

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 653 865

51 Int. Cl.:

H04L 12/40 (2006.01) **E02F 9/20** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 02.08.2007 E 07253045 (4)
 97 Fecha y número de publicación de la concesión europea: 04.10.2017 EP 1887148

(54) Título: Control "remoto" para una máquina o un vehículo motorizado

(30) Prioridad:

11.08.2006 US 503515

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 09.02.2018

(73) Titular/es:

CLARK EQUIPMENT COMPANY (100.0%) 155 CHESTNUT RIDGE ROAD MONTVALE, NJ 07645, US

(72) Inventor/es:

BERTCH, BRADY J.; ROSSOW, SCOTT R. y VASICHEK, SHAWN R.

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Control "remoto" para una máquina o un vehículo motorizado

Antecedentes de la invención

Las máquinas motorizadas, tal como las cargadoras compactas o las excavadoras se utilizan para una amplia variedad de aplicaciones en diferentes entornos o sitios. Por ejemplo, las máquinas motorizadas se pueden utilizar en un sitio de construcción de un edificio o en un sitio de construcción de una autovía o paisajística. Habitualmente, la cargadora o máquina motorizada opera mediante controles operativos "de a bordo" de la máquina motorizada, por ejemplo, mediante palancas y controles operativos ubicados en la cabina de la máquina o el vehículo motorizado. En algunos entornos o aplicaciones, puede no ser factible o deseable operar la máquina desde la cabina. Por ejemplo, en un sitio de edificación o en un sitio de construcción de una autovía, puede ser difícil operar la máquina desde la cabina, debido a una visibilidad y visión limitadas desde la cabina y/o el área o espacio en el que la máquina o el vehículo debe operar. La presente invención aborda estos y otros problemas y proporciona ventajas frente a los sistemas operativos de control anteriores para una máquina o un vehículo motorizado.

La patente de EE. UU. n.º 6.493.616 expone una unidad de control y diagnóstico 50 para una máquina motorizada.

La unidad de control y diagnóstico 50, tal como se describe, incluye una interfaz a un controlador de la máquina para realizar diagnósticos. La máquina se puede arrancar utilizando la unidad de control y diagnóstico, y emplear o probar diversos motores y actuadores de impulsión hidráulica.

El documento US2006/047377 A1 expone el preámbulo de cada una de las reivindicaciones 1 y 12.

Compendio de la invención

La presente invención se refiere a un control "remoto" de una máquina o un vehículo motorizado para la operación de la máquina o el vehículo motorizado desde el exterior de la cabina de la máquina o el vehículo motorizado o alejado de esta. Las realizaciones de la invención incluyen un receptor "de a bordo" de una máquina motorizada, que se configura de modo que reciba órdenes operativas transmitidas desde una unidad de control "remota". El receptor envía órdenes desde la unidad de control "remota" a los diversos controladores o funciones operativos en la máquina motorizada mediante una red de área de los controladores "de a bordo" de la máquina o el vehículo motorizado. En las realizaciones ilustradas, el receptor está acoplado a la red de área de los controladores mediante un conector, que se enchufa en un módulo de control "remoto" de la red de área de los controladores para operaciones de enchufar y usar.

Descripción breve de los dibujos

35

45

50

30 La figura 1 es una vista de un alzado lateral de una máquina motorizada que tiene los controles operativos "de a bordo".

La figura 2 es una vista de un alzado lateral de una máquina motorizada que tiene controles operativos "de a bordo" y controles operativos "remotos" implementados mediante un receptor "de a bordo".

La figura 3 es una ilustración esquemática de una realización de un sistema de control que incluye controles operativos "de a bordo" y "remotos" implementados mediante una red de área de los controladores.

La figura 4 ilustra una realización de una unidad receptora que se puede enchufar en un módulo de control de una red de área de los controladores de una máquina o un vehículo motorizado mediante un conector o cable.

La figura 5 ilustra una realización de una unidad de control "remota" configurada de modo que implemente las órdenes operativas mediante un receptor "de a bordo" y una red de área de los controladores.

40 Descripción detallada de realizaciones ilustrativas

La figura 1 ilustra una realización de una máquina o un vehículo motorizado 100 que opera mediante unos controles operativos "de a bordo" 102 (ilustrados de manera esquemática en la figura 1). Tal como se muestra, la máquina motorizada ilustrada incluye un cuerpo 104 que está soportado con relación a un bastidor (no se muestra). Las ruedas 106 están acopladas al bastidor, de modo que la máquina o el vehículo motorizado 100 se pueda conducir sobre el terreno durante su utilización. No obstante, la aplicación de la presente invención no está limitada a un vehículo o cargadora con ruedas, tal como se muestra. Por ejemplo, la presente invención tiene aplicación en una máquina motorizada, que se mueve con orugas en lugar de ruedas.

Tal como se muestra en la figura 1, la máquina motorizada 100 ilustrada incluye un conjunto de pluma 110 que se utiliza para subir, bajar o situar un implemento o accesorio 112, (que en la realización ilustrada es un cucharón). El conjunto de pluma 110 incluye unos brazos de elevación 120 (de los cuales únicamente se muestra uno en la figura 1). Los brazos de elevación 120 están acoplados, con posibilidad de pivotar, al cuerpo 104 de la máquina para subir

y bajar el accesorio 112. Los cilindros o actuadores hidráulicos 124 (únicamente se muestra uno en la figura 1) están acoplados al cuerpo 104 y a los brazos de elevación 120 para subir y bajar los brazos de elevación 120, tal como se muestra de manera comparativa en la figura 1.

El accesorio o implemento 112 está acoplado, con posibilidad de rotar, a los brazos de elevación 120, de modo que se pueda ajustar una orientación del implemento 112 con relación a los brazos de elevación 120. El implemento 112 se ajusta, con posibilidad de rotar, o inclina por medio de un cilindro o unos cilindros de inclinación (no se muestran en la figura 1). El cilindro o los cilindros de inclinación se extienden y retraen para ajustar la orientación o inclinación del accesorio o implemento 112. Aunque la figura 1 ilustra un accesorio o implemento tipo cucharón, la aplicación no está limitada a un cucharón y se pueden fijar otros implementos a los brazos de elevación 120 o a la máquina dependiendo de la aplicación de trabajo particular.

5

10

15

20

25

30

35

40

45

50

55

En la realización ilustrada en la figura 1, la máquina opera o está controlada mediante los controles operativos "de a bordo" 102 desde un compartimento o cabina 132 de la máquina. Los controles operativos "de a bordo" incluyen diversas palancas, pedales, llaves o botones que permiten al usuario mover la máquina o el vehículo motorizado en una dirección de avance, dirección de marcha atrás y/o dirigir la máquina o vehículo. Los controles operativos "de a bordo" 102 también incluyen tomas de entrada, palancas o mandos de control para permitir al usuario operar el conjunto o la hidráulica de la pluma para subir, bajar e inclinar el implemento 112.

Tal como se ha analizado anteriormente, se pueden conectar diferentes accesorios o implementos a los brazos de elevación 120 dependiendo de la aplicación de trabajo particular. Por ejemplo, los brazos de elevación 120 de la máquina motorizada pueden soportar un cucharón o un implemento motorizado, tal como una pala, que incluye una función de alimentación independiente. La función de alimentación independiente también se opera mediante los controles o las palancas operativos de los controles operativos "de a bordo" 102.

La figura 2 ilustra una realización de una máquina o un vehículo motorizado 100 que incluye un control operativo remoto, donde números similares se utilizan para hacer referencia a partes similares en la figura anterior. Tal como se muestra, un sistema de control de la máquina incluye controles operativos "remotos" 150 para operar las funciones de la máquina a distancia o de manera "remota" de la máquina. Tal como se muestra, las órdenes operativas desde los controles operativos "remotos" 150 se transmiten mediante un transmisor 152 hasta un receptor "de a bordo" 154 de la máquina o el vehículo motorizado. El transmisor 152 transmite señales de control que responden a la entrada desde los controles operativos remotos 150. La señal u orden transmitida se recibe mediante el receptor "de a bordo" 154 y se utiliza para controlar una o más funciones de la máquina por medio de una red de área de los controladores (CAN, por sus siglas en inglés) 160, tal como se muestra en la figura 3.

Tal como se muestra en la figura 3, las funciones de control de la máquina se implementan mediante diversos módulos o componentes de control conectados a un bus CAN 162. En la realización mostrada, la CAN 160 incluye un módulo de control de la máquina 164 y un módulo de control auxiliar 166. Tal como se muestra, el módulo de control de la máquina 164 incluye un controlador de la máquina 170 que se configura de modo que opere la hidráulica de la pluma 172 para las funciones de elevación e inclinación y las funciones o motores de impulsión 174 (ilustrado de manera esquemática) de la máquina, en función de la entrada desde unos controles operativos "de a bordo" y/o "remotos" 102, 150. El módulo de control auxiliar 166 incluye un controlador auxiliar 176 que se configura de modo que controle las funciones auxiliares 178 de un accesorio o implemento motorizado, en función de una entrada desde los controles operativos 102, 150. El módulo de control de la máquina 164 y el módulo de control auxiliar 166 se configuran de modo que se interconecten con el bus CAN 162 por medio de protocolos de comunicación conocidos.

La aplicación de los controles operativos ilustrados no está limitada a un módulo de control de la máquina y a un módulo de control auxiliar, y se pueden emplear otras configuraciones de control. Por ejemplo, los controladores o módulos para el conjunto de pluma y los conjuntos de impulsión se pueden conectar de manera independiente al bus CAN 162 con el fin de controlar el conjunto o la hidráulica de la pluma, el conjunto de impulsión u otras funciones de la máquina.

Tal como se ha descrito anteriormente, un usuario puede controlar las funciones de la máquina mediante controles operativos "de a bordo" 102, los cuales, tal como se muestra en la figura 3, incluyen de manera ilustrativa, mandos de control 180 y palancas 182, y controles operativos "remotos" 150 (de manera ilustrativa los mandos de control/palancas 184 y los botones 186). Tal como se muestra, los controles operativos "de a bordo" 102 están acoplados al bus o red CAN 162 mediante un módulo de control "de a bordo" CAN 190. De manera adicional, el receptor "de a bordo" 154 está conectado al bus CAN 162 mediante un módulo de control CAN "remoto" 192. Tal como se describe, las órdenes operativas desde los controles operativos "de a bordo" y "remotos" 102, 150 se transmiten al bus CAN 162 mediante los módulos de control "de a bordo" y "remotos" 190, 192 de modo que se interconecte con el controlador de la máquina 170 o el controlador auxiliar 176 para operar la hidráulica, las válvulas o bombas de los motores de impulsión, elevar e inclinar los cilindros o la hidráulica o funciones auxiliares de la máquina o el vehículo motorizado.

En la realización ilustrada en la figura 3, el transmisor "remoto" 152 transmite señales u órdenes, en respuesta a la activación de los controles operativos "remotos" 150, al receptor "de a bordo" 154. Las señales u órdenes recibidas desde el transmisor "remoto" 152 se utilizan para controlar funciones de la máquina motorizada mediante el CAN 160. En la realización ilustrada, el receptor "de a bordo" 154 también recibe una entrada desde una caja de controles 194 "de a bordo" de la máquina o el vehículo tal como se describirá.

5

10

15

40

45

50

55

La figura 4 ilustra una realización de una unidad receptora "remota" 200 para implementar un control operativo "remoto", tal como se ilustra en la figura 3. La unidad receptora 200 incluye un receptor 154 que se configura de modo que reciba órdenes operativas desde el transmisor "remoto" 152. En la realización ilustrada, la unidad receptora "de a bordo" 200 está acoplada, con posibilidad de desmontarse, a la máquina o el vehículo 100 para su utilización mediante un soporte de montaje 202 en la unidad receptora 200.

El soporte de montaje 202 incluye un imán 204 que está diseñado para mantener sujeta la unidad receptora 200 a una superficie metálica o magnética de la máquina o el vehículo motorizado 100. En la realización mostrada, la unidad receptora 200 también incluye un asidero 206 en la carcasa para facilitar su portabilidad y manipulabilidad. El asidero 206 proporciona un elemento para transportar la unidad receptora 200 y montar la unidad receptora 200 en una máquina o un vehículo motorizado 100 deseado. La unidad receptora 200 también incluye unas luces indicadoras 210, 211 que se extienden desde una superficie superior de la carcasa del receptor para indicar cuándo está habilitado el receptor y/u opera la máquina o el vehículo motorizado. En una realización ilustrativa, la luz 210 indica cuándo está habilitado el receptor y la luz 211 indica cuándo está habilitado o activado el transmisor para el control a distancia, tal como se describe.

- La unidad receptora 200 está conectada al módulo de control CAN "remoto" 192 mediante el cable 212. En la realización mostrada, el cable 212 se enchufa, con posibilidad de desenchufarse, en una toma 214 en la unidad receptora 200 y se conecta al módulo de control CAN "remoto" 192 mediante el enchufe de conexión 216. Aunque se muestra un accesorio particular para el cable 212, la aplicación no está limitada al accesorio específico mostrado. Por ejemplo, el cable 212 se puede fijar a la unidad receptora 200.
- Además, tal como se muestra en la figura 4, se conecta una caja de controles 194 a la unidad receptora 200 mediante el cable 220, que se conecta a o enchufa en una toma que posee la unidad receptora 200. Aunque se muestra un accesorio particular para el cable, para el cable 220, la aplicación no está limitada a las realizaciones específicas mostradas, por ejemplo, el cable 220 se puede conectar de manera fija o conectar de manera que se pueda desenchufar a uno o ambos de la unidad receptora 220 o la caja de controles 194.
- En la realización ilustrada mostrada, la caja de controles 194 incluye un interruptor de llave 224 para activar el receptor de la unidad receptora 200, y como alternativa, apagar el receptor de la unidad receptora 200. En la posición apagada, la unidad receptora no está activada para recibir órdenes operativas "remotas". Para activar los controles "remotos", se gira el interruptor de llave 224 hasta una posición activada, de modo que el receptor procese las órdenes operativas transmitidas de manera "remota" de la máquina o el vehículo. Una vez activada, se puede detener la operación del vehículo por medio de un botón de parada 226 en la caja de controles 194. La activación del botón de parada 226 se transmite al controlador de la máquina 174 y al controlador auxiliar 176 mediante la CAN 160 para detener la operación de las funciones del vehículo.

Tal como se muestra, la caja de controles 194 incluye un soporte de montaje 228 y un imán 230 para montar, con posibilidad de desmontarse, la caja de controles 194 en una superficie metálica o magnética de la máquina o el vehículo 100. Tal como se muestra, en la realización ilustrada, el soporte 228 incluye una superficie de montaje curva para montarse sobre una superficie curva de la máquina o el vehículo motorizado o interconectarse con esta.

La figura 5 ilustra una realización de una unidad de control "remota" 240 para activar las órdenes operativas a distancia de la máquina o el vehículo motorizado. Tal como se muestra, la unidad de control "remota" 240 incluye un panel de controles que tiene una pluralidad de controles operativos (es decir, mandos de control, botones y palancas, etc.). Las órdenes operativas activadas mediante el panel de controles (p. ej., mediante mandos de control y palancas, etc.) se transmiten a la unidad rece "de a bordo" 200 mediante un transmisor de la unidad de control "remota" 240. El dispositivo se alimenta con una batería (no se muestra) alojada en una cavidad de la carcasa. La unidad de control "remota" 240 ilustrada también incluye un asidero 242 para mayor portabilidad.

En la realización ilustrada, los controles operativos de la unidad de control "remota" 240 incluyen unos mandos de control "izquierdo" y derecho" 250, 252, que se configuran de modo que impulsen y dirijan la máquina o el vehículo motorizado 100. Los mandos de control 250, 252 se pueden configurar con un patrón en H o un patrón ISO para proporcionar un control de avance, marcha atrás y direccionamiento al vehículo o a la máquina motorizada, tal como se conoce en la técnica. El panel de controles también incluye unas palancas auxiliares de control universales, por ejemplo, unas palancas auxiliares "izquierda" y "derecha" 254, 256 para controlar las diferentes funciones auxiliares para diferentes implementos o accesorios. El panel de controles también incluye botones, pulsadores o palancas adicionales, que se pueden utilizar para activar diferentes funciones de la máquina mediante la CAN 160. Por ejemplo, en una realización ilustrativa, el panel de controles incluye un interruptor de llave, un botón de parada de

ES 2 653 865 T3

emergencia y un interruptor o botón que habilita o activa el transmisor para un control de la impulsión o el direccionamiento a distancia mediante la CAN 1-60.

Aunque la presente invención se ha descrito haciendo referencia a las realizaciones preferidas, los expertos en la técnica reconocerán que se pueden realizar cambios tanto en forma como en detalle.

5

REIVINDICACIONES

1. Un conjunto que se puede interconectar con un módulo de control de una máquina (164) mediante una red de área de los controladores (160) que tiene un bus de la red de área de los controladores (CAN) (162) en una máquina motorizada (100), donde el módulo de control de la máquina (164) se configura de modo que opere los componentes de impulsión (174), que impulsan y dirigen la máquina motorizada (100), y la hidráulica (172), que eleva e inclina un implemento (112) acoplado a la máquina motorizada (100), en respuesta a órdenes operativas, caracterizado por que el conjunto comprende:

una unidad de control "remota" portátil (240) que incluye:

10

una carcasa que incluye un asidero, donde la carcasa tiene un panel de controles que incluyen un dispositivo de entrada derecho (250) y un dispositivo de entrada izquierdo (252), separado del dispositivo de entrada derecho (250), donde los dispositivos de entrada derecho e izquierdo (250, 252) se configuran de modo que activen unas órdenes operativas para operar la hidráulica de la máquina motorizada (100) con el fin de elevar o inclinar un implemento (112) conectado a un brazo de elevación (120) de la máquina motorizada (100), y con el fin de operar los componentes de impulsión (174) para impulsar y dirigir la máquina motorizada (100); y

15

un transmisor (152) montado en la carcasa y configurado de modo que transmita a distancia señales de control, en respuesta a dichas órdenes operativas, a un receptor (154);

20

una unidad receptora "de a bordo" (200) que incluye el receptor (154), que puede recibir las señales de control, donde la unidad receptora "de a bordo" (200) se puede acoplar, con posibilidad de desmontarse, a la máquina motorizada y se puede conectar al bus CAN de la máquina motorizada por medio de un módulo de control CAN "remoto" (192), de modo que, cuando la unidad receptora esté conectada al bus CAN, la unidad receptora se configure de modo que proporcione señales de control por medio del bus CAN al módulo de control de la máquina (164); y

25

una caja de controles (194) que se puede montar en la máquina motorizada (100) y acoplada a la unidad receptora "de a bordo" (200), donde la caja de controles (194) incluye un interruptor (224), configurado de modo que active y desactive el receptor (154) de la unidad receptora "de a bordo" (200), donde, cuando se activa, el receptor puede recibir las señales de control desde la unidad de control "remota", y cuando se desactiva, el receptor no puede recibir las señales de control desde la unidad de control "remota".

30

2. El conjunto de la reivindicación 1, donde los dispositivos de entrada derecho e izquierdo (250, 252) son mandos de control configurados de modo que reciban órdenes operativas de avance, marcha atrás y direccionamiento, para operar los componentes de impulsión (174) con el fin de impulsar y dirigir la máquina motorizada (100).

3. (25 35 mai

3. El conjunto de la reivindicación 1, donde el patrón de entrada de los dispositivos de entrada derecho e izquierdo (250, 252) es un patrón en H o un patrón ISO configurado de modo que reciba órdenes operativas de avance, marcha atrás y direccionamiento con el fin de impulsar y dirigir la máquina motorizada, y recibir órdenes de elevación/inclinación para elevar o inclinar el implemento (112) conectado al brazo de elevación (120) de la máquina motorizada (100).

4. (25 40 ma

4. El conjunto de la reivindicación 1, donde el patrón de entrada de los dispositivos de entrada derecho e izquierdo (250, 252) es un patrón en H o un patrón ISO configurado de modo que reciba órdenes operativas de avance, marcha atrás y direccionamiento para impulsar y dirigir la máquina motorizada (100).

5. El conjunto de la reivindicación 1, que comprende un cable (212) conectado o que se puede conectar a la unidad receptora "de a bordo" (200), donde el cable (212) incluye un enchufe de conexión (216), con el fin de conectar la unidad receptora "de a bordo" (200) a la red de área de los controladores (160) "de a bordo" de la máquina motorizada (100).

45 6. El conjunto d

6. El conjunto de la reivindicación 1, donde la caja de controles (194) incluye una parada de emergencia (226) configurada para detener la operación de la máquina motorizada (100).

7. El conjunto de la reivindicación 1, que comprende un cable (220) que conecta la caja de controles (194) a la unidad receptora "de a bordo" (200).

8. El conjunto de la reivindicación 1, donde la unidad receptora "de a bordo" (200) incluye un imán (204) configurado de modo que mantenga sujeta o conecte la unidad receptora "de a bordo" (200) a la máquina motorizada (100).

9. El conjunto de la reivindicación 1, donde la unidad de control "de a bordo" (240) incluye una o más palancas de

control (254, 256) para controlar funciones auxiliares del implemento (112) conectado al brazo de elevación (120) de la máquina motorizada (100).

- 10. El conjunto de la reivindicación 1, donde la unidad receptora "de a bordo" (200) incluye una o más luces indicadoras (210, 211) para indicar cuándo se habilita el receptor (154) u opera la máquina motorizada (100).
- 5 11. El conjunto de la reivindicación 1, donde la unidad receptora "de a bordo" (200) incluye una o más luces indicadoras (210, 211) para indicar cuándo se habilitan o activan el receptor (154) o el transmisor (152).
 - 12. Un método para impulsar y dirigir una máquina motorizada (100) a distancia de la máquina motorizada, caracterizado por los pasos de:

proporcionar una unidad receptora (200) que se pueda conectar, con posibilidad de desmontarse, a un bus de la red de área de los controladores (162), de una red de área de los controladores (160) "de a bordo" de la máquina motorizada (100);

conectar una caja de controles (194), que incluye un interruptor de llave (224), a la unidad receptora (200);

accionar el interruptor de llave (224) para activar un receptor (154) de la unidad receptora (200), con el fin de recibir las órdenes operativas "remotas" desde un transmisor (152) de una unidad de control "remota" y portátil (240);

impulsar la máquina motorizada (100) mediante el accionamiento de uno o más dispositivos de entrada (250, 252) en un panel de controles en la unidad de control "remota" (240), independiente de la unidad receptora (200) y a distancia de la máquina motorizada, con el fin de generar las órdenes operativas "remotas" para la transmisión desde la unidad de control "remota" (240) hasta el receptor (154) de la unidad receptora (200) "de a bordo" de la máquina motorizada (100), con el fin de operar a distancia uno o más componentes de impulsión (174) "de a bordo" de la máquina motorizada (100); y

dirigir la máquina motorizada (100) utilizando el o los dispositivos de entrada (250, 252) en el panel de controles de la unidad de control "remota" (240), para dirigir a distancia la máquina motorizada (100) mediante la operación del o de los componentes de impulsión (174).

25 13. El método de la reivindicación 12, donde el paso de dirigir la máquina motorizada (100) comprende:

mover uno o más dispositivos tipo mandos de control (250, 252) configurados en uno de entre un patrón de control en H o ISO para dirigir la máquina motorizada (100).

14. El método de la reivindicación 12, donde el paso de proporcionar la unidad receptora (200) conectada al bus de la red de área de los controladores (160), de la red de área de los controladores (160) "de a bordo" de la máquina motorizada (100) comprende:

conectar la unidad receptora (200) a la máquina motorizada (100); y

10

15

20

30

40

enchufar la unidad receptora (200) en un módulo conectado a la red de área de los controladores (160) de la máquina motorizada (100), para conectar la unidad receptora (200) al bus de la red de área de los controladores (162), de la red de área de los controladores (160).

15. El método de la reivindicación 14, donde el paso de proporcionar la unidad receptora (200) conectada al bus de la red de área de los controladores (160), de la red de área de los controladores (160) "de a bordo" de la máquina motorizada (100) comprende:

sujetar magnéticamente la unidad receptora (200) a la máquina motorizada (100); y

conectar la unidad receptora (200) al bus de la red de área de los controladores (162), de la red de área de los controladores (160) de la máquina motorizada (100).

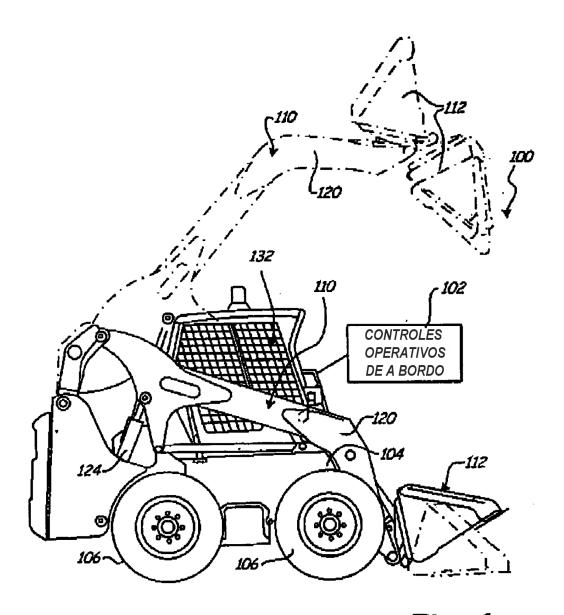


Fig. 1
TÉCNICA ANTERIOR

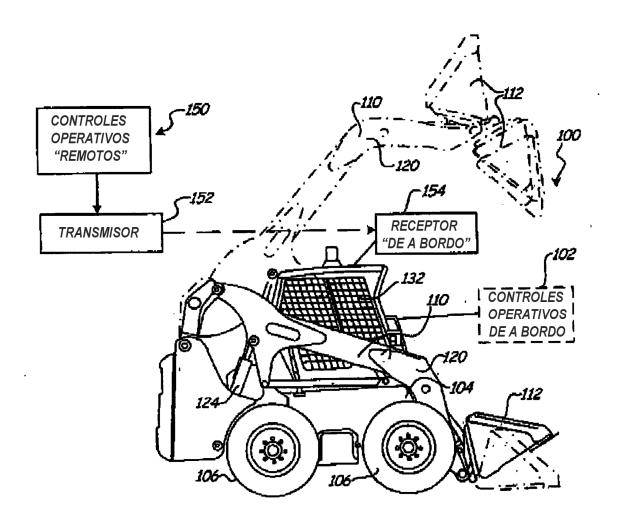
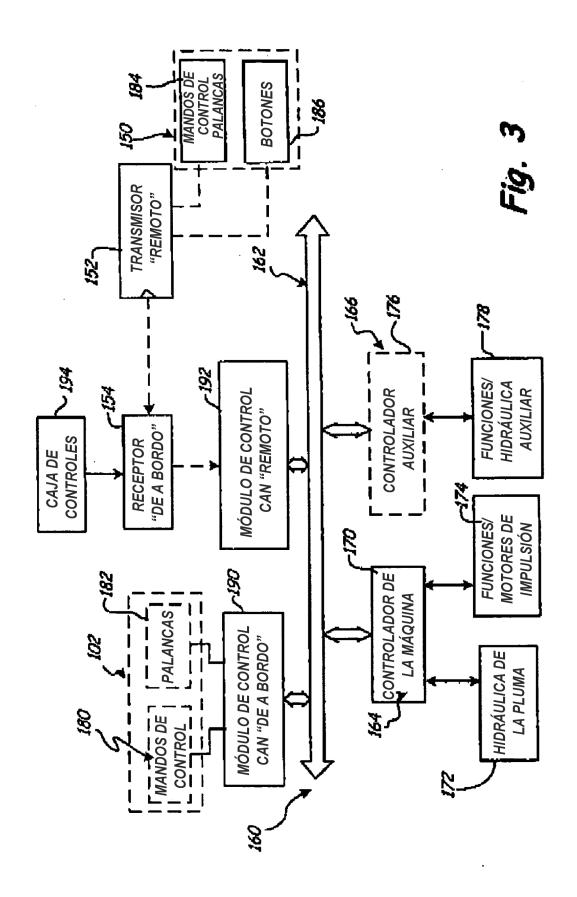
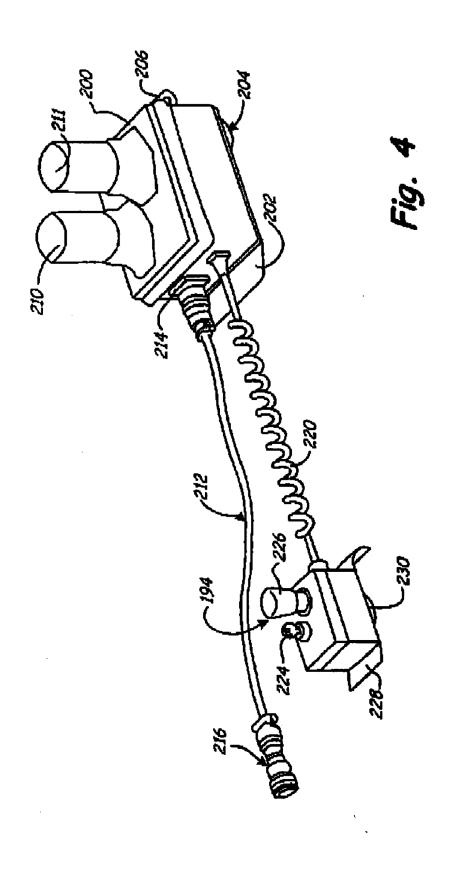
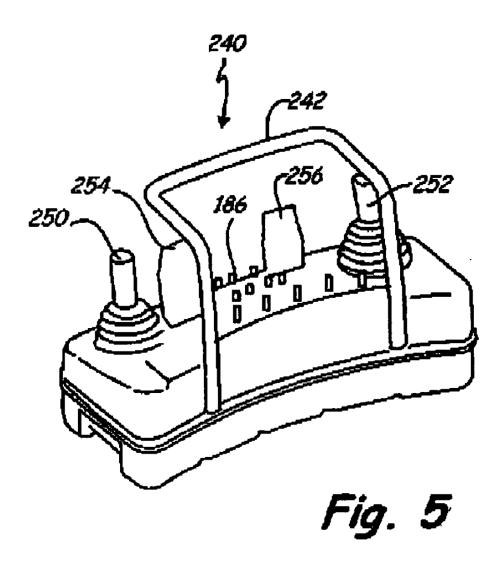





Fig. 2

