

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 661 647

51 Int. Cl.:

A61K 31/4458 (2006.01)
A61K 31/435 (2006.01)
A61P 25/06 (2006.01)
A61P 25/26 (2006.01)
A61P 25/28 (2006.01)
A61P 35/00 (2006.01)
A61P 25/00 (2006.01)
A61K 31/165 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 24.07.2014 PCT/EP2014/065975

(87) Fecha y número de publicación internacional: 29.01.2015 WO15011246

(96) Fecha de presentación y número de la solicitud europea: 24.07.2014 E 14742249 (7)

(97) Fecha y número de publicación de la concesión europea: 03.01.2018 EP 3024458

(54) Título: Utilización de la flecainida como un agente anticonexina y procedimiento para potenciar los efectos de un fármaco psicotrópico

(30) Prioridad:

24.07.2013 EP 13306074

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 02.04.2018 73 Titular/es:

COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES (100.0%) 25, Rue Leblanc, Bâtiment "Le Ponant D" 75015 Paris, FR

(72) Inventor/es:

MOUTHON, FRANCK y CHARVERIAT, MATHIEU

(74) Agente/Representante:

CURELL AGUILÁ, Mireia

DESCRIPCIÓN

Utilización de la flecainida como un agente anticonexina y procedimiento para potenciar los efectos de un fármaco psicotrópico.

Sumario de la invención

5

10

15

20

25

30

35

40

50

La presente invención se refiere a la utilización de flecainida como un agente anticonexina, utilizada ventajosamente para potenciar el efecto terapéutico de varios fármacos psicotrópicos, más específicamente, el modafinilo.

Antecedentes de la invención

Las uniones de brecha están implicadas en la comunicación intercelular, lo que es importante para mantener la homeostasis de tejidos y órganos. Las uniones de brecha conectan el citoplasma celular, permitiendo el intercambio de iones (Ca⁺ y K⁺), segundos mensajeros (AMPc, GMPc, IP3), varios pequeños metabolitos (glucosa), y asegurando el acoplamiento eléctrico y metabólico entre las células. Las uniones de brecha son uniones con una permeabilidad selectiva, formadas por canales de proteína contenidas en la membrana plasmática, y formadas por hexámeros de conexina. Los hexámeros de conexina podrían formar asimismo hemicanales, enlazando el espacio intracelular con el extracelular.

Las conexinas son proteínas integrales de la membrana plasmática, que son sintetizadas por prácticamente cualquier tipo de célula, sin considerar la posición de un organismo multicelular en la filogénesis del mundo animal. En los vertebrados, las células ocasionales que no producen conexinas son las células del músculo estriado del adulto, los espermatozoides y las células sanguíneas circulantes. A diferencia de numerosas proteínas de la membrana, las conexinas tienen una vida media corta (entre 3 y 6 horas), no son glucosiladas y no presentan una actividad enzimática. En la actualidad, se han identificado por lo menos trece conexinas distintas en los mamíferos que corresponden, en humanos, a 21 isoformas. En la práctica, varios tipos de conexinas pueden estar presentes en una pluralidad de tejidos, y la mayoría de las células sintetizan una pluralidad de conexinas. Antes de que alcancen la membrana celular, las conexinas se ensamblan en grupos de seis moléculas para formar estructuras tubulares huecas denominadas conexones, que unen la membrana plasmática por medio de las vesículas del Golgi. Cuando se establece el contacto con la célula, los conexones de una célula se alinean de extremo a extremo con los de la célula vecina, estableciendo un canal hidrófilo continuo de aproximadamente 10 nm de longitud. Este canal de unión establece contacto directo entre los citoplasmas de las dos células en contacto, sobre el espacio intercelular.

Las conexinas están implicadas en un enorme número de procesos fisiológicos, y se han descrito varias aplicaciones de agentes que bloquean las conexinas (denominados asimismo en adelante como "agentes de bloqueo de conexinas" o "agentes anticonexina").

Por ejemplo, se han propuesto unos agentes anticonexina para tratar y/o prevenir las siguientes afecciones:

- cánceres (documentos WO2006/134494 y WO2006/049157),
- algunas enfermedades cardiovasculares (documento WO2006/134494),
 - heridas (documentos WO2006/134494 y WO2009/097077),
 - dolor (documento WO2009/148613),
 - migrañas (Durham y Garrett, 2009),
 - epilepsia (Juszczak v Swiergiel, 2009),
- afecciones neurológicas (documento WO2006/134494) y enfermedades neurodegenerativas (Takeuchi et al., 2011),
 - isquemia (Davidson et al., 2013),
- 60 lesión del hígado inducida por fármacos (Patel et al., 2012)
 - enfermedades infecciosas (documento WO2011/067607),
 - citotoxicidad inducida por agentes quimioterápicos (Tong X. et al., 2013) y
 - trastornos inflamatorios (documento WO2006/134494).

Además, los presentes inventores describieron anteriormente que los agentes anticonexina pueden potenciar los efectos terapéuticos de fármacos psicotrópicos (ver el documento WO2010/029131). En particular, describieron que la administración de agentes anticonexina tales como el ácido meclofenámico (MFA) incrementa los efectos terapéuticos de varias moléculas psicotrópicas, permitiendo reducir las dosis activas y de esta manera los efectos no deseables de estas moléculas psicotrópicas. Estos efectos sinérgicos se han observado con una amplia gama de moléculas psicotrópicas (clozapina, paroxetina, modafinilo, diacepam, venlafaxina, escitalopram, bupropión y sertralina).

- La identificación de los nuevos agentes anticonexina es por lo tanto de una importancia principal para destacar nuevas herramientas terapéuticas dirigidas a tratar varias enfermedades y trastornos, en particular, en combinación con fármacos psicotrópicos.
- En el presente contexto, se ha demostrado que el agente antiarrítmico bien conocido flecainida, presenta una amplia actividad anticonexina. Este es un resultado muy sorprendente, puesto que se había descrito que la flecainida hasta el momento interfiere en los canales de sodio, en particular sobre las células del músculo cardiaco, y estos canales no están relacionados con las uniones de brecha del cerebro. Además, se ha demostrado que la flecainida no influye sobre la resistencia de la unión de pares de miocitos cardiacos (Daleau *et al.*, 1998).

Descripción detallada de la invención

20

25

En el contexto de la invención, "flecainida" designa un compuesto de fórmula *N*-(piperidin-2-ilmetil)-2,5-bis(2,2,2-trifluoroetoxi)benzamida. Como se utiliza en la presente memoria, este término designa cualquier forma de este compuesto, tal como una sal del mismo. Preferentemente, dicha sal es el acetato de flecainida. Este término puede comprender asimismo los precursores de flecainida, que pueden ser metabolizados en el cuerpo humano, y/o sus derivados (por ejemplo, derivados químicos que son resultado de una o varias sustituciones de halógenos y/o de la adición de grupos protectores).

- Como se divulga en las estructuras moleculares A y B, la flecainida presenta un centro quiral que implica la existencia de enantiómeros R y S (S-(+)-flecainida y R-(-)-flecainida). En la figura 5 se representan las fórmulas de la R-flecainida (figura 5A, (R)-N-(piperidin-2-ilmetil)-2,5-bis(2,2,2-trifluoroetoxi)benzamida) y la S-flecainida (figura 5B, (S)-N-(piperidin-2-ilmetil)-2,5-bis(2,2,2-trifluoroetoxi)benzamida).
- Como se utiliza en la presente memoria, el término "flecainida" designa la forma de racemato de la *N*-(piperidin-2-ilmetil)-2,5-bis(2,2,2-trifluoroetoxi)benzamida, así como los enantiómeros R y S de la misma ((*R*)-*N*-(piperidin-2-ilmetil)-2,5-bis(2,2,2-trifluoroetoxi)benzamida y (*S*)-*N*-(piperidin-2-ilmetil)-2,5-bis(2,2,2-trifluoroetoxi)benzamida, respectivamente). En una forma de realización preferida de la invención, se utiliza el enantiómero R de la flecainida ((*R*)-*N*-(piperidin-2-ilmetil)-2,5-bis(2,2,2-trifluoroetoxi)benzamida).
 - La flecainida se administra actualmente como un racemato (Kroemer *et al.*, 1989; Lie *et al.*, 1989). Los parámetros farmacocinéticos de los dos enantiómeros de flecainida se han descrito ampliamente, después de la administración en humanos y roedores, como se describe a continuación:
- 45 En 1989, Kroemer *et al.* publicaron un estudio en 13 pacientes que recibieron terapia oral a largo plazo con flecainida. Se determinaron los niveles de S-flecainida y R-flecainida en plasma, y las concentraciones de la R-flecainida en plasma fueron significativamente mayores que las del enantiómero de S-flecainida (relación R/S = 1,10), sugiriendo que el fármaco flecainida sufre una disposición enantioselectiva modesta [Kroemer *et al.*, 1989].
- En 1989, Gross *et al.* compararon la disposición de los dos enantiómeros en dos poblaciones humanas: metabolizadores amplios (EM) y cinco metabolizadores deficientes (PM) de esparteína/debrisoquina después de la administración de 50 mg de acetato de flecainida racémico [Gross *et al.*, 1989]. Gross *et al.* presentaron unos datos que indican que la vida media de la R-flecainida (12,9 horas) fue mayor (P< 0,03) que la de la S-flecainida (9,8 horas). La depuración renal de los dos enantiómeros fue, sin embargo, comparable y similar a la observada en los sujetos EM. La recuperación urinaria de la R-flecainida (15,6 ± 3,7 mg) fue mayor (P< 0,03) que la del enantiómero S (12,0 ± 3,7 mg). La disposición enantioselectiva observada en los PM se debe por lo tanto al mayor deterioro en el metabolismo de la R-flecainida que la S-flecainida.
- En 1991, Alessi-Severini *et al.* resumieron unos hallazgos clave sobre la farmacocinética, y concluyeron que no existe evidencia de disposición enantioselectiva de la flecainida en humanos [Alessi-Severini *et al.*, 1991], citando tres informes sobre la monitorización terapéutica estereoselectiva, que descubrió que la relación R/S está comprendida entre 0,67 y 1,39 (media 1,03 ± 0,16), 0,75 y 1,44 (media 1,04) y 0,89 y 1,32 (media 1,10 ± 0,13), y que el estudio de Gross *et al.* 1989 no fue relevante sobre la población total.
- 65 En 1998, Hanada *et al.* demostraron una ausencia de distribución enantioselectiva de los dos enantiómeros de flecainida en varios tejidos, después de la administración intravenosa de racemato de flecainida en ratas [Hanada

et al., 1998].

Como se analiza en [Mehvar *et al.*, 2002], parece ser que las depuraciones renales de los enantiómeros de flecainida no son estereoselectivas en voluntarios sanos y pacientes.

5

25

30

40

45

50

55

La literatura es de esta manera globalmente coherente sobre la ausencia de efectos estereoselectivos de la flecainida sobre la farmacocinética y el metabolismo.

Se han descrito también las propiedades fisicoquímicas de los dos enantiómeros de flecainida. En particular, Turgeon *et al.* describen un método analítico estereoselectivo para la determinación del agente antiarrítmico flecainida en plasma humano. La resolución de los enantiómeros se logra por cromatografía de líquidos de alto rendimiento (CLAR) sobre una columna de sílice de fase normal después de derivación con el reactivo ópticamente activo cloroformiato de (-)-metilo [Turgeon *et al.*, 1990].

Además, Alessi-Severini *et al.* describen un método cromatográfico de líquidos de alto rendimiento estereoespecífico para la determinación del acetato de (R,S)-flecainida en plasma y orina humanos. Los diastereómeros de flecainida fueron separados después de i) extracción en una única etapa de unas muestras alcalinizadas realizada con éter dietílico destilado, ii) evaporación de la capa orgánica y derivación del fármaco con cloruro de 1-[(4-nitrofenil)sulfonil]-L-propilo a 80°C durante 2 horas, y iii) por cromatografía de líquidos de alto rendimiento (CLAR) sobre una columna de fase invertida C18 con una fase móvil que consiste en acetonitrilo:agua:trietilamina (45:55:0.2) a una magnitud de flujo de 1 mL/min [Alessi-Severini *et al.*, 1990].

El acetato de flecainida racémico es un agente antiarrítmico de clase 1c muy utilizado, que está indicado para tratar varios tipos de arritmias. Más específicamente, se usa para regular la frecuencia y el ritmo del corazón. La acción de bombeo del corazón es controlada por señales eléctricas que pasan a través del músculo cardiaco. Estas señales eléctricas hacen que los dos pares de cámaras del corazón (arterias y ventrículos derecho e izquierdo) se contraigan en una manera regular para producir latidos cardiacos regulares. Si la actividad eléctrica en el corazón es perturbada por cualquier razón, pueden resultar latidos cardiacos irregulares (arritmias) de varios tipos. La flecainida ayuda a tratar las arritmias disminuyendo la sensibilidad de las células del músculo cardiaco a los impulsos eléctricos. Esto regula la conducción eléctrica en el músculo cardiaco, y reduce las alteraciones en el ritmo cardiaco. Como un agente antiarrítmico de clase I, la flecainida interfiere en los canales de sodio.

De manera importante, varios estudios han demostrado que estos efectos cardiovasculares no son mediados por un sólo enantiómero, contribuyendo ambos a las funciones cardiovasculares.

Se evaluaron los efectos antiarrítmicos de la flecainida y sus enantiómeros en dos diferentes modelos animales, fibrilación ventricular inducida por cloroformo en ratones, y taquicardia ventricular inducida por ouabaína en perros. Estos dos enantiómeros fueron muy selectivos en la supresión de estas arritmias experimentales, y parecieron ser esencialmente equipotentes. No se encontraron diferencias significativas entre los dos enantiómeros o entre los enantiómeros y la flecainida racémica [Banitt *et al.*, 1986].

Se evaluaron los efectos de los enantiómeros sobre las características del potencial de acción en fibras cardiacas de Purkinje caninas, y se mostró que ejercen unos efectos electrofisiológicos similares [Kroemer *et al.*, 1989].

Se estudiaron los efectos del racemato de acetato de flecainida y sus dos enantiómeros sobre los canales de sodio y potasio accionados por voltaje y sobre la actividad de la bomba de sodio de fibras no mielinizadas del nervio vago de cobayas con el método de espacio intermedio de sacarosa. No existe una diferencia significativa en el efecto causado por los enantiómeros por separado [Lie et al., 1989].

Se evaluaron los efectos de los enantiómeros en fibras de Purkinje de caninas aisladas utilizando técnicas estándares con microelectrodos. Los resultados sugieren que no existe una diferencia significativa entre los efectos de los enantiómeros de flecainida sobre los parámetros electrofisiológicos básicos de las fibras de Purkinje caninas [Smallwood *et al.*, 1989].

Para concluir, todos esos estudios no han proporcionado una evidencia que indique que la administración de un enantiómero individual, más que el fármaco racémico, ofrecería ventaja alguna.

La presente invención divulga por lo tanto la utilización de la flecainida, *in vitro* e *in vivo*, como un agente anticonexina. En particular, la presente invención se refiere a la flecainida para su utilización como un agente anticonexina o, en otras palabras, para el bloqueo de las uniones de brecha.

Existen 21 genes que codifican diferentes isoformas de conexina en humanos, y se describen diferentes combinaciones de monómeros de conexina implicados en la composición de las uniones de brecha. En particular, las conexinas 26 (Cx 26), 30 (Cx 30), 30.2 (Cx 30.2), 32 (Cx 32), 36 (Cx 36), 37 (Cx 37), 40 (Cx 40), 43

(Cx 43), 45 (Cx 45), 46 (Cx 46) y 47 (Cx 47), son expresadas en humanos en células del sistema nervioso central y periférico (Nakase y Naus, 2004).

En el contexto de la presente invención se aprecia que la flecainida resulta eficaz para inhibir las uniones de brecha realizadas a partir de todas las conexinas que se sometieron a prueba. En particular, y como se divulga en la parte experimental a continuación, la flecainida es efectiva para inhibir las uniones de brecha realizadas a partir de las conexinas Cx40, Cx26, Cx30, Cx32 y/o Cx43. De manera importante, este efecto anticonexina es similar al apreciado para los agentes anticonexina bien conocidos tales como la mefloquina y el ácido meclofenámico (MFA) (Juszczak y Swiergiel, 2009; Cruikshank *et al.*, 2004; Harks *et al.*, 2001). Se alcanzan unos niveles de inhibición superiores incluso para las conexinas gliales Cx26, Cx30 y Cx43 (ver la figura 1).

5

10

15

25

35

40

55

60

La presente invención se refiere por lo tanto a la utilización *in vitro* de la flecainida como un agente anticonexina. Preferentemente, este agente puede utilizarse para inhibir las uniones de brecha realizadas a partir de las conexinas seleccionadas de entre el grupo que consiste en: Cx23 (SEC ID N°: 1), Cx25 (SEC ID N°: 2), Cx26 (SEC ID N°: 3), Cx30 (SEC ID N°: 4), Cx30.2 (SEC ID N°: 5), Cx30.3 (SEC ID N°: 6), Cx31 (SEC ID N°: 7), Cx31.1 (SEC ID N°: 8), Cx31.9 (SEC ID N°: 9), Cx32 (SEC ID N°: 10), Cx36 (SEC ID N°: 11), Cx37 (SEC ID N°: 12), Cx40 (SEC ID N°: 13), Cx40.1 (SEC ID N°: 14), Cx43 (SEC ID N°: 15), Cx45 (SEC ID N°: 16), Cx46 (SEC ID N°: 17), Cx47 (SEC ID N°: 18), Cx50 (SEC ID N°: 19), Cx59 (SEC ID N°: 20) y Cx62 (SEC ID N°: 21).

- La flecainida se utiliza para el bloqueo de una o más de las conexinas expresadas en células humanas del sistema nervioso central o periférico, que se seleccionan de entre el grupo que consiste en: Cx26 (SEC ID Nº: 3), Cx30 (SEC ID Nº: 4), Cx30.2 (SEC ID Nº: 5), Cx32 (SEC ID Nº: 10), Cx36 (SEC ID Nº: 11), Cx37 (SEC ID Nº: 12), Cx40 (SEC ID Nº: 13), Cx43 (SEC ID Nº: 15), Cx45 (SEC ID Nº: 16), Cx46 (SEC ID Nº: 17) y Cx47 (SEC ID Nº: 18).
 - La flecainida se utiliza para el bloqueo de una o más de las conexinas seleccionadas de entre el grupo que consiste en: Cx40 (SEC ID N°: 13), Cx26 (SEC ID N°: 3), Cx30 (SEC ID N°: 4), Cx32 (SEC ID N°: 10) y Cx43 (SEC ID N°: 15).
- La flecainida se utiliza para el bloqueo de una o más de las conexinas seleccionadas de entre el grupo que consiste en: Cx26 (SEC ID N°: 3), Cx30 (SEC ID N°: 4) y Cx43 (SEC ID N°: 15).
 - Debido a su actividad anticonexina, la flecainida puede utilizarse para el tratamiento de muchos trastornos y afecciones que es conocido que se benefician del tratamiento mediante unas moléculas anticonexina.
 - Estos trastornos y afecciones incluyen de manera no limitativa cánceres, enfermedades cardiovasculares, heridas, dolor, migrañas, epilepsia, afecciones neurológicas y enfermedades neurodegenerativas, enfermedades infecciosas, lesión del hígado inducida por fármacos, citotoxicidad inducida por agentes quimioterápicos, isquemia y trastornos inflamatorios.
 - La flecainida puede utilizarse para la prevención y/o el tratamiento de cánceres, heridas, migrañas, epilepsia, enfermedades infecciosas, lesión del hígado inducida por fármacos, citotoxicidad inducida por agentes quimioterápicos, isquemia y trastornos inflamatorios.
- 45 La flecainida puede utilizarse para la prevención y/o el tratamiento de heridas, migrañas, enfermedades infecciosas, lesión del hígado inducida por fármacos, citotoxicidad inducida por agentes quimioterápicos e isquemia.
- La flecainida puede utilizarse para la prevención y/o el tratamiento de lesión del hígado inducida por fármacos, citotoxicidad inducida por agentes quimioterápicos e isquemia.
 - La flecainida se utiliza como un agente para potenciar los efectos de un fármaco psicotrópico. Estos efectos de potenciación son ilustrados a continuación mediante unos experimentos realizados con modafinilo (ver las figuras 2A a 4). Como un agente anticonexina, la flecainida puede potenciar los efectos de cualquier fármaco psicotrópico (como se muestra en los documentos WO 2010/029131 y US 2011/172188, incorporados a la presente memoria como referencia).
 - El término "potenciar" significa en este caso que la flecainida incrementa significativamente los efectos terapéuticos del fármaco psicotrópico administrado al mismo paciente. De esta manera, la combinación del fármaco psicotrópico con la flecainida posibilita reducir las dosis de dicho fármaco psicotrópico y por lo tanto limitar los efectos adversos de dicho fármaco psicotrópico, y/u obtener un efecto terapéutico más fuerte sin que se incremente la dosis de dicho fármaco psicotrópico.
- En la presente memoria, un "fármaco psicotrópico" o "agente psicotrópico" se refiere a cualquier sustancia que actúa principalmente sobre el estado del sistema nervioso central modificando ciertos procesos bioquímicos y fisiológicos cerebrales. Los ejemplos de fármacos psicotrópicos que pueden utilizarse en el contexto de la

presente invención, incluyen anestésicos, analgésicos tales como opioides, antipiréticos y preparaciones antimigraña, antiepilépticos, fármacos antiParkinson tales como agentes antiParkinson anticolinérgicos y dopaminérgicos, psicolépticos tales como antipsicóticos, ansiolíticos, hipnóticos y sedantes, psicoanalépticos tales como antidepresivos, psicoestimulantes y fármacos antidemencia, así como parasimpaticomiméticos, fármacos antiadicción, preparaciones antivértigo, etc.. Unos ejemplos no limitativos de moléculas específicas que pueden utilizarse ventajosamente como fármacos psicotrópicos según la invención, se presentan en la tabla 1 siguiente.

Tabla 1: Moléculas psicotrópicas

1	$\boldsymbol{\cap}$
	u

Categoría terapéutica	Subclase farmacológica	Subclase química	Agente activo
Anestésicos	1. Anestésicos generales	Éteres Hidrocarburos halogenados	3. éter dietílico; éter de vinilo 5. halotano; cloroformo; enflurano; tricloroetileno; isoflurano; desflurano; sevoflurano
		barbitúricos, simples barbitúricos en combinación con otros fármacos	metohexital; hexobarbital narcobarbital
		10. Anestésicos opioides	11. fentanilo; alfentanilo; sufentanilo; fenoperidina; anileridina; remifentanilo
		12. Otros anestésicos generales	13. droperidol; cetamina; propanidid; alfaxalona; etomidato; propofol; oxibato de sodio; óxido nitroso; escetamina; xenón
	14. Anestésicos locales	15. Ésteres de ácido aminobenzoico	16. metabutetamina; procaína; tetracaína; cloroprocaína; benzocaína
		17. Amidas	18. bupivacaína; lidocaína; mepivacaína; prilocaína; butanilicaína; cincocaína; etidocaína; articaína; ropivacaína; levobupivacaína;
		19. Ésteres de ácido benzoico21. Otros anestésicos locales	20. cocaína 22. cloruro de etilo; diclonina; fenol; capsaicina
Analgésicos	23. Opioides	24. Alcaloides de opio naturales	25. opio; hidromorfona; nicomorfina; oxicodona; dihidrocodeína; diamorfina; papaveretum; morfina; codeína
		26. Derivados de fenilpiperidina	27. cetobemidona; petidina
		28. Derivados de difenilpropilamina	29. dextromoramida; piritramida; dextropropoxifeno; becitramida; metadona
		30. Derivados de benzomorfán	31. pentazocina; fenazocina
		32. Derivados de morfina 34. Otros opioides	33. butorfanol; nalbufina 35. tilidina; tramadol; dezocina; meptacinol; tapentadol
	36. Otros analgésicos y antipiréticos	37. Ácido salicílico y derivados	38. ácido acetilsalicílico; aloxiprina; salicilato de colina; salicilato de sodio; salicilamida; salsalato; etenzamida; salicilato de morfolina; dipirocetilo; benorilato; diflunisal; salicilato de potasio; guacetisal; carbasalato de calcio; salicilato de imidazol
		39. Pirazolonas	40. fenazona; metamizol sódico; aminofenazona; propifenazona; nifenazona

Categoría terapéutica	Subclase farmacológica	Subclase química	Agente activo
·		41. Anilidas	42. paracetamol; fenacetina; bucetina; propacetamol
		43. Otros analgésicos y antipiréticos	44. rimazolio; glafenina; floctafenina; viminol; nefopam; ciconotida; metoxiflurano; nabiximoles
	45. Preparaciones antimigraña	46. Alcaloides del cornezuelo	47. dihidroergotamina; ergotamina; metisergida; lisurida
		48. Derivados de corticosteroides	49. flumedroxona
		50. Agonistas selectivos de serotonina (5HT1)	51. sumatriptán; naratriptán; zolmitriptán; rizatriptán; almotriptán; eletriptán; frovatriptán
		52. Otras preparaciones antimigraña	53. pizotifeno; clonidina; iprazocromo; dimetotiacina; oxetorona
Antiepilépticos	54. Antiepilépticos	55. barbitúricos y derivados	56. metilfenobarbital; fenobarbital; primidona; barbexaclona; metarbital
		57. Derivados de hidantoína	58. etotoína; fenitoína; ácido amino(difenilhidantoin) valérico; mefenitoína; fosfenitoína
		59. Derivados de oxazolidina	60. parametadiona; trimetadiona; etadiona
		61. Derivados de succinimida	62. Etosuximida; fensuximida; mesuximida
		63. Derivados de benzodiacepina	64. clonacepam
		65. Derivados de carboxamida	66. carbamacepina; oxcarbacepina; rufinamida; eslicarbacepina
		67. Derivados de ácidos grasos	68. ácido valproico; valpromida; ácido aminobutírico; vigabatrina; progabida; tiagabina
		69. Otros antiepilépticos	70. sultiame; fenacemida; lamotrigina; felbamato; topiramato; gabapentina; feneturida; levetiracetam; zonisamida; pregabalina; estiripentol; lacosamida; carisbamato; retigabina; beclamida
Fármacos antiParkinson	71. Agentes anticolinérgicos	72. Aminas terciarias	73. trihexifenidilo; biperideno; metixeno; prociclidina; profenamina; dexetimida; fenglutarimida; mazaticol; bornaprina; tropatepina
		74. Éteres químicamente relacionados con los antihistamínicos	75. etanautina; orfenadrina
		76. Éteres de tropina o derivados de tropina	77. benzatropina; etibenzatropina
	78. Agentes dopaminérgicos	79. Dopa y derivados de dopa	80. levodopa; inhibidor de descarboxilasa; inhibidor de COMT; melevodopa; etilevodopa
		81. Derivados de adamantano 83. Agonistas de dopamina	
		85. Inhibidores de monoamina oxidasa B	86. selegilina; rasagilina
		87. Otros agentes dopaminérgicos	88. olcapona; entacapona; budipina

Categoría terapéutica	Subclase farmacológica	Subclase química	Agente activo					
Psicolépticos	89. Antipsicóticos	90. Fenotiacinas con cadena lateral alifática	91. clorpromacina; levomepromacina; promacina; acepromacina; triflupromacina; ciamemacina; clorproetacina					
		92. Fenotiacinas con estructura de piperacina	93. dixiracina; flufenacina; perfenacina; proclorperacina; tiopropazato; trifluoperacina; acetofenacina; tioproperacina; butaperacina; peracina					
		94. Fenotiacinas con estructura de piperidina	95. periciacina; tioridacina; mesoridacina; pipotiacina					
		96. Derivados de butirofenona	97. haloperidol; trifluperidol; melperona; moperona; pipamperona; bromperidol; benperidol; droperidol; fluanisona					
		98. Derivados de indol	99. oxipertina; molindona; sertindol; ciprasidona					
		100. Derivados de tioxanteno	101. flupentixol; clopentixol; clorprotixeno; tiotixeno; zuclopentixol					
		102. Derivados de difenilbutilpiperidina	103. fluspirileno; pimocida; penfluridol					
		104. Diacepinas, oxacepinas, tiacepinas y oxepinas	, 105. loxapina; clozapina; olanzapina; quetiapina; asenapina; clotiapina					
		106. Benzamidas	107. sulpirida; sultoprida; tiaprida; remoxiprida; amisulprida; veraliprida; levosulpirida					
		1108. Litio 110. Otros antipsicóticos	109. litio 111. protipendilo; risperidona; mosapramina; zotepina; aripiprazol; paliperidona					
	112. Ansiolíticos	113. Derivados de benzodiacepina	114. clordiacepóxido; medacepam; oxacepam; cloracepato de potasio; loracepam; adinazolam; bromacepam; clobazam; ketazolam; pracepam; alprazolam; halacepam; pinacepam; camacepam; nordacepam; fludiacepam; loflacepato de etilo; etizolam; clotiacepam; cloxazolam; tofisopam					
		115. Derivados de difenilmetano	116. hidroxicina; captodiamo					
		117. Carbamatos	118. meprobamato; emilcamato; mebutamato					
		119. Derivados de dibenzo- biciclo-octadieno	120. benzoctamina					
		121. Derivados de azaespirodecanodiona 123. Otros ansiolíticos	122. buspirona					
	125 Hippéticos v		124. mefenoxalona; gedocarnil; etifoxina					
	125. Hipnóticos y sedantes	126. barbitúricos, simples	127. pentobarbital; amobarbital; butobarbital; barbital; aprobarbital; secobarbital; talbutal; vinilbital; vinbarbital; ciclobarbital; heptabarbital; reposal; metohexital; tiopental; etalobarbital; alobarbital; proxibarbal					
		128. Aldehídos y derivados	129. hidrato de cloral; cloralodol; acetilglicinamida; dicloralfenazona; paraldehído					

Categoría	Subclase farmacológica	Subclase química	Agente activo				
terapéutica	Cabolase larmacologica	Cubolase quimica	Agente delive				
totapound		130. Derivados de benzodiacepina	131. fluracepam; nitracepam; flunitracepam; estazolam; triazolam; lormetacepam; temacepam; midazolam; brotizolam; quacepam; loprazolam; doxefacepam; cinolacepam				
		132. Derivados de	133. glutetimida; metiprilón;				
		piperidinodiona	piritildiona				
		134. Fármacos relacionados con benzodiacepina	135. zopiclona; zolpidem; zaleplón; eszopiclona				
		136. Agonistas de receptores de melatonina	137. melatonina; ramelteón				
		138. Otros hipnóticos y sedantes	139. metacualona; clometiazol; bromisoval; carbromal; escopolamina; propiomacina; triclofos etclorvinol; valeriana; hexapropimato; bromuros; apronal; valnoctamida; metilpentinol; niapracina; dexmedetomidina				
		140. Hipnóticos y sedantes en combinación, excluyendo barbitúricos	•				
Psicoanalépticos	142. Antidepresivos	143. Inhibidores no selectivos de la reabsorción de monoamina	144. desipramina; imipramina; óxido de imipramina; clomipramina; opipramol; trimipramina; lofepramina; dibencepina; amitriptilina; nortriptilina; protriptilina; doxepina; iprindol; melitracén; butriptilina; dosulepina; amoxapina; dimetacrina; amineptina; maprotilina; quinupramina				
		145. Inhibidores selectivos de la reabsorción de serotonina	146. cimeldina; fluoxetina; citalopram; paroxetina; sertralina; alaproclato; fluvoxamina; etoperidona; escitalopram				
		147. Inhibidores no selectivos de monoamina oxidasa	148. isocarboxacida; nialamida; fenelcina; tranilcipromina; iproniacida; iproclocida				
		149. Inhibidores de	150. moclobemida; toloxatona				
		monoamina oxidasa A 151. Otros antidepresivos	152. oxitriptán; triptófano; mianserina; nomifensina; trazodona; nefazodona; minaprina; bifemelano; viloxacina; oxaflozano; mirtazapina; bupropión; medifoxamina; tianeptina; pivagabina; venlafaxina; milnacipran; reboxetina; gepirona; duloxetina; agomelatina; desvenlafaxina				
	153. Psicoestimulantes, agentes utilizados para ADHD y nootrópicos	154. Simpaticomiméticos de acción central	155. anfetamina; dexanfetamina; metanfetamina; metilfenidato; pemolina; fencamfamina; modafinilo; armodafinilo; fenozolona; atomoxetina; fenetilina; exmetilfenidato; lisdexanfetamina				
		156. Derivados de xantina	157. cafeína; propentofilina				

Categoría terapéutica	Subclase farmacológica	Subclase química	Agente activo
		158. Otros psicoestimulantes y nootrópicos	159. meclofenoxato; piritinol; piracetam; deanol; fipexida; citicolina; oxiracetam; pirisudanol; linopirdina; nizofenona; aniracetam; acetilcarnitina; idebenona; prolintano; pipradrol; pramiracetam; adrafinil; vinpocetina; pitolisant
	160. Fármacos antidemencia	161. Anticolinesterasas	162. tacrina; donepecilo; rivastigmina; galantamina
		163. Otros fármacos antidemencia	164. memantina; ginkgo biloba
Otros fármacos para el sistema	165. Parasimpaticomiméticos	166. Anticolineterasas	167. neostigmina; piridostigmina; distigmina; ambenonio
nervioso		168. Ésteres de colina	169. carbacol; betanecol
		170. Otros parasimpaticomiméticos	171. pilocarpina; alfoscerato de colina; cevimelina
	172. Fármacos utilizados en trastornos	173. Fármacos utilizados en dependencia de nicotina	174. nicotina; vareniclina
	adictivos	175. Fármacos utilizados en dependencia de alcohol 177. Fármacos utilizados en	176. disulfiram; carbimida de calcio; acamprosato; naltrexona; baclofeno 178. buprenorfina; levacetilmetadol;
		dependencia de opioides	lofexidina
	179. Preparaciones antivértigo	180. Preparaciones antivértigo	181. betahistina; cinaricina; flunaricina; acetileucina
	182. Otros fármacos para el sistema nervioso	183. Otros fármacos para el sistema nervioso	184. tirilazad; riluzol; xaliprodeno; amifampridina; tetrabenacina; fampridina; macindol

Preferentemente, dicho fármaco psicotrópico se selecciona de entre el grupo que consiste en: efectores dopaminérgicos, GABAérgicos, adrenérgicos, acetilcolinérgicos, serotoninérgicos, opioidérgicos, adenosinérgicos, ionotrópicos, histaminérgicos, IMAO, catecol-O-metil transferasa, DOPA descarboxilasa, noradrenérgicos y glutamatérgicos, así como moléculas que presentan un efecto sobre el sistema de hipocretina/orexina (incluyendo la hipocretina-1 y la hipocretina-2).

5

10

El término "efector" se refiere en la presente memoria a cualquier sustancia que activa o inhibe, directamente o indirectamente, uno o más neurorreceptores, así como cualquier sustancia que modifique la concentración de dicho neurotransmisor; por lo tanto, un efector según la presente invención puede ser un agonista o un antagonista de dichos receptores.

Se muestra en los ejemplos a continuación que dicho fármaco psicotrópico es ventajosamente el modafinilo.

- De hecho, los presentes inventores han mostrado que la flecainida potencia los efectos de mejora de la memoria ("promnesiant") y/o del despertar del modafinilo (ver las figuras 2 y 3), y que la combinación de modafinilo/flecainida presenta unos efectos prometedores reduciendo los episodios de tipo catapléjicos en ratones. El mecanismo preciso de acción del modafinilo no ha sido completamente dilucidado aún. De hecho, es conocido que el modafinilo actúa sobre varios receptores moleculares, en particular sobre los receptores de dopamina, norepinefrina, serotonina, glutamato, GABA, orexina e histamina (Ishizuka *et al.*, 2012; Minzenberg *et al.*, 2008). Por lo tanto, el modafinilo actúa como un efector GABAérgico, dopaminérgico, norepinefrinérgico, serotoninérgico, histaminérgico y glutamatérgico, y presenta un efecto sobre el sistema de hipocretina/orexina (incluyendo la hipocretina-1 y la hipocretina-2).
- Cualquier compuesto que module los mismos receptores moleculares que el modafinilo, puede utilizarse ventajosamente con la flecainida.
- De esta manera, en una forma de realización preferida, el fármaco psicotrópico que está asociado con la flecainida actúa sobre los mismos receptores que el modafinilo. El fármaco psicotrópico asociado con la flecainida se selecciona por lo tanto preferentemente de entre el grupo que consiste en: efectores GABAérgicos, dopaminérgicos, norepinefrinérgicos, serotoninérgicos, histaminérgicos y glutamatérgicos. Asimismo, puede presentar un efecto sobre el sistema de hipocretina/orexina (incluyendo la hipocretina-1 y la hipocretina-2).
- Dicho fármaco psicotrópico es un efector dopaminérgico seleccionado de entre el grupo que consiste en: ADX-35 N05 (anteriormente "YKP10A", que presenta la fórmula: monoclorhidrato de (R)-(beta-aminobencenopropil)carbamato, anfetamina, loxapina, acepromacina, metilfenidato, pergolida, lisurida, bromocriptina,

dopamina, ropinirol, apomorfina, aripiprazol, sulpirida, amisulprida, sultoprida, tiaprida, pimocida, risperidona, haloperidol, penfluridol, zuclopentixol o bupropión.

- Dicho fármaco psicotrópico es un efector GABAérgico seleccionado de entre el grupo que consiste en: tiagabina, topiramato, cloracepato, diacepam, clonacepam, oxacepam, loracepam, bromacepam, lormetacepam, nitracepam, clotiacepam, aiprozolam, estazolam, triazolam, loprazolam, etifoxina, meprobamato, zopiclona, zolpidem, pregabalina, gabapentina, fenobarbital, felbamato y vigabatrina.
- Dicho fármaco psicotrópico es un efector serotoninérgico seleccionado de entre el grupo que consiste en: clorpromacina, trimipramina, clozapina, olanzapina, ciamemacina, flupentixol, nefopam, fluvoxamina, clomipramina, sertralina, fluoxetina, citalopram, escitalopram, paroxetina, amitriptilina, duloxetina, venlafaxina, buspirona, carpipramina, zolmitriptán, sumatriptán, naratriptán, indoramina, ergotamina, tartrato de ergotamina, pizotifeno, pipamperona, metisergida, pizotilina, milnacipran, viloxacina, tianeptina, *Hypericum* y litio.
- Dicho fármaco psicotrópico es un efector histaminérgico seleccionado de entre el grupo que consiste en: acrivastina, alimemacina, antazolina, astemizol, azatadina, acelastina, bronfeniramina, buclicina, carbinoxamina, carebastina, cetiricina, cloriclicina, clorfeniramina, cinaricina, clemastina, clemizol, clocinicina, clonidina, ciclicina, ciproheptadina, descarboetoxiloratidina, dexclorfeniramina, dimenhidrinato, dimetindeno, dimetotiacina, difenhidramina, difenilpiralina, doxilamina, ebastina, efletiricina, epinastina, fexofenadina, hidroxicina, ketotifeno, levocabastina, loratadina, meclicina, mequitacina, metdilacina, mianserina, mizolastina, niapracina, noberastina, norastemizol, oxatomida, oxomemacina, fenbenzamina, feniramina, picumast, prometacina, pirilamina, temelastina, terfenadina, trimepracina, tripelenamina, triprolidina, ranitidina, cimetidina, famotidina, nizatidina, tiotidina, zolantidina, ciproxifan, pitolisant y ritanserina.
- Dicho fármaco psicotrópico es un modulador de hipocretina/orexina seleccionado de entre el grupo que consiste en: EMPA, SB-334867, SB-674042, SB-408124, GSK1059865, almorexant, suvorexant, MK-6096, DORA-1, DORA-22, DORA-12, SB-649868 y JNJ-1037049 (descrito en Gotter *et al.*, 2012).
- Dicho fármaco psicotrópico es un efector norepinefrinérgico seleccionado de entre el grupo que consiste en: (R)-30 3-nitrobifenilina, 2-fluoronorepinefrina, 4-NEMD, 5-fluoronorepinefrina, 6-fluoronorepinefrina, abediterol, albuterol, amibegron, amidefrina, amitraz, anisodamina, anisodina, apraclonidina, arbutamina, arformoterol, arotinolol, bambuterol, befunolol, bitolterol, brimonidina, bromoacetilalprenololmentano, broxaterol, bufenina, canabivarina, carbuterol, cimaterol, cirazolina, clenbuterol, denopamina, deterenol, detomidina, dexmedetomidina, dihidroergotamina, dipivefrina, dobutamina, dopexamina, efedrina, epinefrina, esproguina, etafedrina, 35 etilnorepinefrina, etilefrina, fenoterol, formoterol, guanabenz, guanfacina, guanoxabenz, hexoprenalina, higenamina, indacaterol, indanidina, isoetarina, isoprenalina, isoproterenol, isoxsuprina, labetalol, levonordefrina, levosalbutamol, lofexidina, mabuterol, medetomidina, metaraminol, metoxamina, metoxifenamina, metildopa, midodrina, mivacerol, n-isopropiloctopamina, nafazolina, norepinefrina, octopamina, orciprenalina, oxifedrina, oximetazolina, fenilefrina, fenilpropanolamina, piperoxán, pirbuterol, prenalterol, procaterol, pseudoefedrina, 40 ractopamina, reproterol, rilmenidina, rimiterol, ritodrina, romifidina, salbutamol, salmeterol, solabegrón, sinefrina, talipexol, terbutalina, tetrahidrozolina, tizanidina, tolonidina, tretoquinol, tulobuterol, urapidilo, xamoterol, xilacina, xilometazolina, cilpaterol y cinterol.
- Dicho fármaco psicotrópico es un efector glutamatérgico seleccionado de entre el grupo que consiste en: memantina, amantadina, MK-801, cetamina, norcetamina, dextrometorfán, levometorfán, dextrorfán, levorfanol, fenciclidina, PCA, CNS-1102, remacemida, pentamidina y 9-aminoacridina (descrita en Traynelis *et al.*, 2010).
 - Dicho fármaco psicotrópico no es la flupirtina.

5

60

- Los efectos de potenciación de la flecainida pueden lograrse administrando la misma a un paciente, ya sea antes, al mismo tiempo o después de la administración del fármaco psicotrópico a dicho paciente.
- Por lo tanto, la presente invención describe un procedimiento para tratar a un paciente con trastornos psiquiátricos y/o neurodegenerativos, incluyendo la administración a dicho paciente de a) flecainida, y b) por lo menos un fármaco psicotrópico como se menciona anteriormente, en el que dichos compuestos a) y b) se administran simultáneamente, por separado o extendidos en el tiempo.
 - Los pacientes que necesitan este tratamiento pueden presentar unos trastornos psiquiátricos, neurológicos y/o neurodegenerativos incluidos en el grupo que consiste en: somnolencia diurna excesiva (EDS), trastornos del sueño, tiempo de sueño insuficiente, apnea del sueño central, narcolepsia (con o sin cataplejía), apnea/hipopnea obstructiva del sueño (SAHOS), hipersomnia idiopática, síndrome de Kleine-Levin, trastornos del ritmo circadiano, trastorno del sueño por trabajo por turnos, desfase horario, trastornos tras restricción del sueño o privación del sueño (trastornos de atención, trastornos de estado de alerta, somnolencia), síndrome de las piernas inquietas (RLS) y trastornos del movimiento periódico de las extremidades (PLMD), insomnio, parasomnia, trastorno por déficit de atención con hiperactividad (ADHD), trastorno de estrés postraumático (PTSD), trastornos asociados comúnmente con somnolencia o adormecimiento (tales como enfermedad de

Parkinson, esclerosis múltiple, accidente cerebrovascular, trastornos neuromusculares o trastornos estructurales del cerebro, trastornos respiratorios, insuficiencia renal crónica, insuficiencia hepática, trastornos reumatológicos), somnolencia inducida por medicamentos (debida a benzodiacepinas, barbitúricos, pastillas para dormir, antidepresivos, antipsicóticos...), trastornos del estado de ánimo, trastornos de ansiedad, esquizofrenia, acúfenos, depresión, malestar general, demencia, trastorno bipolar, obesidad, hiperfagia, episodio maníaco, trastorno obsesivo-compulsivo, senilidad, dependencia o adicción (a juegos, fármacos, alcohol, tabaco, etc.), incontinencia fecal o urinaria, eyaculación precoz, disnea y fatiga notablemente debidas a cáncer, trastornos neurodegenerativos, menopausia, lesiones traumáticas del cerebro, infección viral o posmielitis, o a fibromialgia.

- La somnolencia diurna excesiva (EDS) ocurre diariamente, recurriendo típicamente cada 2 horas, aunque esto puede variar ampliamente. La somnolencia es exacerbada cuando el paciente es físicamente inactivo. Los episodios de sueño presentan varias características (Dauvilliers I. et al., 2007 y Boulos et al., 2010):
 - Son con frecuencia irresistibles, a pesar de que el individuo realiza esfuerzos desesperados por luchar contra el impulso por dormir;
 - Son usualmente cortos, aunque su duración puede variar con los factores ambientales (por ejemplo, la duración puede incrementarse con actividades pasivas tales como ver televisión);
 - Están asociados con frecuencia con el sueño;

5

15

20

25

30

35

40

45

50

55

60

65

· Restauran típicamente la vigilia normal hasta varias horas.

La EDS caracteriza varias afecciones o enfermedades: tiempo de sueño insuficiente, apnea del sueño central, narcolepsia (con o sin cataplejía), apnea/hipopnea obstructiva del sueño (SAHOS), hipersomnia idiopática, hipersomnia recurrente (síndrome de Kleine-Levin), trastornos del ritmo circadiano (desfase horario), trastornos tras restricción del sueño o privación del sueño (trastornos de atención, trastornos de estado de alerta, somnolencia), síndrome de las piernas inquietas (RLS) y trastornos del movimiento periódico de las extremidades (PLMD), afecciones neurológicas asociadas comúnmente a somnolencia o adormecimiento (tales como enfermedad de Parkinson, esclerosis múltiple, accidente cerebrovascular, trastornos neuromusculares o trastornos estructurales del cerebro), afecciones médicas asociadas comúnmente a somnolencia (trastornos respiratorios, insuficiencia renal crónica, insuficiencia hepática, trastornos reumatológicos), trastornos del estado de ánimo, trastornos de ansiedad, esquizofrenia o somnolencia inducida por medicamentos (debida a benzodiacepinas, barbitúricos, pastillas para dormir, antidepresivos, antipsicóticos...).

La cataplejía se caracteriza por una disminución repentina del tono muscular desencadenada por factores emocionales, más con frecuencia por emociones positivas tales como la risa, conversación ingeniosa, sorpresa agradable (por ejemplo, ver amigos en la calle o alcanzar una meta), o por la ira, pero casi nunca por estrés, temor o esfuerzo físico. Muchos estudios neurofisiológicos y farmacéuticos indican que la cataplejía comparte mecanismos neurofisiológicos comunes con la atonía del sueño de REM (movimientos oculares rápidos) (Dauvilliers I. et al., 2007).

En el caso de uso simultáneo, los dos componentes del tratamiento se administran al paciente simultáneamente. Según esta forma de realización de la presente invención, los dos componentes pueden ser envasados juntos, en forma de una mezcla, o por separado, mezclados entonces espontáneamente antes de que sean administrados conjuntamente al paciente. Alternativamente, los dos componentes se administran simultáneamente, pero por separado. En particular, las vías de administración de los dos componentes pueden ser diferentes. La administración puede llevarse a cabo también en diferentes sitios. En otra forma de realización, los dos componentes se administran secuencialmente o espaciados en el tiempo, por ejemplo, en el mismo día o en un intervalo comprendido entre varios minutos y varios días.

Puesto que la flecainida potencia los efectos de los fármacos psicotrópicos, puede utilizarse ventajosamente para reducir las dosis de dicho fármaco psicotrópico, limitando de esta manera los efectos adversos de dicho fármaco psicotrópico, y/o reduciendo los riesgos de ineficacia y retirada.

La dosis equivalente eficaz de un fármaco psicotrópico, es decir, la dosis de fármaco psicotrópico que, cuando se administra en combinación con la flecainida, induce un efecto fisiológico o una firma farmacológica similar o idéntica a la del fármaco psicotrópico solo administrado a la dosis farmacológica activa, puede determinarse mediante los métodos divulgados en los documentos WO2010/029131 y US 2011/172188.

La presente invención divulga una composición, especialmente una composición farmacéutica, que comprende flecainida y por lo menos un fármaco psicotrópico. Esta composición se formula preferentemente para pacientes con trastornos psiquiátricos y/o neurodegenerativos, como se describe anteriormente. Además de la flecainida y dicho fármaco psicotrópico, la composición puede comprender cualquier vehículo, estabilizador, adyuvante farmacéuticos y similares como se utiliza con frecuencia en la técnica.

Los ejemplos de vehículos farmacéuticamente aceptables incluyen de manera no limitativa agua; vehículos acuosos tales como, pero no limitados a, solución de cloruro de sodio, solución de cloruro sódico compuesta, solución de dextrosa, solución de dextrosa y cloruro de sodio y solución de lactato sódico compuesta; vehículos miscibles en agua tales como, pero no limitados a, alcohol etílico, polietilenglicol y polipropilenglicol; y vehículos no acuosos tales como, pero no limitados a, aceite de maíz, aceite de semilla de algodón, aceite de cacahuate, aceite de sésamo, oleato de etilo, miristato de isopropilo y benzoato de bencilo.

Según una forma de realización preferida, esta composición se formula para la administración oral (incluyendo cavidad bucal o sublingualmente). Otras formulaciones interesantes incluyen las formulaciones para las administraciones intraperitoneal (i.p.), intravenosa (i.v.), subcutánea (s.c), intramuscular (i.m.), transcutánea, transdérmica, intratecal e intracraneal. Otras formulaciones se formulan para las vías de administración epidural, submucosa, intranasal, fondo de saco ocular y rectal, así como administración por inhalación pulmonar.

Puede utilizarse una variedad de medios de administración que incluyen, pero no están limitados a, cápsulas, comprimidos, jarabes, cremas y ungüentos, supositorios, parches o cualquier depósito que pueda contener y distribuir la flecainida y el fármaco psicotrópico, para formular las composiciones descritas anteriormente.

En estas composiciones, el fármaco psicotrópico es como se describe anteriormente.

Dicho fármaco psicotrópico puede utilizarse para tratar la narcolepsia, y se selecciona por lo tanto de entre el grupo que consiste en: cafeína, macindol, oxibato de sodio, pitolisant, anfetamina, metilfenidato, monoclorhidrato de (R)-(beta-amino-bencenopropil) carbamato, modafinilo y armodafinilo.

Dicha composición de la invención puede contener entre 1 y 1000 mg, preferentemente 5 y 800 mg del fármaco psicotrópico, dependiendo de su naturaleza. Una posología preferida sería administrar al paciente entre 1 y 1000 mg/día, más preferentemente entre 5 y 800 mg/día del fármaco psicotrópico.

Esta composición puede contener entre 1 y 200, preferentemente 1 y 100 mg de flecainida. Una posología preferida sería administrar al paciente entre 1 y 200, preferentemente 1 y 100 mg/día de flecainida.

Dicha flecainida puede ser el enantiómero R divulgado en la figura 5A.

5

10

30

45

50

55

60

65

En la composición de la invención, la flecainida está asociada con el fármaco psicotrópico modafinilo.

Por el término "modafinilo" se hace referencia en la presente memoria a la 2-[(difenilmetil)sulfinil]acetamida (Provigil, ver la figura 5C), así como sus precursores o profármacos, tales como adrafinilo (Dubey *et al.*, 2009), que pueden ser metabolizados en el cuerpo humano y sus derivados activos. Más precisamente, el término "modafinilo" hace referencia en la presente memoria a cualquier forma de modafinilo (racemato, R-modafinilo, S-modafinilo, etc.), así como sus precursores, que pueden ser metabolizados en el cuerpo humano, y sus derivados. La figura 5 representa las fórmulas del R-modafinilo (figura 5C) y el S-modafinilo (figura 5D).

El modafinilo es un fármaco analéptico prescrito esencialmente para el tratamiento de la narcolepsia, el trastorno del sueño por trabajo por turnos, y la somnolencia diurna excesiva asociada con apnea obstructiva del sueño. Además de estas propiedades que promueven el despertar, el modafinilo mejora también la memoria de trabajo y la memoria episódica, y otros procesos que dependen de la corteza prefrontal y el control cognitivo (Minzenberg MJ et al., 2008).

En el contexto de la presente invención se ha demostrado que, de manera sorprendente, la flecainida potencia fuertemente los efectos del despertar in vivo del modafinilo, mientras que no presenta propiamente efecto alguno sobre la duración del despertar (ejemplo 2). Además, la flecainida potencia fuertemente in vivo la actividad cognitiva del modafinilo, mientras que no presenta propiamente efecto de mejora de la memoria (ejemplo 3). Esta actividad sinérgica podría explicarse por el hecho de que la flecainida extiende fuertemente la duración del tratamiento con modafinilo (ejemplo 4). Por otra parte, se describe en la presente memoria que la combinación de flecainida/modafinil presenta un efecto sinérgico sobre el fenotipo tipo catapléjico en ratones narcolépticos (ejemplo 5), y lo más sorprendente es que la flecajnida o el modafinilo no presenta efecto alguno sobre este fenotipo (figura 6B). En una forma de realización preferida, la presente invención pertenece de esta manera a flecainida, para su utilización para potenciar los efectos de mejora de la memoria y/o del despertar del modafinilo, y/o para mejorar su seguridad, y/o para incrementar la duración de acción del modafinilo en pacientes que lo necesitan, especialmente en pacientes que padecen: somnolencia diurna excesiva (EDS), trastornos del sueño, tiempo de sueño insuficiente, apnea del sueño central, narcolepsia (con o sin cataplejía), apnea/hipopnea obstructiva del sueño (SAHOS), hipersomnia idiopática, síndrome de Kleine-Levin, trastornos del ritmo circadiano, trastorno del sueño por trabajo por turnos, desfase horario, trastornos tras restricción del sueño o privación del sueño (trastornos de atención, trastornos de estado de alerta, somnolencia), síndrome de las piernas inquietas (RLS) y trastornos del movimiento periódico de las extremidades (PLMD), insomnio, parasomnia, trastorno por déficit de atención con hiperactividad (ADHD), trastorno de estrés postraumático (PTSD), trastornos asociados comúnmente con somnolencia o adormecimiento (tales como enfermedad de Parkinson, esclerosis múltiple, accidente cerebrovascular, trastornos neuromusculares o trastornos estructurales del cerebro, trastornos respiratorios, insuficiencia renal crónica, insuficiencia hepática, trastornos reumatológicos), somnolencia inducida por medicamentos (debida a benzodiacepinas, barbitúricos, pastillas para dormir, antidepresivos, antipsicóticos...), trastornos del estado de ánimo, trastornos de ansiedad, esquizofrenia, acúfenos, depresión, malestar general, demencia, trastorno bipolar, obesidad, hiperfagia, episodio maníaco, trastorno obsesivo-compulsivo, senilidad, dependencia o adicción (a juegos, fármacos, alcohol, tabaco, etc.), incontinencia fecal o urinaria, eyaculación precoz, disnea y fatiga que se deben particularmente al cáncer, trastornos neurodegenerativos, menopausia, lesiones traumáticas del cerebro, infección viral o posmielitis, o a fibromialgia, que se ha propuesto serán tratados con modafinilo.

10

15

20

25

5

En una forma de realización más preferida, la presente invención se refiere particularmente a la flecainida, para su utilización para potenciar los efectos del despertar del modafinilo, y/o para mejorar su seguridad, y/o para incrementar la duración de acción del modafinilo en pacientes que padecen: somnolencia diurna excesiva (EDS), trastornos del sueño, tiempo de sueño insuficiente, apnea del sueño central, narcolepsia (con o sin catapleiía). apnea/hipopnea obstructiva del sueño (SAHOS), hipersomnia idiopática, síndrome de Kleine-Levin, trastornos del ritmo circadiano, trastorno del sueño por trabajo por turnos, desfase horario, trastornos tras restricción del sueño o privación del sueño (trastornos de atención, trastornos de estado de alerta, somnolencia), síndrome de las piernas inquietas (RLS) y trastornos del movimiento periódico de las extremidades (PLMD), insomnio, parasomnia, trastorno por déficit de atención con hiperactividad (ADHD), trastorno de estrés postraumático (PTSD), trastornos asociados comúnmente con somnolencia o adormecimiento (tales como enfermedad de Parkinson, esclerosis múltiple, accidente cerebrovascular, trastornos neuromusculares o trastornos estructurales cerebro, trastornos respiratorios, insuficiencia renal crónica, insuficiencia hepática, trastornos reumatológicos), somnolencia inducida por medicamentos (debida a benzodiacepinas, barbitúricos, pastillas para dormir, antidepresivos, antipsicóticos...), trastornos del estado de ánimo, trastornos de ansiedad, esquizofrenia, acúfenos, depresión, malestar general, demencia, trastorno bipolar, obesidad, hiperfagia, episodio maníaco, trastorno obsesivo-compulsivo, senilidad, dependencia o adicción (a juegos, fármacos, alcohol, tabaco, etc.), incontinencia fecal o urinaria, eyaculación precoz, disnea y fatiga notablemente debidas a cáncer, trastornos neurodegenerativos, menopausia, lesiones traumáticas del cerebro, infección viral o posmielitis, o a fibromialgia, para los cuales el modafinilo ha sido propuesto o autorizado.

30

En una forma de realización preferida, la presente invención pertenece específicamente a flecainida, para su utilización para potenciar los efectos del despertar del modafinilo, y/o para mejorar su seguridad, y/o para incrementar la duración de acción del modafinilo en pacientes que padecen somnolencia diurna excesiva (EDS).

En otra forma de realización preferida, la presente invención se refiere a la flecainida, a su utilización para

35

40

potenciar los efectos del despertar del modafinilo, y/o para mejorar su seguridad, y/o para incrementar la duración de acción del modafinilo en pacientes que padecen afecciones o enfermedades que implican EDS que son, por ejemplo: tiempo de sueño insuficiente, apnea del sueño central, narcolepsia (con o sin cataplejía), apnea/hipopnea obstructiva del sueño (SAHOS), hipersomnia idiopática, hipersomnia recurrente (síndrome de Kleine-Levin), trastornos del ritmo circadiano (desfase horario), trastornos tras restricción del sueño o privación del sueño (trastornos de atención, trastornos de estado de alerta, somnolencia), síndrome de las piernas inquietas (RLS) y trastornos del movimiento periódico de las extremidades (PLMD), afecciones neurológicas asociadas comúnmente a somnolencia o adormecimiento (tales como enfermedad de Parkinson, esclerosis múltiple, accidente cerebrovascular, trastornos neuromusculares o trastornos estructurales del cerebro), afecciones médicas asociadas comúnmente a somnolencia (trastornos respiratorios, insuficiencia renal crónica, insuficiencia hepática, trastornos reumatológicos), trastornos del estado de ánimo, trastornos de ansiedad, esquizofrenia o somnolencia inducida por medicamentos (debida a benzodiacepinas, barbitúricos, pastillas para

45

50

dormir, antidepresivos, antipsicóticos...).

En otra forma de realización preferida, la presente invención se refiere a un producto de combinación de modafinilo/flecainida, para su utilización para tratar la cataplejía en pacientes narcolépticos.

55

Debe apreciarse que la potenciación de los efectos del modafinilo mediante la flecainida permite una reducción de la dosis de modafinilo, y por lo tanto una reducción de sus efectos secundarios. Como consecuencia, pueden concebirse algunas aplicaciones del modafinilo, por las que este fármaco no fue aprobado debido a sus efectos secundarios y riesgos posibles asociados al mismo, tales como su utilización como un agente que refuerza el cerebro y/o que mejora el rendimiento. Según una forma de realización particular, la presente invención se refiere así a un producto que mejora el rendimiento que comprende flecainida y modafinilo.

60

65

En otra forma de realización preferida, la presente invención se refiere específicamente a la utilización de la flecainida y el modafinilo para mejorar la memoria de sujetos sanos y/o para mantenerlos despiertos durante períodos duraderos y/o para tratar la cataplejía en pacientes narcolépticos. Estos sujetos pueden ser, por ejemplo, individuos que necesitan memorizar mucha información y/o que deben mantenerse despiertos durante períodos duraderos. En una forma de realización preferida, dichos sujetos son humanos (por ejemplo, agentes de seguridad, estudiantes, etc.).

En una forma de realización particular, la presente invención se refiere asimismo a una composición que comprende flecainida y modafinilo, que puede utilizarse ventajosamente para tratar enfermedades y afecciones que incluyen, pero no están limitadas a, somnolencia diurna excesiva (EDS), narcolepsia (con o sin cataplejía), apnea/hipopnea obstructiva del sueño (SAHOS), trastorno del sueño por trabajo por turnos, trastornos tras restricción del sueño o privación del sueño (trastornos de atención, trastornos de estado de alerta somnolencia), síndrome de las piernas inquietas, hipersomnia, hipersomnia idiopática y fatiga que se deben particularmente al cáncer, desfase horario, trastornos neurodegenerativos, menopausia, lesiones traumáticas del cerebro, infección viral o posmielitis o a fibromialgia. En particular, esta composición puede utilizarse para tratar la cataplejía en pacientes narcolépticos.

10

5

Esta composición puede utilizarse asimismo para mejorar la memoria de sujetos sanos y/o para mantenerlos despiertos durante períodos duraderos. Los períodos típicos son, por ejemplo, 6 horas, preferentemente 12 horas.

15

La presente invención se refiere además específicamente a la utilización de la flecainida y el modafinilo en la preparación de un medicamento que está destinado a ser utilizado para tratar enfermedades y afecciones tales como somnolencia diurna excesiva (EDS), narcolepsia (con o sin cataplejía), apnea/hipopnea obstructiva del sueño (SAHOS), trastorno del sueño por trabajo por turnos, síndrome de las piernas inquietas, hipersomnia, hipersomnia idiopática y fatiga que se deben particularmente al cáncer, trastornos neurodegenerativos, menopausia, lesiones traumáticas del cerebro, infección viral o posmielitis o a la fibromialgia.

En una forma de realización preferida, la presente invención se refiere a la utilización de flecainida y modafinilo en la preparación de un medicamento que está destinado a ser utilizado para tratar la cataplejía en pacientes

25

narcolépticos.

20

Además del modafinilo y la flecainida, la composición/medicamento de la invención puede comprender otros agentes tales como vitamina C, vitamina B6, magnesio, L-arginina, L-glutamina, L-citrulina, taurina, cafeína, etc. Según una forma de realización particular, este producto puede ser vendido sin receta. Puede formularse, por ejemplo, como una medicina de OTC o como un suplemento alimenticio.

30

En una forma de realización preferida, la composición de la invención contiene entre 1 y 1.000 mg, preferentemente entre 5 y 800 mg, y más preferentemente entre 5 y 600 mg de modafinilo. Según otra forma de realización preferida, la composición de la invención se formula de modo que 5 a 800, preferentemente 5 a 600 mg/día de modafinilo se administran a un paciente que lo necesita, en una, dos o más tomas.

35

Según otra forma de realización preferida, la composición de la invención contiene entre 1 y 200, preferentemente 1 y 100 mg de flecainida. Según otra forma de realización preferida, la composición de la invención se formula de modo que 1 a 200, preferentemente 1 a 100 mg/día de flecainida se administran a un paciente que la necesita, en una, dos o más tomas. En una forma de realización más preferida, dicha flecainida es el enantiómero R descrito en la figura 5A.

40

En un aspecto final, la presente invención se refiere a un producto de combinación que comprende flecainida y modafinilo, para la utilización simultánea, separada o escalonada para prevenir y/o tratar somnolencia diurna excesiva (EDS), narcolepsia (con o sin cataplejía), apnea/hipopnea obstructiva del sueño (SAHOS), trastorno del sueño por trabajo por turnos, síndrome de las piernas inquietas, hipersomnia, hipersomnia idiopática y fatiga que se deben particularmente al cáncer, desfase horario, trastornos neurodegenerativos, menopausia, lesiones traumáticas del cerebro, infección viral o posmielitis, o a fibromialgia. Este producto de combinación se utiliza

45

Otras características de la invención se pondrán de manifiesto a partir de la descripción siguiente de las pruebas biológicas que se han llevado a cabo en el contexto de la invención y que proporcionan el soporte experimental requerido, sin limitar su alcance.

preferentemente para prevenir y/o tratar la cataplejía en pacientes narcolépticos.

50 (

Leyendas para las figuras

55

Figura 1: Inhibición de la funcionalidad de las conexinas humanas mediante la flecainida. Se cultivan células Rin-Cx26, células Rin-Cx30, células Rin-Cx32, células Rin-Cx40 y células Rin-Cx43 en presencia de flecainida (280 μ M), mefloquina (10 μ M) y MFA (100 μ M) durante 4 horas. La transferencia de fluorocromo por las uniones de brecha (compuestas por conexinas) se evalúa por citometría de flujo (figuras 1A y 1B). La viabilidad de las células tratadas con flecainida se representa en la figura 1B.

60

Figura 2: Eficiencia de la flecainida para potenciar el efecto del despertar del modafinilo. Se trató oralmente a ratones (n = 8 por lote) con modafinilo (32 mg/kg) o modafinilo (32 mg/kg) y flecainida (1 mg/kg) (figura 2A) o flecainida sola (1 mg/kg) (figura 2B), y se volvió a ubivcar a los mismos en su jaula. La duración de la vigilia se midió utilizando unos análisis poligráficos.

Figura 3: Eficacia de la flecainida para potenciar el efecto de mejora de la memoria del modafinilo. Se puso a prueba a los ratones (n = 6 a 23 por lote) en el laberinto en T. Se trató intraperitonealmente a los mismos con modafinilo (64 mg/kg) o 128 mg/kg) o modafinilo (64 mg/kg) y flecainida (1 mg/kg) o flecainida sola (1 mg/kg). La gráfica representa el porcentaje de alternación después de 6 pruebas, 50% correspondiendo a una alternación aleatoria.

Figura 4: Eficacia de la flecainida para potenciar el efecto locomotor del modafinilo. Se trató oralmente a ratones (n=8 por lote) con modafinilo (64 mg/kg) o modafinilo (64 mg/kg) y flecainida (1 mg/kg) o flecainida sola (1 mg/kg), y se volvió a ubicar a los mismos en su jaula. La actividad locomotora se midió usando un dispositivo de video-rastreo.

Figura 5: Estructura molecular de A. R-flecainida; B. S-flecainida; C. R-modafinilo; D. S-modafinilo.

Figura 6: Número de episodios de fases de OREM/DREM en ratones narcolépticos (Ox-/-) tratados con modafinilo/flecainida (A) o flecainida sola (B). (A). El tratamiento oral de ratones machos Ox-/- con modafinilo 64 mg/kg y con flecainida 1 mg/kg, se comparó con modafinilo 64 mg/kg y vehículo. **: p<0.01; ***: p<0.005, ANOVA bidireccional. (B) El tratamiento oral de ratones machos Ox-/- con flecainida 1 mg/kg, se comparó con el vehículo.

Figura 7: Número de episodios de fases de OREM/DREM en ratones narcolépticos (Ox-/-) tratados con la combinación de modafinilo y uno de los dos enantiómeros de flecainida (R-flecainida y S- flecainida). El tratamiento oral con modafinilo 64 mg/kg, con R-flecainida 1 mg/kg o S-flecainida 1 mg/kg, se comparó con el vehículo.

25 Ejemplos

5

10

15

30

35

40

45

50

65

Ejemplo 1: Efecto de la flecainida sobre las uniones de brecha

1.1. Materiales y métodos

Cultivo celular

La estirpe de células RIN de insulinoma de rata, deficientes en GJIC (del Corsso *et al.*, 2006), se cultivó en medio OptiMem complementado con suero de ternera fetal a 10%. Se ampliaron los marcos de lectura abiertos GJB6 (Cx30), GJB1 (Cx32), GJB2 (Cx26), GJA5 (Cx40) y GJA1 (Cx43) de ADNc humano. Los marcos de lectura abiertos fueron clonados en pcDNA3.1/V5-His-TOPO (Invitrogen). Las células fueron transfectadas usando Lipofectamine, y se seleccionaron adicionalmente usando geneticina.

Experimentos de la transferencia de colorante

Se sembraron células, y las mismas fueron cargadas con dos fluorocromos, éter acetoximetílico de calceína, un colorante permeable a las uniones de brecha, y Vybrant Dil, un colorante lipófilo de la membrana. Al día siguiente, las células fueron disociadas e incubadas durante cuatro horas en presencia de células no cargadas sembradas previamente y en presencia de racemato de flecainida 70, 140 o 280 μ M, mefloquina 10 μ M o ácido meclofenámico (MFA) 100 μ M. Se llevó a cabo una citometría de flujo en un FACScan.

Se cuantificó la inhibición como el número relativo de células receptoras que ganaron fluorescencia respecto al número total de células receptoras (la transferencia de colorante no mediada por las uniones de brecha se sustrajo entonces a esta relación sobre la base de las células RIN que no expresan conexina, definida en la relación de transferencia de colorante de fondo). Esta relación de acoplamiento celular fue normalizada entonces, después de cada tratamiento, en el vehículo.

Análisis de toxicidad

55 Se sembraron veinte mil células RIN en 100 μl de medio de cultivo en placas de 96 pocillos. Después del cultivo durante 48 horas, las células se trataron durante 4 horas con compuestos químicos identificados previamente a varias concentraciones. Las células se enjuagaron en PBS y se cultivaron durante 24 horas en un medio fresco. Se midió la viabilidad de las células utilizando WST-1 (Roche).

60 1.2. Resultados experimentales

Se validaron modelos celulares utilizando dos inhibidores clásicos descritos en la literatura, el ácido meclofenámico (MFA) (Dhein, 2004) (100 μ M) y la mefloquina (Cruikshank *et al.*, 2004) (10 μ M). Los resultados se representan en la figura 1A. La flecainida es tan eficiente para bloquear la conexina como los otros agentes anticonexina.

Las pruebas de viabilidad de las células (utilizando WST-1, curva de puntos en la figura 1B) después de un día de tratamiento, indican que la flecainida no presenta toxicidad celular a la dosis que inhibe a las conexinas cerebrales.

Además, la flecainida inhibe todas las isoformas sometidas a prueba de conexina cerebral utilizando la prueba del paracaídas en células para la transferencia de colorante (Cx30, Cx32, Cx26, Cx40, Cx43) (se estima que una reducción de 10% más que significativa en las uniones de brecha celulares es considerada como relevante fisiológicamente). Además, se alcanzan unos niveles de inhibición mayores para las conexiones gliales Cx26, Cx30 y Cx43.

Ejemplo 2: La flecainida potencia los efectos del despertar del modafinilo

Los datos preclínicos y clínicos indicaron que el modafinilo modifica el ritmo del ciclo del sueño y promueve las fases de la vigilia (Lin et al., 2008). Se somete a prueba en roedores si dicha actividad fue potenciada por la flecainida después del desafío oral con modafinilo, utilizando el análisis polisomnográfico en los ratones implantados. Utilizando una dosificación subeficaz de modafinilo (32 mg/kg), se demuestra una nueva característica de la combinación de modafinilo y flecainida, puesto que incrementa significativamente la duración total de los episodios de vigilia.

20 2.1. Materiales y métodos

10

15

25

30

35

60

Se implantó a ratones machos C57bl/6 natural (n= 9/grupo) con electrodos de EEG/EMG/EOG para análisis polisomnográfico. Después de un período de recuperación de dos semanas, se trató oralmente a los ratones con vehículo, modafinilo 32 mg/kg y modafinilo 32 mg/kg + racemato de flecainida 1 mg/kg, y se cuantificaron los períodos de vigilia utilizando secuencias de comandos Spike2. Se representa la duración de la vigilia durante las primeras tres horas (después de un período posadministración de una hora). **: p<0.01 en un análisis de ANOVA unidireccional.

2.2. Resultados

El modafinilo es una molécula que promueve el estado insomne en humanos y ratones, incrementando en los ratones su actividad de una manera dependiente de la dosis (Simon *et al.*, 1994). La actividad de ratones tratados con modafinilo 32 mg/kg se comparó con la de ratones tratados con la combinación de modafinilo 32 mg/kg + flecainida 1 mg/kg o vehículo.

La figura 2A muestra que la flecainida incrementa significativamente los efectos del despertar del modafinilo. La figura 2B muestra que este efecto no es mediado por la flecainida sola.

De esta manera, la flecainida potencia significativamente la actividad del despertar del modafinilo en ratones naturales, mientras que carece de efecto propio sobre la duración de la vigilia.

Ejemplo 3: La flecainida mejora significativamente la actividad cognitiva del modafinilo

El modafinilo induce un efecto de intensificación cognitiva (Beracochea *et al.*, 2003), y dicha propiedad puede evaluarse utilizando una prueba secuencial alternativa, un aparato utilizado ampliamente para evaluar la memoria de trabajo espacial en ratones (Beracochea y Jaffard, 1987). La alternación espontánea es la tendencia innata de los roedores para alternar sus elecciones para entrar en los compartimentos de llegada de un dispositivo de laberinto en T, durante pruebas sucesivas. Para alternar durante una prueba N dada, el animal debe recordar la elección realizada selectivamente en la prueba N-1, y la respuesta en alternación es la medida del desempeño. La administración aguda de modafinilo antes de la entrada en el laberinto en T, puede mejorar el desempeño de los ratones en esta prueba (Beracochea *et al.*, 2001). Los resultados de los inventores mostraron que la flecainida potencia significativamente el efecto de mejora de la memoria de una dosis subeficaz de modafinilo, mientras que la flecainida sola carece de cualquier efecto propio de mejora de la memoria.

55 3.1. Materiales y métodos

La prueba secuencial alternativa se utiliza ampliamente para evaluar la memoria de trabajo espacial en ratones (Beracochea y Jaffard, 1987). La alternación espontánea es la tendencia innata de los roedores para alternar sus elecciones para entrar en los compartimentos de llegada de un dispositivo de laberinto en T, durante pruebas sucesivas. Para alternar durante una prueba N dada, el animal debe recordar la elección realizada selectivamente en la prueba N-1, de modo que la disminución en la alternación reflejará el fenómeno de olvido. La respuesta en alternación es la medida del desempeño. La alternación secuencial evalúa más específicamente la sensibilidad a la interferencia, un factor importante en el olvido.

65 El experimento se lleva a cabo en un laberinto en T (50 cm x 10 cm x 25 cm). A todos los sujetos se les aplicaron 7 pruebas sucesivas separadas por un intervalo interprueba de 120 segundos. Para comenzar una prueba, el

ratón fue ubicado en la caja de inicio durante 120 segundos antes de que la puerta hacia el tronco se abriera. Cuando el sujeto entró a uno de los brazos objetivo, la puerta hacia ese brazo se abrió. Se registraron el brazo seleccionado y el tiempo que transcurrió entre la apertura de la puerta y la llegada al extremo del brazo seleccionado (tiempo de logro de la tarea). Después de un período de confinamiento de 30 segundos (fijado e invariante) en el brazo seleccionado, se extrajo el animal y fue ubicado en la caja de inicio para una nueva prueba. Entre cada prueba, se limpió la unidad con un paño mojado en agua y alcohol para evitar la detección olfatoria. La memoria índice es representada por la media de porcentaje de alternación (número de elecciones de alternación/número total de pruebas X 100) (n=6 a 23 para cada grupo). Se trató intraperitonealmente a los ratones con modafinilo (64 mg/kg o 128 mg/kg) o modafinilo (64 mg/kg) y racemato de flecainida (1 mg/kg) o racemato de flecainida solo (1 mg/kg) o vehículo.

p<0.05 en una prueba t de una muestra contra alternación de 50% aleatoria; * p<0.05 ANOVA unidireccional seguida de comparación múltiple de Tukey contra grupo tratado con modafinilo.

15 3.2. Resultados

5

10

20

40

50

El laberinto en T es un dispositivo para evaluar la memoria de trabajo en los ratones. La administración aguda de modafinilo antes de que entren al laberinto en T, puede mejorar el desempeño de los ratones en esta prueba (Beracochea *et al.*, 2001).

La validez de la prueba se llevó a cabo comparando la respuesta de los ratones tratados intraperitonealmente con una dosis eficaz de modafinilo solo (128 mg/kg), una dosis de flecainida sola (1 mg/kg) y una dosis subeficaz de modafinilo (64 mg/kg) con o sin flecainida sola (1 mg/kg). Los resultados se representan en la figura 3.

Estos resultados muestran que la flecainida potencia significativamente la actividad de mejora de la memoria del modafinilo, mientras que la flecainida sola no muestra efecto cognitivo propio.

Ejemplo 4: La flecainida prolonga significativamente la actividad del modafinilo

30 El modafinilo es una molécula que promueve el estado insomne en humanos y ratones, incrementando en los ratones su actividad de una manera dependiente de la dosis (Simon *et al.*, 1994). Los resultados demostraron que la flecainida potencia significativamente el efecto locomotor de una dosis subeficaz de modafinilo, mientras que la flecainida sola carece de algún efecto locomotor propio en roedores.

35 <u>4.1. Materiales y métodos</u>

Se trató oralmente a ratones (n=8 por lote) con modafinilo (64 mg/kg) o modafinilo (64 mg/kg) y racemato de flecainida (1 mg/kg) o racemato de flecainida solo (1 mg/kg) o vehículo, y se volvió a ubicarlos en su jaula. La actividad locomotora se evaluó mediante monitorización por video. Los videos se analizaron utilizando el software Ethovision XT (Noldus®).*: p<0.01 en un análisis de ANOVA bidireccional.

4.2. Resultados

La actividad de los ratones tratados con modafinilo 64 mg/kg se comparó con la de los ratones tratados con la combinación de modafinilo 64 mg/kg + flecainida 1 mg/kg. La figura 4 muestra que la flecainida incrementa significativamente la duración del efecto del modafinilo sobre la actividad de los ratones.

Para concluir, los resultados anteriores muestran que la flecainida inhibe significativamente la funcionalidad de las uniones de brecha, sin que induzca toxicidad celular. Además, este compuesto potencia la eficacia y la duración del efecto del modafinilo, notablemente en su aspecto de mejora de la memoria y del despertar.

Ejemplo 5: La combinación de modafinilo/flecainida presenta un perfil eficaz sorprendente sobre el fenotipo tipo catapléjico de DREM en ratones narcolépticos

55 <u>5.1. Materiales y métodos</u>

Animales

Los ratones con expresión bloqueada (KO) de preproorexina, fueron la progenie de la cepa de ratones generada por Chemelli et al. [1999] y mantenida en la base genómica de ratones C57BL/6J. Después del retrocruzamiento de ratones orexina-/- machos y ratones naturales (WT) hembras durante nueve generaciones, los ratones orexina+/- obtenidos fueron cruzados para producir camadas de ratones WT y KO heterocigóticos y homocigóticos. Para determinar sus genotipos con respecto al gen de orexina, se tomaron biopsias de la cola a la edad de 4 semanas para la detección de ADN usando PCR.

Cirugía

10

15

20

25

30

35

40

A la edad de 12 semanas y con un peso corporal de 30 ± 2 g, los ratones utilizados para EEG y estudios de sueño-vigilia fueron implantados crónicamente, bajo anestesia profunda con gas utilizando isoflurano (2%, 200 ml/min) y un sistema de anestesia TEM (Bordeaux, Francia), con seis electrodos corticales (alambre de cobre estañado revestido con oro, $\varnothing=0,4$ mm, Filotex, Draveil, Francia) y tres electrodos en músculo (alambre de acero inoxidable revestido con oro y revestido con fluorocarbono, $\varnothing=0,03$ mm, Cooner Wire Chatworth, CA, U.S.A.), para registrar el electroencefalograma (EEG) y el electromiograma (EMG), y para monitorizar el ciclo de sueño-vigilia. Todos los electrodos fueron soldados previamente a un conector eléctrico de canales múltiples, y cada uno fue aislado por separado con una cubierta de tubería de poliolefina/poliéster termocontraíble. Se insertaron unos electrodos corticales en la duramadre a través de 3 pares de orificios practicados en el cráneo, localizados respectivamente en la corteza frontal (1 mm lateral y anterior al bregma), parietal (1 mm lateral hacia la línea media en el punto medio entre el bregma y la lambda) y occipital (2 mm lateral hacia la línea media y 1 mm anterior a la lambda). Los electrodos del músculo fueron insertados en los músculos del cuello. Por último, el ensamblaje de electrodos fue anclado y fijado al cráneo con Super-Bond (Sun Medical Co., Shiga, Japón) y cemento dental. Esta implantación permite realizar registros poligráficos estables y duraderos [Parmentier *et al.*, 2002].

Registro poligráfico en el ratón, y adquisición y análisis de datos

Después de la cirugía, los animales fueron alojados individualmente, ubicados en una habitación de registro aislada a prueba de sonido mantenida a una temperatura ambiente de 23±1°C y bajo un ciclo de 12 horas de luz/oscuridad (luces encendidas a las 7 de la mañana). Después de un período de recuperación de 7 días, los ratones fueron habituados al cable de registro durante 7 días antes de que se iniciaran los registros poligráficos. Los episodios de inicio del sueño de REM directo (DREM), denominados también episodios narcolépticos o períodos de REM de inicio del sueño por algunos autores [Chemelli et al., 1999; Mignot et al., 2005; Fujiki et al., 2006], fueron definidos como la ocurrencia de sueño de REM directamente de la vigilia, a saber, un episodio de REM que sigue directamente a un episodio de vigilia que dura más de 60 segundos sin que sea precedido por alguna actividad lenta cortical de más de 5 segundos durante los 60 segundos.

Administración de fármacos y procedimientos experimentales en el ratón

Después de la recuperación de la cirugía y la habituación a los cables de registro, cada ratón fue sometido a una sesión de registro de dos días continuos, comenzando a las 7 de la mañana. Las administraciones se llevaron a cabo a las 6:45 de la tarde poco antes de que se apagaran las luces (7:00 de la tarde), puesto que los ratones orexina-/- exhiben unos ataques narcolépticos únicamente durante la fase de luces apagadas [Chemelli *et al.*, 1999]. El orden de la administración fue aleatorio. Se realizaron unos registros poligráficos inmediatamente después de la administración, y se mantuvieron durante el período entero de luces apagadas (12 horas). Dos administraciones fueron separadas durante un período de 7 días (descanso). Se trató oralmente a los ratones (n=8 por lote) con modafinilo (64 mg/kg) o modafinilo (64 mg/kg) y racemato de flecainida (1 mg/kg) o racemato de flecainida solo (1 mg/kg) o vehículo.

5.2. Resultados

- 45 Las orexinas (conocidas asimismo como hipocretinas) son dos neuropéptidos hipotalámicos identificados en 1998 [Sakurai et al., 1998; De Lecea L. et al., 1998]. Se han identificado unas neuronas que contienen orexinas en las áreas hipotalámicas dorsolateral y perifornical, y estas neuronas ejercen una función clave en la alerta comportamental. Un gran conjunto de evidencias indica que la deficiencia de orexina es responsable de la patogénesis de la narcolepsia en humanos y animales [Lin et al., 1999; Chemelli et al., 1999]. Se ha demostrado 50 recientemente que la mayoría de los fenotipos principales de ratones con expresión bloqueada de orexina son un déficit de comportamiento/motor durante el despertar y la ocurrencia, durante la fase oscura, de episodios de inicio del sueño de REM (DREM, también conocido como SOREM) - definido en el EEG, EMG y los registros de video como inicio repentino de sueño paradójico directamente del estado insomne [Anaclet et al., 2009]. De esta manera, SOREM/DREM constituye un fenotipo principal de narcolepsia de los murinos, que se observa con frecuencia en los pacientes narcolépticos [Lin et al., 20011]. Utilizando este modelo, se demostró que el 55 modafinilo permite que persistan los episodios de DREM [Lin et al., 2008], una situación similar a aquella en la clínica en la que el modafinilo mejora la somnolencia diurna excesiva sin efecto claro en la cataplejía.
- Además, como se describe en la figura 6B, el racemato de flecainida (solo), a la dosis de 1 mg/kg, no presenta ningún efecto sobre el fenotipo tipo catapléctico de DREM en los ratones Ox-/- narcolépticos.
 - Sin embargo, y de manera importante, los resultados descritos en la figura 6A muestran que la combinación de modafinilo/flecainida disminuye la ocurrencia de episodios de DREM.
- Por lo tanto, la flecainida y el modafinilo no presentan ningún efecto significativo sobre un fenotipo tipo catapléjico de DREM cuando se usan solos, mientras que su combinación disminuye de modo importante el fenotipo tipo

catapléjico de DREM.

5

10

30

35

45

55

60

Estos resultados resaltan la sinergia que existe entre la flecainida y el modafinilo, debiéndose dicha sinergia a la potenciación de la eficacia del modafinilo por la flecainida, puesto que no se aprecia ningún efecto con el modafinilo o la flecainida solos en los ratones narcolépticos.

Ejemplo 6: La combinación de modafinilo/R-flecainida es sorprendentemente más eficaz que la combinación de modafinilo/S-flecainida en el fenotipo tipo catapléjico de DREM en los ratones narcolépticos

Se utilizaron los mismos materiales y métodos que en el ejemplo 5, salvo que el racemato de flecainida ha sido reemplazado por el enantiómero de R-flecainida.

Como se describe en la figura 7, el enantiómero de R-flecainida combinado con modafinilo es más eficaz en el fenotipo de tipo catapléjico de DREM en ratones Ox-/- narcolépticos que el enantiómero de S-flecainida combinado con modafinilo.

Referencias

- 20 S. Alessi-Severini, F. Jamali, F. M. Pasutto, R. T. Coutts, S. Gulamhusein, High-performance liquid chromatographic determination of the enantiomers of flecainide in human plasma and urine, J Pharm Sci 79 (1990) 257-260.
- S. Alessi-Severini, D. F. LeGatt, F. M. Pasutto, F. Jamali, R. T. Coutts, HPLC analysis of flecainide enantiomers in plasma: comparison with fluorescence polarization immunoassay, Clin Chem 37 (1991) 111-112.
 - Anaclet C, Parmentier R, Ouk K, Guidon G, Buda C, Sastre JP, Akaoka H, Sergeeva OA, Yanagisawa M, Ohtsu H, Franco P, Haas HL, Lin JS (2009) Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. *The Journal of neuroscience: the official journal of the Society for Neuroscience* 29: 14423-14438.
 - E. H. Banitt, J. R. Schmid, R. A. Newmark, Resolution of flecainide acetate, N-(2-piperidylmethyl)-2,5-bis(2,2,2-trifluoroethoxy)benzamide acetate, and antiarrhythmic properties of the enantiomers, J Med Chem 29 (1986) 299-302.
 - Beracochea D, Cagnard B, Celerier A, le Merrer J, Peres M, Pierard C (2001) First evidence of a delay-dependent working memory-enhancing effect of modafinilo in mice. Neuroreport 12: 375-378.
- Beracochea D, Celerier A, Peres M, Pierard C (2003) Enhancement of learning processes following an acute modafinilo injection in mice. *Pharmacology, biochemistry, and behavior* 76: 473-479.
 - Beracochea DJ, Jaffard R (1987) Impairment of spontaneous alternation behavior in sequential test procedures following mammillary body lesions in mice: evidence for time-dependent interference-related memory deficits. *Behav Neurosci* 101: 187-197.
 - M. I. Boulos M. I., B. J. Murray, Current evaluation and management of excessive daytime sleepiness, *Can J Neurol Sci* 37 (2010) 167-176.
- Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. *Cell* 98: 437-451.
 - Cruikshank SJ, Hopperstad M, Younger M, Connors BW, Spray DC, Srinivas M (2004) Potent block of Cx36 and Cx50 gap junction channels by mefloquine. *Proc Natl Acad Sci USA* 101: 12364-12369.
 - Daleau P (1998) Effects of antiarrhythmic agents on junctional resistance of guinea pig ventricular cell pairs. *The Journal of pharmacology and experimental therapeutics* 284: 1174-1179.
 - Dauvilliers Y., I. Arnulf, E. Mignot, Narcolepsy with cataplexy, Lancet 369 (2007) 499-511.
- Davidson JO, Green CR, Nicholson LF, Bennet L, Gunn AJ (2013) Connexin hemichannel blockade is neuroprotective after, but not during, global cerebral ischemia in near-term fetal sheep. *Experimental neurology*.
- de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS, 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. *Proc Natl Acad Sci USA* 95: 322-327.

- del Corsso C, Srinivas M, Urban-Maldonado M, Moreno AP, Fort AG, Fishman GI, Spray DC (2006) Transfection of mammalian cells with connexins and measurement of voltage sensitivity of their gap junctions. *Nat Protoc* 1: 1799-1809.
- Dhein S (2004) Pharmacology of gap junctions in the cardiovascular system. Cardiovasc Res 62: 287-298.

5

- Dubey S, Ahi S, Reddy IM, Kaur T, Beotra A, Jain S (2009) A novel study of screening and confirmation of modafinilo, adrafmil and their metabolite modafinilic acid under El-GC-MS and ESI-LC-MS-MS ionization. *Indian journal of pharmacology* 41: 278-283.
 - Durham PL, Garrett FG (2009) Neurological mechanisms of migraine: potential of the gap-junction modulator tonabersat in prevention of migraine. *Cephalalgia* 29 Supl. 2: 1-6.
- N. Fujiki, Y. Yoshida, S. Zhang, T. Sakurai, M. Yanagisawa, S. Nishino, Sex difference in body weight gain and leptin signaling in hypocretin/orexin deficient mouse models, *Peptides* 27 (2006) 2326-2331.
 - Gotter AL, Webber AL, Coleman PJ, Renger JJ, Winrow CJ (2012) International Union of Basic and Clinical Pharmacology. LXXXVI. Orexin receptor function, nomenclature and pharmacology. *Pharmacological reviews* 64: 389-420.
 - A. S. Gross, G. Mikus, C. Fischer, R. Hertrampf, U. Gundert-Remy, M. Eichelbaum, Stereoselective disposition of flecainide in relation to the sparteine/debrisoquine metaboliser phenotype, *Br J Clin Pharmacol* 28 (1989) 555-566.
- K. Hanada, S. Akimoto, K. Mitsui, M. Hashiguchi, H. Ogata, Quantitative determination of disopyramide, verapamil and flecainide enantiomers in rat plasma and tissues by high-performance liquid chromatography, *J Chromatogr B Biomed Sci Appl* 710 (1998) 129-135.
- Harks EG, de Roos AD, Peters PH, de Haan LH, Brouwer A, Ypey DL, van Zoelen EJ, Theuvenet AP (2001) Fenamates: a novel class of reversible gap junction blockers. *The Journal of pharmacology and experimental therapeutics* 298: 1033-1041.
- Ishizuka T, Murotani T, Yamatodani A (2012) Action of modafinilo through histaminergic and orexinergic neurons. *Vitamins and hormones* 89: 259-278.
 - Juszczak GR, Swiergiel AH (2009) Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. *Prog Neuropsychopharmacol Biol Psychiatry* 33: 181-198.
- 40 H. K. Kroemer, J. Turgeon, R. A. Parker, D. M. Roden, Flecainide enantiomers: disposition in human subjects and electrophysiologic actions in vitro, *Clin Pharmacol Ther* 46 (1989) 584-590.
 - Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394: 527-543.
- 45
 A. H. L. Lie, R. M. Stuurman, F. N. Ijdenberg, J. H. Kingma, D. K. Meijer, High-performance liquid chromatographic assay of flecainide and its enantiomers in serum, *Ther Drug Monit* 11 (1989) 708-711.
- A. H. L. Lie, J. van den Akker, A. den Hertog, D. K. Meijer, The action of flecainide acetate and its enantiomers on mammalian non-myelinated nerve fibres, *Pharm Weekbl Sci* 11 (1989) 92-94.
 - J. S. Lin, C. Anaclet, O. A. Sergeeva, H. L. Haas, The waking brain: an update, *Cell Mol Life Sci* 68 (2011) 2499-2512.
- Lin JS, Dauvilliers Y, Arnulf I, Bastuji H, Anaclet C, Parmentier R, Kocher L, Yanagisawa M, Lehert P, Ligneau X, Perrin D, Robert P, Roux M, Lecomte JM, Schwartz JC (2008) An inverse agonist of the histamine H(3) receptor improves wakefulness in narcolepsy: studies in orexin-/- mice and patients. *Neurobiology of disease* 30: 74-83.
- Lin JS, Sergeeva OA, Haas HL (2011) Histamine H3 receptors and sleep-wake regulation. *The Journal of pharmacology and experimental therapeutics* 336: 17-23.
 - Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. *Cell* 98: 365-376.
- R. Mehvar, D. R. Brocks, M. Vakily, Impact of stereoselectivity on the pharmacokinetics and pharmacodynamics of antiarrhythmic drugs, *Clin Pharmacokinet* 41 (2002) 533-558.

- E. Mignot, S. Nishino, Emerging therapies in narcolepsy-cataplexy, Sleep 28 (2005) 754-763.
- Minzenberg MJ, Carter CS (2008) Modafinil: a review of neurochemical actions and effects on cognition. 5 Neuropsychopharmacology 33: 1477-1502.
 - Nakase T, Naus CC (2004) Gap junctions and neurological disorders of the central nervous system. *Biochim Biophys Acta* 1662: 149-158.
- 10 R. Parmentier, H. Ohtsu, Z. Djebbara-Hannas, J. L. Valatx, T. Watanabe, J. S. Lin, Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control, *J Neurosci* 22 (2002) 7695-7711.
- Patel SJ, Milwid JM, King KR, Bohr S, Iracheta-Velle A, Li M, Vitalo A, Parekkadan B, Jindal R, Yarmush ML (2012) Gap junction inhibition prevents drug-induced liver toxicity and fulminant hepatic failure. *Nature biotechnology* 30: 179-183.
- Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richarson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. *Cell* 92: 1 página después de la 696.
- Simon P, Panissaud C, Costentin J (1994) The stimulant effect of modafinilo on wakefulness is not associated with an increase in anxiety in mice. A comparison with dexamphetamine. *Psychopharmacology* (Berl) 114: 597-600.
 - J. K. Smallwood, D. W. Robertson, M. I. Steinberg, Electrophysiological effects of flecainide enantiomers in canine Purkinje fibres, *Naunyn Schmiedebergs Arch Pharmacol* 339 (1989) 625-629.
 - Takeuchi H, Mizoguchi H, Doi Y, Jin S, Noda M, Liang J, Li H, Zhou Y, Mori R, Yasuoka S, Li E, Parajuli B, Kawanokuchi J, Sonobe Y, Sato J, Yamanaka K, Sobue G, Mizuno T, Suzumura A (2011) Blockade of gap junction hemichannel suppresses disease progression in mouse models of amyotrophic lateral sclerosis and Alzheimer's disease. *PLoS One* 6: e21108.
 - Tong X, Dong S, Yu M, Wang Q, Tao L (2013) Role of heteromeric gap junctions in the cytotoxicity of cisplatin. *Toxicology* 310C: 53-60.
- Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. *Pharmacological reviews* 62: 405-496.
- J. Turgeon, H. K. Kroemer, C. Prakash, LA. Blair, D. M. Roden, Stereoselective determination of flecainide in human plasma by high-performance liquid chromatography with fluorescence detection, *J Pharm Sci* 79 (1990) 91-95.

Listado de secuencias

<110> COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

<120> Utilización de la flecainida como un agente anticonexina y procedimiento para potenciar los efectos de un fármaco psicotrópico

<130> 365692 D32623

<150> EP13306074.9

<151> 2013-07-24

<160> 21

60

30

35

50

55

<170> PatentIn versión 3.5

<210> 1

<211> 205

65 <212> PRT

<213> homo sapiens

```
<220>
<221> MISC_FEATURE
<223> Cx23 (A6NN92)
<400> 1
Met Ser Leu Asn Tyr Ile Lys Asn Phe Tyr Glu Gly Cys Val Lys Pro
Pro Thr Val Ile Gly Gln Phe His Thr Leu Phe Phe Gly Ser Ile Arg
Ile Phe Phe Leu Gly Val Leu Gly Phe Ala Val Tyr Gly Asn Glu Ala
                             40
Leu His Phe Ile Cys Asp Pro Asp Lys Arg Glu Val Asn Leu Phe Cys
Tyr Asn Gln Phe Arg Pro Ile Thr Pro Gln Val Ser Phe Ser Ala Leu
Gln Leu Val Ile Val Leu Val Pro Gly Ala Leu Phe His Leu Tyr Ala
                                     90
Ala Cys Lys Ser Ile Asn Gln Glu Cys Ile Leu Gln Lys Pro Ile Tyr
Thr Ile Ile Tyr Ile Leu Ser Val Leu Leu Arg Ile Ser Leu Ala Ala
                             120
Ile Ala Phe Trp Leu Gln Ile Tyr Leu Phe Gly Phe Gln Val Lys Ser
Leu Tyr Leu Cys Asp Ala Arg Ser Leu Gly Glu Asn Met Ile Ile Arg
Cys Met Val Pro Glu His Phe Glu Lys Thr Ile Phe Leu Ile Ala Ile
Asn Thr Phe Thr Thr Ile Thr Ile Leu Leu Phe Val Ala Glu Ile Phe
            180
                                 185
Glu Ile Ile Phe Arg Arg Leu Tyr Phe Pro Phe Arg Gln
<210> 2
<211> 223
<212> PRT
<213> homo sapiens
<221> MISC_FEATURE
<223> Cx25 (NP_940970.1)
```

10

<400 Met 1		Trp	Met	Phe 5	Leu	Arg	Asp	Leu	Leu 10	Ser	Gly	Val	Asn	Lys 15	Tyr
Ser	Thr	Gly	Thr 20	Gly	Trp	Ile	Trp	Leu 25	Ala	Val	Val	Phe	Val 30	Phe	Arg
Leu	Leu	Val 35	Tyr	Met	Val	Ala	Ala 40	Glu	His	Val	Trp	Lys 45	Asp	Glu	Gln
Lys	Glu 50	Phe	Glu	Суз	Asn	Ser 55	Arg	Gln	Pro	Gly	Cys 60	Lys	Asn	Val	Cys
Phe 65	Asp	Asp	Phe	Phe	Pro 70	Ile	Ser	Gln	Val	Arg 75	Leu	Trp	Ala	Leu	Gln 80
Leu	Ile	Met	Val	Ser 85	Thr	Pro	Ser	Leu	Leu 90	Val	Val	Leu	His	Val 95	Ala
Tyr	His	Glu	Gly 100	Arg	Glu	Lys	Arg	His 105	Arg	Lys	Lys	Leu	Tyr 110	Val	Ser
Pro	Gly	Thr 115	Met	Asp	Gly	Gly	Leu 120	Trp	Tyr	Ala	Tyr	Leu 125	Ile	Ser	Leu
Ile	Val	Lys	Thr	Gly	Phe	Glu	Ile	Gly	Phe	Leu	Val	Leu	Phe	Tyr	Lys
	130					135					140				
Leu 145	Tyr	Asp	Gly	Phe	Ser 150	Val	Pro	Tyr	Leu	Ile 155	Lys	Cys	Asp	Leu	Lys 160
Pro	Cys	Pro	Asn	Thr 165	Val	Asp	Сув	Phe	Ile 170	Ser	Lys	Pro	Thr	Glu 175	Lys
Thr	Ile	Phe	Ile 180	Leu	Phe	Leu	Val	Ile 185	Thr	Ser	Cys	Leu	Cys 190	Ile	Val
Leu	Asn	Phe 195	Ile	Glu	Leu	Ser	Phe 200	Leu	Val	Leu	Lys	Cys 205	Phe	Ile	Lys
Cys	Cys 210	Leu	Gln	Lys	Tyr	Leu 215	Lys	Lys	Pro	Gln	Val 220	Leu	Ser	Val	
<210 <211 <212 <213	> 226 > PR	Т	ıpiens	3											
<220 <221 <223	> MIS		EATU 29033												

<400 Met	> 3 As p	Trp	Gly	Thr	Leu	Gln	Thr	Ile	Leu	Gly	Gly	Val	Asn	Lys	His
1				5					10					15	
Ser	Thr	Ser	Ile 20	Gly	Lys	Ile	Trp	Leu 25	Thr	Val	Leu	Phe	Ile 30	Phe	Arg
Ile	Met	Ile 35	Leu	Val	Val	Ala	Ala 40	Lys	Glu	Val	Trp	Gly 45	Asp	Glu	Gln
Ala	Asp 50	Phe	Val	Cys	Asn	Thr 55	Leu	Gln	Pro	Gly	Cys 60	Lys	Asn	Val	Cys
Tyr 65	Asp	His	Tyr	Phe	Pro 70	Ile	Ser	His	Ile	Arg 75	Leu	Trp	Ala	Leu	Gln 80
Leu	Ile	Phe	Val	Ser 85	Thr	Pro	Ala	Leu	Leu 90	Val	Ala	Met	His	Val 95	Ala
Tyr	Arg	Arg	His 100	Glu	Lys	Lys	Arg	Lys 105	Phe	Ile	Lys	Gly	Glu 110	Ile	Lys
Ser	Glu	Phe 115	Lys	Asp	Ile	Glu	Glu 120	Ile	Lys	Thr	Gln	Lys 125	Val	Arg	Ile
Glu	Gly 130	Ser	Leu	Trp	Trp	Thr 135	Tyr	Thr	Ser	Ser	Ile 140	Phe	Phe	Arg	Val
Ile 145	Phe	Glu	Ala	Ala	Phe 150	Met	Tyr	Val	Phe	Tyr 155	Val	Met	Tyr	Asp	Gly 160
Phe	Ser	Met	Gln	Arg 165	Leu	Val	Lys	Cys	Asn 170	Ala	Trp	Pro	Cys	Pro 175	Asn
Thr	Val	Asp	Cys 180	Phe	Val	Ser	Arg	Pro 185	Thr	Glu	Lys	Thr	Val 190	Phe	Thr
Val	Phe	Met 195	Ile	Ala	Val	Ser	Gly 200	Ile	Cys	Ile	Leu	Leu 205	Asn	Val	Thr
Glu	Leu 210	Cys	Tyr	Leu	Leu	Ile 215	Arg	Tyr	Cys	Ser	Gly 220	Lys	Ser	Lys	Lys
Pro 225	Val														
<210 <211 <212 <213	> 261 > PR	Т	piens	;											
<220 <221 <223	> MIS				689.1)									

<400	> 4														
Met 1	Asp	Trp	Gly	Thr 5	Leu	His	Thr	Phe	Ile 10	Gly	Gly	Val	Asn	Lys 15	His
Ser	Thr	Ser	Ile 20	Gly	Lys	Val	Trp	Ile 25	Thr	Val	Ile	Phe	Ile 30	Phe	Arg
Val	Met	Ile 35	Leu	Val	Val	Ala	Ala 40	Gln	Glu	Val	Trp	Gly 45	Asp	Glu	Gln
Glu	Asp 50	Phe	Val	Суз	Asn	Thr 55	Leu	Gln	Pro	Gly	Cys 60	Lys	Asn	Val	Суз
Tyr 65	Asp	His	Phe	Phe	Pro 70	Val	Ser	His	Ile	Arg 75	Leu	Trp	Ala	Leu	Gln 80
Leu	Ile	Phe	Val	Ser 85	Thr	Pro	Ala	Leu	Leu 90	Val	Ala	Met	His	Val 95	Ala
Tyr	Tyr	Arg	His 100	Glu	Thr	Thr	Arg	Lys 105	Phe	Arg	Arg	Gly	Glu 110	Lys	Arg
Asn	Asp	Phe 115	Lys	Asp	Ile	Glu	Asp 120	Ile	Lys	Lys	Gln	Lys 125	Val	Arg	Ile
Glu	Gly 130	Ser	Leu	Trp	Trp	Thr 135	Tyr	Thr	Ser	Ser	11e 140	Phe	Phe	Arg	Ile
Ile 145	Phe	Glu	Ala	Ala	Phe 150	Met	Tyr	Val	Phe	Tyr 155	Phe	Leu	Tyr	Asn	Gly 160
Tyr	His	Leu	Pro	Trp 165	Val	Leu	Lys	Сув	Gly 170	Ile	Asp	Pro	Cys	Pro 175	Asn
Leu	Val	Asp	Cys 180	Phe	Ile	Ser	Arg	Pro 185	Thr	Glu	Lys	Thr	Val 190	Phe	Thr
Ile	Phe	Met 195	Ile	Ser	Ala	Ser	Val 200	Ile	Cys	Met	Leu	Leu 205	Asn	Val	Ala
Glu	Le u 210	Cys	Tyr	Leu	Leu	Leu 215	Lys	Val	Cys	Phe	Arg 220	Arg	Ser	Lys	Arg
Ala 225	Gln	Thr	Gln	Lys	Asn 230	His	Pro	Asn	His	Ala 235	Leu	Lys	Glu	Ser	Lys 240
Gln	Asn	Glu	Met	Asn 245	Glu	Leu	Ile	Ser	Asp 250	Ser	Gly	Gln	Asn	Ala 255	Ile
Thr	Gly	Phe	Pro 260	Ser											
<210	> 5														

5

<211> 279 <212> PRT

<213> homo sapiens

	> MIS > Cx				16.1)										
<400 Met 1	-	Gly	Arg	Phe 5	Leu	Arg	Arg	Leu	Leu 10	ı Ala	a Glı	ı Glı	u Se	r Ar 15	g Arg
Ser	Thr	Pro	Val 20	Gly	Arg	Leu	Leu	Leu 25	Pro	Val	Leu	Leu	Gl y 30	Phe	Arg
Leu	Val	Leu 35	Leu	Ala	Ala	Ser	Gly 40	Pro	Gly	Val	Tyr	Gly 45	Asp	Glu	Gln
Ser	G1u 50	Phe	Val	Cys	His	Thr 55	Gln	Gln	Pro	Gly	Cys 60	Lys	Ala	Ala	Cys
Phe 65	Asp	Ala	Phe	His	Pro 70	Leu	Ser	Pro	Leu	Arg 75	Phe	Trp	Val	Phe	Gln 80
Val	Ile	Leu	Val	Ala 85	Val	Pro	Ser	Ala	Leu 90	Tyr	Met	Gly	Phe	Thr 95	Leu
Tyr	His	Val	Ile 100	Trp	His	Trp	Glu	Leu 105	Ser	Gly	Lys	Gly	Lys 110	Glu	Glu
Glu	Thr	Leu 115	Ile	Gln	Gly	Arg	Glu 120	Gly	Asn	Thr	Asp	Val 125	Pro	Gly	Ala
Gly	Ser 130	Leu	Arg	Leu	Leu	Trp 135	Ala	Tyr	Val	Ala	Gln 140	Leu	Gly	Ala	Arg
Leu 145	Val	Leu	Glu	Gly	Ala 150	Ala	Leu	Gly	Leu	Gln 155	Tyr	His	Leu	Tyr	Gly 160
Phe	Gln	Met	Pro	Ser 165	Ser	Phe	Ala	C ys	Arg 170	Arg	Glu	Pro	Cys	Leu 175	Gly
Ser	Ile	Thr	Cys 180	Asn	Leu	Ser	Arg	Pro 185	Ser	Glu	Lys	Thr	Ile 190	Phe	Leu
Lys	Thr	Met 195	Phe	Gly	Val	Ser	Gly 200	Phe	Cys	Leu	Leu	Phe 205	Thr	Phe	Leu
Glu	Leu 210	Val	Leu	Leu	Gly	Leu 215	Gly	Arg	Trp	Trp	Arg 220	Thr	Trp	Lys	His
Lys 225	Ser	Ser	Ser	Ser	Lys 230	Tyr	Phe	Leu	Thr	Ser 235	Glu	Ser	Thr	Arg	Arg 240
His	Lys	Lys	Ala	Thr 245	Asp	Ser	Leu	Pro	Val 250	Val	Glu	Thr	Lys	Glu 255	Gln

Phe Gln Glu Ala Val Pro Gly Arg Ser Leu Ala Gln Glu Lys Gln Arg

<220>

270 260 265 Pro Val Gly Pro Arg Asp Ala 275 <210>6 <211> 266 <212> PRT <213> homo sapiens <220> 10 <221> MISC_FEATURE <223> Cx30.3 (NP_694944.1) Met Asn Trp Ala Phe Leu Gln Gly Leu Leu Ser Gly Val Asn Lys Tyr Ser Thr Val Leu Ser Arg Ile Trp Leu Ser Val Val Phe Ile Phe Arg Val Leu Val Tyr Val Val Ala Ala Glu Glu Val Trp Asp Asp Glu Gln Lys Asp Phe Val Cys Asn Thr Lys Gln Pro Gly Cys Pro Asn Val Cys Tyr Asp Glu Phe Phe Pro Val Ser His Val Arg Leu Trp Ala Leu Gln Leu Ile Leu Val Thr Cys Pro Ser Leu Leu Val Val Met His Val Ala 90 Tyr Arg Glu Glu Arg Glu Arg Lys His His Leu Lys His Gly Pro Asn 100 Ala Pro Ser Leu Tyr Asp Asn Leu Ser Lys Lys Arg Gly Gly Leu Trp Trp Thr Tyr Leu Leu Ser Leu Ile Phe Lys Ala Ala Val Asp Ala Gly 135 Phe Leu Tyr Ile Phe His Arg Leu Tyr Lys Asp Tyr Asp Met Pro Arg 145 Val Val Ala Cys Ser Val Glu Pro Cys Pro His Thr Val Asp Cys Tyr

165

Thr Ala Ala Ile Cys Ile Leu Leu Asn Leu Ser Glu Val Phe Tyr Leu 195 200 205 Val Gly Lys Arg Cys Met Glu Ile Phe Gly Pro Arg His Arg Arg Pro 215 Arg Cys Arg Glu Cys Leu Pro Asp Thr Cys Pro Pro Tyr Val Leu Ser 230 Gln Gly Gly His Pro Glu Asp Gly Asn Ser Val Leu Met Lys Ala Gly 250 Ser Ala Pro Val Asp Ala Gly Gly Tyr Pro 260 <210> 7 <211> 270 <212> PRT <213> homo sapiens <220> <221> MISC_FEATURE <223> Cx31 (NP_001005752.1) Met Asp Trp Lys Thr Leu Gln Ala Leu Leu Ser Gly Val Asn Lys Tyr Ser Thr Ala Phe Gly Arg Ile Trp Leu Ser Val Val Phe Val Phe Arg Val Leu Val Tyr Val Val Ala Ala Glu Arg Val Trp Gly Asp Glu Gln 40 Lys Asp Phe Asp Cys Asn Thr Lys Gln Pro Gly Cys Thr Asn Val Cys Tyr Asp Asn Tyr Phe Pro Ile Ser Asn Ile Arg Leu Trp Ala Leu Gln Leu Ile Phe Val Thr Cys Pro Ser Leu Leu Val Ile Leu His Val Ala 90 Tyr Arg Glu Glu Arg Glu Arg Arg His Arg Gln Lys His Gly Asp Gln

5

10

Ile Ser Arg Pro Thr Glu Lys Lys Val Phe Thr Tyr Phe Met Val Thr

Cys	Ala	Lys 115	Leu	Tyr	Asp	Asn	Ala 120	GLy	Lys	Lys	His	GLy 125	Gly	Leu	Trp
Trp	Thr 130	Tyr	Leu	Phe	Ser	Leu 135	Ile	Phe	Lys	Leu	Ile 140	Ile	Glu	Phe	Leu
Phe 145	Leu	Tyr	Leu	Leu	His 150	Thr	Leu	Trp	His	Gly 1 55	Phe	Asn	Met	Pro	Arg 160
Leu	Val	Gln	Cys	Ala 165	Asn	Val	Ala	Pro	Cys 170	Pro	Asn	Ile	Val	Asp 175	Cys
Tyr	Ile	Ala	Arg 180	Pro	Thr	Glu	Lys	Lys 185	Ile	Phe	Thr	Tyr	Phe 190	Met	Val
Gly	Ala	Ser 195	Ala	Val	Cys	Ile	Val 200	Leu	Thr	Ile	Cys	Glu 205	Leu	Cys	Tyr
Leu	Ile 210	Cys	His	Arg	Val	Leu 215	Arg	Gly	Leu	His	Lys 220	Asp	Lys	Pro	Arg
Gly 225	Gly	Cys	Ser	Pro	Ser 230	Ser	Ser	Ala	Ser	Arg 235	Ala	Ser	Thr	Cys	Arg 240
Cys	His	His	Lys	Leu 245	Val	Glu	Ala	Gly	Glu 250	Val	Asp	Pro	Asp	Pro 255	Gly
Asn	Asn	Lys	Leu 260	G1n	Ala	Ser	Ala	Pro 265	Asn	Leu	Thr	Pro	Ile 270		
<212	> 8 > 273 > PR > hon	Т	piens	;											
	> > MIS > Cx3				9.1)										
<400 Met 1	> 8 As n	Trp	Ser	Ile 5	Phe	Glu	Gly	Leu	Leu 10	Ser	Gly	Val	Asn	Lys 15	Tyr
Ser	Thr	Ala	Phe 20	Gly	Arg	Ile	Trp	Le u 25	Ser	Leu	Val	Phe	Ile 30	Phe	Arg
Val	Leu	Val 35	Tyr	Leu	Val	Thr	Ala 40	Glu	Arg	V al	Trp	Ser 45	Asp	Asp	His

Lys	Asp 50	Phe	Asp	Суз	Asn	Thr 55	Arg	Gln	Pro	Gly	Cys 60	Ser	Asn	Val	Cys
Phe 65	Asp	Glu	Phe	Phe	Pro 70	Val	Ser	His	Val	Arg 75	Leu	Trp	Ala	Leu	Gln 80
Leu	Ile	Leu	Val	Thr 85	Cys	Pro	Ser	Leu	Leu 90	Val	Val	Met	His	Val 95	Ala
Tyr	Arg	Glu	Val 100	Gln	Glu	Lys	Arg	His 105	Arg	Glu	Ala	His	Gl y 110	Glu	Asn
Ser	G1y	Arg 115	Leu	Tyr	Leu	Asn	Pro 120	Gly	Lys	Lys	Arg	Gly 125	Gly	Leu	Trp
Trp	Thr 130	Tyr	Val	Cys	Ser	Leu 135	Val	Phe	Lys	Ala	Ser 140	Val	Asp	Ile	Ala
Phe 145	Leu	Tyr	Val	Phe	His 150	Ser	Phe	Tyr	Pro	Lys 155	Tyr	Ile	Leu	Pro	Pro 160
Val	Val	Lys	Cys	ніs 165	Ala	Asp	Pro	Cys	Pro 170	Asn	Ile	Val	Asp	Cys 175	Phe
Ile	Ser	Lys	Pro 180	Ser	Glu	Lys	Asn	Ile 185	Phe	Thr	Leu	Phe	Met 190	Val	Ala
Thr	Ala	Ala 195	Ile	Cys	Ile	Leu	Leu 200	Asn	Leu	Val	Glu	Leu 205	Ile	Tyr	Leu
Val	Ser 210	Lys	Arg	Cys	His	Glu 215	Cys	Leu	Ala	Ala	Arg 220	Lys	Ala	Gln	Ala
Met 225	Cys	Thr	Gly	His	His 230	Pro	His	Gly	Thr	Thr 235	Ser	Ser	Cys	Lys	Gln 240
Asp	Asp	Leu	Leu	Ser 245	Gly	Asp	Leu	Ile	Phe 250	Leu	Gly	Ser	Asp	Ser 255	His
Pro	Pro	Leu	Leu 260	Pro	Asp	Arg	Pro	Arg 265	Asp	His	Val	Lys	Lys 270	Thr	Ile
Leu															
<210 <211 <212 <213	> 294 > PR	Т	piens	3											

5

10

<220>

<221> misc_feature <223> Cx31.9 (NP_689343.3)

<400> 9															
		Glu	Trp	Ala 5	Phe	Leu	Gly	Ser	Leu 10	Leu	Asp	Ala	Val	Gln 15	Leu
Gln	Ser	Pro	Leu 20	Val	Gly	Arg	Leu	Trp 25	Leu	Val	Val	Met	Leu 30	Ile	Phe
Arg	Ile	Leu 35	Val	Leu	Ala	Thr	Val 40	Gly	Gly	Ala	Val	Phe 45	Glu	Asp	Glu
Gln	Glu 50	Glu	Phe	Val	Cys	Asn 55	Thr	Leu	Gln	Pro	Gly 60	Cys	Arg	Gln	Thr
Cys 65	Tyr	Asp	Arg	Ala	Phe 70	Pro	Val	Ser	His	Tyr 75	Arg	Phe	Trp	Leu	Phe 80
His	Ile	Leu	Leu	Leu 85	Ser	Ala	Pro	Pro	Val 90	Leu	Phe	Val	Val	Tyr 95	Ser
Met	His	Arg	Ala 100	Gly	Lys	Glu	Ala	Gly 105	Gly	Ala	Glu	Ala	Ala 110	Ala	Gln
Cys	Ala	Pro 115	Gly	Leu	Pro	Glu	Ala 120	Gln	Cys	Ala	Pro	Cys 125	Ala	Leu	Arg
Ala	Arg 130	Arg	Ala	Arg	Arg	Cys 135	Tyr	Leu	Leu	Ser	Val 140	Ala	Leu	Arg	Leu
Leu 145	Ala	Glu	Leu	Thr	Phe 150	Leu	Gly	Gly	Gln	Ala 155	Leu	Leu	Tyr	Gly	Phe 160
Arg	Val	Ala	Pro	His 165	Phe	Ala	Суз	Ala	Gly 170	Pro	Pro	Суз	Pro	His 175	Thr
Val	Asp	Cys	Phe 180	Val	Ser	Arg	Pro	Thr 185	Glu	Lys	Thr	Val	Phe 190	Val	Leu
Phe	Tyr	Phe 195	Ala	Val	Gly	Leu	Leu 200	Ser	Ala	Leu	Leu	Ser 205	Val	Ala	Glu

Asn Arg Cys Asn Arg Ala His Glu Glu Ala Gln Lys Leu Leu Pro Pro 230 235 Pro Pro Pro Pro Pro Pro Pro Ala Leu Pro Ser Arg Arg Pro Gly Pro Glu Pro Cys Ala Pro Pro Ala Tyr Ala His Pro Ala Pro Ala Ser Leu Arg Glu Cys Gly Ser Gly Arg Gly Lys Ala Ser Pro Ala Thr Gly 280 Arg Arg Asp Leu Ala Ile 290 <210> 10 <211> 283 <212> PRT <213> homo sapiens <220> <221> MISC_FEATURE <223> Cx32 (NP_000157.1) <400> 10 Met Asn Trp Thr Gly Leu Tyr Thr Leu Leu Ser Gly Val Asn Arg His Ser Thr Ala Ile Gly Arg Val Trp Leu Ser Val Ile Phe Ile Phe Arg Ile Met Val Leu Val Val Ala Ala Glu Ser Val Trp Gly Asp Glu Lys 40 Ser Ser Phe Ile Cys Asn Thr Leu Gln Pro Gly Cys Asn Ser Val Cys Tyr Asp Gln Phe Phe Pro Ile Ser His Val Arg Leu Trp Ser Leu Gln Leu Ile Leu Val Ser Thr Pro Ala Leu Leu Val Ala Met His Val Ala His Gln Gln His Ile Glu Lys Lys Met Leu Arg Leu Glu Gly His Gly

5

10

Leu Gly His Leu Leu Trp Lys Gly Arg Pro Arg Ala Gly Glu Arg Asp

	Asp	Pro	Leu 115	His	Leu	Glu	Glu	Val 120	Lys	Arg	His	Lys	Val 125	His	Ile	Sei
	Gly	Thr 130	Leu	Trp	Trp	Thr	Tyr 135	Val	Ile	Ser	Val	Val 140	Phe	Arg	Leu	Let
	Phe 145	Glu	Ala	Val	Phe	Met 150	Tyr	Val	Phe	Tyr	Leu 155	Leu	Tyr	Pro	Gly	Туг 160
	Ala	Met	Val	Arg	Leu 165	Val	Lys	Cys	Asp	Val 170	Tyr	Pro	Cys	Pro	Asn 175	Thi
	Val	Asp	Cys	Phe 180	Val	Ser	Arg	Pro	Thr 185	Glu	Lys	Thr	Val	Phe 190	Thr	Val
	Phe	Met	Leu 195	Ala	Ala	Ser	Gly	Ile 200	Cys	Ile	Ile	Leu	Asn 205	Val	Ala	Glu
	Val	Val 210	Tyr	Leu	Ile	Ile	Arg 215	Ala	Cys	Ala	Arg	Arg 220	Ala	Gln	Arg	Arç
	Ser 225	Asn	Pro	Pro	Ser	Arg 230	Lys	Gly	Ser	Gly	Phe 235	Gly	His	Arg	Leu	Ser 240
	Pro	Glu	Tyr	Lys	Gln 245	Asn	Glu	Ile	Asn	Lys 250	Leu	Leu	Ser	Glu	Gln 255	Asp
	Gly	Ser	Leu	Lys 260	Asp	Ile	Leu	Arg	Arg 265	Ser	Pro	Gly	Thr	Gly 270	Ala	Gl
	Leu	Ala	Glu 275	Lys	Ser	Asp	Arg	Cys 280	Ser	Ala	Суѕ					
	<210> 11 <211> 321 <212> PRT <213> homo sapiens															
<220> <221> MISC_FEATURE <223> Cx36 (NP_065711.1)																
	<400 Met 1	> 11 Gly	Glu	Trp	Thr 5	Ile	Leu	Glu	Arg	Leu 10	Leu	Glu	Ala	Ala	Val 1 5	Glr
	Gln	His	Ser	Thr 20	Met	Ile	Gly	Arg	Ile 25	Leu	Leu	Thr	Val	Val 30	Val	Ile

Phe	Arg	Ile 35	Leu	Ile	Val	Ala	Ile 40	Val	Gly	Glu	Thr	Val 45	Tyr	Asp	Asp
Glu	Gln 50	Thr	Met	Phe	Val	Cys 55	Asn	Thr	Leu	Gln	Pro 60	Gly	Cys	Asn	Gln
Ala 65	Cys	Tyr	Asp	Arg	Ala 70	Phe	Pro	Ile	Ser	His 75	Ile	Arg	Tyr	Trp	Val 80
Phe	Gln	Ile	Ile	Met 85	Val	Cys	Thr	Pro	Ser 90	Leu	Cys	Phe	Ile	Thr 95	Tyr
Ser	Val	His	Gln 100	Ser	Ala	Lys	Gln	Arg 105	Glu	Arg	Arg	Tyr	Ser 110	Thr	Val
Phe	Leu	Ala 115	Leu	Asp	Arg	Asp	Pro 120	Pro	Glu	Ser	Ile	Gly 125	Gly	Pro	Gly
Gly	Thr 130	Gly	Gly	Gly	Gly	Ser 135	Gly	Gly	Gly	Lys	Arg 140	Glu	Asp	Lys	Lys
Leu 145	Gln	Asn	Ala	Ile	Val 150	Asn	Gly	Val	Leu	Gln 155	Asn	Thr	Glu	Asn	Thr 160
Ser	Lys	Glu	Thr	Glu 165	Pro	Asp	Cys	Leu	Glu 17 0	Val	Lys	Glu	Leu	Thr 175	Pro
His	Pro	Ser	Gly 180	Leu	Arg	Thr	Ala	Ser 185	Lys	Ser	Lys	Leu	Arg 190	Arg	Gln
Glu	Gly	Ile 195	Ser	Arg	Phe	Tyr	Ile 200	Ile	Gln	Val	Val	Phe 205	Arg	Asn	Ala
Leu	Glu 210	Ile	Gly	Phe	Leu	Val 215	Gly	Gln	Tyr	Phe	Leu 220	Tyr	Gly	Phe	Ser
Val 225	Pro	Gly	Leu	Tyr	Glu 230	Cys	Asn	Arg	Tyr	Pro 235	Cys	Ile	Lys	Glu	Val 240
Glu	Cys	Tyr	Val	Ser 245	Arg	Pro	Thr	Glu	Lys 250	Thr	Val	Phe	Leu	Val 255	Phe
Met	Phe	Ala	Val 260	Ser	Gly	Ile	Cys	Val 265	Val	Leu	Asn	Leu	Ala 270	Glu	Leu

Asn His Leu Gly Trp Arg Lys Ile Lys Leu Ala Val Arg Gly Ala Gln

		2/5					280					285			
Ala	Lys 290	Arg	Lys	Ser	Ile	Tyr 295	Glu	Ile	Arg	Asn	Lys 300	Asp	Leu	Pro	Arg
Val 305	Ser	Val	Pro	Asn	Phe 310	Gly	Arg	Thr	Gln	Ser 315	Ser	Asp	Ser	Ala	Tyr 320
Val <210 <211 <212 <213	> 333 > PR	Т	piens	S.											
<220 <221 <223	> MIS	_		JRE 2051.	2)										
<400 Met 1		Asp	Trp	Gly 5	Phe	Leu	Glu	Lys	Leu 10	Leu	Asp	Gln	Val	Gln 15	Glu
His	Ser	Thr	Val 20	Val	Gly	Lys	Ile	Trp 25	Leu	Thr	Val	Leu	Phe 30	Ile	Phe
Arg	Ile	Leu 35	Ile	Leu	Gly	Leu	Ala 40	Gly	Glu	Ser	Val	Trp 45	Gly	Asp	Glu
Gln	Ser 50	Asp	Phe	Glu	Cys	Asn 55	Thr	Ala	Gln	Pro	Gly 60	Cys	Thr	Asn	Val
Cys 65	Tyr	Asp	Gln	Ala	Phe 70	Pro	Ile	Ser	His	Ile 75	Arg	Tyr	Trp	Val	Leu 80
Gln	Phe	Leu	Phe	Val 85	Ser	Thr	Pro	Thr	Leu 90	Val	Tyr	Leu	Gly	His 95	Val
Ile	Tyr	Leu	Ser 100	Arg	Arg	Glu	Glu	Arg 105	Leu	Arg	Gln	Lys	Glu 110	Gly	Glu
Leu	Arg	Ala 115	Leu	Pro	Ala	Lys	Asp 120	Pro	Gln	Val	Glu	Arg 125	Ala	Leu	Ala
Ala	Val 130	Glu	Arg	Gln	Met	Ala 135	Lys	Ile	Ser	Val	Ala 140	Glu	Asp	Gly	Arg

	Le u 145	Arg	Ile	Arg	Gly	Ala 150	Leu	Met	Gly	Thr	Tyr 155	Val	Ala	Ser	Val	Leu 160
	Cys	Lys	Ser	Val	Leu 165	Glu	Ala	Gly	Phe	Leu 170	Tyr	Gly	Gln	Trp	Arg 175	Leu
	Tyr	Gly	Trp	Thr 180	Met	Glu	Pro	Val	Phe 185	Val	Суѕ	Gln	Arg	Ala 190	Pro	Суз
	Pro	Tyr	Leu 195	Val	Asp	Cys	Phe	Val 200	Ser	Arg	Pro	Thr	Glu 205	Lys	Thr	Ile
	Phe	Ile 210	Ile	Phe	Met	Leu	Val 215	Val	Gly	Leu	Ile	Ser 220	Leu	Val	Leu	Asn
	Leu 225	Leu	Glu	Leu	Val	His 230	Leu	Leu	Cys	Arg	Cys 235	Leu	Ser	Arg	Gly	Met 240
	Arg	Ala	Arg	Gln	Gly 245	Gln	Asp	Ala	Pro	Pro 250	Thr	Gln	Gly	Thr	Ser 255	Ser
	Asp	Pro	Tyr	Thr 260	Asp	Gln	Val	Phe	Phe 265	Tyr	Leu	Pro	Val	Gly 270	Gln	Gly
	Pro	Ser	Ser 275	Pro	Pro	Cys	Pro	Thr 280	Tyr	Asn	Gly	Leu	Ser 285	Ser	Ser	Glu
	Gln	Asn 290	Trp	Ala	Asn	Leu	Thr 295	Thr	Glu	Glu	Arg	Leu 300	Ala	Ser	Ser	Arg
	Pro 305	Pro	Leu	Phe	Leu	Asp 310	Pro	Pro	Pro	Gln	Asn 315	Gly	Gln	Lys	Pro	Pro 320
	Ser	Arg	Pro	Ser	Ser 325	Ser	Ala	Ser	Lys	Lys 330	Gln	Tyr	Val			
5	<212	> 13 > 358 > PR > hor	Т	piens	3											
10		> > MIS > Cx4)										
15	<400 Met 1	> 13 Gly	Asp	Trp	Ser 5	Phe	Leu	Gly	Asn	Phe 10	Leu	Glu	Glu	Val	H is 15	Lys

His	Ser	Thr	Val 20	Val	Gly	Lys	Val	Trp 25	Leu	Thr	Val	Leu	Phe 30	Ile	Phe
Arg	Met	Leu 35	Val	Leu	Gly	Thr	Ala 40	Ala	Glu	Ser	Ser	Trp 45	Gly	Asp	Glu
Gln	Al a 50	Asp	Phe	Arg	Cys	Asp 55	Thr	Ile	Gln	Pro	Gly 60	Cys	Gln	Asn	Val
Cys 65	Tyr	Asp	Gln	Ala	Phe 70	Pro	Ile	Ser	His	Ile 75	Arg	Tyr	Trp	Val	Leu 80
Gln	Ile	Ile	Phe	Val 85	Ser	Thr	Pro	Ser	Leu 90	Val	Tyr	Met	Gly	ні s 95	Ala
Met	His	Thr	Val 100	Arg	Met	Gln	Glu	Lys 105	Arg	Lys	Leu	Arg	Glu 110	Ala	Glu
Arg	Ala	L y s 115	Glu	Val	Arg	Gly	Ser 120	Gly	Ser	Tyr	Glu	Tyr 125	Pro	Val	Ala
Glu	Lys 130	Ala	Glu	Leu	Ser	C ys 135	Trp	Glu	Glu	Gly	Asn 140	Gly	Arg	Ile	Ala
Leu 145	Gln	Gly	Thr	Leu	Leu 150	Asn	Thr	Tyr	Val	Суз 155	Ser	Ile	Leu	Ile	Arg
Thr	Thr	Met	Glu	Val 165	Gly	Phe	Ile	Val	Gly 170	Gln	Tyr	Phe	Ile	Tyr 175	G1y
Ile	Phe	Leu	Thr 180	Thr	Leu	His	Val	Cys 185	Arg	Arg	Ser	Pro	Cys 190	Pro	His
Pro	Val	Asn 195	Cys	Tyr	Val	Ser	Arg 200	Pro	Thr	Glu	Lys	Asn 205	Val	Phe	Ile
Val	Phe 210	Met	Leu	Ala	Val	Ala 215	Ala	Leu	Ser	Leu	Leu 220	Leu	Ser	Leu	Ala
G1u 225	Leu	Tyr	His	Leu	Gly 230	Trp	Lys	Lys	Ile	Arg 235	Gln	Arg	Phe	Val	Lys 240

Pro Arg Gln His Met Ala Lys Cys Gln Leu Ser Gly Pro Ser Val Gly 245 250 250

Ile Val Gln Ser Cys Thr Pro Pro Pro Asp Phe Asn Gln Cys Leu Glu 260 265 270

Asn Gly Pro Gly Gly Lys Phe Phe Asn Pro Phe Ser Asn Asn Met Ala 280 Ser Gln Gln Asn Thr Asp Asn Leu Val Thr Glu Gln Val Arg Gly Gln 295 Glu Gln Thr Pro Gly Glu Gly Phe Ile Gln Val Arg Tyr Gly Gln Lys 310 315 Pro Glu Val Pro Asn Gly Val Ser Pro Gly His Arg Leu Pro His Gly Tyr His Ser Asp Lys Arg Arg Leu Ser Lys Ala Ser Ser Lys Ala Arg 345 Ser Asp Asp Leu Ser Val 355 <210> 14 <211> 370 <212> PRT <213> homo sapiens <220> <221> misc feature <223> Cx40.1 (NP_699199.2) <400> 14 Met Glu Gly Val Asp Leu Leu Gly Phe Leu Ile Ile Thr Leu Asn Cys Asn Val Thr Met Val Gly Lys Leu Trp Phe Val Leu Thr Met Leu Leu Arg Met Leu Val Ile Val Leu Ala Gly Arg Pro Val Tyr Gln Asp Glu Gln Glu Arg Phe Val Cys Asn Thr Leu Gln Pro Gly Cys Ala Asn Val Cys Tyr Asp Val Phe Ser Pro Val Ser His Leu Arg Phe Trp Leu Ile 70

5

10

Leu His Arg Gly Ala Thr Leu Ala Ala Leu Gly Pro Arg Arg Cys Pro

Gln Gly Val Cys Val Leu Leu Pro Ser Ala Val Phe Ser Val Tyr Val

			100					105					110		
Asp	Pro	Arg 115	Glu	Pro	Ala	Ser	Gly 120	Gln	Arg	Arg	Cys	Pro 125	Arg	Pro	Phe
Gly	Glu 130	Arg	Gly	Gly	Leu	Gln 135	Val	Pro	Asp	Phe	Ser 140	Ala	Gly	Tyr	Ile
Ile 145	His	Leu	Leu	Leu	Ar g 150	Thr	Leu	Leu	Glu	Ala 155	Ala	Phe	Gly	Ala	Leu 160
His	Tyr	Phe	Leu	Phe 165	Gly	Phe	Leu	Ala	Pro 170	Lys	Lys	Phe	Pro	Cys 175	Thr
Arg	Pro	Pro	Cys 180	Thr	Gly	Val	Val	As p 185	Cys	Tyr	Val	Ser	Arg 190	Pro	Thr
Glu	Lys	Ser 195	Leu	Leu	Met	Leu	Phe 200	Leu	Trp	Ala	Val	Ser 205	Ala	Leu	Ser
Phe	Leu 210	Leu	Gly	Leu	Ala	Asp 215	Leu	Val	Cys	Ser	Leu 220	Arg	Arg	Arg	Met
Arg 225	Arg	Arg	Pro	Gly	Pro 230	Pro	Thr	Ser	Pro	Ser 235	Ile	Arg	Lys	Gln	Ser 240
Gly	Ala	Ser	Gly	His 245	Ala	Glu	Gly	Arg	Arg 250	Thr	Asp	Glu	Glu	Gly 255	Gly
Arg	Glu	Glu	Glu 260	Gly	Ala	Pro	Ala	Pro 265	Pro	Gly	Ala	Arg	Ala 270	Gly	Gly
Glu	Gly	Ala 275	Gly	Ser	Pro	Arg	Arg 280	Thr	Ser	Arg	Val	Ser 285	Gly	His	Thr
Lys	Ile 290	Pro	Asp	Glu	Asp	G1u 295	Ser	Glu	Val	Thr	Ser 300	Ser	Ala	Ser	Glu
Lys 305	Leu	Gly	Arg	Gln	Pro 310	Arg	Gly	Arg	Pro	His 315	Arg	Gl u	Ala	Ala	Gln 320
Asp	Pro	Arg	Gly	Ser 325	Gly	Ser	Glu	Glu	Gln 330	Pro	Ser	Ala	Ala	Pro 335	Ser
Arg	Leu	Ala	Ala 340	Pro	Pro	Ser	Cys	Ser 345	Ser	Leu	Gln	Pro	Pro 350	Asp	Pro
Pro	Ala	Ser 355	Ser	Ser	Gly	Ala	Pro 360	His	Leu	Arg	Ala	365	-	Ser	Glu
Trp	Val 370														
<210 <211	-	2													

		> PR > hor		piens	;											
5	<220 <221 <223	> MIS	_			.1)										
	<400 Met 1		Asp	Trp	Ser 5	Ala	Leu	Gly	Lys	Leu 10	Leu	Asp	Lys	Val	Gln 15	Ala
	Tyr	Ser	Thr	Ala 20	Gly	Gly	Lys	Val	Trp 25	Leu	Ser	Val	Leu	Phe 30	Ile	Phe
	Arg	Ile	Leu 35	Leu	Leu	Gly	Thr	Ala 40	Val	Glu	Ser	Ala	Trp 45	Gly	Asp	Glu
	Gln	Ser 50	Ala	Phe	Arg	Cys	Asn 55	Thr	Gln	Gln	Pro	Gly 60	Cys	Glu	Asn	Val
	Cys 65	Tyr	Asp	Lys	Ser	Phe 70	Pro	Ile	Ser	His	Val 75	Arg	Phe	Trp	Val	Leu 80
	Gln	Ile	Ile	Phe	Val 85	Ser	Val	Pro	Thr	Leu 90	Leu	Tyr	Leu	Ala	His 95	Val
	Phe	Tyr	Val	Met 100	Arg	Lys	Glu	Glu	Lys 105	Leu	Asn	Lys	Lys	Glu 110	Glu	Glu
	Leu	Lys	Val 115	Ala	Gln	Thr	Asp	Gly 120	Val	Asn	Val	Asp	Met 125	His	Leu	Lys
	Gln	Ile 130	Glu	Ile	Lys	Lys	Phe 135	Lys	Tyr	Gly	Ile	Glu 140	Glu	His	Gly	Lys
	Val 145	Lys	Met	Arg	Gly	Gly 150	Leu	Leu	Arg	Thr	Tyr 155	Ile	Ile	Ser	Ile	Leu 160

Phe Lys Ser Ile Phe Glu Val Ala Phe Leu Leu Ile Gln Trp Tyr Ile 165 $$ 170 $$ 175 $$

Tyr	Gly	Phe	Ser 180	Leu	Ser	Ala	Val	Tyr 185	Thr	Cys	Lys	Arg	Asp 190	Pro	Cys
Pro	His	Gln 195	Val	Asp	Cys	Phe	Leu 200	Ser	Arg	Pro	Thr	Glu 205	Lys	Thr	Ile
Phe	Ile 210	Ile	Phe	Met	Leu	Val 215	Val	Ser	Leu	Val	Ser 220	Leu	Ala	Leu	Asn
Ile 225	Ile	Glu	Leu	Phe	Tyr 230	Val	Phe	Phe	Lys	Gly 235	Val	Lys	Asp	Arg	Val 240
Lys	Gly	Lys	Ser	Asp 245	Pro	Tyr	His	Ala	Thr 250	Ser	Gly	Ala	Leu	Ser 255	Pro
Ala	Lys	Asp	Cys 260	Gly	Ser	Gln	Lys	Tyr 265	Ala	Tyr	Phe	Asn	Gly 270	Cys	Ser
Ser	Pro	Thr 275	Ala	Pro	Leu	Ser	Pro 280	Met	Ser	Pro	Pro	Gly 285	Tyr	Lys	Leu
Val	Thr 290	Gly	Asp	Arg	Asn	Asn 295	Ser	Ser	Cys	Arg	Asn 300	Tyr	Asn	Lys	Gln
Ala 305	Ser	Glu	Gln	Asn	Trp 310	Ala	Asn	Tyr	Ser	Ala 315	Glu	Gln	Asn	Arg	Met 320
Gly	Gln	Ala	Gly	Ser 325	Thr	Ile	Ser	Asn	Ser 330	His	Ala	Gln	Pro	Phe 335	Asp
Phe	Pro	Asp	Asp 340	Asn	Gln	Asn	Ser	Lys 345	Lys	Leu	Ala	Ala	Gl y 350	His	Glu
Leu	G1n	Pro 355	Leu	Ala	Ile	Val	Asp 360	Gln	Arg	Pro	Ser	Ser 365	Arg	Ala	Ser
Ser	A rg 370	Ala	Ser	Ser	Arg	Pro 375	Arg	Pro	Asp	Asp	Leu 380	Glu	Ile		
<210 <211 <212 <213	> 396 > PR	Т	piens	;											
<220 <221	> MIS	_			852 1	١									

<400	> 16														
		Trp	Ser	Phe 5	Leu	Thr	Arg	Leu	Leu 10	Glu	Glu	Ile	His	Asn 15	His
Ser	Thr	Phe	Val 20	Gly	Lys	Ile	Trp	Leu 25	Thr	Val	Leu	Ile	Val 30	Phe	Arg
Ile	Val	Leu 35	Thr	Ala	Val	Gly	Gly 40	Glu	Ser	Ile	Tyr	Tyr 45	Asp	Glu	Gln
Ser	Lys 50	Phe	Val	Cys	Asn	Thr 55	Glu	Gln	Pro	Gly	Cys 60	Glu	Asn	Val	Cys
Tyr 65	Asp	Ala	Phe	Ala	Pro 70	Leu	Ser	His	Val	Arg 75	Phe	Trp	Val	Phe	Gln 80
Ile	Ile	Leu	Val	Ala 85	Thr	Pro	Ser	Val	Met 90	Tyr	Leu	Gly	Tyr	Ala 95	Ile
His	Lys	Ile	Ala 100	Lys	Met	Glu	His	Gly 105	Glu	Ala	Asp	Lys	Lys 110	Ala	Ala
Arg	Ser	Lys 115	Pro	Tyr	Ala	Met	Arg 120	Trp	Lys	Gln	His	Arg 125	Ala	Leu	Glu
Glu	Thr 130	Glu	Glu	Asp	Asn	Glu 135	Glu	Asp	Pro	Met	Met 140	Tyr	Pro	Glu	Met
Glu 145	Leu	Glu	Ser	Asp	Lys 150	Gl u	Asn	Lys	Glu	Gln 155	Ser	Gln	Pro	Lys	Pro 160
Lys	His	Asp	Gly	Arg 165	Arg	Arg	Ile	Arg	Glu 170	Asp	Gly	Leu	Met	Lys 175	Ile
Tyr	Val	Leu	Gln 180	Leu	Leu	Ala	Arg	Thr 185	Val	Phe	Glu	Val	Gly 190	Phe	Leu
Ile	Gly	Gln 195	Tyr	Phe	Leu	Tyr	Gly 200	Phe	Gln	Val	His	Pro 205	Phe	Tyr	Val
Cys	Ser 210	Arg	Leu	Pro	Cys	Pro 215	His	Lys	Ile	Asp	Cys 220	Phe	Ile	Ser	Arg
Pro 225	Thr	Glu	Lys	Thr	Ile 230	Phe	Leu	Leu	Ile	Met 235	Tyr	Gly	Val	Thr	Gly 240
Leu	Cvs	Leu	Leu	Leu	Asn	Ile	Trp	Glu	Met.	Leu	His	Leu	Glv	Phe	Glv

				245					250					255	
Thr	Ile	Arg	Asp 260	Ser	Leu	Asn	Ser	Lys 265	Arg	Arg	Glu	Leu	G1u 270	Asp	Pro
Gly	Ala	Tyr 275	Asn	Tyr	Pro	Phe	Thr 280	Trp	Asn	Thr	Pro	Ser 285	Ala	Pro	Pro
Gly	Tyr 290	Asn	Ile	Ala	Val	Lys 295	Pro	Asp	Gln	Ile	Gln 300	Tyr	Thr	Glu	Leu
Ser 305	Asn	Ala	Lys	Ile	Ala 310	Tyr	Lys	Gln	Asn	Lys 315	Ala	Asn	Thr	Ala	Gln 320
Glu	Gln	Gln	Tyr	Gly 325	Ser	His	Glu	Glu	Asn 330	Leu	Pro	Ala	Asp	Leu 335	Glu
Ala	Leu	Gln	Arg 340	Glu	Ile	Arg	Met	Ala 345	Gln	Glu	Arg	Leu	Asp 350	Leu	Ala
Val	Gln	Ala 355	Tyr	Ser	His	Gln	Asn 360	Asn	Pro	His	Gly	Pro 365	Arg	Glu	Lys
Lys	Ala 370	Lys	Val	Gly	Ser	Lys 375	Ala	Gly	Ser	Asn	Lys 380	Ser	Thr	Ala	Ser
Ser 385	Lys	Ser	Gly	Asp	Gly 390	Lys	Thr	Ser	Val	Trp 395	Ile				
<21 ²	0> 17 1> 435 2> PR 3> hor	Т	piens	;											
)> I> MIS B> Cx4	_			.2)										
)> 17 Gly	Asp	Trp	Ser 5	Phe	Leu	Gly	Arg	Leu 10	Leu	Glu	Asn	Ala	Gln 15	Glu
His	Ser	Thr	Val 20	Ile	Gly	Lys	Val	Trp 25	Leu	Thr	Val	Leu	Phe 30	Ile	Phe
Arg	Ile	Leu 35	Val	Leu	Gly	Ala	Ala 40	Ala	Glu	Asp	Val	Trp 45	Gly	Asp	Glu

G	ln	Ser 50	Asp	Phe	Thr	Cys	Asn 55	Thr	Gln	Gln	Pro	Gly 60	Cys	Glu	Asn	Val
	ys 5	Tyr	Asp	Arg	Ala	Phe 70	Pro	Ile	Ser	His	Ile 75	Arg	Phe	Trp	Ala	Leu 80
G	ln	Ile	Ile	Phe	Val 85	Ser	Thr	Pro	Thr	Leu 90	Ile	Tyr	Leu	Gly	His 95	Val
Ι	eu	His	Ile	Val 100	Arg	Met	G1u	Glu	Lys 105	Lys	Lys	Glu	Arg	Glu 110	Glu	Glu
G	lu	Gln	Leu 115	Lys	Arg	Glu	Ser	Pro 120	Ser	Pro	Lys	Glu	Pro 125	Pro	Gln	Asp
A	sn	Pro 130	Ser	Ser	Arg	Asp	Asp 135	Arg	Gly	Arg	Val	Arg 1 4 0	Met	Ala	Gly	Ala
	eu 45	Leu	Arg	Thr	Tyr	Val 150	Phe	Asn	Ile	Ile	Phe 155	Lys	Thr	Leu	Phe	Glu 160
V	'al	Gly	Phe	Ile	Ala 165	Gly	Gln	Tyr	Phe	Leu 170	Tyr	Gly	Phe	Glu	Leu 175	Lys
P	ro	Leu	Tyr	Arg 180	Суз	Asp	Arg	Trp	Pro 185	Суз	Pro	Asn	Thr	Val 190	Asp	Cys
P	he	Ile	Se r 195	Arg	Pro	Thr	G1u	Lys 200	Thr	Ile	Phe	Ile	11e 205	Phe	Met	Leu
A	la	Val 210	Ala	Cys	Ala	Ser	Leu 215	Leu	Leu	Asn	Met	Leu 220	Glu	Ile	Tyr	His
	eu !25	Gly	Trp	Lys	Lys	Leu 230	Lys	Gln	Gly	Val	Thr 235	Ser	Arg	Leu	Gly	Pro 240
A	qa	Ala	Ser	Glu	Ala 245	Pro	Leu	Gly	Thr	Ala 250	Asp	Pro	Pro	Pro	Leu 255	Pro
P	ro	Ser	Ser	Arg 260	Pro	Pro	Ala	Val	Ala 265	Ile	Gly	Phe	Pro	Pro 270	Tyr	Tyr
A	la	His	Thr 275	Ala	Ala	Pro	Leu	Gly 280	Gl n	Ala	Arg	Ala	Val 285	Gly	Tyr	Pro
G	lу	Ala 290	Pro	Pro	Pro	Ala	Ala 295	Asp	Phe	Lys	Leu	Leu 300	Ala	Leu	Thr	Glu

Ala Arg Gly Lys Gly Gln Ser Ala Lys Leu Tyr Asn Gly His His His 310 Leu Leu Met Thr Glu Gln Asn Trp Ala Asn Gln Ala Ala Glu Arg Gln 330 Pro Pro Ala Leu Lys Ala Tyr Pro Ala Ala Ser Thr Pro Ala Ala Pro 345 Ser Pro Val Gly Ser Ser Pro Pro Leu Ala His Glu Ala Glu Ala Gly Ala Ala Pro Leu Leu Leu Asp Gly Ser Gly Ser Ser Leu Glu Gly 375 Ser Ala Leu Ala Gly Thr Pro Glu Glu Glu Glu Gln Ala Val Thr Thr Ala Ala Gln Met His Gln Pro Pro Leu Pro Leu Gly Asp Pro Gly Arg 405 410 Ala Ser Lys Ala Ser Arg Ala Ser Ser Gly Arg Ala Arg Pro Glu Asp 425 Leu Ala Ile <210> 18 <211> 439 <212> PRT <213> homo sapiens <220> <221> MISC FEATURE <223> Cx47 (NP_065168.2) Met Thr Asn Met Ser Trp Ser Phe Leu Thr Arg Leu Leu Glu Glu Ile 10 His Asn His Ser Thr Phe Val Gly Lys Val Trp Leu Thr Val Leu Val 25 Val Phe Arg Ile Val Leu Thr Ala Val Gly Glu Ala Ile Tyr Ser Asp Glu Gln Ala Lys Phe Thr Cys Asn Thr Arg Gln Pro Gly Cys Asp

55

Asn 65	Val	Суѕ	Tyr	Asp	Ala 70	Phe	Ala	Pro	Leu	Ser 75	His	Val	Arg	Phe	Trp 80
Val	Phe	Gln	Ile	Val 85	Val	Ile	Ser	Thr	Pro 90	Ser	Val	Met	Tyr	Leu 95	Gly
Tyr	Ala	Val	His 100	Arg	Leu	Ala	Arg	Ala 105	Ser	Glu	Gln	Glu	Arg 110	Arg	Arg
Ala	Leu	Arg 11 5	Arg	Arg	Pro	Gly	Pro 120	Arg	Arg	Ala	Pro	Arg 125	Ala	His	Leu
Pro	Pro 130	Pro	His	Ala	Gly	Trp 135	Pro	Glu	Pro	Ala	Asp 140	Leu	Gly	Glu	Glu
Glu 145	Pro	Met	Leu	Gly	Leu 150	Gly	Glu	Glu	Glu	Glu 155	Glu	Glu	Glu	Thr	Gly 160
Ala	Ala	Glu	Gly	Ala 165	Gly	Glu	Glu	Ala	Glu 170	Glu	Ala	Gly	Ala	Glu 175	Glu
Ala	Суз	Thr	Lys 180	Ala	Val	Gly	Ala	Asp 185	Gly	Lys	Ala	Ala	Gly 190	Thr	Pro
Gly	Pro	Thr 195	Gly	Gln	His	Asp	Gly 200	Arg	Arg	Arg	Ile	Gln 205	Arg	Glu	Gly
Leu	Met 210	Arg	Val	Tyr	Val	Ala 215	Gln	Leu	Val	Ala	Arg 220	Ala	Ala	Phe	Glu
Val 225	Ala	Phe	Leu	Val	Gly 230	Gln	Tyr	Leu	Leu	Tyr 235	Gly	Phe	Glu	Val	Arg 240
Pro	Phe	Phe	Pro	Cys 245	Ser	Arg	Gln	Pro	Cys 250	Pro	His	Val	Val	Asp 255	Cys
Phe	Val	Ser	Arg 260	Pro	Thr	Glu	Lys	Thr 265	Val	Phe	Leu	Leu	Val 270	Met	Tyr
		275	Cys		-		280				-	285			
	290		Gly			295					300				
Pro	Ala	Ser	Ala	Pro	Ala	Pro	Ala	Pro	Arg	Pro	Pro	Pro	Cys	Ala	Phe

315

320

Pro Ala Ala Ala Gly Leu Ala Cys Pro Pro Asp Tyr Ser Leu Val 330 Val Arg Ala Ala Glu Arg Ala Arg Ala His Asp Gln Asn Leu Ala Asn Leu Ala Leu Gln Ala Leu Arg Asp Gly Ala Ala Ala Gly Asp Arg Asp 360 Arg Asp Ser Ser Pro Cys Val Gly Leu Pro Ala Ala Ser Arg Gly Pro Pro Arg Ala Gly Ala Pro Ala Ser Arg Thr Gly Ser Ala Thr Ser Ala 390 395 Gly Thr Val Gly Glu Gln Gly Arg Pro Gly Thr His Glu Arg Pro Gly Ala Lys Pro Arg Ala Gly Ser Glu Lys Gly Ser Ala Ser Ser Arg Asp Gly Lys Thr Thr Val Trp Ile 435 <210> 19 <211> 433 <212> PRT <213> homo sapiens <220> <221> MISC FEATURE <223> Cx50 (NP 005258.2) <400> 19 Met Gly Asp Trp Ser Phe Leu Gly Asn Ile Leu Glu Glu Val Asn Glu His Ser Thr Val Ile Gly Arg Val Trp Leu Thr Val Leu Phe Ile Phe 25 Arg Ile Leu Ile Leu Gly Thr Ala Ala Glu Phe Val Trp Gly Asp Glu 40 Gln Ser Asp Phe Val Cys Asn Thr Gln Gln Pro Gly Cys Glu Asn Val

310

305

5

Cys 65	Tyr	Asp	Glu	Ala	Phe 70	Pro	Ile	Ser	His	Ile 75	Arg	Leu	Trp	Val	Leu 80
Gln	Ile	Ile	Phe	Val 85	Ser	Thr	Pro	Ser	Leu 90	Met	Tyr	Val	Gly	His 95	Ala
Val	His	Tyr	Val 100	Arg	Met	Glu	Glu	Lys 105	Arg	Lys	Ser	Arg	Glu 110	Ala	Glu
Glu	Leu	Gly 115	Gln	Gln	Ala	G1y	Thr 120	Asn	Gly	Gly	Pro	Asp 125	Gln	Gly	Ser
Val	Lys 130	Lys	Ser	Ser	Gly	Ser 135	Lys	Gly	Thr	Lys	Lys 140	Phe	Arg	Leu	Glu
Gly 145	Thr	Leu	Leu	Arg	Thr 150	Tyr	Ile	Cys	His	Ile 155	Ile	Phe	Lys	Thr	Leu 160
Phe	Glu	Val	Gly	Phe 165	Ile	Val	Gly	His	Tyr 170	Phe	Leu	Tyr	Gly	Phe 175	Arg
Ile	Leu	Pro	Leu 180	Tyr	Arg	Суз	Ser	A rg 185	Trp	Pro	Cys	Pro	Asn 190	Val	Val
Asp	Суз	Phe 195	Val	Ser	Arg	Pro	Thr 200	Glu	Lys	Thr	Ile	Phe 205	Ile	Leu	Phe
Met	Leu 210	Ser	Val	Ala	Ser	Val 215	Ser	Leu	Phe	Leu	Asn 220	Val	Met	Glu	Leu
Gly 225	His	Leu	Gly	Leu	Lys 230	Gly	Ile	Arg	Ser	Ala 235	Leu	Lys	Arg	Pro	Val 240
Glu	Gln	Pro	Leu	Gly 2 4 5	Glu	Ile	Pro	Glu	Lys 250	Ser	Leu	His	Ser	Ile 255	Ala
Val	Ser	Ser	Ile 260	Gln	Lys	Ala	Lys	Gly 265	Tyr	Gln	Leu	Leu	Glu 270	Glu	Glu
Lys	Ile	Val 275	Ser	His	Tyr	Phe	Pro 280	Leu	Thr	G1u	Val	Gly 285	Met	Val	Glu
Thr	Ser 290	Pro	Leu	Pro	Ala	Lys 295	Pro	Phe	Asn	Gln	Phe 300	Glu	Glu	Lys	Ile
Ser 305	Thr	Gly	Pro	Leu	Gly 310	Asp	Leu	Ser	Arg	Gly 315	Tyr	Gln	Glu	Thr	Leu 320

PIO	ser	TYL	AIA	325	vai	GIY	ALG	GIII	330	Vai	GIU	GIY	GIU	335	FIO
Pro	Ala	Glu	Glu 340	Gly	Ala	Glu	Pro	Glu 3 4 5	Val	Gly	Glu	Lys	Lys 350	Glu	Glu
Ala	Glu	Arg 355	Leu	Thr	Thr	Glu	Glu 360	Gln	Glu	Lys	Val	Ala 365	Val	Pro	Glu
Gly	Glu 370	Lys	Val	Glu	Thr	Pro 375	Gly	Val	Asp	Lys	Glu 380	Gly	Glu	Lys	Glu
Glu 385	Pro	Gln	Ser	Glu	Lys 390	Val	Ser	Lys	Gln	Gly 395	Leu	Pro	Ala	Glu	Lys 400
Thr	Pro	Ser	Leu	Cys 405	Pro	Glu	Leu	Thr	Thr 410	Asp	Asp	Ala	Arg	Pro 415	Leu
Ser	Arg	Leu	Ser 420	Lys	Ala	Ser	Ser	Arg 425	Ala	Arg	Ser	Asp	Asp 430	Leu	Thr
Val															
<212	> 20 > 515 > PR > hor	Т	piens	i.											
	> > MIS > Cx	_			2)										
<400 Met 1	> 20 Gly	Asp	Trp	Asn 5	Leu	Leu	Gly	Asp	Thr 10	Leu	Glu	Glu	Val	His 15	Ile
His	Ser	Thr	Met 20	Ile	Gly	Lys	Ile	Trp 25	Leu	Thr	Ile	Leu	Phe 30	Ile	Phe
Arg	Met	Leu 35	Val	Leu	Gly	Val	Ala 40	Ala	Glu	Asp	Val	Trp 45	Asn	Asp	Glu
Gln	Ser 50	Gly	Phe	Ile	Cys	Asn 55	Thr	Glu	Gln	Pro	Gly 60	Cys	Arg	Asn	Val

Gln	Val	Ile	Phe	Val 85	Ser	Ser	Pro	Ser	Leu 90	Val	Tyr	Met	Gly	His 95	Ala
Leu	Tyr	Arg	Leu 100	Arg	Val	Leu	Glu	G1u 105	Glu	Arg	Gln	Arg	Met 110	Lys	Ala
Gln	Leu	Arg 115	Val	Glu	Leu	G1u	Glu 120	Val	Glu	Phe	Glu	Met 125	Pro	Arg	Asp
Arg	Arg 130	Arg	Leu	Glu	Gln	Glu 135	Leu	Суз	Gln	Leu	Glu 140	Lys	Arg	Lys	Leu
Asn 145	Lys	Ala	Pro	Leu	Arg 150	Gly	Thr	Leu	Leu	Cys 155	Thr	Tyr	Val	Ile	His 160
Ile	Phe	Thr	Arg	Ser 165	Val	Val	Glu	Val	Gly 170	Phe	Met	Ile	Gly	Gln 175	Tyr
Leu	Leu	Tyr	Gly 180	Phe	His	Leu	Glu	Pro 185	Leu	Phe	Lys	Суѕ	His 190	Gly	His
Pro	Суз	Pro 195	Asn	Ile	Ile	Asp	Cys 200	Phe	Val	Ser	Arg	Pro 205	Thr	Glu	Lys
Thr	Ile 210	Phe	Leu	Leu	Phe	Met 215	Gln	Ser	Ile	Ala	Thr 220	Ile	Ser	Leu	Phe
Leu 225	Asn	Ile	Leu	Glu	11e 230	Phe	His	Leu	Gly	Phe 235	Lys	Lys	Ile	Lys	Arg 240
Gly	Leu	Trp	Gly	Lys 245	Tyr	Lys	Leu	Lys	Lys 250	Glu	His	Asn	Glu	Phe 255	His
Ala	Asn	Lys	Ala 260	Lys	Gln	Asn	Val	Ala 265	Lys	Tyr	Gln	Ser	Thr 270	Ser	Ala
Asn	Ser	Leu 275	Lys	Arg	Leu	Pro	Ser 280	Ala	Pro	Asp	Tyr	Asn 285	Leu	Leu	Val
Glu	L y s 290	Gln	Thr	His	Thr	Ala 295	Val	Tyr	Pro	Ser	Leu 300	Asn	Ser	Ser	Ser
Val 305	Phe	Gl n	Pro	Asn	Pro 310	Asp	Asn	His	Ser	Val 315	Asn	Asp	Glu	Lys	Cys 320
Ile	Leu	Asp	Glu	Gln	Glu	Thr	Val	Leu	Ser	Asn	Glu	Ile	Ser	Thr	Leu

				325					330					335	
Ser	Thr	Ser	Cys 340	Ser	His	Phe	Gln	His 345	Ile	Ser	Ser	Asn	Asn 350	Asn	Lys
Asp	Thr	His 355	Lys	Ile	Phe	Gly	Lys 360	Glu	Leu	Asn	Gly	Asn 365	Gln	Leu	Met
Glu	Lys 370	Arg	Glu	Thr	Glu	Gly 375	Lys	Asp	Ser	Lys	Arg 380	Asn	Tyr	Tyr	Ser
Arg 385	Gly	His	Arg	Ser	Ile 390	Pro	Gly	Val	Ala	Ile 395	Asp	Gly	Glu	Asn	Asn 400
Met	Arg	Gln	Ser	Pro 405	Gln	Thr	Val	Phe	Ser 410	Leu	Pro	Ala	Asn	Cys 415	Asp
Trp	Lys	Pro	Arg 420	Trp	Leu	Arg	Ala	Thr 425	Trp	Gly	Ser	Ser	Thr 430	Glu	His
Glu	Asn	Arg 435	Gly	Ser	Pro	Pro	Lys 440	Gly	Asn	Leu	Lys	Gly 445	Gln	Phe	Arg
Lys	Gly 450	Thr	Val	Arg	Thr	Leu 455	Pro	Pro	Ser	Gln	Gly 460	Asp	Ser	Gln	Ser
Leu 465	Asp	Ile	Pro	Asn	Thr 470	Ala	Asp	Ser	Leu	Gly 475	Gly	Leu	Ser	Phe	Glu 480
Pro	Gly	Leu	Val	Arg 485	Thr	Суѕ	Asn	Asn	Pro 490	Val	Cys	Pro	Pro	Asn 495	His
Val	Val	Ser	Leu 500	Thr	Asn	Asn	Leu	Ile 505	Gly	Arg	Arg	Val	Pro 510	Thr	Asp
Leu	Gln	Ile 515													
<210> 21 <211> 543 <212> PRT <213> homo sapiens															
<220> <221> MISC_FEATURE <223> Cx62 (NP_115991.1)															

<400	> 21														
Met 1	Gly	Asp	Trp	Asn 5	Leu	Leu	Gly	Gly	Ile 10	Leu	Glu	Glu	Val	His 15	Ser
His	Ser	Thr	Ile 20	Val	Gly	Lys	Ile	Trp 25	Leu	Thr	Ile	Leu	Phe 30	Ile	Phe
Arg	Met	Leu 35	Val	Leu	Arg	Val	Ala 40	Ala	Glu	Asp	Val	Trp 45	Asp	Asp	Glu
Gln	Ser 50	Ala	Phe	Ala	Cys	Asn 55	Thr	Arg	Gln	Pro	Gly 60	Cys	Asn	Asn	Ile
Cys 65	Tyr	Asp	Asp	Ala	Phe 70	Pro	Ile	Ser	Leu	11e 75	Arg	Phe	Trp	Val	Leu 80
Gln	Ile	Ile	Phe	Val 85	Ser	Ser	Pro	Ser	Leu 90	Val	Tyr	Met	Gly	His 95	Ala
Leu	Tyr	Arg	Leu 100	Arg	Ala	Phe	Glu	Lys 105	Asp	Arg	Gln	Arg	Lys 110	Lys	Ser
His	Leu	Arg 115	Ala	Gln	Met	Glu	A sn 120	Pro	Asp	Leu	Asp	Leu 125	Glu	Glu	Gln
Gln	Arg 130	Ile	Asp	Arg	Glu	Leu 135	Arg	Arg	Leu	Glu	Glu 140	Gln	Lys	Arg	Ile
His 145	Lys	Val	Pro	Leu	Lys 150	Gly	Суѕ	Leu	Leu	Arg 155	Thr	Tyr	Val	Leu	His 160
Ile	Leu	Thr	Arg	Ser 165	Val	Leu	Glu	Val	Gly 170	Phe	Met	Ile	Gly	Gln 175	Tyr
Ile	Leu	Tyr	Gly 180	Phe	Gln	Met	His	Pro 185	Leu	Tyr	Lys	Суз	Thr 190	Gln	Pro
Pro	Cys	Pro 195	Asn	Ala	Val	Asp	C ys 200	Phe	Val	Ser	Arg	Pro 205	Thr	Glu	Lys
Thr	Ile 210	Phe	Met	Leu	Phe	Met 215	His	Ser	Ile	Ala	Ala 220	Ile	Ser	Leu	Leu
Leu 225	Asn	Ile	Leu	Glu	Ile 230	Phe	His	Leu	Gly	Ile 235	Arg	Lys	Ile	Met	Arg 240
Thr	Leu	Tyr	Lys	Lys 245	Ser	Ser	Ser	Glu	Gly 250	Ile	Glu	Asp	Glu	Thr 255	Gly

Pro	Pro	Phe	His 260	Leu	Lys	Lys	Tyr	Ser 265	Val	Ala	Gln	Gln	C ys 270	Met	Ile
Cys	Ser	Ser 275	Leu	Pro	Glu	Arg	Ile 280	Ser	Pro	Leu	Gln	Ala 285	Asn	Asn	Gln
Gln	Gln 290	Val	Ile	Arg	Val	Asn 295	Val	Pro	Lys	Ser	Lys 300	Thr	Met	Trp	Gln
Ile 305	Pro	Gln	Pro	Arg	Gln 310	Leu	Glu	Val	Asp	Pro 315	Ser	Asn	Gly	Lys	Lys 320
Asp	Trp	Ser	Glu	Lys 325	Asp	Gln	His	Ser	Gly 330	Gln	Leu	His	Val	His 335	Ser
Pro	Cys	Pro	Trp 340	Ala	Gly	Ser	Ala	Gly 3 4 5	Asn	Gln	His	Leu	Gly 350	Gln	Gln
Ser	Asp	His 355	Ser	Ser	Phe	Gly	Leu 360	Gl n	Asn	Thr	Met	Ser 365	Gln	Ser	Trp
Leu	Gly 370	Thr	Thr	Thr	Ala	Pro 375	Arg	Asn	Cys	Pro	Ser 380	Phe	Ala	Val	Gly
Thr 385	Trp	Glu	Gln	Ser	Gln 390	Asp	Pro	Glu	Pro	Ser 395	Gly	Glu	Pro	Leu	Thr 400
Asp	Leu	His	Ser	His 405	Cys	Arg	Asp	Ser	Glu 410	Gly	Ser	Met	Arg	Glu 415	Ser
Gly	Val	Trp	Ile 420	Asp	Arg	Ser	Arg	Pro 425	Gly	Ser	Arg	Lys	Ala 4 30	Ser	Phe
Leu	Ser	Arg 435	Leu	Leu	Ser	Glu	Lys 440	Arg	His	Leu	His	Ser 445	Asp	Ser	Gly
Ser	Ser 450	Gly	Ser	Arg	Asn	Ser 455	Ser	Cys	Leu	Asp	Phe 460	Pro	His	Trp	Glu
Asn 465	Ser	Pro	Ser	Pro	Leu 470	Pro	Ser	Val	Thr	Gly 475	His	Arg	Thr	Ser	Met 480
Val	Arg	Gln	Ala	Ala 485	Leu	Pro	Ile	Met	Glu 490	Leu	Ser	Gln	Glu	Leu 495	Phe
His	Ser	Gly	Cys 500	Phe	Leu	Phe	Pro	Phe 505	Phe	Leu	Pro	Gly	val 510	Cys	Met
Tyr	Val	Cys 515	Val	Asp	Arg	Glu	1 Ala 520		Gl _y	y Gl	y Gl	y As 52		r Le	u Trp
Arg	Asp 530	Lys	Ile	Ile	His	Ser 535		His	s Se	r Va	1 Ly 54		e As	n S∈	r

REIVINDICACIONES

- 1. Composición terapéutica que comprende flecainida y por lo menos un fármaco psicotrópico, en la que dicho fármaco psicotrópico es el modafinilo.
- 2. Composición terapéutica según la reivindicación 1, para su utilización para tratar somnolencia diurna excesiva (EDS), trastornos del sueño, tiempo de sueño insuficiente, apnea del sueño central, narcolepsia (con o sin cataplejía), apnea/hipopnea obstructiva del sueño (SAHOS), hipersomnia idiopática, síndrome de Kleine-Levin, trastornos del ritmo circadiano, trastorno del sueño por trabajo por turnos, desfase horario, trastornos tras restricción del sueño o privación del sueño (trastornos de atención, trastornos de estado de alerta, adormecimiento), síndrome de las piernas inquietas (RLS) y trastornos del movimiento periódico de las extremidades (PLMD), insomnio, parasomnia, trastorno por déficit de atención con hiperactividad (ADHD), trastorno de estrés postraumático (PTSD), trastornos asociados comúnmente a somnolencia o adormecimiento (tales como enfermedad de Parkinson, esclerosis múltiple, accidente cerebrovascular, trastornos neuromusculares o trastornos estructurales del cerebro, trastornos respiratorios, insuficiencia renal crónica, insuficiencia hepática, trastornos reumatológicos), somnolencia inducida por medicamentos (debida a benzodiacepinas, barbitúricos, pastillas para dormir, antidepresivos, antipsicóticos...), trastornos del estado de ánimo, trastornos de ansiedad, esquizofrenia, acúfenos, depresión, malestar general, demencia, trastorno bipolar, obesidad, hiperfagia, episodio maníaco, trastorno obsesivo-compulsivo, senilidad, dependencia o adicción (a juegos, fármacos, alcohol, tabaco, etc.), incontinencia fecal o urinaria, eyaculación precoz, disnea y fatiga que se deben particularmente al cáncer, trastornos neurodegenerativos, menopausia, lesiones traumáticas del cerebro, infección viral o posmielitis, o a la fibromialgia.
- 3. Composición terapéutica según la reivindicación 1 o 2, para su utilización para aumentar la memoria de sujetos sanos y/o para mantenerlos despiertos durante períodos de tiempo de larga duración.
 - 4. Composición terapéutica según la reivindicación 1 o 2, para su utilización para tratar la cataplejía en pacientes narcolépticos.
- 30 5. Composición terapéutica según la reivindicación 1 o 2, para su utilización para tratar la somnolencia o el adormecimiento asociados a la enfermedad de Parkinson.
 - 6. Composición terapéutica según cualquiera de las reivindicaciones 1 a 5, en la que dicha flecainida es el enantiómero R de fórmula:

7. Producto de combinación que comprende flecainida y modafinilo, para su utilización simultánea, separada o escalonada para prevenir y/o tratar somnolencia diurna excesiva (EDS), trastornos del sueño, tiempo de sueño insuficiente, apnea del sueño central, narcolepsia (con o sin cataplejía), apnea/hipopnea obstructiva del sueño (SAHOS), hipersomnia idiopática, síndrome de Kleine-Levin, trastornos del ritmo circadiano, trastorno del sueño por trabajo por turnos, desfase horario, trastornos tras restricción del sueño o privación del sueño (trastornos de atención, trastornos de estado de alerta, adormecimiento), síndrome de las piernas inquietas (RLS) y trastornos del movimiento periódico de las extremidades (PLMD), insomnio, parasomnia, trastorno por déficit de atención con hiperactividad (ADHD), trastorno por estrés postraumático (PTSD), trastornos asociados comúnmente a somnolencia o adormecimiento (tales como enfermedad de Parkinson, esclerosis múltiple, accidente cerebrovascular, trastornos neuromusculares o trastornos estructurales del cerebro, trastornos respiratorios, insuficiencia renal crónica, insuficiencia hepática, trastornos reumatológicos), somnolencia inducida por medicamentos (debida a benzodiacepinas, barbitúricos, pastillas para dormir, antidepresivos, antipsicóticos...), trastornos del estado de ánimo, trastornos de ansiedad, esquizofrenia, acúfenos, depresión, malestar general, demencia, trastorno bipolar, obesidad, hiperfagia, episodio maníaco, trastorno obsesivo-compulsivo, senilidad, dependencia o adicción (a juegos, fármacos, alcohol, tabaco, etc.), incontinencia fecal o urinaria, eyaculación precoz, disnea y fatiga, que se deben particularmente al cáncer, trastornos neurodegenerativos, menopausia, lesiones traumáticas del cerebro, infección viral o posmielitis, o a la fibromialgia.

40

45

50

5

10

15

20

25

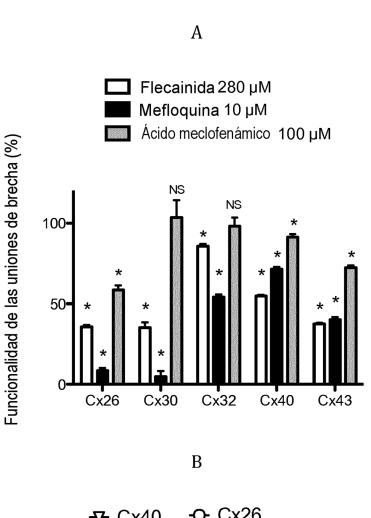
- 8. Producto de combinación según la reivindicación 7, para su utilización para aumentar la memoria de sujetos sanos y/o para mantenerlos despiertos durante períodos de tiempo de larga duración.
- 9. Producto de combinación según la reivindicación 7, para su utilización para tratar la cataplejía en los pacientes narcolépticos.

5

35

40

45


50

- 10. Producto de combinación según la reivindicación 7, para su utilización para tratar la somnolencia o el adormecimiento asociados a la enfermedad de Parkinson.
- 10 11. Producto de combinación según cualquiera de las reivindicaciones 7 a 10, en el que dicha flecainida es el enantiómero R de fórmula:

- 15 12. Flecainida para su utilización como un agente anticonexina, para potenciar los efectos del modafinilo para aumentar la eficacia y/o la seguridad y/o la duración de la acción del modafinilo en pacientes que padecen cualquiera de entre somnolencia diurna (EDS), trastornos del sueño, tiempo de sueño insuficiente, apnea del sueño central, narcolepsia (con o sin cataplejía), apnea/hipopnea obstructiva del sueño (SAHOS), hipersomnia idiopática, síndrome de Kleine-Levin, trastornos del ritmo circadiano, trastorno del sueño por trabajo por turnos, 20 desfase horario, trastornos tras restricción del sueño o privación del sueño (trastornos de atención, trastornos de estado de alerta, adormecimiento), síndrome de las piernas inquietas (RLS) y trastornos del movimiento periódico de las extremidades (PLMD), insomnio, parasomnia, trastorno por déficit de atención con hiperactividad (ADHD), trastorno por estrés postraumático (PTSD), trastornos asociados comúnmente a somnolencia o adormecimiento (tales como enfermedad de Parkinson, esclerosis múltiple, accidente cerebrovascular, trastornos neuromusculares o trastornos estructurales del cerebro, trastornos respiratorios, insuficiencia renal crónica, 25 insuficiencia hepática, trastornos reumatológicos), somnolencia inducida por medicamentos (debida a benzodiacepinas, barbitúricos, pastillas para dormir, antidepresivos, antipsicóticos...), trastornos del estado de ánimo, trastornos de ansiedad, esquizofrenia, acúfenos, depresión, malestar general, demencia, trastorno bipolar, obesidad, hiperfagia, episodio maníaco, trastorno obsesivo-compulsivo, senilidad, dependencia o 30 adicción (a juegos, fármacos, alcohol, tabaco, etc.), incontinencia fecal o urinaria, eyaculación precoz, disnea y fatiga, que se deben particularmente al cáncer, trastornos neurodegenerativos, menopausia, lesiones traumáticas del cerebro, infección viral o posmielitis, o a la fibromialgia.
 - 13. Flecainida para su utilización según la reivindicación 12, para potenciar el efecto de mejora de la memoria y/o de despertar del modafinilo en pacientes que padecen cualquiera de entre somnolencia diurna (EDS), trastornos del sueño, tiempo de sueño insuficiente, apnea del sueño central, narcolepsia (con o sin cataplejía), apnea/hipopnea obstructiva del sueño (SAHOS), hipersomnia idiopática, síndrome de Kleine-Levin, trastornos del ritmo circadiano, trastorno del sueño por trabajo por turnos, desfase horario, trastornos tras restricción del sueño o privación del sueño (trastornos de atención, trastornos de estado de alerta, adormecimiento), síndrome de las piernas inquietas (RLS) y trastornos del movimiento periódico de las extremidades (PLMD), insomnio, parasomnia, trastorno por déficit de atención con hiperactividad (ADHD), trastorno por estrés postraumático (PTSD), trastornos asociados comúnmente a somnolencia o adormecimiento (tales como enfermedad de Parkinson, esclerosis múltiple, accidente cerebrovascular, trastornos neuromusculares o trastornos estructurales del cerebro, trastornos respiratorios, insuficiencia renal crónica, insuficiencia hepática, trastornos reumatológicos), somnolencia inducida por medicamentos (debida a benzodiacepinas, barbitúricos, pastillas para dormir, antidepresivos, antipsicóticos...), trastornos del estado de ánimo, trastornos de ansiedad, esquizofrenia, acúfenos, depresión, malestar general, demencia, trastorno bipolar, obesidad, hiperfagia, episodio maníaco, trastorno obsesivo-compulsivo, senilidad, dependencia o adicción (a juegos, fármacos, alcohol, tabaco, etc.), incontinencia fecal o urinaria, eyaculación precoz, disnea y fatiga, que se deben particularmente al cáncer, trastornos neurodegenerativos, menopausia, lesiones traumáticas del cerebro, infección viral o posmielitis, o a la fibromialgia.
 - 14. Flecainida para su utilización según la reivindicación 12, para potenciar el efecto de mejora de la memoria y/o de despertar del modafinilo en pacientes que padecen la enfermedad de Parkinson asociada a somnolencia o adormecimiento.

15. Flecainida para su utilización según cualquiera de las reivindicaciones 12 a 14, en la que dicha flecainida es el enantiómero R de fórmula:

Figura 1

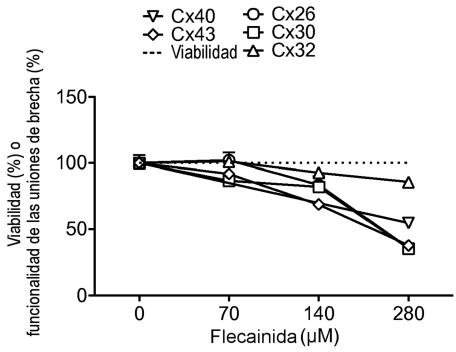


Figura 2

Vehículo Modafinilo 32 + Flecainida 1-

В

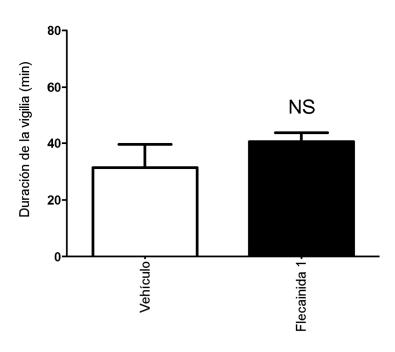


Figura 3

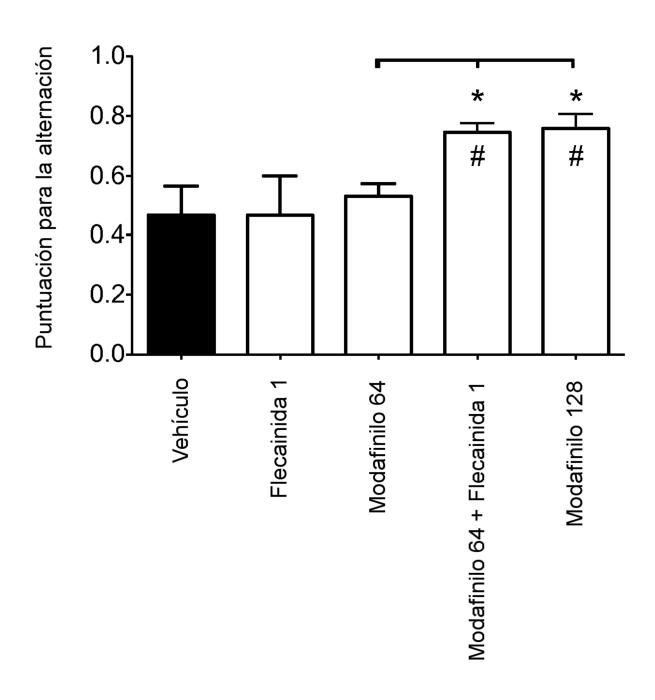
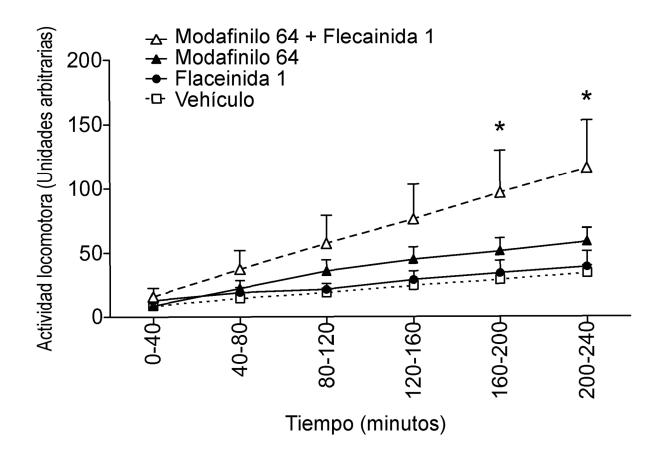
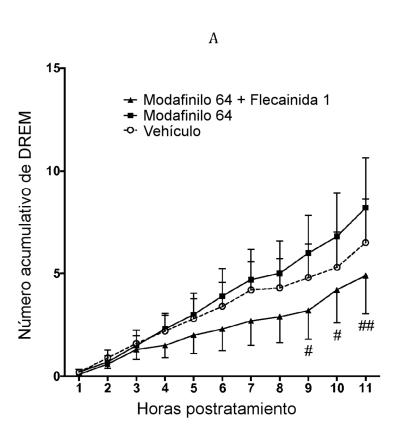


Figura 4




Figura 5

A

В

Figura 5 (continuación)

Figura 6

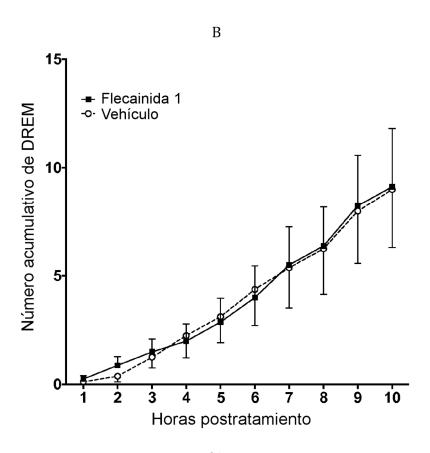
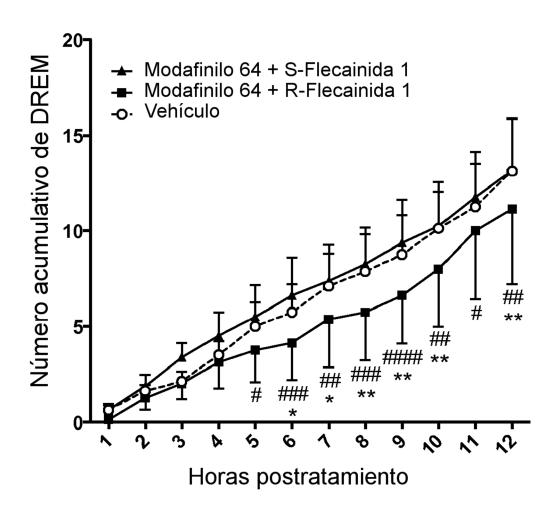



Figura 7

ANOVA bidireccional, medidas repetidas por ambos factores *p<0,05 contra Vehículo #p<0,05 contra Modafinilo 64