

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 658 957

51 Int. Cl.:

C07C 317/32	(2006.01) A01N 43/00	(2006.01)
C07C 323/12	(2006.01) A01N 47/02	(2006.01)
C07C 323/18	(2006.01) A01N 47/48	(2006.01)
C07C 323/25	(2006.01) A01N 55/00	(2006.01)
C07C 317/14	(2006.01) A01N 41/10	(2006.01)
C07C 321/28	(2006.01) C07C 317/22	(2006.01)
A01N 31/16	(2006.01) C07C 317/46	(2006.01)
A01N 33/20	(2006.01) C07C 323/62	(2006.01)
A01N 37/00	(2006.01) C07C 331/10	(2006.01)
A01N 39/00	(2006.01) C07C 323/20	(2006.01)

(12) TRADUCCIÓN DE PATENTE EUROPEA

T3

11.04.2013 PCT/JP2013/002459 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 24.10.2013 WO13157229

(96) Fecha de presentación y número de la solicitud europea: 11.04.2013 E 13777766 (0)

03.01.2018 (97) Fecha y número de publicación de la concesión europea: EP 2840078

(54) Título: Derivado de sulfuro de alquilfenilo y agente de control de plagas

(30) Prioridad:

20.04.2012 JP 2012096356

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 13.03.2018

(73) Titular/es:

KUMIAI CHEMICAL INDUSTRY CO., LTD. (100.0%) 1-4-26 Ikenohata, Taito-ku Tokyo 110-0008, JP

(72) Inventor/es:

DOMON, KEI; TORIYABE, KEIJI; **OGAWA, YUTAKA; BESSHO, JUNICHIRO;** KAWAMOTO, KEI; WATANABE, AKIRA; KOMATSU, MASAAKI; MATSUDA, TAKESHI y ITO, SEISUKE

(74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Derivado de sulfuro de alquilfenilo y agente de control de plagas

Campo técnico

5

10

15

40

45

La presente invención se refiere a un nuevo derivado de sulfuro de alquilfenilo o una sal aceptable del mismo desde el punto de vista agrícola, así como a un agente de control de plagas que contiene el derivado o la sal del mismo como principio activo.

Técnica antecedente

En las referencias bibliográficas de patente 1, 2, 3, 4, 5 y 6 se describen derivados de sulfuro de alquilfenilo que tienen un efecto de control de plagas. Sin embargo, los compuestos descritos en las referencias bibliográficas de patente 1, 2, 3 y 4 se limitan a derivados de sulfuro de alquilfenilo que no tienen un grupo sustituyente en el grupo alquiltio; los compuestos descritos en la referencia bibliográfica de patente 5 se limitan a derivados de sulfuro de alquilfenilo con varios sustituyentes en el anillo de fenilo; y los compuestos descritos en la referencia bibliográfica de patente 6 se limitan a derivados de alquilfenilo que tienen un grupo 2-bromoetiltio como grupo sustituyente. Por lo tanto, estas referencias bibliográficas de patente no hacen mención a un derivado de sulfuro de alquilfenilo que tenga un grupo sustituyente distinto de un átomo de bromo en el grupo alquiltio.

Los experimentos de seguimiento realizados a los compuestos descritos en las anteriores referencias bibliográficas de patente han revelado que, a pesar de la descripción realizada en las mismas, los compuestos tienen un efecto insuficiente sobre la arañuela roja, no tienen efecto sobre la arañuela roja con resistencia química adquirida y, por consiguiente, no tienen suficiente efecto de control.

20 Referencias bibliográficas de la técnica anterior

Referencias bibliográficas de patente

Referencia bibliográfica de patente 1: JP-A-1975-29744

Referencia bibliográfica de patente 2: JP-A-1976-19121

Referencia bibliográfica de patente 3: JP-B-1982-35162

25 Referencia bibliográfica de patente 4: JP-A-1988-41451

Referencia bibliográfica de patente 5: JP-A-1992-312566

Referencia bibliográfica de patente 6: Patente de los Estados Unidos 3388167

Divulgación de la invención

Objetivo a conseguir con la invención

30 Se desea que el agente de control de plagas aplicado a cultivos útiles sea un agente químico que muestre un efecto de control de plagas suficiente a una dosis baja cuando se aplica al suelo o a tallos y hojas. Asimismo, se desea el desarrollo de un agente de control de plagas más seguro ya que se están endureciendo los requisitos de seguridad para sustancias químicas y de influencia en el medio ambiente. Además, en los últimos años, el uso durante muchos años de agentes de control de plagas tales como insecticidas, acaricidas y similares ha provocado la aparición de plagas que han adquirido resistencia a dichos agentes de control de plagas y se ha vuelto más difícil el control completo de las plagas. Adicionalmente, el uso de agentes para el control de plagas que tienen una alta toxicidad para los seres humanos y el ganado se ha convertido en un problema de seguridad para trabajadores y otros.

En estas circunstancias, el objetivo de la presente invención es resolver los problemas anteriormente mencionados de los agentes para el control de plagas convencionales y proporcionar un agente de control de plagas superior en cuanto a su seguridad, efecto de control, efecto residual, etc.

(Medios para resolver los problemas)

Para desarrollar un agente de control de plagas que tenga las propiedades deseables anteriormente mencionadas, los presentes inventores sintetizaron diversos derivados de sulfuro de alquilfenilo e investigaron exhaustivamente su actividad fisiológica. Como resultado, se descubrió que un derivado de sulfuro de alquilfenilo representado por las siguientes fórmulas generales [I] o [I'] (el derivado se denominará en lo sucesivo en el presente documento como el presente compuesto) tiene un efecto excelente sobre diversas plagas, particularmente sobre las arañas rojas representadas por *Tetranychus urticae, Tetranychus kanzawai, Panonychus citri,* etc. Una investigación adicional ha conducido a la finalización de la presente invención.

La presente invención es como sigue.

(1) Un derivado de sulfuro de alquilfenilo representado por la fórmula general [I] o una sal del mismo aceptable desde el punto de vista agrícola

[fórmula 1]

$$R^3$$
 R^2
 R^4
 O
 S
 R^1
 O
 D
 R

[en la fórmula [I],

5

10

15

20

25

30

35

40

45

n es un número entero entre 0, 1 o 2,

 R^1 es un grupo haloalquilo $C_1 \sim C_6$ (el grupo excluye el grupo 2-bromoetilo), un grupo alquenilo $C_2 \sim C_8$ (el grupo excluye el grupo alquinilo $C_1 \sim C_6$, un grupo haloalquenilo $C_2 \sim C_6$, un grupo haloalquinilo $C_2 \sim C_6$, un grupo alquilo $C_4 \sim C_6$ ramificado (el grupo excluye el grupo isobutilo), un grupo cicloalquil $C_3 \sim C_6$ alquilo $C_1 \sim C_6$ o un grupo halocicloalquil $C_3 \sim C_6$ alquilo $C_1 \sim C_6$,

 R^2 es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$, un grupo cicloalquilo $C_3 \sim C_6$, un grupo haloalcoxi $C_1 \sim C_6$, un grupo ciano o un grupo nitro,

 R^3 es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$ o un grupo haloalquilo $C_1 \sim C_6$,

 R_4 es un grupo alquilo $C_1 \sim C_{12}$ (el grupo puede estar mono o polisustituido con R^5), un grupo cicloalquilo $C_3 \sim C_6$ (el grupo puede estar mono o polisustituido con R^5), un grupo alquinilo $C_2 \sim C_8$ (el grupo puede estar mono o polisustituido con R^5), un grupo alquinilo $C_2 \sim C_6$ (el grupo puede estar mono o polisustituido con R^5) o un grupo benzoilo (el grupo puede estar mono o polisustituido con R^6),

 R^5 es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$, un grupo cicloalquilo $C_3 \sim C_6$ (el grupo puede estar mono o polisustituido con R⁶), un grupo halocicloalquilo C₃~C₆, un grupo hidroxilo, un grupo alcoxi $C_1 \sim C_6$, un grupo haloalcoxi $C_1 \sim C_6$, un grupo cicloalcoxi $C_3 \sim C_6$, un grupo halocicloalcoxi $C_3 \sim C_6$, un grupo alcoxi $C_1 \sim C_6$ alcoxi $C_1 \sim C_6$, un grupo haloalcoxi $C_1 \sim C_6$ alcoxi $C_1 \sim C_6$, un grupo haloalcoxi $C_1 \sim C_6$ haloalcoxi $C_1 \sim C_6$, un grupo alquilsulfiniloxi $C_1 \sim C_6$, un grupo haloalquilsulfiniloxi $C_1 \sim C_6$, un grupo cicloalquilsulfiniloxi $C_3 \sim C_6$, un grupo halocicloalquilsulfiniloxi $C_3 \sim C_6$, un grupo alquilsulfoniloxi $C_1 \sim C_6$, un grupo haloalquilsulfoniloxi $C_1 \sim C_6$, un grupo cicloalquilsulfoniloxi $C_3 \sim C_6$, un grupo halocicloalquilsulfoniloxi $C_3 \sim C_6$, un grupo tiol, un grupo alquiltio $C_1 \sim C_6$, un grupo haloalquiltio $C_1 \sim C_6$, un grupo alqueniltio $C_2 \sim C_6$, un grupo haloalqueniltio $C_2 \sim C_6$, un grupo cicloalquiltio $C_3 \sim C_6$ un grupo halocicloalquiltio C₃~C₆, un grupo cicloalquil C₃~C₆ alquiltio C₁~C₆, un grupo halocicloalquil C₃~C₆ alquiltio $C_1 \sim C_6$, un grupo tri(alquil $C_1 \sim C_6$)silil alquiltio $C_1 \sim C_6$, un grupo alquilsulfinilo $C_1 \sim C_6$, un grupo haloalquilsulfinilo $C_1 \sim C_6$, un grupo cicloalquilsulfinilo $C_3 \sim C_6$, un grupo halocicloalquilsulfinilo $C_3 \sim C_6$, un grupo alquilsulfonilo $C_1 \sim C_6$, un grupo haloalquilsulfonilo $C_1 \sim C_6$, un grupo cicloalquilsulfonilo $C_3 \sim C_6$, un grupo halocicloalquilsulfonilo $C_3 \sim C_6$, un grupo alquilcarbonilo $C_1 \sim C_6$, un grupo haloalquilcarbonilo $C_1 \sim C_6$, un grupo formilo, un grupo alquilcarboniloxi $C_1 \sim C_6$, un grupo haloalquilcarboniloxi $C_1 \sim C_6$, un grupo formiloxi, un grupo amino, un grupo alquilcarbonilamino $C_1 \sim C_6$ (el grupo amino puede estar sustituido con R⁹), un grupo haloalquilcarbonilamino C₁~C₆ (el grupo amino puede estar sustituido con R⁹), un grupo fenilcarbonilamino (el grupo fenilo puede estar mono o polisustituido con R⁶, el grupo amino puede estar sustituido con R⁹), un grupo alcoxicarbonilamino C₁~C₆ (el grupo amino puede estar sustituido con R^9), un grupo haloalcoxicarbonilamino $C_1 \sim C_6$ (el grupo amino puede estar sustituido con R^9), un grupo alquilaminocarbonilamino $C_1 \sim C_6$ (el grupo amino puede estar sustituido con R^9), un grupo haloalquilaminocarbonilamino C₁~C₆ (el grupo amino puede estar sustituido con R⁹), un grupo alquilsulfonilamino C₁~C₆ (el grupo amino puede estar sustituido con R9), un grupo haloalquilsulfonilamino C1~C6 (el grupo amino puede estar sustituido con R⁹), un grupo fenilsulfonilamino (el grupo fenilo puede estar sustituido con R⁶, el grupo amino puede estar sustituido con R^9), un grupo alquilamino $C_1 \sim C_6$ (el grupo amino puede estar sustituido con R^9), un grupo haloalquilamino $C_1 \sim C_6$ (el grupo amino puede estar sustituido con R^9 , un grupo alquilaminocarboniltio $C_1 \sim C_6$ (el grupo amino puede estar sustituido con R⁹), un grupo haloalquilaminocarboniltio C₁~C₆ (el grupo amino puede estar sustituido con R⁹), un grupo alquilaminocarbonilo C₁~C₆ (el grupo amino puede estar sustituido con R⁹), un grupo haloalquilaminocarbonilo $C_1 \sim C_6$ (el grupo amino puede estar sustituido con R^9), un grupo alcoxicarbonilo $C_1 \sim C_6$, un grupo haloalcoxicarbonilo C₁~C₆, un grupo tri(alquil C₁~C₆)sililo, un grupo fenilo (el grupo puede estar mono o polisustituido con R⁶), un grupo piridiloxifenilo (el grupo piridilo puede estar mono o polisustituido con R⁶), un grupo fenoxi (el grupo puede estar mono o polisustituido con R⁶), un grupo alcoxifenilo C₁~C₆ (el grupo fenilo puede estar mono o polisustituido con R⁶), un grupo fenilcarboniloxi (el grupo fenilo puede estar mono o polisustituido con R⁶), un grupo fenilcarbonilo (el grupo fenilo puede estar mono o polisustituido con R^6), un grupo benzoilo (el grupo puede estar mono o polisustituido con R^6), un grupo feniltio (el grupo puede estar mono o polisustituido con R^6), un grupo feniltio (el grupo puede estar mono o polisustituido con R^6), un grupo fenilsulfinilo (el grupo puede estar mono o polisustituido con R^6), un grupo fenilalquiltio $C_1 \sim C_6$ (el grupo fenilo puede estar mono o polisustituido con R^6), un grupo fenilalquilsulfinilo $C_1 \sim C_6$ (el grupo fenilo puede estar mono o polisustituido con R^6), un grupo fenilalquilsulfonilo $C_1 \sim C_6$ (el grupo fenilo puede estar mono o polisustituido con R^6), un grupo fenilalquilsulfonilo $C_1 \sim C_6$ (el grupo fenilo puede estar mono o polisustituido con R^6), un grupo puede estar mono o polisustituido con R^6), un grupo puede estar mono o polisustituido con R^6), un grupo puede estar mono o polisustituido con R^6), un grupo puede estar mono o polisustituido con R^6), un grupo puede estar mono o polisustituido con R^6), un grupo puede estar mono o polisustituido con R^6), un grupo puede estar mono o polisustituido con R^6), un grupo piridilo (el grupo puede estar mono o polisustituido con R^6), un grupo piridilo (el grupo puede estar mono o polisustituido con R^6), un grupo piridilo (el grupo puede estar mono o polisustituido con R^6), un grupo piridiloxi (el grupo puede estar mono o polisustituido con R^6), un grupo piridiloxi (el grupo puede estar mono o polisustituido con R^6), un grupo piridiloxi (el grupo puede estar mono o polisustituido con R^6), un grupo piridiloxi (el grupo puede estar mono o polisustituido con R^6), un grupo piridiloxi (el grupo puede estar mono o polisustituido con R^6), un grupo piridiloxi (el grupo puede estar mono o polisustituido con R^6), un grupo piridiloxi (el grupo puede estar mono o polisustituido con R^6), un grupo piridiloxi (el grupo puede estar mono o polisustituido con R^6), un grupo piridiloxi (el grupo

 R^6 es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$, un grupo cicloalquilo $C_3 \sim C_6$, un grupo halocicloalquilo $C_3 \sim C_6$, un grupo halocicloalquilo $C_3 \sim C_6$ alquilo $C_1 \sim C_6$, un grupo halocicloalquilo $C_3 \sim C_6$ alquilo $C_1 \sim C_6$, un grupo haloalcoxi $C_1 \sim C_6$, un grupo haloalquiltio $C_1 \sim C_6$, un grupo haloalquiltio $C_1 \sim C_6$, un grupo haloalquilsulfinilo $C_1 \sim C_6$, un grupo haloalquilsulfinilo $C_1 \sim C_6$, un grupo haloalquilsulfonilo $C_1 \sim C_6$, un grupo haloalquilsulfonilo $C_1 \sim C_6$, un grupo haloalquilsulfoniloxi $C_1 \sim C_6$, un grupo haloalquiloxi $C_1 \sim C_6$, un grupo ciano o un grupo nitro,

 R^7 y R^8 pueden ser iguales o diferentes, son cada uno un átomo de hidrógeno, un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$, un grupo cicloalquilo $C_3 \sim C_6$, un grupo halocicloalquilo $C_3 \sim C_6$ o un grupo fenilo (el grupo puede estar mono o polisustituido con R^6) y puede formar un anillo de 3 a 6 miembros junto con el átomo de carbono al que están unidos y

- 30 R^9 es un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$, un grupo cicloalquilo $C_3 \sim C_6$, un grupo alquilcarbonilo $C_1 \sim C_6$, un grupo haloalquilcarbonilo $C_1 \sim C_6$, un grupo alcoxicarbonilo $C_1 \sim C_6$, un grupo haloalquilcarbonilo $C_1 \sim C_6$, un grupo haloalquilaminocarbonilo $C_1 \sim C_6$, un grupo haloalquilaminocarbonilo $C_1 \sim C_6$ o un grupo benzoilo (el grupo puede estar mono o polisustituido con R^6].
- (2) Un derivado de sulfuro de alquilfenilo o una sal del mismo aceptable desde el punto de vista agrícola, expuesto en (1), en donde R¹ en la fórmula general [I] es un grupo 2,2-difluoroetilo, un grupo 2,2,2-trifluoroetilo, un grupo 3,3,3-trifluoropropilo, un grupo pentafluoroetilo, un grupo 1,2,2,2-tetrafluoroetilo, un grupo 2-cloro-2,2-difluoroetilo, un grupo 2,2,3,3-tetrafluoropropilo, un grupo 2,2,3,3-pentafluoropropilo, un grupo 3,3-dicloroalilo, un grupo propargilo, un grupo ciclopropilmetilo o un grupo (2,2-difluorociclopropil)metilo.
- (3) Un derivado de sulfuro de alquilfenilo o una sal del mismo aceptable desde el punto de vista agrícola, expuesto en (1) o (2), en donde R^2 en la fórmula general [I] es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$ o un grupo ciano.
 - (4) Un derivado de sulfuro de alquilfenilo o una sal del mismo aceptable desde el punto de vista agrícola, expuesto en cualquiera de (1) a (3), en donde R³ en la fórmula general [I] es
 - un átomo de halógeno o un grupo alquilo C₁~C₆.

10

15

20

25

- (5) Un agente de control de plagas que contiene, como principio activo, un derivado de sulfuro de alquilfenilo o una sal del mismo aceptable desde el punto de vista agrícola, expuesto en cualquiera de (1) a (4).
 - (6) Un derivado de sulfuro de alquilfenilo representado por la fórmula general [l'] o una sal del mismo aceptable desde el punto de vista agrícola

[fórmula 2]

$$R^{3'}$$
 $R^{2'}$
 $R^{2'}$
 R^{1}
 $R^{2'}$
 R^{1}

[en la fórmula [l'],

10

n es un número entero entre 0, 1 o 2,

 $R^{1'}$ es un grupo haloalquilo $C_1 \sim C_6$ (el grupo excluye el grupo 2-bromoetilo), un grupo alquenilo $C_2 \sim C_8$ (el grupo excluye el grupo alilo), un grupo haloalquenilo $C_2 \sim C_8$, un grupo alquinilo $C_2 \sim C_6$, un grupo haloalquinilo $C_2 \sim C_6$, un grupo alquilo $C_4 \sim C_6$ ramificado (el grupo excluye el grupo isobutilo), un grupo cicloalquil $C_3 \sim C_6$ alquilo $C_1 \sim C_6$ o un grupo halocicloalquil $C_3 \sim C_6$ alquilo $C_1 \sim C_6$,

 $R^{2'}$ es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$, un grupo cicloalquilo $C_3 \sim C_6$, un grupo halocicloalquilo $C_3 \sim C_6$, un grupo alcoxi $C_1 \sim C_6$, un grupo haloalcoxi $C_1 \sim C_6$, un grupo ciano o un grupo nitro,

 $R^{3'}$ es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$ o un grupo haloalquilo $C_1 \sim C_6$.]

(7) Un derivado de sulfuro de alquilfenilo o una sal del mismo aceptable desde el punto de vista agrícola, expuesto en (6),

en donde R¹ en la fórmula general [l'] es un grupo 2,2-difluoroetilo, un grupo 2,2,2-trifluoroetilo, un grupo 3,3,3-trifluoropropilo, un grupo pentafluoroetilo, un grupo 1,2,2,2-tetrafluoroetilo, un grupo 2-cloro-2,2-difluoroetilo, un grupo 2,2,3,3-tetrafluoropropilo, un grupo 2,2,3,3-tetrafluoropropilo, un grupo 3,3-dicloroalilo, un grupo propargilo, un grupo ciclopropilmetilo o un grupo (2,2-difluorociclopropil)metilo.

- (8) Un derivado de sulfuro de alquilfenilo representado por la fórmula general [l'] o una sal del mismo aceptable desde el punto de vista agrícola, expuesto en (6) o (7), en donde R^{2'}
- 20 en la fórmula general [l'] es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$ o un grupo ciano.
 - (9) Un derivado de sulfuro de alquilfenilo representado por la fórmula general [l'] o una sal del mismo aceptable desde el punto de vista agrícola, expuesto en cualquiera de (6) a (8),

en donde R^{3'} en la fórmula general [l'] es un átomo de halógeno o un grupo alquilo C₁~C₆.

25 Ventajas de la invención

El agente de control de plagas que contiene el presente compuesto tiene un excelente efecto frente a una gran variedad de plagas, tales como *Hemiptera*, *Lepidoptera*, *Coleoptera*, *Diptera*, *Hymenoptera*, *Orthoptera*, el orden *Isoptera*, *Thysanoptera*, arañuelas rojas, nematodos parásitos de plantas y similares y puede incluso controlar plagas que hayan adquirido resistencia a agentes químicos.

30 En particular, el agente de control de plagas que contiene el presente compuesto tiene un efecto excelente frente a plagas de arañuelas rojas, representadas por *Tetranychus urticae, Tetranychus kanzawai, Panonychus citri*, etc. y tiene incluso un efecto suficiente frente a arañuelas rojas que hayan adquirido resistencia a agentes químicos.

Mejor modo para realizar la invención

Se explican los símbolos y términos utilizados en esta memoria descriptiva.

En la presente invención, agente de control de plagas significa insecticida, acaricida, nematicida, etc., utilizado en el campo de la agricultura y la horticultura, control de enfermedades de animales (por ejemplo, ganado y mascotas), domésticas o infecciosas.

En la presente invención, átomo de halógeno indica un átomo de flúor, átomo de cloro, átomo de bromo o átomo de yodo.

En la presente invención, una expresión, tal como $C_1 \sim C_6$ indica que el grupo sustituyente antes de la expresión tiene, en ese caso, de 1 a 6 átomos de carbono.

En la presente invención, un grupo alquilo $C_1 \sim C_6$ indica un grupo alquilo de cadena lineal o ramificada que tiene de 1 a 6 átomos de carbono, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, n-pentilo, 1-metilbutilo, 2-metilbutilo, 3-metilbutilo, 1-etilpropilo, 1,1-dimetilpropilo, 1,2-dimetilpropilo, n-hexilo, 1-metilpentilo, 2-metilpentilo, 3-metilpentilo, 4-metilpentilo, 1-etilbutilo, 2-etilbutilo, 1,1-dimetilbutilo, 1,2-dimetilbutilo, 1,3-dimetilbutilo, 2,2-dimetilbutilo, 2,3-dimetilbutilo, 3,3-dimetilbutilo, 1,1,2-trimetilpropilo, 1,2,2-trimetilpropilo, 1-etil-1-metilpropilo y 1-etil-2-metilpropilo.

10 En la presente invención, un grupo haloalquilo C₁∼C6 indica un grupo haloalquilo de cadena lineal o ramificada que tiene de 1 a 6 átomos de carbono, sustituido con de 1 a 13 átomos de halógeno iguales o distintos, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, fluorometilo, difluorometilo, trifluorometilo, clorometilo, diclorometilo, triclorometilo, bromometilo, dibromometilo, tribromometilo, yodometilo, clorodifluorometilo, diclorofluorometilo, 1-fluoroetilo, 2-fluoroetilo, 1,1-difluoroetilo, 2,2-difluoroetilo, 2,2,2-trifluoroetilo, 1,1,2,2-15 tetrafluoroetilo, pentafluoroetilo, 1-cloroetilo, 2-cloroetilo, 1,1-dicloroetilo, 2,2-dicloroetilo, 2,2,2-tricloroetilo, 1,1,2,2tetracloroetilo, pentacloroetilo, 1-bromoetilo, 2-bromoetilo, 2,2,2-tribromoetilo, 1-yodoetilo, 2-yodoetilo, 2-cloro-2,2difluoroetilo, 2,2-dicloro-2-fluoroetilo, 2-tricloroetilo, 1-fluoropropilo, 2-fluoropropilo, 3-fluoropropilo, 1,1-difluoropropilo, 2,2-difluoropropilo, 3,3-difluoropropilo, 3,3,3-trifluoropropilo, 2,2,3,3,3-pentafluoropropilo, heptafluoropropilo, 1-fluoropropano-2-ilo, 2-fluoropropano-2-ilo, 1,1-difluoropropano-2-ilo, 1,2-difluoropropano-2-ilo, 1,3-difluoropropano-2-ilo, 1,3-difluoropropano-2 1.2.3-trifluoropropano-2-ilo, 20 1,1,3,3-tetrafluoropropano-2-ilo, 1,1,1,3,3,3-hexafluoropropano-2-ilo, heptafluoropropano-2-ilo, 1-cloropropilo, 2-cloropropilo, 3-cloropropilo, 1,1-dicloropropilo, 2,2-dicloropropilo, 3,3-3,3,3-tricloropropilo, 2,2,3,3,3-pentacloropropilo, heptacloropropilo, 1-cloropropano-2-ilo, cloropropano-2-ilo, 1,1-dicloropropano-2-ilo, 1,2-dicloropropano-2-ilo, 1,3-dicloropropano-2-ilo, 1,2,3-tricloropropano-2-ilo, 1,1,3,3-tetracloropropano-2-ilo, 1,1,1,3,3,3-hexacloropropano-2-ilo, heptacloropropano-2-ilo, 1-bromopropilo, 2bromopropilo, 3-bromopropilo, 1-bromopropano-2-ilo, 2-bromopropano-2-ilo, 1-yodopropilo, 2-yodopropilo, 25 yodopropilo, 1-yodopropano-2-ilo, 2-yodopropano-2-ilo, 1-fluorobutilo, 2-fluorobutilo, 3-fluorobutilo, 4-fluorobutilo, 4,4difluorobutilo, 4,4,4-trifluorobutilo, 3,3,4,4,4-pentafluorobutilo, 2,2,3,3,4,4,4-heptafluorobutilo, nonafluorobutilo, 1,1,1trifluorobutano-2-ilo, 4,4,4-trifluorobutano-2-ilo, 3,3,4,4,4-pentafluorobutano-2-ilo, nonafluorobutano-2-ilo, 1,1,1,3,3,3hexafluoro-2-(trifluorometil)propano-2-ilo, 1-clorobutilo, 2-clorobutilo, 3-clorobutilo, 4-clorobutilo, 4,4-diclorobutilo, 4,4,4-triclorobutilo, nonaclorobutilo, 1,1,1-triclorobutano-2-ilo, 4,4,4-triclorobutano-2-ilo, nonaclorobutano-2-ilo, 1-30 bromobutilo, 2-bromobutilo, 3-bromobutilo, 4-bromobutilo, 1-yodobutilo, 2-yodobutilo, 3-yodobutilo, 4-yodobutilo, cloro-1,1,2,2,3,3,4,4-octafluorobutilo, 4-bromo-1,1,2,2,3,3,4,4-octafluorobutilo, 1-fluoropentilo, 2-fluoropentilo, 3fluoropentilo, 4-fluoropentilo, 5-fluoropentilo, 5,5,5-trifluoropentilo, 4,4,5,5,5-pentafluoropentilo, 3,3,4,4,5,5,5heptafluoropentilo, 2,2,3,3,4,4,5,5,5-nonafluoropentilo, undecafluoropentilo, 1-cloropentilo, 2-cloropentilo, 4,4,5,5,5-pentacloropentilo, 4-cloropentilo, 35 5-cloropentilo, 5,5,5-tricloropentilo, cloropentilo, 3,3,4,4,5,5,5 heptacloropentilo, 2,2,3,3,4,4,5,5,5-nonacloropentilo, undecacloropentilo, 1-bromopentilo, 2-bromopentilo, 3bromopentilo, 4-bromopentilo, 5-bromopentilo, 5-yodopentilo, 1-fluorohexilo, 2-fluorohexilo, 3-fluorohexilo, 6-fluorohexilo, 6,6,6-trifluorohexilo, 5-fluorohexilo, 5,5,6,6,6-pentafluorohexilo, heptafluorohexilo, 3,3,4,4,5,5,6,6,6-nonafluorohexilo, 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexilo, tridecafluorohexilo, 1clorohexilo, 2-clorohexilo, 3-clorohexilo, 4-clorohexilo, 5-clorohexilo, 6-clorohexilo, 5-bromohexilo, 6-bromohexilo, 5-clorohexilo, 5-bromohexilo, 6-bromohexilo, 5-clorohexilo, 6-clorohexilo, 6-bromohexilo, 6-bromohexilo, 5-clorohexilo, 6-bromohexilo, 6-bromoh 40 yodohexilo y 6-yodohexilo.

En la presente invención, un grupo alquilo $C_1 \sim C_{12}$ indica un grupo alquilo de cadena lineal o ramificada que tiene de 1 a 12 átomos de carbono, a menos que se indique otra cosa. Pueden mencionarse, además de los átomos de carbono $C_1 \sim C_6$ anteriormente mencionados, por ejemplo, n-heptilo, n-octilo, n-nonilo, n-decilo, n-undecilo, n-dodecilo, 4,4-dimetilpentilo, 5-metilhexilo, 5,5-dimetilhexilo, 3,5,5-trimetilhexilo, 6-metilheptilo, 6,6-dimetilheptilo, 3,6,6-trimetilheptilo, 7-metiloctilo, 7,7-dimetiloctilo, 8-metilnonilo, 8,8-dimetilnonilo, 9-metildecilo, 9,9-dimetildecilo y 10-metilundecilo.

45

50

55

60

En la presente invención, un grupo alquilo $C_4 \sim C_6$ de cadena ramificada indica un grupo alquilo de cadena ramificada que tiene de 4 a 6 átomos de carbono, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como *sec*-butilo, isobutilo, *terc*-butilo, 1-metilbutilo, 2-metilbutilo, 3-metilbutilo, 1-etilpropilo, 1,1-dimetilpropilo, 1,2-dimetilpropilo, neopentilo, 1-metilpentilo, 2-metilpentilo, 3-metilpentilo, 4-metilpentilo, 1-etilbutilo, 2-etilbutilo, 1,1-dimetilbutilo, 1,2-dimetilbutilo, 1,3-dimetilbutilo, 2,2-dimetilbutilo, 2,3-dimetilbutilo, 3,3-dimetilbutilo, 1,1-timetilpropilo, 1,2,2-trimetilpropilo, 1-etil-1-metilpropilo, 1-etil-1-metilpropilo.

En la presente invención, un grupo cicloalquilo C₃∼C₆ indica un grupo cicloalquilo que tiene de 3 a 6 átomos de carbono, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como ciclopropilo, ciclobutilo, ciclopentilo y ciclohexilo.

En la presente invención, un grupo halocicloalquilo $C_3 \sim C_6$ indica un grupo cicloalquilo que tiene de 3 a 6 átomos de carbono, sustituido con de 1 a 11 átomos de halógeno iguales o distintos, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 1-fluorociclopropilo, 2-fluorociclopropilo, 2,2-difluorociclopropilo, 2,2-difluorociclopropilo, 2,2-diclorociclopropilo, 2,2-diclorociclopropilo, 2,2-diclorociclopropilo, 2,2-divodociclopropilo, 2-fluorociclobutilo, 2-fluorociclobutilo, 3-fluorociclobutilo, 3-fluorociclobu

fluorociclobutilo, 3,3-difluorociclobutilo, heptafluorociclobutilo, 2-clorociclobutilo. 3-clorociclobutilo, 3,3diclorociclobutilo, 3,3-dibromociclobutilo, 3,3-diyodociclobutilo, 1-fluorociclopentilo, 2-fluorociclopentilo, 3,1-diprociclopentilo, 3,3-difluorociclopentilo, 2,2-diclorociclopentilo, 3,3-difluorociclopentilo, 2,2-diclorociclopentilo, 3,3-difluorociclopentilo, 3,3-diprociclopentilo, 3,3-diprocicl diclorociclopentilo, 2,2-dibromociclopentilo, 3,3-dibromociclopentilo, 2,2-diyodociclopentilo, 3,3-diyodociclopentilo, 1fluorociclohexilo. 2-fluorociclohexilo, 3-fluorociclohexilo, 4-fluorociclohexilo, 2,2-difluorociclohexilo, difluorociclohexilo, 4,4-difluorociclohexilo, 1-clorociclohexilo, 2-clorociclohexilo, 3-clorociclohexilo, 4-clorociclohexilo, 2,2-diclorociclohexilo, 3,3-diclorociclohexilo, 4,4-diclorociclohexilo, 3,3-dibromociclohexilo, 4,4-dibromociclohexilo, 3,3-diyodociclohexilo y 4,4-diyodociclohexilo.

5

25

30

35

40

45

50

55

60

En la presente invención, un grupo alquenilo C₂~C₈ indica un grupo alquenilo de cadena lineal o ramificada que tiene de 2 a 8 átomos de carbono, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como vinilo, 1-propenilo, isopropenilo, 2-propenilo, 1-butenilo, 1-metil-1-propenilo, 2-butenilo, 1-metil-2-propenilo, 3-butenilo, 2-metil-1-propenilo, 2-metil-2-propenilo, 1,3-butadienilo, 1-pentenilo, 1-etil-2-propenilo, 2-pentenilo, 1-metil-1-butenilo, 3-pentenilo, 1-metil-2-butenilo, 4-pentenilo, 1-metil-3-butenilo, 3-metil-1-butenilo, 1,2-dimetil-2-propenilo, 1,1-dimetil-2-propenilo, 2-metil-2-butenilo, 3-metil-2-butenilo, 1-propenilo, 2-metil-3-butenilo, 3-metil-3-butenilo, 1,3-pentadienilo, 2,3-butadien-1-ilo, 1-vinil-2-propenilo, 1-hexenilo, 1-propil-2-propenilo, 2-hexenilo, 1-metil-1-pentenilo, 1-etil-2-butenilo, 3-hexenilo, 4-hexenilo, 5-hexenilo, 1-metil-4-pentenilo, 1-etil-3-butenilo, 3-metil-3-pentenilo, 4-metil-3-pentenilo, 4-metil-3-butenilo, 1,3-dimetil-2-butenilo, 1,1-dimetil-3-butenilo, 3-metil-4-pentenilo, 4-metil-4-pentenilo, 1,2-dimetil-3-butenilo, 1,3-dimetil-3-butenilo, 1,1-dimetil-2-propenilo, 1,5-hexadienilo, 1-vinil-3-butenilo, 2,4-hexadienilo, 2-octenilo y 3,7-dimetil-6-octenilo.

En la presente invención, un grupo haloalquenilo C₂~C₈ indica un grupo haloalquenilo que tiene de 2 a 8 átomos de carbono, sustituido con de 1 a 15 átomos de halógeno iguales o distintos, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 1-fluorovinilo, 2-fluorovinilo, 1,2-difluorovinilo, 2,2-difluorovinilo, trifluorovinilo, 1-clorovinilo, 2-clorovinilo, diclorovinilo, dibromovinilo, diyodovinilo, 1-fluoro-2-propenilo, 2-fluoro-2-propenilo, 3-fluoro-2-propenilo, 2,3-difluoro-2-propenilo, 3,3-difluoro-2-propenilo, 3,3-difluoro-1-propenilo, 2,3-difluoro-1-propenilo, 1,2,3,3,3-pentafluoro-1-propenilo, 1-cloro-2-propenilo, 2-cloro-2-propenilo, 3-cloro-2-propenilo, 2,3-dicloro-2-propenilo, 3,3-dicloro-1-propenilo, 1-cloro-2-propenilo, 2,3-difluoro-1-propenilo, 3,3-dicloro-1-propenilo, 3,3-divodo-2-propenilo, 2,3-difluoro-1-propenilo, 3,3-diricloro-1-propenilo, 3,3-difluoro-3-butenilo, 4,4-difluoro-3-butenilo, 4,4-difluoro-3-butenilo, 4,4-difluoro-3-butenilo, 4,4-difluoro-2-butenilo, 3,3-difluoro-2-propenilo, 2-trifluorometil-2-propenilo, 4,4,4-trifluoro-3-cloro-2-butenilo, 4,4-dicloro-3-butenilo, 4,4,4-trifluoro-3-pentenilo, 4,4,4-trifluoro-3-metil-2-butenilo, 5,5-difluoro-4-pentenilo, 5,5-frifluoro-4-pentenilo, 5,5,5-trifluoro-4-metil-3-pentenilo, 5,5,5-trifluoro-4-metil-3-pentenilo, 5,5,5-trifluoro-4-metil-3-pentenilo, 5,5,5-trifluoro-4-metil-3-pentenilo.

En la presente invención, un grupo alquinilo $C_2 \sim C_6$ indica un grupo alquinilo de cadena lineal o ramificada que tiene de 2 a 6 átomos de carbono, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como etinilo, 1-propinilo, 2-propinilo, 1-butinilo, 1-metil-2-propinilo, 2-butinilo, 3-butinilo, 1-pentinilo, 1-pentinilo, 1-metil-2-propinilo, 2-pentinilo, 3-pentinilo, 1-metil-2-butinilo, 4-pentinilo, 1-metil-3-butinilo, 2-metil-3-butinilo, 1-hexinilo, 1-pentinilo, 3-metil-1-pentinilo, 1-metil-2-pentinilo, 1-metil-3-pentinilo, 4-metil-1-pentinilo, 3-metil-1-pentinilo, 5-hexinilo, 1-etil-3-butinilo, 1-etil-1-metil-2-propinilo, 1-(isopropil)-2-propinilo, 1,1-dimetil-2-butinilo y 2,2-dimetil-3-butinilo.

En la presente invención, un grupo haloalquinilo $C_2 \sim C_6$ indica un grupo haloalquinilo de cadena lineal o ramificada que tiene de 2 a 6 átomos de carbono, sustituido con de 1 a 9 átomos de halógeno iguales o distintos, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como fluoroetinilo, cloroetinilo, bromoetinilo, yodoetinilo, 3-fluoro-2-propinilo, 3-cloro-2-propinilo, 3-bromo-2-propinilo, 3-yodo-2-propinilo, 4-fluoro-3-butinilo, 4-cloro-3-butinilo, 4-bromo-3-butinilo, 4-yodo-3-butinilo, 4,4-difluoro-2-butinilo, 4,4-dicloro-2-butinilo, 4,4-drifluoro-2-butinilo, 5-fluoro-4-pentinilo, 5-cloro-4-pentinilo, 5,5,5-trifluoro-3-pentinilo, 4-fluoro-2-metil-3-butinilo, 4-cloro-2-metil-3-butinilo, 6-fluoro-5-hexinilo, 6-cloro-5-hexinilo, 6,6,6-trifluoro-4-hexinilo, 6,6,6-tricloro-4-hexinilo, 5-fluoro-3-metil-4-pentinilo.

En la presente invención, un grupo cicloalquil $C_3 \sim C_6$ alquilo $C_1 \sim C_6$ indica un grupo (cicloalquil $C_3 \sim C_6$)-(alquilo $C_1 \sim C_6$) en donde el cicloalquilo y el alquilo tienen el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como ciclopropilmetilo, 2-ciclopropiletilo, 3-ciclopropilpropilo, 4-ciclopropilbutilo, 5-ciclopropilpentilo, 6-ciclopropilhexilo, ciclobutilmetilo, ciclopentilmetilo y ciclohexilmetilo.

En la presente invención, un grupo halocicloalquil $C_3 \sim C_6$ alquilo $C_1 \sim C_6$ indica un grupo (halocicloalquil $C_3 \sim C_6$)(alquilo $C_1 \sim C_6$) en donde el halocicloalquilo y el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 1-fluorociclopropilmetilo, 2fluorociclopropilmetilo, 2,2-difluorociclopropilmetilo, 2,2-difluorociclopropilmetilo, 2,2-difluorociclopropilmetilo, 2,2-difluorociclopropilmetilo, 2-(2,2-difluorociclopropil)etilo, 2-(2,2-difluorociclopropil)etilo, 3-

(2,2-difluorociclopropil)propilo, 4-(2,2-difluorociclopropil)butilo, 5-(2,2-diclorociclopropil)pentilo, 5-(2,2-difluorociclopropil)pentilo, 6-(2,2-difluorociclopropil)hexilo, 2,2-difluorociclobutilmetilo, 2,2-diclorociclobutilmetilo, 3,3-diclorociclopentilmetilo, 4,4-difluorociclohexilmetilo y 4,4-diclorociclohexilmetilo.

En la presente invención, un grupo alcoxi $C_1 \sim C_6$ indica un grupo (alquil $C_1 \sim C_6$)-O- en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metoxi, etoxi, n-propoxi, isopropoxi, n-butoxi, isobutoxi, sec-butoxi, terc-butoxi, n-pentoxi, 1-metilbutoxi, 2-metilbutoxi, 3-metilbutoxi, 1-etilpropoxi, 1,1-dimetilpropoxi, 1,2-dimetilpropoxi y n-hexiloxi.

5

10

15

20

40

50

55

En la presente invención, un grupo haloalcoxi $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)-O- en donde el haloalquilo tiene el mismo significado mencionado anteriormente, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como difluorometoxi, trifluorometoxi, triclorometoxi, tribromometoxi, 2,2,2-tricloroetoxi, pentafluoroetoxi, 3,3,3-trifluoropropoxi, heptafluoro-2-propoxi, tri(trifluorometil)metoxi, 3,3,3-tricloropropoxi y heptafluoropropoxi.

En la presente invención, un grupo cicloalcoxi $C_3 \sim C_6$ indica un grupo (cicloalquil $C_3 \sim C_6$)-O- en donde el cicloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como ciclopropoxi, ciclobutoxi, ciclopentiloxi y ciclohexiloxi.

En la presente invención, un grupo halocicloalcoxi $C_3 \sim C_6$ indica un grupo (halocicloalquil $C_3 \sim C_6$)-O- en donde el halocicloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2,2-difluorociclopropoxi, 2,2-diclorociclopropoxi, 3,3-difluorociclobutoxi, 3,3-difluorociclopentiloxi, 3,3-difluorociclopentiloxi, nonafluorociclopentiloxi, 3,3-diclorociclopentiloxi, 4,4-difluorociclohexiloxi y 4,4-diclorociclohexiloxi.

En la presente invención, un grupo alcoxi $C_1 \sim C_6$ alcoxi $C_1 \sim C_6$ indica un grupo (alcoxi $C_1 \sim C_6$)-(alcoxi $C_1 \sim C_6$) en donde el alcoxi tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2-metoxietoxi, 3-metoxipropoxi, 2-etoxiisopropoxi, 2-isopropoxibutoxi, 5-etoxipentiloxi, 6-etoxihexiloxi, 2-(terc-butoxi)etoxi, 2-metoxiisopentiloxi y 2-isopropoxiisobutoxi.

En la presente invención, un grupo haloalcoxi $C_1 \sim C_6$ alcoxi $C_1 \sim C_7$ indica un grupo (haloalcoxi $C_1 \sim C_6$)-(alcoxi $C_1 \sim C_6$) en donde el haloalcoxi y el alcoxi tienen el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2-difluorometoxietoxi, 2-trifluorometoxietoxi, 3-trifluorometoxipropoxi y 2-(2,2,2-trifluoroetoxi)etoxi.

En la presente invención, un grupo haloalcoxi $C_1 \sim C_6$ haloalcoxi $C_1 \sim C_6$ indica un grupo (haloalcoxi $C_1 \sim C_6$) (haloalcoxi $C_1 \sim C_6$) en donde el haloalcoxi tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2-(difluorometoxi)-1,1,2,2-tetrafluoroetoxi, 2-(trifluorometoxi)-1,1,2,2-tetrafluoroetoxi, 1,1,2,3,3,3-hexafluoro-2-(hexafluoropropoxi)propoxi y 2-(2,2,2-trifluoroetoxi)-1,1,2,2-tetrafluoroetoxi.

En la presente invención, un grupo alquilsulfiniloxi $C_1 \sim C_6$ indica un grupo (alquil $C_1 \sim C_6$)-SO-O- en donde el alquilo 35 tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metilsulfiniloxi, etilsulfiniloxi, n-propilsulfiniloxi e isopropilsulfiniloxi.

En la presente invención, un grupo haloalquilsulfiniloxi $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)-SO-O- en donde el haloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como difluorometilsulfiniloxi, trifluorometilsulfiniloxi, 2,2,2-trifluoroetilsulfiniloxi, pentafluoroetilsulfiniloxi, heptafluoropropilsulfiniloxi, triclorometilsulfiniloxi y heptafluoro-2-propilsulfiniloxi.

En la presente invención, un grupo cicloalquilsulfiniloxi $C_3 \sim C_6$ indica un grupo (cicloalquil $C_3 \sim C_6$)-SO-O-en donde el cicloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como ciclopropilsulfiniloxi, ciclobutilsulfiniloxi, ciclopentilsulfiniloxi y ciclohexilsulfiniloxi.

En la presente invención, un grupo halocicloalquilsulfiniloxi $C_3 \sim C_6$ indica un grupo (halocicloalquil $C_3 \sim C_6$)-SO-O- en donde el halocicloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2,2-difluorociclopropilsulfiniloxi, 2,2-diclorociclopropilsulfiniloxi, 3,3-difluorociclopentilsulfiniloxi y 4,4-difluorociclohexilsulfiniloxi.

En la presente invención, un grupo alquilsulfoniloxi $C_1 \sim C_6$ indica un grupo (alquil $C_1 \sim C_6$)-SO₂-O- en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metilsulfoniloxi, etilsulfoniloxi, n-propilsulfoniloxi e isopropilsulfoniloxi.

En la presente invención, un grupo haloalquilsulfoniloxi $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)-SO₂-O- en donde el haloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como difluorometilsulfoniloxi, trifluorometilsulfoniloxi, triclorometilsulfoniloxi, 2,2,2-trifluoroetilsulfoniloxi, 3,3,3-trifluoropropilsulfoniloxi, heptafluoro-2-propilsulfoniloxi y perfluorobutilsulfoniloxi.

En la presente invención, un grupo cicloalquilsulfoniloxi $C_3 \sim C_6$ indica un grupo (cicloalquil $C_3 \sim C_6$)-SO₂-O- en donde el cicloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como ciclopropilsulfoniloxi, ciclobutilsulfoniloxi, ciclopentilsulfoniloxi y ciclohexilsulfoniloxi.

- En la presente invención, un grupo halocicloalquilsulfoniloxi $C_3 \sim C_6$ indica un grupo (halocicloalquil $C_3 \sim C_6$)-SO₂-O-en donde el halocicloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2,2-difluorociclopropilsulfoniloxi, 2,2-diclorociclopropilsulfoniloxi, 3,3-difluorociclobutilsulfoniloxi, 3,3-ciclopentilsulfoniloxi y 4,4-difluorociclohexilsulfoniloxi.
- En la presente invención, un grupo alquiltio C₁~C₆ indica un grupo (alquil C₁~C₆)-S- en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metiltio, etiltio, n-propiltio, isopropiltio, n-butiltio, isobutiltio, sec-butiltio, terc-butiltio y neo-pentiltio.

15

20

25

35

55

En la presente invención, un grupo haloalquiltio $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)-S- en donde el haloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como fluorometiltio, difluorometiltio, trifluorometiltio, triclorometiltio, 2,2,2-trifluoroetiltio, pentafluoroetiltio, 2,2,2-tricloroetiltio, 3,3,3-trifluoropropiltio, heptafluoropropiltio, 1,1,1,3,3,3-hexafluoropropano-2-iltio, heptafluoropropano-2-il-tio, 4,4,4-trifluorobutiltio y 2,2,2-tricloroetiltio.

En la presente invención, un grupo alqueniltio $C_2 \sim C_6$ indica un grupo (alquenil $C_2 \sim C_6$)-S- en donde el alquenilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como viniltio, 1-propeniltio, isopropeniltio, 2-propeniltio, 2-buteniltio, 3-buteniltio, 3-buteniltio, 2-metil-2-buteniltio, 2,4-pentadieniltio, 2-hexeniltio, 3-hexeniltio, 4-hexeniltio, 5-hexeniltio y 2.4-hexadieniltio.

En la presente invención, un grupo haloalqueniltio $C_2 \sim C_6$ indica un grupo (haloalquenil $C_2 \sim C_6$)-S- en donde el haloalquenilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2,2-difluoroviniltio, 2,2-dicloroviniltio, 3,3-difluoro-2-propeniltio, 2,3,3-trifluoro-2-propeniltio, 3-cloro-2-propeniltio, 3,3-dicloro-2-propeniltio, 3-bormo-2-propeniltio, 4,4-difluoro-3-buteniltio, 4,4-difluoro-3-buteniltio, 4,4-dirluoro-3-buteniltio, 4,5-trifluoro-4-penteniltio, 5,5-trifluoro-3-penteniltio, 4,4-trifluoro-3-trifluoro-3-trifluoro-5-hexeniltio, 6,6-difluoro-5-hexeniltio, 5,6,6-trifluoro-5-hexeniltio, 9,6-dicloro-5-hexeniltio.

En la presente invención, un grupo cicloalquiltio $C_3 \sim C_6$ indica un grupo (cicloalquil $C_3 \sim C_6$)-S- en donde el cicloalquilo 30 tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como ciclopropiltio, ciclobutiltio, ciclopentiltio y ciclohexiltio.

En la presente invención, grupo halocicloalquiltio $C_3 \sim C_6$ indica un grupo (halocicloalquil $C_3 \sim C_6$)-S- en donde el halocicloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2,2-difluorociclopropiltio, 2,2-diclorociclopropiltio, 3,3-difluorociclopentiltio y 4,4-diflucrociclohexiltio.

En la presente invención, un grupo cicloalquil $C_3 \sim C_6$ alquiltio $C_1 \sim C_6$ indica un grupo (cicloalquil $C_3 \sim C_6$)-(alquil $C_1 \sim C_6$)-S- en donde el cicloalquilo y el alquilo tienen el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como ciclopropilmetiltio, 2-ciclopropiletiltio, 3-ciclopropilpropiltio, 4-ciclopropilbutiltio, 5-ciclopropilpentiltio, ciclobutilmetiltio, ciclopentilmetiltio y ciclohexilmetiltio.

- 40 En la presente invención, un grupo halocicloalquil $C_3 \sim C_6$ alquiltio $C_1 \sim C_6$ indica un grupo (halocicloalquil $C_3 \sim C_6$)-(alquil $C_1 \sim C_6$)-S- en donde el halocicloalquilo y el alquilo tienen el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2,2-difluorociclopropilmetiltio, 2,2-diclorociclopropilmetiltio, 2-(2,2-difluorociclopropil)etiltio, 2-(2,2-difluorociclopropil)etiltio, 2,2-difluorociclobutilmetiltio y 4,4-difluorociclohexilmetiltio.
- 45 En la presente invención, un grupo tri(alquil $C_1 \sim C_6$) silil alquiltio $C_1 \sim C_6$ indica un grupo (alquil $C_1 \sim C_6$)3-Si-(alquil $C_1 \sim C_6$)-S- en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como trimetilsililmetiltio, trietilsililmetiltio, trimetilsililmetiltio, trimetilsililmetilsililmetiltio, trim
- En la presente invención, un grupo alquilsulfinilo $C_1 \sim C_6$ indica un grupo (alquil $C_1 \sim C_6$)-SO- en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metilsulfinilo, etilsulfinilo, n-propilsulfinilo, isopropilsulfinilo, n-butilsulfinilo, isobutilsulfinilo, secbutilsulfinilo y terc-butilsulfinilo.
 - En la presente invención, un grupo haloalquilsulfinilo $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)-SO- en donde el haloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como difluorometilsulfinilo, trifluorometilsulfinilo, 2,2,2-trifluoroetilsulfinilo, 2,2,2-tricloroetilsulfinilo, pentafluoroetilsulfinilo, heptafluoropropilsulfinilo, triclorometilsulfinilo y heptafluoro-2-propilsulfinilo.

En la presente invención, un grupo cicloalquilsulfinilo $C_3 \sim C_6$ indica un grupo (cicloalquil $C_3 \sim C_6$)-SO- en donde el cicloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como ciclopropilsulfinilo, ciclobutilsulfinilo, ciclopentilsulfinilo y ciclohexilsulfinilo.

En la presente invención, un grupo halocicloalquilsulfinilo $C_3 \sim C_6$ indica un grupo (halocicloalquil $C_3 \sim C_6$)-SO- en donde el halocicloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2,2-difluorociclopropilsulfinilo, 2,2-diclorociclopropilsulfinilo, 3,3-difluorociclopentilsulfinilo y 4,4-difluorociclohexilsulfinilo.

5

10

15

25

30

45

En la presente invención, un grupo alquilsulfonilo $C_1 \sim C_6$ indica un grupo (alquil $C_1 \sim C_6$)-SO₂- en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metilsulfonilo, etilsulfonilo, n-propilsulfonilo, isopropilsulfonilo, n-butilsulfonilo, isobutilsulfonilo, sec-butilsulfonilo y terc-butilsulfonilo.

En la presente invención, grupo haloalquilsulfonilo $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)- SO_2 - en donde el haloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como difluorometilsulfonilo, trifluorometilsulfonilo, triclorometilsulfonilo, 2,2,2-trifluoroetilsulfonilo, 3,3,3-trifluoropropilsulfonilo y heptafluoro-2-propilsulfonilo.

En la presente invención, un grupo cicloalquilsulfonilo $C_3 \sim C_6$ indica un grupo (cicloalquil $C_3 \sim C_6$)- SO_2 -en donde el cicloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como ciclopropilsulfonilo, ciclobutilsulfonilo, ciclopentilsulfonilo y ciclohexilsulfonilo.

En la presente invención, un grupo halocicloalquilsulfonilo $C_3 \sim C_6$ indica un grupo (halocicloalquil $C_3 \sim C_6$)-SO₂- en donde el halocicloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2,2-difluorociclopropilsulfonilo, 2,2-diclorociclopropilsulfonilo, 3,3-difluorociclopentilsulfonilo y 4,4-difluorociclohexilsulfonilo.

En la presente invención, grupo alquiltio $C_1 \sim C_6$ alquilo $C_1 \sim C_6$ indica un grupo (alquil $C_1 \sim C_6$)-S-(alquilo $C_1 \sim C_6$) en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metiltiometilo, 2-(metiltio)etilo, 3-(metiltio)propilo, 4-(metiltio)butilo, etiltiometilo, propiltiometilo, butiltiometilo y pentiltiometilo.

En la presente invención, un grupo haloalquiltio $C_1 \sim C_6$ alquilo $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)-S-(alquilo $C_1 \sim C_6$) en donde el alquilo y el haloalquilo tienen el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como trifluorometiltiometilo, difluorometiltiometilo, 2,2,2-trifluoroetiltiometilo, 2,2,2-trifluoroetiltiometilo, 2-(trifluorometiltio)etilo, 2-(difluorometiltio)etilo, 2-(difluorometiltio)propilo, 3-(difluorometiltio)propilo, 3-(difluorometiltio)propilo, 3-(2,2,2-trifluoroetiltio)propilo.

En la presente invención, un grupo alquilcarbonilo $C_1 \sim C_6$ indica un grupo (alquil $C_1 \sim C_6$)-C(=O)- en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como acetilo, propionilo, isopropionilo y pivaloilo.

35 En la presente invención, un grupo haloalquilcarbonilo $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)-C(=O)- en donde el haloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como fluoroacetilo, difluoroacetilo, trifluoroacetilo, cloroacetilo, tricloroacetilo, tribromoacetilo, 3,3,3-trifluoropropionilo, 3,3-difluoropropionilo y 4,4,4-trifluorobutirilo.

En la presente invención, un grupo alquilcarboniloxi $C_1 \sim C_6$ indica un grupo (alquil $C_1 \sim C_6$)-C(=O)-O- en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como acetoxi y propioniloxi.

En la presente invención, grupo haloalquilcarboniloxi $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)-C(=O)-O- en donde el haloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como fluoroacetoxi, difluoroacetoxi, trifluoroacetoxi, cloroacetoxi, tricloroacetoxi, tribromoacetoxi, 3,3,3-trifluoropropioniloxi, 3,3-difluoropropioniloxi y 4,4,4-trifluorobutiriloxi.

En la presente invención, un grupo alcoxicarbonilo $C_1 \sim C_6$ indica un grupo (alcoxi $C_1 \sim C_6$)-C(=O)- en donde el alcoxi tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metoxicarbonilo, etoxicarbonilo, n-propoxicarbonilo, isopropoxicarbonilo y *terc*-butoxicarbonilo.

50 En la presente invención, un grupo haloalcoxicarbonilo C₁∼C₆ indica un grupo (haloalcoxi C₁∼C₆)-C(=O)- en donde el haloalcoxi tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2-fluoroetoxicarbonilo, 2,2,2-trifluoroetoxicarbonilo, 2,2,2-tricloroetoxicarbonilo, pentafluoroetoxicarbonilo, 3,3,3-trifluoropropoxicarbonilo y heptafluoro-2-propoxicarbonilo.

En la presente invención, un grupo alquilamino $C_1 \sim C_6$ indica un grupo (alquil $C_1 \sim C_6$)-NH- en donde el alquilo tiene el

significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metilamino, etilamino y n-propilamino.

En la presente invención, un grupo haloalquilamino $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)-NH- en donde el haloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2-fluoroetilamino, 2,2-difluoroetilamino, 2,2-trifluoroetilamino, 2,2-trifluoroetilamino, 2,3-trifluoropropilamino y 1,1,1,3,3-hexafluoro-2-propilamino.

5

40

45

50

En la presente invención, un grupo alquilcarbonilamino $C_1 \sim C_6$ indica un grupo (alquil $C_1 \sim C_6$)-C(=0)-NH-en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como acetilamino, propionilamino, butirilamino, isobutirilamino y *terc*-butilcarbonilamino.

- En la presente invención, un grupo haloalquilcarbonilamino $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)-C(=O)-NH- en donde el haloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como fluoroacetilamino, difluoroacetilamino, trifluoroacetilamino, cloroacetilamino, tricloroacetilamino, tribromoacetilamino, 3,3,3-trifluoropropionilamino, pentafluoropropionilamino, 3,3-difluoropropionilamino y 3,3,3-trifluoro-2-metil-2-trifluorometilpropionilamino.
- En la presente invención, un grupo alcoxicarbonilamino $C_1 \sim C_6$ indica un grupo (alcoxi $C_1 \sim C_6$)-C(=O)-NH- en donde el alcoxi tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metoxicarbonilamino, etoxicarbonilamino, n-propoxicarbonilamino e isopropoxicarbonilamino.
- En la presente invención, un grupo haloalcoxicarbonilamino $C_1 \sim C_6$ indica un grupo (haloalcoxi $C_1 \sim C_6$)-C(=O)-NH- en donde el haloalcoxi tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2-fluoroetoxicarbonilamino, 2,2,2-tricloroetoxicarbonilamino, pentafluoroetoxicarbonilamino, 3,3,3-trifluoropropoxicarbonilamino y heptafluoro-2-propoxicarbonilamino.
- En la presente invención, un grupo alquilaminocarbonilamino C₁~C₆ indica un grupo (alquilo C₁~C₆)-NH-C(=O)-NH-25 en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metilaminocarbonilamino, etilaminocarbonilamino, n-propilaminocarbonilamino, isopropilaminocarbonilamino, terc-butilaminocarbonilamino y terc-pentilaminocarbonilamino.
- En la presente invención, un grupo haloalquilaminocarbonilamino $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)-NH-30 C(=O)-NH- en donde el haloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2-fluoroetilaminocarbonilamino, 2,2,2-trifluoroetilaminocarbonilamino, 2,2,2-trifluoroetilaminocarbonilamino, pentafluoroetilaminocarbonilamino y 1,1,1,3,3,3-hexafluoro-2-propilaminocarbonilamino.
- En la presente invención, un grupo alquilsulfonilamino C₁~C₆ indica un grupo (alquil C₁~C₆)-SO₂-NH-en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metilsulfonilamino, etilsulfonilamino, n-propilsulfonilamino, isopropilsulfonilamino y *terc*-butilsulfonilamino.
 - En la presente invención, un grupo haloalquilsulfonilamino $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)-SO₂-NH- en donde el haloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como fluorometilsulfonilamino, difluorometilsulfonilamino, trifluorometilsulfonilamino, clorometilsulfonilamino, triclorometilsulfonilamino, 2,2-difluoroetilsulfonilamino y 3,3,3-trifluoropropilsulfonilamino.
 - En la presente invención, un grupo alquilaminocarboniltio $C_1 \sim C_6$ indica un grupo (alquil $C_1 \sim C_6$)-NH-C(O=)-S- en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metilaminocarboniltio, etilaminocarboniltio, propilaminocarboniltio, isopropilaminocarboniltio y dimetilaminocarboniltio.
 - En la presente invención, un grupo haloalquilaminocarboniltio $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)-NH-C(O=)-S- en donde el haloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2-fluoroetilaminocarboniltio, 2,2,2-tricloroetilaminocarboniltio, pentafluoroetilaminocarboniltio y 1,1,1,3,3,3-hexafluoro-2-propilaminocarboniltio.
 - En la presente invención, un grupo alquilaminocarbonilo $C_1 \sim C_6$ indica un grupo (alquil $C_1 \sim C_6$)-NH-C(=O)-en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como metilaminocarbonilo, etilaminocarbonilo, propilaminocarbonilo e isopropilaminocarbonilo.
- En la presente invención, un grupo haloalquilaminocarbonilo $C_1 \sim C_6$ indica un grupo (haloalquil $C_1 \sim C_6$)-NH-C(=O)- en

donde el haloalquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como 2-fluoroetilaminocarbonilo, 2,2,2-tricloroetilaminocarbonilo, pentafluoroetilaminocarbonilo y 1,1,1,3,3,3-hexafluoro-2-propilaminocarbonilo.

En la presente invención, un grupo tri(alquil $C_1 \sim C_6$)sililo indica un grupo (alquil $C_1 \sim C_6$) $_3$ -Si- en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como trimetilsililo, trietilsililo, triisopropilsililo, dimetilisopropilsililo y *terc*-butildimetilsililo.

En la presente invención, un grupo fenilalquilo $C_1 \sim C_6$ indica un grupo fenil-(alquilo $C_1 \sim C_6$)- en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como bencilo, 1-feniletilo, 2-feniletilo, 1-fenilpropilo, 2-fenilbutilo y 1-fenilpentilo.

10 En la presente invención, un grupo fenilalcoxi C₁~C₆ indica un grupo fenil-(alcoxi C₁~C₆)- en donde el alcoxi tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como fenilmetoxi, 1-feniletoxi, 2-feniletoxi, 1-fenilpropoxi, 2-fenilbutoxi y 1-fenilpentoxi.

En la presente invención, un grupo fenilalquiltio $C_1 \sim C_6$ indica un grupo fenil-(alquil $C_1 \sim C_6$)-S- en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como fenilmetiltio, 1-feniletiltio, 2-feniletiltio, 2-fenileti

En la presente invención, un grupo fenilalquilsulfinilo $C_1 \sim C_6$ indica un grupo fenil-(alquil $C_1 \sim C_6$)-SO-en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como fenilmetilsulfinilo, 1-feniletilsulfinilo, 2-feniletilsulfinilo, 1-fenilpentilsulfinilo, 2-fenilbutilsulfinilo, 1-fenilpentilsulfinilo.

20 En la presente invención, un grupo fenilalquilsulfonilo $C_1 \sim C_6$ indica un grupo fenil-(alquil $C_1 \sim C_6$)- SO_2 -en donde el alquilo tiene el significado anteriormente mencionado, a menos que se indique otra cosa. Pueden mencionarse, por ejemplo, grupos tales como fenilmetilsulfonilo, 1-feniletilsulfonilo, 2-feniletilsulfonilo, 1-fenilpentilsulfonilo, 2-fenilbutilsulfonilo y 1-fenilpentilsulfonilo.

En la presente invención, una sal aceptable desde el punto de vista agrícola se refiere, a cuando el presente compuesto representado por la fórmula general [l] y la fórmula general [l'] contiene, en su estructura, un grupo hidroxilo, un grupo carboxilo, un grupo amino, etc., a una sal del presente compuesto con una base metálica u orgánica o con un ácido mineral o un ácido orgánico. En cuanto al metal, puede mencionare un metal alcalino, tal como sodio, potasio o similar o un metal alcalinotérreo, tal como magnesio, calcio o similar. En cuanto a la base orgánica, puede mencionarse trietilamina, diisopropilamina, etc. En cuanto al ácido mineral, puede mencionarse ácido clorhídrico, ácido bromhídrico, ácido sulfúrico, etc. En cuanto al ácido orgánico, puede mencionarse ácido fórmico, ácido acético, ácido metanosulfónico, ácido 4-toluenosulfónico, ácido trifluorometanosulfónico, etc.

A continuación, se muestran ejemplos representativos de los compuestos incluidos en el derivado de sulfuro de alquilfenilo representado por la fórmula general [I] de la tabla 1 hasta la tabla 41 y los representados por la fórmula general [I'] se muestran en la tabla 42. Sin embargo, los compuestos incluidos en el presente derivado no se limitan a los mismos. Además, el n.º de compuesto mostrado en las Tablas se usa en la descripción posterior.

Además, los compuestos incluidos en el derivado de sulfuro de alquilfenilo de la presente invención contienen, en algunos casos, isómeros geométricos de forma E y forma Z dependiendo de los tipos de grupos sustituyentes. La presente invención incluye las formas E, las formas Z y mezclas que contienen la forma E y la forma Z en cualquier proporción. Asimismo, los compuestos incluidos en la presente invención contienen, en algunos casos, isómeros ópticos que tienen de 1 a 2 átomos de carbono asimétricos o átomos de azufre asimétricos. La presente invención incluye todos los isómeros ópticos, modificaciones racémicas y diastereómeros.

Las siguientes expresiones usadas en las Tablas de la presente memoria descriptiva indican los siguientes grupos.

Me: metilo

Et: etilo

45 tBu: terc-butilo

15

25

30

35

40

CF₃: trifluorometilo

Ph(4-CF₃): 4-trifluorometilfenilo

Ph(2,5-(CF₃)): 2,5-bis(trifluorometil)fenilo

Ph(3-F,4-CF₃): 3-fluoro-4-trifluorometilfenilo

50 Ac: acetilo

nPropilo: n-propilo

Isopropilo: isopropilo

nButilo: n-butilo

nPentilo: n-pentilo

5 nHexilo: n-hexilo

nHeptilo: n-heptilo

nOctilo: n-octilo

nNonilo: n-nonilo

nDecilo: n-decilo

10 Los compuestos en estas tablas que no están incluidos dentro del alcance de las presentes reivindicaciones están marcados con un asterisco.

Tabla 1

	R^2 R^3										
	R^{1} O R^{4}										
Compuesto n.º	R ¹	R ²	R ³	n	R⁴						
A-0001	CH ₂ CF ₃	Ме	F	0	Me						
A-0002	CH ₂ CF ₃	Ме	F	1	nPropilo						
A-0003	CH ₂ CF ₃	CI	F	1	nPropilo						
A-0004	CH ₂ CF ₃	CN	F	0	isopropilo						
A-0005	CH ₂ CF ₃	CN	F	1	isopropilo						
A-0006	CH₂CF₃	Ме	F	0	isopropilo						
A-0007	CH ₂ CF ₃	Ме	F	1	isopropilo						
A-0008	CH ₂ CF ₃	Ме	F	1	nButilo						
A-0009	CH ₂ CF ₃	CI	F	1	nButilo						
A-0010	CH ₂ CF ₃	CN	F	0	nButilo						
A-0011	CH ₂ CF ₃	CN	F	1	nButilo						
A-0012	CH ₂ CF ₃	CN	F	0	nPentilo						
A-0013	CH ₂ CF ₃	CN	F	1	nPentilo						
A-0014	CH ₂ CF ₃	Ме	F	0	nHexilo						
A-0015	CH ₂ CF ₃	Me	F	1	nHexilo						
A-0016	CH ₂ CF ₃	CI	F	1	nHexilo						
A-0017	CH ₂ CF ₃	CN	F	0	nHexilo						
A-0018	CH₂CF₃	CN	F	1	nHexilo						
A-0019*	CH ₂ CF ₃	Me	Н	1	nHexilo						

	$ \begin{array}{c} R^{2} \\ R^{1} \\ (O)_{n} \end{array} $								
Compuesto n.º	R ¹	R ²	R ³	n	R⁴				
A-0020	CH ₂ CF ₃	Ме	CI	1	nHexilo				
A-0021	CH ₂ CF ₃	CI	CI	1	nHexilo				
A-0022	CH ₂ CF ₃	Me	F	0	nHeptilo				
A-0023	CH ₂ CF ₃	Me	F	1	nHeptilo				
A-0024	CH ₂ CF ₃	CN	F	0	nHeptilo				
A-0025	CH ₂ CF ₃	CN	F	1	nHeptilo				
A-0026	CH ₂ CF ₃	Me	F	1	nOctilo				
A-0027	CH ₂ CF ₃	CN	F	0	nOctilo				
A-0028	CH ₂ CF ₃	CN	F	1	nOctilo				
A-0029	CH ₂ CF ₃	Me	F	1	nNonilo				
A-0030	CH₂CF ₃	Me	F	0	nDecilo				

Tabla 2

Compuesto n.º	R ¹	R²	R ³	n	R⁴
A-0031	CH ₂ CF ₃	Me	F	1	nDecilo
A-0032	CH ₂ CF ₃	Me	F	0	CH ₂ CH(Me)CH ₃
A-0033	CH ₂ CF ₃	Me	F	1	CH ₂ CH(Me)CH ₃
A-0034	CH ₂ CF ₃	Cl	F	1	CH ₂ CH(Me)CH ₃
A-0035	CH ₂ CF ₃	CN	F	0	CH ₂ CH(Me)CH ₃
A-0036	CH ₂ CF ₃	CN	F	1	CH ₂ CH(Me)CH ₃
A-0037	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH(Me)CH ₃
A-0038	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH(Me)CH ₃
A-0039	CH ₂ CF ₃	CN	F	0	CH ₂ CH ₂ CH(Me)CH ₃
A-0040	CH ₂ CF ₃	CN	F	1	CH ₂ CH ₂ CH(Me)CH ₃
A-0041	CH ₂ CF ₃	Me	F	1	CH ₂ CH(Me)CH ₂ CH ₃
A-0042	CH ₂ CF ₃	Me	F	1	CH(M e)CH ₂ CH ₂ CH ₃
A-0043	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH(Me)CH ₃
A-0044	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH(Me)CH ₃
A-0045*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH (M e)CH ₃
A-0046	CH ₂ CF ₃	CN	F	0	CH ₂ CH ₂ CH ₂ CH(Me)CH ₃

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0047	CH ₂ CF ₃	CN	F	1	CH₂CH₂CH₂CH(Me)CH₃
A-0048	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH(Me)CH ₂ CH ₃
A-0049	CH ₂ CF ₃	Me	F	1	CH ₂ CH (Me)CH ₂ CH ₂ CH ₃
A-0050	CH ₂ CF ₃	Me	F	1	CH(Me)CH ₂ CH ₂ CH ₂ CH ₃
A-0051	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH(Me)CH ₃
A-0052	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH (Me)CH ₃
A-0053	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH (Me)CH ₃
A-0054*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH(Me)CH ₃
A-0055	CH ₂ CF ₃	CN	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH(Me)CH ₃
A-0056	CH ₂ CF ₃	CN	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH(Me)CH ₃
A-0057	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH(Me)CH ₂ CH ₃
A-0058	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH(Me)CH ₂ CH ₂ CH ₃
A-0059	CH ₂ CF ₃	Me	F	1	CH ₂ CH(Me)CH ₂ CH ₂ CH ₂ CH ₃
A-0060	CH ₂ CF ₃	Me	F	1	CH(Me)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-0061	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(Me)CH ₃
A-0062	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(Me)CH ₃
A-0063	CH ₂ CF ₃	Me	F	1	CH₂tBu
A-0064	CH ₂ CF ₃	CN	F	0	CH₂tBu
A-0065	CH ₂ CF ₃	CN	F	1	CH₂tBu
A-0066	CH ₂ CF ₃	Me	F	1	CH₂tBu
A-0067	CH ₂ CF ₃	Me	F	1	CH₂CH₂tBu
A-0068	CH ₂ CF ₃	CN	F	0	CH₂CH₂tBu
A-0069	CH ₂ CF ₃	CN	F	1	CH₂CH₂tBu
A-0070	CH ₂ CF ₃	Me	F	0	CH₂CH₂tBu

Tabla 3

Compuesto n.º	R ¹	R ²	R³	n	R⁴
A-0071	CH₂CF₃	Me	F	1	CH₂CH₂tBu
A-0072	CH₂CF₃	Me	F	1	CH₂CH(Me)tBu
A-0073	CH₂CF₃	Me	F	1	CH(Me)CH ₂ tBu
A-0074	CH₂CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ tBu
A-0675	CH₂CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ tBu
A-0076	CH₂CF₃	CI	F	0	CH ₂ CH ₂ CH ₂ tBu
A-0077	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ tBu

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0078	CH ₂ CF ₃	CN	F	0	CH ₂ CH ₂ CH ₂ tBu
A-0079	CH ₂ CF ₃	CN	F	1	CH ₂ CH ₂ CH ₂ tBu
A-0080*	CH ₂ CF ₃	Ме	Н	1	CH ₂ CH ₂ CH ₂ tBu
A-0081	CH ₂ CF ₃	Ме	F	2	CH ₂ CH ₂ CH ₂ tBu
A-0082	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH(Me)tBu
A-0083	CH₂CF₃	Ме	F	1	CH ₂ CH(Me)CH ₂ tBu
A-0084	CH₂CF₃	Ме	F	1	CH(Me)CH ₂ CH ₂ tBu
A-0085	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0086	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0087	CH₂CF₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0088	CH₂CF₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0089	CH₂CF₃	CN	F	0	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0090	CH₂CF₃	CN	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0091*	CH₂CF₃	Ме	Н	0	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0092*	CH₂CF₃	Ме	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0093	CH₂CF₃	Ме	CI	0	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0094	CH₂CF₃	Ме	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0095	CH₂CF₃	Ме	Me	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0096	CH₂CF₃	CI	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0097	CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0098	CHF ₂	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0099	tBu	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0100	CH₂tBu	Ме	F	1	CH₂CH₁CH₁CH₁tBu
A-0101	CH ₂ CH(Me) ₂	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0102	CH ₂ CH=CCl ₂	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0103	CH₂CH≡CH	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0104	CH ₂ CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0105	CH₂cPr	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0106	CF ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0107	CH ₂ CHF ₂	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0108*	CH₂CF₃	CI	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0109	CH₂COOMe	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0110	CH₂CF₃	Ме	F	2	CH ₂ CH ₂ CH ₂ CH ₂ tBu

Tabla 4

Compuesto n.º	R ¹	R²	R ³	n	R ⁴
A-0111	CH₂COOH	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0112	CH₂tBu	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0113	CH ₂ CHF ₂	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0114	CH₂tBu	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0115	CH₂cPr	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0116	CH ₂ CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0117	CH₂cPr	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0118	CH ₂ CF ₃	Me	Me	0	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0119	CH ₂ CF ₃	Ме	Me	1	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0120	CH ₂ CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0121	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH(Me)tBu
A-0122	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH(Me)CH ₂ tBu
A-0123	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH(Me)CH ₂ tBu
A-0124*	CH ₂ CF ₃	Ме	Н	1	CH ₂ CH ₂ CH(Me)CH ₂ tBu
A-0125	CH ₂ CF ₃	CN	F	0	CH ₂ CH ₂ CH(Me)CH ₂ tBu
A-0126	CH ₂ CF ₃	CN	F	1	CH ₂ CH ₂ CH(Me)CH ₂ tBu
A-0127	CH ₂ CF ₃	Me	F	1	CH ₂ CH(Me)CH ₂ CH ₂ tBu
A-0128	CH ₂ CF ₃	Ме	F	1	CH(Me)CH ₂ CH ₂ CH ₂ tBu
A-0129	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0130	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0131*	CH ₂ CF ₃	Ме	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0132	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0133	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0134*	CH ₂ CF ₃	Cl	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0135	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH(Me)tBu
A-0136	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH(Me)CH ₂ tBu
A-0137	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH(Me)CH ₂ CH ₂ tBu
A-0138	CH ₂ CF ₃	Me	F	1	CH ₂ CH(Me)CH ₂ CH ₂ CH ₂ tBu
A-0139	CH ₂ CF ₃	Me	F	1	CH(Me)CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0140	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0141	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0142*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0143	CH₂CF₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0144	CH₂CF₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0145	CH ₂ CF ₃	CN	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0146*	CH ₂ CF ₃	Me	Н	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0147*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0148	CH ₂ CF ₃	Me	Cl	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0149	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(Me)tBu
A-0150	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH(Me)CH ₂ tBu

Tabla 5

Compuesto n.º	R ¹	R^2	R ³	n	R⁴
A-0151	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH(Me)CH ₂ CH ₂ tBu
A-0152	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH(Me)CH ₂ CH ₂ CH ₂ tBu
A-0153	CH ₂ CF ₃	Ме	F	1	CH ₂ CH(Me)CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0154	CH ₂ CF ₃	Me	F	1	CH(Me)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ tBu
A-0155	CH ₂ CF ₃	Me	F	1	CH₂CF₃
A-0156	CH ₂ CF ₃	Me	F	1	CH(Me)CF₃
A-0157	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CF ₃
A-0158	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CF ₃
A-0159	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CF ₃
A-0160	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CF ₃
A-0161	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CF ₃
A-0162*	CH ₂ CF ₃	Ме	Н	1	CH ₂ CH ₂ CH ₂ CF ₃
A-0163	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CF ₃
A-0164	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CF ₃
A-0165	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CF ₃
A-0166*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CF ₃
A-0167	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CF ₃
A-0168	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CF ₃
A-0169	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CF ₃
A-0170	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CF ₃
A-0171	CH ₂ CF ₃	Me	F	1	CH(CF ₃)CF ₃
A-0172	CH ₂ CF ₃	Me	F	0	CH ₂ CF ₂ CF ₃
A-0173	CH ₂ CF ₃	Me	F	1	CH ₂ CF ₂ CF ₃
A-0174	CH ₂ CF ₃	Cl	F	0	CH ₂ CF ₂ CF ₃

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0175	CH ₂ CF ₃	CI	F	1	CH₂CF₂CF₃
A-0176	CH ₂ CF ₃	Me	F	1	CH ₂ CF ₂ CF ₃
A-0177	CH ₂ CF ₃	Me	F	1	CH ₂ CF(CF ₃)CF ₃
A-0178	CH ₂ CF ₃	Me	F	1	CH ₂ CF ₂ CF ₂ CF ₃
A-0179	CH ₂ CF ₃	Cl	F	1	CH ₂ CF ₂ CF ₂ CF ₃
A-0180	CH ₂ CF ₃	CN	F	0	CH ₂ CF ₂ CF ₂ CF ₃
A-0181	CH ₂ CF ₃	CN	F	1	CH ₂ CF ₂ CF ₂ CF ₃
A-0182	CH ₂ CF ₃	Me	F	1	CH ₂ CF ₂ CF(CF ₃)CF ₃
A-0183	CH ₂ CF ₃	Me	F	1	CH ₂ CF(CF ₃)CF ₂ CF ₃
A-0184	CH ₂ CF ₃	Me	F	0	CH ₂ CF ₂ CF ₂ CF ₃
A-0185	CH ₂ CF ₃	Me	F	1	CH ₂ CF ₂ CF ₂ CF ₃
A-0186	CH ₂ CF ₃	Cl	F	0	CH ₂ CF ₂ CF ₂ CF ₃
A-0187	CH ₂ CF ₃	Cl	F	1	CH ₂ CF ₂ CF ₂ CF ₃
A-0188	CH ₂ CF ₃	CN	F	0	CH ₂ CF ₂ CF ₂ CF ₃
A-0189	CH ₂ CF ₃	CN	F	1	CH ₂ CF ₂ CF ₂ CF ₃
A-0190*	CH ₂ CF ₃	Me	Н	1	CH ₂ CF ₂ CF ₂ CF ₃

Tabla 6

Compuesto n.º	R ¹	R²	R ³	n	R⁴
A-0191	CH ₂ CF ₃	Me	CI	1	CH ₂ CF ₂ CF ₂ CF ₃
A-0192	CH ₂ CF ₃	Me	F	1	CH ₂ CF ₂ CF ₂ CF(CF ₃)CF ₃
A-0193	CH ₂ CF ₃	Me	F	1	CH ₂ CF ₂ CF(CF ₃)CF ₂ CF ₃
A-0194	CH ₂ CF ₃	Me	F	1	CH ₂ CF(CF ₃)CF ₂ CF ₂ CF ₃
A-0195	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ OCHF ₂
A-0196	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ OCHF ₂
A-0197	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CCH ₂ OCHF ₂
A-0198	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCHF ₂
A-0199	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ OCH ₂ CF ₃
A-0200	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ OCH ₂ CF ₃
A-0201	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ OCH ₂ CF ₃
A-0202	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CF ₃
A-0203	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CF ₃
A-0204	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CF ₃
A-0205	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CF ₃

Compuesto n.º	R ¹	R^2	R ³	n	R⁴
A-0206	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CF ₃
A-0207	CH ₂ CF ₃	CN	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CF ₃
A-0208	CH ₂ CF ₃	CN	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CF ₃
A-0209	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CF ₃
A-0210	CH ₂ CF ₃	Me	F	1	CH ₂ OCH ₂ CF ₃
A-0211	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ OC(CF ₃) ₃
A-0212	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ OC(CF ₃) ₃
A-0213	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ OC (CF ₃) ₃
A-0214	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ OC(CF ₃) ₃
A-0215	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ OC(CF ₃) ₃
A-0216	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ OC(CF ₃) ₃
A-0217	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ C-H ₂ OC(CF ₃) ₃
A-0218	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ OC(CF ₃) ₃
A-0219	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OC(CF ₃) ₃
A-0220	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OC(CF ₃) ₃
A-0221	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OC(CF ₃) ₃
A-0222	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OC(CF ₃) ₃
A-0223	CH ₂ CF ₃	0Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OC(CF ₃) ₃
A-0224	CH ₂ CF ₃	0Me	F	1	CH ₂ CH2CH ₂ CH ₂ CH ₂ OC(CF ₃) ₃
A-0225	CH ₂ CF ₃	CI	F	0	CF ₂ CHFOCF ₂ CF ₂ CF ₃
A-0226	CH ₂ CF ₃	CI	F	1	CF ₂ CHFOCF ₂ CF ₃
A-0227	CH ₂ CF ₃	Me	F	0	CH ₂ CF ₂ OCF ₂ CF ₂ OCF ₃
A-0228	CH ₂ CF ₃	Me	F	1	CH ₂ CF ₂ OCF ₂ CF ₂ OCF ₃
A-0229	CH ₂ CF ₃	CI	F	0	CH ₂ CF ₂ OCF ₂ CF ₂ OCF ₃
A-0230	CH ₂ CF ₃	Cl	F	1	CH ₂ CF ₂ OCF ₂ CF ₂ OCF ₃

Tabla 7

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0231	CH ₂ CF ₃	Me	F	0	CF ₂ CHFOCF ₂ CF(CF ₃)OCF ₂ CF ₂ CF ₃
A-0232	CH ₂ CF ₃	Me	F	1	CF ₂ CHFOCF ₂ CF(CF ₃)OCF ₂ CF ₂ CF ₃
A-0233	CH ₂ CF ₃	CI	F	0	CF ₂ CHFOCF ₂ CF(CF ₃)OCF ₂ CF ₂ CF ₃
A-0234	CH ₂ CF ₃	CI	F	1	CF ₂ CHFOCF ₂ CF(CF ₃)OCF ₂ CF ₂ CF ₃
A-0235	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CCPr
A-0236	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CCPr

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0237	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CCPen
A-0238	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CCPen
A-0239	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH=CH ₂
A-0240	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH≡CH
A-0241	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH=C(Me)Me
A-0242	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH=CH ₂
A-0243	CH ₂ CF ₃	Me	F	0	CH₂CH₂CH≡CH
A-0244	CH ₂ CF ₃	Me	F	1	CH₂CH₂CH≡CH
A-0245	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH=C(Me)Me
A-0246	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH=CH ₂
A-0247	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH≡CH
A-0248	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH=C(Me)Me
A-0249	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH(Me)CH ₂ CH ₂ CH=C(Me) ₂
A-0250	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH(Me)CH ₂ CH ₂ CH=C(Me) ₂
A-0251	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CF=CF ₂
A-0252	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CF=CF ₂
A-0253	CH ₂ CF ₃	Me	F	0	CH ₂ CH=C(CI)CF ₃
A-0254	CH ₂ CF ₃	Me	F	1	CH₂CH=C(CI)CF ₃
A-0255	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CF=CF ₂
A-0256	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CF=CF ₂
A-0257	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CF=CF ₂
A-0258	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CF=CF ₂
A-0259	CH ₂ CF ₃	Me	F	1	CH ₂ CH=C=CF ₂
A-0260	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CI
A-0261	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ Br
A-0262	CH ₂ CF ₃	Me	F	1	CH₂CH₂CH₂Br
A-0263	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ Br
A-0264	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0265	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0266	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0267	CH ₂ CF ₃	CI	CI	0	CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0268	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0269	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0270	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br

Tabla 8

Compuesto n.º	R ¹	R²	R ³	n	R ⁴
A-0271	CH₂CF₃	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CI
A-0272	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CI
A-0273	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0274	CH₂CF₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0275	CH ₂ CF ₃	OMe	F	0	CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0276	CH ₂ CF ₃	OMe	F	1	CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0277	CH ₂ CF ₃	CN	F	0	CH ₂ CH ₂ CH ₂ CH ₂ C
A-0278	CH ₂ CF ₃	CN	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CI
A-0279*	CH ₂ CF ₃	Me	Н	0	CH ₂ CH ₂ CH ₂ CH ₂ C
A-0280*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ C
A-0281	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0282	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0283	CH ₂ CF ₃	CI	CI	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0284	CH ₂ CF ₃	Me	Ме	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0285	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH
A-0286	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CI
A-0287*	CH ₂ CF ₃	Me	Н	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0288*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br
A-0289	CH ₂ CF ₃	Me	F	0	CH ₂ CI
A-0290	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CI
A-0291	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ Br
A-0292	CH ₂ CF ₃	Me	F	0	CH₂CH₂OH
A-0293	CH ₂ CF ₃	Me	F	1	CH₂CH₂OH
A-0294*	CH ₂ CF ₃	Ме	Н	0	CH₂CH₂OH
A-0295	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ OH
A-0296	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ OH
A-0297*	CH₂CF₃	Me	Н	0	CH ₂ CH ₂ CH ₂ OH
A-0298*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ OH
A-0299	CH₂CF₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH
A-0300	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH
A-0301	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH
A-0302	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH
A-0303	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0304	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH
A-0305	CH ₂ CF ₃	Me	F	0	CH₂CH₂cPr
A-0306	CH₂CF ₃	Me	F	1	CH₂CH₂cPr
A-0307	CH₂CF₃	Me	F	0	CH ₂ CH ₂ cPr(2,2-F ₂)
A-0308	CH₂CF ₃	Me	F	1	CH ₂ CH ₂ cPr(2,2-F ₂)
A-0309	CH₂CF₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ cPr
A-0310	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ CPr

Tabla 9

Compuesto n.º	R ¹	R ²	R^3	n	R⁴
A-0311	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ cPr(2,2-F ₂)
A-0312	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CPr(2,2-F ₂)
A-0313	CH₂CF ₃	Me	F	1	CH ₂ cPr(1-Ph)
A-0314	CH₂CF ₃	Cl	F	1	CH ₂ cPr(1-Ph)
A-0315	CH₂CF ₃	Me	F	0	CH ₂ cHex(4-tBu)
A-0316	CH ₂ CF ₃	Me	F	1	CH ₂ cHex(4-tBu)
A-0317	CH ₂ CF ₃	Me	F	0	CH ₂ cHex(4-CF ₃)
A-0318	CH ₂ CF ₃	Me	F	1	CH ₂ cHex(4-CF ₃)
A-0319	CH₂CF ₃	Me	F	0	CH ₂ cHex(4,4-F ₂)
A-0320	CH ₂ CF ₃	Ме	F	1	CH ₂ cHex(4,4-F ₂)
A-0321	CH₂CF ₃	Cl	F	0	CH ₂ cHex(4,4-F ₂)
A-0322	CH₂CF₃	Cl	F	1	CH ₂ cHex(4,4-F ₂)
A-0323	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ cHex
A-0324	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ cHex(4-CF ₃)
A-0325	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ cHex(4-CF ₃)
A-0326	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ cHex(4-CF ₃)
A-0327	CH₂CF ₃	Cl	F	1	CH ₂ CH ₂ cHex(4-CF ₃)
A-0328	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ cHex(4,4-F ₂)
A-0329	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ cHex(4,4-F ₂)
A-0330	CH₂CF ₃	Me	F	1	CH ₂ CH ₂ cHex(4,4-F ₂)
A-0331	CH₂CF ₃	Cl	F	1	CH ₂ CH ₂ cHex(4,4-F ₂)
A-0332	CH₂CF ₃	Me	F	1	CH ₂ CH ₂ cHex(4-SCF ₃)
A-0333	CH₂CF ₃	Cl	F	1	CH ₂ CH ₂ cHex(4-SCF ₃)
A-0334	CH₂CF₃	Me	F	1	CH ₂ CH ₂ cHex(4-SCHF ₂)

Compuesto n.º	R ¹	R ²	R^3	n	R⁴
A-0335	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ cHex(4-0CHF ₂)
A-0336	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ cHex(4-0CF ₃)
A-0337	CH ₂ CF ₃	Ме	F	1	CH₂CH₂CH₂cHex
A-0338	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ cHex(4-CF ₃)
A-0339	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ cHex(4-CF ₃)
A-0340	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ cHex(4-CF ₃)
A-0341	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ cHex(4-CF ₃)
A-0342	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CHex(4-tBu)
A-0343	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CHex(4-tBu)
A-0344	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ cHex(4-SCF ₃)
A-0345	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CHex
A-0346	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CHex
A-0347	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CHex
A-0348	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ cHex(4-CF ₃)
A-0349	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ (adamant-1-ilo)
A-0350	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ (adamant-1-ilo)

Tabla 10

Compuesto n.º	R ¹	R ²	R ³	n	R ⁴
A-0351	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ StBu
A-0352	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ StBu
A-0353	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ SCH ₂ tBu
A-0354	CH ₂ CF ₃	Me	CI	1	CH ₂ CH ₂ CH ₂ SCH ₂ tBu
A-0355	CH ₂ CF ₃	Me	F	1	CH₂CH(CH₃)StBu
A-0356	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ StBu
A-0357	CH ₂ CF ₃	Me	F	1	CH₂CH₂CH(CH₃)StBu
A-0358	CH ₂ CF ₃	Me	F	1	CH ₂ CH(CH ₃)CH ₂ StBu
A-0359	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-0360	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-0361	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH(CH ₃) ₂
A-0362	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH(CH ₃) ₂
A-0363	CH ₂ CF ₃	Me	F	0	CH₂CH₂CH₂CH₂CH₂StBu
A-0364	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ StBu
A-0365	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ StBu

Compuesto n.º	R ¹	R ²	R^3	n	R⁴
A-0366	CH ₂ CF ₂	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ StBu
A-0367*	CH ₂ CF ₃	Ме	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ StBu
A-0368	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₃
A-0369	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₃
A-0370	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH(CH ₃) ₂
A-0371	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)StBu
A-0372	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH(CH ₃)CH ₂ StBu
A-0373	CH ₂ CF ₃	Ме	F	1	CH ₂ CH(CH ₃)CH ₂ CH ₂ StBu
A-0374	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ StBu
A-0375	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ StBu
A-0376	CH ₂ CF ₃	Me	F	1	CH ₂ StBu
A-0377	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ ScPen
A-0378	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ ScHex
A-0379	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ ScPr
A-0380	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ ScPr
A-0381	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ S(=O)Me
A-0382	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ S(=O)tBu
A-0383	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)Me
A-0384	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)tBu
A-0385	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ S(=O)cPen
A-0386	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ S(=O)cHex
A-0387	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)cPr
A-0388	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)cPr
A-0389	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ S(=O) ₂ Me
A-0390	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ S(=O) ₂ Me

Tabla 11

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0391	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ Me
A-0392	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ Me
A-0393	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ Me
A-0394	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ Me
A-0395	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ tBu
A-0396	CH₂CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ tBu

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0397	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ Me
A-0398	CH ₂ CF ₃	Me	F	1	CH ₂ S(=O) ₂ Me
A-0399	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ cPr
A-0400	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ cPr
A-0401	CH ₂ CF ₃	Me	F	0	CH₂SCF₃
A-0402	CH ₂ CF ₃	Me	F	1	CH ₂ SCF ₃
A-0403	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ SCF ₃
A-0404*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ SCF ₃
A-0405	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ SCF ₃
A-0406	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CCF ₃
A-0407	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CCF ₃
A-0408*	CH ₂ CF ₃	Ме	Н	1	CH ₂ CH ₂ SCF ₃
A-0409	CH ₂ CF ₃	Me	CI	1	CH ₂ CH ₂ SCF ₃
A-0410	CH ₂ CF ₃	Ме	Ме	0	CH ₂ CH ₂ CGF ₃
A-0411	CH ₂ CF ₃	Me	Ме	1	CH ₂ CH ₂ CCF ₃
A-0412	CH ₂ CF ₃	Cl	CI	0	CH ₂ CH ₂ CCF ₃
A-0413	CH ₂ CF ₃	CI	CI	1	CH ₂ CH ₂ CCF ₃
A-0414	CH ₂ CF ₃	Ме	F	1	CH ₂ CH(CH ₃)SCF ₃
A-0415	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0416	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0417	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0418	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0419*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0420	CH ₂ CF ₃	Me	CI	0	CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0421	CH ₂ CF ₃	Me	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0422	CH ₂ CF ₃	Ме	Ме	0	CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0423	CH ₂ CF ₃	Me	Me	1	CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0424	CH ₂ CF ₃	CI	CI	0	CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0425	CH ₂ CF ₃	Cl	CI	1	CH₂CH₂CH₂CH₂SCF₃
A-0426	CH ₂ CF ₃	Me	F	1	CH₂CH₂CH(CH₃)SCF₃
A-0427	CH ₂ CF ₃	Me	F	1	CH ₂ CH(CH ₃)CH ₂ SCF ₃
A-0428	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ SCF ₂ CF ₃
A-0429	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SCF(CF ₃) ₂
A-0430	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ SCF(CF ₃) ₂

Tabla 12

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0431	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0432	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0433	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0434	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0435	CH ₂ CF ₃	CI	F	2	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0436	CH ₂ CF ₃	CN	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0437	CH ₂ CF ₃	CN	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0438*	CH ₂ CF ₃	Me	Н	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0439*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0440	CH ₂ CF ₃	Me	CI	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0441	CH ₂ CF ₃	Me	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0442	CH ₂ CF ₃	Me	Ме	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0443	CH ₂ CF ₃	Me	Ме	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0444	CH ₂ CF ₃	CI	CI	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0445	CH ₂ CF ₃	CI	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0446*	CH ₂ CF ₃	CI	Н	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0447*	CH ₂ CF ₃	CI	Н	1	CH ₂ CH ₂ CH ₂ GH ₂ CH ₂ SCF ₃
A-0448	CH ₂ CF ₃	OMe	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0449	CH ₂ CF ₃	OMe	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0450	CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0451	CHF ₂	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0452	tBu	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SGF ₃
A-0453	CH₂tBu	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0454	CH ₂ CH(Me) ₂	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0455	CH ₂ CH=CCl ₂	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0456	CH₂CH≡CH	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0457	CH ₂ CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0458	CH₂cPr	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0459	CF ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0460	CH ₂ CHF ₂	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0461	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₂ CF ₃
A-0462	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF(CF ₃) ₂
A-0463	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF(CF ₃) ₂

					<u> </u>
Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0464	CH₂CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)SCF ₃
A-0465	CH₂CF ₃	Me	F	1	CH ₂ CH ₂ CH(CH ₃)CH ₂ SCF ₃
A-0466	CH₂CF ₃	Me	F	1	CH ₂ CH(CH ₃)CH ₂ CH ₂ SCF ₃
A-0467	CH₂CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₂ CF ₃
A-0468	CH₂CF ₃	Me	F	1	CH ₂ CH ₂ CH(SCF ₃)CH ₂ CH ₂
A-0469	CH₂CF ₃	Me	F	1	CH ₂ CH(SCF ₃)CH ₂ CH ₂ CH ₂
A-0470	CH₂CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃

Tabla 13

compuesto n.º	R ¹	R ²	R^3	n	R⁴
A-0471	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0472	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0473	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0474*	CH ₂ CF ₃	Ме	Н	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0475*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0476	CH ₂ CF ₃	Ме	Cl	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0477	CH ₂ CF ₃	Ме	Cl	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0478	CH ₂ CF ₃	CI	Cl	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0479	CH ₂ CF ₃	CI	Cl	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0480	CH ₂ CF ₃	Ме	Ме	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0481	CH ₂ CF ₃	Ме	Ме	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0482	CH ₂ CHF ₂	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0483	CH ₂ CHF ₂	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0484	CH ₂ CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0485	CH ₂ CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0486	CH₂cPr	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0487	CH₂cPr	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0488	CH₂tBu	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0489	CH₂tBu	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0490	CH₂C≡CH	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0491	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF(CF ₃) ₂
A-0492	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF(CF ₃) ₂
A-0493	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)SCF ₃
A-0494	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ SCF ₃

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0495	CH₂CF₃	Me	F	0	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ SCF ₃
A-0496	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ SCF ₃
A-0497	CH ₂ CF ₃	Ме	F	1	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ SCF ₃
A-0498	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CF ₂ CF ₃
A-0499	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH(SCF ₃)CH ₂ CH ₃
A-0500	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH(SCF ₃)CH ₂ CH ₂ CH ₂
A-0501	CH₂CF₃	Me	F	1	CH ₂ CH(SCF ₃)CH ₂ CH ₂ CH ₂ CH ₂
A-0502	CH₂CF₃	Me	F	0	CH ₂ SCF ₃
A-0503	CH₂CF₃	ue	F	1	CH ₂ SCF ₃
A-0504	CH₂CF₃	CI	F	0	CH ₂ SCF ₃
A-0505	CH₂CF₃	CI	F	1	CH ₂ SCF ₃
A-0506*	CH₂CF₃	Me	Н	1	CH ₂ SCF ₃
A-0507	CH₂CF₃	Me	CI	0	CH ₂ SCF ₃
A-0508	CH ₂ CF ₃	Me	Cl	1	CH ₂ SCF ₃
A-0509	CH₂CF₃	Cl	Cl	0	CH ₂ SCF ₃
A-0510	CH ₂ CF ₃	CI	Cl	1	CH ₂ SCF ₃

Tabla 14

Compuesto n.º	R ¹	R²	R³	n	R⁴
A-0511	CH ₂ CF ₃	Ме	Ме	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0512	CH ₂ CF ₃	Ме	Ме	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0513	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)SCF ₃
A-0514	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ SCF ₃
A-0515	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ SCF ₃
A-0516	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ SCF ₃
A-0517	CH ₂ CF ₃	Me	F	1	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ SCF ₃
A-0518	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF ₂ CF ₃
A-0519	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCF(CF ₃) ₂
A-0520	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ S(=O)CF ₃
A-0521	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ S(=O)CF ₃
A-0522	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)CF ₃
A-0523	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)CF ₃
A-0524	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)CF ₃
A-0525	CH ₂ CF ₃	CI	F	2	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=0)CF ₃

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0526	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)CF ₃
A-0527	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)CF ₃
A-0528	CH ₂ CF ₃	Me	F	1	CH ₂ S(=O)CF ₃
A-0529	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ S(=O) ₂ CF ₃
A-0530	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CF ₃
A-0531	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CF ₃
A-0532	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CF ₃
A-0533	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CF ₃
A-0534	CH ₂ CF ₃	Cl	F	2	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CF ₃
A-0535	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CF ₃
A-0536	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CF ₃
A-0537	CH ₂ CF ₃	Me	F	1	CH ₂ S(=O) ₂ CF ₃
A-0538	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ SCHF ₂
A-0539	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ SCHF ₂
A-0540	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ SCHF ₂
A-0541*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ SCHF ₂
A-0542	CH ₂ CF ₃	Me	F	1	CH ₂ CH(CH ₃)SCHF ₂
A-0543	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0544	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0545	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0546*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0547	CH ₂ CF ₃	Me	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0548	CH ₂ CF ₃	Cl	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0549	CH ₂ CF ₃	Me	Ме	1	CH₂CH₂CH₂CH₂SCHF₂
A-0550	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH(CH ₃)SCHF ₂

Tabla 15

Compuesto n.º	R ¹	R^2	R ³	n	R⁴
A-0551	CH ₂ CF ₃	Me	F	1	CH ₂ CH(CH ₃)CH ₂ SCHF ₂
A-0552	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CHF ₂
A-0553	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0554	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0555	CH₂CF₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0556	CH₂CF₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂

Compuesto n.º	R ¹	R ²	R^3	n	R ⁴
A-0557*	CH₂CF₃	Me	Н	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0558*	CH₂CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0559*	CH₂CF₃	Cl	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0560	CH₂CF₃	CI	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0561	CH₂CF₃	Cl	CI	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0562	CH ₂ CF ₃	Me	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0563	CH ₂ CF ₃	Me	Me	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0564	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)SCHF ₂
A-0565	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH(CH ₃)CH ₂ SCHF ₂
A-0566	CH ₂ CF ₃	Me	F	1	CH ₂ CH(CH ₃)CH ₂ CH ₂ SCHF ₂
A-0567	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CHF ₂
A-0568	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH(SCHF ₂)CH ₂ CH ₂
A-0569	CH ₂ CF ₃	Ме	F	1	CH ₂ CH(SCHF ₂)CH ₂ CH ₂ CH ₂
A-0570	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0571	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0572	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0573	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0574*	CH ₂ CF ₃	Ме	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0575*	CH₂CF ₃	Cl	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0576	CH ₂ CF ₃	Ме	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0577	CH₂CF₃	Cl	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0578	CH ₂ CF ₃	Me	Me	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0579	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)SCHF ₂
A-0580	CH₂CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ SCHF ₂
A-0581	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH(CH ₃)CH ₂ GH ₂ SCHF ₂
A-0582	CH₂CF₃	Me	F	1	CH ₂ CH(CH ₃)CH ₂ QH ₂ CH ₂ SCHF ₂
A-0583	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH(SCHF ₂)CH ₂ CH ₂
A-0584	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH(SCHF ₂)CH ₂ CH ₂ CH ₂
A-0585	CH ₂ CF ₃	Me	F	1	CH ₂ CH(SCHF ₂)CH ₂ CH ₂ CH ₂ CH ₂
A-0586	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CHF ₂
A-0587	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0588	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0589	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0590	CH ₂ CF ₃	Cl	Cl	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂

Tabla 16

Compuesto n.º	R ¹	R²	R ³	n	R^4
A-0591	CH₂CF₃	Me	Cl	1	CH ₂ SCHF ₂
A-0592*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCHF ₂
A-0593	CH ₂ CF ₃	Me	Ме	1	CH ₂ SCHF ₂
A-0594	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ S(=O)CHF ₂
A-0595	CH₂CF₃	Me	F	1	CH(CH ₃)CH ₂ S(=O)CHF ₂
A-0596	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ S(=O)CHF ₂
A-0597	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH(CH ₃)S(=0)CHF ₂
A-0598	CH₂CF₃	Me	F	1	CH ₂ CH(CH ₃)CH ₂ S(=O)CHF ₂
A-0599	CH₂CF₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)CHF ₂
A-0600*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)CHF ₂
A-0601	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)S(=O)CHF ₂
A-0602	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH(CH ₃)CH ₂ S(=O)CHF ₂
A-0603	CH₂CF₃	Me	F	1	CH ₂ CH(CH ₃)CH ₂ CH ₂ S(=O)CHF ₂
A-0604	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)CHF ₂
A-0605	CH₂CF₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)CHF ₂
A-0606	CH₂CF₃	Me	Cl	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)CHF ₂
A-0607	CH₂CF₃	Ме	F	1	CH ₂ S(=O)CHF ₂
A-0608	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ CH ₂ S(=O) ₂ CHF ₂
A-0609	CH₂CF₃	Ме	F	1	CH(CH ₃)CH ₂ S(=O) ₂ CHF ₂
A-0610	CH₂CF₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CHF ₂
A-0611	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CHF ₂
A-0612	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CHF ₂
A-0613	CH ₂ CF ₃	Ме	F	1	$CH_2CH_2CH(CH_3)S(=O)_2CHF_2$
A-0614	CH₂CF₃	Ме	F	1	CH ₂ CH(CH ₃)CH ₂ S(=O) ₂ CHF ₂
A-0615	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CHF ₂
A-0616	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CHF ₂
A-0617	CH₂CF₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CHF ₂
A-0618	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CHF ₂
A-0619	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)S(=O) ₂ CHF ₂
A-0620	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH(CH ₃)CH ₂ S(=O) ₂ CHF ₂
A-0621	CH ₂ CF ₃	Ме	F	1	CH ₂ CH(CH ₃)CH ₂ CH ₂ S(=O) ₂ CHF ₂
A-0622	CH₂CF₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CHF ₂
A-0623	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CHF ₂

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0624	CH ₂ CF ₃	Ме	F	1	CH₂CH₂SCH₂CF₃
A-0625	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0626*	CH ₂ CF ₃	Ме	Н	1	CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0627	CH ₂ CF ₃	Ме	F	1	CH ₂ CH(CH ₃)SCH ₂ CF ₃
A-0628	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0629	CH₂CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0630*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃

Tabla 17

Compuesto n.º	R ¹	R ²	R^3	n	R⁴
A-0631	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0632	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0633	CH ₂ CF ₃	Me	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0634	CH ₂ CF ₃	CI	Cl	1	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0635	CH ₂ CF ₃	Me	Me	1	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0636	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH(CH ₃)SCH ₂ CF ₃
A-0637	CH ₂ CF ₃	Ме	F	1	CH ₂ CH(CH ₃)CH ₂ SCH ₂ CF ₃
A-0638	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0639	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0640*	CH ₂ CF ₃	Ме	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0641	CH ₂ CF ₃	Ме	Cl	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0642	CH ₂ CF ₃	CI	Cl	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0643	CH ₂ CF ₃	Ме	Ме	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0644*	CH ₂ CF ₃	CI	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0645	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)SCH ₂ CF ₃
A-0646	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH(CH ₃)CH ₂ SCH ₂ CF ₃
A-0647	CH ₂ CF ₃	Ме	F	1	CH ₂ CH(CH ₃)CH ₂ CH ₂ SCH ₂ CF ₃
A-0648	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0649	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0650	CH ₂ CF ₃	Me	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0651	CH ₂ CF ₃	Cl	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0652	CH ₂ CF ₃	Me	Ме	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0653	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)SCH ₂ CF ₃
A-0654	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ SCH ₂ CF ₃

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0655	CH ₂ CF ₃	Ме	F	1	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0656	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ CF ₃
A-0657	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ SCH(CF ₃) ₂
A-0658	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ SCH(CF ₃) ₂
A-0659	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH(CF ₃) ₂
A-0660	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CF ₃) ₂
A-0661	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CCI ₃
A-0662	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CCI ₃
A-0663	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SCN
A-0664	CH ₂ CF ₃	Ме	Ме	0	CH ₂ CH ₂ CH ₂ SCN
A-0665	CH ₂ CF ₃	CI	F	0	CH₂CH₂CH₂CH2SCN
A-0666	CH ₂ CF ₃	Ме	Me	0	CH ₂ CH ₂ CH ₂ CH ₂ SCN
A-0667	CH ₂ CF ₃	CI	CI	0	CH ₂ CH ₂ CH ₂ CH ₂ SCN
A-0668	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCN
A-0669	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCN
A-0670	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCN

Tabla 18

Compuesto n.º	R ¹	R²	R ³	n	R⁴
A-0671	CH ₂ CF ₃	CN	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCN
A-0672*	CH ₂ CF ₃	Me	Н	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCN
A-0673	CH ₂ CF ₃	0Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCN
A-0674	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH(Me)CH ₂ CH ₂ SCN
A-0675	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCN
A-0676	CH₂CF₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCN
A-0677*	CH ₂ CF ₃	Me	Н	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCN
A-0678	CH ₂ CF ₃	Cl	Cl	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-0679	CH ₂ CF ₃	Me	Me	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CSCN
A-0680	CH ₂ CF ₃	Me	F	0	CH ₂ SCN
A-0681	CH ₂ CF ₃	Me	Me	0	CH ₂ SCN
A-0682	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ SMe ₃
A-0683	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ SCF=CFCF ₃
A-0684	CH ₂ CF ₃	Ме	F	0	CH₂Ph
A-0685	CH ₂ CF ₃	Me	F	0	CH(Me)Ph

Compuesto n.º	R ¹	R ²	R ³	n	R⁴		
A-0686	CH ₂ CF ₃	Me	F	1	CH₂Ph		
A-0687	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(2-CF ₃)		
A-0688	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(2-CF ₃)		
A-0689	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(3-CF ₃)		
A-0690	CH ₂ CF ₃	Me	F	0	CH ₂ Ph (4-CF ₃)		
A-0691	CH ₂ CF ₃	Me	F	0	CH(Me)Ph(4-CF ₃)		
A-0692	CH ₂ CF ₃	Me	F	1	CH₂Ph(4-CF₃)		
A-0693	CH ₂ CF ₃	Cl	F	0	CH ₂ Ph(4-CF ₃)		
A-0694	CH ₂ CF ₃	CI	F	1	CH ₂ Ph(4-CF ₃)		
A-0695	CH ₂ CF ₃	Me	Cl	0	CH ₂ Ph(4-CF ₃)		
A-0696	CH ₂ CF ₃	Me	Cl	1	CH₂Ph (4-CF₃)		
A-0697*	CH ₂ CF ₃	CN	Н	0	CH ₂ Ph(4-CF ₃)		
A-0698*	CH ₂ CF ₃	CN	Н	1	CH ₂ Ph(4-CF ₃)		
A-0699	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(2,5-(CF ₃) ₂)		
A-0700	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(2,5-(CF ₃) ₂)		
A-0701	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(4-OCHF ₂)		
A-0702	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(2-OCF ₃)		
A-0703	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(3-OCF ₃)		
A-0704	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(4-OCF ₃)		
A-0705	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(4-SCHF ₂)		
A-0706	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(2-SCF ₃)		
A-0707	CH ₂ CF ₃	Me	F	0	CH ₂ Ph (3-SCF ₃)		
A-0708	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(3-SCF ₃)		
A-0709	CH ₂ CF ₃	CI	F	0	CH ₂ Ph(4-SCF ₃)		
A-0710	CH ₂ CF ₃	CI	F	1	CH ₂ Ph(4-SCF ₃)		

Tabla 19

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0711	CH ₂ CF ₃	Me	F	0	CH₂Ph(4-SCF ₃)
A-0712	CH₂CF ₃	Me	F	1	CH₂Ph(4-SCF ₃)
A-0713	CH₂CF ₃	Me	F	1	CH ₂ Ph(3-CH ₂ SCF ₃)
A-0714	CH₂CF ₃	Me	F	1	CH ₂ Ph(4-CH ₂ SCF ₃)
A-0715	CH₂CF ₃	Me	F	0	CH ₂ Ph(4-F)
A-0716	CH₂CF ₃	Me	F	0	CH ₂ Ph(4-Cl)

Compuesto n.º	R ¹	R ²	R^3	n	R ⁴
A-0717	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(4-Cl)
A-0718	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(4-Br)
A-0719	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(4-Br)
A-0720	CH ₂ CF ₃	Me	F	0	CH₂Ph(4-Me)
A-0721	CH ₂ CF ₃	Me	F	1	CH₂Ph(4-Me)
A-0722	CH ₂ CF ₃	Me	F	0	CH₂Ph(4-tBu)
A-0723	CH ₂ CF ₃	Me	F	1	CH₂Ph(4-tBu)
A-0724	CH ₂ CF ₃	Me	F	0	CH₂Ph(4-CN)
A-0725	CH ₂ CF ₃	Me	F	1	CH₂Ph(4-CN)
A-0726	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(4-NO ₂)
A-0727	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(4-NO ₂)
A-0728	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(2,4-Cl ₂)
A-0729	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(2,4-Cl ₂)
A-0730	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(3,4-Cl ₂)
A-0731	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(3,4-Cl ₂)
A-0732	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(2,4,6-F ₃)
A-0733	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(2,4,6-F ₃)
A-0734	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(3,4,5-F ₃)
A-0735	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(3,4,5-F ₃)
A-0736	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(2,3,4-F ₃)
A-0737	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(2,3,4-Cl ₃)
A-0738	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(3,4,5-Cl ₃)
A-0739	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(3,4,5-Cl ₃)
A-0740	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(3,4,5-Cl ₃)
A-0741	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(3-CF ₃ , 4-CI)
A-0742	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(3-CF ₃ , 4-CI)
A-0743	CH₂CF₃	Me	F	0	CH ₂ Ph(3-CF ₃ , 4-F)
A-0744	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(3-CF ₃ , 4-F)
A-0745	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(3-F, 4-CF ₃)
A-0746	CH ₂ CF ₃	Me	F	1	CH ₂ Ph(3-F, 4-CF ₃)
A-0747	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(4-CF (CF ₃) ₂)
A-0748	CH₂CF₃	Me	F	1	CH ₂ Ph(4-CF (CF ₃) ₂)
A-0749	CH₂CF₃	Me	F	1	CH ₂ Ph(4-CH ₂ SCF ₃)
A-0750	CH ₂ CF ₃	Me	F	0	CH ₂ Ph(4-Ph(4-CF ₃))

Tabla 20

Compuesto n.º	R ¹	R ²	R ³	n	$R^{\scriptscriptstyle{4}}$
A-0751	CH ₂ CF ₃	Me	F	0	CH₂CH₂Ph
A-0752	CH ₂ CF ₃	Me	F	1	CH₂CH₂Ph
A-0753	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ Ph(4-F)
A-0754	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(4-F)
A-0755	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ Ph(4-Cl)
A-0756	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(4-CI)
A-0757	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ Ph(4-Br)
A-0758	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(4-Br)
A-0759	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ Ph(2-CF ₃)
A-0760	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(2-CF ₃)
A-0761	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ Ph(3-CF ₃)
A-0762	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(3-CF ₃)
A-0763	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ Ph(4-CF ₃)
A-0764	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(4-CF ₃)
A-0765	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ Ph(4-CF ₃)
A-0766	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ Ph(4-CF ₃)
A-0767	CH ₂ CF ₃	Cl	CI	1	CH ₂ CH ₂ Ph(4-CF ₃)
A-0768	CH ₂ CF ₃	Me	Me	1	CH ₂ CH ₂ Ph(4-CF ₃)
A-0769	CH ₂ CF ₃	Me	CI	1	CH ₂ CH ₂ Ph(4-CF ₃)
A-0770	tBu	CN	F	0	CH ₂ CH ₂ Ph(4-CF ₃)
A-0771	tBu	CN	F	1	CH ₂ CH ₂ Ph(4-CF ₃)
A-0772	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ Ph(4-OCHF ₂)
A-0773	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ Ph(4-OCHF ₂)
A-0774	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(4-OCHF ₂)
A-0775	CH ₂ CF ₃	Me	Me	1	CH ₂ CH ₂ Ph(4-OCHF ₂)
A-0776	CH ₂ CF ₃	CI	CI	1	CH ₂ CH ₂ Ph(4-OCHF ₂)
A-0777	CH ₂ CF ₃	Me	F	0	CH₂Ph(3-OCF₃)
A-0778	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ Ph(4-OCF ₃)
A-0779	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(4-OCF ₃)
A-0780	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ Ph(4-OCF ₃)
A-0781	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ Ph(4-OCF ₃)
A-0782	CH ₂ CF ₃	Cl	CI	1	CH ₂ CH ₂ Ph(4-OCF ₃)
A-0783	CH ₂ CF ₃	Me	Me	1	CH ₂ CH ₂ Ph(4-OCF ₃)

Compuesto n.º	R ¹	R ²	R ³	n	R ⁴
A-0784	CH₂CF₃	Me	Cl	1	CH ₂ CH ₂ Ph(4-OCF ₃)
A-0785	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ Ph(4-SCHF ₂)
A-0786	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ Ph(4-SCF ₃)
A-0787	CH₂CF₃	Cl	F	0	CH ₂ CH ₂ Ph(4-SCF ₃)
A-0788	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(4-SCF ₃)
A-0789	CH₂CF₃	Cl	F	1	CH ₂ CH ₂ Ph(4-SCF ₃)
A-0790	CH₂CF₃	Cl	Cl	0	CH ₂ CH ₂ Ph(4-SCF ₃)

Tabla 21

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0791	CH ₂ CF ₃	Cl	CI	1	CH ₂ CH ₂ Ph(4-SCF ₃)
A-0792	CH ₂ CF ₃	Me	Ме	1	CH ₂ CH ₂ Ph(4-SCF ₃)
A-0793	CH ₂ CF ₃	Me	CI	1	CH ₂ CH ₂ Ph(4-SCF ₃)
A-0794	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(4-CF(CF ₃) ₂)
A-0795	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ Ph(4-NO ₂)
A-0796	CH₂CF₃	Me	F	1	CH ₂ CH ₂ Ph(4-NO ₂)
A-0797	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ Ph(4-OS(=O) ₂ CF ₃)
A-0798	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ Ph(4-OS(=O) ₂ CF ₃)
A-0799	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(4-OS(=O) ₂ CF ₃)
A-0800	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ Ph(4-OS(=O) ₂ CF ₃)
A-0801	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(2,4-Cl ₂)
A-0802	CH₂CF₃	Me	F	0	CH ₂ CH ₂ Ph(3,4-Cl ₂)
A-0803	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(3,4-Cl ₂)
A-0804	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(3,4,5-Cl ₃)
A-0805	CH₂CF₃	Me	F	1	CH ₂ CH ₂ Ph(2,3,4-F ₃)
A-0806	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ Ph(2,3,4-F ₃)
A-0807	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(2,4,5-F ₃)
A-0808	CH₂CF₃	Cl	F	1	CH ₂ CH ₂ Ph(2,4,5-F ₃)
A-0809	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ Ph(3,4,5-F ₃)
A-0810	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(3,4,5-F ₃)
A-0811	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ Ph(2,4,6-F ₃)
A-0812	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(2,4,6-F ₃)
A-0813	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ Ph(3-CF ₃ ,4-F)
A-0814	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(3-CF ₃ ,4-F)

Compuesto n.º	R ¹	R ²	R^3	n	R⁴
A-0815	CH₂CF₃	CI	F	0	CH ₂ CH ₂ Ph(3-CF ₃ ,4-F)
A-0816	CH₂CF₃	CI	F	1	CH ₂ CH ₂ Ph(3-CF ₃ ,4-F)
A-0817	CH₂CF₃	CI	F	1	CH ₂ CH ₂ Ph(2-F,4-CF ₃)
A-0818	CH₂CF₃	Me	CI	1	CH ₂ CH ₂ Ph(2-F,4-CF ₃)
A-0819	CH₂CF₃	CI	CI	0	CH ₂ CH ₂ Ph(2-F,4-CF ₃)
A-0820	CH₂CF₃	CI	CI	1	CH ₂ CH ₂ Ph(2-F,4-CF ₃)
A-0821	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ Ph(3-F,4-CF ₃)
A-0822	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ Ph(3-F,4-CF ₃)
A-0823	CH₂CF₃	CI	F	1	CH ₂ CH ₂ Ph(3-F,4-CF ₃)
A-0824	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ Ph(3-F,4-CF ₃)
A-0825	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ Ph(2-F,4-CF ₃)
A-0826	CH₂CF₃	CI	F	0	CH ₂ CH ₂ Ph(3-Cl,4-OCHF ₂)
A-0827	CH₂CF₃	CI	F	1	CH ₂ CH ₂ Ph(3-Cl,4-OCHF ₂)
A-0828	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ Ph(4-Ph(4-CF ₃))
A-0829	CH₂CF₃	Me	F	1	CH ₂ CH ₂ Ph(4-Ph(4-CF ₃))
A-0830	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ Ph(4-OCH ₂ Ph)

Tabla 22

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0831	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ Ph(4-OCH ₂ Ph)
A-0832	CH ₂ CF ₃	Cl	F	0	CH ₂ C(Me) ₂ Ph(4-CI)
A-0833	CH ₂ CF ₃	Cl	F	1	CH ₂ C(Me) ₂ Ph(4-CI)
A-0834	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ Ph
A-0835	CH ₂ CF ₃	Me	F	0	CH₂CH(CH₃)Ph
A-0836	CH ₂ CF ₃	Me	F	0	CH(CH₃)CH₂Ph
A-0837	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ Ph
A-0838	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ Ph(4-CF ₃)
A-0839	CH₂CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ Ph(4-CF ₃)
A-0840	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ Ph(4-CF ₃)
A-0841	CH ₂ CF ₃	Me	CI	1	CH ₂ CH ₂ CH ₂ Ph(4-CF ₃)
A-0842	CH ₂ CF ₃	CI	CI	1	CH ₂ CH ₂ CH ₂ Ph(4-CF ₃)
A-0843	CH ₂ CF ₃	Me	Ме	1	CH ₂ CH ₂ CH ₂ Ph(4-CF ₃)
A-0844	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ Ph(3-CF ₃)
A-0845	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ Ph(3-CF ₃)

Compuesto n.º	R ¹	R ²	R^3	n	R ⁴
A-0846	CH₂CF₃	Me	F	0	CH ₂ CH ₂ CH ₂ Ph(4-tBu)
A-0847	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ Ph(4-tBu)
A-0848	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ Ph(4-CN)
A-0849	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ Ph(4-CN)
A-0850	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ Ph(4-OCHF ₂)
A-0851	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ Ph(4-OCF ₃)
A-0852	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ Ph(4-SCHF ₂)
A-0853	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ Ph(4-SCF ₃)
A-0854	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ Ph(4-SCF ₃)
A-0855	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ Ph(3,4,5-F ₃)
A-0856	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ Ph(3,4,5-F ₃)
A-0857	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ Ph(2,4,6-F ₃)
A-0858	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ Ph(2,4,6-F ₃)
A-0859	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ Ph(4-CF(CF ₃) ₂)
A-0860	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ Ph
A-0861	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH(CH ₃)Ph
A-0862	CH ₂ CF ₃	Ме	F	0	CH ₂ CH(CH ₃)CH ₂ Ph
A-0863	CH₂CF₃	Ме	F	0	CH(CH ₃)CH ₂ CH ₂ Ph
A-0864	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ Ph
A-0865	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ Ph(4-F)
A-0866	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ Ph(4-CF ₃)
A-0867	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ Ph(4-OCF ₃)
A-0868	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ Ph(4-SCF ₃)
A-0869	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ Ph
A-0870	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Ph

Tabla 23

Compuesto n.º	R ¹	R ²	R ³	n	R ⁴
A-0871	CH ₂ CF ₃	Ме	F	0	CH₂CH₂SPh
A-0872	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SPh
A-0873	CH₂CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ SPh
A-0874	CH ₂ CF ₃	Me	F	0	CH₂CH(CH₃)SPh
A-0875	CH ₂ CF ₃	Ме	F	0	CH(CH₃)CH₂SPh
A-0876	CH ₂ CF ₃	Ме	F	1	CH ₁ CH ₂ CH ₂ SPh(4-CI)

Compuesto n.º	R ¹	R ²	R^3	n	R ⁴
A-0877	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ SPh(4-tBu)
A-0878	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ SPh(4-F)
A-0879	CH₂CF₃	Me	F	0	CH ₂ CH ₂ CH ₂ SPh(4-Br)
A-0880	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SPh(4-CF ₃)
A-0881	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ SPh(4-CF ₃)
A-0882	CH₂CF₃	CI	F	0	CH ₂ CH ₂ CH ₂ SPh(4-CF ₃)
A-0883*	CH₂CF₃	Me	Н	0	CH ₂ CH ₂ CH ₂ SPh(4-CF ₃)
A-0884	CH₂CF₃	Me	F	0	CH ₂ CH ₂ CH ₂ SPh(3-CF ₃)
A-0885	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ CH ₂ SPh(3-CF ₃)
A-0886	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ SPh(3-SCF ₃)
A-0887	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ SPh(4-SCF ₃)
A-0888	CH₂CF₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SPh
A-0889	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SPh(4-CI)
A-0890	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SPh(4-F)
A-0891	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SPh(4-tBu)
A-0892	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SPh(3-CF ₃)
A-0893	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SPh
A-0894	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SPh(4-CF ₃)
A-0895	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SPh(4-CI)
A-0896	CH₂CF₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SPh(4-F)
A-0897	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ S(=O)Ph
A-0898	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ S(=O)Ph
A-0899	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ S(=O)Ph
A-0900	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ S(=O)Ph(4-CF ₃)
A-0901	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ CH ₂ S(=O)Ph(4-CF ₃)
A-0902	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ CH ₂ S(=O)Ph(4-F)
A-0903	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ CH ₂ S(=O)Ph(4-tBu)
A-0904	CH₂CF₃	Ме	F	1	$CH_2CH_2CH_2S(=O)_2Ph(4-CF_3)$
A-0905	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ S(=O) ₂ Ph(4-CI)
A-0906	CH₂CF₃	Ме	F	1	$CH_2CH_2CH_2S(=O)_2Ph(4-F)$
A-0907	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ Ph
A-0908	CH₂CF₃	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ Ph
A-0909	CH₂CF₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ Ph
A-0910	CH₂CF₃	Ме	F	0	$CH_2CH_2CH_2CH_2S(=O)_2Ph(4-CF_3)$

Tabla 24

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0911	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ Ph(4-Cl)
A-0912	CH ₂ CF ₃	Ме	F	0	CH₂CH₂SCH₂Ph
A-0913	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SCH ₂ Ph
A-0914	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ SCH ₂ Ph
A-0915	CH ₂ CF ₃	Ме	CI	0	CH ₂ CH ₂ CH ₂ SCH ₂ Ph
A-0916	CH₂CF₃	CN	F	0	CH ₂ CH ₂ CH ₂ SCH ₂ Ph
A-0917*	CH₂CF₃	Ме	Н	0	CH ₂ CH ₂ CH ₂ SCH ₂ Ph
A-0918	CH₂CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ SCH ₂ Ph
A-0919	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SCH ₂ Ph(2-Cl)
A-0920	CH₂CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SCH ₂ Ph(3-Cl)
A-0921	CH₂CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SCH ₂ Ph(4-Cl)
A-0922	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ CH ₂ SCH ₂ Ph(4-Cl)
A-0923	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SCH ₂ Ph(4-CF ₃)
A-0924	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ SCH ₂ Ph(4-CF ₃)
A-0925	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ SCH ₂ Ph(3-CF ₃)
A-0926	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SCH ₂ Ph(4-NO ₂)
A-0927	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ SCH ₂ Ph(2-SCF ₃)
A-0928	CH₂CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ Ph
A-0929	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ Ph(4-CF ₃)
A-0930	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ Ph(4-Cl)
A-0931	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ Ph(4-CN)
A-0932	CH₂CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₂ Ph
A-0933	CH₂CF ₃	Me	F	0	CH ₂ CH ₂ SCH ₂ CH ₂ Ph
A-6934	CH ₂ CF ₃	Ме	F	0	CH₂CH₂SCH(Me)Ph
A-0935	CH₂CF ₃	Ме	F	0	CH₂CH₂CH₂SCH₂CH₂Ph
A-0936	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SCH(Me)Ph
A-0937	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Ph
A-0938	CH₂CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SCH(Me)Ph
A-0939	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ S(=O)CH ₂ Ph(4-CF ₃)
A-0940	CH₂CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ S(=O)CH ₂ Ph
A-0941	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ S(=O)CH ₂ Ph(4-CF ₃)
A-0942	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ S(=O)CH ₂ Ph(4-Cl)
A-0943	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ S(=O)CH ₂ Ph(2-SCF ₃)

Compuesto n.º	R ¹	R ²	R ³	n	R ⁴
A-0944	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ S(=O)CH ₂ Ph(4-SCF ₃)
A-0945	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ S(=O)CH ₂ Ph(4-CF ₃)
A-0946	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O)CH ₂ Ph(4-CF ₃)
A-0947	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ S(=O) ₂ CH ₂ Ph(4-CF ₃)
A-0948	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ S(=O) ₂ CH ₂ Ph
A-0949	CH₂CF₃	Me	F	0	CH ₂ CH ₂ CH ₂ S(=O) ₂ CH ₂ Ph(4-CF ₃)
A-0950	CH₂CF₃	Me	F	1	CH ₂ CH ₂ CH ₂ S(=O) ₂ CH ₂ Ph(4-Cl)

Tabla 25

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-0951	CH ₂ CF ₃	Ме	F	0	$CH_2CH_2CH_2CH_2S(=O)_2CH_2Ph(4-CF_3)$
A-0952	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ S(=O) ₂ CH ₂ Ph (4-CF ₃)
A-0953	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ OPh(4-CF ₃)
A-0954	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ OPh
A-0955	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ OPh(4-Cl)
A-0956	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ OPh(4-CF ₃)
A-0957	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ OPh(4-CF ₃)
A-0958	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ OPh(4-CF ₃)
A-0959	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CPh(4-OCF ₃)
A-0960	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ OPh(4-OCF ₃)
A-0961	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OPh(4-CF ₃)
A-0962*	CH ₂ CF ₃	Me	Н	0	CH ₂ CH ₂ OCH ₂ Ph
A-0963*	CH ₂ CF ₃	Ме	Н	0	CH ₂ CH ₂ CH ₂ OCH ₂ Ph
A-0964*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ CH ₂ OCH ₂ Ph
A-0965	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ OCH ₂ Ph
A-0966	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ OCH ₂ Ph
A-0967	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ Ph
A-0968	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ ON=C(Me)CF ₃
A-0969	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ ON=C(Me)CF ₃
A-0970	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ ON=CHtBu
A-0971	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ ON=CHtBu
A-0972	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ ON=C(Me)CF ₃
A-0973	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ ON=C(Me)CF ₃
A-0974	CH ₂ CF ₃	Me	F	1	CH ₂ CH(CH ₃)ON=C(Me)CF ₃

Compuesto n.º	R ¹	R ²	R^3	n	R⁴
A-0975	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CN=CHCF ₃
A-0976	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ ON=CHCF ₃
A-0977	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ ON=C(Me)CF ₃
A-0978	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ ON=C(Me)CF ₃
A-0979	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ ON=C(Me)CCI ₃
A-0980	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ ON=C(Me)CCI ₃
A-0981	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ ON=CHCF ₃
A-0982	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CN=CHCF ₃
A-0983	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ ON=C(Me)CF ₃
A-0984	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ ON=C(Me)CF ₃
A-0985	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ ON=C(Me)CF ₃
A-0986	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH(CH ₃)ON=C(Me)CF ₃
A-0987	CH ₂ CF ₃	Me	F	1	CH ₂ CH(CH ₃)CH ₂ ON=C(Me)CF ₃
A-0988	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ ON=C(Me)CF ₃
A-0989	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CN=C(Me)cPr
A-0990	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ ON=C(Me)cPr

Tabla 26

0	<u> Б</u> 1	D2	D3	1 _ 1	R ⁴
Compuesto n.º	R ¹	R ²	R ³	n	ĸ
A-0991	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ ON=C(Me)CF ₃
A-0992	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ ON=C(Me)CF ₃
A-0993	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH(CH ₃)ON=C(Me)CF ₃
A-0994	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH(CH ₃)CH ₂ ON=C(Me)CF ₃
A-0995	CH ₂ CF ₃	Ме	F	1	CH ₂ CH(CH ₃)CH ₂ CH ₂ ON=C(Me)CF ₃
A-0996	CH ₂ CF ₃	Ме	F	0	·~~~
A-0997	CH ₂ CF ₃	Me	F	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A-0998	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ ON=CHPh
A-0999	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ ON=CHPh(4-CF ₃)
A-1000	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ ON=CHPh(4-CF ₃)
A-1001	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ ON=CHPh(4-5CF ₃)
A-1002	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ ON=CHPh(4-5CF ₃)
A-1003	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ ON=CHPh(4-CF ₃)
A-1004	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ ON=CHPh(3-CF ₃)

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-1005	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ ON=CHPh(4-CF ₃)
A-1006	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ ON=CHPh(3-CF ₃)
A-1007	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ ON=CHPh(4-SCF ₃)
A-1008	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ ON=CHPh(4-SCF ₃)
A-1009	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ ON=C(Me)Ph(4-CF ₃)
A-1010	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ ON=C(Me)Ph(4-GF ₃)
A-1011	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ ON=CHPh(4-SCF ₃)
A-1012	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ ON=CHPh(4-SCF ₃)
A-1013	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ SC(=O)NMe ₂
A-1014	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ SC(=O)NHCH ₂ CF ₃
A-1015	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ SC(=O)NMe ₂
A-1016	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ SC(=O)NMe ₂
A-1017	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CC(=O)NHtBu
A-1018	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ SC(=O)NHCH ₂ CF ₃
A-1019	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SC(=O)NHtBu
A-1020	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ NHC(=O)OtBu
A-1021	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ NHC(=O)OtBu
A-1022	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ NHC(=O)OCH ₂ CF ₃
A-1023	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ NHC(=0)OCH ₂ CH ₂ CF ₃
A-1024	CH ₂ CF ₃ ·	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CC(=O)Me
A-1025	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CC(=O)Me
A-1026*	CH ₂ CF ₃	Me	Н	0	CH ₂ CH ₂ OC(=O)Ph
A-1027*	CH ₂ CF ₃	Me	Н	1	CH ₂ CH ₂ OC(=O)Ph
A-1028	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ OC(=O)Ph(4-CF ₃)

Tabla 27

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-1029	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ OC(=O)Ph(4-CF ₃)
A-1030	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CC(=O)Ph(4-CF ₃)
A-1031	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CC(=O)Ph(4-CF ₃)
A-1032	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ OS(=O) ₂ Me
A-1033	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ OS(=O) ₂ Me
A-1034	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ CS(=O) ₂ CF ₃
A-1035	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CS(=O) ₂ CF ₃

ES 2 658 957 T3

Compuesto n.º	R ¹	R ²	R ³	n	R^4
A-1036	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CS(=O) ₂ CF ₃
A-1037	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OS(=O) ₂ CF ₂ CF ₂ CF ₃
A-1038	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ OS(=O)CF ₃
A-1039	CH ₂ CF ₃	Ме	F	1	$CH_2CH_2CH_2OS(=O)CF_3$
A-1040	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CS(=O)CF ₃
A-1041	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CS(=O)CF ₃
A-1042	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CS(=O)CF ₃
A-1043	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ ONH ₂
A-1044	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ ONH ₂
A-1045	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ ONH ₂
A-1046	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CNH ₂
A-1047	CH₂CF₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ ONH ₂
A-1048	CH ₂ CF ₃	Ме	F	0	CH ₂ C(=O)OEt
A-1049	CH ₂ CF ₃	Me	F	1	$CH_2CH_2C(=O)OtBu$
A-1050	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ C(=O)OEt
A-1051	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ C(=O)OtBu
A-1052	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ C(=O)OtBu
A-1053	CH ₂ CF ₃	Ме	F	1	$CH_2CH_2CH_2C(=O)OtBu$
A-1054	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ C(=O)OtBu
A-1055	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C(=O)OtBu
A-1056	CH ₂ CF ₃	Ме	F	1	$CH_2CH_2CH_2CH_2CH_2CH_2C(=O)OtBu$
A-1057	CH ₂ CF ₃	Me	F	0	CH ₂ C(=O)OEt
A-1058	CH ₂ CF ₃	Cl	F	0	CH ₂ C(=O)OEt
A-1059	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ C(=O)OH
A-1060	CH ₂ CF ₃	CI	CI	0	CH ₂ CH ₂ CH ₂ C(=O)OH
A-1061	CH₂CF₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C(=O)OH
A-1062	CH₂CF₃	Me	F	0	CH ₂ CH ₂ CH ₂ C(=O)NH(terc-pentilo)
A-1063	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ C(=O)NHtBu
A-1064	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ C(=O)NHCH ₂ CF ₃
A-1065	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ C(=O)NHtBu
A-1066	CH₂CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ C(=O)NHCH ₂ CF ₃
A-1067	CH₂CF₃	Me	F	0	CH ₂ CH ₂ CH ₂ C(=O)NHtBu
A-1068	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ C(=O)NHCH ₂ CF ₃

Tabla 28

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-1069	CH₂CF₃	Ме	F	1	CH ₂ CH ₂ CH ₂ C(=O)CF ₃
A-1070	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ C(=O)CF ₃
A-1071	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ C(=O)CF ₃
A-1072	CH₂CF₃	CI	F	0	CH ₂ CH ₂ CH ₂ C(=O)CF ₃
A-1073	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ C(=O)CF ₃
A-1074	CH₂CF₃	CI	CI	0	CH ₂ CH ₂ CH ₂ C(=O)CF ₃
A-1075	CH ₂ CF ₃	Cl	Cl	1	CH ₂ CH ₂ CH ₂ C(=O)CF ₃
A-1076	CH ₂ CF ₃	Ме	Me	1	CH ₂ CH ₂ CH ₂ C(=O)CF ₃
A-1077	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C(=O)CF ₃
A-1078	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C(=O)CF ₃
A-1079	CH ₂ CF ₃	Ме	F	0	CH ₂ C(=O)Ph(4-Cl)
A-1080	CH ₂ CF ₃	Ме	F	1	CH ₂ C(=O)Ph(4-CI)
A-1081	CH ₂ CF ₃	Ме	F	0	CH ₂ C(=O)Ph(4-CF ₃)
A-1082	CH ₂ CF ₃	Ме	F	1	CH ₂ C(=O)Ph(4-CF ₃)
A-1083	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ C(=O)Ph(4-CF ₃)
A-1084	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ C(=O)Ph(4-CF ₃)
A-1085	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ C(=O)Ph(4-CF ₃)
A-1086	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ C(=O)Ph(4-CF ₃)
A-1087	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CN
A-1088	CH ₂ CF ₃	Ме	F	1	CH₂CH₂CH2CN
A-1089	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CN
A-1090	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-1091	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-1092	CH ₂ CF ₃	Ме	F	1	cPr
A-1093	CH ₂ CF ₃	Ме	F	0	cPen
A-1094	CH ₂ CF ₃	Me	F	1	cPen
A-1095	CH ₂ CF ₃	Me	F	0	cHex
A-1096	CH ₂ CF ₃	Ме	F	1	cHex
A-1097	CH ₂ CF ₃	CN	F	0	cHex
A-1098	CH ₂ CF ₃	CN	F	1	cHex
A-1099	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ NH ₂
A-1100	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ NH ₂
A-1101	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ NH ₂

Compuesto n.º	R ¹	R ²	R^3	n	R ⁴
A-1102	CH₂CF₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NH ₂
A-1103	CH₂CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ N(Me)tBu
A-1104	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ NHCH ₂ CF ₃
A-1105	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ N(Me)tBu
A-1106	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHCH ₂ CF ₃
A-1107	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ NHC(=O)C(Me)(CF ₃) ₂
A-1108	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ NHC(=O)C(Me)(CF ₃) ₂

Tabla 29

compuesto n.º	R ¹	R ²	R^3	n	R ⁴
A-1109	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ N(Me)C(=O)tBu
A-1110	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ NHC(=O)CH ₂ CF ₃
A-1111	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)CH(CH ₃) ₂
A-1112	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)tBu
A-1113	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)tBu
A-1114	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)CH ₂ tBu
A-1115	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ N(Me)C(=O)tBu
A-1116	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)CF ₃
A-1117	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)CF ₃
A-1118	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)CH ₂ CF ₃
A-1119	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)CH ₂ CF ₃
A-1120	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)CCl ₃
A-1121	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)CF(CF ₃) ₂
A-1122	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)Ph
A-1123	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)Ph
A-1124	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)OCH(CH ₃) ₂
A-1125	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)OtBu
A-1126	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)OtBu
A-1127	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)OCH ₂ CCl ₃
A-1128	CH₂CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)OCH ₂ CCl ₃
A-1129	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)OCH ₂ CF ₃
A-1130	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)NHEt
A-1131	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)NHtBu
A-1132	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)NHtBu

Compuesto n.º	R ¹	R ²	R ³	n	R ⁴
A-1133	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ NHC(=O)NHCH ₂ CCI ₃
A-1134	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)NHCH ₂ CH ₂ F
A-1135	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHC(=O)NHCH ₂ CF ₃
A-1136	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1137	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1138	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1139	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1140	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1141	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1142	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1143	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1144	CH ₂ CF ₃	Ме	CI	1	CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1145	CH ₂ CF ₃	CN	F	1	CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1146	CH ₂ CF ₃	CN	F	1	CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CHF ₂
A-1147	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF(CF ₃) ₂
A-1148	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF(CF ₃) ₂

Tabla 30

Compuesto n.º	R ¹	R²	R ³	n	R⁴
A-1149	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CH ₃
A-1150	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CH ₃
A-1151	CH ₂ CF ₃	Cl	F	0	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CH ₃
A-1152	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CH ₃
A-1153	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CH(CH ₃) ₂
A-1154	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CHF ₂
A-1155	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CHF ₂
A-1156	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1157	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1158	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1159	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1160	CH ₂ CF ₃	Ме	Cl	1	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1161*	CH ₂ CF ₃	Ме	Н	1	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1162	CH ₂ CF ₃	Cl	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1163	CH ₂ CF ₃	Ме	Ме	1	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃

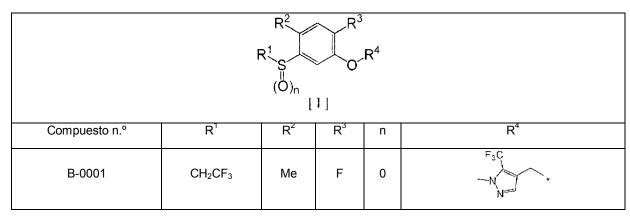

A-1164	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CH ₃
A-1165	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CH ₃
A-1166	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NHS(=0) ₂ CHF ₂
A-1167	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1168	CH₂CF₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1169	CH ₂ CF ₃	Me	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NHS (=O) ₂ CF ₃
A-1170	CH₂CF₃	CI	CI	1	CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ CF ₃
A-1171	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ Ph
A-1172	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ Ph
A-1173	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ Ph(4-CF ₃)
A-1174	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NHS(=O) ₂ Ph(4-CF ₃)
A-1175	CH ₂ CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NHS (=O) ₂ CF ₃
A-1176	CH₂CF₃	Me	F	1	$CH_2CH_2N(Me)S(=O)_2CF_3$
A-1177	CH₂CF₃	Me	F	0	CH ₂ CH ₂ N(Ac)S(=O) ₂ CF ₃
A-1178	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ N(Ac)S(=O) ₂ CF ₃
A-1179	CH₂CF₃	Me	F	1	CH ₂ CH ₂ N(CO Bu)S(=O) ₂ CF ₃
A-1180	CH ₂ CF ₃	Me	F	0	$CH_2CH_2N(CO_2CH_3)S(=O)_2CF_3$
A-1181	CH ₂ CF ₃	Ме	F	1	$CH_2CH_2N(CO_2CH_3)S(=O)_2CF_3$
A-1182	CH₂CF₃	CI	F	0	$CH_2CH_2N(CO_2CH_3)S(=O)_2CF_3$
A-1183	CH ₂ CF ₃	CI	F	1	$CH_2CH_2N(CO_2CH_3)S(=O)_2CF_3$
A-1184	CH₂CF₃	Ме	F	1	$CH_2CH_2CH_2N(Me)S(=O)_2CF_3$
A-1185	CH₂CF₃	Ме	F	0	CH ₂ CH ₂ CH ₂ N(Ac)S(=O) ₂ CF ₃
A-1186	CH ₂ CF ₃	Ме	F	1	$CH_2CH_2CH_2N(Ac)S(=O)_2CF_3$
A-1187	CH ₂ CF ₃	CI	F	1	$CH_2CH_2CH_2N(CO_2CH_3)S(=O)_2CF_3$
A-1188	CH ₂ CF ₃	Ме	F	1	$CH_2CH_2CH_2N(CO_2CH_3)S(=O)_2CF_3$

Tabla 31

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
A-1189	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ N(CO ₂ tBu)S(=O) ₂ CF ₃
A-1190	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ N(Me)S(=O) ₂ CF ₃
A-1191	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ N(Ac)S(=O) ₂ CF ₃
A-1192	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ N(Ac)S(=O) ₂ CF ₃
A-1193	CH ₂ CF ₃	Cf	F	1	CH ₂ CH ₂ CH ₂ N(propionil)S(=O) ₂ CF ₃
A-1194	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ N(pivaloil)DS(=O) ₂ CF ₃
A-1195	CH₂CF ₃	Me	F	0	CH ₂ CH ₂ CH ₂ N(CO ₂ CH ₃)S(=O) ₂ CF ₃

Compuesto n.º	R ¹	R ²	R^3	n	R⁴
A-1196	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ N(CO ₂ CH ₃)S(=O) ₂ CF ₃
A-1197	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ CH ₂ CH ₂ N(CO ₂ CH ₃)S(=O) ₂ CF ₃
A-1198	CH ₂ CF ₃	Me	F	1	CH ₂ CH ₂ CH ₂ CH ₂ N(CO ₂ tBu)S(=O) ₂ CF ₃
A-1199	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ CH ₂ N(CO ₂ tBu)S(=O) ₂ CF ₃
A-1200	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ N(Ac)S(=O) ₂ CF ₃
A-1201	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ N(CO ₂ CH ₃)S(=O) ₂ CF ₃
A-1202	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ N (CO ₂ CH ₃)S(=O) ₂ CF ₃
A-1203	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ SMe ₃
A-1204	CH ₂ CF ₃	CI	F	1	CH ₂ CH ₂ SMe ₃
A-1205	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SMe ₃
A-1206*	CH ₂ CF ₃	Ме	Н	0	CH ₂ CH ₂ CH ₂ SMe ₃
A-1207	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ SMe ₃
A-1208	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ SMe ₃
A-1209*	CH ₂ CF ₃	Ме	Н	1	CH ₂ CH ₂ CH ₂ SMe ₃
A-1210	CH ₂ CF ₃	Ме	F	0	CH ₂ CH ₂ CH ₂ SMe ₃
A-1211	CH ₂ CF ₃	Ме	F	1	CH ₂ CH ₂ CH ₂ SMe ₃
A-1212	CH ₂ CF ₃	CI	F	0	CH ₂ CH ₂ CH ₂ SMe ₃
A-1213	CH ₂ CF ₃	Cl	F	1	CH ₂ CH ₂ CH ₂ SMe ₃
A-1214	CH ₂ CF ₃	CI	F	1	SO₂CH₂Ph
A-1215	CH ₂ CF ₃	Ме	F	1	C(=O)Ph
A-1216	CH ₂ CF ₃	Ме	F	0	C(=O)Ph
A-1217	CH ₂ CF ₃	Cl	F	0	C(=O)Ph
A-1218	CH ₂ CF ₃	CI	F	1	C(=O)Ph

Tabla 32

R^2 R^3 R^4 O								
Compuesto n.º	R ¹	R²	R ³	n	R⁴			
B-0002	CH₂CF₃	Me	F	1	CF ₃			
B-0003	CH₂CF₃	Me	F	0	F ₃ C N CF ₃			
B-0004	CH₂CF₃	Me	F	1	F_3C N CF_3			
B-0005	CH ₂ CF ₃	Me	F	0	F ₃ C N .			
B-0006	CH₂CF₃	Me	F	1	F _S C N			
B-0007	CH₂CF₃	Me	F	0	F _S C N			
B-0008	CH₂CF₃	Me	F	1	F ₂ C N			
B-0009	CH ₂ CF ₃	Me	F	1	F ₂ C .			
B-0010	CH₂CF₃	Me	F	0	F ₃ C N CI			

Tabla 33

Compuesto n.º	R ¹	R²	R ³	n	R⁴
B-0011	CH₂CF₃	Ме	F	1	F ₃ C N ^
B-0012	CH₂CF₃	Ме	F	0	Br v · ·
B-0013	CH₂CF₃	Ме	F	1	Br , ,
B-0014	CH₂CF₃	CI	F	0	Br N
B-0015	CH₂CF₃	CI	F	1	Br , ,

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
B-0016	CH₂CF₃	CI	F	0	
B-0017	CH₂CF ₃	Ме	F	0	F ₃ C N
B-0018	CH₂CF₃	Ме	F	1	F ₃ C N
B-0019	CH₂CF₃	Ме	F	1	F ₂ C N
B-0020	CH₂CF₃	Me	F	0	Y N +
B-0021	CH₂CF₃	Me	F	1	CF3
B-0022	CH₂CF₃	Ме	F	0	F ₃ C N

Compuesto n.º	R ¹	R ²	R³	n	R⁴
B-0023	CH ₂ CF ₃	Ме	F	1	F ₃ C N
B-0024	CH₂CF₃	Me	F	0	CF ₃
B-0025	CH₂CF₃	Me	F	1	CF ₃
B-0026	CH₂CF₃	Ме	F	1	S
B-0027	CH₂CF₃	Me	F	1	
B-0028	CH₂CF₃	Me	F	0	*
B-0029	CH₂CF₃	Me	F	0	*
B-0030	CH₂CF₃	Ме	F	1	· -

ES 2 658 957 T3

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
B-0031	CH ₂ CF ₃	Me	F	0	F ₃ C ,
B-0032	CH₂CF₃	Me	F	1	F ₃ C · ·
B-0033	CH₂CF₃	Me	F	0	F ₃ C *

Compuesto n.º	R ¹	R²	R ³	n	R⁴
B-0034	CH₂CF₃	Me	F	1	F ₃ C ·
B-0035	CH₂CF₃	Me	F	0	CF3
B-0036*	CH₂CF₃	Me	Н	0	CF ₃
B-0037*	CH₂CF₃	Me	Н	1	GF ₃
B-0038*	CH₂CF₃	CHF2	Н	0	CF3
B-0039*	CH₂CF₃	CHF2	Н	1	CF3
B-0040	CH₂CF₃	Me	F	2	CF.
B-0041	CH₂CF₃	Me	F	1	CF ₃
B-0042	CH₂CF₃	Me	F	0	CF3
B-0043	CH₂CF₃	CI	F	0	CF3
B-0044	CH₂CF₃	CI	F	1	CF3

	_1	1 =7			
Compuesto n.º	R ¹	R²	R³	n	R⁴
B-0046	CH₂CF₃	CN	F	1	CF ₃
B-0047	CH ₂ CF ₃	Ме	F	1	NC ₂
B-0048	CH₂CF₃	Ме	F	0	O ₂ N *
B-0049	CH ₂ CF ₃	Me	F	1	O ₂ N
B-0050	CH₂CF₃	Me	F	1	CZ CZ
B-0051	CH₂CF₃	Me	F	0	F ₃ C
B-0052	CH ₂ CF ₃	Me	F	1	F ₃ C
B-0053	CH ₂ CF ₃	Me	F	0	Cr N *
B-0054	CH ₂ CF ₃	Me	F	1	CI N
B-0055	CH ₂ CF ₃	Me	F	0	F ₃ C N
B-0056	CH₂CF₃	Me	F	1	F ₃ C N
B-0057	CH₂CF₃	Me	F	0	F ₃ C *

Tabla 37

Compuesto n.º	R ¹	R²	R ³	n	R⁴
B-0058	CH₂CF₃	Ме	F	1	F ₃ C .

Compuesto n.º	R ¹	R ²	R ³	n	R ⁴
B-0059	CH ₂ CF ₃	Me	F	1	F ₃ C Cl
B-0060	CH₂CF₃	Me	F	0	F ₃ C CI
B-0061	CH₂CF₃	Me	F	1	F ₃ C N *
B-0062	CH ₂ CF ₃	Me	F	1	OCHF ₂
B-0063	CH₂CF₃	Me	F	0	CF ₃
B-0064	CH ₂ CF ₃	Me	F	0	OCHF ₂
B-0065	CH₂CF₃	Me	F	1	CF ₂
B-0066	CH₂CF₃	Ме	F	0	<u></u>
B-0067	CH ₂ CF ₃	Me	F	1	
B-0068	CH₂CF₃	CI	F	0	F ₃ C .
B-0069	CH₂CF₃	CI	F	1	F ₃ C N

Tabla 38

Compuesto n.º	R ¹	R ²	R³	n	R⁴
B-0070	CH₂CF₃	Me	F	0	F ₃ C .
B-0071	CH₂CF ₃	Ме	F	1	F ₃ C N
B-0072	CH₂CF₃	CI	F	0	F ₃ C N
B-0073	CH₂CF₃	CI	F	1	F ₃ C N

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
B-0074	CH₂CF₃	Me	F	0	F ₃ C N
B-0075	CH₂CF ₃	Me	F	1	F ₃ C N
B-0076	CH₂CF₃	Me	F	0	F ₃ C *
B-0077	CH₂CF₃	Me	F	1	F ₃ C *
B-0078	CH₂CF ₃	CI	F	0	F ₃ C N *
B-0079	CH₂CF₃	СІ	F	1	Fac N
B-0080	CH₂CF₃	CI	F	0	F ₃ C .
B-0081	CH₂CF₃	CI	F	1	FaC N

Tabla 39

Compuesto n.º	R ¹	R²	R³	n	R⁴
B-0082	CH₂CF ₃	Ме	F	0	F ₃ C N
B-0083	CH₂CF₃	Me	F	1	F ₂ C N
B-0084	CH₂CF₃	CI	F	0	F ₃ C N F F
B-0085	CH₂CF₃	CI	F	1	Fac N F F
B-0086	CH₂CF₃	Me	F	0	F ₃ C N F F
B-0087	CH₂CF₃	Me	F	1	F ₃ C N F F
B-0088	CH ₂ CF ₃	Me	F	0	F ₃ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
B-0089	CH₂CF₃	Me	F	1	F ₃ C N
B-0090	CH₂CF₃	CI	F	0	F ₃ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
B-0091	CH₂CF₃	CI	F	1	F ₃ C .
B-0092	CH₂CF₃	CI	F	1	F ₂ C
B-0093	CH₂CF₃	Me	F	0	F ₃ C N

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
B-0094	CH ₂ CF ₃	CI	F	0	F ₃ CON.
B-0095	CH ₂ CF ₃	CI	F	1	F ₃ C N
B-0096	CH₂CF₃	Me	F	0	F ₃ C N
B-0097	CH₂CF₃	Me	F	0	F ₃ C N
B-0098	CH₂CF₃	Me	F	1	F ₃ C N
B-0099	CH₂CF₃	Me	F	0	F ₃ C N
B-0100	CH₂CF₃	Me	F	1	F ₃ C ·
B-0101	CH₂CF₃	Me	F	0	F ₃ C N
B-0102	CH ₂ CF ₃	CI	F	0	F ₃ C \ N
B-0103	CH ₂ CF ₃	CI	F	1	F ₉ C .

B-0104	CH ₂ CF ₃	Me	F	0	F ₃ C N
B-0105	CH ₂ CF ₃	Me	F	1	F ₃ C N

Compuesto n.º	R ¹	R ²	R ³	n	R⁴
B-0106	CH₂CF₃	Cl	F	0	F ₃ C N
B-0107	CH₂CF₃	CI	F	1	F ₃ C N
B-0108	CH₂CF₃	Me	F	0	F ₃ C N *
B-0109	CH₂CF₃	Me	F	0	F ₃ C .
B-0110	CH₂CF₃	Me	F	1	F ₃ C *
B-0111	CH₂CF₃	Me	F	1	F ₃ C S
B-0112	CH₂CF₃	Ме	F	1	F ₃ C Cl
B-0113	CH₂CF₃	Me	F	0	
B-0114	CH₂CF₃	CI	F	0	\$ ·
B-0115	CH₂CF₃	Me	F	0	,
B-0116	CH₂CF₃	Cl	F	0	de.
B-0117	CH₂CF₃	CI	F	0	S, N

Tabla 42

R^2 R^3 R^1 $(O)_n$ $[I']$							
Compuesto n.º	R ¹	R ²	R ³	n			
C-0001	CH ₂ CF ₃	Me	F	0			
C-0002	CH ₂ CF ₃	Me	F	1			
C-0003	CH₂CF₃	CI	F	0			
C-0004	CH₂CF₃	CI	F	1			
C-0005*	CH₂CF₃	Me	Н	0			
C-0006*	CH₂CF₃	Me	Н	1			
C-0007	CH ₂ CF ₃	Me	CI	0			
C-0008	CH ₂ CF ₃	Me	CI	1			
C-0009*	CH ₂ CF ₃	CI	Н	0			
C-0010*	CH₂CF₃	CI	Н	1			
C-0011	CH ₂ CF ₃	CN	F	0			
C-0012	CH ₂ CF ₃	CN	F	1			
C-0013	CH ₂ CF ₃	0Me	F	0			
C-0014	CH ₂ CF ₃	CI	CI	0			
C-0015	CH ₂ CF ₃	CI	CI	1			
C-0016	CH ₂ CF ₃	CI	F	2			
C-0017	CH ₂ CF ₃	Me	Me	0			
C-0018	CH₂CF₃	Me	Me	1			

El presente compuesto representado por la fórmula general [l] y la fórmula general [l'] puede producirse mediante los métodos mostrados a continuación, pero los métodos de producción del presente compuesto no están restringidos a los mismos. Además, por ejemplo, "el compuesto representado por la fórmula general [l-1]", "el compuesto representado por la fórmula [l-1]" y "el compuesto [l-1]", mencionados a continuación tienen el mismo significado.

<Método de producción 1>

De los presentes compuestos, puede producirse un compuesto representado por la fórmula general [1-1], por ejemplo, mediante el siguiente método.

10

5

[Fórmula 3]

5

10

15

20

25

30

35

40

$$\begin{array}{c|c}
R^{3} & R^{2} & R^{1}L^{1} \\
R^{4} & SH & R^{4} & R^{3} & R^{2}
\end{array}$$

(En la fórmula anterior, L^1 es un átomo de halógeno, grupo alquilsulfoniloxi $C_1 \sim C_6$, grupo trifluorometanosulfoniloxi, grupo nonafluorobutilsulfoniloxi, grupo fenilsulfoniloxi, grupo 4-toluenosulfoniloxi o SO_2M ; M es un metal alcalino o un metal alcalinotérreo y el metal alcalino es preferentemente sodio o potasio; y cada uno de R^1 , R^2 , R^3 y R^4 tiene el mismo significado que se ha mencionado anteriormente).

Por lo tanto, el compuesto representado por la fórmula general [I-1] puede producirse haciendo reaccionar un compuesto representado por la fórmula general [II] con un compuesto representado por la fórmula general [III] en un disolvente adecuado en presencia o ausencia de una base adecuada en presencia o ausencia de un iniciador de radicales adecuado.

La cantidad de compuesto [III] utilizada en la presente reacción se selecciona de forma adecuada y normalmente en el intervalo de 1,0 a 5,0 moles y es preferentemente de 1,0 a 2,0 moles con respecto a 1 mol del compuesto [II].

En cuanto al disolvente utilizable en la presente reacción, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un hidrocarburo halogenado, tal como diclorometano, cloroformo, 1,2-dicloroetano o similares; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un alcohol, tal como metanol, etanol, 2-propanol o similares; un nitrilo, tal como acetonitrilo, propionitrilo o similares; un éster, tal como acetato de etilo, propionato de etilo o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una piridina, tal como piridina, picolina o similares; agua; y una mezcla de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,3 a 5 litros con respecto a 1 mol del compuesto [II].

En cuanto a la base utilizable en la presente reacción, pueden mencionarse, por ejemplo, una base inorgánica, tal como hidróxido de metal alcalino (por ejemplo, hidróxido sódico o hidróxido potásico), hidróxido de metal alcalinotérreo (por ejemplo, hidróxido de calcio o hidróxido de magnesio), carbonato de metal alcalino (por ejemplo, carbonato sódico o carbonato potásico), bicarbonato de metal alcalino (por ejemplo hidrogenocarbonato sódico o hidrogenocarbonato potásico) o similares; un hidruro metálico (por ejemplo, hidruro sódico o hidruro potásico); un alcoholato metálico (por ejemplo, metóxido sódico, etóxido sódico o *terc*-butóxido potásico); y una base orgánica (por ejemplo, trietilamina, N,N-dimetilanilina, piridina, 4-N,N-dimetilaminopiridina o 1,8-diazabiciclo[5.4.0]-7-undeceno). Además, la cantidad utilizada de la base se selecciona de manera adecuada en un intervalo de 0 a 5,0 moles y preferentemente es de 0 a 1,2 moles con respecto a 1 mol del compuesto [II].

En cuanto al iniciador de radicales utilizable en la presente reacción, pueden mencionarse, por ejemplo, ácido sulfuroso, sulfito sódico, sulfito potásico, hidrogenosulfito sódico, hidrogenosulfito potásico y un aducto de ácido sulfuroso, tal como Rongalit (nombre comercial, formaldehidosulfoxilato sódico). Pueden utilizarse en combinación una base y un iniciador de radicales. La cantidad utilizada del iniciador de radicales se selecciona de forma adecuada en un intervalo de 0 a 5,0 moles y es preferentemente de 0 a 1,2 moles con respecto a 1 mol del compuesto [III].

La temperatura de la presente reacción se selecciona libremente y de manera habitual en un intervalo de temperatura de -30°C a la temperatura de reflujo del sistema de reacción y es preferentemente de 0°C a 150°C.

El tiempo de la presente reacción varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [I-1]. El compuesto aislado [I-1] puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

45 [Método de producción 2>

De los presentes compuestos, también puede producirse el compuesto representado por la fórmula general [1-1], por ejemplo, mediante el siguiente método utilizando un compuesto representado por la fórmula general [IV].

[Fórmula 4]

$$\begin{pmatrix}
R^3 & R^2 \\
R^4 & [V] & R^4 \\
\hline
 [IV] & 2
\end{pmatrix}$$

$$\begin{array}{c}
R^1 L^2 \\
 [V] & R^3 \\
 [I-1] & R^2
\end{array}$$

(En la fórmula anterior, L^2 es un átomo de halógeno o SO_2M ; y cada uno de R^1 , R^2 , R^3 , R^4 y M tiene el mismo significado que se ha dado anteriormente).

5 El compuesto representado por la fórmula general [I-1] puede producirse haciendo reaccionar un compuesto [IV] con un compuesto [V] en un disolvente adecuado en presencia de un iniciador de radicales adecuado.

La cantidad de compuesto [V] utilizado en la presente reacción se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 2,0 a 3,0 moles con respecto a 1 mol del compuesto [IV].

En cuanto al disolvente utilizable en la presente reacción, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un nitrilo, tal como acetonitrilo, propionitrilo o similares; un éster, tal como acetato de etilo, propionato de etilo o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una piridina, tal como piridina, picolina o similares; agua; y una mezcla de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,3 a 5 litros con respecto a 1 mol del compuesto [IV].

En cuanto al iniciador de radicales utilizable en la presente reacción, pueden mencionarse, por ejemplo, ácido sulfuroso, sulfito sódico, sulfito potásico, hidrogenosulfito sódico, hidrogenosulfito potásico y un aducto de ácido sulfuroso, tal como Rongalit (nombre comercial, formaldehidosulfoxilato sódico). La cantidad de iniciador de radicales utilizada se selecciona de forma adecuada en un intervalo de 0,01 a 5,0 moles y es preferentemente de 0,05 a 1,2 moles con respecto a 1 mol del compuesto [IV].

La temperatura de la presente reacción se selecciona libremente y de manera habitual en un intervalo de temperatura de -30°C a la temperatura de reflujo del sistema de reacción y es preferentemente de 0°C a 150°C.

El tiempo de la presente reacción varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [1-1]. El compuesto [1-1] aislado puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

30 [Método de producción 3>

De los presentes compuestos, también puede producirse el compuesto representado por la fórmula [I-1'], por ejemplo, mediante el siguiente método usando un compuesto representado por la fórmula general [VI].

[Fórmula 5]

20

25

35

$$\begin{array}{c|c}
R^{3} & R^{10} & R^{1-SH} \\
R^{4} & & R^{4} \\
\hline
 [VII] \\
\end{array}$$

$$\begin{array}{c}
R^{3} & R^{10} \\
\hline
 [VII] \\
\end{array}$$

(En la fórmula anterior, R¹⁰ es un grupo aceptor de electrones, tal como un grupo trifluorometilo, grupo nitro, grupo ciano o similar; cada uno de R¹, R³ y R⁴ tiene el mismo significado dado anteriormente; L³ es un átomo de halógeno,

grupo alquilsulfoniloxi $C_1 \sim C_6$, grupo trifluorometanosulfoniloxi, grupo nonafluorobutilsulfoniloxi, grupo fenilsulfoniloxi, grupo 4-toluenosulfoniloxi, grupo alquilsulfonilo $C_1 \sim C_6$ o grupo fenilsulfonilo).

El compuesto representado por la fórmula general [I-1'] puede producirse haciendo reaccionar un compuesto [VI] con un compuesto [VII] en un disolvente adecuado en presencia de cualquier base adecuada, cobre y óxido de cobre (I) o en presencia de una base adecuada y óxido de cobre (I).

La cantidad de compuesto [VII] utilizada en la presente reacción se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 1,0 a 1,2 moles con respecto a 1 mol del compuesto [VI].

En cuanto al disolvente utilizable en la presente reacción, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un alcohol, tal como metanol, etanol, 2-propanol, metil Cellosolve o similar; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una piridina, tal como piridina, picolina o similares; agua; y una mezcla de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0.3 a 10 litros con respecto a 1 mol del compuesto [VI].

En cuanto a la base utilizable en la presente reacción, pueden mencionarse, por ejemplo, una base inorgánica, tal como hidróxido de metal alcalino (por ejemplo, hidróxido sódico o hidróxido potásico), hidróxido de metal alcalinotérreo (por ejemplo, hidróxido de calcio o hidróxido de magnesio), carbonato de metal alcalino (por ejemplo, carbonato sódico o carbonato potásico), bicarbonato de metal alcalino (por ejemplo hidrogenocarbonato sódico o hidrogenocarbonato potásico) o similares; un hidruro metálico (por ejemplo, hidruro sódico o hidruro potásico); un alcoholato metálico (por ejemplo, metóxido sódico, etóxido sódico o terc-butóxido potásico); y una base orgánica (por ejemplo, trietilamina, N,N-dimetilanilina, piridina, 4-N,N-dimetilaminopiridina o 1,8-diazabiciclo[5.4.0]-7-undeceno).

Las cantidades de la base, cobre y óxido de cobre (I) utilizadas en la presente reacción se seleccionan de forma adecuada en un intervalo de 1,0 a 5,0 moles y son preferentemente de 1,0 a 1,2 moles con respecto a 1 mol del compuesto [VI].

La temperatura de la presente reacción se selecciona libremente y de manera habitual en un intervalo de temperatura de -70°C a la temperatura de reflujo del sistema de reacción y es preferentemente de 0°C a 150°C.

El tiempo de la presente reacción varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [I-1]. El compuesto aislado [I-1'] puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

[Método de producción 4]

De los presentes compuestos, también puede producirse un compuesto representado por la fórmula general [1-1], por ejemplo, mediante un método representado por la siguiente fórmula de reacción utilizado un compuesto representado por la fórmula general [VIII].

[Fórmula 6]

5

10

25

45

40 (En la fórmula anterior, cada uno de R¹, R², R³, R⁴ y M tiene el mismo significado dado anteriormente).

El compuesto representado por la fórmula general [I-1] puede producirse convirtiendo un compuesto [VIII] en una sal de diazonio en un disolvente adecuado con el método descrito en Organic Syntheses Coll., Vol. 3, p. 185 (1955) (por ejemplo, un método en el que se utiliza un ácido mineral (por ejemplo, ácido clorhídrico o ácido sulfúrico) y una sal del ácido nitroso o un nitrito de alquilo) y haciendo reaccionar después la sal de diazonio con una sal de mercaptano representada por un compuesto [IX] o un disulfuro representado por un compuesto [X].

La cantidad de compuesto [IX] o del compuesto [X] utilizada en la presente reacción se selecciona de forma adecuada en un intervalo de 0,3 a 5,0 moles y es preferentemente de 0,5 a 2,0 moles con respecto a 1 mol del compuesto [VIII].

En cuanto al disolvente utilizable en la presente reacción, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un hidrocarburo halogenado, tal como diclorometano, cloroformo, 1,2-dicloroetano o similares; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un alcohol, tal como metanol, etanol, 2-propanol o similares; un nitrilo, tal como acetonitrilo, propionitrilo o similares; un éster, tal como acetato de etilo, propionato de etilo o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una piridina, tal como piridina, picolina o similares; agua; y una mezcla de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,3 a 10 litros con respecto a 1 mol del compuesto [VIII].

La temperatura de la presente reacción se selecciona libremente y de manera habitual en un intervalo de temperatura de -30°C a la temperatura de reflujo del sistema de reacción y es preferentemente de -10°C a 100°C.

15 El tiempo de la presente reacción varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua, extracción con disolvente orgánico, concentración y similares, mediante las que puede aislarse un compuesto [1-1]. El compuesto aislado [1-1] puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

20 < Método de producción 5>

De los presentes compuestos, también puede producirse un compuesto representado por la fórmula general [I-1], por ejemplo, mediante un método representado por la siguiente fórmula de reacción utilizando un compuesto representado por la fórmula general [XI].

[Fórmula 7]

5

10

(En la fórmi

25

30

(En la fórmula anterior, Y¹ es un átomo de hidrógeno o un átomo de halógeno; y cada uno de L³, R¹, R², R³ y R⁴ tiene el mismo significado dado anteriormente).

El compuesto representado por la fórmula general [I-1] puede producirse haciendo reaccionar un compuesto [XI] con un compuesto metálico u organometálico en un disolvente adecuado y haciendo reaccionar después el producto de reacción con un compuesto [XII] o un compuesto [X].

En cuanto al metal utilizable en la presente reacción, puede mencionarse un metal alcalino, tal como litio, sodio, potasio o similar; un metal alcalinotérreo, tal como magnesio o similar; y otros.

En cuanto al compuesto organometálico utilizable en la presente reacción, puede mencionarse un alquillitio, tal como n-butillitio o similar; y otros.

La cantidad de compuesto organometálico o metálico utilizado en la presente reacción se selecciona de forma adecuada en un intervalo de 1,0 a 3,0 moles y es preferentemente de 1,0 a 1,1 moles con respecto a 1 mol del compuesto [XI].

La cantidad de compuesto [XII] o compuesto [X] utilizado en la presente reacción se selecciona de forma adecuada en un intervalo de 0,3 a 5,0 moles y es preferentemente de 0,5 a 2,0 moles con respecto a 1 mol del compuesto [XI].

En cuanto al disolvente utilizable en la presente reacción, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una piridina, tal como piridina, picolina o similares; y un disolvente mixto de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,3 a 10 litros con respecto a 1 mol del compuesto [XI].

La temperatura de la presente reacción se selecciona libremente y de manera habitual en un intervalo de temperatura de -100°C a la temperatura de reflujo del sistema de reacción y es preferentemente de -78°C a 100°C.

El tiempo de la presente reacción varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [1-1]. El compuesto [1-1] aislado puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

<Método de producción 6>

Puede producirse uno de los presentes compuestos representados por la fórmula [I] mediante la siguiente fórmula de reacción.

[Fórmula 8]

20

25

30

35

40

(En la fórmula anterior, cada uno de L¹, R¹, R², R³, R⁴ y n tiene el mismo significado dado anteriormente).

15 El presente compuesto puede producirse haciendo reaccionar un compuesto [l'-1] con un compuesto [XIII] en un disolvente adecuado en presencia de una base adecuada.

La cantidad de compuesto [XIII] utilizada en la presente reacción se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 1,0 a 2,0 moles con respecto a 1 mol del compuesto [I'-1].

En cuanto al disolvente utilizable en la presente reacción, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un hidrocarburo halogenado, tal como diclorometano, cloroformo, 1,2-dicloroetano o similares; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un alcohol, tal como metanol, etanol, 2-propanol o similares; un nitrilo, tal como acetonitrilo, propionitrilo o similares; un éster, tal como acetato de etilo, propionato de etilo o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una piridina, tal como piridina, picolina o similares; agua; y una mezcla de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,1 a 15 litros con respecto a 1 mol del compuesto [l'-1].

En cuanto a la base utilizable en la presente reacción, pueden mencionarse, por ejemplo, una base inorgánica, tal como hidróxido de metal alcalino (por ejemplo, hidróxido sódico o hidróxido potásico), hidróxido de metal alcalinotérreo (por ejemplo, hidróxido de calcio o hidróxido de magnesio), carbonato de metal alcalino (por ejemplo, carbonato sódico o carbonato potásico), bicarbonato de metal alcalino (por ejemplo hidrogenocarbonato sódico o hidrogenocarbonato potásico) o similares; un hidruro metálico (por ejemplo, hidruro sódico o hidruro potásico); un alcoholato metálico (por ejemplo, metóxido sódico, etóxido sódico o *terc*-butóxido potásico); y una base orgánica (por ejemplo, trietilamina, N,N-dimetilanilina, piridina, 4-N,N-dimetilaminopiridina o 1,8-diazabiciclo[5.4.0]-7-undeceno). Además, la cantidad utilizada de la base se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y preferentemente es de 1,0 a 1,5 moles con respecto a 1 mol del compuesto [!-1].

La temperatura de la presente reacción se selecciona libremente y de manera habitual en un intervalo de temperatura de -30°C a la temperatura de reflujo del sistema de reacción y es preferentemente de 0°C a 150°C.

El tiempo de la presente reacción varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [I]. El compuesto aislado [I] puede purificarse según sea necesario por cromatografía en columna,

recristalización, etc.

<Método de producción 7>

También puede producirse uno de los presentes compuestos representados por la fórmula [I] mediante la siguiente fórmula de reacción.

5 [Fórmula 9]

10

15

20

25

30

40

(En la fórmula anterior, cada uno de R¹, R², R³, R⁴ y n tiene el mismo significado dado anteriormente).

El presente compuesto puede producirse haciendo reaccionar un compuesto [l'-1] con un compuesto [XIV] en un disolvente adecuado en presencia de una fosfina trisustituida y un derivado de ácido azodicarboxílico o en presencia de fosforano.

La cantidad de compuesto [XIV] utilizada en la presente reacción se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 1,0 a 2,0 moles con respecto a 1 mol del compuesto [I'-1].

En cuanto al disolvente utilizable en la presente reacción, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un alcohol, tal como metanol, etanol, 2-propanol o similares; un hidrocarburo halogenado, tal como diclorometano, cloroformo, 1,2-dicloroetano o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una cetona, tal como acetona, metiletilcetona, ciclohexanona o similar; ácido acético; agua; y un disolvente mixto de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,3 a 30 litros con respecto a 1 mol del compuesto [l'-1].

En cuanto a la fosfina trisustituida utilizable en la presente reacción, pueden mencionarse, por ejemplo, trifenilfosfina, tributilfosfina y trimetilfosfina. Además, la cantidad utilizada de la fosfina trisustituida se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 1,0 a 3,0 moles con respecto a 1 mol del compuesto [l'-1].

En cuanto al derivado de ácido azodicarboxílico utilizable en la presente reacción, pueden mencionarse, por ejemplo, azodicarboxilato de dietilo, azodicarboxilato de diisopropilo, azodicarboxilato de dimetoxietilo y amida de ácido N,N,N',N'-tetrametilazodicarboxílico. Además, la cantidad utilizada de derivado de ácido azodicarboxílico se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 1,0 a 2,0 moles con respecto a 1 mol del compuesto [l'-1].

En cuanto al fosforano utilizable en la presente reacción, pueden mencionarse, por ejemplo, cianometilenotrimetilfosforano y cianometilenotributilfosforano. Además, la cantidad utilizada del fosforano se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 1,0 a 2,0 moles con respecto a 1 mol del compuesto [l'-1].

La temperatura de la presente reacción se selecciona libremente y de manera habitual en un intervalo de temperatura de -30°C a la temperatura de refluio del sistema de reacción y es preferentemente de 0°C a 150°C.

El tiempo de la presente reacción varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [I]. El compuesto aislado [I] puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

<Método de producción 8>

De los presentes compuestos representados por la fórmula general [I], puede producirse un compuesto representado por la fórmula general [I-2], por ejemplo, mediante un método representado por la siguiente fórmula de reacción utilizando un compuesto representado por la fórmula general [I-1].

5 [Fórmula 10]

10

15

30

35

40

(En la fórmula anterior, cada uno de R^1 , R^2 , R^3 y R^4 tiene el mismo significado dado anteriormente; y m es un número entero de 1 o 2).

El compuesto representado por la fórmula general [I-2] puede producirse haciendo reaccionar un compuesto [1-1] con un agente oxidante en un disolvente adecuado en presencia o ausencia de un catalizador adecuado.

En cuanto al agente oxidante utilizable en la presente reacción, pueden mencionarse, por ejemplo, peróxido de hidrógeno, ácido m-cloroperbenzoico, peryodato de sodio, OXONE (nombre comercial de E.I. DuPont, una sustancia que contiene hidrogenoperoxosulfato de potasio), N-clorosuccinimida, N-bromosuccinimida, hipoclorito de *terc*-butilo e hipoclorito de sodio. Además, la cantidad utilizada del agente oxidante depende de número de oxidación m del átomo de azufre del compuesto representado por la fórmula general [I-2], pero se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 0,5 a 2,5 moles con respecto a 1 mol del compuesto [I-1].

En cuanto al catalizador utilizable en la presente reacción, pueden mencionarse, por ejemplo, tungstato de sodio. Además, la cantidad utilizada del catalizador se selecciona de forma adecuada en un intervalo de 0 a 1,0 moles y es preferentemente de 0 a 0,1 moles con respecto a 1 mol del compuesto [I-1].

En cuanto al disolvente utilizable en la presente reacción, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un alcohol, tal como metanol, etanol, 2-propanol o similares; un hidrocarburo halogenado, tal como diclorometano, cloroformo, 1,2-dicloroetano o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una cetona, tal como acetona, metiletilcetona, ciclohexanona o similar; ácido acético; agua; y un disolvente mixto de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,3 a 45 litros con respecto a 1 mol del compuesto [I-1].

La temperatura de la presente reacción se selecciona libremente y de manera habitual en un intervalo de temperatura de -30°C a la temperatura de reflujo del sistema de reacción y es preferentemente de -10°C a 100°C.

El tiempo de la presente reacción varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [I-2]. El compuesto aislado [I-2] puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

<Método de producción 9>

Puede producirse uno de los presentes compuestos representados por la fórmula general [l'], por ejemplo, mediante el método mostrado por la siguiente fórmula de reacción utilizando un compuesto representado por la fórmula general [XV-2].

[Fórmula 11]

5

10

15

(En la fórmula anterior, cada uno de R¹, R², R³ y n tiene el mismo significado dado anteriormente).

El compuesto representado por la fórmula general [l'] puede producirse haciendo reaccionar el compuesto [XV-2] con un ácido y un derivado de ácido nitroso en un disolvente y después, según sea necesario, haciendo reaccionar el producto de reacción con una sal metálica.

En cuanto al ácido utilizable en la presente reacción, puede mencionarse un ácido mineral, tal como ácido sulfúrico, ácido nítrico o similar o un ácido orgánico, tal como ácido trifluoroacético, ácido trifluorometanosulfónico o similar. Además, la cantidad utilizada del ácido se selecciona de forma adecuada en un intervalo de 1 a 20 moles y es preferentemente de 1,0 a 5,0 moles con respecto a 1 mol del compuesto [XV-2].

En cuanto al derivado de ácido nitroso utilizable en la presente reacción, puede mencionarse una sal del ácido nitroso, tal como nitrito sódico, nitrito potásico o similar o un nitrito de alquilo, tal como nitrito de n-butilo, nitrito de isopentilo, nitrito de *terc*-butilo o similar. Además, la cantidad utilizada del derivado de ácido nitroso se selecciona de forma adecuada en un intervalo de 1,0 a 3,0 moles y es preferentemente de 1,0 a 1,5 moles con respecto a 1 mol del compuesto [XV-2].

En cuanto a la sal metálica utilizable en la presente reacción según sea necesario, puede mencionarse el sulfato de cobre, nitrato de cobre, óxido de cobre, etc. Además, la cantidad utilizada de la sal metálica se selecciona de forma adecuada en un intervalo de 0 a 2,0 moles y es preferentemente de 0 a 1,1 moles con respecto a 1 mol del compuesto [XV-2].

En cuanto al disolvente utilizable en la presente reacción, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un hidrocarburo halogenado, tal como diclorometano, cloroformo, dicloroetano o similar; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un alcohol, tal como metanol, etanol, 2-propanol o similares; un nitrilo, tal como acetonitrilo, propionitrilo o similares; un éster, tal como acetato de etilo, propionato de etilo o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una piridina, tal como piridina, picolina o similares; agua; y un disolvente mixto de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,3 a 10 litros con respecto a 1 mol del compuesto [XV-2].

La temperatura de la presente reacción se selecciona libremente en un intervalo de temperatura de -30 °C a la temperatura de reflujo del sistema de reacción y es preferentemente de 0 °C a 150 °C.

El tiempo de la presente reacción varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [l']. El compuesto aislado [l'] puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

<Método de producción 10>

también puede producirse el presente compuesto representado por la fórmula general [l'] mediante el método mostrado por la siguiente fórmula de reacción.

40

30

35

[Fórmula 12]

10

15

25

30

35

(En la fórmula anterior, R^{11} es ácido borónico (grupo -B(OH)₂) o grupo pinacolateboran-2-ilo; cada uno de R^{1} , R^{2} , R^{3} y n tiene el mismo significado dado anteriormente).

5 El compuesto representado por la fórmula general [l'] puede producirse haciendo reaccionar un compuesto [XVI-1] con un agente oxidante en un disolvente.

En cuanto al agente oxidante utilizable en la presente reacción, pueden mencionarse, por ejemplo, peróxido de hidrógeno y N-óxido de 4-metilmorfolina. Además, la cantidad utilizada del agente oxidante se selecciona de forma adecuada en un intervalo de 1,0 a 6,0 moles y es preferentemente de 1,0 a 1,4 moles con respecto a 1 mol del compuesto [XVI-1].

En cuanto al disolvente utilizable en la presente reacción, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un alcohol, tal como metanol, etanol, 2-propanol o similares; un hidrocarburo halogenado, tal como diclorometano, cloroformo, 1,2-dicloroetano o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una cetona, tal como acetona, metiletilcetona, ciclohexanona o similar; ácido acético; agua; y un disolvente mixto de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,3 a 15 litros con respecto a 1 mol del compuesto [XVI-1].

20 La temperatura de la presente reacción se selecciona libremente en un intervalo de temperatura de -30 °C a la temperatura de reflujo del sistema de reacción y es preferentemente de -10 °C a 150 °C.

El tiempo de la presente reacción varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [l']. El compuesto aislado [l'] puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

<Método de producción 11>

De los presentes compuestos representados por la fórmula general [I], puede producirse el compuesto representado por la fórmula general [I-4], por ejemplo, mediante el método mostrado por la siguiente fórmula de reacción, usando un compuesto representado por la fórmula general [I-3].

[Fórmula 13]

(En la fórmula anterior, L^4 es un átomo de halógeno, grupo metanosulfoniloxi, grupo trifluorometanosulfoniloxi, grupo 1,1,2,2,3,3,4,4,4-nonafluorobutilsulfoniloxi, grupo 4-toluenosulfoniloxi o grupo bencenosulfoniloxi; R^{12} es un átomo de hidrógeno, grupo ciano, grupo alquilo $C_1 \sim C_6$, grupo haloalquilo $C_1 \sim C_6$, grupo cicloalquil $C_3 \sim C_8$ alquilo $C_1 \sim C_6$, grupo

halocicloalquil $C_3 \sim C_8$ alquilo $C_1 \sim C_6$, grupo cicloalquilo $C_3 \sim C_8$ o grupo halocicloalquilo $C_3 \sim C_8$; p es un número entero de $1 \sim 12$; cada uno de R^1 , R^2 , R^3 y n tiene el mismo significado dado anteriormente).

El compuesto representado por la fórmula general [I-4] puede producirse haciendo reaccionar un compuesto [I-3] y sulfuro en un disolvente adecuado en presencia o ausencia de base.

En cuanto al sulfuro utilizable en la presente reacción, pueden mencionarse, por ejemplo, hidrosulfuro de un metal alcalino, tal como hidrosulfuro de sodio o hidrosulfuro de potasio; tiocianato metal alcalino, tal como tiocianato de sodio o tiocianato de potasio; alquilmercaptano, tal como metilmercaptano, etilmercaptano o *terc*-butilmercaptano; haloalquilmercaptano, tal como 2,2,2-trifluoroetilmercaptano; y cicloalquilalquilmercaptano, tal como ciclopropilmetilmercaptano. Además, la cantidad utilizada del sulfuro se selecciona de forma adecuada en un intervalo de 1,0 a 20 moles y es preferentemente de 1,0 a 10 moles con respecto a 1 mol del compuesto [I-3].

En cuanto a la base utilizable en la presente reacción, pueden mencionarse, por ejemplo, una base inorgánica, tal como hidróxido de metal alcalino (por ejemplo, hidróxido sódico o hidróxido potásico), hidróxido de metal alcalinotérreo (por ejemplo, hidróxido de calcio o hidróxido de magnesio), carbonato de metal alcalino (por ejemplo, carbonato sódico o carbonato potásico), bicarbonato de metal alcalino (por ejemplo hidrogenocarbonato sódico o hidrogenocarbonato potásico) o similares; un hidruro metálico (por ejemplo, hidruro sódico o hidruro potásico); un alcoholato metálico (por ejemplo, metóxido sódico, etóxido sódico o *terc*-butóxido potásico); y una base orgánica (por ejemplo, trietilamina, N,N-dimetilanilina, piridina, 4-N,N-dimetilaminopiridina o 1,8-diazabiciclo[5.4.0]-7-undeceno). Además, la cantidad utilizada de la base se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 1,0 a 2,0 moles con respecto a 1 mol del compuesto [1-3].

En cuanto al disolvente utilizable en la presente reacción, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un alcohol, tal como metanol, etanol, 2-propanol o similares; un nitrilo, tal como acetonitrilo, propionitrilo o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una piridina, tal como piridina, picolina o similares; y una mezcla de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,3 a 10 litros con respecto a 1 mol del compuesto [l-3].

La temperatura de la presente reacción se selecciona libremente en un intervalo de temperatura de 0 °C a la temperatura del sistema de reacción y es preferentemente de temperatura ambiente a 150 °C.

30 El tiempo de la presente reacción varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

En la realización de la presente reacción, puede añadirse yoduro potásico y la cantidad de yoduro potásico utilizada es de 0 a 5,0 mol, preferentemente de 0 a 1,0 mol con respecto a 1 mol del compuesto [I-3].

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [I-4]. El compuesto [1-4] aislado puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

<Método de producción 12>

De los presentes compuestos representados por la fórmula general [I], puede producirse el compuesto representado por la fórmula general [I-6] mediante, por ejemplo, el método mostrado por la siguiente fórmula de reacción, usando un compuesto representado por la fórmula general [I-5].

[Fórmula 14]

15

35

NCS
$$(H_2C)_p$$
 $(O)_n$ Agente trifluorometilante $(H_2C)_p$ $(O)_n$ $(O)_n$ $(I-5]$

(En la fórmula anterior, cada uno de R¹, R², R³, n y p tiene el mismo significado dado anteriormente).

45 El compuesto representado por la fórmula general [I-6] puede producirse haciendo reaccionar un compuesto [I-5] y

agente trifluorometilante en un disolvente adecuado en presencia de un catalizador adecuado.

En cuanto al agente trifluorometilante utilizable en la presente reacción, pueden mencionarse, por ejemplo, trifluorometiltrimetilsilano o trietiltrifluorometilsilano. Además, la cantidad utilizada del agente trifluorometilante se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 1,0 a 3,0 moles con respecto a 1 mol del compuesto [1-5].

En cuanto al catalizador utilizable en la presente reacción, pueden mencionarse, por ejemplo, fluoruro de tetra-n-butilamonio, fluoruro de cesio o fluoruro potásico. Además, la cantidad utilizada del catalizador se selecciona de forma adecuada en un intervalo de 0,01 a 10 moles y es preferentemente de 0,1 a 6,0 moles con respecto a 1 mol del compuesto [I-5].

En cuanto al disolvente utilizable en la presente reacción, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un hidrocarburo halogenado, tal como diclorometano, cloroformo, 1,2-dicloroetano o similares; un nitrilo, tal como acetonitrilo, propionitrilo o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; y una mezcla de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,3 a 15 litros con respecto a 1 mol del compuesto [1-5].

La temperatura de la presente reacción se selecciona libremente en un intervalo de temperatura de -30 °C a la temperatura de reflujo del sistema de reacción y es preferentemente de 0 °C a temperatura ambiente.

20 El tiempo de la presente reacción varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [I-6]. El compuesto aislado [I-6] puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

<Método de producción 13>

A partir del compuesto representado por la fórmula general [1-7], que tiene un átomo de azufre asimétrico, de los presentes compuestos representados por la fórmula general [I], puede separarse el isómero óptico respectivo (enantiómero) por resolución óptica.

30 [Fórmula 15]

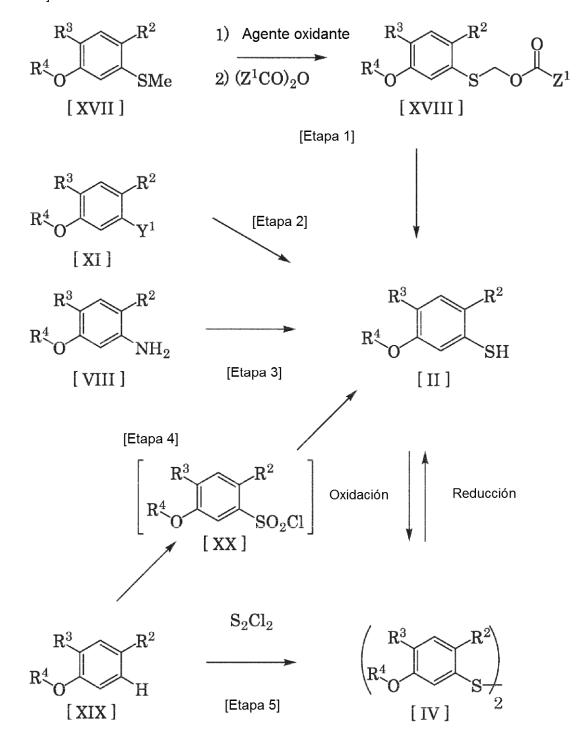
25

35

5

$$\begin{array}{c|c}
R^3 & R^2 \\
R^4 & S^R^1
\end{array}$$

(En la fórmula anterior fórmula, cada uno de R¹, R², R³ y R⁴ tiene el mismo significado dado anteriormente).


A partir de la mezcla racémica del compuesto representado por la fórmula general [I-7], pueden obtenerse los enantiómeros (+) y (-) respectivos utilizando una columna para cromatografía líquida de alto rendimiento para separación de isómeros ópticos.

En cuanto a la columna para cromatografía líquida de alto rendimiento para separación de isómeros ópticos utilizable, puede mencionarse una columna actualmente comercializada, por ejemplo, CHIRAL PAK AD (nombre comercial) fabricada y vendida por Daicel Corporation.

En cuanto al disolvente utilizable en la resolución óptica, pueden mencionarse, por ejemplo, un hidrocarburo alifático, tal como hexano, heptano o similares; un alcohol, tal como metanol, etanol, propanol, 2-propanol, butanol o similar; un hidrocarburo halogenado, tal como diclorometano, cloroformo o similar; un éter, tal como éter dietílico, 1,2-dimetoxietano, éter diisopropílico, tetrahidrofurano, 1,4-dioxano o similares; un éster, tal como acetato de etilo o similar; un nitrilo, tal como acetonitrilo o similar; un ácido orgánico, tal como ácido acético, ácido fórmico y similar; aqua; y una mezcla de los mismos.

La temperatura y tiempo de la resolución óptica pueden cambiarse libremente en un amplio intervalo. Normalmente la temperatura es de -20°C a 60°C, preferentemente de 5°C a 50°C y el tiempo es de 0,01 horas a 50 horas, preferentemente de 0,1 horas a 2 horas.

- <Método de producción 1 de intermedio>
- Un compuesto representado por la fórmula general [II] puede producirse mediante cada una de las fórmulas de reacción mostradas por las siguientes etapas de la 1 a la 4. Un compuesto representado por la fórmula general [IV] puede producirse mediante la fórmula de reacción mostrada en la etapa 5. Además, el compuesto [IV] son intercambiables entre sí mediante una reacción de oxidación o una reacción de reducción. Además, el compuesto [IV] también se oxida fácilmente por el oxígeno del aire, generando el compuesto [IV].
- 10 [Fórmula 16]

(En las anteriores fórmulas de reacción, Z^1 es un grupo metilo o un grupo trifluorometilo; y cada uno de R^2 , R^3 , R^4 e Y^1 tiene el mismo significado dado anteriormente).

[Etapa 1]

Puede producirse un compuesto representado por la fórmula general [II] oxidando un compuesto [XVII] con un agente oxidante adecuado para convertirlo en una forma de sulfóxido correspondiente, haciendo reaccionar posteriormente la forma de sulfóxido con anhídrido acético o anhídrido trifluoroacético para producir el compuesto [XVIII], hidrolizando posteriormente el compuesto [XVIII] basándose en el método descrito en Chem. Ber., Vol. 43, p. 1407 (1910). Puede usarse el compuesto [XVIII] en la siguiente reacción sin aislarse ni purificarse.

En cuanto al agente oxidante utilizable en la presente etapa, pueden mencionarse, por ejemplo, peróxido de hidrógeno, ácido m-cloroperbenzoico, peryodato de sodio, OXONE (nombre comercial de E.I. DuPont, una sustancia que contiene hidrogenoperoxosulfato de potasio), N-clorosuccinimida, N-bromosuccinimida, hipoclorito de *terc*-butilo e hipoclorito de sodio. Además, la cantidad utilizada del agente oxidante se selecciona de forma adecuada en un intervalo de 1,0 a 3,0 moles y es preferentemente de 1,0 a 1,2 moles con respecto a 1 mol del compuesto [XVII].

La cantidad de anhídrido acético o anhídrido trifluoroacético utilizada en la presente etapa se selecciona en un intervalo de 1 mol a una cantidad suficiente para actuar como un disolvente y es preferentemente de 1,0 a 3,0 moles con respecto a 1 mol del compuesto [XVII]

La temperatura de reacción de la presente etapa se selecciona libremente, en cualquier reacción, en un intervalo de -10°C a la temperatura de reflujo del sistema de reacción y es preferentemente de 0°C a 50°C.

El tiempo de reacción de la presente etapa varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., en cualquier reacción, pero habitualmente es de 5 minutos a 12 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [II]. El compuesto aislado [II] puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

25 [Etapa 2]

20

El compuesto representado por la fórmula general [II] también puede producirse haciendo reaccionar un compuesto [XI] con un compuesto metálico u organometálico en un disolvente y después hacer reaccionar el producto de reacción con azufre.

En cuanto al disolvente utilizable en la presente etapa, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una piridina, tal como piridina, picolina o similares; y una mezcla de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,1 a 10 litros con respecto a 1 mol del compuesto [XI].

En cuanto al metal utilizable en la presente etapa, puede mencionarse litio, magnesio, etc. Además, la cantidad utilizada del metal se selecciona de forma adecuada en un intervalo de 1,0 a 3,0 moles y es preferentemente de 1,0 a 1,2 moles con respecto a 1 mol del compuesto [XI].

En cuanto al compuesto organometálico utilizable en la presente etapa, puede mencionarse un alquillitio, tal como nbutillitio o similar. Además, la cantidad utilizada del compuesto organometálico se selecciona de forma adecuada en un intervalo de 1,0 a 3,0 moles y es preferentemente de 1,0 a 1,2 moles con respecto a 1 mol del compuesto [XI].

40 La cantidad de azufre utilizada en la presente etapa se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 1,0 a 2,0 moles con respecto a 1 mol del compuesto [XI].

La temperatura de reacción de la presente etapa se selecciona libremente en un intervalo de -60°C a la temperatura de reflujo del sistema de reacción y es preferentemente de -60°C a temperatura ambiente.

El tiempo de reacción de la presente etapa varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 30 minutos a 12 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [II]. El compuesto aislado [II] puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

50 [Etapa 3]

El compuesto representado por la fórmula general [II] también puede producirse convirtiendo un compuesto [VIII] en

una sal de diazonio de la misma manera que en el anteriormente mencionado Método de producción 4, haciendo reaccionar después la sal de diazonio con una sal del ácido xantogénico o una sal del ácido tiociánico, hidrolizando a continuación el producto de reacción.

- En cuanto a la sal del ácido xantogénico utilizable en la presente etapa, pueden mencionarse, por ejemplo, etilxantogenato de sodio, etilxantogenato de potasio, isopropilxantogenato de potasio y butilxantogenato de potasio. En cuanto a la sal del ácido tiociánico, pueden mencionarse, por ejemplo, tiocianato de sodio, tiocianato de potasio y tiocianato de amonio. Además, la cantidad utilizada de la sal del ácido xantogénico o la sal del ácido tiociánico se selecciona de forma adecuada en un intervalo de 1,0 a 3,0 moles y es preferentemente de 1,0 a 1,5 moles con respecto a 1 mol del compuesto [VIII].
- En cuanto al disolvente utilizable en la presente etapa, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un hidrocarburo halogenado, tal como diclorometano, cloroformo, 1,2-dicloroetano o similares; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un alcohol, tal como metanol, etanol, 2-propanol o similares; un nitrilo, tal como acetonitrilo, propionitrilo o similares; un éster, tal como acetato de etilo, propionato de etilo o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una piridina, tal como piridina, picolina o similares; agua; y un disolvente mixto de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,3 a 10 litros con respecto a 1 mol del compuesto [VIII].
- La temperatura de reacción de la presente etapa se selecciona libremente en un intervalo de -70°C a la temperatura de reflujo del sistema de reacción y es preferentemente de -20°C a 100°C.
 - El tiempo de reacción de la presente etapa varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.
 - Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [II]. El compuesto aislado [II] puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

[Etapa 4]

25

30

35

40

45

5

El compuesto representado por la fórmula general [II] también puede producirse haciendo reaccionar un compuesto [XIX] con ácido clorosulfónico para obtener un compuesto [XX] y haciendo después reaccionar el compuesto [XX] con un agente reductor.

La cantidad de ácido clorosulfónico utilizada en la presente etapa se selecciona de forma adecuada en un intervalo de 2,0 a 10 moles y es preferentemente de 2,2 a 3,5 moles con respecto a 1 mol del compuesto [XIX].

En cuanto al agente reductor utilizable en la presente etapa, puede mencionarse hidruro de litio y aluminio, una combinación de cinc y un ácido, una combinación de estaño y un ácido y una combinación de fósforo rojo y yodo. Además, la cantidad utilizada de agente reductor se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 1,5 a 2,0 moles con respecto a 1 mol del compuesto [XIX].

En cuanto al ácido utilizable como un componente del agente reductor en la presente etapa, puede mencionarse un ácido mineral, tal como ácido clorhídrico, ácido sulfúrico o similar.

La temperatura de reacción de la presente etapa se selecciona libremente, en cualquier reacción, en un intervalo de 0°C a la temperatura de reflujo del sistema de reacción y es preferentemente de 0°C a 100°C.

El tiempo de reacción de la presente etapa varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., en cualquier reacción, pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [II]. El compuesto aislado [II] puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

[Etapa 5]

El compuesto representado por la fórmula general [IV] puede producirse haciendo reaccionar un compuesto [XIX] con dicloruro de diazufre en un disolvente en presencia o ausencia de un catalizador.

La cantidad de dicloruro diazufre utilizada en la presente etapa se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 1,0 a 1,5 moles con respecto a 1 mol del compuesto [XIX].

En cuanto al catalizador utilizable en la presente etapa, pueden mencionarse, por ejemplo, un haluro metálico, tal

como cloruro de aluminio, cloruro de estaño (II), cloruro de estaño (IV) o similar. Además, la cantidad de catalizador utilizada se selecciona de forma adecuada en un intervalo de 0 a 5,0 moles y es preferentemente de 1,0 a 2,0 moles con respecto a 1 mol del compuesto [XIX].

En cuanto al disolvente utilizable en la presente etapa, pueden mencionarse, por ejemplo, un hidrocarburo halogenado, tal como diclorometano, cloroformo, 1,2-dicloroetano o similares; y un hidrocarburo aromático, tal como clorobenceno, diclorobenceno o similar. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,3 a 10 litros con respecto a 1 mol del compuesto [XIX].

La temperatura de reacción de la presente etapa se selecciona libremente en un intervalo de -30°C a la temperatura de reflujo del sistema de reacción y es preferentemente de -10°C a 100°C.

10 El tiempo de reacción de la presente etapa varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero normalmente es de 1 a 24 horas.

Además, el compuesto [II] puede producirse reduciendo el compuesto [IV] basándose en los métodos descritos en Organic Syntheses, Coll. Vol. 2, p. 580 (1943), J. Am. Chem. Soc., 60, 428 (1928), J. Am. Chem. Soc., 79, 2553 (1957), J. Org. Chem., 26, 3436 (1961) y J. Am. Chem. Soc., 96, 6081 (1974).

<Método de producción 2 de intermedio>

De los compuestos representados por la fórmula general [II], puede producirse un compuesto representado por la fórmula general [II-1] mediante el método mostrado por la siguiente fórmula de reacción.

[Fórmula 17]

5

15

25

30

45

$$R^{3}$$
 R^{10}
 R^{4}
 $Na_{2}S$
 R^{4}
 $Na_{2}S$
 R^{4}
 $Na_{2}S$
 R^{4}
 R^{10}
 $R^{$

20 (En la fórmula de reacción anterior, cada uno de R³, R⁴, R¹⁰ y L³ tiene el mismo significado dado anteriormente).

El compuesto representado por la fórmula general [II-1] puede producirse haciendo reaccionar un compuesto [VI] con sulfuro sódico en un disolvente en presencia de una base y después neutralizando el producto de reacción con un ácido mineral o similar.

La cantidad de sulfuro de sodio utilizada en la presente reacción se selecciona de forma adecuada en un intervalo de 1.0 a 3.0 moles y es preferentemente de 1.0 a 1,5 moles con respecto a 1 mol del compuesto [VI].

En cuanto al disolvente utilizable en la presente reacción, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un alcohol, tal como metanol, etanol, 2-propanol o similares; un hidrocarburo halogenado, tal como diclorometano, cloroformo, 1,2-dicloroetano o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una cetona, tal como acetona, metiletilcetona, ciclohexanona o similar; agua; y un disolvente mixto de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0.3 a 10 litros con respecto a 1 mol del compuesto IVII.

En cuanto a la base utilizable en la presente reacción, pueden mencionarse, por ejemplo, una base inorgánica, tal como hidróxido de metal alcalino (por ejemplo, hidróxido sódico o hidróxido potásico), hidróxido de metal alcalinotérreo (por ejemplo, hidróxido de calcio o hidróxido de magnesio), carbonato de metal alcalino (por ejemplo, carbonato sódico o carbonato potásico), bicarbonato de metal alcalino (por ejemplo hidrogenocarbonato sódico o hidrogenocarbonato potásico) o similares; un hidruro metálico (por ejemplo, hidruro sódico o hidruro potásico); un alcoholato metálico (por ejemplo, metóxido sódico, etóxido sódico o terc-butóxido potásico); y una base orgánica (por ejemplo, trietilamina, N,N-dimetilanilina, piridina, 4-N,N-dimetilaminopiridina o 1,8-diazabiciclo[5.4.0]-7-undeceno). Además, la cantidad de base utilizada se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 1,0 a 1,2 moles con respecto a 1 mol del compuesto [VI].

En cuanto al ácido mineral utilizable en la presente reacción, puede mencionarse ácido clorhídrico, ácido sulfúrico, etc. La cantidad utilizada de ácido mineral se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es

preferentemente de 1,0 a 2,0 moles con respecto a 1 mol del compuesto [VI].

La temperatura de la presente reacción se selecciona libremente en un intervalo de temperatura de -30 °C a la temperatura de reflujo del sistema de reacción y es preferentemente de -20 °C a 100 °C.

El tiempo de la presente reacción varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [II-1]. El compuesto aislado [II-1] puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

10 < Método de producción 3 de intermedio >

Puede producirse un compuesto representado por la fórmula general [XV] por el método de las fórmulas de reacción mostradas por las siguientes [etapa 6] y [etapa 7].

[Fórmula 18]

5

15 (En las fórmulas de reacción anteriores, cada uno de R¹, R², R³ y n tiene el mismo significado dado anteriormente).

[Etapa 6]

20

25

30

Puede producirse un compuesto representado por la fórmula general [XXII] haciendo reaccionar un compuesto [XXI] con ácido nítrico en un disolvente en presencia o ausencia de ácido sulfúrico.

En cuanto al disolvente utilizable en la presente etapa, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un alcohol, tal como metanol, etanol, 2-propanol o similares; un hidrocarburo halogenado, tal como diclorometano, cloroformo, 1,2-dicloroetano o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una cetona, tal como acetona, metiletilcetona, ciclohexanona o similar; agua; y un disolvente mixto de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente 0,3 a 10 litros con respecto a 1 mol del compuesto [XXI].

La cantidad de ácido nítrico utilizada en la presente etapa se selecciona de forma adecuada en un intervalo de 1,0 a 40 moles y es preferentemente de 1,0 a 10 moles con respecto a 1 mol del compuesto [XXI]. La cantidad de ácido sulfúrico, cuando se utiliza, se selecciona de forma adecuada en un intervalo de 1 a 40 moles y es preferentemente de 1,0 a 10 moles con respecto a 1,0 mol del compuesto [XXI].

La temperatura de reacción de la presente etapa se selecciona libremente en un intervalo de 0°C a la temperatura de reflujo del sistema de reacción y es preferentemente de 0°C a 150°C.

El tiempo de reacción de la presente etapa varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [XXII]. El compuesto [XXII] aislado puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

[Etapa 7]

40 Puede producirse el compuesto representado por la fórmula general [XV] haciendo reaccionar el compuesto [XXII] con hierro/ácido, cinc/ácido, estaño/ácido, dicloruro de estaño/ácido, cloruro de níquel/tetrahidroborato de sodio, hidruro de litio y aluminio, paladio-carbón activado/hidrógeno o similares, para la reducción.

En cuanto al ácido utilizable en la presente etapa, puede mencionarse un ácido mineral, tal como ácido clorhídrico,

ácido sulfúrico o similar. La cantidad de hierro/ácido, cinc/ácido, estaño/ácido, dicloruro de estaño/ácido, cloruro de níquel (II)/tetrahidroborato de sodio, hidruro de litio y aluminio, paladio-carbón activado/hidrógeno o similares, utilizada en la presente etapa se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 1,0 a 2,0 moles con respecto a 1 mol del compuesto [XXII].

5 La temperatura de reacción de la presente etapa se selecciona libremente en un intervalo de 0°C a la temperatura de reflujo del sistema de reacción y es preferentemente de 0°C a 100°C.

El tiempo de reacción de la presente etapa varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [XV]. El compuesto [XV] aislado puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

<Método de producción 4 de intermedio>

Puede producirse un compuesto representado por la fórmula general [XXV] por el método de las fórmulas de reacción mostradas en las siguientes [etapa 8] y [etapa 9].

[Fórmula 19]

15

(En las anteriores fórmulas de reacción, Z^2 es un grupo alquilo $C_1 \sim C_6$ igual o distinto; y cada uno de R^1 , R^2 , R^3 , Y^1 y n tiene el mismo significado dado anteriormente).

20 [Etapa 8]

35

Puede producirse un compuesto representado por la fórmula general [XXIV] haciendo reaccionar un compuesto [XXIII] con un compuesto metálico u organometálico en un disolvente adecuado y después haciendo reaccionar el producto de reacción en un éster de ácido bórico.

En cuanto al disolvente utilizable en la presente etapa, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una piridina, tal como piridina, picolina o similares; y un disolvente mixto de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,1 a 5,0 litros con respecto a 1 mol del compuesto [XXIII].

30 En cuanto al metal utilizable en la presente etapa, puede mencionarse litio, magnesio, etc. La cantidad utilizada de metal se selecciona de forma adecuada en un intervalo de 1,0 a 3,0 moles y es preferentemente de 1,0 a 1,2 moles con respecto a 1 mol del compuesto [XXIII].

En cuanto al compuesto organometálico utilizable en la presente etapa, puede mencionarse un alquillitio, tal como n-butillitio o similar. La cantidad de compuesto organometálico utilizada se selecciona de forma adecuada en un intervalo de 1,0 a 3,0 moles y es preferentemente de 1,0 a 1,2 moles con respecto a 1 mol del compuesto [XXIII].

La temperatura de reacción de la presente etapa se selecciona libremente en un intervalo de -100°C a la temperatura de reflujo del sistema de reacción y es preferentemente de -60°C a temperatura ambiente.

El tiempo de reacción de la presente etapa varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 5 minutos a 12 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [XXIV]. El compuesto [XXIV] aislado puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

[Etapa 9]

Puede producirse el compuesto [XXV] haciendo reaccionar el compuesto [XXIV] con un ácido en un disolvente adecuado.

En cuanto al disolvente utilizable en la presente etapa, pueden mencionarse, por ejemplo, un éter, tal como éter dietílico, tetrahidrofurano, 1,4-dioxano o similares; un hidrocarburo aromático, tal como benceno, tolueno, xileno, clorobenceno o similares; un disolvente polar aprótico, tal como N,N-dimetilformamida, N,N-dimetilacetamida, N-metil-2-pirrolidona, dimetilsulfóxido, sulfolano o similares; un alcohol, tal como metanol, etanol, 2-propanol o similares; un hidrocarburo halogenado, tal como diclorometano, cloroformo, dicloroetano o similar; un hidrocarburo alifático, tal como pentano, hexano, ciclohexano, heptano o similares; una cetona, tal como acetona, metiletilcetona, ciclohexanona o similar; agua; y un disolvente mixto de los mismos. Además, la cantidad de disolvente utilizada es de 0,1 a 100 litros, preferentemente de 0,1 a 5,0 litros con respecto a 1 mol del compuesto [XXIV].

En cuanto al ácido utilizable en la presente etapa, puede mencionarse un ácido mineral, tal como ácido sulfúrico, ácido clorhídrico o similar. La cantidad utilizada de ácido es seleccionada de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 0,5 a 2,0 moles con respecto a 1 mol del compuesto [XXIV].

La temperatura de reacción de la presente etapa se selecciona libremente en un intervalo de 0°C a la temperatura de reflujo del sistema de reacción y es preferentemente de 0°C a 100°C.

El tiempo de reacción de la presente etapa varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [XXV]. El compuesto [XXV] aislado puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

<Método de producción 5 de intermedio>

De los compuestos representados por la fórmula general [XV], puede producirse un compuesto representado por [XV-1] mediante el método mostrado por las fórmulas de reacción de las siguientes [etapa 10] y [etapa 11].

[Fórmula 20]

20

25

(En las fórmulas de reacción anteriores, cada uno de R^1 , R^2 , R^3 , Z^2 y L^1 tiene el mismo significado dado anteriormente).

30 [Etapa 10]

35

40

Puede producirse un compuesto representado por la fórmula general [XXVII] haciendo reaccionar un compuesto [XXVI] con ácido clorosulfónico, reduciendo después el producto de reacción con hidruro de litio y aluminio, cinc/ácido, estaño/ácido o fósforo rojo/yodo, hidrolizando a continuación el producto de reacción con una base.

En cuanto al ácido utilizable en la presente etapa, puede mencionarse un ácido mineral, tal como ácido clorhídrico, ácido sulfúrico o similar. La cantidad utilizada de ácido clorosulfónico en la presente etapa se selecciona de forma adecuada en un intervalo de 2,0 a 10 moles y es preferentemente de 2,2 a 3,5 moles con respecto a 1 mol del compuesto [XXVI].

La cantidad utilizada de hidruro de litio y aluminio, cinc/ácido, estaño/ácido o fósforo rojo/yodo, en la presente etapa se selecciona de forma adecuada en un intervalo de 1,0 a 5,0 moles y es preferentemente de 1,5 a 2,0 moles con respecto a 1 mol del compuesto [XXVI].

En cuanto a la base utilizable en la presente etapa, puede mencionarse hidróxido sódico, hidróxido potásico o similar. La cantidad de base utilizada se selecciona de forma adecuada en un intervalo de 1 a 5 moles y es preferentemente de 1,0 a 3,0 moles con respecto a 1 mol del compuesto [XXVI].

La temperatura de reacción de la presente etapa se selecciona libremente en un intervalo de 0°C a la temperatura

de reflujo del sistema de reacción y es preferentemente de 0°C a 100°C.

El tiempo de reacción de la presente etapa varía dependiendo de la temperatura de reacción, el sustrato de reacción, la cantidad de reactivo, etc., pero habitualmente es de 10 minutos a 24 horas.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [XXVII]. El compuesto [XXVII] aislado puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

[Etapa 11]

35

40

45

50

55

Puede producirse el compuesto representado por la fórmula general [XV-1] haciendo reaccionar el compuesto [XXVII] con un compuesto [III] en un disolvente en presencia o ausencia de una base en presencia o ausencia de un iniciador de radicales, del mismo modo que en el método de producción 1.

Cada cantidad de disolvente y de base utilizables en la presente etapa del mismo modo que en el Método de producción 1, y el tiempo de reacción y la temperatura de reacción en la presente etapa son cada uno iguales a los del Método de producción 1.

Tras completarse la reacción, la mezcla de reacción se somete a operaciones, tales como vertido en agua o similares, extracción con disolvente orgánico, concentración y similares, mediante las cuales puede aislarse un compuesto [XV-1]. El compuesto aislado [XV-1] puede purificarse según sea necesario por cromatografía en columna, recristalización, etc.

El agente de control de plagas de la presente invención se caracteriza por contener, como principio activo, un derivado de sulfuro de alquilfenilo representado por las fórmulas generales [I] o [I'] o una sal del mismo aceptable desde el punto de vista agrícola. El presente agente de control de plagas es representativamente un insecticida y acaricida.

El presente agente de control de plagas puede contener según sea necesario un componente aditivo (vehículo) utilizado habitualmente en formulaciones químicas agrícolas.

En cuanto al componente aditivo, puede mencionarse un vehículo (por ejemplo, vehículo sólido o vehículo líquido), un tensioactivo, un aglutinante o adhesivo, un agente espesante, un agente colorante, un dispersante, un adherente, un anticongelante, un inhibidor de solidificación, un disgregante, un inhibidor de descomposición, etc. Según sea necesario, pueden usarse otros componentes aditivos, tales como antiséptico, restos vegetales y similares. Pueden usarse estos componentes aditivos por separado o en combinación de dos o más modalidades.

30 Los componentes aditivos anteriores se explican.

En cuanto al vehículo sólido, pueden mencionarse, por ejemplo, vehículos minerales, tales como arcilla pirofilita, arcilla de caolín, arcilla de sílice, talco, tierra de diatomeas, zeolita, bentonita, arcilla ácida, arcilla activa, arcilla de atapulgita, vermiculita, perlita, pumita, carbón blanco (por ejemplo, ácido silícico sintético o silicato sintético), dióxido de titanio y similares; vehículos vegetales, tales como harina de madera, culmo de maíz, cáscara de nuez, hueso de fruta, cáscara de arroz, serrín, salvado de trigo, harina de soja, celulosa en polvo, almidón, dextrina, sacáridos y similares; vehículos de sal inorgánica, tales como carbonato de calcio, sulfato de amonio, sulfato sódico, cloruro potásico y similares; y vehículos poliméricos, tales como polietileno, polipropileno, cloruro de polivinilo, acetato de polivinilo, copolímero de etileno-acetato de vinilo, urea-resina de aldehído y similares.

En cuanto al vehículo líquido, pueden mencionarse, por ejemplo, alcoholes monohídricos, tales como metanol, etanol, propanol, isopropanol, butanol, ciclohexanol y similares; alcoholes polihídricos, tales como etilenglicol, dietilenglicol, propilenglicol, polipropilenglicol, glicerina y similares; derivados de alcohol polihídrico, tales como éter de glicol tipo propileno y similares; cetonas, tales como acetona, metiletilectona, metilisobutilectona, diisobutilectona, ciclohexanona, isoforona y similares; éteres, tales como éter dietílico, 1,4-dioxano, cellosolve, éter de dipropilo, tetrahidrofurano y similares; hidrocarburos alifáticos, tales como parafina normal, nafteno, isoparafina, queroseno, aceite mineral y similares; hidrocarburos aromáticos, tales como tolueno, alquilbenceno $C_9 \sim C_{10}$, xileno, disolvente de nafta, alquilnaftaleno, hidrocarburo aromático de alto punto de ebullición y similares; hidrocarburos halogenados, tales como 1,2-dicloroetano, cloroformo, tetracloruro de carbono y similares; ésteres, tales como acetato de etilo, ftalato de diisopropilo, ftalato de dibutilo, ftalato de dioctilo, adipato de dimetilo y similares; lactonas, tales como γ-butirolactona y similares; amidas, tales como dimetilformamida, dietilformamida, dimetilacetamida, N-alquilpirrolidinona y similares; nitrilos, tales como acetonitrilo y similares; compuestos de azufre, tales como sulfóxido de dimetilo y similares; aceites vegetales, tales como aceite de soja, aceite de colza, aceite de semilla de algodón, aceite de coco, aceite de ricino y similares; y agua.

En cuanto al tensioactivo, no hay ninguna restricción particular. Sin embargo, el tensioactivo preferentemente gelifica o se hincha en agua. Pueden mencionarse, por ejemplo, tensioactivos no iónicos, tales como éster de ácido graso de sorbitano, éster de ácido graso de sorbitano.

de polioxietileno, éster de ácido de resina de polioxietileno, diéster de ácido graso de polioxietileno, alquiléter de polioxietileno, alquilfeniléter de polioxietileno, dialquilfeniléter de polioxietileno, alquilfeniléter de polioxietileno condensado de formalina, polímero de bloque de polioxietileno polioxipropileno, éter de polímero de bloque de alquilo polioxietileno polipropileno, amina de alquil polioxietileno, amida de ácido graso de polioxietileno, éter de bisfenilo de ácido graso de polioxietileno, éter de fenil bencilo de polialquileno, éter de fenil estirilo de polioxialquileno, acetilendiol, acetilendiol con polioxialquileno añadido, silicona de tipo éter de polioxietileno, silicona de tipo éster, tensioactivo que contiene flúor, aceite de ricino polioxietileno, aceite de ricino endurecido con polioxietileno y similares; tensioactivos aniónicos, tales como alquilsulfato, alquil éter sulfato de polioxietileno, alquil fenil éter sulfato de polioxietileno, estiril fenil éter sulfato de polioxietileno, sal del ácido alquilbencenosulfónico, sal del ácido ligninsulfónico, sal del ácido alquilsulfosuccínico, sal del ácido naftalenosulfónico, sal del ácido alquilnaftalenosulfónico, sal de condensado del ácido naftalenosulfónico-formalina, sal de condensado del ácido alquilnaftalenosulfónico-formalina, sal de ácido graso, sal del ácido policarboxílico, sarcosinato de N-metil-ácido graso, sal ácida de resina, alquiléter fosfato de polioxietileno, alquilfenil éter fosfato de polioxietileno y similares; tensioactivos catiónicos que incluyen sales de alguil amina, tales como clorhidrato de laurilamina, clorhidrato de estearilamina, clorhidrato de oleilamina, acetato de estearilamina, acetato de estearilaminopropilamina, cloruro de alquil trimetil amonio, cloruro de alquil dimetil benzalconio y similares; y tensioactivos anfolíticos, tales como de tipo betaina (por ejemplo, dialquildiaminoetilbetaina o alquildimetilbencilbetaina), de tipo aminoácido (por ejemplo, dialguilaminoetilglicina o alguildimetilbencilglicina) y similares.

10

15

30

40

45

50

55

En cuanto al aglutinante o adhesivo, pueden mencionarse, por ejemplo, carboximetil celulosa o una sal de la misma, dextrina, almidón soluble en agua, goma de xantano, goma de guar, sacarosa, polivinilpirrolidona, goma arábiga, alcohol polivinílico, acetato de polivinilo, poliacrilato sódico, polietilenglicol con un peso molecular medio de 6.000 a 20.000, óxido de polietileno con un peso molecular medio de 100.000 a 5.000.000 y fosfolípidos naturales (por ejemplo, ácido cefalínico o lecitina).

En cuanto al agente espesante, pueden mencionarse, por ejemplo, polímeros solubles en agua, tales como goma de 25 xantano, goma de guar, carboximetilcelulosa, polivinilpirrolidona, polímero de carboxivinilo, polímero acrílico, derivado de almidón, polisacáridos y similares; y polvos finos inorgánicos, tales como bentonita de alta pureza, carbón blanco y similares.

En cuanto al agente colorante, pueden mencionarse, por ejemplo, pigmentos inorgánicos, tales como óxido de hierro, óxido de titanio, azul Prusia y similares; y colorantes orgánicos, tales como colorante Alizarine, colorante azo, colorante de ftalocianina metálico y similares.

En cuanto al dispersante, pueden mencionarse, por ejemplo, tensioactivo basado en silicona, polvo de celulosa, dextrina, almidón procesado, compuesto quelante de ácido poliaminocarboxílico, polivinilpirrolidona reticulada, ácido maleico y estireno, copolímero de ácido metacrílico, semiéster entre polímero de alcohol polihídrico y anhídrido de ácido dicarboxílico y sal soluble en agua de ácido poliestirenosulfónico.

En cuanto al espesante, pueden mencionarse, por ejemplo, tensioactivo (por ejemplo, dialquilsulfosuccinato sódico, alquil éter de polioxietileno, alquilfenil éter de polioxietileno o éster de ácido graso de polioxietileno), parafina, terpeno, resina de poliamida, sal del ácido poliacrílico, polioxietileno, cera, alquil éter de polivinilo, condensado de alquilfenol-formalina y emulsión de resina sintética.

En cuanto al anticongelante, pueden mencionarse, por ejemplo, alcohol polihídrico (por ejemplo, etilenglicol, dietilenglicol, propilenglicol o glicerina).

En cuanto al inhibidor de la solidificación, pueden mencionarse, por ejemplo, polisacáridos (por ejemplo, almidón, ácido algínico, manosa o galactosa), polivinilpirrolidona, carbón blanco, goma de éster y resina de petróleo.

En cuanto al disgregante, pueden mencionarse, por ejemplo, tripolifosfato sódico, hexametafosfato sódico, sal metálica de ácido esteárico, polvo de celulosa, dextrina, copolímero de éster de ácido metacrílico, polivinilpirrolidona, compuesto quelante de ácido poliaminocarboxílico, copolímero de estireno sulfonado-isobutileno-anhídrido maleico y copolímero de injerto de almidón-poliacrilonitrilo.

En cuanto al inhibidor de la descomposición, pueden mencionarse, por ejemplo, desecantes, tales como zeolita, cal viva, óxido de magnesio y similares; antioxidantes, tales como de tipo fenol, de tipo amina, de tipo azufre, de tipo ácido fosfórico y similares; y absorbentes, ultravioletas tales como de tipo ácido salicílico, de tipo benzofenona y similares.

Cuando el presente agente de control de plagas contiene los compuestos aditivos anteriormente mencionados, su contenido en masa se selecciona habitualmente en un intervalo del 5 al 95%, preferentemente del 20 al 90% en el caso del vehículo (por ejemplo, vehículo sólido o vehículo líquido), normalmente del 0,1 al 30%, preferentemente del 0,5 al 10% en el caso del tensioactivo y normalmente del 0,1 al 30%, preferentemente del 0,5 al 10% en el caso de otros aditivos.

El presente agente de control de plagas se usa en cualquier formulación seleccionada entre formulación en polvo, mezcla de polvo-gránulo, gránulo, polvo humectable, concentrado soluble en agua, gránulo dispersable en agua,

comprimido, Jumbo, concentrado emulsionable, formulación oleosa, solución, concentrado fluido, emulsión, microemulsión, suspoemulsión, formulación de volumen ultrabajo, microcápsula, agente fumante, aerosol, agente de cebo, pasta, etc.

En el uso real de la formulación, la formulación puede usarse *per se* o después de su dilución con un diluyente (por ejemplo agua) en una concentración dada. La aplicación de la formulación que contiene el presente compuesto o de su producto de dilución puede llevarse a cabo por un método utilizado habitualmente, tal como dispersión (por ejemplo, pulverización, nebulización, atomización, dispersión en polvo, dispersión en gránulos, dispersión en superficie acuosa o dispersión en bandeja de entrada), aplicación en suelo (por ejemplo, mezclado o empapado), aplicación en superficie (por ejemplo, recubrimiento, recubrimiento en polvo o cubrición), inmersión, cebo envenenado, ahumado y similares. También es posible mezclar el principio activo anteriormente mencionado con un alimento para ganado con el fin de prevenir la infestación y el crecimiento de plagas dañinas, particularmente de insectos dañinos en las excreciones de ganado.

La proporción (% en masa) del principio activo en el presente agente de control de plagas se selecciona de forma adecuada para satisfacer esta necesidad. El principio activo se selecciona de forma adecuada, por ejemplo, en el siguiente intervalo.

En la formulación en polvo, mezcla de polvo-gránulo, etc.

del 0,01 al 20%, preferentemente del 0,05 al 10%

En gránulos, etc.

15

del 0,1 al 30%, preferentemente del 0,5 al 20%

20 En polvo humectable, gránulo dispersable en agua, etc.

del 1 al 70%, preferentemente del 5 al 50%

En concentrado soluble en agua, solución, etc.

del 1-95 %, preferentemente del 10 al 80%

En concentrado emulsionable, etc.

del 5 al 90%, preferentemente del 10 al 80%

En formulación oleosa, etc.

del 1 al 50%, preferentemente del 5 al 30%

En concentrado fluido, etc.

del 5 al 60%, preferentemente del 10 al 50%

30 En emulsión, microemulsión, suspoemulsión, etc.

del 5 al 70%, preferentemente del 10 al 60%

En comprimido, cebo, pasta, etc.

del 1 al 80%, preferentemente del 5 al 50%

En agente fumante, etc.

del 0,1 al 50%, preferentemente del 1 al 30%

En aerosol, etc.

del 0,05 al 20%, preferentemente del 0,1 al 10%

La formulación se pulveriza después de su dilución en una concentración adecuada o se aplica directamente.

Cuando el presente agente de control de plagas se utiliza después de su dilución con un diluyente, la concentración del principio activo es normalmente de 0,1 a 5.000 ppm. Cuando la formulación se usa *per se*, la cantidad de aplicación de la misma por unidad de área es de 0,1 a 5.000 g por 1 ha en términos de compuesto de principio activo; sin embargo, la cantidad de aplicación no se limita a la misma.

Además, el presente agente de control de plagas es suficientemente efectivo cuando se usa el presente compuesto solo como un principio activo. Sin embargo, en el presente agente de control de plagas, pueden mezclarse o

utilizarse en combinación, según sea necesario, fertilizantes o químicos agrícolas, tales como insecticida, acaricida, nematicida, sinergista, fungicida, agente antivírico, atrayente, herbicida, agente de control del crecimiento de plantas y similares. En este caso, se muestra un mayor efecto.

A continuación se muestran ejemplos de los compuestos insecticidas, acaricidas, nematicidas y sinergistas conocidos, que pueden mezclarse o usarse en combinación.

1. Inhibidores de acetilcolinesterasa

5

- (1A) carbamatos: alanicarb, aldicarb, aldoxicarb, bendiocarb, benfuracarb, butocarboxim, butoxicarboxim, carbarilo, carbofurano, carbosulfano, etiofencarb, fenobucarb, formetanato, furatiocarb, isoprocarb, metiocarb, metomilo, metolcarb, oxamilo, pirimicarb, propoxur, tiodicarb, tiofanox, triazamato, trimetacarb, XMC, xililcarb;
- (1B) Organofosfatos: acefato, azametifos, azinfosetilo, azinfos-metilo, cadusafos, cloretoxifos, clorfenvinfos, clormefos, clorpirifos, clorpirifosmetilo, coumafos, cianofos, demoton-S-metilo, diamidafos, diazinon, diclorvos, dicrotofos, dimetoato, dimetilvinfos, dioxabenzofos, disulfoton, DSP, EPN, etion, etoprofos, etrimfos, famfur, fenamifos, fenitrotion, fention, fonofos, fostiazato, fostietano, heptenofos, isamidofos, isazofos, isofenfos-metilo, O-(metoxiaminotio-fosforil)salicilato de isopropilo, isoxation, malation, mecarbam, metamidofos, metidation, mevinfos, monocrotofos, naled, ometoato, oxidemeton-metilo, oxideprofos, paration, paration-metilo, fentoato, forato, fosalone, fosmet, fosfamidon, foxima, pirimifos-metilo, profenofos, propafos, propetamfos, protiofos, piriaclofos, piriaclofos, piriaclofos, terbufos, tetraclorvinfos, tiometon, tionazin, triazofos, triclorfon, vamidotion, diclofention, imiciafos, isocarbofos, mesulfenfos, flupirazofos
 - 2. Antagonistas del canal de cloro activado por GABA
- 20 (2A) Organoclorados de ciclodieno: clordano, endosulfano, gamma-BCH;
 - (2B) Fenilpirazoles: acetoprol, etiprol, fipronil, pirafluprol, piriprol, RZI-02-003 (número de código)
 - 3. Moduladores de canales de sodio
- (3A) Piretroides/piretrinas: acrinatrina, aletrina (incluye d-cis-trans y d-trans), bifentrina, bioaletrina, bioaletrina S-ciclopentenilo, bioresmetrina, cicloprotrina, ciflutrina (incluye beta-), cihalotrina (incluye gamma- y lambda-), cipermetrina (incluye alfa-, beta-, teta- y zeta-), cifenotrina [incluye isómeros (IR)-trans], deltametrina, empentrina, esfenvalerato, etofenprox, fenpropatrina, fenvalerato, flucitrinato, flumetrina, halfenprox, imiprotrina, metoflutrina, permetrina, fenotrina [incluye isómeros (IR)-trans], praletrina, proflutrina, piretrina, resmetrina, RU15525 (número de código), silafluofeno, teflutrina, tetrametrina, tralometrina, transflutrina, ZX18901 (número de código), fluvalinato (incluye tau-), tetrametilflutrina, meperflutrina;
- 30 (3B) DDT/Metoxiclor: DDT, metoxiclor
 - 4. Agonistas/antagonistas del receptor nicotínico de acetilcolina
 - (4A) Neonicotinoides: acetamiprid, clotianidina, dinotefurano, imidacloprid, nitenpiram, tiacloprid, tiametoxam;
 - (4B) Nicotina: nicotina-sulfato
 - 5. Activadores alostéricos del receptor nicotínico de acetilcolina
- 35 Espinosinas: espinetoram, espinosad
 - 6. Activadores del canal de cloro

Abamectinas, Milbemicinas: abamectina, benzoato de emamectina, lepimectina, milbemectina, ivermectina, polinactins

- 7. Miméticos de la hormona juvenil
- diofenolano, hidropreno, kinopreno, metotrina, fenoxicarb, piriproxifeno
 - 8. Inhibidores no específicos (multi-sitio) misceláneos
 - 1,3-dicloropropeno, DCIP, dibromuro de etileno, bromuro de metilo, cloropicrina, fluoruro de sulfurilo
 - 9. Antialimentarios

pimetrozina, flonicamid, pirifluquinazon

45 10. Inhibidores del crecimiento de ácaros

clofentezina, diflovidazina, hexitiazox, etoxazol

11. Alteradores microbianos de las membranas del intestino medio de insectos

Agente de BT: Bacillus sphaericus, Bacillus thuringiensis subsp. aizawai, Bacillus thuringiensis subsp. israelensis, Bacillus thuringiensis subsp. kurstaki, Bacillus thuringiensis subsp. tenebrionis, Proteínas de cultivo de Bt (Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Ab1), Bacillus popilliae, Bacillus subtillis

12. Inhibidores de la ATP sintasa mitocondrial

diafentiuron:

Acaricidas de organotina: azociclotina, cihexatina, óxido de fenbutatina;

propargita, tetradifon

10 13. Desacopladores de la fosforilación oxidativa mediante la interrupción del gradiente de protones

clorfenapir, DNOC

14. Bloqueantes del canal del receptor nicotínico de acetilcolina

Análogos de nereistoxina: bensultap, cartap, tiociclam, tiosultap

- 15. Inhibidores de la biosíntesis de quitina, tipo 0
- Benzoilureas: bistrifluron, clorfluazoron, diflubenzuron, flucicloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron, triflumuron, fluazuron
 - 16. Inhibidores de la biosíntesis de quitina, tipo 1

buprofezina

- 17. Disruptor de la muda, dípteros
- 20 ciromazina
 - 18. Agonista del receptor de ecdisona (aceleración de la ecdisis)

Diacilhidrazinas: cromafenozida, halofenozida, metoxifenozida, tebufenozida

19. Agonista del receptor de octopamina

amitraz

- 25 20. Inhibidores del complejo III de transporte de electrones mitocondrial hidrametilnon, acequinocilo, fluacripirim, cienopirafeno
 - 21. Inhibidores del complejo II de transporte de electrones mitocondrial ciflumetofeno, cienopirafeno, NNI-0711 (número de código)
 - 22. Inhibidores del complejo I de transporte de electrones mitocondrial
- 30 Acaricidas e insecticidas METI: fenazaquina, fenpiroximato, piridabeno, pirimidifeno, tebufenpirad, tolfenpirad

Otro: rotenona

23. Bloqueantes de los canales de sodio

indoxacarb, metaflumizon

- 24. Inhibidores de la síntesis de lípidos
- 35 Derivados del ácido tetrónico y tetrámico: espirodiclofeno, espiromesifeno, espirotetramat
 - 25. Inhibidores del complejo IV de transporte de electrones mitocondrial

fosfuro de aluminio, fosfina, fosfuro de cinc, cianuro de calcio

26. Inhibidores neuronales (modo de acción desconocido)

bifenazato

27. Inhibidores de aconitasa

fluoroacetato de sodio

28. Sinergistas

butóxido de piperonilo, DEF

5 29. Moduladores del receptor de rianodina

clorantraniliprol, flubendiamida, ciantraniliprol

30. Compuestos con modo de acción desconocido

azadiractina, amidoflumet, benclotiaz, benzoximato, bromopropilato, quinometionato, CL900167 (número de código), criolita, dicofol, diciclanilo, dienoclor, dinobuton, óxido de fenbutatina, fenotiocarb, fluensulfona, flufenerim, flusulfamida, karanjina, metam, metopreno, metoxifenozida, isocianato de metilo, piridalilo, pirifluquinazon, sulcofuron-sodio, sulfluramid, sulfoxaflor, flupiradifurona, flometoquina, IKI-3106 (número de código)

31. Hongos entomopatogénicos, microorganismos patógenos para nematodos

Beauveria bassiana, Beauveria tenella, Verticillium lecanii, Pacilimyces tenuipes, Paecilomyces fumosoroceus, Beauveria brongniartii, Monacrosporium phymatophagum, Pasteuria penetrans

15 32. Feromonas sexuales

10

(Z)-11-hexadecenal, acetato de (Z)-11-hexadecenilo, litlure-A, litlure-B, Z-13-eicoseno-10-ona, acetato de (Z,E)-9,12-tetradecadienilo, (Z)-9-tetradecen-1-ol, acetato de (Z)-11-tetradecenilo, acetato de (Z)-9,12-tetradecadienilo, acetato de (Z,E)-9,11-detradecadienilo

A continuación, se muestran ejemplos de compuestos fungicidas o de control de daño por enfermedades que pueden mezclarse o usarse en combinación.

1. Inhibidor de la biosíntesis de ácido nucleico

Acilalaninas: benalaxilo, benalaxil-M, furalaxilo, metalaxilo, metalaxil-M;

Oxazolidinonas: oxadixilo;

Butirolactonas: clozilacon, ofurace;

25 Hidroxi-(2-amino)pirimidinas: bupirimato, dimetirimol, etirimol;

Isoxazol: himexazol;

Isotiazolonas: octilinona;

Ácidos carboxílicos: ácido oxolínico

2. Inhibidores de la mitosis y la división celular

30 Benzoimidazoles: benomilo, carbendazim, fuberidazol, tiabendazol;

Tiofanatos: tiofanato, tiofanato-metilo;

N-fenilcarbamatos: dietofencarb;

Toluamidas: zoxamida; Fenilureas: pencicuron;

35 Piridinilmetilbenzamidas: fluopicolida

3. Inhibidores respiratorios

Pirimidinaminas: diflumetorim;

Carboxamidas: benodanil, flutolanil, mepronil, fluopiram, fenfuram, carboxin, oxicarboxin, tifluzamida, bixafeno, furametpir, isopirazam, penflufeno, pentiopirad, sedaxano, boscalid, fluxapiroxad, isofetamid, benzovindiflupir;

40 Metoxi-acrilatos: azoxiestrobina, enestroburina, picoxiestrobina, piraoxiestrobina, coumoxiestrobina, enoxaestrobina, flufenoxiestrobina;

Metoxi-carbamatos: piracloestrobina, pirametoestrobina, triclopiricarb;

Acetatos de oximino: kresoxim-metilo, trifloxiestrobina;

Oximino-acetamidas: dimoxiestrobina, metominoestrobina, orisaestrobina, fenaminestrobina;

Oxazolidin-dionas: famoxadona;

5 Dihidro-dioxazinas: fluoxaestrobina;

Imidazolinonas: fenamidona;

Carbamatos de bencilo: piribencarb;

Ciano-imidazoles: ciazofamid;

Sulfamoil-triazoles: amisulbrom;

10 Crotonatos de dinitrofenilo: binapacrilo, metildinocap, dinocap;

2,6-dinitro-anilinas: fluazinam;

Hidrazonas de pirimidinona: ferimzona;

Trifenil estaño: TPTA, TPTC, TPTH;

Tiofeno-carboxamidas: siltiofam

15 Triazolo-pirimidilaminas: ametoctradina

4. Inhibidores de la síntesis de aminoácidos y proteínas

Anilino-pirimidinas: ciprodinil, mepanipirim, pirimetanil;

ácido enopiranurónico: blasticidina-S, mildiomicina;

Antibiótico de hexopiranosilo: kasugamicina;

20 Antibiótico de glucopiranosilo: estreptomicina;

Antibiótico de tetraciclina: oxitetraciclina

5. Inhibidores de la transducción de señales

Quinolina: quinoxifeno;

Quinazolinas: proquinazid;

25 Fenilpirroles: fenpiclonil, fludioxonil;

Dicarboximidas: clozolinato, iprodiona, procimidona, vinclozolina

6. Inhibidores de la síntesis de lípidos y de la integridad de membrana

Fosforotiolatos: edifenfos, iprobenfos, pirazofos;

Ditiolanos: isoprotiolano;

30 Hidrocarburos aromáticos: bifenilo, cloroneb, dicloran, quintozeno, tecnazeno, tolclofos-metilo;

1,2,4-Tiadiazoles: etridiazol;

Carbamatos: yodocarb, propamocarb-hidrocloruro, protiocarb;

Amidas del ácido cinámico: dimetomorf, flumorf;

Carbamatos de valinamida: bentiavalicarb-isopropilo, iprovalicarb, valifenalato;

35 Amidas del ácido mandélico: mandipropamida;

Bacillus subtilis y los lipopéptidos fungicidas producidos: Bacillus subtilis (cepa: QST 713)

7. Inhibidores de la biosíntesis de esterol en membranas

Piperazinas: triforina;

Piridinas: pirifenox;

Pirimidinas: fenarimol, nuarimol;

Imidazoles: imazalil, oxpoconazol-fumarato, pefurazoato, procloraz, triflumizol;

Triazoles: azaconazol, bitertanol, bromuconazol, ciproconazol, difenoconazol, diniconazol, diniconazol, epoxiconazol, etaconazol, fenbuconazol, fluquinconazol, flusilazol, flutriafol, hexaconazol, imibenconazol, ipconazol, metconazol, miclobutanil, penconazol, propiconazol, protioconazol, simeconazol, tebuconazol, tetraconazol, triadimefon, triadimenol, triticonazol, furconazol, furconazol-cis, quinconazol;

Morfolinas: aldimorf, dodemorf, fenpropimorf, tridemorf;

10 Piperidinas: fenpropidina, piperalina;

Aminas de espiroquetas: espiroxamina;

Hidroxianilidas: fenhexamida;

Tiocarbamatos: piributicarb;

Alilaminas: naftifina, terbinafina

15 8. Inhibidores de la síntesis de glucanos

Antibiótico de tipo glucopiranosilo: validamicina;

Compuesto nucleotídico de peptidilpiridina: polioxina

9. Inhibidores de la síntesis de melanina

Isobenzo-furanonas: ftalida;

20 Pirrolo-quinolonas: piroquilon;

Triazolobenzo-tiazoles: triciclazol;

Carboxamidas: carpropamid, diclocimet;

Prpionamidas: fenoxanil

10. Inductores de defensas de plantas hospedadoras

25 Benzotiadiazoles: acibenzolar-S-metilo;

Benzoisotiazoles: probenazol;

Tiadiazol-carboxamidas: tiadinil, isotianil

Producto natural: laminarina

11. Compuestos con modo de acción desconocido

30 Compuestos de cobre: hidróxido de cobre, dioctanoato de cobre, oxicloruro de cobre, sulfato de cobre, óxido cuproso, oxina-cobre, caldo bordelés, nonil fenol sulfonato de cobre;

Compuestos de azufre: azufre;

Ditiocarbamatos: ferbam, mancozeb, maneb, metiram, propineb, tiram, zineb, ziram, cufraneb;

Ftalimidas: captan, folpet, captafol;

35 Cloronitrilos: clorotalonilo;

Sulfamidas: diclofluanida, tolilfluanida;

Guanidinas: guazatidina, iminotadina-albesilato, iminoctadina-triacetato, dodina;

Otros compuestos: anilazina, ditianon, cimoxanil, fosetil (aluminio, calcio, sodio), ácido y sales de fósforo, tecloftalam, triazóxido, flusulfamida, diclomezina, metasulfocarb, etaboxam, ciflufenamida, metrafenona, bicarbonato

de potasio, bicarbonato de sodio, BAF-045 (número de código), BAG-010 (número de código), bentiazol, bronopol, carvona, quinometionato, dazomet, DBEDC, debacarb, diclorofeno, difenzoquat-metil sulfato, disulfuro de dimetilo, difenilamina, etoxiquina, flumetover, fluoroimida, flutianil, ácido furancarboxílico, metam, nabam, natamicina, nitrapirina, nitrotal-isopropilo, o-fenilfenol, oxazinilazol, sulfato de oxiquinolina, óxido de fenazina, policarbamato, piriofenona, fenpirazamina, plata, pirisoxazol, tebufloquina, tolnifanida, triclamida, aceites minerales, aceites orgánicos, tolprocarb, oxatiapiprolin

A continuación se muestran ejemplos de compuestos herbicidas y de reguladores del crecimiento de plantas conocidos que pueden mezclarse o usarse en combinación.

- A1. Inhibidores de acetil CoA carboxilasa (ACCasa)
- 10 (A1-1) Propionatos de ariloxifenoxi: clodinafop-propargilo, cihalofop-butilo, diclofop-metilo, diclofop-P-metilo, fenoxaprop-P-etilo, fluazifop-butilo, fluazifop-P-butilo, haloxifop, haloxifop-etotilo, haloxifop-P, metamifop, propaquizafop, quizalofop-etilo, quizalofop-P-etilo, quizalofop-P-tefurilo, fentiaprop-etilo;
 - (A1-2) Ciclohexanodionas: aloxidim, butroxidim, cletodim, cicloxidim, profoxidim, setoxidim, tepraloxidim, tralkoxidim;
 - (A1-3) Fenilpirazolinas: aminopiralid, pinoxaden:
- 15 B. Inhibidores de acetolactato sintasa (ALS)

5

25

- (B-1) Imidazolinonas: imazametabenz-metilo, imazamox, imazapic (incluye sales con amina, etc.), imazapir (incluye sales con isopropilamina, etc.), imazaquin, imazatapir;
- (B-2) pirimidiniloxi benzoato: bispiribac-sodio, piribenzoxim, piriftalid, piriminobac-metilo, piritiobac-sodio, pirimisulfan, triafamona:
- 20 (B-3) Sulfonilaminocarbonil-triazolinonas: flucarbazona-sodio, tiencarbazona (incluye la sal de sodio, éster de metilo, etc.), propoxicarbazona-sodio, procarbazona-sodio, iofensulfuron-sodio;
 - (B-4) Sulfonilureas: amidosulfuron, azimsulfuron, bensulfuron-metilo, clorimuron-etilo, clorsulfuron, cinosulfuron, ciclosulfamuron, etametsulfuron-metilo, etoxisulfuron, flazasulfuron, flupirsulfuron-metil-sodio, foramsulfuron, halosulfuron-metilo, imazosulfuron, iodosulfulon-metl-sodio, mesosulfuron-metilo, trifloxisulfuron-metilo, trifloxisulfuron-sodio, triflusulfuron-metilo, tritosulfuron, ortnosulfamuron, propgirisulfuron, metazosulfuron. flucetosulfuron:
 - (B-5) Triazolopirimidinas: cloransulam-metilo, diclosulam, florasulam, flumetsulam, metosulam, penoxsulam, piroxsulam;
 - C1. Inhibidores de la fotosíntesis en el fotosistema II (1)
- 30 (C1-1) fenilcarbamatos: desmedifam, fenmedifam;
 - (C1-2) piridazinonas: cloridazon, brompirazon;
 - (C1-3) Triazinas: ametrina, atrazina, cianazina, desmetrina, dimetametrina, eglinazina-etilo, prometon, prometrina, propazina, simazina, simetrina, terbumeton, terbutilazina, terbutrina, trietazina;
 - (C1-4) Triazinonas: metamitron, metribuzin;
- 35 (C1-5) Triazolinonas: amicarbazona;
 - (C1-6) Uracilos: bromacilo, lenacilo, terbacilo;
 - C2. Inhibidores de la fotosíntesis en el fotosistema II (2)
 - (C2-1) Amidas: pentanoclor, propanil;
- (C2-2) Ureas: clorbromuron, clorotoluron, cloroxuron, dimefuron, diuron, etidimuron, fenuron, fluometuron, isoproturon, isouron, linuron, metabenztiazuron, metobromuron, metoxuron, monolinuron, neburon, siduron, tebutiuron, metobenzuron;
 - C3. Inhibidores de la fotosíntesis en el fotosistema II (3)
 - (C3-1) Benzotiadiazonas: bentazona;
- (C3-2) Nitrilos: bromofenoxim, bromoxinil (incluye ésteres del ácido butírico, ácido octanoico, ácido heptanoico, etc.), ioxinil;

- (C3-3) fenilpirazinas: piridafol, piridato;
- D. Aceptores de electrones del fotosistema I
- (D-1) Bipiridilios: diquat, dicloruro de paraquat;
- E. Inhibidores de protoporfirinógeno oxidasa (PPO)
- 5 (E-1) Difeniléteres: acifluorfen-sodio, bifenox, clometoxifeno, etoxifeno-etilo, fluoroglicofeno-etilo, fomesafeno, lactofeno, oxifluorfeno;
 - (E-2) N-fenilftalimidas: cinidon-etilo, flumiclorac-pentilo, flumioxazina, clorftalim;
 - (E-3) oxidiazoles: oxadiargilo, oxadiazon;
 - (E-4) Oxazolidinedionas: pentoxazona;
- 10 (E-5) fenilpirazoles: fluazolato, piraflufeno-etilo;
 - (E-6) pirimidindionas: benzfendizona, butafenacilo, saflufenacilo, tiafenacilo;
 - (E-7) tiadiazoles: flutiacet-metilo, tidiazimin;
 - (E-8) Triazolinonas: azafenidin, carfentrazona-etilo, sulfentrazona, bencarbazona;
- (E-9) Otros compuestos: flufenpir-etilo, profluazol, piraclonil, SYP-298 (número de código), SYP-300 (número de código);
 - F1. Inhibidores de la biosíntesis de carotenoides en la etapa de fitoeno desaturasa (PDS)
 - (F1-1) piridazinonas: norflurazon;
 - (F1-2) pirimidincarboxamidas: diflufenican, picolinafeno;
 - (F1-3) Otros compuestos: beflubutamid, fluridona, flurocloridona, flurtamona;
- 20 F2. Inhibidores de 4-hidroxifenil-piruvato-dioxigenasa (HPPD)
 - (F2-1) Calistemonas: mesotriona;
 - (F2-2) Isoxazoles: pirasulfotol, isoxaflutol, isoxaclortol;
 - (F2-3) pirazoles: benzofenap, pirazolinato, pirazoxifen, topramezona;
 - (F2-4) Tricetonas: sulcotriona, tefuriltriona, tembotriona, pirasulfotol, topramezona, biciclopirona;
- 25 F3. Inhibidores de la biosíntesis de carotenoides (diana desconocida)
 - (F3-1) Éteres de difenilo: aclonifen;
 - (F3-2) Isoxazolidinonas: clomazona;
 - (F3-3) Triazoles: amitrol;
 - G. Inhibidores de EPSP sintasa (inhibidores de la biosíntesis de aminoácidos aromáticos)
- 30 (G-1) Glicinas: glifosato (incluye sales de sodio, amina, propilamina, ispropilamina, dimetilamina, trimesio, etc.);
 - H. Inhibidores de glutamina sintasa
 - (H-1) Ácidos fosforicos: bilanafos, glufosinato (incluye sales de amina, sodio, etc.);
 - I. Inhibidores de dihidropteroato sintasa (DHP)
 - (I-1) Carbamatos: asulam;
- 35 K1. Inhibidores del ensamblaje de microtúbulos
 - (K1-1) Benzamidas: propizamida, tebutam;
 - (K1-2) Ácidos benzoicos: clortal-dimetilo;

- (K1-3) Dinitroanilinas: benfluralina, butralina, dinitramina, etalfluralina, flucloralina, orizalina, pendimetalina, prodiamina, trifluralina;
- (K1-4) Fosforoamidatos: amiprofos-metilo, butamifos;
- (K1-5) piridinas: ditiopir, tiazopir;
- 5 K2. Inhibidores de la mitosis/organización de microtúbulos
 - (K2-1) Carbamatos: carbetamida, clorprofam, profam, swep, karbutilato;
 - K3. Inhibidores de ácidos grasos de cadena muy larga (VLCFA) (inhibidores de la división celular)
- (K3-1) Acetamidas: difenamida, napropamida, naproanilida; (K3-2) cloroacetamidas: acetoclor, alaclor, butenaclor, dietatil-etilo, dimetaclor, dimetenamid, dimetenamid-P, metazaclor, metolaclor, petoxamid, pretilaclor, propaclor, propisoclor, S-metolaclor, tenilclor;
 - (K3-3) oxiacetamidas: flufenacet, mefenacet;
 - (K3-4) Tetrazolinonas: fentrazamida;
 - (K3-5) Otros compuestos: anilofos, bromobutida, cafenstrol, indanofano, piperofos, fenoxasulfona, piroxasulfona, ipfencarbazona;
- 15 L. Inhibidores de la síntesis de celulosa
 - (L-1) Benzamidas: isoxaben;
 - (L-2) Nitrilos: diclobenil, clortiamid;
 - (L-3) Triazolocarboxamidas: flupoxame;
 - M. Desacopladores (disruptores de membrana)
- 20 (M-1) Dinitrofenoles: dinoterb, DNOC (incluye sales de amina, sodio, etc.);
 - N. Inhibidores de la biosíntesis de lípidos (excluyendo inhibidores de ACCasa)
 - (N-1) Benzofuranos: benfuresato, etofumesate;
 - (N-2) Ácidos carboxílicos halogenados: dalapon, flupropanato, TCA (incluye sales de sodio, calcio, amoniaco, etc.);
 - (N-3) Fosforoditioatos: bensulida;
- 25 (N-4) tiocarbamatos: butilato, cicloato, dimepiperato, EPTC, esprocarb, molinato, orbencarb, pebulato, prosulfocarb, tiobencarb, tiocarbazil, tri-alato, vernolato;
 - O. Auxinas sintéticas
 - (O-1) Ácidos benzoicos: cloramben, 2,3,6-TBA, dicamba (incluye sales de amina, dietilamina, isopropilamina, diglicolamina, sodio, litio, etc.);
- 30 (O-2) Ácidos fenoxicarboxílicos: 2,4,5-T, 2,4-D (incluye sales de amina, dietilamina, trietanolamina, isopropilamina, sodio, litio, etc.), 2,4-DB, clomeprop, diclorprop, diclorprop-P, MCPA, MCPA-tioetilo, MCPB (incluye sales de sodio, etiléster, etc.), mecoprop (incluye sales de sodio, potasio, isopropilamina, trietanolamina, dimetilamina, etc.), mecoprop-P;
 - (O-3) Ácidos piridina carboxílicos: clopiralid, fluroxipir, picloram, triclopir, triclopir-butotilo, halauxifen-metilo;
- 35 (O-4) Ácidos quinolina carboxílicos: quinclorac, quinmerac;
 - (O-5) Otros compuestos: benazolin:
 - P. Inhibidores del transporte de auxina
 - (P-1) Ftalamatos: naftalam (incluye sales con sodio, etc.);
 - (P-2) Semicarbazonas: diflufenzopir;
- 40 Z. Compuestos con modo de acción desconocido

flamprop-M (incluye ésteres de metilo, etilo e isopropilo), flamprop (incluye ésteres de metilo, etilo e isopropilo),

clorflurenol-metilo, cinmetilin, cumiluron, daimuron, metildimuron, difenzoquat, etobenzanid, fosamina, piributicarb, oxaziclomefona, acroleina, AE-F-150954 (número de código), aminociclopiraclor, cianamida, heptamaloxiloglucano, indaziflam, triaziflam, quinoclamina, endotal-disodio, fenisofam, SL-573 (número de código), ciclopirimonato Agentes para el control del crecimiento de plantas: 1-metilciclopropeno, 1-naftilacetamida, 2,6-diisopropilnaftaleno, 4-CPA, bencilaminopurina, ancimidol, aviglicina, carvona, clormequat, cloprop, cloxifonac, cloxifonac-potasio, ciclanilida, citocininas, daminozida, dicegulac, dimetipina, etefon, eticlozato, flumetralina, flurenol, flurprimidol, forclorfenuron, ácido gliberélico, inabenfida, ácido indolacético, ácido indolbutírico, hidrazida maleica, mefluidida, mepiquat cloruro, n-decanol, paclobutrazol, prohexadiona-calcio, prohidrojasmona, sintofen, tidiazuron, triacontanol, trinexapac-etilo, uniconazol, uniconazol-P, ácido 4-oxo-4-(2-feniletil)aminobutírico (nombre químico, n.º de registro CAS: 1083-55-2)

10 A continuación, se muestran ejemplos de los protectores conocidos que pueden mezclarse o usarse en combinación.

benoxacor, furilazol, diclormid, diciclonona, DKA-24 (N1,N2-dialil-N2-dicloroacetilglicinamida), AD-67 (4-dicloroacetil-1-oxa-4-azaespiro[4.5]decano), PPG-1292 (2,2-dicloro-N-(1,3-dioxolan-2-ilmetil)-N-(2-propenil)acetamida), R-29148 (3-dicloroacetil-2,2,5-trimetil-1,3-oxazolidina), cloquintcet-metilo, Anhídrido 1,8-naftálico, mefenpirdietilo, mefenpir, mefenpir-etilo, fenclorazol O etilo, fenclorim, MG-191 (2-diclorometil-2-metil-1,3-dioxano), ciometrinil, flurazol, fluxofenim, isoxadifeno, isoxadifen-etilo, mecoprop, MCPA, daimuron, 2,4-D, MON 4660 (número de código), oxabetrinil, ciprosulfamida, ácido benzoico sustituido con alquilo inferior, TI-35 (número de código) y N-(2-metoxibenzoil)-4-[(metilaminocarbonil)amino]bencenosulfonamida (nombre químico, n.º de registro CAS: 129531-12-0)

El agente de control de plagas de la presente invención formado como se ha explicado anteriormente muestra un efecto de control excelente frente a plagas de *Orthoptera*, *Thysanoptera*, *Hemiptera*, *Coleoptera*, *Diptera*, *Lepidoptera*, *Hymenoptera*, *Collembola*, *Thysanura*, *Blattodea*, *Isoptera*, *Psocoptera*, *Mallophaga*, *Anoplura*, ácaros que se alimentan de plantas, nematodos parásitos de plantas, plagas de moluscos parásitos de plantas, otras plagas de cultivos, plagas molestas, insectos sanitarios, parásitos, etc. A modo de ejemplo de dichas plagas, pueden mencionarse las siguientes especies de organismos.

En cuanto a las plagas de ortópteros, pueden mencionarse, por ejemplo,

Tettigoniidae: Ruspolia lineosa, etc.,

Gryllidae: Teleogryllus emma, etc.,

5

15

Gryllotalpidae: Gryllotalpa orientalis,

30 Acrididae: Oxya hyla intricate, Locusta migratoria, Melanoplus sanguinipes, etc.,

Pyrgomorphidae: Atractomorpha lata,

Eneopteridae: Euscrytus japonicus,

Tridactylidae: Xya japonica, etc.

En cuanto a las plagas de tisanópteros, pueden mencionarse, por ejemplo,

35 Thripidae: Frankliniella intonsa, Frankliniella occidentalis, Scirtothrips dorsalis, Thrips palmi, Thrips tabaci, etc.,

Phlaeothripidaes: Ponticulothrips diospyrosi, Haplothrips aculeatus, etc.

En cuanto a las plagas de hemípteros, pueden mencionarse, por ejemplo,

Cicadidae: Mogannia minuta, etc.,

Aphrophoridae: Aphorphora intermedia, etc.,

40 Membracidae: Machaerotypus sibiricus, etc.,

Cicadellidae: Arboridia apicalis, Empoasca onukii, Nephotettix cincticeps, Recilia dorsalis, etc.,

Cixiidae: Pentastiridius apicalis, etc.,

Delphacidae: Laodelphax striatella, Nilaparvata lugens, Sogatella furcifera, etc.,

Meenoplidae: Nisia nervosa, etc.,

45 Derbidae: Kamendaka saccharivora, etc.,

Cixidia okunii: Achilus flammeus, etc.,

Ricaniidae: Orosanga japonicus, etc.,

Flatidae: Mimophantia maritima, etc.,

Psyllidae: Cacopsylla pyrisuga, etc.,

Calophyidae: Calophya mangiferae, etc.,

5 Phylloxeridae: Daktulosphaira vitifoliae, etc.,

Adelgidae: Adelges laricis, Adelges tsugae, etc.,

Aphydidae: Acyrthosiphon pisum, Aphis gossypii, Aphis spiraecola, Lipaphis erysimi, Myzus persicae, Schizaphis graminum, Rhopalosiphum padi, etc.,

Aleyrodidae: Aleurocanthus spiniferus, Bemisia tabaci, Bemisia argentifolii, Trialeurodes vaporariorum, etc.,

10 Margarodidae: Drosicha corpulenta, Icerya purchasi, etc.,

Pseudococcidae: Dysmicoccus brevipes, Planococcus citri, Pseudococcus comstocki, etc.,

Coccidae: Ceroplastes ceriferus, etc.,

Aclerdidae: Aclerda takahasii, etc.,

Diaspididae: Aonidella aurantii, Diaspidiotus perniciosus, Unaspis yanonensis, etc.,

15 Miridae: Lygus hesperus, Trigonotylus caelestialium, etc.,

Tingidae: Stephanitis pyrioides, Stephanitis nashi, etc.,

Pentatomidae: Eysarcoris aeneus, Lagynotomus elongatus, Nezara viridula, Plautia crossota, etc.,

Plataspidae: Megacopta cribaria, etc.,

Lygaeidae: Cavelerius saccharivorus, etc.,

20 Malcidae: Malcus japonicus, etc.,

Pyrrhocoridae: Dysdercus cingulatus, etc.,

Alydidae: Leptocorisa acuta, Leptocorisa chinensis, etc.,

Coreidae: Anacanthocoris striicornis, etc.,

Rhopalidae: Rhopalus maculatus, etc.,

25 Cimicidae: Cimex lectularius, etc.

En cuanto a las plagas de coleópteros, pueden mencionarse, por ejemplo,

Scarabaeidae: Anomala cuprea, Anomala rufocuprea, Popillia japonica, Oryctes rhinoceros, etc.,

Elateridae: Agriotes ogurae fuscicollis, Melanotus okinawensis, Melanotos fortnumi fortnumi, etc.,

Dermestidae: Anthrenus verbasci, etc.,

30 Bostrychidae: Heterobostrychus hamatipennis, etc.,

Anobiidae: Stegobium paniceum, etc.,

Ptinidae: Pitinus clavipes, etc.,

Trogossitidae: Tenebroides mauritanicus, etc.,

Cleridae: Necrobia rufipes,

35 Nitidulidae: Carpophilus hemipterus, etc.,

Silvanidae: Ahasverus advena, etc.,

Laemophloeidae: Cryptolestes ferrugineus, etc.,

Coccinellidae: Epilachna varivestis, Henosepilachna vigintioctopunctata, etc.,

Tenebrionidae: Tenebrio molitor, Tribolium castaneum, etc.,

Meloidae: Epicauta gorhami, etc.,

Cerambycidae: Anoplophora glabripennis, Xylotrechus pyrrhoderus, Monochamus alternatus eridai, etc.,

5 Bruchidae: Callosobruchus chinensis, etc.,

Chrysomelidae: Leptinotarsa decemlineata, Diabrotica virgifera, Phaedon brassicae, Phyllotreta striolata, etc.,

Brentidae: Cylas formicarius, etc.,

Curculionidae: Hypera postica, Listroderes costirostris, Euscepes post fasciatus, etc.,

Erirhinidae: Echinocnemus bipunctatus, Lissorhoptrus oryzophilus, etc.,

10 Dryophthoridae: Sitophilus zeamais, Sphenophrus vestitus, etc.,

Scolytidae: Tomicus piniperda, etc.,

Platypodidae: Crossotarsus niponicus, etc.,

Lyctidae: Lyctus brunneus, etc.

En cuanto a las plagas de dípteros, pueden mencionarse, por ejemplo,

15 Tipulidae: Tipila aino, etc.,

Bibionidae: Plecia nearctica, etc.,

Mycetophidae: Exechia shiitakevora, etc.,

Sciaridae: Pnyxia scabiei, etc.,

Cecidomyiidae: Asphondylia yushimai, Mayetiola destructor, etc.,

20 Culicidae: Aedes aegypti, Culex pipiens pallens, etc.,

Simuliidae: Simulim takahasii, etc.,

Chironomidae: Chironomus oryzae, etc.,

Tabanidae: Chrysops suavis, Tabanus trigonus, etc.,

Syrphidae: Eumerus strigatus, etc.,

25 Tephritidae: Bactrocera dorsalis, Euphranta japonia, Ceratitis capitata, etc.,

Agromyzidae: Liriomyza trifolii, Chromatomyia horticola, etc.,

Chloropidae: Meromyza nigriventris, etc.,

Drosophilidae: Drosophila suzukii, Drosophila melanogaster, etc.,

Ephydridae: Hydrellia griseola, etc.,

30 Hippoboscidae: Hippobosca equina, etc.,

Scatophagidae: Parallelpmma sasakawae, etc.,

Anthomyiidae: Delia antiqua, Delia platura, etc.,

Fanniidae: Fannia canicularis, etc.,

Muscidae: Musca domestica, Stomoxys calcitrans, etc.,

35 Sarcophagidae: Sarcophaga peregrina, etc.,

Gasterophilidae: Gasterophilus intestinalis, etc.,

Hypodermatidae: Hypoderma lineatum, etc.,

Oestridae: Oestrus ovis, etc.

En cuanto a las plagas de lepidópteros, pueden mencionarse, por ejemplo,

Hepialidae: Endoclita excrescens, etc.,

Heliozelidae: Antispila ampelopsia, etc.,

5 Cossidae: Zeuzera multistrigata leuconota, etc.,

Tortricidae: Archips fuscocupreanus, Adoxophyes orana fasciata, Grapholita molesta, Homona magnanima,

Leguminivora glycinivorella, Cydia pomonella, etc.,

Cochylidae: Eupoecilia ambiguella, etc.,

Psychidae: Bambalina sp., Eumeta minuscula, etc.,

10 Tineidae: Nemapogon granella, Tinea translucens, etc.,

Bucculatricidae: Bucculatrix pyrivorella, etc.,

Lyonetiidae: Lyonetia clerkella, etc.,

Gracilariidae: Caloptilia theivora, Phyllonorycter ringoniella, etc.,

Phyllocnistidae: Phyllocnistis citrella, etc.,

15 Acrolepiidae: Acrolepiopsis sapporensis, etc.,

Yponomeutidae: Plutella xylostella, Yponomeuta orientalis, etc.,

Argyresthidae: Argyresthia conjugella, etc.,

Sesidae: Nokona regalis, etc.,

Gelechiidae: Phthorimaea operculella, Sitotroga cerealella, Pectinophora gossypiella, etc.,

20 Carposinidae: Carposina sasakii, etc.,

Zygaenidae: Illiberis pruni, etc.,

Limacodidae: Monema flavescens, etc.,

Crambidae: Ancylolomia japonica, Chilo suppressalis, Cnaphalocrosis medinalis, Ostrinia furnacalis, Ostrinia

nubilalis, etc.,

25 Pyralidae: Cadra cautella, Galleria mellonella, etc.,

Pterophoridae: Nippoptilia vitis, etc.,

Papilionidae: Papilio xuthus, etc.,

Pieridae: Pieris rapae crucivora, etc.,

Hesperiidae: Parnara guttata guttata, etc.,

30 Geometridae: Ascotis selenaria, etc.,

Lasiocampidae: Dendrolimus spectabilis, Malacosomaneustrium testaceum, etc.,

Sphingidae: Agrius convolvuli, etc.,

Lymantriidae: Arna pseudoconspersa, Lymantria dispar, etc.,

Arctiidae: Hyphantria cunea, etc.,

35 Noctuidae: Agrotis ipsilon, Autographa nigrisigna, Helicoverpa armigera, Helicoverpa zea, Heliothis virescens,

Spodoptera exigua, Spodoptera litura, etc.

En cuanto a las plagas de himenópteros, pueden mencionarse, por ejemplo,

Argidae: Arge pagana, etc.,

Tenthredinidae: Apethymus kuri, Athalia rosae ruficornis, etc.,

Cynipidae: Dryocosmus kuriphilus, etc.,

Vespidae: Vespa simillima xanthoptera, etc.,

Formicidae: Solenopsis invicta, etc.,

5 Megachilidae: Megachile nipponica, etc.

En cuanto a las plagas del orden de los colémbolos, pueden mencionarse, por ejemplo,

Sminthuridae: Bourletiella hortensis, etc.

En cuanto a las plagas del orden de los tisanuros, pueden mencionarse, por ejemplo,

Lepismatidae: Lepisma saccharina, Ctenolepisma villosa, etc.

10 En cuanto a las plagas de blatodeos, pueden mencionarse, por ejemplo,

Blattidae: Periplaneta americana,

Blattellidae: Blattella germanica, etc.

En cuanto a las plagas del orden de los isópteros, pueden mencionarse, por ejemplo,

Kalotermitidae: Incisitermes minor, etc.,

15 Rhinotermitidae: Coptotermes formosanus, etc.,

Termitidae: Odontotermes formosanus, etc.

En cuanto a las plagas del orden de los psocópteros, pueden mencionarse, por ejemplo,

Trogiidae: Trogium pulsatorium, etc.,

Liposcelididae: Liposcelis corrodens, etc.

20 En cuanto a las plagas del orden de los malófagos, pueden mencionarse, por ejemplo,

Menoponidae: Lipeurus caponis, etc.,

Trichodectidae: Damalinia bovis, etc.

En cuanto a las plagas del orden de los anopluros, pueden mencionarse, por ejemplo,

Haematopinidae: Haematopinus suis, etc.,

25 Pediculine: Pediculus humanus, etc.,

Linognathidae: Linognathus setosus, etc.,

Pthiridae: Phthrius pubis, etc.

En cuanto a los ácaros que se alimentan de plantas, pueden mencionarse, por ejemplo,

Eupodidae: Penthaleus major, etc.,

30 Tarsonemidae: Phytonemus pallidus, Polyphagotarsonemus latus, etc.,

Pyemotidae: Siteroptes sp., etc.,

Tenuipalpidae: Brevipalpus lewisi, etc.,

Tuckerellidae: Tuckerella pavoniformis, etc.,

Tetranychidae: Eotetranychus boreus, Panonychus citri, Panonychus ulmi, Tetranychus urticae, Tetranychus

35 kanzawai, etc.,

Nalepellidae: Trisetacus pini, etc.,

Eriophyidae: Aculops pelekassi, Epitrimerus pyri, Phyllocoptruta oleivola, etc.,

Diptilomiopidae: Diptacus crenatae, etc.,

Acaridae: Aleuroglyphus ovatus, Tyrophagus putrescentiae, Rhizoglyphus robini, etc.

En cuanto a los nematodos parásitos de plantas, pueden mencionarse, por ejemplo,

Longidoridae: Xiphinema index, etc.,

5 Trichodoridae: Paratrichodorus minor, etc.,

Rhabditidae: Rhabditella sp., etc.,

Tylenchidae: Aglenchus sp., etc.,

Tylodoridae: Cephalenchus sp., etc.,

Anguinidae: Nothotylenchus acris, Ditylenchus destructor, etc.,

10 Hoplolaimidae: Rotylenchulus reniformis, Helicotylenchus dihystera, etc.,

Paratylenchidae: Paratylenchus curvitatus, etc.,

Meloidogynidae: Meloidogyne incognita, Meloidogyne hapla, etc.,

Heteroderidae: Globodera rostochiensis, Heterodera glycines, etc.,

Telotylenchidae: Tylenchorhynchus claytoni, etc.,

15 Psilenchidae: Psilenchus sp., etc.,

Criconematidae: Criconemoides sp., etc.,

Tylenchulidae: Tylenchulus semipenetrans, etc.,

Spaeronematidae: Sphaeronema camelliae, etc.,

Pratylenchidae: Radopholus citrophilus, Radopholus similis, Nacobbus aberrans, Pratylenchus penetrans,

20 Pratylenchus coffeae, etc.,

Iotonchiidae: Iotonchium ungulatum, etc.,

Aphelenchidae: Aphelenchus avenae, etc.,

Aphelenchoidae Aphelenchoides besseyi, Aphelenchoides fragariae, etc.,

Palasitaphelenchidae: Bursaphelenchus xylophilus, etc.

25 En cuanto a las plagas de moluscos parásitos de plantas, pueden mencionarse, por ejemplo,

Pilidae: Pomacea canaliculata, etc.,

Veronicellidae: Leavicaulis alte, etc.,

Achatinidae: Achatina fulica, etc.,

Philomycidae: Meghimatium bilineatum, etc.,

30 Succineidae: Succinea lauta, etc.,

Didcidae: Discus pauper, etc.,

Zonitidae: Zonitoides yessoensis, etc.,

Limacidae: Limacus flavus, Deroceras reticulatum, etc.,

Helicarionidae: Parakaliella harimensis, etc.;

35 Bradybaenidae: Acusta despecta sieboldiana, Bradybaena similaris, etc.

En cuanto a otras plagas, tales como animales lesivos, animales molestos, insectos sanitarios, insectos del ganado, parásitos y similares, pueden mencionarse, por ejemplo,

Acari Macronysshidae: Ornithonyssus sylvialum, etc.,

Varroidae: Varroa jacobsoni, etc.,

Dermanyssidae: Dermanyssus gallinae, etc.,

Macronyssidae: Ornithonyssus sylvialum, etc.,

5 Ixodidae: Boophilus microplus, Rhipicephalus sanguineus, Haemaphysalis longicornis, etc.,

Sacroptidae: Sarcoptes scabiei, etc.,

Isopoda Armadillididae: Armadillidium vulgare, etc.,

Decapoda Astacidae: Procambarus clarkii, etc.,

Porcellionidae: Armadillidium vulgare, etc.,

10 Chilopoda pests: Scutigeromorpha Sutigeridae, Thereuonema tuberculata, Scolopendromorpha Scolopendra subpinipes, etc.

Plagas de Diplopoda: Polydesmida Paradoxosomatidae Oxidus gracillis, etc.

Araneae Latrodectus hasseltii. Theridiiadae hasseltii, etc.,

Clubionidae: Chiracanthium japonicum, etc.,

15 orden Scorpionida: Androctonus crassicauda, etc.,

lombrices intestinales parásitas: Ascaris lumbricoides, Syphacia sp., Wucherebia bancrofti, etc.,

platelmintos parásitos: Distomum sp., Paragonimus westermanii, Metagonimus yokokawai, Schistosoma japonicum, Taenia solium, Taeniarhynchus saginatus, Echinococcus sp., Diphyllobothrium latum, etc.

El presente agente de control de plagas también muestra un efecto de control contra las plagas anteriormente mencionadas, etc., que ya han desarrollado resistencia contra agentes de control de plagas existentes. Adicionalmente, el presente agente de control de plagas puede aplicarse a plantas que ya tienen resistencias a insectos, enfermedades, herbicidas, etc., debido a una modificación genética, emparejamiento artificial, etc.

A continuación, se describen los métodos de producción, los métodos de formulación y las aplicaciones del presente compuesto, de manera detallada mediante ejemplos. Sin embargo, la presente invención no se limita en modo alguno a estos ejemplos.

También se describen los métodos de producción de los productos intermedios para la producción del presente compuesto.

Ejemplos

25

35

[Ejemplo 1]

30 Producción de 2-fluoro-4-metil-5-(2,2,2-trifluoroetiltio)fenol (compuesto del presente documento n.º C-0001)

A 300 ml de tolueno se le añadieron 32,0 g (119 mmol) de ácido 2-fluoro-4-metil-5-(2,2,2-trifluoroetiltio)fenil borónico producido por el método descrito en la publicación internacional PCT n.º WO 2007/034755 y 15,4 g (131 mmol) de N-óxido de N-metilmorfolina, seguido de reflujo durante 1 hora con calentamiento. La mezcla de reacción se dejó enfriar a temperatura ambiente. El disolvente se eliminó por destilación a presión reducida. El residuo se sometió a extracción con acetato de etilo. La fase orgánica obtenida se lavó con agua y después se secó sobre sulfato de magnesio anhidro. El disolvente se eliminó por destilación a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 4:1), para obtener 25,5 g (rendimiento: 89%) de un producto previsto. RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

40 2,38 (3H, s), 3,32 (2H, c), 5,28 (1H, s a),

6,95 (1H, d), 7,22 (1H, d)

[Ejemplo 2]

Producción de 4-metil-3-(2,2,2-trifluoroetiltio)fenol (compuesto del presente documento n.º C-0005) (referencia)

Se suspendieron 49,7 g (225 mmol) de 4-metil-3-(2,2,2-trifluoroetiltio)anilina en 500 ml de una solución acuosa de

ácido sulfúrico al 15%. En la misma se añadió gota a gota a gota una solución acuosa obtenida disolviendo 18,6 g (270 mmol) de nitrito sódico en 100 ml de agua, a una temperatura de 0 a 5°C con enfriamiento con hielo. Después de completar la adición gota a gota, la mezcla se agitó durante 1 hora manteniendo la temperatura. La mezcla de reacción se vertió gradualmente a 120°C en una solución obtenida disolviendo 71,8 g (450 mmol) de sulfato de cobre anhidro en 400 ml de ácido sulfúrico al 60%. La mezcla se dejó enfriar a temperatura ambiente y se sometió a extracción con acetato de etilo. La fase orgánica obtenida se secó sobre sulfato de magnesio anhidro y se concentró a presión reducida. El producto en bruto obtenido se purificó por cromatografía en columna (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 10:1), para obtener 19 g (rendimiento: 38%) de un producto previsto.

10 RMN 1 H (400 MHz, CDCl₃/TMS δ (ppm))

2,36 (3H, s), 3,38 (2H, c), 5,61 (1H, s a),

6,69 (1H, dd), 6,93 (1H, s), 7,03 (1H, d)

[Ejemplo 3]

5

15

20

35

Producción de éter de 5,5-dimetilhexil-[2-fluoro-4-metil-5-(2,2,2-trifluoroetiltio)fenilo] (compuesto del presente documento n.º A-0085)

A 70 ml de tetrahidrofurano se le añadieron 1,6 g (6,7 mmol) de 2-fluoro-4-metil-3-(2,2,2-trifluoroetiltio)fenol, 1,7 g (13 mmol) de 5,5-dimetilhexanol, 2,0 g (9,9 mmol) de diisopropil azodicarboxilato y 2,6 g (9.9 mmol) de trifenilfosfina. Se llevó a cabo una reacción a temperatura ambiente durante 16 horas. Después de confirmar que la reacción se había completado, el disolvente se eliminó por destilación a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 4:1), para obtener 2,3 g (rendimiento: 97%) de un producto previsto.

Además, el método de producción de 5,5-dimetilhexanol se describe en, por ejemplo, J. Am. Chem. Soc., 119 (29), 6909 (1997).

RMN ¹H (300 MHz CDCl₃/TMS δ (ppm)

25 0,88 (9H, s), 1,19-1,27 (2H, m), 1,36-1,48 (2H, m),

1,77 (2H, quint), 2,41 (3H, s), 3,29 (2H, c),

4,01 (2H, t), 6,95 (1H, d), 7,15 (1H, d)

[Ejemplo 4]

Producción de éter de 5,5-dimetilhexil-[2-fluoro-4-metil-5-(2,2,2-trifluoroetilsulfinil)fenilo] (compuesto del presente documento n.º A-0086)

En 70 ml de cloroformo se disolvieron 2,3 g (6,5 mmol) de éter de 5,5-dimetilhexil-{2-fluoro-4-metil-5-(2,2,2-trifluoroetiltio)fenilo. A esto se le añadieron, en porciones en aproximadamente 10 minutos, 1,5 g (6,5 mmol) de ácido 3-cloroperbenzoico (pureza: aproximadamente del 75%) a temperatura ambiente. Se llevó a cabo una reacción durante 1 hora. Después de confirmar que la reacción se había completado, el disolvente se eliminó por destilación a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo: trietilamina = 5:1:0,01), para obtener 2,2 g (rendimiento: 92%) de un producto previsto. RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

0,89 (9H, s), 1,19-1,27 (2H, m), 1,37-1,49 (2H, m),

1,81 (2H, quint), 2,31 (3H, s), 3,30-3,48 (2H, m),

40 4,10 (2H, t), 6,98 (1H, d), 7,55 (1H, d)

[Ejemplo 5]

Producción de éter de 5-trifluorometiltiopentil-[4-metil-3-(2,2,2-trifluoroetiltio)fenilo] (compuesto del presente documento n.º A-0438) (referencia)

A 100 ml de tetrahidrofurano se le añadieron 1,5 g (4,3 mmol) de éter de 5-tiocianatopentil-{4-metil-3-(2,2,2-trifluroetiltio)fenilo} y 1,8 g (13 mmol) de triflurometiltrimetilsilano. A esto se le añadieron, a 0°C, 5 ml (5,0 mmol) de una solución de fluoruro de tetra-n-butilamonio-tetrahidrofurano (1 mol/litro). Se llevó a cabo una reacción durante 1 hora. Después de confirmar que la reacción se había completado, el disolvente se eliminó por destilación a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 10:1), para obtener 1,3 g (rendimiento: 77%) de un producto previsto.

RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

1,56-1,64 (2H, m), 1,73-1,85 (4H, m), 2,38 (3H, s),

2,91 (2H, t), 3,40 (2H, c), 3,94 (2H, t), 6,75 (1H, dd), 7,00 (1H, d), 7,11 (1H, d)

[Ejemplo 6]

10

5 Producción de éter de 5-cloropentil-[4-metil-3-(2,2,2-trifluoroetiltio)fenilo] (compuesto del presente documento n.º A-0279) (referencia)

A 100 ml de acetonitrilo se le añadieron 2,5 g (11 mmol) de 4-metil-3-(2,2,2-trifluoroetiltio)fenol, 2,5 g (13 mmol) de 1-bromo-5-cloropentano, 1,9 g (14 mmol) de carbonato potásico y 0,35 g (1,1 mmol) de bromuro de tetra-n-butilamonio. La mezcla se calentó a reflujo durante 5 horas con calentamiento y después se dejó enfriar a temperatura ambiente. El disolvente se eliminó por destilación a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 10:1), para obtener 2,9 g (rendimiento: 79%) de un producto previsto.

RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

1,56-1,66 (2H, m), 1,74-1,93 (4H, m), 2,38 (3H, s),

15 3,36 (2H, c), 3,56 (2H, t), 3,94 (2H, t), 6,74 (1H, d),

7,00 (1H, s), 7,09 (1H, d)

[Ejemplo 7]

Producción de éter de 5-tiocianatopentil-[4-metil-3-(2,2,2-trifluoroetiltio)fenilo] (compuesto del presente documento n.º A-0672) (referencia)

A 100 ml de etanol se le añadieron 2,0 g (6,1 mmol) de éter de 5-cloropentil-{4-metil-3-(2,2,2-trifluoroetiltio)fenilo}, 4,0 g (41 mmol) de tiocianato potásico y 0,10 g (0,61 mmol) de yoduro potásico. La mezcla se calentó a reflujo durante 10 horas con calentamiento y después se dejó enfriar a temperatura ambiente. El disolvente se eliminó por destilación a presión reducida. Al residuo se le añadió acetato de etilo para llevar a cabo la extracción. La fase orgánica obtenida se lavó con agua y se secó sobre sulfato de magnesio anhidro. El disolvente se eliminó por destilación a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 10:1), para obtener 1,8 g (rendimiento: 84%) de un producto previsto.

RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

1,53-1,68 (2H, m), 1,76-1,87 (4H, m), 2,38 (3H, s),

30 3,00 (2H, t), 3,39 (2H, c), 3,97 (2H, t), 6,74 (1H, d),

7,00 (1H, s), 7,13 (1H, d)

[Ejemplo 8]

Producción de éter de 5-trifluorometiltiopentil-[4-metil-3-2,2-trifluoroetilsulfinil)fenilo] (compuesto del presente documento n.º A-0439) (referencia)

En 100 ml de cloroformo se disolvieron 0,98 g (2,5 mmol) de éter de 5-trifluorometiltiopentil-{4-metil-5-(2,2,2-trifluoroetiltio)fenilo}. A esto se le añadieron, en porciones en aproximadamente 10 minutos, 0,58 g (2,5 mmol) de ácido 3-cloroperbenzoico (pureza: aproximadamente del 75%) a temperatura ambiente. Se llevó a cabo una reacción durante 1 hora. Después de confirmar que la reacción se había completado, el disolvente se eliminó por destilación a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo: trietilamina = 5:1:0,01), para obtener 0,78 g (rendimiento: 77%) de un producto previsto.

RMN ¹H (300 MHz, CDCl₃/MS δ (ppm))

1,57-1,64 (2H, m), 1,73-1,88 (4H, m), 2,31 (3H, s),

2,92 (2H, t), 2,32-3,45 (2H, m), 4,05 (2H, t),

45 6,97 (1H, dd), 7,15 (1H, d), 7,48 (1H, d)

[Ejemplo 9]

5

Producción de 4-cloro-2-fluoro-5-(2,2,2-trifluoroetiltio)fenol (compuesto del presente documento n.º C-0003)

A 200 ml de tolueno se le añadieron 33 g (114 mmol) de ácido 4-cloro-2-fluoro-5-(2,2,2-trifluoroetiltio)fenil borónico y 16 g (137 mmol) de N-óxido de N-metilmorfolina. La mezcla se calentó a reflujo durante 1 hora con calentamiento. Después de confirmar que la reacción se había completado, la mezcla se dejó enfriar a temperatura ambiente. Después, el disolvente se eliminó por destilación a presión reducida y el residuo se sometió a extracción con acetato de etilo. La fase orgánica obtenida se lavó con agua y se secó sobre sulfato de magnesio anhidro y el disolvente se eliminó por destilación a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice para obtener 24,5 g (rendimiento: 82%) de un producto previsto.

10 RMN 1 H (300 MHz, CDC₃/TMS δ (ppm))

3,43 (2H, c), 5,31 (1H, d), 7,16 (1H, d), 7,31 (1H, d)

[Ejemplo 10]

Producción de éter de 5-bromopentil-[4-cloro-5-(2,2,2-trifluoroetiltio)fenilo] (compuesto del presente documento n.º A-0273)

A 60 ml de acetonitrilo se le añadieron 3,0 g (11,5 mmol) de 4-cloro-2-fluoro-5-(2,2,2-trifloroetiltio)fenol, 13,2 g (57,4 mmol) de 1,5-dibromopentano, 2,1 g (15,0 mmol) de carbonato potásico y 0,37 g (1,15 mmol) de bromuro de tetra-n-butilamonio. La mezcla se calentó a reflujo durante 1,5 hora con calentamiento. La mezcla se dejó enfriar a temperatura ambiente y la materia insoluble se retiró por filtración. Después, el filtrado se concentró a presión reducida y el residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 20:1), para obtener 4,2 g (rendimiento: 89%) de un producto previsto.

RMN ¹H (400 MHz, CDCl₃/TMS δ (ppm))

1,59-1,69 (2H, m), 1,82-1,99 (4H, m), 3,36-3,47 (4H, m),

4,03 (2H, t), 7,20 (1H, d), 7,23 (1H, d)

25 [Ejemplo 11]

30

45

Producción de éter de 5-tiocianatopentil-[4-cloro-2-fluoro-5-(2,2,2-trifluoroetiltio)fenilo] (compuesto del presente documento n.º A-0670)

A 60 ml de etanol se le añadieron 4,2 g (10,3 mmol) de éter de 5-bromopentil-[4-cloro-2-fluoro-5-(2,2,2-trifluoroetiltio)fenilo] y 5,0 g (51,5 mmol) de tiocianato de potasio. La mezcla se calentó a reflujo durante 4 horas con calentamiento. La mezcla se dejó enfriar a temperatura ambiente y el disolvente se eliminó por destilación a presión reducida. Después se llevó a cabo extracción añadiendo agua y acetato de etilo. La fase orgánica obtenida se secó sobre sulfato de magnesio anhidro y el disolvente se eliminó por destilación a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 10:1), para obtener 3,9 g (rendimiento: 98%) de un producto previsto.

35 RMN 1 H (400 MHz, CDCl₃/TMS δ (ppm))

1,59-1,69 (2H, m), 1,82-1,99 (4H, m), 2,99 (2H, t)

3,42 (2H, c), 4,04 (2H, t), 7,20 (1H, d), 7,23 (1H, d)

[Ejemplo 12]

Producción de éter de 5-trifluorometiltiopentil-[4-cloro-2-fluoro-5-(2,2,2-trifluoroetiltio)fenilo] (compuesto del presente documento n.º A-0433)

A 60 ml de tetrahidrofurano se le añadieron 3,9 g (10,1 mmol) de éter de 5-tiocianatopentil-[4-cloro-2-fluoro-5-(2,2,2-trifluoroetiltio)fenilo] y 4,5 g (31,6 mmol) de trifluorometiltrimetilsilano. A esto se le añadió 1,0 ml (1,04 mmol) de solución en tetrahidrofurano (1 mol/litro) de fluoruro de tetra-n-butilamonio a 0°C y se llevó a cabo la reacción. La mezcla se agitó durante una noche a temperatura ambiente. Después, el disolvente se eliminó por destilación a presión reducida y el residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 20:1), para obtener 2,60 g (rendimiento: 60%) de un producto previsto.

RMN ¹H (400 MHz, CDCl₃/TMS δ (ppm))

1,58-1,66 (2H, m), 1,73-1,89 (4H, m), 2,92 (2H, t),

3,41 (2H, c), 4,03 (2H, t), 7,21 (1H, d), 7,23 (1H, d)

[Ejemplo 13]

Producción de éter de 5-trifluorometiltiopentil-[4-cloro-2-fluoro--5-(2,2,2-trifluoroetilsulfinil)fenilo] (compuesto del presente documento n.º A-0434)

En 50 ml de cloroformo se disolvieron 2,60 g (6,03 mmol) de éter de 5-trifluorometiltiopentil-[4-cloro-2-fluoro-5-(2,2,2-trifluoroetiltio)fenilo. A esto se le añadieron 1,39 g (6,04 mmol) de ácido 3-cloroperbenzoico (pureza: aproximadamente el 75%) a 0°C y la mezcla se agitó durante una noche a temperatura ambiente. Después, el disolvente se eliminó por destilación a presión reducida, se añadió 1 ml de trietilamina al residuo y este se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 5:1), para obtener 2,06 g (rendimiento: 76%) de un producto previsto.

RMN ¹H (400 MHz, CDCl₃/TMS δ (ppm))

1,57-1,66 (2H, m), 1,74-1,93 (4H, m), 2,92 (2H, t),

3,30-3,43 (1H, m), 3,66-3,78 (1H, m), 4,13 (2H, t),

7,21 (1H, d), 7,54 (1H, d)

15 [Ejemplo 14]

20

25

Producción de 2,4-dicloro-5-(2,2,2-trifluoroetiltio)fenol (compuesto del presente documento n.º C-0014)

A 150 ml de tolueno se le añadieron 29,0 g (solución acuosa al 50%, 124 mmol) de N-óxido de N-metilmorfolina y se llevó a cabo deshidratación por calentamiento a reflujo durante 1 hora. A la mezcla de reacción se le añadieron gota a gota 31,5 g (103 mmol) de ácido 2,4-dicloro-5-(2,2,2-trifluoroetiltio)fenilborónico disuelto en acetato de etilo y la mezcla se calentó a reflujo durante 3 horas con calentamiento. Después, se dejó enfriar la mezcla a temperatura ambiente y se añadió ácido clorhídrico acuoso al 10%, seguido de extracción con acetato de etilo. La fase orgánica obtenida se lavó con solución de cloruro sódico saturada, se secó sobre sulfato de magnesio anhidro y el disolvente se eliminó por destilación a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 10:1), para obtener 27,2 g (rendimiento: 95%) de un producto previsto. RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

3,48 (2H, c), 5,70 (1H, s), 7,20 (1H, s), 7,41 (1H, s)

[Ejemplo 15]

Producción de éter de 6-bromohexil-[2,4-dicloro-5-(2,2,2-trifluoroetiltio)fenilo] (compuesto del presente documento n.º A-0283)

A 30 ml de acetonitrilo se añadió 1,0 g (3,61 mmol) de 2,4-dicloro-5-(2,2,2-trifluoroetiltio)fenol, 3,5 g (14,4 mmol) de 1,6-dibromohexano, 0,65 g (15,0 mmol) de carbonato potásico y 0,12 g (0,37 mmol) de bromuro de tetra-n-butilamonio. La mezcla se calentó a reflujo durante 3 horas con calentamiento. La mezcla se dejó en reposo a temperatura ambiente y la materia insoluble se retiró por filtración. Después, el filtrado se concentró a presión reducida y el residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 20:1), para obtener 1,51 g (rendimiento: 95%) de un producto previsto.

RMN ¹H (400 MHz, CDCl₃/TMS δ (ppm))

1,50-1,60 (4H, m), 1,81-1,93 (4H, m),

3,39-3,49 (4H, m), 4,02 (2H, t), 7,13 (1H, s),

40 7,45 (1H, s)

[Ejemplo 16]

Producción de éter de 6-tiocianatohexil-[2,4-dicloro-5-(2,2,2-trifluoroetiltio)fenilo] (compuesto del presente documento n.º A-0678)

En 30 ml de etanol se añadieron 1,51 g (3,43 mmol) de éter de 6-bromohexil-[2,4-dicloro-5-(2,2,2-trifluoroetiltio)fenilo] y 1,67 g (17,2 mmol) de tiocianato potásico. La mezcla se calentó a reflujo durante 3 horas con calentamiento. La mezcla se dejó enfriar a temperatura ambiente y el disolvente se eliminó por destilación a presión reducida. Después se llevó a cabo extracción añadiendo acetato de etilo y agua. La fase orgánica obtenida se secó sobre sulfato de magnesio anhidro y el disolvente se eliminó por destilación a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato

de etilo = 10:1), para obtener 1,04 g (rendimiento: 73%) de un producto previsto.

RMN ¹H (400 MHz, CDCl₃/TMS δ (ppm))

1,50-1,62 (4H, m), 1,83-1,92 (4H, m), 2,96 (2H, t),

3,45 (2H, c), 4,03 (2H, t), 7,13 (1H, s), 7,46 (1H, s)

5 [Ejemplo 17]

10

25

35

40

Producción de éter de 6-trifluorometiltiohexil-[2,4-dicloro-5-(2,2,2-trifluoroetiltio)fenilo] (compuesto del presente documento n.º A-0478)

A 30 ml de tetrahidrofurano se añadieron 1,04 g (2.49 mmol) de éter de 6-tiocianatohexil-[2,4-dicloro-5-(2,2,2-trifluoroetiltio)fenilo] y 1,06 g (7,45 mmol) de trifluorometiltrimetilsilano. A esto se le añadieron 0,25 ml (concentración: 1 mol/litro, 0,25 mmol) de solución en tetrahidrofurano de fluoruro de tetra-n-butilamonio a 0°C y la mezcla de reacción se agitó durante 2 horas a temperatura ambiente. Después, el disolvente se eliminó por destilación a presión reducida y el residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 20:1), para obtener 0,73 g (rendimiento: 64%) de un producto previsto.

15 RMN 1 H (300 MHz, CDCl₃/TMS δ (ppm))

1,44-1,62 (4H, m), 1,67-1,90 (4H, m), 2,90 (2H, t),

3,44 (2H, c), 4,02 (2H, t), 7,13 (1H, s), 7,46 (1H, s)

[Ejemplo 18]

Producción de éter de 6-trifluorometiltiohexil-[2,4-dicloro-5-(2,2,2-trifluoroetilsulfinil)fenilo] (compuesto del presente documento n.º A-0479)

En 30 ml de cloroformo se disolvieron 0,53 g (1,15 mmol) de éter de 6-trifluorometiltiohexil-[2,4-dicloro-5-(2,2,2-trifluoroetiltio)fenilo]. A esto se le añadieron 0,26 g (1,13 mmol) de ácido 3-cloroperbenzoico (pureza: aproximadamente 75%) a 0°C y la mezcla se agitó 3 horas a temperatura ambiente. Después, el disolvente se eliminó por destilación a presión reducida, se añadió 0,5 ml de trietilamina al residuo y este se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 5:1), para obtener 0,41 g (rendimiento: 75%) de un producto previsto.

RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

1,48-1,64 (4H, m), 1,63-1,94 (4H, m), 2,90 (2H, t),

3,28-3,44 (1H, m), 3,68-3,81 (1H, m), 4,13 (2H, t)

30 7,47 (1H, s), 7,48 (1H, s)

[Ejemplo 19]

Producción de 2,4-dicloro-5-(2,2,2-trifluoroetilsulfinil)fenol (compuesto del presente documento n.º C-0015)

En 80 ml de cloroformo se disolvieron 10,0 g (36,08 mmol) de 2,4-dicloro-5-(2,2,2-trifluoroetiltio)fenol. A esto se le añadieron 9,80 g (39,75 mmol) de ácido 3-cloroperbenzoico (pureza: aproximadamente 70%) con enfriamiento eh hielo y la mezcla se agitó durante 30 minutos a temperatura ambiente. Después, se añadió solución acuosa saturada de tiosulfato sódico a la mezcla de reacción para descomponer el exceso de peróxido. A continuación, el disolvente se eliminó por destilación a presión reducida y se llevó a cabo la extracción añadiendo acetato de etilo y agua. La fase orgánica obtenida se lavó, por este orden, con solución acuosa de carbonato potásico y solución acuosa saturada de cloruro sódico y se secó sobre sulfato de magnesio anhidro. El disolvente se eliminó por destilación a presión reducida, para obtener 9,30 g (rendimiento: 88%) de un producto previsto.

RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

3,30-3,44 (1H, m), 3,66-3,80 (1H, m), 7,40 (1H, s),

7,61 (1H, s)

[Ejemplo 20]

45 Producción de éter de 2-(4-trifluorometilfenil)etil-[2,4-dicloro-5-(2,2,2-trifluoroetilsulfinil)fenilo] (compuesto del presente documento n.º A-0767)

En 30 ml de tetrahidrofurano se disolvieron 0,5 g (1,71 mmol) de 2,4-dicloro-5-(2,2,2-trifluoroetilsulfinil)fenol, 0,33 g (1,74 mmol) de 2-(4-trifluorometilfenil)etanol y 0,49 g (1,87 mmol) de trifenilfosfina. A esto se le añadieron 0,38 g (1,87 mmol) de azodicarboxilato de diisopropilo a temperatura ambiente y la mezcla de reacción se agitó durante 16 horas. Después, el disolvente se eliminó por destilación a presión reducida y el residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 5:1), para obtener 0,41 g (rendimiento: 52%) de un producto previsto.

RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

3,21-3,40 (3H, m), 3,64-3,79 (1H, m), 4,31-4,36 (2H, m),

7,44-7,46 (4H, m), 7,58 (2H, d)

10 [Ejemplo 21]

5

15

Producción de 2,4-dimetil-5-(2,2,2-trifluoroetiltio)fenol (compuesto del presente documento n.º C-0017)

A 200 ml de tolueno se le añadieron 20,24 g (58,5 mmol) de [2,4-dimetil-5-(2,2,2-tritluoroetiltio)fenil]-4,4,5,5-tetrametil-1,3,2-dioxaborolano (un compuesto descrito en la publicación internacional PCT n.º WO 2012/176856 como compuesto n.º 55-47) y 8,22 g (70,16 mmol) de N-óxido de N-metilmorfolina. La mezcla se calentó a reflujo durante 2 horas con calentamiento. La mezcla de reacción se dejó enfriar a temperatura ambiente, se lavó y se secó sobre sulfato de magnesio anhidro. El disolvente se eliminó por destilación a presión reducida y el residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 20:1), para obtener 10,54 g (rendimiento: 76%) de un producto previsto.

RMN ¹H (300 MHz, CeCl₃/TMS δ (ppm))

20 2,20 (3H, s), 2,36 (3H, s), 3,32 (2H, c), 4,78 (1H, s),

6,93 (1H, s), 6,98 (1H, s)

[Ejemplo 22]

Producción de 2,4-dimetil-5-(2,2,2-trifluoroetilsulfinil)fenol (compuesto del presente documento n.º C-0018)

En 30 ml de cloroformo se disolvieron 2,60 g (11,0 mmol) de 2,4-dimetil-5-(2,2,2-trifluoroetiltio)fenol. A esto se le añadieron 3,25 g (13,18 mmol) de ácido 3-cloroperbenzoico (pureza: aproximadamente 70%) con enfriamiento eh hielo y la mezcla se agitó durante 30 minutos a temperatura ambiente. Después, se añadió solución acuosa saturada de tiosulfato sódico a la mezcla de reacción para descomponer el exceso de peróxido. A continuación, el disolvente se eliminó por destilación a presión reducida y se llevó a cabo separación de fases añadiendo acetato de etilo y agua. La fase orgánica obtenida se lavó con solución acuosa de carbonato potásico y solución acuosa saturada de cloruro sódico y se secó sobre sulfato de magnesio. El disolvente se eliminó por destilación a presión reducida, para obtener 2,13 g (rendimiento: 77%) de un producto previsto.

RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

2,25 (6H, s), 3,35-3,53 (2H, m), 6,98 (1H, s),

7,63 (1H, s), 7,69 (1H, s)

35 [Ejemplo 23]

40

Producción de éter de 2-(4'-trifluorometoxifenil)etil-[2,4-dimetil-5-(2,2,2-trifluoroetilsulfinil)fenilo] (compuesto del presente documento n.º A-0783)

En 30 ml de tetrahidrofurano se disolvieron 0,3 g (1,19 mmol) de 2,4-dimetil-5-(2,2,2-trifluoroetilsulfinil)fenol, 0,29 g (1.41 mmol) de 2-(4'-trifluorometoxifenil)etanol y 0,41 g (1.56 mmol) de trifenilfosfina. A esto se le añadieron 0,31 g (1,53 mmol) de azodicarboxilato de diisopropilo a temperatura ambiente y se agitó durante 16 horas. El disolvente se eliminó por destilación a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 5:1), y el residuo se lavó con n-hexano, para obtener 0,21 g (rendimiento: 40%) de un producto previsto.

RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

45 2,18 (3H, s), 2,26 (3H, s), 3,13 (2H, t),

3,32-3,41 (2H, m), 4,24-4,25 (2H, m),

6,70 (1H, s), 7,16 (2H, d), 7,30-7,36 (3H, m)

[Ejemplo 24]

Producción de éter de 6-bromohexil-[2,4-dimetil-5-(2,2,2-trifluoroetiltio)fenilo] (compuesto del presente documento n.º A-0284)

A 60 ml de acetonitrilo se le añadieron 1,14 g (4,83 mmol) de 2,4-dimetil-5-(2,2,2-trifluoroetiltio)fenol, 4,71 g (19,31 mmol) de 1,6-dibromohexano, 0,73 g (5,28 mmol) de carbonato potásico y una cantidad catalítica de bromuro de tetra-n-butilamonio. La mezcla se calentó a reflujo durante 3 horas con calentamiento. La mezcla se dejó enfriar a temperatura ambiente y la materia insoluble se retiró por filtración. Después, el disolvente del filtrado se eliminó por destilación a presión reducida y el residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 40:1 ~ 20:1), para obtener 1,87 g (rendimiento: 97%) de un producto previsto.

RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

1,53 (4H, m), 1,70-2,03 (4H, m), 2,17 (3H, s),

2,38 (3H, s), 3,26-3,43 (4H, m), 3,94 (2H, t),

6,96 (1H, s), 6,99 (1H, s)

15 [Ejemplo 25]

20

35

Producción de éter de 6-tiocianatohexil-[2,4-dimetil-5-(2,2,2-trifluoroetiltio)fenilo] (compuesto del presente documento n.º A-0679)

A 60 ml de etanol se le añadieron 1,87 g (4,68 mmol) de éter de 6-bromohexil-[2,4-dimetil-5-(2,2,2-trifluoroetiltio)fenilo] y 2,28 g (23,46 mmol) de tiocianato potásico. La mezcla se calentó a reflujo durante 8 horas con calentamiento. La mezcla se dejó enfriar a temperatura ambiente y el disolvente se eliminó por destilación a presión reducida. Después se llevó a cabo extracción añadiendo acetato de etilo y agua. La fase orgánica obtenida se lavó con agua y se secó sobre sulfato de magnesio anhidro. El disolvente se eliminó por destilación a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 20:1), para obtener 1,37 g (rendimiento: 77%) de un producto previsto.

25 RMN 1 H (300 MHz, CDCl₃/TMS δ (ppm))

1,53-1,54 (4H, m), 1,82-1,87 (4H, m), 2,17 (3H, s)

2,38 (3H, s), 2,96 (2H, t), 3,31 (2H, c), 3,94 (2H, t)

6,96 (1H, s), 6,70 (1H, s)

[Ejemplo 26]

Producción de éter de 6-trifluorometiltiohexil-[2,4-dimetil-5-(2,2,2-trifluoroetiltio)fenilo] (compuesto del presente documento n.º A-0480)

A 100 ml de tetrahidrofurano se le añadieron 1,37 g (3,63 mmol) de éter de 6-tiocianatohexil-[2,4-dimetil-5-(2,2,2-trifluoroetiltio)fenilo] y 1,29 g (9,07 mmol) de trifluorometiltrimetilsilano. A esto se le añadieron 0,4 ml (0,4 mmol) de solución en tetrahidrofurano de fluoruro de tetra-n-butilamonio (1 mol/litro) a 0°C, y la mezcla se agitó durante 4 horas a 0°C. Después, el disolvente se eliminó por destilación a presión reducida y el residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 20:1), para obtener 1,36 g (rendimiento: 89%) de un producto previsto.

RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

1,49-1,53 (4H, m), 1,71-1,82 (4H, m), 2,17 (3H, s)

40 2,38 (3H, s), 2,90 (2H, t), 3,30 (2H, c), 3,94 (2H, t)

6,96 (1H, s), 6,70 (1H, s)

[Ejemplo 27]

Producción de éter de 6-trifluorometiltiohexil-[2,4-dimetil-5-(2,2,2-trifluoroetilsulfinil)fenilo] (compuesto del presente documento n.º A-0481)

45 En 40 ml de cloroformo se disolvieron 1,36 g (3,23 mmol) de éter de 6-trifluorometiltiohexil-[2,4-dimetil-5-(2,2,2-trifluoroetiltio)fenilo]. A esto se le añadieron 0,67 g (2,72 mmol) de ácido 3-cloroperbenzoico (pureza: aproximadamente 70%) con enfriamiento eh hielo y la mezcla se agitó durante 30 minutos a temperatura ambiente.

Después, se añadió solución acuosa saturada de tiosulfato sódico a la mezcla de reacción para descomponer el exceso de peróxido. A continuación, el disolvente se eliminó por destilación a presión reducida y se llevó a cabo la extracción añadiendo acetato de etilo y agua. La fase orgánica obtenida se lavó, por este orden, con solución acuosa de carbonato potásico y solución acuosa saturada de cloruro sódico y se secó sobre sulfato de magnesio anhidro. El disolvente se eliminó por destilación a presión reducida y el residuo se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 5:1), para obtener 0,87 g (rendimiento: 62%) de un producto previsto.

RMN ¹H (400 MHz, CDCl₃/TMS δ (ppm))

1,50-1,52 (4H, m), 1,72-1,85 (4H, m), 2,23 (3H, s),

10 2,28 (3H, s), 2,90 (2H, t), 3,28-3,47 (2H, m),

4,04 (2H, t), 7,01 (1H, s), 7,36 (1H, s)

[Eiemplo 28]

5

25

35

45

Producción de un isómero óptico de éter de 5-trifluorometiltiopentil-[4-cloro-2-fluoro-5-(2,2,2-trifluoroetilsulfinil)fenilo]

Se equipó una columna ópticamente activa (diámetro interno: 20 mm, longitud: 250 mm), CHIRAL PAK AD (nombre comercial) fabricada por Daicel Corporation, con equipamiento de cromatografía líquida de alta resolución y se perfundió un disolvente mixto (hexano:2-propanol = 97:3) como fase móvil. Después, se inyectaron 150 mg de éter de 5-trifluorometiltiopentil-[4-cloro-2-fluoro-5-(2,2,2-trifluoroetilsulfinil)fenilo] (mezcla racémica) disuelto en 2-propanol y se llevó a cabo el análisis en las siguientes condiciones.

caudal: 8,0 ml/minuto

20 temperatura: temperatura ambiente

detector: detector de absorción ultravioleta (254 nm)

Como resultado, se observaron un pico 1 (tiempo de retención: 17,8 minutos) y un pico 2 (tiempo de reacción: 30,2 minutos) y se aislaron 70 mg de un compuesto de los picos respectivos (en ambos la pureza óptica fue del 100 % e.e.). La medición del índice refractivo reveló que la rotación específica del componente del pico 1 era $[\alpha]_D^{25}$ = -120,28° (C=0,50/metanol) y la rotación específica del componente del pico 2 era $[\alpha]_D^{25}$ = +119,32° (C=0,50/metanol).

Por consiguiente, el componente del pico 1 es éter de (-)-5-trifluorometiltiopentil-[4-cloro-2-fluoro-5-(2,2,2-trifluoroetilsulfinil)fenilo] [enantiómero (-) del compuesto del presente documento n.º A-0434] y el componente del pico 2 es éter de (+)-5-trifluorometiltiopentil-[4-cloro-2-fluoro-5-(2,2,2-trifluoroetilsulfinil)fenilo] [enantiómero (+) del compuesto del presente documento n.º A-0434].

30 [Ejemplo de referencia 1]

Producción de p-acetotoluidina

Se disolvieron 100 g (933,3 mmol) de p-toluidina y 154,8 g (1.120 mmol) de carbonato potásico en un disolvente mixto de 1.000 ml de acetato de etilo y 500 ml de agua. A esto se le añadieron gota a gota 87,9 g (1.120 mmol) de cloruro de acetilo con enfriamiento en hielo, seguido de agitación durante 2 horas. La extracción se llevó a cabo con acetato de etilo. La fase orgánica obtenida se secó sobre sulfato de magnesio anhidro. El disolvente se eliminó por destilación a presión reducida. El cristal en bruto obtenido se lavó con hexano para obtener 130 g (rendimiento: 93%) de p-acetotoluidina.

RMN ¹H (400 MHz, CDCl₃/TMS δ (ppm))

2,16 (3H, s), 2,31 (3H, s), 7,11-7,16 (3H, m),

40 7,37 (2H, d)

[Ejemplo de referencia 2]

Producción de 3-clorosulfonil-4-metilacetoanilida

Se añadieron gradualmente 130 g (871 mmol) de p-acetotoluidina a 405 g (3.477 mmol) de ácido clorosulfónico a temperatura ambiente, seguido de agitación a 60°C durante 1 hora. La mezcla de reacción se dejó en reposo a temperatura ambiente y después se vertió en agua enfriada con hielo. Se llevó a cabo la extracción con acetato de etilo. La fase orgánica obtenida se secó sobre sulfato de magnesio anhidro. El disolvente se eliminó por destilación a presión reducida para obtener 162 g (rendimiento: 75%) de 3-clorosulfonil-4-metilacetoanilida.

RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

2,22 (3H, s), 2,73 (3H, s), 7,37 (2H, d),

7,50 (1H, s a), 8,00 (1H, s), 8,02 (1H, d)

[Ejemplo de referencia 3]

Producción de 3-acetiltio-4-metilacetoanilida

Se disolvieron 162 g (654 mmol) de 3-clorosulfonil-4-metilacetoanilida en 700 ml de ácido acético. A esto se le añadieron 30 g (983 mmol) de fósforo rojo y 1,7 g (6,6 mmol) de yodo, seguido de agitación durante 5 horas con calentamiento y reflujo. La mezcla de reacción se dejó enfriar a temperatura ambiente y después se filtró a través de Celite. El filtrado se concentró a presión reducida. El residuo se disolvió en acetato de etilo. La solución se lavó con solución acuosa de tiosulfato sódico y agua. La fase orgánica obtenida se secó sobre sulfato de magnesio anhidro. El disolvente se eliminó por destilación a presión reducida para obtener 77,5 g (rendimiento: 53%) de 3-acetiltio-4-metilacetoanilida.

RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

2,12 (3H, s), 2,30 (3H, s), 2,43 (3H, s),

7,21-7,28 (2H, m), 7,46 (1H, d), 7,54 (1H, s)

15 [Ejemplo de referencia 4]

20

30

35

45

Producción de 4-metil-3-mercaptoanilina

Se suspendieron 77,5 g (347 mmol) de 3-acetiltio-4-metilacetoanilida en 700 ml de agua. A la misma se le añadieron 111 g (2.777 mmol) de hidróxido sódico con agitación. La mezcla se agitó durante 2 horas con calentamiento y reflujo y después se dejó enfriar a temperatura ambiente. La mezcla se ajustó a pH 5 usando una solución acuosa de ácido clorhídrico (36%) con agitación enfriada con hielo. Se llevó a cabo la extracción con acetato de etilo. La fase orgánica obtenida se secó sobre sulfato de magnesio anhidro. El disolvente se eliminó por destilación a presión reducida para obtener 47,6 g (rendimiento: 99%) de 4-metil-3-mercaptoanilina.

RMN ¹H (300 MHz, CDCI₃/TMS δ (ppm))

2,21 (3H, s), 3,21 (1H, s), 3,64 (2H, s a),

25 6,43 (1H, dd), 6,64 (1H, d), 6,92 (1H, d)

[Ejemplo de referencia 5]

Producción de 4-metil-3-(2,2,2-trifluoroetiltio)anilina

Se disolvieron 47,6 g (342 mmol) de 4-metil-3-mercaptoanilina en 500 ml de N,N-dimetilformamida. A la misma se le añadieron 71 g (513 mmol) de carbonato potásico, seguido de agitación durante 1 hora. A la mezcla de reacción se le añadieron 4,8 g (31,1 mmol) de Rongalit y 122 g (582 mmol) de 2,2,2-trifluoroyodoetano en este orden, seguido de agitación durante una noche a temperatura ambiente. Se añadió agua y se llevó a cabo extracción con acetato de etilo. La fase orgánica obtenida se lavó con una solución acuosa saturada de cloruro sódico y se secó sobre sulfato de magnesio anhidro. El disolvente se eliminó por destilación a presión reducida. El producto en bruto obtenido se purificó por cromatografía en columna sobre gel de sílice (disolvente de revelado: un disolvente mixto de n-hexano: acetato de etilo = 10:1), para obtener 63,8 g (rendimiento: 84%) de 4-metil-3-(2,2,2-trifluoroetiltio)anilina.

RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

2,34 (3H, s), 3,37 (2H, c), 3,59 (2H, s a),

6,56 (1H, dd), 6,82 (1H, d), 6,99 (1H, d)

[Eiemplo de referencia 6]

40 Producción de ácido 4-cloro-2-fluoro-5-(2,2,2-trifluoroetiltio)fenil borónico

Se disolvieron en 180 ml de éter dietílico 15,9 g (49,1 mmol) de (5-bromo-4-cloro-2-fluorofenil)-2,2,2-trifluoroetilsulfuro que se produjo por un método descrito en la publicación internacional PCT n.º WO 2012/176856 y la mezcla se enfrió a -70°C en atmósfera de nitrógeno. A esto se le añadieron gota a gota 30 ml de n-butillitio (solución en n-hexano, 1,64 mol/litro) durante 10 minutos. Después de 5 minutos, se añadió gota a gota una solución mixta obtenida disolviendo 5,1 g (49,1 mmol) de borato de trimetilo en 10 ml de éter dietílico durante 10 minutos. Después, la temperatura de la mezcla de reacción se elevó a -20°C, se añadieron gota a gota 48 g de ácido sulfúrico al 20% y se llevó a cabo la reacción a temperatura ambiente durante 1,5 horas. Se añadió acetato de etilo a la mezcla de reacción, la fase orgánica obtenida se lavó con agua y solución acuosa de cloruro sódico y se secó sobre

sulfato de magnesio anhidro. El disolvente se eliminó por destilación a presión reducida y el residuo se lavó con nhexano, para obtener 9,64 g (rendimiento: 68%) de un producto previsto.

RMN ¹H (400 MHz, CDCl₃/TMS δ (ppm))

3,49 (2H, c), 7,30 (1H, d), 8,29 (1H, d)

5 [Ejemplo de referencia 7]

10

15

Producción de ácido 2,4-dicloro-5-(2,2,2-trifluoroetiltio)fenil borónico

Se disolvieron en 700 ml de éter dietílico 46,4 g (136 mmol) de (5-bromo-2,4-diclorofenil)-2,2,2-trifluoroetilsulfuro que se produjo por un método descrito en la publicación internacional PCT n.º WO 2012/176856 y la mezcla se enfrió a -70°C en una atmósfera de nitrógeno. A esto se le añadieron gota a gota 82,7 ml de n-butillitio (solución en n-hexano, 1,64 mol/litro) durante 10 minutos. Después de 5 minutos, se añadió gota a gota una solución mixta obtenida disolviendo 14,1 g (136 mmol) de borato de trimetilo en 100 ml de éter dietílico durante 10 minutos. Después, la temperatura de la mezcla de reacción se elevó a -20°C, se añadieron gota a gota 230 ml de ácido sulfúrico al 12% (aproximadamente) y se llevó a cabo la reacción a temperatura ambiente durante 1,5 horas. El disolvente se destiló a presión reducida y el residuo se lavó con acetato de etilo. La fase orgánica obtenida se lavó con agua y solución acuosa de cloruro sódico y se secó sobre sulfato de magnesio anhidro. El disolvente se eliminó por destilación a presión reducida y el residuo se lavó con n-hexano, para obtener 32,58 g (rendimiento: 79%) de un producto previsto.

RMN ¹H (300 MHz, CDCl₃/TMS δ (ppm))

3,49 (2H, c), 5,34 (2H, s), 7,47 (1H, s), 8,11 (1H, s)

Las propiedades físicas (punto de fusión, índice refractivo, los datos del espectro de RMN ¹H y la rotación específica del isómero óptico) de los presentes compuestos [I] y [I'] sintetizados basándose en los ejemplos (incluyendo las propiedades físicas mostradas en los ejemplos) se muestran de la tabla 43 a la tabla 71. Además, los n.º de compuesto y símbolos en las tablas tienen los mismos significados dados anteriormente.

Tabla 43

Compuesto n.º	Propiedad física	
A-0001	Índice refractivo (n _D ²⁰)	1,4922
A-0004	Índice refractivo (n _D ²⁰)	1,5072
A-0005	Punto de fusión (°C)	140-141
A-0006	Índice refractivo (n _D ²⁰)	1,4819
A-0007	Punto de fusión (°C)	89-92
A-0012	Índice refractivo (n _D ²⁰)	1,5055
A-0013	Punto de fusión (°C)	87-89
A-0014	Índice refractivo (n _D ²⁰)	1,4827
A-0015	Punto de fusión (°C)	58-60
A-0017	Índice refractivo (n _D ²⁰)	1,5016
A-0018	Punto de fusión (°C)	87-88
A-0022	Índice refractivo (n _D ²⁰)	1,4893
A-0023	Punto de fusión (°C)	53-54
A-0024	Índice refractivo (n _D ²⁰)	1,5008
A-0025	Punto de fusión (°C)	97-99
A-0027	Índice refractivo (n _D ²⁰)	1,4952
A-0028	Punto de fusión (°C)	74-76

Compuesto n.º	Propiedad física	
A-0030	Índice refractivo (n _D ²⁰)	1,4800
A-0031	Punto de fusión (°C)	64-67
A-0032	Índice refractivo (n _D ²⁰)	1,4819
A-0033	Punto de fusión (°C)	117-118
A-0035	Índice refractivo (n _D ²⁰)	1,5032
A-0036	Punto de fusión (°C)	125-127
A-0037	Índice refractivo (n _D ²⁰)	1,4810
A-0038	Punto de fusión (°C)	77-80
A-0039	Índice refractivo (n _D ²⁰)	1,5032
A-0040	Punto de fusión (°C)	105-107
A-0043	Índice refractivo (n _D ²⁰)	1,4809
A-0044	Punto de fusión (°C)	68-70
A-0046	Índice refractivo (n _D ²⁰)	1,5004
A-0047	Punto de fusión (°C)	97-98
A-0051	Índice refractivo (n _D ²⁰)	1,4769
A-0052	Punto de fusión (°C)	78-79
A-0055	Índice refractivo (n _D ²⁰)	1,4987
A-0056	Punto de fusión (°C)	77-79
A-0061	Índice refractivo (n _D ²⁰)	1,4900
A-0064	Índice refractivo (n _D ²⁰)	1,4989
A-0065	Punto de fusión (°C)	106-109
A-0066	Punto de fusión (°C)	113-114

Tabla 44

Compuesto n.º	Propiedad física	
A-0068	Índice refractivo (n _D ²⁰)	1 5011
A-0069	Punto de fusión (°C)	138-139
A-0070	Índice refractivo (n _D ²⁰)	1,4760
A-0071	Punto de fusión (°C)	98-100
A-0074	Índice refractivo (n _D ²⁰)	1,4748
A-0075	Punto de fusión (°C)	74-75
A-0076	Índice refractivo (n _D ²⁰)	1,4830
A-0077	Punto de fusión (°C)	65-66
A-0078	Índice refractivo (n _D ²⁰)	1,4961

Compuesto n.º	Propiedad física	
A-0079	Punto de fusión (°C)	81-83
A-0081	Índice refractivo (n _D ²⁰)	1,4820
A-0085	Índice refractivo (n _D ²⁰)	1,4780
A-0086	Punto de fusión (°C)	84-85
A-0087	Índice refractivo (n _D ²⁰)	1,4915
A-0088	Punto de fusión (°C)	62-64
A-0089	Índice refractivo (n _D ²⁰)	1,4933
A-0090	Punto de fusión (°C)	83-84
A-0091	Índice refractivo (n _D ²⁰)	1,4865
A-0092	Punto de fusión (°C)	51-52
A-0094	Punto de fusión (°C)	108-110
A-0108	Punto de fusión (°C)	50-51
A-0109	Punto de fusión (°C)	56-57
A-0110	Punto de fusión (°C)	76-77
A-0111	Punto de fusión (°C)	105-107
A-0112	Índice refractivo (n _D ²⁰)	1,5032
A-0113	Punto de fusión (°C)	74-75
A-0114	Punto de fusión (°C)	76-77
A-0115	Índice refractivo (n _D ²⁰)	1,5160
A-0116	Índice refractivo (n _D ²⁰)	1,4834
A-0117	Punto de fusión (°C)	52-54
A-0118	Índice refractivo (n _D ²⁰)	1,4899
A-0119	Punto de fusión (°C)	104-105
A-0120	Índice refractivo (n _D ²⁰)	1,4790
A-0122	Índice refractivo (n _D ²⁰)	1,4790
A-0123	Punto de fusión (°C)	58-60
A-0125	Índice refractivo (n _D ²⁰)	1,4949
A-0126	Punto de fusión (°C)	46-48
A-0130	Punto de fusión (°C)	59-60
A-0132	Índice refractivo (n _D ²⁰)	1,4842

Tabla 45

Compuesto n.º	Propiedad física	
A-0133	Punto de fusión (°C)	48-50
A-0141	Punto de fusión (°C)	60-61
A-0143	Índice refractivo (n _D ²⁰)	1,4871
A-0144	Punto de fusión (°C)	47-48
A-0145	Punto de fusión (°C)	78-81
A-0147	Índice refractivo (n _D ²⁰)	1,4870
A-0157	Punto de fusión (°C)	86-88
A-0159	Índice refractivo (n _D ²⁰)	1,4542
A-0160	Punto de fusión (°C)	100-103
A-0163	Índice refractivo (n _D ²⁰)	1,4549
A-0164	Punto de fusión (°C)	79-81
A-0167	Índice refractivo (n _D ²⁰)	1,4562
A-0168	Punto de fusión (°C)	33-35
A-0169	Índice refractivo (n _D ²⁰)	1,4631
A-0170	Punto de fusión (°C)	44-47
A-0172	Índice refractivo (n _D ²⁰)	1,4303
A-0173	Punto de fusión (°C)	72-74
A-0174	Índice refractivo (n _D ²⁰)	1,4365
A-0175	Punto de fusión (°C)	57-59
A-0180	Índice refractivo (n _D ²⁰)	1,4429
A-0181	Punto de fusión (°C)	94-96
A-0184	Índice refractivo (n _D ²⁰)	1,4200
A-0185	Punto de fusión (°C)	47-48
A-0186	Índice refractivo (n _D ²⁰)	1,4184
A-0187	Punto de fusión (°C)	56-58
A-0188	Índice refractivo (n _D ²⁰)	1,4445
A-0199	Índice refractivo (n _D ²⁰)	1,4554
A-0200	Índice refractivo (n _D ²⁰)	1,4613
A-0203	Índice refractivo (n _D ²⁰)	1,4562
A-0204	Índice refractivo (n _D ²⁰)	1,4644
A-0205	Índice refractivo (n _D ²⁰)	1,4678
A-0206	Punto de fusión (°C)	39-42
A-0207	Índice refractivo (n _D ²⁰)	1,4725

Compuesto n.º	Propiedad física	
A-0208	Índice refractivo (n _D ²⁰)	1,4802
A-0211	Índice refractivo (n _D ²⁰)	1,419
A-0212	Índice refractivo (n _D ²⁰)	1,4273
A-0213	Índice refractivo (n _D ²⁰)	1,4382
A-0214	Índice refractivo (n _D ²⁰)	1,4378
A-0215	Índice refractivo (n _D ²⁰)	1,4309

Tabla 46

Compuesto n.º	Propiedad física	
A-0216	Índice refractivo (n _D ²⁰)	1,4341
A-0217	Índice refractivo (n _D ²⁰)	1,4341
A-0218	Índice refractivo (n _D ²⁰)	1,4359
A-0219	Índice refractivo (n _D ²⁰)	1,4200
A-0220	Índice refractivo (n _D ²⁰)	1,4321
A-0221	Índice refractivo (n _D ²⁰)	1,4368
A-0222	Índice refractivo (n _D ²⁰)	1,4401
A-0223	Índice refractivo (n _D ²⁰)	1,4328
A-0224	Punto de fusión (°C)	45-47
A-0225	Índice refractivo (n _D ²⁰)	1,4163
A-0226	Índice refractivo (n _D ²⁰)	1,4115
A-0227	Índice refractivo (n _D ²⁰)	1,3980
A-0228	Índice refractivo (n _D ²⁰)	1,4079
A-0229	Índice refractivo (n _D ²⁰)	1,4018
A-0230	Punto de fusión (°C)	43-44
A-0232	Índice refractivo (n _D ²⁰)	1,3759
A-0243	Índice refractivo (n _D ²⁰)	1,4961
A-0244	Punto de fusión (°C)	79-80
A-0249	Índice refractivo (n _D ²⁰)	1,4947
A-0250	Índice refractivo (n _D ²⁰)	1,4929
A-0253	Índice refractivo (n _D ²⁰)	1,4751
A-0254	Punto de fusión (°C)	116-118
A-0260	Índice refractivo (n _D ²⁰)	1,4963
A-0261	Índice refractivo (n _D ²⁰)	1,5132
A-0262	Punto de fusión (°C)	89-92

Compuesto n.º	Propiedad física	
A-0263	Índice refractivo (n _D ²⁰)	1,5241
A-0264	Índice refractivo (n _D ²⁰)	1,5102
A-0266	Índice refractivo (n _D ²⁰)	1,5260
A-0269	Índice refractivo (n _D ²⁰)	1,5092
A-0270	Punto de fusión (°C)	53-55
A-0271	Índice refractivo (n _D ²⁰)	1,5078
A-0273	Índice refractivo (n _D ²⁰)	1,5211
A-0275	Índice refractivo (n _D ²⁰)	1,5133
A-0277	Índice refractivo (n _D ²⁰)	1,5195
A-0279	Índice refractivo (n _D ²⁰)	1,5160
A-0281	Índice refractivo (n _D ²⁰)	1,5071
A-0285	Índice refractivo (n _D ²⁰)	1,4981
A-0287	Índice refractivo (n _D ²⁰)	1,5206
A-0289	Índice refractivo (n _D ²⁰)	1,4943

Tabla 47

Compuesto n.º	Propiedad física	
A-0290	Índice refractivo (n _D ²⁰)	1,4940
A-0291	Índice refractivo (n _D ²⁰)	1,5089
A-0294	Índice refractivo (n _D ²⁰)	1,5199
A-0299	Índice refractivo (n _D ²⁰)	1,5102
A-0301	Índice refractivo (n _D ²⁰)	1,4960
A-0303	Índice refractivo (n _D ²⁰)	1,5094
A-0307	Índice refractivo (n _D ²⁰)	1,4761
A-0308	Punto de fusión (°C)	54-56
A-0311	Índice refractivo (n _D ²⁰)	1,4741
A-0313	Punto de fusión (°C)	75-78
A-0314	Punto de fusión (°C)	93-96
A-0315	Índice refractivo (n _D ²⁰)	1,4912
A-0316	Punto de fusión (°C)	85-88
A-0318	Punto de fusión (°C)	77-80
A-0319	Índice refractivo (n _D ²⁰)	1,4851
A-0320	Punto de fusión (°C)	116-117
A-0321	Índice refractivo (n _D ²⁰)	1,4969

Compuesto n.º	Propiedad física	
A-0322	Punto de fusión (°C)	117-118
A-0324	Índice refractivo (n _D ²⁰)	1,4752
A-0325	Índice refractivo (n _D ²⁰)	1,4832
A-0326	Punto de fusión (°C)	119-122
A-0327	Punto de fusión (°C)	92-95
A-0330	Punto de fusión (°C)	115-118
A-0331	Punto de fusión (°C)	120-121
A-0338	Índice refractivo (n _D ²⁰)	1,4751
A-0339	Índice refractivo (n _D ²⁰)	1,4798
A-0340	Índice refractivo (n _D ²⁰)	1,4831
A-0341	Índice refractivo (n _D ²⁰)	1,4859
A-0342	Índice refractivo (n _D ²⁰)	1,4968
A-0343	Punto de fusión (°C)	66-67
A-0346	Índice refractivo (n _D ²⁰)	1,4950
A-0347	Punto de fusión (°C)	89-90
A-0349	Índice refractivo (n _D ²⁰)	1,5321
A-0350	Punto de fusión (°C)	117-118
A-0352	Punto de fusión (°C)	83-84
A-0353	Punto de fusión (°C)	51-52
A-0354	Punto de fusión (°C)	88-90
A-0356	Punto de fusión (°C)	54-56
A-0359	Punto de fusión (°C)	74-77

Tabla 48

Compuesto n.º	Propiedad física	
A-0360	Índice refractivo (n _D ²⁰)	1,5079
A-0363	Índice refractivo (n _D ²⁰)	1,5012
A-0364	Punto de fusión (°C)	46-47
A-0365	Índice refractivo (n _D ²⁰)	1,5104
A-0366	Punto de fusión (°C)	42-43
A-0368	Punto de fusión (°C)	69-71
A-0369	Índice refractivo (n _D ²⁰)	1,5089
A-0374	Índice refractivo (n _D ²⁰)	1,4990
A-0375	Punto de fusión (°C)	48-50

Compuesto n.º	Propiedad física	
A-0379	Índice refractivo (n _D ²⁰)	1,5217
A-0387	Punto de fusión (°C)	68-70
A-0388	Punto de fusión (°C)	111-112
A-0391	Punto de fusión (°C)	88-89
A-0392	Punto de fusión (°C)	95-98
A-0393	Punto de fusión (°C)	98-99
A-0394	Punto de fusión (°C)	109-110
A-0395	Punto de fusión (°C)	93-94
A-0396	Punto de fusión (°C)	108-109
A-0405	Índice refractivo (n _D ²⁰)	1,4741
A-0406	Índice refractivo (n _D ²⁰)	1,4800
A-0415	Índice refractivo (n _D ²⁰)	1,4762
A-0417	Índice refractivo (n _D ²⁰)	1,4882
A-0418	Punto de fusión (°C)	57-59
A-0422	Índice refractivo (n _D ²⁰)	1,4855
A-0423	Índice refractivo (n _D ²⁰)	1,4869
A-0431	Índice refractivo (n _D ²⁰)	1,4742
A-0433	Índice refractivo (n _D ²⁰)	1,4932
A-0434	Punto de fusión (°C)	49-50
A-0435	Punto de fusión (°C)	51-52
A-0437	Índice refractivo (n _D ²⁰)	1,5000
A-0438	Índice refractivo (n _D ²⁰)	1,4878
A-0439	Índice refractivo (n _D ²⁰)	1,4889
A-0441	Punto de fusión (°C)	68-69
A-0443	Punto de fusión (°C)	41-42
A-0444	Índice refractivo (n _D ²⁰)	1,5006
A-0445	Punto de fusión (°C)	63-66
A-0446	Índice refractivo (n _D ²⁰)	1,4947
A-0447	Índice refractivo (n _D ²⁰)	1,4931
A-0448	Índice refractivo (n _D ²⁰)	1,4781

Tabla 49

Compuesto n.º	Propiedad física	
A-0449	Punto de fusión (°C)	69-70
A-0470	Índice refractivo (n _D ²⁰)	1,4770
A-0471	Punto de fusión (°C)	42-44
A-0472	Índice refractivo (n _D ²⁰)	1,4905
A-0473	Punto de fusión (°C)	43-46
A-0474	Índice refractivo (n _D ²⁰)	1,4886
A-0475	Índice refractivo (n _D ²⁰)	1,4862
A-0476	Índice refractivo (n _D ²⁰)	1,4951
A-0477	Punto de fusión (°C)	45-48
A-0478	Índice refractivo (n _D ²⁰)	1,5059
A-0479	Punto de fusión (°C)	43-45
A-0481	Índice refractivo (n _D ²⁰)	1,4859
A-0482	Índice refractivo (n _D ²⁰)	1,4960
A-0483	Índice refractivo (n _D ²⁰)	1,491
A-0484	Índice refractivo (n _D ²⁰)	1,4759
A-0485	Índice refractivo (n _D ²⁰)	1,4800
A-0486	Índice refractivo (n _D ²⁰)	1,5086
A-0487	Índice refractivo (n _D ²⁰)	1,5102
A-0488	Índice refractivo (n _D ²⁰)	1,5005
A-0489	Índice refractivo (n _D ²⁰)	1,4978
A-0490	Índice refractivo (n _D ²⁰)	1,5181
A-0495	Índice refractivo (n _D ²⁰)	1,4839
A-0496	Índice refractivo (n _D ²⁰)	1,4782
A-0502	Índice refractivo (n _D ²⁰)	1,4813
A-0503	Índice refractivo (n _D ²⁰)	1,4773
A-0504	Índice refractivo (n _D ²⁰)	1,4814
A-0505	Punto de fusión (°C)	48-49
A-0507	Índice refractivo (n _D ²⁰)	1,4932
A-0508	Punto de fusión (°C)	43-44
A-0510	Punto de fusión (°C)	44-45
A-0524	Punto de fusión (°C)	82-83
A-0525	Punto de fusión (°C)	50-51
A-0526	Índice refractivo (n _D ²⁰)	1,4920

Compuesto n.º	Propiedad física	
A-0533	Punto de fusión (°C)	80-81
A-0534	Punto de fusión (°C)	92-93
A-0535	Índice refractivo (n _D ²⁰)	1,4709
A-0536	Punto de fusión (°C)	73-74
A-0539	Punto de fusión (°C)	74-77
A-0543	Índice refractivo (n _D ²⁰)	1,4949

Tabla 50

Compuesto n.º	Propiedad física	
A-0553	Índice refractivo (n _D ²⁰)	1,4914
A-0555	Índice refractivo (n _D ²⁰)	1,5025
A-0556	Punto de fusión (°C)	40-42
A-0558	Índice refractivo (n _D ²⁰)	1,5052
A-0559	Índice refractivo (n _D ²⁰)	1,5125
A-0560	Punto de fusión (°C)	49-50
A-0561	Índice refractivo (n _D ²⁰)	1,5201
A-0562	Punto de fusión (°C)	57-59
A-0563	Índice refractivo (n _D ²⁰)	1,5025
A-0571	Índice refractivo (n _D ²⁰)	1,4957
A-0572	Índice refractivo (n _D ²⁰)	1,5000
A-0573	Índice refractivo (n _D ²⁰)	1,5023
A-0574	Índice refractivo (n _D ²⁰)	1,4982
A-0575	Índice refractivo (n _D ²⁰)	1,5098
A-0576	Índice refractivo (n _D ²⁰)	1,5087
A-0577	Punto de fusión (°C)	68-69
A-0578	Punto de fusión (°C)	58-59
A-0587	Índice refractivo (n _D ²⁰)	1,4941
A-0588	Índice refractivo (n _D ²⁰)	1,4981
A-0589	Índice refractivo (n _D ²⁰)	1,5010
A-0590	Punto de fusión (°C)	41-42
A-0591	Punto de fusión (°C)	50-51
A-0592	Índice refractivo (n _D ²⁰)	1,5000
A-0594	Punto de fusión (°C)	112-113
A-0599	Punto de fusión (°C)	65-67

Compuesto n.º	Propiedad física	
A-0605	Punto de fusión (°C)	87-90
A-0606	Punto de fusión (°C)	78-81
A-0610	Índice refractivo (n _D ²⁰)	1,4909
A-0611	Punto de fusión (°C)	96-99
A-0615	Punto de fusión (°C)	60-61
A-0616	Punto de fusión (°C)	58-60
A-0617	Punto de fusión (°C)	38-41
A-0618	Punto de fusión (°C)	82-83
A-0622	Índice refractivo (n _D ²⁰)	1,4864
A-0623	Punto de fusión (°C)	86-88
A-0625	Índice refractivo (n _D ²⁰)	1,4861
A-0626	Índice refractivo (n _D ²⁰)	1,4899
A-0631	Índice refractivo (n _D ²⁰)	1,4845
A-0632	Punto de fusión (°C)	72-74

Tabla 51

Compuesto n.º	Propiedad física	
A-0638	Punto de fusión (°C)	39-41
A-0640	Índice refractivo (n _D ²⁰)	1,4902
A-0641	Punto de fusión (°C)	68-69
A-0642	Punto de fusión (°C)	43-44
A-0643	Punto de fusión (°C)	61-63
A-0644	Índice refractivo (n _D ²⁰)	1,5000
A-0662	Índice refractivo (n _D ²⁰)	1,5353
A-0663	Índice refractivo (n _D ²⁰)	1,5190
A-0665	Índice refractivo (n _D ²⁰)	1,5309
A-0666	Índice refractivo (n _D ²⁰)	1,5272
A-0667	Índice refractivo (n _D ²⁰)	1,5509
A-0668	Índice refractivo (n _D ²⁰)	1,5155
A-0670	Índice refractivo (n _D ²⁰)	1,5281
A-0671	Índice refractivo (n _D ²⁰)	1,5325
A-0672	Índice refractivo (n _D ²⁰)	1,5299
A-0673	Índice refractivo (n _D ²⁰)	1,5161
A-0674	Índice refractivo (n _D ²⁰)	1,5130

Compuesto n.º	Propiedad física	
A-0675	Índice refractivo (n _D ²⁰)	1,5122
A-0676	Índice refractivo (n _D ²⁰)	1,5210
A-0677	Índice refractivo (n _D ²⁰)	1,5240
A-0680	Índice refractivo (n _D ²⁰)	1,5085
A-0682	Índice refractivo (n _D ²⁰)	1,5121
A-0683	Índice refractivo (n _D ²⁰)	1,4769
A-0684	Índice refractivo (n _D ²⁰)	1,5361
A-0686	Punto de fusión (°C)	108-110
A-0688	Punto de fusión (°C)	111-112
A-0690	Índice refractivo (n _D ²⁰)	1,5016
A-0692	Punto de fusión (°C)	81-83
A-0693	Índice refractivo (n _D ²⁰)	1,5092
A-0694	Punto de fusión (°C)	86-87
A-0695	Punto de fusión (°C)	39-41
A-0696	Punto de fusión (°C)	125-127
A-0697	Punto de fusión (°C)	102-104
A-0698	Punto de fusión (°C)	113-116
A-0699	Punto de fusión (°C)	53-55
A-0700	Punto de fusión (°C)	112-114
A-0703	Punto de fusión (°C)	63-64
A-0709	Punto de fusión (°C)	59-60
A-0710	Punto de fusión (°C)	98-100

Tabla 52

Compuesto n.º	Propiedad física	
A-0711	Punto de fusión (°C)	61-63
A-0712	Punto de fusión (°C)	89-90
A-0713	Índice refractivo (n _D ²⁰)	1,5188
A-0716	Punto de fusión (°C)	66-68
A-0717	Punto de fusión (°C)	80-81
A-0718	Punto de fusión (°C)	79-82
A-0720	Índice refractivo (n _D ²⁰)	1,5330
A-0721	Punto de fusión (°C)	128-129
A-0722	Punto de fusión (°C)	50-51

Propiedad física	
Punto de fusión (°C)	90-91
Punto de fusión (°C)	96-97
Punto de fusión (°C)	144-145
Punto de fusión (°C)	117-119
Punto de fusión (°C)	93-96
Punto de fusión (°C)	47-48,5
Punto de fusión (°C)	117-118
Punto de fusión (°C)	70-71
Punto de fusión (°C)	125-126
Índice refractivo (n _D ²⁰)	1,5021
Punto de fusión (°C)	144-145
Índice refractivo (n _D ²⁰)	1,5072
Punto de fusión (°C)	132-134
Punto de fusión (°C)	122-123
Punto de fusión (°C)	79-80
Punto de fusión (°C)	138-140
Punto de fusión (°C)	52-53
Punto de fusión (°C)	114-116
Punto de fusión (°C)	52-53
Punto de fusión (°C)	103-104
Punto de fusión (°C)	101-102
Índice refractivo (n _D ²⁰)	1,4766
Punto de fusión (°C)	96-98
Punto de fusión (°C)	85-87
Índice refractivo (n _D ²⁰)	1,5319
Punto de fusión (°C)	78-80
Índice refractivo (n _D ²⁰)	1,5224
Punto de fusión (°C)	92-94
Índice refractivo (n _D ²⁰)	1,5279
Punto de fusión (°C)	102-103
	Punto de fusión (°C) Indice refractivo (np²0) Punto de fusión (°C) Indice refractivo (np²0) Punto de fusión (°C) Indice refractivo (np²0) Punto de fusión (°C)

Tabla 53

Compuesto n.º	Propiedad física	Propiedad física	
A-0757	Índice refractivo (n _D ²⁰)	1,5500	
A-0758	Punto de fusión (°C)	104-105	
A-0759	Índice refractivo (n _D ²⁰)	1,5030	
A-0760	Punto de fusión (°C)	125-128	
A-0761	Índice refractivo (n _D ²⁰)	1,4979	
A-0762	Índice refractivo (n _D ²⁰)	1,5050	
A-0763	Índice refractivo (n _D ²⁰)	1,4991	
A-0764	Punto de fusión (°C)	95-96	
A-0765	Índice refractivo (n _D ²⁰)	1,5085	
A-0766	Punto de fusión (°C)	91-92	
A-0767	Punto de fusión (°C)	109-110	
A-0768	Punto de fusión (°C)	91-92	
A-0769	Punto de fusión (°C)	115-116	
A-0771	Punto de fusión (°C)	115-116	
A-0772	Índice refractivo (n _D ²⁰)	1,5190	
A-0773	Punto de fusión (°C)	89-90	
A-0774	Punto de fusión (°C)	75-76	
A-0775	Punto de fusión (°C)	81-82	
A-0776	Punto de fusión (°C)	118-120	
A-0777	Punto de fusión (°C)	40-41	
A-0778	Índice refractivo (n _D ²⁰)	1,4976	
A-0779	Punto de fusión (°C)	81-84	
A-0780	Índice refractivo (n _D ²⁰)	1,5009	
A-0781	Punto de fusión (°C)	94-95	
A-0782	Punto de fusión (°C)	111-112	
A-0783	Punto de fusión (°C)	80-81	
A-0784	Punto de fusión (°C)	120-122	
A-0786	Índice refractivo (n _D ²⁰)	1,5158	
A-0787	Índice refractivo (n _D ²⁰)	1,5247	
A-0788	Punto de fusión (°C)	89-90	
A-0789	Punto de fusión (°C)	114-115	
A-0790	Punto de fusión (°C)	51-54	
A-0791	Punto de fusión (°C)	131-134	

Compuesto n.º	Compuesto n.º Propiedad física	
A-0792	Punto de fusión (°C)	110-111
A-0793	Punto de fusión (°C)	126-127
A-0795	Punto de fusión (°C)	117-118
A-0796	Punto de fusión (°C)	133-136
A-0797	Índice refractivo (n _D ²⁰)	1,5062
A-0798	Índice refractivo (n _D ²⁰)	1,4980

Tabla 54

Compuesto n.º	Propiedad física	
A-0799	Punto de fusión (°C)	79-81
A-0800	Punto de fusión (°C)	83-84
A-0801	Punto de fusión (°C)	109-110
A-0802	Índice refractivo (n _D ²⁰)	1,5540
A-0803	Punto de fusión (°C)	135-136
A-0805	Punto de fusión (°C)	92-93
A-0806	Punto de fusión (°C)	101-102
A-0807	Punto de fusión (°C)	115-116
A-0808	Punto de fusión (°C)	106-109
A-0809	Índice refractivo (n _D ^{2U})	1,5051
A-0810	Punto de fusión (°C)	88-90
A-0811	Índice refractivo (n _D ²⁰)	1,5021
A-0812	Punto de fusión (°C)	107-109
A-0813	Índice refractivo (n _D ²⁰)	1,4896
A-0814	Punto de fusión (°C)	104-106
A-0815	Índice refractivo (n _D ²⁰)	1,4987
A-0816	Punto de fusión (°C)	111-112
A-0817	Punto de fusión (°C)	98-100
A-0818	Punto de fusión (°C)	86-88
A-0819	Índice refractivo (n _D ²⁰)	1,5210
A-0820	Punto de fusión (°C)	99-100
A-0821	Punto de fusión (°C)	90-91
A-0823	Punto de fusión (°C)	93-95
A-0824	Índice refractivo (n _D ²⁰)	1,5005
A-0825	Punto de fusión (°C)	72-73

Propiedad física	
Índice refractivo (n _D ²⁰)	1,5282
Punto de fusión (°C)	76-78
Índice refractivo (n _D ²⁰)	1,5463
Punto de fusión (°C)	144-145
Índice refractivo (n _D ²⁰)	1,5589
Índice refractivo (n _D ²⁰)	1,5479
Índice refractivo (n _D ²⁰)	1,5406
Punto de fusión (°C)	49-52
Punto de fusión (°C)	96-97
Índice refractivo (n _D ²⁰)	1,4970
Punto de fusión (°C)	101-102
Índice refractivo (n _D ²⁰)	1,4962
Índice refractivo (n _D ²⁰) (n _D ²⁰)	1,5025
Índice refractivo (n _D ²⁰)	1,5270
	Indice refractivo (n_D^{20}) Punto de fusión (°C) Indice refractivo (n_D^{20}) Punto de fusión (°C) Indice refractivo (n_D^{20}) Indice refractivo (n_D^{20}) Indice refractivo (n_D^{20}) Punto de fusión (°C) Punto de fusión (°C) Indice refractivo (n_D^{20}) Punto de fusión (°C) Indice refractivo (n_D^{20}) Indice refractivo (n_D^{20})

Tabla 55

Compuesto n.º	Propiedad física	
A-0847	Punto de fusión (°C)	58-60
A-0848	Índice refractivo (n _D ²⁰)	1,5382
A-0849	Punto de fusión (°C)	92-94
A-0853	Índice refractivo (n _D ²⁰)	1,5140
A-0854	Punto de fusión (°C)	100-103
A-0855	Índice refractivo (n _D ²⁰)	1,5028
A-0856	Punto de fusión (°C)	98-100
A-0857	Índice refractivo (n _D ²⁰)	1,4969
A-0858	Punto de fusión (°C)	101-102
A-0860	Índice refractivo (n _D ²⁰)	1,5256
A-0864	Punto de fusión (°C)	87-88
A-0869	Índice refractivo (n _D ²⁰)	1,5241
A-0870	Índice refractivo (n _D ²⁰)	1,5207
A-0876	Punto de fusión (°C)	82-84
A-0877	Índice refractivo (n _D ²⁰)	1,5442
A-0878	Punto de fusión (°C)	44-46
A-0880	Índice refractivo (n _D ²⁰)	1,5235

Compuesto n.º	Propiedad física	
A-0881	Punto de fusión (°C)	69-72
A-0884	Índice refractivo (n _D ²⁰)	1,5201
A-0885	Punto de fusión (°C)	49-50
A-0888	Índice refractivo (n _D ²⁰)	1,5602
A-0902	Índice refractivo (n _D ²⁰)	1,5450
A-0903	Punto de fusión (°C)	83-85
A-0906	Punto de fusión (°C)	140-143
A-0907	Índice refractivo (n _D ²⁰)	1,5382
A-0908	Índice refractivo (n _D ²⁰)	1,5508
A-0909	Punto de fusión (°C)	103-105
A-0913	Índice refractivo (n _D ²⁰)	1,5486
A-0914	Índice refractivo (n _D ²⁰)	1,5580
A-0915	Índice refractivo (n _D ²⁰)	1,5679
A-0916	Índice refractivo (n _D ²⁰)	1,5649
A-0917	Índice refractivo (n _D ²⁰)	1,5578
A-0918	Índice refractivo (n _D ²⁰)	1,5500
A-0919	Índice refractivo (n _D ²⁰)	1,5552
A-0920	Índice refractivo (n _D ²⁰)	1,5539
A-0921	Índice refractivo (n _D ²⁰)	1,5549
A-0922	Punto de fusión (°C)	75-77
A-0923	Índice refractivo (n _D ²⁰)	1,5171
A-0924	Punto de fusión (°C)	83-86

Tabla 56

Compuesto n.º	Propiedad física	
A-0925	Punto de fusión (°C)	75-76
A-0926	Índice refractivo (n _D ²⁰)	1,5667
A-0927	Punto de fusión (°C)	75-76
A-0933	Índice refractivo (n _D ²⁰)	1,5471
A-0936	Índice refractivo (n _D ²⁰)	1,5411
A-0940	Punto de fusión (°C)	71-72
A-0941	Índice refractivo (n _D ²⁰)	1,5259
A-0942	Punto de fusión (°C)	112-114
A-0943	Punto de fusión (°C)	93-96

Compuesto n.º	Propiedad física	
A-0948	Punto de fusión (°C)	57-58
A-0950	Punto de fusión (°C)	136-138
A-0956	Índice refractivo (n _D ²⁰)	1,5046
A-0957	Punto de fusión (°C)	94-95
A-0958	Punto de fusión (°C)	49-50
A-0959	Índice refractivo (n _D ²⁰)	1,4908
A-0960	Punto de fusión (°C)	91-92
A-0963	Índice refractivo (n _D ²⁰)	1,5309
A-0964	Índice refractivo (n _D ²⁰)	1,5341
A-0965	Índice refractivo (n _D ²⁰)	1,5219
A-0966	Índice refractivo (n _D ²⁰)	1,5269
A-0968	Índice refractivo (n _D ²⁰)	1,5635
A-0969	Punto de fusión (°C)	93-94
A-0972	Índice refractivo (n _D ²⁰)	1,4600
A-0973	Punto de fusión (°C)	71-74
A-0975	Índice refractivo (n _D ²⁰)	1,5613
A-0976	Punto de fusión (°C)	50-51
A-0977	Índice refractivo (n _D ²⁰)	1,4741
A-0978	Punto de fusión (°C)	85-87
A-0979	Índice refractivo (n _D ²⁰)	1,5143
A-0980	Punto de fusión (°C)	76-77
A-0981	Índice refractivo (n _D ²⁰)	1,4626
A-0982	Punto de fusión (°C)	50-53
A-0983	Índice refractivo (n _D ²⁰)	1,5621
A-0984	Índice refractivo (n _D ²⁰)	1,4711
A-0985	Punto de fusión (°C)	66-69
A-0988	Punto de fusión (°C)	76-77
A-0989	Índice refractivo (n _D ²⁰)	1,5024
A-0990	Punto de fusión (°C)	62-63
A-0991	Índice refractivo (n _D ²⁰)	1,4639

Tabla 57

Compuesto n.º	Propiedad física	
A-0992	Punto de fusión (°C)	35-37
A-0996	Punto de fusión (°C)	48-51
A-0997	Punto de fusión (°C)	55-58
A-0999	Punto de fusión (°C)	87-88
A-1000	Punto de fusión (°C)	104-105
A-1001	Punto de fusión (°C)	91-92
A-1002	Punto de fusión (°C)	70-73
A-1003	Índice refractivo (n _D ²⁰)	1,5103
A-1004	Índice refractivo (n _D ²⁰)	1,5094
A-1005	Punto de fusión (°C)	86-88
A-1006	Punto de fusión (°C)	72-75
A-1007	Índice refractivo (n _D ²⁰)	1,5254
A-1008	Punto de fusión (°C)	87-88
A-1009	Índice refractivo (n _D ²⁰)	1,5101
A-1010	Punto de fusión (°C)	78-80
A-1011	Índice refractivo (n _D ²⁰)	1,5272
A-1012	Punto de fusión (°C)	91-92
A-1015	Índice refractivo (n _D ²⁰)	1,5226
A-1016	Punto de fusión (°C)	92-94
A-1020	Índice refractivo (n _D ²⁰)	1,4900
A-1021	Punto de fusión (°C)	105-108
A-1024	Índice refractivo (n _D ²⁰)	1,4931
A-1025	Índice refractivo (n _D ²⁰)	1,4852
A-1026	Punto de fusión (°C)	71-72
A-1027	Índice refractivo (n _D ²⁰)	1,5430
A-1033	Índice refractivo (n _D ²⁰)	1,4935
A-1037	Índice refractivo (n _D ²⁰)	1,4792
A-1042	Índice refractivo (n _D ²⁰)	1,4862
A-1048	Punto de fusión (°C)	60-61
A-1050	Índice refractivo (n _D ²⁰)	1,4850
A-1051	Índice refractivo (n _D ²⁰)	1,4780
A-1052	Índice refractivo (n _D ²⁰)	1,4802
A-1057	Índice refractivo (n _D ²⁰)	1,4790

Compuesto n.º	Propiedad física Índice refractivo (n _D ²⁰) 1,4859	
A-1058		
A-1059	Punto de fusión (°C)	63-64
A-1060	Punto de fusión (°C)	75-76
A-1061	Índice refractivo (n _D ²⁰)	1,4909
A-1062	Índice refractivo (n _D ²⁰)	1,4942
A-1073	Punto de fusión (°C)	67-70

Tabla 58

Compuesto n.º	Propiedad física	
A-1074	Índice refractivo (n _D ²⁰)	1,4919
A-1075	Punto de fusión (°C)	82-83
A-1079	Punto de fusión (°C)	81-83
A-1080	Punto de fusión (°C)	119-122
A-1081	Punto de fusión (°C)	101-102
A-1082	Punto de fusión (°C)	144-147
A-1087	Índice refractivo (n _D ²⁰)	1,4991
A-1088	Punto de fusión (°C)	89-92
A-1093	Índice refractivo (n _D ²⁰)	1,5029
A-1094	Punto de fusión (°C)	99-102
A-1097	Índice refractivo (n _D ²⁰)	1,523
A-1098	Punto de fusión (°C)	115-117
A-1099	Índice refractivo (n _D ²⁰)	1,4985
A-1100	Índice refractivo (n _D ²⁰)	1,5051
A-1102	Índice refractivo (n _D ²⁰)	1,5152
A-1107	Punto de fusión (°C)	92-93
A-1108	Punto de fusión (°C)	142-143
A-1112	Índice refractivo (n _D ²⁰)	1,4958
A-1113	Punto de fusión (°C)	109-111
A-1117	Punto de fusión (°C)	94-96
A-1119	Punto de fusión (°C)	135-136
A-1122	Punto de fusión (°C)	110-113
A-1123	Punto de fusión (°C)	117-118
A-1125	Índice refractivo (n _D ²⁰)	1,4881
A-1126	Punto de fusión (°C)	70-72

Compuesto n.º	Propiedad física	
A-1127	Índice refractivo (n _D ²⁰)	1,5111
A-1128	Índice refractivo (n _D ²⁰)	1,5049
A-1131	Punto de fusión (°C)	70-73
A-1132	Punto de fusión (°C)	70-73
A-1136	Índice refractivo (n _D ²⁰)	1,4550
A-1137	Punto de fusión (°C)	87-90
A-1138	Índice refractivo (n _D ²⁰)	1,4826
A-1139	Punto de fusión (°C)	98-101
A-1140	Índice refractivo (n _D ²⁰)	1,4622
A-1141	Índice refractivo (n _D ²⁰)	1,4682
A-1142	Índice refractivo (n _D ²⁰)	1,4750
A-1143	Punto de fusión (°C)	85-87
A-1150	Punto de fusión (°C)	116-117
A-1151	Punto de fusión (°C)	51-52

Tabla 59

Compuesto n.º	Propiedad física	
A-1152	Punto de fusión (°C)	105-106
A-1153	Punto de fusión (°C)	147-148
A-1154	Punto de fusión (°C)	89-92
A-1155	Punto de fusión (°C)	92-93
A-1157	Punto de fusión (°C)	77-80
A-1158	Índice refractivo (n _D ²⁰)	1,4679
A-1159	Índice refractivo (n _D ²⁰)	1,4715
A-1164	Punto de fusión (°C)	62-63
A-1165	Punto de fusión (°C)	65-67
A-1166	Índice refractivo (n _D ²⁰)	1,4919
A-1167	Punto de fusión (°C)	67-68
A-1171	Índice refractivo (n _D ²⁰)	1,5335
A-1172	Punto de fusión (°C)	99-100
A-1174	Punto de fusión (°C)	103-106
A-1175	Índice refractivo (n _D ²⁰)	1,4721
A-1177	Índice refractivo (n _D ²⁰)	1,4755
A-1178	Punto de fusión (°C)	84-87

Compuesto n.º	Propiedad física	Propiedad física	
A-1180	Índice refractivo (n _D ²⁰)	1,4729	
A-1181	Índice refractivo (n _D ²⁰)	1,4730	
A-1183	Punto de fusión (°C)	79-82	
A-1185	Índice refractivo (n _D ²⁰)	1,4685	
A-1186	Punto de fusión (°C)	107-108	
A-1187	Punto de fusión (°C)	105-107	
A-1188	Punto de fusión (°C)	84-85	
A-1190	Índice refractivo (n _D ²⁰)	1,4729	
A-1191	Punto de fusión (°C)	104-106	
A-1192	Punto de fusión (°C)	80-81	
A-1195	Índice refractivo (n _D ²⁰)	1,4720	
A-1196	Punto de fusión (°C)	90-91	
A-1197	Índice refractivo (n _D ²⁰)	1,4812	
A-1200	Punto de fusión (°C)	102-104	
A-1202	Punto de fusión (°C)	58-61	
A-1203	Punto de fusión (°C)	89-90	
A-1205	Índice refractivo (n _D ²⁰)	1,4801	
A-1206	Índice refractivo (n _D ²⁰)	1,4899	
A-1207	Punto de fusión (°C)	67-70	
A-1209	Índice refractivo (n _D ²⁰)	1,4925	
A-1210	Índice refractivo (n _D ²⁰)	1,4804	
A-1211	Punto de fusión (°C)	71-72	

Tabla 60

Compuesto n.º	Propiedad física	
A-1212	Índice refractivo (n _D ²⁰)	1,4880
A-1213	Punto de fusión (°C)	46-48
A-1214	Punto de fusión (°C)	99-100
A-1215	Índice refractivo (n _D ²⁰)	1,5418
A-1216	Índice refractivo (n _D ²⁰)	1,5391
A-1217	Punto de fusión (°C)	69-70
A-1218	Punto de fusión (°C)	80-82

Tabla 61

Compuesto n.º	Propiedad física	
B-0001	Índice refractivo (n _D ²⁰)	1,4980
B-0002	Punto de fusión (°C)	116-117
B-0003	Índice refractivo (n _D ²⁰)	1,4599
B-0004	Índice refractivo (n _D ²⁰)	1,4638
B-0005	Índice refractivo (n _D ²⁰)	1,4830
B-0006	Índice refractivo (n _D ²⁰)	1,4896
B-0007	Índice refractivo (n _D ²⁰)	1,4839
B-0008	Índice refractivo (n _D ²⁰)	1,4885
B-0009	Índice refractivo (n _D ²⁰)	1,4880
B-0010	Índice refractivo (n _D ²⁰)	1,4928
B-0011	Punto de fusión (°C)	75-76
B-0012	Índice refractivo (n _D ²⁰)	1,5291
B-0013	Punto de fusión (°C)	102-103
B-0014	Índice refractivo (n _D ²⁰)	1,5534
B-0015	Punto de fusión (°C)	103-106
B-0016	Índice refractivo (n _D ²⁰)	1,5528
B-0017	Índice refractivo (n _D ²⁰)	1,5019
B-0018	Punto de fusión (°C)	64-65
B-0019	Punto de fusión (°C)	67-68
B-0020	Índice refractivo (n _D ²⁰)	1,4952
B-0021	Punto de fusión (°C)	124-126
B-0022	Índice refractivo (n _D ²⁰)	1,4835
B-0023	Punto de fusión (°C)	88-89
B-0024	Índice refractivo (n _D ²⁰)	1,5051
B-0025	Punto de fusión (°C)	85-86
B-0026	Punto de fusión (°C)	57-59
B-0027	Punto de fusión (°C)	53-54
B-0029	Índice refractivo (n _D ²⁰)	1,5390
B-0030	Punto de fusión (°C)	88-91
B-0032	Punto de fusión (°C)	117-118
B-0033	Punto de fusión (°C)	90-92
B-0034	Punto de fusión (°C)	104-107
B-0035	Índice refractivo (n _D ²⁰)	1,5013

Compuesto n.º	Propiedad física Índice refractivo (n _D ²⁰) 1,5145	
B-0036		
B-0037	Punto de fusión (°C)	94-96
B-0038	Índice refractivo (n _D ²⁰)	1,5028
B-0039	Punto de fusión (°C)	73-74
B-0040	Punto de fusión (°C)	93-95
B-0041	Punto de fusión (°C)	85-87

Tabla 62

Compuesto n.º	Propiedad física	
B-0042	Índice refractivo (n _D ²⁰)	1,5040
B-0043	Índice refractivo (n _D ²⁰)	1,5220
B-0044	Punto de fusión (°C)	87-89
B-0045	Índice refractivo (n _D ²⁰)	1,5168
B-0046	Punto de fusión (°C)	114-115
B-0047	Punto de fusión (°C)	130-133
B-0048	Punto de fusión (°C)	54-56
B-0049	Punto de fusión (°C)	124-125
B-0050	Punto de fusión (°C)	133-134
B-0051	Índice refractivo (n _D ²⁰)	1,4976
B-0052	Punto de fusión (°C)	147-149
B-0053	Punto de fusión (°C)	54-55
B-0054	Punto de fusión (°C)	117-118
B-0055	Índice refractivo (n _D ^{z0})	1,5098
B-0056	Punto de fusión (°C)	74-75
B-0058	Punto de fusión (°C)	94-96
B-0059	Punto de fusión (°C)	74-77
B-0061	Punto de fusión (°C)	108-109
B-0062	Punto de fusión (°C)	99-101
B-0064	Índice refractivo (n _D ^{z0})	1,5210
B-0065	Punto de fusión (°C)	142-144
B-0066	Índice refractivo (n _D ^{2U})	1,5059
B-0067	Punto de fusión (°C)	94-96
B-0068	Índice refractivo (n _D ^{2U})	1,5085
B-0069	Punto de fusión (°C)	126-127

Compuesto n.º	Propiedad física	
B-0070	Índice refractivo (n _D ²⁰)	1,4985
B-0071	Punto de fusión (°C)	109-110
B-0072	Índice refractivo (n _D ²⁰)	1,5031
B-0073	Punto de fusión (°C)	78-79
B-0074	Índice refractivo (n _D ²⁰)	1,4950
B-0075	Punto de fusión (°C)	104-105
B-0076	Índice refractivo (n _D ²⁰)	1,4970
B-0077	Punto de fusión (°C)	77-78
B-0078	Índice refractivo (n _D ²⁰)	1,4955
B-0079	Punto de fusión (°C)	83-85
B-0080	Índice refractivo (n _D ²⁰)	1,5051
B-0081	Punto de fusión (°C)	68-69
B-0082	Índice refractivo (n _D ²⁰)	1,4904
B-0083	Punto de fusión (°C)	69-70

Tabla 63

Compuesto n.º	Propiedad física	
B-0084	Índice refractivo (n _D ²⁰)	1,4713
B-0085	Punto de fusión (°C)	92-94
B-0086	Índice refractivo (n _D ²⁰)	1,4638
B-0087	Punto de fusión (°C)	98-100
B-0088	Índice refractivo (n _D ²⁰)	1,4912
B-0089	Punto de fusión (°C)	115-117
B-0090	Índice refractivo (n _D ²⁰)	1,5022
B-0091	Punto de fusión (°C)	106-108
B-0092	Índice refractivo (n _D ²⁰)	1,5005
B-0093	Índice refractivo (n _D ²⁰)	1,4921
B-0094	Índice refractivo (n _D ²⁰)	1,5022
B-0095	Punto de fusión (°C)	106-108
B-0096	Punto de fusión (°C)	57-58
B-0097	Índice refractivo (n _D ²⁰)	1,5038
B-0098	Punto de fusión (°C)	63-65
B-0099	Índice refractivo (n _D ²⁰)	1,5042
B-0100	Punto de fusión (°C)	110-111

Compuesto n.º	Propiedad física	
B-0101	Índice refractivo (n _D ²⁰)	1,5440
B-0102	Índice refractivo (n _D ²⁰)	1,5120
B-0103	Punto de fusión (°C)	117-118
B-0104	Índice refractivo (n _D ²⁰)	1,5057
B-0105	Punto de fusión (°C)	104-106
B-0106	Índice refractivo (n _D ²⁰)	1,5441
B-0107	Índice refractivo (n _D ²⁰)	1,5428
B-0108	Índice refractivo (n _D ²⁰)	1,4988
B-0109	Índice refractivo (n _D ²⁰)	1,5384
B-0113	Índice refractivo (n _D ²⁰)	1,5578
B-0114	Punto de fusión (°C)	89-100
B-0115	Punto de fusión (°C)	86-89
B-0116	Punto de fusión (°C)	114-115
B-0117	Punto de fusión (°C)	84-85

Tabla 64

Compuesto n.º	Propiedad física	
C-0001	Índice refractivo (n _D ²⁰)	1,4915
C-0002	Punto de fusión (°C)	174-177
C-0003	Índice refractivo (n _D ²⁰)	1,5185
C-0004	Punto de fusión (°C)	145-146
C-0007	Índice refractivo (n _D ²⁰)	1,529
C-0008	Punto de fusión (°C)	167-169
C-0009	Índice refractivo (n _D ²⁰)	1,5245
C-0010	Punto de fusión (°C)	173-174
C-0011	Punto de fusión (°C)	117-120
C-0013	Índice refractivo (n _D ²⁰)	1,4918
C-0014	Índice refractivo (n _D ²⁰)	1,5275
C-0016	Punto de fusión (°C)	149-150

Tabla 65

Compuesto n.º	Propiedad física (DATOS de RMN ¹ H, en CDCI ₃ /TMS δ (ppm))		
A-0231	400 MHz	2,48 (3H, s), 3,32 (2H, q), 6,11 (1H, d), 7,08 (1H, d), 7,43 (1H, d)	
A-0234	400 MHz	3,37-3,47 (1H, m), 3,70-3,81 (1H, m), 6,16 (1H, d), 7,38 (1H, d), 7,94 (1H, d)	
A-0256	300MHz	1,70-1,91 (4H, m), 2,27-2,46 (5H, m), 3,29 (2H, q), 4,03 (2H, t), 6,96 (1H, d), 7,13 (1H, d)	
A-0257	300 MHz,	1,71-1,94 (4H, m), 2,30-2,46 (5H, m), 3,29-3,50 (2H, m), 4,12 (2H, t), 6,99 (1H, d), 7,54 (1H, d)	
A-0259	300MHz	2,37 (3H, s), 3,30-3,51 (2H, m), 5,30 (1H, dd), 5,59 (1H, dd), 6,19-6,51 (1H, m), 7,11 (1H, d), 7,77 (1H, d)	
A-0267	400 MHz	1,96-2,15 (4H, m), 3,45 (2H, q), 3,52 (2H, t), 4,06 (2H, t), 7,14 (1H, s), 7,46 (1H, s)	
A-0283	400 MHz	1,50-1,60 (4H, m), 1,81-1,93 (4H, m), 3,39-3,49 (4H, m), 4,02 (2H, t), 7,13 (1H, s), 7,45 (1H, s)	
A-0284	300MHz	1,53 (4H, m), 1,70-2,03 (4H, m), 2,17 (3H, s), 2,38 (3H, s), 3,26-3,43 (4H, m), 3,94 (2H, t), 6,96 (1H, s), 6,99 (1H, s)	
A-0292	300MHz	2,49 (3H, s), 3,29 (2H, q), 3,97 (2H, t), 4,13 (2H, t), 6,98 (1H, d), 7,49 (1H, d)	
A-0317	300MHz	1,54-1,81 (8H, m), 2,07-2,10 (2H, m), 2,41 (3H, s), 3,30 (2H, q), 3,94 (2H, d), 6,96 (1H, d), 7,16 (1H, d)	
A-0328	400 MHz	1,23-1,40 (2H, m), 1,61-1,90 (7H, m), 2,04-2,16 (2H, m), 2,41 (3H, s), 3,29 (2H, q), 4,05 (2H, t), 6,97 (1H, d), 7,15 (1H, d)	
A-0329	400 MHz	1,23-1,51 (2H, m), 1,60-1,88 (7H, m), 2,03-2,16 (2H, m), 3,41 (2H, q), 4,06 (2H, t), 7,21 (1H, d), 7,23 (1H, d)	
A-0410	300MHz	2,16-2,25 (5H, m), 2,39 (3H, s), 3,11 (2H, t), 3,31 (2H, q), 4,05 (2H, t), 6,97 (1H, s), 7,01 (1H, s)	

Tabla 66

Compuesto n.º	Propiedad física (DATOS de RMN ¹H, en CDCl₃/TMS δ (ppm))		
A-0411	300MHz	2,22-2,31 (8H, m), 3,12 (2H, t), 3,27-3,50 (2H, m), 4,16 (2H, m), 7,03 (1H, s), 7,38 (1H, s)	
A-0412	300MHz	2,21-2,29 (2H, m), 3,15 (2H, t), 3,45 (2H, q), 4,11 (2H, t), 7,15 (1H, s), 7,47 (1H, s)	
A-0413	400 MHz	2,28 (2H, quint), 3,15 (2H, t), 3,32-3,44 (1H, m), 3,69-3,81 (1H, m), 4,25 (2H, t), 7,48 (1H, s), 7,50 (1H, s)	
A-0416	300MHz	1,90-2,04 (4H, m), 2,36 (3H, s), 2,97 (2H, t), 3,24-3,50 (2H, m), 4,13 (2H, t), 7,03 (1H, d), 7,54 (1H, d)	
A-0424	400 MHz	1,90-2,02 (4H, m), 3,01 (2H, t), 3,45 (2H, q), 4,05 (2H, t), 7,13 (1H, s), 7,46 (1H, s)	
A-0425	400 MHz	1,94-2,03 (4H, m), 3,01 (2H, t), 3,31-3,43 (1H, m), 3,68-3,81 (1H, m), 4,17 (2H, t), 7,18 (2H, s)	
A-0432	400 MHz	1,62 (2H, m), 1,70-1,95 (4H, m), 2,31 (3H, s), 2,92 (2H, t), 3,32-3,48 (2H, m), 4,11 (2H, t), 6,98 (1H, d), 7,54 (1H, d)	

Compuesto n.º	Propiedad física (DATOS de RMN ¹ H, en CDCl ₃ /TMS δ (ppm))		
A-0436	400 MHz	1,55-1,70 (2H, m), 1,75-1,93 (4H, m), 2,92 (2H, t), 3,51 (2H, q), 4,10 (2H, t), 7,25 (1H, d), 7,41 (1H, d)	
A-0440	300MHz	1,54-1,67 (2H, m), 1,70-1,95 (4H, m), 2,39 (3H, s), 2,92 (2H, t), 3,33 (2H, q), 4,01 (2H, t), 7,06 (1H, s), 7,24 (1H, s)	
A-0480	400 MHz	1,49-1,53 (4H, m), 1,71-1,82 (4H, m), 2,17 (3H, s), 2,38 (3H, s), 2,90 (2H, t), 3,30 (2H, q), 3,94 (2H, t), 6,96 (1H, s), 6,70 (1H, s)	
A-0511	300MHz	1,40-1,56 (6H, m), 1,66-1,83 (4H, m), 2,17 (3H, s), 2,38 (3H, s), 2,88 (1H, t), 3,31 (2H, q), 3,93 (2H, t), 6,96 (1H, s), 7,00 (1H, s)	
A-0512	300MHz	1,41-1,52 (6H, m), 1,68-1,86 (4H, m), 2,28 (3H, s), 2,33 (3H, s), 2,89 (2H, t), 3,26-3,50 (2H, m), 4,03 (2H, t), 7,01 (1H, s), 7,36 (1H, s)	
A-0544	300MHz	1,81-2,01 (4H, m), 2,31 (3H, s), 2,90 (2H, t), 3,31-3,48 (2H, m), 4,13 (2H, t), 6,82 (1H, t), 6,99 (1H, d), 7,54 (1H, d)	

Tabla 67

Compuesto n.º		Propiedad física (DATOS de RMN ¹ H, en CDCl ₃ /TMS δ (ppm))
A-0554	400 MHz	1,57-1,63 (2H, m), 1,75-1,89 (4H, m), 2,31 (3H, s), 2,84 (2H, t), 3,36-3,42 (2H m), 4,10 (2H, t), 6,81 (1H, t), 7,00 (1H, d), 7,54 (1H, d)
A-0557	400 MHz	1,57-1,63 (2H, m), 1,72-1,84 (4H, m), 2,38 (3H, s), 2,84 (2H, t), 3,40 (2H, q), 3,94 (2H, t), 6,75 (1H, dd), 6,81 (1H, t), 7,00 (1H, s), 7,11 (1H, d)
A-0570	400 MHz	1,49-1,56 (4H, m), 1,70-1,81 (4H, m), 2,41 (3H, s), 2,81 (2H, t), 3,29 (2H, q), 4,00 (2H, t), 6,80 (1H, t), 6,96 (1H, d), 7,14 (1H, d)
A-0661	400 MHz	1,59-70 (2H, m), 1,79-1,92 (4H, m), 3,21 (2H, t), 3,41 (2H, q), 4,04 (2H, t), 7,21 (1H, d), 7,25 (2H, d)
A-0664	300MHz	2,17 (3H, s), 2,34 (2H, quint), 2,39 (3H, s), 3,19 (2H, t), 3,32 (2H, q), 4,09 (2H, t), 6,98 (1H, s), 7,01 (1H, s)
A-0678	400 MHz	1,50-1,62 (4H, m), 1,83-1,92 (4H, m), 2,96 (2H, t), 3,45 (2H, q), 4,03 (2H, t), 7,13 (1H, s), 7,46 (1H, s)
A-0679	300MHz	1,53-1,54 (4H, m), 1,82-1,87 (4H, m), 2,17 (3H, s), 2,38 (3H, s), 2,96 (2H, t), 3,31 (2H, q), 3,94 (2H, t), 6,96 (1H, s), 6,70 (1H, s)
A-0681	300MHz	1,40-1,56 (6H, m), 1,75-1,88 (4H, m), 2,17 (3H, s), 2,38 (3H, s), 2,95 (2H, t), 3,31 (2H, q), 3,93 (2H, t), 6,96 (1H, s), 7,00 (1H, s)
A-0687	300MHz	2,40 (3H, s), 3,23 (2H, q), 5,31 (2H, s), 6,99 (1H, d), 7,12 (1H, d), 7,46 (1H, t), 7,57 (1H, t), 7,63-7,80 (2H, m)
A-0745	300MHz	2,42 (3H, s), 3,24 (2H, q), 5,14 (2H, s), 7,00 (1H, d), 7,15 (1H, d), 7,21-7,37 (2H, m), 7,62 (1H, dd)
A-0747	300MHz	2,41 (3H, s), 3,21 (2H, q), 5,17 (2H, s), 7,00 (1H, d), 7,15 (1H, d), 7,57 (2H, d) 7,64 (2H, d)
A-0822	300MHz	2,41 (3H, s), 3,15 (2H, t), 3,27 (2H, q), 4,23 (2H, t), 6,96 (1H, d), 7,11 (1H, d), 7,11-7,19 (2H, m), 7,55 (1H, t)
A-0834	400 MHz	2,12 (2H, quint), 2,41 (3H, s), 2,82 (2H, t), 3,27 (2H, q), 4,01 (2H, t), 6,96 (1H d), 7,11 (1H, d), 7,19-7,32 (5H, m)

Tabla 68

Compuesto n.º	Propiedad física (DATOS de RMN ¹H, en CDCl₃/TMS δ (ppm))		
A-0970	300MHz	1,10 (9H, s), 2,16 (2H, t), 2,41 (3H, s), 3,29 (2H, q), 4,11-4,20 (4H, m), 6,95 (1H, d), 7,14 (1H, d), 7,32 (1H, s)	
A-0971	400 MHz	1,09 (9H, s), 2,18 (2H, t), 2,31 (3H, s), 3,30-3,50 (2H, m), 4,16-4,20 (4H, m), 6,98 (1H, d), 7,32 (1H, s), 7,57 (1H, d)	
A-0998	400 MHz	2,40 (3H, s), 3,26 (2H, q), 4,26 (2H, t), 4,51 (2H, t), 6,98 (1H, d), 7,25 (1H, dd), 7,33-7,40 (1H, m), 7,47 (1H, t), 7,55-7,65 (2H, m), 7,65 (1H, d), 8,13 (1H, s)	
A-1032	400 MHz	2,42 (3H, s), 3,09 (3H, s), 3,29 (2H, q), 4,25-4,35 (2H, m), 4,56-4,61 (2H, m), 6,99 (1H, d), 7,18 (1H, d)	
A-1044	400 MHz	2,10 (2H, quint), 2,01 (3H, s), 3,29 (2H, q), 3,87 (2H, t), 4,10 (2H, t), 5,40 (2H, s a), 6,96 (1H, d), 7,18 (1H, d)	
A-1072	400 MHz	1,83-1,97 (4H, m), 2,85 (2H, t), 3,41 (2H, q), 4,05 (2H, t), 7,20 (1H, d), 7,23 (1H, d)	
A-1101	300MHz	1,40 (2H, s a), 1,59-1,70 (2H, m), 1,79-1,89 (2H, m), 2,41 (3H, s), 2,78 (2H, t), 3,29 (2H, q), 4,03 (2H, t), 6,95 (1H, d), 7,15 (1H, s)	
A-1116	400 MHz	1,80-1,93 (4H, m), 2,42 (3H, s), 3,29 (2H, q), 3,43-3,54 (2H, m), 4,06 (2H, t), 6,62 (1H, s a), 6,98 (1H, d), 7,15 (1H, d)	
A-1149	400 MHz	1,78-1,94 (4H, m), 2,41 (3H, s), 2,97 (3H, s), 3,24 (2H, t), 3,30 (2H, q), 4,05 (2H, t), 4,44 (1H, s a), 6,97 (1H, d), 7,15 (1H, d)	
A-1156	300MHz	1,80-1,99 (4H, m), 3,36-3,47 (4H, m), 4,07 (2H, t), 5,15 (1H, m), 7,23 (1H, d), 7,25 (1H, d)	
A-1201	400 MHz	1,48-1,57 (2H, m), 1,75-1,88 (4H, m), 2,41 (3H, s), 3,29 (2H, q), 3,82 (2H, t), 3,92 (3H, s), 4,11 (2H, t), 6,96 (1H, s), 7,4 (1H, s)	

Tabla 69

Compuesto n.º	Propiedad física (DATOS de RMN ¹H, en CDCl₃/TMS δ (ppm))		
B-0028	300MHz	2,42 (3H, s), 3,24 (2H, q), 5,13 (2H, s), 7,01 (1H, d), 7,15 (1H, d), 7,30-7,38 (2H, m), 8,60-8,68 (2H, m)	
B-0031	300MHz	2,41 (3H, s), 3,19-3,37 (2H, m), 5,30 (2H, s), 7,00 (1H, d), 7,17 (1H, d), 7,71 (1H, d), 7,97 (1H, d), 8,86 (1H, s)	
B-0057	300MHz	2,15 (2H, quint), 2,42 (3H, s), 2,94 (2H, t), 3,31 (2H, q), 4,03 (2H, t), 6,98 (1H, d), 7,13 (1H, d), 7,62 (1H, d), 7,72 (1H, d), 8,60 (1H, s)	
B-0060	300MHz	2,32 (2H, quint), 2,41 (3H, s), 3,22 (2H, t), 3,28 (2H, q), 4,13 (2H, t), 6,95 (1H, d), 7,15 (1H, d), 7,88 (1H, s), 8,70 (1H, s)	
B-0063	300MHz	2,44 (3H, s), 3,29 (2H, q), 5,33 (2H, s), 7,04 (1H, d), 7,22 (1H, d), 9,26 (1H, s), 9,35 (1H, s)	

Tabla 70

Compuesto n.º	Propiedad física (DATOS de RMN ¹H, en CDCl₃/TMS δ (ppm))	
C-0005	400 MHz	2,36 (3H, s), 3,38 (2H, q), 5,61 (1H, s a), 6,69 (1H, dd), 6,93 (1H, s), 7,03 (1H, d)
C-0006	400 MHz	2,28 (3H, s), 3,37-3,56 (2H, m), 6,96 (1H, dd), 7,12 (1H, d), 7,73 (1H, d), 8,04 (1H, s a)

C-0015	300MHz	3,30-3,44 (1H, m), 3,66-3,80 (1H, m), 7,40 (1H, s), 7,61 (1H, s)
C-0017	300MHz	2,20 (3H, s), 2,36 (3H, s), 3,32 (2H, q), 4,59 (1H, s), 6,93 (1H, s), 6,98 (1H, s)
C-0018	300MHz	2,25 (6H, s), 3,35-3,53 (2H, m), 6,98 (1H, s), 7,63 (1H, s), 7,69 (1H, s)

Tabla 71

Compuesto n.º	Rotación específica
(-)-A-0086	-104,4
(+)-A-0086	+103,6
(-)-A-0434	-120,3
(+)-A-0434	+119,3
(-)-A-0479	-120,6
(+)-A-0479	+115,2
(-)-A-0481	-93,2
(+)-A-0481	+96,5
(-)-A-0764	-86,4
(+)-A-0764	+88,5
(-)-A-0767	-117,0
(+)-A-0767	+122,8
(-)-A-1215	-99,2
(+)-A-1215	+98,1
(-)-A-1218	-120,4
(+)-A-1218	+121,6

A continuación, se explican de forma específica ejemplos de formulación del presente agente de control de plagas utilizando el presente derivado de sulfuro de alquilfenilo producido según lo anterior o la sal del mismo aceptable desde el punto de vista agrícola. Las clases y proporciones de compuestos y aditivos utilizadas en cada formulación no se limitan a los mostrados en los siguientes ejemplos de formulación y pueden modificarse en un amplio intervalo. En la siguiente explicación, "partes" se refieren a partes en masa (partes en masa).

[Ejemplo de formulación 1] Concentrado emulsionable

10	Un compuesto descrito en la tabla 1 a la tabla 41		
	Ciclohexanona	30 partes	
	Éter de polioxietilen alquil arilo	11 partes	
	Alquilbencenosulfonato de calcio	4 partes	
	Metilnaftaleno	45 partes	

Los materiales anteriores se disolvieron de forma homogénea para obtener un concentrado emulsionable.

[Ejemplo de formulación 2] Polvo humectable

Un compuesto descrito en la tabla 1 a la tabla 41 10 partes

Condensado de sal sódica del ácido naftalenosulfónico-formalina 0,5 partes

Éter de polioxietilen alquil arilo 0,5 partes

Tierra de diatomeas 24 partes

Arcilla 65 partes

Los materiales anteriores se mezclaron y molieron para obtener un polvo humectable.

5 [Ejemplo de formulación 3] Formulación en polvo

Un compuesto descrito en la tabla 1 a la tabla 41 2 partes

Tierra de diatomeas 5 partes

Arcilla 93 partes

Los materiales anteriores se mezclaron y molieron para obtener una formulación en polvo.

10 [Ejemplo de formulación 4] Gránulos

Un compuesto descrito en la Tabla 1 a la Tabla 41 5 partes

Sal sódica de sulfato de alcohol laurílico 2 partes

Lignosulfonato sódico 5 partes

Carboximetilcelulosa 2 partes

15 Arcilla 86 partes

Los materiales anteriores se mezclaron de forma homogénea y se molieron. Se añadieron 20 partes de agua a los mismos, seguido de amasado. El material amasado se pasó a través de un granulador de extrusión para obtener gránulos de malla 14 a 32. Los gránulos se secaron para obtener un granulado.

[Ejemplo de formulación 5] Concentrado fluido

20 Un compuesto descrito en la tabla 1 a la tabla 41 20 partes

Fenil éter sulfato estirenado de polioxietileno 4 partes

Etilenglicol 7 partes

Silicona AF-118N (producida por Asahi Chemical Industry Co., Ltd.) 0,02 partes

Agua 68,98 partes

Los anteriores materiales se mezclaron durante 30 minutos usando un agitador de alta velocidad y después se molieron utilizando una trituradora en húmedo para obtener un concentrado fluido.

A continuación, se muestra el efecto del presente agente de control de plagas mediante ejemplos de ensayo.

[Ejemplo de prueba 1] Prueba de efecto de control frente a

Tetranychus urticae Koch (arañuela de dos puntos)

30 Se diluyó en agua un polvo humectable preparado a base de la formulación de ejemplo 2 con una concentración de principio activo de 4 ppm. En la solución, se sumergieron plántulas de soja que se habían inoculado con 35 machos adultos de arañuela de dos puntos. Las plántulas de soja se secaron al aire y se colocaron en un termostato a 25°C. Tras 13 días, se examinó el número de machos adultos vivos y se determinó el valor de control del principio activo usando la fórmula de cálculo de la expresión matemática 1 siguiente. Esta prueba se efectuó sin replicados.

35 [Expresión matemática 1]

40

Valor de control = 100-[(número de adultos hembra vivos tras 13 días, en las plántulas tradas)/(número de adultos hembra vivos tras 13 días, en las plántulas no tratadas)] x 100

Se llevaron a cabo pruebas similares a la anterior usando, como compuestos comparativos, lo compuestos n.º 22 y 23 descritos en el documento JP-A-1975-29744, los compuestos n.º 3, 4, 5, 6 descritos en el documento JP-A-1976-19121 y los compuestos n.º 18, 19 y 36 descritos en el documento JP-A-1988-41451. Las estructuras de estos compuestos comparativos son las siguientes.

[Fórmula 21]

JP-A-1975-29744

[Fórmula 22]

5 JP-A-1976-19121

[Fórmula 23]

JP-A-1988-41451

A continuación, se muestran los n.º de compuesto de los compuestos que proporcionaron en la prueba anterior un 10 valor de control de 90 o superior. A-0013, A-0017, A-0018, A-0024, A-0047, A-0052, A-0055, A-0056, A-0075, A-0077, A-0078, A-0079, A-0085, A-0086, A-0088, A-0089, A-0090, A-0092, A-0094, A-0108, A-0113, A-0115, A-0116, A-0117, A-0120, A-0123, A-0125, A-0126, A-0130, A-0133, A-0141, A-0144, A-0145, A-0147, A-0157, A-0160, A-0160 0164, A-0168, A-0170, A-0175, A-0181, A-0185, A-0204, A-0212, A-0216, A-0220, A-0222, A-0223, A-0224, A-0244, A-0257, A-0262, A-0271, A-0277, A-0316, A-0318, A-0319, A-0320, A-0321, A-0322, A-0324, A-0325, A-0326, A-0326 15 0327, A-0328, A-0329, A-0330, A-0331, A-0338, A-0339, A-0340, A-0341, A-0343, A-0346, A-0347, A-0352, A-0353, A-0356, A-0359, A-0360, A-0363, A-0365, A-0368, A-0369, A-0379, A-0387, A-0388, A-0391, A-0392, A-0393, A-0394, A-0396, A-0406, A-0416, A-0418, A-0432, A-0434, A-0438, A-0439, A-0440, A-0441, A-0443, A-0444, A-0445, A-0446, A-0447, A-0448, A-0449, A-0471, A-0472, A-0473, A-0474, A-0475, A-0476, A-0477, A-0478, A-0479, A-0479 20 0481, A-0482, A-0483, A-0484, A-0485, A-0487, A-0489, A-0495, A-0502, A-0503, A-0504, A-0505, A-0507, A-0508, A-0510, A-0524, A-0525, A-0526, A-0533, A-0536, A-0539, A-0543, A-0544, A-0553, A-0554, A-0555, A-0556, A-0566, A-0566 0557, A-0558, A-0559, A-0560, A-0561, A-0562, A-0563, A-0570, A-0571, A-0573, A-0574, A-0575, A-0576, A-0577, A-0578, A-0587, A-0588, A-0589, A-0590, A-0591, A-0592, A-0594, A-0599, A-0605, A-0606, A-0610, A-0611, A-0578, A-0578 0616, A-0617, A-0618, A-0622, A-0623, A-0625, A-0626, A-0631, A-0632, ii-0638, A-0640, A-0642, A-0644, A-0665, A-0674, P-0683, A-0684, A-0686, A-0690, A-0692, A-0693, A-0694, A-0695, A-0697, A-0698, A-0703, A-0709, A-0709 25

0710, A-0711, A-0712, A-0713, A-0716, A-0717, A-0724, A-0728, A-0734, A-0735, A-0736, A-0741, A-0743, A-0744, A-0745, A-0746, A-0748, A-0751, A-0752, A-0753, A-0754, A-0755, A-0757, A-0758, A-0761, A-0762, A-0763, A-0764, A-0762, A-0764, A-0762, A-0764, A-0765, A-0764, A-0765, A-0764, A-0765, A-0764, A-0765, A-0765 0764, A-0765, A-0766, A-0767, A-0768, A-0769, A-0772, A-0773, A-0774, A-0775, A-0776, A-0778, A-0779, A-0780, A-0781, A-0782, A-0783, A-0784, A-0786, A-0787, A-0788, A-0789, A-0790, A-0791, A-0792, A-0793, A-0797, A-0791, A-0792, A-0793, A-0797, A-0791, A-0792, A-0793, A-0797, A-0791, A-0792, A-0793, A-0793, A-0797, A-0793, A-0793 0798, A-0799, A-0800, A-0802, A-0805, A-0806, A-0807, A-0808, A-0809, A-0810, A-0813, A-0814, A-0816, A-0817, A-0818, A-0819, A-0820, A-0821, A-0822, A-0823, A-0824, A-0825, A-0826, A-0827, A-0838, A-0839, A-0844, A-0826, A-0827, A-0828, A-0829, A-0844, A-0828, A-0829, A-0829 0845, A-0853, A-0855, A-0856, A-0857, A-0860, A-0869, A-0870, A-0878, A-0880, A-0881, A-0885, A-0902, A-0913, A-0914, A-0915, A-0916, A-0917, A-0918, A-0921, A-0923, A-0924, A-0936, A-0940, A-0941, A-0942, A-0948, A-0956, A-0957, A-0969, A-0971, A-0973, A-0978, A-0979, A-0980, A-0982, A-0983, A-0984, A-0985, A-0988, A-0989, A-0990, A-0991, A-0992, A-1011, A-1032, A-1033, A-1052, A-1081, A-1087, A-1088, A-1107, A-1108, A-1112, A-10 1113, A-1119, A-1125, A-1126, A-1127, A-1128, A-1132, A-1136, A-1138, A-1140, A-1142, A-1149, A-1150, A-1151, A-1152, A-1154, A-1155, A-1156, A-1157, A-1158, A-1159, A-1164, A-1165, A-1166, A-1167, A-1175, A-1177, A-1178, A-1180, A-1181, A-1183, A-1185, A-1188, A-1190, A-1192, A-1195, A-1196, A-1200, A-1201, A-1207, A-1210, A-1211, B-0005, B-0006, B-0007, B-0008, B-0009, B-0010, B-0011, B-0017, B-0018, B-0019, B-0022, B-0023, B-0021, B-0022, B-0022, B-0023, B-0022, B-0022, B-0023, B-0022, B-0022 0029, B-0055, B-0060, B-0063, B-0068, B-0070, B-0072, B-0073, B-0074, B-0075, B-0076, B-0078, B-0079, B-0080, 15 B-0082, B-0084, B-0086, B-0088, B-0090, B-0092, B-0094, B-0096, B-0099, B-0102, B-0104, B-0106, B-0108

Cualquiera de los compuestos 22 y 23 (descritos en el documento JP-A-1975-29744), 3, 4, 5 y 6 (descritos en el documento JP-A-1988-41451) no mostraron actividad a una concentración de 4 ppm.

20 [Ejemplo de prueba 2] Prueba de actividad insecticida para *Nilaparvata lugen* Stál (saltahojas del arroz)

Se diluyó en agua un polvo humectable preparado a base de la formulación de ejemplo 2 con una concentración de principio activo de 100 ppm. En la solución se sumergió arroz descascarillado germinado. Se colocaron en una copa de plástico de 60 ml. En su interior se liberaron 10 larvas de fase 3 de saltahojas del arroz. Se cubrió la copa con una tapa y se colocó en un termostato a 25°C. Tras 6 días, se contó el número de insectos vivos y se determinó la mortalidad de los insectos a partir de la fórmula de cálculo de la expresión matermática 2 siguiente. Esta prueba se efectuó sin replicados.

[Expresión matemática 2]

25

Mortalidad (%) = 100-[(número de insectos vivos tras 6 días)/(número de insectos muertos)] x 100

Como en el caso del ejemplo de prueba 1, se llevaron a cabo pruebas similares a las anteriores usando, como compuestos comparativos, lo compuestos n.º 22 y 23 descritos en el documento JP-A-1975-29744, los compuestos n.º 4, 5, 6 descritos en el documento JP-A-1976-19121 y los compuestos n.º 18, 19 y 36 descritos en el documento JP-A-1988-41451.

A continuación, se muestran los n.º de compuesto de los compuestos que proporcionaron en la prueba anterior una mortalidad del 90% o superior. A-0001, A-0004, A-0005, A-0006, A-0007, A-0015, A-0018, A-0022, A-0023, A-0025, A-0032, A-0035, A-0037, A-0038, A-0039, A-0043, A-0044, A-0046, A-0047, A-0051, A-0052, A-0056, A-0070, A-0050, A-0050 35 0074, A-0075, A-0077, A-0078, A-0085, A-0086, A-0087, A-0088, A-0089, A-0090, A-0091, A-0092, A-0108, A-0122, A-0123, A-0125, A-0130, A-0133, A-0141, A-0144, A-0145, A-0147, A-0157, A-0159, A-0160, A-0163, A-0164, A-0167, A-0168, A-0169, A-017 0, A-0172, A-0173, A-0175, A-0180, A-0181, A-0185, A-0186, A-0187, A-0188, A-0199, A-0200, A-0203, A-0205, A-0206, A-0208, A-0211, A-0212, A-0213, A-0214, A-0215, A-0216, A-0217, A-0218, A-0218 0219, A-0220, A-0221, A-0222, A-0223, A-0224, A-0228, A-0229, A-0230, A-0243, A-0244, A-0253, A-0254, A-0256, 40 A-0257, A-0259, A-0260, A-0262, A-0263, A-0266, A-0271, A-0277, A-0285, A-0307, A-0308, A-0311, A-0314, A-0314 0317, A-0319, A-0324, A-0325, A-0328, A-0329, A-0338, A-0340, A-0341, A-0346, A-0360, A-0369, A-0379, A-0405, A-0406. A-0415. A-0416. A-0417. A-0418. A-0431. A-0432. A-0433. A-0434. A-0436. A-0437. A-0438. A-0439. A-0440, A-0446, A-0447, A-0448, A-0472, A-0473, A-0474, A-0475, A-0503, A-0505, A-0535, A-0539, A-0543, 45 A-0544, A-0553, A-0554, A-0556, A-0557, A-057 0, A-0572, A-0574, A-0587, A-0610, A-0617, A-0625, A-0626, A-0544, A-0544, A-0554, A-0554, A-0556, A-0557, A-0570, A-057 0631, A-0644, A-0683, A-0684, A-0703, A-0732, A-0734, A-0741, A-0743, A-0744, A-0745, A-0747, A-0751, A-0753, A-0755, A-0761, A-0763, A-0764, A-0765, A-0766, A-0772, A-0777, A-0778, A-0779, A-0780, A-0781, A-0786, A-0786, A-0786, A-0786, A-0786, A-0786, A-0786, A-0786, A-0788, A-0788 0787, A-0788, A-0789, A-0797, A-0798, A-0809, A-0811, A-0813, A-0815, A-0821, A-0822, A-0823, A-0824, A-0825, A-0834, A-0838, A-0839, A-0844, A-0846, A-0847, A-0853, A-0855, A-0857, A-0877, A-0968, A-0969, A-0970, A-0858, A-0859, A-0859 50 0971, A-0972, A-0973, A-0975, A-0976, A-0977, A-0978, A-0979, A-0981, A-0982, A-0983, A-0984, A-0985, A-0988, A-0991, A-0992, A-0998, A-1003, A-1004, A-1005, A-1006, A-1008, A-1009, A-1032, A-1033, A-1037, A-1044, A-1051, A-1087, A-1093, A-1094, A-1107, A-1125, A-1136, A-1140, A-1142, A-1158, A-1159, A-1177, A-1180, A-1185, A-1187, A-1188, A-1195, A-1210, A-1211, A-1212, A-1213, B-0003, B-0004, B-0005, B-0007, B-0012, B-0013, B-0022, B-0028, B-0029, B-0032, B-0033, B-0035, B-0051, B-0053, B-0055, B-0058, B-0059, B-0060, B-0063, B-0066, B-0086, B-0088, B-0093, B-0101, C-0001 55

Cualquiera de los compuestos 22 y 23 (descritos en el documento JP-A-1975-29744), 4, 5 y 6 (descritos en el documento JP-A-1976-19121) y 18, 19 y 36 (descritos en el documento JP-A-1988-41451) no mostraron en cualquier caso actividad, incluso a una concentración de 100 ppm.

REIVINDICACIONES

1. Un derivado de sulfuro de alquil fenilo representado por la fórmula general [I] o una sal del mismo aceptable desde el punto de vista agrícola

$$R^{4}$$
 R^{4}
 $(O)_{n}$

5 en la fórmula [I],

10

20

25

30

35

40

45

50

n es un número entero entre 0, 1 o 2,

 R^1 es un grupo haloalquilo $C_1 \sim C_6$ en donde el grupo excluye grupo 2-bromoetilo, un alquenilo $C_2 \sim C_8$ en donde el grupo excluye grupo alilo, un grupo haloalquenilo $C_2 \sim C_8$, un grupo alquinilo $C_2 \sim C_6$, un grupo haloalquinilo $C_2 \sim C_6$, un grupo haloalquinilo $C_2 \sim C_6$, un grupo alquilo $C_4 \sim C_6$ ramificado en donde el grupo excluye grupo isobutilo, un grupo cicloalquil $C_3 \sim C_6$ alquilo $C_1 \sim C_6$ o un grupo halocicloalquil $C_3 \sim C_6$ alquilo $C_1 \sim C_6$,

 R^2 es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$, un grupo cicloalquilo $C_3 \sim C_6$, un grupo haloalcoxi $C_1 \sim C_6$, un grupo ciano o un grupo nitro,

 R^3 es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$ o un grupo haloalquilo $C_1 \sim C_6$,

 R_4 es un grupo alquilo $C_1 \sim C_{12}$ en donde el grupo puede estar mono o polisustituido con R^5 , un grupo cicloalquilo $C_3 \sim C_6$ en donde el grupo puede estar mono o polisustituido con R^5 , un grupo alquenilo $C_1 \sim C_6$ en donde el grupo puede estar mono o polisustituido con R^5 , un grupo alquinilo $C_2 \sim C_6$ en donde el grupo puede estar mono o polisustituido con R^5 o un grupo benzoilo en donde el grupo puede estar mono o polisustituido con R^6 ,

 R^5 es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$, un grupo cicloalquilo $C_3 \sim C_6$ en donde el grupo puede estar mono o polisustituido con R⁶, un grupo halocicloalquilo C₃~C₆, un grupo hidroxilo, un grupo alcoxi $C_1 \sim C_6$, un grupo haloalcoxi $C_1 \sim C_6$, un grupo cicloalcoxi $C_3 \sim C_6$, un grupo halocicloalcoxi $C_3 \sim C_6$, un grupo alcoxi $C_1 \sim C_6$ alcoxi $C_1 \sim C_6$, un grupo haloalcoxi $C_1 \sim C_6$ alcoxi $C_1 \sim C_6$, un grupo haloalcoxi $C_1 \sim C_6$ haloalcoxi $C_1 \sim C_6$, un grupo alquilsulfiniloxi $C_1 \sim C_6$, un grupo haloalquilsulfiniloxi $C_1 \sim C_6$, un grupo cicloalquilsulfiniloxi $C_3 \sim C_6$, un grupo halocicloalquilsulfiniloxi $C_3 \sim C_6$, un grupo alquilsulfoniloxi $C_1 \sim C_6$, un grupo halocicloalquilsulfoniloxi $C_3 \sim C_6$, un grupo halocicloalquilsulfoniloxi $C_3 \sim C_6$, un grupo halocicloalquilsulfoniloxi $C_3 \sim C_6$, un grupo alquiltio $C_1 \sim C_6$, un grupo tiol, un grupo alquiltio $C_1 \sim C_6$, un grupo haloalquiltio $C_1 \sim C_6$, un grupo alqueniltio $C_2 \sim C_6$, un grupo haloalqueniltio $C_2 \sim C_6$, un grupo cicloalquiltio $C_3 \sim C_6$, un grupo halocicloalquiltio $C_3 \sim C_6$, un grupo cicloalquil $C_3 \sim C_6$ alquiltio $C_1 \sim C_6$, un grupo alquiltio $C_1 \sim C_6$ halocicloalquilo $C_3 \sim C_6$, un grupo tri(alquil $C_1 \sim C_6$)silil alquiltio $C_1 \sim C_6$, un grupo alquilsulfinilo $C_1 \sim C_6$, un grupo haloalquilsulfinilo $C_1 \sim C_6$, un grupo cicloalquilsulfinilo $C_3 \sim C_6$, un grupo halocicloalquilsulfinilo $C_3 \sim C_6$, un grupo $alquilsulfonilo \quad C_1 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_1 \sim C_6, \quad un \quad grupo \quad cicloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_1 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_1 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_1 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_1 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_1 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_1 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_2 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_3 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_5 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_6 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_7 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_8 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_8 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_8 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad C_8 \sim C_6, \quad un \quad grupo \quad haloalquilsulfonilo \quad G_8 \sim C_8, \quad un \quad grupo \quad haloalquilsulfonilo \quad G_8 \sim C_8, \quad un \quad grupo \quad haloalquilsulfonilo \quad G_8 \sim C_8, \quad un \quad grupo \quad haloalquilsulfonilo \quad G_8 \sim C_8$ halocicloalquilsulfonilo $C_3 \sim C_6$, un grupo alquilcarbonilo $C_1 \sim C_6$, un grupo haloalquilcarbonilo $C_1 \sim C_6$, un grupo formilo, un grupo alquilcarboniloxi $C_1 \sim C_6$, un grupo haloalquilcarboniloxi $C_1 \sim C_6$, un grupo formiloxi, un grupo amino, un grupo alquilcarbonilamino $C_1 \sim C_6$ en donde el grupo amino puede estar sustituido con R^9 , un grupo haloalquilcarbonilamino C₁~C₆ en donde el grupo amino puede estar sustituido con R⁹, un grupo fenilcarbonilamino en donde el grupo fenilo puede estar mono o polisustituido con R⁶, el grupo amino puede estar sustituido con R⁹, un grupo alcoxicarbonilamino $C_1 \sim C_6$ en donde el grupo amino puede estar sustituido con R^9 , un grupo alquilaminocarbonilamino $C_1 \sim C_6$ en donde el grupo amino puede estar sustituido con R^9 , un grupo alquilaminocarbonilamino $C_1 \sim C_6$ en donde el grupo amino puede estar sustituido con R^9 , un grupo haloalquilaminocarbonilamino $C_1 \sim C_6$ en donde el grupo amino puede estar sustituido con R^9 , un grupo haloalquilaminocarbonilamino $C_1 \sim C_6$ en donde el grupo amino puede estar sustituido con R^9 , un grupo alquilsulfonilamino $C_1 \sim C_6$ en donde el grupo amino puede estar sustituido con R^9 , un grupo haloalquilsulfonilamino $C_1 \sim C_6$ en donde el grupo amino puede estar sustituido con R^9 , un grupo fenilsulfonilamino donde el grupo fenilo con R^9 , un grupo fenilsulfonilamino donde el grupo fenilo con R^9 , un grupo fenilsulfonilamino donde el grupo fenilo con R^9 , un grupo fenilsulfonilamino donde el grupo fenilo con R^9 , un grupo fenilsulfonilamino donde el grupo fenilo con R^9 , un grupo fenilsulfonilamino donde el grupo fenilo con R^9 , un grupo fenilsulfonilamino donde el grupo fenilsulfonilam puede estar sustituido con R⁶, el grupo amino puede estar sustituido con R⁹, un grupo alquilamino C₁~C₆ en donde el grupo amino puede estar sustituido con R⁹, un grupo haloalquilamino C₁~C₆ en donde el grupo amino puede estar sustituido con R⁹, un grupo alquilaminocarboniltio C₁~C₆ en donde el grupo amino puede estar sustituido con R⁹, un grupo haloalquilaminocarboniltio C₁~C₆ en donde el grupo amino puede estar sustituido con R⁹, un grupo alquilaminocarbonilo C₁~C₆ en donde el grupo amino puede estar sustituido con R⁹, un grupo haloalquilaminocarbonilo C₁~C₆ en donde el grupo amino puede estar sustituido con R⁹, un grupo alcoxicarbonilo $C_1 \sim C_6$, un grupo haloalcoxicarbonilo $C_1 \sim C_6$, un grupo tri(alquil $C_1 \sim C_6$)sililo, un grupo fenilo en donde el grupo puede estar mono o polisustituido con R⁶, un grupo piridiloxifenilo en donde el grupo piridilo puede estar mono o polisustituido con R⁶, un grupo fenoxi en donde el grupo puede estar mono o polisustituido con R⁶, un grupo alcoxi fenilo C₁~C₆ donde el grupo fenilo puede estar mono o polisustituido con R⁶, un grupo fenilcarboniloxi donde el grupo fenilo puede estar mono o polisustituido con R⁶, un grupo fenilcarbonilo donde el grupo fenilo puede estar mono o polisustituido con R⁶, un grupo benzoilo en donde el grupo puede estar mono o polisustituido con R⁶, un grupo benzoiloxi en donde el grupo puede estar mono o polisustituido con R⁶, un grupo feniltio en donde el grupo puede estar mono o polisustituido con R^6 , un grupo fenilsulfinilo en donde el grupo puede estar mono o polisustituido con R^6 , un grupo fenilsulfinilo en donde el grupo puede estar mono o polisustituido con R^6 , un grupo fenilo puede estar mono o polisustituido con R^6 , un grupo alquilsulfinilo $C_1 \sim C_6$ fenilo donde el grupo fenilo puede estar mono o polisustituido con R^6 , un grupo alquilsulfinil $C_1 \sim C_6$ fenilo donde el grupo fenilo puede estar mono o polisustituido con R⁶, un grupo alquilsulfonilo C₁~C₆ fenilo donde el grupo fenilo puede estar mono o polisustituido con R⁶, un grupo -O-N=C(R⁷)(R⁸), un grupo adamantilo, un grupo pirrolilo en donde el grupo puede estar mono o polisustituido con R⁶, un grupo pirazolilo en donde el grupo puede estar mono o polisustituido con R⁶, un grupo imidazolilo en donde el grupo puede estar mono o polisustituido con R⁶, un grupo triazolilo en donde el grupo puede estar mono o polisustituido con R⁶, un grupo oxazolilo en donde el grupo puede estar mono o polisustituido con R⁶, un grupo isoxazolilo en donde el grupo puede estar mono o polisustituido con R⁶, un grupo tiazolilo en donde el grupo puede estar mono o polisustituido con R⁶, un grupo isotiazolilo en donde el grupo puede estar mono o polisustituido con R⁶, un grupo piridilo en donde el grupo puede estar mono o polisustituido con R⁶ y el átomo de nitrógeno del grupo puede oxidarse para formar un N-óxido, un grupo pirimidinilo en donde el grupo puede estar mono o polisustituido con R⁶, un grupo piridiloxi en donde el grupo puede estar mono o polisustituido con R⁶, un grupo tetrahidrofuranilo en donde el grupo puede estar mono o polisustituido con R⁶, un grupo 1,3-dioxoisoindolinilo en donde el grupo puede estar mono o polisustituido con R⁶, un grupo ciano, un grupo nitro, un grupo carboxilo, un grupo tiocianato o un grupo aminoxi,

10

15

30

35

40

R⁶ es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$, un grupo cicloalquilo $C_3 \sim C_6$, un grupo halocicloalquilo $C_3 \sim C_6$, un grupo halocicloalquilo $C_3 \sim C_6$ alquilo $C_1 \sim C_6$, un grupo halocicloalquil $C_3 \sim C_6$ alquilo $C_1 \sim C_6$, un grupo haloalquiltio $C_1 \sim C_6$, un grupo haloalquiltio $C_1 \sim C_6$, un grupo haloalquiltinilo $C_1 \sim C_6$, un grupo haloalquilsulfinilo $C_1 \sim C_6$, un grupo haloalquilsulfinilo $C_1 \sim C_6$, un grupo haloalquilsulfonilo $C_1 \sim C_6$, un grupo haloalquilsulfonilo $C_1 \sim C_6$, un grupo haloalquilsulfonilo $C_1 \sim C_6$, un grupo haloalquilsulfoniloxi $C_1 \sim C_6$, un grupo haloalquilo, un grupo haloalquilo, un grupo alquilfenilo $C_1 \sim C_6$, un grupo fenilalcoxi $C_1 \sim C_6$, un grupo ciano o un grupo nitro,

 R^7 y R^8 pueden ser iguales o diferentes, son cada uno un átomo de hidrógeno, un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$, un grupo cicloalquilo $C_3 \sim C_6$, un grupo halocicloalquilo $C_3 \sim C_6$ o un grupo fenilo en donde el grupo puede estar mono o polisustituido con R^6 , y puede formar un anillo de 3 a 6 miembros junto con el átomo de carbono al que se unen y

 R^9 es un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$, un grupo cicloalquilo $C_3 \sim C_6$, un grupo halocicloalquilo $C_3 \sim C_6$, un grupo alquilcarbonilo $C_1 \sim C_6$, un grupo haloalquilcarbonilo $C_1 \sim C_6$, un grupo haloalquilcarbonilo $C_1 \sim C_6$, un grupo haloalquilaminocarbonilo $C_1 \sim C_6$, un grupo haloalquilaminocarbonilo $C_1 \sim C_6$ o grupo benzoilo en donde el grupo puede estar mono o polisustituido con R^6 .

- 2. Un derivado de sulfuro de alquil fenilo o una sal del mismo aceptable desde el punto de vista agrícola, de acuerdo con la reivindicación 1, en donde R¹ en la fórmula general [I] es un grupo 2,2-difluoroetilo, un grupo 3,3,3-trifluoropropilo, un grupo pentafluoroetilo, un grupo 1,2,2,2-tetrafluoroetilo, un grupo 2-cloro-2,2-difluoroetilo, un grupo 2,2,3,3-tetrafluoropropilo, un grupo 2,2,3,3-pentafluoropropilo, un grupo 3,3-dicloroalilo, un grupo propargilo, un grupo ciclopropilmetilo o un grupo (2,2-difluorociclopropil)metilo.
- 3. Un derivado de sulfuro de alquil fenilo o una sal del mismo aceptable desde el punto de vista agrícola, de acuerdo con las reivindicaciones 1 o 2, en donde R^2 en la fórmula general [I] es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$ o un grupo ciano.
- 4. Un derivado de sulfuro de alquil fenilo o una sal del mismo aceptable desde el punto de vista agrícola, de acuerdo con cualquiera de las reivindicaciones 1, 2 o 3, en donde R³ en la fórmula general [I] es un átomo de halógeno o un grupo alquilo C₁~C₆.
 - 5. Un agente de control de plagas que contiene, como principio activo, un derivado de sulfuro de alquilfenilo o una sal del mismo aceptable desde el punto de vista agrícola, de acuerdo con cualquiera de las reivindicaciones 1, 2, 3 o 4
- 50 6. Un derivado de sulfuro de alquil fenilo representado por la fórmula general [l'] o una sal del mismo aceptable desde el punto de vista agrícola

$$\begin{array}{c|c}
R^{3'} & R^{2'} \\
HO & & R^{1'} \\
& & (O)_{n}
\end{array}$$

en la fórmula [l'],

5

10

15

20

n es un número entero entre 0, 1 o 2,

 $R^{1'}$ es un grupo haloalquilo $C_1 \sim C_6$ en donde el grupo excluye grupo 2-bromoetilo, un alquenilo $C_2 \sim C_8$ en donde el grupo excluye grupo alilo, un grupo haloalquenilo $C_2 \sim C_8$, un grupo alquinilo $C_2 \sim C_6$, un grupo haloalquinilo $C_2 \sim C_6$, un grupo alquilo $C_4 \sim C_6$ ramificado en donde el grupo excluye grupo isobutilo, un grupo cicloalquil $C_3 \sim C_6$ alquilo $C_1 \sim C_6$ o un grupo halocicloalquil $C_3 \sim C_6$ alquilo $C_1 \sim C_6$,

 R^2 es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$, un grupo cicloalquilo $C_3 \sim C_6$, un grupo haloalcoxi $C_1 \sim C_6$, un grupo ciano o un grupo nitro,

 $R^{3'}$ es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$ alquilo o un grupo haloalquilo $C_1 \sim C_6$.

7. Un derivado de sulfuro de alquil fenilo o una sal del mismo aceptable desde el punto de vista agrícola, de acuerdo con la reivindicación 6, en donde R¹ en la fórmula general [l'] es un grupo 2,2-difluoroetilo, un grupo 3,3,3-trifluoropropilo, un grupo pentafluoroetilo, un grupo 1,2,2,2-tetrafluoroetilo, un grupo 2-cloro-2,2-difluoroetilo, un grupo 2,2,3,3-tetrafluoropropilo, un grupo 2,2,3,3-pentafluoropropilo, un grupo 3,3-dicloroalilo, un grupo propargilo, un grupo ciclopropilmetilo o un grupo (2,2-difluorociclopropil)metilo.

8. Un derivado de sulfuro de alquil fenilo o una sal del mismo aceptable desde el punto de vista agrícola, de acuerdo con las reivindicaciones 6 o 7, en donde $R^{2'}$ en la fórmula general [l'] es un átomo de halógeno, un grupo alquilo $C_1 \sim C_6$, un grupo haloalquilo $C_1 \sim C_6$ o un grupo ciano.

9. Un derivado de sulfuro de alquil fenilo o una sal del mismo aceptable desde el punto de vista agrícola, de acuerdo con cualquiera de las reivindicaciones 6, 7 y 8, en donde $R^{3'}$ en la fórmula general [l'] es un átomo de halógeno o un grupo alquilo $C_1 \sim C_6$.