

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 656 689

(51) Int. Cl.:

F42B 3/113 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 06.05.2014 PCT/EP2014/059261

(87) Fecha y número de publicación internacional: 13.11.2014 WO14180860

(96) Fecha de presentación y número de la solicitud europea: 06.05.2014 E 14722651 (8)

(97) Fecha y número de publicación de la concesión europea: 18.10.2017 EP 2994714

(54) Título: Iniciador optopirotécnico mejorado

(30) Prioridad:

07.05.2013 FR 1354195

Fecha de publicación y mención en BOPI de la traducción de la patente: 28.02.2018

(73) Titular/es:

COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES (100.0%) 25, Rue Leblanc, Bâtiment "Le Ponant D" 75015 Paris, FR

(72) Inventor/es:

ANDRIOT, PATRICK y BELIN, FRANÇOIS

(74) Agente/Representante:

LINAGE GONZÁLEZ, Rafael

DESCRIPCIÓN

Iniciador optopirotécnico mejorado

5 Campo técnico

La presente invención se refiere al campo de los iniciadores pirotécnicos, cuya iniciación (o arranque) se acciona por una energía luminosa. Estos iniciadores son igualmente conocidos con el término de iniciadores optopirotécnicos.

10 La invención encuentra aplicación en todos los campos donde los iniciadores pirotécnicos se utilizan, concretamente en los campos espacial y aeronáutico como accionadores, en los equipos de seguridad (válvulas, cortador de alambres, etc.), etc.

Estado de la técnica anterior

15

25

De manera conocida, los iniciadores pirotécnicos contienen, en una cavidad, una carga pirotécnica, que está en contacto íntimo con un medio de encendido de esta carga.

La carga pirotécnica puede ser, por elección, una composición explosiva o una composición pirotécnica. En el primer caso, el iniciador se denomina en general detonador; en el segundo caso, el iniciador se denomina en general inflamador.

En el caso de los iniciadores pirotécnicos eléctricos y, concretamente, en los iniciadores de alambre caliente, el medio de encendido es una resistencia de calefacción constituida por un elemento (un alambre o una capa) de material eléctricamente conductor, unido a un generador eléctrico. Cuando se recorre por una corriente, el elemento se calienta por efecto Joule y este calor se transmite por conducción térmica a la carga pirotécnica que está en contacto con el elemento. Como ejemplo de iniciador pirotécnico eléctrico, puede mencionarse por ejemplo el documento [1].

30 El inconveniente de los iniciadores eléctricos es que son sensibles a las perturbaciones electromagnéticas y pueden activarse por tanto de forma accidental mediante descargas electrostáticas o corrientes inducidas debidas a radiaciones electromagnéticas parásitas.

En el caso de los iniciadores optopirotécnicos, la iniciación de la carga pirotécnica no se hace tampoco por vía eléctrica, sino por vía óptica, volviendo los iniciadores optopirotécnicos insensibles a las perturbaciones electromagnéticas.

De forma conocida, los iniciadores optopirotécnicos contienen una carga pirotécnica dispuesta en una cavidad, una fuente de radiación láser y una fibra óptica para guiar la radiación láser de la fuente hacia la carga.

40

El inconveniente de este tipo es que las cargas pirotécnicas que se utilizan generalmente para la realización de detonadores o de inflamadores no absorben o absorben poco las radiaciones láser. Por tanto, es necesario encontrar un medio de encendido de estas cargas que sea reactivo a una fuente láser.

La solución propuesta en el documento [2] consiste en impulsar ópticamente una carga pirotécnica introduciendo en la misma un polvo de material metálico, volviendo de este modo la carga modificada apta para absorber la radiación láser y para calentar hasta alcanzar su temperatura crítica de encendido.

Otra solución propuesta en el documento [3], que describe específicamente un iniciador del tipo detonador, consiste en colocar una capa de polvo de una composición pirotécnica impulsada ópticamente con un metal reductor pulverulento, entre el extremo de la fibra óptica que guía el haz láser y la carga pirotécnica, que es aquí un explosivo secundario.

El inconveniente principal de estas dos soluciones que proponen un impulso óptico es que es difícil encontrar un equilibrio en la sensibilidad de la composición pirotécnica impulsada, que debe ser suficientemente sensible para absorber eficazmente la radiación láser, pero no puede ser demasiado sensible para no absorber las radiaciones térmicas e infrarrojas parásitas y/o los calentamientos por conducción térmica.

De este modo, si los iniciadores optopirotécnicos parecen garantizar un nivel mejor de seguridad que los iniciadores pirotécnicos eléctricos, siguen siendo posibles accionamientos intempestivos cuando los iniciadores se someten a condiciones térmicas fluctuantes.

Exposición de la invención

La invención tiene como objetivo por tanto remediar al menos parcialmente los inconvenientes mencionados anteriormente, relativos a los modos de realización de la técnica anterior.

ES 2 656 689 T3

Para hacer esto, la invención tiene como objetivo un iniciador óptico de una carga pirotécnica, que comprende:

- un cuerpo que presenta una cavidad, en la que se sitúa la carga pirotécnica, así como un medio de encendido de esta carga por absorción de una radiación láser, estando dicho medio de encendido colocado en contacto con la carga;
 - una fuente de radiación láser;

20

25

30

35

45

65

- una fibra óptica para guiar una radiación láser de la fuente hacia el medio de encendido; un iniciador óptico en el que el medio de encendido es una placa metálica, estando la placa metálica y la fuente de radiación láser adaptadas para que una radiación láser procedente de la fuente de radiación láser se absorba por la placa metálica y se convierta en energía térmica, de tal manera que la conducción térmica de esta energía térmica de la placa metálica en la carga pirotécnica provoca el encendido de la carga pirotécnica.

La placa metálica va a absorber la radiación láser, convertir la energía luminosa de esta radiación absorbida en una energía térmica y comunicar esta energía térmica a la carga pirotécnica por conducción térmica. De este modo, de acuerdo con el principio de la invención, se utiliza la energía luminosa de un láser que se deposita en la placa metálica que es de material absorbente a lo largo de la onda del láser, lo que provoca una subida muy rápida a alta temperatura de la placa metálica que, al estar en contacto con la carga pirotécnica, provoca el encendido de la carga.

El iniciador optopirotécnico objeto de la invención es en particular ventajoso en que combina las ventajas de los iniciadores eléctricos y de los iniciadores ópticos de la técnica anterior, sin sus inconvenientes, es decir, el iniciador de acuerdo con la invención es insensible a las variaciones electromagnéticas, así como a las variaciones térmicas. De hecho, el medio de encendido de la carga pirotécnica, es decir, la placa metálica que absorbe la radiación láser, es inerte de forma pirotécnica. En cuanto a la carga pirotécnica, que, al contrario que en la técnica anterior, no necesita impulsarse de forma óptica, es poco sensible o no lo es a la radiación láser. Pueden utilizarse por tanto las mismas cargas pirotécnicas que las que se utilizan comúnmente en los iniciadores eléctricos.

La placa metálica como medio de encendido de la carga pirotécnica proporciona una selectividad estrecha a las radiaciones capaces de arrancar el iniciador, puesto que absorbe solamente las radiaciones láser y, específicamente, en las series de longitudes de ondas absorbentes por el metal o por la aleación metálica que constituye la placa metálica. Por tanto, la seguridad del iniciador se mejora.

De manera general, el iniciador de acuerdo con la invención puede arrancar un explosivo, arrancar un polvo o un propulsor, o finalmente arrancar una carga pirotécnica (un fumígeno, etc.).

Más en particular, la carga pirotécnica puede ser una composición pirotécnica (el iniciador optopirotécnico objeto de 40 la invención que forma por tanto un inflamador) o bien una composición explosiva (siendo el iniciador por tanto un detonador).

Las composiciones pirotécnicas pueden elegirse por ejemplo entre las composiciones iluminantes, trazadoras, fumígenas, etc.

Las composiciones explosivas pueden ser por ejemplo explosivos primarios tales como las azidas, los fulminatos, los tretacenos, etc., explosivos secundarios tales como el tetranitrato de pentaeritrita (PETN), la ciclotrimetilenotrinitramina (RDX), el hexanitrostilbeno (HNS), etc.

Preferentemente, la placa metálica presenta una pluralidad de perforaciones. Eso permite disminuir la masa metálica que vaya a calentar, y aumentar así la velocidad de calentamiento de la placa metálica sin dañar -reduciéndola demasiado- la superficie de contacto de la placa con la carga pirotécnica.

De forma ventajosa, las perforaciones están dispuestas de manera periódica, para definir, en la placa metálica, una pluralidad de elementos idénticos unidos entre los mismos por pontones. El objetivo de esta perforación periódica es disminuir el tamaño de la placa metálica (objetivo) que el láser debe calentar aislando elementos (subobjetivos) entre los que la conducción térmica se minimiza por pontones cuyo papel es garantizar la estructuración y la cohesión del conjunto de los subobjetivos en una única entidad. El interés de los subobjetivos es disminuir la masa metálica que vaya a calentarse y, como consecuencia, disminuir el tiempo de calentamiento y por tanto aumentar la dinámica del encendido de la carga pirotécnica. Además, como el motivo de perforación se repite en toda la placa metálica, la perforación periódica presenta además la ventaja de que una posible desalineación de la mancha focal del haz láser en la placa metálica no influye significativamente en la transferencia térmica.

Los pontones permiten disminuir la conducción térmica entre los elementos (subobjetivos). Los pontones tienen un ancho que es significativamente más pequeño que la dimensión más grande de las perforaciones.

ES 2 656 689 T3

De acuerdo con un modo de realización contemplado, las perforaciones se sitúan en los vértices de hexágonos contiguos, dispuestos preferentemente con el fin de formar un motivo de nido de abejas. La ventaja de un motivo de nido de abejas es que esta geometría particular permite optimizar el tamaño de los subobjetivos y por tanto optimizar la eficacia focal del objetivo.

10

Cabe destacar que, al ser la placa metálica el medio de encendido de la carga pirotécnica por absorción de la radiación láser, es evidente que el metal o la aleación metálica que forma la placa debe ser absorbente a lo largo de la onda del láser. De forma ventajosa, la placa metálica es de un metal elegido entre la platina, el oro, el tungsteno o de una aleación de al menos dos de estos metales. Más en general, se elegirán dos metales pesados para los que el calor másico y la masa volúmica presentan una ventaja para el calentamiento del objetivo o para los que la absortividad de las radiaciones es más favorable que para los otros metales, concretamente el UV. Es la razón por la que se preferirá evitar utilizar el hierro y el aluminio, ya que no presentan buenas características de absortividad.

15

De forma ventajosa, el iniciador óptico comprende además una óptica de focalización de la radiación láser, que está intercalada entre un primer extremo de la fibra óptica y el medio de encendido, estando el otro extremo de la fibra óptica conectado a la fuente de radiación láser, eligiéndose esta óptica de focalización entre una lentilla esférica y una lentilla cilíndrica (barra). Mejorando la focalización del haz láser en la placa metálica, se mejora la eficacia de la iniciación pirotécnica.

20

Preferentemente, la placa tiene un grosor comprendido entre 0,02 mm y 0,1 mm, permitiendo la finura de la plaza disminuir la masa de metal que vaya a calentarse y por tanto obtener una variación de temperatura más rápida. Preferentemente, la placa tiene un diámetro del orden de tres milímetros correspondiente a casi el tamaño del estopín del explosivo primario.

De acuerdo con un modo de realización contemplado, la placa está recubierta de un revestimiento dicroico. Eso

permite mejorar la absorción de la radiación láser por la placa maximizando la absortividad de la plaza metálica a la

25

30

35

radiación láser de la fuente láser y limitando la reflectividad de la placa metálica, lo que permite al final aumentar el rendimiento de la transferencia energética de la fuente láser a la placa metálica y de la plaza metálica a la carga pirotécnica. El revestimiento dicroico de la placa metálica puede obtenerse mediante depósito en fase de vapor de uno o varios metales adecuados en la placa expuesta al haz láser (por ejemplo, metales que tengan un coeficiente

de absorción de la radiación láser superior a la de la placa metálica).

La fuente láser y la fibra óptica son las mismas que las utilizadas habitualmente en los iniciadores ópticos de la técnica anterior. La fuente láser puede ser un diodo láser, teniendo este tipo de fuente la ventaja de ser muy compacta. La fuente láser puede emitir en el infrarrojo (es decir, en la serie que va de 1000 µm a 700 nm), pero se preferirá utilizar una fuente láser que emita una radiación ultravioleta (es decir, en la serie que va de 400 nm a 200 nm), absorbiéndose mejor las radiaciones UV en general por los metales que las radiaciones IR.

Otras ventajas y características de la invención aparecerán en la descripción detallada no limitativa siguiente.

40

Breve descripción de los dibujos

Esta descripción se hará con respecto a los dibujos adjuntos entre los que:

45

- la figura 1 representa una vista esquemática en corte longitudinal de un iniciador óptico de acuerdo con la invención;

- la figura 2 es una vista frontal de una placa multiperforada, de acuerdo con un primer modo de realización preferido de la presente invención; y

50

- la figura 3 es una vista frontal de una placa multiperforada, de acuerdo con un segundo modo de realización preferido de la presente invención.

Exposición detallada de modos de realización particulares

55

Con referencia a la Figura 1, se representa un iniciador 1 que contiene un cuerpo 2 dotado con una cavidad 3, en la que están dispuestas una carga pirotécnica 4 y una placa metálica 5 colocada en contacto con la carga.

Una fibra óptica 6 permite quiar un haz láser de una fuente láser (no representada) hacia la placa metálica 5.

60

- De forma conocida, una boquilla 7 sirve de soporte en la fibra óptica 6 y permite de este modo colocar un extremo 8 de la fibra óptica en contacto con la placa metálica 5, estando el otro extremo 9 conectado con la fuente láser. La boquilla presenta aquí un roscado que facilita su conexión con el cuerpo 2.
- Es igualmente posible mejorar la focalización del haz láser en la placa metálica y aumentar de este modo la eficacia 65 de la iniciación optopirotécnica colocando una óptica de focalización (no representada) entre el extremo 8 de la fibra

óptica y la placa metálica 5.

10

15

25

30

35

40

45

50

55

60

De forma conocida, el iniciador puede servir para formar una cadena pirotécnica, formando por tanto el cuerpo del iniciador la primera etapa de la cadena, comprendiendo las segunda, tercera, etc. etapas de la cadena pirotécnica cargas pirotécnicas cada vez menos sensibles y cada vez más energéticas que la carga del iniciador.

Al ser un haz láser un haz coherente y que forma un punto láser de diámetro pequeño, la placa metálica no necesita ser de grandes dimensiones. De hecho, es preferente que la placa sea de pequeñas dimensiones con el fin de acelerar su calentamiento por el haz láser. En cambio, es preferente que el tamaño de la placa sea suficientemente grande como para que la alineación del haz láser en la placa sea fácil. Igualmente, cuanto más grosor de la placa es fino, más de este grosor se calienta rápidamente por el haz láser y menos de esta placa es fácilmente manipulable. Al final, la elección de las dimensiones de la placa metálica es un compromiso entre la rapidez de calentamiento de la placa metálica, la facilidad de alineación del haz láser y la facilidad de manipulación de la placa metálica. Por ejemplo, para un haz láser que tenga un punto láser de 1 mm de diámetro, podrá elegirse una placa metálica que tenga la forma de una pastilla de unos 3 mm de diámetro y un grosor de unas ochenta centésimas de milímetro.

Cabe destacar que el grosor de la placa metálica depende igualmente de la potencia de la fuente láser que se utilice.

En los modos de realización preferidos de la invención, la placa metálica contiene múltiples perforaciones dispuestas de manera periódica. Dos ejemplos de posibles geometrías de las perforaciones se ilustran en las figuras 2 y 3.

Con referencia a la figura 2, la placa metálica 5 es una pastilla de forma circular, las perforaciones 10 son circulares e idénticas y se sitúan en los vértices de hexágonos continuos que forman una estructura de nidos de abejas. Se obtienen de este modo elementos 11 idénticos unidos entre sí por pontones 12 o ligamentos de material. La mancha central 13 representa una mancha focal circular, que puede obtenerse por ejemplo utilizando una lentilla esférica.

Otra arquitectura posible de las perforaciones se representa en la figura 3, en la que, a diferencia de la figura 2, las perforaciones 10 tienen una forma resultante de la intersección de tres ramificaciones, siguiendo cada ramificación la dirección de una pared de hexágono. La barra central 14 representa la zona de impacto del láser en la placa, que es aquí una mancha focal rectangular que puede obtenerse haciendo pasar el haz láser a través de una lentilla cilíndrica, por ejemplo.

Las perforaciones pueden obtenerse procediendo a una mecanización por láser o por fotograbado de la placa metálica. Cabe destacar que la forma circular de las perforaciones en la figura 2 es más fácil de realizar que las perforaciones de la figura 3.

El objetivo de la perforación de la placa es disminuir la superficie de la placa que el haz láser debe calentar aislando elementos 11 entre los que la conducción térmica se minimiza por pontones 12 cuyo papel es garantizar la estructuración y la cohesión del conjunto de los elementos 11 en una única placa 5. El interés de los elementos 11 obtenidos en la placa 5 es disminuir la masa metálica que vaya a calentarse y, como consecuencia, disminuir el tiempo de calentamiento y por tanto aumentar la dinámica del encendido de la carga pirotécnica en contacto con la placa 5. La multiplicidad de los elementos 11 que se calientan aumenta igualmente el número de granos de polvo, que constituye la carga pirotécnica, que se llevan a la temperatura de encendido, es decir, la temperatura a la que reaccionan. La iniciación pirotécnica de la carga pirotécnica es de este modo menos puntual y más homogénea, lo que aumenta la fiabilidad de arranque y disminuye los riesgos de retardo de detonación.

Otra ventaja de la multiperforación periódica es que, como los motivos de perforación se repiten en toda la superficie de la placa, los elementos 11 y los pontones 12 son todos idénticos. Como consecuencia, una desalineación de la mancha focal no influye significativamente en la transferencia térmica. Por ejemplo, en la figura 2, siete elementos 11 o subobjetivos se iluminan por la mancha focal del haz láser (no calentándose los elementos 11 no iluminados), debido a la presencia de los pontones 12 que limita la conducción térmica). Una desalineación de esta mancha focal haría que la misma iluminara también el equivalente de siete subobjetivos. De este modo, incluso en caso de desalineación óptica, la composición pirotécnica se calentaría de la misma manera. En la figura 3, se tienen ocho elementos que se iluminan e, incluso en caso de desalineación axial o angular del haz láser, ocho subobjetivos permanecen iluminados siempre.

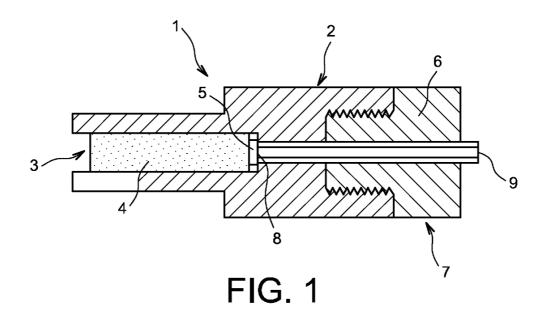
Referencias citadas

- [1] EP 2508838 A1
- [2] EP 1742009 A1
- [3] EP 2831659 A1

ES 2 656 689 T3

REIVINDICACIONES

- 1. Iniciador óptico (1) de una carga pirotécnica (4), que comprende:
- un cuerpo (2) que comprende una cavidad (3), en la que se sitúa la carga pirotécnica (4), así como un medio de encendido de esta carga por absorción de una radiación láser, estando dicho medio de encendido colocado en contacto con la carga (4):
 - una fuente de radiación láser;


10

- una fibra óptica (6) para guiar una radiación láser de la fuente hacia el medio de encendido;
- iniciador óptico en el que el medio de encendido es una placa metálica (5), estando la placa metálica y la fuente de radiación láser adaptadas para que una radiación láser procedente de la fuente de radiación láser se absorba por la placa metálica y se convierta en energía térmica, de tal manera que la conducción térmica de esta energía térmica de la placa metálica en la carga pirotécnica provoca el encendido de la carga pirotécnica, y que está caracterizado porque la placa presenta además una pluralidad de perforaciones (10) dispuestas de manera periódica, para definir, en la placa metálica, una pluralidad de elementos (11) idénticos unidos entre sí por pontones (12).
- 20 2. Iniciador óptico de acuerdo con la reivindicación 1, en el que la placa metálica (5) es de un metal elegido entre la platina, el oro, el tungsteno o de una aleación de al menos dos de estos metales.
 - 3. Iniciador de acuerdo con la reivindicación 1 o con la reivindicación 2, que comprende además una óptica de focalización de la radiación láser, que está intercalada entre un primer extremo (8) de la fibra óptica y el medio de encendido, estando el otro extremo (9) de la fibra óptica conectado a la fuente de radiación láser, eligiéndose esta óptica de focalización entre una lentilla esférica y una lentilla cilíndrica.
 - 4. Iniciador óptico de acuerdo con una cualquiera de las reivindicaciones 1 a 3, en el que la placa (5) tiene un grosor comprendido entre 0,02 mm y 0,1 mm.

30

25

- 5. Iniciador óptico de acuerdo con una cualquiera de las reivindicaciones 1 a 4, en el que la placa (5) está recubierta de un revestimiento dicroico.
- 6. Iniciador óptico de acuerdo con una cualquiera de las reivindicaciones 1 a 5, en el que la fuente láser emite una radiación ultravioleta.

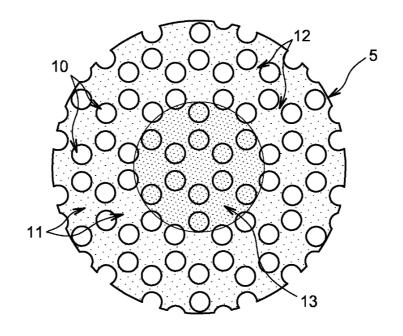


FIG. 2

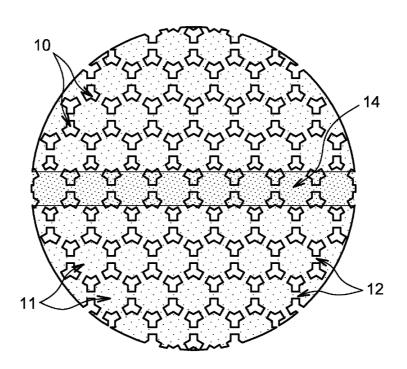


FIG. 3