

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 644 274

51 Int. Cl.:

F25D 21/14 (2006.01) **F25D 17/06** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 20.11.2009 PCT/KR2009/006859

(87) Fecha y número de publicación internacional: 29.07.2010 WO10085035

96 Fecha de presentación y número de la solicitud europea: 20.11.2009 E 09838922 (4)

(97) Fecha y número de publicación de la concesión europea: 26.07.2017 EP 2389552

(54) Título: Tecnología de un frigorífico

(30) Prioridad:

21.01.2009 KR 20090005010

Fecha de publicación y mención en BOPI de la traducción de la patente: **28.11.2017**

(73) Titular/es:

LG ELECTRONICS INC. (100.0%) 20, Yeouido-dong, Yeongdeungpo-gu Seoul 150-721, KR

(72) Inventor/es:

LEE, YOUN SEOK; LEE, JANG SEOK; OH, MIN KYU; KIM, KYEONG YUN Y CHAE, SU NAM

(74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Tecnología de un frigorífico

Campo técnico

La presente invención se refiere a la tecnología de los frigoríficos o neveras.

5 Técnica básica

10

25

30

35

40

Un frigorífico se utiliza para proporcionar aire frío generado en un evaporador a un compartimento de almacenamiento (por ejemplo, un compartimento de refrigeración y/o congelación) para mantener la frescura de diversos productos alimenticios depositados en el compartimento de almacenamiento. Un tal frigorífico incluye un cuerpo, en el cual está definido un compartimento de almacenamiento para guardar alimentos en el mismo en un estado de baja temperatura. Una puerta está montada en el lado delantero del cuerpo para abrir o cerrar el compartimento de almacenamiento.

En el frigorífico está incluido un ciclo de enfriamiento para enfriar el compartimento de almacenamiento por medio de la circulación de un refrigerante. En el cuerpo está definido también un compartimento de máquina para alojar una pluralidad de elementos eléctricos utilizados para configurar el ciclo de enfriamiento.

Por ejemplo, el ciclo de enfriamiento incluye un compresor para realizar una operación de aumento de temperatura/presión sobre un refrigerante gaseoso a baja temperatura/baja presión de tal manera que el refrigerante gaseoso a baja temperatura/baja presión es cambiado en un refrigerante gaseoso a alta temperatura/alta presión. El ciclo de enfriamiento incluye también un condensador para condensar el refrigerante suministrado desde el compresor, utilizando aire ambiente, una válvula de expansión para realizar una operación de reducción de presión sobre el refrigerante suministrado desde el condensador, de tal manera que se expande el refrigerante, y un evaporador para evaporar el refrigerante que sale de la válvula de expansión en un estado de baja presión, absorbiendo con ello calor del interior del frigorífico.

Un ventilador de soplado está instalado en el compartimento de máquina para enfriar el compresor y el condensador. En lados opuestos del compartimento de máquina están practicados orificios pasantes para permitir la introducción y descarga, respectivamente, de aire ambiente.

De acuerdo con la estructura anteriormente mencionada, se introduce aire ambiente en el interior del compartimento de máquina a través de uno de los orificios pasantes (por ejemplo un orificio de entrada) cuando gira el ventilador de soplado. El aire introducido pasa a lo largo del condensador y del compresor, y es a continuación descargado hacia fuera desde el compartimento de máquina a través del otro orificio pasante (por ejemplo un orificio de salida). Durante este procedimiento, el condensador y el compresor son enfriados por el aire ambiente.

Un frigorífico puede ser un tipo de montura superior en la que estén verticalmente dispuestos compartimentos de congelación y de refrigeración, y estén montadas puertas de compartimentos de congelación y de refrigeración en los compartimentos de congelación y refrigeración, respectivamente. Un frigorífico puede ser también un tipo de congelador inferior o de fondo, en el que estén verticalmente dispuestos compartimentos de congelación y refrigeración, estén montadas de manera pivotante puertas abisagradas de compartimento de refrigeración en lados izquierdo y derecho del compartimento de refrigeración, y una puerta del compartimento del tipo de gaveta esté montada en el compartimento de congelación de tal manera que la puerta del compartimento de congelación deslice hacia delante y hacia atrás del compartimento de congelación para abrir o cerrar el compartimento de congelación. El frigorífico puede ser además de un tipo de colocación lado a lado en el que los compartimentos de congelación y refrigeración estén dispuestos horizontalmente para aumentar el tamaño del frigorífico, y puertas de compartimentos de congelación y refrigeración de un modo de lado a lado para abrir o cerrar los compartimentos de congelación, respectivamente.

Varias instalaciones, tales como un bar o dispensador doméstico, pueden estar dispuestas en una puerta de un frigorífico, con el fin de permitir al usuario retirar fácilmente alimento almacenado en una cámara dispuesta en la parte trasera de la puerta sin tener que abrir la puerta, por comodidad del usuario. También puede estar dispuesto un compartimento de enfriamiento rápido en el compartimento de congelación o compartimento de refrigeración, para enfriamiento rápido de alimentos.

En el cuerpo también está definido un compartimento de generación de aire frío, en el que está dispuesto un evaporador. El aire frío introducido en el compartimento de generación de aire frío es descargado fuera del compartimento de generación de aire frío por un ventilador de aire frío en una dirección perpendicularmente curvada con respecto a la dirección de flujo del aire frío.

Un frigorífico de acuerdo con el preámbulo de la reivindicación 1 se describe en el documento JP10019445A.

Descripción de la invención

Problema técnico

Sin embargo, cuando una entrada de un conducto de guía que define una trayectoria de flujo de aire frío está orientada en una dirección de descarga de aire frío del ventilador de aire frío, el agua de descongelación generada en el ventilador de aire frío puede gotear directamente sobre el conducto de guía.

5 Solución del problema

10

25

30

Por lo tanto, la presente invención está dirigida a un frigorífico que evita esencialmente uno o más problemas debidos a limitaciones e inconvenientes de la técnica relacionada.

Un objeto de la presente invención es proporcionar un frigorífico configurado no solo para evitar que el agua de descongelación generada en un ventilador de aire frío sea introducida en un conducto de guía que define una trayectoria de flujo de aire frío, sino también para dirigir aire frío descargado por el ventilador de aire frío hacia el conducto de guía.

Otro objeto de la presente invención es proporcionar un frigorífico configurado para introducir agua de descongelación generada en un evaporador y agua de descongelación generada en un ventilador de aire frío hacia una única bandeja o cubeta de drenaje.

- Ventajas, objetos y características adicionales de la invención serán expuestos en parte en la descripción que sigue y en parte resultarán evidentes a los expertos ordinarios en la técnica tras el examen de la descripción siguiente o los pueden aprender de la práctica de la invención. Los objetivos y otras ventajas de la invención se pueden realizar y alcanzar mediante la estructura particularmente señalada en la descripción escrita y reivindicaciones de la misma, así como en los dibujos adjuntos.
- 20 Un frigorífico de acuerdo con la invención se describe en las reivindicaciones 1 a 10.

Efectos ventajosos de la invención

La guía de aire provista del orifico para agua de descongelación está inclinada con respecto a la dirección centrífuga del ventilador de aire frío. Por lo tanto, la guía de aire no solo dirige aire frío descargado desde el ventilador de aire frío al conducto de guía, sino que también dirige, hacia el orificio de agua de descongelación, el agua de descongelación que cae en la dirección centrífuga del ventilador de aire frío. De ese modo se pueden conseguir la eliminación de agua de descongelación y la circulación de aire frío.

Así mismo, en algunos ejemplos, la bandeja de drenaje se extiende desde una posición por debajo del evaporador hasta una posición por debajo del ventilador de aire frío. Por lo tanto, la bandeja de drenaje puede eliminar tanto el agua de descongelación generada en el evaporador como el agua de descongelación generada en el ventilador de aire frío. De ese modo se puede simplificar la configuración para eliminar agua de descongelación.

Breve descripción de los dibujos

La figura 1 es una vista en perspectiva que ilustra un ejemplo de configuración de un frigorífico;

Las figuras 2 y 3 son una vista lateral y una vista en sección que ilustran un ejemplo de configuración del frigorífico;

Las figuras 4 y 5 son vistas en perspectiva que ilustran una configuración de ejemplo del frigorífico; y

Las figuras 6 y 7 son vistas esquemáticas que ilustran ejemplos de flujos de aire frío y agua de descongelación dirigidos por el miembro de guía.

Mejor modo de realizar la invención

La figura 1 ilustra un ejemplo de configuración de un frigorífico. Las figuras 2 y 3 ilustran un ejemplo de configuración de un frigorífico. Las figuras 4 y 5 ilustran un ejemplo de configuración de un frigorífico.

- 40 Como se muestra en los dibujos, un compartimento de almacenamiento 102 está definido en un cuerpo 100 que define el armazón del frigorífico. El compartimento de almacenamiento 102 es un espacio para almacenar alimentos en un estado de baja temperatura usando aire frío generado en torno al un evaporador 170. Una pluralidad de estantes están dispuestos verticalmente en el compartimento de almacenamiento 102. Un compartimento de almacenamiento del tipo de gaveta puede estar definido por debajo de los estantes.
- 45 El compartimento de almacenamiento 102 incluye un compartimento de refrigeración 110 y un compartimento de congelación 120. El compartimento de refrigeración 110 y el compartimento de congelación 120 están separados uno del otro por un tabique de manera que definen espacios de almacenamiento separados.

Un compartimento de máquina 130 está también definido en el cuerpo 100. El compartimento de máquina 130 está dispuesto en una parte superior del cuerpo 100. En otros ejemplos, el compartimento de máquina 130 puede estar

dispuesto en una parte inferior del cuerpo 100 de acuerdo con las condiciones de diseño. Un espacio de alojamiento está definido en el compartimento de máquina 130. En el espacio de alojamiento están alojados uno o más elementos de un ciclo ce refrigeración. Por ejemplo, un compresor 132, un condensador 134, una válvula de expansión y un ventilador de soplado 136 están dispuestos en el compartimento de máquina 130.

- 5 El compresor 132 funciona para comprimir refrigerante gaseoso a baja temperatura/baja presión, que circula en el ciclo de refrigeración, convirtiéndolo en un refrigerante gaseoso a alta temperatura/alta presión. El refrigerante que sale del compresor 132 es introducido en el condensador 134.
- El condensador 134 cambia de fase el refrigerante comprimido por el compresor 132 en un refrigerante líquido a temperatura normal/presión elevada, por medio de intercambio de calor. El condensador 134 incluye un conducto de refrigerante tubular repetidamente doblado múltiples veces. El tubo de refrigerante del condensador 134 está doblado repetidamente múltiples veces para que tenga partes de tubo continuas separadas entre sí por un espacio de separación uniforme. De acuerdo con la dobladura repetida del tubo de refrigerante, el condensador 134 tiene generalmente una forma hexaédrica rectangular. El ventilador de soplado 136 está dispuesto en la proximidad del condensador 134, para soplar aire ambiente hacia el condensador 134.
- El refrigerante que sale del condensador 134 pasa a través de la válvula de expansión. La válvula de expansión tiene un diámetro reducido, en comparación con los de otras partes, para reducir la presión del refrigerante que sale del condensador 134, y de ese modo expandir el refrigerante.
- Un miembro de cubierta 138 está dispuesto en un lado delantero del compartimento de máquina 130 para apantallar el espacio de alojamiento. Orificios pasantes 138' están practicados a través del miembro de cubierta 138 para permitir que sea introducido aire ambiente en el compartimento de máquina 130 o para permitir que el aire existente en el compartimento de máquina 130 sea descargado hacia el exterior.

25

30

- Un compartimento de generación de aire frío 150 está definido también en el cuerpo 100. El compartimento de generación de aire frío 150 es un espacio en el que están instalados uno o más compartimentos que generan aire frío, con el fin de mantener el compartimento de almacenamiento 102 a una baja temperatura. El compartimento de generación de aire frío 150 tiene una forma hexagonal rectangular que se extiende desde un lado delantero del cuerpo 100 hasta un lado trasero del cuerpo 100 en una dirección longitudinal. El aire frío que emerge del compartimento de almacenamiento 102 es introducido en un lado delantero del compartimento de generación de aire frío 150, y es a continuación descargado hacia fuera de un lado trasero del compartimento de generación de aire frío 150 después de haber sido enfriado en el compartimento de generación de aire frío 150. En algunos ejemplos, se puede utilizar una estructura en la cual se introduzca aire frío en el lado trasero del compartimento de generación de aire frío 150 y sea después descargado hacia fuera por el lado delantero del compartimento de generación de aire frío 150. Como se muestra en la figura 1, el compartimento de generación de aire frío 150 está dispuesto en la parte superior del cuerpo 100, adyacente al compartimento de máquina 130, mientras que está separado del compartimento de almacenamiento 102 por una o más paredes.
- Una entrada de aire frío 152 y una salida de aire frío 154 están dispuestas en el compartimento de generación de aire frío 150. La entrada de aire frío 152 es una abertura a través de la cual es introducido aire frío procedente del compartimento de almacenamiento 102 en el compartimento de generación de aire frío 150. La salida de aire frío 154 es una abertura a través de la cual es descargado aire frío desde el compartimento de generación de aire frío 150 de manera que es dirigido al compartimento de almacenamiento 102.
- Un conducto de guía 160 está dispuesto en el cuerpo 100. El conducto de guía 160 define una trayectoria para hacer circular el aire frío generado por el evaporador 170 hacia el compartimento de almacenamiento 102. El conducto de guía 160 comunica con el compartimento de almacenamiento 102 y el compartimento de generación de aire frío 150. El conducto de guía 160 está también conectado a la salida de aire frío 154.
- Como se muestra en la figura 1, el conducto de guía 160 se extiende desde el compartimento de generación de aire frío 150 hasta la parte inferior del compartimento de almacenamiento 102.
 - El conducto de guía 160 tiene una entrada conectada a la salida de aire frío 154. Con el fin de reducir la introducción de agua de descongelación generada en un ventilador de aire frío 176, la entrada del conducto de guía 160 está dispuesta en un extremo del compartimento de generación de aire frío 150 más allá de la región de instalación del ventilador de aire frío 176 en una dirección vertical.
- Una salida de aire frío 162 está situada en el conducto de guía 160. La salda de aire frío 162 está realizada a través de una pared del conducto de guía 160 de tal manera que está abierta hacia el compartimento de almacenamiento 102. Como se muestra en la figura 1, están previstas una pluralidad de salidas de aire frío 162. Las salidas d aire frío 162 suministran aire frío desde el conducto de guía 160 hasta el compartimento de almacenamiento 102. Las salidas de aire frío 162 pueden estar practicadas entre la parte superior del compartimento de almacenamiento 102 y una parte más alta de los estantes y entre adyacentes de los estantes. En el compartimento de generación de aire frío 150 están dispuestos horizontalmente el evaporador 170 y el ventilador de aire frío 176.

El evaporador 170 está configurado para absorber calor procedente del entorno cuando un líquido presente en el

evaporador 170 es cambiado a un gas y, con ello, disminuye la temperatura del entorno. De ese modo, el evaporador 170 absorbe calor de los alrededores a medida que se evapora el refrigerante que sale de la válvula de expansión en un estado de baja presión.

Como se muestra en las figuras 2 y 3, el evaporador 170 tiene una dimensión vertical h perpendicular a la dirección de flujo del aire frío a lo largo del evaporador 170 y una dimensión horizontal w paralela a la dirección de flujo del aire frío, de tal manera que la dimensión vertical h es mayor que la dimensión horizontal w. En el evaporador 170, la dimensión vertical h perpendicular a la dirección de flujo del aire frío a lo largo del evaporador 170 puede ser mayor que la dimensión horizontal w paralela a la dirección de flujo del aire frío debido a que el compartimento de generación de aire frío 150 se extiende en una dirección horizontal, y es introducido aire frío en el compartimento de generación de aire frío 150 y descargado fuera del mismo en los lados delantero y trasero del compartimento de generación de aire frío 150, respectivamente.

Un orificio 172 está practicado en el compartimento de generación de aire frío 150. El orificio 172 está dispuesto adyacente al evaporador 170 en una parte trasera del compartimento de generación de aire frío 150. El orificio 172 incluye un hueco de orificio y un soporte 174 del motor.

- El ventilador de aire frío 176 está conectado al hueco de orificio del orificio 172. El ventilador de aire frío 176 está dispuesto sobre una bandeja de drenaje 220 descrita con más detalle en lo que sigue. El ventilador de aire frío 176 descarga aire a medida que giran las paletas del mismo para proporcionar ventilación o eliminación de calor. El ventilador de aire frío 176 genera un flujo de aire frío que circula por el compartimento de almacenamiento 102, el compartimento de generación de aire frío 150, etc.
- 20 Un motor 178 del ventilador está soportado por el soporte 174 del motor. El motor 178 del ventilador está dispuesto en el orificio 172 adyacente al evaporador 170. El motor 178 del ventilador proporciona una fuerza de accionamiento para accionar al ventilador de aire frío 176.

25

35

40

45

- Placas de guía 180 están dispuestas en esquinas del compartimento de generación de aire frío 150, en particular en las esquinas superiores, para cambiar la dirección del flujo de aire frío. Las placas de guía 180 están dispuestas en lados opuestos de la parte superior del orificio 172. Cada placa de guía 180 dirige aire frío, descargado hacia una parte superior del compartimento de generación de aire frío 150, a una parte inferior del compartimento de generación de aire frío 150, donde está dispuesta la salida de aire frío 154. Cada placa de guía 180 tiene una forma de arco cóncava hacia el ventilador de aire frío 176.
- Un miembro de guía 200 está dispuesto en el compartimento de generación de aire frío 150. El miembro de guía 200 tiene una forma de arco tal que rodea el borde periférico del ventilador de aire frío 176 mientras que está separado del ventilador de aire frío 176 en la dirección de soplado del ventilador de aire frío 176.
 - El miembro de guía 200 está inclinado hacia abajo desde una superficie del orificio 172 en la que está montado el ventilador de aire frío 176 hacia la entrada del conducto de guía 160. En algunas ejecuciones prácticas, el miembro de guía 200 tiene una altura que disminuye gradualmente a medida que se extiende desde cada borde lateral del mismo hasta una parte central del mismo.

De acuerdo con esta estructura, el agua de descongelación en el ventilador de aire frío 176 puede fluir hacia la parte central del miembro de guía 200 después de gotear sobre el miembro de guía 200.

El miembro de guía 200 funciona para cambiar la dirección de flujo del aire frío descargado por el ventilador de aire frío 176 porque está inclinado con respecto a la dirección de soplado del ventilador de aire frío 176. Por ejemplo, el aire frío que fluye en una dirección perpendicular a la dirección longitudinal del compartimento de generación de aire frío 150, por medio del ventilador de aire frío 176, es dirigido hacia la entrada del conducto de guía 160 por el miembro de guía 200.

En una superficie del miembro de guía 200 enfrentada al ventilador de aire frío 176 están practicadas ranuras de guía 204 que están configuradas para guiar el flujo de agua de descongelación. Las ranuras de guía 204 se extienden radialmente desde un orifico 206 para agua de descongelación, el cual se describe con más detalle en lo que sigue. Por ejemplo, las ranuras de guía 204 orientan una dirección de flujo de agua de descongelación sobre la superficie del miembro de guía 200 de tal manera que el agua de descongelación fluye hacia el orificio 206 del agua de descongelación. Las ranuras de guía 204 pueden tener una forma de peine o una forma de línea oblicua.

El orificio 206 para agua de descongelación está dispuesto en una parte más baja del miembro de guía 200 y configurado para descargar agua de descongelación. El orificio 206 para el agua de descongelación está practicado a través del miembro de guía 200. El orificio 206 para agua de descongelación dirige el agua de descongelación que fluye hacia abajo a lo largo de la superficie del miembro de guía 200 hacia la bandeja de drenaje 220, que se describirá con más detalle más adelante. En algunos ejemplos están previstos una pluralidad de orificios 206 para agua de descongelación. En estos ejemplos, cada orificio 206 para agua de descongelación puede tener una hendidura que se extienda a lo largo de un borde del miembro de guía 200.

Un nervio saliente 208 está definido a lo largo del borde extremo inferior del miembro de guía 200. El nervio saliente

208 reduce la probabilidad de (por ejemplo, impide) que el agua de descongelación generada en el ventilador de aire frío 176 sea introducida en el conducto de guía 160.

Una bandeja de drenaje 220 está dispuesta en el compartimento de generación de aire frío 150. La bandeja de drenaje 220 está dispuesta por debajo del evaporador 170 en el compartimento de generación de aire frío 150. La bandeja de drenaje 220 se extiende desde el evaporador 170 hasta una posición por debajo de ventilador de aire frío 176. Por ejemplo, la bandeja de drenaje 220 se extiende desde el evaporador 170 hasta una posición correspondiente al orificio 206 de agua de descongelación. Por lo tanto, la bandeja de drenaje 220 recoge no solo agua de descongelación generada en el evaporador 170, sino también agua de descongelación generada en el ventilador de aire frío 176, y después descarga hacia fuera el agua de descongelación recogida.

5

20

25

30

35

45

50

Las figuras 6 y 7 ilustran flujos de ejemplo de aire frío y agua de descongelación dirigidos por el miembro de guía. En el cuerpo 100 es introducido en el compartimento de generación de aire frío 150 aire frío presente en el compartimento de almacenamiento 102, después de fluir a través de la entrada de aire frío 152. El aire frío es enfriado en el compartimento de generación de aire frío 150 de acuerdo con el intercambio de calor del mismo con el evaporador 170. El aire frío es a continuación introducido de nuevo en el compartimento de almacenamiento 102 después de pasar secuencialmente a través de la salida de aire frío 154 y del conducto de guía 160.

De ese modo, se realiza intercambio de calor en el compartimento de generación de aire frío 150 dispuesto en la parte superior del cuerpo 100. Puesto que el compartimento de generación de aire frío 150 se extiende en direcciones hacia delante y hacia atrás del cuerpo 100, y el evaporador 170 y el ventilador de aire frío 176 están instalados en las direcciones hacia delante y hacia atrás del cuerpo 100, la instalación del evaporador 170 y del ventilador de aire frío 176 se puede conseguir esencialmente con independencia de la altura del compartimento de generación de aire frío 150, en comparación con el caso en el que el evaporador 170 y el ventilador de aire frío 176 están dispuestos verticalmente.

Así mismo, el evaporador 170 está configurado de tal manera que la dimensión h del mismo perpendicularmente a la dirección de flujo del aire frío a lo largo del evaporador 170 es mayor que la dimensión horizontal w del mismo paralelamente a la dirección de flujo del aire frío. En el evaporador 170 que tiene la estructura anteriormente descrita, la longitud de la trayectoria de flujo, a través de la cual fluye aire frío a lo largo del evaporador 170, es reducida para un área de intercambio de calor constante, en comparación con una estructura en la que la dimensión del evaporador, perpendicularmente a la dirección del flujo del aire frío, es más corta que la dimensión horizontal del evaporador paralelamente a la dirección del flujo de aire frío. Como consecuencia, se reduce la resistencia al flujo de aire frío, en comparación con la última estructura.

Como se muestra en la figura 6, el ventilador de aire frío 176 descarga aire frío que fluye enana dirección longitudinal del compartimento de generación de aire frío 150 después de doblar perpendicularmente la dirección de flujo del aire frío en una dirección centrífuga del ventilador de aire frío 176. El miembro de guía 200 está inclinado con respecto a la dirección centrífuga del ventilador de aire frío 176 y dirige el aire frío a la entrada del conducto de guía 160.

Usando el miembro de guía 200, que se extiende a lo largo de la dirección centrífuga del ventilador de aire frío 176, como se ha descrito anteriormente, es posible dirigir el aire frío descargado desde el ventilador de aire frío 176 hasta el conducto de guía 160 con resistencia pequeña o despreciable.

Como se muestra en la figura 7, el agua de descongelación, que cae verticalmente después de haber sido generada en el ventilador de aire frío 176, fluye hacia el orificio 206 para agua de descongelación practicado a través del miembro de guía 200 a lo largo de las ranuras de guía 204 practicadas en la superficie del miembro de guía 200.

En este ejemplo, si el agua de descongelación que fluye hacia abajo a lo largo de la superficie del miembro de guía 200 entra en el conducto de guía 160, puede ser introducida en el compartimento de almacenamiento 102. A este fin, el nervio saliente 208 que está definido en un extremo del miembro de guía 200 reduce la probabilidad (por ejemplo, evita) de que el agua de descongelación entre en el conducto de guía 160.

Cuando el evaporador 170 y el ventilador de aire frío 176 están dispuestos verticalmente, el agua de descongelación generada en el evaporador 170 y el agua de descongelación generada en el ventilador de aire frío 176 gotean en la misma posición. Sin embargo, cuando el evaporador 170 y el ventilador de aire frío 176 están dispuestos horizontalmente, el agua de descongelación generada en el evaporador 170 y el agua de descongelación generada en el ventilador de aire frío 176 gotean sobre lugares diferentes, respectivamente. Para cubrir las diferentes posiciones, la bandeja de drenaje 220 se extiende desde una posición por debajo del evaporador 170 hasta una posición por debajo del ventilador de aire frío 176. Como tal, la bandeja de drenaje 220 recibe tanto el agua de descongelación generada en el evaporador 170 como el agua de descongelación generada en el ventilador de aire frío 176.

55 En algunas ejecuciones prácticas, la guía de aire provista del orificio para agua de descongelación está inclinada con respecto a la dirección centrífuga del ventilador de aire frío. Por lo tanto, la guía de aire no solo dirige el aire frío descargado desde el ventilador de aire frío hacia el conducto de guía, sino que dirige también, hacia el orificio para

agua de descongelación, el agua de descongelación que cae en la dirección centrífuga del ventilador de aire frío . De ese modo, se pueden conseguir la eliminación de agua de descongelación y la circulación de aire frío.

Igualmente, en algunos ejemplos, la bandeja de drenaje se extiende desde una posición por debajo del evaporador hasta una posición por debajo del ventilador de aire frío. En consecuencia, la bandeja de drenaje puede eliminar tanto agua de descongelación generadaza en el evaporador como el agua de descongelación generada en el ventilador de aire frío. De ese modo, se puede simplificar la configuración para eliminar agua de descongelación.

5

10

Se comprenderá que se pueden hacer varias modificaciones sin apartarse del espíritu y alcance de las reivindicaciones. Por ejemplo, se podrían conseguir todavía resultados ventajosos si se realizaran pasos de la técnica descrita en un orden diferente y/o si se combinaran componentes de los sistemas descritos de una manera diferente y/o fueran sustituidos o suplementados por otros componentes. Por lo tanto, otras ejecuciones están dentro del alcance de las reivindicaciones siguientes.

REIVINDICACIONES

1. Un frigorífico que comprende:

un cuerpo (100);

5

10

15

20

25

30

35

40

45

un compartimento de almacenamiento (102) definido en una primera parte del cuerpo (100);

un compartimento de generación de aire frío (150) definido en una parte superior del cuerpo (100), estando la parte superior del cuerpo (100) situada sobre el compartimento de almacenamiento (102) cuando el frigorífico está orientado en una orientación de funcionamiento ordinaria;

un evaporador (170) situado en el compartimento de generación de aire frío (150);

un ventilador de aire frío (176) situado en el compartimento de generación de aire frío (150) y configurado para producir el movimiento de aire dentro del compartimento de generación de aire frío (150) en una dirección de flujo que pasa sobre el evaporador (170); y

un miembro de guía (200) situado en el compartimento de generación de aire frío (150) y configurado para dirigir agua de descongelación generada en el ventilador de aire frío (176) a través de un orificio de descarga, siendo el orificio de descarga un orificio (206) para agua de descongelación situado en el miembro de guía (200) y configurado para descargar fuera del miembro de guía (200) agua de descongelación que gotea desde el ventilador de aire frío (176) sobre el miembro de guía (200) durante la operación de descongelación del evaporador, estando además el miembro de guía (200) configurado para dirigir aire frío descargado por el ventilador de aire frío (176) a través de una salida de aire frío (154) hacia el compartimento de almacenamiento (102), siendo el orificio de descarga diferentes de la salida de aire frío (154),

un orifico o hueco (172) dispuesto alrededor del ventilador de aire frío (176),

en el que el miembro de guía (200) está dispuesto por debajo del orifico (172), caracterizado porque el miembro de guía está inclinado hacia abajo desde una superficie del orificio (172) hacia la salida de aire frío (154) situada debajo del ventilador de aire frío (176), y está configurado para dirigir el aire frío descargado desde el ventilador de aire frío (176) hacia la salida de aire frío (154).

2. El frigorífico de acuerdo con la reivindicación 1, que comprende además:

una entrada de aire frío (152) situada en el compartimento de generación de aire frío (150), fluyendo el aire frío desde el compartimento de almacenamiento (102) hacia el compartimento de generación de aire frío (150) pasando a través de la entrada de aire frío (152);

en el que el evaporador (170) está dispuesto adyacente a la entrada de aire frío (152),

en el que el ventilador de aire frío (176) y el miembro de guía (200) están dispuestos adyacentes a la salida de aire frío (154).

3. El frigorífico de acuerdo con la reivindicación 2, que comprende además:

un conducto de guía (160) conectado a la salida de aire frío (154) y configurado para dirigir el aire frío que pasa a través de la salida de aire frío (154) al compartimento de almacenamiento (102).

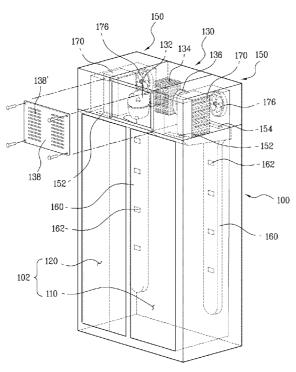
- 4. El frigorífico de acuerdo con la reivindicación 1, en el que el miembro de guía (200) tiene una forma curvada correspondiente a la forma de un borde periférico del ventilador de aire frío (176).
- 5. El frigorífico de acuerdo con la reivindicación 1, que comprende además:

ranuras de guía (204) situadas en una superficie superior del miembro de guía (200) y configuradas para dirigir un flujo de agua de descongelación, extendiéndose las ranuras de guía (204) radialmente desde el orificio (206) para agua de descongelación.

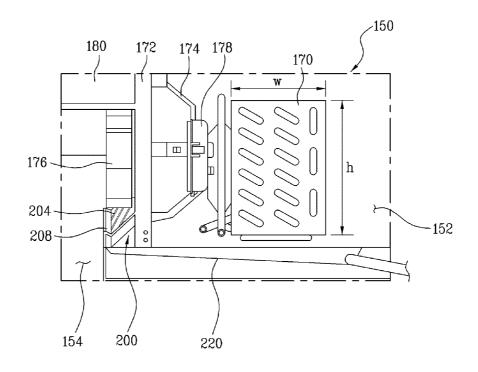
6. El frigorífico de acuerdo con la reivindicación 2, que comprende además:

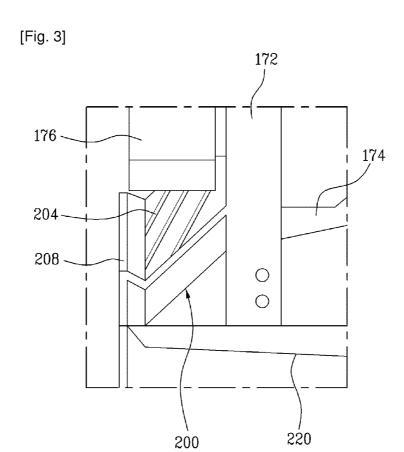
un nervio saliente (208) que se extiende desde un extremo inferior del miembro de guía (200) para limitar el flujo de agua de descongelación generado en el ventilador de aire frío (176) hacia la salida de aire frío (154).

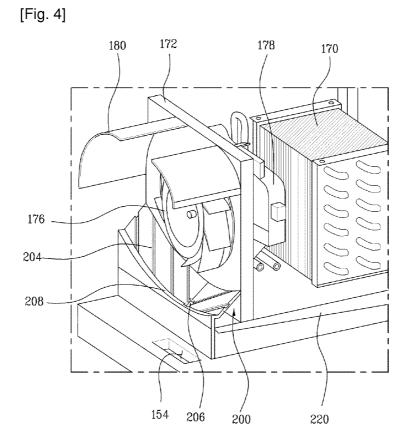
7. El frigorífico de acuerdo con la reivindicación 2, que comprende además una bandeja de drenaje (220) que está dispuesta por debajo del evaporador (170) y se extiende hasta una posición por debajo del orificio de descarga, que está configurada para recibir agua de descongelación descargada a través del orificio de

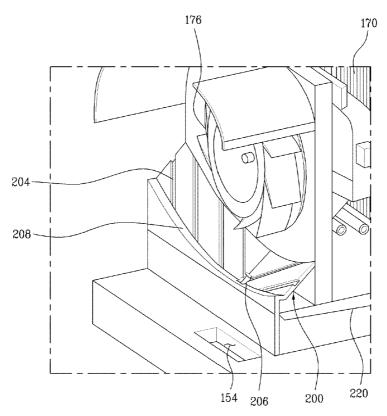

descarga, y que está configurada para recibir agua de descongelación desde el evaporador (170).

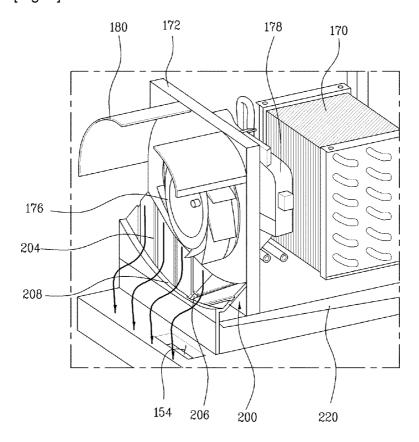
8. Frigorífico de acuerdo con la reivindicación 1, que comprende además:

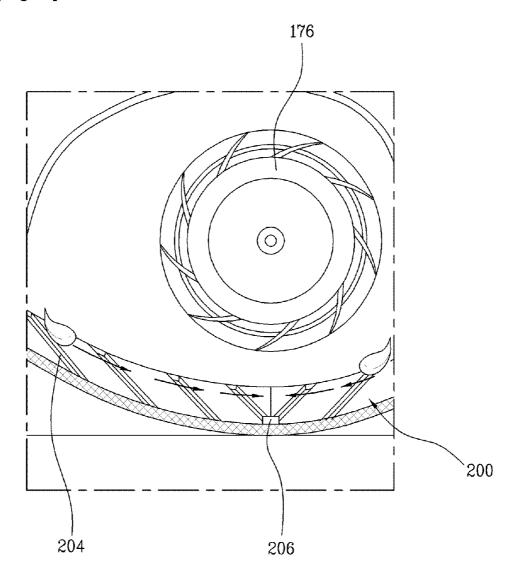

5


- una placa de guía (180) situada en una esquina del compartimento de generación de aire frío (150) y configurada para dirigir aire frío, descargado hacia una parte superior del compartimento de generación de aire frío (150), a una parte inferior del compartimento de generación de aire frío (150) donde está dispuesta la salida de aire frío (154).
- 9 El frigorífico de acuerdo con la reivindicación 8, en el que la placa de guía (180) tiene una forma de arco cóncava hacia el ventilador de aire frío (176).


[Fig. 1]


[Fig. 2]




[Fig. 5]

[Fig. 6]

[Fig. 7]

