

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 644 126

(51) Int. CI.:

C07C 231/12 (2006.01) C07C 233/52 (2006.01) C07D 263/52 (2006.01) (2006.01)

C07D 209/96

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

25.03.2013 PCT/EP2013/056318 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 03.10.2013 WO13144101

(96) Fecha de presentación y número de la solicitud europea: 25.03.2013 E 13712251 (1)

(54) Título: Procedimiento de preparación de ésteres de fenilacetil aminoácido espirocíclicos con

cis-alcoxi

(30) Prioridad:

28.03.2012 EP 12161837

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 27.11.2017

(97) Fecha y número de publicación de la concesión europea:

(73) Titular/es:

sustitución cis-alcoxi y derivados de 1H-pirrolidin-2,4-diona espirocicíclicos con sustitución

19.07.2017

BAYER INTELLECTUAL PROPERTY GMBH (50.0%)Alfred-Nobel-Strasse 10 40789 Monheim, DE y **BAYER CROPSCIENCE AG (50.0%)**

EP 2831038

(72) Inventor/es:

FARIDA, TARANEH; MAIWALD, BERNDT; LITTMANN, MARTIN; ETZEL, WINFRIED; WARSITZ, RAFAEL; HENCK, NIOCLAS y **ESSER, MICHAEL**

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Procedimiento de preparación de ésteres de fenilacetil aminoácido espirocíclicos con sustitución cis-alcoxi y derivados de 1H-pirrolidin-2,4-diona espirocicíclicos con sustitución cis-alcoxi

La presente invención se refiere a un nuevo procedimiento de preparación de ésteres de fenilacetil aminoácido espirocíclicos con sustitución de cis-alcoxi y derivados de 1H-pirrolidin-2,4-diona espirocíclicos con sustitución de cis-alcoxi, y también a nuevos intermedios y materiales de partida que se producen y/o se usan en el procedimiento de acuerdo con la invención. Los ésteres de fenilacetil aminoácido espirocíclicos con sustitución cis-alcoxi son intermedios importantes para la síntesis de principios activos insecticidas/acaricidas.

Los ésteres de fenilacetil aminoácido espirocíclicos con sustitución cis-alcoxi se conocen, por ejemplo, a partir del documento WO 04/007448. Los ésteres de fenilacetil aminoácido espirocíclicos con sustitución cis-alcoxi de fórmula (I) se obtienen cuando los derivados de cis-amino ácido de fórmula (VI)

$$A = O \longrightarrow CO_2R^8$$
 (VI)

se someten a acilación con haluros de ácido fenilacético sustituidos de la fórmula (VII)

15 (Chem. Reviews 52, 237-416 (1953); Bhattacharya, Indian J. Chem. <u>6</u>, 341-5, 1968) o cuando los cis-aminoácidos de fórmula (VIII)

$$NH_2$$
 CO_2H
(VIII)

se someten a acilación con haluros de ácido fenilacético sustituidos de fórmula (VII)

25

de acuerdo con Schotten-Baumann (Organikum, VEB Deutscher Verlag der Wissenschaffen, Berlín 1977, pág. 505) y se esterifican (Chem. Ind. (Londres) 1568 (1968)).

En el procedimiento actual, se somete a extracción el fenilacetil aminoácido espirocíclico con sustitución cis-alcoxi (compuestos de fórmula (IIa)) con clorobenceno en caliente. Esta disolución se esterifica con metanol bajo catálisis de ácido sulfúrico para proporcionar compuestos de fórmula (I) (esterificación parcial de los compuestos de la fórmula (IIa)). Se recicla la parte no esterificada. Debido a que los compuestos de fórmula (I) no permanecen disueltos en clorobenceno a temperatura ambiente, se sustituye el disolvente de clorobenceno por dimetilacetamida.

Las desventajas particulares de este procedimiento son el rendimiento insatisfactorio y el elevado gasto del procedimiento. Además, los disolventes de clorobenceno y dimetilacetamida (DMAC) usados se emplean de mala manera. La eliminación del agua residual que contiene DMAC está asociada a costes elevados.

30 El objetivo de la presente invención consiste en proporcionar un nuevo procedimiento, económica y ecológicamente favorable, para la preparación selectiva de ésteres de fenilacetil aminoácido espirocíclicos con sustitución cis-alcoxi. En particular, el procedimiento de acuerdo con la invención debería ser susceptible de manejo con disolventes habituales. Se puede hacer uso de tolueno, xileno, alcanos, tales como n-hexano, n-heptano, n-octano, éteres tales como éter dietílico, éter diisopropílico, éter dibutílico, anisol, éter de metilo y terc-butilo, éter de metilo y terc-amilo,

éter dimetílico de glicol, éter dimetílico de diglicol, tetrahidrofurano o dioxano, cetonas tales como acetona, etil metil cetona, isopropil metil cetona o isobutil metil cetona (MIBK), hidrocarburos tales como pentano, hexano, heptano, ciclohexano, metilciclohexano, benceno, hidrocarburos halogenados tales como cloruro de metileno, cloroformo, tetracloruro de carbono, clorobenceno u o-diclorobenceno, dicloroetano. Se otorga preferencia a tolueno o xileno. Se otorga preferencia particular a xileno.

Se ha comprobado que se obtiene una mezcla de los compuestos de fórmula (I)

en las que

5

25

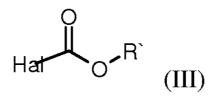
- X representa alquilo, halógeno, alcoxi, haloalquilo o haloalcoxi,
- 10 Y representa hidrógeno, alquilo, alcoxi, halógeno, haloalquilo o haloalcoxi, en la que únicamente uno de los restos X o Y puede representar haloalquilo o haloalcoxi,
 - A representa alquilo C₁-C₆,
 - R' representa alquilo,
 - R" representa alquilo,
- 15 cuando se convierten los compuestos de fórmula (IIa)

$$\begin{array}{c} & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

en la que X, Y y A tienen los significados indicados anteriormente en presencia de una base, para dar lugar a compuestos de fórmula (IIb)

$$A \xrightarrow{O} X \xrightarrow{COO M^{(+)_n}} Y$$
 (IIb)

20 en la que X, Y y A tienen los significados indicados anteriormente y


M representa un ion metálico alcalino, un equivalente iónico de un metal alcalinotérreo, un equivalente iónico de aluminio o un equivalente iónico de un metal de transición o además

representa un ion amonio en el que opcionalmente uno, dos, tres o los cuatro átomos de hidrógeno pueden estar sustituidos por restos idénticos o diferentes de los grupos alquilo C_1 - C_5 , isoalquilo C_1 - C_5 o cicloalquilo C_3 - C_7 , cada uno de los cuales pueden estar mono- o polisustituido con flúor, cloro, bromo, ciano, hidroxi o pueden estar interrumpidos por uno o más átomos de oxígeno o azufre, o además

representa un ion amonio heteroalifático o alifático terciario o secundario cíclico, por ejemplo, morfolinio, tiomorfolinio, piperidinio, pirrolidinio o en cada caso 1,4-diazabiciclo[2.2.2]octano protonado (DABCO) o 1,5-diazabiciclo[4.3.0]undec-7-eno (DBU), o además

30 representa un catión amonio heterocíclico, por ejemplo en cada caso piridina protonada, 2-metilpiridina, 3-metilpiridina, 4-metilpiridina, 2,4-dimetilpiridina, 2,5-di-metilpiridina, 2,6-dimetilpiridina, 5-etil-2-metilpiridina, pirrol, imidazol, quinolina, quinoxalina, 1,2-dimetilimidazol, metilsulfato de 1,3-dimetilimidazolio, o además representa un ion sulfonio, o además

representa un catión de haluro de magnesio, n representa el número 1 o 2, y se hace reaccionar además con compuestos de fórmula (III)

en la que R' tiene los significados indicados anteriormente y Hal representa halógeno, para proporcionar compuestos de la fórmula (IV)

en la que X, Y, A y R' tienen los significados indicados anteriormente, y estos se ciclan de manera adicional para dar compuestos de fórmula (IX)

en la que X, Y y A tienen los significados indicados anteriormente, y estos por su parte se hacen reaccionar con los compuestos de la fórmula (V)

R"-OH (V)

15 en la que

R" tiene los significados indicados anteriormente, para proporcionar una mezcla de los compuestos de fórmula (I).

En las fórmulas (I), (I'), (IIa), (IIb), (III), (IV), (V), (IX), (X) y (XI), X preferentemente representa cloro, bromo, metilo, etilo, propilo, trifluorometilo, metoxi, difluorometoxi o trifluorometoxi,

Y preferentemente representa hidrógeno, cloro, bromo, metoxi, metilo, etilo, propilo, trifluorometilo o trifluorometoxi, pudiendo representar únicamente uno de los restos X o Y trifluorometilo, trifluorometoxi o difluorometoxi, A preferentemente representa alquilo C₁-C₆,

Hal preferentemente representa cloro, bromo, flúor, yodo,

R' preferentemente representa alquilo C₁-C₆,

25 R" preferentemente representa alquilo C₁-C₆,

X particularmente representa cloro, bromo, metilo, etilo, metoxi, trifluorometilo, trifluorometoxi o difluorometoxi,

Y de forma particularmente preferida representa cloro, bromo, metilo, etilo, propilo, metoxi, trifluorometilo o trifluorometoxi, pudiendo representar únicamente uno de los restos X o Y trifluorometilo, trifluorometoxi o difluorometoxi.

30 A de forma particularmente preferida representa alquilo C₁-C₄,

Hal de forma particularmente preferida representa cloro, bromo o flúor,

R' de forma particularmente preferida representa alquilo C₁-C₄,

R" de forma particularmente preferida representa alquilo C₁-C₄,

X de forma muy particularmente preferida representa cloro, bromo, metilo o trifluorometilo (en particular cloro, bromo

o metilo)

Y de forma muy particularmente preferida representa cloro, bromo o metilo, (en particular metilo),

A de forma muy particularmente preferida representa metilo, etilo, propilo, butilo o isobutilo, (en particular metilo o etilo),

5 Hal de forma muy particularmente preferida representa cloro o bromo,

R' de forma muy particularmente preferida representa metilo, etilo, propilo, butilo o isobutilo,

R" de forma muy particularmente preferida representa metilo, etilo, propilo, butilo o isobutilo,

X del modo más preferido representa metilo,

Y del modo más preferido representa metilo,

10 A del modo más preferido representa metilo,

Hal del modo más preferido representa cloro,

R' del modo más preferido representa metilo o etilo (especialmente etilo),

R" del modo más preferido representa metilo o etilo (especialmente metilo).

En la fórmula (IIb),

20

25

30

35

40

M representa preferentemente litio, sodio, potasio, cesio, magnesio, calcio o representa un ion amonio en el que opcionalmente uno, dos, tres o los cuatro átomos de hidrógeno están sustituidos por restos idénticos o diferentes entre los grupos alquilo C₁-C₅, isoalquilo-C₁-C₅ o cicloalquilo C₃-C₇, cada uno de los cuales puede estar mono- o polisustituido con flúor, cloro, bromo, ciano, hidroxi y n representa el número 1 o 2,

M de forma particularmente preferida representa litio, sodio, potasio, cesio, magnesio o calcio y n representa el número 1 o 2.

M de forma muy particularmente preferida representa litio, sodio, potasio, cesio y n representa el número 1, M del modo más preferido representa sodio y n representa el número 1.

Las definiciones o ilustraciones de restos preferidos o generales anteriormente mencionadas se pueden combinar con otra según se desee, es decir, incluyendo combinaciones entre los respectivos intervalos y los intervalos preferidos. Se aplican por un lado a los productos finales, y por consiguiente, por otro lado a los precursores e intermedios.

En las definiciones de los símbolos proporcionados en las fórmulas anteriores, se usaron los términos colectivos que generalmente son representativos de los siguientes sustituyentes:

Halógeno: flúor, cloro, bromo y yodo.

Alquilo: hidrocarburos de cadena ramificada o lineal saturados que tienen de 1 a 8 átomos de carbono, por ejemplo alquilo C_1 - C_6 , tal como metilo, etilo, propilo, 1-metiletilo, butilo, 1-metilpropilo, 2-metilpropilo, 1,1-dimetiletilo, pentilo, 1-metilbutilo, 2-metilbutilo, 3-metilbutilo, 2,2-dimetilpropilo, 2-etilpropilo, hexilo, 1,1-dimetilpropilo, 1,2-dimetilpropilo, 1,3-dimetilbutilo, 2,2-dimetilbutilo, 2,3-dimetilbutilo, 3,3-dimetilbutilo, 1-etilbutilo, 2-etilbutilo, 1,1-trimetilpropilo, 1,2-trimetilpropilo, 1-etil-1-metilpropilo y 1-etil-2-metilpropilo; heptilo, octilo.

Haloalquilo: grupos alquilo de cadena lineal o ramificada que tienen de 1 a 8 átomos de carbono, en los que parte o la totalidad de los átomos de hidrógeno de estos grupos pueden estar sustituidos por átomos de halógeno como se ha mencionado anteriormente, por ejemplo haloalquilo C₁-C₃ tal como clorometilo, bromometilo, diclorometilo, triclorometilo, fluorometilo, difluorometilo, trifluorometilo, clorofluorometilo, diclorofluorometilo, clorodifluorometilo, 1-cloroetilo, 1-bromoetilo, 1-fluoroetilo, 2,2-difluoroetilo, 2,2-difluoroetilo, 2,2-difluoroetilo, 2,2-difluoroetilo, 2,2-tricloroetilo, pentafluoroetilo y 1,1,1-trifluoroprop-2-ilo.

Esquema 1:

El curso del procedimiento de acuerdo con la invención viene representado por el esquema de reacción siguiente:

(I-1) como éster metílico

(I-1) como éster etílico

$$MeO \longrightarrow Na_2CO_3 \qquad MeO \longrightarrow Na^+ \longrightarrow H \qquad CI \longrightarrow NaCI$$

$$(IIIa-1) \qquad (IIIb-1) \qquad (III-1)$$

Los índices * y ** en el átomo de oxígeno del Esquema 1 son para ilustrar el curso de la reacción.

Dependiendo del tipo de alcohol y de la cantidad de alcohol (compuestos de fórmula (V)), se obtiene un éster de la fórmula (I) (en el Esquema 1: éster metílico y éster etílico en una proporción de 10:1).

5 Además, se ha comprobado que se obtienen compuestos de fórmula (l')

(I-1) como éster etílico

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

en la que X, Y, A y R" tienen los significados indicados anteriormente, cuando inicialmente se convierten compuestos de fórmula (IIa)

$$A$$
 CO_2H
(IIa)

en la que X, Y y A tienen los mismos significados indicados anteriormente, 5 en presencia de una base, para dar lugar a compuestos de fórmula (IIb)

en la que X, Y, A, M y n tienen los significados indicados anteriormente y se hacen reaccionar posteriormente con compuestos de fórmula (III)

en la que R' tiene los significados indicados anteriormente y Hal representa halógeno,

para proporcionar compuestos de fórmula (IV)

15 en la que X, Y, A y R' tienen los significados indicados anteriormente y estos se ciclan posteriormente para dar lugar a compuestos de fórmula (IX)

10

en la que X, Y y A tienen los significados indicados anteriormente, y estos por su parte se hacen reaccionar con compuestos de fórmula (V)

R"-OH (V)

en la que
 R" tiene el significado proporcionado anteriormente,
 para dar compuestos de fórmula (l'), en donde R' = R".

Esquema 2:

10 El curso del procedimiento de acuerdo con la invención viene representado por medio del esquema de reacción siguiente:

Se sabe que los compuestos de fórmula (I) y (I') se pueden condensar de forma intra-molecular en presencia de un diluyente y en presencia de una base para proporcionar los derivados de 1H-pirrolidin-2,4-diona espirocíclicos con sustitución cis-alcoxi de fórmula (X)

5 en la que

A, X e Y tienen el significado proporcionado anteriormente (documento WO 04/007448).

Se ha comprobado que se obtienen en una reacción en un recipiente, los compuestos de fórmula (X)

$$AO$$
 OH
 (X)

10 en la que

A, X e Y tienen los significados indicados anteriormente, por medio de conversión de los compuestos de fórmula (IIa)

en la que X, Y y A tienen los significados indicados anteriormente,

15 en presencia de una base

para dar lugar a compuestos de fórmula (IIb)

en la que X, Y, A, M y n tienen los significados indicados anteriormente y hacer reaccionar con los compuestos de fórmula (III)

20

en la que R' tiene los significados indicados anteriormente y Hal representa halógeno, en presencia de una base fuerte de fórmula (XI)

ZLR" (XI)

en la que

5

10

Z representa un ion metálico alcalino (preferentemente representa litio, sodio o potasio, de forma particularmente preferida sodio o potasio, de forma muy particularmente preferida sodio),

L representa oxígeno o azufre (preferentemente oxígeno),

R" tiene los significados indicados anteriormente,

se otorga preferencia, por ejemplo, a alcaloides o tiolatos que se pueden emplear bien en forma sólida o en forma de disolución, por ejemplo NaOMe en forma sólida o en forma de disolución en metanol, NaOEt en forma sólida o en forma de disolución en etanol, NaSMe en forma sólida o en forma de disolución en metanol, NaSEt en forma sólida o en forma de disolución en etanol).

Esquema 3

El curso del procedimiento de acuerdo con la invención viene representado por medio del esquema de reacción siguiente:

Sorprendentemente, por medio del procedimiento de acuerdo con la invención, los compuestos de fórmula (X) se pueden preparar de manera más simple, en un procedimiento en un recipiente, sin aislamiento de los intermedios, con pureza más elevada y mejor rendimiento.

5 Los compuestos de fórmula (l') e (l) se conocen (documento WO 04/007448) o se pueden preparar por medio de los procedimientos descritos en la presente memoria.

Los compuestos de fórmula (I") se conocen (documento WO 04/007448) o se pueden preparar por medio de los procedimientos descritos en la presente memoria.

Los compuestos de fórmula (IIa) se conocen (documento WO 04/007448) o se pueden preparar por medio de los procedimientos descritos en la presente memoria.

Los compuestos de fórmula (IIb) son nuevos.

10

25

Los compuestos de fórmula (III) se encuentran disponibles a nivel comercial.

Los compuestos de fórmula (IV) son nuevos.

Los compuestos de fórmula (V) se encuentran disponibles a nivel comercial.

15 Los compuestos de fórmula (IX) son nuevos.

Los compuestos de fórmula (X) se conocen (documento 04/007448) o se pueden preparar por medio de los procedimientos descritos en el presente documento.

Los compuestos de fórmula (XI) se encuentran disponibles a nivel comercial.

Debido a la proporción de isómero cis/trans de los compuestos de fórmula (IIa) empleados para el procedimiento de preparación, los compuestos de fórmula (I) y (I') o (I"), (IIb), (IV), (IX) y (X) se obtienen en forma de mezclas isoméricas cis/trans, en la que en el procedimiento de acuerdo con la invención se forma principalmente el isómero cis.

El procedimiento se caracteriza porque los compuestos de fórmula (IIa) que tienen una proporción elevada de isómero cis se convierten en presencia de una base y en presencia de disolventes para dar lugar a la sal correspondiente de fórmula (IIb). Tras el secado azeotrópico de la mezcla de reacción, se hacen reaccionar los compuestos de fórmula (IIb) con compuestos de fórmula (III) para proporcionar intermedios de fórmula (IV). Estos se ciclan hasta compuestos de fórmula (IX).

Los compuestos de fórmula (IX) pueden estar presentes en dos formas tautómeras:

Los compuestos pueden estar presentes bien como mezclas o bien en forma de sus tautómeros puros. Las mezclas pueden, si se desea, separarse usando métodos físicos, por ejemplo métodos cromatográficos.

Por motivos de claridad, a continuación únicamente se muestra uno de los posibles tautómeros en cada caso. Esto no excluye que los compuestos puedan opcionalmente estar presentes en forma de las mezclas tautómeras o en otra de sus respectivas formas tautómeras.

5

10

15

20

25

35

Los compuestos de fórmula (IX) se convierten en presencia de un alcohol de fórmula (V) para dar lugar a compuestos de fórmula (I) o (I').

Cuando se lleva a cabo el procedimiento de acuerdo con la invención, se puede variar la temperatura de reacción para preparar los compuestos de fórmula (IIb). En general, el procedimiento se lleva a cabo a temperaturas entre 20 °C y 110 °C, preferentemente entre 80 °C y 85 °C. También se otorga preferencia a una temperatura de 25 °C. De igual forma, se otorga preferencia a una temperatura de 70 °C.

La base empleada puede ser un alcoholato, bien en forma sólida o en forma de disolución, por ejemplo NaOMe en forma sólida o en forma de disolución en metanol, NaOEt en forma sólida o en NaOEt en forma de disolución, bicarbonato de sodio, hidróxido de sodio o hidróxido de potasio, hidróxidos de metales alcalinotérreos tales como hidróxido de calcio, carbonatos de metal alcalino o hidróxidos de metal alcalino tales como carbonato de sodio o carbonato de potasio, terc-butóxido de sodio o terc-butóxido de potasio. En las bases mencionadas, se puede sustituir sodio por potasio. Se otorga preferencia a carbonato de sodio. También se otorga preferencia a un metilato de sodio de 30 % de concentración en metanol. De igual forma, se otorga preferencia a hidróxido de sodio.

Disolventes apropiados para su uso son tolueno, xileno, alcanos tales como n-hexano, n-heptano, n-octano, éteres tales como éter dietílico, éter diisopropílico, éter dibutílico, anisol, éter de metilo y terc-butilo, éter de metilo y terc-amilo, éter dimetílico de glicol, éter dimetílico de diglicol, tetrahidrofurano o dioxano, cetonas tales como acetona, etil metil cetona, isopropil metil cetona o isobutil metil cetona (MIBK), hidrocarburos tales como pentano, hexano, heptano, ciclohexano, metilciclohexano, benceno, hidrocarburos halogenados tales como cloruro de metileno, cloroformo, tetracloruro de carbono, clorobenceno o o-diclorobenceno, dicloroetano. Se otorga preferencia a tolueno o xileno. Se otorga preferencia particular a xileno.

Cuando se lleva a cabo el procedimiento de la invención, se puede variar la temperatura de reacción para preparar los compuestos de fórmula (IV). En general, el procedimiento se lleva a cabo a temperaturas entre 20 °C y 100 °C, preferentemente entre 65 °C y 70 °C, preferentemente también a 70 °C.

Cuando se lleva a cabo el procedimiento de acuerdo con la invención, los componentes de fórmula (III) se emplean generalmente en cantidades de equimolar a aproximadamente doble de equimolar.

El procedimiento en un recipiente se caracteriza porque los compuestos de fórmula (IIa) que tienen una elevada proporción de isómero cis se convierten en presencia de una base y en presencia de disolventes para dar lugar a la sal correspondiente de fórmula (IIb), que reacciona con los compuestos de fórmula (III) para proporcionar los compuestos de fórmula (IV). En esta reacción, se forman los compuestos de fórmula (IX) por medio de ciclado. Estos compuestos se pueden escindir con una base fuerte de fórmula (XI) (adición nucleófila) para proporcionar los compuestos de fórmula (I").

$$Z^{+}$$
 X
 $CO_{2}R''$
 (I'')

en la que X, Y, A, L, Z y R" tienen los mismos significados indicados anteriormente, y se ciclan para dar compuestos de fórmula (X).

Además, es posible que los compuestos de fórmula (IV) en presencia de una base fuerte reaccionen directamente para dar compuestos de fórmula (X).

Los compuestos de fórmula (I") pueden estar presentes en las siguientes formas tautómeras:

$$Z^{+} \xrightarrow{|\overrightarrow{L}|^{2}} X$$

$$Z^{+} \xrightarrow{R} CO_{2}R''$$

$$A \xrightarrow{CO_{2}R''} Y$$

$$A \xrightarrow{CO_{2}R''} Y$$

Los compuestos pueden estar presentes bien en forma de mezclas o bien en forma de sus tautómeros puros. Las mezclas, si se desea, se pueden separar usando métodos físicos, por ejemplo métodos cromatográficos.

Por motivos de claridad, a continuación únicamente se muestra una de los posibles tautómeros en cada caso. Esto no excluye que los compuestos puedan estar presentes de manera opcional como mezclas de tautómeros o en la otra forma tautómera respectiva.

Cuando se lleva a cabo el procedimiento de un recipiente de acuerdo con la invención, se puede variar la temperatura de reacción para preparar los compuestos de fórmula (X) a partir de compuestos de fórmula (IIa). En general, el procedimiento se lleva a cabo a temperaturas entre 20 °C y 110 °C, preferentemente entre 60 °C y 85 °C. Se otorga preferencia a una temperatura de 60 °C.

Las bases empleadas pueden ser los compuestos mencionados anteriormente.

La base fuerte de fórmula (XI) empleada puede ser, por ejemplo, un alcóxido o tiolato, bien en forma sólida o en forma de disolución, por ejemplo NaOMe en forma sólida o en forma de disolución en metanol, NaOEt en forma sólida o en forma de disolución en etanol, NaSMe en forma sólida o en forma de disolución en metanol, NaSEt en forma sólida o en forma de disolución en etanol. Se otorga preferencia a NaOMe en forma de disolución en metanol.

Disolventes apropiados para su uso son tolueno, xileno, alcanos tales como n-hexano, n-heptano, n-octano, éteres tales como éter dietílico, éter diisopropílico, éter dibutílico, anisol, éter de metilo y terc-butilo, éter de metilo y terc-amilo, éter dimetílico de glicol, éter dimetílico de diglicol, tetrahidrofurano o dioxano, cetonas tales como acetona, etil metil cetona, isopropil metil cetona o isobutil metil cetona (MIBK), hidrocarburos tales como pentano, hexano, heptano, ciclohexano, metilciclohexano, benceno, hidrocarburos halogenados tales como cloruro de metileno, cloroformo, tetracloruro de carbono, clorobenceno o o-diclorobenceno, dicloroetano. Se otorga preferencia a tolueno o xileno.

Cuando se lleva a cabo el procedimiento de acuerdo con la invención, generalmente se emplean los componentes de fórmula (III) de cantidades equimolares a aproximadamente cantidades doble equimolares.

Ejemplos de preparación

5

10

15

20

25

30

35

40

45

Ejemplo 1 (esterificación completa)

A 80-85 °C, se añaden 25,7 g (0,24 mol) de carbonato de sodio al 99 % a 514 g (0,59 mol) de ácido cis-N-[(2,5-dimetil)fenilacetil]-1-amino-4-metoxiciclohexanocarboxílico (IIa-1) (al 37 % en xileno). Se retira el agua por medio de destilación azeotrópica. A 65 °C, se añaden 100 g (3,12 mol) de metanol. Durante un período de aproximadamente 2 horas, se dosifican 80,5 g (0,72 mol) de cloroformiato de etilo (III-1) al 97 % a 65-70 °C, formándose dióxido de carbono como gas residual. Se agita la mezcla de reacción a 70 °C durante 2 horas. Se retiran los alcoholes (etanol y metanol) a 300 mbar y 70 °C. Tras la adición de 150 g (8,33 mol) de agua a 70 °C, se separa la fase acuosa inferior. Se añaden 100 g (5,56 mol) de agua y 7 g (0,08 mol) de bicarbonato de sodio a 70 °C, y se separa la fase acuosa inferior. El secado azeotrópico proporciona el producto diana (I-1) en forma de mezcla (ésteres metílico y etílico) en xileno. Se puede aislar el producto a temperatura ambiente por medio de filtración y secado. En una mezcla de xileno/metanol, el producto (I-1) sigue en disolución. El rendimiento es de 98 % de teoría, basado en el compuesto de fórmula (IIa-1).

Ejemplo 2 (esterificación completa)

A 25 °C, se añaden 113,5 g (0,63 mol) de metilato de sodio en metanol al 30 % a 496 g (0,61 mol) de ácido cis-N-[(2,5-dimetil)fenilacetil]-1-amino-4-metoxiciclohexanocarboxílico (IIa-1) (al 39 % en xileno). Durante un período de 2 horas, se dosifican 87 g (0,78 mol) de cloroformiato de etilo (III-1) al 97 % a 65-70 °C. Se agita la mezcla de reacción a 70 °C durante 2 horas. Se retiran los alcoholes (etanol y metanol) a 300 mbar y 70 °C. Tras la adición de 150 g (8,33 mol) de agua a 70 °C, se separa la fase acuosa inferior. Se añaden 100 g (5,56 mol) de agua y 5 g (0,06 mol) de bicarbonato de sodio a 70 °C, y se separa la fase acuosa inferior. El secado azeotrópico proporciona el producto diana (I-1) en forma de mezcla (ésteres metílico y etílico) en xileno. Se puede aislar el producto a temperatura ambiente por medio de filtración y secado. En una mezcla de xileno/metanol, el producto (I-1) sigue en disolución. El rendimiento es de 98 % de teoría, basado en el compuesto de fórmula (IIa-1).

Ejemplo 3 (esterificación parcial)

Inicialmente, se introducen 0,59 mol del compuesto de fórmula IIa-1 en 566 g (4,90 mol) de clorobenceno. Se dosifican 71,6 g (2,24 mol) de metanol y 7,1 g (0,07 mol) de ácido sulfúrico al 96 % para la esterificación. Se calienta la mezcla a 70 °C y se agita a 70 °C durante 4 horas. Posteriormente, se enfría la mezcla hasta 40 °C y se añaden 25,4 g (0,30 mol) de bicarbonato de sodio, liberándose CO₂. Se añaden 368,9 g de agua, y se agita la mezcla de reacción a 60 °C durante aproximadamente media hora. Se separa la fase de producto inferior (éste metílico de fórmula (I-a)) en clorobenceno. Debido a que el compuesto de fórmula (I-1) no permanece disuelto a temperatura ambiente, se sustituye el clorobenceno de disolvente por dimetilacetamida.

La fase acuosa superior contiene el compuesto no deseado de fórmula (IIa-1) que se recicla y esterifica. El rendimiento es 89 % de teoría, basado en el compuesto de fórmula (IIa-1).

Ejemplo 4 (esterificación completa)

A 70 °C, se añaden 40 g (0,32 mol) de hidróxido de sodio al 32 % a 400 g (0,5 mol) de ácido cis-N-[(2,5-dimetil)fenilacetil]-1-amino-4-metoxiciclohexanocarboxílico (IIa-1) (al 39,9 % en xileno). Se retira el agua por medio de destilación azeotrópica. A 70 °C, se añaden 31 g (0,95 mol) de metano. Durante un período de aproximadamente 2 horas, se dosifican 52 g (0,55 mol) de cloroformiato de metilo (III-2) al 99 % a 70 °C, liberándose dióxido de carbono formado como gas residual. Se agita la mezcla de reacción a 70 °C durante 2 horas adicionales. Se retira el alcohol (metanol) a 100 mbar y 70 °C. Tras la adición de 120 g (6,7 mol) de agua a 70 °C, se separa la fase acuosa inferior. Se añaden 80 g (4,4 mol) de agua y 45 g (0,36 mol) de disolución acuosa de hidróxido de sodio al 32 % a 70 °C, y se separa la fase acuosa inferior. El secado azeotrópico proporciona el producto diana (I'-1) en forma de (éster metílico) en xileno. Se puede aislar el producto a temperatura ambiente por medio de filtración y secado a 20 °C. En una mezcla de xileno/metanol, el producto sigue en disolución. El rendimiento es del 92 % de teoría, basado en el compuesto de fórmula (IIa-1).

Ejemplo 5

5

10

15

20

30

Se añaden 27,012 g (0,150 mol) de NaOMe en metanol al 30 % a 530,037 g (0,500 mol) del compuesto de fórmula IIa-1 al 30,1 % en xileno. Se destila el metanol a presión reducida a 60 °C y 100 mbar. A 60 °C, se añaden gota a gota 52,498 g (0,550 mol) de cloroformiato de metilo (III-2) al 99 % durante 1-2 horas, y se agita la mezcla a 60 °C durante 0,5 horas. Se obtiene el compuesto de fórmula (IX-1) a partir de la mezcla de reacción en forma de producto bruto.

RMN-¹³C (CD₃CN, 1,30 ppm): δ=181,9 (O-C=O), 162,8 (N=C-O), 135,1 (PheC-CH₂), 133,1 (PheC-CH₃), 132,0 (Phe-C-H), 77,6 (H-C-OMe), 68,7 (=N-C-C=O), 56,3 (O-CH₃), 34,5 (N=C-CH₂-Phe), 32,2 (CH₂-CH₂-C-N=), 27,6 (MeO-CH-CH₂), 20,3 (Phe-,CH₃) ppm.

Debido al solapamiento intenso con otros componentes de la mezcla de reacción, no se pudieron asignar cuatro señales del grupo fenilo.

Ejemplo 6

Se añaden 27,012 g (0,150 mol) de NaOMe en metanol al 30 % a 530,037 g (0,500 mol) del compuesto de fórmula IIa-1 al 30,1 % en xileno. Se destila el metanol a presión reducida a 60 °C y 100 mbar. A 60 °C, se añaden gota a gota 52,498 g (0,550 mol) de cloroformiato de etilo (III-2) al 99 % durante 1-2 horas, y se agita la mezcla a 60 °C durante 0,5 horas.

Se retiran el exceso de cloroformiato de metilo y el alcohol residual. Posteriormente se dosifican 99 g (0,550 mol) de 40 NaOMe de MeOH al 30 % y se agita la mezcla a 60 °C durante 1 hora. Esto proporciona el enol (X-1).

REIVINDICACIONES

1. Procedimiento de preparación de compuestos de fórmula (I)

en las que

5

15

20

25

X representa alquilo, halógeno, alcoxi, haloalquilo o haloalcoxi,

Y representa hidrógeno, alquilo, alcoxi, halógeno, haloalquilo o haloalcoxi, en la que únicamente uno de los restos X o Y puede representar haloalquilo o haloalcoxi,

A representa alquilo C₁-C₆,

R' representa alquilo,

10 R" representa alquilo,

caracterizado porque inicialmente

los compuestos de fórmula (IIa)

en la que X, Y y A tienen los significados indicados anteriormente se convierten en presencia de una base en compuestos de fórmula (IIb)

en la que X, Y y A tienen los significados indicados anteriormente y

M representa un ion metálico alcalino, un equivalente iónico de un metal alcalinotérreo, un equivalente iónico de aluminio o un equivalente iónico de un metal de transición o además representa un ion amonio en el que opcionalmente uno, dos, tres o los cuatro átomos de hidrógeno pueden estar sustituidos por restos idénticos o diferentes de los grupos alquilo C₁-C₅, isoalquilo C₁-C₅ o cicloalquilo C₃-C₇, cada uno de los cuales pueden estar mono- o polisustituido con flúor, cloro, bromo, ciano, hidroxi o pueden estar interrumpidos por uno o más átomos de oxígeno o azufre, o además

representa un ion amonio heteroalifático o alifático terciario o secundario cíclico, por ejemplo, morfolinio, tiomorfolinio, piperidinio, pirrolidinio o en cada caso 1,4-diazabiciclo[2.2.2]octano protonado (DABCO) o 1,5-diazabiciclo[4.3.0]undec-7-eno (DBU), o además

representa un catión amonio heterocíclico, por ejemplo en cada caso piridina protonada, 2-metilpiridina, 3-metilpiridina, 4-metilpiridina, 2,4-dimetilpiridina, 2,5-di-metilpiridina, 2,6-dimetilpiridina, 5-etil-2-metilpiridina, pirrol, imidazol, quinolina, quinoxalina, 1,2-dimetilmidazol, metilsulfato de 1,3-dimetilmidazolio, o además

30 representa un ion sulfonio, o además

representa un catión de haluro de magnesio,

n representa el número 1 o 2,

y se hace reaccionar además con compuestos de fórmula (III)

en la que R' tiene los significados indicados anteriormente y Hal representa halógeno, para proporcionar compuestos de la fórmula (IV)

en la que X, Y, A y R' tienen los significados indicados anteriormente, y estos se ciclan de manera adicional para dar compuestos de fórmula (IX)

en la que X, Y y A tienen los significados indicados anteriormente,

y estos por su parte se hacen reaccionar

con los compuestos de la fórmula (V)

10 R"-OH (V)

5

en la que

R" tiene los significados indicados anteriormente.

- 2. Procedimiento de acuerdo con la reivindicación 1, en el que
- X representa cloro, bromo, metilo, etilo, propilo, trifluorometilo, metoxi, difluorometoxi o trifluorometoxi,
- Y representa hidrógeno, cloro, bromo, metoxi, metilo, etilo, propilo, trifluorometilo o trifluorometoxi, pudiendo representar únicamente uno de los restos X o Y trifluorometilo, trifluorometoxi o difluorometoxi,

A representa alquilo C_1 - C_6 ,

Hal representa cloro, bromo, flúor, yodo,

R' representa alquilo C₁-C₆,

- 20 R" representa alquilo C₁-C₆.
 - 3. Procedimiento de acuerdo con la reivindicación 1, en el que
 - X representa cloro, bromo, metilo, etilo, metoxi, trifluorometilo, trifluorometoxi o difluorometoxi,
 - Y representa cloro, bromo, metilo, etilo, propilo, metoxi, trifluorometilo o trifluorometoxi, pudiendo representar únicamente uno de los restos X o Y trifluorometilo, trifluorometoxi o difluorometoxi,
- 25 A representa alquilo C₁-C₄,

Hal representa cloro, bromo o flúor,

R' representa alquilo C₁-C₄,

R" representa alquilo C₁-C₄.

- 4. Procedimiento de acuerdo con la reivindicación 1, en el que
- 30 X representa cloro, bromo, metilo o trifluorometilo,

Y representa cloro, bromo o metilo,

A representa metilo, etilo, propilo, butilo o isobutilo,

Hal representa cloro o bromo,

R' representa metilo, etilo, propilo, butilo o isobutilo,

- 35 R" representa metilo, etilo, propilo, butilo o isobutilo.
 - 5. Procedimiento de acuerdo con la reivindicación 1, en el que

X representa metilo,

Y representa metilo,

A representa metilo,

40 Hal representa cloro,

R' representa metilo o etilo,

R" representa metilo o etilo.

6. Procedimiento de la reivindicación 1, en el que

X representa metilo,

5 Y representa metilo,

A representa metilo,

Hal representa cloro,

R' representa etilo,

R" representa metilo.

7. Procedimiento de acuerdo con las reivindicaciones 1, 2, 3, 4, 5 o 6, en el que

M representa litio, sodio, potasio, cesio, magnesio, calcio o representa un ion amonio en el que opcionalmente uno, dos, tres o los cuatro átomos de hidrógeno pueden estar sustituidos con restos idénticos o diferentes entre los grupos alquilo C_1 - C_5 , isoalquilo- C_1 - C_5 o cicloalquilo C_3 - C_7 , cada uno de los cuales puede estar mono- o polisustituido con flúor, cloro, bromo, ciano, hidroxi y

15 n representa el número 1 o 2.

8. Procedimiento de acuerdo con las reivindicaciones 1, 2, 3, 4, 5 o 6, en el que M representa litio, sodio, potasio, cesio, magnesio o calcio y n representa el número 1 o 2.

9. Procedimiento de acuerdo con las reivindicaciones 1, 2, 3, 4, 5 o 6 en el que M representa litio, sodio, potasio o cesio y

n representa el número 1.

20

10. Procedimiento de acuerdo con las reivindicaciones 1, 2, 3, 4, 5 o 6, en el que M representa sodio y n representa el número 1.

25 11. Procedimiento de acuerdo con la reivindicación 1, en el que la base empleada es carbonato de sodio.

12. Procedimiento de acuerdo con la reivindicación 1, en el que la base empleada es metilato de sodio.

13. Procedimiento de acuerdo con la reivindicación 1, en el que la base empleada es hidróxido de sodio.

14. Compuestos de fórmula (IIb)

30 en la que X, Y, A, M y n tienen los significados indicados anteriormente.

15. Compuestos de fórmula (IV)

en la que X, Y, A y R' tienen los significados de acuerdo con la reivindicación 1.

16. Compuestos de fórmula (IX)

en la que X, Y y A tienen los significados de acuerdo con la reivindicación 1.

17. Procedimiento de preparación de los compuestos de la fórmula (l')

$$\mathsf{A}^{\mathsf{O}} \overset{\mathsf{O}}{\longrightarrow} \mathsf{CO}_{2}\mathsf{R}^{\prime\prime}$$

5 en la que X, Y, A y R' tienen los significados indicados anteriormente, **caracterizado porque** inicialmente se convierten los compuestos de fórmula (IIa)

en la que X, Y y A tienen los significados indicados anteriormente, en presencia de una base, en compuestos de fórmula (IIb)

10

en la que X, Y, A, M y n tienen los significados indicados anteriormente, y se hacen reaccionar con compuestos de fórmula (III)

15

en la que R' tiene los significados indicados anteriormente y Hal representa halógeno, para proporcionar compuestos de fórmula (IV)

en la que X, Y, A y R' tienen los significados indicados anteriormente, y estos se ciclan adicionalmente hasta compuestos de fórmula (IX)

- en la que X, Y y A tienen los significados indicados anteriormente, y estos por su parte se hacen reaccionar con los compuestos de fórmula (V) R"-OH (V) en la que
- 10 R" tiene los significados indicados anteriormente, en donde R' = R".
 - 18. Procedimiento de preparación de compuestos de fórmula (X)

$$AO$$
 OH
 (X)

en la que A, X e Y tienen los significados indicados anteriormente, **caracterizado porque**, en una reacción en un recipiente, se convierten los compuestos de fórmula (IIa)

15

en la que X, Y y A tienen los significados indicados anteriormente, en presencia de una base, en compuestos de fórmula (IIb)

en la que X, Y, A, M y n tienen los significados indicados anteriormente y se hacen reaccionar con los compuestos de fórmula (III)

5 en la que R' tiene los significados indicados anteriormente y Hal representa halógeno, en presencia de una base fuerte

en la que

10

Z representa un ion metálico alcalino,

L representa oxígeno o azufre,

R" tiene los significados indicados anteriormente.

19. Procedimiento de acuerdo con la reivindicación 18, en el que la base y la base fuerte usada es metilato de sodio.