

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 644 418

51 Int. Cl.:

C07H 17/08 (2006.01) A01N 43/90 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 19.08.2005 PCT/EP2005/008981

(87) Fecha y número de publicación internacional: 09.03.2006 WO06024405

96 Fecha de presentación y número de la solicitud europea: 19.08.2005 E 05777302 (0)

(97) Fecha y número de publicación de la concesión europea: 19.07.2017 EP 1789430

(54) Título: Derivados de avermectina, monosacárido de avermectina y aglicona de avermectina

(30) Prioridad:

03.09.2004 EP 04020953

Fecha de publicación y mención en BOPI de la traducción de la patente: **28.11.2017**

(73) Titular/es:

MERIAL, INC. (100.0%) 3239 Satellite Boulevard, Bldg. 500 Duluth, GA 30096, US

(72) Inventor/es:

HUETER, OTTMAR FRANZ; PITTERNA, THOMAS; JUNG, PIERRE; MURPHY KESSABI, FIONA y QUARANTA, LAURA

(74) Agente/Representante:

SALVA FERRER, Joan

DESCRIPCIÓN

Derivados de avermectina, monosacárido de avermectina y aglicona de avermectina

- 5 **[0001**] La presente invención se refiere en particular a ciertos derivados de avermectina, monosacárido de avermectina y aglicona de avermectina, procedimientos para preparar tales derivados, productos intermedios en la preparación de tales derivados, y al uso de ciertos derivados para controlar plagas.
- [0002] Se conocen ciertos compuestos macrólidos para controlar plagas. Sin embargo, las propiedades biológicas de estos compuestos conocidos no son completamente satisfactorias, y, como consecuencia, todavía hay una necesidad de proporcionar compuestos adicionales que tengan propiedades plaquicidas.

[0003] El documento US 4.203.976 describe una serie de derivados de avermectina en los que los grupos de azúcar están sustituidos en cualquiera de los grupos hidroxilo disponibles de la molécula de avermectina.

[0004] Se ha encontrado que ciertos derivados de avermectina, monosacárido de avermectina y aglicona de avermectina, que tienen en la posición 4", 4' o 13, respectivamente, un acetal cíclico de 6 miembros con un sustituyente en la posición 2, son útiles en el control de plagas, en determinadas plagas que son perjudiciales para las plantas de cultivo y a su material de propagación, tales como representantes de la clase Insecta, el orden Acarina y la clase Nematoda.

[0005] Por consiguiente, en un primer aspecto, la presente invención proporciona un compuesto de la fórmula (I)

- en la que el enlace entre los átomos de carbono 22 y 23 indicado con una línea discontinua es un enlace sencillo o doble, los símbolos δ , ϵ , ϕ , η , κ , λ y γ representan que la configuración del átomo de carbono correspondiente puede ser (S) o (R). n es 0, 1 ó 2,
 - R₁ representa un grupo alquilo C₁-C₁₂, cicloalquilo C₃-C₈ o alquenilo C₂-C₁₂,
- 50 R₂ representa R₁₅, R₁₅O, R₁₆OC(=O)O-;
 - R_3 representa $R_{15}O$ o $R_{16}OC(=0)O$ -;
- 55 R₅ representa hidrógeno, un hidrocarbilo o R₄ y R₅ representan juntos =O, =NR₉ o =CR₁₀R₁₁, y R₆ representa R₁₆, R₁₆OCH₂, R₁₆C(=O)OCH₂, R₁₅OC(=O)OCH₂, R₁₆C(=S)OCH₂, R₁₆SCH₂, R₁₆C(=O)SCH₂, R₁₆C(=S)SCH₂, R₁₆R₁₇NCH₂, R₁₆(NC)NCH₂, R₁₆(R₁₇O)NCH₂, R₁₆C(=O)NR₁₇CH₂, R₁₆C(=O)N(OR₁₇)CH₂, R₁₅OC(=O)NR₁₇CH₂, R₁₆C(=O)N(OR₁₇)CH₂, R₁₆C(=O)NR₁₇CH₂, R₁₆(NC)NOCH₂, R₁₆(R₁₇O)NOCH₂, R₁₆C(=O)NR₁₇OCH₂, R₁₈R₁₉N-NR₁₇CH₂, R₁₈(NC)N-NR₁₇CH₂, R₁₈(R₁₉O)N-NR₁₇CH₂, R₁₈R₁₉N-C(=O)-OCH₂, R₁₈R₁₉N-SO₂NR₁₇CH₂;
- en los que

15

- R_7 y R_8 representan, independientemente entre sí, hidrógeno, o un grupo alquilo C_1 - C_6 , R_9 representa un hidrógeno, o un grupo R_2 .
- R₁₀ y R₁₁ representan, independientemente entre sí, hidrógeno, halógeno, ciano, formilo, C(O)OR₁₂, C(O)NR₁₃R₁₄, alquilo C₁-C₆, alquenilo C₂-C₆, alquinilo C₂-C₆, cicloalquilo C₃-C₆, arilo, o heteroarilo, R₁₅ representa alquilo C₁-C₆, y

 R_{12} , R_{13} , R_{14} , R_{16} , R_{17} , R_{18} y R_{19} representan, independientemente entre sí, hidrógeno o R_{15} o R_{16} y R_{17} , o R_{18} y R_{19} , conjuntamente representan, independientemente enter sí, un anillo de tres a diez miembros, que contiene opcionalmente heteroátomos;

y si es apropiado, un isómero E/Z y/o diastereoisómero y/o tautómero del compuesto de fórmula (I), en cada caso en forma libre o en forma de sal.

[0006] En un segundo aspecto, la presente invención proporciona un procedimiento para preparar un compuesto de fórmula (I)

5

35

40

45

50

55

65

en la que R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , el enlace entre el átomos de carbono 22 y 23 y n son como se definieron anteriormente en el primer aspecto, que comprende las etapas de:

(i) llevar a cabo una reacción de glicosilación en el grupo hidroxi en la posición 13, 4' o 4" (n es 0, 1 ó 2, respectivamente) de la estructura de mectina usando un tetrahidropirano activado con los sustituyentes R₂, R₃, R₄, R₅ y R₆ para producir un compuesto de fórmula (II)

$$R_{5}$$
 R_{6}
 R_{2}
 R_{6}
 R_{2}
 R_{6}
 R_{2}
 R_{5}
 R_{2}
 R_{5}
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5

en la que R₁, R₂, R₃, R₄, R₅, R₆, el enlace entre los átomos de carbono 22 y 23 y n son como se definieron anteriormente en el primer aspecto, L₁ es un grupo protector y L₂ es hidrógeno o un grupo protector; y o bien

(ii) eliminar los grupos protectores L1 y L2, si es el caso, para producir un compuesto de fórmula (I), o bien

(iii) llevar a cabo reacciones en uno o más de los grupos R_2 , R_3 , R_4 , R_5 , R_6 para modificar el grupo y a continuación eliminar los grupos protectores L_1 y L_2 , si es el caso, para dar un compuesto de fórmula (I).

[0007] En un tercer aspecto, la presente invención proporciona un procedimiento para preparar un compuesto de

fórmula (I)

en la que R₁, R₄, R₅ y el enlace entre los átomos de carbono 22 y 23 son como se definieron anteriormente en el primer aspecto, n es 0 o 1, y R₂ es R₁₅ tal como se definieron en el primer aspecto, que comprende las etapas de: (i) oxidar el grupo hidroxi en la posición 4' o 4" para producir un oxocompuesto de fórmula (III),

en la que R_1 y el enlace entre los átomos de carbono 22 y 23 son como se definieron anteriormente en el primer aspecto, n es 0 o 1, y L_1 es un grupo protector, y

(iii) hacer reaccionar el compuesto de fórmula (III) con una base y un compuesto de trialquilsililo para formar un enolato,

(iv) oxidar el enolato a una enona de fórmula (IV),

en la que R₁ y el enlace entre los átomos carbono 22 y 23 son como se definieron anteriormente en el primer aspecto, n es 0 o 1, y L₁ es un grupo protector

(v) añadir un reactivo organometálico que tiene un sustituyente R2 a la enona, y

25

30

35

40

45

50

65

(vi) llevar a cabo reacciones en uno o más de los grupos R₂, R₄, R₅ para modificar el grupo y a continuación eliminar el grupo protector L₁ para producir un compuesto de fórmula (I).

[0008] En un cuarto aspecto, la presente invención proporciona un compuesto de la fórmula (II)

$$R_{5}$$
 R_{5}
 R_{6}
 R_{2}
 R_{5}
 R_{2}
 R_{5}
 R_{5}
 R_{6}
 R_{2}
 R_{5}
 R_{5

en la que R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , el enlace entre los átomos de carbono 22 y 23 y n son como se definieron anteriormente en el primer aspecto, L_1 es un grupo protector, y L_2 es hidrógeno o un grupo protector.

[0009] En un quinto aspecto, la presente invención proporciona una composición plaguicida que comprende al menos un compuesto de la fórmula (I), o (II), tal como se definen en el primer o cuarto aspecto, respectivamente, como compuesto activo, y al menos un compuesto auxiliar.

[0010] En un sexto aspecto, la presente invención proporciona un procedimiento para controlar plagas, especialmente ectoplagas o endoplagas en animales y plagas de plantas, que comprende aplicar una composición definida en el quinto aspecto a las plagas o su hábitat.

[0011] En un séptimo aspecto, la presente invención proporciona un procedimiento para preparar una composición definida en el quinto aspecto que comprende mezclar íntimamente y/o moler al menos un compuesto de la fórmula (I), o (II), tal como se definen en el primer o cuarto aspecto, respectivamente, como compuesto activo, con al menos un compuesto auxiliar.

[0012] En un octavo aspecto, la presente invención proporciona el uso de un compuesto de la fórmula (I), o (II), tal como se definen en el primer o cuarto aspecto, respectivamente, para preparar una composición, tal como se define en el quinto aspecto.

[0013] En un noveno aspecto, la presente invención proporciona el uso de una composición, tal como se define en el quinto aspecto para el control de plagas.

5

10

15

30

55

60

65

[0014] En un décimo aspecto, la presente invención proporciona un procedimiento para la protección de material de propagación de plantas que comprende tratar el material de propagación, o el lugar donde se planta el material de propagación, con una composición definida en el quinto aspecto.

[0015] En un undécimo aspecto, la presente invención proporciona un material de propagación de plantas resistente a las plagas que tiene adherida al mismo al menos un compuesto de la fórmula (I), o (II), tal como se definen en el primer o cuarto aspecto, respectivamente; preferiblemente tratado mediante el procedimiento del décimo aspecto.

[0016] Un compuesto de la presente invención es un cierto derivado sustituido de avermectina, monosacárido de avermectina, o aglicona de avermectina.

[0017] Las avermectinas son conocidas por la persona experta en la técnica. Son un grupo de compuestos activos como plaguicidas estructuralmente estrechamente relacionados, que se obtienen por fermentación de una cepa del microorganismo Streptomyces avermitilis. También los derivados en los que R₁ no es iso-propilo o sec-butilo, por ejemplo, cuando es ciclohexilo o 1-metil butilo, se obtienen por fermentación. Los derivados de avermectinas se pueden obtener mediante síntesis químicas convencionales. La presente invención se refiere a una nueva serie de compuestos que tienen una nueva unidad de carbohidrato unida a avermectina, monosacárido de avermectina, o aglicona de avermectina.

[0018] Los compuestos de la presente invención son derivados de (i) avermectina cuando n es 2 en la fórmula (I), (ii) monosacárido de avermectina cuando n es 1 en la fórmula (I), y (iii) aglicona de avermectina cuando n es 0 en la fórmula (I), en los que el enlace entre los átomos de carbono 22 y 23 indicado con una línea discontinua es un enlace sencillo o doble. Por consiguiente, la estructura de mectina, tal como se utiliza en la memoria, se refiere a uno cualquiera de:

50 [0019] Las flechas indican el punto de conexión al derivado de pirano recién introducido.

[0020] Las avermectinas, que se pueden obtener de Streptomyces avermitilis, se denominan A1a, A1b, A2a, A2b, B1a, B1b, B2a y B2b. Los compuestos a los que se hace referencia como "A" y "B" tienen un radical metoxi y un grupo OH, respectivamente, en la posición 5. La serie "a" y la serie "b" son compuestos en los que el sustituyente R1 (en la posición 25) es un radical sec-butilo y un radical isopropilo, respectivamente. El número 1 en el nombre de los compuestos significa que los átomos de carbono 22 y 23 están unidos por un doble enlace; el número 2 significa que están unidos por un enlace sencillo y que el átomo de carbono 23 lleva un grupo OH. La nomenclatura anterior está adherida en la descripción de la presente invención para indicar el tipo de estructura específica en los derivados de avermectina que se producen no naturalmente según la invención, que corresponde a la avermectina natural. Los compuestos según la invención son especialmente derivados de compuestos de avermectina de la serie B1, ventajosamente B1a y B1b; derivados que tienen un enlace sencillo entre los átomos de carbono 22 y 23; derivados que tienen sustituyentes distintos de sec-butilo o isopropilo en la posición 25; y derivados de los monosacáridos correspondientes.

[0021] Para una revisión de las químicas de macrólidos, ver: Ivermectin Abamectin. Fisher, MH; Mrozik, H. Editor (s) - Campbell, William Cecil, (1989), 1-23; and Macrolide Antibiotics (2ª edición), Sunazuka, Toshiaki, Omura,

ES 2 644 418 T3

Sadafumi; Iwasaki, Shigeo, Omura, Satoshi. Editor (s) - Omura, Satoshi (2002), 99-180.

10

20

25

30

35

40

45

[0022] Para una revisión de la química de glicosilación, ver: Demchenko, AV, Synlett (2003), 1225-1240; Nicolaou, KC, Mitchel HJ Angewandte Chemie (2001), 113, 1624-1672; Garegg, JP, Advances in Carbohydrate Chemistry and Biochemistry (1997), 52, 179-205; y K. Toshima, K. Tatsuta, Chemical Reviews (1993), 1503-1531.

[0023] El documento EP-A-7812 describe la síntesis de monosacárido de avermectina, o aglicona de avermectina y la preparación de derivados monoglicosilo, diglicosilo y triglicosilo, la glicosilación de las estructuras de mectina con sacáridos peracetilados activados, en los que los grupos acetilo se pueden escindir después de la glicosilación. Véase también el documento US 4.156.720.

[0024] Para una preparación de cupratos y adición 1,4 de estos cupratos a una enona conjugada, ver Clarke, PD, Fitton AO, Suschitzky H., Wallace, TW, Tetrahydron Letters (1986), 27, 91-94.

[0025] La presente invención describe la glicosilación de avermectina, monosacárido de avermectina, o aglicona de avermectina en los grupos hidroxi en la posición 4", 4' o 13, respectivamente, con nuevos derivados de azúcar, la modificación de los sustituyentes en el azúcar recién introducido después de la glicosilación o la introducción de nuevos sustituyentes en la posición 2" o 2' de los derivados de desoxi azúcar. Se ha encontrado que dichos compuestos tienen eficacia plaguicida.

[0026] Cada compuesto de la invención puede estar presente como un único isómero, un isómero E/Z y/o diastereoisómero y/o tautómero. Por consiguiente, un compuesto, por ejemplo, de fórmula (I) es, si es el caso, también entendido como que incluye el correspondiente isómero E/Z y/o diastereoisómero y/o tautómero, incluso si estos últimos no se mencionan específicamente en cada caso.

[0027] Cada compuesto de la invención, tal como el compuesto de fórmula (I), y, cuando sea aplicable, su isómero E/Z y/o diastereoisómero y/o tautómero puede formar sales, por ejemplo sales de adición de ácido. Estas sales de adición de ácido se forman, por ejemplo, con ácidos fuertes inorgánicos, tales como ácidos minerales, por ejemplo, ácido sulfúrico, ácido fosfórico o un hidrácido, con ácidos carboxílicos orgánicos fuertes, tales como ácidos alcanocarboxílicos C1-C4, no sustituidos o sustituidos, por ejemplo sustituidos con halógeno, , por ejemplo, ácido acético, ácidos dicarboxílicos insaturados o saturados, por ejemplo, ácido oxálico, ácido malónico, ácido maleico, ácido fumárico o ácido ftálico, ácidos hidroxicarboxílicos, por ejemplo, ácido ascórbico, ácido láctico, ácido málico, ácido tartárico o ácido cítrico, o ácido benzoico, o con ácidos sulfónicos orgánicos, tales como no sustituidos o sustituidos, por ejemplo, ácidos alcano C₁-C₄ o aril sulfónicos, sustituidos con halógeno, por ejemplo, ácido metanosulfónico o p-toluenosulfónico. El compuesto de fórmula (I) que tienen al menos un grupo ácido puede formar además sales con bases. Las sales adecuadas con bases son, por ejemplo, sales metálicas, tales como sales de metales alcalinos o sales de metales alcalinotérreos, por ejemplo sales de sodio, potasio o magnesio, o sales con amoniaco o con una amina orgánica, tal como morfolina, piperidina, pirrolidina, una mono-, di- o trialquilamina inferior, por ejemplo, etilamina, dietilamina, trietilamina o dimetilpropilamina, o una mono-, di- o trihidroxialquilamina inferior, por ejemplo, mono-, di- o tri-etanolamina. Las sales internas correspondientes también se pueden formar cuando sea apropiado. Entre las sales del compuesto de fórmula (I), se prefieren las sales agroquímicamente ventajosas.

[0028] Cualquier referencia al compuesto libre de la invención, por ejemplo, de fórmula (I), o su sal, se ha de entender que incluye, si es apropiado, también la sal correspondiente o el compuesto libre de fórmula (I), respectivamente. Lo mismo se aplica a un isómero E/Z y/o diastereoisómero y/o tautómero del compuesto de la invención, por ejemplo, de fórmula (I), y sus sales.

[0029] La invención se describe en detalle a continuación. Además, tal como se describe a continuación, cada realización de una característica de la presente invención es independiente de una realización de otra característica.

[0030] En el contexto del primer aspecto de la invención, se da preferencia a los siguientes grupos:

- (2) un compuesto del primer aspecto (también denominado grupo (1)) en forma libre:
- (3) un compuesto del primer aspecto (también denominado grupo (1)) en forma de sal;
- (4) un compuesto según cualquiera de los grupos (1) a (3), en el que R₅ representa un hidrógeno, grupo alquilo C₁-C₆ no sustituido, alquenilo C₂-C₆ no sustituido, alquinilo C₂-C₆ no sustituido, gruo cicloalquilo C₃-C₆ no sustituido, o R₄ y R₅ juntos representan un grupo como =O, = NR₉ o =CR₁₀R₁₁.
 - (5) un compuesto según cualquiera de los grupos (1) a (4), en el que la configuración en el átomo de carbono en posición 13 (γ) es (S);
- 60 (6) un compuesto según cualquiera de los grupos (1) a (4), en el que la configuración en el átomo de carbono en posición 13 (γ) es (R);
 - (7) un compuesto según cualquiera de los grupos (1) a (6), en el que R₁ es isopropilo o sec-butilo;
 - (8) un compuesto según cualquiera de los grupos (1) a (6), en el que R₁ es ciclohexilo;
 - (9) un compuesto según cualquiera de los grupos (1) a (6), en el que R₁ es 1-metil-butilo;
- 65 (10) un compuesto según cualquiera de los grupos (1) a (9), en el que el enlace entre los átomos de carbono 22 y 23 es un enlace sencillo:

ES 2 644 418 T3

- (11) un compuesto según cualquiera de los grupos (1) a (9), en el que el enlace entre los átomos de carbono 22 y 23 es un enlace doble:
- (12) un compuesto según cualquiera de los grupos (1) a (11), en el que n es 2;
- (13) un compuesto según cualquiera de los grupos (1) a (11), en el que n es 1;
- 5 (14) un compuesto según cualquiera de los grupos (1) a (11), en el que n es 0;

20

25

35

60

- (15) un compuesto según cualquiera de los grupos (1) a (13), en el que la configuración del átomo de carbono en la posición 4' (δ) es (S);
- (16) un compuesto según cualquiera de los grupos (1) a (13), en el que la configuración del átomo de carbono en la posición 4' (δ) es (R);
- 10 (17) un compuesto según cualquiera de los grupos (1) a (12), en el que la configuración del átomo de carbono en la posición 4" (δ) es (R)
 - (18) un compuesto según cualquiera de los grupos (1) a (12), en el que la configuración del átomo de carbono en la posición 4" (δ) es (S)
 - (19) un compuesto según cualquiera de los grupos (1) a (18), en el que R₄ representa R₁₆R₁₇N;
- 15 (20) un compuesto según cualquiera de los grupos (1) a (18), en el que R₄ y R₅ representan juntos =O;
 - (21) un compuesto según cualquiera de los grupos (1) a (20), en el que R₆ representa H, R₁₅, o R₁₆OCH₂;
 - (22) un compuesto según cualquiera de los grupos (19) y (21), en el que R₁₅ representa un alquilo C₁-C₃ no sustituido:
 - (23) un compuesto según cualquiera de los grupos (19), (20) y (21), en el que R₁₆ representa H o alquilo C₁-C₆ no sustituido;
 - (24) un compuesto según el grupo (19) en el que R₁₇ representa H o alquilo C₁-C₆ no sustituido;
 - (25) un compuesto según cualquiera de los grupos (1) a (24), en el que la configuración del átomo de carbono en la posición 1 (ε) del acetal cíclico es (R);
 - (26) un compuesto según cualquiera de los grupos (1) a (24), en el que la configuración del átomo de carbono en la posición 1 (ε) del acetal cíclico es (S);
 - (27) un compuesto según cualquiera de los grupos (1) a (26), en el que las configuraciones de carbono del acetal cíclico en la posición 2 (ϕ), posición 3 (η) y posición 4 (κ) son las mismas;
 - (28) un compuesto según cualquiera de los grupos (1) a (27), en el que la configuración del átomo de carbono en la posición 2 (φ) del acetal cíclico es (R);
- 30 (29) un compuesto según cualquiera de los grupos (1) a (27), en el que la configuración del átomo de carbono en la posición 2 (φ) del acetal cíclico es (S);
 - (30) un compuesto según cualquiera de los grupos (1) a (29), en el que la configuración del átomo de carbono en la posición 3 (η) del acetal cíclico es (R);
 - (31) un compuesto según cualquiera de los grupos (1) a (29), en el que la configuración del átomo de carbono en la posición 3 (n) del acetal cíclico es (S):
 - (32) un compuesto según cualquiera de los grupos (1) a (31), en el que la configuración del átomo de carbono en la posición 4 (κ) del acetal cíclico es (R);
 - (33) un compuesto según cualquiera de los grupos (1) a (31), en el que la configuración del átomo de carbono en la posición 4 (κ) del acetal cíclico es (S);
- 40 (34) un compuesto según cualquiera de los grupos (1) a (33), en el que la configuración del átomo de carbono en la posición 5 (lλ) del acetal cíclico es (R);
 - (35) un compuesto según cualquiera de los grupos (1) a (33), en el que la configuración del átomo de carbono en la posición 5 (λ) del acetal cíclico es (S).
- [0031] Un compuesto preferido de fórmula (I) o fórmula (II) es un derivado de avermectina o de monosacárido de avermectina, en el que el enlace entre los átomos de carbono 22 y 23 es un doble enlace, n es 1 ó 2, R₁ representa un grupo alquilo C₁-C₄ (preferiblemente isopropilo o sec-butilo), R₂ representa alquilo C₁-C₄ o alcoxi C₁-C₄, R₃ representa alcoxi C₁-C₄, R₄ representa alquilamino C₁-C₄, dialquilamino C₁-C₄, alcanoilamino C₁-C₄, alcoxicarbonialmino C₁-C₄ o alcoxicarbonil C₁-C₄-alquilamino C₁-C₄, R₅ representa H, alquilo C₁-
- C₄, alquenilo C₁-C₄, acoxicarboniamino C₁-C₄ o acoxicarbonii C₁-C₄-aquilamino C₁-C₄, γ R₆ representa H, aquilo C₁-C₄, alquenilo C₂-C₃, o alquinilo C₂-C₃, o R₄ y R₅ juntos representa = O, =NO-alquilo C₁-C₄, γ R₆ representa H, metilo, alcoxi C₁-C₄-CH 2, o alcanoiloxi C₁-C₄-CH₂, en el que (a) las configuraciones de carbono del acetal cíclico en la posición 3 (η) y la posición 4 (κ) son opuestas entre sí, (b) las configuraciones de carbono del acetal cíclico en la posición 2 (φ) y la posición 3 (η) son los mismos, preferiblemente (R), o (c) las configuraciones de carbono del acetal cíclico en la posición 2 (φ), posición 3 (η) y posición 4 (κ) son los mismos, y en uno cualquiera de (a), (b) o (c) las
- configuraciones de carbono en uno cualquiera de los otros átomos de carbono, independientemente unos de otros, es (R) o (S).
 - [0032] Cuando el mismo tipo de grupo general (o radical o sustituyente) se describe como presente en un compuesto en dos o más posiciones, los grupos específicos pueden ser los mismos o diferentes.
 - [0033] El grupo hidrocarbilo es un grupo de átomos unidos mediante un átomo de carbono. El grupo contiene uno o más átomos de carbono y uno o más átomos de hidrógeno, cuyo grupo puede ser alifático, alicíclico, bicíclico espirocíclico (cada uno saturado o insaturado), aromático, de cadena lineal, de cadena ramificada, o un grupo con una combinación de los mismos. Los ejemplos incluyen metilo, etilo, isopropilo, ciclohexilo, vinilo, etinilo, alilo, fenilo, o bencilo. Preferiblemente, un grupo hidrocarbilo que contiene de 1 a 15, más preferiblemente de 1 a 12,

especialmente de 1 a 4, tal como 1 o 2, átomos de carbono.

5

10

15

20

25

40

50

55

60

65

[0034] A menos que se defina lo contrario, los grupos que contienen carbono (por ejemplo, alqueilo, alqueilo, cicloalquilo) contienen de 1 hasta e incluyendo 6, preferiblemente de 1 hasta e incluyendo 4, especialmente 1 o 2, átomos de carbono.

[0035] Halógeno, como un grupo per se y también como elemento estructural de otros grupos y compuestos, tales como haloalquilo, haloalcoxi y haloalquiltio, es flúor, cloro, bromo o yodo, en particular flúor, cloro o bromo, especialmente flúor o cloro.

[0036] Alquilo, como un grupo per se y también como elemento estructural de otros grupos y compuestos, tales como haloalquilo, alcoxi y alquiltio, es en cada caso teniendo en cuenta el número de átomos de carbono contenidos en cada caso en el grupo o compuesto en cuestión, de cadena lineal, es decir, metilo, etilo, propilo, butilo, pentilo, hexilo, heptilo u octilo, o ramificada, por ejemplo, isopropilo, isobutilo, sec-butilo, terc-butilo, isopentilo, neopentilo o isohexilo. El número preferido de átomos de carbono en un grupo alquilo está entre 1 y 6, tal como 1 a 4.

[0037] Cicloalquilo, como un grupo per se y también como elemento estructural de otros grupos y compuestos, tales como, por ejemplo, halocicloalquilo, cicloalcoxi y cicloalquiltio, es en cada caso teniendo en cuenta el número de átomos de carbono contenidos en cada caso en el grupo o compuesto en cuestión, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo, ciclohexilo o ciclooctilo. El número preferido de átomos de carbono en un grupo cicloalquilo está entre 3 y 6, tal como 3 a 4.

[0038] Alquenilo, como un grupo per se y también como elemento estructural de otros grupos y compuestos, es teniendo en cuenta el número de átomos de carbono y dobles enlaces conjugados o aislados contenidos en el grupo, de cadena lineal, por ejemplo, vinilo, alilo, 2-butenilo, 3-pentenilo, 1-hexenilo, 1-heptenilo, 1,3-hexadienilo o 1,3-octadienilo, o ramificada, por ejemplo, isopropenilo, isobutenilo, isoprenilo, terc-pentenilo, isohexenilo, isohexenilo, o isooctenilo. Se da preferencia a grupos alquenilo que tienen de 3 a 12, en particular 3 a 6, especialmente 3 ó 4, átomos de carbono.

[0039] Alquinilo, como un grupo per se y también como elemento estructural de otros grupos y compuestos es, en cada caso teniendo en cuenta el número de átomos de carbono y triples enlaces conjugados o aislados contenidos en el grupo o compuesto en cuestión, de cadena lineal, por ejemplo, etinilo, propargilo, 2-butinilo, 3-pentinilo, 1-hexinilo, 1-heptinilo, 3-hexen-1-inilo o 1,5-heptadien-3-inilo, o ramificada, por ejemplo, 3-metilbut-1-inilo, 4-etilpent-1-inilo, 4-metilhex-2-inilo o 2-metilhept-3-inilo. Se da preferencia a grupos alquinilo que tienen de 3 a 12, en particular 3 a 6, especialmente 3 ó 4, átomos de carbono.

[0040] Alcoxi, como un grupo per se y también como elemento estructural de otros grupos y compuestos es, en cada caso teniendo en cuenta el número de átomos de carbono contenidos en cada caso en el grupo o compuesto en cuestión, de cadena lineal, por ejemplo, metoxi, etoxi o propoxi, o de cadena ramificada, por ejemplo, isopropoxi, isobutioxi, o sec-butoxi. Uno o más átomos de oxígeno pueden estar presentes en el grupo. El número preferido de átomos de carbono en un grupo alcoxi es de 1 a 6, tal como de 1 a 4. De manera similar, el átomo de oxígeno en el grupo alqueniloxi o alquiniloxi puede estar en cualquier posición y el número preferido de átomos de carbono en cada grupo es de entre 2 y 6, tal como 2 a 4.

45 [0041] Arilo es en particular fenilo, naftilo, antracenilo, fenantrenilo, perilenilo o fluorenilo, preferiblemente fenilo.

[0042] Heterociclilo se entiende como un anillo monocíclico de tres a de siete miembros, que puede estar saturado o insaturado, y que contiene de uno a tres heteroátomos seleccionados del grupo que consiste en B, N, O y S, especialmente N y S; o un sistema de anillos bicíclico que tiene de 8 a 14 átomos de anillo, que pueden ser saturados o insaturados, y que pueden contener en un solo anillo o en ambos anillos, independientemente uno de otro, uno o dos heteroátomos seleccionados de N, O y S; heterociclilo es, en particular, piperidinilo, piperazinilo, oxiranilo, morfolinilo, tiomorfolinilo, piridilo, N-oxidopiridinio, pirimidilo, pirazinilo, s-triazinilo, 1,2,4-triazinilo, tienilo, furanilo, dihidrofuranilo, tetrahidrofuranilo, piranilo, tetrahidropiranilo, pirrolino, pirrolinilo, pirrolinilo, pirrolinilo, pirrolinilo, pirrolinilo, pirrolinilo, pirrolinilo, pirrolinilo, dioxaborolanilo, ftalimidoilo, benzotienilo, quinolinilo, quinoxalinilo, benzofuranilo, bencimidazolilo, benzopirrolilo, benzotiazolilo, indolinilo, isoindolinilo, cumarinilo, indazolilo, benzotiofenilo, benzofuranilo, pteridinilo o purinilo, que están unidos preferiblemente a través de un átomo de C; tienilo, benzofuranilo, benzotiazolilo, tetrahidropiranilo, dioxaborolanilo o indolilo son preferibles; en particular dioxaborolanilo, piridilo o tiazolilo. Dichos radicales heterociclilo pueden estar preferiblemente no sustituidos o dependiendo de las posibilidades de sustitución en el sistema anular, sustituidos por 1 a 3 sustituyentes seleccionados del grupo que consiste en halógeno, =O, -OH, =S, SH, nitro, alquilo C₁-C₆, hidroxialquilo C₁-C₆, alcoxi C₁-C₆, haloalquilo C₁-C₆, fenilo y bencilo.

[0043] La invención también proporciona un procedimiento para preparar un compuesto de la fórmula (II) mediante una ruta de glicosilación y enolación.

Glicosilación

[0044]

(A) Ventajosamente, la aglicona de avermectina, monosacárido de avermectina, avermectina o sus epímeros en las posiciones 13, 4' o 4", respectivamente, con el oxígeno protegido en la posición del carbono 5 y, opcionalmente, el oxígeno protegido en la posición del carbono 7 (fórmula (V) a continuación) se utiliza como material de partida.

$$H = \begin{bmatrix} 0 & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

en la que R₁, n y el enlace entre los átomos de carbono 22 y 23 es como se definió para un compuesto de fórmula (I) del primer aspecto, L₁ y L₂ son grupos protectores adecuados para evitar la reacción en el átomo de oxígeno en la posición del carbono 5, o la posición del carbono 7, respectivamente.

El grupo hidroxilo libre en la posición 13, 4' o 4" (n es 0, 1 ó 2, respectivamente) en la fórmula (V) se hace reaccionar con un agente activado y un tetrahidropirano activado de fórmula (α)

$$R_4$$
 R_5
 R_6
 R_6

en la que R₂, R₃, R₄, R₅, R₆ son como se definieron anteriormente en el primer aspecto, en la que A es un grupo saliente adecuado, para dar un compuesto de fórmula (II)

en la que R₁, R₂, R₃, R₄, R₅, R₆, el enlace entre los átomos de carbono 22 y 23 y n son como se definieron

anteriormente en el primer aspecto, L₁ es un grupo protector y L₂ es hidrógeno o un grupo protector; y o bien

(B) los grupos protectores L_1 y L_2 , si es el caso, se pueden eliminar con un agente de desprotección, por ejemplo un reactivo ácido y/o fluoruro, para dar un compuesto de fórmula (I), o bien

(C) las reacciones se pueden llevar a cabo en uno o más de los grupos R₂, R₃, R₄, R₅, R₆ para modificar el grupo y a continuación los grupos protectores L₁ y L₂, si es el caso, se pueden eliminar con un agente de desprotección, por ejemplo un reactivo ácido y/o fluoruro, para dar un compuesto de fórmula (I).

Enolación

[0045]

5

10

15

20

25

30

35

45

50

55

60

(D) Preferiblemente, 4" o 4' oxo avermectina o monosacárido de avermectina, respectivamente, con el oxígeno protegido en la posición de carbono 5 (fórmula (III)) se utiliza como material de partida.

en la que R₁ y la enlace entre los átomos de carbono 22 y 23 son como se definieron anteriormente en el primer aspecto, n es 0 o 1, y L₁ es un grupo protector. La preparación de dicho material de partida se describe en el documento EP-A-0343708, y brevemente implica la oxidación del grupo hidroxi en 4" o 4' de avermectina o monosacárido de avermectina, respectivamente, en el que el oxígeno en la posición de carbono 5 está protegido.

40 El compuesto de fórmula (III) se hace reaccionar con una base y un electrófilo E-X, preferiblemente un compuesto de trialquilsililo, para formar una mezcla de enolatos de fórmula (VIa) y (VIb).

en la que R₁ y el enlace entre los átomos de carbono 22 y 23 son como se definieron anteriormente en el primer aspecto, n es 0 o 1, L₁ es un grupo protector, y E es un grupo sililo para cada fórmula anterior, (E) el compuesto de fórmula (VIa) se oxida con un oxidante adecuado a una enona de fórmula (IV),

en la que R_1 y el enlace entre los átomos de carbono 22 y 23 son como se definieron anteriormente en el primer aspecto, n es 0 o 1, y L_1 es un grupo protector

(F) el compuesto de fórmula (IV) se hace reaccionar con un reactivo organometálico, por ejemplo, de fórmula (β)

$$(R_2)_r - M - (Hal)_s$$
 (β)

o aductos o solvatos de composición variable, en la que R₂ es como se definió para el compuesto de fórmula (I), en la que es grupo hidrocarbilo o hidrocarbilo sustituido, y M es un átomo metálico o un grupo de átomos de metal, preferiblemente un cuprato de litio, y Hal es un átomo de halógeno, preferiblemente cloro, bromo o yodo, r es 1 a 2 y s es 0 a 2 en función de la carga del metal (dicho reactivo es conocido o se puede preparar por procedimientos

conocidos) para producir un compuesto de fórmula (VII), y

30

35

40

45

50

60

65

en la que R₁ y el enlace entre los átomos de carbono 22 y 23 son como se definieron anteriormente en el primer aspecto, n es 0 o 1, y L₁ es un grupo protector,

(G) el compuesto (VII) se puede usar para más secuencias de reacción en el grupo ceto en la posición 4" o 4'; tales reacciones son conocidas por un experto en la técnica, por ejemplo a partir de la reducción, la adición de compuestos organometálicos o la aminación reductora y a continuación la realización de otras transformaciones en el grupo hidroxi o amino resultante, respectivamente, por ejemplo alquilación o acilación, y

(H) el grupo protector L₁ se puede eliminar con un agente de desprotección, por ejemplo un reactivo ácido y/o fluoruro, para dar un compuesto de fórmula (I).

[0046] Se cree que el proceso del tercer aspecto puede en principio ser aplicado a otros 2-desoxi azúcares y a continuación acoplarse a una estructura de mectina u otros 2-desoxi azúcares se pueden acoplar a un estructura de mectina y se lleva a cabo la reacción del tercer aspecto.

[0047] La presente invención, por lo tanto, proporciona derivados donde el anillo de pirano terminal tiene la configuración D o L de ramnopiranosa, xilopiranosa, arabinopiranosa, alopiranosa, idopiranosa, gulopiranosa, altropiranosa, glucopiranosa, galactopiranosa, fucopiranosa, lixopiranosa, ribopiranosa, manopiranosa o talopiranosa; se prefieren ramnopiranosa, xilopiranosa, alopiranosa, idopiranosa, gulopiranosa, altropiranosa, lixopiranosa, ribopiranosa, manopiranosa o talopiranosa. Especialmente preferida es la configuración L.

[0048] Las condiciones para las reacciones descritas se llevan a cabo de una manera conocida per se, por ejemplo en ausencia o, habitualmente, en presencia de un disolvente o diluyente adecuado o de una mezcla de los mismos, llevándose a cabo las reacciones, según se requiera, con enfriamiento, a temperatura ambiente o con calentamiento, por ejemplo, en un intervalo de temperatura de aproximadamente -80°C a la temperatura de ebullición del medio de reacción, preferiblemente de aproximadamente 0°C a aproximadamente 150°C, y, si es necesario, en un recipiente cerrado, bajo presión, bajo una atmósfera de gas inerte y/o bajo condiciones anhidras. Las condiciones de reacción especialmente ventajosas se pueden encontrar en la sección de Ejemplos.

[0049] El tiempo de reacción no es crítico; un tiempo de reacción de aproximadamente 0,1 a aproximadamente 24 horas, especialmente de aproximadamente 0,5 a aproximadamente 10 horas, es preferible.

55 [0050] El producto se aísla por procedimientos habituales, por ejemplo por medio de filtración, cristalización, destilación o cromatografía, o cualquier combinación adecuada de tales procedimientos.

[0051] En general, es útil proteger el oxígeno en la posición de carbono 5 con un grupo protector L₁ para evitar la reacción en esa posición cuando se llevan a cabo las reacciones con avermectina y monosacárido de avermectina. Se da preferencia a radicales trialquilsililo, tales como trimetilsililo, trietilsililo, dimetil-terc-butilsililo, difenil-terc-butilsililo, ésteres, tales como metoxiacetatos y fenoxiacetatos, y carbonatos, tales como alilcarbonatos. Se prefiere especialmente el dimetil-terc-butilsilil éter. En algunos casos, podría ser útil proteger el oxígeno en la posición de carbono 7 con un grupo protector L₂ para evitar la reacción en esa posición cuando se llevan a cabo las reacciones con avermectina y monosacárido de avermectina. Se da preferencia a radicales trialquilsililo, tales como trimetilsililo o trietilsililo. Se prefiere especialmente trimetilsilil éter.

[0052] Los materiales de partida mencionados que se utilizan para la preparación del compuesto de fórmula (I), los compuestos intermedios (por ejemplo, el compuesto de fórmula (II), o (V)), y, cuando sea aplicable, su isómero E/Z y/o diastereoisómero y/o tautómero son conocidos o se pueden preparar por procedimientos conocidos per se.

5 [0053] Las etapas del procedimiento (A) a (H) descritas anteriormente se detallan adicionalmente a continuación:

Etapa del proceso (A):

[0054] Ejemplos de disolventes y diluyentes incluyen: hidrocarburos aromáticos, alifáticos y alicíclicos e hidrocarburos halogenados, tales como benceno, tolueno, xileno, mesitileno, tetralina, clorobenceno, diclorobenceno, bromobenceno, éter de petróleo, hexano, ciclohexano, diclorometano, triclorometano, tetraclorometano, dicloroetano, tricloroetano o tetracloroetano; éteres, tales como dietil éter, dipropil éter, disopropil éter, dibutil éter, terc-butil metil éter, etilen glicol monometil éter, etilenglicol monoetil éter, etilenglicol dimetil éter, dimetoxidietil éter, tetrahidrofurano o dioxano; ésteres de ácidos carboxílicos, tales como acetato de etilo; amidas, tales como dimetilformamida, dimetilacetamida o 1-metil-2-pirrolidinonas; nitrilos, tales como acetonitrilo o propionitrilo; sulfóxidos, tales como sulfóxido de dimetilo; o mezclas de los disolventes mencionados. Se da preferencia a los hidrocarburos halogenados, tales como diclorometano, triclorometano, tetraclorometano, especialmente diclorometano.

[0055] Las reacciones se llevan a cabo ventajosamente en un intervalo de temperatura de aproximadamente -70°C a 50°C, preferiblemente de -40°C a 25°C.

[0056] El tetrahidropirano activado de fórmula (α) usado en la etapa (A)

25

10

15

20

30

es conocido o se puede preparar por procedimientos conocidos. El grupo saliente A puede ser, por ejemplo, un halogenuro, como fluoruro, cloruro, bromuro o yoduro, o un grupo alquiltio, o un grupo ariltio. Un grupo saliente preferido es el grupo feniltio.

[0057] Los agentes de activación adecuados para halogenuros como grupos salientes son sales metálicas, tales como sales de plata, mercurio y cadmio. Las sales preferidas son Ag₂CO₃ y Ag₂O.

[0058] Los agentes de activación adecuados para grupos alquiltio o grupos ariltio como grupos salientes son reactivos oxidantes, tales como bromo, N-bromosuccinimida, yoduro, N-yodosuccinimida, preferiblemente en presencia de un ácido, tal como ácido trifluorosulfónico o un ácido de Lewis, tal como triflato de plata o triflato de cobre.

[0059] Las condiciones especialmente preferidas para la reacción se describen en el Ejemplo 1 (etapa A), Ejemplo 3 (etapa A), Ejemplo 5 (etapa A).

50 Etapa del proceso (B)

[0060] Los ejemplos de disolventes y diluyentes son los mismos que los mencionados en la etapa del proceso (A). En particular, los éteres, cíclicos, tales como teratrahidrofurano, o alcoholes, tales como metanol, son especialmente adecuados.

55

45

[0061] Las reacciones se llevan a cabo ventajosamente en un intervalo de temperatura de aproximadamente 0°C a 110°C, preferiblemente de 0°C a 50°C.

[0062] Una vez se han completado las reacciones deseadas, los reactivos utilizados para eliminar el grupo protector L₁ son ácidos, tales como ácido clorhídrico, ácido metanosulfónico, BF₃.OEt₂, HF en piridina, Zn(BF₄)₂.H₂O , ácido ptoluenosulfónico, AlCl₃, HgCl₂; fluoruro de amonio, tal como fluoruro de tetrabutilamonio; bases, tales como amoníaco, trialquilamina o bases heterocíclicas; hidrogenólisis con un catalizador, tal como paladio sobre carbono; agentes reductores, tales como borohidruro de sodio o hidruro de tributilestaño con un catalizador, tal como Pd(PPh₃)₄, o también zinc con ácido acético. Se da preferencia a ácidos, tales como ácido metanosulfónico o HF en piridina; borohidruro de sodio con Pd(0); bases, tales como amoníaco, trietilamina o piridina; especialmente ácidos, tales como HF en piridina o ácido metanosulfónico. En general, un reactivo ácido, tal como una mezcla de ácido

ES 2 644 418 T3

metanosulfónico en metanol o una HF en una mezcla de piridina/THF, es eficaz en la eliminación de grupo dimetil-terc-butilsilil éter del oxígeno en la posición de carbono 5. Las condiciones preferidas para la eliminación del grupo dimetil-terc-butilsilil éter del oxígeno en la posición de carbono 5 se describen en los Ejemplos 1 (etapa b), Ejemplo 2, Ejemplo 3 (Etapa C), Ejemplo 4 (Etapa B), Ejemplo 5 (Etapa B), Ejemplo 6 (Etapa B), Ejemplo 7 (Etapa B), Ejemplo 9, Ejemplo 11 (Etapa e), Ejemplo 12.

[0063] El grupo protector de alquilsililo L_2 en el carbono 7 se elimina por los mismos reactivos ácidos, mencionados anteriormente para eliminar el grupo dimetil-terc-butilsilil éter del oxígeno en el carbono 5.

10 Etapa del proceso (C):

5

15

25

30

45

50

[0064] El experto en la técnica puede seleccionar varias condiciones de reacción para transformaciones de grupos orgánicos a partir de la bibliografía o revisiones, por ejemplo Synthetic Organic Methodology: Comprehensive Organic Transformations. A Guide to Functional Group Preparations. Larock, RC (1989), 1060 pp Editorial: (VCH, Weinheim, Fed Rep Ger); Protective Groups in Organic Synthesis. 2ª Ed., Greene, Theodora W.; Wuts, Peter GM (1991), 473 pp Editorial: (John Wiley and Sons, Inc., Nueva York, Nueva York). Los ejemplos son:

Escisión de un grupo alilcarbonato o alilcarbamato:

20 **[0065**] Ejemplos de disolventes y diluyentes son los mismos que los mencionados en la etapa del proceso (A). En particular, los éteres cíclicos, tales como tetrahidrofurano, son especialmente adecuados.

[0066] Los agentes de escisión son agentes reductores, tales como borohidruro de sodio o hidruro de tributilestaño o ácido fórmico/trifenilfosfina con un catalizador, tal como Pd(PPh₃)₄.

[0067] Las reacciones se llevan a cabo ventajosamente en un intervalo de temperatura de aproximadamente 0°C a 110°C, preferiblemente de 0°C a 50°C.

[0068] Las condiciones especialmente preferidas para la reacción se describen en el Ejemplo 3 (etapa B), Ejemplo 4 (etapa A), Ejemplo 8, Ejemplo 10.

Alquilación de un grupo OH:

[0069] Ejemplos de disolventes y diluyentes son los mismos que los mencionados en la etapa del proceso (A). En particular, los éteres cíclicos, tales como teratrahidrofurano o hidrocarburos halogenados, tales como cloroformo y diclorometano son especialmente adecuados.

[0070] Las bases adecuadas son especialmente trialquilaminas, tales como trietilamina o etildiisopropilamina.

40 [0071] Las reacciones se llevan a cabo ventajosamente en un intervalo de temperatura de aproximadamente 0°C a 110°C, preferiblemente a de 0°C a 50°C.

[0072] Las condiciones especialmente preferidas para la reacción se describen en el Ejemplo 5 (etapa A), Ejemplo 6 (etapa A).

Oxidación de un grupo OH a una cetona:

[0073] Ejemplos de disolventes y diluyentes son los mismos que los mencionados en la etapa del proceso (A). En particular, los hidrocarburos halogenados, tales como cloroformo y diclorometano son especialmente adecuados.

[0074] Los reactivos de oxidación adecuados son especialmente DMSO en presencia de cloruros de ácido, tales como oxalilcloruro o anhídridos de ácidos, tales como anhídrido de ácido acético.

[0075] Las bases adecuadas para detener la reacción son especialmente trialquilaminas, tales como trietilamina o etildiisopropilamina.

[0076] Las reacciones se llevan a cabo ventajosamente en un intervalo de temperatura de aproximadamente -70°C a 0°C, preferiblemente de -50°C a -10°C.

60 Reducción de un grupo ceto a un alcohol:

[0077] Ejemplos de disolventes y diluyentes son los mismos que los mencionados en la etapa del proceso (A). En particular, los alcoholes, tales como metanol y etanol, son especialmente adecuados.

65 [0078] Los reactivos de reducción adecuados son especialmente hidruros metálicos, tales como borohidruro de sodio.

ES 2 644 418 T3

[0079] Las reacciones se llevan a cabo ventajosamente en un intervalo de temperatura de aproximadamente -50°C a 50°C, preferiblemente de 0°C a 50°C.

5 [0080] Las condiciones especialmente preferidas para la reacción se describen en el Ejemplo 11 (etapa C).

Alquilación de un grupo ceto:

15

20

30

35

40

[0081] Ejemplos de disolventes y diluyentes son los mismos que los mencionados en la etapa del proceso (A). En particular, éteres, tales como dietil éter, dipropil éter, diisopropil éter, dibutil éter, metil terc-butil éter, tetrahidrofurano o dioxano son especialmente adecuados.

[0082] Los reactivos de alquilación adecuados son reactivos organometálicos, especialmente los reactivos de Grignard, tales como cloruro de metilmagnesio.

[0083] Las reacciones se llevan a cabo ventajosamente en un intervalo de temperatura de aproximadamente -50°C a 50°C, preferiblemente de 0°C a 50°C.

Aminación reductora de un grupo ceto:

[0084] Ejemplos de disolventes y diluyentes son los mismos que los mencionados en la etapa del proceso (A). En particular, los ésteres, tales como acetato de etilo y disolventes aromáticos, tales como tolueno, son especialmente adecuados.

[0085] Los reactivos adecuados para la formación de imina son alquilsililaminas, tales como bis(trimetilsilil)amina o heptametildisalazano en presencia de un ácido de Lewis, tal como bromuro de zinc o cloruro de zinc.

[0086] Los reactivos de reducción adecuados son especialmente hidruros metálicos, tales como borohidruro de sodio o ciano borohidruro de sodio.

[0087] Las reacciones se llevan a cabo ventajosamente en un intervalo de temperatura de aproximadamente -50°C a 50°C, preferiblemente de 0°C a 50°C.

[0088] Las condiciones especialmente preferidas para la reacción se describen en el Ejemplo 12.

Acilación de un grupo amino:

[0089] Ejemplos de disolventes y diluyentes son los mismos que los mencionados en la etapa del proceso (A). En particular, los ésteres, tales como acetato de etilo y disolventes aromáticos, tales como tolueno, son especialmente adecuados. Los preferidos son sistemas bifásicos que consisten en los disolventes mencionados anteriormente y bicarbonato sódico acuoso.

[0090] Los agentes acilantes adecuados son cloruros de acilo.

45 [0091] Las condiciones especialmente preferidas para la reacción se decriben en el Ejemplo 13.

[0092] Una vez se han completado las reacciones deseadas, los grupos protectores L₁ y L₂, si son aplicables, se pueden eliminar en las condiciones descritas en el etapa de proceso (B).

50 Etapa del proceso (D):

[0093] Ejemplos de disolventes y diluyentes son los mismos que los mencionados en la etapa del proceso (A). En particular, los hidrocarburos aromáticos, tales como benceno o tolueno, son especialmente adecuados.

55 [0094] Las bases adecuadas son especialmente trialquilaminas, tales como trietilamina o etildiisopropilamina.

[0095] Los electrófilos E-X adecuados son halogenuros de trialquilsililo, tales como cloruro de trimetilsililo, cloruro de trietilsililo, cloruro de triisopropilo, cloruro de dimetil-terc-butilsililo, cloruro de difenil-terc-butilsililo, o trifluorometanosulfonatos de trialquilsililo, tales como trifluorometanosulfonatos de trimetilsililo, trifluorometanosulfonatos de trietilsililo, trifluorometanosulfonatos de dimetil-terc-butilsililo, trifluorom

[0096] Las reacciones se llevan a cabo ventajosamente en un intervalo de temperatura de aproximadamente 0°C a 110°C, preferiblemente a de 50°C a 110°C.

[0097] Las condiciones especialmente preferidas para la reacción se describen en el Ejemplo 11 (etapa A).

65

Etapa del proceso (E):

5

10

30

40

45

50

55

60

65

[0098] Ejemplos de disolventes y diluyentes son los mismos que los mencionados en la etapa del proceso (A). En particular, hidrocarburos halogenados, tales como cloroformo y diclorometano o ésteres, tal como lactato de etilo, y agua, son especialmente adecuados.

[0099] Las reacciones se llevan a cabo ventajosamente en un intervalo de temperatura de aproximadamente -70°C a 50°C, preferiblemente a de -10°C a 25°C.

[0100] Preferiblemente, una mezcla de regioisómeros (compuestos de fórmulas (VIa) y (VIb)) se utilizan para la fuente de enolato para la etapa de oxidación a la enona conjugada cíclica de fórmula (IV); si se desea el compuesto de fórmula (VIa) se puede separar de la mezcla de regioisómeros y se utiliza para la etapa de oxidación.

- 15 **[0101**] Los ejemplos de oxidante adecuado para oxidar el enolato a una enona son peróxido de hidrógeno, ácido arilperoxoico, hidroperóxido de alquilo, dimetildioxirano, peroximonosulfato sulfato de potasio, peryodato de sodio, bialquilperóxido, ácido 2-yodilbenzoico, hidroperóxido de α-cumeno, análogos de oxaziridina; preferido es el ácido 3-cloroperbenzoico. La reacción se lleva a cabo preferiblemente en el sistema bifásico.
- 20 [0102] Las condiciones especialmente preferidas para la reacción se decriben en el Ejemplo 11 (etapa B).

Etapa del proceso (F):

[0103] Ejemplos de disolventes y diluyentes son los mismos que los mencionados en la etapa del proceso (A). En particular, los éteres, tales como dietil éter, dipropil éter, diisopropil éter, dibutil éter, metil terc-butil éter o tetrahidrofurano son especialmente adecuados.

[0104] Las reacciones se llevan a cabo ventajosamente en un intervalo de temperatura de aproximadamente -30°C a 50°C, preferiblemente a de -10°C a 25°C.

[0105] El reactivo organometálico de fórmula (β) usado en la etapa (F)

$$(R_2)_r - M - (Hal)_s$$
 (β)

es conocido o se puede preparar por procedimientos conocidos. Un ejemplo adecuado es un cuprato de alquilo. Las condiciones especialmente preferidas para la reacción se describen en el Ejemplo 11 (etapa C).

Etapa del proceso (G):

[0106] Las condiciones para las transformaciones de grupos orgánicos descritos en el etapa de proceso (<u>C</u>) también son aplicables.

Etapa del proceso (H):

[0107] Una vez se han completado las reacciones deseadas, los grupos protectores L_1 y L_2 , si es el caso, se pueden eliminar en las condiciones descritas en la etapa del proceso (B).

[0108] El compuesto de la invención puede estar en forma de uno de los posibles isómeros. Por lo tanto, una preparación puede dar lugar a una mezcla de isómeros, por ejemplo, una mezcla diastereomérica; la invención se refiere tanto a un isómero puro como a una mezcla diastereomérica y se ha de interpretar en consecuencia, incluso si los detalles estereoquímicos no se mencionan específicamente en cada caso.

[0109] Una mezcla de diastereoisómeros se puede separar en los isómeros puros mediante procedimientos conocidos, por ejemplo por recristalización en un disolvente, por cromatografía, por ejemplo, cromatografía líquida de alta presión (HPLC) en acetilcelulosa, con la ayuda de microorganismos adecuados, mediante escisión con enzimas inmovilizadas específicas, o mediante la formación de compuestos de inclusión, por ejemplo usando éteres corona, siendo complejado solo un isómero.

[0110] Aparte de la separación de mezclas de isómeros correspondientes, los diastereoisómeros puros pueden obtenerse según la invención también mediante procedimientos generalmente conocidos de síntesis estereoselectiva, por ejemplo llevando a cabo el proceso según la invención usando materiales de partida que tienen una estereoquímica correspondientemente adecuada.

[0111] En cada caso puede ser ventajoso aislar o sintetizar el isómero biológicamente más activo, donde los componentes individuales tienen diferente actividad biológica.

[0112] El compuesto de fórmulas (I) a (VII) también se puede obtener en forma de sus hidratos y/o pueden incluir otros disolventes, por ejemplo disolventes que pueden haber sido utilizados para la cristalización de compuestos en forma sólida.

[0113] La invención se refiere a todas aquellas realizaciones del proceso según las cuales se utiliza un compuesto obtenible como un intermedio en cualquier etapa del proceso como material de partida para los los etapas restantes para preparar un compuesto de fórmula (I). Por ejemplo un compuesto de fórmula (I) se puede utilizar como material de partida para la preparación de otro compuesto de fórmula (I). Tales procedimientos de manipulación son conocidos por los expertos en la técnica, tales como alquilación, acilación, metátesis, la adición de compuestos organometálicos, reducción y oxidación.

15 **[0114**] En los procesos de la presente invención es preferible utilizar aquellos materiales de partida e intermedios, que resultan en un compuesto de fórmula (I).

[0115] La invención se refiere especialmente a los procesos de preparación descritos en los Ejemplos 1 a 13.

[0116] También dentro del alcance de la presente invención está un compuesto de fórmula (I) tiene un grupo protector L1 en el átomo de oxígeno en la posición de carbono 5 en lugar de ser un grupo hidroxi o un compuesto de fórmula (I) que tienen un grupo protector L1 en el átomo de oxígeno en la posición de carbono 5 en lugar de ser un grupo hidroxi y que tiene un grupo protector L2 en el átomo de oxígeno en la posición de carbono 7 en lugar de ser un grupo hidroxi. En el caso de que el grupo protector esté presente, es preferiblemente hidrolizable en condiciones suaves. Se da preferencia a radicales trialquilsililo, tales como trimetilsililo, trietilsililo, dimetil-terc-butilsililo, difenil-terc-butilsililo, ésteres, tales como metoxiacetatos y fenoxiacetatos, y carbonatos, tales como alilcarbonates. Se prefiere especialmente el dimetil-terc-butilsilil éter.

[0117] Los compuestos de una cualquiera de las fórmulas (I) y (VII) pueden ser productos intermedios para la síntesis de compuestos de fórmula (I). El uso, por lo tanto, de compuestos de fórmula (I) y (VII) para la síntesis de compuestos de fórmula (I) es también un objeto de esta invención. Las preferencias para los grupos sustituyentes, según sea apropiado, son las mismas, tal como se definen para el compuesto de la fórmula (I) en los grupos (2) a (45).

[0118] En el contexto de la invención, se hace una referencia a los compuestos de fórmulas (I-1) a (I-120) de la Tabla X y las Tablas 1 a 720 a continuación; y en cada caso, en su caso, a su isómero E/Z o una mezcla de los mismos.

[0119] Los compuestos indicados con * no están dentro del alcance de la invención.

Tabla X: Un compuesto de cualquiera de las fórmulas (I-1) a (1-120)

en las que Q1 y Q2 represnetan las estructuras de macrólido siguientes, en las que la flecha representa el punto de conexión del derivado de pirano recién introducido:

5

10

30

40

60

R ₁ , R ₂ , R ₃ , R ₄ , R ₅ ,	R ₁ R ₃ R ₃ R ₃ R ₃ R ₃ (I-2)	R ₁ R ₂ R ₂ R ₂ R ₃ (I-3)	R ₂ R ₂ R ₂ R ₂ R ₂ R ₃ (I-4)
R ₁ R ₂ R ₂ O .	Ry R	R ₁ R ₂ R ₃ R ₃ R ₄ R ₅	R ₂ R ₂ R ₂ R ₂ R ₃ R ₂ R ₃
(I-5)	(I-6)	(I-7)	(I-8)
R ₂ R ₂ R ₂ R ₃ R ₄ R ₅	R ₂ R ₂ R ₂ R ₃ R ₄ R ₅	R ₁ R ₂ R ₂ R ₃ R ₃ R ₄ O ₁ O ₁	Ry Ry O O O O
(I-9)	(I-10)	(I-11)	(I-12)
R ₁ R ₂ R ₃ R ₄ R ₄ R ₅ R ₅ R ₆ R ₇	^{'''} ^{Q1} (I-13)	Ry Ry Co. O	``'' ^Q 2 (I-14)

R ₁ R ₂ R ₂ R ₂ R ₃ O . O	'''' ^{''} '' (I-15)	<u> </u>	"" ^Q ² (I-16)
R _s R ₃ R ₂ R ₂ R ₃ R ₄ R ₃ R ₄ R ₅	'''' ^{''} (I-17)	R ₅ R ₂ R ₂ R ₂ R ₃ O O O O O O O O O O O O O O O O O O O	·'·′′°, (I-18)
R ₈ R ₃ R ₂ R ₂ R ₃ R ₂ R ₃ R ₃ R ₄ R ₅	΄΄΄' ^{α,} (Ι-19)		'''' ^Q ² (I-20)
R ₅ R ₅ R ₂ R ₂ R ₃ (I-21)	R ₁ R ₂ R ₂ R ₂ R ₃ (I-22)	R ₂ R ₂ R ₂ R ₂ R ₂ (I-23)	R ₃ R ₂ R ₃ R ₂ R ₃ R ₂ R ₃ R ₂ (I-24)
R ₃ R ₂ R ₂ R ₃ Q ₄ Q ₅	R ₂ R ₂ R ₂ R ₃ O C O O O O O O O O O O O O O O O O O	R ₃ R ₃ R ₃ R ₄ R ₅ O c O Q ₁	R ₃ R ₂ R ₃ R ₂ R ₃ Q ₂
(I-25)	(I-26)	(I-27)	(I-28)
R ₁ R ₂ R ₂ R ₃ R ₄ R ₅	R ₂ R ₂ R ₂ R ₃ R ₄ O Q ₂	R ₂ R ₂ R ₂ R ₃ Q ₁	R ₁ R ₂ R ₂ R ₃ R ₄ O c O C C C C C C C C C C C C C C C C C
(I-29)	(I-30)	(I-31)	(I-32)
R ₅ R ₂ R ₃ R ₄ R ₅ R ₂ R ₃ R ₄ R ₅ R ₅ R ₂ R ₃ R ₄ R ₅	· _{"'°} (I-33)	R ₃	''' ^{''} ' ^Q ² (I-34)

R ₃ R ₂ R ₂ R ₃ O O O O O O O O O O O O O O O O O O O	··· _{''Q₁} (I-35)	R ₃ R ₂ R ₂ R ₃ O O O O O O O O O O O O O O O O O O O	······ɑ² (I-36)
R _s R _s P	" ^Q , (I-37)	R _s R ₂ R ₂ R ₃ R ₂ R ₃ R ₃ R ₄ R ₅	'''' ^{Q2} (I-38)
R _s R _s O R _s O O O O O O O O O O O O O O O O O O O	·"°° (I-39)	R ₃ R ₂ R ₂ R ₃ O O O O O O O O O O O O O O O O O O O	''' ^Q ² (I-40)
R ₅ R ₃ R ₂ R ₄ R ₂ Q ₁ (I-41)	R ₆ R ₂ R ₂ R ₃ Q ₂ (I-42)	R ₁ R ₂ R ₂ Q ₁ (I-43)	R ₃ R ₂ R ₃ R ₂ (I-44)
R _s R ₃ R ₂ R ₂ R ₃ R ₄ O R ₅ O R ₄ O R ₅	R ₈ R ₂ R ₂ R ₃ R ₃ R ₃ R ₂ R ₃ .	R ₈ R ₂ R ₂ O R ₂ O R ₃ O R ₄ O Q ₁	R _s
(I-45)	(I-46)	(I-47)	(I-48)
R ₀ R ₃ R ₂ R ₂ R ₃ R ₄ R ₅	R ₈	R ₀ R ₀ R ₀ O C C C C C C C C C C C C C C C C C C	R ₃ R ₂ R ₃
(I-49)	(I-50)	(I-51)	(I-52)
R ₈ R ₉ O COMMAND OF THE OWNER OWNER OF THE OWNER O	"" ^Q 1 (I-53)	R ₃ R ₃ R ₂ O R ₃ O	''' ^{''} 2 (I-54)

R ₃ R ₂	·····a, (I-55)	R ₂ R ₂ R ₂ R ₃ R ₂ O], _{O2} (I-56)
R ₂ R ₃ R ₂ R ₃ R ₂ R ₃	^{''''',} '' _Q , (I-57)	R ₂ R ₃ R ₂ R ₃ R ₂ R ₃ O O O O O O O O O O O O O O O O O O O	
	"" ^Q ı (I-59)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
R ₃ R ₂ R ₂ R ₃ R ₂ R ₃ (I-61)	R ₅ R ₂ R ₂ R ₂ R ₃ R ₂ R ₃ Q ₂ (I-62)	R ₁ R ₂ R ₂ R ₃ R ₂ R ₃ (I-63)	R ₅ R ₂ R ₂ R ₂ R ₂ R ₃ R ₂ R ₃ R ₂ R ₄ R ₅ R ₂ R ₅ R ₂ R ₅ R ₂ R ₅ R ₅ R ₂ R ₅
R ₃ R ₃ R ₂ R ₃ R ₂ R ₃ R ₂ R ₃ R ₂ R ₃ R	R _s R _s R _s R _s R _s R _s Q _s R	R ₈ O c O M Q q	R _g R ₃ R ₂ R ₃
(I-65)	(I-66)	(I-67)	(I-68)
R _s O _s O Q ₁	R ₈	R ₃ R ₂ R ₂ R ₃ R ₂ R ₃	R ₈ R ₃ R ₂ R ₃
(I-69)	(I-70)	(I-71)	(I-72)
R ₃ R ₂ R ₃ R ₂ O	^{′′′′} ^{Q,} (I-73)	R _s R _s O	'''' ^{''''} (I-74)

R ₈ R ₂ R ₂ R ₃ R ₂ R ₃ R ₂ R ₃	~~ _{Q,} (I-75)	R ₃ R ₂ R ₂ R ₃ R ₂ R ₃ R ₂ R ₃	"" ^Q 2 (I-76)
	″ ^{α,} (I-77)	l	·''' ^Q ² (I-78)
R _g R ₂ R ₂ R ₃ R ₂ R ₃	^{~~a,} (I-79)	l	·····ɑ² (I-80)
R ₅ R ₃ R ₂ R ₂ R ₃ (I-81)	R ₅ R ₂ R ₂ R ₃ (I-82)	R ₃ R ₂ R ₂ R ₂ R ₃ (I-83)	R ₂ R ₂ R ₂ R ₂ R ₂ R ₂ R ₃ (I-84)
R ₃ R ₂ R ₂ R ₃ R ₄ R ₃ R ₄ R ₅ R ₂ R ₄ R ₅	R _g R ₂ R ₂ R ₃ R ₂ R ₄ O c O m O 2	R ₂ R ₂ R ₂ R ₂ R ₃ R ₄ R ₅	R ₃ R ₂ R ₂ R ₃ R ₃ R ₄ R ₅
(I-85)	(I-86)	(I-87)	(I-88)
R _s R ₃ R ₂ R ₂ R ₃	R ₈ , R ₂ , R ₃ , R ₂ , Q ₂	R ₈ R ₂ Q ₁ Q ₁	R ₂ P ₂ P ₃ P ₃ P ₃ P ₄ P ₅
(I-89)	(I-90)	(I-91)	(I-92)
R _s	″° ^{Q,} (I-93)	R ₃ R ₃ R ₃ R ₄ R ₄ R ₅ R ₅ R ₇ R ₉	^{'''} '°• (I-94)

R _s R ₂ R ₂ R ₃ R ₃ R ₄ R ₅	^{''''} ^{Q1} (I-95)	R ₂ R ₂ R ₃ R ₄ R ₅ R ₅ R ₇ R ₈ R ₉	'·''a² (I-96)
	''' ^{''} (I-97)		·˙"ɑ₂ (I-98)
R ₃ R ₂ R ₂ R ₃	["] " ^Q 1 (I-99)	R ₃ R ₂ R ₂ R ₃ O O O O O O O O O O O O O O O O O O O	'" ^Q ² (I-100)
R ₅ R ₂ R ₂ R ₃ R ₄ R ₅	R ₂ R ₂ R ₂ R ₂ (I-102)	R ₁ R ₂ R ₂ R ₂ R ₃ R ₂ (I-103)	R ₅ R ₂ R ₆ Q ₂ (I-104)
R ₃ R ₂	R _s	R ₈ R ₉ R ₉ R ₈ R ₉	R ₃ R ₂
(I-105)	(I-106)	(I-107)	(I-108)
R ₁ R ₂ R ₂ R ₃ R ₂ R ₄ R ₄ R ₅ O R ₂ O R ₄ O R ₅ O R	R ₃ R ₂ R ₃ R ₂ R ₃	R ₈ R ₂	R ₃ R ₂
(I-109)	(I-110)	(I-111)	(I-112)
R ₂ R ₂ R ₂ R ₂ R ₂ R ₃ R ₂ R ₃ R ₄ R ₂ R ₃ R ₄ R ₅	······Q· (I-113)	R _S R ₃ R ₂ R ₃ R ₃ R ₃ R ₃ R ₄ R ₃ R ₄ R ₃ R ₄ R ₅	[∵] "¤² (I-114)

donde, para cada fórmula

ES 2 644 418 T3

	l ínea	8	8,	2	ď	ŭ
*	,	-100	,	† <u>-</u>	? =	,
*	1	ОСН3	ОСН3	I	I	CH ₃
*	2	OCH ₂ CH ₃	OCH ₂ CH ₃	I	I	CH ₃
*	ဗ	осн3	оснз	CH ₃	I	CH ₃
*	4	осн ₂ сн ₃	осн ₂ сн ₃	CH ₃	I	CH ₃
*	2	осн3	оснз	сн ₂ сн ₃	Н	CH ₃
*	9	осн ₂ сн ₃	осн ₂ сн ₃	сн ₂ сн ₃	I	CH ₃
*	7	осн3	осн _з	НО	I	CH ₃
*	8	осн ₂ сн ₃	осн ₂ сн ₃	НО	エ	CH ₃
*	6	осн3	оснз	НО	CH ₃	CH ₃
*	10	осн ₂ сн ₃	осн ₂ сн ₃	НО	CH ₃	CH ₃
*	11	OCH ₃	осн _з	осн3	Н	CH ₃
*	12	осн ₂ сн ₃	осн ₂ сн ₃	OCH ₂ CH ₃	H	CH ₃
*	13	осн3	оснз	осн ₂ осн ₃	I	CH ₃
*	14	осн3	оснз	осн ₂ осн ₂ сн ₃	I	CH ₃
*	15	OCH ₃	осн _з	OCH ₂ C(0)CH ₃	Н	CH ₃
*	16	OCH ₃	осн _з	OCH ₂ C(O)CH ₂ CH ₃	Н	CH ₃
*	17	осн3	оснз	ос(о)сн ³	н	CH ₃
*	18	OCH ₃	осн _з	OC(O)CH ₂ CH ₃	I	CH ₃
*	19	OCH ₃	осн _з	OC(S)(N-imidazole)	I	CH ₃
*	20	OCH ₃	осн _з	OC(0)OCH ₃	I	CH ₃
*	21	OCH ₃	осн _з	OC(0)OCH ₂ CH ₂ =CH ₂	Н	CH ₃
	22	OCH ₃	осн _з	OC(O)NHCH ₃	I	CH ₃
	23	OCH ₃	осн _з	OC(O)NHCH ₂ CH ₃	Н	CH ₃
*	24	осн3	оснз	OC(O)NHCH2CH2OCH3	Н	CH ₃
	25	OCH ₃	осн _з	ONH ₂	I	CH ₃
	26	оснз	оснз	O-N=CH ₂	I	CH ₃

	Línea	R_2	R_3	R_4	R_5	R_{6}
*	27	осн _з	осн _з	$O-N=C(CH_3)CH_2OCH_3$	Н	СН3
*	28	осн ₃	осн3	O-N=C(CH ₃)CH ₂ SCH ₃	н	СН3
*	29	осн ₃	осн3	$O-N=C(CH_3)CH_2N(CH_3)_2$	I	СН3
	30	осн _з	осн ₃	O-NHCH ₃	Ŧ	СН3
	31	осн _з	осн3	O-N(CH ₃)C(O)H	I	СН3
	32	осн ₃	осн3	O-N(CH ₃)C(O)CH ₃	I	СН3
*	33	осн ₃	осн3	O-NHSO ₂ NH ₂	I	СН3
*	34	осн ₃	осн3	O-NHSO ₂ CH ₃	I	СН3
	35	осн ₃	осн3	NH2	I	СН3
	36	осн ₃	осн3	NH ₂	СН3	СН3
*	37	осн ₃	осн3	NH ₂	CN	СН3
	38	осн ₃	осн3	NHCH ₃	I	СН3
	39	осн _з	осн3	NHCH ₃	CH ₃	СН3
*	40	осн ₃	осн3	NHCH ₃	CN	СН3
	41	осн ₃	осн3	NHCH ₂ CH ₃	Н	СН3
	42	осн _з	осн ₃	NHCH ₂ CH ₃	CH ₃	СН3
*	43	осн _з	осн3	NHCH ₂ CH ₃	CN	СН3
	44	осн _з	осн3	N(CH ₃) ₂	H	СН3
	45	осн ³	осн _з	N(CH ₃) ₂	CH ₃	CH ₃
*	46	осн _з	осн _з	N(CH ₃) ₂	CN	СН3
	47	осн _з	осн _з	N(CH ₃)CH ₂ CH ₃	Н	СН3
	48	осн _з	осн _з	N(CH ₃)CH ₂ CH ₃	СН3	СН3
*	49	осн ₃	осн _з	N(CH ₃)CH ₂ CH ₃	CN	СН3
	20	осн _з	осн _з	NHOH	I	СН3
	51	осн ₃	осн _з	ИНОН	СН3	CH ₃

	R_6	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃
	R_5	CN	I	CH ₃	N	I	CH ₃	N	ェ	CH ₃	N	I	CH ₃	ON	ェ	CH ₃	I	СН3	I	CH ₃	I	CH ₃	I	CH ₃	I	CH ₃
(continuación)	R_4	ИНОН	NHC(O)H	NHC(O)H	NHC(O)H	NHC(0)CH ₃	NHC(O)CH ₃	NHC(0)CH ₃	NHC(0)CH ₂ CH ₃	NHC(0)CH ₂ CH ₃	NHC(0)CH ₂ CH ₃	NHC(O)CH ₂ OCH ₃	NHC(O)CH ₂ OCH ₃	NHC(0)CH ₂ OCH ₃	N(CH ₃)OH	N(CH ₃)OH	N(CH ₃)C(O)H	N(CH ₃)C(O)H	$N(CH_3)C(O)CH_3$	N(CH ₃)C(O)CH ₃	N(CH ₃)C(O)CH ₂ CH ₃	N(CH ₃)C(O)CH ₂ CH ₃	$N(CH_3)C(O)CH_2OCH_3$	$N(CH_3)C(O)CH_2OCH_3$	$N(CH_3)C(O)OCH_3$	N(CH ₃)C(O)OCH ₃
	R_3	осн3	осн3	оснз	оснз	осн3	осн3	осн3	осн3	осн3	осн3	осн3	осн3	оснз	осн3	оснз	оснз	оснз	осн3	осн3	осн3	оснз	осн3	осн3	осн3	оснз
	R_2	осн _з	осн _з	осн3	осн ₃	осн ₃	осн ₃	оснз	осн ₃	осн _з	осн _з	осн _з	осн3	осн _з	оснз	осн ₃	осн ₃	оснз	осн _з	осн _з	осн ₃	осн _з	енэо С	осн ³	осн _з	оснз
·	Línea	52	53	54	55	56	22	58	59	09	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75	92

(continuación)	R_3 R_4 R_5 R_6	OCH ₃ N(CH ₃)C(O)OCH ₂ CH ₃ H CH ₃	OCH ₃ N(CH ₃)C(O)OCH ₂ CH ₃ CH ₃ CH ₃	OCH ₃ N(CH ₃)C(O)OCH ₂ CH ₂ =CH ₂ H CH ₃	OCH ₃ $N(CH_3)C(O)OCH_2CH_2=CH_2$ CH_3 CH_3	CH ₂ =CH ₂ OC(O)OCH ₂ -CH ₂ =CH ₂ OCH ₂ OCH ₃ H CH ₃	CH ₂ =CH ₂ OC(O)OCH ₂ -CH ₂ =CH ₂ OCH ₂ OCH ₂ CH ₃ H CH ₃	OH ОСН ₂ ОСН ₃ H СН ₃	ОН ОСН ₂ ОСН ₂ СН ₃ Н СН ₃	OCH ₃ H CH ₃	ОСН ₃ СН ₃ Н СН ₃	ОСН ₃ СН ₂ СН ₃ Н СН ₃	OCH ₃ OH H CH ₃	OCH ₃ OH CH ₃ CH ₃	OCH ₃ H CH ₃	осн ₃ осн ₂ осн ₃ н сн ₃	осн ₃ осн ₂ осн ₂ сн ₃ н сн ₃	OCH ₃ OCH ₂ C(O)CH ₃ H CH ₃	OCH ₃ OCH ₂ C(O)CH ₂ CH ₃ H CH ₃	OCH ₃ OC(O)CH ₃ H CH ₃	осн ₃ ос(о) сн ₂ сн ₃ н сн ₃	OCH ₃ OC(S)(<i>N</i> -imidazole) H CH ₃	OCH ₃ OC(O)OCH ₃ H CH ₃	OCH ₃ OC(O)OCH ₂ CH ₂ =CH ₂ H CH ₃	OCH ₃ OC(O)NHCH ₃ H CH ₃	OCH. H
	R ₃	осн3	осн _з	осн3	осн3	OC(0)OCH ₂ -C	OC(0)OCH ₂ -C	ЮН	ЮН	осн3	осн3	осн3	осн3	осн3	осн _з	осн3	осн3	осн3	осн3	осн3	осн3	осн3	осн3	осн3	осн3	OCH
	R_2	осн ₃	осн3	оснз	ОСН3	OC(0)OCH ₂ -CH ₂ =CH ₂	OC(0)OCH ₂ -CH ₂ =CH ₂	НО	НО	СН3	СН3	CH ₃	СН3	СН3	CH ₃	CH ₃	СН3	СН3	СН3	СН3	СН3	СН3	СН3	CH ₃	СН3	CH.
	Línea	77	78	62	80	81	82	83	84	85	98	87	88	88	06	91	95	93	94	95	96	26	86	66	100	101
				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		

	Línea	R_2	R ₃	R_4	R_5	R_{6}
*	102	CH ₃	оснз	OC(O)NHCH ₂ CH ₂ OCH ₃	I	CH ₃
	103	CH ₃	осн _з	ONH ₂	I	CH ₃
	104	CH ₃	осн ₃	O-N=CH ₂	I	CH ₃
*	105	CH ₃	осн	O-N=C(CH ₃)CH ₂ OCH ₃	I	CH ₃
*	106	CH ₃	ОСН3	O-N=C(CH ₃)CH ₂ SCH ₃	I	CH ₃
*	107	CH ₃	осн3	O-N=C(CH ₃)CH ₂ N(CH ₃) ₂	I	CH ₃
	108	CH ₃	осн ₃	O-NHCH ₃	I	CH ₃
	109	CH ₃	осн ₃	O-N(CH ₃)C(O)H	I	CH ₃
	110	CH ₃	осн ₃	O-N(CH ₃)C(O)CH ₃	I	CH ₃
*	111	СН3	осн	O-NHSO ₂ NH ₂	I	CH ₃
*	112	CH ₃	осн3	O-NHSO ₂ CH ₃	I	CH ₃
	113	CH ₃	оснз	NH ₂	エ	CH ₃
	114	CH ₃	осн ₃	NH2	CH ₃	CH ₃
*	115	CH ₃	осн _з	NH2	CN	CH ₃
	116	CH ₃	осн ₃	NHCH ₃	Н	CH ₃
	117	СН3	осн _з	NHCH ₃	CH ₃	CH ₃
*	118	CH ₃	осн _з	NHCH ₃	NO	CH ₃
	119	CH ₃	осн _з	NHCH ₂ CH ₃	I	CH ₃
	120	CH ₃	осн _з	NHCH ₂ CH ₃	CH ₃	CH ₃
*	121	CH ₃	осн _з	NHCH ₂ CH ₃	CN	CH ₃
	122	CH ₃	осн _з	N(CH ₃) ₂	I	CH ₃
	123	CH ₃	осн _з	N(CH ₃) ₂	CH ₃	CH ₃
*	124	CH ₃	осн _з	N(CH ₃) ₂	CN	CH ₃
	125	CH ₃	оснз	N(CH ₃)CH ₂ CH ₃	I	CH ₃
	126	CH ₃	осн _з	N(CH ₃)CH ₂ CH ₃	СН3	CH ₃

R, R.		H CH ₃	CH ₃ CH ₃	CN CH ₃	H CH ₃	CH ₃ CH ₃	CN CH ₃	H CH ₃	CH ₃ CH ₃	CN CH ₃	H CH ₃	CH ₃ CH ₃	CN CH ₃	H CH ₃	CH ₃ CH ₃	CN CH ₃	Н СН3	CH ₃ CH ₃	H CH ₃	CH ₃ CH ₃	Н СН3	CH ₃ CH ₃		13 Н СН3
R _A	N(CH ₃)CH ₂ CH ₃	НОНИ	НОНИ	НОНИ	NHC(O)H	NHC(O)H	NHC(O)H	NHC(0)CH ₃	NHC(O)CH ₃	NHC(0)CH ₃	NHC(O)CH ₂ CH ₃	NHC(0)CH ₂ CH ₃	NHC(0)CH ₂ CH ₃	NHC(0)CH ₂ OCH ₃	NHC(0)CH ₂ OCH ₃	NHC(0)CH ₂ OCH ₃	N(CH ₃)OH	N(CH ₃)OH	N(CH ₃)C(O)H	N(CH ₃)C(O)H	N(CH ₃)C(O)CH ₃	N(CH ₃)C(O)CH ₃		$N(CH_3)C(O)CH_2CH_3$
R	OCH ₃	осн3	осн3	осн	ОСН3	ОСН3	оснз	осн3	осн3	осн	осн3	ОСН3	осн3	осн3	осн3	оснз	OCH ₃	осн3	осн3	OCH ₃	осн3	осн3		
R,	CH ₃	CH ₃	СН3	СН3	СН3	CH ₃	СН3	СН3	CH ₃	СН3	CH ₃	СН3	СН3	СН3	СН3	СН3	СН3	СН3	СН3	СН3	СН3	СН3		C _I 3
Línea	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	,	4

	Línea	R ₂	R ₃	R	Ŗ	R
*	152	CH ₃	оснз	N(CH ₃)C(O)CH ₂ OCH ₃	CH ₃	СН3
	153	СН3	осн3	N(CH ₃)C(O)OCH ₃	I	CH ₃
	154	СН3	осн3	N(CH ₃)C(O)OCH ₃	CH ₃	CH ₃
	155	СН3	осн	N(CH ₃)C(O)OCH ₂ CH ₃	I	CH ₃
	156	СН3	осн3	N(CH ₃)C(O)OCH ₂ CH ₃	CH ₃	CH ₃
*	157	CH ₃	осн3	N(CH ₃)C(O)OCH ₂ CH ₂ =CH ₂	I	CH ₃
*	158	CH ₃	оснз	N(CH ₃)C(O)OCH ₂ CH ₂ =CH ₂	CH ₃	CH ₃
*	159	CH ₂ CH ₃	оснз	I	I	CH ₃
*	160	CH ₂ CH ₃	оснз	CH ₃	I	CH ₃
*	161	СН2СН3	осн	сн ₂ сн ₃	I	СН3
*	162	CH ₂ CH ₃	осн3	НО	I	СН3
*	163	CH ₂ CH ₃	осн3	НО	CH ₃	СН3
*	164	CH ₂ CH ₃	оснз	оснз	I	СН3
*	165	CH ₂ CH ₃	оснз	осн ₂ осн ₃	I	CH ₃
*	166	CH ₂ CH ₃	осн _з	OCH ₂ OCH ₂ CH ₃	Н	CH ₃
*	167	СН2СН3	осн	OCH ₂ C(O)CH ₃	I	СН3
*	168	CH ₂ CH ₃	оснз	OCH ₂ C(O)CH ₂ CH ₃	I	СН3
*	169	CH ₂ CH ₃	осн ₃	OC(O)CH ₃	I	CH ₃
*	170	CH ₂ CH ₃	осн _з	OC(0)CH ₂ CH ₃	Н	СН3
*	171	CH ₂ CH ₃	OCH ₃	OC(S)(N-imidazole)	н	CH ₃
*	172	CH ₂ CH ₃	осн _з	OC(0)OCH ₃	Н	CH ₃
*	173	CH ₂ CH ₃	OCH ₃	$OC(0)OCH_2CH_2 = CH_2$	Н	CH ₃
	174	CH ₂ CH ₃	OCH ₃	OC(O)NHCH ₃	I	CH ₃
	175	CH ₂ CH ₃	осн _з	OC(O)NHCH ₂ CH ₃	Н	CH ₃
*	176	CH ₂ CH ₃	оснз	OC(O)NHCH ₂ CH ₂ OCH ₃	I	СН3

	R_{6}	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СН3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СН3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃
	R ₅	I	I	I	I	I	I	I	I	Н	I	I	CH ₃	CN	I	CH ₃	CN	I	CH ₃	CN	I	CH ₃	ON	Н	CH ₃	CN
(continuación)	R ₄	ONH ₂	O-N=CH ₂	$O-N=C(CH_3)CH_2OCH_3$	O-N=C(CH ₃)CH ₂ SCH ₃	$O-N=C(CH_3)CH_2N(CH_3)_2$	O-NHCH ₃	O-N(СН ₃)С(О)Н	O-N(CH ₃)C(O)CH ₃	O-NHSO ₂ NH ₂	O-NHSO ₂ CH ₃	NH ₂	NH ₂	NH ₂	NHCH ₃	NHCH ₃	NHCH ₃	NHCH ₂ CH ₃	NHCH ₂ CH ₃	NHCH ₂ CH ₃	N(CH ₃) ₂	N(CH ₃) ₂	N(CH ₃) ₂	N(CH ₃)CH ₂ CH ₃	N(CH ₃)CH ₂ CH ₃	N(CH ₃)CH ₂ CH ₃
	R ₃	осн3	осн ₃	осн	осн	ОСН3	осн	оснз	осн ₃	осн ₃	осн	осн	осн	оснз	осн ₃	оснз	осн	осн3	осн _з	оснз	осн	осн ₃	осн	осн _з	осн	осн3
	R_2	CH ₂ CH ₃	CH ₂ CH ₃	CH ₂ CH ₃	СН2СН3	CH ₂ CH ₃	CH ₂ CH ₃	СН2СН3	CH ₂ CH ₃	сн ₂ сн ₃	CH ₂ CH ₃	CH ₂ CH ₃	CH ₂ CH ₃	CH ₂ CH ₃	CH ₂ CH ₃	СН2СН3	CH ₂ CH ₃	CH ₂ CH ₃	СН2СН3							
	Línea	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201

	Línea	R_2	R_3	R_4	R_5	R_{6}
	202	CH ₂ CH ₃	оснз	НОНИ	Ŧ	CH ₃
	203	CH ₂ CH ₃	осн ₃	НОНИ	CH ₃	CH ₃
	204	CH ₂ CH ₃	оснз	НОН	ON	CH ₃
	205	СН2СН3	осн	NHC(O)H	I	СН3
	206	CH ₂ CH ₃	осн3	NHC(O)H	CH ₃	CH ₃
J.	207	CH ₂ CH ₃	осн3	NHC(O)H	CN	CH ₃
	208	CH ₂ CH ₃	оснз	NHC(0)CH ₃	I	СН3
	209	CH ₂ CH ₃	осн ₃	NHC(0)CH ₃	CH ₃	CH ₃
J.	210	CH ₂ CH ₃	оснз	NHC(0)CH ₃	ON	CH ₃
	211	сн2сн3	осн	NHC(O)CH ₂ CH ₃	I	СН3
	212	CH ₂ CH ₃	осн3	NHC(O)CH ₂ CH ₃	CH ₃	CH ₃
J.	213	CH ₂ CH ₃	осн3	NHC(O)CH ₂ CH ₃	CN	CH ₃
	214	CH ₂ CH ₃	оснз	NHC(0)CH ₂ OCH ₃	I	СН3
	215	CH ₂ CH ₃	осн3	NHC(0)CH ₂ OCH ₃	CH ₃	CH ₃
	216	CH ₂ CH ₃	оснз	NHC(0)CH ₂ OCH ₃	ON	CH ₃
	217	СН2СН3	осн	N(CH ₃)OH	I	СН3
	218	CH ₂ CH ₃	оснз	N(CH ₃)OH	CH ₃	CH ₃
	219	CH ₂ CH ₃	оснз	N(CH ₃)C(O)H	I	CH ₃
	220	CH ₂ CH ₃	оснз	N(CH ₃)C(O)H	CH ₃	CH ₃
	221	CH ₂ CH ₃	OCH ₃	N(CH ₃)C(O)CH ₃	I	CH ₃
	222	CH ₂ CH ₃	оснз	N(CH ₃)C(O)CH ₃	CH ₃	СН3
	223	CH ₂ CH ₃	осн _з	N(CH ₃)C(O)CH ₂ CH ₃	Н	CH ₃
	224	CH ₂ CH ₃	оснз	N(CH ₃)C(O)CH ₂ CH ₃	CH ₃	CH ₃
*	225	CH ₂ CH ₃	OCH ₃	N(CH ₃)C(O)CH ₂ OCH ₃	Н	CH ₃
ا بد	226	CH ₂ CH ₃	оснз	N(CH ₃)C(O)CH ₂ OCH ₃	СН3	СН3

Línea	R ₂	R ₃	R ₄	R ₅	R ₆
_	CH ₂ CH ₃	осн3	N(CH ₃)C(O)OCH ₃	I	СН3
-	CH ₂ CH ₃	оснз	N(CH ₃)C(O)OCH ₃	CH ₃	CH ₃
	CH ₂ CH ₃	осн3	N(CH ₃)C(O)OCH ₂ CH ₃	I	CH ₃
	CH ₂ CH ₃	осн	N(CH ₃)C(O)OCH ₂ CH ₃	CH ₃	СН3
	СН ₂ СН ₃	осн	N(CH ₃)C(O)OCH ₂ CH ₂ =CH ₂	I	CH ₃
	СН2СН3	оснз	N(CH ₃)C(O)OCH ₂ CH ₂ =CH ₂	CH ₃	CH ₃
	осн ₃	оснз	I	I	Н
	осн ₂ сн ₃	осн ₂ сн ₃	Τ	I	Ŧ
1	осн ₃	оснз	CH ₃	I	Ŧ
	осн ₂ сн ₃	осн ₂ сн ₃	СН3	I	Ŧ
	осн ₃	осн	СН2СН3	エ	Ŧ
	OCH ₂ CH ₃	осн ₂ сн ₃	СН2СН3	I	I
	оснз	оснз	НО	I	т
	осн ₂ сн ₃	осн ₂ сн ₃	НО	I	н
	осн ₃	осн3	НО	СН3	H
	осн ₂ сн ₃	осн ₂ сн ₃	НО	CH ₃	Н
	осн ₃	осн	осн	エ	H
	осн ₂ сн ₃	осн ₂ сн ₃	OCH ₂ CH ₃	I	Ŧ
	оснз	оснз	осн ₂ осн ₃	I	H
	осн ₃	осн3	OCH ₂ OCH ₂ CH ₃	I	Н
	осн ₃	осн3	OCH ₂ C(O)CH ₃	I	H
	осн _з	осн	OCH ₂ C(O)CH ₂ CH ₃	I	Н
	осн ₃	оснз	OC(O)CH ₃	I	H
	оснз	осн	OC(O)CH ₂ CH ₃	I	Ŧ
	осн ₃	оснз	OC(S)(N-imidazole)	I	Н

	Línea	R ₂	R_3	R_4	R_5	R_{6}
*	252	осн3	осн _з	OC(0)OCH ₃	н	工
*	253	осн ₃	осн ₃	OC(0)OCH ₂ CH ₂ =CH ₂	I	I
	254	оснз	оснз	OC(O)NHCH ₃	I	工
	255	осн	осн	OC(O)NHCH ₂ CH ₃	I	I
*	256	осн ₃	ОСН3	OC(O)NHCH2CH2OCH3	I	I
	257	осн ₃	осн ₃	ONH ₂	I	I
	258	оснз	оснз	O-N=CH ₂	I	I
*	259	осн ₃	осн ₃	O-N=C(CH ₃)CH ₂ OCH ₃	I	I
*	260	оснз	осн3	O-N=C(CH ₃)CH ₂ SCH ₃	I	工
*	261	осн	осн	O-N=C(CH ₃)CH ₂ N(CH ₃) ₂	I	I
	262	осн ₃	осн3	O-NHCH ₃	I	I
	263	осн ₃	осн3	O-N(CH ₃)C(O)H	I	I
	264	осн3	осн3	O-N(CH ₃)C(O)CH ₃	I	Ŧ
*	265	осн3	оснз	O-NHSO ₂ NH ₂	I	Ŧ
*	266	осн ₃	осн _з	O-NHSO ₂ CH ₃	Н	Н
	267	осн _з	OCH ₃	NH ₂	Н	Н
	268	осн _з	осн _з	NH_2	CH ₃	I
*	269	осн3	осн _з	NH_2	CN	I
	270	осн3	оснз	NHCN ₃	Н	Ŧ
	271	осн ₃	осн _з	NHCH ₃	CH ₃	Н
*	272	осн _з	осн _з	NHCH ₃	CN	Н
	273	осн _з	осн _з	NHCH ₂ CH ₃	Н	Н
	274	осн _з	осн _з	NHCH ₂ CH ₃	CH ₃	I
*	275	OCH ₃	OCH ₃	NHCH ₂ CH ₃	CN	Н
	276	осн _з	ОСН3	N(CH ₃) ₂	I	H

(continuación)

+	Línea	R_2	R_3	R_4	R ₅	Re
(1	277	осн ₃	осн3	N(CH ₃) ₂	CH ₃	Ŧ
٠,	278	осн _з	осн3	N(CH ₃) ₂	ON	Ŧ
' '	279	осн ₃	оснз	N(CH ₃)CH ₂ CH ₃	エ	Ŧ
	280	осн _з	осн3	N(CH ₃)CH ₂ CH ₃	СН3	T
	281	осн ₃	осн3	N(CH ₃)CH ₂ CH ₃	NO	I
	282	осн _з	осн3	НОНИ	I	I
	283	осн _з	оснз	НОНИ	CH ₃	I
	284	осн ₃	осн3	НОНИ	ON	I
	285	осн _з	оснз	NHC(O)H	I	I
	286	ОСН3	осн	NHC(O)H	СН3	I
' '	287	осн _з	осн	NHC(O)H	NO.	I
' '	288	ОСН3	осн	NHC(O)CH ₃	エ	I
	289	осн _з	осн3	NHC(O)CH ₃	CH ₃	T
	290	осн _з	осн3	NHC(O)CH ₃	CN	H
• •	291	осн _з	осн3	NHC(O)CH ₂ CH ₃	I	I
	292	осн	осн	NHC(O)CH ₂ CH ₃	СН3	T
	293	осн _з	осн3	NHC(O)CH ₂ CH ₃	NO	T
• •	294	осн ₃	осн3	NHC(O)CH ₂ OCH ₃	I	I
	295	осн _з	осн3	NHC(0)CH ₂ OCH ₃	CH ₃	I
	296	осн _з	осн3	NHC(O)CH ₂ OCH ₃	NO	I
٠,	297	осн _з	осн3	N(CH ₃)OH	I	I
• •	298	осн _з	осн3	N(CH ₃)OH	СН3	Ŧ
. 4	299	осн _з	осн3	N(CH ₃)C(O)H	H	H
	300	OCH ₃	осн _з	N(CH ₃)C(O)H	CH ₃	Н
٠,	301	осн _з	осн3	N(CH ₃)C(O)CH ₃	I	I
1						

	Línea	R_2	R_3	R_4	R_5	R_6
	302	осн _з	оснз	$N(CH_3)C(O)CH_3$	CH ₃	I
	303	осн _з	осн3	N(CH ₃)C(O)CH ₂ CH ₃	I	工
	304	осн ₃	осн3	N(CH ₃)C(O)CH ₂ CH ₃	CH ₃	Ŧ
*	305	осн ₃	осн3	N(CH ₃)C(O)CH ₂ OCH ₃	I	Ŧ
*	306	осн3	осн3	N(CH ₃)C(O)CH ₂ OCH ₃	CH ₃	I
	307	осн ₃	осн3	N(CH ₃)C(O)OCH ₃	I	I
	308	осн3	осн3	N(CH ₃)C(O)OCH ₃	CH ₃	Ŧ
	309	осн ₃	осн3	N(CH ₃)C(O)OCH ₂ CH ₃	I	エ
	310	осн3	оснз	N(CH ₃)C(O)OCH ₂ CH ₃	CH ₃	Ŧ
*	311	осн ₃	осн ₃	$N(CH_3)C(O)OCH_2CH_2=CH_2$	I	I
*	312	осн3	осн3	$N(CH_3)C(O)OCH_2CH_2=CH_2$	CH ₃	I
*	313	осн ₃	осн3	осн ₃	I	сн ₂ он
*	314	осн ₂ сн ₃	OCH ₂ CH ₃	осн ₂ сн ₃	I	сн ₂ он
*	315	осн _з	осн _з	осн ₃	I	CH ₂ OC(C ₆ H ₅) ₃
*	316	осн ₂ сн ₃	OCH ₂ CH ₃	OCH ₂ CH ₃	Н	CH ₂ OC(C ₆ H ₅) ₃
*	317	енэо В нэо	осн _з	осн3	Н	CH ₂ OCH ₃
*	318	осн ₂ сн ₃	OCH ₂ CH ₃	осн ₂ сн ₃	I	CH ₂ OCH ₂ CH ₃
*	319	⁸ нэо	осн3	осн3	Н	CH ₂ OCH ₂ OCH ₃
*	320	енэо Эсн ³	осн3	осн ₃	Н	CH2OCH2OCH2CH3
*	321	90СН3	осн _з	осн ₃	I	CH ₂ OCH ₂ C(O)CH ₃
*	322	осн _з	оснз	осн ₃	I	CH ₂ OCH ₂ C(0)CH ₂ CH ₃
*	323	⁸ нэо	осн _з	осн ₃	Н	CH ₂ OC(0)CH ₃
*	324	90СН3	осн _з	осн ₃	I	CH ₂ OC(0)CH ₂ CH ₃
*	325	⁸ нэо	осн3	осн3	Н	$CH_2OC(S)(N-imidazole)$
*	326	осн ³	осн3	осн ₃	Н	CH ₂ OC(0)OCH ₃

	Línea	R_2	R ₃	R_4	R ₅	R_6
*	327	оснз	осн _з	осн3	H	CH ₂ OC(0)OCH ₂ CH ₂ =CH ₂
*	328	осн3	осн _з	осн ₃	I	CH ₂ OC(O)NHCH ₃
*	329	осн3	осн ₃	осн ₃	Н	CH ₂ OC(O)NHCH ₂ CH ₃
*	330	осн3	осн _з	осн3	Н	CH ₂ ONH ₂
*	331	осн3	осн _з	осн _з	Н	CH ₂ ON=CH ₂
*	332	оснз	осн _з	осн3	Н	CH ₂ O-N=C(CH ₃)CH ₂ OCH ₃
*	333	оснз	осн _з	осн3	Н	CH ₂ O-N=C(CH ₃)CH ₂ SCH ₃
*	334	осн3	осн _з	осн ₃	I	$CH_2ON = C(CH_3)CH_2N(CH_3)_2$
*	335	оснз	осн ₃	осн ₃	I	CH ₂ O-NHCH ₃
*	336	осн3	осн _з	осн3	Ŧ	CH ₂ O-N(CH ₃)C(O)H
*	337	осн3	осн3	осн3	I	CH ₂ O-N(CH ₃)C(O)CH ₃
*	338	осн3	осн3	осн3	I	CH ₂ O-NHSO ₂ NH ₂
*	339	осн3	осн _з	осн3	I	CH ₂ O-NHSO ₂ CH ₃
*	340	осн3	осн _з	осн _з	I	CH ₂ NH ₂
*	341	осн _з	осн _з	осн ₃	Н	CH ₂ NHCH ₃
*	342	осн _з	осн _з	осн3	Н	CH ₂ NHCH ₂ CH ₃
*	343	OCH ₃	осн _з	осн _з	Н	$CH_2N(CH_3)_2$
*	344	осн3	осн _з	осн3	I	CH ₂ N(CH ₃)CH ₂ CH ₃
*	345	осн _з	осн _з	осн ₃	Н	СН ₂ ИНОН
*	346	осн ₃	осн ₃	осн _з	I	CH ₂ NHC(O)H
*	347	осн3	осн _з	осн ₃	I	CH ₂ NHC(0)CH ₃
*	348	осн _з	осн _з	осн _з	Н	$CH_2NHC(0)CH_2CH_3$
*	349	осн3	осн _з	осн3	I	CH ₂ NHC(O)CH ₂ OCH ₃
*	350	осн3	осн _з	осн3	I	CH ₂ N(CH ₃)OH
*	351	оснз	OCH ₃	OCH ₃	I	СН ₂ N(СН ₃)С(О)Н

Línea	R_2	R ₃	R ₄	R ₅	R_{6}
352	осн3	осн3	осн ₃	Ŧ	CH ₂ N(CH ₃)C(O)CH ₃
353	осн ₃	осн3	осн3	I	CH ₂ N(CH ₃)C(O)CH ₂ CH ₃
354	осн ₃	осн3	осн ₃	エ	CH ₂ N(CH ₃)C(O)CH ₂ OCH ₃
355	осн3	осн	осн3	Ŧ	CH ₂ N(CH ₃)C(O)OCH ₃
356	осн _з	осн3	осн3	Н	CH ₂ N(CH ₃)C(O)OCH ₂ CH ₃
357	осн3	осн3	осн3	I	N(CH ₃)C(O)OCH ₂ CH ₃
358	осн3	осн3	осн3	I	N(CH ₃)C(O)OCH ₂ CH ₂ =CH ₂
359	осн ₃	осн3	осн3	I	$CH_2N(CH_3)C(0)OCH_2CH_2 = CH_2$
360	осн ₃	осн3	осн ₃	I	CH=O
361	осн3	осн3	осн3	I	CH=N-OH
362	осн3	осн3	осн ₃	I	CH=N-OCH ₃
363	осн3	осн3	осн3	I	CH=N-OCH ₂ CH ₃
364	осн ₃	осн3	осн3	I	CH=N-OC(O)CH ₃
365	осн ₃	осн ₃	осн ₃	I	CH=N-OC(0)CH ₂ OCH ₃
366	осн ₃	осн ₃	осн3	Н	CH=N-OSO ₂ NH ₂
367	осн3	осн3	осн3	I	CH=N-NHC(O)CH ₃
368	осн3	осн3	осн3	I	CH=N-NHC(O)C ₆ H ₅
369	осн3	осн3	осн3	I	CH=N-NHC(O)OCH ₃
370	осн3	осн3	осн3	Н	CH=N-NHC(0)OC ₆ H ₅
371	осн ₃	осн3	осн ₃	Н	CH=N-NHC(O)NH ₂
372	осн _з	OCH ₃	осн ₃	Н	CH=N-NHSO ₂ CH ₃
373	осн _з	OCH ₃	осн ₃	Н	CH=CH ₂
374	осн3	осн3	осн3	Н	CH=CHCH ₃
375	OCH ₃	осн3	OCH ₃	Н	CH=CCI ₂
376	осн ₃	осн3	0=		СН3

	Línea	R_2	R ₃	R ₄	R ₅	R_{6}
*	377	осн _з	оснз	HO-N=		CH ₃
	378	осн ₃	осн3	=N-OCH ₃		CH ₃
	379	осн ₃	оснз	=N-OCH ₂ CH ₃		CH ₃
*	380	оснз	осн	=N-OC(O)CH ₃		СН3
*	381	осн3	оснз	=N-OC(O)CH ₂ OCH ₃		СН3
*	382	осн ₃	оснз	=N-OSO ₂ NH ₂		СН3
*	383	осн ₃	осн3	=N-NHC(O)CH ₃		CH ₃
	384	осн ₃	осн _з	=N-NHC(O)C ₆ H ₅		CH ₃
*	385	осн ₃	оснз	=N-NHC(O)OCH ₃		CH ₃
*	386	осн	осн	=N-NHC(O)OC ₆ H ₅		СН3
*	387	ОСН3	оснз	=N-NHC(O)NH ₂		СН3
*	388	осн3	оснз	=N-NHSO ₂ CH ₃		СН3
	389	осн ₃	оснз	=CH ₂		СН3
	390	осн ₃	осн _з	=СНСН3		CH ₃
	391	осн ₃	осн _з	=CCl ₂		CH ₃
	392	СН3	осн _з	0=		CH ₃
*	393	CH ₃	оснз	HO-N=		CH ₃
	394	CH ₃	оснз	=N-OCH ₃		CH ₃
	395	СН3	оснз	=N-OCH ₂ CH ₃		СН3
*	396	CH ₃	осн _з	=N-OC(O)CH ₃		CH ₃
*	397	CH ₃	оснз	=N-OC(0)CH2OCH3		CH ₃
*	398	СН3	осн	=N-OSO ₂ NH ₂		СН3
*	399	CH ₃	осн _з	=N-NHC(O)CH3		CH ₃
*	400	CH ₃	осн _з	=N-NHC(O)C ₆ H ₅		СН3
*	401	CH ₃	осн _з	=N-NHC(0)OCH ₃		СН3

	Línea	R_2	R ₃	R ₄ R ₅	R_{6}
*	402	СН3	осн _з	=N-NHC(O)OC ₆ H ₅	CH ₃
*	403	СН3	осн _з	=N-NHC(O)NH ₂	СН3
*	404	CH ₃	осн ₃	=N-NNSO ₂ CN ₃	CH ₃
	405	CH ₃	осн _з	=CH ₂	СН3
	406	CH ₃	осн _з	=СНСН3	CH ₃
	407	CH ₃	осн _з	=CCl ₂	CH ₃
	408	СН2СН3	осн ₃	0=	СН3
*	409	СН2СН3	осн ₃	HO-N=	СН3
	410	CH ₂ CH ₃	осн ₃	=N-OCH ₃	CH ₃
	411	СН ₂ СН ₃	осн3	=N-OCH ₂ CH ₃	СН3
*	412	СН2СН3	осн3	=N-OC(O)CH ₃	СН3
*	413	СН2СН3	ОСН3	=N-OC(O)CH ₂ OCH ₃	СН3
*	414	CH ₂ CH ₃	осн3	=N-OSO ₂ NH ₂	CH ₃
*	415	СН ₂ СН ₃	осн ₃	=N-NHC(O)CH ₃	СН3
*	416	CH ₂ CH ₃	осн ₃	=N-NHC(O)C ₆ H ₅	CH ₃
*	417	сн ₂ сн ₃	осн _з	=N-NHC(O)OCH ₃	СН3
*	418	СН2СН3	осн3	=N-NHC(O)OC ₆ H ₅	СН3
*	419	CH ₂ CH ₃	осн3	=N-NHC(O)NH ₂	CH ₃
*	420	CH ₂ CH ₃	осн ₃	=N-NHSO ₂ CH ₃	CH ₃
*	421	CH ₂ CH ₃	осн _з	=CH ₂	CH ₃
	422	сн ₂ сн ₃	осн _з	=CHCH ₃	СН3
	423	сн ₂ сн ₃	осн _з	=CCl ₂	СН3
	424	осн _з	осн ³	0=	Н
*	425	OCH ₃	OCH ₃	HO-N=	Н
	426	OCH ₃	осн ³	=N-OCH ₃	Н

					•	
	Línea	R_2	R ₃	R ₄	R ₅	R_{6}
	427	осн3	осн ³	=N-OCH ₂ CH ₃		Н
*	428	осн ₃	осн _з	=N-OC(0)CH ₃		Ŧ
*	429	осн3	90СН3	=N-OC(O)CH ₂ OCH ₃		Н
*	430	осн3	енэо	=N-OSO ₂ NH ₂		Ŧ
*	431	осн3	осн _з	=N-NHC(O)CH ₃		工
*	432	оснз	осн _з	=N-NHC(O)C ₆ H ₅		Ŧ
*	433	осн3	90СН3	=N-NHC(0)OCH ₃		Н
*	434	осн ₃	осн ³	=N-NHC(O)OC ₆ H ₅		Н
*	435	осн ₃	осн _з	=N-NHC(O)NH ₂		Н
*	436	оснз	осн _з	=N-NHSO ₂ CH ₃		Ŧ
	437	осн3	осн ³	=CH ₂		Н
	438	OCH ₃	осн _з	=CHCH ₃		Н
	439	осн ₃	осн _з	=CCl ₂		Н

у	
Tabla 1	Un compuesto de la fórmula (I-1), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 2	Un compuesto de la fórmula (I-1), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 3	Un compuesto de la fórmula (I-1), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 4	Un compuesto de la fórmula (I-1), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 5	Un compuesto de la fórmula (I-1), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 6	Un compuesto de la fórmula (I-1), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 7	Un compuesto de la fórmula (I-2), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 8	Un compuesto de la fórmula (I-2), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 9	Un compuesto de la fórmula (I-2), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 10	Un compuesto de la fórmula (I-2), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 11	Un compuesto de la fórmula (I-2), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 12	Un compuesto de la fórmula (I-2), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 13	Un compuesto de la fórmula (I-3), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 14	Un compuesto de la fórmula (I-3), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 15	Un compuesto de la fórmula (I-3), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 16	Un compuesto de la fórmula (I-3), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 17	Un compuesto de la fórmula (I-3), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 18	Un compuesto de la fórmula (I-3), en la que R ₁ es 1-metil butilo, la configuración del átomo de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 19	Un compuesto de la fórmula (I-4), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 20	Un compuesto de la fórmula (I-4), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 21	Un compuesto de la fórmula (I-4), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la

	Tabla X.
Tabla 22	Un compuesto de la fórmula (I-4), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 23	Un compuesto de la fórmula (I-4), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 24	Un compuesto de la fórmula (I-4), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 25	Un compuesto de la fórmula (I-5), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 26	Un compuesto de la fórmula (I-5), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 27	Un compuesto de la fórmula (I-5), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 28	Un compuesto de la fórmula (I-5), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 29	Un compuesto de la fórmula (I-5), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 30	Un compuesto de la fórmula (I-5), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 31	Un compuesto de la fórmula (I-6), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 32	Un compuesto de la fórmula (I-6), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 33	Un compuesto de la fórmula (I-6), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 34	Un compuesto de la fórmula (I-6), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 35	Un compuesto de la fórmula (I-6), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 36	Un compuesto de la fórmula (I-6), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 37	Un compuesto de la fórmula (I-7), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 38	Un compuesto de la fórmula (I-7), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 39	Un compuesto de la fórmula (I-7), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 40	Un compuesto de la fórmula (I-7), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 41	Un compuesto de la fórmula (I-7), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 42	Un compuesto de la fórmula (I-7), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 43	Un compuesto de la fórmula (I-8), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 44	Un compuesto de la fórmula (I-8), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 45	Un compuesto de la fórmula (I-8), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 46	Un compuesto de la fórmula (I-8), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 47	Un compuesto de la fórmula (I-8), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 48	Un compuesto de la fórmula (I-8), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 49	Un compuesto de la fórmula (I-9), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 50	Un compuesto de la fórmula (I-9), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 51	Un compuesto de la fórmula (I-9), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 52	Un compuesto de la fórmula (I-9), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 53	Un compuesto de la fórmula (I-9), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 54	Un compuesto de la fórmula (I-9), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 55	Un compuesto de la fórmula (I-10), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 56	Un compuesto de la fórmula (I-10), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 57	Un compuesto de la fórmula (I-10), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 58	Un compuesto de la fórmula (I-10), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 59	Un compuesto de la fórmula (I-10), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 60	Un compuesto de la fórmula (I-10), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 61	Un compuesto de la fórmula (I-11) en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 62	Un compuesto de la fórmula (I-11), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 63	Un compuesto de la fórmula (I-11), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 64	Un compuesto de la fórmula (I-11), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 65	Un compuesto de la fórmula (I-11), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 66	Un compuesto de la fórmula (I-11), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 67	Un compuesto de la fórmula (I-12), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 68	Un compuesto de la fórmula (I-12), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 69	Un compuesto de la fórmula (I-12), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 70	Un compuesto de la fórmula (I-12), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 71	Un compuesto de la fórmula (I-12), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 72	Un compuesto de la fórmula (I-12), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 73	Un compuesto de la fórmula (I-13), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 74	Un compuesto de la fórmula (I-13), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 75	Un compuesto de la fórmula (I-13), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 76	Un compuesto de la fórmula (I-13), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 77	Un compuesto de la fórmula (I-13), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 78	Un compuesto de la fórmula (I-13), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 79	Un compuesto de la fórmula (I-14), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 80	Un compuesto de la fórmula (I-14), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 81	Un compuesto de la fórmula (I-14), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 82	Un compuesto de la fórmula (I-14), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 83	Un compuesto de la fórmula (I-14), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 84	Un compuesto de la fórmula (I-14), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	439 de la Tabla X.
Tabla 85	Un compuesto de la fórmula (I-15), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 86	Un compuesto de la fórmula (I-15), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 87	Un compuesto de la fórmula (I-15), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 88	Un compuesto de la fórmula (I-15), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 89	Un compuesto de la fórmula (I-15), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 90	Un compuesto de la fórmula (I-15), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 91	Un compuesto de la fórmula (I-16), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 92	Un compuesto de la fórmula (I-16), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 93	Un compuesto de la fórmula (I-16), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 94	Un compuesto de la fórmula (I-16), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 95	Un compuesto de la fórmula (I-16), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 96	Un compuesto de la fórmula (I-16), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 97	Un compuesto de la fórmula (I-17), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 98	Un compuesto de la fórmula (I-17), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 99	Un compuesto de la fórmula (I-17), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 100	Un compuesto de la fórmula (I-17), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 101	Un compuesto de la fórmula (I-17), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 102	Un compuesto de la fórmula (I-17), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 103	Un compuesto de la fórmula (I-18), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 104	Un compuesto de la fórmula (I-18), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 105	Un compuesto de la fórmula (I-18), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 106	Un compuesto de la fórmula (I-18), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 107	Un compuesto de la fórmula (I-18), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 108	Un compuesto de la fórmula (I-18), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 109	Un compuesto de la fórmula (I-19), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 110	Un compuesto de la fórmula (I-19), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 111	Un compuesto de la fórmula (I-19), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 112	Un compuesto de la fórmula (I-19), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 113	Un compuesto de la fórmula (I-19), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 114	Un compuesto de la fórmula (I-19), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 115	Un compuesto de la fórmula (I-20), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 116	Un compuesto de la fórmula (I-20), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 117	Un compuesto de la fórmula (I-20), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 118	Un compuesto de la fórmula (I-20), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 119	Un compuesto de la fórmula (I-20), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 120	Un compuesto de la fórmula (I-20), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 121	Un compuesto de la fórmula (l-21), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 122	Un compuesto de la fórmula (I-21), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 123	Un compuesto de la fórmula (I-21), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 124	Un compuesto de la fórmula (I-21), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 125	Un compuesto de la fórmula (I-21), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 126	Un compuesto de la fórmula (I-21), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	439 de la Tabla X.
Tabla 127	Un compuesto de la fórmula (I-22), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 128	Un compuesto de la fórmula (I-22), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 129	Un compuesto de la fórmula (I-22), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 130	Un compuesto de la fórmula (I-22), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 131	Un compuesto de la fórmula (I-22), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 132	Un compuesto de la fórmula (I-22), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 133	Un compuesto de la fórmula (I-23), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 134	Un compuesto de la fórmula (I-23), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 135	Un compuesto de la fórmula (I-23), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 136	Un compuesto de la fórmula (I-23), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 137	Un compuesto de la fórmula (I-23), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 138	Un compuesto de la fórmula (I-23), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 139	Un compuesto de la fórmula (I-24), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 140	Un compuesto de la fórmula (I-24), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 141	Un compuesto de la fórmula (I-24), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 142	Un compuesto de la fórmula (I-24), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 143	Un compuesto de la fórmula (I-24), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 144	Un compuesto de la fórmula (I-24), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 145	Un compuesto de la fórmula (I-25), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 146	Un compuesto de la fórmula (I-25), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 147	Un compuesto de la fórmula (I-25), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 148	Un compuesto de la fórmula (I-25), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 149	Un compuesto de la fórmula (I-25), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 150	Un compuesto de la fórmula (I-25), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 151	Un compuesto de la fórmula (I-26), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 152	Un compuesto de la fórmula (I-26), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 153	Un compuesto de la fórmula (I-26), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 154	Un compuesto de la fórmula (I-26), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 155	Un compuesto de la fórmula (I-26), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 156	Un compuesto de la fórmula (I-26), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 157	Un compuesto de la fórmula (I-27), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 158	Un compuesto de la fórmula (I-27), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 159	Un compuesto de la fórmula (I-27), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 160	Un compuesto de la fórmula (I-27), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 161	Un compuesto de la fórmula (I-27), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 162	Un compuesto de la fórmula (I-27), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 163	Un compuesto de la fórmula (I-28), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 164	Un compuesto de la fórmula (I-28), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 165	Un compuesto de la fórmula (I-28), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 166	Un compuesto de la fórmula (I-28), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 167	Un compuesto de la fórmula (I-28), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 168	Un compuesto de la fórmula (I-28), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	439 de la Tabla X.
Tabla 169	Un compuesto de la fórmula (I-29), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 170	Un compuesto de la fórmula (I-29), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 171	Un compuesto de la fórmula (I-29), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 172	Un compuesto de la fórmula (I-29), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 173	Un compuesto de la fórmula (I-29), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 174	Un compuesto de la fórmula (I-29), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 175	Un compuesto de la fórmula (I-30), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 176	Un compuesto de la fórmula (I-30), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 177	Un compuesto de la fórmula (I-30), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 178	Un compuesto de la fórmula (I-30), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 179	Un compuesto de la fórmula (I-30), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 180	Un compuesto de la fórmula (I-30), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 181	Un compuesto de la fórmula (I-31), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 182	Un compuesto de la fórmula (I-31), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 183	Un compuesto de la fórmula (I-31), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 184	Un compuesto de la fórmula (I-31), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 185	Un compuesto de la fórmula (I-31), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 186	Un compuesto de la fórmula (I-31), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 187	Un compuesto de la fórmula (I-32), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 188	Un compuesto de la fórmula (I-32), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 189	Un compuesto de la fórmula (I-32), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 190	Un compuesto de la fórmula (I-32), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 191	Un compuesto de la fórmula (I-32), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 192	Un compuesto de la fórmula (I-32), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 193	Un compuesto de la fórmula (I-33), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 194	Un compuesto de la fórmula (I-33), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 195	Un compuesto de la fórmula (I-33), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 196	Un compuesto de la fórmula (I-33), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 197	Un compuesto de la fórmula (I-33), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 198	Un compuesto de la fórmula (I-33), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 199	Un compuesto de la fórmula (I-34), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 200	Un compuesto de la fórmula (l-34), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 201	Un compuesto de la fórmula (I-34), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 202	Un compuesto de la fórmula (I-34), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 203	Un compuesto de la fórmula (I-34), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 204	Un compuesto de la fórmula (I-34), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 205	Un compuesto de la fórmula (I-35), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 206	Un compuesto de la fórmula (I-35), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 207	Un compuesto de la fórmula (I-35), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 208	Un compuesto de la fórmula (I-35), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 209	Un compuesto de la fórmula (I-35), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 210	Un compuesto de la fórmula (I-35), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	Loo L L T L V
Toble 244	439 de la Tabla X.
Tabla 211	Un compuesto de la fórmula (I-36), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 212	Un compuesto de la fórmula (I-36), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
14014 212	de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 213	Un compuesto de la fórmula (I-36), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 214	Un compuesto de la fórmula (I-36), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 215	Un compuesto de la fórmula (I-36), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 216	Un compuesto de la fórmula (I-36), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 217	Un compuesto de la fórmula (I-37), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 218	Un compuesto de la fórmula (I-37), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 219	Un compuesto de la fórmula (I-37), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 220	Un compuesto de la fórmula (I-37), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 221	Un compuesto de la fórmula (I-37), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 222	Un compuesto de la fórmula (I-37), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 223	Un compuesto de la fórmula (I-38), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 224	Un compuesto de la fórmula (I-38), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 225	Un compuesto de la fórmula (I-38), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 226	Un compuesto de la fórmula (I-38), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 227	Un compuesto de la fórmula (I-38), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 228	Un compuesto de la fórmula (I-38), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 229	Un compuesto de la fórmula (I-39), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 230	Un compuesto de la fórmula (I-39), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de
Tabla 231	1 a 439 de la Tabla X. Un compuesto de la fórmula (I-39), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 232	Un compuesto de la fórmula (I-39), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 233	Un compuesto de la fórmula (I-39), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 234	Un compuesto de la fórmula (I-39), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 235	Un compuesto de la fórmula (I-40), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 236	Un compuesto de la fórmula (I-40), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 237	Un compuesto de la fórmula (I-40), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 238	Un compuesto de la fórmula (I-40), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 239	Un compuesto de la fórmula (I-40), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 240	Un compuesto de la fórmula (I-40), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 241	Un compuesto de la fórmula (I-41), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 242	Un compuesto de la fórmula (I-41), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 243	Un compuesto de la fórmula (I-41), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 244	Un compuesto de la fórmula (I-41), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 245	Un compuesto de la fórmula (I-41), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 246	Un compuesto de la fórmula (I-41), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 247	Un compuesto de la fórmula (I-42), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 248	Un compuesto de la fórmula (I-42), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 249	Un compuesto de la fórmula (I-42), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 250	Un compuesto de la fórmula (I-42), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 251	Un compuesto de la fórmula (I-42), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 252	Un compuesto de la fórmula (I-42), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	439 de la Tabla X.
Tabla 253	Un compuesto de la fórmula (I-43), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 254	Un compuesto de la fórmula (I-43), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 255	Un compuesto de la fórmula (I-43), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 256	Un compuesto de la fórmula (I-43), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 257	Un compuesto de la fórmula (I-43), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 258	Un compuesto de la fórmula (I-43), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 259	Un compuesto de la fórmula (I-44), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 260	Un compuesto de la fórmula (I-44), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 261	Un compuesto de la fórmula (I-44), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 262	Un compuesto de la fórmula (I-44), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 263	Un compuesto de la fórmula (I-44), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 264	Un compuesto de la fórmula (I-44), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 265	Un compuesto de la fórmula (I-45), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 266	Un compuesto de la fórmula (I-45), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 267	Un compuesto de la fórmula (I-45), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 268	Un compuesto de la fórmula (I-45), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 269	Un compuesto de la fórmula (I-45), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 270	Un compuesto de la fórmula (I-45), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 271	Un compuesto de la fórmula (I-46), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 272	Un compuesto de la fórmula (I-46), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 273	Un compuesto de la fórmula (I-46), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 274	Un compuesto de la fórmula (I-46), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 275	Un compuesto de la fórmula (I-46), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 276	Un compuesto de la fórmula (I-46), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 277	Un compuesto de la fórmula (I-47), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 278	Un compuesto de la fórmula (I-47), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 279	Un compuesto de la fórmula (I-47), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 280	Un compuesto de la fórmula (I-47), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 281	Un compuesto de la fórmula (I-47), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 282	Un compuesto de la fórmula (I-47), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 283	Un compuesto de la fórmula (I-48), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 284	Un compuesto de la fórmula (I-48), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 285	Un compuesto de la fórmula (I-48), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 286	Un compuesto de la fórmula (I-48), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 287	Un compuesto de la fórmula (I-48), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 288	Un compuesto de la fórmula (I-48), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 289	Un compuesto de la fórmula (I-49), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 290	Un compuesto de la fórmula (I-49), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 291	Un compuesto de la fórmula (I-49), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 292	Un compuesto de la fórmula (I-49), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 293	Un compuesto de la fórmula (I-49), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 294	Un compuesto de la fórmula (I-49), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	439 de la Tabla X.
Tabla 295	Un compuesto de la fórmula (I-50), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 296	Un compuesto de la fórmula (I-50), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 297	Un compuesto de la fórmula (I-50), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 298	Un compuesto de la fórmula (I-50), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 299	Un compuesto de la fórmula (I-50), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 300	Un compuesto de la fórmula (I-50), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 301	Un compuesto de la fórmula (I-51), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 302	Un compuesto de la fórmula (I-51), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 303	Un compuesto de la fórmula (I-51), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 304	Un compuesto de la fórmula (I-51), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 305	Un compuesto de la fórmula (I-51), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 306	Un compuesto de la fórmula (I-51), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 307	Un compuesto de la fórmula (I-52), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 308	Un compuesto de la fórmula (I-52), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 309	Un compuesto de la fórmula (I-52), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 310	Un compuesto de la fórmula (I-52), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 311	Un compuesto de la fórmula (I-52), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 312	Un compuesto de la fórmula (I-52), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 313	Un compuesto de la fórmula (I-53), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 314	Un compuesto de la fórmula (I-53), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 315	Un compuesto de la fórmula (I-53), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 316	Un compuesto de la fórmula (I-53), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 317	Un compuesto de la fórmula (I-53), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 318	Un compuesto de la fórmula (I-53), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 319	Un compuesto de la fórmula (I-54), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 320	Un compuesto de la fórmula (I-54), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 321	Un compuesto de la fórmula (I-54), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 322	Un compuesto de la fórmula (I-54), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 323	Un compuesto de la fórmula (I-54), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 324	Un compuesto de la fórmula (I-54), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 325	Un compuesto de la fórmula (I-55), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 326	Un compuesto de la fórmula (I-55), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 327	Un compuesto de la fórmula (I-55), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 328	Un compuesto de la fórmula (I-55), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 329	Un compuesto de la fórmula (I-55), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 330	Un compuesto de la fórmula (I-55), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 331	Un compuesto de la fórmula (I-56), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 332	Un compuesto de la fórmula (I-56), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 333	Un compuesto de la fórmula (I-56), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 334	Un compuesto de la fórmula (I-56), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 335	Un compuesto de la fórmula (I-56), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 336	Un compuesto de la fórmula (I-56), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	130 de la Tabla Y
Tabla 337	 439 de la Tabla X. Un compuesto de la fórmula (I-57), en la que R₁ es sec-butilo o isopropilo, la configuración del átomo
Tabla 557	de carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 338	Un compuesto de la fórmula (I-57), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 339	Un compuesto de la fórmula (I-57), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 340	Un compuesto de la fórmula (I-57), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 341	Un compuesto de la fórmula (I-57), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 342	Un compuesto de la fórmula (I-57), en la que R1 es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 343	Un compuesto de la fórmula (I-58), en la que R1 es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 344	Un compuesto de la fórmula (I-58), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 345	Un compuesto de la fórmula (I-58), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 346	Un compuesto de la fórmula (I-58), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 347	Un compuesto de la fórmula (I-58), en la que R1 es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 348	Un compuesto de la fórmula (I-58), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 349	Un compuesto de la fórmula (I-59), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 350	Un compuesto de la fórmula (I-59), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 351	Un compuesto de la fórmula (I-59), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 352	Un compuesto de la fórmula (I-59), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 353	Un compuesto de la fórmula (I-59), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 354	Un compuesto de la fórmula (I-59), en la que R1 es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 355	Un compuesto de la fórmula (I-60), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 356	Un compuesto de la fórmula (I-60), en la que R1 es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 357	Un compuesto de la fórmula (I-60), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 358	Un compuesto de la fórmula (I-60), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 359	Un compuesto de la fórmula (I-60), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 360	Un compuesto de la fórmula (I-60), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 361	Un compuesto de la fórmula (I-61), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 362	Un compuesto de la fórmula (I-61), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 363	Un compuesto de la fórmula (I-61), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 364	Un compuesto de la fórmula (I-61), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 365	Un compuesto de la fórmula (I-61), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 366	Un compuesto de la fórmula (I-61), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 367	Un compuesto de la fórmula (I-62), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 368	Un compuesto de la fórmula (I-62), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 369	Un compuesto de la fórmula (I-62), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 370	Un compuesto de la fórmula (I-62), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 371	Un compuesto de la fórmula (I-62), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 372	Un compuesto de la fórmula (I-62), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 373	Un compuesto de la fórmula (I-63), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 374	Un compuesto de la fórmula (I-63), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 375	Un compuesto de la fórmula (I-63), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 376	Un compuesto de la fórmula (I-63), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 377	Un compuesto de la fórmula (I-63), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 378	Un compuesto de la fórmula (I-63), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	120 do la Tabla V
Tabla 379	439 de la Tabla X. Un compuesto de la fórmula (I-64), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
Tabla 379	de carbono en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 380	Un compuesto de la fórmula (I-64), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 381	Un compuesto de la fórmula (I-64), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 382	Un compuesto de la fórmula (I-64), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 383	Un compuesto de la fórmula (I-64), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 384	Un compuesto de la fórmula (I-64), en la que R1 es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 385	Un compuesto de la fórmula (I-65), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 386	Un compuesto de la fórmula (I-65), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 387	Un compuesto de la fórmula (I-65), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 388	Un compuesto de la fórmula (I-65), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 389	Un compuesto de la fórmula (I-65), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 390	Un compuesto de la fórmula (I-65), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 391	Un compuesto de la fórmula (I-66), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 392	Un compuesto de la fórmula (I-66), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 393	Un compuesto de la fórmula (I-66), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 394	Un compuesto de la fórmula (I-66), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 395	Un compuesto de la fórmula (I-66), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 396	Un compuesto de la fórmula (I-66), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 397	Un compuesto de la fórmula (I-67), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 398	Un compuesto de la fórmula (I-67), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 399	Un compuesto de la fórmula (I-67), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 400	Un compuesto de la fórmula (I-67), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 401	Un compuesto de la fórmula (I-67), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 402	Un compuesto de la fórmula (I-67), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 403	Un compuesto de la fórmula (I-68), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 404	Un compuesto de la fórmula (I-68), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 405	Un compuesto de la fórmula (I-68), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 406	Un compuesto de la fórmula (I-68), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 407	Un compuesto de la fórmula (I-68), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 408	Un compuesto de la fórmula (I-68), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 409	Un compuesto de la fórmula (I-69), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 410	Un compuesto de la fórmula (I-69), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 411	Un compuesto de la fórmula (I-69), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 412	Un compuesto de la fórmula (I-69), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 413	Un compuesto de la fórmula (I-69), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 414	Un compuesto de la fórmula (I-69), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 415	Un compuesto de la fórmula (I-70), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 416	Un compuesto de la fórmula (I-70), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 417	Un compuesto de la fórmula (I-70), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 418	Un compuesto de la fórmula (I-70), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 419	Un compuesto de la fórmula (I-70), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 420	Un compuesto de la fórmula (I-70), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	439 de la Tabla X.
Tabla 421	Un compuesto de la fórmula (I-71), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 422	Un compuesto de la fórmula (I-71), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 423	Un compuesto de la fórmula (I-71), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 424	Un compuesto de la fórmula (I-71), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 425	Un compuesto de la fórmula (I-71), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 426	Un compuesto de la fórmula (I-71), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 427	Un compuesto de la fórmula (I-72), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 428	Un compuesto de la fórmula (I-72), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 429	Un compuesto de la fórmula (I-72), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 430	Un compuesto de la fórmula (I-72), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 431	Un compuesto de la fórmula (I-72), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 432	Un compuesto de la fórmula (I-72), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 433	Un compuesto de la fórmula (I-73), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 434	Un compuesto de la fórmula (I-73), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 435	Un compuesto de la fórmula (I-73), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 436	Un compuesto de la fórmula (I-73), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 437	Un compuesto de la fórmula (I-73), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 438	Un compuesto de la fórmula (I-73), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 439	Un compuesto de la fórmula (I-74), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 440	Un compuesto de la fórmula (I-74), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 441	Un compuesto de la fórmula (I-74), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 442	Un compuesto de la fórmula (I-74), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 443	Un compuesto de la fórmula (I-74), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 444	Un compuesto de la fórmula (I-74), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 445	Un compuesto de la fórmula (I-75), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 446	Un compuesto de la fórmula (I-75), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 447	Un compuesto de la fórmula (I-75), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 448	Un compuesto de la fórmula (I-75), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 449	Un compuesto de la fórmula (I-75), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 450	Un compuesto de la fórmula (I-75), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 451	Un compuesto de la fórmula (I-76), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 452	Un compuesto de la fórmula (I-76), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 453	Un compuesto de la fórmula (I-76), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 454	Un compuesto de la fórmula (I-76), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 455	Un compuesto de la fórmula (I-76), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 456	Un compuesto de la fórmula (I-76), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 457	Un compuesto de la fórmula (I-77), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 458	Un compuesto de la fórmula (I-77), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 459	Un compuesto de la fórmula (I-77), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 460	Un compuesto de la fórmula (I-77), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 461	Un compuesto de la fórmula (I-77), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 462	Un compuesto de la fórmula (I-77), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	439 de la Tabla X.
Tabla 463	Un compuesto de la fórmula (I-78), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 464	Un compuesto de la fórmula (I-78), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 465	Un compuesto de la fórmula (I-78), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 466	Un compuesto de la fórmula (I-78), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 467	Un compuesto de la fórmula (I-78), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 468	Un compuesto de la fórmula (I-78), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 469	Un compuesto de la fórmula (I-79), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 470	Un compuesto de la fórmula (I-79), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 471	Un compuesto de la fórmula (I-79), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 472	Un compuesto de la fórmula (I-79), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 473	Un compuesto de la fórmula (I-79), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 474	Un compuesto de la fórmula (I-79), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 475	Un compuesto de la fórmula (I-80), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 476	Un compuesto de la fórmula (I-80), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 477	Un compuesto de la fórmula (I-80), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 478	Un compuesto de la fórmula (I-80), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 479	Un compuesto de la fórmula (I-80), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 480	Un compuesto de la fórmula (I-80), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 481	Un compuesto de la fórmula (I-81), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 482	Un compuesto de la fórmula (I-81), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 483	Un compuesto de la fórmula (I-81), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 484	Un compuesto de la fórmula (I-81), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 485	Un compuesto de la fórmula (I-81), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 486	Un compuesto de la fórmula (I-81), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 487	Un compuesto de la fórmula (I-82), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 488	Un compuesto de la fórmula (I-82), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 489	Un compuesto de la fórmula (I-82), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 490	Un compuesto de la fórmula (I-82), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 491	Un compuesto de la fórmula (I-82), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 492	Un compuesto de la fórmula (I-82), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 493	Un compuesto de la fórmula (I-83), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 494	Un compuesto de la fórmula (I-83), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 495	Un compuesto de la fórmula (I-83), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 496	Un compuesto de la fórmula (I-83), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 497	Un compuesto de la fórmula (I-83), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 498	Un compuesto de la fórmula (I-83), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 499	Un compuesto de la fórmula (I-84), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 500	Un compuesto de la fórmula (I-84), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 501	Un compuesto de la fórmula (I-84), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 502	Un compuesto de la fórmula (I-84), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 503	Un compuesto de la fórmula (I-84), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 504	Un compuesto de la fórmula (I-84), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	439 de la Tabla X.
Tabla 505	Un compuesto de la fórmula (I-85), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 506	Un compuesto de la fórmula (I-85), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 507	Un compuesto de la fórmula (I-85), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 508	Un compuesto de la fórmula (I-85), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 509	Un compuesto de la fórmula (I-85), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 510	Un compuesto de la fórmula (I-85), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 511	Un compuesto de la fórmula (I-86), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 512	Un compuesto de la fórmula (I-86), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 513	Un compuesto de la fórmula (I-86), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 514	Un compuesto de la fórmula (I-86), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 515	Un compuesto de la fórmula (I-86), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 516	Un compuesto de la fórmula (I-86), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 517	Un compuesto de la fórmula (I-87), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 518	Un compuesto de la fórmula (I-87), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 519	Un compuesto de la fórmula (I-87), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 520	Un compuesto de la fórmula (I-87), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 521	Un compuesto de la fórmula (I-87), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 522	Un compuesto de la fórmula (I-87), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 523	Un compuesto de la fórmula (I-88), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 524	Un compuesto de la fórmula (I-88), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 525	Un compuesto de la fórmula (I-88), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 526	Un compuesto de la fórmula (I-88), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 527	Un compuesto de la fórmula (I-88), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 528	Un compuesto de la fórmula (I-88), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 529	Un compuesto de la fórmula (I-89), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 530	Un compuesto de la fórmula (I-89), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 531	Un compuesto de la fórmula (I-89), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 532	Un compuesto de la fórmula (I-89), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 533	Un compuesto de la fórmula (I-89), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 534	Un compuesto de la fórmula (I-89), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 535	Un compuesto de la fórmula (I-90), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 536	Un compuesto de la fórmula (I-90), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 537	Un compuesto de la fórmula (I-90), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 538	Un compuesto de la fórmula (I-90), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 539	Un compuesto de la fórmula (I-90), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 540	Un compuesto de la fórmula (I-90), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 541	Un compuesto de la fórmula (I-91), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 542	Un compuesto de la fórmula (I-91), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 543	Un compuesto de la fórmula (I-91), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 544	Un compuesto de la fórmula (I-91), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 545	Un compuesto de la fórmula (I-91), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 546	Un compuesto de la fórmula (I-91), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	439 de la Tabla X.
Tabla 547	Un compuesto de la fórmula (I-92), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 548	Un compuesto de la fórmula (I-92), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 549	Un compuesto de la fórmula (I-92), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 550	Un compuesto de la fórmula (I-92), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 551	Un compuesto de la fórmula (I-92), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 552	Un compuesto de la fórmula (I-92), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 553	Un compuesto de la fórmula (I-93), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 554	Un compuesto de la fórmula (I-93), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 555	Un compuesto de la fórmula (I-93), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 556	Un compuesto de la fórmula (I-93), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 557	Un compuesto de la fórmula (I-93), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 558	Un compuesto de la fórmula (I-93), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 559	Un compuesto de la fórmula (I-94), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 560	Un compuesto de la fórmula (I-94), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 561	Un compuesto de la fórmula (I-94), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 562	Un compuesto de la fórmula (I-94), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 563	Un compuesto de la fórmula (I-94), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 564	Un compuesto de la fórmula (I-94), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 565	Un compuesto de la fórmula (I-95), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 566	Un compuesto de la fórmula (I-95), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 567	Un compuesto de la fórmula (I-95), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 568	Un compuesto de la fórmula (I-95), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 569	Un compuesto de la fórmula (I-95), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 570	Un compuesto de la fórmula (I-95), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 571	Un compuesto de la fórmula (I-96), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 572	Un compuesto de la fórmula (I-96), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 573	Un compuesto de la fórmula (l-96), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 574	Un compuesto de la fórmula (I-96), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 575	Un compuesto de la fórmula (I-96), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 576	Un compuesto de la fórmula (I-96), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 577	Un compuesto de la fórmula (I-97), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 578	Un compuesto de la fórmula (I-97), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 579	Un compuesto de la fórmula (I-97), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 580	Un compuesto de la fórmula (I-97), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 581	Un compuesto de la fórmula (I-97), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 582	Un compuesto de la fórmula (I-97), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 583	Un compuesto de la fórmula (I-98), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 584	Un compuesto de la fórmula (I-98), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 585	Un compuesto de la fórmula (I-98), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 586	Un compuesto de la fórmula (I-98), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 587	Un compuesto de la fórmula (I-98), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 588	Un compuesto de la fórmula (I-98), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	439 de la Tabla X.
Tabla 589	Un compuesto de la fórmula (I-99), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 590	Un compuesto de la fórmula (I-99), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 591	Un compuesto de la fórmula (I-99), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 592	Un compuesto de la fórmula (I-99), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 593	Un compuesto de la fórmula (I-99), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 594	Un compuesto de la fórmula (I-99), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 595	Un compuesto de la fórmula (I-100), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 596	Un compuesto de la fórmula (I-100), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 597	Un compuesto de la fórmula (I-100), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 598	Un compuesto de la fórmula (I-100), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 599	Un compuesto de la fórmula (I-100), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 600	Un compuesto de la fórmula (I-100), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 601	Un compuesto de la fórmula (I-101), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 602	Un compuesto de la fórmula (I-101), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 603	Un compuesto de la fórmula (I-101), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 604	Un compuesto de la fórmula (I-101), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 605	Un compuesto de la fórmula (I-101), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 606	Un compuesto de la fórmula (I-101), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 607	Un compuesto de la fórmula (I-102), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 608	Un compuesto de la fórmula (I-102), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 609	Un compuesto de la fórmula (I-102), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 610	Un compuesto de la fórmula (I-102), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 611	Un compuesto de la fórmula (I-102), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 612	Un compuesto de la fórmula (I-102), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 613	Un compuesto de la fórmula (I-103), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 614	Un compuesto de la fórmula (I-103), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 615	Un compuesto de la fórmula (I-103), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 616	Un compuesto de la fórmula (I-103), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 617	Un compuesto de la fórmula (I-103), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 618	Un compuesto de la fórmula (I-103), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 619	Un compuesto de la fórmula (I-104), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 620	Un compuesto de la fórmula (I-104), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 621	Un compuesto de la fórmula (I-104), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 622	Un compuesto de la fórmula (I-104), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 623	Un compuesto de la fórmula (I-104), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 624	Un compuesto de la fórmula (I-104), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 625	Un compuesto de la fórmula (I-105), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 626	Un compuesto de la fórmula (I-105), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 627	Un compuesto de la fórmula (I-105), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 628	Un compuesto de la fórmula (I-105), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 629	Un compuesto de la fórmula (I-105), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 630	Un compuesto de la fórmula (I-105), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	439 de la Tabla X.
Tabla 631	Un compuesto de la fórmula (I-106), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 632	Un compuesto de la fórmula (I-106), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 633	Un compuesto de la fórmula (I-106), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 634	Un compuesto de la fórmula (I-106), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 635	Un compuesto de la fórmula (I-106), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 636	Un compuesto de la fórmula (I-106), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 637	Un compuesto de la fórmula (I-107), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 638	Un compuesto de la fórmula (I-107), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 639	Un compuesto de la fórmula (I-107), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 640	Un compuesto de la fórmula (I-107), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 641	Un compuesto de la fórmula (I-107), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 642	Un compuesto de la fórmula (I-107), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 643	Un compuesto de la fórmula (I-108), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 644	Un compuesto de la fórmula (I-108), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 645	Un compuesto de la fórmula (I-108), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de
Tabla 646	la Tabla X. Un compuesto de la fórmula (I-108), en la que R₁ es ciclohexilo, la configuración del átomo de carbono
Tabla 040	en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 647	Un compuesto de la fórmula (I-108), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a
	439 de la Tabla X.
Tabla 648	Un compuesto de la fórmula (I-108), en la que R ₁ es 1-metil butilo, la configuración del átomo de
	carbono en la posición ϵ es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 649	Un compuesto de la fórmula (I-109), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ϵ es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 650	Un compuesto de la fórmula (I-109), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo
	de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 651	Un compuesto de la fórmula (I-109), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono
	en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 652	Un compuesto de la fórmula (I-109), en la que R ₁ es ciclohexilo, la configuración del átomo de carbono en la posición ε es (S), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 653	Un compuesto de la fórmula (I-109), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 654	Un compuesto de la fórmula (I-109), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 655	Un compuesto de la fórmula (I-110), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 656	Un compuesto de la fórmula (I-110), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 657	Un compuesto de la fórmula (I-110), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 658	Un compuesto de la fórmula (I-110), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 659	Un compuesto de la fórmula (I-110), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 660	Un compuesto de la fórmula (I-110), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 661	Un compuesto de la fórmula (I-111) en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 662	Un compuesto de la fórmula (I-111), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 663	Un compuesto de la fórmula (I-111), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 664	Un compuesto de la fórmula (I-111), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 665	Un compuesto de la fórmula (I-111), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 666	Un compuesto de la fórmula (I-111), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 667	Un compuesto de la fórmula (I-112), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 668	Un compuesto de la fórmula (I-112), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 669	Un compuesto de la fórmula (I-112), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 670	Un compuesto de la fórmula (I-112), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 671	Un compuesto de la fórmula (I-112), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 672	Un compuesto de la fórmula (I-112), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	439 de la Tabla X.
Tabla 673	Un compuesto de la fórmula (I-113), en la que R ₁ es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ε es (R), y los sustituyentes R ₂ , R ₃ , R ₄ , R ₅ y R ₆ corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 674	Un compuesto de la fórmula (I-113), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 675	Un compuesto de la fórmula (I-113), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 676	Un compuesto de la fórmula (I-113), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 677	Un compuesto de la fórmula (I-113), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 678	Un compuesto de la fórmula (I-113), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 679	Un compuesto de la fórmula (I-114), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 680	Un compuesto de la fórmula (I-114), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 681	Un compuesto de la fórmula (I-114), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 682	Un compuesto de la fórmula (I-114), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 683	Un compuesto de la fórmula (I-114), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 684	Un compuesto de la fórmula (I-114), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 685	Un compuesto de la fórmula (I-115), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 686	Un compuesto de la fórmula (I-115), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 687	Un compuesto de la fórmula (I-115), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 688	Un compuesto de la fórmula (I-115), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 689	Un compuesto de la fórmula (I-115), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 690	Un compuesto de la fórmula (I-115), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 691	Un compuesto de la fórmula (I-116), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 692	Un compuesto de la fórmula (I-116), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 693	Un compuesto de la fórmula (I-116), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de

	la Tabla X.
Tabla 694	Un compuesto de la fórmula (I-116), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 695	Un compuesto de la fórmula (I-116), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 696	Un compuesto de la fórmula (I-116), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 697	Un compuesto de la fórmula (I-117), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 698	Un compuesto de la fórmula (I-117), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 699	Un compuesto de la fórmula (I-117), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 700	Un compuesto de la fórmula (I-117), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 701	Un compuesto de la fórmula (I-117), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 702	Un compuesto de la fórmula (I-117), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 703	Un compuesto de la fórmula (I-118), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 704	Un compuesto de la fórmula (I-118), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 705	Un compuesto de la fórmula (I-118), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 706	Un compuesto de la fórmula (I-118), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 707	Un compuesto de la fórmula (I-118), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 708	Un compuesto de la fórmula (I-118), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 709	Un compuesto de la fórmula (I-119), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 710	Un compuesto de la fórmula (I-119), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 711	Un compuesto de la fórmula (I-119), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 712	Un compuesto de la fórmula (I-119), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 713	Un compuesto de la fórmula (I-119), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 714	Un compuesto de la fórmula (I-119), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a

	439 de la Tabla X.
Tabla 715	Un compuesto de la fórmula (I-120), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 716	Un compuesto de la fórmula (I-120), en la que R_1 es sec-butilo o isopropilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 717	Un compuesto de la fórmula (I-120), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 718	Un compuesto de la fórmula (I-120), en la que R_1 es ciclohexilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 719	Un compuesto de la fórmula (I-120), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (R), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.
Tabla 720	Un compuesto de la fórmula (I-120), en la que R_1 es 1-metil butilo, la configuración del átomo de carbono en la posición ϵ es (S), y los sustituyentes R_2 , R_3 , R_4 , R_5 y R_6 corresponden a una línea de 1 a 439 de la Tabla X.

[0120] En el área del control de plagas, especialmente para aplicaciones no terapéuticas, un compuesto de fórmula (I), o (II), es un compuesto activo (también denominado como ingrediente activo) que presenta valiosa actividad preventiva y/o curativa con un espectro biocida muy ventajoso y un espectro muy amplio, incluso en bajas tasas de concentración, que a la vez son bien tolerados por animales de sangre caliente, peces y plantas. Son, sorprendentemente, igualmente adecuados para el control de plagas de las plantas, y ectoparásitos y endoparásitos en humanos, en ganado productivo y animales domésticos y mascotas. Son eficaces contra todas las etapas o etapas de desarrollo individuales de plagas de animales normalmente sensibles, pero también de plagas animales resistentes, tales como los representantes de la clase Insecta, orden Acarina, clase nematodos, cestodos y trematodos, mientras que al mismo tiempo se protegen los organismos útiles. La actividad insecticida, acaricida o nematicida de los ingredientes activos según la invención puede manifestarse directamente, es decir, en la mortalidad de las plagas, que se produce inmediatamente o sólo después de algún tiempo, por ejemplo durante la muda, o indirectamente, por ejemplo en la reducción de la oviposición y/o tasa de eclosión, correspondiendo una buena actividad a una mortalidad de al menos 50 a 60%.

15

10

5

[0121] El control exitoso dentro del alcance del objeto de la invención es posible, en particular, de plagas de los órdenes Lepidoptera, Coleoptera, Orthoptera, Isoptera, Psocoptera, Anoplura, Mallophaga, Thysanoptera, Heteroptera, Homoptera, Hymenoptera, Diptera, Siphonaptera, Thysanura y Acarina, principalmente Acarina, Thysanura, Diptera, Lepidoptera y coleoptera. Muy especialmente es posible un buen control de las siguientes plagas:

20

25

30

35

40

45

Abagrotis spp., Abraxas spp., Acantholeucania spp., Acanthoplusia spp., Acarus spp., Acarus siro, Aceria spp., Aceria sheldoni, Acleris spp., Acoloithus spp., Acompsia spp., Acossus spp., Acria spp., Acrobasis spp., Acrocercops spp., Acrolepia spp., Acrolepiopsis spp., Acronicta spp., Acropolitis spp., Actebia spp., Aculus spp., Aculus schlechtendali, Adoxophyes spp., Adoxophyes reticulana, Aedes spp., Aegeria spp., Aethes spp., Agapeta spp., Agonopterix spp., Agriopis spp., Agriotes spp., Agriphila spp., Agrochola spp., Agroperina spp., Alabama ssp., Alabama argillaceae, Agrotis spp., Albuna spp., Alcathoe spp., Alcis spp., Aleimma spp., Aletia spp., Aleurothrixus spp., Aleurothrixus floccosus, Aleyrodes spp., Aleyrodes brassicae, Allophyes spp., Alsophila spp., Amata spp., Amathes spp., Amblyomma spp., Amblyptilia spp., Ammoconia spp., Amorbia spp., Amphion spp., Amphipoea spp., Amphipyra spp., Amyelois spp., Anacamptodes spp., Anagrapha spp., Anarsia spp., Anatrychyntis spp., Anavitrinella spp., Ancylis spp., Andropolia spp., Anhimella spp., Antheriaea spp., Antheriaena sp Anthonomus ssp., Anthonomus grandis, Anticarsia spp., Anticarsia gemmatalis, Aonidiella spp., Apamea spp., Aphania spp., Aphelia spp., Aphididae, Aphis spp., Apotomis spp., Aproaerema spp., Archippus spp., Archips spp., Acromyrmex, Arctia spp., Argas spp., Argolamprotes spp., Argyresthia spp., Argyrogramma spp., Argyroploce spp., Argyrotaenia spp., Arotrophora spp., Ascotis spp., Aspidiotus spp., Aspidiotus spp., Aspidiotus spp., Asthenoptycha spp., Aterpia spp., Athetis spp., Atomaria spp., Atomaria linearis, Atta spp., Atypha spp., Autographa spp., Axylia spp., Bactra spp., Barbara spp., Batrachedra spp., Battaristis spp., Bembecia spp., Bemisia spp., Bemisia tabaci, Bibio spp., Bibio hortulanis, Bisigna spp., Blastesthia spp., Blatta spp., Blatella spp., Blepharosis spp., Bleptina spp., Boarmia spp., Bombyx spp., Bomolocha spp., Boophilus spp., Brachmia spp., Bradina spp., Brevipalpus spp., Brithys spp., Bryobia spp., Bryobia praetiosa, Bryotropha spp., Bupalus spp., Busseola spp., Busseola fusca, Cabera spp., Cacoecimorpha spp., Cadra spp., Cadra cautella, Caenurgina spp., Calipitrimerus spp., Callierges spp., Callophpora spp., Callophpora erythrocephala, Calophasia spp., Caloptilia spp., Calybites spp., Capnoptycha spp., Capua spp., Caradrina spp., Caripeta spp., Carmenta spp., Carposina spp., Carposina nipponensis, Catamacta spp., Catelaphris spp., Catoptria spp., Caustoloma spp., Celaena spp., Celypha spp., Cenopis spp., Cephus spp., Ceramica spp., Cerapteryx spp., Ceratitis spp, Ceratophyllus spp., Ceroplaster spp., Chaetocnema spp., Chaetocnema tibialis, Chamaesphecia spp., Charanvca spp., Cheimophila spp., Chersotis spp., Chiasmia spp., Chilo spp., Chionodes spp.,

Chorioptes spp., Choristoneura spp., Chrysaspidia spp., Chrysodeixis spp., Chrysomya spp., Chrysomphalus spp.,

10

15

20

25

30

35

40

45

50

55

60

65

Chrysomphalus dictyospermi, Chrysomphalus aonidium, Chrysoteuchia spp., Cilix spp., Cimex spp., Clysia spp., Clysia ambiguella, Clepsis spp., Cnaemidophorus spp., Cnaphalocrocis spp., Cnephasia spp., Coccus spp., Coccus hesperidum, Cochylis spp., Coleophora spp., Colotois spp., Commophila spp., Conistra spp., Conopomorpha spp., Corcyra spp., Cornutiplusia spp., Cosmia spp., Cosmopolites spp., Cosmopterix spp., Cossus spp., Costaeonvexa spp., Crambus spp., Creatonotos spp., Crocidolomia spp., Crocidolomia binotalis, Croesia spp., Crymodes spp., Cryptaspasma spp., Cryptoblabes spp., Cryptocala spp., Cryptophlebia spp., Cryptophlebia leucotreta, Cryptoptila spp., Ctenopseustis spp., Cucullia spp., Curculio spp., Culex spp., Cuterebra spp., Cydia spp., Cydia pomonella, Cymbalophora spp., Dactylethra spp., Dacus spp., Dadica spp., Damalinea spp., Dasychira spp., Decadarchis spp., Decodes spp., Deilephila spp., Deltodes spp., Dendrolimus spp., Depressaria spp., Dermestes spp., Dermanyssus spp., Dermanyssus gallinae, Diabrotica spp., Diachrysia spp., Diaphania spp., Diarsia spp., Diasemia spp., Diatraea spp., Diceratura spp., Dichomeris spp., Dichrocrocis spp., Dichrorampha spp., Dicycla spp., Dioryctria spp., Diparopsis spp., Diparopsis castanea, Dipleurina spp., Diprion spp., Diprionidae, Discestra spp., Distantiella spp., Distantiella theobroma, Ditula spp., Diurnea spp., Doratopteryx spp., Drepana spp., Drosphila spp., Drosphila melanogaster, Dysauxes spp., Dysdercus spp., Dysstroma spp., Eana spp., Earias spp., Ecclitica spp., Ecdytolopha spp., Ecpyrrhorrhoe spp., Ectomyelois spp., Eetropis spp., Egira spp., Elasmopalpus spp., Emmelia spp., mpoasca spp., Empyreuma spp., Enargia spp., Enarmonia spp., Endopiza spp., Endothenia spp., Endotricha spp., Eoreuma spp., Eotetranychus spp., Eotetranychus carpini, Epagoge spp., Epelis spp., Ephestia spp., Ephestiodes spp., Epiblema spp., Epiehoristodes spp., Epinotia spp., Epiphyas spp., Epiplema spp., Epipsestis spp., Epirrhoe spp., Episimus spp., Epitymbia spp., Epilachna spp., Erannis spp., Erastria spp., Eremnus spp., Ereunetis spp., Eriophyes spp., Eriosoma spp., Eriosoma lanigerum, Erythroneura spp., Estigmene spp., Ethmia spp., Etiella spp., Euagrotis spp., Eucosma spp., Euehlaena spp., Euelidia spp., Eueosma spp., Euchistus spp., Eucosmomorpha spp., Eudonia spp., Eufidonia spp., Euhyponomeutoides spp., Eulepitodes spp., Eulia spp., Eulithis spp., Eupithecia spp., Euplexia spp., Eupoecilia spp., Eupoecilia ambiguella, Euproctis spp., Eupsilia spp., Eurhodope spp., Eurois spp., Eurygaster spp., Eurythmia spp., Eustrotia spp., Euxoa spp., Euzophera spp., Evergestis spp., Evippe spp., Exartema spp., Fannia spp., Faronta spp., Feltia spp., Filatima spp., Fishia spp., Frankliniella spp., Fumibotys spp., Gaesa spp., Gasgardia spp., Gastrophilus spp., Gelechia spp., Gilpinia spp., Gilpinia polytoma, Glossina spp., Glyphipterix spp., Glyphodes spp., Gnorimoschemini spp., Gonodonta spp., Gortyna spp., Gracillaria spp., Graphania spp., Grapholita spp., Grapholitha spp., Gravitarmata spp., Gretchena spp., Griselda spp., Gryllotalpa spp., Gynaephora spp., Gypsonoma spp., Hada spp., Haematopinus spp., Halisidota spp., Harpipteryx spp., Harrisina spp., Hedya spp., Helicoverpa spp., Heliophobus spp., Heliothis spp., Hellula spp., Helotropa spp., Hemaris spp., Hercinothrips spp., Herculia spp., Hermonassa spp., Heterogenea spp., Holomelina spp., Homadaula spp., Homoeosoma spp., Homoglaea spp., Homohadena spp., Homona spp., Homonopsis spp., Hoplocampa spp., Hoplodrina spp., Hoshinoa spp., Hxalomma spp., Hydraecia spp., Hydriomena spp., Hyles spp., Hyloicus spp., Hypagyrtis spp., Hypatima spp., Hyphantria spp., Hyphantria cunea, Hypocala spp., Hypocoena spp., Hypodema spp., Hypobosca spp., Hypsipyla spp., Hyssia spp., Hysterosia spp., Idaea spp., Idia spp., Ipimorpha spp., Isia spp., Isochorista spp., Isophrictis spp., Isopolia spp., Isotrias spp., Ixodes spp., Itame spp., Jodia spp., Jodis spp., Kawabea spp., Keiferia spp., Keiferia lycopersicelia, Labdia spp., Lacinipolia spp., Lambdina spp., Lamprothritpa spp., Laodelphax spp., Lasius spp., Laspevresia spp., Leptinotarsa spp., Leptinotarsa decemlineata, Leptocorisa spp., Leptostales spp., Lecanium spp., Lecanium comi, Lepidosaphes spp., Lepisma spp., Lepisma saccharina , Lesmone spp., Leucania spp., Leucinodes spp., Leucophaea spp., Leucophaea maderae, Leucoptera spp., Leucoptera scitella, Linognathus spp., Liposcelis spp., Lissorhoptrus spp., Lithacodia spp., Lithocolletis spp., Lithomoia spp., Lithophane spp., Lixodessa spp., Lobesia spp., Lobesia botrana, Lobophora spp., Locusta spp., Lomanaltes spp., Lomographa spp., Loxagrotis spp., Loxostege spp., Lucilia spp., Lymantria spp., Lymnaecia spp., Lyonetia spp., Lyriomyza spp., Macdonnoughia spp., Macrauzata spp., Macronoctua spp., Macrosiphus spp., Malacosoma spp., Maliarpha spp., Mamestra spp., Mamestra brassicae, Manduca spp., Manduca sexta, Marasmia spp., Margaritia spp., Matratinea spp., Matsumuraeses spp., Melanagromyza spp., Melipotes spp., Melissopus spp., Melittia spp., Melolontha spp., Meritastis spp., Meritastis spp., Merophyas spp., Mesapamea spp., Mesogona spp., Mesoleuca spp., Metanema spp., Metendothenia spp., Metzneria spp., Microdia spp., Microcorses spp., Microleon spp., Mnesictena spp., Mocis spp., Monima spp., Monochroa spp., Monomorium spp., Monomorium pharaonis, Monopsis spp., Morrisonia spp., Musca spp., Mutuuraia spp., Myelois spp., Mythimna spp., Myzus spp., Naranga spp., Nedra spp., Nemapogon spp., Neodiprion spp., Neosphaleroptera spp., Nephelodes spp., Nephotettix spp., Nezara spp., Nilaparvata spp., Niphonympha spp., Nippoptilia spp., Noctua spp., Nola spp., Notocelia spp., Notodonta spp., Nudaurelia spp., Ochropleura spp., Ocnerostoma spp., Oestrus spp., Olethreutes spp., Oligia spp., Olindia spp., Olygonychus spp., Olygonychus gallinae, Oncocnemis spp., Operophtera spp., Ophisma spp., Opogona spp., Oraesia spp., Orniodoros spp., Orgyia spp., Oria spp., Orseolia spp., Orthodes spp., Orthogonia spp., Orthosia spp., Oryzaephilus spp., Oscinella spp., Oscinella frit, Osminia spp., Ostrinia spp., Ostrinia nubilalis, Otiorhynchus spp., Ourapteryx spp., Pachetra spp., Pachysphinx spp., Pagyda spp., Paleacrita spp., Paliga spp., Palthis spp., Pammene spp., Pandemis spp., Panemeria spp., Panolis spp., Panolis flammea, Panonychus spp., Parargyresthia spp., Paradiarsia spp., Paralobesia spp., Paranthrene spp., Parapandemis spp., Parapediasia spp., Parastichtis spp., Parasyndemis spp., Paratoria spp., Pareromeme spp., Pectinophora spp., Pectinophora gossypiella, Pediculus spp., Pegomyia spp., Pegomyia hyoscyami, Pelochrista spp., Pennisetia spp., Penstemonia spp., Pemphigus spp., Peribatodes spp., Peridroma spp., Perileucoptera spp., Periplaneta spp., Perizoma spp., Petrova spp., Pexicopia spp., Phalonia spp., Phalonidia spp., Phaneta spp., Phlyctaenia spp., Phlyctinus spp., Phorbia spp., Phragmatobia spp., Phricanthes spp., Phthorimaea spp., Phthorimaea operculella, Phyllocnistis spp., Phyllocoptruta spp., Phyllocoptruta oleivora, Phyllonorycter spp., Phyllophila spp., Phylloxera spp., Pieris spp., Pieris rapae, Piesma spp., Planococus spp., Planotortrix spp., Platyedra spp., Platynota spp., Platyptilia spp., Platysenta spp., Plodia spp., Plusia spp., Plusia spp., Plusia spp., Plusia spp., Platysenta spp., Plodia spp., Plusia spp., Plusia spp., Platysenta spp., Plodia spp., Plusia spp., Pl

spp., Plutella xylostella, Podosesia spp., Polia spp., Popillia spp., Polymixis spp., Polyphagotarsonemus spp., Polyphagotarsonemus latus, Prays spp., Prionoxystus spp., Probole spp., Proceras spp., Prochoerodes spp., Proeulia spp., Proschistis spp., Proselena spp., Proserpinus spp., Protagrotis spp., Proteoteras spp., Protobathra spp., Protoschinia spp., Pselnophorus spp., Pseudaletia spp., Pseudanthonomus spp., Pseudaternelia spp., Pseudaulacaspis spp., Pseudaventera spp., Pseudococus spp., Pseudohermenias spp., Pseudoplusia spp., Psoroptes spp., Psyllia spp., Psylliodes spp., Pterophorus spp., Ptycholoma spp., Pulvinaria spp., Pulvinaria aethiopica, Pyralis spp., Pyrausta spp., Pyrgotis spp., Pyrreferra spp., Pyrrharctia spp., Quadraspidiotus spp., Rancora spp., Raphia spp., Reticultermes spp., Retinia spp., Rhagoletis spp, Rhagoletis pomonella, Rhipicephalus spp., Rhizoglyphus spp., Rhizopertha spp., Rhodnius spp., Rhophalosiphum spp., Rhopobota spp., Rhyacia spp., Rhyacionia spp., Rhynchopacha spp., Rhyzosthenes spp., Rivula spp., Rondotia spp., Rusidrina spp., Rynchaglaea spp., Sabulodes spp., Sahlbergella spp., Sahlbergella singularis, Saissetia spp., Samia spp., Sannina spp., Sanninoidea spp., Saphoideus spp., Sarcoptes spp., Sathrobrota spp., Scarabeidae, Sceliodes spp., Schinia spp., Schistocerca spp., Schizaphis spp., Schizura spp., Schreckensteinia spp., Sciara spp., Scirpophaga spp., Scirthrips auranti, Scoparia spp., Scopula spp., Scotia spp., Scotinophara spp., Scotogramma spp., Scrobipalpa spp., Scrobipalpopsis spp., Semiothisa spp., Sereda spp., Sesamia spp., Sesia spp., Sicya spp., Sideridis spp., Simyra spp., Sineugraphe spp., Sitochroa spp., Sitobion spp., Sitophilus spp., Sitotroga spp., Solenopsis spp., Smerinthus spp., Sophronia spp., Spaelotis spp., Spargaloma spp., Sparganothis spp., Spatalistis spp., Sperchia spp., Sphecia spp., Sphinx spp., Spilonota spp., Spodoptera spp., Spodoptera littoralis, Stagmatophora spp., Staphylinochrous spp., Stathmopoda spp., Stenodes spp., Sterrha spp., Stomoxys spp., Strophedra spp., Sunira spp., Sutyna spp., Swammerdamia spp., Syllomatia spp., Sympistis spp., Synanthedon spp., Synaxis spp., Syncopacma spp., Syndemis spp., Syngrapha spp., Synthomeida spp., Tabanus spp., Taeniarchis spp., Taeniothrips spp., Tannia spp., Tarsonemus spp., Tegulifera spp., Tehama spp., Teleiodes spp., Telorta spp., Tenebrio spp., Tephrina spp., Teratoglaea spp., Terricula spp., Tethea spp., Tetranychus spp., Thalpophila spp., Thaumetopoea spp., Thiodia spp., Thrips spp., Thrips palmi, Thrips tabaci, Thyridopteryx spp., Thyris spp., Tineola spp., Tipula spp., Tortricidia spp., Tortrix spp., Trachea spp., Trialeurodes spp., Trialeurodes vaporariorum, Triatoma spp., Triaxomera spp., Tribolium spp., Tricodectes spp., Trichoplusia spp., Trichoplusia ni, Trichoptilus spp., Trioza spp., Trioza erytreae, Triphaenia spp., Triphosa spp., Trogoderma spp., Tyria spp., Udea spp., Unaspis spp., Unaspis citri, Utetheisa spp., Valeriodes spp., Vespa spp., Vespamima spp., Vitacea spp., Vitula spp., Witlesia spp., Xanthia spp., Xanthorhoe spp., Xanthotype spp., Xenomicta spp., Xenopsylla spp., Xenopsylla cheopsis, Xestia spp., Xylena spp., Xylomyges spp., Xyrosaris spp., Yponomeuta spp., Ypsolopha spp., Zale spp., Zanclognathus spp., Zeiraphera spp., Zenodoxus spp., Zeuzera spp., Zygaena spp.

10

15

20

25

30

35

40

50

55

60

65

[0122] También es posible controlar plagas de la clase Nematoda utilizando los compuestos según la invención. Tales plagas incluyen, por ejemplo, nematodos de los nudos de la raíz, nematodos formadores de quistes y también nematodos del tallo y de las hojas; especialmente de Heterodera spp, por ejemplo, Heterodera schachtii, Heterodera avenae y Heterodera trifolii.; Globodera spp, por ejemplo Globodera rostochiensis.; Meloidogyne spp, por ejemplo, Meloidogyne incognita y Meloidogyne javanica.; Radopholus spp., por ejemplo, Radopholus similis; Pratylenchus, por ejemplo, Pratylenchus neglectans y Pratylenchus penetrans; Tylenchulus, por ejemplo, Tylenchulus semipenetrans; Longidorus, Trichodorus, Xiphinema, Ditylenchus, Apheenchoides y Anguina; especialmente Meloidogyne incognita, por ejemplo, Meloidogyne, Heterodera y, por ejemplo, Heterodera glycines.

[0123] Un aspecto especialmente importante de la presente invención es el uso del compuesto de fórmula (I), o (II) en la protección de plantas contra plagas de alimentación parásita.

[0124] La acción del compuesto de fórmula (I), o (II), y las composiciones que comprenden dicho compuesto contra plagas animales pueden ampliarse significativamente y adaptarse a las circunstancias dadas mediante la adición de otros insecticidas, acaricidas o nematicidas. Los aditivos adecuados incluyen, por ejemplo, representantes de las siguientes clases de ingrediente activo: compuestos organofosforados, nitrofenoles y derivados, formamidinas, ureas, carbamatos, piretroides, hidrocarburos clorados, neonicotinoides y preparaciones de Bacillus thuringiensis.

[0125] Ejemplos de asociados de mezcla especialmente adecuados incluyen: azametifos; clorfenvinfos; cipermetrina, cipermetrina cis elevado; ciromazina; diafentiurón; diazinón; diclorvos; dicrotofos; diciclanil; fenoxicarb; fluazurón; furatiocarb; isazofos; iodfenfos; kinopreno; lufenurón; metacrifos; metidation; monocrotofos; fosfamidón; profenofos; diofenolan; una sustancia obtenible de la cepa GC91 de Bacillus thuringiensis o de la cepa NCTC₁1821; pimetrozina; bromopropilato; metopreno; disulfoton; quinalfos; taufluvalinato; tiociclam; tiometón; aldicarb; azinfos-metilo; benfuracarb; bifentrina; buprofezina; carbofurano; dibutilaminotio; cartap; clorfluazuron; clorpirifos; ciflutrina; lambdacyhalotrina; alfa-cipermetrina; zeta-cipermetrina; deltametrina; diflubenzurón; endosulfán; etiofencarb; fenitrotión; fenazaquina; fenobucarb; fenvalerato; formotión; metiocarb; heptenofos; imidacloprid; tiametoxam; clotianidina; isoprocarb; metamidofos; metomilo; mevinfos; paratión; paratión-metilo; fosalona; pirimicarb; propoxur; teflubenzurón; terbufos; triazamato; abamectina; fenobucarb; tebufenozida; fipronil; beta-ciflutrina; silafluofeno; fenpiroximato; piridaben; fenazaquin; piriproxifeno; pirimidifen; nitenpiram; acetamiprid; abamectina; enamectina; benzoato de enamectina; espinosad; un extracto de una planta activo contra insectos; una preparación que comprende nematodos activos contra insectos; una preparación obtenible a partir de Bacillus subtilis; una preparación que comprende hongos activos contra insectos; una preparación que comprende virus activos contra insectos; clorfenapir; acefato; acrinatrina; alanicarb; alfametrina; amitraz; AZ 60541; azinfos A; azinfos M; azociclotina; bendiocarb; bensultap; betaciflutrina; BPMC; brofenprox; bromofos A; bufencarb; butocarboxim;

butilpiridaben; cadusafos; carbaril; carbofenotión; cloetocarb; cloretoxifos; clormefos; cis-resmetrina; clocitrina; clofentezina; cianofos; cicloprotrina; cihexatina; demetón M; demetón S; demetón-S-metilo; diclofention; diclifos; dietion; dimetoato; dimetilvinfos; dioxatión; edifenfos; esfenvalerato; etión; etofenprox; etoprofos; etrimfos; fenamifos; óxido de fenbutaestaño; fenotiocarb; fenpropatrina; fenpirad; fentión; fluazinam; flucicloxuron; flucitrinato; flufenoxurón; flufenprox; fonofos; fostiazato; fubfenprox; HCH; hexaflumurón; hexitiazox; IKI-220; iprobenfos; isofenfos; isoxation; ivermectina; malatión; mecarbam; mesulfenfos; metaldehído; metolcarb; milbemectina; moxidectina; naled; NC 184; ometoato; oxamil; oxidemetón M; oxideprofos; permetrina; fentoato; forato; fosmet; foxim; pirimifos M; pirimifos E; promecarb; propafos; protiofos; protoato; piraclofos; pirada-fention; piresmetrina; piretrum; tebufenozide; salitión; sebufos; sulfotep; sulprofós; tebufenpirad; tebupirimfos; teflutrina; temefos; terbam; tetraclorvinfos; tiacloprid; tiametoxam; tiafenox; tiodicarb; tiofanox; tionazina; turingiensina; tralometrina; triaraten; triazofos; triazurón; triclorfón; triflumurón; trimetacarb; vamidotión; xililcarb; YI 5301/5302; zetametrina; DPX-MP062-indoxacarb; metoxifenocida; bifenazato, XMC (3,5-xilil metilcarbamato); o el hongo patógeno Metarhizium anisopliae.

5

10

15

30

35

40

45

50

65

[0126] Un compuesto de fórmula (I), o (II) puede ser utilizado para el control, es decir, para inhibir o destruir, plagas del tipo mencionado que tienen lugar en las plantas, especialmente en plantas útiles y ornamentales en agricultura, en horticultura y en silvicultura, o en partes de tales plantas, tales como las frutas, flores, hojas, tallos, tubérculos o raíces, mientras que en algunos casos partes de las plantas que crecen más tarde están aún protegidas contra esas plagas.

[0127] Los cultivos diana incluyen especialmente cereales, tales como trigo, cebada, centeno, avena, arroz, maíz y sorgo; remolacha, tal como remolacha azucarera y remolacha forrajera; fruta, por ejemplo pomáceas, frutos de hueso y frutos blandos, tales como manzanas, peras, ciruelas, melocotones, almendras, cerezas y bayas, por ejemplo fresas, frambuesas y moras; plantas leguminosas, tales como judías, lentejas, guisantes y soja; plantas oleaginosas, tales como colza, mostaza, amapola, oliva, girasol, coco, aceite de ricino, cacao y cacahuetes; cucurbitáceas, tales como calabacines, pepinos y melones; plantas de fibra, tales como algodón, lino, cáñamo y yute; cítricos, tales como naranjas, limones, pomelos y mandarinas; verduras, tales como espinacas, lechugas, espárragos, coles, zanahorias, cebollas, tomates, patatas y pimentón; lauráceas, tales como aguacate, canela y alcanfor; y tabaco, nueces, café, berenjenas, caña de azúcar, té, pimienta, vides, lúpulo, plátanos, plantas de caucho natural y ornamentales.

[0128] Otras áreas de uso de un compuesto de fórmula (I) o (II) es la protección de bienes almacenados y trasteros y la protección de materias primas, y también en el sector de la higiene, especialmente la protección de animales domésticos y ganado productivo contra plagas del tipo mencionado, más especialmente la protección de animales domésticos, especialmente gatos y perros, del ataque de pulgas, garrapatas y nematodos.

[0129] La invención se refiere por tanto también a composiciones plaguicidas, tales como concentrados emulsionables, concentrados en suspensión, soluciones directamente pulverizables o diluibles, pastas extensibles, emulsiones diluidas, polvos humectables, polvos solubles, polvos dispersables, polvos humectables, polvos, gránulos y encapsulaciones de sustancias poliméricas, que comprenden al menos un compuesto de fórmula (I) o (II), realizándose la elección de la formulación según los objetivos pretendidos y las circunstancias imperantes. Además, la composición plaguicida a menudo se diluye, y opcionalmente se combina con otras composiciones plaguicidas, antes de su uso como un plaguicida. La invención, por lo tanto, se refiere también a una composición de mezcla de tanque (a veces conocido como una suspensión en el caso de que la composición sea una suspensión), que comprende la composición plaguicida y un portador líquido, generalmente agua, y opcionalmente una más de otras composiciones plaguicidas, comprendiendo cada composición plaguicida un plaguicida adicional como compuesto activo.

[0130] El ingrediente activo se usa en estas composiciones en forma pura, un principio activo sólido, por ejemplo, en un tamaño de partícula específico, o preferiblemente junto con al menos uno de los agentes auxiliares (también conocido como adyuvantes) habituales en la tecnología de la formulación, tales como extendedores, por ejemplo disolventes o portadores sólidos, o compuestos tensioactivos (tensioactivos). En el ámbito del control de parásitos en humanos, animales domésticos, ganado productivo y mascotas será evidente que sólo se utilizan aditivos fisiológicamente tolerables.

[0131] Los disolventes son, por ejemplo: hidrocarburos aromáticos no hidrogenados o parcialmente hidrogenados, preferiblemente fracciones de C₈ a C₁₂ de alquilbencenos, tales como mezclas de xileno, naftalenos alquilados o tetrahidronaftaleno, hidrocarburos alifáticos o cicloalifáticos, tales como parafinas o ciclohexano, alcoholes, tales como etanol, propanol o butanol, glicoles y éteres y ésteres de los mismos, tales como propilenglicol, dipropilenglicol éter, etilenglicol o etilenglicol monometil o monoetil éter, cetonas, tales como ciclohexanona, isoforona o alcohol de diacetona, disolventes fuertemente polares, tales como N-metilpirrolid-2-ona, dimetilsulfóxido o N,N-dimetilformamida, agua, aceites vegetales no epoxidados o epoxidados, tales como aceite de semilla de colza, de ricino, de coco o de soja no epoxidado o epoxidado, y aceites de silicona.

[0132] Los portadores sólidos usados, por ejemplo, para polvos y polvos dispersables, son como regla general polvos de rocas naturales, tales como calcita, talco, caolín, montmorillonita o atapulgita. También se pueden añadir ácidos silícicos altamente dispersos o polímeros absorbentes altamente dispersados para mejorar las propiedades

físicas. Los portadores granulares adsorbentes granulares son de tipo poroso, tales como piedra pómez, ladrillo triturado, sepiolita o bentonita, y los materiales portadores no sorbentes son calcita o arena. Además, se puede utilizar un gran número de materiales granulares de naturaleza inorgánica u orgánica, en particular dolomita o residuos vegetales triturados.

5

10

15

20

25

30

35

40

45

50

55

60

65

[0133] Los compuestos activos de superficie son, dependiendo de la naturaleza del compuesto activo a formular, tensioactivos no iónicos, catiónicos y/o aniónicos o mezclas de tensioactivos con buenas propiedades emulsionantes, dispersantes y humectantes. Los agentes tensioactivos enumerados a continuación deben considerarse sólo como ejemplos; muchos otros tensioactivos que son habituales en la tecnología de formulación son adecuados y se describen en la literatura pertinente.

[0134] Los tensioactivos no iónicos son, en particular, derivados de éter poliglicólico de alcoholes alifáticos o cicloalifáticos, ácidos grasos saturados o insaturados y alquilfenoles, que pueden contener de 3 a 30 grupos de éter glicólico y de 8 a 20 átomos de carbono en el radical hidrocarburo (alifático) y de 6 a 18 átomos de carbono en el radical alquilo de los alquilfenoles. Las sustancias que son, además, adecuadas son los aductos de óxido de polietileno solubles en agua, que contienen de 20 a 250 grupos de etilenglicol éter y de 10 a 100 grupos de propilenglicol éter, en propilenglicol, etilendiaminopolipropilenglicol y alquil polipropilenglicol que tiene de 1 a 10 átomos de carbono en la cadena alquilo. Los compuestos mencionados generalmente contienen de 1 a 5 unidades de etilenglicol por unidad de propilenglicol. Ejemplos son nonilfenol-polietoxietanoles, poliglicoléteres de aceite de ricino, aductos de polipropileno-óxido de polietileno, tributilfenoxipoli-etoxietanol, polietilenglicol y octilfenoxipolietoxietanol. Otras sustancias son ésteres de ácidos grasos de polioxietileno sorbitán, tales como trioleato de polioxietileno sorbitán.

[0135] Los tensioactivos catiónicos son, en particular sales, de amonio cuaternario que contienen, como sustituyentes, al menos un radical alquilo que tiene de 8 a 22 átomos de C y, como sustituyentes adicionales, radicales alquilo inferior no halogenados o halogenados, bencilo o hidroxialquilo inferior. Las sales están preferiblemente en la forma de haluros, metilsulfatos o etilsulfatos. Los ejemplos son cloruro de estearil-trimetil-amonio y bromuro de bencil-di-(2-cloroetil)-etil-amonio.

[0136] Los tensioactivos aniónicos adecuados pueden ser tanto jabones solubles en agua como compuestos tensioactivos sintéticos solubles en agua. Los jabones adecuados son sales de amonio de ácidos grasos superiores (C₁₀-C₂₂) de metal alcalino, metal alcalinotérreo y sustituidos o no sustituidos, tales como las sales de sodio o potasio de ácido oleico o esteárico, o de mezclas de ácidos grasos de origen natural, que se pueden obtener, por ejemplo, de aceite de coco o aceite de resina; y además también las sales de metiltaurina de ácidos grasos. Sin embargo, se utilizan más frecuentemente agentes tensioactivos sintéticos, en particular sulfonatos grasos, sulfatos grasos, derivados de bencimidazol sulfonados o alquilarilsulfonatos. Los sulfonatos y sulfatos grasos están como regla en forma de sales de amonio de metal alcalino, metal alcalinotérreo o sustituidas o no sustituidas y en general tienen un radical alquilo de 8 a 22 átomos de C, alquilo también incluye el resto alquilo de radicales acilo; ejemplos son la sal sódica o cálcica de ácido ligninsulfónico, de éster de ácido dodecilsulfúrico o de una mezcla de sulfato de alcohol graso preparada a partir de ácidos grasos de origen natural. Estos también incluyen las sales de ésteres de ácido sulfúrico y ácidos sulfónicos de aductos de alcohol graso-óxido de etileno. Los derivados de bencimidazol sulfonados contienen preferiblemente 2 grupos ácido sulfónico y un radical de ácido graso que tiene de aproximadamente 8 a 22 átomos de C. Los alquilarilsulfonatos son, por ejemplo, las sales de sodio, calcio o trietanolamonio del ácido dodecilbencenosulfónico, de ácido dibutilnaftalenosulfónico o de un producto de condensación de ácido naftalenosulfónico-formaldehído. También se pueden usar ffosfatos correspondientes, tales como sales del éster de ácido fosfórico de un aducto de óxido de etileno-p-nonilfenol-(4-14) o fosfolípidos.

[0137] Las composiciones como regla comprenden de 0,1 a 99%, en particular de 0,1 a 95%, de compuesto activo y de 1 a 99,9%, en particular de 5 a 99,9%, de al menos un auxiliar sólido o líquido, siendo posible como regla para de 0 a 25%, en particular de 0,1 a 20%, de la composición que sean tensioactivos (% es en cada caso porcentaje en peso). Aunque las composiciones concentradas son más preferidas como bienes comerciales, el usuario final como regla utiliza composiciones diluidas que comprenden concentraciones considerablemente inferiores de compuesto activo. Las composiciones preferidas se componen, en particular, como se indica a continuación (% = porcentaje en peso):

Concentrados emulsionables:

ingrediente activo 1 a 90%, preferiblemente de 5 a 20% tensioactivo: 1 a 30%, preferiblemente de 10 a 20%

disolvente: equilibrio

Polvos:

ingrediente activo 0,1 a 10%, preferiblemente de 0,1 a 1% portador sólido: 99,9 a 90%, preferiblemente de 99,9 a 99%

Concentrados en suspensión:

ingrediente activo 5 a 75%, preferiblemente de 10 a 50% tensioactivo: 1 a 40%, preferiblemente de 2 a 30%

agua: equilibrio

Polvos humectables:

ingrediente activo 0,5 a 90%, preferiblemente de 1 a 80% tensioactivo: 0,5 a 20%, preferiblemente de 1 a 15%

portador sólido: equilibrio

Gránulos:

15 ingrediente activo 0,5 a 30%, preferiblemente de 3 a 15% tensioactivo: 99,5 a 70%, preferiblemente de 97 a 85%

[0138] A continuación se indican ejemplos de formulación específica para su uso en la protección de cultivos (% = porcentaje en peso):

Ejemplo F1: concentrados emulsionables

[0139]

5

20

25

30

35

	a)	b)	c)
compuesto activo	25%	40%	50%
dodecilbencenosulfonato de calcio	5%	8%	6%
polietilenglicol éter de aceite de ricino (36 mol de EO)	5%	-	-
tributilfenol polietilenglicol éter (30 moles de EO)	-	12%	4%
ciclohexanona	-	15%	20%
mezcla de xilenos	65%	25%	20%

[0140] La mezcla de compuesto activo y aditivos finamente molidos da un concentrado en emulsión que, por dilución con agua, proporciona emulsiones de la concentración deseada.

Ejemplo F2: Soluciones

[0141]

	a)	b)	c)	d)
compuesto activo	80%	10%	5%	95%
etilenglicol monometil éter	-	20%	-	-
Polietilenglicol (PM 400)	-	70%	-	-
N-metilpirrolid-2-ona	20%	-	-	-
aceite de coco epoxidado	-	-	1%	-
hidrocarburo alifático (intervalo de ebullición: 160- 190°C)	-	-	94%	5%

[0142] La mezcla de compuesto activo y aditivos finamente molidos da una solución adecuada para uso en forma de microgotas.

Ejemplo F3: Gránulos

[0143]

[4]					
	a)	b)	c)	d)	
Compuesto activo	5%	10%	8%	21%	

Caolín	94%	-	79%	54%
ácido silícico	1%	=	13%	7%
finamente dividido				
atapulgita	-	90%	-	18%

[0144] El compuesto activo se disuelve en diclorometano, la solución se pulveriza sobre la mezcla de portadores y el disolvente se evapora bajo presión reducida.

5 Ejemplo F4: Polvo humectable

[0145]

	a)	b)	c)
compuesto activo	25%	50%	75%
lignosulfonato de sodio	5%	5%	-
laurilsulfato de sodio	3%	-	5%
diisobutilnaftaleno sulfonato de sodio	-	6%	105
octilfenol polietilenglicol éter	-	2%	-
ácido silícico finamente dividido	5%	10%	10%
caolín	62%	27%	-

10 **[0146**] El compuesto activo y aditivos se mezclan y la mezcla se muele en un molino adecuado. Esto produce polvos humectables que pueden diluirse con agua para dar suspensiones de la concentración deseada.

Ejemplo F5: Concentrado emulsionable

15 **[0147**]

[a]	
compuesto activo	10%
octilfenol polietilenglicol éter (4-5 mol de EO)	3%
dodecilbencenosulfonato de calcio	3%
polietilenglicol éter de aceite de ricino (36 mol de EO)	4%
ciclohexanona	30%
mezcla de xilenos	50%

[0148] La mezcla de compuesto activo y aditivos finamente molidos da un concentrado en emulsión que, por dilución con agua, proporciona emulsiones de la concentración deseada.

20 <u>Ejemplo F6: Gránulos por extrusora</u>

[0149]

compuesto activo	10%
lignosulfonato de sodio	2%
carboximetilcelulosa	1%
caolín	87%

25 **[0150**] El compuesto activo y aditivos se mezclan, la mezcla se muele, se humedece con agua, se extruye y se granula y los gránulos se secan en una corriente de aire.

Ejemplo F7: Gránulos recubiertos

30 **[0151**]

35

Compuesto activo	3%
Polietilenglicol (PM 200)	3%
Caolín	94%

[0152] En un mezclador, se aplica el compuesto activo finamente molido uniformemente al caolín que se ha humedecido con polietilenglicol. Esto produce gránulos recubiertos libres de polvo.

Ejemplo F8 Concentrado en suspensión

[0153]

10

25

30

35

50

55

compuesto activo	40%
Etilenglicol	10%
nonilfenol polietilenglicol éter (15 moles de EO)	6%
lignosulfonato de sodio	10%
Carboximetilcelulosa	1%
solución acuosa de formaldehído (37%)	0,2%
emulsión en aceite de silicona acuoso (75%)	0,8%
agua	32%

[0154] La mezcla de compuesto activo y aditivos finamente molidos da un concentrado en suspensión que, mediante dilución con agua, proporciona suspensiones de la concentración deseada.

[0155] Las composiciones según la invención también pueden comprender además adyuvantes sólidos o líquidos, tales como estabilizantes, por ejemplo, aceites vegetales o aceites vegetales epoxidados (por ejemplo, aceite de coco, aceite de colza o aceite de soja epoxidados), antiespumantes, por ejemplo, aceite de silicona, conservantes, reguladores de la viscosidad, aglutinantes y/o agentes de pegajosidad, así como fertilizantes u otros ingredientes activos para obtener efectos especiales, por ejemplo, acaricidas, bactericidas, fungicidas, nematicidas, molusquicidas o herbicidas selectivos.

[0156] La composición plaguicida según la invención, particularmente para uso como un producto de protección de cultivos, se prepara en ausencia de adyuvantes, por ejemplo, por molienda, tamizado y/o comprimiendo el compuesto de fórmula (I), o (II) (como ingrediente activo) o mezcla de los mismos, por ejemplo, hasta un cierto tamaño de partícula, y en presencia de al menos un adyuvante, por ejemplo, mezclando íntimamente y/o triturando el compuesto de fórmula (I), o (II) (como ingrediente activo) o mezcla de los mismos con el adyuvante o adyuvantes.
La invención se refiere igualmente a aquellos procedimientos para la preparación de la composición plaguicida según la invención y para el uso de un compuesto de fórmula (I), o (II), en la preparación de la composición.

[0157] La invención se refiere también a los procedimientos de aplicación de las composiciones de mezcla para plaguicidas y de tanque, es decir, los procedimientos de control de plagas del tipo mencionado, tales como pulverización, atomización, espolvoreo, revestimiento, recubrimiento, dispersión o vertido, que se seleccionan según los objetivos pretendidos y las circunstancias imperantes, y al uso de las composiciones para controlar plagas del tipo mencionado. Las tasas típicas de concentración son de 0,1 a 1000 ppm, preferiblemente de 0,1 a 500 ppm, de ingrediente activo. Las tasas de aplicación por hectárea son generalmente de 1 a 2000 g de ingrediente activo por hectárea, especialmente de 10 a 1000 g/ha, preferiblemente de 20 a 600 g/ha, más preferiblemente de 20 a 100 g/ha.

[0158] Un procedimiento preferido de aplicación en el área de la protección de cultivos es la aplicación al follaje de las plantas (aplicación foliar), siendo la frecuencia y la tasa de aplicación dependientes del riesgo de infestación por la plaga en cuestión. Sin embargo, el ingrediente activo también puede penetrar en las plantas a través de las raíces (acción sistémica) cuando el locus de las plantas se impregna con una formulación líquida o cuando el ingrediente activo se incorpora en forma sólida en el locus de las plantas, por ejemplo, en el suelo, por ejemplo, en forma granular (aplicación al suelo). En el caso de cultivos de arrozales, tales gránulos pueden aplicarse en cantidades dosificadas al campo de arroz inundado.

[0159] Las composiciones de mezcla para plaguicidas y de tanque también son adecuadas para proteger material de propagación de plantas, por ejemplo, semillas, tales como frutas, tubérculos o granos, o esquejes de plantas, contra plagas de animales. El material de propagación puede tratarse con la composición antes de la plantación: la semilla, por ejemplo, puede ser revestido antes de ser sembrada. Los ingredientes activos según la invención también se pueden aplicar a granos (recubrimiento), ya sea por impregnación de las semillas en una formulación líquida o recubriéndolos con una formulación sólida. La composición también se puede aplicar al sitio de plantación cuando se está plantando el material de propagación, por ejemplo, al surco de siembra durante la siembra. La invención se refiere también a tales procedimientos de tratamiento de material de propagación de plantas y al material de propagación de plantas así tratado.

Ejemplos de Preparación:

[0160] Puesto que en la mayoría de los casos los compuestos están presentes como mezclas de los derivados de avermectina B1a y B1b, la caracterización mediante datos físicos habituales, tales como punto de fusión o índice de refracción no es aplicable. Por esta razón, los compuestos se caracterizan por sus tiempos de retención de HPLC que se determinan durante un análisis LC/MS (cromatografía líquida/espectrometría de masas) usando ionización por electropulverización en el modo de ion positivo. Aquí, el término B1a se refiere al componente principal en el que R₁ es sec-butilo, con un contenido de por lo general más del 80%. B1b indica el componente menor en el cual R₁ es

isopropilo. Los compuestos donde se dan dos tiempos de retención tanto para el derivado de B1a y B1b son mezclas de diastereómeros que pueden separarse cromatográficamente. En el caso de compuestos en los que un tiempo de retención se da solamente en la columna B1a o sólo en la columna B1b, el componente B1a o B1b puro, respectivamente, puede obtenerse durante el proceso final. Las masas moleculares de los componentes B1a y B1b se confirman por espectrometría de masas.

[0161] Los siguientes procedimientos se utilizan para la separación cromatográfica:

Procedimiento A (Agilent HP1100)

condiciones de gradiente de HPLC						
Disolvente A: 0,01% de ácido trifluoroacético en H₂O						
Disolvente B:	0,01% de ácido trifluoroacétic	co en CH₃CN				
Tiempo [min]	A [%]	B [%]	caudal [min]			
0	80	20	0,5			
0,1	60	40	0,5			
6	40	60	0,5			
11	15	85	0,5			
15	15	85	0,5			
17	0	100	0,5			
20	0	100	0,5			
Tipo de columna	Zorbax Bonus-RP					
Longitud de columna	50 mm					
Diámetro interno de	2,1 mm					
columna						
Tamaño de partícula	3,5 micras					
Temperatura	40°C	·	·			

Procedimiento B (Agilent HP1100)

condiciones de gradiente de HPLC					
Disolvente A:	0,01% de ácido trifluoroacétic	co en H ₂ O			
Disolvente B:	0,01% de ácido trifluoroacétic	co en CH₃CN			
Tiempo [min]	A [%]	B [%]	caudal [min]		
0	80	20	0,5		
0,1	70	30	0,5		
10	40	60	0,5		
14	0	100	0,5		
17	0	100	0,5		
Tipo de columna	Zorbax Bonus-RP				
Longitud de columna	50 mm				
Diámetro interno de	2,1 mm				
columna					
Tamaño de partícula	3,5 micras				
Temperatura	40°C				

Procedimiento C (Waters Alliance 2690)

condiciones de gradiente de HPLC					
Disolvente A:	0,01% de ácido trifluoroacético en H₂O				
Disolvente B:	0,01% de ácido trifluoroacétic	co en CH₃CN			
Tiempo [min]	A [%]	B [%]	caudal [min]		
0	80	20	0,5		
0,1	50	50	0,5		
10	5	95	0,5		
14	0	100	0,5		
17	0	100	0,5		
Tipo de columna	YMC-Pack ODS-AQ				
Longitud de columna	125 mm				
Diámetro interno de	2,0 mm				
columna					
Tamaño de partícula	5 micras				
Temperatura	40°C				

15

5

Procedimiento D (Waters Alliance 2690, HP1100)

condiciones de gradiente de HPLC						
Disolvente A: 0,01% de ácido trifluoroacético en H₂O						
Disolvente B:	0,01% de ácido trifluoroacétic	co en CH₃CN				
Tiempo [min]	A [%]	B [%]	caudal [min]			
0	80	20	0,5			
0,1	70	30	0,5			
10	40	60	0,5			
14	0	100	0,5			
17	0	100	0,5			
Tipo de columna	YMC-Pack ODS-AQ					
Longitud de columna	125 mm					
Diámetro interno de	2,0 mm					
columna						
Tamaño de partícula	5 micras					
Temperatura	40°C					

Procedimiento E (Waters Alliance 2690)

condiciones de gradiente de HPLC							
Disolvente A:	lvente A: 0,01% de ácido trifluoroacético en H ₂ O						
Disolvente B:	0,01% de ácido trifluoroacéti	co en CH₃CN					
Tiempo [min]	A [%]	B [%]	caudal [min]				
0	80	20	0,5				
0,1	70	30	0,5				
10	40	60	0,5				
14	0	100	0,5				
17	0	100	0,5				
Tipo de columna	Zorbax Bonus-RP						
Longitud de columna	50 mm						
Diámetro interno de	2,1 mm						
columna							
Tamaño de partícula	3,5 micras						
Temperatura	40°C						

Procedimiento F (Agilent HP1100)

condiciones de gradiente de HPLC						
Disolvente A:	0,01% de ácido trifluoroacético en H₂O					
Disolvente B:	0,01% de ácido trifluoroacétic	o en CH₃CN				
Tiempo [min]	A [%]	B [%]	caudal [min]			
0	90	10	0,5			
1	90	10	0,5			
12	40	100	0,5			
17	0	100	0,5			
Tipo de columna Longitud de columna	Zorbax Bonus-RP 50 mm					
Diámetro interno de columna	2,1 mm					
Tamaño de partícula	3,5 micras					
Temperatura	40°C					

- [0162] La columna YMC-Pack ODS-AQ utilizada para la cromatografía de los compuestos está fabricada por YMC, Alte Raesfelderstrasse 6, 46514 Schermbeck, Alemania. La columna Bonus-RP Zorbax está fabricada por Agilent Technologies, CH-4052 Basilea, Suiza.
- [0163] En los siguientes ejemplos, las relaciones de mezcla de los eluyentes se dan como volumen/volumen, y las temperaturas en °C. TBDMS significa terc-butildimetilsililo, TIPS significa tri-iso-propilsililo, TMS significa trimetilsililo.
 - [0164] Los ejemplos indicados con * no están dentro del alcance de la invención.
 - Ejemplo 1: Aglicona de 13-O-(2',3',4'-tri-O-metil-β-L-ramnopiranosil)-avermectina B₁ (Tabla P1.1)

5

[0165] Etapa A: Se agita una solución de 1 g de aglicona de 5-OTBDMS-7-OTMS- avermectina B1, 542 mg de 1-S-fenil-2,3,4-tri-O-metil-α-L-ramnopiranósido y 1 g de tamices moleculares triturados (4 Å) en 15 ml de diclorometano anhidro bajo atmósfera de argón a temperatura ambiente durante 2 horas. La mezcla se enfría hasta a -30°C, se añaden 583 mg de N-yodo-succinimida y 11,3 μl de ácido trifluorosulfónico y la mezcla se agita durante 5 h a -30°C. La mezcla de reacción se inactivó por adición de 65 μl de base de Hünig y se diluye con 20 ml de diclorometano. La solución de diclorometano se filtra, se lava con una solución acuosa saturada de tiosulfato de sodio, una solución acuosa saturada de hidrogenocarbonato de sodio, y con agua. La fase orgánica se seca sobre Na₂SO₄, se filtra, y se concentró a vacío. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo para proporcionar aglicona de 5-OTBDMS-13-O- (2',3',4'-tri-O-metil-α-L-ramnopiranosil)-avermectina B1 y aglicona de 5-OTBDMS-13-O- (2',3',4'-tri-O-metil-β -L-ramnopiranosil)-avermectina B1.

[0166] Etapa B: A una solución de 45 mg de aglicona de 5-OTBDMS-13-O-(2',3',4'-tri-O-metil-β-L-ramnopiranosil)-avermectina B1 en 1,25 ml de tetrahidrofurano en atmósfera de argón a temperatura ambiente se añaden 0,25 ml de una solución madre, que se prepara a partir de 250 g de 70% HF-piridina, 275 ml de tetrahidrofurano y 125 ml de piridina. La mezcla se agita a temperatura ambiente durante 19 horas, se vierte en una solución acuosa saturada de hidrogenocarbonato de sodio, y se extrae con acetato de etilo. A continuación, las fases se separan y la fase acuosa se extrae con acetato de etilo. Las fases orgánicas combinadas se secan sobre sulfato de sodio, se filtran, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo, produciendo aglicona de 13-O-(2,3,4-tri-O-metil-β-L-ramnopiranosil)-avermectina B1.

* Ejemplo 2: Aglicona de 13-O-(2', 3',4'-tri-O-metil-α-L-ramnopiranosil)-avermectina B1 (Tabla P2.1)

[0167] A una solución de 24 mg de aglicona de 5-OTBDMS-13-O-(2',3',4'-tri-O-metil-α-L-ramnopiranosil)-avermectina B1 (producto de la Etapa A de Ejemplo 1) en 0,65 ml de tetrahidrofurano en atmósfera de argón a temperatura ambiente se añaden 0,13 ml de una solución madre, que se prepara a partir de 250 g de 70% HF-piridina, 275 ml de tetrahidrofurano y 125 ml de piridina. La mezcla se agita a temperatura ambiente durante 20 horas, se vierte en una solución acuosa saturada de hidrogenocarbonato de sodio, y se extrae con acetato de etilo. A continuación, las fases se separan y la fase acuosa se extrae con acetato de etilo. Las fases orgánicas combinadas se secan sobre sulfato de sodio y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo, produciendo aglicona de 13-O-(2',3',4'-tri-O-metil-alfa-L-ramnopiranosil)-avermectina B1.

* Ejemplo 3: Monosacárido de 4'-O-(2",3" -di-O-metil-β-L-ramnopiranosil)-avermectina B1 monosacárido (Tabla P3.1)

[0168] Etapa A: Se agita solución de 5,89 g de monosacárido de 5-OTBDMS-avermectina B1, 2,83 g de 1-S-fenil-4-O-aliloxicarbonil-2,3-di-O-metil-α-L-ramnopiranósido y 10 g de tamices moleculares triturados (4 Å) en 100 ml de diclorometano anhidro bajo atmósfera de argón a temperatura ambiente durante 1 hora. La mezcla se enfría hasta 40°C, se añaden 3,14 g de N-yodo-succinimida y 0,13 ml de ácido trifluorosulfónico y la mezcla se agita durante 5 horas a - 30°C. Se deja que la mezcla de reacción se caliente hasta -10°C y se inactiva después de agitar durante 1 h mediante la adición de 1,54 ml de base de Hünig y se diluye con 100 ml de diclorometano. La solución de diclorometano se filtra, se lava con una solución acuosa saturada de tiosulfato de sodio, una solución acuosa saturada de hidrogenocarbonato de sodio, y con solución acuosa saturada de cloruro sódico. La fase orgánica se seca sobre Na₂SO₄, se filtra, y se concentra al vacío. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo para proporcionar monosacárido de 5-OTBDMS-4'-O-(4"-O-aliloxicarbonil-2",3"-di-O-metil-α-L-ramnopiranosil)avermectina B1 y monosacárido de 5-OTBDMS-4'-O-(4"-O-aliloxicarbonil-2",3"-di-O-metil-β-L-ramnopiranosil)-avermectina B1.

[0169] <u>Etapa B</u>: A una solución de 1,59 g de monosacárido de 5-OTBDMS-4'-O-(4"-O-aliloxicarbonil-2",3"-di-O-metil-β-L-ramnopiranosil)-avermectina B1 en 100 ml de tetrahidrofurano se añaden bajo atmósfera de argón 155 mg de trifenilfosfina, 0,29 ml de ácido fórmico, 232 mg de tetraquis(trifenilfosfina) paladio y la mezcla se agita a temperatura ambiente durante 21 horas. La mezcla se diluye con acetato de etilo, se lava con una solución acuosa saturada de hidrogenocarbonato de sodio, se separan las fases y la fase acuosa se extrae con acetato de etilo. Las fases orgánicas combinadas se secan sobre sulfato de sodio, se filtran, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo para dar monosacárido de 5-OTBDMS-4'-O-(2",3"-di-O-metil-β-L-ramnopiranosil)-avermectina B1.

[0170] Etapa C: A una solución de 65 mg de monosacárido de 5-OTBDMS-4'-O-(2",3"-di-O-metil-β-L-ramnopiranosil) -avermectina B1 en 2 ml de tetrahidrofurano en atmósfera atmósfera de argón a temperatura ambiente se añaden 0,34 ml de una solución madre, que se prepara a partir de 250 g de 70% HF-piridina, 275 ml de tetrahidrofurano y 125 ml de piridina. La mezcla se agita a temperatura ambiente durante 24 horas, se vierte en una solución acuosa saturada de hidrogenocarbonato de sodio y se extrae con acetato de etilo. A continuación, la fase acuosa se extrae de nuevo con acetato de etilo. Las fases orgánicas combinadas se secan sobre sulfato de sodio, se filtran, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo, produciendo monosacárido de 4'-O-(2",3"-L-ramnopiranosil-di-O-metil-β)-avermectina B1.

65

60

50

55

5

10

15

20

25

* Ejemplo 4: Monosacárido de 4'-O-(2",3"-di-O-metil-α-L-ramnopiranosil)-avermectina B1 (Tabla P4.1)

5

10

15

20

25

30

35

40

45

50

[0171] Etapa A: A una solución de monosacárido 184 mg de 5-OTBDMS-4'-O-(4"-O-aliloxicarbonil-2",3"-di-O-metil-α-L-ramnopiranosil)-avermectina B1 (producto de la Etapa A del Ejemplo 3) en 16 ml de tetrahidrofurano se añaden bajo atmósfera de argón 17,4 mg de trifenilfosfina, 32 μl de ácido fórmico y 26,2 mg de tetrakis(trifenilfosfina) paladio y la mezcla se agita a temperatura ambiente durante 19 horas. La mezcla se diluye con acetato de etilo, se lava con una solución acuosa saturada de hidrogenocarbonato de sodio, las fases se separan y la fase acuosa se extrae con acetato de etilo. Las fases orgánicas combinadas se secan sobre sulfato de sodio, se filtran, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo para proporcionar monosacárido de 5-OTBDMS-4'-O-(2",3"-di-O-metil-alfa-L-ramnopiranosil)-avermectina B1.

[0172] <u>Etapa B</u>: A una solución de 61 mg de monosacárido de 5-OTBDMS-4'-O-(2",3"-di-O-metil)-α-L-ramnopiranosil)-avermectina B1 en 2 ml de tetrahidrofurano bajo atmósfera de argón a temperatura ambiente se añaden 0,32 ml de una solución madre, que se prepara a partir de 250 g de 70% HF-piridina, 275 ml de tetrahidrofurano y 125 ml de piridina. La mezcla se agita a temperatura ambiente durante 16 horas, se vierte en una solución acuosa saturada de hidrogenocarbonato de sodio y se extrae con acetato de etilo. A continuación, la fase acuosa se extrae de nuevo con acetato de etilo. Las fases orgánicas combinadas se secan sobre sulfato de sodio, se filtran, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo, produciendo monosacárdio de 4'-O-(2",3"-L-ramnopiranosil-di-O-metil-β)-avermectina B1.

* <u>Ejemplo 5</u>: Monosacárido de 4'-O-(4"-O-metoximetil-2",3"-di-O-metil-β-L-ramnopiranosil)-avermectina B1 (Tabla P3 6)

[0173] <u>Etapa A</u>: A una solución de 100 mg de monoscárido de 5-OTBDMS-4'-O-(2",3"-di-O-metil-β-L-ramnopiranosil)-avermectina B1 (producto de la Etapa B del Ejemplo 3) en 2,7 ml de diclorometano en atmósfera de argón se añaden 23 μl de clorometil éter y 207 μl de base de Hünig y la mezcla se agita a 35°C durante 20 horas. A continuación, se añaden 14 μl de clorometil éter y 123 μl de base de Hünig y la mezcla se agita a 35°C durante 5 horas adicionales. La mezcla se vierte en agua con hielo, y se extrae tres veces con diclorometano. Las fases orgánicas combinadas se secan sobre sulfato de sodio, se filtran, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo para proporcionar monosacárido de 5-OTBDMS-4'-O-(4"-O-metoximetil-2",3"-di-O-metil-β-L-ramnopiranosil) avermectina B1.

[0174] Etapa B: A una solución de 80 mg de monosacárido de 5-OTBDMS-4'-O-(4"-O-metoximetil-2",3"-di-O-metil-β-L-ramnopiranosil)-avermectina B1 en 2,5 ml de tetrahidrofurano bajo atmósfera de argón a temperatura ambiente se añaden 0,40 ml de una solución madre, que se prepara a partir de 250 g de 70% HF-piridina, 275 ml de tetrahidrofurano y 125 ml de piridina. La mezcla se agita a temperatura ambiente durante 18 horas, se vierte en una solución acuosa saturada de hidrogenocarbonato de sodio y se extrae con acetato de etilo. La fase acuosa se extrae de nuevo con acetato de etilo. Las fases orgánicas combinadas se secan sobre sulfato de sodio, se filtran, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo, produciendo monosacárido de 4'-O-(4"-O-metoximetil-2",3"-di-O-metil-β-L-ramnopiranosil)-avermectina B1.

* <u>Ejemplo 6</u>: Monosacárido de 4'-O-(4"-O-metoximetil-2",3"-di-O-metil-α-L-ramnopiranosil)-avermectina B1 (Tabla P4.6)

[0175] <u>Etapa A</u>: A una solución de 100 mg de monosacárido de 5-OTBDMS-4'-O-(2",3"-di-O-metil-α-L-ramnopiranosil)-avermectina B1 (producto de la Etapa A del Ejemplo 4) en 2,7 ml de diclorometano en atmósfera de argón se añaden 11 μl de clorometil éter y 103 μl de base de Hünig y la mezcla se agita a 35°C durante 15 horas. A continuación, se añaden 11 μl de clorometil éter y 103 μl de base de Hünig y la mezcla se agita a 35°C durante 5 horas adicionales. La mezcla se vierte en agua con hielo, y se extrae tres veces con diclorometano. Las fases orgánicas combinadas se secan sobre sulfato de sodio, se filtran, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo para proporcionar monosacárido de 5-OTBDMS-4'-O-(4"-O-metoximetil-2",3"-di-O-metil-α-L-ramnopiranosil) avermectina B1.

[0176] Etapa B: A una solución de 78 mg de monosacárido de 5-OTBDMS-4'-O-(4"-O-metoximetil-2",3"-di-O-metil-alfa-L-ramnopiranosil)-avermectina B1 en 2,5 ml de tetrahidrofurano bajo atmósfera de argón a temperatura ambiente se añaden 0,39 ml de una solución madre, que se prepara a partir de 250 g de 70% HF-piridina, 275 ml de tetrahidrofurano y 125 ml de piridina. La mezcla se agita a temperatura ambiente durante 18 horas, se vierte en una solución acuosa saturada de hidrogenocarbonato de sodio y se extrae con acetato de etilo. La fase acuosa se extrae de nuevo con acetato de etilo. Las fases orgánicas combinadas se secan sobre sulfato de sodio, se filtran, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo, produciendo el monosacárido de 4'-O-(4"-O-metoximetil-2",3"-di-O-metil-α-L ramnopiranosil) -avermectina B1.

65 <u>Ejemplo 7</u>: Monosacárido de 4'-O-(4",6"-didesoxi-4"-aliloxicarbonil(metil)amino-2",3"-di-O-metil-β-L-talopiranosil)-

avermectina B1 (Tabla P9.4)

5

10

15

20

25

30

35

40

45

50

55

60

65

[0177] Etapa A: Se agita una solución de 1,61 g de monosacárido de 5-OTBDMS-avermectina B1, 801 mg de 1-Sfenil-4,6-didesoxi-4-aliloxicarbonilo(metil)amino-2,3-di-O-metil-β-L-talopiranósido y 2 g de tamices moleculares triturados (4 Å) en 35 ml de diclorometano anhidro bajo atmósfera de argón a temperatura ambiente durante 1 hora. La mezcla se enfría hasta -40°C, se añaden 860 mg de N-yodo-succinimida y 36 μl de ácido trifluorosulfónico. Se deja que la mezcla de reacción se caliente hasta -10°C y se inactiva después de agitar durante 5 h mediante la adición de 0,42 ml de base de Hunig y se diluye con 50 ml de diclorometano. La solución de diclorometano se filtra, se lava con una solución acuosa saturada de tiosulfato de sodio, una solución acuosa saturada de hidrogenocarbonato de sodio, y con solución acuosa saturada de cloruro sódico. La fase orgánica se seca sobre Na₂SO₄, se filtra, y se concentra a vacío. El residuo se purifica por cromatografía sobre gel de sílice con de etilo para proporcionar monosacárido de 5-OTBDMS-4'-O-(4",6"-didesoxi-4"aliloxicarbonyl(metil)amino-2",3"-di-O-metil-α-L-talopiranosil)-avermectina B1 y monosacárido de 5-OTBDMS-4'-O-(4",6"-didesoxi-4"-aliloxicarbonil(metil)amino-2",3"-di-O-metil-β-L-talopiranosil)-avermectina B1.

[0178] <u>Etapa B</u>: A una solución de 58 mg de monosacárido de 5-OTBDMS-4'-O-(4",6"-didesoxi-4"-aliloxicarbonil (metil)amino-2",3"-di-O-metil-β-L-talopiranosil)-avermectina B1 en 2 ml de tetrahidrofurano bajo atmósfera de argón a temperatura ambiente se añaden 0,34 ml de una solución madre, que se prepara a partir de 250 g de 70% HF-piridina, 275 ml de tetrahidrofurano y 125 ml de piridina. La mezcla se agita a temperatura ambiente durante 24 horas, se vierte en una solución acuosa saturada de hidrogenocarbonato de sodio y se extrae con acetato de etilo. La fase acuosa se extrae de nuevo con acetato de etilo. Las fases orgánicas combinadas se secan sobre sulfato de sodio, se filtran, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo, produciendo monosacárido de 4'-O-(4",6"-didesoxi-4"-aliloxicarbonil(metil)amino-2",3"-di-O-metil-β-L-talopiranosil)-avermectina B1.

<u>Ejemplo 8</u>: Monosacárido de 4'-O-(4",6"-didesoxi-4"-metilamino-2",3"-di-O-metil-β-L-talopiranosil)-avermectina B1 (Tabla P9.2)

[0179] A una solución de 58 mg de monosacárido de 4'-O-(4",6"-didesoxi-4"-aliloxicarbonil(metil)amino-2",3"-di-O-metil-β-L-talopiranosil)-avermectina B1 (producto de la Etapa B del Ejemplo 7) en 7 ml de tetrahidrofurano se añaden bajo atmósfera de argón en 3 porciones cada vez 6,7 mg de trifenilfosfina, 12 μl de ácido fórmico, 10 mg de tetraquis (trifenilfosfina) paladio y la mezcla se agita a temperatura ambiente durante 69 horas. La mezcla se diluye con acetato de etilo, se lava con una solución acuosa saturada de hidrogenocarbonato de sodio, se separan las fases y la fase acuosa se extrae con acetato de etilo. Las fases orgánicas combinadas se secan sobre sulfato de sodio, se filtran, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo para proporcionar monosacárido de 4'-O-(4",6'-didesoxi-4'-metilamino-2",3"-di-O-metil-β-L-talopiranosil)-avermectina B1.

* <u>Ejemplo 9</u>: Monosacárido de 4'-O-(4",6"-didesoxi-4"-aliloxicarbonil(metil)amino-2",3"-di-O-metil-α-L-talopiranosil)-avermectina B1 (Tabla P10.8)

[0180] A una solución de 240 mg de monosacárido de 5-OTBDMS-4'-O-(4",6"-didesoxi-4"-aliloxicarbonil(metil) amino-2",3"-di-O-metil-α-L-talopiranosil) avermectina B1 (producto de la Etapa A del Ejemplo 7) en 7,5 ml de tetrahidrofurano en atmósfera de argón a temperatura ambiente se añaden 1,15 ml de una solución madre, que se prepara a partir de 250 g de 70% HF-piridina, 275 ml de tetrahidrofurano y 125 ml de piridina. La mezcla se agita a temperatura ambiente durante 18 horas. A continuación, se añaden 0,23 ml de la solución madre de HF-piridina y la mezcla se agita a temperatura ambiente durante 3 horas adicionales, se vierte en una solución acuosa saturada de hidrogenocarbonato de sodio y se extrae con acetato de etilo. A continuación, la fase acuosa se extrae de nuevo con acetato de etilo. Las fases orgánicas combinadas se secan sobre sulfato de sodio, se filtran, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo, produciendo monosacárido de 4'-O-(4",6"-didesoxi-4"-ailoxicarbonil(metil)amino-2",3"-di-O-metil-α-L-talopiranosil)-avermectina B1.

Ejemplo 10: Monosacárido de 4'-O-(4",6"-didesoxi-4"-metilamino-2",3"-di-O-metil-α-L-talopiranosil)-avermectina B1 (Tabla 10.2)

[0181] A una solución de 232 mg de monoscárido de 4'-O-(4",6"-didesoxi-4"-aliloxicarbonil(metil)amino-2",3"-di-O-metil)- α -L-talopiranosil)-avermectina B1 (producto del Ejemplo 9) en 26 ml de tetrahidrofurano se añaden bajo atmósfera de argón en 3 porciones cada vez 26,8 mg de trifenilfosfina, 50 μ l de ácido fórmico, 40,4 mg de tetraquis (trifenilfosfina) paladio y la mezcla se agita a temperatura ambiente durante 66 horas. La mezcla se diluye con acetato de etilo, se lava con una solución acuosa saturada de hidrogenocarbonato de sodio, se separan las fases y la fase acuosa se extrae con acetato de etilo. Las fases orgánicas combinadas se secan sobre sulfato de sodio, se filtra, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con hexano/acetato de etilo para proporcionar monosacárido de 4'-O-(4",6'-didesoxi-4'-metilamino-2",3"-di-O-metil- α -L-talopiranosil)-avermectina B1.

* Ejemplo 11: 2"-(R)-metil-3"-epi-avermectina B 1 (Tabla P13.1)

5

10

15

30

60

- [0182] Etapa A: A una solución de 400 mg de 4"-oxo-5-O-TBDMS-avermectina B1 en 2,6 ml de tolueno se añaden 420 μl de etildiisopropilamina y 500 μl de trifluorometanosulfonato de triisopropilsililo. La mezcla de reacción se agita a 80°C durante tres días, después se deja enfriar hasta temperatura ambiente, se lava con ácido cítrico acuoso 1 N y, posteriormente, con bicarbonato de sodio acuoso 1 N, se seca sobre sulfato de sodio y el disolvente se evapora. El residuo se puede purificar por cromatografía ultrarrápida sobre gel de sílice con acetato de etilo y hexano para dar 4"-O-TIPS-3",4"-deshidro-5-O-TBDMS-avermectina B1. Alternativamente, el producto crudo se puede utilizar para la Etapa B sin purificación cromatográfica.
- [0183] <u>Etapa B</u>: El producto en bruto que contiene 4"-O-TIPS-3",4"-deshidro-5-O-TBDMS-avermectina B1 de la Etapa A se disuelve en una mezcla de 3 ml de acetato de etilo y 3 ml bicarbonato de sodio acuoso 1N. Se añaden 100 mg de ácido 3-cloro-perbenzoico y la mezcla se agita a temperatura ambiente durante dos días. A continuación, se separan las fases, la fase orgánica se seca sobre sulfato de sodio y se evapora el disolvente. La purificación por cromatografía sobre gel de sílice con acetato de etilo y hexano produce 4"-oxo-2",3"-deshidro-5-O-TBDMS-avermectina B1.
- [0184] Etapa C: A una suspensión de 83 mg de complejo de dimetilsulfuro y bromuro de cobre (I) en 3 ml de éter anhidro se añaden 500 μl de una solución 1,6 M de metil litio en éter a temperatura ambiente. Después de 5 minutos, se añade una solución de 200 mg de 4"oxo-2",3"-deshidro-5-O-TBDMS-avermectina B1 en 2 ml de éter. Después de 30 minutos, la mezcla de reacción se vierte en una solución acuosa 2M de cloruro de amonio, el pH del cual ha sido ajustado a 8 por adición de hidróxido de amonio 2 M. Las fases se separan, la fase orgánica se seca sobre sulfato de sodio y se evapora el disolvente. La purificación por cromatografía sobre gel de sílice con acetato de de etilo y hexano proporciona 2"-(R)-metil-3"-epi-4"-oxo-5-O-TBDMS-avermectina B1.
 - [0185] <u>Etapa D</u>: Se disuelven 300 mg de 2"-(R)-metil-3"-epi-4"-oxo-5-O-TBDMS-avermectina B1 en 10 ml de etanol y se añaden 34 mg de borohidruro de sodio. La mezcla se agita a temperatura ambiente durante 90 minutos. A continuación, se añade cloruro de amonio acuoso, y la mezcla se extrae con acetato de etilo, la fase orgánica se seca sobre sulfato de sodio y se evapora el disolvente. El residuo se puede purificar para dar la 2"-(R)-metil-3"-epi-5-O-TBDMS-avermectina B1 pura. Alternativamente, el producto crudo se puede utilizar para la etapa E sin purificación cromatográfica.
- [0186] Etapa E: El producto en bruto que contiene 2"(R) -metil-3"-epi-5-O-TBDMS-avermectina B1 de la etapa D se disuelve en 10 ml de tetrahidrofurano. Se añaden 3 ml de una solución madre, que se prepara a partir de 250 g de 70% HF-piridina, 275 ml de tetrahidrofurano y 125 ml de piridina. La mezcla se agita a temperatura ambiente durante 24 horas, se vierte en una solución acuosa saturada de hidrogenocarbonato de sodio y se extrae con acetato de etilo. A continuación, la fase acuosa se extrae de nuevo con acetato de etilo. Las fases orgánicas combinadas se secan sobre sulfato de sodio, se filtran, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con acetato de etilo y hexano para dar 2"-(R)-metil-3"-epi-avermectina B 1 (Tabla P13.1).
 - Ejemplo 12: 2"-(R)-metil-3"-epi-4"-desoxi-4"-(S)-metilamino-avermectina B1 (Tabla P13.4)
- [0187] Se disuelven 1,25 g de 2"(R)-metil-3"-epi-4"-oxo-5-O-TBDMS-avermectina B1 (producto de la Etapa C del 45 Ejemplo 11) en 8 ml de acetato de etilo. Se añaden 1 ml de heptametildisilazano y 180 mg de cloruro de zinc, y la mezcla se agita a 50°C durante 4 horas. La mezcla de reacción se enfría hasta 0°C, se añaden entonces 150 mg de borohidruro de sodio en 2 ml de etanol. A continuación, se permite que la mezcla se caliente hasta temperatura ambiente. Después de 40 minutos, se añade 4 ml de ácido acético acuoso al 10%. Después de agitar durante otros 50 5 minutos, la mezcla se extrae con acetato de etilo, la fase orgánica se seca sobre sulfato de sodio y el disolvente se evapora. El residuo se disuelve en 25 ml de tetrahidrofurano. Se añaden 6,5 ml de una solución madre, que se prepara a partir de 250 g de 70% HF-piridina, 275 ml de tetrahidrofurano y 125 ml de piridina. La mezcla se agita a temperatura ambiente durante 24 horas, se vierte en una solución acuosa saturada de hidrogenocarbonato de sodio v se extrae con acetato de etilo. La fase acuosa es extrae de nuevo con acetato de etilo. Las fases orgánicas 55 combinadas se secan sobre sulfato de sodio, se filtran, y los disolventes se separan por destilación. El residuo se purifica por cromatografía sobre gel de sílice con acetato de etilo y hexano para dar 2"-(R)-metil-3"-epi-4"-4-desoxi"-(S)-metilamino-avermectina B1 (Tabla P13.4).
 - Ejemplo 13: 2"- (R) -metil-3"-epi-4"-desoxi-4"-(S)-(acetil-metil-amino) -avermectina B₁ (Tabla P13.12)
 - [0188] Se disuelven 225 mg de 2"-(R)-metil-3"-epi-4"-desoxi-4"-(S)-metilamino-avermectina B₁ (Ejemplo 12) en una mezcla de 2,5 ml de acetato de etilo y 2,5 ml de bicarbonato de sodio acuoso 1N. Se añaden 50 μl de cloruro de acetilo, y la mezcla se agita a temperatura ambiente durante 16 horas. A continuación, las fases se separan, la fase orgánica se seca sobre sulfato de sodio y se evapora el disolvente. La purificación por cromatografía sobre gel de sílice con acetato de etilo y hexano proporciona 2"-(R)-metil-3"-epi-4"-desoxi-4"-(S)-(acetil-metil-amino)-avermectina B₁ (Tabla P13.12).

[0189] Los otros compuestos de las tablas P1-P19 se pueden preparar como se describe en los ejemplos anteriores, o por procedimientos generales publicados en la literatura conocida por la persona experta en la técnica. Los números después de los tiempos de retención en las tablas P1-P19 indican cuál de los procedimientos descritos anteriormente se utiliza para la separación cromatográfica:

1) Procedimiento A, 2) Procedimiento B, 3) Procedimiento C, 4) Procedimiento D, 5) Procedimiento E, 6) Procedimiento F

[0190] Los compuestos indicados con * no están dentro del alcance de la invención.

P1.3

P1.4

OCH₃

OCH₃

OCH₃

OCH₃

5

10

15

Tabla P1: Un compuesto de fórmula

OC(O)CH₃

OCH₂OCH₃

Н

9,925)

9,835)

СНз

CH₃

	Tabla P2: Un compuesto de fórmula							
	R ₂							
				Ōŀ	1	(I-1b)		
en la que R	es sec-butilo	o o isopropilo		<u> </u>			T:	
		R ₂	R ₃	R ₄	R ₅	R ₆	Tiempo de (m	
							B1a	B1b
*	P2.1	OCH₃	OCH ₃	OCH₃	Н	CH ₃	10,13 ⁵⁾	-
*	P2.2	OCH₃	OCH ₃	OH	Н	CH ₃	12,81 ⁴⁾	-
*	P2.3	OCH₃	OCH ₃	OCH ₂ OCH ₃	Н	CH₃	9,39 ⁶⁾	-

Tabla P3: Un compuesto de fórmula

=N-OCH₂-CH₃

=N-OH

СНз

СН3

 $9,65^{1)}$

7,60¹⁾

P3.8

P3.9

OCH₃

OCH₃

OCH₃

OCH₃

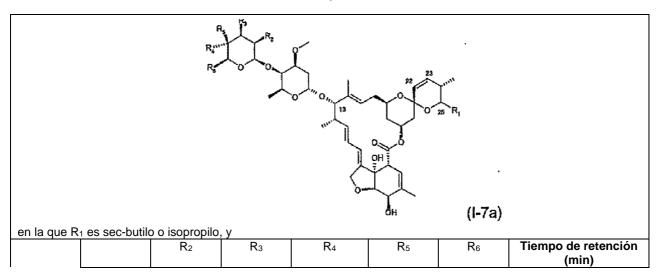

Tiempo de retención (min) 12,344) B1a 9,01³⁾ 12,86⁴⁾ 11,59²⁾ 8,43¹⁾ 10,22¹⁾ 8,74¹⁾ 12,355 13,792 11,635 12,512 14,244 B1a 10,20⁴⁾ 12,28²⁾ 10,411 B1a ਮੁੰਸ਼ 55555 55 = 5555 å Š I I I I I I I I I OCH2CH3 OC(O)CH3 OCH2OCH3 OCH2OCH2CH3 OCH2OCH2CH3 OCH2OCH2CH3 =N-OCH₂-CH₃ =N-OC(0)CH₃ =N-OH OCH3 OCH3 등이 ď HO-N= 0CH₂CH₃
0CH₂CH₃
0CH₃
0CH₃ SCH₃ జ 0CH₃ 0CH₂CH₃ 0CH₃ OCH3 OCH3 en la que R1 es sec-butilo o isopropilo, y P4.9 P4.10 P4.11 P4.12 P4.13 P4.3 P4.4 P4.5 P4.6 P4.7 P4.8 P4.1

Tabla P4: Un compuesto de fórmula

Tabla P5: Un compuesto de fórmula

Tabla P6: Un compuesto de fórmula

Tabla P7: Un compuesto de fórmula

							B1a	B1b
*	P7.1	OCH₃	OCH₃	OCH₃	Н	CH₃	11,04 ⁴⁾	-

Tabla P8: Un compuesto de fórmula

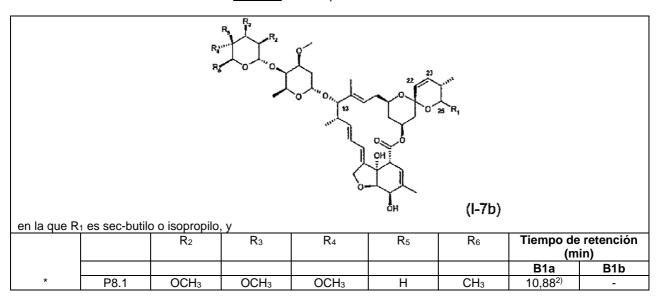


Tabla P9: Un compuesto de fórmula

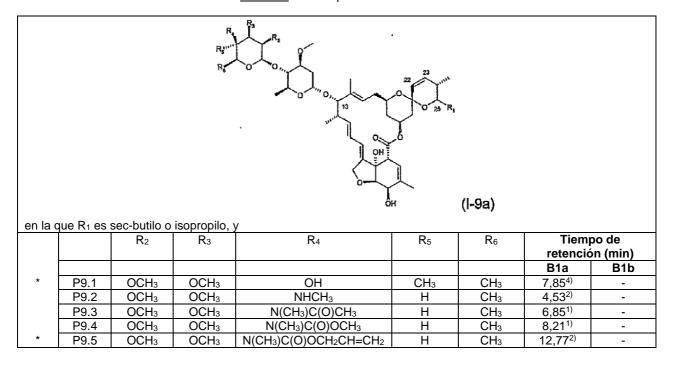


Tabla P10: Un compuesto de fórmula

Tabla P11: Un compuesto de fórmula

11,41²⁾

CH₃

CH₃

NHC(O)CH₃

P10.12

OCH₃

OCH₃

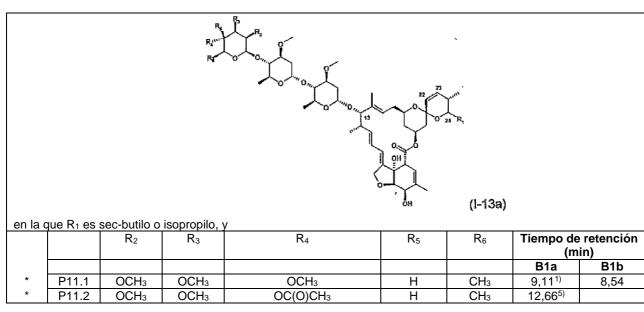


Tabla P12: Un compuesto de fórmula

Tabla P13: Un compuesto de fórmula

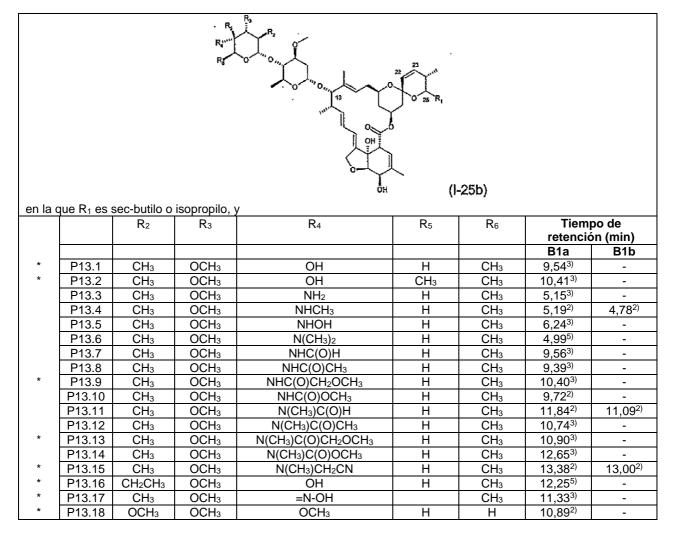


Tabla P14: Un compuesto de fórmula

Tabla P15: Un compuesto de fórmula

Tabla P16: Un compuesto de fórmula

		R ₂	R ₃	R ₄	R ₅	R ₆	Tiem retenció	po de ón (min)
							B1a	B1b
*	P16.1	OCH ₃	OCH ₃	OCH₃	Н	Н	10,30 ⁵⁾	-

Tabla P17: Un compuesto de fórmula

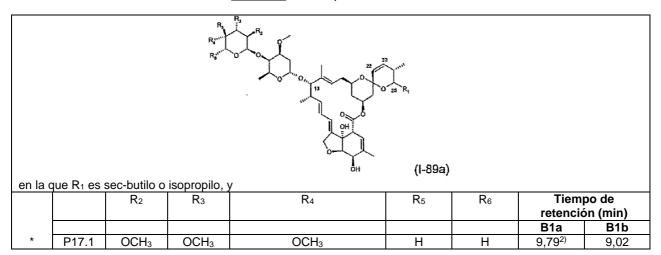
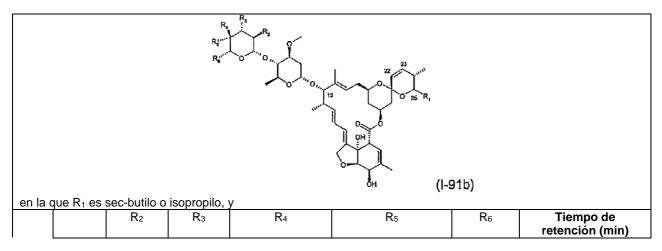



Tabla P18: Un compuesto de fórmula

Tabla P19: Un compuesto de fórmula

							B1a	B1b
*	P19.1	OCH ₃	OCH ₃	OCH₃	Н	CH ₂ OCH ₃	12,53 ²⁾	-

Tabla P20: Un compuesto de fórmula

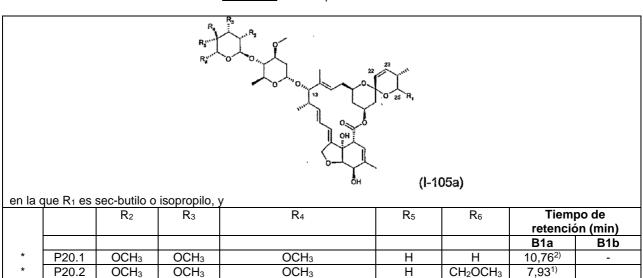


Tabla P21: Un compuesto de fórmula

Tabla P22: Un compuesto de fórmula

		R ₂	R ₃	R ₄	R ₅	R ₆	Tiempo de retención (min)	
							B1a	B1b
*	P22.1	OCH ₃	OCH ₃	OCH₃	Н	CH₃	11,01 ²⁾	-

Tabla P23: Un compuesto de fórmula

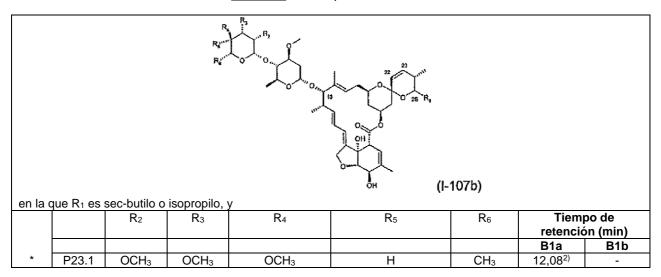
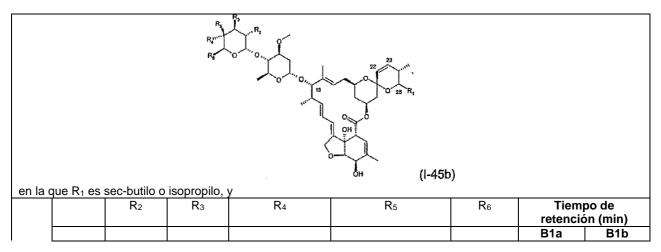



Tabla P24: Un compuesto de fórmula

Tabla P25: Un compuesto de fórmula

*	P25.1	OCH ₃	OCH ₃	OCH ₃	Н	Н	8,43 ¹⁾	-]
---	-------	------------------	------------------	------------------	---	---	--------------------	---	---

Tabla P26: Un compuesto de fórmula

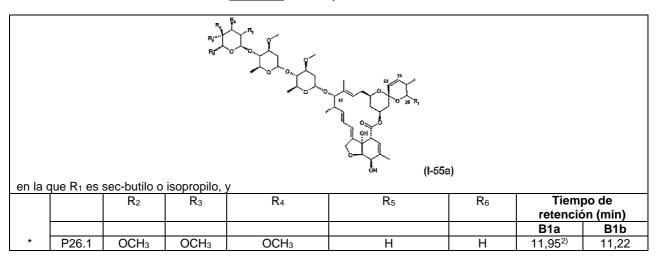


Tabla P27: Un compuesto de fórmula

en la	que R₁ es	sec-butilo o	R ₃ , R ₄		23 00 0H	(I-55b)		
		R ₂	R ₃	R_4	R₅	R ₆	Tiem _i retenció	po de on (min)
*	P27.1	OCH₃	OCH₃	OCH₃	Н	Н	B1a 12,10 ²⁾	B1b

Ejemplos biológicos:

5

15

20

10 Ejemplo B1: Actividad contra Spodoptera littoralis

[0191] Se pulverizan plantas de soja jóvenes con una solución madre de pulverización en emulsión acuosa que comprende 12,5 ppm de compuesto activo, y, después de que el recubrimiento por pulverización se haya secado, se pueblan con 10 orugas de la primera fase de Spodoptera littoralis y se introducen en un recipiente de plástico. 3 días más tarde, se determinan la reducción en la población en porcentaje y la reducción en el daño por alimentación en porcentaje (% de actividad) comparando el número de orugas muertas y el daño por alimentación entre las plantas tratadas y la no tratadas.

[0192] En esta prueba, los compuestos de fórmulas (I) muestran buena actividad. En particular, los compuestos P3.3, P4.3, P7.1, P8.1, P10.9, P10.10, P12.1, P13.2, P13.4, P13.6, P13.7, P13.9, P13.11, P13.12, P13.13, P13.14, P13.15, P13.16, y P15.3 llevan a cabo una reducción en la población de la plaga de más del 80%.

Ejemplo B2 Actividad contra Spodoptera littoralis, sistémica:

[0193] Se colocan plántulas de maíz en la solución de ensayo que comprende 12,5 ppm de compuesto activo. Después de 6 días, las hojas se cortan, se colocan sobre papel de filtro húmedo en una placa Petri y se pueblan con 12 a 15 larvas de Spodoptera littoralis de la fase L₁. 4 días más tarde, se determina la reducción de la población en porcentaje (% de actividad) comparando el número de orugas muertas entre las plantas tratadas y no tratadas.

[0194] En esta prueba, los compuestos de fórmulas (I) muestran buena actividad. En particular, los compuestos P2.3, P8.1, P10.9, P13.4, P13.6, P13.7, P13.9, y P13.16 llevan a cabo una reducción en la población de la plaga de más del 80%.

Ejemplo B3 Actividad contra Heliothis virescens

5

10

15

20

25

30

50

55

[0195] Se colocan 35 huevos de 0 a 24 horas de vida de Heliothis virescens sobre papel de filtro en una placa de Petri sobre una capa de alimentación sintética. A continuación, se pipetean 0,8 ml de la solución de ensayo que comprende 12,5 ppm de compuesto activo sobre los papeles de filtro. La evaluación se lleva a cabo después de 6 días. Se determina la reducción en la población en porcentaje (% de actividad) comparando el número de huevos y larvas muertos en los papeles de filtro tratados y no tratados.

[0196] En esta prueba, los compuestos de fórmulas (I) muestran buena actividad. En particular, los compuestos P2.2, P3.3, P3.5, P4.3, P4.5, P7.1, P8.1, P10.9, P10.10, P11.2, P12.1, P13.2, P13.4, P13.6, P13.7, P13.9, P13.11, P13.12, P13.13, P13.14, P13.15, P13.16, y P15.3 llevan a cabo una reducción en la población de la plaga de más del 80%.

Ejemplo B4 Actividad contra orugas de Plutella xylostella

[0197] Se pulverizan plantas de col jóvenes con una solución madre de pulverización en emulsión acuosa que comprende 12,5 ppm de compuesto activo. Después de que el recubrimiento por pulverización se haya secado, las plantas de col se pueblan con 10 orugas de la tercera fase de Plutella xylostella y se introducen en un recipiente de plástico. La evaluación se lleva a cabo después de 3 días. Se determinan la reducción en la población en porcentaje y la reducción en el daño por alimentación en porcentaje (% de actividad) comparando el número de orugas muertas y el daño por alimentación en las plantas tratadas y no tratadas.

[0198] En esta prueba, los compuestos de fórmulas (I) muestran buena actividad. En particular, los compuestos P3.3, P3.5, P4.3, P4.5, P7.1, P8.1, P10.9, P10.10, p11.2, P12.1, P13.2, P13.4, P13.6, P13.7, P13.9, P13.11, P13.12, P13.13, P13.14, P13.15, P13.16, y P15.3 llevan a cabo una reducción en la población de la plaga de más del 80%.

Ejemplo B5 Actividad contra Frankliniella occidentalis

[0199] En placas de Petri, se colocan los discos de las hojas de judía sobre agar y se pulverizan con la solución de ensayo que comprende 12,5 ppm de compuesto activo en una cámara de pulverización. Las hojas se pueblan a continuación con una población mixta de Frankliniella occidentalis. La evaluación se lleva a cabo después de 10 días. La reducción en porcentaje (% de actividad) se determina comparando la población en las hojas tratadas con la de las hojas no tratadas.

40 **[0200**] En esta prueba, los compuestos de fórmulas (I) muestran buena actividad. En particular, los compuestos P2.2, P3.3, P3.5, P4.3, P4.5, P7.1, P8.1, P10.9, P10.10, P11.2, P12.1, P13 0,2, P13.4, P13.6, P13.7, P13.9, P13.11, P13.12, P13.13, P13.14, P13.15, P13.16, y P15.3 llevan a cabo una reducción en la población de la plaga de más del 80%.

45 Ejemplo B6 Actividad contra Diabrotica balteata

[0201] Se pulverizan plántulas de maíz con una solución madre de pulverización en emulsión acuosa que comprende 12,5 ppm de compuesto activo y, después de que el recubrimiento por pulverización se haya secado, se pueblan con 10 larvas de la segunda fase de Diabrotica balteata y, a continuación se introducen en un recipiente de plástico. Después de 6 días, se determina la reducción en la población en porcentaje (% de actividad) comparando las larvas muertas entre las plantas tratadas y las no tratadas.

[0202] En esta prueba, los compuestos de fórmula (I) muestran una buena actividad, en particular, los compuestos P3.3, P10.9, P10.10, P11.2, P13.2, P13.6, P13.9, P13.11, P13.12, P13.16, y P15.3 llevan a cabo una reducción en la población de la plaga de más del 80%.

Ejemplo B7 Actividad contra Tetranychus urticae

[0203] Se pueblan plantas de judía jóvenes con una población mixta de Tetranychus urticae y, después de 1 día, se pulverizan con una solución madre de pulverización en emulsión acuosa que comprende 12,5 ppm de compuesto activo, se incuban a 25°C durante 6 días y después se evalúan. Se determina la reducción en la población en porcentaje (% de actividad) comparando el número de huevos, larvas y adultos muertos en las plantas tratadas y no tratadas.

65 [**0204**] En esta prueba, los compuestos de fórmula (I) muestran buena actividad. En particular, los compuestos P1.1, P1.4, P2.1, P2.2, P2.3, P3.3, P3.5, P4.3, P4.5, P7.1, P8.1, P10.9, P10.10, P11.2, P12.1, P13.2, P13.4, P13.6, P13.7,

P13.9, P13.11, P13.12, P13.13, P13.14, P13.15, P13.16, y P15.3 llevan a cabo una reducción en la población de la plaga de más del 80%.

REIVINDICACIONES

1. Compuesto de la fórmula (I)

25

en la que el enlace entre los átomos de carbono 22 y 23 indicado con una línea discontinua es un enlace sencillo o doble, los símbolos δ , ϵ , ϕ , η , κ , λ y γ representan que la configuración del átomo de carbono correspondiente puede ser (S) o (R).

n es 0, 1 ó 2,

30 R₁ representa un grupo alquilo C₁-C₁₂, cicloalquilo C₃-C₈ o alquenilo C₂-C₁₂,

R₂ representa R₁₅, R₁₅O, R₁₆OC(=O)O-;

R₃ representa R₁₅O o R₁₆OC(=O)O-;

35 R₁₇N, R₁₈(R₁₉O)N-R₁₇N, R₁₈R₁₉N-C(=O)-O, R₁₈R₁₉N-C(=O)R₁₇N, o un grupo R₁₈R₁₉N-SO₂R₁₇N;

R₅ representa hidrógeno, un hidrocarbilo o R₄ y R₅ representan juntos =O, =NR₃ o =CR₁₀R₁₁, y

40 R₁₆C(=O)NR₁₇OCH₂, R₁₈R₁₉N-NR₁₇CH₂, R₁₈(NC)N-NR₁₇CH₂, R₁₈(R₁₉O)N-NR₁₇CH₂, R₁₈R₁₉N-C(=O)-OCH₂, R₁₈R₁₉N-C(=O)-OCH₂, R₁₈R₁₉N-C(=O)-OCH₂, R₁₈R₁₉N-SO₂NR₁₇CH₂; en los que

 R_7 y R_8 representan, independientemente entre sí, hidrógeno, o un grupo alquilo C_1 - C_6 , R_9 representa un hidrógeno, o un grupo R_2 ,

45 R₁₀ y R₁₁ representan, independientemente entre sí, hidrógeno, halógeno, ciano, formilo, C(O)OR₁₂, C(O)NR₁₃R₁₄, alquilo C₁-C₆, alquenilo C₂-C₆, alquinilo C₂-C₆, cicloalquilo C₃-C₆, arilo, o un grupo heteroarilo, R₁₅ representa alquilo C₁-C₆, y

 $R_{12},\,R_{13},\,R_{14},\,R_{16},\,R_{17},\,R_{18}\,y\,R_{19}$ representan, independientemente entre sí, hidrógeno o

R₁₅ o R₁₆ y R₁₇, o R₁₈ y R₁₉, conjuntamente representan, independientemente enter sí, un anillo de tres a diez miembros, que contiene opcionalmente heteroátomos:

y si es apropiado, un isómero E/Z y/o diastereoisómero y/o tautómero del compuesto de fórmula (I), en cada caso en forma libre o en forma de sal.

2. Procedimiento para preparar un compuesto de fórmula (I)

55

50

60

en la que R₁, R₂, R₃, R₄, R₅, R₆, el enlace entre los átomos de carbono 22 y 23 y n son como se definen en la reivindicación 1, que comprende las etapas de:

(i) llevar a cabo una reacción de glicosilación en el grupo hidroxi en la posición 13, 4' o 4" (n es 0, 1 ó 2, respectivamente) de la estructura de mectina usando un tetrahidropirano activado con los sustituyentes R₂, R₃, R₄, R₅ y R₆ para producir un compuesto de fórmula (II)

$$R_{\delta}$$
 R_{δ}
 R_{δ

en la que R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , el enlace entre los átomos de carbono 22 y 23 y n son como se definen en la reivindicación 1, L_1 es un grupo protector y L_2 es hidrógeno o un grupo protector; y o bien

(ii) eliminar los grupos protectores L₁ y L₂, si es el caso, para producir un compuesto de fórmula (I), o bien

(iii) llevar a cabo reacciones en uno o más de los grupos R₂, R₃, R₄, R₅, R₆ para modificar el grupo y a continuación eliminar los grupos protectores L₁ y L₂, si es el caso, para dar un compuesto de fórmula (I).

3. Procedimiento para preparar un compuesto de fórmula (I)

60

25

30

35

40

45

50

en la que R_1 , R_4 , R_5 y el enlace entre los átomos de carbono 22 y 23 son como se definen en la reivindicación 1, n es 0 o 1, y R_2 es R_{15} tal como se define en la reivindicación 1, que comprende las etapas de:

(i) oxidar el grupo hidroxi en la posición 4' o 4" para producir un oxocompuesto de fórmula (III),

en la que R_1 y el enlace entre los átomos de carbono 22 y 23 son como se definen en la reivindicación 1, n es 0 o 1, y L_1 es un grupo protector, y

(iii) hacer reaccionar el compuesto de fórmula (III) con una base y un compuesto de trialquilsililo para formar un enolato,

(iv) oxidar el enolato a una enona de fórmula (IV),

55

25

60

en la que R_1 y el enlace entre los átomos carbono 22 y 23 son como se definen en la reivindicación 1, n es 0 o 1, y L_1 es un grupo protector

(v) añadir un reactivo organometálico que tiene un sustituyente R₂ a la enona, y

(vi) llevar a cabo reacciones en uno o más de los grupos R_2 , R_4 , R_5 para modificar el grupo y a continuación eliminar el grupo protector L_1 para producir un compuesto de fórmula (I).

4. Compuesto de fórmula (II)

30

55

60

35
$$R_{5} \downarrow R_{1} \downarrow R_{2} \downarrow R$$

en la que R₁, R₂, R₃, R₄, R₅, R₆, el enlace entre los átomos de carbono 22 y 23 y n son como se definen en la reivindicación 1, L₁ es un grupo protector, y L₂ es hidrógeno o un grupo protector.

- 5. Composición plaguicida que comprende al menos un compuesto de la fórmula (I), o (II), tal como se definen en la reivindicación 1 ó 4, respectivamente, como compuesto activo, y al menos un compuesto auxiliar.
 - 6. Procedimiento para controlar plagas que comprende aplicar una composición definida en la reivindicación 5 a las plagas o su hábitat.
- 65 7. Procedimiento para preparar una composición definida en la reivindicación 1, que comprende mezclar íntimamente y/o moler al menos un compuesto de la fórmula (I), o (II), tal como se definen en la reivindicación 1 ó 4,

respectivamente, como compuesto activo, con al menos un compuesto auxiliar.

- 8. Uso de un compuesto de la fórmula (I), o (II), tal como se definen en la reivindicación 1 ó 4, respectivamente, para preparar una composición, tal como se define en la reivindicación 5.
- 9. Uso de una composición, tal como se define en la reivindicación 5, para el control de plagas.
- 10. Procedimiento para proteger el material de propagación de plantas que comprende tratar el material de propagación, o el lugar donde se planta el material de propagación, con una composición definida en la reivindicación 5.
 - 11. Material de propagación de plantas resistente a las plagas que tiene adherido al mismo al menos un compuesto de la fórmula (I), o (II), tal como se definen en la reivindicación 1 o la reivindicación 4, respectivamente.

15