200	Ala	Tyr	Val	Thr	Glu 205	Phe	Val	Asp
Leu	Gly 210	Asn	Val	Ser	Ala	Leu 215	Arg	Thr	Phe	Arg	Val 220	Leu	Arg	Ala	Leu
Lys 225	Thr	Ile	Ser	Val	Ile 230	Pro	Gly	Leu	Lys	Thr 235	Ile	Val	Gly	Ala	Leu 240

Cys	Leu	Ser	Val 260	Phe	Ala	Leu	Ile	Gly 265	Leu	Gln	Leu	Phe	Met 270	Gly	Asn
Leu	Arg	Asn 275	Lys	Cys	Ile	Gln	Trp 280	Pro	Pro	Thr	Asn	Ala 285	Ser	Leu	Glu
Glu	His 290	Ser	Ile	Glu	Lys	Asn 295	Ile	Thr	Val	Asn	Tyr 300	Asn	Gly	Thr	Leu
Ile 305	Asn	Glu	Thr	Val	Phe 310	Glu	Phe	Asp	Trp	Lys 315	Ser	Tyr	Ile	Gln	Asp 320
Ser	Arg	Tyr	His	Tyr 325	Phe	Leu	Glu	Gly	Phe 330	Leu	Asp	Ala	Leu	Leu 335	Суз
Gly	Asn	Ser	Ser 340	Asp	Ala	Gly	Gln	Cys 345	Pro	Glu	Gly	Tyr	Met 350	Cys	Val
Lys	Ala	Gly 355	Arg	Asn	Pro	Asn	Tyr 360	Gly	Tyr	Thr	Ser	Phe 365	Asp	Thr	Phe
Ser	Trp 370	Ala	Phe	Leu	Ser	Leu 375	Phe	Arg	Leu	Met	Thr 380	Gln	Asp	Phe	Trp
Glu 385	Asn	Leu	Tyr	Gln	Leu 390	Thr	Leu	Arg	Ala	Ala 395	Gly	Lys	Thr	Tyr	Met 400
Ile	Phe	Phe	Val	Leu 405	Val	Ile	Phe	Leu	Gly 410	Ser	Phe	Tyr	Leu	Ile 415	Asn
Leu	Ile	Leu	Ala 420	Val	Val	Ala	Met.	Ala 425	Tyr	Glu	Glu	Gln	Asn 430	Gln	Ala
Thr	Leu	Glu 435	Glu	Ala	Glu	Gln	Lys 440	Glu	Ala	Glu	Phe	Gln 445	Gln	Met	Ile
Glu	Gln 450	Leu	Lys	Lys	Gln	Gln 455	Glu	Ala	Ala	Gln	Gln 460	Ala	Ala	Thr	Ala
Thr 465	Ala	Ser	Glu	His	Ser 470	Arg	Glu	Pro	Ser	Ala 475	Ala	Gly	Arg	Leu	Ser 480
Asp	Ser	Ser	Ser	G1u 485	Ala	Ser	Lys	Leu	Ser 490	Ser	Lys	Ser	Ala	Lys 495	Glu
Arg	Arg	Asn	Arg 500	Arg	Lys	Lys	Arg	Lys 505	Gln	Lys	Glu	Gln	Ser 510	Gly	Gly

Glu	Glu	Lys 515	Asp	Glu	Asp	Glu	Phe 520	Gln	Lys	Ser	Glu	Ser 525	Glu	Asp	Ser
Ile	Arg 530	Arg	Lys	Gly	Phe	Arg 535	Phe	Ser	Ile	Glu	Gly 540	Asn	Arg	Leu	Thr
Tyr 545	Glu	Lys	Arg	Tyr	Ser 550	Ser	Pro	His	Gln	Ser 555	Leu	Leu	Ser	Ile	Arg 560
Gly	Ser	Leu	Phe	Ser 565	Pro	Arg	Arg	Asn	Ser 570	Arg	Thr	Ser	Leu	Phe 575	Ser
Phe	Arg	Gly	Arg 580	Ala	Lys	Asp	Val	Gly 585	Ser	Glu	Asn	Asp	Phe 590	Ala	Asp
Asp	Glu	His 595	Ser	Thr	Phe	Glu	Asp 600	Asn	Glu	Ser	Arg	Arg 605	Asp	Ser	Leu
Phe	Val 610	Pro	Arg	Arg	His	Gly 615	Glu	Arg	Arg	Asn	Ser 620	Asn	Leu	Ser	Gln
Thr 625	Ser	Arg	Ser	Ser	Arg 630	Met	Leu	Ala	Val	Phe 635	Pro	Ala	Asn	Gly	Lys 640
Met	His	Ser	Thr	Val 645	Asp	Cys	Asn	Gly	Val 650	Val	Ser	Leu	Val	Gly 655	Gly
Pro	Ser	Val	Pro 660	Thr	Ser	Pro	Val	Gly 665	Gln	Leu	Leu	Pro	Glu 670	Gly	Thr
Thr	Thr	Glu 675	Thr	Glu	Met	Arg	Lys 680	Arg	Arg	Ser	Ser	Ser 685	Phe	His	Val
Ser	Met 690	Asp	Phe	Leu	Glu	Asp 695	Pro	Ser	Gln	Arg	Gln 700	Arg	Ala	Met	Ser
Ile 705	Ala	Ser	Ile	Leu	Thr 710	Asn	Thr	Val	Glu	Glu 715	Leu	Glu	Glu	Ser	Arg 720
Gln	Lys	Cys	Pro	Pro 725	Cys	Trp	Tyr	Lys	Phe 730	Ser	Asn	Ile	Phe	Leu 735	Ile
Trp	Asp	Cys	Ser 740	Pro	Tyr	Trp	Leu	Lys 745	Val	Lys	His	Val	Val 750	Asn	Leu
Val	Val	Met 755	Asp	Pro	Phe	Val	Asp 760	Leu	Ala	Ile	Thr	11e 765	Cys	Ile	Val

- Leu Asn Thr Leu Phe Met Ala Met Glu His Tyr Pro Met Thr Asp His 770 780
- Phe Asn Asn Val Leu Thr Val Gly Asn Leu Val Phe Thr Gly Ile Phe 785 790 795 800
- Thr Ala Glu Met Phe Leu Lys Ile Ile Ala Met Asp Pro Tyr Tyr Tyr 805 810 815
- Phe Gln Glu Gly Trp Asn Ile Phe Asp Gly Phe Ile Val Thr Leu Ser 820 825 830
- Leu Val Glu Leu Gly Leu Ala Asn Val Glu Gly Leu Ser Val Leu Arg 835 840 845
- Ser Phe Arg Leu Leu Arg Val Phe Lys Leu Ala Lys Ser Trp Pro Thr 850 860
- Leu Asn Met Leu Ile Lys Ile Ile Gly Asn Ser Val Gly Ala Leu Gly 865 870 875 880
- Asn Leu Thr Leu Val Leu Ala Ile Ile Val Phe Ile Phe Ala Val Val 885 890 895
- Gly Met Gln Leu Phe Gly Lys Ser Tyr Lys Asp Cys Val Cys Lys Ile $900 \hspace{1cm} 905 \hspace{1cm} 905 \hspace{1cm} 910$
- Ala Ser Asp Cys Gln Leu Pro Arg Trp His Met Asn Asp Phe Phe His 915 920 925
- Ser Phe Leu Ile Val Phe Arg Val Leu Cys Gly Glu Trp Ile Glu Thr 930 935 940
- Met Trp Asp Cys Met Glu Val Ala Gly Gln Ala Met Cys Leu Thr Val 945 950 955 960
- Phe Met Met Val Met Val Ile Gly Asn Leu Val Val Leu Asn Leu Phe 965 970 975
- Leu Ala Leu Leu Ser Ser Phe Ser Ala Asp Asn Leu Ala Ala Thr 980 985 990
- Asp Asp Asp Asn Glu Met Asn Asn Leu Gln Ile Ala Val Asp Arg Met 995 1000 1005
- His Lys Gly Val Ala Tyr Val Lys Arg Lys Ile Tyr Glu Phe Ile 1010 1015 1020
- Gln Gln Ser Phe Ile Arg Lys Gln Lys Ile Leu Asp Glu Ile Lys

	1025					1030					1035			
Pro	Leu 1040	Asp	Asp	Leu	Asn	Asn 1045		Lys	Asp	Ser	Cys 1050	Met	Ser	Asn
His	Thr 1055	Ala	Glu	Ile	Gly	Lys 1060	Asp	Leu	Asp	Tyr	Leu 1065	Lys	Asp	Val
Asn	Gly 1070	Thr	Thr	Ser	Gly	Ile 1075	Gly	Thr	Gly	Ser	Ser 1080	Val	Glu	Lys
Tyr	Ile 1085	Ile	Asp	Glu	Ser	Asp 1090		Met	Ser	Phe	Ile 1095	Asn	Asn	Pro
Ser	Leu 1100	Thr	Val	Thr		Pro 1105		Ala	Val	Gly	Glu 1110	Ser	Asp	Phe
Glu	Asn 1115		Asn	Thr	Glu	Asp 1120		Ser	Ser	Gl u	Ser 1125	-	Leu	Glu
Glu	Ser 1130		Glu	Lys		Asn 1135		Ser	Ser		Ser 1140	Ser	Glu	Gly
Ser	Thr 1145	Val	Asp	Ile	_	Ala 1150	Pro	Val	Glu	Gl u	Gln 1155	Pro	Val	Val
Glu	Pro 1160	Glu	Glu	Thr	Leu	Glu 1165	Pro	Glu	Ala	Cys	Phe 1170	Thr	Glu	Gly
Cys	Val 1175	Gln	Arg	Phe		Cys 1180	Суз	Gln	Ile	Asn	Val 1185	Glu	Glu	Gly
Arg	Gly 1190	Lys	Gln	Trp	_	As n 1195		Arg	Arg	Thr	Cys 1200	Phe	Arg	Ile
Val	Glu 1205	His	Asn	Trp	Phe	Glu 1210		Phe	Ile	Val	Phe 1215	Met	Ile	Leu
Leu	Ser 1220	Ser	Gly	Ala	Leu	Ala 1225	Phe	Glu	Asp	Ile	Tyr 1230	Ile	Asp	Gln
Arg	Lys 1235	Thr	Ile	Lys	Thr	Met 1240	Leu	Glu	Tyr	Ala	Asp 1245	Lys	Val	Phe
Thr	Tyr 1250	Ile	Phe	Ile	Leu	Glu 1255	Met	Leu	Leu	Lys	Trp 1260	Val	Ala	Tyr
Gly	Tyr 1265	Gln	Thr	Tyr	Phe	Thr 1270	Asn	Ala	Trp	Cys	Trp 1275	Leu	Asp	Phe

- Leu Ile Val Asp Val Ser Leu Val Ser Leu Thr Ala Asn Ala Leu 1280

 Gly Tyr Ser Glu Leu Gly Ala Ile Lys Ser Leu Arg 1305
- Ala Leu Arg Pro Leu Arg Ala Leu Ser Arg Phe Glu Gly Met Arg 1310 1315 1320
- Val Val Val Asn Ala Leu Leu Gly Ala Ile Pro Ser Ile Met Asn 1325 1330 1335
- Val Leu Leu Val Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile Met 1340 1345 1350
- Thr Thr Gly Asp Arg Phe Asp Ile Glu Asp Val Asn Asn His Thr 1370 1375 1380
- Asp Cys Leu Lys Leu Ile Glu Arg Asn Glu Thr Ala Arg Trp Lys 1385 1390 1395
- Asn Val Lys Val Asn Phe Asp Asn Val Gly Phe Gly Tyr Leu Ser 1400 1405 1410
- Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Met Tyr 1415 1420 1425
- Ala Ala Val Asp Ser Arg Asn Val Glu Leu Gln Pro Lys Tyr Glu 1430 1440
- Glu Ser Leu Tyr Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile Phe 1445 1450 1455
- Asn Phe Asn Gln Gln Lys Lys Phe Gly Gln Gln Asp Ile Phe 1475 1480 1485
- Met Thr Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Leu 1490 1495 1500
- Gly Ser Lys Lys Pro Gln Lys Pro Ile Pro Arg Pro Gly Asn Lys 1505 1510 1515

Phe Gln Gly Met Val Phe Asp Phe Val Thr Arg Gln Val Phe Asp

1525 Ile Ser Ile Met Ile Leu Ile Cys Leu Asn Met Val Thr Met Met 1540 Val Glu Thr Asp Asp Gln Ser Glu Tyr Val Thr Thr Ile Leu Ser 1550 1555 Arg Ile Asn Leu Val Phe Ile Val Leu Phe Thr Gly Glu Cys Val 1565 1570 1575Leu Lys Leu Ile Ser Leu Arg His Tyr Tyr Phe Thr Ile Gly Trp 1585 Asn Ile Phe Asp Phe Val Val Val Ile Leu Ser Ile Val Gly Met 1595 1600 1605 Phe Leu Ala Glu Leu Ile Glu Lys Tyr Phe Val Ser Pro Thr Leu Phe Arg Val Ile Arg Leu Ala Arg Ile Gly Arg Ile Leu Arg Leu 1625 1630 1635 Ile Lys Gly Ala Lys Gly Ile Arg Thr Leu Leu Phe Ala Leu Met 1640 1645 1650 Met Ser Leu Pro Ala Leu Phe Asn Ile Gly Leu Leu Leu Phe Leu 1655 1660 1665 Val Met Phe Ile Tyr Ala Ile Phe Gly Met Ser Asn Phe Ala Tyr Val Lys Arg Glu Val Gly Ile Asp Asp Met Phe Asn Phe Glu Thr 1690 Phe Gly Asn Ser Met Ile Cys Leu Phe Gln Ile Thr Thr Ser Ala 1705

Gly Trp Asp Gly Leu Leu Ala Pro Ile Leu Asn Ser Lys Pro Pro

Asp Cys Asp Pro Asn Lys Val Asn Pro Gly Ser Ser Val Lys Gly

Asp Cys Gly Asn Pro Ser Val Gly Ile Phe Phe Phe Val Ser Tyr

1720

1735

1750

1730

1745

	Ile	Ile 1760	Ile	Ser	Phe	Leu	Val 1765		Val	Asn	Met	Tyr 1770		Ala	Val
	Ile	Leu 1775		Asn	Phe	Ser	Val 1780		Thr	Glu	Glu	Ser 1785		Glu	Pro
	Leu	Ser 1790		Asp	Asp	Phe	Glu 1795		Phe	Tyr	Glu	Val 1800		Glu	Lys
	Phe	Asp 1805		Asp	Ala	Thr	Gln 1810		Met	Gl u	Phe	Glu 1815	_	Leu	Ser
	Gln	Phe 1820	Ala	Ala	Ala	Leu	Glu 1825	Pro	Pro	Leu	Asn	Leu 1830	Pro	Gln	Pro
	Asn	Lys 1835		Gln	Leu	Ile	Ala 1840		Asp	Leu	Pro	Met 1845	Val	Ser	Gly
	Asp	Arg 1850		His	Cys	Leu	Asp 1855		Leu	Phe	Ala	Phe 1860	Thr	Lys	Arg
	Val	Leu 1865		Glu	Ser	Gly	Glu 1870		Asp	Ala	Leu	Arg 1875		Gln	Met
	Glu	Glu 1880	_	Phe	Met	Ala	Ser 1885		Pro	Ser	Lys	Val 1890	Ser	Tyr	Gln
	Pro	Ile 1895	Thr	Thr	Thr	Leu	Lys 1900	_	Lys	Gln	Glu	Glu 1905	Val	Ser	Ala
	Val	Ile 1910	Ile	Gln	Arg	Ala	Tyr 1915	_	Arg	His	Leu	Leu 1920	Lys	Arg	Thr
	Val	Lys 1925	Gln	Ala	Ser	Phe	Thr 1930		Asn	Lys	Asn	Lys 1935	Ile	Lys	Gly
	Gly	Ala 1940	Asn	Leu	Leu	Ile	Lys 1945	Glu	Asp	Met	Ile	Ile 1950	Asp	Arg	Ile
	Asn	Glu 1955		Ser	Ile	Thr	Glu 1960	_	Thr	Asp	Leu	Thr 1965		Ser	Thr
	Ala	Ala 1970	_	Pro	Pro	Ser	Tyr 1975	_	Arg	Val	Thr	Lys 1980	Pro	Ile	Val
	Glu	Lys 1985		Glu	Gl n	Glu	Gly 1990		Asp	Gl u	Lys	Ala 1995		Gly	Lys
<211> 2005 <212> PRT <213> Homo sapie		0> 21													

5

<400> 21

Met 1	Ala	GIN	ser	va1 5	Leu	vai	Pro	Pro	10	Pro	Asp	ser	Pne	15	Pne
Phe	Thr	Arg	Glu 20	Ser	Leu	Ala	Ala	Ile 25	Glu	Gln	Arg	Ile	Ala 30	Glu	Glu
Lys	Ala	Lys 35	Arg	Pro	Lys	Gln	Glu 40	Arg	Lys	Asp	Glu	Asp 45	Asp	Glu	Asn
Gly	Pro 50	Lys	Pro	Asn	Ser	Asp 55	Leu	Glu	Ala	Gly	Lys 60	Ser	Leu	Pro	Phe
11e 65	Tyr	Gly	Asp	Ile	Pro 70	Pro	Glu	Met	Val	Ser 75	Val	Pro	Leu	Glu	Asp 80
Leu	Asp	Pro	Tyr	Tyr 85	Ile	Asn	Lys	Lys	Thr 90	Phe	Ile	Val	Leu	Asn 95	Lys
Gly	Lys	Ala	Ile 100	Ser	Arg	Phe	Ser	Ala 105	Thr	Pro	Ala	Leu	Tyr 110	Ile	Leu
Thr	Pro	Phe 115	Asn	Pro	Ile	Arg	Lys 120	Leu	Ala	Ile	Lys	Ile 125	Leu	Val	His
Ser	Leu 130	Phe	Asn	Met	Leu	Ile 135	Met	Cys	Thr	Ile	Leu 140	Thr	Asn	Cys	Val
Phe 145	Met	Thr	Met	Ser	Asn 150	Pro	Pro	Asp	Trp	Thr 155	Lys	Asn	Val	Glu	Tyr 160
Thr	Phe	Thr	Gly	Ile 165	Tyr	Thr	Phe	Glu	Ser 170	Leu	Ile	Lys	Ile	Leu 175	Ala
Arg	Gly	Phe	Cys 180	Leu	Glu	Asp	Phe	Thr 185	Phe	Leu	Arg	Asp	Pro 190	Trp	Asn
Trp	Leu	Asp 195	Phe	Thr	Val	Ile	Thr 200	Phe	Ala	Tyr	Val	Thr 205	Glu	Phe	Val
Asp	Leu 210	Gly	Asn	Val	Ser	Ala 215	Leu	Arg	Thr	Phe	Arg 220	Val	Leu	Arg	Ala
Leu 225	Lys	Thr	Ile	Ser	Val	Ile	Pro	Gly	Leu	Lys	Thr	Ile	Val	Gly	Ala

De u		J111	Der	245	шуз	- y3	Leu	Der	250	V.4.1	nec	116	Leu	255	νω.
Phe	Cys	Leu	Ser 260	Val	Phe	Ala	Leu	Ile 265	Gly	Leu	Gln	Leu	Phe 270	Met	G1
Asn	Leu	Arg 275	Asn	Lys	Cys	Leu	Gln 280	Trp	Pro	Pro	Asp	Asn 285	Ser	Ser	Ph
Glu	Ile 290	Asn	Ile	Thr	Ser	Phe 295	Phe	Asn	Asn	Ser	Leu 300	Asp	Gly	Asn	Gl;
Thr 305	Thr	Phe	Asn	Arg	Thr 310	Val	Ser	Ile	Phe	Asn 315	Trp	Asp	Glu	Tyr	11d 32d
Glu	Asp	Lys	Ser	His 325	Phe	Tyr	Phe	Leu	Glu 330	Gly	Gln	Asn	Asp	Ala 335	Le
Leu	Cys	Gly	Asn 340	Ser	Ser	Asp	Ala	Gly 345	Gln	Cys	Pro	Glu	Gly 350	Tyr	11
Cys	Val	Lys 355	Ala	Gly	Arg	Asn	Pro 360	Asn	Tyr	Gly	Tyr	Thr 365	Ser	Phe	As
Thr	Phe 370	Ser	Trp	Ala	Phe	Leu 375	Ser	Leu	Phe	Arg	Leu 380	Met	Thr	Gln	As
Phe 385	Trp	Glu	Asn	Leu	Tyr 390	Gln	Leu	Thr	Leu	Arg 395	Ala	Ala	Gly	Lys	Th:
_				405					Phe 410					415	
			420					425	Met		-		430		
		435					440		Lys			445			
	450				_	455			Glu		460				
465					470				Phe	4 75					48
ĢТĀ	Val	Pne	Ser	Glu 485	ser	ser	ser	Val	Ala 490	ser	ьys	Leu	Ser	Ser 495	LУ

Ser Glu Lys Glu Leu Lys Asn Arg Arg Lys Lys Lys Gln Lys Glu

			500					505					510		
Gln	Ser	Gly 515	Glu	Glu	Gl u	Lys	Asn 520	Asp	Arg	Val	Arg	Lys 525	Ser	Glu	Ser
Glu	Asp 530	Ser	Ile	Arg	Arg	Lys 535	Gly	Phe	Arg	Phe	Ser 540	Leu	Glu	Gly	Ser
Arg 545	Leu	Thr	Tyr	Glu	Lys 550	Arg	Phe	Ser	Ser	Pro 555	His	Gl n	Ser	Leu	Leu 560
Ser	Ile	Arg	Gly	Ser 565	Leu	Phe	Ser	Pro	Arg 570	Arg	Asn	Ser	Arg	Ala 575	Ser
Leu	Phe	Ser	Phe 580	Arg	Gly	Arg	Ala	Lys 585	Asp	Ile	Gly	Ser	Glu 590	Asn	Asp
Phe	Ala	Asp 595	Asp	Glu	His	Ser	Thr 600	Phe	Gl u	Asp	Asn	As p 605	Ser	Arg	Arg
Asp	Ser 610	Leu	Phe	Val	Pro	His 615	Arg	His	Gly	Glu	Arg 620	Arg	His	Ser	Asn
Val 625	Ser	Gl n	Ala	Ser	A rg 630	Ala	Ser	Arg	Val	Leu 635	Pro	Ile	Leu	Pro	Met 640
Asn	Gly	Lys	Met	His 645	Ser	Ala	Val	Asp	Cys 650	Asn	Gly	Val	Val	Ser 655	Leu
Val	Gly	Gly	Pro 660	Ser	Thr	Leu	Thr	Ser 665	Ala	Gly	Gln	Leu	Leu 670	Pro	Glu
Gly	Thr	Thr 675	Thr	Glu	Thr	Glu	Ile 680	Arg	Lys	Arg	Arg	Ser 685	Ser	Ser	Туг
His	Val 690	Ser	Met	Asp	Leu	Leu 695	Glu	Asp	Pro	Thr	Ser 700	Arg	Gln	Arg	Ala
Met 705	Ser	Ile	Ala	Ser	Ile 710	Leu	Thr	Asn	Thr	Met 715	Glu	Gl u	Leu	Glu	Gl u 720
Ser	Arg	Gln	Lys	Cys 725	Pro	Pro	Cys	Trp	Tyr 730	Lys	Phe	Ala	Asn	Met 735	Cys
Leu	Ile	Trp	Asp 740	Cys	Cys	Lys	Pro	Trp 745	Leu	Lys	Val	Lys	His 750	Leu	Val
Asn	Leu	Val 755	Val	Met	Asp	Pro	Phe 760	Val	Asp	Leu	Ala	Ile 765	Thr	Ile	Cys

- Ile Val Leu Asn Thr Leu Phe Met Ala Met Glu His Tyr Pro Met Thr 770 780
- Glu Gln Phe Ser Ser Val Leu Ser Val Gly Asn Leu Val Phe Thr Gly 785 790 795 800
- Ile Phe Thr Ala Glu Met Phe Leu Lys Ile Ile Ala Met Asp Pro Tyr 805 810 815
- Tyr Tyr Phe Gln Glu Gly Trp Asn Ile Phe Asp Gly Phe Ile Val Ser 820 825 830
- Leu Ser Leu Met Glu Leu Gly Leu Ala As
n Val Glu Gly Leu Ser Val 835 840 845
- Leu Arg Ser Phe Arg Leu Leu Arg Val Phe Lys Leu Ala Lys Ser Trp 850 855 860
- Pro Thr Leu Asn Met Leu Ile Lys Ile Ile Gly Asn Ser Val Gly Ala 865 870 875 880
- Leu Gly Asn Leu Thr Leu Val Leu Ala Ile Ile Val Phe Ile Phe Ala 885 890 895
- Val Val Gly Met Gln Leu Phe Gly Lys Ser Tyr Lys Glu Cys Val Cys 900 905 910
- Lys Ile Ser Asn Asp Cys Glu Leu Pro Arg Trp His Met His Asp Phe 915 920 925
- Phe His Ser Phe Leu Ile Val Phe Arg Val Leu Cys Gly Glu Trp Ile 930 935 940
- Glu Thr Met Trp Asp Cys Met Glu Val Ala Gly Gln Thr Met Cys Leu 945 950 955 960
- Thr Val Phe Met Wet Val Met Val Ile Gly Asn Leu Val Val Leu Asn 965 970 975
- Leu Phe Leu Ala Leu Leu Ser Ser Phe Ser Ser Asp Asn Leu Ala 980 985 990
- Ala Thr Asp Asp Asp Asn Glu Met Asn Asn Leu Gln Ile Ala Val Gly 995 1000 1005
- Arg Met Gln Lys Gly Ile Asp Phe Val Lys Arg Lys Ile Arg Glu 1010 1015 1020

Phe Ile Gln Lys Ala Phe Val Arg Lys Gln Lys Ala Leu Asp Glu

- Phe Glu Asn Leu Asn Thr Glu Glu Phe Ser Ser Glu Ser Asp Met
- Glu Glu Ser Lys Glu Lys Leu Asn Ala Thr Ser Ser Ser Glu Gly
 1130 1140
- Ser Thr Val Asp Ile Gly Ala Pro Ala Glu Gly Glu Gln Pro Glu 1145 1150 1155
- Val Glu Pro Glu Glu Ser Leu Glu Pro Glu Ala Cys Phe Thr Glu 1160 1165 1170
- Asp Cys Val Arg Lys Phe Lys Cys Cys Gln Ile Ser Ile Glu Glu 1175 1180 1185
- Gly Lys Gly Lys Leu Trp Trp Asn Leu Arg Lys Thr Cys Tyr Lys
- Ile Val Glu His Asn Trp Phe Glu Thr Phe Ile Val Phe Met Ile 1205 1210 1215
- Leu Leu Ser Ser Gly Ala Leu Ala Phe Glu Asp Ile Tyr Ile Glu 1220 1225 1230
- Gln Arg Lys Thr Ile Lys Thr Met Leu Glu Tyr Ala Asp Lys Val 1235 1240 1245
- Phe Thr Tyr Ile Phe Ile Leu Glu Met Leu Lys Trp Val Ala 1250 1255 1260

Tyr Gly Phe Gln Val Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp 1270 Phe Leu Ile Val Asp Val Ser Leu Val Ser Leu Thr Ala Asn Ala 1285 Leu Gly Tyr Ser Glu Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu 1295 1300 Arg Ala Leu Arg Pro Leu Arg Ala Leu Ser Arg Phe Glu Gly Met 1310 $$ 1315 $$ 1320 Arg Val Val Asn Ala Leu Leu Gly Ala Ile Pro Ser Ile Met 1335 1330 Asn Val Leu Leu Val Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu Phe Ala Gly Lys Phe Tyr His Cys Ile Asn 1360 Tyr Thr Thr Gly Glu Met Phe Asp Val Ser Val Val Asn Asn Tyr 1375 Ser Glu Cys Lys Ala Leu Ile Glu Ser Asn Gln Thr Ala Arg Trp 1385 1390 1395 Lys Asn Val Lys Val Asn Phe Asp Asn Val Gly Leu Gly Tyr Leu 1405 Ser Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Met 1420 Tyr Ala Ala Val Asp Ser Arg Asn Val Glu Leu Gln Pro Lys Tyr 1430 1435 1440 Glu Asp Asn Leu Tyr Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile 1445 1450 1455 Phe Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile Ile 1465 Asp Asn Phe Asn Gln Gln Lys Lys Lys Phe Gly Gln Asp Ile 1480 Phe Met Thr Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys 1495 Leu Gly Ser Lys Lys Pro Gln Lys Pro Ile Pro Arg Pro Ala Asn

	1505					1510					1515			
Lys	Phe 1520	Gln	Gly	Met		Phe 1525		Phe	Val	Thr	Lys 1530	Gln	Val	Phe
Asp	Ile 1535	Ser	Ile	Met		Leu 1540		Cys	Leu	Asn	Met 1545	Val	Thr	Met
Met	Val 1550	Glu	Thr	Asp	Asp	Gln 1555		Gln	Gl u		Thr 1560	Asn	Ile	Leu
Tyr	Trp 1565	Ile	Asn	Leu		Phe 1570		Val	Leu	Phe	Thr 1575	Gly	Glu	Cys
Val	Leu 1580	Lys	Leu	Ile	Ser	Leu 1585	Arg	Tyr	Tyr	Tyr	Phe 1590	Thr	Ile	Gly
Trp	Asn 1595	Ile	Phe	Asp	Phe	Val 1600	Val	Val	Ile	Leu	Ser 1605	Ile	Val	Gly
Met	Phe 1610	Leu	Ala	Glu	Leu	Ile 1615	Glu	Lys	Tyr		Val 1620	Ser	Pro	Thr
Leu	Phe 1625	Arg	Val	Ile	Arg	Leu 1630		Arg	Ile	Gly	Arg 1635	Ile	Leu	Arg
Leu	Ile 1640	Lys	Gly	Ala	Lys	Gly 1645	Ile	Arg	Thr	Leu	Leu 1650	Phe	Ala	Leu
Met	Met 1655	Ser	Leu	Pro	Ala	Leu 1660		Asn	Ile	Gly	Leu 1665	Leu	Leu	Phe
Leu	Val 1670	Met	Phe	Ile		Ala 1675	Ile	Phe	Gly	Met	Ser 1680	Asn	Phe	Ala
Tyr	Val 1685	Lys	Arg	Glu	Val	Gly 1690	Ile	Asp	Asp	Met	Phe 1695	Asn	Phe	Glu
Thr	Phe 1700	Gly	Asn	Ser	Met	Ile 1705	Cys	Leu	Phe	Gln	Ile 1710	Thr	Thr	Ser
Ala	Gly 1715	Trp	Asp	Gly	Leu	Leu 1720	Ala	Pro	Ile	Leu	Asn 1725	Ser	Gly	Pro
Pro	Asp 1730	Cys	Asp	Pro	Asp	Lys 1735	Asp	His	Pro	Gly	Ser 1740	Ser	Val	Lys
Gly	Asp 1745	Cys	Gly	Asn	Pro	Ser 1750	Val	Gly	Ile	Phe	Phe 1755	Phe	Val	Ser

			1	_	Ile 2000	Arg	Glu	Ser	Lys	Lys 200	5			
Glu	Lys 1985	Phe	Glu	Lys	Asp	Lys 1990		Glu	Lys	Glu	Asp 1995	Lys	Gly	Lys
Thr	Thr 1970	Ser	Pro	Pro	Ser	Туг 1975		Ser	Val	Thr	Lys 1980	Pro	Gl u	Lys
Leu	Asn 1955	Glu	Asn	Ser	Thr	Pro 1960		Lys	Thr	Asp	Met 1965	Thr	Pro	Ser
Glu	Cys 1940	Asp	Gly	Thr	Pro	Ile 1945		Glu	Asp	Thr	Leu 1950	Ile	Asp	Lys
Lys	Val 1925	Lys	Lys	Val	Ser	Ser 1930	Ile	Tyr	Lys	Lys	Asp 1935	Lys	Gly	Lys
Ala	Ile 1910	Ile	Ile	Gln		Ala 1915		Arg	Arg	Tyr	Leu 1920	Leu	Lys	Gln
Glu	Pro 1895	Ile	Thr	Thr		Leu 1900		Arg	Lys	Gln	Glu 1905	Glu	Val	Ser
Met	Glu 1880	Glu	Arg	Phe		Ala 1885		Asn	Pro	Ser	Lys 1890		Ser	Tyr
Arg	Val 1865	Leu	Gly	Glu		Gly 1870		Met	Asp	Ala	Leu 1875	Arg	Ile	Gln
Gly	Asp 1850	Arg	Ile	His	_	Leu 1855	_	Ile	Leu	Phe	Ala 1860	Phe	Thr	Lys
Pro	As n 1835	Lys	Val	Gln	Leu	Ile 1840		Met	Asp	Leu	Pro 1845	Met	Val	Ser
Ser	Asp 1820	Phe	Ala	Asp	Ala	Leu 1825	_	Pro	Pro	Leu	Leu 1830	Ile	Ala	Lys
Lys	Phe 1805	Asp	Pro	Asp	Ala	Thr 1810		Phe	Ile	Glu	Phe 1815	Ala	Lys	Leu
Pro	Leu 1790	Ser	Glu	Asp	Asp	Phe 1795		Met	Phe	Tyr	Glu 1800	Val	Trp	Glu
Val	Ile 1775	Leu	Glu	Asn	Phe	Ser 1780		Ala	Thr	Glu	Glu 1785		Ala	Glu
Tyr	Ile 1760	Ile	Ile	Ser	Phe	Leu 1765		Val	Val	Asn	Met 1770		Ile	Ala

5 <210> 22 <211> 2000 <212> PRT <213> Homo sapiens

10 <400> 22

Met Ala Gln Ala Leu Leu Val Pro Pro Gly Pro Glu Ser Phe Arg Leu

Phe	Thr	Arg	Glu 20	Ser	Leu	Ala	Ala	Ile 25	Glu	Lys	Arg	Ala	Ala 30	Gl u	Glu
Lys	Ala	Lys 35	Lys	Pro	Lys	Lys	Glu 40	Gln	Asp	Asn	Asp	Asp 45	Glu	Asn	Lys
Pro	Lys 50	Pro	Asn	Ser	Asp	Leu 55	Glu	Ala	Gly	Lys	Asn 60	Leu	Pro	Phe	Ile
Tyr 65	Gly	Asp	Ile	Pro	Pro 70	Glu	Met	Val	Ser	Gl u 75	Pro	Leu	Glu	Asp	Leu 80
Asp	Pro	Tyr	Tyr	Ile 85	Asn	Lys	Lys	Thr	Phe 90	Ile	Val	Met	Asn	Lys 95	Gly
Lys	Ala	Ile	Phe 100	Arg	Phe	Ser	Ala	Thr 105	Ser	Ala	Leu	Tyr	Ile 110	Leu	Thr
Pro	Leu	Asn 115	Pro	Val	Arg	Lys	Ile 120	Ala	Ile	Lys	Ile	Leu 125	Val	His	Ser

Leu Phe Ser Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val Phe

- Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Leu Ala Arg 165 170 175
- Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn Trp 180 185 190
- Leu Asp Phe Ser Val Ile Val Met Ala Tyr Val Thr Glu Phe Val Asp 195 200 205

Lys 225	Thr	Ile	Ser	Val	Ile 230	Pro	Gly	Leu	Lys	Thr 235	Ile	Val	Gly	Ala	Leu 240
Ile	Gln	Ser	Val	Lys 245	Lys	Leu	Ser	Asp	Val 250	Met	Ile	Leu	Thr	Val 255	Phe
Cys	Leu	Ser	Val 260	Phe	Ala	Leu	Ile	Gly 265	Leu	Gln	Leu	Phe	Met 270	Gly	Asn
Leu	Arg	Asn 275	Lys	Cys	Leu	Gln	Trp 280	Pro	Pro	Ser	Asp	Ser 285	Ala	Phe	Glu
Thr	As n 290	Thr	Thr	Ser	Tyr	Phe 295	Asn	Gly	Thr	Met	Asp 300	Ser	Asn	Gly	Thr
Phe 305	Val	Asn	Val	Thr	Met 310	Ser	Thr	Phe	Asn	Trp 315	Lys	Asp	Tyr	Ile	Gly 320
Asp	Asp	Ser	His	Phe 325	Tyr	Val	Leu	Asp	Gly 330	Gln	Lys	Asp	Pro	Leu 335	Leu
Cys	Gly	Asn	Gly 340	Ser	Asp	Ala	Gly	Gln 345	Cys	Pro	Glu	Gly	Tyr 350	Ile	Cys
Val	Lys	Ala 355	Gly	Arg	Asn	Pro	Asn 360	Tyr	Gly	Tyr	Thr	Ser 365	Phe	Asp	Thr
Phe	Ser 370	Trp	Ala	Phe	Leu	Ser 375	Leu	Phe	Arg	Leu	Met 380	Thr	Gln	Asp	Tyr
Trp 385	Glu	Asn	Leu	Tyr	Gln 390	Leu	Thr	Leu	Arg	Ala 395	Ala	Gly	Lys	Thr	Tyr 400
Met	Ile	Phe	Phe	Val 405	Leu	Val	Ile	Phe	Leu 410	Gly	Ser	Phe	Tyr	Leu 415	Val
Asn	Leu	Ile	Leu 420	Ala	Val	Val	Ala	Met 425	Ala	Tyr	Glu	Glu	Gln 430	Asn	Gln
Ala	Thr	Leu 435	Glu	Glu	Ala	Glu	Gln 440	Lys	Glu	Ala	Glu	Phe 445	Gln	Gln	Met
Leu	Glu 450	Gln	Leu	Lys	Lys	G1n 455	Gln	Glu	Glu	Ala	Gln 460	Ala	Val	Ala	Ala
Ala 465	Ser	Ala	Ala	Ser	Arg 470	Asp	Phe	Ser	Gly	Ile 475	Gly	Gly	Leu	Gly	Glu 480

Leu	Leu	Glu	Ser	Ser 485	Ser	Glu	Ala	Ser	Lys 490	Leu	Ser	Ser	Lys	Ser 495	Ala
Lys	Glu	Trp	Arg 500	Asn	Arg	Arg	Lys	Lys 505	Arg	Arg	Gln	Arg	Glu 510	His	Leu
Glu	Gly	Asn 515	Asn	Lys	Gly	Glu	Arg 520	Asp	Ser	Phe	Pro	Lys 525	Ser	Glu	Ser
Glu	Asp 530	Ser	Val	Lys	Arg	Ser 535	Ser	Phe	Leu	Phe	Ser 540	Met	Asp	Gly	Asn
Arg 545	Leu	Thr	Ser	Asp	Lys 550	Lys	Phe	Cys	Ser	Pro 555	His	Gln	Ser	Leu	Leu 560
Ser	Ile	Arg	Gly	Ser 565	Leu	Phe	Ser	Pro	Arg 570	Arg	Asn	Ser	Lys	Thr 575	Ser
Ile	Phe	Ser	Phe 580	Arg	Gly	Arg	Ala	Lys 585	Asp	Val	Gly	Ser	Glu 590	Asn	Asp
Phe	Ala	As p 595	Asp	Glu	His	Ser	Thr 600	Phe	Glu	Asp	Ser	Glu 605	Ser	Arg	Arg
Asp	Ser 610	Leu	Phe	Val	Pro	His 615	Arg	His	Gly	Glu	Arg 620	Arg	Asn	Ser	Asn
Val 625	Ser	Gln	Ala	Ser	Met 630	Ser	Ser	Arg	Met	Val 635	Pro	Gly	Leu	Pro	Ala 640
Asn	Gly	Lys	Met	His 645	Ser	Thr	Val	Asp	Cys 650	Asn	Gly	Val	Val	Ser 655	Leu
Val	Gly	Gly	Pro 660	Ser	Ala	Leu	Thr	Ser 665	Pro	Thr	Gly	Gln	Leu 670	Pro	Pro
Glu	Gly	Thr 675	Thr	Thr	Glu	Thr	Glu 680	Val	Arg	Lys	Arg	Arg 685	Leu	Ser	Ser
Tyr	Gln 690	Ile	Ser	Met	Glu	Met 695	Leu	Glu	Asp	Ser	Ser 700	Gly	Arg	Gln	Arg
Ala 705	Val	Ser	Ile	Ala	Ser 710	Ile	Leu	Thr	Asn	Thr 715	Met	Glu	Glu	Leu	Glu 720
Glu	Ser	Arg	Gln	Lys 725	Cys	Pro	Pro	Cys	Trp 730	Tyr	Arg	Phe	Ala	Asn 735	Val

Phe	Leu	Ile	Trp 740	Asp	Cys	Cys	Asp	Ala 745	Trp	Leu	Lys	Val	Lys 750	His	Leu
Val	Asn	Leu 755	Ile	Val	Met	Asp	Pro 760	Phe	Val	Asp	Leu	Al a 765	Ile	Thr	Ile
Cys	Ile 770	Val	Leu	Asn	Thr	Le u 775	Phe	Met	Ala	Met	Glu 780	His	Tyr	Pro	Met
Thr 785	Glu	Gln	Phe	Ser	Ser 790	Val	Leu	Thr	Val	Gly 795	Asn	Leu	Val	Phe	Thr 800
Gly	Ile	Phe	Thr	Ala 805	Glu	Met	Val	Leu	Lys 810	Ile	Ile	Ala	Met	Asp 815	Pro
Tyr	Tyr	Tyr	Phe 820	Gln	Glu	Gly	Trp	Asn 825	Ile	Phe	Asp	Gly	Ile 830	Ile	Val
Ser	Leu	Ser 835	Leu	Met	Glu	Leu	Gly 840	Leu	Ser	Asn	Val	Glu 845	Gly	Leu	Ser
Val	Leu 850	Arg	Ser	Phe	Arg	Le u 855	Leu	Arg	Val	Phe	Lys 860	Leu	Ala	Lys	Ser
Trp 865	Pro	Thr	Leu	Asn	Met 870	Leu	Ile	Lys	Ile	Ile 875	Gly	Asn	Ser	Val	Gly 880
Ala	Leu	Gly	Asn	Leu 885	Thr	Leu	Val	Leu	Ala 890	Ile	Ile	Val	Phe	Ile 895	Phe
Ala	Val	Val	Gly 900	Met	Gln	Leu	Phe	Gly 905	Lys	Ser	Tyr	Lys	Glu 910	Cys	Val
Cys	Lys	Ile 915	Asn	Asp	Asp	Cys	Thr 920	Leu	Pro	Arg	Trp	His 925	Met	Asn	Asp
Phe	Phe 930	His	Ser	Phe	Leu	Ile 935	Val	Phe	Arg	Val	Leu 940	Cys	Gly	Glu	Trp
Ile 945	G1u	Thr	Met	Trp	Asp 950	Cys	Met	Glu	Val	Ala 955	Gly	Gln	Thr	Met	Cys 960
Leu	Ile	Val	Phe	Met 965		Val	Met	Val	Ile 970	_	Asn	Leu	Val	Val 975	

Asn Leu Phe Leu Ala Leu Leu Leu Ser Ser Phe Ser Ser Asp Asn Leu 980 985 990

Ala Ala Thr Asp Asp Asp Asn Glu Met Asn Asn Leu Gln Ile Ala Val

	9	995				10	000				10	005		
Gly	Arg 1010		Gln	Lys	Gly	Ile 1015	Asp	Tyr	Val	Lys	Asn 1020	_	Met	Arg
Glu	Cys 1025	Phe	Gln	Lys	Ala	Phe 1030	Phe	Arg	Lys	Pro	Lys 1035		Ile	Glu
Ile	His 1040	Glu	Gly	Asn	_	Ile 1045	Asp	Ser	Cys	Met	Ser 1050	Asn	Asn	Thr
Gly	Ile 1055	Glu	Ile	Ser	Lys	Glu 1060	Leu	Asn	Tyr	Leu	Arg 1065	Asp	Gly	Asn
Gly	Thr 1070	Thr	Ser	Gly	Val	Gly 1075	Thr	Gly	Ser	Ser	Val 1080	Glu	Lys	Tyr
Val	Ile 1085	_	Glu	Asn		Tyr 1090	Met	Ser	Phe	Ile	Asn 1095	Asn	Pro	Ser
Leu	Thr 1100		Thr	Val		Ile 1105		Val	Gly		Ser 1110		Phe	Glu
Asn	Leu 1115		Thr	Gl u		Phe 1120	Ser	Ser	Gl u		Glu 1125		Glu	Gl u
Ser	Lys 1130		Lys	Leu		Ala 1135		Ser	Ser		Glu 1140		Ser	Thr
Val	Asp 1145		Val	Leu		Arg 1150	Glu	Gly	Gl u	Gln	Ala 1155	Glu	Thr	Glu
Pro	Glu 1160	Glu	Asp	Leu	-	Pro 1165	Glu	Ala	Cys	Phe	Thr 1170	Glu	Gly	Суз
Ile	Lys 1175	Lys	Phe	Pro	Phe	Cys 1180	Gln	Val	Ser	Thr	Glu 1185	Glu	Gly	Lys
Gly	Lys 1190	Ile	Trp	Trp	Asn	Leu 1195	Arg	Lys	Thr	Cys	Tyr 1200	Ser	Ile	Val
Glu	His 1205	Asn	Trp	Phe	Glu	Thr 1210	Phe	Ile	Val	Phe	Met 1215	Ile	Leu	Leu
Ser	Ser 1220	Gly	Ala	Leu	Ala	Phe 1225	Glu	Asp	Ile	Tyr	Ile 1230	Glu	Gln	Arg
Lys	Thr 1235		Lys	Thr	Met	Leu 1240		Tyr	Ala	Asp	Lys 1245		Phe	Thr

- Tyr Ile Phe Ile Leu Glu Met Leu Leu Lys Trp Val Ala Tyr Gly 1250 1260
- Phe Gln Thr Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp Phe Leu 1265 1270 1275
- Ile Val Asp Val Ser Leu Val Ser Leu Val Ala Asn Ala Leu Gly 1280 1285 1290
- Tyr Ser Glu Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu Arg Ala 1295 1300 1305
- Leu Arg Pro Leu Arg Ala Leu Ser Arg Phe Glu Gly Met Arg Val 1310 1315 1320
- Val Val Asn Ala Leu Val Gly Ala Ile Pro Ser Ile Met Asn Val 1325 1330 1335
- Leu Leu Val Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile Met Gly 1340 1345 1350
- Val Asn Leu Phe Ala Gly Lys Phe Tyr His Cys Val Asn Met Thr 1355 1360 1365
- Thr Gly Asn Met Phe Asp Ile Ser Asp Val Asn Asn Leu Ser Asp 1370 1375 1380
- Cys Gln Ala Leu Gly Lys Gln Ala Arg Trp Lys Asn Val Lys Val 1385 1390 1395
- Asn Phe Asp Asn Val Gly Ala Gly Tyr Leu Ala Leu Leu Gln Val
- Ala Thr Phe Lys Gly Trp Met Asp Ile Met Tyr Ala Ala Val Asp
- Ser Arg Asp Val Lys Leu Gln Pro Val Tyr Glu Glu Asn Leu Tyr 1430 1435 1440
- Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile Phe Gly Ser Phe Phe 1445 1450 1455
- Thr Leu Asn Leu Phe Ile Gly Val Ile Ile Asp Asn Phe Asn Gln 1460 1460 1465
- Gln Lys Lys Phe Gly Gly Gln Asp Ile Phe Met Thr Glu Glu 1475 1480 1485

- Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Leu Gly Ser Lys Lys 1490 1495 1500
- Pro Gln Lys Pro Ile Pro Arg Pro Ala Asn Lys Phe Gln Gly Met 1505 1510 1515
- Val Phe Asp Phe Val Thr Arg Gln Val Phe Asp Ile Ser Ile Met 1520 1530
- Asp Gln Gly Lys Tyr Met Thr Leu Val Leu Ser Arg Ile Asn Leu 1550 1560
- Val Phe Ile Val Leu Phe Thr Gly Glu Phe Val Leu Lys Leu Val 1565 1570 1575
- Ser Leu Arg His Tyr Tyr Phe Thr Ile Gly Trp Asn Ile Phe Asp 1580 1590
- Phe Val Val Val Ile Leu Ser Ile Val Gly Met Phe Leu Ala Glu 1595 $1600 \hspace{1.5cm} 1605$
- Met Ile Glu Lys Tyr Phe Val Ser Pro Thr Leu Phe Arg Val Ile 1610 1620
- Arg Leu Ala Arg Ile Gly Arg Ile Leu Arg Leu Ile Lys Gly Ala 1625 1630 1635
- Lys Gly Ile Arg Thr Leu Leu Phe Ala Leu Met Met Ser Leu Pro 1640 1650
- Ala Leu Phe Asn Ile Gly Leu Leu Phe Leu Val Met Phe Ile 1655 1660 1665
- Tyr Ala Ile Phe Gly Met Ser Asn Phe Ala Tyr Val Lys Lys Glu 1670 1675 1680
- Ala Gly Ile Asp Asp Met Phe Asn Phe Glu Thr Phe Gly Asn Ser 1685 1690 1695
- Met Ile Cys Leu Phe Gln Ile Thr Thr Ser Ala Gly Trp Asp Gly 1700 1705 1710
- Leu Leu Ala Pro Ile Leu Asn Ser Ala Pro Pro Asp Cys Asp Pro 1715 1720 1725

	Asp	Thr 1730		His	Pro	Gly	Ser 1735	Ser	Val	Lys	Gly	Asp 1740	Cys	Gly	Asn
	Pro	Ser 1745	Val	Gly	Ile	Phe	Phe 1750	Phe	Val	Ser	Tyr	Ile 1755	Ile	Ile	Ser
	Phe	Leu 1760	Val	Val	Val	Asn	Met 1765	Tyr	Ile	Ala	Val	Ile 1770	Leu	Glu	Asn
	Phe	Ser 1775	Val	Ala	Thr	Glu	Glu 1780	Ser	Ala	Glu	Pro	Leu 1785	Ser	Glu	Asp
	Asp	Phe 1790	Glu	Met	Phe	Tyr	Gl u 1795	Val	Trp	Glu	Lys	Phe 1800	Asp	Pro	Asp
	Ala	Thr 1805		Phe	Ile	Glu	Phe 1810	Ser	Lys	Leu	Ser	Asp 1815	Phe	Ala	Ala
	Ala	Leu 1820	_	Pro	Pro	Leu	Leu 1825		Ala	Lys	Pro	Asn 1830	_	Val	Gln
	Leu	Ile 1835		Met	Asp	Leu	Pro 1840	Met	Val	Ser	Gly	Asp 1845	Arg	Ile	His
	Cys	Leu 1850	Asp	Ile	Leu	Phe	Ala 1855	Phe	Thr	Lys	Arg	Val 1860	Leu	Gly	Glu
	Ser	Gly 1865	Glu	Met	Asp	Ala	Leu 1870	Arg	Ile	Gln	Met	Glu 1875	Asp	Arg	Phe
	Met	Ala 1880	Ser	Asn	Pro	Ser	Lys 1885	Val	Ser	Туг	Glu	Pro 1890	Ile	Thr	Thr
	Thr	Leu 1895	_	Arg	Lys	Gln	Glu 1900	Glu	Val	Ser	Ala	Ala 1905	Ile	Ile	Gl n
	Arg	Asn 1910		Arg	Cys	Tyr	Leu 1915	Leu	Lys	Gln	Arg	Leu 1920	Lys	Asn	Ile
	Ser	Ser 1925	Asn	Tyr	Asn	Lys	Glu 1930	Ala	Ile	Lys	Gly	Arg 1935	Ile	Asp	Leu
	Pro	Ile 1940	Lys	Gln	Asp	Met	Ile 1945	Ile	Asp	Lys	Leu	Asn 1950	Gly	Asn	Ser
	Thr	Pro 1955	Glu	Lys	Thr	Asp	Gly 1960	Ser	Ser	Ser	Thr	Thr 1965	Ser	Pro	Pro
		Tyr 970	Asp	Ser	Val	Thr	Lys 1975	Pro	Asp	Lys	Glu	Lys 198		Glu	Lys
s		7 s P 985	ro G	lu 1	∴ys (Glu	Ser 1990	Lys	Gly	Lys	: Glı	ı Val 199		g Gl	lu Asn

<210> 23

5

Gln Lys 2000

<211> 1836 <212> PRT <213> Homo sapiens

5 <400> 23

Met 1	Ala	Arg	Pro	Ser 5	Leu	Cys	Thr	Leu	Val 10	Pro	Leu	Gly	Pro	Glu 15	Cys
Leu	Arg	Pro	Phe 20	Thr	Arg	Glu	Ser	Leu 25	Ala	Ala	Ile	Glu	Gln 30	Arg	Ala
Val	Glu	Glu 35	Glu	Ala	Arg	Leu	Gln 40	Arg	Asn	Lys	Gln	Met 45	Glu	Ile	Glu
Glu	Pro 50	Glu	Arg	Lys	Pro	Arg 55	Ser	Asp	Leu	Glu	Ala 60	Gly	Lys	Asn	Leu
Pro 65	Met	Ile	Tyr	Gly	Asp 70	Pro	Pro	Pro	Glu	Val 75	Ile	Gly	Ile	Pro	Leu 80
Glu	Asp	Leu	Asp	Pro 85	Tyr	Tyr	Ser	Asn	Lys 90	Lys	Thr	Phe	Ile	Val 95	Leu
Asn	Lys	Gly	Lys 100	Ala	Ile	Phe	Arg	Phe 105	Ser	Ala	Thr	Pro	Ala 110	Leu	Tyr
Leu	Leu	Ser 115	Pro	Phe	Ser	Val	Val 120	Arg	Arg	Gly	Ala	Ile 125	Lys	Val	Leu
Ile	His 130	Ala	Leu	Phe	Ser	Met 135	Phe	Ile	Met	Ile	Thr 140	Ile	Leu	Thr	Asn
Cys 145	Val	Phe	Met	Thr	Met 150	Ser	Asp	Pro	Pro	Pro 155	Trp	Ser	Lys	Asn	Val 160
Glu	Tyr	Thr	Phe	Thr 165	Gly	Ile	Tyr	Thr	Phe 170	Glu	Ser	Leu	Ile	Lys 175	Ile

Trp	Asn	Trp 195	Leu	Asp	Phe	Ser	Val 200	Ile	Met	Met	Ala	Tyr 205	Leu	Thr	Gl u
Phe	Val 210	Asp	Leu	Gly	Asn	Ile 215	Ser	Ala	Leu	Arg	Thr 220	Phe	Arg	Val	Leu
Arg 225	Ala	Leu	Lys	Thr	Ile 230	Thr	Val	Ile	Pro	Gly 235	Leu	Lys	Thr	Ile	Val 240
Gly	Ala	Leu	Ile	Gln 245	Ser	Val	Lys	Lys	Leu 250	Ser	Asp	Val	Met	Ile 255	Leu
Thr	Val	Phe	Cys 260	Leu	Ser	Val	Phe	Ala 265	Leu	Val	Gly	Leu	Gln 270	Leu	Phe
Met	Gly	Asn 275	Leu	Arg	Gln	Lys	Cys 280	Val	Arg	Trp	Pro	Pro 285	Pro	Phe	Asn
Asp	Thr 290	Asn	Thr	Thr	Trp	Tyr 295	Ser	Asn	Asp	Thr	Trp 300	Tyr	Gly	Asn	Asp
Thr 305	Trp	Tyr	Gly	Asn	Glu 310	Met	Trp	Tyr	Gly	Asn 315	Asp	Ser	Trp	Tyr	Ala 320
Asn	Asp	Thr	Trp	Asn 325	Ser	His	Ala	Ser	Trp 330	Ala	Thr	Asn	Asp	Thr 335	Phe
Asp	Trp	Asp	Ala 340	Tyr	Ile	Ser	Asp	G1u 345	Gly	Asn	Phe	Tyr	Phe 350	Leu	Glu
Gly	Ser	Asn 355	Asp	Ala	Leu	Leu	Су s 360	Gly	Asn	Ser	Ser	Asp 365	Ala	Gly	His
Cys	Pro 370	Glu	Gly	Tyr	Gl u	Cys 375	Ile	Lys	Thr	Gly	Arg 380	Asn	Pro	Asn	Tyr
Gly 385	Tyr	Thr	Ser	Tyr	Asp 390	Thr	Phe	Ser	Trp	Ala 395	Phe	Leu	Ala	Leu	Phe 400
Arg	Leu	Met	Thr		Asp	_	-	Glu		Leu	Phe	Gln	Leu	Thr 415	Leu

Arg Ala Ala Gly Lys Thr Tyr Met Ile Phe Phe Val Val Ile Ile Phe 420 425 430

Leu Gly Ser Phe Tyr Leu Ile Asn Leu Ile Leu Ala Val Val Ala Met 435 440 445

Ala Tyr Ala Glu Gln Asn Glu Ala Thr Leu Ala Glu Asp Lys Glu Lys

	450					455					460				
Glu 465	Gl u	Gl u	Phe	Gln	Gl n 4 70	Met	Leu	Glu	Lys	Phe 475	Lys	Lys	His	Gln	Glu 480
Glu	Leu	Glu	Lys	Ala 485	Lys	Ala	Ala	Gln	Ala 490	Leu	Glu	Gly	Gly	Glu 495	Ala
Asp	Gly	Asp	Pro 500	Ala	His	Gly	Lys	Asp 505	Cys	Asn	Gly	Ser	Leu 510	Asp	Thr
Ser	Gln	Gly 515	Glu	Lys	Gly	Ala	Pro 520	Arg	Gln	Ser	Ser	Ser 525	Gly	Asp	Ser
Gly	Ile 530	Ser	Asp	Ala	Met	Glu 535	Glu	Leu	Glu	Glu	Ala 540	His	Gln	Lys	Cys
Pro 545	Pro	Trp	Trp	Tyr	Lys 550	Cys	Ala	His	Lys	Val 555	Leu	Ile	Trp	Asn	Cys 560
Cys	Ala	Pro	Trp	Leu 565	Lys	Phe	Lys	Asn	Ile 570	Ile	His	Leu	Ile	Val 575	Met
Asp	Pro	Phe	Val 580	Asp	Leu	Gly	Ile	Thr 585	Ile	Cys	Ile	Val	Leu 590	Asn	Thr
Leu	Phe	Met 595	Ala	Met	Gl u	His	Ту г 600	Pro	Met	Thr	Glu	His 605	Phe	Asp	Asn
Val	Leu 610	Thr	Val	Gly	Asn	Leu 615	Val	Phe	Thr	Gly	Ile 620	Phe	Thr	Ala	Glu
Met 625	Val	Leu	Lys	Leu	Ile 630	Ala	Met	Asp	Pro	Tyr 635	Glu	Tyr	Phe	Gln	Gl n 640
Gly	Trp	Asn	Ile	Phe 645	Asp	Ser	Ile	Ile	Val 650	Thr	Leu	Ser	Leu	Val 655	Glu
Leu	Gly	Leu	Ala 660	Asn	Val	Gln	Gly	Leu 665	Ser	Val	Leu	Arg	Ser 670	Phe	Arg
Leu	Leu	Arg 675	Val	Phe	Lys	Leu	Ala 680	Lys	Ser	Trp	Pro	Thr 685	Leu	Asn	Met
Leu	Ile 690	Lys	Ile	Ile	Gly	Asn 695	Ser	Val	Gly	Ala	Leu 700	Gly	Asn	Leu	Thr
Leu 705	Val	Leu	Ala	Ile	Ile 710	Val	Phe	Ile	Phe	Ala 715	Val	Val	Gly	Met	Gln 720

Leu	Phe	Gly	Lys	Ser 725	Tyr	Lys	Glu	Cys	Val 730	Cys	Lys	Ile	Ala	Leu 735	Asp
Cys	Asn	Leu	Pro 740	Arg	Trp	His	Met	His 7 4 5	Asp	Phe	Phe	His	Ser 750	Phe	Leu
Ile	Val	Phe 755	Arg	Ile	Leu	Cys	Gly 760	Glu	Trp	Ile	Glu	Thr 765	Met	Trp	Asp
Cys	Met 770	Glu	Val	Ala	Gly	Gln 775	Ala	Met	Cys	Leu	Thr 780	Val	Phe	Leu	Met
Val 785	Met	Val	Ile	Gly	A sn 790	Leu	Val	Val	Leu	Asn 795	Leu	Phe	Leu	Ala	Leu 800
Leu	Leu	Ser	Ser	Phe 805	Ser	Ala	Asp	Ser	Leu 810	Ala	Ala	Ser	Asp	Glu 815	Asp
Gly	Glu	Met	Asn 820	Asn	Leu	Gln	Ile	Ala 825	Ile	Gly	Arg	Ile	Lys 830	Leu	Gly
Ile	Gly	Phe 835	Ala	Lys	Ala	Phe	Leu 840	Leu	Gly	Leu	Leu	His 845	Gly	Lys	Ile
Leu	Ser 850	Pro	Lys	Asp	Ile	Met 855	Leu	Ser	Leu	Gly	Glu 860	Ala	Asp	Gly	Ala
Gly 865	Glu	Ala	Gly	Glu	Ala 870	Gly	Glu	Thr	Ala	Pro 875	Glu	Asp	Glu	Lys	Lys 880
				885	Asp		_	-	890					895	
			900		Gly			905					910		
		915			Pro	_	920					925			
	930				Glu	935					940				
945					Ser 950	_	_			955				_	960
Asn	Ser	Ser	Val	Cys 965	Ser	Thr	Ala	Asp	Tyr 970	Lys	Pro	Pro	Glu	G1u 975	Asp

- Pro Glu Glu Gln Ala Glu Glu Asn Pro Glu Gly Glu Gln Pro Glu Glu 980 985 990
- Cys Phe Thr Glu Ala Cys Val Gln Arg Trp Pro Cys Leu Tyr Val Asp 995 1000 1005
- Ile Ser Gln Gly Arg Gly Lys Lys Trp Trp Thr Leu Arg Arg Ala 1010 1015 1020
- Cys Phe Lys Ile Val Glu His Asn Trp Phe Glu Thr Phe Ile Val 1025 1030 1035
- Tyr Ile Glu Gln Arg Arg Val Ile Arg Thr Ile Leu Glu Tyr Ala 1055 1060 1065
- Asp Lys Val Phe Thr Tyr Ile Phe Ile Met Glu Met Leu Leu Lys 1070 1080
- Trp Val Ala Tyr Gly Phe Lys Val Tyr Phe Thr Asn Ala Trp Cys 1085 1090 1095
- Trp Leu Asp Phe Leu Ile Val Asp Val Ser Ile Ile Ser Leu Val 1100 1105 1110
- Ala Asn Trp Leu Gly Tyr Ser Glu Leu Gly Pro Ile Lys Ser Leu 1115 1120 1125
- Arg Thr Leu Arg Ala Leu Arg Pro Leu Arg Ala Leu Ser Arg Phe 1130 1135 1140
- Glu Gly Met Arg Val Val Val Asn Ala Leu Leu Gly Ala Ile Pro 1145 1150 1155
- Ser Ile Met Asn Val Leu Leu Val Cys Leu Ile Phe Trp Leu Ile 1160 1170
- Phe Ser Ile Met Gly Val Asn Leu Phe Ala Gly Lys Phe Tyr Tyr 1175 1180 1185
- Cys Ile Asn Thr Thr Thr Ser Glu Arg Phe Asp Ile Ser Glu Val 1190 1195 1200
- Asn Asn Lys Ser Glu Cys Glu Ser Leu Met His Thr Gly Gln Val 1205 1210 1215

Arg Trp Leu Asn Val Lys Val Asn Tyr Asp Asn Val Gly Leu Gly 1225 1230 Tyr Leu Ser Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Met Tyr Ala Ala Val Asp Ser Arg Glu Lys Glu Glu Gln Pro 1250 1255 1260 Gln Tyr Glu Val Asn Leu Tyr Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile Phe Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val 1290 1280 1285 Ile Ile Asp Asn Phe Asn Gln Gln Lys Lys Lys Leu Gly Gly Lys 1300 Asp Ile Phe Met Thr Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met 1315 Lys Lys Leu Gly Ser Lys Lys Pro Gln Lys Pro Ile Pro Arg Pro 1330 Gln Asn Lys Ile Gln Gly Met Val Tyr Asp Leu Val Thr Lys Gln 1340 1345 1350 Ala Phe Asp Ile Thr Ile Met Ile Leu Ile Cys Leu Asn Met Val 1360 Thr Met \mbox{Met} Val Glu Thr Asp Asn Gln Ser Gln Leu Lys Val Asp 1370 1380 Ile Leu Tyr Asn Ile Asn Met Ile Phe Ile Ile Ile Phe Thr Gly 1385 1390 1390 Glu Cys Val Leu Lys Met Leu Ala Leu Arg Gln Tyr Tyr Phe Thr 1400 1400 1405 1410 Val Gly Trp Asn Ile Phe Asp Phe Val Val Val Ile Leu Ser Ile 1425 Pro Thr Leu Phe Arg Val Ile Arg Leu Ala Arg Ile Gly Arg Val 1450 Leu Arg Leu Ile Arg Gly Ala Lys Gly Ile Arg Thr Leu Leu Phe

	1460					1465					1470			
Ala	Leu 1475	Met	Met	Ser	Leu	Pro 1480	Ala	Leu	Phe	As n	Ile 1485	Gly	Leu	Leu
Leu	Phe 1490	Leu	Val	Met	Phe	Ile 1495	Tyr	Ser	Ile	Phe	Gly 1500	Met	Ser	Asn
Phe	Ala 1505		Val	Lys		Glu 1510		Gly	Ile	Asp	Asp 1515		Phe	Asn
Phe	Glu 1520		Phe	Gly	Asn	Ser 1525		Ile	Cys	Leu	Phe 1530		Ile	Thr
Thr	Ser 1535		Gly	Trp	Asp	Gly 1540		Leu	Asn	Pro	Ile 1545		Asn	Ser
Gly	Pro 1550		Asp	Cys	_	Pro 1555		Leu	Glu		Pro 1560	_	Thr	Ser
Val	Lys 1565	Gly	Asp	Cys		Asn 1570	Pro	Ser	Ile	Gly	Ile 1575	Cys	Phe	Phe
Cys	Ser 1580	Tyr	Ile	Ile	Ile	Ser 1585	Phe	Leu	Ile	Val	Val 1590	Asn	Met	Tyr
Ile	Ala 1595	Ile	Ile	Leu	Glu	Asn 1600	Phe	Asn	Val	Ala	Thr 1605	Glu	Glu	Ser
Ser	Glu 1610		Leu	Gly	Glu	Asp 1615		Phe	Glu	Met	Phe 1620		Glu	Thr
Trp	Glu 1625	_	Phe	Asp	Pro	Asp 1630	Ala	Thr	Gln	Phe	Ile 1635	Ala	Туг	Ser
Arg	Leu 1640	Ser	Asp	Phe	Val	Asp 1645	Thr	Leu	Gln	Glu	Pro 1650	Leu	Arg	Ile
Ala	Lys 1655	Pro	Asn	Lys	Ile	Lys 1660	Leu	Ile	Thr	Leu	Asp 1665		Pro	Met
Val	Pro 1670	Gly	Asp	Lys	Ile	His 1675	Cys	Leu	Asp	Ile	Leu 1680	Phe	Ala	Leu
Thr	Lys 1685	Glu	Val	Leu	Gly	Asp 1690	Ser	Gly	Glu	Met	Asp 1695	Ala	Leu	Lys
Gln	Thr 1700	Met	Gl u	Glu	Lys	Phe 1705	Met	Ala	Ala	Asn	Pro 1710	Ser	Lys	Val

	Ser	Tyr 171		u Pr	o Il	e Th		hr 720	Thr	Leu	Lys	Arg	Lys 1725	His	Glu	Glu
	Val	Cys 173		a Il	e Ly	s Il		1n 735	Arg	Ala	Tyr	Arg	Arg 1740	His	Leu	Leu
	Gln	Arg 174		r Me	t Ly	s Gl		1a 750	Ser	Tyr	Met	Tyr	Arg 1755	His	Ser	His
	Asp	Gly 176		r Gl	y As	p As	_	la 765	Pro	Glu	Lys	Glu	Gly 1770	Leu	Leu	Ala
	Asn	Thr 177		t Se	r Ly	s Me		yr 780	Gly	His	Glu	Asn	Gly 1785	Asn	Ser	Ser
	Ser	Pro 179		r Pr	o Gl	u Gl		ys 795	Gly	Glu	Ala	Gly	Asp 1800	Ala	Gly	Pro
	Thr	Met 180		y Le	u Me	et Pr		le 810	Ser	Pro	Ser	Asp	Thr 1815	Ala	Trp	Pro
	Pro	Ala 1820		o Pr	o Pr	:o G1	_	1n 825	Thr	Val	Arg	Pro	Gly 1830	Val	Lys	Glu
	Ser	Leu 183		1												
<210> 24 <211> 2016 <212> PRT <213> Homo sapiens																
<400> 24																
	Met 1	Ala	Asn	Phe	Leu 5	Leu	Pro	Ar	g Gl	y Th 10		r Se	r Phe	Arg	Arg 15	Phe
	Thr	Arg	Glu	Ser 20	Leu	Ala	Ala	ı Il	e G1 25	_	s Ar	g Me	et Ala	Glu 30	Lys	Gln
	Ala	_	G1y 35	Ser	Thr	Thr	Leu	1 Gl: 40		u Se	r Ar	g Gl	u Gly 45	Leu	Pro	Glu
	Glu	Glu 50	Ala	Pro	Arg	Pro	Glr 55	ı Le	u As	p Le	u Gl	n Al 60	a Ser	Lys	Lys	Leu
	Pro 65	Asp	Leu	Tyr	Gly	Asn 70	Pro) Pr	o G1	n Gl	u Le 75		e Gly	Glu	Pro	Leu 80
	Glu	Asp	Leu	Asp	Pro	Phe	Tyr	: Se:	r Th	r Gl	n Ly	s Th	ır Phe	· Ile	Val	Leu

5

10

				85					90					95	
Asn	Lys	Gly	Lys 100	Thr	Ile	Phe	Arg	Phe 105	Ser	Ala	Thr	Asn	Ala 110	Leu	Tyr
Val	Leu	Ser 115	Pro	Phe	His	Pro	Ile 120	Arg	Arg	Ala	Ala	Val 125	Lys	Ile	Leu
Val	His 130	Ser	Leu	Phe	Asn	Met 135	Leu	Ile	Met	Cys	Thr 140	Ile	Leu	Thr	Asn
Cys 145	Val	Phe	Met	Ala	Gln 150	His	Asp	Pro	Pro	Pro 155	Trp	Thr	Lys	Tyr	Val 160
Glu	Tyr	Thr	Phe	Thr 165	Ala	Ile	Tyr	Thr	Phe 170	Glu	Ser	Leu	Val	Lys 175	Ile
Leu	Ala	Arg	Gly 180	Phe	Cys	Leu	His	Ala 185	Phe	Thr	Phe	Leu	Arg 190	Asp	Pro
Trp	Asn	Trp 195	Leu	Asp	Phe	Ser	Val 200	Ile	Ile	Met	Ala	Tyr 205	Thr	Thr	Glu
Phe	Val 210	Asp	Leu	Gly	Asn	Val 215	Ser	Ala	Leu	Arg	Thr 220	Phe	Arg	Val	Leu
Arg 225	Ala	Leu	Lys	Thr	11e 230	Ser	Val	Ile	Ser	Gly 235	Leu	Lys	Thr	Ile	Val 240
Gly	Ala	Leu	Ile	Gln 245	Ser	Val	Lys	Lys	Leu 250	Ala	Asp	Val	Met	Val 255	Leu
Thr	Val	Phe	Cys 260	Leu	Ser	Val	Phe	Ala 265	Leu	Ile	Gly	Leu	Gl n 270	Leu	Phe
Met	Gly	Asn 275	Leu	Arg	His	Lys	Cys 280	Val	Arg	Asn	Phe	Thr 285	Ala	Leu	Asn
Gly	Thr 290	Asn	Gly	Ser	Val	Glu 295	Ala	Asp	Gly	Leu	Val 300	Trp	Gl u	Ser	Leu
Asp 305	Leu	Tyr	Leu	Ser	Asp 310	Pro	Gl u	Asn	Tyr	Leu 315	Leu	Lys	Asn	Gly	Thr 320
Ser	Asp	Val	Leu	Leu 325	Cys	Gly	Asn	Ser	Ser 330	Asp	Ala	Gly	Thr	Cys 335	Pro
Glu	Gly	Tyr	Arg 340	Cys	Leu	Lys	Ala	G1y 3 4 5	Glu	Asn	Pro	Asp	His 350	Gly	Tyr

Thr	Ser	Phe 355	Asp	Ser	Phe	Ala	360	Ala	Phe	Leu	Ala	Leu 365	Phe	Arg	Leu
Met	Thr 370	Gln	Asp	Cys	Trp	Glu 375	Arg	Leu	Tyr	Gln	Gln 380	Thr	Leu	Arg	Ser
Ala 385	Gly	Lys	Ile	Tyr	Met 390	Ile	Phe	Phe	Met	Leu 395	Val	Ile	Phe	Leu	Gly 400
Ser	Phe	Tyr	Leu	Val 405	Asn	Leu	Ile	Leu	Ala 410	Val	Val	Ala	Met	Ala 415	Tyr
Glu	Glu	Gln	Asn 420	Gln	Ala	Thr	Ile	Ala 425	Glu	Thr	Glu	Glu	Lys 430	Glu	Lys
Arg	Phe	Gln 435	Glu	Ala	Met	Glu	Met 440	Leu	Lys	Lys	Glu	His 445	Glu	Ala	Leu
Thr	Ile 450	Arg	Gly	Val	Asp	Thr 455	Val	Ser	Arg	Ser	Ser 460	Leu	Glu	Met	Ser
Pro 465	Leu	Ala	Pro	Val	Asn 470	Ser	His	Glu	Arg	Arg 475	Ser	Lys	Arg	Arg	Lys 480
Arg	Met	Ser	Ser	Gly 485	Thr	Glu	Glu	Cys	Gly 490	Glu	Asp	Arg	Leu	Pro 495	Lys
Ser	Asp	Ser	Glu 500	Asp	Gly	Pro	Arg	Ala 505	Met	Asn	His	Leu	Ser 510	Leu	Thr
	_	515		-	Thr		520	_		_		525	_	_	
	530				Arg	535					540				
545					Thr 550					555					560
				565	Pro		_	_	570				_	575	
			580		Ala			585					590		
ser	Tnr	Val 595	Asp	cys	Asn	GΤĀ	000 Val	vaı	ser	ьeu	ьeu	605	ALA	СŢЙ	Asp

Pro	Glu 610	Ala	Thr	Ser	Pro	Gly 615	Ser	His	Leu	Leu	Arg 620	Pro	Val	Met	Leu
Glu 625	His	Pro	Pro	Asp	Thr 630	Thr	Thr	Pro	Ser	Glu 635	Glu	Pro	Gly	Gly	Pro 640
Gln	Met	Leu	Thr	Ser 645	Gln	Ala	Pro	Cys	Val 650	Asp	Gly	Phe	Glu	Glu 655	Pro
Gly	Ala	Arg	Gln 660	Arg	Ala	Leu	Ser	Ala 665	Val	Ser	Val	Leu	Thr 670	Ser	Ala
Leu	Glu	Glu 675	Leu	Glu	Glu	Ser	Arg 680	His	Lys	Cys	Pro	Pro 685	Cys	Trp	Asn
Arg	Leu 690	Ala	Gln	Arg	Tyr	Leu 695	Ile	Trp	Glu	Cys	Cys 700	Pro	Leu	Trp	Met
Ser 705	Ile	Lys	Gln	Gly	Val 710	Lys	Leu	Val	Val	Met 715	Asp	Pro	Phe	Thr	Asp 720
Leu	Thr	Ile	Thr	Met 725	Cys	Ile	Val	Leu	As n 730	Thr	Leu	Phe	Met	Ala 735	Leu
Glu	His	Tyr	Asn 740	Met	Thr	Ser	Glu	Phe 745	Glu	Glu	Met	Leu	Gln 750	Val	Gly
Asn	Leu	Val 755	Phe	Thr	Gly	Ile	Phe 760	Thr	Ala	Glu	Met	Thr 765	Phe	Lys	Ile
Ile	Ala 770	Leu	Asp	Pro	Tyr	Tyr 775	Tyr	Phe	Gln	Gln	Gly 780	Trp	Asn	Ile	Phe
Asp 785	Ser	Ile	Ile	Val	Ile 790	Leu	Ser	Leu	Met	Glu 795	Leu	Gly	Leu	Ser	Arg 800
Met	Ser	Asn	Leu	Ser 805	Val	Leu	Arg	Ser	Phe 810	Arg	Leu	Leu	Arg	Val 815	Phe
Lys	Leu	Ala	Lys 820	Ser	Trp	Pro	Thr	Leu 825	Asn	Thr	Leu	Ile	Lys 830	Ile	Ile
Gly	Asn	Ser 835	Val	Gly	Ala	Leu	Gly 840	Asn	Leu	Thr	Leu	Val 845	Leu	Ala	Ile
Ile	Val 850	Phe	Ile	Phe	Ala	Val 855	Val	Gly	Met	Gln	Leu 860	Phe	Gly	Lys	Asn

- Tyr Ser Glu Leu Arg Asp Ser Asp Ser Gly Leu Leu Pro Arg Trp His 865 870 875 886
- Met Met Asp Phe Phe His Ala Phe Leu Ile Ile Phe Arg Ile Leu Cys 885 890 895
- Gly Glu Trp Ile Glu Thr Met Trp Asp Cys Met Glu Val Ser Gly Gln 900 905 910
- Ser Leu Cys Leu Leu Val Phe Leu Leu Val Met Val Ile Gly Asn Leu 915 920 925
- Val Val Leu Asn Leu Phe Leu Ala Leu Leu Leu Ser Ser Phe Ser Ala 930 935 940
- Asp Asn Leu Thr Ala Pro Asp Glu Asp Arg Glu Met Asn Asn Leu Gln 945 950 955 960
- Leu Ala Leu Ala Arg Ile Gln Arg Gly Leu Arg Phe Val Lys Arg Thr 965 970 975
- Thr Trp Asp Phe Cys Cys Gly Leu Leu Arg Gln Arg Pro Gln Lys Pro 980 985 990
- Ala Ala Leu Ala Ala Gln Gly Gln Leu Pro Ser Cys Ile Ala Thr Pro 995 1000 1005
- Tyr Ser Pro Pro Pro Pro Glu Thr Glu Lys Val Pro Pro Thr Arg 1010 1015 1020
- Lys Glu Thr Arg Phe Glu Glu Glu Glu Glu Pro Gly Gln Gly Thr 1025 1030 1035
- Pro Gly Asp Pro Glu Pro Val Cys Val Pro Ile Ala Val Ala Glu 1040 1045 1050
- Ser Asp Thr Asp Asp Gln Glu Glu Asp Glu Glu Asn Ser Leu Gly 1055 1060 1065
- Thr Glu Glu Ser Ser Lys Gln Glu Ser Gln Pro Val Ser 1070 1075 1080
- Gly Gly Pro Glu Ala Pro Pro Asp Ser Arg Thr Trp Ser Gln Val 1085 1095
- Ser Ala Thr Ala Ser Ser Glu Ala Glu Ala Ser Ala Ser Gln Ala 1100 1105 1110
- Asp Trp Arg Gln Gln Trp Lys Ala Glu Pro Gln Ala Pro Gly Cys

	1115					1120					1125			
Gly	Glu 1130	Thr	Pro	Glu	Asp	Ser 1135		Ser	Glu	Gly	Ser 1140	Thr	Ala	Asp
Met	Thr 1145	Asn	Thr	Ala	Glu	Leu 1150	Leu	Glu	Gln	Ile	Pro 1155	Asp	Leu	Gly
Gln	Asp 1160	Val	Lys	Asp	Pro	Glu 1165	Asp	Cys	Phe	Thr	Glu 1170	Gly	Cys	Val
Arg	Arg 1175	Cys	Pro	Cys		Ala 1180	Val	Asp	Thr	Thr	Gln 1185	Ala	Pro	Gly
Lys	Val 1190		Trp	Arg		Arg 1195		Thr	Cys	Tyr	His 1200	Ile	Val	Glu
His	Ser 1205		Phe	Glu	Thr	Phe 1210		Ile	Phe	Met	Ile 1215	Leu	Leu	Ser
Ser	Gly 1220		Leu	Ala		Glu 1225		Ile	Tyr		Glu 1230	Glu	Arg	Lys
Thr	Ile 1235		Val	Leu		Glu 1240		Ala	Asp	Lys	Met 1245	Phe	Thr	Tyr
Val	Phe 1250	Val	Leu	Glu	Met	Leu 1255	Leu	Lys	Trp	Val	Ala 1260	Tyr	Gly	Phe
Lys	Lys 1265	Tyr	Phe	Thr	Asn	Ala 1270	Trp	Cys	Trp	Leu	Asp 1275	Phe	Leu	Ile
Val	As p 1280	Val	Ser	Leu		Ser 1285	Leu	Val	Ala	Asn	Thr 1290	Leu	Gly	Phe
Ala	Glu 1295		Gly	Pro	Ile	Lys 1300		Leu	Arg	Thr	Leu 1305	Arg	Ala	Leu
Arg	Pro 1310	Leu	Arg	Ala	Leu	Ser 1315	Arg	Phe	Glu	Gly	Met 1320	Arg	Val	Val
Val	Asn 1325	Ala	Leu	Val	Gly	Ala 1330	Ile	Pro	Ser	Ile	Met 1335	Asn	Val	Leu
Leu	Val 1340	Cys	Leu	Ile	Phe	Trp 1345	Leu	Ile	Phe	Ser	Ile 1350	Met	Gly	Val
Asn	Leu 1355	Phe	Ala	Gly	Lys	Phe 1360	Gly	Arg	Cys	Ile	Asn 1365	Gl n	Thr	Glu

- Gly Asp Leu Pro Leu Asn Tyr Thr Ile Val Asn Asn Lys Ser Gln 1370 1375 1380
- Cys Glu Ser Leu Asn Leu Thr Gly Glu Leu Tyr Trp Thr Lys Val 1385 1390 1395
- Lys Val Asn Phe Asp Asn Val Gly Ala Gly Tyr Leu Ala Leu Leu 1400 1405 1410
- Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Met Tyr Ala Ala 1415 1420 1425
- Val Asp Ser Arg Gly Tyr Glu Glu Gln Pro Gln Trp Glu Tyr Asn 1430 1435 1440
- Leu Tyr Met Tyr Ile Tyr Phe Val Ile Phe Ile Ile Phe Gly Ser 1445 1450 1455
- As Gln Gln Lys Lys Lys Leu Gly Gly Gln Asp Ile Phe Met Thr 1475 1480 1485
- Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Leu Gly Ser 1490 1495 1500
- Lys Lys Pro Gln Lys Pro Ile Pro Arg Pro Leu Asn Lys Tyr Gln 1505 1510 1515
- Gly Phe Ile Phe Asp Ile Val Thr Lys Gln Ala Phe Asp Val Thr
 1520 1530
- Ile Met $\$ Phe Leu $\$ Ile Cys Leu $\$ Asn Met Val $\$ Thr Met $\$ Met Val $\$ Glu $\$ 1535 $\$ 1540 $\$ 1545
- Thr Asp Asp Gln Ser Pro Glu Lys Ile Asn Ile Leu Ala Lys Ile 1550 1555 1560
- Asn Leu Leu Phe Val Ala Ile Phe Thr Gly Glu Cys Ile Val Lys 1565 1570 1575
- Leu Ala Ala Leu Arg His Tyr Tyr Phe Thr Asn Ser Trp Asn Ile 1580 1585 1590
- Phe Asp Phe Val Val Val Ile Leu Ser Ile Val Gly Thr Val Leu 1595 1600 1605

Ser Asp Ile Ile Gln Lys Tyr Phe Phe Ser Pro Thr Leu Phe Arg Val Ile Arg Leu Ala Arg Ile Gly Arg Ile Leu Arg Leu Ile Arg Gly Ala Lys Gly Ile Arg Thr Leu Leu Phe Ala Leu Met Met Ser 1640 1645 Leu Pro Ala Leu Phe Asn Ile Gly Leu Leu Phe Leu Val Met 1660 1665 Phe Ile Tyr Ser Ile Phe Gly Met Ala Asn Phe Ala Tyr Val Lys 1675 Trp Glu Ala Gly Ile Asp Asp Met Phe Asn Phe Gln Thr Phe Ala 1685 1690 1695 Asn Ser Met Leu Cys Leu Phe Gln Ile Thr Thr Ser Ala Gly Trp 1705 Asp Gly Leu Leu Ser Pro Ile Leu Asn Thr Gly Pro Pro Tyr Cys 1715 1720 1725 Asp Pro Thr Leu Pro Asn Ser Asn Gly Ser Arg Gly Asp Cys Gly 1730 1735 Ser Pro Ala Val Gly Ile Leu Phe Phe Thr Thr Tyr Ile Ile Ile 1745 1750 1755 Ser Phe Leu Ile Val Val Asn Met Tyr Ile Ala Ile Ile Leu Glu Asn Phe Ser Val Ala Thr Glu Glu Ser Thr Glu Pro Leu Ser Glu 1780 Asp Asp Phe Asp Met Phe Tyr Glu Ile Trp Glu Lys Phe Asp Pro 1795 Glu Ala Thr Gln Phe Ile Glu Tyr Ser Val Leu Ser Asp Phe Ala Asp Ala Leu Ser Glu Pro Leu Arg Ile Ala Lys Pro Asn Gln Ile 1820 1825 1830

Ser Leu Ile Asn Met Asp Leu Pro Met Val Ser Gly Asp Arg Ile

1840

1835

	HIS	1850		: Asp	116	Leu	1855		Pne	rnr	ьys	1860	vai	Leu	стА
	Glu	Ser 1865	_	, Glu	Met	Asp	Ala 1870		Lys	Ile	Gln	Met 1875		Glu	Lys
	Phe	Met 1880		ı Ala	Asn	Pro	Ser 1885	_	Ile	Ser	Tyr	Glu 1890	Pro	Ile	Thr
	Thr	Thr 1895		ı Arg	Arg	Lys	His 1900		Glu	Val	Ser	Ala 1905	Met	Val	Ile
	Gln	Arg 1910		ı Phe	Arg	Arg	His 1915		Leu	Gln	Arg	Ser 1920	Leu	Lys	His
	Ala	Ser 1925		e Leu	Phe	Arg	Gln 1930		Ala	Gly	Ser	Gly 1935	Leu	Ser	Gl u
	Glu	Asp 1940		Pro	Glu	Arg	Glu 1945	_	Leu	Ile	Ala	Tyr 1950	Val	Met	Ser
	Glu	Asn 1955		e Ser	Arg	Pro	Leu 1960	_	Pro	Pro	Ser	Ser 1965	Ser	Ser	Ile
	Ser	Ser 1970		: Ser	Phe	Pro	Pro 1975	Ser	Tyr	Asp	Ser	Val 1980	Thr	Arg	Ala
	Thr	Ser 1985		Asn	Leu	Gln	Val 1990	Arg	Gly	Ser	Asp	Tyr 1995		His	Ser
	Glu	Asp 2000		ı Ala	Asp	Phe	Pro 2005		Ser	Pro	Asp	Arg 2010	Asp	Arg	Glu
	Ser	Ile 2015		L											
<210> 25 <211> 1682 <212> PRT <213> Homo si	apiens	S													
<400> 25															
	Met 1	Leu i	Ala :	Ser P 5		lu E	ro Ly	s Gl	y Le 10		l Pr	o Phe	Thr	Lys 15	Glu
	Ser	Phe (Leu I 20	le I	ys (3ln Hi	s Il 25		a Ly	s Th	r His	Asn 30	Glu	Asp

5

10

His Glu Glu Glu Asp Leu Lys Pro Thr Pro Asp Leu Glu Val Gly Lys

40

тž	ys	50	PIO	Pne	116	Tyr	55 55	ASI	Leu	ser	GIN	60 61y	Met	vaı	ser	GIU
P: 65		Leu	Glu	Asp	Val	Asp 70	Pro	Tyr	Tyr	Tyr	Lys 75	Lys	Lys	Asn	Thr	Phe 80
I	le	Val	Leu	Asn	Lys 85	Asn	Arg	Thr	Ile	Phe 90	Arg	Phe	Asn	Ala	Ala 95	Ser
I	le	Leu	Cys	Thr 100	Leu	Ser	Pro	Phe	Asn 105	Cys	Ile	Arg	Arg	Thr 110	Thr	Ile
L	γs	Val	Leu 115	Val	His	Pro	Phe	Phe 120	Gln	Leu	Phe	Ile	Leu 125	Ile	Ser	Val
Le	∍u	Ile 130	Asp	Cys	Val	Phe	Met 135	Ser	Leu	Thr	Asn	Leu 140	Pro	Lys	Trp	Arg
	ro 45	Val	Leu	Glu	Asn	Thr 150	Leu	Leu	Gly	Ile	Tyr 155	Thr	Phe	Glu	Ile	Leu 160
Va	a 1	Lys	Leu	Phe	Ala 165	Arg	Gly	Val	Trp	Ala 170	Gly	Ser	Phe	Ser	Phe 175	Leu
G.	Ly	Asp	Pro	Trp 180	Asn	Trp	Leu	Asp	Phe 185	Ser	Val	Thr	Val	Phe 190	Glu	Val
1	le	Ile	Arg 195	Tyr	Ser	Pro	Leu	Asp 200	Phe	Ile	Pro	Thr	Leu 205	Gln	Thr	Ala
Aı	rg	Thr 210	Leu	Arg	Ile	Leu	Lys 215	Ile	Ile	Pro	Leu	Asn 220	Gln	Gly	Leu	Lys
	er 25	Leu	Val	Gly	Val	Leu 230	Ile	His	Cys	Leu	Lys 235	Gln	Leu	Ile	Gly	Val 240
1	le	Ile	Leu	Thr	Leu 245	Phe	Phe	Leu	Ser	Ile 250	Phe	Ser	Leu	Ile	Gly 255	Met
G.	Ly	Leu	Phe	Met 260	Gly	Asn	Leu	Lys	His 265	Lys	Cys	Phe	Arg	Trp 270	Pro	Gln
G.	Lu	Asn	Glu 275	Asn	Glu	Thr	Leu	His 280	Asn	Arg	Thr	Gly	As n 285	Pro	Tyr	Tyr

Ile Arg Glu Thr Glu Asn Phe Tyr Tyr Leu Glu Gly Glu Arg Tyr Ala 290 295 300

Leu 305	Leu	Cys	Gly	Asn	Arg 310	Thr	Asp	Ala	Gly	Gln 315	Cys	Pro	Glu	Gly	Tyr 320
Val	Cys	Val	Lys	Ala 325	Gly	Ile	Asn	Pro	Asp 330	Gln	Gly	Phe	Thr	Asn 335	Phe
Asp	Ser	Phe	Gly 340	Trp	Ala	Leu	Phe	Ala 345	Leu	Phe	Arg	Leu	Met 350	Ala	Gln
Asp	Tyr	Pro 355	Glu	Val	Leu	Tyr	His 360	Gln	Ile	Leu	Tyr	Ala 365	Ser	Gly	Lys
Val	Tyr 370	Met	Ile	Phe	Phe	Val 375	Val	Val	Ser	Phe	Leu 380	Phe	Ser	Phe	Tyr
Met 385	Ala	Ser	Leu	Phe	Le u 390	Gly	Ile	Leu	Ala	Met 395	Ala	Tyr	Glu	Glu	Gl u 400
Lys	Gln	Arg	Val	Gly 405	Gl u	Ile	Ser	Lys	Lys 410	Ile	Glu	Pro	Lys	Phe 415	Gln
Gln	Thr	Gly	Lys 420	Glu	Leu	Gln	Glu	Gly 425	Asn	Glu	Thr	Asp	Glu 430	Ala	Lys
		435				_	440	_				445		Asp	
	450					455					460			Glu	
465	_				470	_				475				Ala	480
				485		-			490	Ī		-		Lys 495	
			500					505					510	Leu	
	_	515					520					525		Tyr	
	530	-				535					540			Val	
545					550					555				Met	560
Pro	туr	GLΥ	Tyr	rne	Gln	vaı	uJy	Trp	Asn	тте	rne	Asp	ser	Met	тте

				565					570					575	
Val	Phe	His	Gly 580	Leu	Ile	Glu	Leu	Cys 585	Leu	Ala	Asn	Val	Al a 590	Gly	Met
Ala	Leu	Leu 595	Arg	Leu	Phe	Arg	Met 600	Leu	Arg	Ile	Phe	Lys 605	Leu	Gly	Lys
Tyr	Trp 610	Pro	Thr	Phe	Gln	Ile 615	Leu	Met	Trp	Ser	Leu 620	Ser	Asn	Ser	Trp
Val 625	Ala	Leu	Lys	Asp	Leu 630	Val	Leu	Leu	Leu	Phe 635	Thr	Phe	Ile	Phe	Phe 640
Ser	Ala	Ala	Phe	Gly 645	Met	Lys	Leu	Phe	Gly 650	Lys	Asn	Tyr	Gl u	Glu 655	Phe
Val	Cys	His	Ile 660	Asp	Lys	Asp	Cys	Gln 665	Leu	Pro	Arg	Trp	His 670	Met	His
Asp	Phe	Phe 675	His	Ser	Phe	Leu	As n 680	Val	Phe	Arg	Ile	Leu 685	Cys	Gly	Glu
Trp	Val 690	Glu	Thr	Leu	Trp	Asp 695	Cys	Met	Glu	Val	Ala 700	Gly	Gl n	Ser	Trp
Cys 705	Ile	Pro	Phe	Tyr	Leu 710	Met	Val	Ile	Leu	Ile 715	Gly	Asn	Leu	Leu	Val 720
Leu	Tyr	Leu	Phe	Le u 725	Ala	Leu	Val	Ser	Ser 730	Phe	Ser	Ser	Cys	Lys 735	Asp
Val	Thr	Ala	Glu 740	Gl u	Asn	Asn	Gl u	Ala 745	Lys	Asn	Leu	Gln	Le u 750	Ala	Val
Ala	Arg	Ile 755	Lys	Lys	Gly	Ile	Asn 760	Tyr	Val	Leu	Leu	Lys 765	Ile	Leu	Cys
Lys	Thr 770	Gln	Asn	Val	Pro	Lys 775	Asp	Thr	Met	Asp	His 780	Val	Asn	Glu	Val
Tyr 785	Val	Lys	Glu	Asp	Ile 790	Ser	Asp	His	Thr	Leu 795	Ser	Glu	Leu	Ser	Asn 800
Thr	Gln	Asp	Phe	Leu 805	Lys	Asp	Lys	Glu	Lys 810	Ser	Ser	Gly	Thr	Glu 815	Lys
Asn	Ala	Thr	Glu 820	Asn	Glu	Ser	Gl n	Ser 825	Leu	Ile	Pro	Ser	Pro 830	Ser	Val

- Ser Glu Thr Val Pro Ile Ala Ser Gly Glu Ser Asp Ile Glu Asn Leu 835 840 845
- Asp Asn Lys Glu Ile Gln Ser Lys Ser Gly Asp Gly Gly Ser Lys Glu 850 855 860
- Lys Ile Lys Gln Ser Ser Ser Glu Cys Ser Thr Val Asp Ile Ala 865 870 875 880
- Ile Ser Glu Glu Glu Glu Met Phe Tyr Gly Glu Glu Arg Ser Lys His 885 890 895
- Leu Lys Asn Gly Cys Arg Arg Gly Ser Ser Leu Gly Gln Ile Ser Gly 900 905 910
- Ala Ser Lys Lys Gly Lys Ile Trp Gln Asn Ile Arg Lys Thr Cys Cys 915 920 925
- Lys Ile Val Glu Asn Asn Trp Phe Lys Cys Phe Ile Gly Leu Val Thr 930 935 940
- Leu Leu Ser Thr Gly Thr Leu Ala Phe Glu Asp Ile Tyr Met Asp Gln 945 950 955 960
- Arg Lys Thr Ile Lys Ile Leu Leu Glu Tyr Ala Asp Met Ile Phe Thr 965 970 975
- Tyr Ile Phe Ile Leu Glu Met Leu Leu Lys Trp Met Ala Tyr Gly Phe 980 985 990
- Lys Ala Tyr Phe Ser Asn Gly Trp Tyr Arg Leu Asp Phe Val Val Val 995 1000 1005
- Ile Val Phe Cys Leu Ser Leu Ile Gly Lys Thr Arg Glu Glu Leu 1010 1015 1020
- Lys Pro Leu Ile Ser Met Lys Phe Leu Arg Pro Leu Arg Val Leu 1025 1030 1035
- Ser Gln Phe Glu Arg Met Lys Val Val Val Arg Ala Leu Ile Lys 1040 1045 1050
- Thr Thr Leu Pro Thr Leu Asn Val Phe Leu Val Cys Leu Met Ile 1055 1060 1065
- Trp Leu Ile Phe Ser Ile Met Gly Val Asp Leu Phe Ala Gly Arg 1070 1075 1080

 Ser
 Glu 1100
 Val Met Asn Lys Ser 1105
 Arg Cys Glu Ser Leu 1110
 Leu Phe Asn 1110

 Glu Ser 1110
 Met Leu Trp Glu Asn 1120
 Ala Lys Met Asn Phe 1125
 Asp Asn Val 1125

 Gly Asn 1130
 Gly Phe Leu Ser Leu 1135
 Leu Gln Val Ala Thr 1140
 Phe Asn Gly 1136

 Trp 11e 11e Thr 11e Met Asn Ser 1150
 Ala 11e Asp Ser Val 1155
 Ala Val Asn 1150

 Ile Gln 1160
 Pro His Phe Glu Val 1165
 Asn 11e Tyr Met Tyr Cys Tyr Phe 1160

 Ile Asn 1160
 Phe Ile Ile Phe Gly 1180
 Val Phe Leu Pro Leu Pro Leu Ser Met Leu 1185

Phe Tyr Glu Cys Ile Asp Pro Thr Ser Gly Glu Arg Phe Pro Ser

- Ile Thr Val Ile Ile Asp Asn Phe Asn Lys His Lys Ile Lys Leu 1190 1195 1200
- Gly Gly Ser Asn Ile Phe Ile Thr Val Lys Gln Arg Lys Gln Tyr 1205 1210 1215
- Arg Arg Leu Lys Lys Leu Met Tyr Glu Asp Ser Gln Arg Pro Val 1220 1225 1230
- Pro Arg Pro Leu Asn Lys Leu Gln Gly Phe Ile Phe Asp Val Val 1235 1240 1245
- Thr Ser Gln Ala Phe Asn Val Ile Val Met Val Leu Ile Cys Phe 1250 1255 1260
- Gln Ala Ile Ala Met Met Ile Asp Thr Asp Val Gln Ser Leu Gln 1265 1270 1275
- Met Ser Ile Ala Leu Tyr Trp Ile Asn Ser Ile Phe Val Met Leu 1280 1285 1290
- Tyr Thr Met Glu Cys Ile Leu Lys Leu Ile Ala Phe Arg Cys Phe 1295 1300 1305
- Tyr Phe Thr Ile Ala Trp Asn Ile Phe Asp Phe Met Val Val Ile 1310 1315 1320

	Ser 1325	Ile	Thr	Gly	Leu	Cys 1330		Pro	Met	Thr	Val 1335		Ser	Tyr
	Val 1340	Pro	Pro	Ser	Leu	Val 1345	Gln	Leu	Ile	Leu	Leu 1350		Arg	Ile
	His 1355	Met	Leu	Arg		Gly 1360	Lys	Gly	Pro	Lys	Val 1365	Phe	His	Asn
	Met 1370	Leu	Pro	Leu	Met	Leu 1375	Ser	Leu	Pro	Ala	Leu 1380	Leu	Asn	Ile
	Leu 1385	Leu	Ile	Phe		Val 1390	Met	Phe	Ile		Ala 1395	Val	Phe	Gly
	Tyr 1400	Asn	Phe	Ala		Val 1405		Lys	Glu		Gly 1410		Asn	Asp
	Ser 1415		Phe	Glu		Phe 1420		Asn	Ser		Leu 1425	_	Leu	Phe
	Val 1430		Ile	Phe		Gly 1435		Asp	Gly		Leu 1440		Ala	Ile
	Asn 1445		Lys	Trp		Asp 1450		Asp	Pro		Lys 1455		Asn	Pro
	Thr 1460	Gln	Val	Arg	Gly	Asp 1465		Gly	Asn	Pro	Ser 1470	Val	Gly	Ile
	Tyr 1 4 75	Phe	Val	Ser		Ile 1480	Leu	Ile	Ser	Trp	Leu 1485	Ile	Ile	Val
	Met 1490	Tyr	Ile	Val	Val	Val 1495		Glu	Phe	Leu	Asn 1500	Ile	Ala	Ser
-	Lys 1505	Lys	Asn	Lys	Thr	Leu 1510		Glu	Asp	Asp	Phe 1515	Arg	Lys	Phe
	Gln 1520	Val	Trp	Lys	Arg	Phe 1525	Asp	Pro	Asp	Arg	Thr 1530	Gln	Tyr	Ile
_	Ser 1535	Ser	Lys	Leu	Ser	Asp 1540	Phe	Ala	Ala	Ala	Leu 15 4 5	Asp	Pro	Pro
Leu I	Phe 1550	Met	Ala	Lys	Pro	As n 1555	Lys	Gly	Gln	Leu	Ile 1560	Ala	Leu	Asp
Leu I	Pro	Met	Ala	Val	Gly	Asp	Arg	Ile	His	Cys	Leu	Asp	Ile	Leu

			156	5				15	570					1575			
		Leu	Ala 158		e Th	ır Ly	s Ar	_	al 585	Met	Gly	Gln	Asp	Val 1590	Arg	Met	Glu
		Lys	Val 159		l S∈	er Gl	u Il		lu 600	Ser	Gly	Phe	Leu	Leu 1605	Ala	Asn	Pro
		Phe	Lys 161		e Th	ır Cy	s Gl		ro 615	Ile	Thr	Thr	Thr	Leu 1620	Lys	Arg	Lys
		Gln	Glu 162		a Va	ıl Se	er Al		hr 630	Ile	Ile	Gln	Arg	Ala 1635	Tyr	Lys	Asn
		Tyr	Arg		u Ar	g Ar	g As		sp 645	Lys	Asn	Thr	Ser	Asp 1650	Ile	His	Met
		Ile	Asp 165		y As	sp Ar	g As	_	al 660	His	Ala	Thr	Lys	Glu 1665	Gly	Ala	Tyr
		Phe	Asp 167	_	s Al	la Ly	s Gl	_	ys 675	Ser	Pro	Ile	Gln	Ser 1680	Gln	Ile	
5	<210> 26 <211> 1980 <212> PRT <213> Homo s	apien:	s														
	<400> 26																
		Met 1	Ala	Ala	Arg	Leu 5	Leu	Ala	Pr	o Pr	0 Gl ₂	y Pr	o As	sp Ser	Phe	Lys 15	Pro
		Phe	Thr	Pro	Glu 20	Ser	Leu	Ala	As	n Il 25	e Gl	u Ar	g Ar	g Ile	Ala 30	. Glu	Ser
		Lys		Lys 35	Lys	Pro		Lys		_	p Gl	y Se		s Arç 45		. Asp	Asp
		Glu	Asp 50	Ser	Lys	Pro	Lys	Pro 55	As:	n Se	r As	p Le	u G1 60	.u Ala	ı Gly	Lys	Ser
		Leu 65	Pro	Phe	Ile	Tyr	Gly 70	Asp	ıl.	e Pr	o Gl	n Gl 75	_	u Val	. Ala	. Val	Pro 80
		Leu	Glu	Asp	Phe	Asp 85	Pro	Tyr	Ty:	r Le	u Th: 90	r Gl	n Ly	s Thr	. Phe	• Val 95	Val
10		Leu	Asn	Arg	Gly 100	Lys	Thr	Leu	Ph	e Ar		e Se	r Al	a Thr	Pro		. Leu

Tyr Ile Leu Ser Pro Phe Asn Leu Ile Arg Arg Ile Ala Ile Lys Ile 115 120 125

Leu	Ile 130	His	Ser	Val	Phe	Ser 135	Met	Ile	Ile	Met	Cys 140	Thr	Ile	Leu	Thr
Asn 145	Cys	Val	Phe	Met	Thr 150	Phe	Ser	Asn	Pro	Pro 155	Asp	Trp	Ser	Lys	Asr 160
Val	Glu	Tyr	Thr	Phe 165	Thr	Gly	Ile	Tyr	Thr 170	Phe	Glu	Ser	Leu	Val 175	Lys
Ile	Ile	Ala	Ar g 180	Gly	Phe	Cys	Ile	Asp 185	Gly	Phe	Thr	Phe	Leu 190	Arg	Asp
Pro	Trp	Asn 195	Trp	Leu	Asp	Phe	Ser 200	Val	Ile	Met	Met	Ala 205	туг	Ile	Thr
Gl u	Phe 210	Val	Asn	Leu	Gly	Asn 215	Val	Ser	Ala	Leu	Arg 220	Thr	Phe	Arg	Va1
Leu 225	Arg	Ala	Leu	Lys	Thr 230	Ile	Ser	Val	Ile	Pro 235	Gly	Leu	Lys	Thr	Ile 240
Val	Gly	Ala	Leu	Ile 245	Gln	Ser	Val	Lys	Lys 250	Leu	Ser	Asp	Val	Met 255	Ile
Leu	Thr	Val	Phe 260	Cys	Leu	Ser	Val	Phe 265	Ala	Leu	Ile	Gly	Leu 270	Gln	Leu

Asn Glu Ser Tyr Leu Glu Asn Gly Thr Lys Gly Phe Asp Trp Glu Glu 290 295 300

Phe Met Gly Asn Leu Arg Asn Lys Cys Val Val Trp Pro Ile Asn Phe 275 280 280 285

Tyr Ile Asn Asn Lys Thr Asn Phe Tyr Thr Val Pro Gly Met Leu Glu 305 310 315 320

Pro Leu Leu Cys Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly 325 330 335

Tyr Gln Cys Met Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser 340 345 350

Phe Asp Thr Phe Ser Trp Ala Phe Leu Ala Leu Phe Arg Leu Met Thr 355 360 365

Gln Asp Tyr Trp Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly

	370					375					380				
Lys 385	Thr	Tyr	Met	Ile	Phe 390	Phe	Val	Leu	Val	Ile 395	Phe	Val	Gly	Ser	Phe 400
Tyr	Leu	Val	Asn	Leu 405	Ile	Leu	Ala	Val	Val 410	Ala	Met	Ala	Tyr	Glu 415	Glu
Gln	Asn	Gl n	Ala 420	Thr	Leu	Glu	Glu	Ala 425	Gl u	Gln	Lys	Gl u	Ala 430	Glu	Phe
Lys	Ala	Met 435	Leu	Glu	Gl n	Leu	Lys 440	Lys	Gln	Gln	Glu	Gl u 44 5	Ala	Gln	Ala
Ala	Ala 450	Met	Ala	Thr	Ser	Ala 455	Gly	Thr	Val	Ser	Glu 460	Asp	Ala	Ile	Glu
Glu 465	Glu	Gly	Glu	Glu	Gly 470	Gly	Gly	Ser	Pro	Arg 475	Ser	Ser	Ser	Glu	Ile 480
Ser	Lys	Leu	Ser	Ser 485	Lys	Ser	Ala	Lys	Glu 490	Arg	Arg	Asn	Arg	Arg 495	Lys
Lys	Arg	Lys	Gln 500	Lys	Gl u	Leu	Ser	Glu 505	Gly	Glu	Glu	Lys	Gly 510	Asp	Pro
Glu	Lys	Val 515	Phe	Lys	Ser	Glu	Ser 520	Glu	Asp	Gly	Met	Arg 525	Arg	Lys	Ala
Phe	Arg 530	Leu	Pro	Asp	Asn	Arg 535	Ile	Gly	Arg	Lys	Phe 540	Ser	Ile	Met	Asn
Gln 545	Ser	Leu	Leu	Ser	Ile 550	Pro	Gly	Ser	Pro	Phe 555	Leu	Ser	Arg	His	Asn 560
Ser	Lys	Ser	Ser	Ile 565	Phe	Ser	Phe	Arg	Gly 570	Pro	Gly	Arg	Phe	Arg 575	Asp
Pro	Gly	Ser	G1u 580	Asn	Gl u	Phe	Ala	Asp 585	Asp	Glu	His	Ser	Thr 590	Val	Glu
Glu	Ser	G1u 595	Gly	Arg	Arg	Asp	Ser 600	Leu	Phe	Ile	Pro	Ile 605	Arg	Ala	Arg
Glu	Arg 610	Arg	Ser	Ser	Tyr	Ser 615	Gly	Tyr	Ser	Gly	Tyr 620	Ser	Gln	Gly	Ser
Arg 625	Ser	Ser	Arg	Ile	Phe 630	Pro	Ser	Leu	Arg	Arg 635	Ser	Val	Lys	Arg	As n 640

Ser	Thr	Val	Asp	Cys 645	Asn	Gly	Val	Val	Ser 650	Leu	Ile	Gly	Gly	Pro 655	Gly
Ser	His	Ile	Gly 660	Gly	Arg	Leu	Leu	Pro 665	Glu	Ala	Thr	Thr	Glu 670	Val	Glu
Ile	Lys	Lys 675	Lys	Gly	Pro	Gly	Ser 680	Leu	Leu	Val	Ser	Met 685	Asp	Gln	Leu
Ala	Ser 690	Tyr	Gly	Arg	Lys	Asp 695	Arg	Ile	Asn	Ser	Ile 700	Met	Ser	Val	Val
Thr 705	Asn	Thr	Leu	Val	Glu 710	Glu	Leu	Glu	Glu	Ser 715	Gln	Arg	Lys	Суз	Pro 720
Pro	Cys	Trp	Tyr	Lys 725	Phe	Ala	Asn	Thr	Phe 730	Leu	Ile	Trp	Glu	Cys 735	His
Pro	Tyr	Trp	11e 740	Lys	Leu	Lys	Glu	11e 745	Val	Asn	Leu	Ile	Val 750	Met	Asp
Pro	Phe	Val 755	Asp	Leu	Ala	Ile	Thr 760	Ile	Cys	Ile	Val	Leu 765	Asn	Thr	Leu
Phe	Met 770	Ala	Met	Glu	His	His 775	Pro	Met	Thr	Pro	Gln 780	Phe	Glu	His	Val
Leu 785	Ala	Val	Gly	Asn	Leu 790	Val	Phe	Thr	Gly	Ile 795	Phe	Thr	Ala	Glu	Met 800
Phe	Leu	Lys	Leu	Ile 805	Ala	Met	Asp	Pro	Tyr 810	Tyr	Tyr	Phe	Gln	Glu 815	Gly
Trp	Asn	Ile	Phe 820	Asp	Gly	Phe	Ile	Val 825	Ser	Leu	Ser	Leu	Met 830	Glu	Leu
Ser	Leu	Ala 835	Asp	Val	Glu	Gly	Leu 840	Ser	Val	Leu	Arg	Ser 845	Phe	Arg	Leu
Leu	Ar g 850	Val	Phe	Lys	Leu	Ala 855	Lys	Ser	Trp	Pro	Thr 860	Leu	Asn	Met	Leu
Ile 865	Lys	Ile	Ile	Gly	Asn 870	Ser	Val	Gly	Ala	Leu 875	Gly	Asn	Leu	Thr	Leu 880
Val	Leu	Ala	Ile	11e 885	Val	Phe	Ile	Phe	Ala 890	Val	Val	Gly	Met	Gln 895	Leu

- Phe Gly Lys Ser Tyr Lys Glu Cys Val Cys Lys Ile Asn Gln Asp Cys 900 905 910
- Glu Leu Pro Arg Trp His Met His Asp Phe Phe His Ser Phe Leu Ile 915 920 925
- Val Phe Arg Val Leu Cys Gly Glu Trp Ile Glu Thr Met Trp Asp Cys 930 935 940
- Met Glu Val Ala Gly Gln Ala Met Cys Leu Ile Val Phe Met Met Val 945 950 955 960
- Met Val Ile Gly Asn Leu Val Val Leu Asn Leu Phe Leu Ala Leu Leu 965 970 975
- Leu Ser Ser Phe Ser Ala Asp Asn Leu Ala Ala Thr Asp Asp Gly 980 985 990
- Glu Met Asn Asn Leu Gln Ile Ser Val Ile Arg Ile Lys Lys Gly Val 995 1000 1005
- Ala Trp Thr Lys Leu Lys Val His Ala Phe Met Gln Ala His Phe 1010 1015 1020
- Lys Gln Arg Glu Ala Asp Glu Val Lys Pro Leu Asp Glu Leu Tyr 1025 1030 1035
- Glu Lys Lys Ala Asn Cys Ile Ala Asn His Thr Gly Ala Asp Ile 1040 1045 1050
- His Arg Asn Gly Asp Phe Gln Lys Asn Gly Asn Gly Thr Thr Ser
- Gly Ile Gly Ser Ser Val Glu Lys Tyr Ile Ile Asp Glu Asp His 1070 1075 1080
- Met Ser Phe Ile Asn Asn Pro Asn Leu Thr Val Arg Val Pro Ile 1085 1090 1095
- Ala Val Gly Glu Ser Asp Phe Glu Asn Leu Asn Thr Glu Asp Val 1100 1105 1110
- Ser Ser Glu Ser Asp Pro Glu Gly Ser Lys Asp Lys Leu Asp Asp 1115 1120 1125
- Thr Ser Ser Ser Glu Gly Ser Thr Ile Asp Ile Lys Pro Glu Val 1130 1135 1140

Glu Glu Val Pro Val Glu Gln Pro Glu Glu Tyr Leu Asp Pro Asp 1150 1155 Ala Cys Phe Thr Glu Gly Cys Val Gln Arg Phe Lys Cys Cys Gln Val Asn Ile Glu Glu Gly Leu Gly Lys Ser Trp Trp Ile Leu Arg 1175 1180 1185 Lys Thr Cys Phe Leu Ile Val Glu His Asn Trp Phe Glu Thr Phe Ile Ile Phe Met Ile Leu Leu Ser Ser Gly Ala Leu Ala Phe Glu 1215 1205 1210 Asp Ile Tyr Ile Glu Gln Arg Lys Thr Ile Arg Thr Ile Leu Glu Tyr Ala Asp Lys Val Phe Thr Tyr Ile Phe Ile Leu Glu Met Leu Leu Lys Trp Thr Ala Tyr Gly Phe Val Lys Phe Phe Thr Asn Ala 1250 1255 1260 Trp Cys Trp Leu Asp Phe Leu Ile Val Ala Val Ser Leu Val Ser 1270 Leu Ile Ala Asn Ala Leu Gly Tyr Ser Glu Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg Pro Leu Arg Ala Leu Ser 1300 Arg Phe Glu Gly Met Arg Val Val Val Asn Ala Leu Val Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val Cys Leu Ile Phe Trp 1325 1330 1335 Leu Ile Phe Ser Ile Met Gly Val Asn Leu Phe Ala Gly Lys Tyr His Tyr $\,$ Cys Phe Asn Glu Thr $\,$ Ser Glu Ile Arg Phe $\,$ Glu Ile Glu Asp Val Asn Asn Lys Thr Glu Cys Glu Lys Leu Met Glu Gly Asn 1375 Asn Thr Glu Ile Arg Trp Lys Asn Val Lys Ile Asn Phe Asp Asn

138	5				1390					1395			
Val Gly 140		Gly	Tyr	Leu	Ala 1405	Leu	Leu	Gl n	Val	Ala 1410	Thr	Phe	Lys
Gly Trp 141		Asp	Ile	Met	Tyr 1420	Ala	Ala	Val	Asp	Ser 1425	Arg	Lys	Pro
Asp Glu 143		Pro	Lys	-	Glu 1435	-	Asn	Ile	-	Met 1440	Tyr	Ile	Туг
Phe Val 144		Phe	Ile	Ile	Phe 1450		Ser	Phe	Phe	Thr 1455	Leu	Asn	Leu
Phe Ile 146		Val	Ile	Ile	Asp 1465		Phe	Asn		Gln 1 4 70		Lys	Lys
Phe Gly 147	_	Gln	Asp		Phe 1480		Thr	Gl u		Gln 1485	Lys	Lys	Tyr
Tyr Asn 149		Met	Lys		Leu 1495		Ser	Lys		Pro 1500	Gln	Lys	Pro
Ile Pro 150	-	Pro	Leu	Asn	Lys 1510	Ile	Gln	Gly	Ile	Val 1515	Phe	Asp	Phe
Val Thr 1520)				1525					1530			_
Leu Asn 153		Val	Thr	Met	Met 1540		Glu	Thr		Thr 1545	Gln	Ser	Lys
Gln Met 1550		Asn	Ile	Leu	Tyr 1555	-	Ile	Asn	Leu	Val 1560	Phe	Val	Ile
Phe Phe 156		Cys	Glu	Cys	Val 1570		Lys	Met	Phe	Ala 1575	Leu	Arg	His
Tyr Tyr 1580		Thr	Ile	Gly	Trp 1585	Asn	Ile	Phe	Asp	Phe 1590	Val	Val	Val
Ile Leu 1599		Ile	Val	Gly	Met 1600	Phe	Leu	Ala	Asp	Ile 1605	Ile	Glu	Lys
Tyr Phe 161		Ser	Pro	Thr	Leu 1615	Phe	Arg	Val	Ile	Arg 1620	Leu	Ala	Arg
Ile Gly 162	-	Ile	Leu	Arg	Leu 1630	Ile	Lys	Gly	Ala	Lys 1635	Gly	Ile	Arg

Thr Leu Leu Phe Ala Leu Met Met Ser Leu Pro Ala Leu Phe Asn

1640 1645 1650 Ile Gly Leu Leu Phe Leu Val Met Phe Ile Phe Ser Ile Phe Gly Met Ser Asn Phe Ala Tyr Val Lys His Glu Ala Gly Ile Asp Asp Met Phe Asn Phe Glu Thr Phe Gly Asn Ser Met Ile Cys Leu 1690 1695 Phe Gln Ile Thr Thr Ser Ala Gly Trp Asp Gly Leu Leu Leu Pro 1705 Ile Leu Asn Arg Pro Pro Asp Cys Ser Leu Asp Lys Glu His Pro 1720 1725 1715 Gly Ser Gly Phe Lys Gly Asp Cys Gly Asn Pro Ser Val Gly Ile 1735 Phe Phe Phe Val Ser Tyr Ile Ile Ile Ser Phe Leu Ile Val Val 1750 1755 Asn Met Tyr Ile Ala Ile Ile Leu Glu Asn Phe Ser Val Ala Thr 1760 1765 Glu Glu Ser Ala Asp Pro Leu Ser Glu Asp Asp Phe Glu Thr Phe 1780 1785 Tyr Glu Ile Trp Glu Lys Phe Asp Pro Asp Ala Thr Gln Phe Ile Glu Tyr Cys Lys Leu Ala Asp Phe Ala Asp Ala Leu Glu His Pro Leu Arg Val Pro Lys Pro Asn Thr Ile Glu Leu Ile Ala Met Asp 1820 1825 1820 1825

Leu Pro Met Val Ser Gly Asp Arg Ile His Cys Leu Asp Ile Leu

Phe Ala Phe Thr Lys Arg Val Leu Gly Asp Ser Gly Glu Leu Asp

Ile Leu Arg Gln Gln Met Glu Glu Arg Phe Val Ala Ser Asn Pro

1860

1875

1840

1855

1870

1850

1865

	Ser	Lys 188		l Se	r Ty	r Gl		885	Ile	Thr	Thr	Thr	Leu 1890	Arg	Arg	Lys
	Gln	Glu 189		u Va	l Se	r Al		000	Val	Leu	Gln	Arg	Ala 1905	Tyr	Arg	Gly
	His	Leu 191		a Ar	g Ar	g Gl	_	ne 915	Ile	Cys	Lys	Lys	Thr 1920	Thr	Ser	Asn
	Lys	Leu 192		u As	n Gl	y Gl	_	ır 930	His	Arg	Glu	Lys	Lys 1935	Glu	Ser	Thr
	Pro	Ser 194		r Al	a Se	r Le		0 9 4 5	Ser	Tyr	Asp	Ser	Val 1950	Thr	Lys	Pro
	Glu	Lys 195		u Ly	s Gl	n Gl		eg 960	Ala	Glu	Glu	Gly	Arg 1965	Arg	Glu	Arg
	Ala	Lys 197		g Gl	n Ly	s Gl		1 975	Arg	Glu	Ser	Lys	Cys 1980			
<210> 27 <211> 1977 <212> PRT <213> Homo sa	apiens	6														
<400> 27																
	Met 1	Ala	Met	Leu	Pro 5	Pro	Pro	Gl	, Pr	o Gl 10		r Ph	ne Val	. His	Phe 15	Thr
	Lys	Gln	Ser	Leu 20	Ala	Leu	Ile	Glu	1 G1 25		g Il	e Al	la Glu	Arg 30	Lys	Ser
	Lys	Glu	Pro 35	Lys	Glu	Glu	Lys	Lys 40	s As	p As	p As	p Gl	lu G1u 45	ı Ala	Pro	Lys
	Pro	Ser 50	Ser	Asp	Leu	Glu	Ala 55	Gl	, Ly	s Gl	n Le	u Pi 60	ro Phe	: Ile	Tyr	Gly
	Asp 65	Ile	Pro	Pro	Gly	Met 70	Val	Seı	Gl	u Pr	o Le 75		lu Asp	Leu	Asp	Pro 80
	Tyr	Tyr	Ala	Asp	Lys 85	Lys	Thr	Ph€	e Il	e Va 90		u As	sn Lys	s Gly	Lys 95	Thr
	Ile	Phe	Arg	Phe 100	Asn	Ala	Thr	Pro	Al 10		u Ty	r Me	et Lev	Ser 110		Ph∈
	Ser	Pro	Leu 115	Arg	Arg	Ile	Ser	Ile 120	_	s Il	e Le	u Vā	al His 125		Leu	Phe

5

10

ser	130	Leu	116	Met	Cys	135	iie	Leu	Tnr	ASN	140	11e	rne	Met	rnr
Met 145	Asn	Asn	Pro	Pro	Asp 150	Trp	Thr	Lys	Asn	Val 155	Glu	Tyr	Thr	Phe	Thr 160
Gly	Ile	Tyr	Thr	Phe 165	Glu	Ser	Leu	Val	Lys 170	Ile	Leu	Ala	Arg	Gly 175	Phe
Cys	Val	Gly	Glu 180	Phe	Thr	Phe	Leu	Arg 185	Asp	Pro	Trp	Asn	Trp 190	Leu	Asp
Phe	Val	Val 195	Ile	Val	Phe	Ala	Tyr 200	Leu	Thr	Glu	Phe	Val 205	Asn	Leu	Gly
Asn	Val 210	Ser	Ala	Leu	Arg	Thr 215	Phe	Arg	Val	Leu	A rg 220	Ala	Leu	Lys	Thr
11e 225	Ser	Val	Ile	Pro	Gly 230	Leu	Lys	Thr	Ile	Val 235	Gly	Ala	Leu	Ile	Gln 240
Ser	Val	Lys	Lys	Leu 2 4 5	Ser	Asp	Val	Met	11e 250	Leu	Thr	Val	Phe	Cys 255	Leu
Ser	Val	Phe	Ala 260	Leu	Ile	Gly	Leu	Gln 265	Leu	Phe	Met	Gly	As n 270	Leu	Lys
His	Lys	Cys 275	Phe	Arg	Asn	Ser	Leu 280	Glu	Asn	Asn	Glu	Thr 285	Leu	Glu	Ser
Ile	Met 290	Asn	Thr	Leu	Glu	Ser 295	Glu	Glu	Asp	Phe	Arg 300	Lys	Tyr	Phe	Tyr
Tyr 305	Leu	Glu	Gly	Ser	Lys 310	Asp	Ala	Leu	Leu	Cys 315	Gly	Phe	Ser	Thr	Asp 320
			_	325	Glu		-		330		_			335	
			340		Thr			345					350		
		355	-		Met		360	-	-	-		365		-	
Gln	Thr		Arg	Ala	Ala	Gly		Thr	Tyr	Met	Ile	Phe	Phe	Val	Val

Val 385	Ile	Phe	Leu	Gly	Ser 390	Phe	Tyr	Leu	Ile	Asn 395	Leu	Ile	Leu	Ala	Val 400
Val	Ala	Met	Ala	Tyr 405	Glu	Glu	Gln	Asn	Gln 410	Ala	Asn	Ile	Glu	Glu 415	Ala
Lys	Gln	Lys	Glu 420	Leu	Glu	Phe	Gln	Gln 425	Met	Leu	Asp	Arg	Leu 430	Lys	Lys
Glu	Gln	Glu 435	Glu	Ala	Glu	Ala	Ile 440	Ala	Ala	Ala	Ala	Ala 445	Glu	Tyr	Thr
Ser	11e 450	Arg	Arg	Ser	Arg	11e 455	Met	Gly	Leu	Ser	G1u 460	Ser	Ser	Ser	Glu
Thr 465	Ser	Lys	Leu	Ser	Ser 470	Lys	Ser	Ala	Lys	Glu 475	Arg	Arg	Asn	Arg	Arg 480
Lys	Lys	Lys	Asn	Gln 485	Lys	Lys	Leu	Ser	Ser 490	Gly	Glu	Glu	Lys	Gly 495	Asp
		_	Leu 500		_			505		_			510		_
Ser	Phe	His 515	Leu	Gly	Val	Glu	Gly 520	His	Arg	Arg	Ala	His 525	Glu	Lys	Arg
	530		Pro			535					540				
545		-	Arg		550	_				555			-		560
			Ile	565					570					575	
			Asp 580					585					590		
_		595	Glu	-	_		600					605		_	
	610		Leu			615	_	-			620			-	-
Asn 625	Gly	Val	Val	Ser	Leu 630	Val	Asp	Gly	Arg	Ser 635	Ala	Leu	Met	Ĺeu	Pro 640

Asn	Gly	Gln	Leu	Leu 645	Pro	Glu	Gly	Thr	Thr 650	Asn	Gln	Ile	His	Lys 655	Lys
Arg	Arg	Cys	Ser 660	Ser	Tyr	Leu	Leu	Ser 665	Gl u	Asp	Met	Leu	A sn 6 70	Asp	Pro
Asn	Leu	Arg 675	Gln	Arg	Ala	Met	Ser 680	Arg	Ala	Ser	Ile	Leu 685	Thr	Asn	Thr
Val	Glu 690	Glu	Leu	Glu	Glu	Ser 695	Arg	Gln	Lys	Cys	Pro 700	Pro	Trp	Trp	Tyr
Arg 705	Phe	Ala	His	Lys	Phe 710	Leu	Ile	Trp	Asn	Cys 715	Ser	Pro	Tyr	Trp	Ile 720
Lys	Phe	Lys	Lys	Cys 725	Ile	Tyr	Phe	Ile	Val 730	Met	Asp	Pro	Phe	Val 735	Asp
Leu	Ala	Ile	Thr 740	Ile	Cys	Ile	Val	Leu 745	Asn	Thr	Leu	Phe	Met 750	Ala	Met
Glu	His	His 755	Pro	Met	Thr	Glu	Glu 760	Phe	Lys	Asn	Val	Leu 765	Ala	Ile	Gly
Asn	Leu 770	Val	Phe	Thr	Gly	Ile 775	Phe	Ala	Ala	Glu	Met 780	Val	Leu	Lys	Leu
Ile 785	Ala	Met	Asp	Pro	Ту г 790	Glu	Tyr	Phe	Gln	Val 795	Gly	Trp	Asn	Ile	Phe 800
Asp	Ser	Leu	Ile	Val 805	Thr	Leu	Ser	Leu	Val 810	Glu	Leu	Phe	Leu	Ala 815	Asp
Val	Glu	Gly	Leu 820	Ser	Val	Leu	Arg	Ser 825	Phe	Arg	Leu	Leu	Arg 830	Val	Phe
Lys	Leu	Ala 835	Lys	Ser	Trp	Pro	Thr 840	Leu	Asn	Met	Leu	Ile 845	Lys	Ile	Ile
Gly	Asn 850	Ser	Val	Gly	Ala	Leu 855	Gly	Asn	Leu	Thr	Leu 860	Val	Leu	Ala	Ile
Ile 865	Val	Phe	Ile	Phe	Ala 870	Val	Val	Gly	Met	Gln 875	Leu	Phe	Gly	Lys	Ser 880
Tyr	Lys	Gl u	Cys	Val 885	Cys	Lys	Ile	Asn	As p 890	Asp	Cys	Thr	Leu	Pro 895	Arg

Trp His Met Asn Asp Phe Phe His Ser Phe Leu Ile Val Phe Arg Val

Leu	Cys	Gly 915	Gl u	Trp	Ile	Glu	Thr 920	Met	Trp	Asp	Cys	Met 925	Glu	. Val	Ala
Gly	Gln 930	Ala	Met	Cys		Ile 935	Val	Tyr	Met	Met	Val 940	Met	Val	. Ile	e Gly
Asn 945	Leu	Val	Val	Leu	Asn 950	Leu	Phe	Leu	Ala	Leu 955	Leu	Leu	Ser	Ser	960
Ser	Ser	Asp	Asn	Leu 965	Thr	Ala	Ile	Glu	Gl u 970	Asp	Pro	Asp	Ala	Asr 975	Asn
Leu	Gln	Ile	Ala 980	Val	Thr	Arg	Ile	Lys 985	Lys	Gly	Ile	Asn	Tyr 990		. Lys
Gln	Thr	Le u 995	Arg	Glu	Phe	Ile	Leu 100	_	s Ala	a Phe	e Ser	10		ys P	ro Lys
Ile	Ser 1010		g Glu	ıIle	a Arg	Glr 101		la G	lu A	sp Le		n ' 20	Thr	Lys	Lys
Glu	Asn 1025		: Ile	e Ser	Asn	His 103		ar Le	eu Ai	la G]		t 35	Ser	Lys	Gly
His	Asn 1040		e Leu	ı Lys	Glu	Lys 104		sp L	ys I	le Se		y ¹ 50	Phe	Gly	Ser
Ser	Val 1055	_	Lys	His	s Leu	Met 106		lu A	sp Se	er As	-	y 65	Gln	Ser	Phe
Ile	His 1070		Pro	Ser	: Leu	Th: 107		al T	nr Va	al Pi		.e . 180	Ala	Pro	Gly
Glu	Ser 1085		Leu	ı Glu	a Asn	Met 109		sn A	la G	lu Gl		eu 195	Ser	Ser	Asp
	Asp 1100				Ser			al A	-		sn Ar 11	_	Ser	Ser	Ser
Ser	Glu 1115		Ser	Thr	· Val	Asp 112		sn P	ro Le	eu Pi		y (.25	Glu	Gly	Glu
Glu	Ala 1130		ı Ala	. Glu	ı Pro	Met 113		sn Se	er A	sp Gl		40	Glu	Ala	Cys
Phe	Thr 1145	_	Gly	Cys	s Val	Arg 115		rg Pl	ne Se	er Cy	-	s .55	Gln	Val	Asn

- Ile Glu Ser Gly Lys Gly Lys Ile Trp Trp Asn Ile Arg Lys Thr 1160 1165 1170
- Cys Tyr Lys Ile Val Glu His Ser Trp Phe Glu Ser Phe Ile Val 1175 1180 1185
- Leu Met Ile Leu Leu Ser Ser Gly Ala Leu Ala Phe Glu Asp Ile 1190 1195 1200
- Tyr Ile Glu Arg Lys Lys Thr Ile Lys Ile Ile Leu Glu Tyr Ala 1205 1210 1215
- Asp Lys lle Phe Thr Tyr lle Phe Ile Leu Glu Met Leu Leu Lys 1220 1225 1230
- Trp Ile Ala Tyr Gly Tyr Lys Thr Tyr Phe Thr Asn Ala Trp Cys 1235 1240 1245
- Trp Leu Asp Phe Leu Ile Val Asp Val Ser Leu Val Thr Leu Val 1250 1255 1260
- Ala Asn Thr Leu Gly Tyr Ser Asp Leu Gly Pro Ile Lys Ser Leu 1265 1270 1275
- Arg Thr Leu Arg Ala Leu Arg Pro Leu Arg Ala Leu Ser Arg Phe 1280 1285 1290
- Glu Gly Met Arg Val Val Val Asn Ala Leu Ile Gly Ala Ile Pro 1295 1300 1305
- Ser Ile Met Asn Val Leu Leu Val Cys Leu Ile Phe Trp Leu Ile 1310 1320
- Phe Ser Ile Met Gly Val Asn Leu Phe Ala Gly Lys Phe Tyr Glu 1325 1330 1335
- Cys Ile Asn Thr Thr Asp Gly Ser Arg Phe Pro Ala Ser Gln Val 1340 1345 1350
- Pro Asn Arg Ser Glu Cys Phe Ala Leu Met Asn Val Ser Gln Asn 1355 1360 1365
- Val Arg Trp Lys Asn Leu Lys Val Asn Phe Asp Asn Val Gly Leu 1370 1380
- Gly Tyr Leu Ser Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Thr 1385 1390 1395

- Ile Ile Met Tyr Ala Ala Val Asp Ser Val As
n Val Asp Lys Gl
n 1400 1405 1410
- Pro Lys Tyr Glu Tyr Ser Leu Tyr Met Tyr Ile Tyr Phe Val Val 1415 1420 1425
- Phe Ile Ile Phe Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly 1430 1435 1440
- Val Ile Ile Asp Asn Phe Asn Gln Gln Lys Lys Leu Gly Gly 1445 1450 1455
- Met Lys Lys Leu Gly Ser Lys Lys Pro Gln Lys Pro Ile Pro Arg 1475 1480 1485
- Gln Ala Phe Asp Ile Ser Ile Met Val Leu Ile Cys Leu Asn Met 1505 1510 1515
- Val Thr Met Met Val Glu Lys Glu Gly Gln Ser Gln His Met Thr 1520 1530
- Glu Val Leu Tyr Trp Ile Asn Val Val Phe Ile Ile Leu Phe Thr 1535 1540 1545
- Gly Glu Cys Val Leu Lys Leu Ile Ser Leu Arg His Tyr Tyr Phe 1550 1560
- Thr Val Gly Trp Asn Ile Phe Asp Phe Val Val Val Ile Ile Ser 1565 1570 1575
- Ile Val Gly Met Phe Leu Ala Asp Leu Ile Glu Thr Tyr Phe Val 1580 1585 1590
- Ser Pro Thr Leu Phe Arg Val Ile Arg Leu Ala Arg Ile Gly Arg 1595 1600 1605
- Ile Leu Arg Leu Val Lys Gly Ala Lys Gly Ile Arg Thr Leu Leu 1610 1620
- Phe Ala Leu Met Met Ser Leu Pro Ala Leu Phe Asn Ile Gly Leu 1625 1630 1635

Leu Leu Phe Leu Val Met Phe Ile Tyr Ala Ile Phe Gly Met Ser 1640 1645 1650 Asn Phe Ala Tyr Val Lys Lys Glu Asp Gly Ile Asn Asp Met Phe Thr Thr Ser Ala Gly Trp Asp Gly Leu Leu Ala Pro Ile Leu Asn Ser Lys Pro Pro Asp Cys Asp Pro Lys Lys Val His Pro Gly Ser 1700 1705 1710 Ser Val Glu Gly Asp Cys Gly Asn Pro Ser Val Gly Ile Phe Tyr Phe Val Ser Tyr Ile Ile Ile Ser Phe Leu Val Val Val Asn Met 1735 Tyr Ile Ala Val Ile Leu Glu Asn Phe Ser Val Ala Thr Glu Glu 1750 Ser Thr Glu Pro Leu Ser Glu Asp Asp Phe Glu Met Phe Tyr Glu 1760 1765 1770 Val Trp Glu Lys Phe Asp Pro Asp Ala Thr Gln Phe Ile Glu Phe 1780 1785 Ser Lys Leu Ser Asp Phe Ala Ala Ala Leu Asp Pro Pro Leu Leu 1795 Ile Ala Lys Pro Asn Lys Val Gln Leu Ile Ala Met Asp Leu Pro Met Val Ser Gly Asp Arg Ile His Cys Leu Asp Ile Leu Phe Ala 1820 1825 1830 Phe Thr Lys Arg Val Leu Gly Glu Ser Gly Glu Met Asp Ser Leu Val Ser Tyr Glu Pro Ile Thr Thr Leu Lys Arg Lys Gln Glu Asp Val Ser Ala Thr Val Ile Gln Arg Ala Tyr Arg Arg Tyr Arg

			188	0				18	185					1890			
		Leu	189		n As	sn Va	ıl Ly		n 1	[le s	Ser S	Ser :	Ile	Tyr 1905	Ile	Lys	Asp
		Gly	Asp 191		g As	sp As	p As	_	u 1 15	Leu <i>I</i>	Asn 1	Lys 1	_	Asp 1920	Met	Ala	Phe
		Asp	Asn 192		l As	ın Gl	u As		r s	Ser E	Pro (Glu 1	Lys	Thr 1935	Asp	Ala	Thr
		Ser	Ser 194		ır Th	ır Se	r Pr		o s 045	Ser 1	Tyr <i>l</i>	Asp :		Val 1950	Thr	Lys	Pro
		Asp	Lys 195		u Ly	rs Ty	r Gl		.n 1	Asp <i>I</i>	Arg 1	Chr (Glu	Lys 1965	Glu	Asp	Lys
		Gly	Lys 197		p Se	er Ly	s Gl		r 1 975	Lys I	Lys						
5	<210> 28 <211> 1956 <212> PRT <213> Homo s	apien	s														
	<400> 28																
		Met 1	Glu	Phe	Pro	Ile 5	Gly	Ser	Leu	Glu	Thr 10	Asn	n Ası	n Phe	Arg	Arg 15	Phe
		Thr	Pro	Glu	Ser 20	Leu	Val	Glu	Ile	Glu 25	Lys	Glr	ı Ile	e Ala	Ala 30	Lys	Glr
		Gly	Thr	Lys 35	Lys	Ala	Arg	Glu	Lys 40	His	Arg	Glu	ı Gl	n Lys 45	Asp	Gln	Glu
		Glu	Lys 50	Pro	Arg	Pro	Gln	Leu 55	Asp	Leu	Lys	Ala	Cy:	s Asn	Gln	Leu	Pro
		Lys 65	Phe	Tyr	Gly	Glu	Leu 70	Pro	Ala	Glu	Leu	11€ 75	Gl _y	y Glu	Pro	Leu	Glu 80
		Asp	Leu	Asp	Pro	Phe 85	Tyr	Ser	Thr	His	Arg 90	Thr	Pho	e Met	. Val	Leu 95	Asr
		Lys	Gly	Arg	Thr 100	Ile	Ser	Arg	Phe	Ser 105		. Thr	Ar	g Ala	Leu 110	_	Leu
10		Phe	Ser	Pro 115	Phe	Asn	Leu	Ile	Arg 120	_	Thr	Ala	ı Il	e Lys 125		Ser	Val

	130	P	1110	Der	Leu	135	-1-6		V41		140	Leu	741	71,511	Çy.
Val 145	Cys	Met	Thr	Arg	Thr 150	Asp	Leu	Pro	Gl u	Lys 155	Ile	Glu	Tyr	Val	Phe 160
Thr	Val	Ile	Tyr	Thr 165	Phe	Glu	Ala	Leu	Ile 170	Lys	Ile	Leu	Ala	Arg 175	Gl
Phe	Cys	Leu	As n 180	Glu	Phe	Thr	Tyr	Leu 185	Arg	Asp	Pro	Trp	Asn 190	Trp	Leu
Asp	Phe	Ser 195	Val	Ile	Thr	Leu	Ala 200	Tyr	Val	Gly	Thr	Ala 205	Ile	Asp	Leu
Arg	Gly 210	Ile	Ser	Gly	Leu	Arg 215	Thr	Phe	Arg	Val	Leu 220	Arg	Ala	Leu	Lys
Thr 225	Val	Ser	Val	Ile	Pro 230	Gly	Leu	Lys	Val	Ile 235	Val	Gly	Ala	Leu	11e 240
His	Ser	Val	Lys	Lys 245	Leu	Ala	Asp	Val	Thr 250	Ile	Leu	Thr	Ile	Phe 255	Cys
Leu	Ser	Val	Phe 260	Ala	Leu	Val	Gly	Leu 265	Gln	Leu	Phe	Lys	Gly 270	Asn	Let
Lys	Asn	Lys 275	Cys	Val	Lys	Asn	Asp 280	Met	Ala	Val	Asn	G1u 285	Thr	Thr	Asr
Tyr	Ser 290	Ser	His	Arg	Lys	Pro 295	Asp	Ile	Tyr	Ile	Asn 300	Lys	Arg	Gly	Thi
Ser 305	Asp	Pro	Leu	Leu	Cys 310	Gly	Asn	Gly	Ser	Asp 315	Ser	Gly	His	Cys	9rd 320
_		_	Ile	325		_			330					335	
			Asp 340					345					350		
		355	Asp				360		-			365		-	
Ser	Gly 370	Lys	Ile	Tyr	Met	11e 375	Phe	Phe	Val	Leu	Val 380	Ile	Phe	Leu	Gl

Ser Phe Tyr Leu Val Asn Leu Ile Leu Ala Val Val Thr Met Ala Tyr

385					390					395					400
Glu	Gl u	G1n	Asn	Gln 405	Ala	Thr	Thr	Asp	Glu 410	Ile	Glu	Ala	Lys	Glu 415	Lys
Lys	Phe	Gln	Glu 420	Ala	Leu	Glu	Met	Leu 425	Arg	Lys	Glu	Gln	Glu 430	Val	Leu
Ala	Ala	Leu 435	Gly	Ile	Asp	Thr	Thr 440	Ser	Leu	His	Ser	His 445	Asn	Gly	Ser
Pro	Leu 450	Thr	Ser	Lys	Asn	Ala 455	Ser	Glu	Arg	Arg	His 460	Arg	Ile	Lys	Pro
Arg 465	Val	Ser	Glu	Gly	Ser 470	Thr	Glu	Asp	Asn	Lys 475	Ser	Pro	Arg	Ser	Asp
Pro	Tyr	Asn	Gln	Arg 485	Arg	Met	Ser	Phe	Leu 4 90	Gly	Leu	Ala	Ser	Gly 495	Lys
Arg	Arg	Ala	Ser 500	His	Gly	Ser	Val	Phe 505	His	Phe	Arg	Ser	Pro 510	Gly	Arg
Asp	Ile	Ser 515	Leu	Pro	Gl u	Gly	Val 520	Thr	Asp	Asp	Gly	Val 525	Phe	Pro	Gly
Asp	His 530	Glu	Ser	His	Arg	Gly 535	Ser	Leu	Leu	Leu	Gly 5 4 0	Gly	Gly	Ala	Gly
Gln 545	Gln	Gly	Pro	Leu	Pro 550	Arg	Ser	Pro	Leu	Pro 555	Gln	Pro	Ser	Asn	Pro 560
Asp	Ser	Arg	His	Gly 565	Gl u	Asp	Glu	His	Gl n 570	Pro	Pro	Pro	Thr	Ser 575	Glu
Leu	Ala	Pro	Gly 580	Ala	Val	Asp	Val	Ser 585	Ala	Phe	Asp	Ala	Gly 590	Gln	Lys
Lys	Thr	Phe 595	Leu	Ser	Ala	Glu	Tyr 600	Leu	Asp	Glu	Pro	Phe 605	Arg	Ala	Gln
Arg	Ala 610	Met	Ser	Val	Val	Ser 615	Ile	Ile	Thr	Ser	Val 620	Leu	Glu	Glu	Leu
G1u 625	Glu	Ser	Glu	Gln	Lys 630	Cys	Pro	Pro	Cys	Leu 635	Thr	Ser	Leu	Ser	Gl n 640
Lys	Tyr	Leu	Ile	Trp 645	Asp	Cys	Cys	Pro	Met 650	Trp	Val	Lys	Leu	Lys 655	Thr

Ile	Leu	Phe	Gly 660	Leu	Val	Thr	Asp	Pro 665	Phe	Ala	Glu	Leu	Thr 670	Ile	Thr
Leu	Cys	Ile 675	Val	Val	Asn	Thr	Ile 680	Phe	Met	Ala	Met	Glu 685	His	His	Gly
Met	Ser 690	Pro	Thr	Phe	Glu	Ala 695	Met	Leu	Gln	Ile	Gly 700	Asn	Ile	Val	Phe
Thr 705	Ile	Phe	Phe	Thr	Ala 710	Glu	Met	Val	Phe	Lys 715	Ile	Ile	Ala	Phe	Asp 720
Pro	Tyr	Tyr	Tyr	Phe 725	Gln	Lys	Lys	Trp	A sn 730	Ile	Phe	Asp	Суз	Ile 735	Ile
Val	Thr	Val	Ser 740	Leu	Leu	Glu	Leu	Gly 7 4 5	Val	Ala	Lys	Lys	Gly 750	Ser	Leu
Ser	Val	Leu 755	Arg	Ser	Phe	Arg	Leu 760	Leu	Arg	Val	Phe	Lys 765	Leu	Ala	Lys
Ser	Trp 770	Pro	Thr	Leu	Asn	Thr 775	Leu	Ile	Lys	Ile	Ile 780	Gly	Asn	Ser	Val
Gly 785	Ala	Leu	Gly	Asn	Leu 790	Thr	Ile	Ile	Leu	Ala 795	Ile	Ile	Val	Phe	Val 800
Phe	Ala	Leu	Val	Gly 805	Lys	Gln	Leu	Leu	Gly 810	Glu	Asn	Tyr	Arg	Asn 815	Asn
_	_		820					825	_	_	Pro	_	830		
His	Asp	Phe 835	Phe	His	Ser	Phe	Leu 840	Ile	Val	Phe	Arg	Ile 845	Leu	Cys	Gly
	850					855		-			Val 860				
865	_				870					875	Leu				880
				885					890		Ser			895	_
Asn	Leu	Thr	Ala 900	Pro	Glu	Asp	Asp	Gly 905	Glu	Val	Asn	Asn	Leu 910	Gln	Val

- Ala Leu Ala Arg Ile Gln Val Phe Gly His Arg Thr Lys Gln Ala Leu 915 920 925
- Cys Ser Phe Phe Ser Arg Ser Cys Pro Phe Pro Gln Pro Lys Ala Glu 930 935 940
- Pro Glu Leu Val Val Lys Leu Pro Leu Ser Ser Lys Ala Glu Asn 945 950 955 960
- His Ile Ala Ala Asn Thr Ala Arg Gly Ser Ser Gly Gly Leu Gln Ala 965 970 975
- Pro Arg Gly Pro Arg Asp Glu His Ser Asp Phe Ile Ala Asn Pro Thr 980 985 990
- Val Trp Val Ser Val Pro Ile Ala Glu Gly Glu Ser Asp Leu Asp Asp 995 1000 1005
- Leu Glu Asp Asp Gly Gly Glu Asp Ala Gln Ser Phe Gln Glu 1010 1015 1020
- Val Ile Pro Lys Gly Gln Gln Glu Gln Leu Gln Gln Val Glu Arg 1025 1030 1035
- Cys Gly Asp His Leu Thr Pro Arg Ser Pro Gly Thr Gly Thr Ser 1040 1045 1050
- Ser Glu Asp Leu Ala Pro Ser Leu Gly Glu Thr Trp Lys Asp Glu 1055 1060 1065
- Ser Val Pro Gln Val Pro Ala Glu Gly Val Asp Asp Thr Ser Ser 1070 1075 1080
- Ser Glu Gly Ser Thr Val Asp Cys Leu Asp Pro Glu Glu Ile Leu 1085 1090 1095
- Arg Lys Ile Pro Glu Leu Ala Asp Asp Leu Glu Glu Pro Asp Asp 1100 1105 1110
- Cys Phe Thr Glu Gly Cys Ile Arg His Cys Pro Cys Cys Lys Leu 1115 1120 1125
- Asp Thr Thr Lys Ser Pro Trp Asp Val Gly Trp Gln Val Arg Lys 1130 1135 1140
- Thr Cys Tyr Arg Ile Val Glu His Ser Trp Phe Glu Ser Phe Ile 1145 1150 1155

Ile Phe Met Ile Leu Leu Ser Ser Gly Ser Leu Ala Phe Glu Asp 1160 1165 1170 Tyr Tyr Leu Asp Gln Lys Pro Thr Val Lys Ala Leu Leu Glu Tyr Thr Asp Arg Val Phe Thr Phe Ile Phe Val Phe Glu Met Leu Leu 1195 Lys Trp Val Ala Tyr Gly Phe Lys Lys Tyr Phe Thr Asn Ala Trp 1205 1210 1215 Cys Trp Leu Asp Phe Leu Ile Val Asn Ile Ser Leu 1220 1225 1230 Thr Ala Lys Ile Leu Glu Tyr Ser Glu Val Ala Pro Ile Lys Ala Leu Arg Thr Leu Arg Ala Leu Arg Pro Leu Arg Ala Leu Ser Arg 1255 Phe Glu Gly Met Arg Val Val Val Asp Ala Leu Val Gly Ala Ile 1270 Pro Ser Ile Met Asn Val Leu Leu Val Cys Leu Ile Phe Trp Leu 1280 1285 1290 Ile Phe Ser Ile Met Gly Val Asn Leu Phe Ala Gly Lys Phe Trp 1300 Arg Cys Ile Asn Tyr Thr Asp Gly Glu Phe Ser Leu Val Pro Leu Ser Ile Val Asn Asn Lys Ser Asp Cys Lys Ile Gln Asn Ser Thr Ala Met Gly Tyr Leu Ala Leu Leu Gln Val Ala Thr Phe Lys Gly 1360 Trp Met Asp Ile Met Tyr Ala Ala Val Asp Ser Arg Glu Val Asn 1370 1375 1380Met Gln Pro Lys Trp Glu Asp Asn Val Tyr Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile Phe Gly Gly Phe Phe Thr Leu Asn Leu Phe

	1400					1405					1410			
Val	Gly 1415	Val	Ile	Ile	Asp	Asn 1420	Phe	Asn	Gln	Gl n	Lys 1425	Lys	Lys	Leu
Gly	Gly 1430	Gln	Asp	Ile		Met 1435	Thr	Glu	Glu	Gln	Lys 1440	Lys	Туг	Tyr
Asn	Ala 1445		Lys	Lys		Gly 1450		Lys	Lys	Pro	Gln 1455	_	Pro	Ile
Pro	Arg 1460		Leu	Asn		Phe 1465		Gly	Phe	Val	Phe 1470	Asp	Ile	Val
Thr	Arg 1475		Ala	Phe		Ile 1480		Ile	Met	Val	Leu 1485		Cys	Leu
Asn	Met 1490		Thr	Met		Val 1495		Thr	Asp	Asp	Gln 1500	Ser	Glu	Glu
Lys	Thr 1505	_	Ile	Leu	_	Lys 1510	Ile	Asn	Gln	Phe	Phe 1515	Val	Ala	Val
Phe	Thr 1520	Gly	Glu	Cys	Val	Met 1525	Lys	Met	Phe	Ala	Leu 1530	Arg	Gln	Tyr
Tyr	Phe 1535		Asn	Gly		Asn 1540	Val	Phe	Asp	Phe	Ile 1545	Val	Val	Val
Leu	Ser 1550		Ala	Ser	Leu	Ile 1555		Ser	Ala	Ile	Leu 1560	Lys	Ser	Leu
Gln	Ser 1565		Phe	Ser	Pro	Thr 1570	Leu	Phe	Arg	Val	Ile 1575	Arg	Leu	Ala
Arg	Ile 1580	-	Arg	Ile	Leu	Arg 1585	Leu	Ile	Arg	Ala	Ala 1590	Lys	Gly	Ile
Arg	Thr 1595	Leu	Leu	Phe	Ala	Leu 1600	Met	Met	Ser	Leu	Pro 1605	Ala	Leu	Phe
Asn	Ile 1610	Gly	Leu	Leu	Leu	Phe 1615	Leu	Val	Met	Phe	Ile 1620	Tyr	Ser	Ile
Phe	Gly 1625	Met	Ser	Ser	Phe	Pro 1630	His	Val	Arg	Trp	Glu 1635	Ala	Gly	Ile
Asp	Asp 1640	Met	Phe	Asn	Phe	Gln 1645	Thr	Phe	Ala	Asn	Ser 1650	Met	Leu	Cys

1660

Leu Phe Gln Ile Thr Thr Ser Ala Gly Trp Asp Gly Leu Leu Ser

- Pro Ile Leu Asn Thr Gly Pro Pro Tyr Cys Asp Pro Asn Leu Pro Asn Ser Asn Gly Thr Arg Gly Asp Cys Gly Ser Pro Ala Val Gly Ile Ile Phe Phe Thr Thr Tyr Ile Ile Ile Ser Phe Leu Ile Met 1700 1705 1710 Val Asn Met Tyr Ile Ala Val Ile Leu Glu Asn Phe Asn Val Ala 1720 Thr Glu Glu Ser Thr Glu Pro Leu Ser Glu Asp Asp Phe Asp Met 1735 1740 1730 Phe Tyr Glu Thr Trp Glu Lys Phe Asp Pro Glu Ala Thr Gln Phe 1750 Ile Thr Phe Ser Ala Leu Ser Asp Phe Ala Asp Thr Leu Ser Gly 1760 1765 1770 Pro Leu Arg Ile Pro Lys Pro Asn Arg Asn Ile Leu Ile Gln Met 1780 Asp Leu Pro Leu Val Pro Gly Asp Lys Ile His Cys Leu Asp Ile 1790 1795 Leu Phe Ala Phe Thr Lys Asn Val Leu Gly Glu Ser Gly Glu Leu
- Leu Ser Lys Ser Ser Tyr Glu Pro Ile Ala Thr Thr Leu Arg Trp 1835 1840 1845

Asp Ser Leu Lys Ala Asn Met Glu Glu Lys Phe Met Ala Thr Asn

- Lys Gln Glu Asp Ile Ser Ala Thr Val Ile Gln Lys Ala Tyr Arg 1850 1855 1860
- Ser Tyr Val Leu His Arg Ser Met Ala Leu Ser Asn Thr Pro Cys 1865 1870 1875
- Val Pro Arg Ala Glu Glu Glu Ala Ala Ser Leu Pro Asp Glu Gly 1880 1885 1890

Phe Val Ala Phe Thr Ala Asn Glu Asn Cys Val Leu Pro Asp Lys 1895 1900 1905

		Sei	Glu 191		ır Al	a Se	er Al		nr : 915	Ser 1	Phe	Pro	Pro	Ser 1920	Tyr	Glu	Ser
		Val	l Thr 192		g Gl	y Le	u Se		sp 2 930	Arg '	Val .	Asn	Met	Arg 1935	Thr	Ser	Ser
		Sei	: Ile 194		.n As	n Gl	.u As	_	lu i 945	Ala '	Thr	Ser	Met	Glu 1950	Leu	Ile	Ala
		Pro	Gly 195		:0												
5	<210> 29 <211> 1791 <212> PRT <213> Homo s	apien	ıs														
	<400> 29																
		Met 1	Asp	Asp	Arg	Cys 5	Tyr	Pro	Val	. Ile	Phe 10	Pro	As	p Glu	Arg	Asn 15	Phe
		Arg	Pro	Phe	Thr 20	Ser	Asp	Ser	Leu	Ala 25	Ala	ı Ile	e Gl	u Lys	Arg 30	Ile	Ala
		Ile	Gln	Lys 35	Glu	Lys	Lys	Lys	Ser 40	Lys	Asp	Gl:	n Th	r Gly 45	Glu	Val	Pro
		Gln	Pro 50	Arg	Pro	Gln	Leu	Asp 55	Leu	Lys	: Ala	ı Se:	r Ar 60	g Lys	Leu	Pro	Lys
		Leu 65	Tyr	Gly	Asp	Ile	Pro 70	Arg	Glu	Leu	ı Ile	Gl _y	у Lу	s Pro	Leu	Glu	Asp 80
		Leu	Asp	Pro	Phe	Tyr 85	Arg	Asn	His	Lys	90	Phe	e Me	t Val	Leu	Asn 95	Arg
		Lys	Arg	Thr	Ile 100	Tyr	Arg	Phe	Ser	Ala 105		Hi:	s Al	a Leu	Phe 110		Phe
		Gly	Pro	Phe 115	Asn	Ser	Ile	Arg	Ser 120		ı Ala	ı Ile	e Ar	g Val 125		Val	His
		Ser	Leu 130	Phe	Ser	Met	Phe	Ile 135		. Gly	Thi	Va.	l I1 14	e Ile O	Asn	Cys	Val
10		Phe 145	Met	Ala	Thr	Gly	Pro 150	Ala	Lys	Asn	Sei	15!		r Asn	Asn	Thr	Asp 160

Ile	Ala	GIu	Cys	Val 165	Phe	Thr	Gly	Ile	Tyr 170	Ile	Phe	Glu	Ala	Leu 175	Ile
Lys	Ile	Leu	Ala 180	Arg	Gly	Phe	Ile	Leu 185	Asp	Glu	Phe	Ser	Phe 190	Leu	Arg
Asp	Pro	Trp 195	Asn	Trp	Leu	Asp	Ser 200	Ile	Val	Ile	Gly	Ile 205	Ala	Ile	Val
Ser	Tyr 210	Ile	Pro	Gly	Ile	Thr 215	Ile	Lys	Leu	Leu	Pro 220	Leu	Arg	Thr	Phe
Arg 225	Val	Phe	Arg	Ala	Leu 230	Lys	Ala	Ile	Ser	Val 235	Val	Ser	Arg	Leu	Lys 240
Val	Ile	Val	Gly	Ala 245	Leu	Leu	Arg	Ser	Val 250	Lys	Lys	Leu	Val	Asn 255	Val
Ile	Ile	Leu	Thr 260	Phe	Phe	Cys	Leu	Ser 265	Ile	Phe	Ala	Leu	Val 270	Gly	Gln
Gln	Leu	Phe 275	Met	Gly	Ser	Leu	Asn 280	Leu	Lys	Cys	Ile	Ser 285	Arg	Asp	Cys
Lys	Asn 290	Ile	Ser	Asn	Pro	G1u 295	Ala	Tyr	Asp	His	Cys 300	Phe	Glu	Lys	Lys
305			Pro		310					315					320
	_		Ile	325	_		_	_	330		_			335	_
			Thr 340					345					350		
		355	Met				360					365			
	370		Thr	-		375					380				
385			Ser		390					395					400
rie C	nia	TAT	GIU	405	GIII	UOII	пуз	USII	410	n1a	n1a	GIU	116	415	nid

Ly	s Glu	Lys	Met 420	Phe	Gln	Glu	Ala	Gln 425	Gln	Leu	Leu	Lys	Glu 430	Glu	Lys
Gl	u Ala	Leu 435	Val	Ala	Met	Gly	Ile 440	Asp	Arg	Ser	Ser	Leu 445	Thr	Ser	Leu
Gl	u Thr 450	Ser	Tyr	Phe	Thr	Pro 455	Lys	Lys	Arg	Lys	Leu 460	Phe	Gly	Asn	Lys
Ly:	s Arg 5	Lys	Ser	Phe	Phe 470	Leu	Arg	Glu	Ser	Gly 475	Lys	Asp	Gln	Pro	Pro 480
G1	y Ser	Asp	Ser	Asp 485	Glu	Asp	Cys	Gln	Lys 490	Lys	Pro	Gln	Leu	Leu 495	Glu
G1:	n Thr	Lys	Arg 500	Leu	Ser	Gln	Asn	Leu 505	Ser	Leu	Asp	His	Phe 510	Asp	Glu
Hi	s Gly	Asp 515	Pro	Leu	Gln	Arg	Gln 520	Arg	Ala	Leu	Ser	Ala 525	Val	Ser	Ile
	1 Thr 530				_	535			_		540				
Pro 54.	o Cys 5	Gly	Glu	Asn	Leu 550	Ala	Ser	Lys	Tyr	Leu 555	Val	Trp	Asn	Cys	Cys 560
	o Gln	-		565			_		570	_				575	Ī
	o Phe		580					585	_				590		
	e Leu	595					600					605			
	Asn 610		_			615					620				
62					630					635					640
	o Asn			645					650					655	
we.	t Asn	cys	660	ьeu	GIN	тАг	wrd	665	тrр	PIO	rne	ьeu	Arg 670	ser	rne

- Arg Val Leu Arg Val Phe Lys Leu Ala Lys Ser Trp Pro Thr Leu Asn 680

 Thr Leu Ile Lys Ile Ile Gly Asn Ser Val Gly Ala Leu Gly Ser Leu 690

 Thr Val Val Leu Val Ile Val Ile Phe Ile Phe Ser Val Val Gly Met 710
- Gln Leu Phe Gly Arg Ser Phe Asn Ser Gln Lys Ser Pro Lys Leu Cys 725 730 735
- As n Pro Thr Gly Pro Thr Val Ser Cys Leu Arg His Trp His Met Gly 740 745 750
- Asp Phe Trp His Ser Phe Leu Val Val Phe Arg Ile Leu Cys Gly Glu 755 760 765
- Trp Ile Glu Asn Met Trp Glu Cys Met Gln Glu Ala Asn Ala Ser Ser 770 785
- Ser Leu Cys Val Ile Val Phe Ile Leu Ile Thr Val Ile Gly Lys Leu 785 790 795 800
- Val Val Leu Asn Leu Phe Ile Ala Leu Leu Leu Asn Ser Phe Ser Asn 805 810 815
- Glu Glu Arg Asn Gly Asn Leu Glu Gly Glu Ala Arg Lys Thr Lys Val 820 825 830
- Gln Leu Ala Leu Asp Arg Phe Arg Arg Ala Phe Cys Phe Val Arg His 835 840 845
- Thr Leu Glu His Phe Cys His Lys Trp Cys Arg Lys Gln Asn Leu Pro 850 855 860
- Gln Gln Lys Glu Val Ala Gly Gly Cys Ala Ala Gln Ser Lys Asp Ile 865 870 875 885
- Ile Pro Leu Val Met Glu Met Lys Arg Gly Ser Glu Thr Glu Glu Glu 885 890 895
- Leu Gly Ile Leu Thr Ser Val Pro Lys Thr Leu Gly Val Arg His Asp 900 905 910
- Trp Thr Trp Leu Ala Pro Leu Ala Glu Glu Glu Asp Asp Val Glu Phe 915 920 925
- Ser Gly Glu Asp Asn Ala Gln Arg Ile Thr Gln Pro Glu Pro Glu Gln

930	935	940
Gln Ala Tyr Glu Leu Hi	is Gln Glu Asn Lys Lys E	Pro Thr Ser Gln Arg
945 95	50 955	960
Val Gln Ser Val Glu II	le Asp Met Phe Ser Glu <i>F</i>	Asp Glu Pro His Leu
965	970	975
Thr Ile Gln Asp Pro Ar	rg Lys Lys Ser Asp Val 1	Thr Ser Ile Leu Ser
980	985	990
Glu Cys Ser Thr Ile As	sp Leu Gln Asp Gly Phe	Gly Trp Leu Pro Glu
995	1000	1005
Met Val Pro Lys Lys G	Gln Pro Glu Arg Cys Leu	Pro Lys Gly Phe
1010	1015	1020
Gly Cys Cys Phe Pro C	Cys Cys Ser Val Asp Lys	s Arg Lys Pro Pro
1025	1030	1035
Trp Val lle Trp Trp A	Asn Leu Arg Lys Thr Cys 1045	s Tyr Gln Ile Val 1050
Lys His Ser Trp Phe G	Glu Ser Phe Ile Ile Phe	e Val Ile Leu Leu
1055	1060	1065
Ser Ser Gly Ala Leu I	Ile Phe Glu Asp Val His	s Leu Glu Asn Gln
1070	1075	1080
Pro Lys Ile Gln Glu I	Leu Leu Asn Cys Thr Asp	o Ile Ile Phe Thr
1085	1090	1095
His Ile Phe Ile Leu G	Glu Met Val Leu Lys Trp	Val Ala Phe Gly
1100	1105	1110
Phe Gly Lys Tyr Phe T	Thr Ser Ala Trp Cys Cys	Leu Asp Phe Ile
1115	1120	1125
Ile Val Ile Val Ser V	Val Thr Thr Leu Ile Asr	n Leu Met Glu Leu
1130	1135	1140
Lys Ser Phe Arg Thr I	Leu Arg Ala Leu Arg Pro	Leu Arg Ala Leu
1145	1150	1155
Ser Gln Phe Glu Gly M	Met Lys Val Val Val Asr	n Ala Leu Ile Gly
1160	1165	1170
Ala Ile Pro Ala Ile I	Leu Asn Val Leu Leu Val	Cys Leu Ile Phe
1175	1180	1185

- Trp Leu Val Phe Cys Ile Leu Gly Val Tyr Phe Phe Ser Gly Lys 1190 1195 1200
- Phe Gly Lys Cys Ile Asn Gly Thr Asp Ser Val Ile Asn Tyr Thr 1205 1210 1215
- Ile Ile Thr Asn Lys Ser Gln Cys Glu Ser Gly Asn Phe Ser Trp 1220 1225 1230
- Ile Asn Gln Lys Val Asn Phe Asp Asn Val Gly Asn Ala Tyr Leu 1235 1240 1245
- Ala Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Ile 1250 1255 1260
- Tyr Ala Ala Val Asp Ser Thr Glu Lys Glu Gln Gln Pro Glu Phe 1265 1270 1275
- Glu Ser Asn Ser Leu Gly Tyr Ile Tyr Phe Val Val Phe Ile Ile 1280 1290
- Phe Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile Ile 1295 1300 1305
- Asp Asn Phe Asn Gln Gln Gln Lys Lys Leu Gly Gly Gln Asp Ile 1310 1315 1320
- Phe Met Thr Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys 1325 1330 1335
- Leu Gly Ser Lys Lys Pro Gln Lys Pro Ile Pro Arg Pro Leu Asn 1340 1350
- Lys Cys Gln Gly Leu Val Phe Asp Ile Val Thr Ser Gln Ile Phe
- Asp Ile Ile Ile Ser Leu Ile Ile Leu Asn Met Ile Ser Met 1370 1375 1380
- Met Ala Glu Ser Tyr Asn Gln Pro Lys Ala Met Lys Ser Ile Leu 1385 1390 1395
- Asp His Leu Asn Trp Val Phe Val Val Ile Phe Thr Leu Glu Cys 1400 1405 1410
- Leu Ile Lys Ile Phe Ala Leu Arg Gln Tyr Tyr Phe Thr Asn Gly 1415 1420 1425

- Trp Asn Leu Phe Asp Cys Val Val Leu Leu Ser Ile Val Ser 1430 1435 1440
- Thr Met Ile Ser Thr Leu Glu Asn Gln Glu His Ile Pro Phe Pro 1445 1450 1455
- Pro Thr Leu Phe Arg Ile Val Arg Leu Ala Arg Ile Gly Arg Ile 1460 1465 1470
- Leu Arg Leu Val Arg Ala Ala Arg Gly Ile Arg Thr Leu Leu Phe 1475 1480 1485
- Ala Leu Met Met Ser Leu Pro Ser Leu Phe Asn Ile Gly Leu Leu 1490 1495 1500
- Leu Phe Leu Ile Met Phe Ile Tyr Ala Ile Leu Gly Met Asn Trp 1505 1510 1515
- Phe Ser Lys Val Asn Pro Glu Ser Gly Ile Asp Asp Ile Phe Asn 1520 1530
- Phe Lys Thr Phe Ala Ser Ser Met Leu Cys Leu Phe Gln Ile Ser 1535 to 1540 to 1545
- Thr Ser Ala Gly Trp Asp Ser Leu Leu Ser Pro Met Leu Arg Ser 1550 1555 1560
- Lys Glu Ser Cys Asn Ser Ser Ser Glu Asn Cys His Leu Pro Gly 1565 1570 1575
- Ile Ala Thr Ser Tyr Phe Val Ser Tyr Ile Ile Ile Ser Phe Leu 1580 1590
- Ile Val Val Asn Met Tyr Ile Ala Val Ile Leu Glu Asn Phe Asn 1595 1600 1605
- Thr Ala Thr Glu Glu Ser Glu Asp Pro Leu Gly Glu Asp Asp Phe 1610 1615 1620
- Asp Ile Phe Tyr Glu Val Trp Glu Lys Phe Asp Pro Glu Ala Thr 1625 1630 1635
- Pro Glu Pro Leu Arg Val Ala Lys Pro Asn Lys Tyr Gln Phe Leu 1655 1660 1665

	Val	Met 1670	_	Leu	Pro	Met	: Val 167		er	Glu	Asp	Arg	Leu 1680	His	Cys	Met
	Asp	Ile 1685		Phe	Ala	. Ph∈	Thr 169		la	Arg	Val	Leu	Gly 1695	Gly	Ser	Asp
	Gly	Leu 1700	_	Ser	Met	. Lys	170		let	Met	Glu	Glu	Lys 1710	Phe	Met	Glu
	Ala	Asn 1715		Leu	Lys	. Lys	172		'yr	Glu	Pro	Ile	Val 1725	Thr	Thr	Thr
	Lys	Arg 1730	_	Glu	. Glu	ı Glu	a Arç 173		1y	Ala	Ala	Ile	Ile 1740	Gln	Lys	Ala
	Phe	Arg 1745	_	Tyr	Met	. Met	Lys 175		al	Thr	Lys	Gly	Asp 1755	Gln	Gly	Asp
	Gln	Asn 1760	_	Leu	. Glu	ı Asr	1 Gly		ro	His	Ser	Pro	Leu 1770	Gln	Thr	Leu
	Cys	Asn 1775	_	Asp	Leu	ı Ser	Ser 178		he	Gly	Val	Ala	Lys 1785	Gly	Lys	Val
	His	Cys 1790		,												
<210> 30 <211> 218 <212> PRT <213> Homo sa	apiens	S														
<400> 30																
	Met 1	Gly 1	Arg 1	Leu l		Ala :	Leu '	Val	Va.	1 G1 10	=	a Al	a Leu	Val	Ser 15	Sei
	Ala	Cys (31y (20	Cys '	Val (Glu '	Val	As ₁ 25	p Se	r Gl	u Th	r Glu	Ala 30	. Val	Туз
	Gly		Thr I	he l	Lys :	Ile :		Cys 40	Ile	e Se	r Cy	s Ly	s Arg 45	Arg	Ser	Glı
		Asn A	Ala (Glu 1	Chr 1		Thr (Glu	Tr	p Th	r Ph	e Ar 60	g Gln	Lys	Gly	Thi
	Glu 65	Glu I	?he V	/al 1	_	Ile : 70	Leu i	Arg	Ty:	r Gl	u A s 75		u Val	Leu	Gln	Let 80
	Glu	Glu <i>l</i>	Asp (Arg 1	Phe '	Glu (Gly	Ar	g Va 90		l Tr	p Asn	Gly	Ser 95	Arç

5

	Gly	Thr	Lys	Asp 100	Leu	Gln	Asp	Leu	Ser 105	Ile	Phe	Ile	Thr	Asn 110	Val	Thr
	Tyr	Asn	His 115	Ser	Gly	Asp	Tyr	Glu 120	Cys	His	Val	Tyr	Arg 125	Leu	Leu	Ph€
	Phe	Glu 130	Asn	Tyr	Glu	His	Asn 135	Thr	Ser	Val	Val	Lys 140	Lys	Ile	His	Ile
	Glu 145	Val	Val	Asp	Lys	Ala 150	Asn	Arg	Asp	Met	Ala 155	Ser	Ile	Val	Ser	Glu 160
	Ile	Met	Met	Tyr	Val 165	Leu	Ile	Val	Val	Leu 170	Thr	Ile	Trp	Leu	Val 175	Ala
	Glu	Met	Ile	Туг 180	Cys	Tyr	Lys	Lys	Ile 185	Ala	Ala	Ala	Thr	Glu 190	Thr	Ala
	Ala	Gln	Glu 195	Asn	Ala	Ser	Glu	Tyr 200	Leu	Ala	Ile	Thr	Ser 205	Glu	Ser	Lys
	Glu	Asn 210	Cys	Thr	Gly	Val	Gln 215	Val	Ala	Glu						
<210> 31 <211> 215 <212> PRT <213> Homo s	apien	s														
<400> 31																
	Met 1	His	Arg	Asp	Ala 5	Trp	Leu	Pro	Arg	Pro 10	Ala	Phe	Ser	Leu	Thr 15	Gly
	Leu	Ser	Leu	Phe 20	Phe	Ser	Leu	Val	Pro 25	Pro	Gly	Arg	Ser	Met 30	Glu	Val
	Thr	Val	Pro 35	Ala	Thr	Leu	Asn	Val 40	Leu	Asn	Gly	Ser	Asp 45	Ala	Arg	Leu
	Pro	Cys 50	Thr	Phe	Asn	Ser	Cys 55	Tyr	Thr	Val	Asn	His 60	Lys	Gln	Phe	Ser
	Leu 65	Asn	Trp	Thr	Tyr	Gln 70	Glu	Cys	Asn	Asn	Cys 75	Ser	Glu	Glu	Met	Phe
	Leu	Gln	Phe	Arg	Met 85	Lys	Ile	Ile	Asn	Leu 90	Lys	Leu	Glu	Arg	Phe 95	Glr
	Asp	Arg	Val	Glu 100	Phe	Ser	Gly	Asn	Pro 105	Ser	Lys	Tyr	Asp	Val 110	Ser	Val

	Met	Leu	Arg 115	Asn	Val	Gln	Pro	Glu 120	Asp	Glu	Gly	Ile	Tyr 125	Asn	Cys	Тут
	Ile	Met 130	Asn	Pro	Pro	Asp	Arg 135	His	Arg	Gly	His	Gly 140	Lys	Ile	His	Leu
	Gln 145	Val	Leu	Met	Glu	Glu 150	Pro	Pro	Glu	Arg	Asp 155	Ser	Thr	Val	Ala	Val
	Ile	Val	Gly	Ala	Ser 165	Val	Gly	Gly	Phe	Leu 170	Ala	Val	Val	Ile	Leu 175	Val
	Leu	Met	Val	Val 180	Lys	Cys	Val	Arg	Arg 185	Lys	Lys	Glu	Gln	Lys 190	Leu	Ser
	Thr	Asp	Asp 195	Leu	Lys	Thr	Glu	Glu 200	Glu	Gly	Lys	Thr	Asp 205	Gly	Glu	Gly
	Asn	Pro 210	Asp	Asp	Gly	Ala	Lys 215									
<210> 32 <211> 215 <212> PRT <213> Homo s	apien	s														
<400> 32																
	Met 1	Pro	Ala	Phe	Asn 5	Arg	Leu	Phe	Pro	Leu 10	Ala	Ser	Leu	Val	Leu 15	Ile
	Tyr	Trp	Val	Ser 20	Val	Cys	Phe	Pro	Val 25	Cys	Val	Glu	Val	Pro 30	Ser	Glu
	Thr	Glu	Ala 35	Val	Gln	Gly	Asn	Pro 40	Met	Lys	Leu	Arg	Cys 45	Ile	Ser	Cys
	Met	Lys 50	Arg	Glu	Glu	Val	Glu 55	Ala	Thr	Thr	Val	Val 60	Glu	Trp	Phe	Туг
	Arg 65	Pro	Glu	Gly	Gly	Lys 70	Asp	Phe	Leu	Ile	Tyr 75	Glu	Tyr	Arg	Asn	Gly 80
	His	Gln	Glu	Val	Gl u 85	Ser	Pro	Phe	Gln	Gly 90	Arg	Leu	Gln	Trp	Asn 95	Gly

5

10

Asn Asp Ser Gly Leu Tyr Thr Cys Asn Val Ser Arg Glu Phe Glu Phe

				115					120					125			
		Glu	Ala 130	His	Arg	Pro	Phe	Val 135	Lys	Thr	Thr	Arg	Leu 140	Ile	Pro	Leu	Arg
		Val 145	Thr	Glu	Glu	Ala	Gly 150	Glu	Asp	Phe	Thr	Ser 155	Val	Val	Ser	Glu	Ile 160
		Met	Met	Tyr	Ile	Leu 165	Leu	Val	Phe	Leu	Thr 170	Leu	Trp	Leu	Leu	Ile 175	Glu
		Met	Ile	Tyr	Cys 180	Tyr	Arg	Lys	Val	Ser 185	Lys	Ala	Glu	Glu	Ala 190	Ala	Gln
		Glu	Asn	Ala 195	Ser	Asp	Tyr	Leu	Ala 200	Ile	Pro	Ser	Glu	Asn 205	Lys	Glu	Asn
		Ser	Ala 210	Val	Pro	Val	Glu	Glu 215									
5	<210> 33 <211> 228 <212> PRT <213> Homo s	apien	s														
	<400> 33																
		Met 1	Pro	Gly	Ala	Gly 5	Asp	Gly	Gly	Lys	Ala 10	Pro	Ala	Arg	Trp	Leu 15	Gly
		Thr	Gly	Leu	Leu 20	Gly	Leu	Phe	Leu	Leu 25	Pro	Val	Thr	Leu	Ser 30	Leu	Glu
		Val	Ser	Val 35	Gly	Lys	Ala	Thr	Asp 40	Ile	Tyr	Ala	Val	Asn 45	Gly	Thr	Glu
		Ile	Leu 50	Leu	Pro	Cys	Thr	Phe 55	Ser	Ser	Cys	Phe	Gly 60	Phe	Glu	Asp	Leu
		His 65	Phe	Arg	Trp	Thr	Tyr 70	Asn	Ser	Ser	Asp	Ala 75	Phe	Lys	Ile	Leu	Ile 80
		Glu	Gly	Thr	Val	Lys 85	Asn	Glu	Lys	Ser	Asp 90	Pro	Lys	Val	Thr	Leu 95	Lys
		Asp	Asp	Asp	Arg 100	Ile	Thr	Leu	Val	Gly 105	Ser	Thr	Lys	Glu	Lys 110	Met	Asn
10		Asn	Ile	Ser 115	Ile	Val	Leu	Arg	Asp 120	Leu	Glu	Phe	Ser	Asp 125	Thr	Gly	Lys

Tyr Thr Cys His Val Lys Asn Pro Lys Glu Asn Asn Leu Gln His His 130 $$ 135 $$ 140

		Ala 145	Thr	Ile	Phe	Leu	Gln 150	Val	Val	Asp	Arg	Leu 155	Glu	Glu	Val	Asp	Asr 160
		Thr	Val	Thr	Leu	Ile 165	Ile	Leu	Ala	Val	Val 170	Gly	Gly	Val	Ile	Gly 175	Leu
		Leu	Ile	Leu	Ile 180	Leu	Leu	Ile	Lys	Lys 185	Leu	Ile	Ile	Phe	Ile 190	Leu	Lys
		Lys	Thr	Arg 195	Glu	Lys	Lys	Lys	Glu 200	Cys	Leu	Val	Ser	Ser 205	Ser	Gly	Asr
		Asp	Asn 210	Thr	Glu	Asn	Gly	Leu 215	Pro	Gly	Ser	Lys	Ala 220	Glu	Glu	Lys	Pro
		Pro 225	Ser	Lys	Val												
5	<210> 34 <211> 34 <212> ADN <213> Secuence <220> <221> fuente <223> /note="E				ecue	ncia a	artifici	al: so	onda s	sintéti	ca"						
10	<400> 34 gcgagagcga ca	agca	gacc	ctata	gaaco	c togo		34	4								
15	<210> 35 <211> 6 <212> PRT <213> Artificial	Sequ	uence	:													
20	<220> <221> fuente <223> /note="E	Descr	ipciór	ı de s	ecue	ncia a	artifici	al: ma	arcad	lor 6x	His s	intétic	o"				
	<400> 35																
25							His 1	His	His	His	His 5	His					

REIVINDICACIONES

- 1. Una línea celular manipulada genéticamente para expresar de manera estable un NaV 1.7 humano que comprende una subunidad alfa 9 de NaV, una subunidad beta 1 de NaV y una subunidad beta 2 de NaV, en la que la línea celular se produce mediante un método que comprende las etapas de:
 - a) proporcionar una pluralidad de células que expresan mRNA que codifica o codifican el NaV 1.7 humano;
 - b) dispersar las células individualmente en recipientes de cultivo individuales, proporcionando de este modo una pluralidad de cultivos celulares separados;
- c) cultivar las células con un conjunto de condiciones de cultivo deseadas usando un método de cultivo celular automatizado **caracterizado porque** las condiciones son sustancialmente idénticas para cada uno de los cultivos celulares separados, durante el cual se normaliza el cultivo de las diversas células por cultivo celular separado, y en el que se hacen pases de los cultivos separados en el mismo calendario;
 - d) someter a ensayo los cultivos de células separados para medir la expresión del NaV 1.7 humano al menos dos veces y para medir un factor Z' en el ensayo de potencial de membrana; e
 - e) identificar un cultivo celular separado que expresa el NaV 1.7 humano a un nivel uniforme en ambos ensayos y que produce un factor Z' de al menos 0,6 en el ensayo de potencial de membrana, obteniendo de este modo dicha colección de células:
- 20 en la que el ensayo de potencial de membrana comprende:
 - i) cultivar en placas células de la línea celular a 10.000 25.000 células por pocillo en una placa de 384 pocillos en medio de crecimiento;
 - ii) mantener las células en la placa de 384 pocillos en una incubadora de cultivo celular a 37 ℃ con CO₂ al 5% durante 22-24 horas;
 - iii) retirar el medio de crecimiento de la placa de 384 pocillos;
 - iv) incubar las células en la placa de 384 pocillos con un colorante de potencial de membrana de florescencia azul diluido en un tampón de carga que comprende NaCl 137 mM, KCl 5 mM, CaCl₂ 1,25 mM, HEPES 25 mM, glucosa 10 mM durante 1 hora a 37 °C;
- 30 v) añadir a las células incubadas a) 25 μM de veratridina y 5-25 μg/ml de veneno de escorpión para pocillos de control positivo; o b) un tampón de control para pocillos de control negativo;
 - vi) cargar la placa de 384 pocillos en un lector de placas fluorescentes de alto rendimiento; y
 - vii) medir las señales de fluorescencia de células de los pocillos de control positivo y los pocillos de control negativo,

en la que el factor Z' se calcula usando las señales de fluorescencia de células medidas de la etapa vii) y usando la ecuación:

Factor Z' = 1 - $((3\sigma_{control\ positivo} + 3\sigma_{control\ negativo})/(\mu_{control\ positivo} - \mu_{control\ negativo}))$

40

35

15

25

en la que control $\sigma_{positivo}$ representa una desviación típica de los controles positivos del ensayo; control $\sigma_{negativo}$ representa una desviación típica de los controles negativos del ensayo; control $\mu_{positivo}$ representa el valor medio de los controles positivos; y control $\mu_{negativo}$ representa el valor medio de los controles negativos.

- 45 2. La línea celular de la reivindicación 1, en la que la línea celular es capaz de producir un factor Z' de al menos 0,7 que se puede mantener durante múltiples pases, o en la que la línea celular se cultiva en ausencia de presión selectiva.
 - 3. La línea celular de la reivindicación 1 o 2, en la que el NaV no comprende ningún marcador polipeptídico.

50

4. Un método para identificar un modulador NaV 1.7 humano, que comprende poner en contacto una célula en la línea celular de una cualquiera de las reivindicaciones 1-3 con un compuesto de ensavo: v

detectar un cambio en la función de un NaV 1.7 humano en la célula en comparación con una célula no en contacto con el compuesto de ensayo, en el que un cambio en dicha función indica que el compuesto de ensayo es un modulador de NaV 1.7 humano.

5. El método de la reivindicación 4, en el que el compuesto de ensayo es una molécula pequeña, un polipéptido, un péptido, o un anticuerpo o una porción de unión a antígeno del mismo.

- 6. El método de la reivindicación 4 o 5, en el que los pasos se realizan de una manera de alto rendimiento.
- 7. Una colección de células manipuladas genéticamente para expresar de manera estable un NaV 1.7 humano que comprende una subunidad alfa 9 de NaV, una subunidad beta 1 de NaV y una subunidad beta 2 de NaV a un nivel uniforme en el tiempo, en la que la colección de las células es capaz de producir un factor Z' de al menos 0,6 en un ensayo de potencial de membrana, en la que el ensayo de potencial de membrana comprende:

- i) cultivar en placas células de la línea celular a 10.000 25.000 células por pocillo en una placa de 384 pocillos en medio de crecimiento;
- ii) mantener las células en la placa de 384 pocillos en una incubadora de cultivo celular a 37 °C con CO₂ al 5% durante 22-24 horas:
- iii) retirar el medio de crecimiento de la placa de 384 pocillos;

5

10

30

35

40

45

50

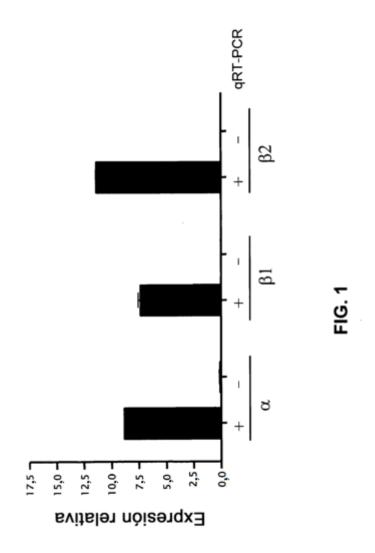
60

65

- iv) incubar las células en la placa de 384 pocillos con un colorante de potencial de membrana de florescencia azul diluido en un tampón de carga que comprende NaCl 137 mM, KCl 5 mM, CaCl₂ 1,25 mM, HEPES 25 mM, glucosa 10 mM durante 1 hora a 37 °C:
- v) añadir a las células incubadas a) 25 μM de veratridina y 5-25 μg/ml de veneno de escorpión para pocillos de control positivo; o b) un tampón de control para pocillos de control negativo;
- vi) cargar la placa de 384 pocillos en un lector de placas fluorescentes de alto rendimiento; y
- vii) medir las señales de fluorescencia de células de los pocillos de control positivo y los pocillos de control negativo,
- en la que el factor Z' se calcula usando las señales de fluorescencia de células medidas de la etapa vii) y usando la ecuación:

Factor Z' = 1 -
$$((3\sigma_{control\ positivo} + 3\sigma_{control\ negativo})/(\mu_{control\ positivo} - \mu_{control\ negativo}))$$

- en la que control $\sigma_{positivo}$ representa una desviación típica de los controles positivos del ensayo; control $\sigma_{negativo}$ representa una desviación típica de los controles negativos del ensayo; control $\mu_{positivo}$ representa el valor medio de los controles positivos; y control $\mu_{negativo}$ representa el valor medio de los controles negativos, y en la que la colección de células se realiza mediante un método que comprende las etapas de
- 25 a) proporcionar una pluralidad de células que expresan mRNA que codifica o codifican el NaV 1.7 humano;
 - b) dispersar las células individualmente en recipientes de cultivo individuales, proporcionando de este modo una pluralidad de cultivos celulares separados;
 - c) cultivar las células con un conjunto de condiciones de cultivo deseadas usando un método de cultivo celular automatizado **caracterizado porque** las condiciones son sustancialmente idénticas para cada uno de los cultivos celulares separados, durante el cual se normaliza el cultivo de las diversas células por cultivo celular separado, y en el que se hacen pases de los cultivos separados en el mismo calendario;
 - d) someter a ensayo los cultivos de células separados para medir la expresión del NaV 1.7 humano al menos dos veces y para medir un factor Z' en el ensayo de potencial de membrana; e
 - e) identificar un cultivo celular separado que expresa el NaV 1.7 humano a un nivel uniforme en ambos ensayos y que produce un factor Z' de al menos 0,6 en el ensayo de potencial de membrana, obteniendo de este modo dicha colección de células.
 - 8. Un método para producir una colección de células manipuladas genéticamente para expresar de manera estable un NaV 1.7 humano que comprende una subunidad alfa 9 de NaV, una subunidad beta 1 de NaV y una subunidad beta 2 de NaV a un nivel uniforme en el tiempo, en el que la colección de células es capaz de producir un factor Z' de al menos 0,6 en un ensayo de potencial de membrana, en el que el ensayo de potencial de membrana comprende:
 - i) cultivar en placas células de la línea celular a 10.000 25.000 células por pocillo en una placa de 384 pocillos en medio de crecimiento;
 - ii) mantener las células en la placa de 384 pocillos en una incubadora de cultivo celular a 37 ℃ con CO₂ al 5% durante 22-24 horas;
 - iii) retirar el medio de crecimiento de la placa de 384 pocillos;
 - iv) incubar las células en la placa de 384 pocillos con un colorante de potencial de membrana de florescencia azul diluido en un tampón de carga que comprende NaCl 137 mM, KCl 5 mM, CaCl₂ 1,25 mM, HEPES 25 mM, glucosa 10 mM durante 1 hora a 37 °C:
 - glucosa 10 mM durante 1 hora a 37 °C; v) añadir a las células incubadas a) 25 µM de veratridina y 5-25 µg/ml de veneno de escorpión para pocillos de control positivo; o b) un tampón de control para pocillos de control negativo;
 - vi) cargar la placa de 384 pocillos en un lector de placas fluorescentes de alto rendimiento; y
- vii) medir las señales de fluorescencia de células de los pocillos de control positivo y los pocillos de control negativo,

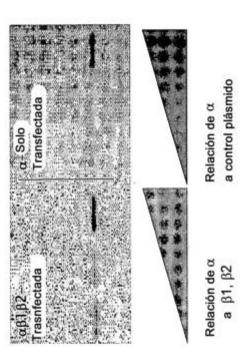
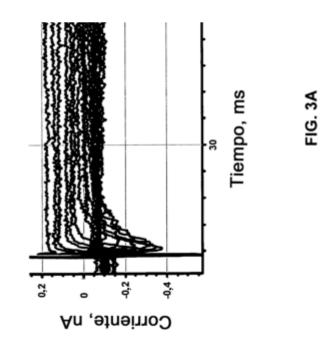
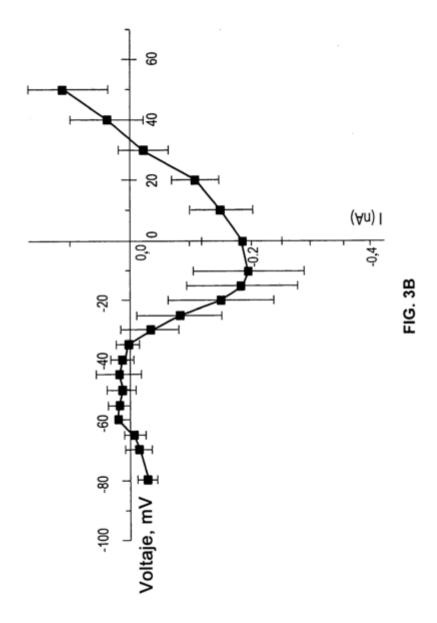
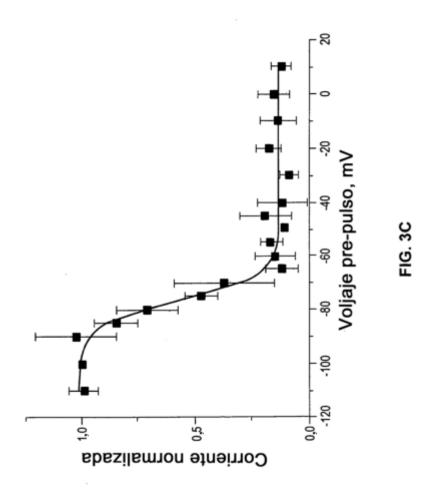
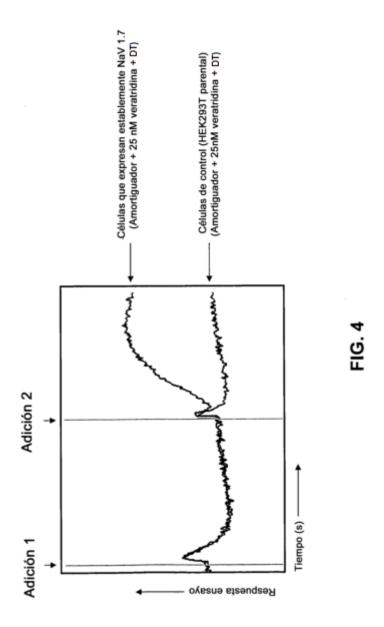

en el que el factor Z' se calcula usando las señales de fluorescencia de células medidas de la etapa vii) y usando la ecuación:

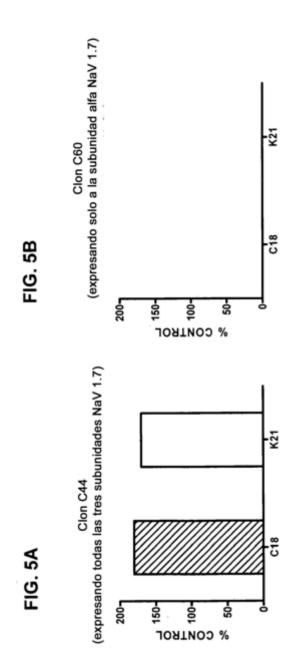
Factor
$$Z' = 1 - ((3\sigma_{control\ positivo} + 3\sigma_{control\ negativo})/(\mu_{control\ positivo} - \mu_{control\ negativo}))$$

en el que control $\sigma_{positivo}$ representa una desviación típica de los controles positivos del ensayo; control $\sigma_{negativo}$ representa una desviación típica de los controles negativos del ensayo; control $\mu_{positivo}$ representa el valor medio de los controles positivos; y control $\mu_{negativo}$ representa el valor medio de los controles negativos, en el que el método comprende las etapas de:

a) proporcionar una pluralidad de células que expresan mRNA que codifica o codifican el NaV 1.7 humano;

- b) dispersar las células individualmente en recipientes de cultivo individuales, proporcionando de este modo una pluralidad de cultivos celulares separados;
- c) cultivar las células con un conjunto de condiciones de cultivo deseadas usando un método de cultivo celular automatizado **caracterizado porque** las condiciones son sustancialmente idénticas para cada uno de los cultivos celulares separados, durante el cual se normaliza el cultivo de las diversas células por cultivo celular separado, y en el que se hacen pases de los cultivos separados en el mismo calendario;
- d) someter a ensayo los cultivos de células separados para medir la expresión del NaV 1.7 humano al menos dos veces y para medir un factor Z' en el ensayo de potencial de membrana; e
- e) identificar un cultivo celular separado que expresa el NaV 1.7 humano a un nivel uniforme en ambos ensayos y que produce un factor Z' de al menos 0,6 en el ensayo de potencial de membrana, obteniendo de este modo dicha colección de células.


FIG. 2

