

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 654 413

EP 2888592

51 Int. Cl.:

C07K 16/44 (2006.01) G01N 33/94 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 20.08.2013 PCT/US2013/055834

(87) Fecha y número de publicación internacional: 27.02.2014 WO14031668

96 Fecha de presentación y número de la solicitud europea: 20.08.2013 E 13831507 (2)

(54) Título: Anticuerpos a quetiapina y uso de los mismos

(97) Fecha y número de publicación de la concesión europea:

(30) Prioridad:

21.08.2012 US 201261691659 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 13.02.2018

(73) Titular/es:

08.11.2017

JANSSEN PHARMACEUTICA, N.V. (100.0%) Turnhoutseweg 30 2340 Beerse, BE

(72) Inventor/es:

HRYHORENKO, ERIC; SANKARAN, BANUMATHI; DECORY, THOMAS R.; TUBBS, THERESA; COLT, LINDA; REMMERIE, BART M.; SALTER, RHYS; DONAHUE, MATTHEW GARRETT y GONG, YONG

(74) Agente/Representante:

IZQUIERDO BLANCO, María Alicia

DESCRIPCIÓN

Anticuerpos a quetiapina y uso de los mismos

Campo de la invención

5

10

15

20

25

30

35

40

45

50

55

60

65

adecuado.

La presente invención está relacionada con el campo de los inmunoensayos y, más particularmente, con los anticuerpos que se unen a la quetiapina y que pueden usarse en los inmunoensayos para detectar la citada quetiapina.

Antecedentes de la invención

La esquizofrenia es un desorden psiquiátrico crónico y debilitante que afecta aproximadamente a un 0,45-1% de la población mundial (van Os, J.; Kapur, S.; 'Schizophrenia', Lancet, 2009, 374, 635-645). Los objetivos principales del tratamiento son obtener una remisión prolongada de los síntomas psicóticos, reducir el riesgo y las consecuencias de una recaída y mejorar el funcionamiento del paciente y su calidad de vida en general. Mientras que muchos pacientes con esquizofrenia son capaces de estabilizar sus síntomas gracias a los medicamentos antipsicóticos disponibles, la escasa observancia de la medicación es una razón habitual para la recaída en el caso de los medicamentos orales administrados a diario. Diversos estudios para investigar la falta de cumplimiento u observancia (Abdel-Baki, A.; Ouellet-Plamondon, C.; Malla, A.; 'Pharmacotherapy Challenges in Patients with First-Episode Psychosis", Journal of Affective Disorders, 2012, 138, S3-S14) han demostrado que los pacientes con esquizofrenia que no toman su medicación de la forma prescrita tienen índices más elevados de recaídas, ingresos hospitalarios y suicidios, así como una mayor mortalidad. Se estima que entre un 40 y un 75% de los pacientes con esquizofrenia tienen dificultades para seguir adecuadamente un régimen de tratamiento oral que se administra a diario (Lieberman, J. A.; Stroup, T. S.; McEvoy, J. P.; Swartz, M. S.; Rosenheck, R. A.; êrkins, D. O.; Keefe, R. S. E.; Davis, S. M.; Davis, C. E.; Lebowitz, B. D.; Severe, J.; Hsiao, J. K.; 'Effectiveness of Antipsychotic Drugs in Patients with Chronic Schizophrenia', New England Journal of Medicine, 2005, 353(12), 1209-1223).

La monitorización farmacoterapéutica o seguimiento farmacoterapéutico (TDM, por sus siglas en inglés) es la cuantificación de las concentraciones de los medicamentos o fármacos -incluyendo los medicamentos antipsicóticosen el suero o el plasma a fin de monitorizar y optimizar un tratamiento. Por ejemplo, esta monitorización permite identificar a los pacientes que no están siguiendo correctamente su régimen de medicamentos, que no están obteniendo dosis terapéuticas, que no responden a las dosis terapéuticas, que tienen una tolerancia o tolerabilidad subóptima, que tienen interacciones farmacocinéticas entre fármacos, o que tienen un metabolismo anormal, lo que da como resultado unas concentraciones inadecuadas en el plasma. Existe una variabilidad individual considerable en lo referente a la capacidad de los pacientes para absorber, distribuir, matabolizar y excretar los fármacos antipsicóticos. Estas diferencias pueden estar causadas por otras enfermedades o medicaciones simultáneas, por la edad o por las peculiaridades genéticas. Las diferentes formulaciones de los fármacos también pueden influir en el metabolismo de los fármacos antipsicóticos. La TDM permite optimizar las dosis para los pacientes individuales, y

mejora los resultados terapéuticos y funcionales. Además, la TDM permite que un médico clínico tenga la certeza de que se administrarán correctamente las dosis prescritas y se obtendrán unas concentraciones eficaces en el suero.

Hoy en día, los métodos para determinar los niveles de concentración en plasma o suero de los fármacos antipsicóticos incluyen el uso de cromatografía líquida (LC, por sus siglas en inglés) con detección mediante UV o espectrometría de masas, y de inmunoensayos (ver, por ejemplo, Woestenborghs et al., 1990, 'On the selectivity of some recently developed RIA's' en 'Methodological Surveys in Biochemistry and Analysis', 20:241-246. 'Analysis of Drugs and Metabolites, Including Anti-infective Agents'; Heykants et al., 1994, 'The Pharmacokinetics of Risperidone in Humans: A Summary', J Clin Psychiatry 55/5, supl:13-17; Huang et al., 1993, 'Pharmacokinetics of the novel antipsychotic agent risperidone and the prolactin response in healthy subjects', Clin Pharmacol Ther, 54:257-268). Los radioinmunoensayos detectan la risperidona o la paliperidona, o ambas. En la Patente de EE UU nº 8,088,594, Salamone et al. desvelan un inmunoensayo competitivo para la risperidona que usa anticuerpos que detectan tanto la risperidona como la paliperidona, pero no los metabolitos farmacológicamente inactivos. Los anticuerpos utilizados en el inmunoensayo competitivo se desarrollan en respuesta a un inmunógeno particular. ID Labs Inc. (London, Ontario, Canadá) suministra una ELISA para la olanzapina, otro fármaco antipsicótico, que también usa un formato competitivo. Las instrucciones de uso señalan que el ensayo está diseñado para funciones de detección o análisis y para usos forenses o de investigación, de manera que específicamente no está diseñado para su uso terapéutico. Las instrucciones recomiendan que todas las muestras positivas deben confirmarse mediante cromatografía con gas / espectrometría de masas (GC/MS, por sus siglas en inglés) y señalan que el anticuerpo utilizado detecta la olanzapina y la clozapina (ver ID Labs Inc., 'Instructions For Use Data Sheet IDEL-F083', fecha de revisión: 8 de agosto de 2011). Algunos de estos métodos, concretamente la HPLC y la GC/MS, pueden ser caros y laboriosos y, normalmente, solo se llevan a cabo en laboratorios grandes o especializados que disponen del equipamiento

Existe una necesidad de disponer de otros métodos que determinan los niveles de fármacos antipsicóticos, en particular, métodos que pueden llevarse a cabo en una clínica médica (donde el tratamiento para un paciente individual puede ajustarse según corresponda y de forma mucho más adecuada) y en otros entornos médicos que carecen de equipamiento para una LC o una GC/MS o requieren unos resultados de pruebas rápidos.

Resumen de la invención

La presente invención está dirigida a un anticuerpo aislado, o a un fragmento de unión de este, que se une a la quetiapina y que es un anticuerpo aislado, o un fragmento de este, que se selecciona de un grupo que se compone de: a) un anticuerpo aislado, o un fragmento de unión de este, que comprende una región variable de una cadena ligera que tiene la secuencia de aminoácidos de SEQ ID NO:19 (o identificador de secuencia nº 19) y una región variable de una cadena pesada que tiene la secuencia de aminoácidos de SEQ ID NO:20; b) un anticuerpo aislado, o un fragmento de este, que comprende una región variable de una cadena ligera que tiene la secuencia de aminoácidos de SEQ ID NO:23 y una región variable de una cadena pesada que tiene la secuencia de aminoácidos de SEQ ID NO:24; o c) un anticuerpo aislado, o un fragmento de este, que comprende una región variable de una cadena ligera que tiene la secuencia de aminoácidos de SEQ ID NO:27 y una región variable de una cadena pesada que tiene la secuencia de aminoácidos de SEQ ID NO:28.

Los anticuerpos de la presente invención pueden suministrarse en forma de kits de ensayo y dispositivos de ensayo, de manera que actualmente se prefiere un dispositivo que es un dispositivo de ensayo de flujo lateral que proporciona un análisis inmediato in situ.

Además, la invención proporciona un método para detectar quetiapina en una muestra. El método incluye: (i) poner en contacto una muestra con un anticuerpo de acuerdo con la presente invención que está marcado con un marcador detectable, de manera que el anticuerpo marcado y la quetiapina presente en la muestra forman un compuesto marcado; y (ii) detectar el compuesto marcado a fin de detectar la quetiapina en la muestra.

Además, se proporciona un método de inmunoensayo competitivo para detectar quetiapina en una muestra. El método comprende: (i) poner en contacto una muestra con un anticuerpo de acuerdo con la presente invención, y con quetiapina o con un acompañante de unión competitiva con la quetiapina, de manera que el anticuerpo o la quetiapina -o el acompañante de unión competitiva con esta- queda marcado con un marcador detectable, y de manera que la quetiapina de la muestra compite con la quetiapina -o con un acompañante de unión competitiva con la quetiapina- para unirse con el anticuerpo; y (ii) detectar el marcador a fin de detectar la quetiapina de la muestra.

30 Otros objetivos, características y ventajas adicionales de la presente invención resultarán evidentes para las personas versadas en la materia gracias a la explicación detallada de las realizaciones preferidas que se ofrece a continuación.

Breve descripción de las ilustraciones

Las Figuras 1 y 2 (FIGs. 1 y 2) muestran los resultados de una ELISA competitiva generados con diversos hibridomas;

La Figura 3 muestra el formato de inmunoensayo competitivo utilizado en un dispositivo de ensayo de flujo lateral;

La Figura 4 muestra una curva típica de respuesta a una dosis, generada con los subclones de quetiapina 89-3, 89-13 y 89-15;

La Figura 5 muestra el diseño de un chip de un dispositivo de ensayo de flujo lateral de acuerdo con la presente invención;

La Figura 6 muestra una curva típica de respuesta a una dosis en relación con un control positivo de aripiprazol generada con un anticuerpo 5C7 y un acompañante de unión competitiva de aripiprazol marcado;

La Figura 7 muestra una curva típica de respuesta a una dosis en relación con un control positivo de olanzapina generada con un anticuerpo 4G9-1 y un acompañante de unión competitiva de olanzapina marcado:

La Figura 8 muestra una curva típica de respuesta a una dosis en relación con un control positivo de quetiapina generada con un anticuerpo 11 y un acompañante de unión competitiva de quetiapina marcado;

La Figura 9 muestra una curva típica de respuesta a una dosis en relación con un control positivo de risperidona generada con un anticuerpo 5-9 y un acompañante de unión competitiva de risperidona marcado;

La Figura 10 muestra una curva típica de respuesta a una dosis, en relación con una muestra que contiene aripiprazol, generada con un anticuerpo 5C7 de aripiprazol en presencia de un acompañante de unión competitiva de aripiprazol marcado, de manera que no hay una curva de respuesta a una dosis en el caso de olanzapina, quetiapina o risperidona en presencia de un acompañante de unión competitiva marcado

3

35

5

10

20

25

40

45

50

55

60

para cada una de ellas;

5

10

15

20

25

30

35

40

45

50

55

60

65

La Figura 11 muestra una curva típica de respuesta a una dosis, en relación con una muestra que contiene olanzapina, generada con un anticuerpo 4G9-1 de olanzapina en presencia de un acompañante de unión competitiva de olanzapina marcado, de manera que no hay una curva de respuesta a una dosis en el caso de aripiprazol, quetiapina o risperidona en presencia de un acompañante de unión competitiva marcado para cada una de ellos;

La Figura 12 muestra una curva típica de respuesta a una dosis, en relación con una muestra que contiene quetiapina, generada con un anticuerpo 11 de quetiapina en presencia de un acompañante de unión competitiva de quetiapina marcado, de manera que no hay una curva de respuesta a una dosis en el caso de aripiprazol, olanzapina o risperidona en presencia de un acompañante de unión competitiva marcado para cada una de ellos;

La Figura 13 muestra una curva típica de respuesta a una dosis, en relación con una muestra que contiene risperidona, generada con un anticuerpo 5-9 de risperidona en presencia de un acompañante de unión competitiva de risperidona marcado, de manera que no hay una curva de respuesta a una dosis en el caso de aripiprazol, olanzapina o quetiapina en presencia de un acompañante de unión competitiva marcado para cada una de ellos;

La Figura 14 muestra una curva típica de respuesta a una dosis, en relación con una muestra que contiene aripiprazol, generada con un anticuerpo 5C7 de aripiprazol en presencia de un acompañante de unión competitiva de aripiprazol marcado, de manera que no hay una curva de respuesta a una dosis en el caso de olanzapina, quetiapina o risperidona en presencia de un anticuerpo y un acompañante de unión competitiva marcado para cada una de ellas;

La Figura 15 muestra una curva típica de respuesta a una dosis, en relación con una muestra que contiene olanzapina, generada con un anticuerpo 4G9-1 de olanzapina en presencia de un acompañante de unión competitiva de olanzapina marcado, de manera que no hay una curva de respuesta a una dosis en el caso de aripiprazol, quetiapina o risperidona en presencia de un anticuerpo y un acompañante de unión competitiva marcado para cada una de ellos;

La Figura 16 muestra una curva típica de respuesta a una dosis, en relación con una muestra que contiene quetiapina, generada con un anticuerpo 11 de quetiapina en presencia de un acompañante de unión competitiva de quetiapina marcado, de manera que no hay una curva de respuesta a una dosis en el caso de aripiprazol, olanzapina o risperidona en presencia de un anticuerpo y un acompañante de unión competitiva marcado para cada una de ellos;

[0027] La Figura 17 muestra una curva típica de respuesta a una dosis, en relación con una muestra que contiene risperidona, generada con un anticuerpo 5-9 de risperidona en presencia de un acompañante de unión competitiva de risperidona marcado, de manera que no hay una curva de respuesta a una dosis en el caso de aripiprazol, olanzapina o quetiapina en presencia de un anticuerpo y un acompañante de unión competitiva marcado para cada una de ellos;

La Figura 18 muestra una comparación entre la curva de respuesta a una dosis de aripiprazol generada como control positivo y la curva de respuesta a una dosis de aripiprazol generada en el formato múltiple;

La Figura 19 muestra una comparación entre la curva de respuesta a una dosis de olanzapina generada como control positivo y la curva de respuesta a una dosis de olanzapina generada en el formato múltiple;

La Figura 20 muestra una comparación entre la curva de respuesta a una dosis de quetiapina generada como control positivo y la curva de respuesta a una dosis de quetiapina generada en el formato múltiple; y

La Figura 21 muestra una comparación entre la curva de respuesta a una dosis de risperidona generada como control positivo y la curva de respuesta a una dosis de risperidona generada en el formato múltiple.

Descripción detallada de las realizaciones preferidas

Los siguientes términos se usan para describir las relaciones de secuencias entre dos o más secuencias de polinucleótidos o aminoácidos: 'secuencia de referencia', 'ventana de comparación', 'identidad de secuencia', 'porcentaje de identidad de secuencia', 'identidad significativa (o sustancial)', 'similitud' y 'homólogo/a'. Una 'secuencia de referencia' es una secuencia definida que se utiliza como base para una comparación de secuencias; una secuencia de referencia puede ser un subconjunto o una secuencia más grande, por ejemplo, un segmento de un ADNc de longitud completa o una secuencia genética dada en una lista de secuencias, o puede comprender un ADNc completo o una secuencia genética completa; una secuencia de referencia puede comprender un segmento de una secuencia de aminoácidos completa que codifica una proteína de acuerdo con una lista de secuencias o

5

10

15

20

25

30

35

40

45

50

55

60

65

puede comprender una secuencia de aminoácidos completa que codifica una proteína. Normalmente, una secuencia de referencia tiene una longitud de al menos 18 nucleótidos o 6 aminoácidos, con frecuencia tiene una longitud de al menos 24 nucleótidos u 8 aminoácidos, y a menudo tiene una longitud de al menos 48 nucleótidos o 16 aminoácidos. Puesto que dos secuencias de polinucleótidos o aminoácidos pueden (1) comprender, cada una, una secuencia (es decir, una parte o porción de la secuencia completa de nucleótidos o aminoácidos) que es similar en las dos moléculas, y (2) además pueden comprender una secuencia que es divergente en las dos secuencias de polinucleótidos o aminoácidos, normalmente las comparaciones de secuencia entre dos (o más) moléculas se realizan comparando secuencias de ambas moléculas a lo largo de una 'ventana de comparación' para identificar y comparar las zonas o regiones locales con similitud de secuencia. Tal y como se utiliza en el presente documento, una 'ventana de comparación' hace referencia a un segmento conceptual de al menos 18 posiciones de nucleótidos contiguas o de 6 aminoácidos, de manera que la secuencia de polinucleótidos o la secuencia de aminoácidos puede compararse con una secuencia de referencia de al menos 18 nucleótidos contiguos o de 6 aminoácidos, y de manera que la parte o porción de la secuencia de polinucleótidos o la secuencia de aminoácidos en la ventana de comparación puede comprender adiciones, eliminaciones (o supresiones), sustituciones y similares (por ejemplo, huecos) de un 20% o menos en comparación con la secuencia de referencia (que no contiene adiciones o eliminaciones) para obtener un alineamiento óptimo de las dos secuencias. Para alinear una ventana de comparación, el alineamiento óptimo de las secuencias puede realizarse mediante el algoritmo de homología local de Smith y Waterman, Adv. Appl. Math. 2:482 (1981), mediante el algoritmo de alineamiento homólogo de Needlemen y Wunsch, J. Mol. Biol., 48:443 (1970), mediante la búsqueda del método de similitud de Pearson y Lipman, Proc. Natl. Acad. Sci., EE UU, 85:2444 (1988), mediante la implementación computerizada de estos algoritmos (GAP, BESTFIT, FASTA y TFASTA en el lanzamiento 7.0 del pack de software de Wisconsin Genetics; Genetics Computer Group, 575 Science Dr., Madison, Wisconsin, EE UU; o en los packs de software Geneworks o MacVector), o mediante la inspección, de manera que se seleccionará el mejor alineamiento (es decir, aquel que tenga el mayor porcentaje de identidad a lo largo de la ventana de comparación) generado mediante los diversos métodos.

El término 'identidad de secuencia' (o 'iqualdad de secuencia') significa que dos secuencias de polinucleótidos o aminoácidos son idénticas (es decir, basándose en la relación nucléotido-por-nucleótido o residuo-por residuo, en el caso de los aminoácidos) a lo largo de la ventana de comparación. El término 'porcentaje de identidad de secuencia' se calcula comparando dos secuencias óptimamente alineadas a lo largo de la ventana de comparación, determinando el número de posiciones en las que hay una base de ácido nucleico (es decir, A, T, C, G o U) o un residuo de aminoácido idénticos en ambas secuencias para obtener el número de posiciones coincidentes (o posiciones emparejadas), dividiendo el número de posiciones coincidentes por el número total de posiciones en la ventana de comparación (es decir, el tamaño de la ventana), y multiplicando el resultado por 100 para obtener el porcentaje de identidad de secuencia. Tal y como se utiliza en el presente texto, el término 'identidad sustancial' (o identidad significativa') denota una característica de una secuencia de polinucleótidos o aminoácidos, de manera que la secuencia de polinucleótidos o aminoácidos comprende una secuencia que tiene al menos un 85% de identidad de secuencia, preferiblemente al menos un 90-95% de identidad de secuencia, y más habitualmente al menos un 99% de identidad de secuencia si se compara con la secuencia de referencia a lo largo de una ventana de comparación de al menos 18 posiciones de nucleótidos (6 aminoácidos), y con frecuencia a lo largo de una ventana de comparación de al menos 24-48 posiciones de nucleótidos (8-16 aminoácidos), de manera que el porcentaje de identidad de secuencia se calcula comparando la secuencia de referencia con la secuencia que puede incluir eliminaciones y adiciones que hacen un total de un 20% o menos de la secuencia de referencia a lo largo de la ventana de comparación. La secuencia de referencia puede ser un subconjunto o una secuencia más grande. Cuando se usa para describir un polipéptido, el término 'similitud' se determina comparando la secuencia de aminoácidos, y las sustituciones de aminoácidos conservadas de un polipéptido, con la secuencia de un segundo polipéptido. Cuando se usa para describir un polipéptido, el término 'homólogo' indica que dos polinucleótidos, o las secuencias designadas de estos, son idénticos cuando se alinean óptimamente y se comparan, de manera que hay inserciones o eliminaciones adecuadas de nucleótidos en al menos un 70% de los nucleótidos, habitualmente en al menos entre alrededor de un 75% y un 99% de los nucleótidos, y más preferiblemente en al menos entre alrededor de un 98% y un 99% de los nucleótidos.

Tal y como se utiliza en el presente texto, un 'marcador', 'molécula detectora', 'reportero' o 'marcador detectable' es cualquier molécula que produce -o que puede regularse para que produzca- una señal detectable. El marcador puede conjugarse con un analito, un inmunógeno, un anticuerpo u otra molécula como un receptor o una molécula que puede unirse a un receptor, como un ligando, particularmente un hapteno o un anticuerpo. Un marcador puede unirse directa o indirectamente mediante un enlace o una fracción-puente (o fracción de unión). Entre los ejemplos no limitativos de marcadores se incluyen los isótopos radiactivos (por ejemplo, 1251), las enzimas (por ejemplo, ß-galactosidasa, peroxidasa), los fragmentos de enzimas, los sustratos de enzimas, los inhibidores de enzimas, las coenzimas, los catalizadores, los fluoróforos (por ejemplo, rodamina, isotiocianato de fluoresceína o FITC, o Dylight 649), los tintes o contrastes, los quimioluminiscentes y luminiscentes (por ejemplo, dioxetanos, luciferina) o los sensibilizadores.

La invención proporciona un anticuerpo aislado que se une a la quetiapina. Además, la invención proporciona un kit de ensayo y un dispositivo de ensayo que contiene el anticuerpo. Asimismo, se proporciona un método para detectar quetiapina en una muestra que incluye un método de inmunoensayo competitivo.

En una realización, la presente invención está dirigida a un anticuerpo aislado, o un fragmento de unión del mismo, que se une a la quetiapina y que: (i) es un anticuerpo que se selecciona de un grupo que se compone de: a) un anticuerpo aislado, o un fragmento de este, que comprende una región variable de una cadena ligera que comprende la secuencia de aminoácidos de SEQ ID NO:19 (o identificador de secuencia nº 19), SEQ ID NO:23 o SEQ ID NO:27; b) un anticuerpo aislado, o un fragmento de este, que comprende una región variable de una cadena pesada que comprende la secuencia de aminoácidos de SEQ ID NO:20, SEQ ID NO:24 o SEQ ID NO:28; c) un anticuerpo aislado, o un fragmento de este, que comprende una región variable de una cadena ligera que tiene la secuencia de aminoácidos de SEQ ID NO:20; d) un anticuerpo aislado, o un fragmento de este, que comprende una región variable de una cadena ligera que tiene la secuencia de aminoácidos de SEQ ID NO:23 y una región variable de una cadena pesada que tiene la secuencia de aminoácidos de SEQ ID NO:23; o e) un anticuerpo aislado, o un fragmento de este, que comprende una región variable de una cadena ligera que tiene la secuencia de aminoácidos de SEQ ID NO:27; una región variable de una cadena pesada que tiene la secuencia de aminoácidos de SEQ ID NO:28; o (ii) compite por un epítopo que es igual que un epítopo unido al anticuerpo de (i).

10

15

20

25

30

55

65

En una realización adicional, la presente invención está dirigida a un anticuerpo aislado, o un fragmento de unión del mismo, que se une a la quetiapina y que comprende una región variable de cadena ligera que comprende una secuencia de aminoácidos que tiene al menos un 80% de identidad de secuencia con SEQ ID NO:19, SEQ ID NO:23 o SEQ ID NO:27.

En una realización adicional, la presente invención está dirigida a un anticuerpo aislado, o un fragmento de unión del mismo, que se une a la quetiapina y que comprende una región variable de cadena pesada que comprende una secuencia de aminoácidos que tiene al menos un 80% de identidad de secuencia con SEQ ID NO:20, SEQ ID NO:24 o SEQ ID NO:28.

Las realizaciones que actualmente se prefieren del anticuerpo de la presente invención son: un anticuerpo que comprende una región variable de una cadena ligera que tiene la secuencia de aminoácidos SEQ ID NO:19 y una región variable de una cadena pesada que tiene la secuencia de aminoácidos SEQ ID NO:20; un anticuerpo que comprende una región variable de una cadena ligera que tiene la secuencia de aminoácidos SEQ ID NO:23 y una región variable de una cadena pesada que tiene la secuencia de aminoácidos SEQ ID NO:24; y un anticuerpo que comprende una región variable de una cadena ligera que tiene la secuencia de aminoácidos SEQ ID NO:27 y una región variable de una cadena pesada que tiene la secuencia de aminoácidos SEQ ID NO:28.

35 Otras realizaciones que actualmente se prefieren del anticuerpo de la presente invención son: 1) un anticuerpo que comprende una secuencia CDR1 de cadena ligera que comprende los residuos de aminoácidos 43 a 58 de SEQ ID NO:19: una secuencia CDR2 de cadena ligera que comprende los residuos de aminoácidos 74 a 80 de SEQ ID NO:19; una secuencia CDR3 de cadena ligera que comprende los residuos de aminoácidos 113 a 121 de SEQ ID NO:19; una secuencia CDR1 de cadena pesada que comprende los residuos de aminoácidos 45 a 54 de SEQ ID 40 NO:20; una secuencia CDR2 de cadena pesada que comprende los residuos de aminoácidos 69 a 85 de SEQ ID NO:20; y una secuencia CDR3 de cadena pesada que comprende los residuos de aminoácidos 118 a 129 de SEQ ID NO:20; 2) un anticuerpo que comprende una secuencia CDR1 de cadena ligera que comprende los residuos de aminoácidos 43 a 58 de SEQ ID NO:23, una secuencia CDR2 de cadena ligera que comprende los residuos de aminoácidos 74 a 80 de SEQ ID NO:23, una secuencia CDR3 de cadena ligera que comprende los residuos de aminoácidos 113 a 121 de SEQ ID NO:23, una secuencia CDR1 de cadena pesada que comprende los residuos de 45 aminoácidos 45 a 54 de SEQ ID NO:24, una secuencia CDR2 de cadena pesada que comprende los residuos de aminoácidos 69 a 85 de SEQ ID NO:24, y una secuencia CDR3 de cadena pesada que comprende los residuos de aminoácidos 123 a 129 de SEQ ID NO:24; y 3) un anticuerpo que comprende una secuencia CDR1 de cadena ligera que comprende los residuos de aminoácidos 43 a 58 de SEQ ID NO:27, una secuencia CDR2 de cadena ligera que 50 comprende los residuos de aminoácidos 74 a 80 de SEQ ID NO:27, una secuencia CDR3 de cadena ligera que comprende los residuos de aminoácidos 113 a 121 de SEQ ID NO:27, una secuencia CDR1 de cadena pesada que comprende los residuos de aminoácidos 45 a 54 de SEQ ID NO:28, una secuencia CDR2 de cadena pesada que comprende los residuos de aminoácidos 69 a 85 de SEQ ID NO:28, y una secuencia CDR3 de cadena pesada que comprende los residuos de aminoácidos 123 a 129 de SEQ ID NO:28.

En la sección 'Anticuerpos' que hay más adelante se ofrecen detalles adicionales sobre los anticuerpos de la presente invención.

Además, la presente invención proporciona un kit de ensayo que contiene el anticuerpo, así como un dispositivo de ensayo que contiene el anticuerpo. Preferiblemente, el dispositivo de ensayo es un dispositivo de ensayo de flujo lateral. En la sección 'Kits y dispositivos de ensayo' que hay más adelante se proporcionan detalles adicionales sobre los kits de ensayo y los dispositivos de ensayo.

Además, la invención proporciona un método para detectar quetiapina en una muestra. El método incluye: (i) poner en contacto una muestra con un anticuerpo de acuerdo con la presente invención que está marcado con un marcador detectable, de manera que el anticuerpo marcado y la quetiapina presente en la muestra forman un

compuesto marcado; y (ii) detectar el compuesto marcado a fin de detectar la quetiapina en la muestra. En la sección 'Inmunoensayos' que hay más adelante se ofrecen detalles adicionales sobre el método para detectar quetiapina de acuerdo con la presente invención.

Además, se proporciona un método de inmunoensayo competitivo para detectar quetiapina en una muestra. El método comprende: (i) poner en contacto una muestra con un anticuerpo de acuerdo con la presente invención, y con quetiapina o con un acompañante de unión competitiva de quetiapina, de manera que el anticuerpo o la quetiapina -o el acompañante de unión competitiva de esta- queda marcado con un marcador detectable, y de manera que la quetiapina de la muestra compite con la quetiapina -o con un acompañante de unión competitiva de quetiapina- para unirse con el anticuerpo; y (ii) detectar el marcador a fin de detectar la quetiapina de la muestra. En la sección 'Inmunoensayos' que hay más adelante se ofrecen detalles adicionales sobre el método para detectar quetiapina de acuerdo con la presente invención.

En una realización preferida de la presente invención, la detección de quetiapina se acompaña con la detección de uno o más analitos además de la quetiapina. Preferiblemente, los analitos son fármacos o medicamentos antipsicóticos diferentes a la quetiapina, y, más preferiblemente, estos fármacos antipsicóticos se seleccionan de un grupo que se compone de: aripiprazol, risperidona, paliperidona, olanzapina y metabolitos de estos compuestos.

Tal y como se ha explicado previamente, los anticuerpos de la presente invención pueden usarse en ensayos para detectar la presencia y/o la cantidad de fármacos antipsicóticos que hay en las muestras de los pacientes. Esta detección hace posible la monitorización de los fármacos terapéuticos y todos los beneficios que de ella se derivan. La detección de los niveles de fármacos antipsicóticos puede ser útil para muchos propósitos, y cada uno de dichos propósitos representa una realización de la presente invención, incluyendo: la posibilidad de determinar si un paciente sique correctamente la terapia prescrita; su uso como una herramienta de decisión para determinar si un paciente debe cambiarse de un régimen oral de antipsicóticos a un régimen de antipsicóticos inyectables de larga duración; su uso como una herramienta de decisión para determinar si el nivel o el intervalo de las dosis de antipsicóticos orales o inyectables debe aumentarse o reducirse para garantizar que se obtienen o mantienen unos niveles farmacológicos seguros o eficaces; su uso como una ayuda para comenzar una terapia de fármacos antipsicóticos al aportar pruebas de que se han alcanzado unos niveles farmacocinéticos mínimos; su uso para determinar la bioquivalencia de los fármacos antipsicóticos en diversas formulaciones o a partir de múltiples fuentes: su uso para evaluar el impacto de la polifarmacia y las potenciales interacciones entre fármacos; y su uso como un indicio para determinar si un paciente debe incluirse en un ensayo clínico -o excluirse de él- y como una ayuda en la posterior monitorización o seguimiento para determinar si el paciente sigue correctamente los requisitos de la medicación del ensayo clínico.

ANTICUERPOS

15

20

25

30

35

40

55

60

65

La presente invención proporciona un anticuerpo aislado que se une a la quetiapina. El término 'anticuerpo' hace referencia a una proteína específica que tiene la capacidad de unirse a un antígeno o a una parte o porción de estede acuerdo con la presente invención, que tiene la capacidad de unirse a un fármaco antipsicótico o a un metabolito de este. Un anticuerpo se produce como respuesta a un inmunógeno que puede haberse introducido mediante inyección en un huésped, por ejemplo, un humano o un animal. El término genérico 'anticuerpo' incluye los anticuerpos policionales, los anticuerpos monoclonales y los fragmentos de anticuerpos.

Los términos 'anticuerpo' o 'fragmento de anticuerpo que se une a un antígeno' hacen referencia a un anticuerpo intacto, o un fragmento de este, que compite con el anticuerpo intacto por un enlace o unión. Hablando en términos generales, se dice que un anticuerpo, o un fragmento de anticuerpo que se une a un antígeno, se une específicamente con un antígeno cuando la constante de disociación es menor o igual a 1 μm, preferiblemente menor o igual a 100 μm y más preferiblemente menor o igual a 10 μm. El enlace o unión puede medirse mediante métodos que son conocidos para aquellas personas versadas en la materia, por ejemplo, usando el instrumento BIAcoreTM.

Los anticuerpos se componen de dos cadenas pesadas y dos cadenas ligeras. Cada cadena pesada tiene una región o dominio variable (V_H) seguido de una región o dominio constante (C_H 1), una región bisagra y dos regiones o dominios constantes más (C_H 2 y C_H 3). Cada cadena ligera tiene una región o dominio variable (V_L) y una región o dominio constante (C_L). Las regiones o dominios variables de las cadenas pesadas y ligeras forman el paratopo del anticuerpo (una estructura análoga a un seguro o candado), que es específico para cada epítopo particular (de manera similar, análogo a una llave), lo cual permite que el paratopo y el epítopo se unan con precisión. En el dominio variable, los bucles variables de cadenas-G (o hebras-G), tres por cada cadena ligera y pesada, son los responsables de la unión con el antígeno. Estos bucles se denominan 'regiones determinantes de la complementariedad' ('CDRs', por sus siglas en inglés) y son, concretamente, la CDR1, la CDR2 y la CDR3.

Los fragmentos de anticuerpos contienen una parte o porción de un anticuerpo intacto, preferiblemente la región variable, o región de unión con un antígeno, del anticuerpo intacto. Los fragmentos de unión incluyen los siguientes: Fab, Fab', F(ab')₂, y fragmentos de Fv; diacuerpos; minicuerpos; anticuerpos lineales; moléculas de anticuerpos monocatenarios (por ejemplo, scFV); y anticuerpos multiespecíficos formados a partir de fragmentos de anticuerpos.

Se entiende que cada sitio de unión de un anticuerpo que no sea 'biespecífico' o 'bifuncional' es idéntico.

Tal y como se utiliza en el presente texto, el término 'epítopo' incluye cualquier determinante proteico que sea capaz de una unión específica con una inmunoglobulina o un receptor de células T. Normalmente, los determinantes epitópicos se componen de agrupamientos superficiales de moléculas químicamente activos como aminoácidos o cadenas laterales de azúcares y, normalmente, tienen características estructurales tridimensionales específicas, así como características de carga específicas. Se dice que dos anticuerpos "se unen con el mismo epítopo" ("compiten") si se demuestra que un anticuerpo compite con un segundo anticuerpo en un ensayo de unión competitiva, algo que se realiza mediante cualquiera de los métodos que son bien conocidos para las personas versadas en la materia (como el método BIAcoreTM previamente mencionado). Con respecto a un hapteno (como la quetiapina u otro fármaco antipsicótico), se puede generar un anticuerpo contra la molécula de hapteno no antigénica conjugando el hapteno con un portador inmunogénico (o portador inmunógeno). Así, se crea un anticuerpo que reconoce un 'epítopo' definido por el hapteno.

Cuando se utiliza en relación con un anticuerpo, 'aislado' quiere decir 'alterado por la mano del hombre' respecto a cualquier estado natural; es decir, si existe en la naturaleza, ha sido cambiado o extraído de su entorno natural, o ambos. Por ejemplo, un anticuerpo que existe de forma natural, está presente de forma natural en un animal vivo y se encuentra en su estado natural no está 'aislado', pero si el mismo anticuerpo se separa de los materiales que coexisten con él en su estado natural, está 'aislado', tal y como dicho término se emplea en el presente documento.

Puede haber anticuerpos en un compuesto o composición, como un reactivo para inmunoensayos, que no es un compuesto o composición que exista de forma natural, de forma que serán anticuerpos aislados, de acuerdo con el significado de ese término tal y como se utiliza en el presente texto.

La 'reactividad cruzada' (o 'reacción cruzada') hace referencia a la reacción de un anticuerpo con un antígeno que no se ha usado para inducir o activar dicho anticuerpo.

Preferiblemente, el anticuerpo de la presente invención se unirá con el fármaco o medicamento y con cualesquiera otros metabolitos farmacológicamente activos que se desee. Si se modifica el sitio de unión de un portador inmunógeno en un conjugado de fármacos, puede dotarse a los anticuerpos de 'selectividad' y 'reactividad cruzada' con los metabolitos y/o los fármacos relacionados. En el caso de la quetiapina, la reactividad cruzada con los metabolitos de quetiapina como N-desalquilquetiapina (norquetiapina), sulfóxido de quetiapina, O-desalquilquetiapina o 7-hidroxiquetiapina puede ser deseable o no. Pueden crearse anticuerpos que detectan simultáneamente muchos de estos fármacos y/o metabolitos, y también pueden crearse anticuerpos que detectan cada uno de ellos por separado (lo que determina las propiedades de 'unión específica' de los anticuerpos). Un anticuerpo se une específicamente con uno o más compuestos cuando su unión con uno o más compuestos es equimolar o básicamente equimolar.

Los anticuerpos de la presente invención se describen mediante las secuencias de nucleótidos y aminoácidos de sus dominios variables. Cada uno de ellos se creó inoculando en un huésped un conjugado que contenía un fármaco antipsicótico conjugado con un portador inmunógeno. Al haber proporcionado ahora sus secuencias de nucleótidos y aminoácidos, los anticuerpos pueden producirse mediante métodos recombinantes como los que se describen en la Patente de EE. UU. Nº 4,166,452.

También pueden crearse fragmentos de anticuerpos que contienen sitios de unión específicos para el fármaco antipsicótico. Estos fragmentos incluyen -pero no se limitan a- los fragmentos de F(ab')₂ que pueden producirse mediante la digestión de la molécula del anticuerpo usando pepsina y los fragmentos Fab que pueden generarse reduciendo los puentes de disulfuro de los fragmentos de F(ab')₂. De manera alternativa, pueden crearse bibliotecas sobre la expresión de los Fab para poder identificar de forma rápida y sencilla los fragmentos Fab monoclonales con la especificidad deseada (Huse et al., Science, 256:1270-1281 (1989)). Los fragmentos de anticuerpos Fab, Fv y ScFv pueden expresarse en y secretarse de *Escherichia coli*, lo cual hace posible la producción de grandes cantidades de estos fragmentos. De manera alternativa, los fragmentos Fab'-SH pueden extraerse directamente de *E. coli* y unirse químicamente para formar fragmentos F(ab')₂ (Carter et al., BioTechnology, 10:163-167 (1992)). Hay otras técnicas para producir fragmentos de anticuerpos que resultan conocidas para las personas versadas en la materia. También se contemplan los fragmentos Fv monocatenarios (scFv) (ver las Patentes de EE. UU. nº 5,761,894 y 5,587,458). Los fragmentos Fv y sFv son los únicos con sitios de combinación intactos que están desprovistos de regiones constantes; por ello, es probable que muestren una unión no específica reducida. El fragmento de anticuerpo también puede ser un 'anticuerpo lineal', por ejemplo, como se describe en la Patente de EE. UU. nº 5,642,870. Estos fragmentos de anticuerpos lineales pueden ser monoespecíficos o biespecíficos.

DISPOSITIVOS Y KITS DE ENSAYO

5

10

25

30

35

40

45

50

55

60

65

Asimismo, puede proporcionarse un kit de ensayo (también denominado 'kit reactivo' o 'kit de reacción') que contiene un anticuerpo, tal y como se ha explicado previamente. Un kit reactivo representativo puede contener un anticuerpo que se une al fármaco antipsicótico, quetiapina, un compuesto que comprende un análogo de un fármaco antipsicótico, o un derivativo -o derivado- de este, unido a una fracción o segmento de marcado, y, opcionalmente,

también puede comprender uno o más calibradores que contienen una cantidad conocida de un fármaco antipsicótico u otro producto estándar relacionado.

El término 'kit de ensayo' hace referencia a un conjunto de materiales y reactivos que se utilizan para llevar a cabo el ensayo. Los reactivos pueden proporcionarse en una disposición empaquetada y en el mismo envase o en envases separados, dependiendo de su estabilidad y su reactividad cruzada, y en forma líquida o liofilizada. Las cantidades y proporciones de los reactivos del kit pueden seleccionarse de tal manera que proporcionen unos resultados óptimos para una aplicación en particular. Un kit de ensayo que incorpore las características de la presente invención contiene anticuerpos que se unen a la quetiapina. Además, el kit puede contener acompañantes de unión competitiva de quetiapina y materiales de control y calibración.

5

10

15

20

25

30

35

50

El término 'material de control y calibración' hace referencia a cualquier material estándar o de referencia que contiene una cantidad conocida de un analito. Una muestra que se sospecha contiene un analito, y el correspondiente material de calibración, se someten a ensayo en circunstancias similares. La concentración de analito se calcula comparando los resultados obtenidos con la muestra desconocida y los resultados obtenidos con la estándar. Habitualmente, esto se realiza creando una curva de calibración.

Los anticuerpos que presentan las características de la presente invención pueden incluirse en un kit, envase, pack o dispensador junto con las instrucciones para su uso. Cuando los anticuerpos se suministran en un kit, los diferentes componentes del inmunoensayo pueden guardarse en envases separados y mezclarse antes de usarse. Envasar los componentes por separado permite un almacenamiento de larga duración y no atenúa de forma sustancial el funcionamiento de los componentes activos. Además, los reactivos pueden envasarse en entornos inertes, por ejemplo, bajo una presión positiva de gas nitrógeno, gas argón, o similares, lo cual se prefiere especialmente en el caso de los reactivos que son sensibles al aire y/o la humedad.

Los reactivos que se incluyen en los kits que presentan las características de la presente invención pueden suministrarse en envases de todo tipo, de manera que la actividad de los diversos componentes pueda preservarse sustancialmente a la vez que los propios componentes básicamente no se ven adsorbidos o alterados por los materiales del envase. Los envases o recipientes adecuados incluyen -pero no se limitan a- las ampollas, las botellas, los tubos de ensayo, los viales, los frascos, las jeringas, las fundas o sobres, por ejemplo, forrados de papel de aluminio, y similares. Los envases pueden estar compuestos de cualquier material adecuado, incluyendo -pero sin limitarse a- el cristal o el vidrio, los polímeros orgánicos, por ejemplo, el policarbonato, el poliestireno, el polietileno, etc., la cerámica, el metal, por ejemplo, el aluminio, las aleaciones de metal, etc., el acero, el corcho, y similares. Además, los envases pueden contener una o más vías de acceso esterilizadas, por ejemplo, para acceder a ellos mediante una aguja, y también puede proporcionarse un septo. Los materiales preferidos para los septos incluyen la goma y el politetrafluoroetileno del tipo que se vende con el nombre comercial TEFLON, de DuPont (Wilmington, Delaware, Estados Unidos). Además, los envases pueden comprender dos o más compartimentos separados mediante tabiques o membranas que pueden retirarse para que los componentes se puedan mezclar.

Los kits reactivos que presentan las características de la presente invención también pueden suministrarse junto con materiales de instrucciones. Las instrucciones pueden estar impresas, por ejemplo, en papel, y/o pueden proporcionarse en un medio de lectura electrónica. De forma alternativa, las instrucciones pueden proporcionarse dirigiendo a un usuario a una web de Internet, por ejemplo, mediante las especificaciones del fabricante o distribuidor del kit, y/o mediante correo electrónico.

El anticuerpo también puede proporcionarse como parte de un dispositivo de ensayo. Estos dispositivos de ensayo incluyen los dispositivos de ensayo de flujo lateral. El tipo habitual de dispositivo de ensayo de flujo lateral desechable incluye una zona o área para recibir o alojar la muestra líquida, una zona de conjugado y una zona de reacción. Estos dispositivos de ensayo se conocen normalmente como tiras de prueba de flujo lateral. Estas utilizan un material poroso, por ejemplo, nitrocelulosa, que delimita un paso o vía para el flujo de fluido que puede soportar un flujo capilar. Los ejemplos incluyen aquellos que se muestran en las Patentes de EE. UU. nºs 5,559,041, 5,714,389, 5,120,643 y 6,228,660.

Otro tipo de dispositivo de ensayo es un dispositivo de ensayo no poroso que tiene salientes o protuberancias para provocar o estimular el flujo capilar. Los ejemplos de estos dispositivos de ensayo incluyen el dispositivo de flujo lateral abierto que se desvela en las Publicaciones Internacionales PCT nos WO 2003/103835, WO 2005/089082, WO 2005/118139 y WO 2006/137785.

En un dispositivo de ensayo no poroso, normalmente el dispositivo de ensayo tiene al menos una zona de adición de muestras, al menos una zona de conjugado, al menos una zona de reacción y al menos una zona de absorción. Las zonas forman una vía o recorrido de flujo por el que la muestra fluye desde la zona de adición de muestras hasta la zona de absorción. En la zona de reacción también se incluyen elementos de captura, como anticuerpos, que pueden unirse a los analitos, que se depositan opcionalmente en el dispositivo (por ejemplo, por medio de un recubrimiento); asimismo, se incluye material conjugado marcado que también es capaz de tomar parte en las reacciones que permiten determinar la concentración del analito, depositado en el dispositivo en la zona de conjugado, de manera que el material de conjugado marcado porta un marcador para la detección en la zona de

reacción. El material de conjugado se disuelve a medida que la muestra fluye a través de la zona de conjugado formando un penacho conjugado de material de conjugado marcado disuelto y material de la muestra que fluye hacia abajo hacia la zona de reacción. A medida que el penacho de conjugado fluye hacia la zona de reacción, el material conjugado será capturado por los elementos de captura, por ejemplo, mediante un compuesto de material conjugado y analitos (como en un ensayo 'sandwich') o directamente (como en un ensayo 'competitivo'). El material de conjugado disuelto que queda suelto se verá arrastrado más allá de la zona de reacción hasta llegar a la -al menos una- zona de absorción. Estos dispositivos pueden incluir protuberancias o micropilares en la vía de flujo.

Un instrumento como el que se desvela en las Publicaciones de Patente de EE. UU. nos US20060289787A1 y US 20070231883A1, y en las Patentes de EE. UU. nos 7,416,700 y 6,139,800 es capaz de detectar el material conjugado y ligado -o unido- en la zona de reacción. Los marcadores habituales incluyen tintes fluorescentes que pueden detectarse por medio de instrumentos que excitan los tintes fluorescentes, e incorporan un detector que es capaz de detectar los tintes fluorescentes.

15 **INMUNOENSAYOS**

5

20

25

30

35

40

45

50

55

60

65

Los anticuerpos que se producen de este modo pueden usarse en inmunoensayos para reconocer/unirse al fármaco antipsicótico, detectando así la presencia y/o cantidad de fármaco presente en la muestra de un paciente. Preferiblemente, el formato del ensayo es un formato de inmunoensayo competitivo. Dicho formato y otros ensayos se describen, entre otros, en Hampton et al. ('Serological Methods, A Laboratory Manual', APS Press, Saint Paul, Minnesota, Estados Unidos, 1990) y Madox et al. (J. Exp. Med., 158:12111, 1983).

El término 'analito' hace referencia a cualquier sustancia, o grupo de sustancias, cuya presencia o cantidad ha de determinarse. Los analitos representativos de fármacos antipsicóticos incluyen -pero no se limitan a- la risperidona, la paliperidona, la olanzapina, el aripiprazol y la quetiapina.

El término 'acompañante o compañero de unión competitiva' ('competitive binding partner', en inglés) hace referencia a una sustancia o grupo de sustancias, como las que se pueden emplear en un inmunoensayo competitivo, que se comportan de manera similar a un analito en lo referente a su afinidad de unión con un anticuerpo. Los acompañantes de unión competitiva representativos incluyen -pero no se limitan a- los derivados de fármacos antipsicóticos y similares.

Cuando se usa en relación con un analito, el término 'de detección' (o 'para detectar') hace referencia a cualquier método cuantitativo, semicuantitativo o cualitativo, así como cualquier otro método, para determinar un analito en general y un fármaco antipsicótico en particular. Por ejemplo, un método que solamente detecta la presencia o la ausencia de un fármaco antipsicótico en una muestra entra dentro del alcance de la presente invención, y también lo hacen los métodos que proporcionan información sobre la cantidad o concentración del fármaco antipsicótico en la muestra. En el presente texto, los términos 'detectar', 'determinar', 'identificar' y similares se usan como sinónimos, y todos entran dentro del alcance de la presente invención.

Una realización preferida de la presente invención es un inmunoensayo competitivo en el que los anticuerpos que se unen al fármaco antipsicótico, o el fármaco o el acompañante de unión competitiva de este, están unidos a un soporte sólido (como la zona de reacción de un dispositivo de ensayo de flujo lateral); y un fármaco marcado o un acompañante de unión competitiva, o un anticuerpo marcado, respectivamente, y una muestra obtenida del huésped pasan por el soporte sólido, de manera que la cantidad de marcador que se detecta unida al soporte sólido puede equilibrarse o correlacionarse con la cantidad de fármaco en la muestra.

Cualquier muestra que se sospeche pueda contener un analito, por ejemplo, un fármaco antipsicótico, puede analizarse de acuerdo con los métodos de las realizaciones que se prefieren actualmente. La muestra puede tratarse previamente si así se desea y puede prepararse en cualquier medio adecuado que no interfiera con el ensayo. Preferiblemente, la muestra comprende un medio acuoso, como un fluido corporal de un huésped, más preferiblemente, plasma o suero.

Debe entenderse que todos los tipos de inmunoensayos que emplean anticuerpos se contemplan para su uso de acuerdo con las realizaciones que se prefieren actualmente, incluyendo los ensayos en los que los anticuerpos están unidos a fases sólidas y los ensayos en los que los anticuerpos se encuentran en medios líquidos. Los métodos de inmunoensayos que pueden usarse para detectar analitos, y que usan anticuerpos que presentan las características de la presente invención, incluyen -pero no se limitan a- los ensayos competitivos (de reactivos limitados) en los que un analito marcado (análogo del analito) y un analito de una muestra compiten por los anticuerpos, y ensayos inmunométricos de emplazamiento único en los que el anticuerpo está marcado; y similares.

Todos los ejemplos se desarrollaron usando técnicas estándares, que resultan rutinarias y bien conocidas para las personas versadas en la materia, con excepción de los casos en los que se indica lo contrario y que se describen de forma detallada. Las técnicas rutinarias de biología molecular de los siguientes ejemplos pueden llevarse a cabo tal y como se describe en los manuales de laboratorio estándares, como Sambrook et al., 'Molecular Cloning: A Laboratory Manual', 2ª Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Nueva York, Estados Unidos,

(1989).

10

15

20

25

35

40

45

50

55

Existen solicitudes en tramitación tituladas 'Haptenos de Aripiprazol' (Expediente nº PRD2365USPSP, Solicitud de Patente Provisional de EE. UU. nº 61/691,450, presentada el 21 de agosto de 2012); 'Haptenos de Olanzapina' (Expediente nº PRD326USPSP, Solicitud de Patente Provisional de EE. UU. nº 61/691,454, presentada el 21 de agosto de 2012); 'Haptenos de Paliperidona' (Expediente nº PRD3267USPSP, Solicitud de Patente Provisional de EE. UU. nº 61/691,459, presentada el 21 de agosto de 2012); 'Haptenos de Quetiapina' (Expediente nº PRD3268USPSP, Solicitud de Patente Provisional de EE. UU. nº 61/691,462, presentada el 21 de agosto de 2012); 'Haptenos de Risperidona y Paliperidona' (Expediente nº PRD3269USPSP, Solicitud de Patente Provisional de EÉ. UU. nº 61/691,469, presentada el 21 de agosto de 2012); 'Anticuerpos para Haptenos de Aripiprazol y su Uso' (Expediente nº CDS5128USPSP, Solicitud de Patente Provisional de EE. UU. nº 61/691,544, presentada el 21 de agosto de 2012); 'Anticuerpos para Haptenos de Olanzapina y su Uso' (Expediente nº CDS5132USPSP, Solicitud de Patente Provisional de EE. UU. nº 61/691,572, presentada el 21 de agosto de 2012); 'Anticuerpos para Haptenos de Paliperidona v su Uso' (Expediente nº CDS5126USPSP, Solicitud de Patente Provisional de EE, UU, nº 61/691.634. presentada el 21 de agosto de 2012); 'Anticuerpos para Haptenos de Quetiapina y su Uso' (Expediente nº CDS5134USPSP, Solicitud de Patente Provisional de EE. UU. nº 61/691,598, presentada el 21 de agosto de 2012); 'Anticuerpos para Haptenos de Risperidona y su Uso' (Expediente nº CDS5130USPSP, Solicitud de Patente Provisional de EE. UU. nº 61/691,615, presentada el 21 de agosto de 2012); 'Anticuerpos para Aripiprazol y su Uso' (Expediente nº CDS5129USPSP, Solicitud de Patente Provisional de EE. UU. nº 61/691,522, presentada el 21 de agosto de 2012); 'Anticuerpos para Olanzapina y su Uso' (Expediente nº CDS5133USPSP, Solicitud de Patente Provisional de EE. UU. nº 61/691,645, presentada el 21 de agosto de 2012); 'Anticuerpos para Paliperidona y su Uso' (Expediente nº CDS5127USPSP, Solicitud de Patente Provisional de EE. UU. nº 61/691,692, presentada el 21 de agosto de 2012); 'Anticuerpos para Risperidona y su Uso' (Expediente nº CDS5131USPSP, Solicitud de Patente Provisional de EE. UU. nº 61/691,675, presentada el 21 de agosto de 2012); y 'Anticuerpos para Risperidona y su Uso' (Expediente nº CDS5145USPSP, Solicitud de Patente Provisional de EE. UU. nº 61/790,880, presentada el 15 de marzo de 2013).

EJEMPLO 1

30 Anticuerpos para el Aripiprazol

Anticuerpo 17.3 clon 3D7

El hibridoma denominado 17.3 clon 3D7 secreta un anticuerpo monoclonal (mAb) específico para el aripiprazol. El anticuerpo se denomina 17.3 clon 3D7. La secuencia de nucleótidos de la región variable de la cadena ligera (V_L) del mAb 17.3 clon 3D7 se denomina SEQ ID NO:41 (o identificador de secuencia nº 41) y la de la región variable de la cadena pesada (V_H) se denomina SEQ ID NO:42. Dentro de la V_L del mAb 17.3 clon 3D7, los nucleótidos 136-165 de SEQ ID NO:41 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 211-231 de SEQ ID NO:41 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 328-354 de SEQ ID NO:41 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 17.3 clon 3D7, los nucleótidos 133-162 de SEQ ID NO:42 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 205-255 de SEQ ID NO:42 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 352-375 de SEQ ID NO:42 representan la tercera región determinante de la complementariedad (CDR3).

También se determinaron las correspondientes secuencias de aminoácidos previstas de las regiones variables de las cadenas de mAb 17.3 clon 3D7, y se denominan SEQ ID NO:43 (cadena ligera) y SEQ ID NO:44 (cadena pesada). Dentro de la V_L del mAb 17.3 clon 3D7, los residuos de aminoácidos 46-55 de SEQ ID NO:43 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 71-77 de SEQ ID NO:43 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 110-118 de SEQ ID NO:43 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 17.3 clon 3D7, los residuos de aminoácidos 45-54 de SEQ ID NO:44 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 69-85 de SEQ ID NO:44 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 118-125 de SEQ ID NO:44 representan la tercera región determinante de la complementariedad (CDR3).

Anticuerpo 17.3 clon 5C7 (primero)

60 El hibridoma denominado 17.3 clon 5C7 (primero) secreta un anticuerpo monoclonal (mAb) específico para el aripiprazol. El anticuerpo se denomina 17.3 clon 5C7 (primero). La secuencia de nucleótidos de la región variable de la cadena ligera (V_L) del mAb 17.3 clon 5C7 (primero) se denomina SEQ ID NO:45 y la de la región variable de la cadena pesada (V_H) se denomina SEQ ID NO:46. Dentro de la V_L del mAb 17.3 clon 5C7 (primero), los nucleótidos 130-162 de SEQ ID NO:45 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 208-228 de SEQ ID NO:45 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 325-351 de SEQ ID NO:45 representan la tercera región determinante de la

complementariedad (CDR3). Dentro de la V_H del mAb 17.3 clon 5C7 (primero), los nucleótidos 133-162 de SEQ ID NO:46 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 205-255 de SEQ ID NO:46 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 352-378 de SEQ ID NO:46 representan la tercera región determinante de la complementariedad (CDR3).

5

10

15

25

30

35

40

También se determinaron las correspondientes secuencias de aminoácidos previstas de las regiones variables de las cadenas de mAb 17.3 clon 5C7 (primero), y se denominan SEQ ID NO:47 (cadena ligera) y SEQ ID NO:48 (cadena pesada). Dentro de la V₁ del mAb 17.3 clon 5C7 (primero), los residuos de aminoácidos 44-54 de SEQ ID NO:47 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 70-76 de SEQ ID NO:47 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 109-117 de SEQ ID NO:47 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 17.3 clon 5C7 (primero), los residuos de aminoácidos 45-54 de SEQ ID NO:48 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 69-85 de SEQ ID NO:48 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 118-126 de SEQ ID NO:48 representan la tercera región determinante de la complementariedad (CDR3).

Anticuerpo 17.3 clon 5C7 (segundo)

20 El hibridoma denominado 17.3 clon 5C7 (segundo) secreta un anticuerpo monoclonal (mAb) específico para el

aripiprazol. El anticuerpo se denomina 17.3 clon 5C7 (segundo). La secuencia de nucleótidos de la región variable de la cadena ligera (V_L) del mAb 17.3 clon 5C7 (segundo) se denomina SEQ ID NO:49 y la de la región variable de la cadena pesada (VH) se denomina SEQ ID NO:50. Dentro de la VL del mAb 17.3 clon 5C7 (segundo), los nucleótidos 130-174 de SEQ ID NO:49 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 220-240 de SEQ ID NO:49 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 337-363 de SEQ ID NO:49 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 17.3 clon 5C7 (segundo), los nucleótidos 133-162 de SEQ ID NO:50 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 205-255 de SEQ ID NO:50 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 352-390 de SEQ ID NO:50 representan la tercera región determinante de la complementariedad (CDR3).

También se determinaron las correspondientes secuencias de aminoácidos previstas de las regiones variables de las cadenas de mAb 17.3 clon 5C7 (segundo), y se denominan SEQ ID NO:51 (cadena ligera) y SEQ ID NO:52 (cadena pesada). Dentro de la V_L del mAb 17.3 clon 5C7 (segundo), los residuos de aminoácidos 44-58 de SEQ ID NO:51 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 74-80 de SEQ ID NO:51 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 113-121 de SEQ ID NO:51 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 17.3 clon 5C7 (segundo), los residuos de aminoácidos 45-54 de SEQ ID NO:52 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 69-85 de SEQ ID NO:52 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 118-130 de SEQ ID NO:52 representan la tercera región determinante de la complementariedad (CDR3).

Anticuerpo 17.3 clon 5C7 (tercero)

45

50

55

El hibridoma denominado 17.3 clon 5C7 (tercero) secreta un anticuerpo monoclonal (mAb) específico para el aripiprazol. El anticuerpo se denomina 17.3 clon 5C7 (tercero). La secuencia de nucleótidos de la región variable de la cadena ligera (V_L) del mAb 17.3 clon 5C7 (tercero) se denomina SEQ ID NO:53 y la de la región variable de la cadena pesada (V_H) se denomina SEQ ID NO:54. Dentro de la V_L del mAb 17.3 clon 5C7 (tercero), los nucleótidos 130-162 de SEQ ID NO:53 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 208-228 de SEQ ID NO:53 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 325-351 de SEQ ID NO:53 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 17.3 clon 5C7 (tercero), los nucleótidos 133-162 de SEQ ID NO:54 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 205-255 de SEQ ID NO:54 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 352-366 de SEQ ID NO:54 representan la tercera región determinante de la complementariedad (CDR3).

También se determinaron las correspondientes secuencias de aminoácidos previstas de las regiones variables de las cadenas de mAb 17.3 clon 5C7 (tercero), y se denominan SEQ ID NO:55 (cadena ligera) y SEQ ID NO:56 (cadena pesada). Dentro de la V_L del mAb 17.3 clon 5C7 (tercero), los residuos de aminoácidos 44-54 de SEQ ID 60 NO:55 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 70-76 de SEQ ID NO:55 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 109-117 de SEQ ID NO:55 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 17.3 clon 5C7 (tercero), los residuos de aminoácidos 45-54 de SEQ ID NO:56 representan la primera región determinante de la complementariedad (CDR1); los residuos de 65

aminoácidos 69-85 de SEQ ID NO:56 representan la segunda región determinante de la complementariedad

(CDR2); y los residuos de aminoácidos 118-122 de SEQ ID NO:56 representan la tercera región determinante de la complementariedad (CDR3).

EJEMPLO 2

5

25

30

50

55

Anticuerpos para la Olanzapina

Anticuerpo 11.1 clon 35

El hibridoma denominado 11.1 clon 35 secreta un anticuerpo monoclonal (mAb) específico para la olanzapina. El anticuerpo se denomina 11.1 clon 35. La secuencia de nucleótidos de la región variable de la cadena ligera (V_L) del mAb 11.1 clon 35 se denomina SEQ ID NO:9 y la de la región variable de la cadena pesada (V_H) se denomina SEQ ID NO:10. Dentro de la V_L del mAb 11.1 clon 35, los nucleótidos 130-162 de SEQ ID NO:9 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 208-228 de SEQ ID NO:9 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 325-351 de SEQ ID NO:9 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 11.1 clon 35, los nucleótidos 133-162 de SEQ ID NO:10 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 205-255 de SEQ ID NO:10 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 352-366 de SEQ ID NO:10 representan la tercera región determinante de la complementariedad (CDR3).

También se determinaron las correspondientes secuencias de aminoácidos previstas de las regiones variables de las cadenas de mAb 11.1 clon 35, y se denominan SEQ ID NO:11 (cadena ligera) y SEQ ID NO:12 (cadena pesada). Dentro de la V_L del mAb 11.1 clon 35, los residuos de aminoácidos 44-54 de SEQ ID NO:11 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 70-76 de SEQ ID NO:11 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 109-117 de SEQ ID NO:11 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 11.1 clon 35, los residuos de aminoácidos 45-54 de SEQ ID NO:12 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 69-85 de SEQ ID NO:12 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 118-122 de SEQ ID NO:12 representan la tercera región determinante de la complementariedad (CDR3).

Anticuerpo 11.1 clon 61

El hibridoma denominado 11.1 clon 61 secreta un anticuerpo monoclonal (mAb) específico para la olanzapina. El anticuerpo se denomina 11.1 clon 61. La secuencia de nucleótidos de la región variable de la cadena ligera (V_L) del mAb 11.1 clon 61 se denomina SEQ ID NO:13 y la de la región variable de la cadena pesada (V_H) se denomina SEQ ID NO:14. Dentro de la V_L del mAb 11.1 clon 61, los nucleótidos 130-162 de SEQ ID NO:13 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 208-228 de SEQ ID NO:13 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 325-351 de SEQ ID NO:13 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 11.1 clon 61, los nucleótidos 133-162 de SEQ ID NO:14 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 205-255 de SEQ ID NO:14 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 352-366 de SEQ ID NO:14 representan la tercera región determinante de la complementariedad (CDR3).

También se determinaron las correspondientes secuencias de aminoácidos previstas de las regiones variables de las cadenas de mAb 11.1 clon 61, y se denominan SEQ ID NO:15 (cadena ligera) y SEQ ID NO:16 (cadena pesada). Dentro de la V_L del mAb 11.1 clon 61, los residuos de aminoácidos 44-54 de SEQ ID NO:15 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 70-76 de SEQ ID NO:15 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 109-117 de SEQ ID NO:15 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 11.1 clon 61, los residuos de aminoácidos 45-54 de SEQ ID NO:16 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 69-85 de SEQ ID NO:16 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 118-122 de SEQ ID NO:16 representan la tercera región determinante de la complementariedad (CDR3).

Anticuerpo 15.5 clon 3F11 (primero)

60 El hibridoma denominado 15.5 clon 3F11 (primero) secreta un anticuerpo monoclonal (mAb) específico para la olanzapina. El anticuerpo se denomina 15.5 clon 3F11 (primero). La secuencia de nucleótidos de la región variable de la cadena ligera (V_L) del mAb 15.5 clon 3F11 (primero) se denomina SEQ ID NO:29 y la de la región variable de la cadena pesada (V_H) se denomina SEQ ID NO:30. Dentro de la V_L del mAb 15.5 clon 3F11 (primero), los nucleótidos 130-162 de SEQ ID NO:29 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 208-228 de SEQ ID NO:29 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 325-351 de SEQ ID NO:29 representan la tercera región determinante

de la complementariedad (CDR3). Dentro de la V_H del mAb 15.5 clon 3F11 (primero), los nucleótidos 130-162 de SEQ ID NO:30 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 205-252 de SEQ ID NO:30 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 355-381 de SEQ ID NO:30 representan la tercera región determinante de la complementariedad (CDR3).

También se determinaron las correspondientes secuencias de aminoácidos previstas de las regiones variables de las cadenas de mAb 15.5 clon 3F11 (primero), y se denominan SEQ ID NO:31 (cadena ligera) y SEQ ID NO:32 (cadena pesada). Dentro de la V_L del mAb 15.5 clon 3F11 (primero), los residuos de aminoácidos 44-54 de SEQ ID NO:31 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 70-76 de SEQ ID NO:31 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 109-117 de SEQ ID NO:31 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 15.5 clon 3F11 (primero), los residuos de aminoácidos 45-54 de SEQ ID NO:32 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 69-84 de SEQ ID NO:32 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 119-127 de SEQ ID NO:32 representan la tercera región determinante de la complementariedad (CDR3).

Anticuerpo 15.5 clon 3F11 (segundo)

5

10

15

35

40

45

50

55

60

65

El hibridoma denominado 15.5 clon 3F11 (segundo) secreta un anticuerpo monoclonal (mAb) específico para la olanzapina. El anticuerpo se denomina 15.5 clon 3F11 (segundo). La secuencia de nucleótidos de la región variable de la cadena ligera (V_L) del mAb 15.5 clon 3F11 (segundo) se denomina SEQ ID NO:33 y la de la región variable de la cadena pesada (V_H) se denomina SEQ ID NO:34. Dentro de la V_L del mAb 15.5 clon 3F11 (segundo), los nucleótidos 130-162 de SEQ ID NO:33 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 208-228 de SEQ ID NO:33 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 325-351 de SEQ ID NO:33 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 15.5 clon 3F11 (segundo), los nucleótidos 133-162 de SEQ ID NO:34 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 205-261 de SEQ ID NO:34 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 358-381 de SEQ ID NO:34 representan la tercera región determinante de la complementariedad (CDR3).

También se determinaron las correspondientes secuencias de aminoácidos previstas de las regiones variables de las cadenas de mAb 15.5 clon 3F11 (segundo), y se denominan SEQ ID NO:35 (cadena ligera) y SEQ ID NO:36 (cadena pesada). Dentro de la V_L del mAb 15.5 clon 3F11 (segundo), los residuos de aminoácidos 44-54 de SEQ ID NO:35 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 70-76 de SEQ ID NO:35 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 109-117 de SEQ ID NO:35 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 15.5 clon 3F11 (segundo), los residuos de aminoácidos 45-54 de SEQ ID NO:36 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 69-87 de SEQ ID NO:36 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 120-127 de SEQ ID NO:36 representan la tercera región determinante de la complementariedad (CDR3).

Anticuerpo 15.5 subclón 4G9-1

El hibridoma denominado 15.5 subclón 4G9-1 secreta un anticuerpo monoclonal (mAb) específico para la olanzapina. El anticuerpo se denomina 15.5 subclón 4G9-1. La secuencia de nucleótidos de la región variable de la cadena ligera (V_L) del mAb 15.5 subclón 4G9-1 se denomina SEQ ID NO:37 y la de la región variable de la cadena pesada (V_H) se denomina SEQ ID NO:38. Dentro de la V_L del mAb 15.5 subclón 4G9-1, los nucleótidos 130-162 de SEQ ID NO:37 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 208-228 de SEQ ID NO:37 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 325-351 de SEQ ID NO:37 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 15.5 subclón 4G9-1, los nucleótidos 130-162 de SEQ ID NO:38 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 205-252 de SEQ ID NO:38 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 358-381 de SEQ ID NO:38 representan la tercera región determinante de la complementariedad (CDR3).

También se determinaron las correspondientes secuencias de aminoácidos previstas de las regiones variables de las cadenas de mAb 15.5 subclón 4G9-1, y se denominan SEQ ID NO:39 (cadena ligera) y SEQ ID NO:40 (cadena pesada). Dentro de la V_L del mAb 15.5 subclón 4G9-1, los residuos de aminoácidos 44-54 de SEQ ID NO:39 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 70-76 de SEQ ID NO:39 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 109-117 de SEQ ID NO:39 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 15.5 subclón 4G9-1, los residuos de aminoácidos 44-54 de SEQ ID NO:40 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 69-84 de SEQ ID NO:40 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de

aminoácidos 120-127 de SEQ ID NO:40 representan la tercera región determinante de la complementariedad (CDR3).

EJEMPLO 3

5

25

30

40

45

Anticuerpos para la Quetiapina

Anticuerpo 13.2 subclón 89-3 (primero)

El hibridoma denominado 13.2 subclón 89-3 (primero) secreta un anticuerpo monoclonal (mAb) específico para la quetiapina. El anticuerpo se denomina 13.2 subclón 89-3 (primero). La secuencia de nucleótidos de la región variable de la cadena ligera (V_L) del mAb 13.2 subclón 89-3 (primero) se denomina SEQ ID NO:17 y la de la región variable de la cadena pesada (V_H) se denomina SEQ ID NO:18. Dentro de la V_L del mAb 13.2 subclón 89-3 (primero), los nucleótidos 127-174 de SEQ ID NO:17 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 220-240 de SEQ ID NO:17 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 337-363 de SEQ ID NO:17 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 13.2 subclón 89-3 (primero), los nucleótidos 133-162 de SEQ ID NO:18 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 205-255 de SEQ ID NO:18 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 352-387 de SEQ ID NO:18 representan la tercera región determinante de la complementariedad (CDR3).

También se determinaron las correspondientes secuencias de aminoácidos previstas de las regiones variables de las cadenas de mAb 13.2 subclón 89-3 (primero), y se denominan SEQ ID NO:19 (cadena ligera) y SEQ ID NO:20 (cadena pesada). Dentro de la V_L del mAb 13.2 subclón 89-3 (primero), los residuos de aminoácidos 43-58 de SEQ ID NO:19 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 74-80 de SEQ ID NO:19 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 113-121 de SEQ ID NO:19 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 13.2 subclón 89-3 (primero), los residuos de aminoácidos 45-54 de SEQ ID NO:20 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 69-85 de SEQ ID NO:20 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 118-129 de SEQ ID NO:20 representan la tercera región determinante de la complementariedad (CDR3).

35 Anticuerpo 13.2 subclón 89-3 (segundo)

El hibridoma denominado 13.2 subclón 89-3 (segundo) secreta un anticuerpo monoclonal (mAb) específico para la quetiapina. El anticuerpo se denomina 13.2 subclón 89-3 (segundo). La secuencia de nucleótidos de la región variable de la cadena ligera (V_L) del mAb 13.2 subclón 89-3 (segundo) se denomina SEQ ID NO:21 y la de la región variable de la cadena pesada (V_H) se denomina SEQ ID NO:22. Dentro de la V_L del mAb 13.2 subclón 89-3 (segundo), los nucleótidos 127-174 de SEQ ID NO:21 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 220-240 de SEQ ID NO:21 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 337-363 de SEQ ID NO:21 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 13.2 subclón 89-3 (segundo), los nucleótidos 133-162 de SEQ ID NO:22 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 205-255 de SEQ ID NO:22 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 367-387 de SEQ ID NO:22 representan la tercera región determinante de la complementariedad (CDR3).

También se determinaron las correspondientes secuencias de aminoácidos previstas de las regiones variables de las cadenas de mAb 13.2 subclón 89-3 (segundo), y se denominan SEQ ID NO:23 (cadena ligera) y SEQ ID NO:24 (cadena pesada). Dentro de la V_L del mAb 13.2 subclón 89-3 (segundo), los residuos de aminoácidos 43-58 de SEQ ID NO:23 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 74-80 de SEQ ID NO:23 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 113-121 de SEQ ID NO:23 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 13.2 subclón 89-3 (segundo), los residuos de aminoácidos 45-54 de SEQ ID NO:24 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 69-85 de SEQ ID NO:24 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 123-129 de SEQ ID NO:24 representan la tercera región determinante de la complementariedad (CDR3).

Anticuerpo 13.2 subclón 89-5

El hibridoma denominado 13.2 subclón 89-5 secreta un anticuerpo monoclonal (mAb) específico para la quetiapina.

El anticuerpo se denomina 13.2 subclón 89-5. La secuencia de nucleótidos de la región variable de la cadena ligera (V_L) del mAb 13.2 subclón 89-5 se denomina SEQ ID NO:25 y la de la región variable de la cadena pesada (V_H) se

denomina SEQ ID NO:26. Dentro de la V_L del mAb 13.2 subclón 89-5, los nucleótidos 127-174 de SEQ ID NO:25 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 220-240 de SEQ ID NO:25 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 337-363 de SEQ ID NO:25 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 13.2 subclón 89-5, los nucleótidos 133-162 de SEQ ID NO:26 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 205-255 de SEQ ID NO:26 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 367-387 de SEQ ID NO:26 representan la tercera región determinante de la complementariedad (CDR3).

También se determinaron las correspondientes secuencias de aminoácidos previstas de las regiones variables de las cadenas de mAb 13.2 subclón 89-5, y se denominan SEQ ID NO:27 (cadena ligera) y SEQ ID NO:28 (cadena pesada). Dentro de la V_L del mAb 13.2 subclón 89-5, los residuos de aminoácidos 43-58 de SEQ ID NO:27 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 74-80 de SEQ ID NO:27 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 113-121 de SEQ ID NO:27 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 13.2 subclón 89-5, los residuos de aminoácidos 45-54 de SEQ ID NO:28 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 69-85 de SEQ ID NO:28 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 123-129 de SEQ ID NO:28 representan la tercera región determinante de la complementariedad (CDR3).

EJEMPLO 4

Anticuerpos para Risperidona/Paliperidona

Anticuerpo 5-9

25

30

35

50

55

60

El hibridoma denominado 5-9 secreta un anticuerpo monoclonal (mAb) específico para la risperidona (y su metabolito paliperidona). El anticuerpo se denomina 5-9. La secuencia de nucleótidos de la región variable de la cadena ligera (V_L) del mAb 5-9 se denomina SEQ ID NO:1 y la de la región variable de la cadena pesada (V_H) se denomina SEQ ID NO:2. Dentro de la V_L del mAb 5-9, los nucleótidos 130-180 de SEQ ID NO:1 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 226-246 de SEQ ID NO:1 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 343-369 de SEQ ID NO:1 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 5-9, los nucleótidos 133-162 de SEQ ID NO:2 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 205-255 de SEQ ID NO:2 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 352-366 de SEQ ID NO:2 representan la tercera región determinante de la complementariedad (CDR3).

También se determinaron las correspondientes secuencias de aminoácidos previstas de las regiones variables de las cadenas de mAb 5-9, y se denominan SEQ ID NO:3 (cadena ligera) y SEQ ID NO:4 (cadena pesada). Dentro de la V_L del mAb 5-9, los residuos de aminoácidos 44-60 de SEQ ID NO:3 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 76-82 de SEQ ID NO:3 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 115-123 de SEQ ID NO:3 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 5-9, los residuos de aminoácidos 45-54 de SEQ ID NO:4 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 69-85 de SEQ ID NO:4 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 118-122 de SEQ ID NO:4 representan la tercera región determinante de la complementariedad (CDR3).

Anticuerpo 5-5

El hibridoma denominado 5-5 secreta un anticuerpo monoclonal (mAb) específico para la risperidona (y su metabolito paliperidona). El anticuerpo se denomina 5-5. La secuencia de nucleótidos de la región variable de la cadena ligera (V_L) del mAb 5-5 se denomina SEQ ID NO:5 y la de la región variable de la cadena pesada (V_H) se denomina SEQ ID NO:6. Dentro de la V_L del mAb 5-5, los nucleótidos 130-180 de SEQ ID NO:5 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 226-246 de SEQ ID NO:5 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 343-369 de SEQ ID NO:5 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 5-5, los nucleótidos 133-162 de SEQ ID NO:6 representan la primera región determinante de la complementariedad (CDR1); los nucleótidos 205-255 de SEQ ID NO:6 representan la segunda región determinante de la complementariedad (CDR2); y los nucleótidos 352-366 de SEQ ID NO:6 representan la tercera región determinante de la complementariedad (CDR3).

También se determinaron las correspondientes secuencias de aminoácidos previstas de las regiones variables de las cadenas de mAb 5-5, y se denominan SEQ ID NO:7 (cadena ligera) y SEQ ID NO:8 (cadena pesada). Dentro de

la V_L del mAb 5-5, los residuos de aminoácidos 44-60 de SEQ ID NO:7 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 76-82 de SEQ ID NO:7 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 115-123 de SEQ ID NO:7 representan la tercera región determinante de la complementariedad (CDR3). Dentro de la V_H del mAb 5-5, los residuos de aminoácidos 45-54 de SEQ ID NO:8 representan la primera región determinante de la complementariedad (CDR1); los residuos de aminoácidos 69-85 de SEQ ID NO:8 representan la segunda región determinante de la complementariedad (CDR2); y los residuos de aminoácidos 118-122 de SEQ ID NO:8 representan la tercera región determinante de la complementariedad (CDR3).

10 EJEMPLO 5

5

Inmunoensayos Competitivos para Quetiapina e Inmunoensayos Competitivos Múltiples para Aripiprazol, Olanzapina, Quetiapina y Risperidona/Paliperidona

Tras diversas inmunizaciones con inmunógenos de quetiapina, se analizó sangre de colas de ratones para estudiar su reactividad usando ELISA. También se analizaron sobrenadantes de hibridomas, y los datos de ELISA que se ofrecen en las Tablas 1 y 2 de más adelante muestran la reactividad de diversos hibridomas (se usaron células NS0 como compañero de fusión).

20 <u>Tabla 1</u>

Dilución	9	10	11	12	
400					
400					
1200					
1200	79	89	90	95	Cmpd#9 (Compuesto#9)
3600					
3600					
10800					
10800					
Bi Sub	1,5858	1,3168	1,4302	0,0533	
	1,5111	1,0627	1,2186	0,0427	
	0,5578	0,4213	0,598	0,0219	Cmpd#9
	0,554	0,4447	0,5353	0,0233	
	0,1932	0,1582	0,1868	0,0154	
	0,171	0,2111	0,1838	0,0132	
	0,0736	0,0722	0,0733	0,0107	
	0,0884	0,0774	0,086	0,0107	

Tabla 2

10

15

20

25

30

35

40

Dilución	4C12	1A4	4G12	1F6
400	0,5467	0,2002	0,0144	0,1308
1200	0,1793	0,0619	0,01035	0,03905
3600	0,06655	0,026	0,00825	0,0192
10800	0,02755	0,0132	0,00765	0,01035
400	3,7296	0,24275	0,22585	0,00615
1200	2,4516	0,08695	0,0763	0,00685
3600	1,1575	0,0282	0,02875	0,00615
10800	0,4622	0,0147	0,0145	0,00645
Dilución	5E9	2F2	3E2	

Después se analizó el sobrenadante mediante ELISA de competición para determinar si las señales eran específicas a la quetiapina. Las Figuras 1 y 2 muestran los resultados de los hibridomas representativos. Los datos muestran la reactividad específica a la quetiapina.

La Figura 3 muestra el formato de inmunoensayo competitivo utilizado en un dispositivo de ensayo de flujo lateral en el que el anticuerpo de captura, un clon de quetiapina, se depósito en un chip junto con un conjugado de detección que estaba compuesto de quetiapina conjugada con un fluoróforo. Tal y como se muestra en la Figura 3, en este formato competitivo, un bajo nivel de analito(s) (quetiapina) provoca una señal o respuesta elevada, mientras que un elevado nivel de analito(s) (quetiapina) provoca una respuesta o señal baja. La cantidad de quetiapina en la muestra puede calcularse mediante la pérdida de fluorescencia en comparación con una muestra de control que no tiene ningún fármaco o medicamento. En la Figura 4 se muestra una curva típica de respuesta a una dosis generada con los subclones de quetiapina 89-3, 89-13 y 89-5.

La Figura 5 muestra el diseño del chip de un dispositivo de ensayo de flujo lateral de acuerdo con una realización de la presente invención. El dispositivo incluye una zona o área para recibir o alojar la muestra, una zona de conjugado (que contiene el acompañante o compañero de unión competitiva marcado que se desee) y una zona de reacción (se señalan ocho áreas en la zona de reacción; cada área puede contener por separado un anticuerpo deseado). La muestra fluye desde la zona de muestras, a través de la zona de conjugado, hasta llegar a la zona de reacción.

Las Figuras 6-9 muestran las curvas típicas de respuesta a una dosis en relación con un control positivo de aripiprazol (una muestra que contiene aripiprazol) generado con un anticuerpo 5C7 depositado en la zona de reacción 2 y un acompañante de unión competitiva de aripiprazol marcado en la zona de conjugado (Figura 6), un control positivo de olanzapina (una muestra que contiene olanzapina) generado con un anticuerpo 4G9-1 depositado en la zona de reacción 4 y un acompañante de unión competitiva de olanzapina marcado en la zona de conjugado (Figura 7), un control positivo de quetiapina (una muestra que contiene quetiapina) generado con un anticuerpo 11 depositado en la zona de reacción 6 y un acompañante de unión competitiva de olanzapina marcado en la zona de conjugado (Figura 8), y un control positivo de risperidona (una muestra que contiene risperidona) generado con un anticuerpo 5-9 depositado en la zona de reacción 8 y un acompañante de unión competitiva de risperidona marcado en la zona de conjugado (Figura 9). Los acompañantes de unión competitiva marcados de la zona de conjugado compiten con los fármacos presentes en las muestras para unirse a los anticuerpos. Se detecta la cantidad de marcador y esto es un indicio de la cantidad de fármaco presente en la muestra; ver Figura 3).

Para confirmar que los conjugados de los acompañantes de unión competitiva marcados no se unen a los anticuerpos depositados en las zonas de reacción, se realizaron controles negativos usando muestras que no contenían fármacos. En referencia a la Tabla 3, una muestra que no contiene aripiprazol se deposita en la zona de muestras y se mueve debido a la acción capilar a través de la zona de conjugado (que, en esta ocasión, contiene olanzapina marcada, quetiapina marcada y risperidona marcada, pero no aripiprazol marcado), hasta llegar a la zona de reacción. De nuevo, la zona de reacción contiene anticuerpos de aripiprazol (5C7) en la zona de reacción 2. La

Tabla 3 de más abajo muestra los resultados, que confirman que no hay ninguna respuesta a la dosis y que los conjugados de olanzapina, quetiapina y risperidona que se mueven por acción capilar a través de la zona de reacción no se unen al anticuerpo de aripiprazol.

5 Tabla 3

Aripiprazol-C	lon 5C7-Model de 0 r	lo Matemático ng/mL)	1 (Conc.			
Ensayo-MM	Conj.	Zona de Reacción	Zona de Estudio	Área Media Máxima	Altura Media Máxima	Fondo Promedio
ARIP-MM1	OLAN, QUET, RISP	ARIP	2	0,77	1,56	3,99
ARIP-MM1	OLAN, QUET, RISP		4	-0,02	0,06	4,14
ARIP-MM1	OLAN, QUET, RISP		6	0,09	0,10	4,29
ARIP-MM1	OLAN, QUET, RISP		8	0,13	0,12	4,61
Los demás	s conjugados r	no se unen al A				

En referencia a la Tabla 4, una muestra que no contiene olanzapina se deposita en la zona de muestras y se mueve debido a la acción capilar a través de la zona de conjugado (que, en esta ocasión, contiene aripiprazol marcado, quetiapina marcada y risperidona marcada, pero no olanzapina marcada), hasta llegar a la zona de reacción. De nuevo, la zona de reacción contiene anticuerpos de olanzapina (4G9-1) en la zona de reacción 4. La Tabla 4 de más abajo muestra los resultados, que confirman que no hay ninguna respuesta a la dosis y que los conjugados de aripiprazol, quetiapina y risperidona que se mueven por acción capilar a través de la zona de reacción no se unen al anticuerpo de olanzapina.

Tabla 4

10

15

20

OLAN	I-Clon 4G9-1-N (Conc. de	Modelo Matem e 0 ng/mL)				
Ensayo-MM	Conj.	Zona de Reacción	Zona de Estudio	Área Media Máxima	Altura Media Máxima	Fondo Promedio
OLAN-MM1	ARIP, QUET, RISP		2	-0,03	0,05	4,38
OLAN-MM1	ARIP, QUET, RISP	OLAN	4	0,74	1,10	4,56
OLAN-MM1	ARIP, QUET, RISP		6	0,06	0,09	4,79
OLAN-MM1	ARIP, QUET, RISP		0,11	0,13	5,17	
Los demás	conjugados no	se unen a la				

En referencia a la Tabla 5, una muestra que no contiene quetiapina se deposita en la zona de muestras y se mueve debido a la acción capilar a través de la zona de conjugado (que, en esta ocasión, contiene aripiprazol marcado, olanzapina marcada y risperidona marcada, pero no quetiapina marcada), hasta llegar a la zona de reacción. De nuevo, la zona de reacción contiene anticuerpos de quetiapina (11) en la zona de reacción 6. La Tabla 5 de más abajo muestra los resultados, que confirman que no hay ninguna respuesta a la dosis y que los conjugados de aripiprazol, olanzapina y risperidona que se mueven por acción capilar a través de la zona de reacción no se unen al anticuerpo de quetiapina.

Tabla 5

5

Quetiapina-C	lon 11-Modelo de 0 r	Matemático 1 ng/mL)				
Ensayo-MM	Conj.	Zona de Reacción	Zona de Estudio	Área Media Máxima	Altura Media Máxima	Fondo Promedio
QUET-MM1	ARIP- OLAN-RISP		2	-0,01	0,07	3,85
QUET-MM1	ARIP- OLAN-RISP		4	0,01	0,12	4,01
QUET-MM1	ARIP- OLAN-RISP	QUET	6	0,03	0,08	4,24
QUET-MM1	ARIP- OLAN-RISP		8	0,04	0,07	4,56
Los demás	conjugados no	se unen a la				

En referencia a la Tabla 6, una muestra que no contiene risperidona se deposita en la zona de muestras y se mueve debido a la acción capilar a través de la zona de conjugado (que, en esta ocasión, contiene aripiprazol marcado, olanzapina marcada y quetiapina marcada, pero no risperidona marcada), hasta llegar a la zona de reacción. De nuevo, la zona de reacción contiene anticuerpos de risperidona (5-9) en la zona de reacción 8. La Tabla 6 de más abajo muestra los resultados, que confirman que no hay ninguna respuesta a la dosis y que los conjugados de aripiprazol, olanzapina y quetiapina que se mueven por acción capilar a través de la zona de reacción no se unen al anticuerpo de risperidona.

Tabla 6

10

15

Risperi	dona-Clon 5-9 (Conc. de	-Modelo Matei e 0 ng/mL)				
Ensayo-MM	Conj.	Zona de Reacción	Zona de Estudio	Área Media Máxima	Altura Media Máxima	Fondo Promedio
RISP-MM1	ARIP,OLAN, QUET		2	0,02	0,11	7,43
RISP-MM1	ARIP,OLAN, QUET		4	0,05	0,14	7,73
RISP-MM1	ARIP,OLAN, QUET		6	0,20	0,19	8,11
RISP-MM1	ARIP,OLAN, QUET	RISP	8	1,97	3,23	8,85
Los demás	conjugados no	se unen a la f				

20

Para confirmar que los conjugados de los acompañantes de unión competitiva marcados solo se unen a sus

respectivos anticuerpos depositados en las zonas de reacción, se realizaron controles negativos adicionales usando de nuevo muestras que no contenían fármacos. En referencia a la Tabla 7, una muestra que no contiene aripiprazol se deposita en la zona de muestras y se mueve debido a la acción capilar a través de la zona de conjugado (que, en esta ocasión, contiene aripiprazol marcado), hasta llegar a la zona de reacción. De nuevo, la zona de reacción contiene anticuerpos de aripiprazol (5C7) en la zona de reacción 2, además de anticuerpos de olanzapina (4G9-1) en la zona de reacción 4, anticuerpos de quetiapina (11) en la zona de reacción 6, y anticuerpos de risperidona (5-9) en la zona de reacción 8. La Tabla 7 de más abajo muestra los resultados, que confirman que no hay ninguna respuesta a la dosis, excepto en el caso de los anticuerpos de aripiprazol 5C7 (en la zona de reacción 2).

10 <u>Tabla 7</u>

Aripiprazol-C	lon 5C7-Model de 0 r	o Matemático ng/mL)				
Ensayo-MM	Conj.	Zona de	Zona de	Área Media	Altura Media	Fondo
ARIP-MM1	ARIP.OLAN.	ARIP	2	60.34	97.53	5.44
ARIP-MM1	ARIP,OLAN,		4	2,86	3,91	11,66
ARIP-MM1	ARIP,OLAN,		6	1,12	1,23	11,03
ARIP-MM1	ARIP,OLAN,		8	3,14	4,19	12,94
Solo hay uni	ón en la zona o	de reacción de				

En referencia a la Tabla 8, una muestra que no contiene olanzapina se deposita en la zona de muestras y se mueve debido a la acción capilar a través de la zona de conjugado (que, en esta ocasión, contiene olanzapina marcada), hasta llegar a la zona de reacción. De nuevo, la zona de reacción contiene anticuerpos de aripiprazol (5C7) en la zona de reacción 2, además de anticuerpos de olanzapina (4G9-1) en la zona de reacción 4, anticuerpos de quetiapina (11) en la zona de reacción 6, y anticuerpos de risperidona (5-9) en la zona de reacción 8. La Tabla 8 de más abajo muestra los resultados, que confirman que no hay ninguna respuesta a la dosis, excepto en el caso de los anticuerpos de olanzapina 4G9-1 (en la zona de reacción 4).

Tabla 8

15

20

25

30

OLAN	I-Clon 4G9-1-N (Conc. de	Modelo Matem e 0 ng/mL)				
Ensayo-MM	Conj.	Zona de Reacción	Zona de Estudio	Área Media Máxima	Altura Media Máxima	Fondo Promedio
OLAN-MM1	ARIP,OLAN, QUET,RISP		2	0,02	0,08	4,86
OLAN-MM1	ARIP,OLAN, QUET,RISP	OLAN	4	34,23	51,80	5,39
OLAN-MM1	ARIP,OLAN, QUET,RISP		6	0,22	0,32	5,39
OLAN-MM1	ARIP,OLAN, QUET,RISP		8	0,15	0,17	5,59
Solo hay uni	ón en la zona	de reacción de				

En referencia a la Tabla 9, una muestra que no contiene quetiapina se deposita en la zona de muestras y se mueve debido a la acción capilar a través de la zona de conjugado (que, en esta ocasión, contiene quetiapina marcada), hasta llegar a la zona de reacción. De nuevo, la zona de reacción contiene anticuerpos de aripiprazol (5C7) en la zona de reacción 2, además de anticuerpos de olanzapina (4G9-1) en la zona de reacción 4, anticuerpos de quetiapina (11) en la zona de reacción 6, y anticuerpos de risperidona (5-9) en la zona de reacción 8. La Tabla 9 de más abajo muestra los resultados, que confirman que no hay ninguna respuesta a la dosis, excepto en el caso de los anticuerpos de quetiapina 11 (en la zona de reacción 6).

Tabla 9

Quetiapina-C	lon 11-Modelo de 0 r	Matemático 1 ng/mL)	(Conc.			
Ensayo-MM	Conj.	Zona de Reacción	Zona de Estudio	Área Media Máxima	Altura Media Máxima	Fondo Promedio
QUET-MM1	ARIP,OLAN, QUET,RISP		2	0,13	0,41	10,02
QUET-MM1	ARIP,OLAN, QUET,RISP		4	0,08	0,23	10,47
QUET-MM1	ARIP,OLAN, QUET,RISP	QUET	6	140,35	181,33	7,91
QUET-MM1	ARIP,OLAN, QUET,RISP		8	1,58	2,61	11,53
Solo hay uni	ón en la zona	de reacción de	e quetiapina ι			

En referencia a la Tabla 10, una muestra que no contiene risperidona se deposita en la zona de muestras y se mueve debido a la acción capilar a través de la zona de conjugado (que, en esta ocasión, contiene risperidona marcada), hasta llegar a la zona de reacción. De nuevo, la zona de reacción contiene anticuerpos de aripiprazol (5C7) en la zona de reacción 2, además de anticuerpos de olanzapina (4G9-1) en la zona de reacción 4, anticuerpos de quetiapina (11) en la zona de reacción 6, y anticuerpos de risperidona (5-9) en la zona de reacción 8. La Tabla 10 de más abajo muestra los resultados, que confirman que no hay ninguna respuesta a la dosis, excepto en el caso de los anticuerpos de risperidona 5-9 (en la zona de reacción 8).

Tabla 10

20

Risperi	dona-Clon 5-9 (Conc. de	-Modelo Mater e 0 ng/mL)				
Ensayo-MM	Conj.	Zona de Reacción	Zona de Estudio	Área Media Máxima	Altura Media Máxima	Fondo Promedio
RISP-MM1	ARIP,OLAN, QUET,RISP		2	1,03	1,51	9,07
RISP-MM1	ARIP,OLAN, QUET,RISP		4	0,65	0,91	9,60
RISP-MM1	ARIP,OLAN, QUET,RISP		6	2,61	6,39	10,48
RISP-MM1	ARIP,OLAN, QUET,RISP	RISP	8	55,98	100,91	11,58
Solo hay uni	ón en la zona d	de reacción de				

Los resultados que se han mostrado previamente confirman que los conjugados de acompañantes de unión competitiva marcados sólo se unen a sus respectivos anticuerpos en la zona de reacción.

Las Figuras 10-13 muestran las curvas típicas de respuesta a una dosis en las zonas de reacción de anticuerpos específicos, y son la prueba de la respuesta a la dosis, dependiendo de una concentración baja/alta, de cada ensayo específico en presencia de otros conjugados. En la Figura 10, una muestra que contiene aripiprazol se deposita en la zona de muestras y se mueve debido a la acción capilar a través de la zona de conjugado (que, en esta ocasión,

contiene aripiprazol marcado, olanzapina marcada, quetiapina marcada y risperidona marcada), hasta llegar a la zona de reacción. De nuevo, la zona de reacción contiene anticuerpos de aripiprazol (5C7) en la zona de reacción 2. Tal y como se muestra en la Figura 10, se generó una curva típica de respuesta a una dosis solamente en el caso del aripiprazol, y no para la olanzapina, la quetiapina o la risperidona.

En la Figura 11, una muestra que contiene olanzapina se deposita en la zona de muestras y se mueve debido a la acción capilar a través de la zona de conjugado (que, en esta ocasión, contiene aripiprazol marcado, olanzapina marcada, quetiapina marcada y risperidona marcada), hasta llegar a la zona de reacción. De nuevo, la zona de reacción contiene anticuerpos de olanzapina (4G9-1) en la zona de reacción 4. Tal y como se muestra en la Figura 11, se generó una curva típica de respuesta a una dosis solamente en el caso de la olanzapina, y no para el aripiprazol, la quetiapina o la risperidona.

En la Figura 12, una muestra que contiene quetiapina se deposita en la zona de muestras y se mueve debido a la acción capilar a través de la zona de conjugado (que, en esta ocasión, contiene aripiprazol marcado, olanzapina marcada, quetiapina marcada y risperidona marcada), hasta llegar a la zona de reacción. De nuevo, la zona de reacción contiene anticuerpos de quetiapina (11) en la zona de reacción 6. Tal y como se muestra en la Figura 12, se generó una curva típica de respuesta a una dosis solamente en el caso de la quetiapina, y no para el aripiprazol, la olanzapina o la risperidona.

En la Figura 13, una muestra que contiene risperidona se deposita en la zona de muestras y se mueve debido a la acción capilar a través de la zona de conjugado (que, en esta ocasión, contiene aripiprazol marcado, olanzapina marcada, quetiapina marcada y risperidona marcada), hasta llegar a la zona de reacción. De nuevo, la zona de reacción contiene anticuerpos de risperidona (5-9) en la zona de reacción 8. Tal y como se muestra en la Figura 13, se generó una curva típica de respuesta a una dosis solamente en el caso de la risperidona, y no para el aripiprazol, la olanzapina o la quetiapina.

Las Figuras 14-17 muestran las curvas típicas de respuesta a una dosis de cada ensayo en presencia de otros conjugados y anticuerpos. En la Figura 14, una muestra que contiene aripiprazol se deposita en la zona de muestras y se mueve debido a la acción capilar a través de la zona de conjugado (que, de nuevo, contiene aripiprazol marcado, olanzapina marcada, quetiapina marcada y risperidona marcada), hasta llegar a la zona de reacción. De nuevo, la zona de reacción contiene anticuerpos de aripiprazol (5C7) en la zona de reacción 2, además de anticuerpos de olanzapina (4G9-1) en la zona de reacción 4, anticuerpos de quetiapina (11) en la zona de reacción 6, y anticuerpos de risperidona (5-9) en la zona de reacción 8. Tal y como se muestra en la Figura 14, se generó una curva típica de respuesta a una dosis en el caso del aripiprazol. Cuando una muestra que contenía olanzapina se depositó en la zona de muestras de este chip, se generó una curva típica de respuesta a una dosis para la olanzapina, tal y como se muestra en la Figura 15. Cuando una muestra que contenía quetiapina se depositó en la zona de muestras de este chip, se generó una curva típica de respuesta a una dosis para la quetiapina, tal y como se muestra en la Figura 16. Cuando una muestra que contenía risperidona se depositó en la zona de muestras de este chip, se generó una curva típica de respuesta a una dosis para la quetiapina, tal y como se muestra en la Figura 16. Cuando una muestra que contenía risperidona, tal y como se muestra en la Figura 17.

Las Figuras 18-21 muestran las comparaciones entre las curvas de respuesta a una dosis generadas como controles positivos (Figuras 6-9) y las curvas de respuesta a una dosis generadas en un formato múltiple (Figuras 14-17). La comparación del aripiprazol se muestra en la Figura 18; la de la olanzapina, en la Figura 19; la de la quetiapina, en la Figura 20; y la de la risperidona, en la Figura 21. Estas Figuras muestran que las curvas de los controles positivos son similares a las curvas múltiples.

Estos datos demuestran que el dispositivo de ensayo de flujo lateral de la presente invención puede utilizarse para detectar múltiples fármacos o medicamentos antipsicóticos usando una sola muestra de un paciente en un dispositivo portátil y en el centro de atención (in situ).

LISTADO DE SECUENCIAS

- <110> Ortho-Clinical Diagnostics, Inc. Janssen Pharmaceutica NV
- 55 <120> Anticuerpos a quetiapina y uso de los mismos
 - <130> CDS5135WOPCT
 - <150> US 61/691,659
 - <151> 2012-08-21
 - <160> 56
- 60 <170> PatentIn version 3.5
 - <210> 1
 - <211> 399
 - <212> ADN
 - <213> Secuencia Artificial
- 65 <220>

5

10

15

30

35

40

45

	<223> Secuenci <400> 1	a de anticuerpo					
5	atggaatcac	agactcaggt	cctcatgtcc	ctgctgctct	ggatatctgg	tacctatggg	60
Ū	gacattgtga	tgacacagtc	tccatcctcc	ctgagtgtgg	caacaggaga	taaggtcact	120
	atgagctgca	agtccagtca	gagtctgttc	aacagtagaa	accaaaagag	ctacttggcc	180
10	tggtaccagc	agaagccatg	gcagcctcct	aaactgctga	tctacggggc	atccactagg	240
	gaatctgggg	tccctgatcg	cttcacaggc	agtggatctg	gaacagattt	cactctcacc	300
15	atcagcagtg	tgcaggctga	agacctggca	atttattact	gtcagaatga	ttatagttat	360
	ccattcacgt	tcggcacggg	gacaaaattg	gaaataaga			399
20 25	<210> 2 <211> 399 <212> ADN <213> Secuenci <220> <223> Secuenci <400> 2						
	atgggattca	gcaggatctt	tctcttcctc	ctgtcagtaa	ctacaggtgt	ccactcccag	60
30	gcttttctac	aacaatctgg	ggctgagctg	gtgaggcctg	gggcctcagt	gaagatgtcc	120
00	tgcaaggcct	ctggctccac	atttaccagt	tacaatatac	actgggtcaa	gcagacacct	180
	agacagggcc	tggaatggat	tggagctatt	tatccaggaa	atggtgatac	ttcctacaat	240
35	cagaagttca	agggcagggc	cacactgact	atagacaaat	cctccagcac	agcctacatg	300
	cagctcagca	gcctgacatc	tgaagactct	gcggtctatt	tctgtgctaa	ctggggcttt	360
40	gagtactggg	gtcaaggcac	cactctctca	gtctcctca			399
45	<210> 3 <211> 133 <212> PRT <213> Secuenci <220> <223> Secuenci <400> 3						
50							
55							

	Met 1	Glu	Ser	Gln	Thr 5	Gln	Val	Leu	Met	Ser 10	Leu	Leu	Leu	Trp	Ile 15	Ser
5	Gly	Thr	Tyr	Gly 20	Asp	Ile	Val	Met	Thr 25	Gln	Ser	Pro	Ser	Ser 30	Leu	Ser
10	Val	Ala	Thr 35	Gly	Asp	Lys	Val	Thr 40	Met	Ser	Cys	Lys	Ser 45	Ser	Gln	Ser
15	Leu	Phe 50	Asn	Ser	Arg	Asn	Gln 55	Lys	Ser	Tyr	Leu	Ala 60	Trp	Tyr	Gln	Gln
20	Lys 65	Pro	Trp	Gln	Pro	Pro 70	Lys	Leu	Leu	Ile	Tyr 75	Gly	Ala	Ser	Thr	Arg 80
٥٢	Glu	Ser	Gly	Val	Pro 85	Asp	Arg	Phe	Thr	Gly 90	Ser	Gly	Ser	Gly	Thr 95	Asp
25	Phe	Thr	Leu	Thr 100	Ile	Ser	Ser	Val	Gln 105	Ala	Glu	Asp	Leu	Ala 110	Ile	Tyr
30	Tyr	Cys	Gln 115	Asn	Asp	Tyr	Ser	Tyr 120	Pro	Phe	Thr	Phe	Gly 125	Thr	Gly	Thr
35	Lys	Leu 130	Glu	Ile	Arg											
40	<210><211><211><212><213><220><223>	· 133 · PRT · Secu				00										
45	<400>				·											
	Met 1	Gly	Phe	Ser	Arg 5	Ile	Phe	Leu	Phe	Leu 10	Leu	Ser	Val	Thr	Thr 15	Gly
50	Val	His	Ser	Gln 20	Ala	Phe	Leu	Gln	Gln 25	Ser	Gly	Ala	Glu	Leu 30	Val	Arg
55																
60																

	Pro	Gly	Ala 35	Ser	Val	Lys	Met	Ser 40	Cys	Lys	Ala	Ser	Gly 45	Ser	Thr	Phe		
5	Thr	Ser 50	Tyr	Asn	Ile	His	Trp 55	Val	Lys	Gln	Thr	Pro 60	Arg	Gln	Gly	Leu		
10	Glu 65	Trp	Ile	Gly	Ala	Ile 70	Tyr	Pro	Gly	Asn	Gly 75	Asp	Thr	Ser	Tyr	Asn 80		
15	Gln	Lys	Phe	Lys	Gly 85	Arg	Ala	Thr	Leu	Thr 90	Ile	Asp	Lys	Ser	Ser 95	Ser		
20	Thr	Ala	Tyr	Met 100	Gln	Leu	Ser	Ser	Leu 105	Thr	Ser	Glu	Asp	Ser 110	Ala	Val		
25	Tyr	Phe	Cys 115	Ala	Asn	Trp	Gly	Phe 120	Glu	Tyr	Trp	Gly	Gln 125	Gly	Thr	Thr		
23	Leu	Ser 130	Val	Ser	Ser													
30	<213>	> 399 > ADN > Secu		Artific	ial													
35	<220> <223> <400>	> Secu	iencia	de an	ticuerp	00												
	atg	gaato	cac a	agact	cag	gt co	ctcat	gtco	cto	gctgo	ctct	ggat	atct	gg 1	tacct	atggg	J	60
40	gaca	attgt	ga t	tgaca	acagt	c to	ccato	cctcc	cto	gagto	gtgg	caac	cagga	aga 1	taagg	gtcact	:	120
	atga	agcto	gca a	agtco	cagto	ca ga	agtct	gtto	c aac	cagta	agaa	acca	aaaq	gag (ctact	tggco	3	180
45	tggt	cacca	agc a	agaaq	gccat	g go	cagco	ctcct	aaa	actgo	ctga	tcta	cgg	ggc a	atcca	actago	j	240
70	gaat	cctg	ggg t	taaat	gato	cg ct	tcac	caggo	c agt	ggat	ctg	gaad	cagat	tt d	cacto	ctcacc	3	300
	atca	agcaç	gtg 1	tgcag	ggat	ga aç	gacct	ggca	a att	tatt	act	gtca	ıgaat	ga t	ttata	agttat	:	360
50	ccat	tcad	egt 1	tagga	cacgo	gg ga	acaaa	aatto	g gaa	aataa	aga							399
55	<220>	> 399 > ADN > Secu > > Secu	iencia	Artific de an		00												
60	~4 002	- 0																

	atg	ggatt	ca ç	gcago	gatct	t to	ctctt	ccto	c cto	gtcac	gtaa	ctac	aggt	gt (ccact	ccca	.g	60
	gctt	ttct	cac a	aacaa	atcto	gg gg	gctga	agato	ggto	gaggo	cctg	gggc	ctca	ıgt (gaaga	atgtc	c	120
5	tgca	aaggo	cct o	ctggd	ctcca	ac at	ttac	ccagt	tac	caata	atac	acto	ggto	aa q	gcaga	acacc	t	180
	agad	cagg	gcc t	tggaa	atgga	at to	ggago	ctatt	tat	ccag	ggaa	atgo	rtgat	ac 1	ttcct	acaa	.t	240
10	caga	aagtt	cca a	agggo	caggo	gc ca	acact	gact	ata	agaca	aaat	ccto	cago	cac a	agcct	acat	g	300
	cago	ctcaç	gca ç	gcct	gacat	c to	gaaga	actct	gcg	gtct	att	tcto	tgct	aa o	ctggg	gctt	t	360
4.5	gagt	acto	ggg g	gtcaa	aggca	ac ca	actct	ctca	a gto	ctcct	ca							399
15 20	<220>	→ 133 → PRT → Secu → → Secu	iencia	Artific de an		00												
25	Met 1	Glu	Ser	Gln	Thr 5	Gln	Val	Leu	Met	Ser 10	Leu	Leu	Leu	Trp	Ile 15	Ser		
30	Gly	Thr	Tyr	Gly 20	Asp	Ile	Val	Met	Thr 25	Gln	Ser	Pro	Ser	Ser 30	Leu	Ser		
35	Val	Ala	Thr 35	Gly	Asp	Lys	Val	Thr 40	Met	Ser	Cys	Lys	Ser 45	Ser	Gln	Ser		
	Leu	Phe 50	Asn	Ser	Arg	Asn	Gln 55	Lys	Ser	Tyr	Leu	Ala 60	Trp	Tyr	Gln	Gln		
40	Lys 65	Pro	Trp	Gln	Pro	Pro 70	Lys	Leu	Leu	Ile	Tyr 75	Gly	Ala	Ser	Thr	Arg 80		
45	Glu	Ser	Gly	Val	Pro 85	Asp	Arg	Phe	Thr	Gly 90	Ser	Gly	Ser	Gly	Thr 95	Asp		
50	Phe	Thr	Leu	Thr 100	Ile	Ser	Ser	Val	Gln 105	Ala	Glu	Asp	Leu	Ala 110	Ile	Tyr		
55	Tyr	Cys	Gln 115	Asn	Asp	Tyr	Ser	Tyr 120	Pro	Phe	Thr	Phe	Gly 125	Thr	Gly	Thr		
60	Lys	Leu 130	Glu	Ile	Arg													

5	<210><211><211><212><213><220><223><400>	· 133 · PRT · Secu · · Secu				00											
10	Met 1	Gly	Phe	Ser	Arg 5	Ile	Phe	Leu	Phe	Leu 10	Leu	Ser	Val	Thr	Thr 15	Gly	
15	Val	His	Ser	Gln 20	Ala	Phe	Leu	Gln	Gln 25	Ser	Gly	Ala	Glu	Leu 30	Val	Arg	
20	Pro	Gly	Ala 35	Ser	Val	Lys	Met	Ser 40	Cys	Lys	Ala	Ser	Gly 45	Ser	Thr	Phe	
20	Thr	Ser 50	Tyr	Asn	Ile	His	Trp 55	Val	Lys	Gln	Thr	Pro 60	Arg	Gln	Gly	Leu	
25	Glu 65	Trp	Ile	Gly	Ala	Ile 70	Tyr	Pro	Gly	Asn	Gly 75	Asp	Thr	Ser	Tyr	Asn 80	
30	Gln	Lys	Phe	Lys	Gly 85	Arg	Ala	Thr	Leu	Thr 90	Ile	Asp	Lys	Ser	Ser 95	Ser	
35	Thr	Ala	Tyr	Met 100	Gln	Leu	Ser	Ser	Leu 105	Thr	Ser	Glu	Asp	Ser 110	Ala	Val	
40	Tyr	Phe	Cys 115	Ala	Asn	Trp	Gly	Phe 120	Glu	Tyr	Trp	Gly	Gln 125	Gly	Thr	Thr	
45	Leu	Ser 130	Val	Ser	Ser												
50	<210><211><211><212><213>	381 ADN		Artific	ial												
	<220><223><400> <atgg< td=""><td>Secu</td><td></td><td></td><td></td><td></td><td>ttgt</td><td>atto</td><td>e gto</td><td>gttgo</td><td>etct</td><td>ggtt</td><td>gtct</td><td>agg t</td><td>ggag</td><td>gatgga</td><td>60</td></atgg<>	Secu					ttgt	atto	e gto	gttgo	etct	ggtt	gtct	agg t	ggag	gatgga	60
55	gaca	ttgt	ga t	gaco	cagt	c to	caaaa	atto	ato	gtcca	cat	cact	agga	aga d	caggo	gtcagc	120
	atca	accto	jca a	aggco	cagto	a ga	atgt	ggga	a att	tato	jttt	ccto	gtat	ca a	acaga	aacca	180
60	ggga	aato	ctc o	ctaaa	agcad	ct aa	attta	ctg	, tct	tcaa	acc	ggtt	cact	gg a	agtco	ctgat	240
	cgtt	tcac	cag c	gcagt	ggat	c to	ggad	cagac	tto	cacto	ctca	ccat	caco	ega t	gtgo	eagtct	300

	gaaq	gactt	gg d	cagat	tatt	ct ct	gtga	agcaa	tat	agca	agcg	atco	gtat	ac	gttc	gato	cg	3	60
	ggga	accaa	agc t	ggaa	ataa	aa a												3	81
5		> 399 > ADN > Secu		Artific	ial														
10	<223> <400>	> Secu > 10	encia	de an	ticuerp	00													
	atg	gaaag	gac a	actgo	gatct	t to	ctctt	cctg	ttç	gtcag	gtaa	ctgo	aggt	gt (ccact	ccc	ag		60
15	gtc	caact	gc a	agcag	gtcto	gc gg	gctga	aactg	gca	aagad	cctg	ggg	cctca	igt (gaaga	atgto	cc	1	20
	tgca	aagad	ctt d	ctggd	ctaca	ac ct	tcac	ctago	gad	ccgga	atgc	acto	ggta	aat a	acaga	aggc	ct	1	80
20	ggad	caggo	gtc t	ggag	gtgga	at to	ggata	acatt	ctt	ccta	agaa	atgt	ttat	ac 1	taaat	aca	at	2	40
	aaaa	aagtt	ca a	aggad	caago	gc ca	acatt	gact	gca	agaca	acat	ccto	cagt	at a	agcct	aca	tc	3	00
	caad	ctgag	gca ç	gaato	gacat	c to	gaaga	actct	gca	agtct	att	acto	gtgta	aaa q	gtcto	gacg	gg	3	60
25	ggct	tacto	ggg (gccaa	aggca	ac ca	actct	caca	gto	ctcct	cca							3	99
30	<220>	> 127 > PRT > Secu > > Secu				00													
35	Met 1	Glu	Ser	Gln	Thr 5	Gln	Val	Phe	Val	Phe 10	Val	Leu	Leu	Trp	Leu 15	Ser			
40	Gly	Gly	Asp	Gly 20	Asp	Ile	Val	Met	Thr 25	Gln	Ser	Gln	Lys	Phe 30	Met	Ser			
45	Thr	Ser	Leu 35	Gly	Asp	Arg	Val	Ser 40	Ile	Thr	Cys	Lys	Ala 45	Ser	Gln	Asn			
50	Val	Gly 50	Ile	Tyr	Val	Ser	Trp 55	Tyr	Gln	Gln	Lys	Pro 60	Gly	Lys	Ser	Pro			
55	Lys 65	Ala	Leu	Ile	Tyr	Trp 70	Ser	Ser	Asn	Arg	Phe 75	Thr	Gly	Val	Pro	Asp 80			
	Arg	Phe	Thr	Gly	Ser 85	Gly	Ser	Gly	Thr	Asp 90	Phe	Thr	Leu	Thr	Ile 95	Thr			
60	Asp	Val	Gln	Ser 100	Glu	Asp	Leu	Ala	Asp 105	Tyr	Phe	Cys	Glu	Gln 110	Tyr	Ser			
65	Ser	Asp	Pro		Thr	Phe	Gly	Ser	Gly	Thr	Lys	Leu	Glu 125	Ile	Lys				

5	<210><211><211><212><212><213><220>	· 133 · PRT · Secu	encia	Artific	ial												
	<223> <400>		encia	de an	ticuerp	00											
10	Met 1	Glu	Arg	His	Trp 5	Ile	Phe	Leu	Phe	Leu 10	Leu	Ser	Val	Thr	Ala 15	Gly	
15	Val	His	Ser	Gln 20	Val	Gln	Leu	Gln	Gln 25	Ser	Ala	Ala	Glu	Leu 30	Ala	Arg	
20	Pro	Gly	Ala 35	Ser	Val	Lys	Met	Ser 40	Cys	Lys	Thr	Ser	Gly 45	Tyr	Thr	Phe	
	Thr	Ser 50	Asp	Arg	Met	His	Trp 55	Val	Ile	Gln	Arg	Pro 60	Gly	Gln	Gly	Leu	
25	Glu 65	Trp	Ile	Gly	Tyr	Ile 70	Leu	Pro	Arg	Asn	Val 75	Tyr	Thr	Lys	Tyr	Asn 80	
30	Lys	Lys	Phe	Lys	Asp 85	Lys	Ala	Thr	Leu	Thr 90	Ala	Asp	Thr	Ser	Ser 95	Ser	
35	Ile	Ala	Tyr	Ile 100	Gln	Leu	Ser	Ser	Leu 105	Thr	Ser	Glu	Asp	Ser 110	Ala	Val	
40	Tyr	Tyr	Cys 115	Val	Lys	Ser	Asp	Gly 120	Gly	Tyr	Trp	Gly	Gln 125	Gly	Thr	Thr	
45	Leu	Thr 130	Val	Ser	Ser												
50	<210><211><211><212><213><220><223><400>	381 ADN Secu	encia			00											
55	atgg	agtca	c ag	actca	ıggt	ctttg	tatto	gtg	ttgct	ct g	gttgt	ctgg	tggt	gatg	ga	6	0
	gaca	ttgtg	a tg	accca	gtc	tcaaa	aatto	atg	tccac	cat c	actaç	gaga	cago	gtca	gc	12	0
00	atca	cctgc	a age	gccag	jtca -	gaatg	tggga	a att	tatgt	at c	ctggt	atca	acag	gaaac	ca	18	0
60	ggga	aatct	c ct	aaago	cact	aattt	attg	g gca	tcaaa	acc g	gttca	ctgg	agto	cctg	at	24	0
	cgct [.]	tcaca	ıg gc	agtgg	gatc	tggga	cagad	ttc	actct	ca c	catca	ccaa	tgtg	cagt	ct	30	0
65	gaag	actto	g ca	gaata	ttt	ctgtg	aacaa	a tat	agcag	gcg a	tccgt	atac	gtto	ggat	cg	36	0
	ggga	ccaao	rc ta	σaaat	aaa	a										38	1

5	<213>	> 399 > ADN > Secu > > Secu	iencia	Artific		00													
10	atg	gaaaq	ggc a	actgo	gatet	t to	ctctt	ccto	g tto	gtcag	gtaa	ctgo	aggt	gt o	ccact	ccca	ıg		60
	gtc	caact	ege a	agcaç	gtcto	gc gg	gctga	acto	g gta	aagad	cctg	ggg	cctca	agt q	gaaga	atgto	:c	1	20
	tgca	aagad	ctt d	ctggd	ctaca	at ct	tcac	ctago	c gad	ccgga	atgc	acto	gggta	aaa a	acaga	aggco	:t	1	80
15	ggad	cagg	gtc 1	tggag	gtgga	at to	ggata	catt	att	ccta	agaa	attt	ttat	ac t	taaat	acaa	it	2	40
	caga	aaatt	ca a	aggad	caago	gc ca	acatt	gact	gca	agaca	acat	cct	ccaat	ac a	agcct	acat	g	3	00
20	cagt	tgaç	gca (gaata	gacat	c to	gaaga	actct	gca	agtct	att	acto	gtgt	gaa a	atcto	gacgg	ıg	3	60
	gaat	tacto	ggg (gccaa	aggca	ac ca	actct	caca	a gto	ctcct	cca							3	99
25	<213>	> 127 > PRT > Secu	iencia	Artific		00													
30	<400>				•														
	Met 1	Glu	Ser	Gln	Thr 5	Gln	Val	Phe	Val	Phe 10	Val	Leu	Leu	Trp	Leu 15	Ser			
35	Gly	Gly	Asp	Gly 20	Asp	Ile	Val	Met	Thr 25	Gln	Ser	Gln	Lys	Phe 30	Met	Ser			
40	Thr	Ser	Leu 35	Gly	Asp	Arg	Val	Ser 40	Ile	Thr	Cys	Lys	Ala 45	Ser	Gln	Asn			
45	Val	Gly 50	Ile	Tyr	Val	Ser	Trp 55	Tyr	Gln	Gln	Lys	Pro 60	Gly	Lys	Ser	Pro			
50	Lys 65	Ala	Leu	Ile	Tyr	Trp 70	Ala	Ser	Asn	Arg	Phe 75	Thr	Gly	Val	Pro	Asp 80			
55	Arg	Phe	Thr	Gly	Ser 85	Gly	Ser	Gly	Thr	Asp 90	Phe	Thr	Leu	Thr	Ile 95	Thr			
- •	Asn	Val	Gln	Ser 100	Glu	Asp	Leu	Ala	Glu 105	Tyr	Phe	Cys	Glu	Gln 110	Tyr	Ser			
60	Ser	Asp	Pro 115	Tyr	Thr	Phe	Gly	Ser 120	Gly	Thr	Lys	Leu	Glu 125	Ile	Lys				

5	<210><211><211><212><213><220><220><223><400>	133 PRT Secu		Artifici		00											
10	Met 1	Glu	Arg	His	Trp 5	Ile	Phe	Leu	Phe	Leu 10	Leu	Ser	Val	Thr	Ala 15	Gly	
15	Val	His	Ser	Gln 20	Val	Gln	Leu	Gln	Gln 25	Ser	Ala	Ala	Glu	Leu 30	Val	Arg	
20	Pro	Gly	Ala 35	Ser	Val	Lys	Met	Ser 40	Cys	Lys	Thr	Ser	Gly 45	Tyr	Ile	Phe	
	Thr	Ser 50	Asp	Arg	Met	His	Trp 55	Val	Lys	Gln	Arg	Pro 60	Gly	Gln	Gly	Leu	
25	Glu 65	Trp	Ile	Gly	Tyr	Ile 70	Ile	Pro	Arg	Asn	Phe 75	Tyr	Thr	Lys	Tyr	Asn 80	
30	Gln	Lys	Phe	Lys	As p 85	Lys	Ala	Thr	Leu	Thr 90	Ala	Asp	Thr	Ser	Ser 95	Asn	
35	Thr	Ala	Tyr	Met 100	Gln	Leu	Ser	Ser	Leu 105	Thr	Ser	Glu	Asp	Ser 110	Ala	Val	
40	Tyr	Tyr	Cys 115	Val	Lys	Ser	Asp	Gly 120	Ala	Tyr	Trp	Gly	Gln 125	Gly	Thr	Thr	
45		130	Val	Ser	Ser												
50	<210><211><211><212><213><220><223><400>	393 ADN Secu	iencia			00											
			aga d	ctgtt	aggo	et gt	tggt	gcto	, ato	ıttct	gga	ttcc	etget	tc c	agta	ıgtgat	60
55	gtto	gtgat	ga d	cccaa	acto	cc ac	etete	ccto	g cct	gtca	igtc	ttgg	gagat	ca a	ıgcct	ccatc	120
	tctt	gtto	ggt d	ctagt	caga	ng co	ettgt	agad	agt	tato	ggaa	acac	ctat	tt a	catt	ggtat	180
60	ctgo	cagaa	agc o	caggo	cagt	c to	ccaaa	gcto	cto	gatct	aca	aagt	ttcc	caa c	ccgat	tttct	240
	gggg	gtaco	cag a	acago	gttca	ng to	gcag	jtgga	tca	ıggga	cag	attt	caca	act o	caaga	ıtcagc	300
65	agaç	gtgga	agg (ctgaç	gato	et go	ggaat	ttac	ttt	tgct	ctc	aaac	ctaca	ıta t	gtto	cgtat	360
	acgt	tcg	gat d	cgggg	jacca	a go	tgga	aato	g aaa	ı							393

5	<210><211><211><212><213><220><223><400>	420 ADN Secu	iencia			00													
		-	gga (cctg	ggtct	t to	ctctt	ccto	c cto	gtcaç	gtaa	ctg	caggt	gt (ccact	ccca	g		60
10	gtto	cagct	gc a	accaç	gtata	gg ag	gctga	gcto	g ato	gaago	cctg	gggd	cctca	agt (gaaga	atatc	C	1	20
	tgca	aaggo	cta d	ccgg	ctaca	ac at	ttag	gtago	y tao	ctgga	atag	agto	ggata	aaa a	acaga	aggcc	t	1	80
15	ggco	catgo	gaa t	ttgag	gtgga	at to	ggaga	gttt	cta	acct	ggaa	gtg	gaaat	tc t	taact	acaa	t	2	4(
	gcta	aatt	ca a	agggo	caago	gc ca	acctt	cact	gca	agcaa	acat	ccto	ccaac	cac a	agcct	acat	g	3	00
20	caac	ctcaç	gca d	gtgtg	gacat	c to	gaaga	actct	gco	egtet	tatt	tct	gtgca	ac o	ctggt	acga	t	3	6(
20	gtta	acta	acc q	gctat	ctta	at go	gacta	attgg	g ggt	caaq	ggaa	cct	cagto	cac o	cgtct	cctc	a	4	2(
25	<220>	131 PRT Secu	iencia	Artific		00													
30			Leu	Pro	Val	Arg	Leu	Leu	Val	Leu 10	Met	Phe	Trp	Ile	Pro 15	Ala			
	_	Ser	Ser	Asp 20	Val	Val	Met	Thr	Gln 25		Pro	Leu	Ser	Leu 30	Pro	Val			
35																			
	Ser	Leu	Gly 35	Asp	Gln	Ala	Ser	Ile 40	Ser	Cys	Trp	Ser	Ser 45	Gln	Ser	Leu			
40	Val	Asp 50	Ser	Tyr	Gly	Asn	Thr 55	Tyr	Leu	His	Trp	Tyr 60	Leu	Gln	Lys	Pro			
45	Gly 65	Gln	Ser	Pro	Lys	Leu 70	Leu	Ile	Tyr	Lys	Val 75	Ser	Asn	Arg	Phe	Ser 80			
50	Gly	Val	Pro	Asp	Arg 85	Phe	Ser	Gly	Ser	Gly 90	Ser	Gly	Thr	Asp	Phe 95	Thr			
55	Leu	Lys	Ile	Ser 100	Arg	Val	Glu	Ala	Glu 105	Asp	Leu	Gly	Ile	Tyr 110	Phe	Cys			
60	Ser	Gln	Thr 115	Thr	Tyr	Val	Pro	Tyr 120	Thr	Phe	Gly	Ser	Gly 125	Thr	Lys	Leu			
	Glu	Met 130	Lys																
65	<210> <211>																		

223> Secuencia de anticuerpo 4002 02 Met Glu Trp Thr Trp Val Phe Leu Phe Leu Leu Ser Val Thr Ala Gly 1		<212> <213> <220>	Secu															
Met Glu Trp Thr Trp Val Phe Leu Phe Leu Leu Ser Val Thr Ala Gly 1				encia	de an	ticuerp	00											
Pro Gly Ala Ser Val Lys Ile Ser Cys Lys Ala Thr Gly Tyr Thr Phe 35	5	Met		Trp	Thr		Val	Phe	Leu	Phe		Leu	Ser	Val	Thr		Gly	
Ser Arg Tyr Trp Ile Glu Trp Ile Lys Gln Arg Pro Gly His Gly Leu 50 55 60 60 60 60 60 60 60 60 60 60 60 60 60	10	Val	His	Ser		Val	Gln	Leu	His		Ser	Gly	Ala	Glu		Met	Lys	
Glu Trp Ile Gly Glu Phe Leu Pro Gly Ser Gly Asn Ser Asn Tyr Asn 65 70 75 80 Ala Lys Phe Lys Gly Lys Ala Thr Phe Thr Ala Ala Thr Ser Ser Asn 85 90 95 Thr Ala Tyr Met Gln Leu Ser Ser Val Thr Ser Glu Asp Ser Ala Val 105 Tyr Phe Cys Ala Thr Trp Tyr Asp Val Asn Tyr Arg Tyr Leu Met Asp 115 Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser 140 **Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser 140 **C210> 21 **C210> 212 **C21> ADN **C213> Secuencia Artificial **C220> **C23> Secuencia de anticuerpo **C400> 21 **atgaagttgc ctgttaggct gttggtgctg atgttctgga ttcctgcttc cagcagtg atgatgdtgc ctgttaggct gttgdtgctg atgttctga ttcgtctc cagcagtg atgttgdaga cccaaactcc actctccctg cctgtcagtc ttggagatca agcctcca tcttgcaggt ctagtcagag ccttgtacgc agtaatggga acacctattt acattggt ctgcagaagc caggccagtc tccaaaagctc ctgatctaca aagtttccaa ccgatttt gggggtccccg acaggttcag tggcagtgga tcagggacag atttcacac caagatca agagtggagg ctgaggatct gggagtttat ttctgctctc aaagtacac tgttccgt	15	Pro	Gly	_	Ser	Val	Lys	Ile	_	Cys	Lys	Ala	Thr	_	Tyr	Thr	Phe	
Ala Lys Phe Lys Gly Lys Ala Thr Phe Thr Ala Ala Thr Ser Ser Asn 85 90 95 Thr Ala Tyr Met Gln Leu Ser Ser Val Thr Ser Glu Asp Ser Ala Val 100 Tyr Phe Cys Ala Thr Trp Tyr Asp Val Asn Tyr Arg Tyr Leu Met Asp 115 Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser 130 210 210 210 211 325 Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser 130 212 421 213 321 221 435 212 ADN 213 222 223 Secuencia Artificial 220 223 Secuencia de anticuerpo 4400 210 210 211 220 223 Secuencia de anticuerpo 440 240 251 262 262 2623 2623 2623 2624 2625 2625 2625 2625 2626 2626 2626 2626 2626 2626 2626 2626 2626 2626 2626 2626 2627 2628 2628 2629 2	20	Ser		Tyr	Trp	Ile	Glu		Ile	Lys	Gln	Arg		Gly	His	Gly	Leu	
Thr Ala Tyr Met Gln Leu Ser Ser Val Thr Ser Glu Asp Ser Ala Val 100 105 110 110 110 110 110 110 110 110	25		Trp	Ile	Gly	Glu		Leu	Pro	Gly	Ser	_	Asn	Ser	Asn	Tyr		
Tyr Phe Cys Ala Thr Trp Tyr Asp Val Asn Tyr Arg Tyr Leu Met Asp 115 Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser 130 <pre></pre>	30	Ala	Lys	Phe	Lys		Lys	Ala	Thr	Phe		Ala	Ala	Thr	Ser		Asn	
Tyr Phe Cys Ala Thr Trp Tyr Asp Val Asn Tyr Arg Tyr Leu Met Asp 115 Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser 130 2210> 21 45		Thr	Ala	Tyr		Gln	Leu	Ser	Ser		Thr	Ser	Glu	Asp		Ala	Val	
Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser 130 135 140 <pre></pre>	35	Tyr	Phe	_	Ala	Thr	Trp	Tyr	_	Val	Asn	Tyr	Arg		Leu	Met	Asp	
<pre>45</pre>	40	Tyr	_	Gly	Gln	Gly	Thr		Val	Thr	Val	Ser						
atgaagttgc ctgttaggct gttggtgctg atgttctgga ttcctgcttc cagcagtg attgtgatga cccaaactcc actctccctg cctgtcagtc ttggagatca agcctcca tcttgcaggt ctagtcagag ccttgtacgc agtaatggga acacctattt acattggt ctgcagaagc caggccagtc tccaaagctc ctgatctaca aagtttccaa ccgatttt ggggtccccg acaggttcag tggcagtgga tcagggacag atttcacact caagatca agagtggagg ctgaggatct gggagtttat ttctgctctc aaagtacaca tgttccgt	45	<211><212><213><220><223>	393 ADN Secu	encia			00											
attgtgatga cccaaactcc actctccctg cctgtcagtc ttggagatca agcctcca tcttgcaggt ctagtcagag ccttgtacgc agtaatggga acacctattt acattggt ctgcagaagc caggccagtc tccaaagctc ctgatctaca aagtttccaa ccgatttt ggggtccccg acaggttcag tggcagtgga tcagggacag atttcacact caagatca agagtggagg ctgaggatct gggagtttat ttctgctctc aaagtacaca tgttccgt	50	<400>	• 21															
tettgeaggt etagteagag cettgtaege agtaatggga acacetattt acattggt etgeagaage eaggeeagte teeaaagete etgatetaea aagttteeaa eegatttt ggggteeeeg acaggtteag tggeagtgga teagggaeag attteacaet eaagatea agagtggagg etgaggatet gggagtttat ttetgetete aaagtaeaca tgtteegt		atga	agtt	gc o	ctgtt	aggo	ct gt	tggt	gcto	g ato	gttct	gga	ttco	ctgct	tc	cagca	agtgat	60
tettgeaggt etagteagag cettgtacge agtaatggga acacetattt acattggt etgeagaage eaggeeagte teeaaagete etgatetaea aagttteeaa eegattt ggggteeeg acaggtteag tggeagtgga teagggaeag attteaeact eaagatea agagtggagg etgaggatet gggagtttat ttetgetete aaagtaeaca tgtteegt	55	atto	gtgat	ga	cccaa	acto	cc ac	ctctc	cacto	g cct	gtca	agtc	ttgg	gagat	ca a	agcct	ccatc	120
ggggtccccg acaggttcag tggcagtgga tcagggacag atttcacact caagatca agagtggagg ctgaggatct gggagtttat ttctgctctc aaagtacaca tgttccgt	00	tctt	gcag	ggt d	ctagt	caga	ag co	cttgt	acgo	c agt	taato	ggga	acad	cctat	tt a	acatt	ggtac	180
agagtggagg ctgaggatct gggagtttat ttctgctctc aaagtacaca tgttccgt		ctgo	cagaa	agc o	caggo	ccagt	ca to	ccaaa	agato	c cto	gatct	caca	aagt	ttc	caa o	ccgat	tttct	240
	60	gggg	gtccc	ccg a	acago	gttca	ag to	ggcag	gtgga	a tca	aggga	acag	attt	caca	act o	caaga	atcagc	300
acottoggat cooggaccaa octogaaata aaa		agag	gtgga	agg d	ctgaç	ggato	ct go	ggagt	ttat	tto	ctgct	ctc	aaag	gtaca	aca t	gtto	ccgtat	360
002323333 3334~~~~ ~~~	65	acgt	tcgg	gat o	cgggg	gacca	aa go	ctgga	aata	a aaa	a							393

5	<220>	+ 420 - ADN - Secu - Secu	encia	Artific		00													
			gga (cctg	ggtct	t to	ctctt	ccto	cto	gtcag	gtaa	ccg	caggt	gt (ccact	ccca	ıg	(60
10	gtto	cagct	gc a	agcag	gtcto	gg ag	gctgt	tacto	g ato	gaago	cctg	ggg	cctca	ıgt (gaaga	atato	c	12	2(
	tgca	aaggo	cta d	ctggd	ctaca	ac at	tcat	tago	g tac	ctgga	atag	agto	gggta	aa q	gaaga	aggco	:t	18	3 (
15	ggad	catgo	gaa 1	ttgad	ctgga	at to	ggaga	aaatt	tta	accto	ggaa	gtgg	gaagt	tc 1	taact	acaa	it	24	1 (
	gaga	actt	ca a	aggto	caago	jc ca	acttt	cact	gta	agata	actt	ccto	ccaac	ac a	agcct	acat	g	30) (
	caac	ctcaa	aca q	gaato	gacat	c to	cagga	actct	gco	cgtct	att	acto	gtgca	at 1	ttggt	acga	it	36	5 (
20	ggta	aatta	acc q	gctct	ctta	at go	gacta	actgo	g ggt	caaç	ggaa	ccto	cagto	ac d	egtet	cctc	a	42	2(
25	<220>	> 131 > PRT > Secu > Secu		Artific		00													
30	Met 1	Lys	Leu	Pro	Val 5	Arg	Leu	Leu	Val	Leu 10	Met	Phe	Trp	Ile	Pro 15	Ala			
35	Ser	Ser	Ser	Asp 20	Ile	Val	Met	Thr	Gln 25	Thr	Pro	Leu	Ser	Leu 30	Pro	Val			
40	Ser	Leu	Gly 35	Asp	Gln	Ala	Ser	Ile 40	Ser	Cys	Arg	Ser	Ser 45	Gln	Ser	Leu			
45	Val	Arg 50	Ser	Asn	Gly	Asn	Thr 55	Tyr	Leu	His	Trp	Tyr 60	Leu	Gln	Lys	Pro			
50	Gly 65	Gln	Ser	Pro	Lys	Leu 70	Leu	Ile	Tyr	Lys	Val 75	Ser	Asn	Arg	Phe	Ser 80			
55	Gly	Val	Pro	Asp	Arg 85	Phe	Ser	Gly	Ser	Gly 90	Ser	Gly	Thr	Asp	Phe 95	Thr			
55	Leu	Lys	Ile	Ser 100	Arg	Val	Glu	Ala	Glu 105	Asp	Leu	Gly	Val	Tyr 110	Phe	Cys			
60	Ser	Gln	Ser 115	Thr	His	Val	Pro	Tyr 120	Thr	Phe	Gly	Ser	Gly 125	Thr	Lys	Leu			
65	Glu	Ile 130	Lys																

5	<2102 <2112 <2122 <2132 <2202 <2232 <4002	> 140 > PRT > Seci > > Seci	uencia			erpo														
10	Met 1	Glu	Trp	Thi	r Tr 5	p Va	al Pl	he L	eu F		Leu 10	Leu	Ser	Val	Thr	Ala 15	Gly			
15	Val	His	Ser	Gl: 20	n Va	1 G1	.n Le	eu G		Sln : 25	Ser	Gly	Ala	Val	Leu 30	Met	Lys			
	Pro	Gly	Ala 35	Ser	Val	Lys	Ile	Ser 40	Cys	Lys	Ala	Thr	Gly 45	Tyr	Thr	Phe				
20	Ile	Arg 50	Tyr	Trp	Ile	Glu	Trp 55	Val	Lys	Lys	Arg	Pro 60	Gly	His	Gly	Leu				
25	Asp 65	Trp	Ile	Gly	Glu	Ile 70	Leu	Pro	Gly	Ser	Gly 75	Ser	Ser	Asn	Tyr	Asn 80				
30	Glu	Asn	Phe	Lys	Val 85	Lys	Ala	Thr	Phe	Thr 90	Val	Asp	Thr	Ser	Ser 95	Asn				
35	Thr	Ala	Tyr	Met 100	Gln	Leu	Asn	Ser	Leu 105	Thr	Ser	Gln	Asp	Ser 110	Ala	Val				
	Tyr	Tyr	Cys 115	Ala	Ile	Trp	Tyr	Asp 120	Gly	Asn	Tyr	Arg	Ser 125	Leu	Met	Asp				
40	_	130	Gly	Gln	Gly	Thr	Ser 135	Val	Thr	Val	Ser	Ser 140								
45	<2102 <2112 <2122 <2132 <2202 <2232	> 393 > ADN > Seci > > Seci	uencia			erpo														
50	<400		L	لبد بارس	- L	L	والمعادد						LL		سعد			L	c.	^
																cagca agcct			60 120	
55									_							acatt			180	
																ccgat			240	
60																caaga			30	0
60																tgtto			36	
	acg	ttcg	gat	cggg	ggac	caa	gat	ggaa	ata	aaa									39:	3
65	<210	> 26																		

5	<213> <220>	> ADN > Secu > > Secu	iencia	Artific de an		00													
	atg	gaato	gga d	cctg	ggtct	t to	ctctt	ccto	cto	gtcaç	gtaa	ccg	aggt	gt	ccact	ccca	.g	60	ı
10	gtto	cagct	tgc a	agcaç	gtcto	gg ag	gctgt	acto	g ato	gaago	cctg	ggg	cctca	agt (gaaga	atatc	c	120	ı
	tgca	aaggo	cta d	ctggd	ctaca	ac at	tcat	tago	g tac	ctgga	atag	agto	ggta	aaa (gaaga	aggcc	t	180	ı
15	ggad	catg	gaa t	ttgad	ctgga	at to	ggaga	aatt	t tta	acct	ggaa	gtgg	gaagt	tc	taact	acaa	.t	240	ı
	gaga	aacti	cca a	aggto	caago	jc ca	acttt	cact	gta	agata	actt	ccto	caac	cac a	agcct	acat	g	300	ı
00	caad	ctcaa	aca (gaat	gacat	c to	cagga	actct	gco	cgtct	att	acto	gtgca	aat 1	ttggt	acga	.t	360	ı
20	ggta	aatta	acc (gatat	ctta	at go	gacta	actgo	g ggt	caaq	ggaa	ccto	agto	cac (cgtct	cctc	a	420	ı
25	<213> <220>	> 131 > PRT > Secu > > Secu	iencia	Artific de an		00													
30	Met 1	Lys	Leu	Pro	Val 5	Arg	Leu	Leu	Val	Leu 10	Met	Phe	Trp	Ile	Pro 15	Ala			
35	Ser	Ser	Ser	Asp 20	Ile	Val	Met	Thr	Gln 25	Thr	Pro	Leu	Ser	Leu 30	Pro	Val			
40	Ser	Leu	Gly 35	Asp	Gln	Ala	Ser	Ile 40	Ser	Cys	Arg	Ser	Ser 45	Gln	Ser	Leu			
45	Val	Arg 50	Ser	Asn	Gly	Asn	Thr 55	Tyr	Leu	His	Trp	Tyr 60	Leu	Gln	Lys	Pro			
50	Gly 65	Gln	Ser	Pro	Lys	Leu 70	Leu	Ile	Tyr	Lys	Val 75	Ser	Asn	Arg	Phe	Ser 80			
55	Gly	Val	Pro	Asp	Arg 85	Phe	Ser	Gly	Ser	Gly 90	Ser	Gly	Thr	Asp	Phe 95	Thr			
	Leu	Lys	Ile	Ser 100	Arg	Val	Glu	Ala	Glu 105	Asp	Leu	Gly	Val	Tyr 110	Phe	Cys			
60	Ser	Gln	Ser 115	Thr	His	Val	Pro	Tyr 120	Thr	Phe	Gly	Ser	Gly 125	Thr	Lys	Leu			
65	Glu	Ile 130	Lys																

5	<210><211><211><211><212><213><220><223><400>	· 140 · PRT · Secu · · Secu				00												
10	Met 1	Glu	Trp	Thr	Trp 5	Val	Phe	Leu	Phe	Leu 10	Leu	Ser	Val	Thr	Ala 15	Gly		
15	Val	His	Ser	Gln 20	Val	Gln	Leu	Gln	Gln 25	Ser	Gly	Ala	Val	Leu 30	Met	Lys		
20	Pro	Gly	Ala 35	Ser	Val	Lys	Ile	Ser 40	Cys	Lys	Ala	Thr	Gly 45	Tyr	Thr	Phe		
	Ile	Arg 50	Tyr	Trp	Ile	Glu	Trp 55	Val	Lys	Lys	Arg	Pro 60	Gly	His	Gly	Leu		
25	Asp 65	Trp	Ile	Gly	Glu	Ile 70	Leu	Pro	Gly	Ser	Gly 75	Ser	Ser	Asn	Tyr	Asn 80		
30	Glu	Asn	Phe	Lys	Val 85	Lys	Ala	Thr	Phe	Thr 90	Val	Asp	Thr	Ser	Ser 95	Asn		
35	Thr	Ala	Tyr	Met 100	Gln	Leu	Asn	Ser	Leu 105	Thr	Ser	Gln	Asp	Ser 110	Ala	Val		
40	Tyr	Tyr	Cys 115	Ala	Ile	Trp	Tyr	Asp 120	Gly	Asn	Tyr	Arg	Ser 125	Leu	Met	Asp		
45	Tyr	Trp 130	Gly	Gln	Gly	Thr	Ser 135	Val	Thr	Val	Ser	Ser 140						
	<210><211><211><212><213>	381 ADN Secu		Artific	ial													
50	<220> <223> <400>	Secu	encia	de an	ticuerp	00												
55	atga	agtgt	gc (ccact	cago	gt co	ctggd	catto	gcto	gctgo	ctgt	ggct	taca	aga '	tgcca	agatgt	5	60
	gata	atcca	aga t	gact	cagt	c to	ccago	cctcc	c cta	tcto	gcat	ctgt	ggga	aga .	aacto	gtcaco	2	120
00	atca	acato	gtc q	gagca	aagto	gg ga	aatat	tcac	aat	tatt	tag	cato	ggtat	cca	gcaga	aacaq	J	180
60	ggaa	aato	ctc o	ctcaç	gata	ct go	gtcta	taat	gca	aaaa	acct	tago	cggaa	agg '	tgtg	ccatca	1	240
	aggt	tcaç	gtg q	gcagt	ggat	cc aq	ggaad	cacaa	tat	tctc	ctca	agat	caad	cag	cctgo	cagcct	;	300
65				ggact			gtct	tcat	: tat	taca	aata	ttco	cgcto	cac	gttc	ggtgct	:	360 381

5	<210> 30 <211> 414 <212> ADN <213> Secuencia Artificial <220> <223> Secuencia de anticuerpo <400> 30	
10	atgagagtgc tgattctttt gtggctgttc acagcctttc ctggtttcct gtctgatgtg	60
	cagetteagg agteaggace tggeetggtg aaacettete agtetetgte egteacetge	120
	actgtcactg gctactccat catcagtggt tattactgga actggatccg gcagtttcca	180
15	ggaaacaaac tggagtggct gggctccata cacaacagtg gtcgcactaa ctacaatcca	240
	teteteaaaa gtegaatete tateagtega gacacateea agaaceaatt etteetgeag	300
20	ctggattctg tgactactga ggacacagcc acatattact gtcacttggg ggacgatggt	360
	acctactctg ctatggacta ctggggtcaa ggaacctcag tcaccgtctc ctca	414
25	<210> 31 <211> 127 <212> PRT <213> Secuencia Artificial <220>	
30	<pre><223> Secuencia de anticuerpo <400> 31 Met Ser Val Pro Thr Gln Val Leu Ala Leu Leu Leu Leu Trp Leu Thr 1 5 10 15</pre>	
35	Asp Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser 20 25 30	
40	Ala Ser Val Gly Glu Thr Val Thr Ile Thr Cys Arg Ala Ser Gly Asn 35 40 45	
45	Ile His Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro 50 55 60	
50	Gln Leu Leu Val Tyr Asn Ala Lys Thr Leu Ala Glu Gly Val Pro Ser 65 70 75 80	
	Arg Phe Ser Gly Ser Gly Thr Gln Tyr Ser Leu Lys Ile Asn 85 90 95	
55	Ser Leu Gln Pro Glu Asp Phe Gly Thr Tyr Tyr Cys Leu His Tyr Tyr 100 105 110	
60		
	Asn Ile Pro Leu Thr Phe Gly Ala Gly Thr Thr Leu Glu Leu Lys 115 120 125	
65	<210> 32 <211> 138	

	<220>	Secu		Artific													
5	<223> <400>		encia	de an	ticuerp	00											
J			Val	Leu	Ile 5	Leu	Leu	Trp	Leu	Phe 10	Thr	Ala	Phe	Pro	Gly 15	Phe	
10	Leu	Ser	Asp	Val 20	Gln	Leu	Gln	Glu	Ser 25	Gly	Pro	Gly	Leu	Val 30	Lys	Pro	
15	Ser	Gln	Ser 35	Leu	Ser	Val	Thr	Cys 40	Thr	Val	Thr	Gly	Tyr 45	Ser	Ile	Ile	
20	Ser	Gly 50	Tyr	Tyr	Trp	Asn	Trp 55	Ile	Arg	Gln	Phe	Pro 60	Gly	Asn	Lys	Leu	
25	Glu 65	Trp	Leu	Gly	Ser	Ile 70	His	Asn	Ser	Gly	Arg 75	Thr	Asn	Tyr	Asn	Pro 80	
20	Ser	Leu	Lys	Ser	Arg 85	Ile	Ser	Ile	Ser	Arg 90	Asp	Thr	Ser	Lys	Asn 95	Gln	
30	Phe	Phe	Leu	Gln 100	Leu	Asp	Ser	Val	Thr 105	Thr	Glu	Asp	Thr	Ala 110	Thr	Tyr	
35	Tyr	Cys	His 115	Leu	Gly	Asp	Asp	Gly 120	Thr	Tyr	Ser	Ala	Met 125	Asp	Tyr	Trp	
40	Gly	Gln 130	Gly	Thr	Ser	Val	Thr 135	Val	Ser	Ser							
45	<220>	· 381 · ADN · Secu	encia	Artific		00											
50	<400>	33															
	atga	aggad	ccc (ctgct	cagt	t to	cttg	gaato	c tto	gttgo	ctct	ggtt	tcca	agg t	tatca	aagtgt	60
	gaca	atcaa	iga t	tgaco	ccagt	c to	ccato	cttco	ato	gtato	gcat	ctct	agga	aga (gagaç	gtcact	120
55	atct	ctto	gca a	aggc	gagto	ca go	gacat	taat	c cg	ctatt	ttaa	gcto	ggtto	cct o	gcaga	aaacca	180
	ggga	aato	ctc o	ctaaç	gacco	ct ga	atcta	atcgt	aca	aaaca	agat	tagt	agat	gg q	ggtco	ccatca	240
60	aggt	tcaç	gtg (gcagt	ggat	c to	ggaca	aagat	tat	tctc	ctca	ccat	cago	cag o	cctg	gagtat	300
	gaag	gattt	gg (gaatt	tatt	a tt	tgtct	acat	tat	gcto	gagt	ttco	ctcc	cac q	gttc	ggtgct	360
	ggga	actaa	agc 1	tggag	gctga	aa a											381
65	<210>	• 34															

5	<213>	> ADN > Secu > > Secu	iencia	Artific de an		00													
	atgi	cactt	gg (gacto	gaact	g to	gtatt	cata	gtt	tttt	ctct	taaa	aggt	gt (ccaga	agtga	a	6	0
10	gtga	aaact	tg .	agga	gtcto	gg ag	ggagg	gctto	g gta	acaa	cctg	gago	gatco	cat o	gaaad	etete	С	12	0
	tgt	gttgo	cct	ctgga	attca	at tt	tcaç	gtaac	tac	ctgga	atgg	acto	gato	ccg (ccagt	ctcc	a	18	0
15	gaga	aaggo	gac ·	ttgaç	gtggg	gt to	gctca	aaatt	aga	attga	agat	ctaa	taat	ta 1	tgcga	acaca	t	24	0
	tate	gegga	agt	cttt	gaaag	gg ga	aggtt	cacc	ato	ctcaa	agag	atga	ttco	caa a	aagta	actgt	С	30	0
20	tac	ctgca	aaa	tgaad	cagtt	t aa	agaad	ctgaa	a gad	ctctç	ggca	ttta	attac	ctg 1	tacga	aggac	t	36	0
20	atga	attad	cga (cacco	cagct	a ct	gggg	gccaa	a ggo	cacca	actc	tcac	cagto	ctc	ctca			41	4
25	<220>	> 127 > PRT > Secu > > Secu		Artific de an		00													
30	Met 1	Arg	Thr	Pro	Ala 5	Gln	Phe	Leu	Gly	Ile 10	Leu	Leu	Leu	Trp	Phe 15	Pro			
35	Gly	Ile	Lys	Cys 20	Asp	Ile	Lys	Met	Thr 25	Gln	Ser	Pro	Ser	Ser 30	Met	Tyr			
40	Ala	Ser	Leu 35	Gly	Glu	Arg	Val	Thr 40	Ile	Ser	Cys	Lys	Ala 45	Ser	Gln	Asp			
45	Ile	Asn 50	Arg	Tyr	Leu	Ser	Trp 55	Phe	Leu	Gln	Lys	Pro 60	Gly	Lys	Ser	Pro			
	Lys 65	Thr	Leu	Ile	Tyr	Arg 70	Thr	Asn	Arg	Leu	Val 75	Asp	Gly	Val	Pro	Ser 80			
50	Arg	Phe	Ser	Gly	Ser 85	Gly	Ser	Gly	Gln	Asp 90	Tyr	Ser	Leu	Thr	Ile 95	Ser			
55	Ser	Leu	Glu	Tyr 100	Glu	Asp	Leu	Gly	Ile 105	Tyr	Tyr	Cys	Leu	His 110	Tyr	Ala			
60	Glu	Phe	Pro 115	Pro	Thr	Phe	Gly	Ala 120	Gly	Thr	Lys	Leu	Glu 125	Leu	Lys				
65	<210><211><211><212>																		

	<213>		iencia	Artific	ial												
_		Secu	iencia	de an	ticuerp	00											
5	Met 1	Tyr	Leu	Gly	Leu 5	Asn	Cys	Val	Phe	Ile 10	Val	Phe	Leu	Leu	Lys 15	Gly	
10	Val	Gln	Ser	Glu 20	Val	Lys	Leu	Glu	Glu 25	Ser	Gly	Gly	Gly	Leu 30	Val	Gln	
15	Pro	Gly	Gly 35	Ser	Met	Lys	Leu	Ser 40	Cys	Val	Ala	Ser	Gly 45	Phe	Ile	Phe	
20	Ser	Asn 50	Tyr	Trp	Met	Asp	Trp 55	Ile	Arg	Gln	Ser	Pro 60	Glu	Lys	Gly	Leu	
25	Glu 65	Trp	Val	Ala	Gln	Ile 70	Arg	Leu	Arg	Ser	Asn 75	Asn	Tyr	Ala	Thr	His 80	
30	Tyr	Ala	Glu	Ser	Leu 85	Lys	Gly	Arg	Phe	Thr 90	Ile	Ser	Arg	Asp	Asp 95	Ser	
	Lys	Ser	Thr	Val 100	Tyr	Leu	Gln	Met	Asn 105	Ser	Leu	Arg	Thr	Glu 110	Asp	Ser	
35	Gly	Ile	Tyr 115	Tyr	Cys	Thr	Arg	Thr 120	Met	Ile	Thr	Thr	Pro 125	Ser	Tyr	Trp	
40	Gly	Gln 130	Gly	Thr	Thr	Leu	Thr 135	Val	Ser	Ser							
45	<210><211><211><212><213><220><223>	> 381 > ADN > Secu	iencia			00											
50	<400>	> 37															
	_		_			-				_	_			_		agatgt gtcacc	60 120
55	_		_	_	_		_					_		_		aacag	180
																ccatca	240
60	aggt	tcaç	gtg (gcagt	ggat	c aq	ggaad	cacaa	a tat	tctc	ctca	agat	ctac	cag d	cctgo	cagcct	300
	gcg	gattt	tg q	gggct	tatt	a ct	gtct	tcat	t tat	tata	aata	ctc	cgcto	cac t	tttc	ggtgct	360
65	ggga	accaa	agc 1	tagaç	gctga	ag a											381
	<210>	· 38															

5	<211><212><212><213><220><223><400>	ADN Secu Secu	encia	Artifici		00												
	atga	agagt	gc 1	tgatt	cttt	t gi	tggct	gtto	c aca	agcct	ttc	ctg	gtato	cct o	gtcto	gatgt	g	60
10	cago	cttca	agg a	agtca	aggad	cc to	ggcct	ggto	g aaa	acctt	cctc	agto	ctctç	gtc (cgtca	acctg	С	120
	acto	gtcad	etg d	gctto	ctcca	at ca	acca	gtggt	tat	tact	gga	acto	ggato	ccg (gcagt	ttcc	a	180
15	ggaa	acaa	ac t	tggag	gtgga	at go	ggcta	acata	a cad	caaca	agtg	gtc	gcact	aa o	ctaca	atcc	a	240
	tctc	ctcaa	aaa q	gtcga	aatct	c ta	atcad	ctcga	a gad	cacat	cca	aaaa	accaç	gtt (cttco	ctgca	g	300
	ttga	agtto	ctg 1	tgact	aato	gc g	gacad	cagco	c aca	atatt	act	gtca	actto	ggg (ggaco	gatggi	t	360
20	acct	ccta	atg d	ctato	ggact	a c	tggg	gtcaa	a gga	aacct	cag	tcad	ccgt	ctc o	ctca			414
25	<210><211><211><211><212><213><220><223>	PRT Secu		Artific		00												
30	<400>	39																
	Met 1	Ser	Val	Pro	Thr 5	Gln	Val	Leu	Ala	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Thr		
35	7 an	71-	7 ~~	Cys	7 00	Tlo	C1 n	Mot	Th w	Cln	50×	Dwo	71-	Con	T 011	Con		
	Asp	Ата	Arg	Cys	Asp	TTE	GIII	Met	THE	GIII	ser	PIO	АІА	ser	ьеи	ser		
40				20					25					30				
	Ala	Ser	Val 35	Gly	Glu	Thr	Val	Thr 40	Ile	Thr	Cys	Arg	Ala 45	Ser	Gly	Asn		
45	- 1.	***	3		.	3 7-		m	61	01	T	01	61	T	9	D		
	тте	ніs 50	Asn	Tyr	Leu	Ата	55	Tyr	GIN	GIN	ьуѕ	60	GTÀ	туѕ	Ser	Pro		
50	Gln 65	Leu	Leu	Val	Tyr	Asn 70	Thr	Lys	Ser	Leu	Ala 75	Glu	Gly	Val	Pro	Ser 80		
55	Arg	Phe	Ser	Gly	Ser 85	Gly	Ser	Gly	Thr	Gln 90	Tyr	Ser	Leu	Lys	Ile 95	Tyr		
60	Ser	Leu	Gln	Pro 100	Ala	Asp	Phe	Gly	Ala 105	Tyr	Tyr	Cys	Leu	His 110	Tyr	Tyr		
e E	Asn	Thr	Pro 115	Leu	Thr	Phe	Gly	Ala 120	Gly	Thr	Lys	Leu	Glu 125	Leu	Arg			

5	<210> 40 <211> 138 <212> PRT <213> Secuencia Artificial <220> <223> Secuencia de anticuerpo <400> 40	
10	Met Arg Val Leu Ile Leu Leu Trp Leu Phe Thr Ala Phe Pro Gly Ile 1 5 10 15	
15	Leu Ser Asp Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro 20 25 30	
	Ser Gln Ser Leu Ser Val Thr Cys Thr Val Thr Gly Phe Ser Ile Thr 35 40 45	
20	Ser Gly Tyr Tyr Trp Asn Trp Ile Arg Gln Phe Pro Gly Asn Lys Leu 50 60	
25	Glu Trp Met Gly Tyr Ile His Asn Ser Gly Arg Thr Asn Tyr Asn Pro 75 80	
30	Ser Leu Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys Asn Gln 85 90 95	
	Phe Phe Leu Gln Leu Ser Ser Val Thr Asn Ala Asp Thr Ala Thr Tyr 100 105 110	
35	Tyr Cys His Leu Gly Asp Asp Gly Thr Ser Tyr Ala Met Asp Tyr Trp 115 120 125	
40	Gly Gln Gly Thr Ser Val Thr Val Ser Ser 130 135	
45	<210> 41 <211> 384 <212> ADN <213> Secuencia Artificial <220> <223> Secuencia de anticuerpo <400> 41	
50	atggattttc aggtgcagat tttcagcttc ctgctaatca gtgcctcagt catactgtcc	6
	agaggacaaa ttgttctcac ccagtctcca gcaatcatgt ctgcatctct gggggaggag	120
55	atcaccctaa cctgcagtgc cagctcgagt gtaaattaca tgcactggta ccagcagaag	180
	tcaggcactt ctcccaaact cttgatttat agcacatcca acctggcttc tggagtccct	24
	tctcgcttca gtggcagtgg gtctgggacc ttttattctc tcacaatcag cagtgtggag	300
60	gctgaagatg ctgccgatta ttactgccat cagtggagta gttatccgta cacgttcgga	360
	ggggggacca agctggaaat aaaa	38
65	<210> 42 <211> 408	

5	<212> / <213> / <220> <223> / <400> /	Secue Secue				0												
	atgga	aatg	ga ç	ıttgg	ratat	t to	ctctt	tctc	c cto	gtcaç	ggaa	ctgo	aggt	gt o	ccact	ctgag	Г	6
10	gtcca	agtt	gc a	ıgcag	rtctg	g ac	cctga	ıgcto	g gta	aago	cctg	gggg	ettea	agt q	gaaga	tgtcc	:	12
10	tgcaa	aggc	tt c	tgga	taca	c at	tcac	taac	tat	gtta	attt	acto	ggto	gaa q	gcaga	agcct	:	18
	gggca	aggg	cc t	tgag	rtgga	ıt tç	gata	tatt	aat	cctt	aca	atga	tggt	ac t	aagt	acaat	:	24
15	gagaa	agtt	ca a	aggo	aagg	ic ca	cact	gact	gca	agaca	aat	ccto	cago	cac a	agcct	acato	ī	30
	gagct	tcag	ta g	rcctg	racct	c to	gagga	ctct	gcg	gtct	att	acto	gtgco	ctg t	aact	tcctc	:	36
20	tatgo	ctat	gg a	ctac	tggg	g to	caago	gaacc	tca	agtca	accg	tct	cctca	1				40
25	<210> 4 <211> 4 <212> 4 <213> 4 <220> 400> 4	128 PRT Secue				00												
30	Met 1	Asp	Phe	Gln	Val 5	Gln	Ile	Phe	Ser	Phe 10	Leu	Leu	Ile	Ser	Ala 15	Ser		
35	Val :	Ile	Leu	Ser 20	Arg	Gly	Gln	Ile	Val 25	Leu	Thr	Gln	Ser	Pro 30	Ala	Ile		
40	Met s		Ala 35	Ser	Leu	Gly	Glu	Glu 40	Ile	Thr	Leu	Thr	Cys 45	Ser	Ala	Ser		
45	Ser S	Ser 50	Val	Asn	Tyr		His 55	Trp	Tyr	Gln	Gln	Lys 60	Ser	Gly	Thr	Ser		
	Pro 1 65	Lys	Leu	Leu	Ile	Tyr 70	Ser	Thr	Ser	Asn	Leu 75	Ala	Ser	Gly	Val	Pro 80		
50	Ser 1	Arg	Phe	Ser	Gly 85	Ser	Gly	Ser	Gly	Thr 90	Phe	Tyr	Ser	Leu	Thr 95	Ile		
55	Ser S	Ser	Val	Glu 100	Ala	Glu	Asp	Ala	Ala 105	Asp	Tyr	Tyr	Cys	His 110	Gln	Trp		
60	Ser S		Tyr 115	Pro	Tyr	Thr	Phe	Gly 120	Gly	Gly	Thr	Lys	Leu 125	Glu	Ile	Lys		
65	<210> 4 <211> 1 <212> 1	136 PRT	ancio	Λrtifici	al													

	<220> <223> <400>	> Secu	iencia	de an	ticuerp	00											
5	Met 1	Glu	Trp	Ser	Trp 5	Ile	Phe	Leu	Phe	Leu 10	Leu	Ser	Gly	Thr	Ala 15	Gly	
10	Val	His	Ser	Glu 20	Val	Gln	Leu	Gln	Gln 25	Ser	Gly	Pro	Glu	Leu 30	Val	Lys	
15	Pro	Gly	Ala 35	Ser	Val	Lys	Met	Ser 40	Cys	Lys	Ala	Ser	Gly 45	Tyr	Thr	Phe	
20	Thr	Asn 50	Tyr	Val	Ile	Tyr	Trp 55	Val	Lys	Gln	Lys	Pro 60	Gly	Gln	Gly	Leu	
20	Glu 65	Trp	Ile	Gly	Tyr	Ile 70	Asn	Pro	Tyr	Asn	Asp 75	Gly	Thr	Lys	Tyr	Asn 80	
25	Glu	Lys	Phe	Lys	Gly 85	Lys	Ala	Thr	Leu	Thr 90	Ala	Asp	Lys	Ser	Ser 95	Ser	
30	Thr	Ala	Tyr	Met 100	Glu	Leu	Ser	Ser	Leu 105	Thr	Ser	Glu	Asp	Ser 110	Ala	Val	
35	Tyr	Tyr	Cys 115	Ala	Cys	Asn	Phe	Leu 120	Tyr	Ala	Met	Asp	Tyr 125	Trp	Gly	Gln	
40	Gly <210> <211>	130 - 45	Ser	Val	Thr	Val	Ser 135	Ser									
45	<213><220>	> > Secu	iencia		ial ticuerp	00											
50	atg	gagto	cac a	agatt	cago	gc at	ttgt	atto	gto	gttt	ctct	ggtt	gtct	.gg t	tgttq	gacgga	60
50	gaca	attgt	cga t	gac	ccagt	c to	cacaa	atto	ato	gtcca	acat	cagt	agga	aga d	cagg	gtcagc	120
	atca	accto	gca a	aggco	cagto	ca go	gatgt	gaat	act	gcto	gtag	ccto	ggtat	ca a	aaaa	aatta	180
55	ggad	caato	ctc o	ctaaa	actgo	ct ga	attta	attg	g gca	atcca	accc	ggca	acact	gg a	agtco	cctgat	240
	cgct	tcad	cag q	gcagt	ggat	c to	gggad	cagat	tat	tacto	ctca	ccat	cago	cag t	tgtgd	caggct	300
30	gaaq	gacct	egg d	cactt	tatt	ca ct	gtca	agcaa	a cat	tata	agca	ctc	cgtac	cac q	gttc	ggaggg	360
	ggga	accaa	agc t	ggaa	aataa	aa a											381
35	<210> <211>																

	<220> <223>	> Secu > > Secu	iencia	ı Artific ı de an		00												
5	<400>				_ •				- • -								_	6/
				_					_	_	_		_	_		ccca	_	60
10	gtc	caact	tgc	agca	gaata	gg gg	gctga	acto	g gto	gacgo	cctg	ggg	ettea	igt (gaago	tgtc	С	120
	tgca	aaggo	ctt	ctgg	ctaca	ac ct	ttcac	ccago	tac	ctgga	atgc	acto	gggtg	gaa (gcaga	aggcc	t	180
	ggad	caag	gcc	ttgaç	gtgga	at to	ggaga	agatt	: aat	cct	ggca	acg	gtcgt	ac f	taact	acaa	t	240
15	_			_				_					_		_	acat	_	300
	caad	ctca	gca	gcct	gacat	cc to	gagga	actct	geg	ggtct	att	acto	gtgca	aag a	aagco	ctcta	C	360
20	ggta	accci	tct	ttgct	tcct	g gg	ggcca	aaggo	, act	ctg	gtca	ctgt	ctct	gc a	a			411
25	<220>	> 127 > PRT > Secu > > Secu	iencia	ı Artific ı de an		00												
30	Met 1	Glu	Ser	Gln	Ile 5	Gln	Ala	Phe	Val	Phe 10	Val	Phe	Leu	Trp	Leu 15	Ser		
35	Gly	Val	Asp	Gly 20	Asp	Ile	Val	Met	Thr 25	Gln	Ser	His	Lys	Phe 30	Met	Ser		
40	Thr	Ser	Val 35	Gly	Asp	Arg	Val	Ser 40	Ile	Thr	Cys	Lys	Ala 45	Ser	Gln	Asp		
	Val	Asn 50	Thr	Ala	Val	Ala	Trp 55	Tyr	Gln	Lys	Lys	Leu 60	Gly	Gln	Ser	Pro		
45	Lys 65	Leu	Leu	Ile	Tyr	Trp 70	Ala	Ser	Thr	Arg	His 75	Thr	Gly	Val	Pro	Asp 80		
50	Arg	Phe	Thr	Gly	Ser 85	Gly	Ser	Gly	Thr	Asp 90	Tyr	Thr	Leu	Thr	Ile 95	Ser		
55	Ser	Val	Gln	Ala 100	Glu	Asp	Leu	Ala	Leu 105	Tyr	Tyr	Cys	Gln	Gln 110	His	Tyr		
60	Ser	Thr	Pro 115	Tyr	Thr	Phe	Gly	Gly 120	Gly	Thr	Lys	Leu	Glu 125	Ile	Lys			
65	<210><211><211><212><212><213><220>	> 137 > PRT > Secu		ı Artific	ial													

	<223>		iencia	de an	ticuerp	00											
	<400> Met 1	_	Trp	Ser	Tyr 5	Ile	Ile	Leu	Phe	Leu 10	Val	Ala	Thr	Ala	Thr 15	Asp	
5																	
	Val	His	Ser	Gln 20	Val	Gln	Leu	Gln	Gln 25	Pro	Gly	Ala	Glu	Leu 30	Val	Thr	
10	Pro	Gly	Ala 35	Ser	Val	Lys	Leu	Ser 40	Cys	Lys	Ala	Ser	Gly 45	Tyr	Thr	Phe	
15	Thr	Ser 50	Tyr	Trp	Met	His	Trp 55	Val	Lys	Gln	Arg	Pro 60	Gly	Gln	Gly	Leu	
20	Glu 65	Trp	Ile	Gly	Glu	Ile 70	Asn	Pro	Gly	Asn	Gly 75	Arg	Thr	Asn	Tyr	Asn 80	
0.5	Asp	Asn	Phe	Met	Ile 85	Arg	Ala	Thr	Leu	Thr 90	Val	Asp	Lys	Ser	Ser 95	Ser	
25	mb w	710	Ш	Wot	Cl n	T 011	Co	502	T 011	mh w	Co	C1	7.00	Con	71-	170 l	
	THE	нта	TÄL	Met 100	GIII	теп	ser	ser	105	TILL	ser	GIU	ASP	110	ALG	Vai	
30	Tyr	Tyr	Cys 115	Ala	Arg	Ser	Leu	Tyr 120	Gly	Thr	Leu	Phe	Ala 125	Ser	Trp	Gly	
35	Gln	Gly 130	Thr	Leu	Val	Thr	Val 135	Ser	Ala								
40	<210><211><211><212><213><220>	· 393 · ADN · Secu		Artific	ial												
45	<223> <400>	Secu	iencia	de an	ticuerp	00											
	atg	gagad	cag a	acaca	actco	ct go	ctato	gggt	g cto	gctgo	ctct	gggt	tcca	agg t	ttcca	actggt	60
50	gaca	ttgt	cac t	tgaca	acagt	c to	cctgt	ttc	c tta	acta	attt	ctct	ggg	cca ç	gagg	gccacc	120
50	atct	cato	gca ç	gggc	cagco	ca aa	agtgt	cagt	gca	atcta	agct	ataç	gttat	at q	gcact	tggtac	180
	caac	cagaa	aag d	cagga	acago	cc ac	ccaa	acto	cto	catca	aagt	atgo	catco	caa o	cctaç	gaatct	240
55	gggg	gtaco	ctg o	ccago	gttca	ag to	gcaç	gtggg	g tct	ggga	acag	actt	caco	cat o	caaca	atccat	300
	ccto	gtgga	agg a	aggc	ggata	ac to	gcaac	catao	c tac	ctgto	caac	acaa	attg	gga q	ggtto	cctccg	360
60	acgt	tag	gtg q	gaggo	cacca	aa go	ctgga	aato	c aag	J							393
65	<210><211><211><212><212><213><220>	423 ADN Secu		Artific	ial												

	<223> 5 <400> 5		encia	de an	ticuerp	00											
5	atgga	actc	ca ç	gato	caatt	t aç	gtttt	cctt	gto	cctto	gttt	taaa	aggt	gt (ccagt	gtgat	60
5	gtgca	agtt	gg t	ggag	gtato	ia ad	ggagg	gctta	a gto	gcago	cctg	gago	gtco	ccg (gaaac	ctctcc	120
	tgtgc	cagc	ct c	ctgga	attca	ac gt	tcaç	gtago	ttt	ggaa	atgc	acto	ggtt	.cg 1	tcago	gctcca	180
10	gagaa	aggg	gc t	ggaa	atggg	jt c	gcata	atatt	agt	agto	ggca	gtag	gtaco	cat o	ctact	ataga	240
	gacac	cagt	ga a	agggo	ccgat	t ca	accat	ctcc	e aga	agaca	aatc	ccaa	gaad	cac o	cctgt	tcctg	300
15	caaat	gac	ca ç	gtcta	aggt	c to	gagga	caco	g gcd	catgt	att	acto	gtgca	aag a	agggg	ggggta	360
	gtagt	ttc	ga a	agat	ggaa	a ct	ttga	actac	tgg	gggc	caag	gcad	cact	ct (cgcag	gtctcc	420
20	tca																423
25	<210> 5 <211> 1 <212> F <213> 5 <220> <223> 5 <400> 5	131 PRT Secue				00											
30	Met 0	Glu	Thr	Asp	Thr 5	Leu	Leu	Leu	Trp	Val 10	Leu	Leu	Leu	Trp	Val 15	Pro	
35	Gly S	Ser	Thr	Gly 20	Asp	Ile	Val	Leu	Thr 25	Gln	Ser	Pro	Val	Ser 30	Leu	Thr	
40	Ile S	Ser	Leu 35	Gly	Gln	Arg	Ala	Thr 40	Ile	Ser	Cys	Arg	Ala 45	Ser	Gln	Ser	
45	Val S	Ser 50	Ala	Ser	Ser	Tyr	Ser 55				_	Tyr 60		Gln	Lys	Ala	
.0	Gly 6	3ln	Pro	Pro	Lys	Leu 70	Leu	Ile	Lys	Tyr	Ala 75	Ser	Asn	Leu	Glu	Ser 80	
50	Gly V	/al	Pro	Ala	Arg 85	Phe	Ser	Gly	Ser	Gly 90	Ser	Gly	Thr	Asp	Phe 95	Thr	
55	Leu A	Asn	Ile	His 100	Pro	Val	Glu	Glu	Ala 105	Asp	Thr	Ala	Thr	Tyr 110	Tyr	Cys	
60	Gln H	His	Asn 115	Trp	Glu	Val	Pro	Pro 120	Thr	Phe	Gly	Gly	Gly 125	Thr	Lys	Leu	
65	Glu I	[le L30	Lys														

5	<210><211><211><212><213><220><223><400>	· 141 · PRT · Secu · · Secu				00											
10	Met 1	Asp	Ser	Arg	Leu 5	Asn	Leu	Val	Phe	Leu 10	Val	Leu	Val	Leu	Lys 15	Gly	
15	Val	Gln	Cys	Asp 20	Val	Gln	Leu	Val	Glu 25	Ser	Gly	Gly	Gly	Leu 30	Val	Gln	
20	Pro	Gly	Gly 35	Ser	Arg	Lys	Leu	Ser 40	Cys	Ala	Ala	Ser	Gly 45	Phe	Thr	Phe	
	Ser	Ser 50	Phe	Gly	Met	His	Trp 55	Val	Arg	Gln	Ala	Pro 60	Glu	Lys	Gly	Leu	
25	Glu 65	Trp	Val	Ala	Tyr	Ile 70	Ser	Ser	Gly	Ser	Ser 75	Thr	Ile	Tyr	Tyr	Arg 80	
30	Asp	Thr	Val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Pro	Lys 95	Asn	
35	Thr	Leu	Phe	Leu 100	Gln	Met	Thr	Ser	Leu 105	Arg	Ser	Glu	Asp	Thr 110	Ala	Met	
40	Tyr	Tyr	Cys 115	Ala	Arg	Gly	Gly	Val 120	Val	Val	Ser	Lys	Asp 125	Gly	Asn	Phe	
45	Asp	Tyr 130	Trp	Gly	Gln	Gly	Thr 135	Thr	Leu	Ala	Val	Ser 140	Ser				
50	<210><211><211><212><213><220><223><400>	· 381 · ADN · Secu · · Secu	encia			00											
			ect o	ctgct	cagt	t co	ettgg	gycto	c cto	gttgo	ctct	gttt	tcaa	agg t	acca	agatgt	60
55	gata	tcca	nga t	gaca	acaga	ıc ta	cato	catao	c cto	gtata	gaat	ctct	ggga	nga d	cagaç	gtcacc	120
	ayca	gtto	gca ç	gtgca	agto	ea go	gcat	tago	aat	tatt	taa	acto	gtat	ca q	gcaga	aacca	180
60	gato	gaac	etg t	taaa	actco	et ga	atcta	attac	aca	atcaa	agtt	taca	ctca	agg a	agtco	ccatca	240

	aggt	tcag	tg q	gcagt	gggt	c to	ggac	agat	tat	tctc	tca	ccat	cagc	aa	cctgc	raacc	et	300
	gaag	ratat	tg (ccact	tacta	a tt	gtca	gcag	tat	agta	agc	ttcc	gtac	ac (gttcc	gagg	ıg	360
5	ggga	ccaa	ac t	tggaa	ataaa	a a												381
	<213> Secuencia Artificial <220> <223> Secuencia de anticuerpo <400> 54																	
15	atgg	raaag	gc a	actgo	gatcti	t to	ctctt	cctg	ttç	jtcag	rtaa	ctgc	aggt	gt	ccact	ccca	ag	60
	gtcc	aact	gc a	agcag	gtctgo	c go	gctga	actg	gta	agac	ctg	gggc	ctca	gt (gaaga	tgto	ec	120
20	tgca	agac	tt	ctggc	ctacat	t ct	tcac	tagc	gad	cgga	tgc	acto	ggta	aa .	acaga	ggcc	et	180
	ggac	aggg	rtc 1	tggag	gtggai	t to	gata	catt	att	ccta	ıgaa	attt	ttat	ac ·	taaat	acaa	at	240
25	caga	aatt	.ca a	aggad	caaggo	c ca	acatt	gact	gca	igaca	cat	cctc	caat	ac .	agcct	acat	g	300
	cagt	tgag	ca q	gaato	gacato	c to	gaaga	ctct	gca	gtct	att	acto	jtgtg:	aa .	atcto	racgo	ad	360
	gcct	actg	igg (gccaa	aggca	c ca	actct	caca	gto	etect	ca							399
30	<210><211><211><212><213>	127 PRT	oncia	Artifici	ial													
35	<220><223><220>	Secu	encia	de ant	ticuerpo)												
	<221><222><223><400>	(41) Xaa c	(41)		naturally	/ OCC	urring	amino	acid									
45	Met 1	Met	Ser	Ser	Ala (Gln	Phe	Leu	Gly	Leu 10	Leu	Leu	Leu (Сув	Phe 15	Gln		
	Gly	Thr	Arg	Cys 20	Asp :	Ile	Gln	Met	Thr 25	Gln	Thr	Thr		Ser 30	Leu	Ser		
50	Ala	Ser	Leu 35	Gly	Asp i	Arg	Val	Thr 40	Xaa	Ser	Cys	Ser	Ala :	Ser	Gln	Gly		
55	Ile	Ser 50	Asn	Tyr	Leu i	Asn	Trp 55	Tyr	Gln	Gln	Lys	Pro 60	Asp (Gly	Thr	Val		

	Lys 65	Leu	Leu	Ile	Tyr	Tyr 70	Thr	Ser	Ser	Leu	His 75	Ser	Gly	Val	Pro	Ser 80
5	Arg	Phe	Ser	Gly	Ser 85	Gly	Ser	Gly	Thr	Asp 90	Tyr	Ser	Leu	Thr	Ile 95	Ser
10	Asn	Leu	Glu	Pro 100	Glu	Asp	Ile	Ala	Thr 105	Tyr	Tyr	Cys	Gln	Gln 110	Tyr	Ser
15	Lys	Leu	Pro 115	Tyr	Thr	Phe	Gly	Gly 120	Gly	Thr	Lys	Leu	Glu 125	Ile	Lys	
20	<210><211><211><212><213><220><223><400>	→ 133 → PRT → Secu → Secu				00										
25	Met 1	Glu	Arg	His	Trp 5	Ile	Phe	Leu	Phe	Leu 10	Leu	Ser	Val	Thr	Ala 15	Gly
30	Val	His	Ser	Gln 20	Val	Gln	Leu	Gln	Gln 25	Ser	Ala	Ala	Glu	Leu 30	Val	Arç
35	Pro	Gly	Ala 35	Ser	Val	Lys	Met	Ser 40	Cys	Lys	Thr	Ser	Gly 45	Tyr	Ile	Phe
40	Thr	Ser 50	Asp	Arg	Met	His	Trp 55	Val	Lys	Gln	Arg	Pro 60	Gly	Gln	Gly	Let
	Glu 65	Trp	Ile	Gly	Tyr	Ile 70	Ile	Pro	Arg	Asn	Phe 75	Tyr	Thr	Lys	Tyr	Asr 80
45	Gln	Lys	Phe	Lys	Asp 85	Lys	Ala	Thr	Leu	Thr 90	Ala	Asp	Thr	Ser	Ser 95	Asr
50	Thr	Ala	Tyr	Met 100	Gln	Leu	Ser	Ser	Leu 105	Thr	Ser	Glu	Asp	Ser 110	Ala	Val
55	Tyr	Tyr	Cys 115	Val	Lys	Ser	Asp	Gly 120	Ala	Tyr	Trp	Gly	Gln 125	Gly	Thr	Thi
60	Leu	Thr 130	Val	Ser	Ser											

REIVINDICACIONES

5

10

15

20

25

30

35

40

45

50

55

60

- **1.** Un anticuerpo aislado, o un fragmento de unión de este, que se une a la quetiapina y que es un anticuerpo aislado, o un fragmento de unión de este, que se selecciona de un grupo que se compone de:
 - a) un anticuerpo aislado, o un fragmento de unión de este, que comprende una región variable de una cadena ligera que tiene la secuencia de aminoácidos de SEQ ID NO:19 (o identificador de secuencia nº 19) y una región variable de una cadena pesada que tiene la secuencia de aminoácidos de SEQ ID NO:20;
 - b) un anticuerpo aislado, o un fragmento de este, que comprende una región variable de una cadena ligera que tiene la secuencia de aminoácidos de SEQ ID NO:23 y una región variable de una cadena pesada que tiene la secuencia de aminoácidos de SEQ ID NO:24; o
 - c) un anticuerpo aislado, o un fragmento de este, que comprende una región variable de una cadena ligera que tiene la secuencia de aminoácidos de SEQ ID NO:27 y una región variable de una cadena pesada que tiene la secuencia de aminoácidos de SEQ ID NO:28.
- 2. El anticuerpo de la reivindicación 1, de manera que:
 - a) la secuencia CDR1 de la cadena ligera comprende los residuos de aminoácidos 43 a 58 de SEQ ID NO:19:
 - b) la secuencia CDR2 de la cadena ligera comprende los residuos de aminoácidos 74 a 80 de SEQ ID NO:19;
 - c) la secuencia CDR3 de la cadena ligera comprende los residuos de aminoácidos 113 a 121 de SEQ ID NO:19:
 - d) la secuencia CDR1 de la cadena pesada comprende los residuos de aminoácidos 45 a 54 de SEQ ID NO:20;
 - e) la secuencia CDR2 de la cadena pesada comprende los residuos de aminoácidos 69 a 85 de SEQ ID NO:20; y
 - f) la secuencia CDR3 de la cadena pesada comprende los residuos de aminoácidos 118 a 129 de SEQ ID NO:20.
- 3. El anticuerpo de la reivindicación 1, de manera que:
 - a) la secuencia CDR1 de la cadena ligera comprende los residuos de aminoácidos 43 a 58 de SEQ ID NO:23:
 - b) la secuencia CDR2 de la cadena ligera comprende los residuos de aminoácidos 74 a 80 de SEQ ID NO:23:
 - c) la secuencia CDR3 de la cadena ligera comprende los residuos de aminoácidos 113 a 121 de SEQ ID NO:23;
 - d) la secuencia CDR1 de la cadena pesada comprende los residuos de aminoácidos 45 a 54 de SEQ ID NO:24;
 - e) la secuencia CDR2 de la cadena pesada comprende los residuos de aminoácidos 69 a 85 de SEQ ID NO:24; y
 - f) la secuencia CDR3 de la cadena pesada comprende los residuos de aminoácidos 123 a 129 de SEQ ID NO:24.
- 4. El anticuerpo de la reivindicación 1, de manera que:
 - a) la secuencia CDR1 de la cadena ligera comprende los residuos de aminoácidos 43 a 58 de SEQ ID NO:27:
 - b) la secuencia CDR2 de la cadena ligera comprende los residuos de aminoácidos 74 a 80 de SEQ ID NO:27;
 - c) la secuencia CDR3 de la cadena ligera comprende los residuos de aminoácidos 113 a 121 de SEQ ID NO:27;
 - d) la secuencia CDR1 de la cadena pesada comprende los residuos de aminoácidos 45 a 54 de SEQ ID NO:28:
 - e) la secuencia CDR2 de la cadena pesada comprende los residuos de aminoácidos 69 a 85 de SEQ ID NO:28; y
 - f) la secuencia CDR3 de la cadena pesada comprende los residuos de aminoácidos 123 a 129 de SEQ ID NO:28.
- **5.** El anticuerpo de la reivindicación 1, de manera que el fragmento de anticuerpo se selecciona de un grupo de fragmentos que consta de fragmentos de Fv, F(ab'), F(ab')2, scFv, minicuerpos y diacuerpos.
- 6. El anticuerpo de la reivindicación 1, de manera que el anticuerpo es un anticuerpo monoclonal.
- 7. Un kit de ensayo que contiene el anticuerpo de la reivindicación 1.

65

8. Un dispositivo de ensayo que contiene el anticuerpo de la reivindicación 1. 9. El dispositivo de ensayo de la reivindicación 8, de manera que el dispositivo es un dispositivo de ensayo de flujo 5 lateral. 10. Un método para detectar quetiapina en una muestra, de manera que el método incluye: (i) poner en contacto una muestra y un anticuerpo de la reivindicación 1 que está marcado con un marcador 10 detectable, de manera que el anticuerpo marcado y la quetiapina presente en la muestra forman un compuesto marcado; v (ii) detectar el compuesto marcado a fin de detectar la quetiapina presente en la muestra. 11. Un método de inmunoensavo competitivo para detectar quetiapina en una muestra, de manera que el método 15 incluve: (i) poner en contacto una muestra con el anticuerpo de la reivindicación 1, y con quetiapina o con un acompañante de unión competitiva de la quetiapina, de manera que el anticuerpo o la quetiapina -o el acompañante de unión competitiva de esta- se marca con un marcador detectable, y de manera que la 20 quetiapina de la muestra compite con la quetiapina -o con un acompañante de unión competitiva de estapara unirse con el anticuerpo; y (ii) detectar el marcador a fin de detectar la quetiapina de la muestra. 12. El método de la reivindicación 11, de manera que: 25 (i) la quetiapina, o el acompañante de unión competitiva de esta, se marca con el marcador detectable; (ii) el anticuerpo se marca con un marcador detectable; o (iii) el inmunoensayo se realiza en un dispositivo de ensayo de flujo lateral y la muestra se deposita en el dispositivo. 30 13. El método de la reivindicación 10 u 11, que además incluye detectar la presencia de uno o más analitos además de la quetiapina. 14. El método de la reivindicación 13, de manera que los analitos -uno o más- son otros fármacos o medicamentos 35 antipsicóticos aparte de la quetiapina. 15. El método de la reivindicación 14, de manera que los fármacos antipsicóticos aparte de la quetiapina se seleccionan de un grupo que consta de los siguientes: risperidona, paliperidona, aripiprazol, olanzapina y metabolitos de estos compuestos. 40 45

54

50

55

60

Fig. 1

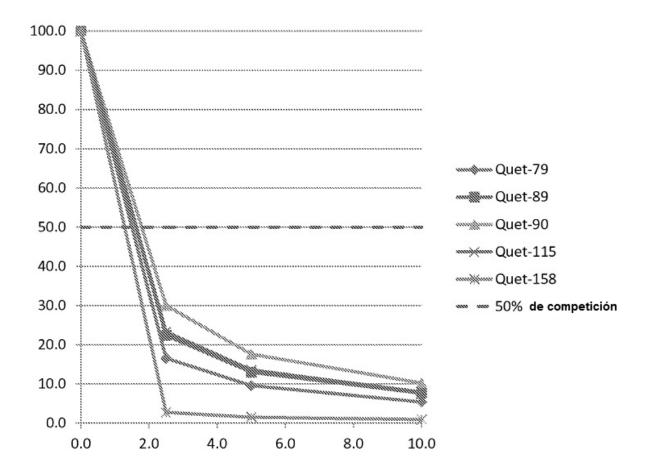
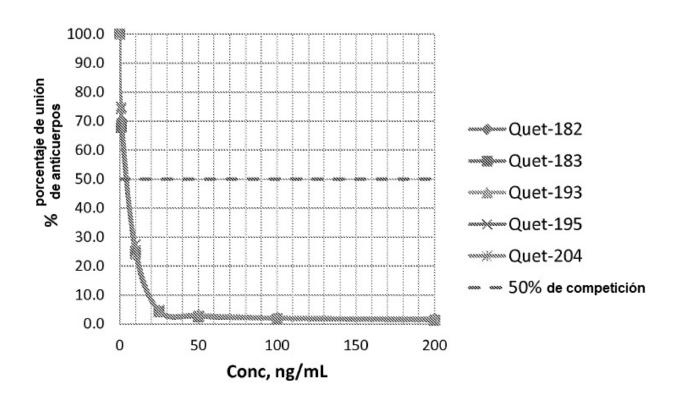



Fig. 2

Competición de clones 13.2 (de sangre de ratón)

Fig. 3

Formatos competitivos: anticuerpo(s) hacia abajo

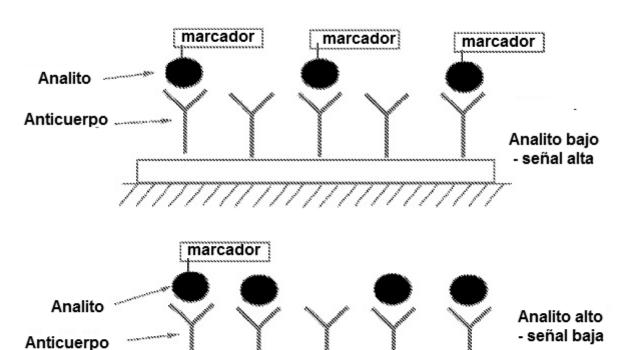
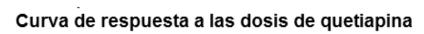



Fig. 4

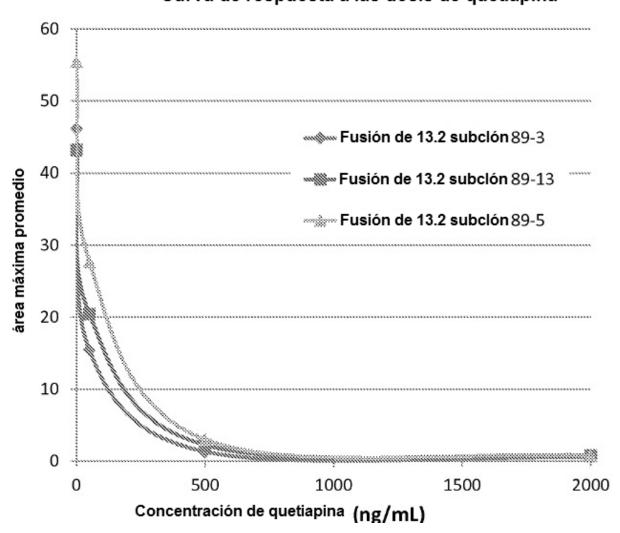


Fig. 5

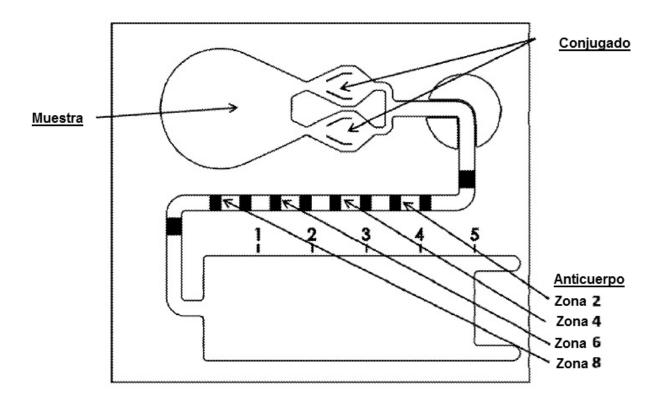


Fig. 6

Área promedio del pico de aripiprazol vs. concentración Clon 5C7

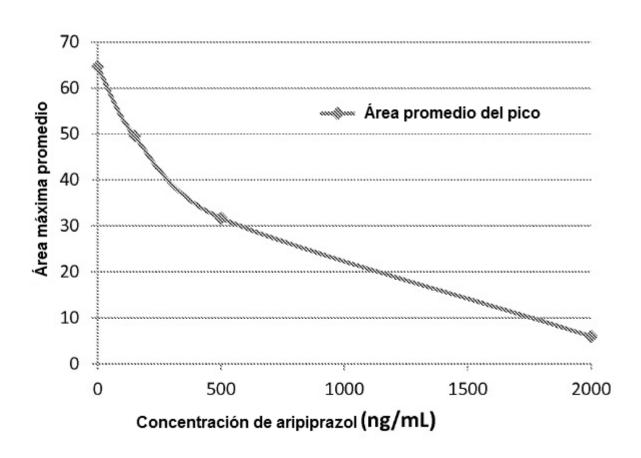


Fig. 7

Área promedio del pico de olanzapina vs. concentración Clon 4G91

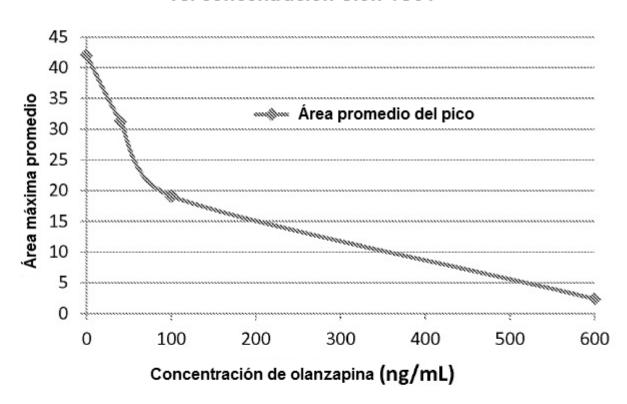


Fig. 8

Área promedio del pico de quetiapina vs. concentración Clon 11

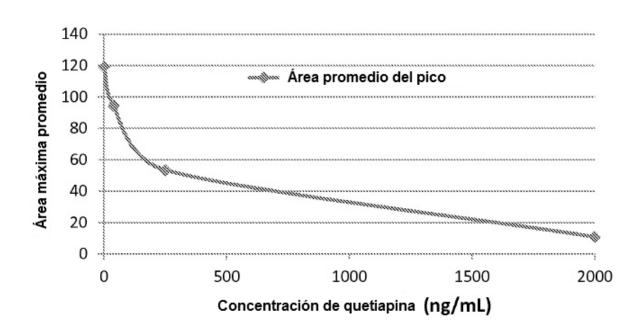


Fig. 9

Área promedio del pico de Risperidona vs. concentración Clon 5-9

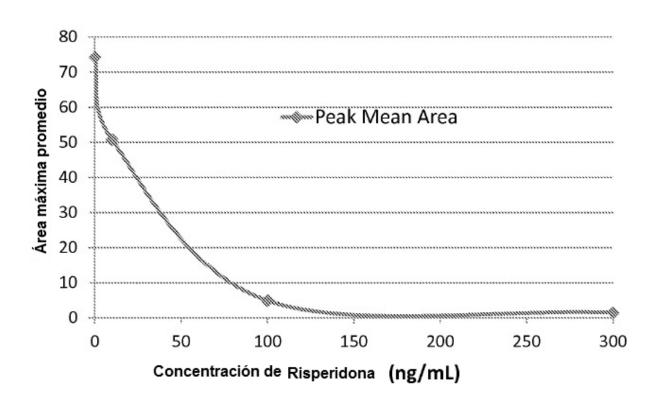


Fig. 10

Ensayo múltiple de aripiprazol: zona de reacción de aripiprazol -- CZ: A,O,Q,R

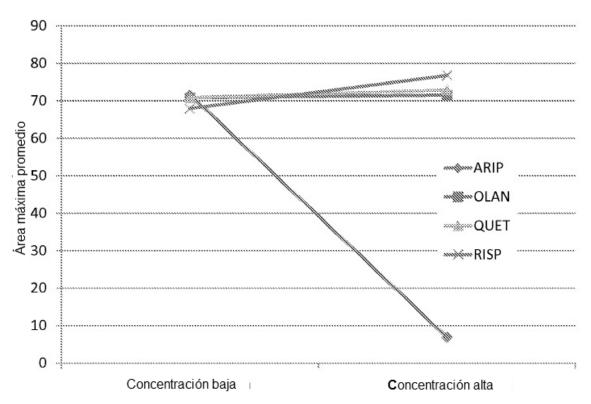


Fig. 11

Ensayo múltiple de olanzapina : zona de reacción de olanzapina - CZ: A,O,Q,R

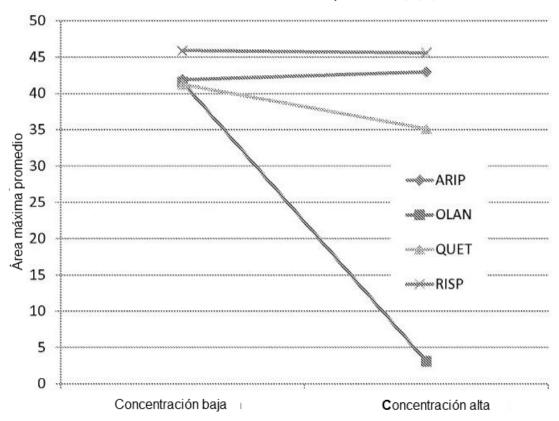


Fig. 12

Ensayo múltiple de quetiapina zona de reacción de quetiapina -- CZ: A,O,Q,R

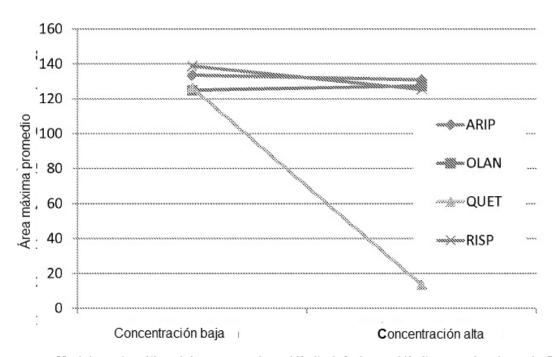


Fig. 13

Ensayo múltiple de risperidona : zona de reacción de risperidona -- CZ: A,O,Q,R

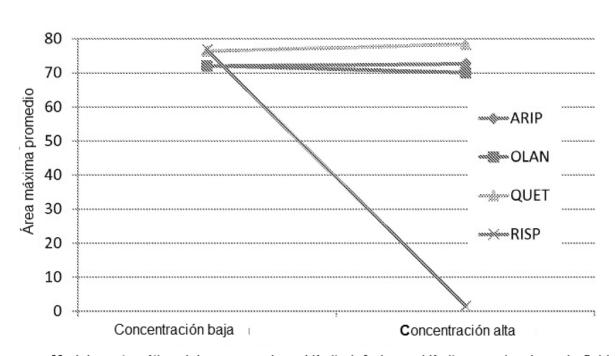


Fig. 14

Aripiprazol: ensayo múltiple = RZ: A,O,Q,R-- CZ: A,O,Q,R

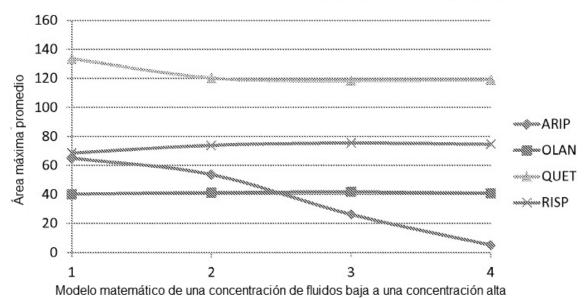


Fig. 15

Olanzapina: ensayo múltiple = RZ: A,O,Q,R-- CZ: A,O,Q,R

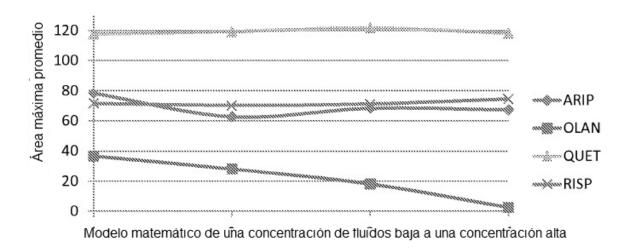
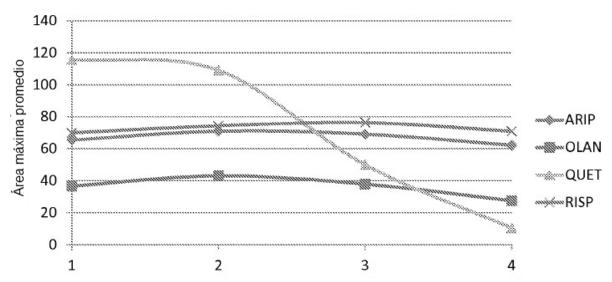
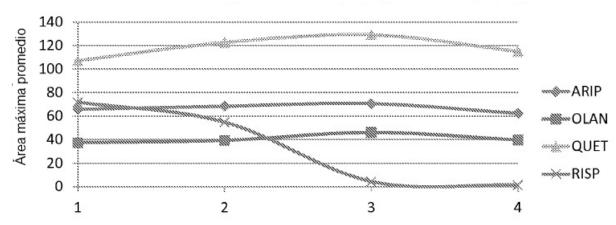



Fig. 16


Quetiapina: ensayo múltiple = RZ: A,O,Q,R-- CZ: A,O,Q,R

Modelo matemático de una concentración de fluidos baja a una concentración alta

Fig. 17

Risperidona: ensayo múltiple = RZ: A,O,Q,R-- CZ: A,O,Q,R

Modelo matemático de una concentración de fluidos baja a una concentración alta

Fig. 18

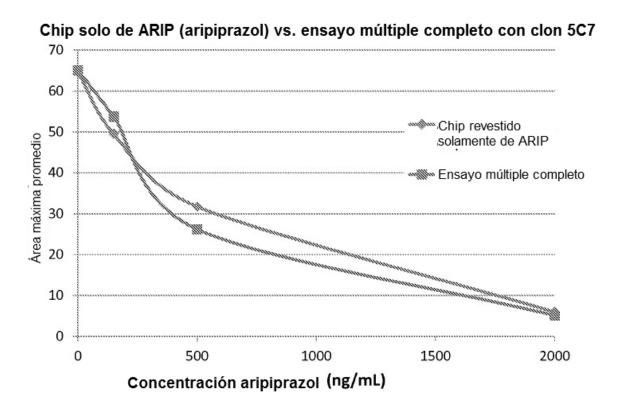


Fig. 19

Chip solo de olanzapina vs. ensayo múltiple completo con 4G9-1

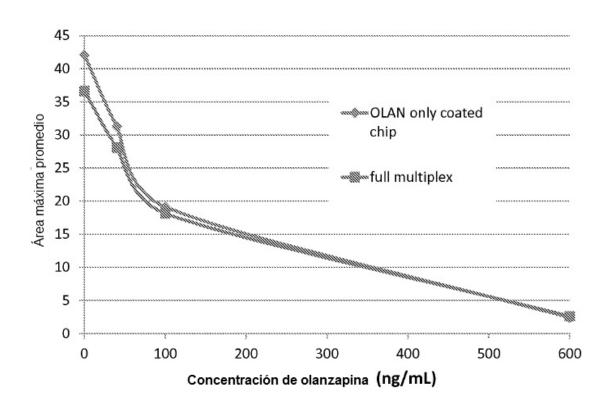


Fig. 20

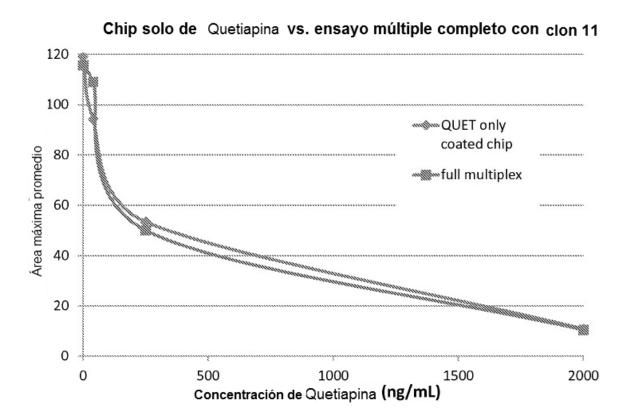
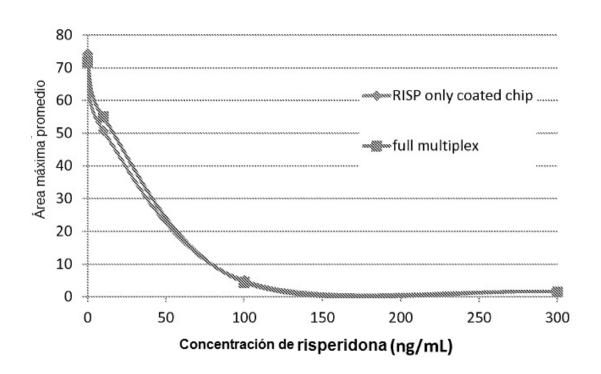



Fig. 21

Chip solo de risperidona vs. ensayo múltiple completo con clon 11

