

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 648 792

51 Int. Cl.:

A61K 38/16 (2006.01) **A61K 39/00** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 28.04.2005 PCT/GB2005/001621

(87) Fecha y número de publicación internacional: 10.11.2005 WO05105129

(96) Fecha de presentación y número de la solicitud europea: 28.04.2005 E 05738143 (6)

(97) Fecha y número de publicación de la concesión europea: 16.08.2017 EP 1755639

(54) Título: Epítopos relacionados con la enfermedad celiaca

(30) Prioridad:

28.04.2004 AU 2004201774 11.02.2005 AU 2005900650

Fecha de publicación y mención en BOPI de la traducción de la patente: **08.01.2018**

(73) Titular/es:

BTG INTERNATIONAL LIMITED (100.0%) 5 Fleet Place London EC4M 7RD, GB

(72) Inventor/es:

ANDERSON, ROBERT; BEISSBATH, TIM y DIN, JASON TYE

(74) Agente/Representante: PONS ARIÑO, Ángel

DESCRIPCIÓN

Epítopos relacionados con la enfermedad celiaca

20

- 5 La invención se refiere a epítopos útiles en el diagnóstico y la terapia de la enfermedad celiaca, incluyendo diagnosis, terapéutica, kits y métodos de uso de lo anterior.
- La enfermedad celiaca está causada por una hipersensibilidad mediada por el sistema inmunitario a gluten dietético. Las proteínas del gluten en trigo, centono, cebada y en algunos casos avena son tóxicas en la enfermedad celiaca.

 El gluten está compuesto de gliadinas alfa/beta, gamma y omega, y gluteninas de bajo y alto peso molecular (BPM y APM) en trigo, hordeínas en cebada, secalinas en centeno y aveninas en avena. Las hordeínas y secalinas son homólogas a gliadinas gamma y omega y gluteninas de bajo y alto peso molecular en trigo. Las aveninas son filogenéticamente más distantes que las hordeínas y secalinas del gluten de trigo.
- El objetivo de la investigación en la enfermedad celiaca ha sido definir los componentes tóxicos del gluten definiendo los péptidos que estimulan los linfocitos T específicos a gluten. La definición precisa de epítopos de gluten permite el desarrollo de nuevas diagnosis, terapéutica, ensayos para la contaminación por gluten en comida y granos no tóxicos que retienen las cualidades del cocinado/horneado del gluten tradicional. Muchas de estas aplicaciones requieren un completo entendimiento de todos en vez de los péptidos tóxicos más comunes en gluten.
- Los genes codificadores de HLA-DQ2 y/o HLA-DQ8 están presentes en más del 99 % de los individuos con enfermedad celiaca en comparación con aproximadamente el 35 % de la población Caucásica general. Los péptidos derivados de gluten (epítopos) unidos a HLA-DQ2 o HLA-DQ8 estimulan los linfocitos T específicos. Los epítopos restringidos a HLA-DQ2 y DQ8 incluyen una secuencia de 9 aminoácidos "núcleo" que interactúa directamente con la ranura de unión peptídica de HLA-DQ2 o DQ8 y con receptores de linfocito T afines. En general, bibliotecas de péptidos de solapamiento (normalmente 15 a 20meros) que contienen todos los péptidos 10 o 20mero únicos en un antígeno se han usado para mapear epítopos de linfocitos T restringidos a HLA de clase II.
- Se sabe que una serie de péptidos de gluten activan los linfocitos T específicos a gluten en enfermedad celiaca.

 Estudios previos han identificado péptidos de gluten de proteínas de gluten seleccionadas o productos de digestión del gluten. Los clones y las líneas de linfocito T aislados de biopsias intestinales se han usado para investigar estos componentes de gluten.
- La modificación del gluten por la enzima, transglutaminasa de tejido (tTG) presente en el tejido intestinal, incrementa sustancialmente la capacidad estimuladora del gluten sobre los linfocitos T específicos a gluten. La mayoría de los epítopos conocidos para los linfocitos T específicos a gluten corresponden a péptidos de gluten desamidados por tTG. La transglutaminasa media la desamidación de residuos de glutamina específicos (a glutamato) en gluten. Secuencias que contienen glutamina susceptibles a desamidación por tTG se ajustan generalmente a un motivo: QXPX o QXX (FYMILVW) (véase Vader W. y col. 2002 *J. Exp. Med.* 195:643-649, PCT WO 03/066079, y Fleckenstein B. 2002. *J. Biol. Chem.* 277:34109-16). El motivo para péptidos que se unen a HLA-DQ2 y que son susceptibles a desamidación por tTG se ha usado para predecir ciertos epítopos de gluten (Vader y col. *J. Exp. Med.* 2002 *J. Exp. Med.* 195:643-649, PCT WO 03/066079).
- Sin embargo, otros grupos han identificado epítopos para clones de linfocito T intestinal específico a gluten y líneas que usan paneles de once gliadinas alfa/beta recombinantes (11) y cinco gamma (Arentz-Hansen H. 2000. *J. Exp. Med.* 191:603-612, Arentz-Hansen H. 2002. *Gastroenterology* 123:803-809, PCT WO 02/083722), y lisados de proteínas de gluten purificadas (Sjostrom H. y col. 1998. *Scand. J. Immunol.* 48,111-115; van de Wal, Y. y col. 1998. *J. Immunol.* 161(4):1.585-1.588; van de Wal, Y. y col. 1999. *Eur. J. Immunol.* 29:3.133-3.139; Vader W. y col. 2002. *Gastroenterology* 122:1.729-1.737.).
- Nuestro trabajo ha aprovechado la observación de que la exposición a gluten *in vivo* induce linfocitos T específicos a gluten CD4+ restringidos a HLA-DQ2 en sangre periférica expresando una integrina localizada en el intestino (alfa4beta7). Esta técnica permitió el mapeado del epítopo dominante en A-gliadina (57-73 QE65) (Anderson, RP y col. 2000. *Nat. Med.* 6:337-342., documento WO 01/25793). A-gliadina 57-73 QE65 corresponde a dos epítopos de solapamiento identificados usando clones de linfocito T intestinal (Arentz-Hansen H. y col. 2000. *J. Exp. Med.* 191:603-612, Arentz-Hansen H. y col. 2002. *Gastroenterology* 123:803-809). La ventaja de la exposición a gluten *in vivo* para inducir linfocitos T específicos a gluten es que se puede consumir cualquier comida y los linfocitos T resultantes inducidos en sangre (cuantificados en sangre periférica usando un ensayo simple ELISPOT de interferón gamma durante la noche) se habrán estimulado *in vivo* por epítopos presentados endógenamente, en vez de preparados *in vitro* por un antígeno sintético o purificado. Los ensayos durante la noche de linfocitos T de sangre periférica policlonales frescos también evitan el potencial para artefactos asociados con la purificación prolongada de clones de linfocito T.
- Interesantemente, los clones y las líneas de linfocito T específicos para varios epítopos de gliadina gamma (Arentz-Hansen H. 2002. *Gastroenterology* 123:803-809, PCT WO 02/083722) reaccionan de manera cruzada con el epítopo de A-gliadina originalmente definido 57-73 QE65.

Aunque hay considerable homología dentro de las gliadinas alfa/beta, el trabajo anterior (véase el documento WO 03/104273) ha mostrado que el epítopo dominante reconocido en la enfermedad celiaca asociada a HLA-DQ2, "Agliadina 57-73 QE65", es codificado por una minoría de las gliadinas alfa/beta presentes en Genbank.

Compendio de la invención

10

15

35

40

45

50

55

60

65

El estudio actual se presentó para desarrollar un método que permitirá el mapeado de todos los epítopos de linfocito T en gluten. El consumo de pan de trigo (200 g diario durante 3 días) o avena (100 g diariamente durante 3 días) se usó para inducir linfocitos T específicos a gluten o avenina en sangre periférica (recogida 6 días después de comenzar la exposición). Las células mononucleares de sangre periférica (CMSP) se evaluaron en ensayos ELISPOT de interferón gamma durante la noche usando una biblioteca de péptidos de gluten y avenina que incluyen todas las secuencias de 12mero único incluidas en cada entrada de Genbank para gluten de trigo y/o aveninas de avena. Este objetivo se alcanzó estableciendo un algoritmo para diseñar péptidos que abarcan todos los epítopos potenciales en proteínas de gluten en Genbank (2922 20meros incluían todos los 14 epítopos de linfocito T potenciales de 964 9meros únicos), adaptando el ensayo ELISPOT de interferón gamma a un ensayo de alto rendimiento capaz de investigar más de 1.000 péptidos con sangre de un único individuo y desarrollar herramientas bioinformáticas para analizar e interpretar los datos generados.

Se identificó una serie de 41 "superfamilias" de péptidos de gluten de trigo como epítopos de linfocito T putativos.

Las superfamilias compartían motivos en los que se permitió un nivel limitado de redundancia. Muchas de las familias más potentes incluyen epítopos de linfocito T conocidos que incluyen el epítopo dominante previamente descrito, A-gliadina 57-73.

A través de mapeado completo de epítopos de gluten usando CMSP después de exposición a gluten, los inventores han encontrado una serie de novedosos epítopos de gliadina, glutenina BPM y APM, y avenina para la enfermedad celiaca asociada a HLADQ2 y HLA-DQ8. Se identificaron novedosos epítopos para la enfermedad celiaca asociada a HLADQ2 y HLA-DQ8 son genéticamente y funcionalmente distintas en términos del intervalo de epítopos de linfocito T que se reconocen. Además, tres péptidos presentes en proteínas de avenina de avena también activaron las células mononucleares de sangre periférica (CMSP) después de la exposición a avena en sujetos celiacos HLA-DQ2+, la primera vez que se han identificado epítopos de avena. La identificación de péptidos de avenina reconocidos por linfocitos T después de la exposición a avena *in vivo* proporciona una base molecular para la recaída ocasional observada de celiacos después de la exposición a avena (Lundin KEA y col. 2003 *Gut* 52:1.649-52) y puede proporcionar una base para un diagnóstico predictivo o destoxificación genética de avena.

Los datos presentados en el presente documento proporcionarán una base completa para la definición de epítopos de linfocito T tanto "dominantes" comunes como "débiles" ocasionales en enfermedad celiaca. Esta información es la plataforma para aplicaciones funcionales tales como diagnosis, ensayos de alimentos, inmunoterapia y profilaxis, y para el diseño de proteínas de gluten no tóxicas útiles en granos modificados.

En particular, a través del mapeado completo de epítopos de linfocito T de gluten, los inventores han encontrado epítopos bioactivos en la enfermedad celiaca en pacientes HLA-DQ2+ en gliadinas y gluteninas de trigo, que tienen secuencias núcleo similares (por ejemplo, SEQ ID NO: 1-199) y secuencias ampliadas similares (por ejemplo, SEQ ID NO: 200-1554, 1555-1655, 1656-1671 y 1830-1903). Los inventores también han encontrado epítopos bioactivos en la enfermedad celiaca en pacientes HLA-DQ2+ en: aveninas de avena que tienen secuencias núcleo similares (por ejemplo, SEQ ID NO: 1684-1695) y secuencias ampliadas similares (por ejemplo, SEQ ID NO: 1672-1683, 1696-1698 y 1764-1768); secalinas de centeno (SEQ ID NO: 1769-1786); y hordeínas de cebada (SEQ ID NO: 1787-1829). Además, se han identificado epítopos bioactivos en la enfermedad celiaca en pacientes HLA-DQ8+ en gliadinas de trigo que tienen secuencias núcleo similares (por ejemplo, SEQ ID NO: 1699-1721) y secuencias ampliadas similares (por ejemplo, SEQ ID NO: 1722-1763 y 1908-1927). Este mapeado completo proporciona así epítopos dominantes reconocidos por linfocitos T en pacientes celiacos. Por tanto, los métodos descritos en el presente documento se pueden realizar usando cualquiera de estos epítopos identificados, y análogos y equivalentes de los mismos. Además, se ha demostrado que combinaciones de epítopos, es decir, "combitopos" o péptidos sencillos que comprenden dos o más epítopos, inducen respuestas equivalentes a los epítopos individuales, indicando que varios epítopos se pueden utilizar para usos terapéuticos, diagnósticos y otros de la invención. Tales combitopos pueden estar en forma de, por ejemplo, SEQ ID NO: 1906.

Agentes descritos en el presente documento incluyen uno o más de los epítopos que tienen las secuencias enumeradas en SEQ ID NO: 1578-1579, 1582-1583, 1587-1593, 1600-1620, 1623-1655, 1656-1671, 1672-1698, 1699-1763, 1764-1768, 1769-1786, 1787-1829, 1895-1903, 1906 y 1908-1927 y análogos y equivalentes de los mismos como se define en el presente documento.

Específicamente, la presente invención proporciona:

[1]. Un agente seleccionado de:

- (a) un péptido aislado que comprende al menos un epítopo que comprende SEQ ID NO: 200; y
- (b) un análogo de (a) que es un péptido aislado capaz de ser reconocido por un receptor de linfocito T que reconoce el péptido de (a) y que no es más de 50 aminoácidos de longitud;
- [2]. Una composición farmacéutica que comprende un agente según [1] y un vehículo o diluyente farmacéuticamente aceptable;
 - [3]. Una composición para su uso en un método de prevención o tratamiento de la enfermedad celiaca que comprende al menos un agente seleccionado de:
 - (a) un péptido aislado que comprende al menos un epítopo que comprende SEQ ID NO: 200; y
 - (b) un análogo de (a) que es un péptido aislado capaz de ser reconocido por un receptor de linfocito T que reconoce el péptido de (a) y que no es más de 50 aminoácidos de longitud;
- 15 [4]. Un agente seleccionado de:

5

10

25

30

35

40

60

- (a) un péptido aislado que comprende al menos un epítopo que comprende SEQ ID NO: 200;
- (b) un análogo de (a) que es un péptido aislado capaz de ser reconocido por un receptor de linfocito T que reconoce el péptido de (a) y que no es más de 50 aminoácidos de longitud; y
- 20 (c) un análogo de (a) que es un péptido aislado que se une a anticuerpo, dicho anticuerpo se une a un epítopo que comprende SEQ ID NO: 200;

para su uso en un método de tratamiento o prevención de la enfermedad celiaca en un individuo mediante inducción de inmunotolerancia del individuo para prevenir la producción de tal anticuerpo;

- [5]. Un método de diagnóstico de la enfermedad celiaca, o susceptibilidad a enfermedad celiaca, en un individuo que comprende:
 - (a) poner en contacto una muestra del hospedador, in vitro, con al menos un agente seleccionado de:
 - (i) un péptido aislado que comprende al menos un epítopo que comprende SEQ ID NO: 200; y
 - (ii) un análogo de (i) que es un péptido aislado capaz de ser reconocido por un receptor de linfocito T que reconoce (i) y que no es más de 50 aminoácidos de longitud; y
 - (b) determinar *in vitro* si los linfocitos T en la muestra reconocen el agente; indicando el reconocimiento por los linfocitos T que el individuo tiene, o es susceptible a, enfermedad celiaca;
- [6]. Una composición, para su uso en un método de diagnóstico de la enfermedad celiaca, o susceptibilidad a enfermedad celiaca, en un individuo que comprende un agente seleccionado de
 - (a) un péptido aislado que comprende al menos un epítopo que comprende SEQ ID NO: 200; y
 - (b) un análogo de (a) que es un péptido aislado capaz de ser reconocido por un receptor de linfocito T que reconoce el péptido de (a) y que no es más de 50 aminoácidos de longitud,
- comprendiendo dicho método la determinación de si los linfocitos T del individuo reconocen el agente, indicando el reconocimiento por los linfocitos T que el individuo tiene, o es susceptible a, enfermedad celiaca;
- [7]. Un método para identificar un análogo de un péptido que comprende al menos un epítopo que comprende SEQ ID NO: 200 comprendiendo dicho método determinar, *in vitro*, si un péptido candidato es reconocido por un receptor de linfocito T que reconoce un epítopo que comprende SEQ ID NO: 200, indicando el reconocimiento del péptido candidato que el péptido candidato es un análogo, siendo dicho análogo de no más de 50 aminoácidos de longitud;
- [8]. Un método de diagnóstico de la enfermedad celiaca, o susceptibilidad a enfermedad celiaca, en un individuo que comprende determinar, *in vitro*, la presencia de un anticuerpo que se une a un epítopo de una secuencia peptídica seleccionada de:
 - (i) un péptido que comprende al menos un epítopo que comprende SEQ ID NO: 200; y
 - (ii) un análogo peptídico de (i) que es capaz de ser reconocido por un receptor de linfocito T que reconoce (i) y que no es más de 50 aminoácidos de longitud,
 - en una muestra del individuo, indicando la presencia del anticuerpo que el individuo tiene, o es susceptible a, enfermedad celiaca:
- 65 [9]. Un método *in vitro* de determinación de si una composición es capaz de causar enfermedad celiaca que comprende determinar si una secuencia proteica capaz de ser modificada por una transglutaminasa a un péptido

que comprende al menos un epítopo que comprende SEQ ID NO: 200 está presente en la composición, indicando la presencia de la secuencia de oligopéptido que la composición es capaz de causar enfermedad celiaca;

- 5 [10]. Un kit para llevar a cabo un método según [5] que comprende un agente seleccionado de
 - (a) un péptido aislado que comprende al menos un epítopo que comprende SEQ ID NO: 200; y
 - (b) un análogo de (a) que es un péptido aislado capaz de ser reconocido por un receptor de linfocito T que reconoce el péptido de (a) y que no es más de 50 aminoácidos de longitud,

y un medio para detectar el reconocimiento del péptido por el linfocito T; y

- [11]. Un anticuerpo o fragmento del mismo, específico para SEQ ID NO: 200.
- 15 El término "proteína de gluten" abarca gliadinas alfa/beta, gamma y omega, y gluteninas de alto y bajo peso molecular (BPM y APM) en trigo, hordeínas en cebada, secalinas en centeno, y aveninas en avenas. La invención se trata particularmente de gliadinas y aveninas.
- El agente se puede usar para la preparación de un medio diagnóstico para su uso en un método de diagnosis de enfermedad celiaca, o susceptibilidad a enfermedad celiaca, en un individuo, comprendiendo dicho método determinar si los linfocitos T del individuo reconocen el agente, indicando el reconocimiento por los linfocitos T que el individuo tiene, o es susceptible a, enfermedad celiaca.
- El descubrimiento de epítopos que se modifican por transglutaminasa también permite el diagnóstico de la enfermedad celiaca basándose en la determinación de si están presentes otros tipos de respuesta inmunitaria a estos epítopos.

Breve descripción de los dibujos

- 30 La Figura 1 muestra un método para generar todos los posibles epítopos peptídicos de un grupo de proteínas.
 - La Figura 2 muestra los números de acceso de Genbank para productos génicos de gluten presentes en la base de datos Genbank el 16 de junio de 2003.
- La Figura 3A muestra un algoritmo de expectación-maximización (EM) para analizar los datos de ELISPOT. La Figura 3B muestra un ensayo sobre un conjunto de datos de pacientes con enfermedad celiaca.
 - La Figura 4 muestra un procedimiento iterativo para encontrar el conjunto mínimo de epítopos que responden.
- La Figura 5 muestra secuencias de gliadina y glutenina (SEQ ID NO: 1-1554). En la columna "consenso", las letras minúsculas usan el código estándar de aminoácidos de una letra, pero las letras mayúsculas tienen un significado diferente: E=["e" o "q"], F=["f" o "y" o "w"], I=["i" o "v"], S=["s" o "t"], R=["r" o "k" o "h"]. La columna "secuencia" usa el código estándar de aminoácidos de una letra.
- La Figura 6 muestra péptidos de gluten que estimulan el interferón gamma en CMSP recogida 6 días después de exposición a gluten en voluntarios con enfermedad celiaca HLA-DQ2+ (SEQ ID NO: 1555-1655). Los 9meros indicados son comunes a 200 grupos de péptidos 20mer bioactivos "estructuralmente" relacionados. Las secuencias de gluten se clasifican según la proporción X de bioactividad de sujetos que responden.
- La Figura 7 muestra los resultados de un experimento de exposición a trigo (SEQ ID NO: 1656-1671). Estos péptidos dan respuestas de alta calidad (indicadas "Y") en diez sujetos (A-J) después de exposición a trigo.
- La Figura 8 muestra péptidos de Avenina (+/- desamidación por tTG) que estimulan interferón-γ en CMSP recogida 6 días después de exposición a gluten en voluntarios con enfermedad celiaca HLA-DQ2+ (SEQ ID NO: 1672-1698). Aquellos marcados con un * son 20meros únicos óptimos que inducen IFN-γ después de la exposición a avena.
- La Figura 9 muestra los 40 20meros más potentes (SEQ ID NO: 1699-1763) en dos sujetos HLA-DQ8 (no HLA-DQ2) agrupados según las secuencias núcleo compartidas. La secuencia núcleo del grupo 6 (QGSFQPSQQ) corresponde al epítopo de gliadina alfa descrito por van de Wal y col. (*J. Immunol.* 1998, 161(4):1.585-1.588). La respuesta máxima en el Sujeto A era de 271 SFC (solo medio, no respuesta de péptido: 4 SFC), y en B era de 26 SFC (solo medio, no respuesta de péptido: 1 SFC).
- La Figura 10 muestra la secuencia de aminoácidos de A-gliadina (SEQ ID NO: 1928) basándose en la secuenciación de aminoácidos.

Descripción detallada de la invención

El término "enfermedad celiaca" abarca un espectro de afecciones causadas por grados variantes de sensibilidad al gluten, incluyendo una forma grave caracterizada por una mucosa de intestino delgado lisa (atrofia vellosa hiperplásica) y otras formas caracterizadas por síntomas más suaves.

El individuo anteriormente mencionado (en el contexto de diagnóstico o terapia) es humano. Pueden tener enfermedad celiaca (sintomática o asintomática) o se supone que la tienen. Pueden estar en una dieta libre de gluten. Pueden estar en una respuesta de fase aguda (por ejemplo, pueden tener enfermedad celiaca, pero solamente han ingerido gluten en las últimas 24 horas antes de lo cual habían estado en una dieta libre de gluten durante 14 a 28 días).

El individuo puede ser susceptible a enfermedad celiaca, tal como una susceptibilidad genética (determinada, por ejemplo, por el individuo que tiene parientes con enfermedad celiaca o que poseen genes que causan predisposición a enfermedad celiaca).

El agente

10

15

25

30

40

El agente es un péptido, por ejemplo, de 7 a 50 aminoácidos de longitud, tal como 10 a 40, 12 a 35 o 15 a 30 aminoácidos de longitud.

El agente puede ser el péptido representado por SEQ ID NO: 200 o un epítopo que comprende la secuencia que comprende SEQ ID NO: 200 que es un oligopéptido aislado derivado de una proteína de gluten; o un equivalente de estas secuencias de una proteína de gluten de origen natural.

Por tanto, el epítopo puede ser un derivado de una proteína de origen natural, particularmente de un gluten de trigo. Tal derivado generalmente es un fragmento de la proteína de gluten, o un derivado mutado de la proteína completa o fragmento. Por lo tanto, el epítopo de la invención no incluye la proteína de gluten completa de origen natural, y no incluye otras proteínas de gluten de origen natural completas.

Generalmente tales fragmentos serán al menos 7 aminoácidos de longitud (por ejemplo, al menos 7, 8, 9, 10, 11, 12, 13, 14 o 15 aminoácidos de longitud).

Generalmente tales fragmentos serán reconocidos por linfocitos T a al menos en la misma medida en que los agentes de los cuales se derivan son reconocidos en cualquiera de los ensayos descritos en el presente documento usando muestras de pacientes con enfermedad celiaca.

El agente puede ser el péptido representado por SEQ ID NO: 200 o una proteína que comprende una secuencia que corresponde a SEQ ID NO: 200 (tal como fragmentos de una proteína de gluten que comprende SEQ ID NO: 200, por ejemplo, después de que la proteína de gluten se haya tratado con transglutaminasa). Los fragmentos bioactivos de tales secuencias son también agentes de la invención. Generalmente tales fragmentos serán al menos de 7 aminoácidos de longitud (por ejemplo, al menos 7, 8, 9, 10, 11, 12, 13, 14 o 15 aminoácidos de longitud). Análogos de estas secuencias, como se definen en el presente documento, también son agentes de la invención.

En el caso en el que el epítopo comprende una secuencia equivalente a los epítopos anteriores (incluyendo fragmentos) de otra proteína de gluten (por ejemplo, cualquiera de las proteínas de gluten anteriormente mencionadas en el presente documento o cualquier proteína de gluten que causa enfermedad celiaca), tales secuencias equivalentes corresponderán a un fragmento de una proteína de gluten generalmente tratada (parcialmente o completamente) con transglutaminasa. Tales péptidos equivalentes se pueden determinar alineando las secuencias de otras proteínas de gluten con la proteína de gluten de la cual deriva el epítopo original (por ejemplo, usando cualquiera de los programas mencionados en el presente documento). La transglutaminasa está comercialmente disponible (por ejemplo, Sigma T-5398).

El agente que es un análogo es capaz de ser reconocido por un RLT que reconoce (i). Por lo tanto, generalmente cuando se añade el análogo a los linfocitos T en presencia de (i), generalmente también en presencia de una célula presentadora de antígeno (CPA) (tal como cualquiera de las CPA mencionadas en el presente documento), el análogo inhibe el reconocimiento de (i), es decir, el análogo es capaz de competir con (i) en tal sistema.

El análogo puede ser uno que es capaz de unirse al RLT que reconoce (i). Tal unión se puede ensayar mediante técnicas estándar. Tales RLT se pueden aislar de los linfocitos T que se ha demostrado que reconocen (i) (por ejemplo, usando el método de la invención). La demostración de la unión del análogo a los RLT, a continuación, se puede demostrar determinando si los RLT inhiben la unión del análogo a una sustancia que une el análogo, por ejemplo, un anticuerpo al análogo. Generalmente el análogo se une a una molécula MHC de clase II (por ejemplo, HLA-DQ2) en tal inhibición del ensayo de unión.

Generalmente el análogo inhibe la unión de (i) a un RLT. En este caso se disminuye la cantidad de (i) que se une al RLT en presencia del análogo. Esto es porque el análogo es capaz de unirse al RLT y, por lo tanto, compite con (i) para unirse al RLT.

Los linfocitos T para su uso en los anteriores experimentos de unión se pueden aislar de pacientes con enfermedad celiaca, por ejemplo, con la ayuda del método de la invención. Otras características de unión del análogo también pueden ser las mismas que (i), y, por tanto, generalmente el análogo se une a la misma molécula MHC de clase II a la cual se une el péptido (HLA-DQ2 o -DQ8). Generalmente el análogo se une a los anticuerpos específicos para (i) y, por tanto, inhibe la unión de (i) a tales anticuerpos.

El análogo es un péptido. Puede tener homología con (i), generalmente al menos 70 % de homología, preferiblemente al menos 80, 90 %, 95 %, 97 % o 99 % de homología con (i), por ejemplo, sobre una región de al menos 7, 8, 9, 10, 11, 12, 13, 14, 15 o más (tal como la longitud entera del análogo y/o (i), o a través de la región que contacta con el RLT o se une a la molécula MHC) aminoácidos contiguos. En la técnica se conocen métodos de medición de homología de proteína y se entenderá por los expertos en la técnica que en el presente contexto, la homología se calcula sobre la base de la identidad del aminoácido (a veces referido como "homología dura").

15

20

25

30

35

40

45

Por ejemplo, el Paquete UWGCG proporciona el programa BESTFIT que se puede usar para calcular homología (por ejemplo, usado con sus ajustes por defecto) (Devereux y col. (1984) *Nucleic Acids Research* 12, p387-395). Los algoritmos PILEUP y BLAST se pueden usar para calcular homología o alinear secuencias (generalmente con sus ajustes por defecto), por ejemplo, como se describe en Altschul S. F. (1993) *J. Mol. Evol.* 36:290-300; Altschul, S., F. y col. (1990) *J. Mol. Biol.* 215:403-10.

El programa para la realización de los análisis BLAST está públicamente disponible a través del "National Center for Biotechnology Information" en Internet en, por ejemplo, "www.ncbi.nlm.nih.gov/". Este algoritmo implica identificar primero el par de secuencia de alta puntuación (HPS) identificando palabras cortas de longitud W en la secuencia cuestionada que o bien empareja o satisface alguna puntuación umbral valorada T como positiva cuando se alinea con una palabra de la misma longitud en una secuencia de base de datos. T se refiere al umbral de puntuación de palabra de alrededor (Altschul y col., supra). Estas correspondencias de palabra de alrededor iniciales actúan como semillas para la iniciación de búsquedas para encontrar HSP que las contienen. Las correspondencias de palabra se extienden en ambas direcciones a lo largo de cada secuencia tan lejos como la puntuación de alineamiento acumulativo se pueda incrementar. Las extensiones para las correspondencias de palabra en cada dirección se paran cuando: la puntuación de alineamiento acumulativo disminuye en la cantidad X de su máximo valor alcanzado; la puntuación acumulativa va a cero o por debajo, debido a la acumulación de uno o más alineamientos de residuo de puntuación negativa; o se alcanza el final de cada secuencia. Los parámetros del algoritmo BLAST W, T y X determinan la sensibilidad y la rapidez del alineamiento. El programa BLAST usa por defecto una longitud de palabra (W) de 11, la matriz de puntuación BLOSUM62 (véase Henikoff y Henikoff (1992) Pro. Natl. Acad. Sci. USA 89:10.915-10.919) alineamientos (B) de 50, expectación (E) de 10, M=5, N=4, y una comparación de ambas cadenas.

El algoritmo BLAST realiza un análisis estadístico de la similitud entre dos secuencias; véase, por ejemplo, Karlin y Altschul (1993) *Proc. Natl. Acad Sci. USA* 90:5.873-5.787. Una medida de similitud proporcionada por el algoritmo BLAST es la probabilidad de suma más pequeña (P(N)), lo cual proporciona un indicio de la probabilidad por la cual un emparejamiento entre dos secuencias de nucleótidos o aminoácidos ocurrirían por casualidad. Por ejemplo, una secuencia se considera similar a otra secuencia si la probabilidad de suma más pequeña en comparación de la primera secuencia con la segunda secuencia es menos de aproximadamente 1, preferiblemente menos de aproximadamente 0,1, más preferiblemente menos de aproximadamente 0,01, y lo más preferiblemente menos de aproximadamente 0,001.

Los análogos peptídicos homólogos generalmente difieren de (i) por 1, 2, 3, 4, 5, 6, 7, 8 o más mutaciones (las cuales pueden ser sustituciones, deleciones o inserciones). Estas mutaciones se pueden medir a través de cualquiera de las regiones anteriormente mencionadas en relación con el cálculo de homología. Las sustituciones preferiblemente son "conservadoras". Estas se definen según la siguiente Tabla. Los aminoácidos en el mismo bloque en la segunda columna y preferiblemente en la misma línea en la tercera columna se pueden sustituir uno por otro:

	No polor	GAP
	No polar	ILV
ALIFÁTICO	Dolor no corgodo	CSTM
ALIFATICO	Polar- no cargado	NQ
	Dalar carrada	DE
	Polar – cargado	KR
AROMÁTICO		HFWY

Generalmente, los aminoácidos en el análogo en las posiciones equivalentes a aminoácidos en (i) que contribuyen a la unión de la molécula MHC o que son responsables del reconocimiento por el RLT, son los mismos o conservados.

Generalmente el péptido análogo comprende una o más modificaciones, las cuales pueden ser modificaciones posttraducción naturales o modificaciones artificiales. La modificación puede proporcionar un resto químico (generalmente por sustitución de un hidrógeno, por ejemplo, un enlace C-H), tal como un grupo amino, acetilo, hidroxi o halógeno (por ejemplo, flúor) o grupo carbohidrato. Generalmente la modificación está presente en el terminal N o C.

10 El análogo puede comprender uno o más aminoácidos no naturales, por ejemplo, aminoácidos con una cadena lateral diferente de los aminoácidos naturales. En general, el aminoácido no natural tendrá un terminal N y/o terminal C. El aminoácido no natural puede ser un L- o un D-aminoácido.

Generalmente el análogo tiene una forma, tamaño, flexibilidad o configuración electrónica que es básicamente 15 similar a (i), Generalmente es un derivado de (i).

En una realización el agente se une a una molécula MHC de clase II (o un fragmento de la misma capaz de unirse al agente). 2, 3, 4 o más de tales complejos pueden estar asociados o unidos uno a otro, por ejemplo, usando un sistema basado en biotina/estreptavidina, en el cual generalmente 2, 3 o 4 moléculas MHC marcadas con biotina se unen a un resto de estreptavidina. Este agente unido generalmente inhibe la unión del complejo (i)/MHC de clase II a un RLT o anticuerpo que es específico para el complejo.

20

25

30

35

40

45

El análogo generalmente se diseña por medios computacionales y, a continuación, se sintetiza usando métodos conocidos en la técnica. Alternativamente el análogo se puede seleccionar de una biblioteca de compuestos. La biblioteca puede ser una biblioteca combinatoria o una biblioteca de expresión, tal como una biblioteca de expresión en fagos. La biblioteca de compuestos puede estar expresada en la biblioteca de expresión en la forma de estar unida a una molécula MHC de clase II, tal como HLA-DQ2 o -DQ8. Los análogos generalmente se seleccionan de la biblioteca basándose en su capacidad de imitar las características de unión (i). Por tanto, se pueden seleccionar basándose en la capacidad de unión a un RLT o anticuerpo que reconoce (i).

Generalmente los análogos serán reconocidos por linfocitos T a al menos en la misma medida que cualquiera de los agentes (i), por ejemplo, al menos en la misma medida que el epítopo equivalente es reconocido en cualquiera de los ensayos descritos en el presente documento, generalmente usando linfocitos T de pacientes con enfermedad celiaca. Los análogos se pueden reconocer a esta medida *in vivo* y, por tanto, pueden ser capaces de inducir síntomas de enfermedad celiaca a al menos en la misma medida que cualquiera de los agentes mencionados en el presente documento (por ejemplo, en un paciente humano o modelo animal).

Los análogos se pueden identificar en un método que comprende determinar si una sustancia candidata es reconocida por un receptor de linfocito T que reconoce un epítopo de la invención, indicando el reconocimiento de la sustancia que la sustancia es un análogo. Tales RLT pueden ser cualquiera de los RLT mencionados en el presente documento, y pueden estar presentes sobre los linfocitos T. Cualquier ensayo adecuado mencionado en el presente documento se puede usar para identificar el análogo. En una realización este método se lleva a cabo *in vivo*. Como se ha mencionado anteriormente los análogos preferidos se reconocen a al menos en la misma medida que el epítopo equivalente, y así el método se puede usar para identificar análogos que se reconocen en esta medida.

En una realización el método comprende determinar si una sustancia candidata es capaz de inhibir el reconocimiento de un epítopo de la invención, indicando la inhibición del reconocimiento que la sustancia es un análogo.

El agente puede ser un producto que comprende al menos 2, 5, 10 o 20 agentes definidos por (i) o (ii). Generalmente la composición comprende epítopos de la invención (o análogos equivalentes) de diferentes proteínas de gluten, tales como cualquiera de las especies o variedades de o tipos de proteína de gluten mencionadas en el presente documento. Composiciones preferidas comprenden al menos un epítopo de la invención, o análogo equivalente, de todos los glútenes presentes en cualquiera de las especies o variedades mencionadas en el presente documento, o de 2, 3, 4 o más de las especies mencionadas en el presente documento (tales como del panel de especies que consisten en trigo, centeno, cebada, avena y triticale). Por tanto, el agente puede ser monovalente o multivalente.

Según ciertas realizaciones de la invención, el agente no tiene o no está basado en una secuencia descrita en los documentos WO 02/083722 y/o WO 01/25793 y/o W003/104273 y/o enumerada en cualquiera de las SEQ ID NO: 1555-1577, 1580-1581, 1584-1586, 1594-1599, 1621-1622 y/o no es un agente derivado de A-gliadina, cuya secuencia es dada en la Figura 10.

Diagnóstico

Como se mencionó anteriormente el método de diagnóstico de la invención se puede basar en la detección de los linfocitos T que se unen al agente o en la detección de anticuerpos que reconocen el agente.

Los linfocitos T que reconocen el agente en el método (que incluyen el uso anteriormente mencionado) generalmente son linfocitos T que se han sensibilizado previamente in vivo a una o más proteínas de gluten. Como se mencionó anteriormente se ha encontrado que tales linfocitos T experimentados con antígeno están presentes en la sangre periférica.

En el método los linfocitos T se pueden poner en contacto con el agente in vitro o in vivo, y determinar si el reconocimiento de los linfocitos T del agente se puede realizar in vitro o in vivo. Por tanto, la invención proporciona el agente para su uso en un método de diagnóstico practicado en el cuerpo humano. Se proporcionan diferentes agentes para uso simultáneo, separado o secuencial en tal método.

El método in vitro generalmente se lleva a cabo en solución acuosa en la que se añade el agente. La solución también comprenderá los linfocitos T (y en ciertas realizaciones las CPA discutidas más adelante). El término "poner en contacto" usado en el presente documento incluye añadir la sustancia particular a la solución.

20 La determinación de si los linfocitos T reconocen el agente generalmente se consigue detectando un cambio en el estado de los linfocitos T en presencia del agente o determinando si los linfocitos T se unen al agente. El cambio en el estado generalmente está causado por actividad funcional específica a antígeno del linfocito T después de que RLT se una al agente. El cambio de estado se puede medir dentro (por ejemplo, cambio en la expresión intracelular de proteínas) o fuera (por ejemplo, detección de sustancias secretadas) de los linfocitos T.

El cambio en el estado del linfocito T puede ser el comienzo de o el incremento en la secreción de una sustancia del linfocito T tal como citoquina, especialmente IFN-y, IL-2 o TNF-α. La determinación de la secreción de IFN-y es particularmente preferida. La sustancia generalmente se puede detectar dejando que se una a un agente de unión específico y, a continuación, midiendo la presencia del complejo agente de unión específico/sustancia. El agente de unión específico generalmente es un anticuerpo, tal como anticuerpos policionales o monocionales. Los anticuerpos a citoquinas están comercialmente disponibles, o se pueden producir usando técnicas estándares.

Generalmente el agente de unión específico se inmoviliza sobre un soporte sólido. Después de que se permita que la sustancia se una al soporte sólido opcionalmente se puede lavar para separar el material que no se une específicamente al agente. El complejo agente/sustancia se puede detectar usando un segundo agente de unión que se unirá al compleio. Generalmente el segundo agente se une a la sustancia en un sitio que es diferente del sitio al que se une el primer agente. El segundo agente preferiblemente es un anticuerpo y está marcado directa o indirectamente por un marcador detectable.

- 40 Por tanto, el segundo agente puede ser detectado por un tercer agente que generalmente está marcado directa o indirectamente por un marcador detectable. Por ejemplo, el segundo agente puede comprender un resto de biotina, permitiendo la detección por un tercer agente que comprende un resto de estreptavidina y generalmente fosfatasa alcalina como marcador detectable.
- En una realización el sistema de detección que se usa es el ensayo ELISPOT ex vivo descrito en el documento WO 45 98/23960. En ese ensayo IFN-y secretado del linfocito T está unido por un primer anticuerpo específico a IFN-y que está inmovilizado sobre un soporte sólido. A continuación, se detecta el IFN-γ unido usando un segundo anticuerpo específico a IFN-y que está marcado con un marcador detectable. Tal anticuerpo marcado se puede obtener de MABTECH (Estocolmo, Suecia). Otros marcadores detectables que se pueden usar se describen más adelante. 50

El cambio en el estado del linfocito T que se puede medir puede ser el incremento en la absorción de sustancias por el linfocito T, tal como la absorción de timidina. El cambio en el estado puede ser un incremento en el tamaño de los linfocitos T, o la proliferación de los linfocitos T, o un cambio en los marcadores de superficie celular sobre el linfocito

En una realización el cambio de estado se detecta midiendo el cambio en la expresión intracelular de las proteínas, por ejemplo, el incremento en la expresión intracelular de cualquiera de las citoquinas anteriormente mencionadas. Tales cambios intracelulares se pueden detectar poniendo en contacto el interior del linfocito T con un resto que se une a las proteínas expresadas de una manera específica y que permite la clasificación de los linfocitos T por citometría de flujo.

En una realización cuando se une al RLT el agente se une a una molécula MHC de clase II (generalmente HLA-DQ2 o -DQ8), que generalmente está presente sobre la superficie de una célula presentadora de antígeno (CPA). Sin embargo, como se menciona en el presente documento, otros agentes pueden unirse a un RLT sin la necesidad de unirse también a una molécula MHC.

9

10

5

15

25

35

30

55

60

Generalmente los linfocitos T que se ponen en contacto en el método se cogen del individuo en una muestra de sangre, aunque se pueden usar otros tipos de muestras que contienen linfocitos T. La muestra se puede añadir directamente al ensayo o se puede primero procesar. Generalmente el procesamiento puede comprender dilución de la muestra, por ejemplo, con agua o tampón. Generalmente la muestra se diluye de 1,5 a 100 veces, por ejemplo, 2 a 50 o 5 a 10 veces.

El procesamiento puede comprender separación de componentes de la muestra. Generalmente se separan células mononucleares (CM) de las muestras. Las CM comprenderán los linfocitos T y CPA. Por tanto, en el método las CPA presentes en las CM separadas pueden presentar el péptido a los linfocitos T. En otra realización solamente los linfocitos T, tales como solamente los linfocitos T CD4, se pueden purificar de la muestra. CMSP, CM y linfocitos T se pueden separar de la muestra usando técnicas conocidas en la técnica, tales como las descritas en Lalvani y col (1997) *J. Exp. Med.* 186, p859-865.

10

35

40

45

En una realización, los linfocitos T usados en el ensayo están en forma de muestras no procesadas o diluidas, o son linfocitos T recién aislados (tal como en forma de CM o CMSP recién aisladas) que se usan directamente *ex vivo*, es decir, no se cultivan antes de ser usados en el método. Por tanto, los linfocitos T no se han vuelto a estimular de una manera específica a antígeno *in vitro*. Sin embargo, los linfocitos T se pueden cultivar antes de su uso, por ejemplo, en presencia de uno o más de los agentes, y generalmente también citoquinas que promueven el crecimiento exógeno. Durante el cultivo el(los) agente(s) generalmente está(n) presente(s) sobre la superficie de CPA, tales como la CPA usada en el método. El precultivo de los linfocitos T puede conducir a un incremento en la sensibilidad del método. Por tanto, los linfocitos T se pueden convertir en línea celulares, tales como líneas celulares de corto plazo (por ejemplo, como se describe en Ota y col (1990) *Nature* 346, p183-187).

La CPA que generalmente está presente en el método puede ser del mismo individuo que el linfocito T o de un hospedador diferente. La CPA puede ser una CPA de origen natural o una CPA artificial. La CPA es una célula que es capaz de presentar el péptido a un linfocito T. Generalmente es un linfocito B, célula dendrítica o macrófago. Generalmente se separa de la misma muestra que el linfocito T y generalmente está purificada juntamente con el linfocito T. Por tanto, la CPA puede estar presente en CM o CMSP. La CPA generalmente es una célula *ex vivo* recién aislada o una célula cultivada. Puede estar en forma de una línea celular, tal como una línea celular a corto plazo o inmortalizada. La CPA puede expresar moléculas MHC de clase II vacías sobre su superficie.

En el método se pueden usar uno o más agentes (diferentes). Generalmente los linfocitos T derivados de la muestra se pueden colocar en un ensayo con todos los agentes que se pretende ensayar o los linfocitos T se pueden dividir y colocar en ensayos separados cuada uno de los cuales contiene uno o más de los agentes.

La invención también proporciona los agentes tales como dos o más de cualquiera de los agentes mencionados en el presente documento (por ejemplo, las combinaciones de agentes que están presentes en el agente de composición discutido anteriormente) para separar simultáneamente o usar secuencialmente (por ejemplo, para su uso *in vivo*).

En una realización el agente por sí mismo se añade directamente a un ensayo que comprende linfocitos T y CPA. Como se discutió anteriormente los linfocitos T y CPA en tal ensayo podría estar en forma de CM. Cuando se usan agentes que pueden ser reconocidos por el linfocito T sin la necesidad de presentación por CPA, a continuación, no se requiere CPA. Los análogos que imitan el (i) original unido a una molécula MHC son un ejemplo de tal agente.

En una realización se suministra el agente a la CPA en ausencia del linfocito T. A continuación, se suministra la CPA al linfocito T, generalmente después de dejar que presente el agente sobre su superficie. El péptido se puede haber absorbido dentro de la CPA y presentado, o simplemente absorbido sobre la superficie sin entrar dentro de la CPA.

50 La duración durante la cual el agente está en contacto con los linfocitos T variará dependiendo del método usado para determinar el reconocimiento del péptido. Generalmente 10⁵ a 10⁷, preferiblemente 5x10⁵ a 10⁶ CMSP se añaden a cada ensayo. En el caso en el que el agente se añade directamente al ensayo su concentración es de 10⁻¹ a 10³ μg/ml, preferiblemente 0,5 a 50 μg/ml o 1 a 10 μg/ml.

Generalmente la duración del tiempo durante el que se incuban los linfocitos T con el agente es de 4 a 24 horas, preferiblemente 6 a 16 horas. Cuando se usan CMSP ex vivo se ha encontrado que se pueden incubar 0,3x10⁶ CMSP en 10 μg/ml de péptido durante 12 horas a 37 °C.

La determinación del reconocimiento del agente por los linfocitos T se pueden hacer midiendo la unión del agente a los linfocitos T (esto se puede llevar a cabo usando cualquier formato de ensayo de unión adecuado discutido en el presente documento). Generalmente los linfocitos T que se unen al agente se pueden clasificar basándose en esta unión, por ejemplo, usando una máquina de FACS. La presencia de linfocitos T que reconocen el agente se considerará que se da si la frecuencia de células clasificadas usando el agente está por encima de un valor "control". La frecuencia de los linfocitos T experimentados con antígeno generalmente es de 1 de 10⁶ a 1 de 10³, y por lo tanto se puede determinar si las células clasificadas son o no linfocitos T experimentados con antígeno.

La determinación del reconocimiento del agente por los linfocitos T se pueden medir *in vivo*. Generalmente el agente se administra al hospedador y, a continuación, se puede medir una respuesta que indica el reconocimiento del agente. El agente generalmente se administra intradérmicamente o epidérmicamente. El agente generalmente se administra poniéndolo en contacto con el exterior de la piel, y se puede retener en el sitio con la ayuda de un apósito o vendaje. Alternativamente, el agente se puede administrar con una aguja, tal como por inyección, pero también se puede administrar por otros métodos tales como balística (por ejemplo, las técnicas balísticas que se pueden usar para administrar ácidos nucleicos). El documento EP-A-0693119 describe técnicas que generalmente se pueden usar para administrar el agente. Generalmente, se administra de 0,001 a 1.000 μg, por ejemplo, de 0,01 a 100 μg o 0,1 a 10 μg de agente.

10

15

20

25

En una realización se puede administrar un producto que es capaz de proporcionar el agente *in vivo*. Por tanto, se puede administrar un polinucleótido capaz de expresar el agente, generalmente en cualquiera de los modos anteriormente descritos para la administración del agente. El polinucleótido generalmente tiene cualquiera de las características del polinucleótido proporcionado por la invención que se discute más adelante. El agente se expresa a partir del polinucleótido *in vivo*. Generalmente se administra de 0,001 a 1.000 μg, por ejemplo, de 0,01 a 100 μg o 0,1 a 10 μg de polinucleótido.

El reconocimiento del agente administrado a la piel generalmente está indicado por la ocurrencia de la inflamación (por ejemplo, induración, eritema o edema) en el sitio de administración. Esto generalmente se mide por examen visual del sitio.

El método de diagnóstico basado en la detección de un anticuerpo que une al agente generalmente se lleva a cabo poniendo en contacto una muestra del individuo (tal como cualquiera de las muestras mencionadas en el presente documento, opcionalmente procesadas de cualquier manera anteriormente mencionada) con el agente y determinando si un anticuerpo en la muestra une al agente, indicando tal unión que el individuo tiene, o es susceptible a enfermedad celiaca. Se puede usar cualquier formato adecuado de ensayo de unión, tal como cualquiera de tales formatos mencionados en el presente documento.

Terapia

30

35

40

45

50

55

60

La identificación del epítopo inmunodominante y otros epítopos descritos en el presente documento permite que se produzcan productos terapéuticos que guían los linfocitos T que reconocen este epítopo (siendo tales linfocitos T unos que participan en la respuesta inmunitaria frente a proteínas de gluten). Estos descubrimientos también permiten la prevención o el tratamiento de enfermedad celiaca por supresión (por inducción de inmunotolerancia(tolerization)) de un anticuerpo o respuesta de linfocito T a el(los) epítopo(s).

Ciertos agentes de la invención unen al RLT que reconoce el epítopo de la invención (medido usando cualquiera de los ensayos de unión anteriormente discutidos) y causan inducción de inmunotolerancia del linfocito T que lleva el RLT. Tales agentes, opcionalmente en asociación con un vehículo, por lo tanto, se pueden usar para prevenir o tratar enfermedad celiaca.

Generalmente la inducción de inmunotolerancia puede ser causada por los mismos péptidos que pueden (después de ser reconocidos por el RLT) causar actividad funcional específica a antígeno del linfocito T (tal como tal actividad mencionada en el presente documento, por ejemplo, secreción de citoquinas). Tales agentes causan inducción de inmunotolerancia cuando se presentan al sistema inmunitario en un contexto de "inducción de inmunotolerancia".

La inducción de inmunotolerancia conduce a una disminución en el reconocimiento de un linfocito T o epitopo de anticuerpo por el sistema inmunitario. En el caso de un epítopo de linfocito T esto puede ser causado por la deleción o anergización de los linfocitos T que reconocen el epitopo. Por tanto, se disminuye la actividad del linfocito T (por ejemplo, medida en ensayos adecuados mencionados en el presente documento) en respuesta al epítopo. La inducción de inmunotolerancia de una respuesta de anticuerpo significa que se produce una cantidad disminuida del anticuerpo específico al epitopo cuando se administra el epítopo.

Se conocen métodos de presentación de antígenos al sistema inmunitario en dicho contexto y se describen por ejemplo en Yoshida y col. *Clin. Immunol. Immunopathol.* 82, 207-215 (1997), Thurau y col. *Clin. Exp. Immunol.* 109, 370-6 (1997), y Weiner y col. *Res. Immunol.* 148, 528-33 (1997). En particular ciertas vías de administración pueden causar inducción de inmunotolerancia, tales como oral, nasal o intraperitoneal. La inducción de inmunotolerancia también se puede conseguir por células dendríticas y péptidos que presentan tetrámeros. Se pueden administrar (por ejemplo, en una composición que también comprende el agente) productos particulares que causan inducción de inmunotolerancia al individuo. Tales productos incluyen citoquinas, tales como citoquinas que favorecen una respuesta Th2 (por ejemplo, IL-4, TGF-β; o IL-10). Se pueden administrar productos o agente a una dosis que causa inducción de inmunotolerancia.

En una realización, los agentes de inducción de inmunotolerancia (inmunotolerancia de linfocito T y anticuerpo) están presentes en una composición que comprende al menos 2, 4, 6 o más agentes que inducen inmunotolerancia a diferentes epítopos de la invención, por ejemplo, a las combinaciones de epítopos anteriormente discutidas en

relación con los agentes que son un producto que comprende más de una sustancia.

Prueba de si una composición es capaz de causar enfermedad celiaca

- Como se mencionó anteriormente la invención proporciona un método de determinación de si una composición es capaz de causar enfermedad celiaca que comprende detectar la presencia de una secuencia de proteína que es capaz de ser modificada por una transglutaminasa como la secuencia que comprende el agente o epitopo de la invención (tal actividad de la transglutaminasa puede ser una actividad de transglutaminasa intestinal humana).
- Generalmente esto se realiza usando un ensayo de unión en el que un resto que se une a la secuencia de una manera específica se pone en contacto con la composición y se detecta la formación de complejo secuencia/resto y se usa para establecer la presencia del agente. Tal resto puede ser cualquier sustancia adecuada (o tipo de sustancia) mencionada en el presente documento, y generalmente es un anticuerpo específico. Se puede usar cualquier formato adecuado del ensayo de unión (tal como los mencionados en el presente documento).
 - En una realización, la composición se pone en contacto con al menos 2, 5, 10 o más anticuerpos que son específicos para epítopos de la invención de diferentes proteínas de gluten, por ejemplo, un panel de anticuerpos capaces de reconocer las combinaciones de epítopos anteriormente discutidos en relación con los agentes de la invención que son un producto que comprende más de una sustancia.
 - La composición generalmente comprende material de una planta que expresa una proteína de gluten que es capaz de causar enfermedad celiaca (por ejemplo, cualquiera de las proteínas de gluten o plantas mencionadas en el presente documento). Tal material puede ser una parte de la planta, tal como un producto recolectado (por ejemplo, semilla). El material puede ser productos procesados del material vegetal (por ejemplo, tal producto mencionado en el presente documento), tal como una harina o alimento que comprende la proteína de gluten. El procesamiento de material alimenticio y el ensayo en los ensayos de unión adecuados es rutinario, por ejemplo, como se menciona en Kricka L.J., *J. Biolumin. Chemilumin.* 13, 189-93 (1998).

Ensavos de unión

- La determinación de la unión entre cualquiera de las dos sustancias mencionadas en el presente documento se puede hacer midiendo una característica de una o ambas sustancias que cambia tras la unión, tal como un cambio espectroscópico.
- 35 El formato del ensayo de unión puede ser un sistema "de desplazamiento de banda". Esto implica determinar si la presencia de una sustancia (tal como una sustancia candidata) avanza o retarda el progreso de la otra sustancia durante la electroforesis en gel.
- El formato puede ser un método de unión competitivo que determina si la sustancia es capaz de inhibir la unión de la otra sustancia a un agente que se sabe que se une a la otra sustancia, tal como un anticuerpo específico.

Kits

15

20

25

30

- La invención también proporciona un kit para llevar a cabo el método que comprende uno o más agentes y un medio para detectar el reconocimiento del agente por el linfocito T. Generalmente, se proporcionan los diferentes agentes para su uso simultáneo, separado o secuencial. Generalmente, los medios para detectar el reconocimiento permiten o ayudan a la detección basándose en las técnicas anteriormente discutidas.
- Por tanto, los medios pueden permitir la detección de una sustancia secretada por los linfocitos T después del reconocimiento. Por tanto, el kit puede incluir adicionalmente un resto de unión específico para la sustancia, tal como un anticuerpo. El resto generalmente específico para IFN-γ. El resto generalmente está inmovilizado sobre un soporte sólido. Esto significa que después de la unión al resto la sustancia seguirá en la proximidad del linfocito T que lo secretó. Por tanto, se forman "manchas" del complejo sustancia/resto sobre el soporte, representando cada mancha un linfocito T que está secretando la sustancia. La cuantificación de las manchas, y generalmente la comparación frente a un control, permite la determinación del reconocimiento del agente.
 - El kit también puede comprender un medio para detectar el complejo sustancia/resto. Un cambio detectable se puede dar en el propio resto después de unirse a la sustancia, tal como un cambio de color. Alternativamente, se puede permitir que un segundo resto directa o indirectamente marcado para la detección se una al complejo sustancia/resto para permitir la determinación de las manchas. Como se discutió anteriormente el segundo resto puede ser específico para la sustancia, pero se une a un sitio diferente sobre la sustancia que el primer resto.
 - El soporte inmovilizado puede ser una placa con pocillos, tal como una placa de microtitración. Por lo tanto, cada ensayo se puede llevar a cabo en un pocillo separado en la placa.

65

Además, el kit puede comprender medio para los linfocitos T, restos de detección o tampones de lavado para usarse en las etapas de detección. El kit además puede comprender reactivos adecuados para la separación de la muestra, tal como la separación de CMSP o linfocitos T de la muestra. El kit puede estar diseñado para permitir la detección de los linfocitos T directamente en la muestra sin requerir ninguna separación de los componentes de la muestra.

5

El kit puede comprender un instrumento que permite la administración del agente, tal como la administración intradérmica o epidérmica. Generalmente tal instrumento comprende apósito, vendaje o una o más agujas. El instrumento puede permitir administración balística del agente. El agente en el kit puede estar en forma de una composición farmacéutica.

10

15

El kit también puede comprender controles, tales como controles positivos o negativos. El control positivo puede permitir que se ensaye el sistema de detección. Por tanto, el control positivo generalmente imita el reconocimiento del agente en cualquiera de los métodos anteriores. Generalmente en los kits diseñados para determinar el reconocimiento in vitro el control positivo es una citoquina. En el kit diseñado para detectar el reconocimiento in vivo del agente el control positivo puede ser antígeno al cual la mayoría de los individuos debería responder.

El kit también puede comprender un medio para tomar una muestra que contiene linfocitos T del hospedador, tal como una muestra de sangre. El kit puede comprender un medio para separar células mononucleares o linfocitos T de una muestra del hospedador.

20

25

Anticuerpos

La invención también proporciona anticuerpos monoclonales o policionales que específicamente reconocen los agentes (tales como el epítopo de la invención) de la invención, y métodos de producción de tales anticuerpos. Los anticuerpos de la invención se unen específicamente a estas sustancias de la invención.

Con los propósitos de esta invención, el término "anticuerpo" incluye fragmentos de anticuerpo tal como Fv, F(ab) F(ab')2 así como anticuerpos de cadena sencilla.

30

35

40

45

60

65

Un método para producir un anticuerpo policional comprende inmunizar un animal hospedador adecuado, por ejemplo, un animal experimental, con el inmunógeno y aislar inmunoglobulinas del suero. Por lo tanto, el animal puede ser inoculado con el inmunógeno, posteriormente sacar sangre del animal y purificar la fracción de IgG. Un método para producir un anticuerpo monoclonal comprende inmortalizar células que producen el anticuerpo deseado. Se pueden producir células de hibridoma fusionando células de bazo de un animal experimental inoculado con células tumorales (Kohler y Milstein (1975) Nature 256, 495-497).

Se puede seleccionar una célula inmortalizada que produce el anticuerpo deseado por un procedimiento convencional. Los hibridomas se pueden dejar crecer en cultivo o inyectar intraperitonealmente para la formación de fluido de ascitis o dentro de la corriente sanguínea de un hospedador alogénico o hospedador inmunocomprometido. Se puede preparar anticuerpo humano por inmunización in vitro de linfocitos humanos, seguido de transformación de los linfocitos con virus Epstein-Barr.

Para la producción de anticuerpos tanto monoclonales como policionales, el animal experimental es adecuadamente una cabra, conejo, rata o ratón. Si se desea, el inmunógeno se puede administrar como un conjugado en el que se acopla el inmunógeno, por ejemplo por una cadena lateral de uno de los residuos de aminoácidos, a un vehículo adecuado. La molécula vehículo generalmente es un vehículo fisiológicamente aceptable. El anticuerpo obtenido se puede aislar y, si se desea, purificar.

El agente o anticuerpo de la invención, puede llevar un marcador detectable. Se prefieren marcadores detectables 50 que permiten la detección de la sustancia secretada por inspección visual, opcionalmente con la ayuda de un medio de ampliación óptica. Tal sistema se basa generalmente en un marcador enzimático que causa cambio de color en un sustrato, por ejemplo, fosfatasa alcalina que causa un cambio de calor en un sustrato. Tales sustratos están comercialmente disponibles, por ejemplo, en BioRad. Otros marcadores adecuados incluyen otras enzimas tales como peroxidasa, o marcadores de proteína, tal como biotina; o radioisótopos, tales como ³²P o ³⁵S. Los anteriores 55 marcadores se pueden detectar usando técnicas conocidas.

Los agentes o anticuerpos de la invención pueden estar en forma básicamente purificada. Pueden estar en forma básicamente aislada, en cuyo caso generalmente comprenderán al menos 80 %, por ejemplo, al menos 90, 95, 97 o 99 % del péptido, anticuerpo o masa seca en la preparación. El agente o anticuerpo generalmente está básicamente libre de otros componentes celulares. El agente o anticuerpo se puede usar en tal forma básicamente aislada, purificada o libre en el método o estar presente en tales formas en el kit.

La invención proporciona agentes terapéuticos (incluyendo profilácticos) o sustancias diagnósticas (los agentes de la invención). Estas sustancias están formuladas para la administración clínica mezclándolas con un vehículo o diluyente farmacéuticamente aceptable. Por ejemplo, se pueden formular para la administración tópica, parenteral, intravenosa, intramuscular, subcutánea, intraocular, intradérmica, epidérmica o transdérmica. Las sustancias se

pueden mezclar con cualquier vehículo que sea farmacéuticamente aceptable y apropiado para la vía de administración deseada. El vehículo o diluyente farmacéuticamente para la inyección puede ser, por ejemplo, una solución estéril o isotónica tal como Agua para Inyección o solución salina fisiológica, o una partícula vehículo para administración balística.

5

La dosis de las sustancias se puede ajustar según diversos parámetros, especialmente según el agente usado; la edad, peso y afección del paciente a tratar; el modo de administración usado; la gravedad de la afección a tratar; y el régimen clínico requerido. Como guía, la cantidad de sustancia administrada por la inyección es adecuadamente de 0,01 mg/kg a 30 mg/kg, preferiblemente de 0,1 mg/kg a 10 mg/kg.

10

Las vías de administración y dosis descritas están previstas solamente como guía puesto que un experto será capaz de determinar fácilmente la vía óptima de administración y la dosis para cualquier paciente particular y afección.

15

Por tanto, las sustancias de la invención se pueden usar en un método de tratamiento del cuerpo humano o animal, o en un método diagnóstico practicado sobre el cuerpo humano. En particular, se pueden usar en un método de tratamiento o prevención de la enfermedad celiaca. La invención también proporciona los agentes para su uso en un método de fabricación de un medicamento para tratar o prevenir la enfermedad celiaca. Por tanto, la invención proporciona un método de prevención o tratamiento de la enfermedad celiaca que comprende administrar a un humano en necesidad del mismo una sustancia de la invención (generalmente una cantidad eficaz no tóxica de la misma).

20

25

El agente de la invención se puede producir usando técnicas químicas sintéticas estándar, tales como por el uso de un sintetizador automatizado. El agente se puede producir de un polipéptido más largo, por ejemplo, una proteína de fusión, cuyo polipéptido generalmente comprende la secuencia del péptido. El péptido se puede derivar del polipéptido, por ejemplo, hidrolizando el polipéptido, tal como usando una proteasa; o rompiendo físicamente el polipéptido. El polinucleótido de la invención se puede producir usando técnicas estándar, tal como usando un sintetizador.

Desamidación

30

Cuando una sustancia descrita en el presente documento incluye un residuo Gln, la invención también proporciona esa secuencia en la que el residuo Gln se ha desamidado a un residuo Glu. Uno o más (por ejemplo, 1, 2, 3, 4, 5, etc.) residuo(s) Gln por secuencia se pueden desamidar, pero cuando hay más de un residuo Gln, no todos ellos se deben desamidar. Preferiblemente, los residuos Gln que se desamidan son aquellos susceptibles a desamidación por transglutaminasa.

35

En el listado de secuencia se dan ejemplos en los que Gln se pueden desamidar. Por ejemplo, el residuo 4 de la SEQ ID NO: 1 puede ser un residuo Gln o un residuo Glu, el residuo 6 de la SEQ ID NO: 2 puede ser un residuo Gln o un residuo Glu, los residuos 4 y 7 de la SEQ ID NO: 6 pueden ser cada uno independientemente residuos Gln o Glu, etc. Los residuos Gln que son susceptibles a desamidación, y sus homólogos Glu desamidados, se refieren como residuos "Glx".

45

50

40

Cuando el agente incluye más de un residuo Glx, estos se pueden disponer en cualquier configuración. Por ejemplo, los residuos Glx pueden ser residuos consecutivos, y/o pueden estar separados por otro u otros más (por ejemplo, 1, 2, 3, 4, 5, 6, 7, 8, etc.) residuos. Como se mencionó anteriormente, para los epítopos HLA-DQ8, el agente preferiblemente comprende un residuo Glx que está separado por siete residuos de otro residuo Glx. Los agentes preferidos de la invención son agentes desamidados, es decir, el agente comprende el uno o más residuos Glx en la forma de Glu. Esto se puede conseguir de diversos modos, por ejemplo, incluyendo residuos Glu durante la producción, o convirtiendo residuos Gln en Glu por desamidación. La conversación de Gln a Glu se puede conseguir tratando un agente que contiene residuos Gln que son susceptibles a desamidación con un agente de desamidación. El uno o más residuos Gln preferiblemente se desamidan a Glu por transglutaminasa, por ejemplo, como se describe en los ejemplos.

55

El experto en la técnica será capaz de determinar que los residuos Gln particulares en el agente son susceptibles a la desamidación y, por tanto, que los residuos deberían ser residuos Glu que surgen de la desamidación de un residuo Gln. Por ejemplo, secuencias que contienen Gln susceptibles de desamidación por transglutaminasa generalmente conforme a un motivo: por ejemplo, QXPX, QXPF(Y), QXX(FYMILVW), QXPF, QXX(FY), PQ(QL)P(FY)P. Por ejemplo, la secuencia PQ(QL)P(FY) P facilita la desamidación de la Q subrayada en la posición 2 por transglutaminasa.

60

En particular, se prefieren agentes que comprendan la versión desamidada de la SEQ ID NO: 200 (en donde tales secuencias no están ya desamidadas). Lo más preferiblemente, los agentes de la invención comprenden la versión desamidada con transglutaminasa de la SEQ ID NO: 200 (de nuevo, donde no está ya desamidada). Los análogos de estos agentes, como se define en el presente documento, también están incluidos dentro del alcance de la invención.

Ejemplos (Ejemplos de referencia excepto en tanto que están relacionados con el agente de la presente invención) – La invención se ilustra por los siguientes Ejemplos no limitantes:

Biblioteca de cribado de epítopo de gliadina inicial

5

10

40

45

50

60

65

En los experimentos iniciales que implican 29 individuos HLA-DQ2+ con enfermedad celiaca en dieta libre de gluten a largo plazo, se usaron ensayos ELISPOT de interferón gamma para investigar un Pepset previo (descrito en el documento WO 03/104273) inicialmente como conjuntos de péptidos y a continuación en 15 sujetos como péptidos individuales con y sin desamidación por tTG. Esta biblioteca de Pepset consistía en 652 péptidos de gliadina 20mero que abarcaban todos los 12meros únicos contenidos dentro de todas las entradas de Genbank descritas como gliadinas de trigo encontradas en septiembre de 2001. Esta biblioteca de Pepset se diseñó "manualmente" a partir de secuencias de proteína derivadas de gen alineadas usando el programa informático ClustalW (MegAlign) ordenado en grupos filogenéticos.

Aproximadamente se proporcionaron 0,6 micromoles de cada uno de los 652 de los 20meros. Dos péptidos 20meros marcadores se incluyeron en cada conjunto de 96 (VLQQHNIAHGSSQVLQESTY - péptido 161, y IKDFHVYFRESRDALWKGPG) y se caracterizaron por HPLC de fase inversa y análisis de secuencia de aminoácidos. Las purezas promedio de estos péptidos marcadores eran de 19 % y 50 %, respectivamente. Los péptidos se disolvieron inicialmente en acetonitrilo (10 %) y Hepes 100 mM a 10 mg/ml. La concentración final de los péptidos individuales incubados con CMSP para los ensayos ELISpot de IFN-γ eran de 20 μ/ml. Estos péptidos se desamidaron por incubación con tTG tisular de conejillo de indias (Sigma T5398) en la relación de 100:32 μg/ml durante dos horas a 37 °C. Las soluciones peptídicas se almacenaron a -20 °C y eran recién descongeladas antes de usar. Estos estudios se llevaron a cabo en Oxford, UK. Los ensayos ELISpot se realizaron como se describe para los llevados a cabo en Melbourne, Australia (todos los otros estudios descritos en el presente documento). Los datos de "Oxford" en relación con las respuestas del sujeto a péptidos individuales se agruparon con los datos de "Melbourne" para posterior análisis de epítopo "mínimo" en el "algoritmo EM" (véase más adelante).

Biblioteca de cribado de epítopo de gliadina de la segunda ronda

Se diseñó una biblioteca de epítopo de gliadina de segunda ronda según las secuencias bioactivas identificadas a partir de la biblioteca de cribado de epítopo de gliadina inicial de 652 20meros. Se definieron los 20meros de gliadina con bioactividad media equivalente a >5 % del 20mero de gliadina más potente (91: PQPFPPQLPYPQPQLPYPQP) en 15 sujetos HLA-DQ2+ evaluados con todos los 652 20meros desamidados. Puesto que los estudios anteriores (véase el documento WO 03/104273) indicaron que conjuntos desamidados de este Pepset eran más potentes que sin desamidación, se identificaron los residuos de glutamina dentro de los 20meros bioactivos potencialmente desamidados por tTG según el motivo QXPX, QXZ (FYWILVM) en el que X es cualquier aminoácido excepto prolina, y P es prolina, Z es cualquier aminoácido, y FYWILVM representa aminoácidos hidrófobos (coherentes con los motivos para desamidación mediada por tTG publicados por Vader W. y col. *J. Exp. Med.* 2002 *J. Exp. Med.* 195:643-649, PCT WO 03/066079, y Fleckenstein B. 2002. *J. Biol. Chem.* 277:34109-16).

A continuación, se identificaron péptidos 12mero en los cuales cada sitio de desamidación potencial podría estar en la posición 4, 6 o 7 en el 9mero localizado dentro de la ranura de unión de HLA-DQ2 (anclajes de HLA-DQ2 en estas posiciones muestran una preferencia para glutamato). A continuación, se flaquean las secuencias de epitopo núcleo 12mero candidatas con glicina seguido del residuo N terminal presente en el polipéptido de gliadina madre y en el C terminal por el residuo C terminal presente en el polipéptido de gliadina madre seguido por glicina (es decir, GXXXXXXXQXXXXXXXX).

Se sintetizaron péptidos con glutamina o glutamato en la posición 9. A continuación, se evaluaron los péptidos (100 µg/ml) (+/- desamidación por tTG) en ensayos ELISPOT de interferón gamma usando CMSP de 15 voluntarios celiacos HLA-DQ2+ después de exposición a gluten. Se analizaron resultados de estos ensayos según el algoritmo EM (véase más adelante). Además, se sintetizaron los distintos péptidos más potentes y se purificaron a >80 % (Mimotopos) y se evaluaron en ensayos ELISPOT de interferón gamma usando CMSP de 15 voluntarios celiacos HLA-DQ2+ después de exposición a gluten de trigo.

55 Biblioteca de cribado de epítopo de gluten completa

Para hacer práctico el diseño de una biblioteca de péptido sustancialmente mayor que abarque todas las proteínas similares a gliadina y glutenina de trigo, gluten de centeno, cebada y avena (prolaminas), y para confirmar los datos de la biblioteca de péptidos de gliadina previa, se desarrolló un algoritmo iterativo para automatizar el diseño de un conjunto mínimo de 20meros que incluían todos los 12meros únicos (excluyendo las secuencias peptídicas señal) en proteínas de gluten. El algoritmo ScanSet se muestra en la Figura 1.

El método ensaya si todos los epítopos peptídicos posibles de un grupo de proteínas son antígenos potenciales en un intervalo de pacientes. Los epítopos de linfocito T oscilan en tamaño entre 9 y 15 AA. Ensayar todos los posibles 12meros en un conjunto de proteínas, llega a ser rápidamente inviable debido a los altos números.

En el presente documento usamos el hecho de que, por ejemplo, un péptido 20mero puede cubrir hasta 9 12meros diferentes. Por lo tanto, desarrollamos un planteamiento combinatorio para cubrir todos los 12meros posibles representados en una familia de proteínas.

Se generan péptidos largos de 20 aminoácidos (20mero) que se ensayan como antígenos, y que cubren todas las secuencias de péptido 12mero que existen en el grupo de proteínas. Definimos la longitud de péptidos para generar como *L* (por ejemplo, 20) y la longitud de los epítopos que queremos cubrir como *S*. Desarrollamos un programa informático que genera todos los *L*meros que se dan excepcionalmente de un conjunto de proteínas. Además, generamos todos los *S*meros que se dan excepcionalmente a partir de este conjunto de proteínas. A continuación, seleccionamos un conjunto de N *L*meros que contiene todas las secuencias de *L*meros. La Figura 1 perfila cómo funciona este algoritmo.

El 16 de junio de 2003, los números de acceso contenidos en Genbank para 53 gliadinas alfa/beta, 53 gama y 2 omega, y 77 gluteninas BPM y 55 APM de *T. aestivum*, 59 hordeínas, 14 secalinas y 20 aveninas (véase la Figura 2). En total, ScanSet identificó 18117 12meros únicos contenidos en los 225 productos génicos de gluten.

15

20

Todos los 12meros de gluten únicos se podrían subsumir en 2922 20meros. Estos 20meros se sintetizaron en una biblioteca de péptidos Pepset (Mimotopes Inc., Melbourne, Australia). Se sintetizaron péptidos de Pepset en lotes de 96 (Mimotopes Inc., Melbourne Australia). Se proporcionó aproximadamente 0,7 a 1,3 micromoles de cada uno de los 2922 20meros. Se incluyeron dos péptidos 20mero marcadores en cada conjunto de 96 (un péptido representativo de los otros 94 péptidos sobre cada placa particular, y IKDFHVYFRESRDALWKGPG) y se caracterizaron por HPLC de fase inversa y espectroscopía de masas. Purezas promedio de estos péptidos marcadores eran de 36 % (intervalo: 5 a 68 %) y 64 % (intervalo: 55 a 71 %), respectivamente.

- 25 Los péptidos se disolvieron inicialmente en acetonitrilo acuoso (50 %). Los péptidos en acetonitrilo acuoso se transfirieron a placas de 96 pocillos estériles y se diluyeron en PBS estéril con calcio 1 mM (250 μg/ml) y, a continuación, se incubaron con tTG (25 μg/ml) (Sigma T5398) durante 6 horas 37 °C y, a continuación, se almacenaron congelados (-20 °C) hasta su uso.
- 30 Todos los sujetos tenían enfermedad celiaca comprobada por biopsia y habían seguido una dieta libre de gluten estricta durante al menos 6 meses. Todos los sujetos poseían HLA-DQB01*02 (HLA-DQ2) solo (n=100) o HLA-DQA1*03 y HLA-DQB1*0302 (HLA-DQ8) solo (n=5). En todos los casos, se evaluó tTG-lgA antes de la exposición a gluten y estaba en el intervalo normal (se encontró que el 30 % de los voluntarios iniciales tenían tTG-lgA elevada y se excluyeron puesto que la exposición a gluten crónica está asociada a fracaso en inducir linfocitos T específicos a 35 gluten en sangre periférica por exposición a gluten limitada). Los voluntarios consumieron "white bread block loaf" de Baker's Delight (200 g diarios durante tres días) o avena de Uncle Tobys (100 g diarios durante tres días). Todos menos tres sujetos completaron la exposición de tres días (un retirado después del primer bocado de pan, y los otros dos vomitaron después de dos rebanadas de pan. Los datos de los dos últimos se incluyeron en el análisis posterior). Se sacó sangre (300 ml) seis días después de comenzar la exposición a gluten. Én nuestros estudios previos no se han encontrado respuestas de ELISpot de IFN-γ específicas a péptido de gluten, y por tanto no se 40 evaluó la sangre "pre-exposición" en este conjunto de experimentos (Anderson, R.P. y col. 2000. Nat. Med. 6:337-342., los documentos WO 01/25793, WO 03/104273).
- Se realizaron ensayos ELISpot de IFN-γ (Mabtech, Suecia) en placas de 96 pocillos (MAIP S-45, Millipore) en las que cada pocillo contenía 20 μl de solución peptídica y 100 μl de CMSP (2-8x10⁵/pocillo) en RPMI que contenía 10 % de suero AB humano inactivado por calor. Después del desarrollo y el secado, se evaluaron las placas de ELISpot de IFN-γ usando el contador de placa de ELISpot automatizado MAIP. A continuación, se analizaron los datos según un algoritmo novedoso (Expectación-Maximización: EM) para definir y cuantificar respuestas del interferón gamma a secuencias de 9mero contenidas dentro de la biblioteca de péptidos (véase la Figura 3 y más adelante). A continuación, se racionalizaron péptidos 9mero según un algoritmo que asume la redundancia en el reconocimiento de linfocito T, el algoritmo "IterativeCluster" (véase la Figura 4 y más adelante), dejando grupos de aminoácidos con propiedades químicas similares en una posición cualquiera en el 9mero, o para glutamato para reemplazar glutamina en cualquier posición (asumiendo que puede haber ocurrido desamidación).
- Puesto que había conjuntos de datos de solamente dos individuos HLA-DQ8+ que no eran también HLA-DQ2+, y estos estaban utilizando solamente los 721 20meros de gliadina de trigo de la "biblioteca de cribado de epítopo de gluten completa", se identificaron péptidos bioactivos tomando el rango promedio de respuestas de ELISPOT de IFN-γ específica a péptido en los dos sujetos. Para la predicción de probables epítopos de gliadina restringidos a HLA-DQ8, se asumió que un residuo de glutamina susceptible a desamidación mediada por tTG ocupaba o bien la posición 1 o 9 en las regiones núcleo de 9mero potenciales de epítopos, coherentes con el motivo de unión a HLA-DQ8 y los descubrimientos de van de Wal y col. (van de Wal, Y. y col 1998. *J. Immunol.* 161 (4):1.585-1.588).

El algoritmo expectación-maximización (EM) para analizar los datos de ELISpot:

65 La Figura 3 muestra un algoritmo para analizar datos que vienen de un ensayo que usa el ELISpot. Las respuestas de linfocito T a diferentes péptidos se miden en placas de 96 pocillos usando ensayos de linfocito T. Los ensayos se

realizaron sobre muchos pacientes usando muchos antígenos peptídicos diferentes. El resultado de los ensayos de linfocito T se pueden resumir en una tabla en la que las filas representan péptidos y las columnas pacientes y las mediciones individuales (recuentos) están en la tabla (por ejemplo, véase la Figura 3B). El propósito del algoritmo EM es diferenciar entre respuesta y no respuesta de un paciente a un péptido y estimar un índice medio de respuesta y una proporción de personas que responden a cada péptido.

Las respuestas se midieron para un número de diferentes pacientes (i se usará para indicar el paciente) y para muchos péptidos diferentes (j se usará para indicar el péptido). Cada medición (*yij*) representa un recuento de linfocitos T del paciente *i* que responde al péptido *j*. Para estimar, si una medición para un cierto péptido en un paciente se puede llamar una respuesta o si es más probable que venga de una distribución de fondo, proponemos un modelo para un problema de datos incompletos, siendo *yij* el recuento observado de manchas y *zij* un indicador no observado, si la persona *i* responde al péptido *j*.

El número observado de recuentos yij se modeliza para venir de distribuciones de Poisson independientes: poisson $(\alpha i,\lambda j)$, si el paciente i está respondiendo al péptido j, es decir, zij=1, y poisson $(\alpha i,\lambda 0)$, si el paciente i no está respondiendo al péptido j, es decir, zij=0.

- Datos completos yij (recuentos observados), zij (indicador de respuesta, no observado).
- Parámetros: θ=(αi,λj,λ0,pj)

20

10

- αi: capacidad de respuesta total del paciente.
- λj: tasa de respuesta inducida por péptido.
- λ0: tasa de respuesta de fondo.
- pi: proporción de personas que responden al péptido j.

25

30

Algoritmo EM:

- Variables de conjunto inicialmente a valores aleatorios
- Etapa E: calcular probabilidad
- Etapa M: maximizar función de probabilidad
 - Iterar Etapa E y M

Procedimiento iterativo para encontrar el conjunto mínimo de epítopos que responden

Se desarrolló un programa para calcular un conjunto mínimo de péptidos para su uso en una vacuna basada en las 35 respuestas de linfocito T estimadas en el algoritmo EM. Medimos las respuestas del linfocito T a Lmeros de un grupo de proteínas. Los péptidos se generaron para cubrir todos los posibles Smeros. Estimamos los siguientes parámetros para la respuesta por un algoritmo EM: tasa de respuesta, número de personas que responden, proporción de personas que responden. La proporción de personas que responden multiplicadas por la tasa estimada de respuesta se usa como criterio para definir los epítopos que son buenos antígenos. Muchos de los Lmeros medidos contienen los mismos epítopos Smero. Para encontrar los epítopos (Smeros) que pueden explicar todas las respuestas en Lmeros seleccionamos el Smero que está contenido en Lmeros que en la media tienen las respuestas más altas. A continuación, separamos todos los Lmeros que contienen este Smero de nuestras mediciones. Luego, seleccionamos el Smero con las respuestas más altas en los Lmeros restantes. Iteramos este 45 procedimiento hasta que no existan Smeros con respuestas mayores de un límite especificado. Usamos varias iteraciones con diferentes límites. Este proceso se esboza en la Figura 4. Dicha lista definida de Lmeros agrupados se puede usar como base para definir los epítopos óptimos y seleccionar péptidos que funcionan como antígenos buenos.

50 Epítopos de HLA-DQ2 en gluten de trigo

Se identificaron epítopos de HLA-DQ2 en gliadinas de trigo y gluteninas usando CMSP recogida el día 6 después de comenzar la exposición a gluten en un total de 76 individuos HLA-DQ2+ en ensayos ELISPOT de interferón gamma (biblioteca de epítopo de gliadina inicial: n=15, biblioteca de cribado de epítopo de gliadina de la segunda ronda: n=15, biblioteca de cribado de epítopo de gluten completa: n=46). Todos los datos relacionados con respuestas peptídicas individuales en sujetos celiacos se agruparon y analizaron por el algoritmo EM.

Se identificaron una serie de secuencias de 9mero y se ordenaron según la intensidad de las respuestas de gamma interferón y la proporción de individuos que responden (véase la Figura 5). Muchas de las secuencias identificadas se podrían agrupar en "superfamilias" que permiten que varios aminoácidos diferentes con propiedades químicas similares se presenten en una posición cualquiera en el epítopo putativo (véase la Figura 6). Por ejemplo, en la "Secuencia 1" de la Figura 6 (SEQ ID NO: 1555) P(QR)P(QE)LP(FY)PQ, glutamina (Q) o arginina (R) ambas son aceptadas en la posición 2 excepto que Q genera un epítopo sustancialmente más bioactivo.

65

55

Revisando las 110 secuencias de 9mero más "activas" identificadas por el algoritmo EM, la "lista" de motivos 9mero se podría abreviar en 41 9meros, muchos de los cuales solapados (por ejemplo, "Secuencia 1" y "2" (SEQ ID NO: 1555 y 1558 respectivamente) se solapan por 7 residuos y ambas están presentes en la A-gliadina 57-73 QE65). En casos seleccionados, se sintetizaron péptidos de alta calidad y se confirmó la bioactividad de los péptidos identificados por el algoritmo EM (véase la Figura 7).

Epítopos de HLA-DQ2 en aveninas de avena

20

Se evaluaron péptidos de avenina después de la exposición a avena (n=30 sujetos) o después de pan de trigo (n=8) en sujetos celiacos HLA-DQ2+. Se encontraron respuestas de ELISPOT para los péptidos encontrados en la Figura 8. Uno de los péptidos de avenina reactivos era homólogo a una secuencia en gluten de trigo (SEQ ID NO: 1590).

Estudios de péptido de alta calidad de avena (avenina)

Se evaluaron péptidos de avenina de alta calidad 3 días después de completar la exposición a avena con avena libre de trigo pura, 100 g/d durante 3 días (respuestas de ELISPOT de interferón gamma de CMSP "día 6"). Estos péptidos se diseñaron sobre péptidos previamente definidos usando la biblioteca de péptidos de avenina de grado de cribado ("primera ronda") y sobre sitios de desamidación potenciales. Había 25 péptidos (como 16meros) con pureza verificada por HPLC como >80 %, y las secuencias confirmadas por espectroscopía de masas.

Las respuestas de ELISPOT de interferón gamma a los péptidos de avenina de alta calidad seguido de desamidación por tTG se compararon en 18 sujetos con enfermedad celiaca DQ2+.

Los péptidos dominantes (>70 % de respuesta máxima) después de exposición a avena incluían: EQQFGQNIFSGFSVQL (SEQ ID NO: 1764) (11/18 sujetos), QLRCPAIHSVVQAIIL (SEQ ID NO: 1765) (4/18 sujetos), y QYQPYPEQEQPILQQQ (SEQ ID NO: 1766) (3/18 sujetos). 2/18 sujetos no tenían respuestas específicas a avenina (definido por SFU (unidades formadoras de mancha) >3xblanco) y SFU máximo medio de 6/18 sujetos era menos de 10. Dos péptidos adicionales provocaron respuestas positivas: QIPEQLRCPAIHSVVQ (SEQ ID NO: 1767) (3/18 sujetos) y EQYQPEQQPFMQPL (SEQ ID NO: 1768) (>40 % de respuesta peptídica máxima en 5/18 sujetos).

El panel de 25 péptidos incluía varios péptidos similares al péptido 1490 (SEQYQPYPEQQEPFVQ) publicado en Arentz-Hansen, PLoS Medicine (oct. 2004, vol. 1, artículo 1 (84-92), sin embargo, ese péptido indujo una fuerte respuesta positiva en solamente un sujeto, y respuesta más débil en 5 sujetos.

Las respuestas de ELISPOT de interferón gamma a péptidos de avenina de alta calidad estaban ausentes antes de la exposición a gluten y se bloquearon por pretratamiento de CMSP con anticuerpo anti-HLA DQ pero no anti-HLA

Bibliotecas de péptidos de cribado de centeno y cebada

Se evaluaron bibliotecas de péptidos de la primera ronda 20 mero de hordeína y secalina 3 días después de 40 completar la exposición a centeno (pan, 100 g/d durante 3 días) o cebada (hervida, 100 g/d durante 3 días) (respuestas de ELISPOT de interferón gamma de CMSP "6 días"). Aunque el análisis iterativo que usa las bibliotecas de péptidos de la 2º y 3ª ronda para definir epítopos no se ha realizado aún, los 20meros pretratados con tTG encontrados para inducir respuestas "potentes" compartían considerable similitud estructural con los péptidos bioactivos identificados después de la exposición a trigo. Sin embargo, las secuencias peptídicas dominantes 45 después de exposición a centeno o cebada no incluían péptidos con la secuencia PQPQLPY que se encontró que es dominante después de la exposición a trigo. El 20mero dominante (>70 % de respuesta máxima) después de la exposición a centeno era normalmente PQQLFPLPQQPFPQPQPFP (SEQ ID NO: 1769) (8/14 sujetos), u ocasionalmente QPFPQPQQPTPIQPQQPFPQ (SEQ ID NO: 1770) (4/14), QQPQQLFPQTQQSSPQQPQQ (SEQ ID NO: 1771) (1/14), PQTQQPQPFPQPQQPQLF (SEQ ID NO: 1772) (1/14) y/o QEQREGVQILLPQSHQQLVG 50 (SEQ ID NO: 1773) (1/14). Péptidos adicionales indicados para más del 40 % de respuesta máxima en al menos 1 sujeto incluyen:

FPQQPQQPFPQPQQQLPLQP (SEQ ID NO: 1774) (3/14, 2 > 70 %) PQQPFPQQPEQIIPQQPQQP (SEQ ID NO: 1775) (5/14, 3 > 70 %) 55 QQLPLQPQQPFPQPQQPIPQ (SEQ ID NO: 1776) (6/14, 2 > 70 %) QQPQQPFPLQPQQPVPQQPQ (SEQ ID NO: 1777) (3/14, 1 > 70 %) SIPQPQQPFPQPQQPFPQSQ (SEQ ID NO: 1778) (4/14, 1 > 70 %) QTQQSIPQPQQPFPQPQQPF (SEQ ID NO: 1779) (3/14, 1 > 70 %) NMQVGPSGQVEWPQQQPLPQ (SEQ ID NO: 1780) (2/14, 1 > 70 %) 60 VGPSGQVSWPQQQPLPQPQQ (SEQ ID NO: 1781) (2/14, 2 > 70 %) QQPFLLQPQQPFSQPQQPFL (SEQ ID NO: 1782) (1/14, 1 > 70 %) FPLQPQQPFPQQPEQIISQQ (SEQ ID NO: 1783) (5/14, 1 > 70 %) PQQPQRPFAQQPEQIISQQP (SEQ ID NO: 1784) (3/14, 1 > 70 %) SPQQPQLPFPQPQQPFVVVV (SEQ ID NO: 1785) (4/14, 1 > 70 %) 65 QQPSIQLSLQQQLNPCKNVL (SEQ ID NO: 1786) (1/14, 1 > 70 %)

Generalmente, los péptidos dominantes después de la exposición a cebada incluían uno de seis motivos peptídicos, o eran uno de otros ocho 20meros individuales "dominantes" en solamente uno de los 17 sujetos después de la exposición a cebada. Los seis motivos identificados:

```
5 QQPIPQQPQPY (SEQ ID NO: 1787)
PFPQPQQPFPW (SEQ ID NO: 1788)
LQPQQPFPQ (SEQ ID NO: 1789)
PQPQQASPL (SEQ ID NO: 1790)
IIPQQPQQPF (SEQ ID NO: 1791)
10 YPEQPQQPF (SEQ ID NO: 1792)
```

15

55

60

65

Los péptidos de hordeína de cebada que muestran al menos 40 % de respuesta peptídica máxima en al menos un sujeto incluyen los siguientes, en los que un asterisco indica los ochos péptidos individuales que muestran la respuesta máxima en un único individuo:

```
QQQPFPQQPIPQQPQPYPQQ (SEQ ID NO: 1793) (8/17, 2 > 70 %)
        QQPQPFSQQPIPQQPQPYPQ (SEQ ID NO: 1794) (9/17, 8 > 70 %)
       PQQPVPQQPQPYPQQPQPFP (SEQ ID NO: 1795) (5/17, 1 > 70 %)
       PQPFPQQPIPQQPQPYPQQP (SEQ ID NO: 1796) (6/17,2 > 70 %)
       YPQQPQPFPQQPIPQQPQPY (SEQ ID NO: 1797) (6/17, 2 > 70 %)
20
       QPQPYPQQPQPYPQQPFQPQ (SEQ ID NO: 1798) (7/17, 2 > 70 %)
       QPQQPQPFPQQPVPQQPQPY (SEQ ID NO: 1799) (5/17, 2 > 70 %)
       PQPYPQQPQPFPQQPPFCQQ (SEQ ID NO: 1800) (1/17, 1 > 70 %)
        QPFPQPQQPFPWQPQQPFPQ (SEQ ID NO: 1801) (10/17, 2 > 70 %)
25
       PFPQQPQQPFPQPQQPFRQQ (SEQ ID NO: 1802) (6/17, 3 > 70 %)
       WQPQQPFPQPQQPFPLQPQQ (SEQ ID NO: 1803) (9/17, 5 > 70 %)*
        PWQPQQPFPQPQEPIPQQPQ (SEQ ID NO: 1804) (1/17, 1 > 70 %)
       QQPFPQPQQPIPYQPQQPFN (SEQ ID NO: 1805) (5/17, 1 > 70 %)
        PQQPQQPFPQPQQPFSWQPQ (SEQ ID NO: 1806) (6/17, 2 > 70 %)*
30
        QPQQPFPQPQQPIPYQPQQP (SEQ ID NO: 1807) (4/17, 1 > 70 %)*
       QSQQQFPQPQQPFPQQPQQP (SEQ ID NO: 1808) (1/17, 0 > 70 %)
       PFPQPQQPFSWQPQQPFLQP (SEQ ID NO: 1809) (1/17, 0 > 70 %)
       FPQPQEPFPQQPQQPFPLQP (SEQ ID NO: 1810) (1/17, 0 > 70 %)
       PFPQPQQPFPWQPQQPFPQP (SEQ ID NO: 1811) (6/17, 0 > 70 %)
       FPQYQIPTPLQPQQPFPQQP (SEQ ID NO: 1812) (2/17, 1 > 70 %)
35
       FPLQPQQPFPQQPGPPQQ (SEQ ID NO: 1813) (1/17, 0 > 70 %)
       QQPFPLQPQQPFPQPQPFPQ (SEQ ID NO: 1814) (1/17, 0 > 70 %)
       SPLQPQQPFPQGSEQIIPQQ (SEQ ID NO: 1815) (1/17, 0 > 70 %)
       PQQASPLQPQQASPLQPQ (SEQ ID NO: 1816) (1/17, 1 > 70 %)
40
        PQQPPFWPQQPFPQQPPFGL (SEQ ID NO: 1817) (1/17, 1 > 70 %)*
        PVLSQQQPCTQDQTPLLQEQ (SEQ ID NO: 1818) (1/17, 1 > 70 %)
        RQLPKYIIPQQPQQPFLLQP (SEQ IDNO: 1819) (1/17, 1 > 70 %)
        QGSEQIIPQQPQQPFPLQPH (SEQ ID NO: 1820) (7/17, 3 > 70 %)*
       PQGSEQIIPQQPFPLQPQPF (SEQ ID NO: 1821) (2/17, 1 > 70 %)
45
       QPFPTPQQFFPYLPQQTFPP (SEQ ID NO: 1822) (4/17, 1 > 70 %)
       PFPQPPQQKYPEQPQQPFPW (SEQ ID NO: 1823) (1/17, 1 > 70 %)
       QKYPEQPQQPFPWQQPTIQL (SEQ ID NO: 1824) (1/17, 1 > 70 %)
        FQQPQQSYPVQPQQPFPQPQ (SEQ ID NO: 1825) (3/17, 1 > 70 %)
        QIPYVHPSILQQLNPCKVFL (SEQ ID NO: 1826) (1/17, 1 > 70 %)
50
       LAAQLPAMCRLEGGGGLLAS (SEQ ID NO: 1827) (1/17, 1 > 70 %)
       PYLPEELSPQYQIPTPLQPQ (SEQ ID NO: 1828) (1/17, 1 > 70 %)*
       VSPHPGQQTTVSPHQGQQTT (SEQ ID NO: 1829) (1/17, 1 > 70 %)*
```

Bibliotecas de péptidos de glutenina y gliadina de trigo de la segunda y tercera ronda

La biblioteca de gliadina y glutenina de trigo de la segunda ronda se diseñó sobre las secuencias de péptidos de gliadina y glutenina de trigo 20mero que inducían al menos 5 % de la respuesta (ELISPOT de interferón gamma) estimulada por el péptido 20mero pretratado (enzimáticamente desamidado) por transglutaminasa (tTG) más activo en cualquier sujeto. Se evaluaron todos los péptidos 16mero de la 2º ronda en al menos 18 sujetos. La biblioteca de la 2º ronda generada a partir de la biblioteca de 20mero de gliadina de "Oxford" se había evaluado en diez sujetos – estos datos se mezclaron con los datos generados a partir de los 18 sujetos usados para evaluar la nueva biblioteca de gliadina/glutenina de la 2º ronda (ampliada). Por lo tanto, se evaluaron péptidos 16mero individuales pretratados con transglutaminasa en o bien 18 (novedosas secuencias de gliadina/glutenina basadas en la biblioteca de 20mero de "Melbourne") o 28 sujetos (secuencias de gliadina basadas en la biblioteca de 20mero de "Oxford"). Todos los 16meros identificados para la biblioteca de Oxford de la segunda ronda también cumplieron los criterios de selección para la biblioteca de la segunda ronda de Melbourne.

Los datos de la biblioteca de péptidos de la segunda ronda se analizaron según la "dominancia" de respuestas peptídicas en el ELISPOT de interferón gamma en sujetos individuales, es decir, el porcentaje de respuesta de una CMSP del individuo a un péptido específico normalizado frente a esa respuesta inducida por péptido máxima del individuo. Las secuencias de los péptidos que estimularon al menos el 40 % de la respuesta específica a péptido máxima en al menos un sujeto se muestran en la Tabla 1 de a continuación. El conjunto de datos apoya la consistencia y la "dominancia" de los péptidos que se ajustan a las secuencias identificas usando la primera biblioteca de péptido 20mero de la primera ronda usando el algoritmo Expectación-Maximización (EM) anteriormente descrito.

Tabla 1: Péptidos confirmados en la biblioteca de la segunda ronda como al menos el 40 % tan activos como el péptido con la actividad máxima en un sujeto cualquiera: clasificados según la potencia de la familia de péptido

Péptido	SEQ ID NO:	. 70.0/			
	OLG ID NO.	>70 %	40-70 %	10-40 %	<10 %
G-QLPYPQPQLPYPQP-G	1830	18/28	4/28	3/28	3/28
G-LQPFPQPQLPYPQP-G	1831	14/28	8/28	Nada	6/28
G-LQPFPQPQLPFPQP-G	1832	4/28	8/28	5/28	10/28
G-LQPFPQPQLPYLQP-G	1833	1/28	1/28	12/28	14/28
G-LQPFPQPQLPYSQP-G	1834	2/28	3/28	12/28	11/28
G-LQPFPQPQLSYSQP-G	1835	Nada	1/28	2/28	25/28
G- QQPFPQPQQPFPWQ -G	1837	9/28	8/28	5/28	6/28
G-QQPFPQPQQPIPVQ-G	1838	8/28	5/28	7/28	8/28
G-QQPFPQPQQPFSQQ-G	1839	4/28	7/28	8/28	9/28
G-QQPFPQPQQPFCQQ-G	1840	2/28	2/28	13/28	11/28
G- GLERPWQQQPLPPQ -G	1841	2/18	1/18	Nada	15/18
G-QTFPHQPQQAFPQP-G	1842	1/28	2/28	Nada	25/28
LQQQCSPVAMPQRLAR	1843	1/28	1/28	11/28	15/28
QGQQGYYPISPQQSGQ	1844	1/18	1/18	1/18	15/18
PGQGQSGYYPTSPQQS	1845	1/18	1/18	Nada	16/18
QGQPGYYPTSPQQIGQ	1846	1/18	1/18	1/18	15/18
GQGQSGYYPTSPQQSG	1847	1/18	Nada	2/18	15/18
QQGYYPTSPQQSGQGQ	1848	Nada	1/18	Nada	17/
QGQQGYYPTSPQQPPQ	1849	Nada	1/18	Nada	Nada
QQGYYPISPQQLGQGQ	1850	Nada	1/18	Nada	Nada
YVPPDCSTINVPYANI	1851	1/18	1/18	1/18	15/18
IIMQQEQQEQRQGVQI	1852	1/28	Nada	8/28	19/28
VAHAIIMHQQQQQQE	1853	Nada	1/28	2/28	25/28
G-QPIPQQPQQPFPLQ-G	1854	1/28	Nada	5/28	
G-FPQLQQPQQPFPQQ-G	1855	1/28	Nada	1/28	26/28
G-FPQTQQPQQPFPQQ-G	1856	Nada	1/28	2/28	25/28
G-QPLSQQPQQTFPQQ-G	1857	Nada	1/28	Nada	27/28
G-QQPQQPQQPFPQQ-G	1858	Nada	1/28	5/28	22/28
G-FPQPQQPQQPFPQQ-G	1859	Nada	1/28	3/28	25/28
G-FPQPQQPQQSFPQQ-G	1860	Nada	1/28	1/28	26/28
G-QPQQTFPQQPQLPF-G	1861	1/18	Nada	2/18	15/18
G-MQVDPSGQVQWPQQ-G	1862	1/18	Nada	Nada	17/18
G-IQVDPSGQVQWPQQ-G	1863	1/18	Nada	Nada	17/18
G-MQADPSGQVQWPQQ-G	1864	1/18	Nada	Nada	17/18
G-MQVDPSSQVQWPQQ-G	1865	1/18	Nada	Nada	17/18
G-QQEQQILQQILQQQ-G	1866	1/18	Nada	Nada	17/18
VPLYRTTTSVPFGVGT	1867	1/18	Nada	Nada	17/18
LQTLPSMCNVYIPPYC	1868	1/18	Nada	Nada	17/18
LALQTLPAMCNVYIPP	1869	1/18	Nada	Nada	17/18
DAIRAIIYSIVLQEQQ	1870	1/18	Nada	Nada	17/18
G-QQQFSQPQQGFPQP-G	1871	Nada	5/28	7/28	16/28
G-FFPQPQQQFPQPQQ-G	1872	Nada	1/28	10/28	17/28
G-FPQQPQQFPQPQQ-G	1873	Nada	1/28	Nada	27/28
G-QQPFPQPQQQFPQP-G	1874	Nada	1/28	12/28	15/28
G-QPQPFLPQLPYPQP-G	1875	Nada	4/28	9/28	15/28
G-QQPFPQPQQQLPQP-G	1876	Nada	3/28	6/28	19/28
G-LPFPQQPQQPLPQP-G	1877	Nada	2/18	4/18	12/18
G-QQAFPQPQQTFPHQ-G	1878	Nada	3/28	8/28	17/28
	1879	Nada	1/28	4/28	23/28
L (3-C)C)PE L()POOPTPIO-G		i tuuu	1,20	1,20	20,20
G-QQPFTQPQQPTPIQ-G G-QQIFPQPQQTFPHQ-G	1880	Nada	1/28	10/28	17/28

(Continuación)

Péptido	SEQ ID NO:	>70 %	40-70 %	10-40 %	<10 %
G-QPFPLQPQQPFPQQ-G	1882	Nada	2/28	7/28	19/28
G-QPFPWQPQQPFPQQ-G	1883	Nada	2/28	8/28	18/28
G-QPTPIQPQQPFPQQ-G	1884	Nada	2/28	5/28	21/28
G- QVSFQQPQQQYPSP -G	1885	Nada	2/28	4/28	22/28
G-FFQQPQQQYPSSQQ-G	1886	Nada	1/28	1/28	26/28
G- GKSQVLQQSTYQLL -G	1887	Nada	2/18	1/18	15/18
GQVVNNHGQTVFNDIG	1888	Nada	1/18	4/18	
G- QPQLPFPQQPQQQF -G	1889	Nada	1/28	2/28	25/28
G-QPFPQPQQAQLPFP-G	1890	Nada	1/28	2/28	25/28
G- HQQPGQRQQGYYPT -G	1891	Nada	1/18	1/18	16/18
G- HQQFPQQQIPWQP -G	1892	Nada	1/18	1/18	16/18
LEAVTSIALRTLPTMC	1893	Nada	1/18	1/18	
G- QQPQFSQQQQIPVI -G	1894	Nada	1/18	Nada	17/18

La biblioteca de péptidos de la tercera ronda consistía en 74 péptidos basados en secuencias estructuralmente distintas en la biblioteca de la segunda ronda encontrada que induce al menos 10 % de la respuesta máxima a cualquier péptido en cualquier sujeto. Estos péptidos corresponden a secuencias de tipo natural (no desamidadas) virtualmente idénticas a las usadas en la biblioteca de la segunda ronda. La distinta característica de esta biblioteca era que consistía en péptidos con pureza verificada por HPLC como >80 %, y con secuencias confirmadas por espectroscopía de masas.

Se compararon las respuestas de ELISPOT de interferón gamma a los péptidos de la biblioteca de la 3ª ronda después de desamidación por tTG en 14 sujetos. Una vez más, las secuencias que incluían el motivo PQPQLPY eran "dominantes" en 9/14 sujetos. Sin embargo, PFPQPQQPFPW (SEQ ID NO: 1895) estimuló >70 % de respuesta máxima en 1/14 sujetos, , PFPQQPQQPFPQ (SEQ ID NO: 1896) en 1/14, PQPFLPQLPYPQP (SEQ ID NO: 1897) en 1/14, QPFPQPQQPQQP (SEQ ID NO: 1898) en 4/14 (incluyendo 3 sujetos en los que los péptidos PQPQLPY no son epítopos potentes) SGQGVSQSQQQQQQ (SEQ ID NO: 1899) en 2/14 (incluyendo uno en el que los péptidos PQPQLPY no son potentes), QYEVIRSLVLRTLPNM (SEQ ID NO: 1900) y GLARSQMLQQSICHVG (SEQ ID NO: 1901) cada uno en un sujeto (el mismo) en el que los péptidos PQPQLPY no son epítopos potentes, RTTTSVPFGVGTGVGA (SEQ ID NO: 1902) en 1/14 sujetos y AIHTVIHSIIMQQEQQ (SEQ ID NO: 1903) en 1/14 sujetos.

Muchas de las secuencias ensayadas en la tercera ronda estaban estructuralmente relacionadas y las respuestas del sujeto individual estaban presentes o ausentes según el "parentesco" de ciertas secuencias, sugiriendo redundancia de péptidos reconocidos por linfocitos T específicos a gluten inducidos por exposición a gluten *in vivo*.

Las respuestas de ELISPOT de interferón gamma a los péptidos de la 3ª ronda estaban ausentes antes de la exposición a gluten, y se bloquearon por pretratamiento de CMSP con anticuerpo anti-HLA DQ pero no HLA DR.

Combitopos

10

15

20

25

30

35

40

45

El asunto de la redundancia de epitopo y la utilidad potencial en diagnosis y terapéutica de péptidos diseñados para combatir epítopos dominantes "únicos" se abordó comparando respuestas de ELISPOT de interferón gamma después de exposición a trigo (n=16 sujetos con enfermedad celiaca HLA DQ2), centeno (n=17) o cebada (n=13) a las secuencias: QLQPFPQPELPYPQPQL (SEQ ID NO: 1904) ("P04724E"), QPEQPFPQPEQPFPWQP (SEQ ID NO: 1905) ("626fEE"), y QLQPFPQPELPYPQPFPQQPEQPFPQPEQPFPWQP (SEQ ID NO: 1906) ("Combitopo"). Después de la exposición a centeno y cebada la suma de las respuestas medias de ELISPOT (unidades formadoras de mancha) a P04724E y 626fEE eran casi idénticas (99 %, y 102 %, respectivamente) a la respuesta a una concentración similar (óptima) del Combitopo. Sin embargo, después de la exposición a trigo (n=16 sujetos), la respuesta de P04724E media era 89 % de esa a Combitopo, y las respuestas de 626fEE medias eran 70 % de la respuesta a Combitopo. Estos descubrimientos serían coherentes con la considerable redundancia de estas secuencias de epítopo relacionadas, P04724E y 626fEE, después de la exposición a trigo pero no después de centeno o cebada, y que combinar las secuencias de epítopo dominantes dentro de péptidos más largos no reduce su disponibilidad biológica. Por lo tanto, los combitopos derivados de epítopos potentes seleccionados pueden ser dispositivos de administración eficientes para terapéutica y diagnosis basados en epítopo de linfocito T en enfermedad celiaca.

Epítopos en gluten de trigo asociado con la enfermedad celiaca HLA-DQ8+

Se identificaron epítopos en gliadinas de trigo usando CMSP después de exposición a gluten en dos individuos, un homocigoto HLA-DQ8, y un heterocigoto HLA-DQ8. Las respuestas de linfocito T inducidas en otros individuos celiacos HLA-DQ8 (no DQ2) respondieron débilmente a la exposición a gluten y sus datos no permitieron análisis

detallado.

10

20

25

30

35

50

55

60

65

20meros desamidados que incluían la secuencia núcleo: QGSFQPSQQ (SEQ ID NO: 1907), correspondientes al epitopo conocido de gliadina alfa restringido a HLA-DQ8 (en el que Q1 y Q9 están desamidados por tTG para actividad óptima), indujeron respuestas peptídicas moderadamente fuertes. Sin embargo, una serie de péptidos "núcleo" se asociaron con respuestas más potentes en 20meros derivados de gliadinas gamma y omega (véase la Figura 9). Los péptidos más potentes poseían glutamina en una secuencia que sugeriría susceptibilidad a desamidación separada por siete residuos de una segunda glutamina también susceptible a desamidación (como se encontró en QGSFQPSQQ (SEQ ID NO: 1907)) sugiriendo que estas secuencias desamidadas llegarían a ser ligantes de alta afinidad para HLA-DQ8 después de desamidación por tTG. (El motivo de unión para HLA-DQ8 favorece el glutamato en posiciones 1 y 9) Un grupo adicional de 20meros poseían residuos de glutamina susceptible a desamidación mediada por tTG.

15 Epítopos de gliadina y glutenina de la enfermedad celiaca HLA DQ8

Cinco sujetos con enfermedad celiaca que poseían alelos de HLA DQ2 y HLA DQ8 se sometieron a exposición a gluten de trigo. Se usaron CMSP de dos sujetos inicialmente expuestos para investigar la biblioteca de 20mero de gliadina de trigo de "Melbourne" de la primera ronda. Las secuencias de 20mero identificadas usando CMSP de estos dos sujetos HLA DQ8 CD se analizaron más por cribado, en cinco sujetos HLA DQ8+ DQ2- CD que incluían los dos sujetos originales, una biblioteca de segunda ronda basada en 20meros reactivos en la biblioteca de la 1º ronda. La biblioteca de la 2ª ronda consistía en 16meros de solapamiento de grado de cribado, y 13meros previstos para corresponder a productos de desamidación mediada por tTG de epítopos con el potencial para desamidación de glutamina en la posición 1 y/o posición 9 (coherente con el motivo de unión del péptido de HLA DQ8). Además, los 1400 20meros pretratados con tTG de glutenina (APM y BPM) en la biblioteca de gluten de trigo de "Melbourne" también se investigaron en estos cinco sujetos.

Los 16meros de gliadina más potentes y consecuentemente dominantes eran las secuencias relacionadas VYIPPYCTIAPFGIFG (SEQ ID NO: 1908) (3/5 sujetos con >70 % de respuesta máxima a 16mero de gliadina) y AMCNVYIPPYCAMAPF (SEQ ID NO: 1908) también dominante en 3/5 sujetos (4/5 sujetos producían respuestas dominantes a uno o ambos de estos péptidos). Además, se identificó una serie de péptidos derivados de 20meros bioactivos previamente identificados cuyas respuestas en el ELISPOT se aumentaban o eran permisivas a los residuos de glutamina específicos que están desamidados: (QE) QPTPIQP (QE) (SEQ ID NO: 1909), (QE) QPFPLQP (QE) (SEQ ID NO: 1910), (QE)QPIPVQP(QE) (SEQ ID NO: 1911), (QE) QPQQPFP (QE) (SEQ ID NO: 1912), (QE) QP (QE) LPFP (QE) (SEQ ID NO: 1913), (QE) GSFQPSQ (QE) (SEQ ID NO: 1914) (epítopo de HLA DQ8 previamente publicado, van der Wal 1998), (QE) LPFP (QE) QP (QE) (SEQ ID NO: 1915), y (QE) QPFP (QE) QP (QE) (SEQ ID NO: 1916).

El cribado de la biblioteca de 20mero de glutenina identificó una serie adicional de secuencias que eran dominantes en al menos uno de los cinco sujetos. Los péptidos 20mero dominantes compartían los motivos o tenían las secuencias: PQQQQQQLVQQQ (SEQ ID NO: 1917), QGIFLQPH (LQ) I (AS) QLEV (SEQ ID NO: 1918), QPGQGQQG(HY) Y (SEQ ID NO: 1919), QSRYEAIRAII(FY) S (SEQ ID NO: 1920), RTTTSVPFD (SEQ ID NO: 1921), QPPFWRQQP (SEQ ID NO: 1922), Q (PS) (PS) (FI) (PS) QQQQ (SEQ ID NO: 1923), (QPLR) GYYPTSPQ (SEQ ID NO: 1924) (epítopo de HLA DQ8 previamente identificado, van der Wal 2001), QGSYYPGQASPQ (SEQ ID NO: 1925), GYYPTSSLQPEQGQQGYYPT (SEQ ID NO: 1926), y QGQQLAQGQQGQQPAQVQQG (SEQ ID NO: 1927). Los péptidos de glutenina se evaluaron después de pretratamiento con transglutaminasa. Por lo tanto, no se conoce el requerimiento para la desamidación para estos epítopos.

Se ha evaluado una biblioteca completa de péptidos de grado de cribado "no caracterizados" que incluyen todas las secuencias 12mero únicas codificadas por genes presentes en Genbank definidos como gluten de trigo (Triticum aestivum) (para hacer pan), centeno, cebada o avena, gliadina, glutenina, secalina, hordeína o avenina usando linfocitos T de voluntarios con enfermedad celiaca HLA DQ2+ (y en algunos casos HLA DQ8+) seis días después de comenzar la exposición a gluten in vivo. Se ha identificado un patrón relativamente coherente de jerarquía de epítopo en enfermedad celiaca HLA DQ2 que es similar a, pero no idéntico, después del consumo de otros granos tóxicos en enfermedad celiaca. Los péptidos con la secuencia PQPQLPY son dominantes después de la exposición a trigo en al menos dos tercios de la enfermedad celiaca HLA DQ2+, pero otros epítopos son ocasionalmente dominantes mientras los péptidos PQPQLPY son básicamente inactivos en menos de uno de seis sujetos HLA DQ2+ con enfermedad celiaca. La contribución de los epítopos dominantes raros será mejor evaluada después del cribado de grandes números (por ejemplo, >30) de sujetos (en progreso). La jerarquía de epitopo después del consumo de centeno y cebada es similar a la de después de trigo con la excepción de que los péptidos desamidados similares a las secuencias de gliadina/hordeína/secalina PQPQQPFP o PFPQQPQQP son normalmente dominantes en vez de PQPQLPY (una secuencia única a gliadinas alfa de trigo). Los combitopos que comprenden epítopos de gluten que se solapan serial y parcialmente son tan activos o más activos que los epítopos sencillos solos y ofrecen un medio de administración eficaz de epítopos de gluten múltiples durante el reconocimiento del linfocito T. Por lo tanto, tales combitopos son útiles en el diseño y administración de terapias peptídicas en enfermedad celiaca que guía epítopos de linfocito T único múltiples.

Referencias

- 1. Molberg O., y col. Nature Med. 4, 713-717 (1998).
- 2. Quarsten H., y col. Eur. J. Immunol. 29, 2.506-2.514 (1999).
- 5 3. Greenberg C.S. y col. FASEB. 5, 3.071-3.077 (1991).
 - 4. Mantzaris G., Jewell D. Scand. J. Gastroenterol, 26, 392-398 (1991).
 - 5. Mauri L., y col. Scand. J. Gastroenterol. 31, 247-253 (1996).
 - 6. Bunce M., y col. Tissue Antigens 46, 355-367 (1995).
 - 7. Olerup O., y col. Tissue antigens 41, 119-134 (1993).
- 10 8. Mullighan C.G., y col. *Tissue-Antigens*. 50, 688-92 (1997).
 - 9. Plebanski M. v col. Eur. J. Immunol. 28, 4.345-4.355 (1998).
 - 10. Anderson D.O., Greene F.C. "The alpha-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes". *Theor Appl. Genet.* (1997) 95:59-65.
 - 11. Arentz-Hansen H., Korner R., Molberg O., Quarsten H., Van der Wal Y., Kooy YMC, Lundin KEA, Koning F., Roepstorff P., Sollid LM, McAdam SN. "The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase". *J. Exp. Med.* 2000; 191:603-12.
 - 12. Vader LW, de Ru A., van der Wal, Kooy YMC, Benckhuijsen W., Mearin ML, Drijfhout JW, van Veelen P., Koningm F. "Specificity of tissue transglutaminase explains cereal toxicity in celiac disease". *J. Exp. Med.* 2002; 195:643-649.
- 20 13. van der Wal Y., Kooy Y., van Veelan P., Pena S., Mearin L., Papadopoulos G., Koning F. "Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity". *J. Immunol.* 1998; 161:1585-8.
 - 14. van der Wal Y., Kooy Y., van Veelan P., Pena S., Mearin L., Molberg O., Lundin KEA, Sollid L., Mutis T., Benckhuijsen WE, Drijfhout JW, Koning *F. Proc. Natl. Acad. Sci USA* 1998; 95:10.050-10.054.
- 25 15. Vader W., Kooy Y., Van Veelen P. y col. "The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides". *Gastroenterology* 2002, 122:1729-37
 - 16. Arantz-Hansen H., McAdam SN, Molberg O., y col. "Celiac lesion T cells recognize epitopes that cluster in regions of gliadin rich in proline residues". *Gastroenterology* 2002, 123:803-809.

REIVINDICACIONES

- 1. Un agente seleccionado de:
 - un péptido aislado que comprende al menos un epítopo que comprende SEQ ID NO: 200; y
 - un análogo de (a) que es un péptido aislado capaz de ser reconocido por un receptor de linfocito T que reconoce el péptido de (a) y que no es más de 50 aminoácidos de longitud.
- 2. Un agente según la reivindicación 1 que está restringido a HLA-DQ2.

3. Un agente según la reivindicación 1 que está restringido a HLA-DQ8.

- 4. Un agente según cualquiera de las reivindicaciones 1 a 3 que es un péptido aislado de hasta 50 aminoácidos.
- 15 5. Un agente según cualquiera de las reivindicaciones 1 a 3 unido a (i) una molécula HLA, o (ii) un fragmento de una molécula HLA capaz de unirse a (a) o (b).
 - 6. Una composición farmacéutica que comprende un agente según cualquiera de las reivindicaciones 1 a 5 y un vehículo o diluyente farmacéuticamente aceptable.
 - 7. Una composición farmacéutica según la reivindicación 6 que comprende un péptido que está restringido a HLA-DQ2 y un segundo péptido que está restringido a HLA-DQ8.
 - 8. Una composición farmacéutica según la reivindicación 6 en la que el péptido comprende un epítopo de trigo.
 - 9. Una composición farmacéutica según la reivindicación 6 en la que el péptido comprende un epítopo de avena.
 - 10. Una composición farmacéutica según la reivindicación 6 que comprende un péptido que comprende un epítopo de trigo y un péptido que comprende un epítopo de avena.
 - 11. Una composición para su uso en un método de prevención o tratamiento de la enfermedad celiaca que comprende al menos un agente seleccionado de:
 - un péptido aislado que comprende al menos un epítopo que comprende SEQ ID NO: 200; y
 - (b) un análogo de (a) que es un péptido aislado capaz de ser reconocido por un receptor de linfocito T que reconoce el péptido de (a) y que no es más de 50 aminoácidos de longitud.
- 12. Una composición para su uso según la reivindicación 11, comprendiendo dicho método la inducción de inmunotolerancia de un individuo a una proteína de gluten para suprimir la producción de una respuesta de linfocito 40 T o de anticuerpo a un agente como se define en la reivindicación 11.
 - 13. Un agente seleccionado de:
 - un péptido aislado que comprende al menos un epítopo que comprende SEQ ID NO: 200; y
 - (b) un análogo de (a) que es un péptido aislado capaz de ser reconocido por un receptor de linfocito T que reconoce el péptido de (a) y que no es más de 50 aminoácidos de longitud; y
 - (c) un análogo de (a) que es un péptido aislado que se une a un anticuerpo, dicho anticuerpo se une a un epítopo que comprende la SEQ ID NO: 200.
- 50 para su uso en un método de tratamiento o prevención de la enfermedad celiaca en un individuo por inducción de inmunotolerancia del individuo para prevenir la producción de tal anticuerpo.
 - 14. Un método de diagnóstico de la enfermedad celiaca, o susceptibilidad a enfermedad celiaca, en un individuo que comprende:
 - (a) poner en contacto una muestra del hospedador, in vitro, con al menos un agente seleccionado de:
 - (i) un péptido aislado que comprende al menos un epítopo que comprende SEQ ID NO: 200; y (ii) un análogo de (i) que es un péptido aislado capaz de ser reconocido por un receptor de linfocito T que reconoce (i) y que no es más de 50 aminoácidos de longitud; y
 - (b) determinar in vitro si los linfocitos T en la muestra reconocen el agente; indicando el reconocimiento por los linfocitos T que el individuo tiene, o es susceptible a, enfermedad celiaca.
- 15. Una composición, para su uso en un método de diagnóstico de la enfermedad celiaca, o susceptibilidad a 65 enfermedad celiaca, en un individuo que comprende un agente seleccionado de

24

10

5

20

25

30

35

45

55

- (a) un péptido aislado que comprende al menos un epítopo que comprende SEQ ID NO: 200; y
- (b) un análogo de (a) que es un péptido aislado capaz de ser reconocido por un receptor de linfocito T que reconoce el péptido de (a) y que no es más de 50 aminoácidos de longitud,
- comprendiendo dicho método la determinación de si los linfocitos T del individuo reconocen el agente, indicando el reconocimiento por los linfocitos T que el individuo tiene, o es susceptible a, enfermedad celiaca;
 - 16. Un método según la reivindicación 14 en el que el agente comprende (i) o (ii) unido a (a) una molécula HLA, o (b) un fragmento de una molécula HLA capaz de unirse a (i) o (ii).
 - 17. Un método según la reivindicación 16 en el que la molécula HLA o fragmento es un complejo que comprende cuatro moléculas de HLA o fragmentos de moléculas de HLA.
- 18. Una composición para su uso según la reivindicación 15 en la que el método comprende administrar el agente a 15 la piel de un individuo y detectar la presencia de inflamación en el sitio de administración, indicando la detección de la inflamación que los linfocitos T del individuo reconocen el agente.
 - 19. Un método según la reivindicación 14 en el que la muestra es muestra de sangre.
- 20 20. Un método según la reivindicación 19 en el que los linfocitos T no se vuelven a estimular de una manera específica a antígeno in vitro antes de dicha determinación.
 - 21. Un método según la reivindicación 20 en el que el reconocimiento del agente por los linfocitos T se determina detectando la secreción de una citoquina de los linfocitos T.
 - 22. Un método según la reivindicación 21 en el que la citoquina es IPN-y.
 - 23. Un método según la reivindicación 21 o reivindicación 22 en el que la citoquina se detecta permitiendo que la citoquina se una a un anticuerpo inmovilizado específico a la citoquina y, a continuación, detectando la presencia del complejo anticuerpo/citoquina.
 - 24. Un método según la reivindicación 14 en el que dicha determinación se realiza midiendo si el agente se une al receptor del linfocito T.
- 25. Un método para identificar un análogo de un péptido que comprende al menos un epítopo que comprende SEQ 35 ID NO: 200 comprendiendo dicho método determinar, in vitro, si un péptido candidato es reconocido por un receptor de linfocito T que reconoce un epítopo que comprende la SEQ ID NO: 200, indicando el reconocimiento del péptido candidato que el péptido candidato es un análogo siendo dicho análogo de no más de 50 aminoácidos de longitud.
- 40 26. Un método de diagnóstico de la enfermedad celiaca, o susceptibilidad a enfermedad celiaca, en un individuo que comprende determinar, in vitro, la presencia de un anticuerpo que se une a un epítopo de una secuencia peptídica seleccionada de:
 - un péptido que comprende al menos un epítopo que comprende SEQ ID NO: 200; y
- (ii) un análogo peptídico de (i) que es capaz de ser reconocido por un receptor de linfocito T que reconoce (i) y 45 que no es más de 50 aminoácidos de longitud;

en una muestra del individuo, indicando la presencia del anticuerpo que el individuo tiene, o es susceptible a, enfermedad celiaca.

- 27. Un método in vitro de determinación de si una composición es capaz de causar enfermedad celiaca que comprende determinar si una secuencia de proteína capaz de ser modificada por una transglutaminasa a un péptido que comprende al menos un epítopo que comprende la SEQ ID NO: 200 está presente en la composición, indicando la presencia de la secuencia de proteína que la composición es capaz de causar enfermedad celiaca.
- 28. Un método según la reivindicación 27 en el que dicha determinación se hace poniendo en contacto la composición con un anticuerpo específico para la secuencia de proteína que es capaz de así ser modificada, indicando la unión del anticuerpo a una secuencia de proteína en la composición que la composición es capaz de causar enfermedad celiaca.
- 29. Un kit para llevar a cabo un método según las reivindicaciones 14, 16, 17 o 19 a 24 que comprende un agente seleccionado de
 - (a) un péptido aislado que comprende al menos un epítopo que comprende SEQ ID NO: 200; y
- (b) un análogo de (a) que es un péptido aislado capaz de ser reconocido por un receptor de linfocito T que 65 reconoce el péptido de (a) y que no es más de 50 aminoácidos de longitud,

25

60

50

55

10

25

y un medio para detectar el reconocimiento del péptido por el linfocito T.

- 30. Un kit según la reivindicación 29 en el que los medios para detectar el reconocimiento comprenden un anticuerpo a IFN-γ.
- 31. Un kit según la reivindicación 30 en el que el anticuerpo se inmoviliza sobre un soporte sólido y opcionalmente el kit también comprende un medio para detectar el complejo anticuerpo/IFN-γ.
- 32. Un anticuerpo o fragmento del mismo, específico para SEQ ID NO: 200.

10

Figura 1

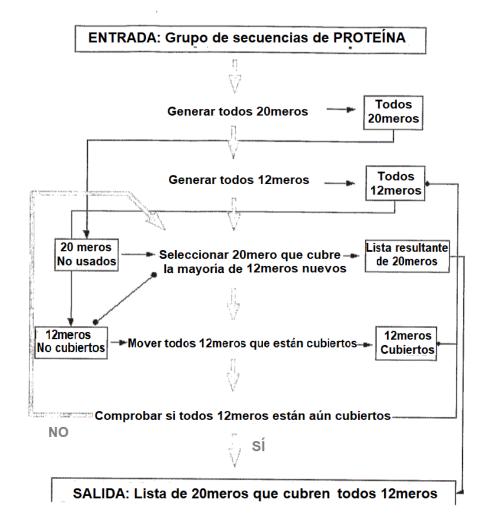


Figura 2

Gliadinas alfa/beta	Gliadinas Gamma	Gluteninas BPM	Gluteninas APM	Hordeinas (n=59)	Secalinas (n=14)	Aveninas (n=20)
(n=53)	(n=53)	(n=77)	(n=55)	(11-33)	()	(11-20)
S07361	AAA34272	AAB35353	A03353	A24095.1	A23277	S29209
P18573	S07398	AAB48474	A24266	A25677	AAB37403	S29208
P04728	PS0094	AAB48475	A30843	AAA32942	AAB37404	S29207
P04727	P21292	AAB48476	AAA62315	AAA32943	AAB37405	S06455
P04726	P08453	AAB48477	AAB02788	AAA32944	AAB37406	P80356
P04725	P08079	AAB48478	AAB23624	AAA32955	AAB37407	P27919
P04724	P06659	AAB48479	AAB23625	AAA32967	AAB58403	P14812
P04723	P04730	BAA22613	AAB23626	AAA92333	AAG35598	JQ1048
P04722	P04729	BAA22614	AAB23627	AAB28161	CAA26449	JQ1047
P04721	JS0402	BAA23162	AAB23628	AAB71678	S18235	JQ1046
P02863	JA0153	BAB78737	AAD32223	AAB71679	S18236	JG0015
EEWTA	EEWTG	BAB78738	AAF23506	B24095	S70327	B36433
E22364	CAC94871	BAB78739	AAF23507	B25677	S70328	AAB32025
D22364	CAC94870	BAB78740	B30843	BAA11642	S70329	AAB23365
CAB76964	CAC94869	BAB78741	CAA26847	CAA25509		AAA32716
CAB76963	CAC94868	BAB78742	CAA27052	CAA25912		AAA32715
CAB76962	CAC11089	BAB78743	CAA31395	CAA25913		AAA32714
CAB76961	CAC11088	BAB78744	CAA31396	CAA25914		AAA32713
CAB76960	CAC11087	BAB78745	CAA32115	CAA26889		1502200A
CAB76959	CAC11080	BAB78746	CAA43331	CAA31861		1411172A
CAB76958	CAC11079	BAB78747	CAA43361	CAA37729		
CAB76957	CAC11078	BAB78748	CAA59340	CAA42642		
CAB76956	CAC11065	BAB78749	CAC40684	CAA48209		A 11.0
CAB76955	CAC11064	BAB78750	CAC40685	CAA51204		
CAB76954	CAC11057	BAB78751	CAC40686	CAA59104		
CAA35238	CAC11056	BAB78752	CAC40687	CAA60681		
CAA26385	CAC11055	BAB78753	CAC83002	P02864		
CAA26384	CAB75404	BAB78754	CAC83003	P06470		
CAA26383	BAA11251	BAB78755	CAC83018	P06471		
CAA10257	AAN32705	BAB78756	CAC84118	P06472		,
C22364	AAK84880	BAB78757	CAC84119	P17990		
BAA12318	AAK84780	BAB78758	CAC84120	P17991		
B22364	AAK84779	BAB78759	CAC84121	P17992	1	
AAN32704	AAK84778	BAB78760	CAC84122	P80198		
AAB23109	AAK84777	BAB78761	EEWTHW	S07189		
AAB23108	AAK84776	BAB78762	JC2099	S07365		
AAA96525	AAK84775	BAB78763	JC4966	S07975	 	
AAA96524	AAK84774	BAB78764	JN0689	S07976		
AAA96523	AAK84773	CAA30570	JN0690	S08312		
AAA96522	AAK84772	CAA31685	P02861	S18350		
	AAF42989	CAA51003	P02862	S20519	-	
AAA96276	AAD30556	CAA59313 CAA59338	P02862 P08488	S52390.1	1	
AAA34283	AAD30336 AAD30440	CAA59339	P08489	T04369	-	
AAA34282		CAA59339 CAA59340				
AAA34281	AAB31090		P10387	T04473		
AAA34280	AAA34289	CAA76890	P10388	T04474	-	
AAA34279	AAA34288	EEWT1	S02262	T05718	-	
AAA34278 AAA34277	AAA34287	P10385	S04832	T05737	 	
	AAA34286	P10386	S15720	T06211	1	ſ

AAA17741	AAA34274	S01992	S29176	1103203B		
A27319	1802407A	S04325	S29177	1103203B		
NAME AND ADDRESS OF THE OWNER, WHEN PARTY OF THE PARTY OF	1507333A	S57645	S29177	1210226A		
A22364		S57654	The state of the s	The second secon		
1307187B	1209306A	55/654	S29179	1307151A		
	- I					
	Gliadinas					
	omega	S57655	AAN78346	1307151B		
	(n=2)	S57656	AA074630	1604464A		
	A59156		AAU/4630			
	AAG17702	T05910		A24095.2		
		T05923		AAP31051		
		T06505.1		CAA48209.2		
		T06505.2		S52390.2		
		T06506				
		T06508				
		T06980				
		T06981				
		T06982				
		AAP44992				
		AAP44991				
		AAP44989				
		AAO53259				
		CAD58622				
		CAD58619				
		CAD58621				
		A03353				
		AAO53264				
		AAO53265				
		AAO53266				
		AAO53267				
		CAA76890				
TOTAL:	Todas					
	gliadinas			Į		
20meros	721	645	786	416	155	199
12meros	4465	3945	4799	2672	957	1279
9meros	3739	3164	3630	2413	811	1207

FIGURA 3

Figura 3A

Etapa M:

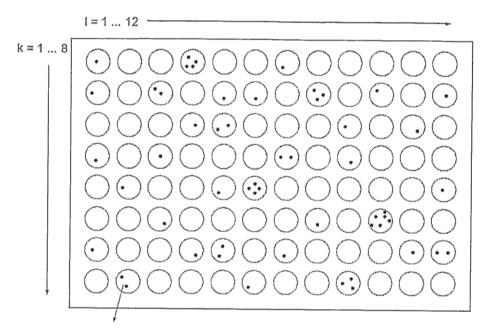
$$\frac{\mathrm{d}Q(\theta, \theta^{(c)})}{\mathrm{d}p_{j}^{(c)}} = 0 \qquad \to p_{j}^{(c+1)} = \frac{\sum_{i} \hat{z}_{ij}^{(c)}}{n}$$

$$\frac{\mathrm{d}Q(\theta, \theta^{(c)})}{\mathrm{d}\alpha_{i}^{(c)}} = 0 \qquad \to \alpha_{i}^{(c+1)} = \frac{\sum_{j} [\hat{z}_{ij}^{(c)} y_{ij} + (1 - \hat{z}_{ij}^{(c)}) y_{ij}]}{\sum_{j} [\lambda_{j}^{(c)} \hat{z}_{ij}^{(c)} + \lambda_{0}^{(c)} (1 - \hat{z}_{ij}^{(c)})]}$$

$$\frac{\mathrm{d}Q(\theta, \theta^{(c)})}{\mathrm{d}\lambda_{j}^{(c)}} = 0 \qquad \to \lambda_{j}^{(c+1)} = \frac{\sum_{i} \hat{z}_{ij}^{(c)} y_{ij}}{\sum_{i} \alpha_{i}^{(c)} \hat{z}_{ij}^{(c)}}$$

$$\frac{\mathrm{d}Q(\theta, \theta^{(c)})}{\mathrm{d}\lambda_{0}^{(c)}} = 0 \qquad \to \lambda_{0}^{(c+1)} = \frac{\sum_{ij} (1 - \hat{z}_{ij}^{(c)}) y_{ij}}{\sum_{ij} \alpha_{i}^{(c)} (1 - \hat{z}_{ij}^{(c)})}$$

Etapa E:


$$\tilde{z}_{ij}^{(c+1)} = E(z_{ij}|y_{ij}) = pr(z_{ij} = 1|y_{ij}) = \frac{p_j^{(c)}pr(y_{ij}|\alpha_i\lambda_j^{(c)})}{p_i^{(c)}pr(y_{ij}|\alpha_i\lambda_i^{(c)}) + (1 - p_i^{(c)})pr(y_{ij}|\alpha_i\lambda_0^{(c)})}$$

Calcular:

$$\begin{split} Q(\theta, \theta^{(c)}) &= \sum_{ij} \{ \hat{z}_{ij}^{(c)} \log p_j + (1 - \hat{z}_{ij}^{(c)}) \log (1 - p_j) + y_{ij} \hat{z}_{ij}^{(c)} \log (\alpha_i \lambda_j) \\ &+ y_{ij} (1 - \hat{z}_{ij}^{(c)}) \log (\alpha_i \lambda_0) - \hat{z}_{ij}^{(c)} \alpha_i \lambda_j - (1 - \hat{z}_{ij}^{(c)}) \alpha_i \lambda_0 \} \end{split}$$

Figura 3B

Paciente: j = 1 ... 29 Péptido: j = 1 ... 652 Placa: m = 1 ... 7

Recuento observado: $y_{ij} = 0 ... 300$

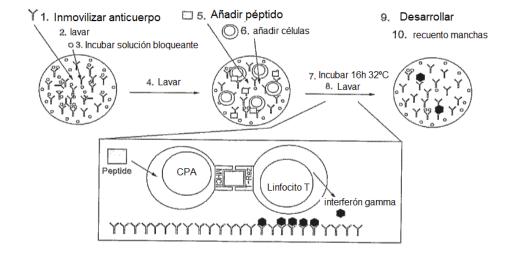
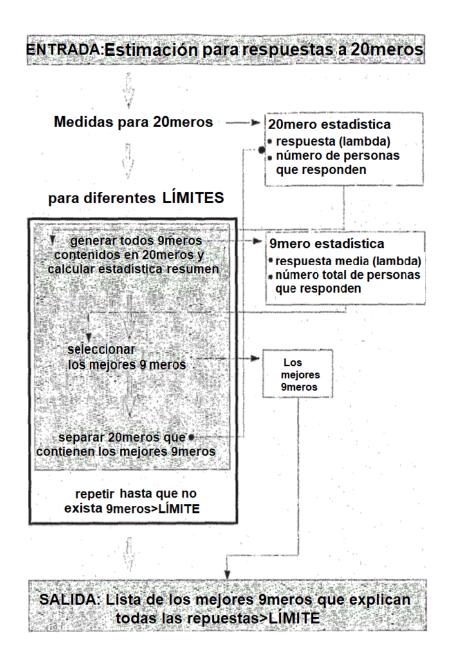



Figura 4

Figura 5

Grupo	Consenso	SEQ ID NO:	Secuencia	SEQ ID NO:
1	gEIpFpEpE	1	gqlpypqpe lpypqpg	200
			gqlpypqpq lpypqpg	201
2	EIpFpEpEI	2	ylqlqpfpqp qlpypqpql p	202
			pqpfpp qlpypqpql pypqp	203
			pymqlqpfpqp qlpypqpql	204
			qlqpfpqp qlpypqpql	205
			g qlpypqpel pypqpg	206
			g dj byb db d j byb db d	207
			pqpfpp qlpypqpql pypqp	208
			mqlqpfpqp qlpypqpql py	209
			qlqpfpqp elpypqpql	210
			p qlpypqpql pypqpqlpyp	211
			p qlpypqpql pypqpqpfrp	212
			lqpfpqp elpypqpel pypf	213
			lqlqpfpqp qlpypqpql py	214
			pqpfpp qlpypqpql pypqp	215
3	EEpFpFEpE	3	qpfpqp qqpfpwqpq qpfpq	216
			pqqpqqpfpqp qqpfpwqpq	217
			qpfpqp qqpfpwqpq qpfpq	218
			qpfpqp qqpfpwqpq qpfpq	219
5	FpEpEEpIp	4	qqpfpqqpqp fpqpqpip	220
			pqqpqqp fpqpqqpip vqpq	221
			pqqpqqp fpqpqqpip vqpq	222
			gqqp fpqpeqpip vqg	223
			gqqp fpqpqpip vqg	224
			pqqpqqp fpqpqqpip vqpq	225
6	FpEpEEpFp	5	qp fpqpqqpfp wqpqqpfpq	226
***************************************			pqqpqqpfpqpqqpfpwqpq	227
			pqqpqqpqp fpqpqpfp w	228
			qp fpqpqpfp wqpqqpfpq	229
			gqqp fpqpeqpfp wqg	230
			gqqp fpqpqpfp wqg	231
			pqqpqqpqp fp w	232
			db .tbdbddbtb wdbddbtbd	233
A			qpqqp fpqpeqpfp wqp	234
			qpeqp fpqpeqpfp wqp	235
			qpqqpfpqpfpwqp	236
			qpeqpfpqqpfpwqp	237
7	EpEIpFpEp	6	ylqlqpfp qpqlpypqp qlp	238
·			pqpfppqlpypqppqp	239
			pymqlqpfp qpqlpypqp ql	240
			qlqpfp qpqlpypqp ql	241
			gqlpyp qpelpypqp g	242
			glqpfp qpelpypqp g	243
			lqlqpfp qpqlpypqp qpfr	244
			qlqpfp qpelpypqp qp	245

			ddjbAb dbdjbAbdb a	246
			pqpfppqlpyp qpqlpypqP	247
			lqlqpfp qpqlpypqp qpfr	248
			$\verb lqlqpfp \verb qpelpypqp elpypqpelpypqpqpf $	249
			mdjdbtb dbdjbdb djbA	250
			glqpfp qpelpfpqp g	251
			qlqpfp qpelpypqp ql	252
			pqlpyp qpqlpypqp qlpyp	253
			qlqpfp qpqlpypqp qp	25
			glqpfp qpqlpypqp g	25
			pglpyp qpqlpypqp qpfrp	25
			lqpfp qpelpypqp elpypf	25
			lqlqpfp qpqlpypqp qlpy	25
			glqpfp qpqlpfpqp g	25
			pdbtbbdfbhbdbdbdb	260
			yp qpqlpypqp qpfrpqqsy	26
			gsg qpelpypqp gsg	26
			lqlqpfp qpqlpypqp qlpypqpqpqpfpqpf	26
8	EEpFpEpEI	7	qqp qqpfpqpq1 pfpqqseq	26
			fpqqp qqpfpqpql pfpqqs	26
9	pEEpFSEEg	В	gqqpfpq peqpfsqqg	26
			gqqpfpq pqqpfsqqg	26
10	gFpEpEIpF	9	gs gfpqpelpy pgsg	26
11	PEEEPEEPF	10	qpqlpfpqq pqqpqqpf pq	26
			gqq pqqqpeqpf pqqg	27
			gqq pqqpqqpf pqqg	27
12	IEEpEEpFp	11	lqqpqqpfpqpqq1pqpqq	27
			lqqpqqpfpqpqqlpqpqq	27
			qpqqpfpq lqqpqqpfp qpq	27
			pfpq lqqpqpfp qpqqqlp	27
			gfpq lqqpeqpfp qqg	27
			gfpq lqqpqpfp qqg	27
13	pEpEpFIpE	12	lqpf pqpqpflpq lpypqpq	27
			lqlqpf pqpqpflpq lpypq	27
14	EEISpcmdI	13	lqqilq qqltpcmdv vlqqh	28
			ilqqilq qqltpcmdv vlqq	28
15	FEEEpFpEE	14	qspqqsfs yqqqpfpqq pyp	28
			yqqqpfpqq pypqqpypsqq	28
			pqqsfs yqqqpfpqq pypqq	28
16	EpFpEpEIp	15	ylql qpfpqpqlp ypqpqlp	28
			pymql qpfpqpqlp ypqpql	28
			ql qpfpqpqlp ypqpql	28
			gl qpfpqpelp ypqpg	28
			lql qpfpqpqlp ypqpqpfr	28
			ql qpfpqpelp ypqpqp	29
	T -		lql qpfpqpqlp ypqpqpfr	29
			lql qpfpqpelp ypqpelpypqpqpf	29
			mql qpfpqpqlp ypqpqlpy	29
				29

			ql qpfpqpelp ypqpql	295
			ql qpfpqpqlp ypqpqp	296
	<u> </u>	<u></u>	gl qpfpqpqlp ypqpg	297
			lqpfpqpelpypqpelpypf	298
			qqpq qpfpqpqlp fpqqseq	299
			lql qpfpqpqlp ypqpqlpy	300
			fpqqpq qpfpqpqlp fpqqs	301
			gl qpfpqpqlp fpqpq	302
			gl qpfpqpelp ylqpg	303
			pylql qpfpqpqlp ysqpqp	304
			gl qpfpqpelp ysqpg	305
			lql qpfpqpqlp ylqpqpfr	306
			lql qpfpqpqlpylqpqpfr	307
			lqlqpfpqpqlpysqpqpfr	308
			gsg qpfpqpelp gsg	309
			lqlqpfpqpqlpypqpqlpypqpqppqppqpf	310
			gl qpfpqpqlp ysqpg	311
			qpfpqpqlpysqpgqfrpqq	312
			lql qpfpqpqlp ysqpqqfr	313
		_	gl qpfpqppylqpg	314
			qfpsqlpylqlqpfpqlp	315
			pfpsqqpymqlqpfpqpqlp	316
				317
_		-	pfpsqlpylqlqpfpqpqlp	318
_			pfpsqqpylqlqpfpqpqlp	319
17	DED FERR	16	pfpsqqpylqlqpfpqpqlp	320
	pEEpEEEFp	10	pqqpf pqqpqqqfp qpqqpq	321
		_	gqpf pqqpeqefp qpg	322
			qqpqqpf pqqpqqfp qpqq	
		-	gqpf pqqpeqqfp qpg	323
		-	gf pqqpeqefp qpqqg	324
_	-		pqqpf pqqpqqfp qpqqpq	325
		<u> </u>	gf pqqpqqefp qpqqg	326
			gqpf pqqpqqfp qpg	327
			ddbddbt bddbdddt, dbdd	328
	-	-	pqqpqqpf pqqpqqfp qpq	329
_			g f pqqpqqdf p qpqqg	330
.8	pFSEEEEpI	17	gqp pfsqqeqpv lpqg	331
			lqqs pfsqqqqpv lpqqqpv	332
			pfsqqqqpppfsqqqqpvlpq	333
			qqqpilsqqp pfsqqqqpv l	334
			qp pfsqqqqpv lpqqspfsq	335
			qqqvlpqqp pfsqqqqpv ll	336
			qqqpilsqqp pfsqqqqpv l	337
			qqqp pfsqqqqpi lpqqppf	338
			pfsqqqp pfsqqqqpi lpqq	339
			qqqpilpql pfsqqqqpv lp	340
			qqp pfsqqqqpv lppqqspf	341
			gqp pfsqqqqpv lpqq	342
			qs pfsqqqqpv lpqqqpvii	343
			qppfsqqqqpvlpqqspfsq	344
			7FF	444

			lppfsqqlp pfsqqqqpv lp	34
			qqqqp pfsqqqqpv lpqqsp	34
			sqqqpilsqqp pfsqqqpv	34
			pfsqqqpv llqqqipfvhp	34
19	pEEpSpIEp	18	ftq pqqptpiqp qqpfpqqp	35
			pftq pqqptpiqp qqpfpqq	35
			fpeqsqqpftq pqqptpiqp	35
20	EpEEpIpIE	19	pqqpqqpfp qpqpipvq pq	35
			pqqpqqpfp qpqqpipvq pq	35
			qqqpfp qpeqpipvq q	. 35
			gaqpfp qpqqpipvq g	35
			pqqpqqpfp qpqqpipvq pq	35
			p qpqqpipvq pqqafpqqsq	35
			abdab; bad bada tada da	35
21	EPEEPEIPF	20	qqpfp qpqqpqlpf pqqpqq	36
			qpqqpqqpfp qpqlpf p	_ 36
			qqpqqpfp qpqqpqlpf pqq	36
			qqpqqpfp qpqqpqlpf pqq	36
			p qpqqpqlpf pqqpqqpfpq	36
			pqqpfp qpqqpqlpf pqqpq	36
			gqqpfp qpeqpqlpf g	30
			qqpfp qpqqpqlpf pqqpqq	. 36
			gqqpfp qpqqpqlpf g	36
			gfp qpqqpelpf pqqg	36
			gfp qpqqpqlpf pqqg	37
22	EpEIpFpEg	21	gsgp qpelpypqg sg	37
23	FpEpEIpFg	22	gsgp fpqpelpyg sg	37
24	pEEpFcEEg	23	gqqpfpq peqpfcqqg	37
			gqqpfpq pqqpfcqqg	37
25	FpEpEEEFp	24	gf fpqpeqefp qpqqg	37
			gqqp fpqpeqefp qpg	37
			sqqpqqp fpqpqqqfp qpqq	37
			gqqp fpqpeqqfp qpg	37
			sqqpqqp fpqpqqfp qpqq	37
			qp fpqpqqfp qpqqsf	3
			gf fpqpqqefp qpqqg	31
			sqqpqqp fpqpqqfp qpqq	3
			gf fpqpqqfp qpqqg	38
			gqqp .fpqpqqfp qpg	30
26	gEpSpIEpE	25	gqptpiqpe qpfpqqg	38
			gqptpiqpqqpfpqqq	38
27	FîpEIpFpE	26 .	lqpfpqpqp flpqlpypq pq	36
			flpqlpypqpqsfppqqpyp	38
	1		gqpqp flpelpypq pg	38
	1	1	pqpflpqlpypqpqsfppqq	39
	1	 	pqp flpqlpypq pqsfppqq	39
	+	-	gqpqpflpqlpypqpq	39
	 	 	lqlqpfpqpgflpqlpypq	39
28	FIEEEcSRI	27	svlqqlnpckvflqqqcshv	39
40	EYEVECSKI		kv flqqqcshv amsqrlarp	39

			pqqpqq pfpqpqpf pwqpq	397
			pqqpqqp qpqpqpqpf pw	398
			d btbdbddpt bwdbddbtbd	399
			gqq pfpqpeqpf pwqg	400
			gqq pfpqpqqpf pwqg	40
			bddbddbd btbdbddbt bM	402
			q pfpqpqqpf pwqpqqpfpq	40
			qpqq pfpqpeqpf pwqp	40
			qpeq pfpqpeqpf pwqp	40
			gqq pfpqpeqpf sqqg	40
			gqq pfpqpeqpf cqqg	40
			gqq pfpqpqqpf sqqg	40
			gqvqwpqqq pfpqpqqpf ce	40
			pqqqq pfpqpqqpf sqqpqq	41
			wpqqq pfpqpqqpf cqqpqq	41
	1		psgqvqwpqqq pfpqpqqpf	41
			gqqpfpqpqqpfcqqg	41
			pqqq pfpqpqqpf ceqpqrt	41
		_	qpqq pfpqpqqpf pwqp	41
			qpeq pfpqpqpf pwqp	41
			qqq pfpqpqpf cqqpqrti	41
			qqqq pfpqqpf sqqpqqi	41
			qqqpfpqppfceqpqrti	41
30	FTFPFFPF	29	qqflqpqqpfpqqpypq	42
30	FIEPEEPFP		gqqqfiqpeqpfpqqqpypq	42
		-		42
	-		pqqqfiqpqqpfpqqqty	42
			gqqqfiqpqpfpqqg	42
	-	-	qqqfiqpqqpfpqqptyp	42
			fsqpqqpqqfiqpqpfpq	42
			pqqq fiqpqqpfp qqpqqty	42
			pqqp flqpqqpfp qqpqqpf	42
	-	-	pqqqflqpqqpfpqqprqpy	-
			pqqqflqpqqpfpqqpy	42
31	pEEEEIaRg	30	gqq pqqqqlahg tflqphki	43
			qq pqqqqlahg tflqphqia	43
32	EpEEpFpEp	31	bd dbddbtbdb ddbtbwdbd	43
			bddbd dbddbtbdb ddbtbm	43
			qqpfpq qpqpfpqp qqp1p	43
			pq qpqqpfpqp qqpipvqpq	43
			bď dbddb todb ď db i badbď	43
			bďďbď ďbďdbťbďb ďďblóm	43
			q qpqqpfpqp qlpfpqqseq	43
			qpqqpfpqp eqpfpwqp	43
			lq qpqqpfpqp qqqlpqpqq	44
			qpeqpfpqp eqpfpwqp	44
			fpq qpqqpfpqp qlpfpqqs	44
			pq qpqqpfpqp qqpipvqpq	44
			plqpqqpfpq qpqpfpqp q	44
			sq qpqqpfpqp qqqfpqpqq	44
			sq qpqpfpqp qqqfpqpqq	44
			- 2 M 2 M - 4 M 2 2 2 7 T 2 Z	44

			al a from conform action	448
	 		qlpfpq qpqpfpqp qqpqq	449
	 		hqpqqqfpqtqqpqpfpqp	450
		-	pqtq qpqpfpqp qqtfpqq	
			dbd dbddbtbdb ddbd lbtb	451
			bddbtbddbd dbddbtbdb d	452
			d dbddbtbdb ddbd fbtbdd	453
			sq qpqqpfpqp qqpqqsfpq	454
	-		ddddbfbdbd dbdbdb d	455
			q qpqqpfpqp qqpqlpfpqq	. 456
			pq qpqqpfpqp qqaqlpfpq	457
			lq qpqqpfpqp qqqlpqpqq	458
.,			dbddbtbdsd dbdbdb d	459
			qpqqpfpqlq qpqqpfpqp q	460
			qpqqpfpqp qqpfpwqp	461
			sk qpqqpfpqp qqpqqsfpq	462
			sq qpqqpfpqp qqqfpqpqq	463
			qpeqpfpqpqqpfpwqp	464
		ļ	pfpqlq qpqqpfpqp qqqlp	465
			qsk qpqqpfpqp qqpqqsfp	466
			fplqpqqpfpq qpqpfpqp	467
-			qqpqqfpqpq qpqpfpqp	468
			qpqqpfpqsq qpqqpfpqp q	469
			qpqqpfpqsk qpqqpfpqp q	470
			plqpqqpfpq qpqpfpq	471
			qqfpqtqqpqpfpqpqqtf	472
	+		qqpqqpfpqsk qpqpfpqp	473
33	pFpIEpEEp	32	pqqpqq pfplqpqp fpqqp	474
	prorepasp		gq pfplqpeqp fpqqg	475
	 		pqqpqq pfplqpqqp fpqqp	476
	 		gq pfplqpqp fpqqg	477
				478
			pqqlqq pfplqpqqp fpqqp	479
			pqqpqq pfplqpqqp fpqqp	480
2.4		33	seqiipqqlqq pfplqpqqp	481
34	EpEEaFpEp	33	gqtfph qpeqafpqp g	482
			qtfph qpqafpqp qqtfph	483
			gqtfph qpqqafpqp g	484
25		2.4	pqqtfph qpqqafpqp qqtf	
35	pEFpSEIpF	34	ppqqpypq pqfpsqlpy lql	485
			qqpypq pqfpsqlpy lqlqp	486
36	PFPEPEEEI	35	1 qqpqq pfpqpqqq1 pqpqq	487
			gqq pfpqpeqql pqpg	488
			J ddbdd btbdbddd J bdbdd	489
			pfpqlqqpqq pfpqpqqql p	490
			gqq pfpqpqqq1 pqpg	491
			q pfpqpqqq1 pqpqqsf	492
37	ppEIpFpEp	36	pqpf ppqlpypqp qlpypqp	493
			pqpf ppqlpypqp qlpypqp	494
			qpf ppqlpypqp qpfrpqqp	495
			pqpf ppqlpypqp qlpypqp	496
			pqpf ppqlpypqp qpfrpqq	497
			pqpf ppqlpypqp ppfspqq	498

		T	pqpf ppqlpypqp qsfppqq	49
		T-	gqpqpf ppalpypqp g	50
			gqpqpf ppqlpypqp g	50
			pfpqpqpf ppqlpypqp ppf	50
			gsgppelpypqpgsg	50
			pfpqpqpf ppqlpypqp qsf	504
			pqpf ppqlpypqp ppfspqq	500
38	mEIEpFpEp	37	py mqlqpfpqp qlpypqpql	500
			mqlqpfpqpqlpy	507
			mqlqpfpqp qpfppqlpypq	508
			pfpsqqpymqlqpfpqpqpf	509
		 	pfpsqqp ymqlqpfpqp qlp	510
		_	pfpsqqpy mqlqpfpqp qpf	511
39	EESSCRIME	38	bdrystadumddeschamdd	512
			ddysachamdd	513
		_		514
			pqrlarsqmwqqsschvmqq	
	-		rlarsqmlqqsschwmqqqc	515
		_	rpqmwqqsschvmqqqccqq	516
			mw qqsschvmq qqccqqlqq	517
		-	sqml qqsschvmqqqccqql	518
			qqsschvmqqqccqqlqqip	519
	+	-	qqsschvmqqqccqqlqqip	520
			rlarsqmwqqsschvmqqqc	521
40		39	arsqml qqsschvmq qqccq	522
40	EEFSEPEEE	39	gq qqfsqpeqe fpqpg	523
			gq qqfsqpqq fpqpg	524
			gq qqfsqpeqq fpqpg	525
			sqqpq qqfsqpqqq fpqpqq	526
	-		sqqpq qqfsqpqq fpqpqq	527
			qqfsqpeqe fpqpqq	528
			qsqqpq qqfsqpqq fpqpq	529
41		40	qpq qqfsqpqq fpqpqqpq	530
41	PEEEFPEPE	40	gffpq peqefpqpq qq	531
			sqqpqqpfpqpqqqfpqpqq	532
			sqqpqqpfpq pqqfpqpq q	533
			pqqpfpqq qqfpqpq qpq	534
			pqqqfpqpq qpqqpfpqqpq	535
			qpfpq pqqfpqpq qpqqsf	536
			qqpqqpfpqq qqqfpqpq q	537
			gffpq pqqefpqpq qg	538
			sqqpqqpfpq pqqqfpqpq q	539
			gffpq pqqfpqpq qg	540
			dd bdddtbdbd dbdbtbdb	541
			gfpqq peqefpqpq qg	542
			pqqpfpqq qqfpqpq qpq	543
			gffsq pqqefpqpq qg	544
			pq pqqqfpqpq qpqqsfpqq	545
			gfpqq pqqefpqpq qg	546
			sqqpqqfsq pqqfpqpq q	547
			sqqpqqfsq pqqqfpq q	548
	+		* 30 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	U40

		-	qsqqpqqfsq pqqqfpqpq	55
			pqqqfpqpq qpqqpfpqqpq	55
			dbdddtsd bdddtbdbd dbd	56
			qqpqqpfpqq qqfpqpq q	55
		-	pqqpqqpfpqq pqqqfpqpq	55
		-	gffsq pqqqfpqpq qg	55
			tfphq pqqqfpqpq qpqqpf	55
			qtfphq pqqqfpqpq qpqqq	55
			gfpqq pqqfpqpq qg	55
			sq pqqqfpqpq qpqqsfpqq	55
			qtcphq pqqqfpqpq qpqqp	56
42	pIpEIEpRn	41	pvpqlqpkn psqqqpqeqvp	56
			avrv pvpqlqpkn psqqqpq	56
43	SScISgIER	42	me tscisgler риqqqplpp	56
44	FEEEpIppE	43	p wqqqplppq qsfsqqppfs	56
			pwqqqplppqqsfsqqppfs	56
			erp wqeqplppq htlfpqqq	566
			etrcipglerpwqqqplppq	567
			shipglerp wqqqplppq qt	568
			mrcipglerpwqqqplppqq	569
			scisglerpwqqqplppqqs	570
			pwqqqplppqqtlfpqqqpf	571
			erpwqqqplppqqsfsqqpp	572
			scisglerp wqqqplppq qs	573
			rp wqqqplppq qtfpqqppf	574
			p wqeqplppq htlfpqqqpf	575
			ekp wqqqplppq qqppcsqq	576
			p wqqqplppq qsfsqqppfs	577
			etscipglerpwqeqplppq	578
45	EpIpEEpSF	44	sqqppfsqqqq qplpqqpsf	579
			qplpqqpsf sqqqppfsqqq	580
			qqqq qplpqqpsf sqqqppf	581
			ppfsqqqq qplpqqpsf sqq	582
			qplpqqpsf sqqqppfsqqq	583
			sqqppfsqqqq qplpqqpsf	584
			gqqq qplpeqpsf spg	585
			qqqq qplpqqpsf sqqqppf	586
			gqqq qplpqqpsf spg	587
46	IIFSSIIEE	45	qqsryeairaivystilqeq	588
			a ivystilqe qqqvqgsiqt	589
47	EpIISEEpp	46	qqqpilsqqppfsqqqpvl	590
			fsqqqppfsqq qpilsqqpp	591
			fsqqqppfsqq qpilsqqpp	592
			qqqpilsqqppfsqqqpvl	593
			qqqppfsqq qpilsqqpp fs	594
			aqq qpilaqqpp faqqqqpv	595
			qqqppfsqq qpilsqqpp fs	596
48	EgIEIIRpI	47	vmqqeqq qqiqilrpl fqlv	597
	- 32222102		qeqq qgiqilrpl fqlvqqq	598
49	pFSSIIagI	48	csiika pfssvvagi ggqyr	
41.00	E-corrage		correspanael ddd.	599

		1.0		
50	FcSSSIapI	49	yipp ycsttiapv gifgtn	601
		50	vyipp ycsttiapv gifgtn	602
51	RIamSERIa	50	qqcs hvamsqrla rsqmwqq	603
	-	-	kvflqqqcshvamsqrlarp	604
			qcs hvamsqrla rpqmwqqs	605
52	EpESFppEE	51	flpqlpypqpqafppqqpyp	606
			pqpflpqlpyp qpqsfppqq	607
		_	pqpflpqlpyp qpqsfppqq	608
			pqpfppqlpyp qpqsfppqq	609
			g qpqsfppeq pypqqg	610
			lpqlpyp qpqsfppqq pypq	611
			g qpqsfppqq pypqqg	612
53	siilqEqqq	52	rydaicaity siilqeqqqg	613
			airaiiy siilqeqqq gfvq	614
			iraivy siilqeqqq gfvqp	615
			iiy siilqeqqq gqgsvesq	616
			airaiiy siilqeqqq vqgs	617
			aiiy siilqeqqq gfvqpqq	618
			ryeairaivy siilqeqqqv	619
			iraity siilqeqq qfvqa	620
			vy siilqqqq qqqqqqqqq	621
			aiiy siilqeqqq vqgsiqs	622
			siraivy siilqqqq qqqq	623
			aiiy siilqeqqq vqgsiqs	624
			aiifsiilqeqqqgfvqpqq	625
			siilqeqqqgqgsvesqeqq	626
			rhesiraiiy siilqqqqq q	627
			y siilqeqqq gfvqpqqqp	628
			airaiiy siilqeqqq vqgs	629
			yeairaiiy siilqeqqq gf	630
54	ESEEPEEPF	53	hqpqqqfp qtqqpqqpf pqp	631
			p qtqqpqqpf pqpqqtfpqq	632
			qqpfp qtqqpqqpf pqqpqq	633
			qtqqpqqpfpqqpfpqt	634
			qpqqpfp qsqqpqqpf pqpq	635
			gfp qtqqpeqpf pqqq	636
			gfp qsqqpeqpf pqqg	637
			pqqpqqpfp qtqqpqqpf pq	638
			qqpfp qtqqpqpf pqlqqp	639
			qpqqpfp qsqqpqpf pqpq	640
			qpqqpfp qtqqpqpf pqqp	641
			p qtqqpqqpf pqqpf	642
			qqfp qtqqpqpf pqpqqff	643
			gqqpfp qsqqpf g	644
			qqpfp qtqqpf pqqpqq	645
				646
			gfp qsqqpqpf pqqg	647
			qqpfp qtqqpqpf pqskqp	
	-		qqpfp qtqqpqpf pqsqqp	648
			gfp qtqqpf pqqg	649
	-		gqqpfp qseqpqqpf g	650
			gqqpfp qtqqpqpf g	651

			gqqpfp qteqpqqpf g	652
			pfp qtqqpqqpf pqlqqpqq	653
55	EIEEpEEpI	54	qpfp qlqqpqqpl pqqpq	654
			gfp qlqqpeqpl pqqg	655
			qpqqpfp qlqqpqqpl pqpq	656
			gfp qlqqpqqpl pqqg	657
56	IpEEpEEpF	55	gqp ipqqpeqpf plqg	658
			fpelqqp ipqqpqpf plqp	659
			fpelqqpipqqpfplqp	660
			gqp ipqqpqpf plqg	661
			gqlqqp ipqqpf g	662
			gqlqqp ipeqpqqpf g	663
57	FpEEpEEpF	56	qqpfpqqpfpqpqpip	664
		1	fpqqpqpfpqpalpfpqqs	665
			qqflqpqqpfpqqpypq	666
		 	plopqop fpqqpfqpf pqpq	667
		_	dlb tbddbddbt bdbddbdd	668
				669
			tqqpqqpfpqqpqqpfpqtq	670
		_	qtqqpqqpfpqqpfpqt pqpqqpqptpqpfpq	671
				672
			qqp fpqqpqqpf pqtqqpqq	673
	-	-	qqp ypqqpqqpf pqtqqpqq	
	+	-	gqp fpqqpeqpf pqqg	674
			fplqpqqpfpqqpfpqp	675
			pqqpflqpqqpfpqqpf	676
		-	plqpqqp fpqqpqqpf pqqp	677
			gqpqqpfpeqpqqpf g	678
	-		gqp ypqqpeqpf pqqg	679
			gqp fpqqpqqpf pqqq	680
			ypqqp fpqqpqpf pqqppf	681
			qqtfpqqpq1p fpqqpqqpf	682
			pqqqflqpqqp fpqqpqqpy	683
		<u> </u>	plqpqqpfpqqpfpqpq	684
			gqpqqp fpqqpqpf g	685
			rqp fpqqpqqpy pqqpqqpf	686
			gqp ypqqpqqpf pqqg	687
			qqp fpqqpqqpy pqqpqqp£	688
			qpqqp fpqqpf pqtqqp	689
			fpqqpqqpy pqqpqqpfpqt	690
			fpqqprqp ypqqpqpf pqt	691
			p fpeqpeqpy pqqpq	692
			p fpqqpqqpf pqqpqqsfpq	693
			gqpqlp fpeqpqqpf g	694
			gqpqlp fpqqpqpf g	695
			pqqpqqs fpqqpqqpy pqqq	696
	1		qqpqqs fpqqpqqpy pqqqp	697
			lqpqqpfpqqpypqqpq	698
			pqqqflqprqpfpqqpy	699
			bxdb tbddbddb bddbddb	700
				701
58	SpIEpEEpF	57	gqp tpiqpeqpf pqqg	////

	1		pftqpqqp tpiqpqqpf pqq	70
			tpiqpqqpfpqqpqqpq	70
			gap tpiqpqqpf pqqq	70
59	pFSEEpEEI	58	gq pfsqqpeqi fpqqg	70
			qq pfsqqpqqi fpqpqqtfp	70
			qqqqpfpqpqq pfsqqpqqi	70
			hq pfsqqpqqi fpqpqqtfp	70
			gq pfsqqpqqi fpqqg	71
			pflqphq pfsqqpqqi fpqp	7
			gqpqq pfseqpqqi fg	7
			qqqpflqphq pfsqqpqqi f	7
			qpqq pfsqqpqqi fpqpqqt	7
			gqpqq pfsqqpqqi fg	7
60	gEEIFpEpE	59	gqqifpqpeqtfphqq	7
	3		gqqifpqpqqtfphqg	7
61	EpEEpEEpF	60	pqqpqqpqqpfpqqpfpw	.7
			pq qpqqpqpf pqpqqpfpw	7
			pddbtb dbddbddbt bdbdd	7
			pqqqfpqpqqpfpqqpq	7
			qpqqpqqpfpqqpqlpfp	7
			pqqpfpq qpqqpf pqpq	7
			qqqqpfpqpqqpfpqpf	7
			tplqpqpfpqqpqqpqpf	7
			piqpqqpfpq qpqqpf p	7
	+	-	ddtb dbddbddbt bddbddd	7
	+		gqqpfp qpeqpqqpf g	7
	1	_	qqpqqqfpqpqqpfpqp	7
	-	_	lqqpqplp qpqqpqpf pq	7
		-	gfp qpqqpeqpf pqqg	7
			gfp qpqqpf pqqpf	7
			qqpfp qpqqpf pqlqqp	7
			pqqqfpqpqqpqqpfpqqpq	7
	+		qpqqpqpfpqqqpliqpy	7
		-	pqqpfp qpqqpf pqlqq	7
			gqqpfp qpqqpq g	7
		_	gqqplpqpeqpqqpfg	7
	1		p qpqqpqpf pqqqqpliqp	7
			qqpfp qpqqpf pqsqqp	7
	1	-	tfphqpqqqpqpqpf	7
	+		gqqqfp qpqqpf g	7
	1		gqqqlpqpqqpqqpf g	7
	+		tfphqpqqfp qpqqpf	7
	+	-	ddbjb dbddbdbg bdaddb	7
	+	-	gqqqfp qpeqpqqpf g	7
	+		qqvpqpqqpqqpf1qpqqpf	7
	 	1	ddbjb dbddbddb t bdaddb	7
		-	qqprp qpqqpf 1qpqqpf	7
62	De DR DR T	61		7
62	FpEEpEEpI	101	pqqaqlpfpqqpqplpqpq	7
-		62	qaqlp fpqqpqpl pqpqqp	7
63	pSSEEppFp	02	qqqpfpqq pssqqppfp q qqqq pssqqppfp qqhqqfp	7

			ppfsqqq pssqqppfp qqh	754
64	FPEEPEIPF	63	pqqpfpqpqtfpqqpqlpf	755
			fpqpqqt fpqqpqlpf pqqp	756
			qqt fpqqpqlpf pqqpqqpf	75
			pqqpfpqpqqt fpqqpqlpf	75
65	pFpFEpEEp	64	qpfpqpqq pfpwqpqqp fpq	75
	\		qpfpqpqq pfpwqpqqp fpq	76
			qpfpqpqq pfpwqpqqp fpq	76
	<u> </u>		gq pfpwqpqqp fpqqq	76
			pfpwqpqqp fpqtqqsfplq	76
			gq pfpwqpeqp fpqqg	76
66	pEESFpREg	65	gqqifpq peqtfphqg	76
			gqqafpq peqtfphqg	76
			gqqifpq pqqtfphqg	76
			gqqtfpq peqtfphqg	76
		<u> </u>	gqqafpq pqqtfphqg	76
			gqqtfpq pqqtfphqg	77
67	SFpREpEEa	66	qqifpqpqq tfphqpqqa fp	77
			gq tfphqpeqa fpqpg	77
			q tfphqpqqa fpqpqqtfph	77
			gq tfphqpqqa fpqpg	77
			pqq tfphqpqqa fpqpqqtf	77
68	FSEEEpSFS	67	pqqqpp fsqqqpsfs qqqpp	77
69	aFpEpEESF	68	gqq afpqpeqtf phqg	77
			q afpqpqqtf phqpqqqfpq	77
			q afpqpqqtf phqpqqqfpq	77
			gqqafpqpqqtfphqg	78
			qtfphqpqq afpqpqqtf ph	78
		<u> </u>	qq afpqpqqtf phqpqqqfp	78
			pqqtfphqpqqafpqpqqtf	78
70	SEEPFSEPE	69	qqfpeq sqqpftqpq qptpi	78
			fpeq.sqqpftqpqqptpiqp	78
71	IEpFpEpEp	70	lqpfpqpqpflpqlpypqpq	78
			lq lqpfpqpqp fppqlpypq	78
			lqlqpfpqpqpflpqlpypq	.78
			lq lqpfpqpqp fppqlpypq	78
			mqlqpfpqpqpfpppppppq	79
	1		pfpsqqpymq lqpfpqpqp f	79
			fpsqqpylq lqpfpqpqp fl	79
			pfpsqqpylqlqpfpqpqpf	79
			sqqpylq lqpfpqpqp fppq	79
			pfpsqqpymqlqpfpqpqpf	. 79
72	pFpRpEIpF	71	qqpylqlq pfprpqlpy pqp	79
			glq pfprpelpy pqpg	79
			lqlq pfprpqlpy pqpqpfr	79
			glq pfprpqlpy pqpg	79
73	EEIFpEpEE	72	gqqifpqpeqtfphqg	80
			g qqifpqpqq tfphqg	80
			qqifpqpqqtfphqpqqafp	80.
	1		p qqifpqpqqtfphqpqqqf	80
	+		qqifpqpqqtfp	80

	-		qqpfsqqpqqifpqpqqtfp	805
			hqpfsqqpqqifpqpqqtfp	806
			qpqqpfsqqp qqifpqpqq t	807
74	EpEESFpER	73	pqqqfiqpq qpqqtypqr pq	808
			qpqqqfiqpq qpqqtypqr p	809
	L		qpfpq qpqqtypqr pqqpfp	810
			pqqpfpq qpqqtypqr pqqp	811
			pqqqfiqpq qpqqtypqr pq	812
			qqpfpq qpqqtypqr pqqpf	813
			qqpfpq qpqqtypqr pqqpf	814
75	FpERpEEpF	74	qqt ypqrpqqpf pqtqqpqq	815
,			qpfpqqpqqt ypqrpqqpf p	81
			gqt ypqrpqqpf pqtg	81
			gqt ypqrpeqpf pqtg	818
			qqpfpqqpqqt ypqrpqqpf	81
			qqpfpqqpqqt ypqrpqqpf	82
			qqt ypqrpqqpf pqtqqpqq	82
			qt ypqrpqqpf pqtqqpqqp	82
76	IEpFpEpEI	75	ylqlqpfpqpqlpypqpqlp	82
			pymqlqpfpqpqlpypqpql	82
	1		q lqpfpqpqlpypqpql	82
	-		g lqpfpqpel pypqpg	82
		_	lqlqpfpqpqlpypqpqpfr	82
	+	_	q lqpfpqpel pypqpqp	82
		 	1q1qpfpqpq1pypqpqpfr	82
			lqlqpfpqpelpypqpelpypqpqpf	_
			md db tb db dl b b b b db d	83
				83
			glqpfpqpelpfpqpg	83
			qlqpfpqpelpypqpql	83
			qlqpfpqpqlpypqpqp qlqpfpqpqlpypqpq	83
		-	d rdbrbdbdr b ybdbd	83
		-	- Trip Trip Trip Trip Trip Trip Trip Trip	83
			Lq1qpfpqpq1pypqpqlpy	83
	+	-	glqpfpqpqlpfpqpg	-
			3-45-54-53	83
	+	-	E 3 - 3 - 3 - 2 - 3 - 3 - 3 - 3 - 3 - 3 -	84
			glqpfpqpelpysqpg	84
	-		lqlqpfpqpqlpylqpqpfr	84
			lq lqpfpqpql pylqpqpfr	84
			lqlqpfpqpqlpysqpqpfr	84
			lqlqpfpqpqlpypqpqlpypqpqpppqpf	
		-	glqpfpqpqlpysqpg	84
			lq lqpfpqpql pysqpqqfr	84
			glqpfpqpqlpylqpg	84
			glqpfpqpelsysqpg	84
			qfpsqlpylq lqpfpqpql p	85
			lq lqpfpqpql sysqpqpfr	85
			lq lqpfpqpql sysqpqpfr	85
			gsglqpfpqpelgsg	85
]	pfpsqqpymqlqpfpqpqlp	85
			g lqpfpqpql sysqpg	85

		-	pfpsqlpylqlqpfpqpqlp	85
	-		pfpsqqpylqlqpfpqpqlp	85
	-	7.6	pfpsqqpylq lqpfpqpql p	_
77	EpFpESEES	76	pfpwqpq qpfpqtqqs fplq	85
			qpfpqtqqsfplqpfpq	86
			fpwqpq qpfpqtqqs fplqp	86
78	ESScIpgIE	77	metscipglerpwqqqplqq	86
			etsaipgle rpwqeqplppq	88
79	pIIpRgppF	78	sqqq pilprgppf sqqtqpv	86
80	EpEEEFpEp	79	gffp qpeqefpqp qqq	88
		<u> </u>	gqqpfp qpeqefpqp g	80
	-	ļ	sqqpqqpfp qpqqqfpqp qq	8
			gddbtb dbeddtbdb d	8
	-		sqqpqqpfp qpqqqfpqp qq	8
			bddbtbd dbdddtbdb ddbd	8
		<u> </u>	db tb dbdddtbdb ddbddat	8
		<u> </u>	gqpfpq qpeqefpqp.g	8
		<u> </u>	ddbddbtbd dbdddtbdb dd	8
			gqqqfsqpeqefpqpq	8
			gffp qpqqefpqp qqq	8
			sqqpqpfp qpqqqfpqp qq	- 8
			gffp qpqqqfpqp qqq	- 8
			gqqqfs qpqqfpqp g	8
			gqpfpq qpeqqfpqp g	8
			gqqpfp qpqqqfpqp g	8
			d dbdddtbdb ddbddbtbdb	- 8
			gqt fph qpeqqfpqp g	8
	J		gfpq qpeqefpqp qqg	8
			pqqpfpq qpqqqfpq pqqpq	- 8
			gqqqfs qpeqqfpqp q	. 8
			gffsqpqqefpqpqqq	8
			p qpqqqfpqp qqpqqsfpqq	8
			gfpq qpqqefpqp qqg	8
			sqqpqqfs qpqqqfpqp qq	8
			sqqpqqqfs qpqqqfpqp qq	8
			qqfs qpeqefpqp qq	8
			qsqqpqqqfs qpqqqfpqp q	8
			dbdddra dbdddrbdb ddbd	8
			gqpfpq qpqqfpqp g	8
			ddbddbtbd dddtbdb dd	8
			pqqpqqpfpq qpqqqfpqp q	8
			tfpqpqqtcph qpqqqfpqp	8
			gffs qpqqqfpqp qqg	8
			tfph qpqqqfpqp qqpqqpf	8
			qtfph qpqqqfpqp qqpqqq	9
			gfpq qpqqfpq pqqg	90
			s qpqqfpqp qqpqqsfpqq	9
			qt cph qpqqfpqp qqpqqp	9
			gqtfph qpqqqfpqp g	9
81	nmEadpSgE	80	nmqadpsqqvqwpqqqpflq	90
	- Innertipogo	-	atanmqadpsqqvqwpqqqp	9

82	gaIcSSISn	81	fdeeknst galcsslsn qas	907
83	EFPEEEIpI	82	dbb tbddyd dtbdddiba ad	909
		L	qqpl fpqqhq qfpqqqipv v	-
			qfpqqqipv vqpsvlqqlnp	91
84	EEEpIIIEE	83	sqqqqpfpq qqqplllqq pp	91
			q qqqpillqq ppfsqhqqpv	91
			qqqpfpq qqqplllqq ppfs	91
			qqqqppfsqq qqqpillqq p	91
			pfsqqqqpvllqqqipfvhp	91
			qqqpfpq qqqplllqq ppfs	91
85	SEEPEESFP	84	qqpl sqqpqqtfp qpqqtfp	91
			hqpf sqqpqqtfp qpqqtfp	91
	L		qpfpqphqpf sqqpqqtfp q	91
	1		gqpl sqqpqqtfp qqg	92
			pvpqphqpf sqqpqqtfp qp	92
			gqpl sqqpeqtfp qqg	92
			qqlvpqlqqpl sqqpqqtfp	92
			pqlqqpl sqqpqqtfp qpqq	92
86	FRREPEESF	85	phqt fhhqpqqtf pqpqqty	92
			qt fhhqpqqtf pqpeqtyph	92
			qt fhhqpqqtf pqpqqtyph	92
			qrtipqphqtfhqpqqtfp	92
87	RFFFpSSpR	86	sgqgq hwyyptspk lsgqgq	92
88	REDEEEFSE	87	tfp hqpqqqfsq pqqpqqf	93
			qtfp hqpqqfsq pqqpqq	93
89	SIEEIIEEE	88	qqq tlqqilqqqlipcrdvv	93
		-	tlqqilqqqlipcrdvvlqq	93
			qqqqqqqqt lqqilqq lip	93
90	IEEpIppEE	89	pw lqqplppqq tlpqqlqqp	93
			sniiisflkpw lqqplppqq	93
91	pISpEESgE	90	agadah Apris and ada ada ada ada ada ada ada ada ada	93
92	pEpFpEpEp	91	pypq pqpfpqpq fppqlpy	93
-	PERFER	-	pfpsqqpypq pqpfpqpq f	93
_	_	\vdash	pq pqpfpqpqp fppqlpypq	94
93	EpEpFpEpE	92	pyp. qpqpfpqpq pfppqlpy	94
30	врарт рары		qqpfpsqqpyp qpqpq	94
	1		pfpsqqpyp qpqpqpq pf	94
	-	+	p qpqpfpqp fppqlpypq	94
94	FPEEPEESF	93	pqqqfiqpqqpfpqqty	94
54	1000dad1	1	qqqfiqpqqp fpqqpqqtyp	94
	-	-	pqqqfiqpqqbqqty	94
		1-1	pqqpqpfpqqqqpqqsfpqqp	94
		-	gqpfpqpeqsfpqqg	94
				96
	+		qpfpqqpqqtypqqpfp	95
	+	+-+	gqpqqpfpeqpqqsfg	95
	-		gqpqqp fpqqpqqsf g	98
		1	pqqp fpqqsf pqqpqqp	99
			pqqpfpqqbqqtypqqp	9
		\vdash	gqp fpqqpqqsf pqqg	98
		1 [gqpqqp fpeqpqqtf g	1 35

			gqpqqp fpqqtf g	958
			qqp fpqqpqqty pqrpqqpf	959
			qqp fpqqpqqty pqrpqqpf	960
95	EESFSEEpp	94	pwqqqplpp qqsfsqqpp fs	961
			pwqqqplpp qqsfsqqpp fs	962
			erpwqqqplpp qqsfsqqpp	963
			p qqsfsqqpp fsqqqqqplp	964
			qqsfsqqppfsqqqqplpq	965
			qplpp qqsfsqqpp fsqqqq	966
	<u> </u>		pwqqqplpp qqsfsqqpp fs	967
96	FPEEPFPEE	95	ypqqpfpqqpqqpfpqqppf	968
			yqqqp fpqqpypqq pypsqq	969
			lpqpyaqpylp ypqqpfpqq	970
			pqqsfsyqqqpfpqqpypqq	971
			p fpqqpypqq pypsqqpyps	972
			qelqspqql ypqqpypqq py	973
			yaqpylp ypqqpfpqq pqqp	974
	L		qqp fpqqpypqq pypsqqpy	975
97	Epsseepis	96	qpssqqpls qqhqqfpqqqi	976
			qqppfsqqq qpssqqpls qq	977
98	EpIEERESF	97	glerpwqq qplqqketf pqq	978
99	ISpEEIgEg	98	qqgyyp ispqqlgqg qqsgq	979
100	EEEccERIp	99	qsschvm qqqcoqrlp qipe	980
101	agEgEEgFF	100	gqq agqqqyy ptapqqlg	981
102	EEEpFpEpE	101	gqvqwpqqqpfpqpqqpfce	982
			pq qqpfpqpq qpfqqppqq	983
			wp qqqpfpqpq qpfaqqpqq	984
			q qqpfpqpq qpqqpfpqpq	985
			psgqvqwp qqqpfpqpq qpf	986
			p qqqpfpqpq qpfceqpqrt	987
			qqqpfpqpqqpfcqqpqrti.	988
			psgqvqwpq qqqpfpqpq qp	989
			q qqpfpqpq qpfsqqpqqi	990
			gqvqwpq qqpfpqpq qpqq	991
			psgqvqwpq qqqpfpqpq qp	992
			qqqpfpqpqqpfceqpqrt1	993
			vdpsgqvqwpq qqqpfpqpq	994
103	EIEFPEEEE	102	psg qvqwpqqqqpfpqpqp	995
			niqvdpsg qvqwpqqqq pfp	996
			g qvqwpqqq qpfpqqpqq	997
			psg qvqwpqqqq pfpqpqqp	998
			ttaniqvdpsg qvqwpqqqq	999
			vápsg avampaaa pfpapa	1000
			qivfpsgqvqwpqqqqpfp	1001
			g qvqwpqqeq pfpqqg	1002
			g qvqwpqqqq pfpqqg	1003
104	EpIEEIccE	103	qsty qplqqlccq qlwqipe	1004
			qsty qplqqlccq qlwqipe	1005
			qsty qplqqlccq qlwqipe	1006
105	pFpEpEFpS	104		1007
			gqqqpfppqqpsq	1008

			qqpfppqq pypqpqfps qlp	1009
			dd bAbdbdtbs dfbhfdfdb	1010
106	aIESIpSmc	105	feeirnlalqtlpsmcnvyi	1011
			rnl alqtlpsmcnvyippyc	1012
			eirnlalqtlpsmcnvyipp	1013
107	RIFEIPERI	106	elccq hlwqipekl qcqaih	1014
			elccq hlwqipekl qcqaih	1015
			glccqhlweipeklqg	1016
			glccq hlwqipekl qg	1017
			lccq hlwqipekl qcqaihn	1018
108	pFpESEESF	107	pfpwqpqq pfpqtqqsf plq	1019
			q pfpqtqqsf plqpqqpfpq	10.20
			fpwqpqq pfpqtqqsf plqp	102
			pfpqtqqsf plqpqqpfpqq	1022
109	EgFFEpSEE	108	g qgffqpsqq npqaqgsfqp	1023
		[g qgffqpsqq npqaqg	1024
			qqypsg qgffqpsqq npqaq	1025
			qqypsg qgffqpsqq npqaq	1026
			g qgffqpseq npqaqg	102
			psg qgffqpsqq npqaqgsf	102
			qqypsg qgffqpsqq npqaq	102
110	ESIFESSCR	109	arsqtlwqssch vmqqqccr	103
111	ISSIFSIII	110	llqqckpvslvsslwsiilp	103
			lvsslwsiilppsdcqvmrq	103
			lvsslwsiilppsdcqvmrq	1033
112	ESFPEPEES	111	gqqtfpqpeqtfphqq	103
	DOI PEPER		q qtfpqpqqt fphqpqqqfp	103
			gq qtfpqpqqtfphqq	1036
			qqpq qtfpqpqqt fphqpqq	103
			phqtfhhgpqqtfpqpqqty	1038
			qqplsqqpqqtfpqpqqtfp	1039
			qtfpqpqqtyphqpqqqfpq	104
	_	 	hqpfsqqpqqtfpqpqqtfp	
			q qtfpqpqqt fphqpqqqvp	1042
			qtfpqpqtppqqqqp qtfpqpeqtyphqpqqqfpq	104
			qtfhhqpqqtfpqpeqtyph	104
	-	+	hhqpq qtfpqpeqt yphqpq	104
			q qtfpqpqqt fphqpqqfs	104
		-	qqtrpqpqqtrpnqpqqqrs qtfpqpqqtyphqpqqqfpq	104
			qtfhhqpqqtfpqqqtyph	104
		-	hhqpq qtfpqpqq typhq	104
112	-m- ap	112	menshipglerpsrqqplpp	105
113	mEnSRIpgI	112		105
			menshipglerlsqqqplpp	105
444		112	menshipglegpsqqqplpp	105
114	EEcSplaIp	113	kvflqqqcspvaipyrlars	105
115	pFSEEEEIp	114	qppfsqqqqt pfsqqqqip v	
	ļ	<u> </u>	sqqqqp pfsqqqqip vihps	105
	ļ	1	qqqqt pfsqqqqip vihpsv	105
116	ESRCIpgIE	115	etrcipgle rpwqqqplppq	105
			metrcipglerpwqqqplpp	1058
117	IpSIERpIE	116	metshipslekplqqqplpl	105

			cashipslekplqqqplplq	1060
118	aEIpFpEEp	117	qqpfpqpqq aqlpfpqqp qq	1061
			pqqaqlpfpqqpqplpqpq	1062
			q aqlpfpqqp qqplpqpqqp	1063
			qqpfpqpqq aq1pfpqqp qq	1064
			qpfpqpqq aqlpfpqqp qqp	1065
119	SIIIRSIpn	118	qqpaqyevirslvlrtlpnm	1066
			qyevirslvlrtlpnmcnvy	1067
			qyevirslvlrtlpnmcnvy	1068
120	aEIEgIRSI	119	qpqqpaqlegirslvlktlp	1069
			iiqpqqpaqlegirslvlkt	1070
121	EEpaEIEgI	120	qlaqqlgiiqp qqpaqlegi	1071
			qp qqpaqlegi rslvlktlp	1072
			iiqpqqpaqlegirslylkt	1073
122	SplampERI	121	ckvflqqqc spvampqrl ar	1074
			lqqqc spvampqrl ar	1075
			vflqqc spvampqrl arsqm	1076
		1	qqqc spvampqrl arsqmwq	1077
	 		cspvampqrlarsqmwqqss	1078
			qc spvampqhl arsqmwqqs	1079
	-		ckvflqqqc spvampqrl ar	1080
			qqqc spvampqrl arsqmwq	1081
		1	vflqqqc spvampqhl arsq	1082
		+ + +	vflqqqc spvampqrl arsq	1083
	-		spvampqrlarsqmlqqssc	1084
123	EInpcRnFI	122	qqlnpcknfllqqckpvslv	1085
120	Danperana		sliqqslqq qlnpcknfl lq	1086
		1	qpslqq qvnpcknfl lqqck	1087
		 	iqqslqq qlnpcknfl lqqc	1088
		1	iqpslqq qvnpcknfl lqqc	1089
			lqq qvnpcknfl lqqcklvs	1090
124	IEpEEIaEI	123	qgtflqpqqvaqlelmtsia	1091
125	EFSEEEEIp	124	qqp qfsqqqqip vihpsvlq	1092
220	DIGEOLOGIC		qppfsqqqqpqipv	1093
126	FpEpEpFpp	125	láldb fødbdbtbb dlbybd	1094
120	E PEPEPEPE		qpfpsqqp ypqpqpfpp qlp	1095
			pypapap fpapapfpp alpy	1096
		+	lqlqpfpqpfppqlpypq	1097
		+	mqlqpfpqpfppqlpypq	1098
			qqpfpsqqp ypqpfpp ql	1099
			pfpqpqpfppqlpypqpppf	1100
	1		p fpqpqpfpp qlpypqpqsf	1101
	 		pqpqpfpqpfppqlpypq	1102
		+-	sqqpylqlqpfpqpfppq	1103
		+-	pfpsqqp ypqpqprpp q	1104
127	Pararrara	126	gddb tbdbedbtgddd	1105
12/	FpEpEEpFc	120	gqqprpqpaqproqqg gqvqwpqqqpfpqpfce	1106
	-	+		1107
		\longrightarrow	wpqqqpfpqqpfcqqpqq	1108
	 		gqqpfpqpqqfcqqg	1109
	1	1 1	pqqqp fpqpfc eqpqrt	liina

		+	fpqpqqpfcqqpqrtipqph	11
420		127	qqqpfpqpqqpfceqpqrti	11
128	EEIpEIpEE	12/	ccqqlpqipeqsryeairai	11
		+	sschvmqqqccqqlpqipqq	11
	-	 	qcc qqlpqipqq sryqaira	11
			qqcc qqlpqipqq sryeair	11
		\vdash	qcc qqlpqipeq srseaira	11
		\vdash	qcc qqlpqipqq sryqaira	11
		\vdash	hvmqqqcc qqlpqipqq sry	11
		\vdash	qqcc qqlpqipeq srydair	11.
		-	qcc qqlpqipeq srydvira	11.
			c qqlpqipqq sryeairaii	11:
129	pEESEEIIp	128	fpqpqlpf pqqseqiip qql	11
			<pre>pqqseqiip qqlqqpfplqp</pre>	11
			pqqseqiip qqlqqpfplqp	11
			fpqpqlpf pqqseqiip qql	11
130	pnnnSpSnR	129	plnnnns pnnnspsnh hnns	11
			nns pnnnspsnh hnnspnnn	11
			plnnnnspnnnspsnhhnns	11
			nnns pnnnspsnh hnnspnn	11
			nns pnnnspsnh hnnspnnn	11
131	mEEEEEEER	130	ii mqqeqqeqr qgvqi	11
			ivhsii mqqeqqeqrqgvqi	11
			ivhsii mqqeqqeqr q	11
			sivhsii mqqeqqeqr qgvq	11
			ivhsli mqqeqqeqr qgvql	111
132	EEmnpcRnF	131	qqmnpcknfllqqcnhvslv	11:
			iqsflq qqmnpcknf llqqc	11:
			qsflq qqmnpcknf llqqcn	11:
			iqpylq qqmnpokny llqqc	114
			iqpylq qqmnpckny llqqc	114
			lq qqmnpckny llqqcnpvs	11/
133	cnInIpIFR	132	tmcnvnvplyrtttrvpfgv	114
			tsfalrtlptmcnvnvplyr	114
134	IISIIIpRS	133	cnhvslvsslvsiilpredc	114
			hvslvss lvsiilprs dcqv	114
			lvsslvsiilprsdcqvmqq	114
135	ElaElpEES	134	schvmqqqccqqlaqipeqs	114
			qccq qlaqipeqs rheaira	114
136	RpFIEEpIp	135	mesniiisflkpwlqqplpp	115
	IGITEDEPTE	-	sniiisflkpwlqqplppqq	115
137	pFpEpEEpE	136	qq pfpqpqqp q lpfpqqpqq	115
	Pre proposition		bád b.tbdbddbd dbddd	115
		 	djbibdabda bibabdaba d	115
	-		qpqqpqq pfpqpqqpq q qpqqpqqpqpqpqpq	115
	 			
			qqpqq pfpqpqqpq lpfpqq	115
	-		sądpąd pfpdpądpą dsfpą	115
			qqqq pfpqpqqpq qpfpqpq	115
	1	(1		
_			ddbdd btbdbdddbd Jbtbdd bddbddbddbd	115

		_	qskqpqq pqqpq qsfp	1162
			gqq pfpqpeqpq lpfg	1163
			qq pfpqpqqpq lpfpqqpqq.	1164
			gqq pfpqpeqpq qpfg	1165
			gqq pfpqpqqpq lpfg	1166
			qq pfpqpqqpq qpfpqlqqp	1167
			gqq pfpqpeqpq qsfg	1168
			gqvqwpqqqp fpqpqqq q	1169
		1	pqq pfpqpqqpq qpfpqlqq	1170
			gqq pfpqpqqpq qpfg	1171
			gqq pfpqpqqpq qsfg	1172
			qq pfpqpqqpq qpfpqsqqp	1173
			<pre>pfpqpqqpqqsfpqqqqpli</pre>	1174
138	FpEpEEpEE	137	pqqp fpqpqqpq pfpqpqq	1175
			qlpfpqqpqpfpqpqqqqq	1176
			pqqqfpqpqqpqpfpqqpq	. 1177
			qpfpqpqqfpqpqqsf	1178
_			addbddb tbdbddatbd	1179
			qqqqp fpqpqqpq qpfpqpq	1180
			skqpqqpfpqpqqqsfpq	1181
		1	qq fpqpqqpq qflqpqqpf	1182
	-		qskqpqqpfpqpqqsfp	1183
		_	qq fpqpqqpq pfpqqpqq	1184
	1	-	gqqp fpqpeqpqqpfg	1185
		_	g fpqpqqpeq sfpqqg	1186
	 	1	qqpqqq fpqpqqpq qpfpqp	1187
		-	g fpqpqqpeq pfpqqq	1188
		+	pqpqqqfpqpqqqsfpqq	1189
	1		gqqq fpqpeqpqq sfg	1190
		+	g fpqpqqpq qpfpqqq	1191
		+	fpqpqqpqqflqprqpfpq	1192
	1	-	qqp fpqpqqpqpfpqlqqp	1193
	 		pqqqfpqqpqpfpqqpq	1194
	 		gqqpfpqpeqpqqsfg	1195
	1	_	gdadwbddddb tbdbddbdd	1196
	-	+	bddb tbdbddbd d	1197
		-		1198
			74 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1199
	 	-	gqqpfpqpqqpqqsfg	1200
	-		qqp fpqpqqpqq pfpqsqqp	1201
	-	+	g fpqpqqpqq sfpqqq	1202
		-	p fpqpqqpq afpqqqqpli	1203
		+	gqqq fpqpqq sfg	1203
	1	-	gqqq fpqpqqpq pfg	1204
	+	-	tfphqpqqq fpqpqqpq f	
	-	-	qtfphqpqqf pqpqq q	1206
		_	sqpqqq fpqqqqq sfpqq	1207
			ątcphqpqqf pqpqqp q	1208
		-	gqqq fpqpeqpqq pfg	1209
			qq fpqpqqpq qflqprqpf	1210
		1	qq fpqpqqpq qflqpqqpf	

			qssy qqlqqlccq qlfqipe	1213
140	PEESFPEES	139	pqqsfpqqs qqsqqpfaqpq	1214
			bdbddbjbad bddstbdds d	1215
			qpqqpipvq pqqsfpqqs qq	1216
			vq pqqsfpqqs qqsqqpfaq	1217
141	IFpEpEpEF	140	rpqq lypqpqpqy sqpqqpi	1218
			qpfrpqq 1ypqpqpqy sqpq	1219
142	EEpFpEEpE	141	qqpfpqqpqqpfqpqqpip	1220
			qqflqp qqpfpqqpq qpypq	1221
			plqp qqpfpqqpq qpfpqpq	1222
			pqqqfiqp qqpfpqqpq qty	1223
		T	p qqpfpqqpq qqfpqpqqpq	1224
			pqqqfpqpqpqpqpq	1225
	1		tqqpqqpqqpqqpfpqtq	1226
			p qqpfpqqpqqpqqpqpqpq	1227
			qqpfpqtqqpqqpqqqqqq	1228
			qtqqpqqpqqqpqqpfqt	1229
			qqpqqpqqqqqpqqqpqqq	1230
			ddbibddbd dbibdr ddbdd	1231
		 	tpiqpqqpfpqqpqqpf	1232
		_	ddbAbddbd dbtbdtddbdd	1233
			qqqfiqpqqpqqqtyp	1234
	-	 	piqpqpfpqqpqqpqpfp	1235
			pqqqfiqpqqpfpqqpqqty	1236
	+	-	ddtbdbddbddbdddd	1237
	+	 	fplqpqqpfpqqpfqpf	1238
	-	-	pqqpflqpqqpqqpf	1239
		_	plqpqpfqqpqqqpqqp	1240
			gqpqqpfpeqpqqpfq	1241
			yp qqpfpqqpq qpfpqqppf	1242
			pqqpqqpqqpqqpqqpq	1243
<u> </u>		-	p qqpfpqqpqqqfpqpqqqqq	1244
	 	1	pdfpddbaadbbaddb	1245
			pqqqflqpqqpfpqqpq	1246
	+	-	bridb ddb ddb ddb ddb ddb ddb ddb ddb ddb	1247
	 	-	bdddtbdbddb ddbtbddbd	1248
	+	-	adb dabtbdabd dbta	1249
				1250
	-	+-	rqpfpqqp qqpypqqpq qpf	1251
	-	-	gqp qqpfpeqpq qsfq	1252
	-	+	gqp qqpfpqqpq qsfg	1253
		-	p dab t b dab d a t b d db d db	1254
<u> </u>	+	-	qqpqqpqqpqqpq	1255
	+	-	qp qqpfpqqpq qpfpqtqqp	1256
	-	-	qqpfpqtqqp qqpfpqqpq q	1257
-	-	-	fpqqp qqpypqqpqpfpqt	
<u> </u>	+	-	b dab to dab dab dab dab	1258
	-		ddb ddb tbddb ddb ddd	1259
<u> </u>	-	-	pfpeqpeqpypqqpq	1260
			gqpqqpfpeqpqqtfg	1261
<u> </u>	-	-	pfpqqp qqpfpqqpq qsfpq	1262
			gqp qqpfpqqpq qt fg	1263

			yaqpylpyp qqpfpqqpq qp	1264
			pqqp qqptqqpq qqfpqpq	1265
			gqp qqpfpeqpq qqfg	1266
			pqqp qqpypqqpq qlfpqtq	1267
			gqp qqpfpqqpq qqfg	1268
			qqpfpqqpq qtypqrpqqpf	1269
			qqpfpqqpqqtypqrpqqpf	1270
			I qp qqpfpqqpq qpypqqpq	1271
			prqpfpqqp qqpypqqpq qp	1272
143	EIaEIEImS	142	qqtflqpqqvaqlelmtsia	1273
			qpqqqqlah qiaqlevmtsi	1274
			qphqiaqlevmtsialrilp	1275
			ph qiaqlevmt sfalrtlpt	1276
			hqiaqlevmtsialrilptm	1277
			gtllqphqiaqlevmtsial	1278
			qiaqlevmtsfalrtlptmc	1279
			tllqphqiaqlelmtsialr	1280
			flqphqiaqlevmtsiaprt	1281
			qgtflqph qiaqlevmt sia	1282
			qiaqlevmtsialrilptmc	1283
144	FEIDEESEC	143	elccqhlwqipeqsqcqaih	1284
			hl wqipeqsqc qaiqnvvha	1285
			qhl wqipeqsqcqaihkvvh	1286
			elccqhlwqipeqsqcqaih	1287
145	EEESEEEIg	144	qsqqflsqsqqqqlqqqqqqqqqqqqqqqqqqqqqqqqq	1288
2.10	DDBOBEBLG		daqdarada ddadda da	1289
			qqvsqs qqqsqqqlg qcsfq	1290
			filevsqpq qqqqqqqqqq qq	1291
		-	dcasdb dddaddd ddddddddddddddddddddddddddddd	1292
		-		1293
			qqsqqysqsqqqqqqqqqqqqqqqqqqqqqqqqqqqqq	1293
		 	cvsqp qqqsqqq1 gqqpqqq	1294
			yqp qqqsqqqlg qcsfqqpq	1295
	+	1	qs qqqsqqqlg qcsfqqpqq	1296
			dbddddaddd ddbddddd	
			qlqqcvsqp qqqsqqqlg qq	1298 1299
146	SIIEpSIIE	145	qlgqcvsqp qqqsqqqlg qq	
140	STIEDSTIE	143	i sivqpsilqqlnpckvflq	1300
	 	1	pqqqisivqpsvlqqlnpck	1301
147	DC-AGGERR	146	qqqlpqqqi sivqpsilqql	1302
14/	FSaSSSIRF	140	plysattsvrfgvgtgvgay	1303
140		147	vpl ysattsvrf gvgtgvga	1304
148	REEEEEEEI	147	aiim hqqeqqqq1 qqqqqq	1305
			gạm hợqe qợq 1 qợ g	1306
			hqqeqqq1 qqqqqq1qqq	1307
			iim hqqeqqql qqqqqqql	1308
1.40		110	gqm hqqeqeqq1 qqqq	1309
149	IIEEEISpc	148	lqq ilqqqltpc mdvvlqqh	1310
			qqqqeqqilqq ilqqqltpc	1311
	ļ		ilqq ilqqqltpc mdvvlqq	1312
150	EElipeeei	149	qqvlpqqqi pfvhpsilqql	1313
			qlppfsqqq qqvlpqqqi pf	1314

151	FSEEEEppp	150	fsqqqqpf fsqqqpfp qqq	1315
			fsqqqqpqf sqqqpfp qqq	1316
			ppfsqqqpqfsqqqpfpq	1317
152	cIpgIERpF	151	metscipglerpwqqqplqq	1318
			etr aipglerpw qqqplppq	1319
			mr cipglerpw qqqplppqq	1320
			metrcipglerpwqqqplpp	1321
		1	mdtscipglerpwqqqplpp	1322
		1	ets cipglerpw qeqplppq	1323
153	EEEciplam	152	mvflqqqcipvam qrclars	1324
			lnpckvflqqqcipvam qrc	1325
154	EIaEIpREI	153	Vmqqqccq qlaqiprql qca	1326
			qccqqlaqiprql qcaaihs	1327
			mqqqccq qlaqiprql qcaa	1328
		-	qlaqiprql qcaaihsvvhs	1329
155	EEPREFPEE	154	hhqqqpiq qqphqfpqq qpc	1330
156	RpmFIEpEE	155	ypqq rpmylqpqq pbisqqqa	1331
150	EDITE LEDER	200	sfppqqpypqq rpmy1qpqq	1332
				1333
157	2 Date D	156	ypqq rpmylqpqq pisqqqa	1334
15/	IEEEmnpcR	130	#dor #dddmibostitradio	
	 		qsflqqqmnpdknfllqqcn iqpylqqqmnpdknyllqqc	1335
	 	 i		1336
			pqqqqpaiqsf1qqqmnpak	1337
			iqpylqqqmnpaknyllqqc	1338
150		1.20	Tdddwrbox BATTddctibAs	1339
158	SRIISpRgR	157	srllsprgk elhtpqeqfpq	1340
150		150	srllsprgk elhtpqeqfpq	1341
159	REEEEEEEp	158	iil hqqqqqqqp ssqvslqq	1342
160	dcEImEEEc	159	ilprs dcqvmqqqc cqqlaq	1343
		ļ	smilprs dcqvmqqqc cqql	1344
	-	1.60	vsiilprs dcqvmqqqo cqq	1345
161	SEPEIPFSE	160	qpylqlqpf sqpqlpysq pq	1346
			lqlqpf sqpqlpysq pqpfr	1347
			sqqpylqlqpf sqpqlpysq	1348
			lqlqpf sqpqlpysq pqpfr	1349
162	EIPFSEEEE	161	qqqpilpqlpfsqqqqpvlp	1350
			plisqqq qlpfsqqqq pqfs	1351
			psflqqqpilp qlpfsqqqq	1352
163	EEpFpIEpE	162	pqqp qqpfplqpq qpfpqqp	1353
			pqqp qqpfplqpq qpfpqqp	1354
			pqql qqpfplqpq qpfpqqp	1355
			pqqp qqpfplqpq qpfpqqp	1356
			p qqpfplqpq qsflwqsqqp	1357
			seqiipqql qqpfplqpq qp	1358
			p qqpfplqpq qsflwqsqqp	1359
164	RFdaIRaII	163	pripegsrydairaiiysiv	1360
			qsrydairaiiysivlqeqq	1361
			qs rydairaii ysivlqeqq	1362
			pripegsrydairaii ysiv	1363
165	ESRFdaIRa	164	pripeqsrydairaiiysiv	1364
165	IN SECTION FOR	1 104 :	Dribe darvdaira livsiv	3E366

			pe qsrydaira itypiilqe	1366
		_	qccqqlpripe qsrydaira	1367
			e qsrydaira itysiilqeq	1368
		<u> </u>	qccqqlpripe qsrydaira	1369
			qsrydaira iiysivlqeqq	1370
			pripe qsrydaira iiysiv	1371
166	EpSpEpEEI	165	flqqpq qpspqpqqv vqiis	1372
		L	sqqpflqqpq qpspqpqqv v	1373
			pq qpspqpqqv vqiispatp	1374
167	SIREEpIIp	166	qppf slhqqpvlp qqqipyv	1375
			qppf slhqqpvlp qqqipyv	1376
			qpilpqqppf slhqqpvlp q	1377
			qpilpqqppf slhqqpvlp q	1378
168	ppFSIREEp	167	qqqqqpilpqq ppfslhqqp	1379
			q ppfslhqqp vlpqqqipyv	1380
			q ppfslhqqp vlpqqqipyv	1381
			qpilpqq ppfslhqqp vlpq	1382
			qpilpqq ppfslhqqp vlpq	1383
169	FPIIIEEEE	168	dairait ypiilqeqq qgfv	1384
170	FSEEEEppF	169	pfsqqqqppfsqqqqpvlpq	1385
			qqpp fsqqqppf sqqplis	1386
			qps fsqqqppf sqqqppfs	1387
			qqqqpftqqqppfsqqppi	1388
			ppfsqqqqps fsqqqqppf s	1389
			qqqqpp fsqqqppf sqqqq	1390
			sqqqqapp fsqqqppf sqq	1391
			fsqqqqpq fsqqqppy sqq	1392
			psfsqqqqpp ftqqqqppf	1393
			vlpqqppfsqqqppfrsst	1394
		\vdash	isqqqqapp fsqqqppf sq	1395
			pp fsqqqqppf sqqqqspfs	1396
			fsqqqqppf rssthssqqpp	1397
		\top	isqqqqpppfsqqqppfsq	1398
			qpp ysqqqqppy sqqqqppf	1399
			qrqlpp fsqqqppf sqqqq	1400
	1	1	fsqqqqppf sqqqqppysqq	1401
	1		eqqpp fsqqqppf sqqqqp	1402
			p fsqqqqppf sqhqqpvlpq	1403
			ysqqqppy sqqqqppfsqq	1404
	 		qqqqqqqp£tqqqppfsq	1405
	1	-	fsqqqqppf sqqqqppftq	1406
		1	qqqqppfsqeqqppf sqqqq	1407
	 	\vdash	ftqqqqppfsqqspisqqqq	1408
	1	1	niqqqqppfsqqqppf sqq	1409
	-	<u> </u>	qqqppftqqqqppfsqqspi	1410
171	EREEpIIpE	170	s qhqqpvlpq qqipsvqpsi	1411
4/4	PRESPITOR	+	qqplfsqkqqpvlpqqpsfs	1412
		 	plfs qkqqpv1pq qpats	1413
		+-		1414
	1	1	sąąąąppfs ąhąąpvlpą ąą	
			pfsqqqqppfs qhqqpvlpq	1415

		-	ftqqqqppfeqqspisqqqq	141						
173	BBBBBBBBB.	172	qqqppftqqqqppfsqqspi	141						
1/3	EEEEEEEp	1/2	q qqqqqqp lsqvsfqqpq	142						
	 		q qqqqqqq plsqvcfqqsq	142						
	 		pfsqq qqqqqqp pfsqqq							
		-	gsg qqqqqeqp gsg	142						
		-	ppfsqqqqqqqpfpqpsf	142						
		-	qqqqspfs qqqqqqqp pfl	142						
		-	spisqqqqqqqqqqpftq	142						
		1	s qqqeqqqp pflqqqqppf	14						
		_	gq qqqqqqqq lsqvg	14:						
		-	ddjdddd ddddddb ssda	14:						
		-	qqqqppftqq qqqqqqp f	14						
			gq qqqqqqp lsqvg	14						
	 	<u> </u>	q qqqqqqqp ssqvsfqqpq	143						
		_	qqqqqqqpftqqqpfsq	14						
			qqppfsq qqqqqqqp fpqq	14						
			qqlqq qqqqqq plsqvcf	14						
			qqlqq qqqqqqp lsqvsf	14						
			ilhqqhhhhqq qqqqqqq p	14						
			qqppfsq qqqqqqqqp pfsq	14						
			q qqqqqqp lsqvsfqqpq	143						
			hhhqq qqqqqqqp lsqvsf	14						
			aiilhqqqq qqqqqqqp ls	144						
174	EEEEEppFS	173	pfsqqqqqqqqppfsqqq	144						
			sqqqppfs qqqqppfs qqq	_						
			is qqqqppfs qqqqpqfsq	144						
			psfs qqqqppft qqqqppf	144						
			fsqqqqppfsqqqqppftq	14						
			qqppfsqqqqqqqppfsq	144						
175	pSIEpSIIE	174	qi psvqpsilq qlnpcklfl	144						
			pvlpqqqi psvqpsilq qln	144						
176	PEEEIgEEp	175	qqqlgqcsfqq pqqqlgqqp	144						
			qlssqvsfqq pqqqlgqqp q	148						
			sfqq pqqqlgqqp qqqqqq	145						
			q pqqqlqqqp qqqqqqqvlq	145						
			sfqq pqqqlgqqp qqqqqqv	148						
			qqqlgqcsfqq pqqqlgqq	144						
			csfqq pqqqlgqq qqqqq	145						
177	CSFEEPEEE	176	qqqlqq csfqqpqq lgqqp	145						
			lgq csfqqpqq qlgqwpqq	145						
			sqqqllq csfqqpqq lgqq	145						
			qsqqqlgq csfqqpqqq lgq	145						
	1		qqqlgq csfqqpqq lgqqp	146						
-	1		osfqqpqqq lqqqqqq	148						
178	REICCERIF	177	gplrelccqhlwqipg	146						
	102000141	-	qstyqllrelccqhlwqipe	146						
	1		qstyqllrelccqhlwqipe	146						
			gplrelccehlwqipg	146						
			qstyqllrelccqhlwqipe	146						

			qqpilpeppfs lqqqpvlpq	1468
			psf lqqqpilpq lpfsqqqq	1469
			pfsqqqpsf lqqqpilpq lp	1470
180	ERppFSEEE	179	qrppfsqqqqqpvlpqqppf	1471
			lqqppfsq qrppfsqqq qqp	1472
			qrppfsqqqqqpvlpqqppf	1473
		_	lqqppfsq qrppfsqqq qqp	1474
181	mIFIEEEcI	180	svlqqlnpc mvflqqqci pv	1475
			mvflqqqaipvamqrclars	1476
182	EEERpFIEp	181	qqsfp qqqrpfiqp slqqql	1477
			qpqqpqqsfp qqqrpfiqp s	1478
		-	fp qqqrpfiqp slqqqlnpc	1479
183	SFpEIpgEI	182	gyyp tfpqlpgql qqpaqgq	1480
184	IEEEIIpEI	183	ggqvqw lqeqlvpql g	1481
			psgqvqw lqqqlvpql qqpl	1482
			ggqvqw leeqlvpql g	1483
			ggqvqw lqqqlvpql g	1484
			psgqvqw lqqqlvpql qqpl	1485
185	ppFIEpSIE	184	fpqqq ppfiqpslq qqvnpc	1486
			pqqq ppfiqpslq qqvnpck	1487
			qqpqqsfpqqq ppfiqpslq	1488
186	IIpEEpaFS	185	qqplfsqkqqp vlpqqpafs	1489
			kqqp vlpqqpafs qqqqtvl	1490
			qqqt vlpqqpafs qqqhqql	1491
187	pEpEEEIpE	186	lqqpqqpf pqpqqqlpq pqq	1492
			gqqpf pqpeqqlpq pg	1493
			Iqqpqqpf pqpqqlpq pqq	1494
			gqqpf pqpqqqlpq pg	1495
			qpf pqpqqqlpq qpqqqf	1496
			pqpqqqlpq pqqpqqsfpqq	1497
188	gSanmEIdp	187	gtanmqvdpssqvqwpqqqp	1498
	}	-	gtanmqvdpssqvqwpqqqp	1499
			gtanmqvdpssqvqwpqqqp	1500
189	EEEgmRIFI	188	qqqqqq qqqmhifl plsqq	1501
			imqqqqqqqqqmhiflpl	1502
			q qqqgmhifl plsqqqqvgq	1503
190	RIIRaIIIR	189	cqaih kvvhaiilh qqqkqq	1504
			qaih kvvhaiilh qqqkqqq	1505
191	IpIFgSSSS	190	lrtlpmmcsvn vpvygttts	1506
			lptmcgvn vplygttts vpf	1507
			vpvygttts vpfgvgtqvga	1508
			csvn vpvygttts vpfgvgt	1509
192	pEEIgEEpE	191	pq pqqlgqqpq qqevpqvaf	1510
			qcsfqqpq qqqqqq qqe	1511
193	ESGEEEIIE	192	qgvsqpqq qsgqqqlvq csf	1512
			qsqqqlvqcsfqqpqpqql	1513
194	FppEIpFpE	193	pqp fppqlpypqpdlpypqp	1514
	- FFP-F-		pdb.tbbdlbAbdbhbdb	1515
				1516
	 			1517
	1	[[pqp fppqlpypq pqlpypqp	

			pqp fppqlpypq pqpfrpqq	1519
			pqp fppqlpypqpppfspqq	1520
			lqlqpfpqpqpfppqlpypq	1521
			pqp fppqlpypq pqsfppqq	1522
			mqlqpfpqpqpfpqqqq	1523
			gqpqpfppelpypqpg	1524
			gqpqpfppqlpypqpg	1525
			pfpqpqpfppqlpypqpppf	1526
			pfpqpqp fppqlpypq pqsf	1527
			pqpqpfpqpqp fppqlpypq	1528
			pqp fppqlpypq pppfspqq	1529
			gsg fppelpypq gsg	1530
	1		pqpqp fppqlpypq tqpfpp	1531
			pqp fppqlpypq tqpfppqq	1532
			qp fppqlpypq tqpfppqqp	1533
195	cSplampER	194	ckvflqqq ospvampqr lar	1534
			lqqqcspvampqrlar	1535
			vflqqcspvampqrlarsqm	1536
	1		lnpckvflqqq cspvampqr	1537
			qqqqaspvampqrlarsqmwq	1538
			cspvampqrlarsqnwqqss	1539
			q ospvampqh larsqmwqqs	1540
			ckvflqqq cspvampqr lar	1541
			qlnpckvflqq cspvampqr	1542
			qqqcspvampqrlarsqmwq	1543
			vflqqqcspvampqhlarsq	1544
			vflqqq cspvampqr larsq	1545
196	dEESgEgEE	195	sgqrqq dqqsgqq pgqrq	1546
197	EIEESIIFg	196	ttppq qlqqsilwg ipallr	1547
198	pFSEEEIpI	197	qqp pfsqqelpi lpqqppfs	1548
			qqqppfsqqqp pfsqqelpi	1549
			fsqqqp pfsqqelpi lpqqp	1550
199	SSRIpgIER	198	me tshipglek psqqqplpl	1551
			me tsrvpglek pwqqqplpp	1552
200	SIaIRSIpm	199	lmt sialrtlpmmcsvnvpv	1553
			hlevmtsialrtlpmmcsvn	1554

Figura 6

```
P(QR)P(QE)LP(FY)PQ (SEQ ID NO: 1555)
Secuencia 1:
        Péptido de respuesta óptima: PQLPYPQPQLPYPQPQPFRP (SEQ ID NO: 1556)
        Péptido de alta calidad:
                                  QLQPFPQPELPYPQPQP (SEQ ID NO: 1557)
        Grupos incluidos 1,2,7,8,10,16,22,23,72
Secuencia 2:
                    P(FY)P(QR)P(QE)LP(FY) (SEQ ID NO: 1558)
       Péptido de respuesta óptima: PQLPYPQPQLPYPQPQPFRP (SEQ ID NO: 1559)
Péptido de alta calidad: QLQPFPQPELPYPQPQP (SEQ ID NO: 1560)
       Grupos incluidos: 1,2,7,8,10,16,22,23,72, 76 PARTE
                    (PIAT) FPQ (PT) (QE) Q (PTS) (FITY) (SEQ ID NO: 1561)
Secuencia 3:
       Péptido de respuesta óptima:
                                      QPFPQPQQPFPWQPQQPFPQ (SEQ ID NO: 1562)
       Péptido de alta calidad: GQQPFPQPEQPFPWQG (SEQ ID NO: 1563)
                                GQQPFPQPEQPIPVQG (SEQ ID NO: 1564)
       Grupos incluidos:
 3,5,6,9,20,24,29,60,69,70,73,74,77,102PT,108,112
                   PQ(PT)(QE)Q(PTS)(FIY)(PS)(VWHQL) (SEQ ID NO: 1565)
Secuencia 4:
       Péptido de respuesta óptima: QPFPQPQQPFPWQPQQPFPQ (SEQ ID NO: 1566)
       Péptido de alta calidad:
                                  GQQPFPQPEQPFPWQG (SEQ ID NO: 1567)
                                  GQQPFPQPEQPIPVQG (SEQ ID NO: 1568)
       Grupos incluidos: 3,5,6,9,20,60,66,69,73,74,77, PARTE 86
        (3 Y 4 SOLAPADOS)
       Estado: Similar a Secuencia 3
Secuencia 5:
                   (KQW) (QR) P (QE) Q (SPIT) (FLY) PQ (SEQ ID NO: 1569)
       Péptido de respuesta óptima: QPQLPFPQQPQQPFPQ (SEQ ID NO GFPQTQQPEQPFPQQG (SEQ ID NO: 1571)
                                      QPQLPFPQQPQQPQQPFPQ (SEQ ID NO: 1570)
       Grupos incluidos: 11,12,32,54,55,56,59,61,62,65
Secuencia 6:
                    P(FIYL) (PS) (QE) (QR) P(QE) Q(PT) (SEQ ID NO: 1572)
       Péptido de respuesta óptima: PLQPQQPFPQQPQQPFPQPQ (SEQ ID NO: 1573)
       Péptido de alta calidad: GQPFPEQPQQPFPQQG (SEQ ID NO: 1574)
       Grupos incluidos: 32PT, 54, 55, 56, 57, 61, 62, 63PT, 75, 85.94PT
       Cia 7: FLP(QE)LPYPQ (SEQ ID NO: 1575)

Péptido de respuesta óptima: LQLQPFPQPQPFLPQLPYPQ (SEQ ID NO: 1576)

Péptido de alta calidad: PQPQPFLPELPYPQPQS (SEQ ID NO: 1577)
Secuencia 7:
       Grupos incluidos: 13, 27, 71 PARTE
Secuencia 8:
                     LQQIL(QE)QQL (SEQ ID NO: 1578)
       Péptido de respuesta óptima:
                                     LQQILQQQLTPCMDVVLQQH (SEQ ID NO: 1579)
       Péptido de alta calidad:
                                  NO
       Grupos incluidos: 14,89
Secuencia 9:
                    FSYQ(EQ)QPFPQQ (SEQ ID NO: 1580)
        Péptido de respuesta óptima:
                                   PQQSFSYQQQPFPQQPYPQQ (SEQ ID NO: 1581)
       Péptido de alta calidad:
                                 NO
       Grupos incluidos: 15,96PT
                    FPS(QE)(LQ)PY(LM)Q (SEQ ID NO: 1582)
Secuencia 10:
                                      PFPSQQPYLQLQPFPQPQLP (SEQ ID NO: 1583)
       Péptido de respuesta óptima:
                                  NO
        Péptido de alta calidad:
       Grupos incluidos: 16PT, 35, 38, 71PT, 76PT, 92PT, 93PT
Secuencia 11:
                    (PQSH)QP(QE)Q(QE)(LF)(PS)Q (SEQ ID NO: 1584)
        Péptido de respuesta óptima: QQPQQPFPQQPQQFPQPQQ (SEQ ID NO: 1585)
                                 GFFPQPEQEFPQPQQG (SEQ ID NO: 1586)
       Péptido de alta calidad:
```

```
Grupos incluidos: 17, 25, 36, 40, 41, 80, 88
Secuencia 12:
                   P(FW)(SP)(EQ)Q(EQT)QP(VILSF) (SEQ ID NO: 1587)
      Péptido de respuesta óptima: QQQQPPFSQQQQPVLPQQSP (SEQ ID NO: 1588)
           (similar a pero más activo que PFSQQQQSF en WO 02/083722)
                  PSGQVQWPQQQQPFPQPQQP (SEQ ID NO: 1589)
      Péptido de alta calidad: GQPPFSEQEQPVLPQG (SEQ ID NO: 1590)
      Grupos incluidos: 18,79,84PT,97,102PT,103PT,115
                    (IL)QP(QE)QPFPQ (SEQ ID NO: 1591)
Secuencia 13:
      Péptido de respuesta óptima: FTOPOOPTPIOPOOPFPQQP (SEQ ID NO: 1592)
           (similar a pero más activo que IIQPQQPAQ en WO 02/083722)
      Péptido de alta calidad: GOQQFIQPEQPFPQQG (SEQ ID NO: 1593)
      Grupos incluidos: 19 (PARTE), 26, 30, 58
                   QQP(EQ)LPFPQ (SEQ ID NO: 1594)
      Péptido de respuesta óptima: QQPQQPFPQPQQPQLPFPQQ (SEQ ID NO: 1595)
Péptido de alta calidad: NO
      Grupos incluidos: 21, 64
Secuencia
          15:
                   QPQQP(EQ)LPF (SEQ ID NO: 1596)
      Péptido de respuesta óptima: QQPQQPFPQPQQPQLPFPQQ (SEQ ID NO: 1597)
      Péptido de alta calidad:
                                 NO
      Grupos incluidos:
Secuencia 16:
                   PQP(EQ)QP(EQ)LP (SEQ ID NO: 1598)
      Péptido de respuesta óptima: QQPQQPFPQPQQPQLPFPQQ (SEQ ID NO: 1599)
Péptido de alta calidad: NO
      Péptido de alta calidad:
Grupos incluidos: 21
                   VFLQQQCSPV (SEQ ID NO: 1600)
Secuencia 17:
      Péptidos de respuesta óptima:
      GRUPO 28: SVLQQLNPCKVFLQQQCSHV (SEQ ID NO: 1601)
GRUPO 122: CKVFLQQQCSPVAMPQRLAR (SEQ ID NO: 1602)
GRUPO 114: KVFLQQQCSPVAIPYRLARS (SEQ ID NO: 1603)
      Péptido de alta calidad: NO
      Grupos incluidos: 28,114,122
Secuencia 18:
                   (M) (WL) (QW) QSSCHVMQ (SEQ ID NO: 1604)
      Péptidos de respuesta óptima:
      GRUPO 39: PQRLARSQMWQQSSCHVMQQ (SEQ ID NO: 1605)
                     ARSQTLWQSSCHVMQQCCR (SEQ ID NO: 1606)
      GRUPO 110:
      Péptido de alta calidad:
      Grupos incluidos: 39,110
Secuencia 19:
                    QPQQQQLAH (SEQ ID NO: 1607)
      Péptido de respuesta óptima: QQPQQQLAHGTFLQPHQIA (SEQ ID NO: 1608)
                                 NO
      Péptido de alta calidad:
                      31
      Grupos incluidos:
Secuencia 20:
                   FPLQPQQP(FL)PQ (SEQ ID NO: 1609)
      Péptido de respuesta óptima: PQQLQQPFPLQPQQPFPQQP (SEQ ID NO: 1610)
                               NO
      Péptido de alta calidad:
      Grupos incluidos: 33
          21:
                    FPP(QE)(LQ)PYPQ (SEQ ID NO: 1611)
Secuencia
      Péptido de respuesta óptima: PQPFPPELPYPQPQPFRPQQ (SEQ ID NO: 1612)
      Péptido de alta calidad: PQPQPFPPQLPYPQPQS, (SEQ ID NO: 1613)
      GQQQPFPPEQPYPQQG (SEQ ID NO: 1614)
      Grupos incluidos: 37,52,71,92PT,93PT,105
```

Secuencia 22: LCC(QE)(HQR)L(PW)(QE)IP (SEQ ID NO: 1615) Péptido de respuesta óptima: QSTYQPLQQLCCQQLWQIPE (SEQ ID NO: 1616) Péptido de alta calidad: NO Grupos incluidos: 39PT, 100, 104, 107, 178 Secuencia 23: P(WLS)(QL)(QE)QPL(PQ)(PQ) (SEQ ID NO: 1617) Péptido de respuesta óptima: ERPWQEQPLPPQHTLFPQQQ (SEQ ID NO: 1618)
Péptido de alta calidad: NO Grupos incluidos: 44,78,90,95PT,98,116,117,113 Secuencia 24: QPLP(QE)QPSF (SEQ ID NO: 1619) Péptido de respuesta óptima: PPFSQQQQQPLPQQPSFSQQ (SEQ ID NO: 1620)
Péptido de alta calidad: NO Grupos incluidos: 45,95PT Secuencia 25: PF(SP)QQQQQP(LVI) (SEQ ID NO: 1621) Péptido de respuesta óptima: PPFSQQQQQPLPQQPSFSQQ (SEQ ID NO: 1622)
Péptido de alta calidad: NO Grupos incluidos: 45 PARTE Secuencia 26: IVYSTILQE (SEQ ID NO: 1623) Péptido de respuesta óptima: QQSRYEAIRAIVYSTILQEQ (SEQ ID NO: 1624) Péptido de alta calidad: Grupos incluidos: 46 NO Secuencia 27: PFSQ(QE)QP(IS)(LF)S (SEQ ID NO: 1625) Péptido de respuesta óptima: FSQQQPPFSQQQPILSQQPP (SEQ ID NO: 1626) Péptido de alta calidad: Grupos incluidos: 47 PARTE, 68 Secuencia 28: QGIQILRPL (SEQ ID NO: 1627) Péptido de respuesta óptima: QEQQQGIQILRPLFQLVQGQ (SEQ ID NO: 1628) NO Péptido de alta calidad: Grupos incluidos: 48 Secuencia 29: PFSSVVAGI (SEQ ID NO: 1629) Péptido de respuesta óptima: CSIIKAPFSSVVAGIGGQYR (SEQ ID NO: 1630) Péptido de alta calidad: Grupos incluidos: 49 Secuencia 30: YCSTTIAPV (SEQ ID NO: 1631) Péptido de respuesta óptima: YIPPYCSTTIAPVGIFGTN (SEQ ID NO: 1632) Péptido de alta calidad: NO Grupos incluidos: 50 Secuencia 31: HVAMSQRLA (SEQ ID NO: 1633) Péptido de respuesta óptima: QQCSHVAMSQRLARSQMWQQ (SEQ ID NO: 1634) Péptido de alta calidad:
Grupos incluidos: 51 Secuencia 32: YSIILQ(QE)(QE)(QE)QGF (SEQ ID NO: 1635) Péptido de respuesta óptima: RYDAICAITYSIILQEQQQG (SEQ ID NO: 1636) Péptido de alta calidad: Grupos incluidos: 53 Grupos incluidos: Secuencia 33: FPHQPQEQAFPQ (SEQ ID NO: 1637) Péptido de respuesta óptima: QQIFPQPQQTFPHQPQQAFP (SEQ ID NO: 1638) Péotido de alta calidad: GQTFPHQPEQAFPQPG (SEQ ID NO: 1639)
Grupos incluidos: 67

Secuencia 34: PS(GS)(OE)V(QE)WPO (SEQ ID NO: 1640) Péptido de respuesta óptima: ATANMQADPSGQVQWPQQQP (SEQ ID NO: 1641)
Péptido de alta calidad: NO Grupos incluidos: 81,102PT Secuencia GALCSSLSN (SEQ ID NO: 1642) Péptido de respuesta óptima: FDEEKNSTGALCSSLSNQAS (SEQ ID NO: 1643) Péptido de alta calidad: Grupos incluidos: 82 36: Secuencia QFP(QE)Q(QE)IPV (SEQ ID NO: 1644) Péptido de respuesta óptima: QPPFPQQHQQFPQQQIPVVQ (SEQ ID NO: 1645) Péptido de alta calidad: Grupos incluidos: 83 Grupos incluidos: P(FY)P(QE)QP(YF)PQ (SEQ ID NO: 1646) Secuencia Péptido de respuesta óptima: QQPFPQQPYPQQPYPSQQPY (SEQ ID NO: 1647)
Péptido de alta calidad: NO Péptido de alta calidad: 38: QAGQG(QE)(QE)GY (SEQ ID NO: 1648) Secuencia Péptido de respuesta óptima: GQQAGQGQQGYYPTSPQQLG (SEQ ID NO: 1649) NO Péptido de alta calidad: Grupos incluidos: 101 Secuencia 39: TLPSMCNVY (SEQ ID NO: 1650) Péptido de respuesta óptima: FEEIRNLALQTLPSMCNVYI (SEQ ID NO: 1651) Péptido de alta calidad: Grupos incluidos: 106 NO Secuencia FQPSQ(QE)NPQ (SEQ ID NO: 1652) Péptido de respuesta optima: QQYPSGQGFFQPSQQNPQAQ (SEQ ID NO: 1653) Péptido de alta calidad: Grupos incluidos: 109 NO IRSLVLKTL (SEQ ID NO: 1654) Secuencia 41: Péptido de respuesta óptima: QPQQPAQLEGIRSLVLKTLP (SEQ ID NO: 1655)
Péptido de alta calidad: NO Péptido de alta calidad: NO Grupos incluidos: 119,120,121

Figura 7

Secuencia	SEQ ID						_	_				
Gliadina	NO:	Péptido alta calidad	Α	В	С	D	E	F	G	Н		J
1,2	1656	QLQPFPQPQLPYPQPQP	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
3,4	1657	GQQPFPQPEQPFPWQG	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ
3,4	1658	GQQPFPQPEQPIPVQG	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
3,4	1659	GQQPFPQPEQPFPWQG	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
5	1660	GFPQTQQPEQPFPQQG		Υ	Υ				Υ	Υ		Y
5	1661	GFPQTQQPEQPFPQQG		Υ	Υ				Υ	Υ		Υ
6	1662	GQPFPEQPQQPFPQQG								Υ		
7	1663	PQPQPFLPQLPYPQPQS	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
11	1664	GFFPQPEQEFPQPQQG		Υ	Υ	Υ	Υ		Υ			Υ
11	1665	GFFPQPEQEFPQPQQG		Υ	Υ	Υ	Υ		Υ			Υ
12	1666	GQPPFSEQEQPVLPQG					Υ		Υ		Υ	
12	1667	GQPPFSEQEQPVLPQG					Υ		Υ		Υ	
13	1668	GQQQFIQPEQPFPQQG		Υ	Υ	Υ		Υ	Y	Υ		Υ
21	1669	PQPQPFPPQLPYPQPQS	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
21	1670	GQQQPFPPEQPYPQQG		Υ	Υ						Υ	Υ
33	1671	GQTFPHQPEQAFPQPG		Υ	Υ				Υ		Υ	Υ

Figura 8

Avenina 20mero	SEQ ID NO:	Secuencia(s) núcleo previstas	SEQ ID NO:	Lambda	Proporción
TTTVQYDPSEQYQPYPEQQQ	1672	DPSEQYOPY	1684	33,58	0,145
QFDPSEQYQPYPEQQQPILQ	1673	PYPEQQQPI DPSEQYQPYP	1685 1686	122,34	0,103
*VQYDPSEQYQPYPEQQQPFV	1674	PYPEQQQPF DPSEQYQPYP	1687 1688	122,34	0,105
TVQYNPSEQYQPYPEQQEPF	1675	PYPEQQEPF DPSEQYQPYP	1689 1690	146,42	0,051
YQPYPEQQQPILQQQQMLLQ	1676	PYPEQQQPI	1691	52,56	0,126
EQYQPYPEQQQPFVQQQPPF	1677	PYPEQQQPF	1692	90,39	0,053
SEQYQPYPEQQPFMQPLLQQ	1678	PYPEQQPFM	1693	19,07	0,226
*CRRLEQIPEQLRCPAIHSVV	1679	RRLEQIPEQ	1694	61,47	0,069
*QIPEQLRCPAIHSVVQAIIL	1680			94,84	0,033
*NNKREQQFGQNIFSGFSVQL	1681			104,78	0,077
*QILRQAICQVTRQQCCRQLA	1682			34,01	0,055
*VPFLRSQILRQSTCHVMRRQ	1683			92,47	0,067

Secuencia 1: PYPEQ(QE)QP(IF)(VLM) (SEQ ID NO:1695)

Péptido de respuesta óptima: QFDPSEQYQPYPEQQQPILQ (SEQ ID NO:1696)

Péptido de alta calidad: NO

POTENCIA: 6/30 RESPONDEDORES, TASA DE RESPUESTA 122,3

(HOMÓLOGO A TRIGO Secuencia 12: GQPPFSEQEQPVLPQG (SEQ ID NO:1590))

Secuencia 2: CRRLEQIPEQLRCPAIHSVV (SEQ ID NO:1697)

Secuencia 3: QFGQNIFSGFSVQLLSEALG (SEQ ID NO:1698)
POTENCIA: 12/30 RESPONDEDORES, TASA DE RESPUESTA 11,2

Figura 10

VRVPVPQLQP QNPSQQQPQE QVPLVQQQQF PGQQQQFPPQ QPYPQPQPFP SQQPYLQLQP FPQPQLPYPQ PQSFPPQQPY PQPQPQYSQP QQPISQQQAQ QQQQQQQQQ QQQILQQILQ QQLIPCMDVV LQQHNIAHAR SQVLQQSTYQ LLQELCCQHL WQIPEQSQCQ AIHNVVHAII LHQQQKQQQQ PSSQVSFQQP LQQYPLGQGS FRPSQQNPQA QGSVQPQQLP QFEEIRNLAL QTLPAMCNVY IAPYCTIAPF GIFGTN (SEQ ID NO: 1928)

Figura 9

Grupo	Epítopos "núcleo(s)" previstos	SEQ ID	Secuencias	SEQ ID NO:	Respuesta (SFC)	
		NO:			Α	В
1	QQPTPIQPQ	1699	PFTQPQQPTPIQPQQPFPQQ	1722	70	18
2	QQPFPQQPQ o	1700	QQQFIQPQQPFPQQPQQTYP	1723	57	21
	QQPFPWQPQ o	1701	PFPQQPQQPFPQQPQQSFPQ	1724	53	23
	QQPFPQSQQ	1702	TPIQPQQPFPQQPQQPQQPF	1725	64	16
			QTQQPQQPFPQQPQQPFPQT	1726	52	17
			QQFLQPQQPFPQQPQQPYPQ	1727	44	16
			POQPFPQQPQQPQQPFPQPQ	1728	51	14
			QQPFPQQPQQPFPQPQQPIP PQQPFLQPQQPFPQQPQQPF	1729	81	10
			OPFPOPOOPFPWOPOOPFPO	1730	45	9
			QPQQPFPQSQQPQQPFPQPQ	1731	19	8
			POTOOPOOPFPOSOOPOOPF	1732 1733	41	15
			1 41 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1733	36	9
3	QQPFPLQPQ o	1703	SEQIIPQQLQQPFPLQPQQP	1734	12	3
	QQPFPQLQQ	1704	PFPQTQQPQQPFPQLQQPQQ	1735	25	13
4	QQPIPVQPQ o	1705	QPQQPIPVQPQQSFPQQSQQ	1736	60	12
	QQPIPQQPQ o	1706	FPELQQPIPQQPQQPFPLQP	1737	22	7
	QQPYPQQPQ	1707	FPQQPQQPYPQQPQQPFPQT	1738	19	4
			PRQPFPQQPQQPYPQQPQQP	1739	19	13
5	PQQPQQSFPQQQ	1708	PFPQPQQPQQSFPQQQQPLI	1740	29	15
	0		LPQPQQPQQSFPQQQRPFIQ	1741	37	12
	PQQPQQPFPQQQ	1709	QPQQPQQPFPQQQQPLIQPY	1742	49	17
6	OCCEORCOO	1710	OPOOOYPSGOGSFOPSOONP	1743	F4	-
ь	QGSFQPSQQ	1710	QYPSSQGSFQPSQQNP	1743	54	5
			GQGFFQPSQQNPQAQGSFQP	1745	32	7
			0.501.510.5511.51.5001.51	1740	7	3
7	PQQPFPQPQQ o	1711	POTOOPOOPFPOPOOTFPOO	1746	21	9
1	PQQPFPQTQQ o	1712	OOPOOPFPOPOLPFPOOSEO	1747	15	2
	1 44111 4144		FPWQPQQPFPQTQQSFPLQP	1748	25	7
8	QQPQQPFPQ o	1713	PFPQTQQPQQPFPQLQQPQQ	1749	25	13
	QQPQQPYPQ	1714	QQPLPQPQQPQQPFPQSQQP	1750	54	20
			PFPQLQQPQQPFPQPQQQLP	1751	36	5
			PRQPFPQQPQQPYPQQPQQP	1752	19	13
9	PFPQPQQPQ o	1715	PQQPFPQPQQPQQPFPQLQQ	1753	37	8
	PFPQSQQPQ o	1716	PQTQQPQQPFPQSQQPQQPF	1754	36	9
	PFPQPQQAQ o	1717	QPQQPFPQSQQPQQPFPQPQ	1755	41	15
	QFPQTQQPQ	1718	PQQPQQPFPQPQQAQLPFPQ	1756	16	7
			HQPQQQFPQTQQPQQPFPQP	1757	30	14
10	PQQQFIQPQ	1719	FSQPQQPQQQFIQPQQPFPQ	1758	45	8
11	QQPQLPFPQ o	1720	PQPQQPQLPFPQQPQQPFPQ	1759	79	7
	LQPQQPFPQ	1721	PQQQFLQPQQPFPQQPRQPY	1760	35	14
12			QTLPAMCNVYIPPHCSTTIA	1761	35	7
13			NPSQQQPQEQVPLVQEQQFQ	1762	5	16
14			HHFRSNSNHHFHSNNNQFYR	1763	14	3