

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 662 325

51 Int. Cl.:

A61K 38/16 (2006.01) A61P 37/04 (2006.01) A61K 45/00 (2006.01) C12N 15/09 (2006.01) Δ61K 48/00 (2006.01)

A61K 48/00 (2006.01)
A61P 1/04 (2006.01)
A61P 11/00 (2006.01)
A61P 13/12 (2006.01)
A61P 15/14 (2006.01)
A61P 25/00 (2006.01)
A61P 35/00 (2006.01)
A61P 35/02 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 02.09.2010 PCT/JP2010/064993

(87) Fecha y número de publicación internacional: 10.03.2011 WO11027807

96 Fecha de presentación y número de la solicitud europea: 02.09.2010 E 10813755 (5)

(97) Fecha y número de publicación de la concesión europea: 24.01.2018 EP 2474315

54 Título: Inductor de respuesta inmune

(30) Prioridad:

03.09.2009 JP 2009203489

Fecha de publicación y mención en BOPI de la traducción de la patente: **06.04.2018**

73) Titular/es:

TORAY INDUSTRIES, INC. (100.0%) 1-1, Nihonbashi-Muromachi 2-chome Chuo-ku, Tokyo 103-8666, JP

(72) Inventor/es:

KURIHARA, AKIRA Y OKANO, FUMIYOSHI

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Inductor de respuesta inmune

5 Campo técnico

La presente invención se refiere a un nuevo agente inductor de la respuesta inmune útil como agente terapéutico y/o profiláctico contra el cáncer.

10 Antecedentes

El cáncer es la causa de muerte más común entre todas las causas de mortalidad y las terapias actuales contra él son principalmente tratamientos quirúrgicos, que suelen combinarse con radioterapia y/o quimioterapia. A pesar del desarrollo de nuevos métodos quirúrgicos y el descubrimiento de nuevos agentes contra el cáncer, en los últimos años, los resultados del tratamiento del cáncer no han mejorado en gran medida hoy por hoy, a excepción de ciertos cánceres. En los últimos años, gracias al desarrollo de la biología molecular y la inmunología del cáncer, se han identificado antígenos del cáncer reconocidos por linfocitos T citotóxicos reactivos contra cánceres, así como genes que codifican los antígenos del cáncer, y han surgido expectativas en cuanto a inmunoterapias específicas de antígeno.

20

25

30

35

40

45

50

55

15

En inmunoterapia, para reducir los efectos secundarios, es necesario que el péptido o la proteína que se reconozca como antígeno apenas exista en las células normales y que exista específicamente en células cancerosas. En 1991, Boon et al. del Ludwig Institute en Bélgica, aislaron un antígeno de melanoma humano, MAGE 1, que es reconocido por linfocitos T CD8-positivos, a través de un método de clonación de expresión de ADNc utilizando una línea de células cancerosas autólogas y linfocitos T reactivos contra el cáncer (Documento no patente 1). Más adelante, se notificó el método SEREX (identificaciones serológicas de antígenos por clonación de expresión recombinante), en el que se identifican antígenos de tumor reconocidos por anticuerpos producidos en el organismo vivo de un paciente oncológico como respuesta al cáncer del propio paciente por aplicación de un método de clonación de expresión génica (Documento de patente 1, Documento no patente 2), habiéndose aislado varios antígenos del cáncer por este método. Se han comenzado ensayos clínicos para la inmunoterapia contra el cáncer empleando una parte de los antígenos del cáncer como diana.

Por otra parte, al igual que en los seres humanos, en los perros y los gatos se conoce una serie de tumores, como puedan ser tumor de glándula mamaria o carcinoma de célula escamosa, que ocupan también un alto puesto en las estadísticas de enfermedades de perros y gatos. Sin embargo, hoy por hoy, no existe ningún agente terapéutico, agente profiláctico o agente de diagnóstico que sea eficaz contra el cáncer en perros y gatos. Los dueños no detectan los tumores en sus perros y gatos hasta que están avanzados y se hacen grandes y, en muchos casos, ya es demasiado tarde para acudir al hospital para extirpar quirúrgicamente el tumor o administrar un fármaco de uso humano (un fármaco anti-cáncer o similar), de modo que esos perros y gatos suelen morir poco después del tratamiento. En tales circunstancias, si se llega a disponer de agentes terapéuticos y agentes profilácticos eficaces contra el cáncer para perros y gatos, cabe esperar que se desarrolle su uso para cánceres caninos.

PDS5A (PDS5, proteína reguladora del mantenimiento de la cohesión, homólogo A) es una proteína, también denominada SSC-112, que fue identificada como regulador del ciclo celular relacionado con la distribución de cromosomas y que, según se ha notificado, presenta una mayor expresión en carcinoma nasofaríngeo, cáncer renal, cáncer de hígado y un determinado tipo de células de cáncer de mama, en comparación con los tejidos normales (Documento de patente 2, documentos no patente 3 a 5). Se ha notificado que es posible suprimir el crecimiento de células cancerosas suprimiendo la expresión de PDS5A en células cancerosas utilizando un ácido nucleico antisentido, ribozima o ARNsi contra el gen de PDS5A o utilizando un anticuerpo que se une específicamente a la proteína PDS5A, y que es posible inducir que las células cancerosas induzcan apoptosis administrando la proteína PDS5A de longitud completa o un péptido parcial de la proteína PDS5A (Documento de patente 3). Asimismo, en el Documento de patente 3, se confirmó el aumento del nivel de ARNm de la proteína PDS5A en células cancerosas. Sin embargo, no hay ninguna notificación que indique que la proteína PDS5A y un péptido parcial de la proteína tenga una acción para inducir una respuesta inmune contra células cancerosas y que, por tanto, la proteína PDS5A tiene o no una función como marcador, que se puede utilizar para el diagnóstico del cáncer.

Documentos de la técnica anterior

60 Documentos de patente

[Documento de patente 1] US 5698396 B [Documento de patente 2] WO2006/109943 [Documento de patente 3] WO2002/081641

65

Documentos no patente

[Documento no patente 1] Science, 254: 1643-1647 (1991)

[Documento no patente 2] Proc. Natl. Acad. Sci. Estados Unidos, 92: 11810-11813 (1995)

[Documento no patente 3] Gene. 17; 328: 187-96 (2004)

[Documento no patente 4] J. Cell. Sci. 15; 118 (Pt 10): 2133-41 (2005)

[Documento no patente 5] J. Cáncer Res. Clin. Oncol.: 134(4):453-62 (2008)

Sumario de la invención

10

15

20

25

30

35

40

50

55

5

Problemas que se resuelven con la invención

La presente invención está dirigida a descubrir un nuevo polipéptido útil para un agente terapéutico y/o profiláctico contra el cáncer o útil para la detección de cáncer, para proporcionar dicho polipéptido para su uso en un agente inductor de respuesta inmune o en la detección de cáncer.

Medios para resolver los problemas

Valiéndose del método SEREX, utilizando una genoteca de ADNc derivado de cáncer de mama canino y suero obtenido de un perro portador de tumor, los autores de la presente invención han llevado a cabo un exhaustivo estudio para obtener un ADNc que codifica una proteína que se une a anticuerpos que existen en el suero derivados de un organismo vivo portador de tumor y, sobre la base de dicho ADNc, se preparó proteína PDS5 canina, una proteína reguladora del mantenimiento de la cohesión, homólogo A (en adelante denominada también PDS5A), que tiene la secuencia de aminoácidos presentada en SEQ ID NO: 2. Asimismo, sobre la base de genes homólogos humanos y murinos del gen obtenido, se prepararon PDS5A humana que tenía el aminoácido representado por las SEQ ID NO: 4 o 44 (SEQ ID NO: 4 que corresponde a la secuencia parcial de SEQ ID NO: 44) y PDS5A murino que tiene la secuencia de aminoácidos presentada en SEQ ID NO: 6. Los autores de la invención descubrieron entonces que estas PDS5A son expresadas específicamente en tejidos o células de cáncer de mama, tumor cerebral, cáncer de esófago, cáncer de pulmón, cáncer renal, cáncer de colon, adenocarcinoma perinatal, neuroblastoma y leucemia. Asimismo, los autores de la presente invención han descubierto que, mediante la administración de estas PDS5A a un organismo vivo, es posible inducir inmunocitos contra PDS5A en el organismo vivo y conseguir una regresión de un tumor en el organismo vivo que expresa PDS5A. Asimismo, los autores de la presente invención han descubierto que un vector recombinante que puede expresar un polinucleótido que codifica una proteína PDS5A de longitud completa o un fragmento de la misma puede inducir un efecto anti-tumor contra PDS5A que expresa cáncer en un organismo vivo.

Por otra parte, los autores de la presente invención han descubierto que un péptido parcial de PDS5A tiene capacidad de ser presentado por células presentadores de antígeno, gracias a lo cual tiene cabida la activación y crecimiento de linfocitos T citotóxicos específicos del péptido (actividad de inducción de respuesta inmune) y, por tanto, que el péptido es útil para terapia y/o profilaxis contra el cáncer y, además, que las células presentadoras de antígeno que han entrado en contacto con el péptido y los linfocitos T que han entrado en contacto con las células presentadoras de antígeno son útiles para la terapia y/o profilaxis contra el cáncer, en virtud de lo cual han completado la presente invención.

45 Por tanto, la presente invención tiene las siguientes características.

Un agente para su uso en un método de profilaxis o terapia de un cáncer.

- (1) conteniendo el agente como ingrediente(s) eficaz al menos un polipéptido seleccionado entre los polipéptidos (a) a (c) a continuación, teniendo dicho(s) polipéptido(s) actividad/actividades de inducción de respuesta inmune, o como ingrediente(s) eficaz un vector(es) recombinante(s) que comprende(n) a polinucleótido(s) que codifica(n) el polipéptido(s) y que es/son capaces de expresar el polipéptido(s) *in vivo*:
 - (a) un polipéptido que consiste esencialmente en al menos 7 aminoácidos consecutivos en una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 2, 4, 6, 8, 10, 12 y 44 en el LISTADO DE SECUENCIAS;
 - (b) un polipéptido que tiene una identidad de secuencia de al menos 90 % con el polipéptido (a) y que consiste esencialmente en al menos 7 aminoácidos; y
 - (c) un polipéptido que comprende el polipéptido (a) o (b) como una secuencia parcial del mismo.

60

65

- (2) El agente para su uso de acuerdo con (1), en el que el polipéptido (b) tiene una identidad de secuencia de al menos 95 % con el polipéptido (a).
- (3) El agente para su uso de acuerdo con (1), en el que cada uno de los polipéptido(s) que tiene actividad/actividades de inducción de respuesta inmune es un polipéptido que consiste esencialmente en al menos 7 aminoácidos consecutivos en una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 2, 4, 6, 8, 10, 12 y 44, o un polipéptido que comprende el polipéptido como una secuencia parcial

del mismo; o un polipéptido que tiene la misma secuencia de aminoácidos que un polipéptido que consiste esencialmente en al menos 7 aminoácidos consecutivos en una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 2, 4, 6, 8, 10, 12 y 44 salvo que se suprima, sustituya y/o añada uno o varios aminoácidos, o un polipéptido que comprende el polipéptido como una secuencia parcial del mismo.

- (4) El agente para su uso de acuerdo con (3), en el que cada uno de los polipéptido(s) que tiene actividad/actividades de inducción de respuesta inmune es un polipéptido que tiene una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO:2, 4, 6, 8, 10, 12 y 44 en el LISTADO DE SECUENCIAS.
- (5) El agente para su uso de acuerdo con (3), en el que cada uno de los polipéptido(s) que tiene actividad/actividades de inducción de respuesta inmune es un polipéptido que consiste esencialmente en al menos 7 aminoácidos consecutivos en la región de aa111-140, aa211-240, aa248-278, aa327-357, aa459-522, aa909-972, aa959-1022, aa994-1057 o aa1018-1080 en una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 2, 6, 8, 10, 12 y 44 en el LISTADO DE SECUENCIAS, o un polipéptido que comprende el polipéptido como una secuencia parcial del mismo; o un polipéptido que tiene la misma secuencia de aminoácidos que un polipéptido que consiste esencialmente en al menos 7 aminoácidos consecutivos en la región de aa111-140, aa211-240, aa248-278, aa327-357, aa459-522, aa909-972, aa959-1022, aa994-1057 o aa1018-1080 en una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO:2, 6, 8, 10, 12 y 44 en el LISTADO DE SECUENCIAS salvo que se suprima, sustituya y/o añada uno o varios aminoácidos, o un polipéptido que comprende el polipéptido como una secuencia parcial del mismo.
- (6) El agente para su uso de acuerdo con (5), en el que cada uno de los polipéptido(s) que tiene actividad/actividades de inducción de respuesta inmune es un polipéptido que tiene una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 27 a 35 en el LISTADO DE SECUENCIAS, o un polipéptido que comprende el polipéptido como una secuencia parcial del mismo y que tiene de 10 a 12 restos de aminoácido; o un polipéptido que tiene la misma secuencia de aminoácidos que un polipéptido que tiene una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 27 a 35 en el LISTADO DE SECUENCIAS salvo que se suprima, sustituya y/o añada uno o varios aminoácidos, o un polipéptido que comprende el polipéptido como una secuencia parcial del mismo y que tiene de 10 a 12 restos de aminoácido.
 - (7) El agente para su uso de acuerdo con uno cualquiera de (1) a (6), en el que el cáncer es un cáncer que expresa PDS5A.
- (8) El agente para su uso de acuerdo con uno cualquiera de (1) a (7), en el que el cáncer es cáncer de mama, tumor cerebral, cáncer de esófago, cáncer de pulmón, cáncer renal, cáncer de colon, adenocarcinoma perinatal, neuroblastoma o leucemia.
 - (9) El agente para su uso de acuerdo con uno cualquiera de (1) a (8), que comprende además un inmunopotenciador.
- (10) Un polipéptido que tiene una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 27, 28 y 30 a 35 en el LISTADO DE SECUENCIAS, o un polipéptido que comprende el polipéptido como una secuencia parcial del mismo y que tiene de 10 a 12 restos de aminoácido; o un polipéptido que tiene la misma secuencia de aminoácidos que un polipéptido que tiene una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 27, 28 y 30 a 35 en el LISTADO DE SECUENCIAS salvo que se suprima, sustituya y/o añada uno o varios aminoácidos, o un polipéptido que comprende el polipéptido como una secuencia parcial del mismo y que tiene de 10 a 12 restos de aminoácido, polipéptido que tiene actividad de inducción de respuesta inmune.
- (11) Un método para detectar a cáncer, comprendiendo dicho método la medición por inmunoensayo de un anticuerpo contra un polipéptido que tiene una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 2, 4, 6, 8, 10, 12 y 44 en el LISTADO DE SECUENCIAS, en una muestra de sangre, suero, plasma, ascitis o derrame pleural extraídos de un organismo vivo.

Efecto de la invención

55

60

65

5

50 En virtud de la presente invención, se proporciona un nuevo agente inductor de la respuesta inmune útil para la terapia y/o profilaxis y/o similar de cáncer. Tal como se describe en particular en los ejemplos más adelante, es posible inducir inmunocitos en un organismo vivo administrando el polipéptido utilizado en la presente invención a un organismo vivo, y es posible reducir o conseguir una regresión de un cáncer que se ha producido ya. Por lo tanto, el polipéptido es útil para terapia y/o profilaxis de cáncer.

Breve descripción de los dibujos

- Fig. 1 presenta los patrones de expresión del gen PDS5A, identificado en tejidos normales caninos, tejidos tumorales y líneas de células tumorales. Número de referencia 1, patrones de expresión del gen PDS5A canino en varios tejidos y líneas celulares caninas; número de referencia 2, patrones de expresión del gen GAPDH canino en varios tejidos y líneas celulares caninas.
- Fig. 2 presenta los patrones de expresión del gen PDS5A, identificado en tejidos normales humanos, tejidos tumorales y líneas celulares tumorales. Número de referencia 3, patrones de expresión del gen PDS5A humano en varios tejidos y líneas celulares humanas; número de referencia 4, patrones de expresión del gen GAPDH humano en varios tejidos y líneas celulares humanas.
- Fig. 3 presenta los patrones de expresión del gen PDS5A, identificado en tejidos normales murinos, tejidos

tumorales y líneas celulares tumorales. Número de referencia 5, patrones de expresión de gen PDS5A murino en varios tejidos y líneas celulares murinos; número de referencia 6, patrones de expresión del gen GAPDH murino en varios tejidos y líneas celulares murinos.

Fig. 4 es un gráfico en el que se muestra que se observó un efecto anti-tumor (modelo terapéutico: línea celular de neuroblastoma) al administrar PDS5A. Se llevó a cabo la inmunización con un vector solamente o un plásmido que codifica PDS5A utilizando una pistola génica y se llevó a cabo la evaluación sobre la base del área de la parte cancerosa y la relación de ratones vivos. Para cada grupo, se utilizaron 10 individuos de ratones. Se observó a los ratones dos veces a la semana. Los datos se representan como el valor medio ± SD. Número de referencia 7, grupo al que se administró el vector de plásmido; número de referencia 8, grupo al que se administró un plásmido que codifica PDS5A.

Fig. 5 es un gráfico en el que se muestra que se observó un efecto anti-tumor (modelo profiláctico: línea celular de neuroblastoma) al administrar PDS5A. Se llevó a cabo la inmunización con un vector solamente o un plásmido que codifica PDS5A utilizando una pistola génica, y se llevó a cabo la evaluación sobre la base del área de la parte cancerosa y la relación de ratones vivos. Para cada grupo, se utilizaron 10 individuos de ratones. Se observó a los ratones dos veces a la semana. Los datos se representan como el valor medio ± SD. Número de referencia 9, grupo al que se administró vector de plásmido; número de referencia 10, grupo al que se administró plásmido que codifica PDS5A.

Fig. 6 presenta la relación de ratones vivos en el experimento de la Fig. 4. Número de referencia 11, grupo al que se administró un vector de plásmido; número de referencia 12, grupo al que se administró plásmido que codifica PDS5A.

Fig. 7 presenta la relación de ratones vivos en el experimento de la Fig. 5. Número de referencia 13, grupo al que se administró vector de plásmido; número de referencia 14, grupo al que se administró un plásmido que codifica PDS5A.

Fig. 8 es un gráfico en el que se muestra que se observó el efecto anti-tumor (modelo terapéutico: línea celular de cáncer de colon) al administrar PDS5A. Se llevó a cabo la inmunización con un vector solamente o un plásmido que codifica PDS5A utilizando una pistola génica, y se llevó a cabo la evaluación sobre la base del área de la parte cancerosa y la relación de ratones vivos. Para cada grupo, se utilizaron 10 individuos de ratones. Se observó a los ratones dos veces a la semana. Los datos se representan como el valor medio ± SD. Número de referencia 15, grupo al que se administró vector de plásmido; número de referencia 16, grupo al que se administró plásmido que codifica PDS5A.

Fig. 9 es un gráfico en el que se muestra que se observó un efecto anti-tumor (modelo profiláctico: línea celular de cáncer de colon) al administrar PDS5A. Se llevó a cabo la inmunización con un vector solamente o un plásmido que codifica PDS5A utilizando una pistola génica, y se llevó a cabo la evaluación sobre la base del área de la parte cancerosa y la relación de ratones vivos. Para cada grupo, se utilizaron 10 individuos de ratones. Se observó a los ratones dos veces a la semana. Los datos se representan como el valor medio ± SD. Número de referencia 17, grupo al que se administró vector de plásmido; número de referencia 18, grupo al que se administró plásmido que codifica PDS5A.

Fig. 10 presenta la relación de ratones vivos en el experimento de la Fig. 8. Número de referencia 19, grupo al que se administró vector de plásmido; número de referencia 20, grupo al que se administró un plásmido que codifica PDS5A.

Fig. 11 presenta la relación de ratones vivos en el experimento de la Fig. 9. Número de referencia 21, grupo al que se administró vector de plásmido; número de referencia 22, grupo al que se administró un plásmido que codifica PDS5A.

Fig. 12 es un diagrama en el que se muestra que los linfocitos T CD8-positivos específicos para cada uno de los polipéptidos que tienen las secuencias de aminoácidos presentadas en las SEQ ID NO: 27 a 35 en el LISTADO DE SECUENCIAS reconocen el complejo entre el polipéptido y HLA-A0201 y producen IFN-γ. En la Fig. 12, los números de referencia 25 a 33 a lo largo de la abscisa indican la capacidad de linfocitos T CD8-positivos HLA-A0201 positivos de producir IFN-γ como respuesta al estímulo con linfocitos T2 pulsados con los correspondientes péptidos de las SEQ ID NO: 27 a 35. El número de referencia 23 presenta un resultado obtenido cuando se llevó a cabo el tratamiento mencionado sin adición de un polipéptido y el número de referencia 24 presenta un resultado obtenido cuando se llevó a cabo el tratamiento mencionado con la adición del polipéptido presentado en la SEQ ID NO: 36, que está fuera del alcance de la presente invención.

Fig. 13 es un diagrama en el que se presenta la actividad citotóxica contra células cancerosas de linfocitos T CD8-positivos de cada uno de los polipéptidos que tienen las secuencias de aminoácidos presentadas en SEQ ID NO: 27 a 35 en el LISTADO DE SECUENCIAS. En la Fig. 13, los números de referencia 36 a 44 a lo largo de la abscisa indican la actividad citotóxica contra células T98G, de linfocitos T CD8-positivos HLA-A0201-positivos estimulados con los correspondientes péptidos de SEQ ID NO: 27 a 35. El número de referencia 34 presenta la actividad citotóxica de linfocitos T CD8-positivos inducidos sin adición de un polipéptido y el número de referencia 35 presenta la actividad citotóxica de linfocitos T CD8-positivos inducidos mediante el uso de péptido de control negativo (SEQ ID NO: 36).

Mejor modo de realización de la invención

5

10

15

20

25

30

35

40

45

50

55

60

65

Entre los ejemplos de polipéptido contenido en el agente inductor de respuesta inmune de la presente invención como ingrediente eficaz se incluyen los siguientes. En la presente invención, el término "polipéptido" significa una molécula formada por una pluralidad de aminoácidos unidos por enlaces péptido e incluye no solamente moléculas

de polipéptido que tienen un gran número de aminoácidos que las constituyen, sino también a moléculas de bajo peso molecular que tienen un reducido número de aminoácidos (oligopéptidos) y proteínas de longitud completa. En la presente invención, se incluyen también en dicho término las proteínas PDS5A de longitud completa que tienen las secuencias de aminoácidos presentada en las SEQ ID NO: 2, 4, 6, 8, 10, 12 y 44.

5

10

15

20

- (a) Un polipéptido que consiste esencialmente en al menos 7 aminoácidos consecutivos en un polipéptido que tiene una secuencia de aminoácidos presentada en SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44 en el LISTADO DE SECUENCIAS, y que tiene actividad de inducción de respuesta inmune.
- (b) un polipéptido que tiene una identidad de secuencia de al menos 90 % con el polipéptido (a), consiste esencialmente en al menos 7 aminoácidos y tiene actividad de inducción de respuesta inmune.
- (c) un polipéptido que comprende el polipéptido (a) o (b) como una secuencia parcial del mismo, y tiene actividad de inducción de respuesta inmune.

En la presente invención, la expresión "que tiene una secuencia de aminoácidos" significa que los restos de aminoácido están dispuestos en dicho orden. Por consiguiente, por ejemplo, "polipéptido que tiene la secuencia de aminoácidos presentada en SEQ ID NO: 2" significa el polipéptido que tiene la secuencia de aminoácidos de Met Asp Phe Thr... (snip) ... Asp Leu Gln Arg presentada en SEQ ID NO: 2, polipéptido que tiene un tamaño de 1337 restos de aminoácido. Asimismo, por ejemplo, "polipéptido que tiene la secuencia de aminoácidos presentada en la SEQ ID NO: 2" puede abreviarse como "polipéptido de SEQ ID NO: 2". Esto se aplica también a la expresión "que tiene una secuencia base". En este caso, la expresión "que tiene" puede reemplazarse por la expresión "que consiste esencialmente en'.

Tal como se utiliza en el presente documento, la expresión "actividad de inducción de respuesta inmune" significa capacidad de inducir inmunocitos que secretan citoquinas, como interferón, en un organismo vivo.

25

30

35

40

45

50

55

60

65

Se puede confirmar si el polipéptido tiene o no actividad de inducción de respuesta inmune, utilizando por ejemplo el conocido ensayo ELISPOT. Más en particular, por ejemplo, tal como se describe en los ejemplos más adelante, se obtienen células, como células mononucleares de sangre periférica de un organismo vivo al que se ha administrado un polipéptido cuya actividad de inducción de respuesta inmune se va a evaluar, co-cultivando a continuación dichas células con el polipéptido, seguido de la medición de la cantidad de citoquina(s) producida(s) por las células utilizando un anticuerpo/anticuerpos específicos, en virtud de lo cual se mide el número de inmunocitos en las células, lo que permite la evaluación de la actividad de inducción de respuesta inmune.

Alternativamente, tal como se describe en los ejemplos más adelante, cuando se administra un polipéptido recombinante cualquiera entre (a) a (c), antes descritos, a un animal portador de tumor, se puede conseguir la regresión del tumor gracias a su actividad de inducción de respuesta inmune. Siendo así, se puede evaluar dicha actividad de inducción de respuesta inmune también como la capacidad de suprimir el crecimiento de células cancerosas o de causar una reducción o desaparición de un tejido canceroso (tumor) (en lo sucesivo, se hace referencia a ello como "actividad anti-tumor"). La actividad anti-tumor de un polipéptido puede confirmarse por ejemplo, más en particular, tal como se describe en los ejemplos adelante, observando si se reduce o no el tumor cuando se administra realmente el polipéptido a un organismo vivo portador de tumor.

Alternativamente, se puede evaluar también la actividad anti-tumor de un polipéptido observando si los linfocitos T estimulados con el polipéptido (es decir, linfocitos T que entran en contacto con la célula presentadora de antígenos que presentan el polipéptido) muestran actividad citotóxica contra células tumorales *in vitro*. El contacto entre los linfocitos T y las células presentadoras de antígeno se puede llevar a cabo por co-cultivo de ambos en un medio líquido, tal como se menciona más adelante. La medición de la actividad citotóxica se puede llevar a cabo por ejemplo a través de un método conocido denominado ensayo de liberación de ⁵¹Cr, descrito en Int. J. Cáncer, 58: p 317, 1994. En los casos en los que se utilice el polipéptido para terapia y/o profilaxis contra el cáncer, la evaluación de la actividad de inducción de respuesta inmune se lleva a cabo preferentemente utilizando la actividad anti-tumor como índice, si bien el índice no está restringido.

Las secuencias de aminoácidos presentadas en las SEQ ID NO: 2, 4, 6, 8, 10, 12 y 44 en el LISTADO DE SECUENCIAS son las secuencias de aminoácidos de las proteínas PDS5A que fueron aisladas a través del método SEREX utilizando una genoteca de ADNc derivado de testículos caninos y suero de un perro portador de tumor, como polipéptido que se une específicamente a un anticuerpo existente en el suero del perro portador de tumor y factores homólogos del polipéptido en seres humanos (SEQ ID NO:4 y 44), ratón (SEQ ID NO:6), vaca (SEQ ID NO:8), caballo (SEQ ID NO:10) y pollos (SEQ ID NO:12) (véase Ejemplo 1). PDS5A humana, que es un factor homólogo humano de PDS5A canino, tiene una identidad de secuencia de un 94 % por lo que respecta a la secuencia base y un 99 % por lo que respecta a la secuencia de un 91% por lo que respecta a la secuencia base y 99 % por lo que respecta a la secuencia de aminoácidos; PDS5A bovina, que es un factor homólogo bovino, tiene una identidad de secuencia de aminoácidos; PDS5A equina, que es un factor homólogo equino, tiene una identidad de secuencia de un 96 % por lo que respecta a la secuencia base y 99 % por lo que respecta a la secuencia de aminoácidos; PDS5A equina, que es un factor homólogo equino, tiene una identidad de secuencia de un 96 % por lo que respecta a la secuencia base y 99 % por lo que respecta a la secuencia de aminoácidos; y PDS5A de pollo, que es un factor homólogo de pollo tiene una identidad de secuencia de un 83 % por lo que

respecta a la secuencia base y 98 % por lo que respecta a la secuencia de aminoácidos.

El polipéptido (a) es un polipéptido que consiste esencialmente en al menos 7 aminoácidos consecutivos, preferentemente 8, 9 o al menos 10 aminoácidos consecutivos en el polipéptido que tiene la secuencia de aminoácidos presentada en las SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44, y tiene actividad de inducción de respuesta inmune. El polipéptido especialmente preferente tiene la secuencia de aminoácidos presentada en las SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44. Tal como se conoce en la técnica, un polipéptido que tiene al menos aproximadamente 7 restos de aminoácido puede ejercer su antigenicidad e inmunogenicidad. Siendo así, un polipéptido que tiene al menos 7 restos de aminoácido consecutivos en la secuencia de aminoácidos presentada en las SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44 puede tener actividad de inducción de respuesta inmune, de modo que se puede utilizar para la preparación del agente de inducción de respuesta inmune de la presente invención.

Como principio de la inducción de respuesta inmune por administración de un polipéptido antigénico contra el cáncer, se conoce el siguiente proceso: se incorpora un polipéptido en una célula presentadora de antígeno y, a continuación, se degrada en fragmentos más pequeños mediante peptidasas en la célula, seguido de la presentación de los fragmentos en la superficie de la célula. A continuación, los fragmentos son reconocidos por un linfocito T citotóxico o similar, que elimina selectivamente las células presentadoras de antígeno. El tamaño del polipéptido presentado en la superficie de la célula presentadora de antígeno es relativamente pequeño, aproximadamente de 7 a 30 aminoácidos. Por consiguiente, desde el punto de vista de su presentación en la superficie de la célula presentadora de antígeno, un modo preferente del polipéptido (a) descrito es un polipéptido compuesto de aproximadamente 7 a 30 aminoácidos consecutivos en la secuencia de aminoácidos presentada en las SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44, y más preferentemente, un polipéptido compuesto de aproximadamente 8 a 30 o aproximadamente 9 a 30 aminoácidos es suficiente como polipéptido (a). En algunos casos, se presentan directamente en la superficie de la célula presentadora de antígeno estos polipéptidos relativamente pequeños sin incorporarse en la célula presentadora de antígenos.

Asimismo, dado que se escinde el polipéptido incorporado en una célula presentadora de antígeno en sitios aleatorios mediante peptidasas en la célula para producir varios fragmentos del polipéptido, que son presentados entonces en la superficie de la célula presentadora de antígeno, la administración de un polipéptido largo, como por ejemplo la región de longitud completa de las SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44 causa inevitablemente la producción de fragmentos de polipéptido por su degradación en la célula presentadora de antígeno, siendo dichos fragmentos eficaces para inducir respuesta inmune a través de la célula presentadora de antígeno. Por consiguiente, se puede utilizar preferentemente también para inducir respuesta inmune a través de célula presentadora de antígenos, un polipéptido largo y el polipéptido puede estar compuesto de al menos 30, preferentemente al menos 100, más preferentemente al menos 200, aún más preferentemente al menos 250 aminoácidos. El polipéptido puede estar compuesto incluso más preferentemente de la región de longitud completa de las SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44.

Asimismo, se puede comprobar los polipéptidos de la presente invención con un medio de comprobación en virtud del cual se puede realizar la búsqueda de péptidos de epítopo que tienen motivos de unión de varios tipos de HLA y que consisten esencialmente en 8 a 12, preferentemente 9 a 10 aminoácidos, por ejemplo, Predicciones de Unión a Péptido HLA (http://bimas.dcrt.nih.gov/molbio/hla_bind/index. html) en Bioinformatics & Molecular Analysis Selection (BIMAS), para explorar péptidos que pueden ser péptidos de epítopo. Más en particular, es preferente un polipéptido que consiste esencialmente en al menos 7 aminoácidos consecutivos en la región de las posiciones de los restos de aminoácidos aa111-140, aa211-240, aa248-278, aa327-357, aa459-522, aa909-972, aa959-1022, aa994-1057 o aa1018-1080 en la secuencia de aminoácidos presentada en las SEQ ID NO: 2, 6, 8, 10, 12 o 44 y, en el polipéptido de las SEQ ID NO: 4 o 44, es más preferente el polipéptido presentado en cualquiera de las SEQ ID NO: 27 a 35, o un polipéptido que comprende un polipéptido que tiene la secuencia de aminoácidos presentada en cualquiera de las SEQ ID NO: 27 a 35 como secuencia parcial y tiene de 10 a 12 restos de aminoácidos.

El polipéptido (b) es el mismo polipéptido que el polipéptido (a) salvo que estén sustituidos, suprimido y/o insertado un reducido número de restos de aminoácidos (preferentemente, de uno a varios), que tiene una identidad de secuencia de al menos 90 %, preferentemente al menos 95 %, más preferentemente al menos 98 %, aún más preferentemente al menos 99 % o al menos 99,5 % con respecto a la secuencia original y tiene actividad de inducción de respuesta inmune. Se sabe perfectamente dentro de la técnica que, en general, existen casos en los que un antígeno de proteína retine prácticamente la misma antigenicidad que la proteína original aunque se modifique secuencia de aminoácidos de la proteína, tal que se sustituya, suprima y/o inserte un reducido número de aminoácidos. Por consiguiente, dado que el polipéptido (b) puede ejercer también actividad de inducción de respuesta inmune, se puede utilizar para la preparación del agente de inducción de respuesta inmune de la presente invención. Asimismo, el polipéptido (b) es también preferentemente el mismo polipéptido que aquél que tiene la secuencia de aminoácidos presentada en las SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44 salvo que esté sustituido, suprimido y/o insertado de uno a varios restos de aminoácido. Tal como se utiliza en el presente documento, el término "varios" significa un número entero de 2 a 10, preferentemente un entero de 2 a 6, más preferentemente un entero de 2 a 4.

Tal como se utiliza en el presente documento, la expresión "identidad de secuencia" de una secuencia de aminoácidos o secuencias base significa el valor calculado al alinear dos secuencias de aminoácidos (o secuencias

base) para compararlas, de manera que el número de restos de aminoácido apareados (o bases) sea el máximo entre las secuencias de aminoácidos (o secuencias base) y dividir el número de restos de aminoácidos apareados (o número de bases apareadas) por el número total de restos de aminoácido (o número total de bases), valor que se representa como porcentaje. Cuando se lleva a cabo el alineamiento, se inserta(n) un hueco(s) en una o en las dos secuencias comparadas, según se requiera. Dicho alineamiento de secuencias se puede llevar a cabo utilizando un programa conocido, como BLAST, FASTA o CLUSTAL W. Cuando se inserta(n) hueco(s), el número total de restos de aminoácidos que se ha descrito es el número de restos calculado según el recuento de un hueco como un resto de aminoácido. Cuando el número total de restos de aminoácido así contado es diferente entre las dos secuencias comparadas, se calcula la identidad de secuencia (%) dividiendo el número de restos de aminoácido apareados por el número total de restos de aminoácido en la secuencia más larga.

Los 20 tipos de aminoácidos que constituyen las proteínas de origen natural se pueden clasificar en grupos en los cuales se comparten propiedades similares, por ejemplo, en aminoácidos neutros con cadenas laterales que tienen baja polaridad (Gly, Ile, Val, Leu, Ala, Met, Pro), aminoácidos neutros que tienen cadenas laterales hidrófilas (Asn, Gln, Thr, Ser, Tyr, Cys), aminoácidos ácidos (Asp, Glu), aminoácidos básicos (Arg, Lys, His) y aminoácidos aromáticos (Phe, Tyr, Trp). Se sabe que en la mayoría de los casos, las sustituciones de aminoácidos dentro del mismo grupo no cambian las propiedades del polipéptido. Por consiguiente, en los casos en los que está(n) sustituido(s) un resto(s) de aminoácido en el polipéptido (a) de la presente invención, es posible aumentar la probabilidad de mantener la actividad de inducción de la respuesta inmune introduciendo la(s) sustitución(es) dentro del mismo grupo, siendo esto preferente.

Como el polipéptido (b), que corresponde al péptido de epítopo que se ha descrito, es preferente un polipéptido que es el mismo que el polipéptido que consiste esencialmente en al menos 7 aminoácidos consecutivos en la región de aa111-140, aa211-240, aa248-278, aa327-357, aa459-522, aa909-972, aa959-1022, aa994-1057 o aa1018-1080 en una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 2, 6, 8, 10, 12 y 44 salvo que se suprima, sustituya y/o añada uno o varios aminoácidos, o un polipéptido que comprende el polipéptido como una secuencia parcial del mismo y que tiene actividad de inducción de respuesta inmune, y, en el polipéptido de las SEQ ID NO: 4 o 44, es más preferente un polipéptido que es el mismo que el polipéptido que tiene la secuencia de aminoácidos presentada en cualquiera de las SEQ ID NO: 27 a 35 salvo que se suprima, sustituya y/o añada uno o varios aminoácidos, o un polipéptido que comprende el polipéptido como una secuencia parcial y que tiene de 10 a 12 restos de aminoácido.

El polipéptido (c) comprende el polipéptido (a) o (b) como secuencia parcial y tiene actividad de inducción de respuesta inmune. Es decir, el polipéptido (c) tiene algún otro/otros aminoácidos(s) o polipéptido(s) añadidos en uno o ambos extremos del polipéptido (a) o (b), y tiene actividad de inducción de respuesta inmune. Dicho polipéptido puede utilizarse también para la preparación del agente de inducción de respuesta inmune de la presente invención.

Como polipéptido (c), que corresponde al epítopo que se ha descrito, es preferente un polipéptido que comprende como una secuencia parcial el polipéptido que consiste esencialmente en al menos 7 aminoácidos consecutivos en la región de aa111-140, aa211-240, aa248-278, aa327-357, aa459-522, aa909-972, aa959-1022, aa994-1057 o aa1018-1080 en una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO:2, 6, 8, 10, 12 y 44, y, en el polipéptido de las SEQ ID NO: 4 o 44, es más preferente un polipéptido que comprende como una secuencia parcial: un polipéptido que es el mismo que el polipéptido que tiene la secuencia de aminoácidos presentada en cualquiera de las SEQ ID NO: 27 a 35 salvo que se suprima, sustituya y/o añada uno o varios aminoácidos; o un polipéptido que comprende el polipéptido como una secuencia parcial y que tiene de 10 a 12 restos de aminoácidos.

Los polipéptidos descritos se pueden sintetizar por ejemplo a través de un método de síntesis química, como el método Fmoc (método fluorenilmetoxicarbonilo) o el método tBoc (método terc-butoxicarbonilo). Asimismo, pueden sintetizarse a través de métodos convencionales utilizando varios tipos de sintetizadores de péptido disponibles en el mercado. Asimismo, es posible obtener el polipéptido de interés aplicando técnicas de ingeniería genética conocidas, preparando un polinucleótido que codifica el polipéptido mencionado e incorporando el polinucleótido en un vector de expresión, que se introduce a continuación en una célula hospedadora, tras lo cual se permite la producción del polipéptido en la célula hospedadora.

El polinucleótido que codifica el polipéptido mencionado se puede preparar fácilmente a través de técnicas de ingeniería genética conocidas o un método convencional empleando un sintetizador de ácido nucleico disponible en el mercado. Por ejemplo, puede prepararse ADN que tiene la secuencia base presentada en SEQ ID NO: 1 por PCR utilizando una genoteca de ADN o ADNc cromosómico canino como matriz, y un par de cebadores diseñados para que la secuencia base presentada en SEQ ID NO: 1 pueda ampliarse con ellos. Asimismo, puede prepararse de forma similar ADN que tiene la secuencia base SEQ ID NO: 3 o 43 utilizando una genoteca de ADN o ADNc cromosómico humano como matriz. Las condiciones de reacción para la PCR se pueden ajustar apropiadamente, incluyéndose entre sus ejemplos, pero sin limitarse con ellos, repetición del proceso de reacción a 94 °C durante 30 segundos (desnaturalización), 55 °C durante 30 segundos a 1 minuto (hibridación) y 72 °C durante 2 minutos (extensión), por ejemplo, durante 30 ciclos seguido de la reacción a 72 °C durante 7 minutos. Asimismo, se puede aislar el ADN deseado preparando una sonda(s) o cebador(es) apropiado(s) sobre la base de la información de las

secuencias base y las secuencias de aminoácidos presentadas en SEQ ID NO: 1, 3, 5, 7, 9, 11 y 43 en el LISTADO DE SECUENCIAS en la presente memoria descriptiva y explorando una genoteca de ADNc de perro, ser humano o similar, empleando la(s) sonda(s) o cebador(es). Preferentemente, la genoteca de ADNc se prepara a partir de una célula, un órgano o un tejido que expresa la proteína de SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44. Las personas expertas en la materia conocen las operaciones que se han descrito, como la preparación de una sonda(s) o un cebador(es), construcción de una genoteca de ADNc, exploración de una genoteca de ADNc y clonación de un gen de interés y pueden llevarse a cabo de acuerdo con los métodos descritos en Molecular Cloning, Segunda edición; Current Protocols in Molecular Biology; y/o similares. A partir del ADN así obtenido, se puede obtener ADN que codifica el polipéptido (a). Asimismo, dado que se conocen los codones que codifican cada aminoácido, se puede específicar fácilmente la secuencia base de un polinucleótido que codifica una secuencia de aminoácidos específica. Por consiguiente, dado que se puede especificar también la secuencia base de un polinucleótido que codifica el polipéptido (b) o polipéptido (c), también es posible sintetizar fácilmente dicho polinucleótido empleando un sintetizador de ácido nucleico disponible en el mercado de acuerdo con un método convencional.

Los linfocitos T no están restringidos siempre y cuando puedan expresar el polipéptido que se ha descrito y entre los ejemplos del mismo se incluyen, pero sin limitarse a ellos, células procariotas como *E. coli*; y células eucariotas como células de mamífero cultivadas, incluyendo células de riñón de mono COS1 y células de ovario de hámster chino CHO; de fermento germinativas; levadura de fisión; células de gusano de seda y células de huevos de *Xenopus laevis*.

10

20

25

40

45

50

55

60

65

En los casos en los que se utilizan células procariotas como células hospedadoras, se utiliza un vector de expresión en el que está contenido un origen que permite la replicación del vector en una célula procariota, promotor, sitio de unión a ribosoma, sitio de clonación de ADN, terminador y/o similar. Entre los ejemplos de vector de expresión para *E. coli*, se incluyen el sistema pUC, pBluescriptll, sistema de expresión pET y sistema de expresión pGEX. Al incorporar un ADN que codifica el polipéptido mencionado en dicho vector de expresión y transformar las células procariotas hospedadoras con el vector, seguido del cultivo con los transformantes resultantes, se puede expresar el polipéptido que codifica el ADN en las células procariotas hospedadoras. En dicho proceso, puede expresarse el polipéptido como proteína de fusión con otra proteína.

En los casos en los que se utilizan células eucariotas como células hospedadoras, se utiliza como vector de expresión un vector de expresión para células eucariotas que tiene un promotor, un sitio de corte y empalme, un sito de poliadición (A) y/o similares. Entre los ejemplos de dichos vectores de expresión se incluyen pKA1, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, vector EBV, pRS, pcDNA3, pMSG y pYES2.Al igual que se ha descrito anteriormente, al incorporar un ADN que codifica el polipéptido mencionado en dicho vector de expresión y transformar las células eucariotas hospedadoras con el vector, seguido del cultivo de los transformantes resultantes, se puede expresar el polipéptido codificado por ADN en las células hospedadoras eucariotas. En los casos en los que se utiliza pIND/V5-His, pFLAG-CMV-2, pEGFP-N1, pEGFP-C1 o similar como vector de expresión, puede expresarse el polipéptido mencionado como proteína de fusión en la que se ha añadido una etiqueta como etiqueta His, etiqueta FLAG, etiqueta myc, etiqueta HA o GFP.

Para introducir el vector de expresión en las células hospedadoras, puede aplicarse un método conocido como electroporación, método de fosfato de calcio, método de liposoma o método de dextrano DEAE.

El aislamiento y purificación del polipéptido de interés desde las células hospedadoras puede llevarse a cabo a través de una combinación de operaciones de separación conocidas. Entre los ejemplos de operaciones de separación conocidas se incluyen, sin limitarse a ellas, tratamiento con un desnaturalizante, como urea, o con un tensioactivo; tratamiento por ultrasonicación, digestión con enzima, precipitación fraccionada con disolvente o por adición de sal; diálisis; centrifugación; ultrafiltración, filtración con gel; SDS-PAGE; isoelectroenfoque; cromatografía de intercambio iónico; cromatografía hidrófoba; cromatografía de afinidad y cromatografía en fase inversa.

Los polipéptidos obtenidos a través del método indicado pueden incluir, tal como se ha mencionado, aquellos en forma de una proteína de fusión con otra proteína cualquiera. Entre los ejemplos de la misma se incluyen proteínas de fusión con glutatión S-transferasa (GST) y con una etiqueta His. Dicho polipéptido en forma de una proteína de fusión queda también incluido dentro del alcance de la presente invención como el polipéptido (c) descrito. Asimismo, en algunos casos, se modifica un polipéptido expresado en una célula transformada de varias maneras en la célula tras la traducción. Dicho polipéptido modificado después de la traducción también queda incluido dentro del alcance de la presente invención, siempre y cuando tenga actividad de inducción de respuesta inmune. Entre los ejemplos de dicha modificación después de la traducción se incluyen: eliminación de metionina N-terminal; acetilación N-terminal; glicosilación; degradación limitada por una proteasa intracelular, miristoilación, isoprenilación y fosforilación.

Tal como se describe más en particular en los ejemplos más adelante, se puede conseguir una regresión de un tumor ya existente a través de la administración del polipéptido que tiene actividad de inducción de respuesta inmune o un vector de expresión que comprende el gen que codifica el polipéptido a un organismo vivo portador de tumor. Asimismo, es posible prevenir el desarrollo de un tumor a través de la administración del polipéptido que tiene actividad de inducción de respuesta inmune o el gen que codifica el polipéptido a un organismo vivo antes de que se

produzca un cáncer. Por consiguiente, el agente de inducción de respuesta inmune de la presente invención puede utilizarse como agente terapéutico y/o profiláctico contra el cáncer. Asimismo, puede utilizarse el polipéptido que tiene actividad de inducción de respuesta inmune para un método de terapia y/o profilaxis contra el cáncer por inducción de respuesta inmune.

Tal como se utiliza en el presente documento, los términos "tumor" y "cáncer" significan un neoplasma maligno y se utilizan indistintamente.

En este caso, el cáncer que se vaya a tratar no está limitado siempre y cuando PDS5A esté expresado en el cáncer, y el cáncer es preferentemente cáncer de mama, tumor cerebral, cáncer de esófago, cáncer de pulmón, cáncer renal, cáncer de colon, adenocarcinoma perinatal, neuroblastoma o leucemia.

5

15

20

25

30

35

40

45

55

60

65

El animal sujeto es preferentemente un mamífero, más preferentemente un mamífero, como por ejemplo un primate, un animal de compañía, un animal doméstico o un animal de competición, especialmente de forma preferente un ser humano, un perro o un gato.

La ruta de administración del agente de inducción de respuesta inmune de la presente invención a un organismo vivo puede ser administración oral o administración parenteral, y es preferentemente administración parenteral, como por ejemplo administración intramuscular, administración subcutánea, administración intravenosa o administración intra-arterial. En los casos en los que se utiliza el agente de inducción de respuesta inmune para terapia contra el cáncer, es posible administrarlo a un ganglio linfático regional en la proximidad del tumor que se va a tratar, tal como se describe en los ejemplos más adelante, para potenciar la actividad anti-cáncer. La dosis puede ser cualquier dosis siempre y cuando sea una dosis eficaz para la inducción de respuesta inmune y, por ejemplo, en los casos en los que se utiliza el agente para terapia y/o profilaxis contra el cáncer, la dosis puede ser aquella que sea eficaz para la terapia y/o profilaxis contra el cáncer. La dosis eficaz para terapia y/o profilaxis contra el cáncer se selecciona apropiadamente dependiendo del tamaño y los síntomas del tumor, y similares, y la dosis eficaz está comprendida normalmente entre 0,0001 µg y 1000 µg, preferentemente entre 0,001 µg y 1000 µg por sujeto animal al día, que se puede administrar de una a varias veces al día. Preferentemente, se administra el agente en varias veces, cada varios días a varios meses. Tal como se muestra de forma más concreta en los ejemplos más adelante, el agente de inducción de respuesta inmune de la presente invención puede causar la regresión de un tumor que ya se ha producido. Por consiguiente, dado que el agente puede ejercer su actividad anti-cáncer también contra un pequeño número de células cancerosas en un estadio temprano, es posible prevenir el desarrollo o recurrencia del cáncer mediante el uso del agente antes de que se desarrolle el cáncer o después de la terapia contra el cáncer. Es decir, el agente de inducción de respuesta inmune de la presente invención es eficaz tanto para terapia como para para profilaxis contra el cáncer.

El agente de inducción de respuesta inmune de la presente invención puede contener solamente un polipéptido o puede formularse mezclándolo, según sea apropiado, con un aditivo, como pueda ser un vehículo, diluyente o vehículo farmacéuticamente aceptable adecuado para cada modo de administración. Los métodos de formulación y los aditivos que pueden utilizarse son muy conocidos dentro del campo de la formulación de productos farmacéuticos y es posible utilizar cualquiera de los métodos y aditivos. Entre los ejemplos específicos de aditivos se incluyen, sin limitarse a ellos, diluyentes, como soluciones de tampón fisiológicas; vehículos como azúcar, lactosa, almidón de maíz, fosfato de calcio, sorbitol y glicina; aglutinantes como jarabe, gelatina, goma arábiga, sorbitol, policloruro de vinilo y tragacanto; y lubricantes como estearato de magnesio, polietilen glicol, talco y sílice. Entre los ejemplos de formulación se incluyen preparaciones orales, como comprimidos, cápsulas, granulados, polvos y jarabes; y preparaciones parenterales, tales como inhaladores, soluciones para inyección, supositorios y soluciones. Dichas formulaciones se pueden preparar a través de los métodos de producción comúnmente conocidos.

El agente de inducción de respuesta inmune de la presente invención puede utilizarse en combinación con un inmunopotenciador capaz de potenciar la respuesta inmune in un organismo vivo. El inmunopotenciador puede estar contenido en el agente inductor de la respuesta inmune de la presente invención o se puede administrar como composición por separado al paciente en combinación con el agente de inducción de respuesta inmune de la presente invención.

Entre los ejemplos del inmunopotenciador se incluyen adyuvantes. Los adyuvantes sirven para potenciar la respuesta inmune proporcionando un depósito de antígeno (extracelularmente o dentro de macrófagos), mediante la activación de magrófagos o estimulando grupos de linfocitos específicos, potenciando así la respuesta inmune y, por tanto, la acción anti-cáncer. Por consiguiente, sobre todo en los casos en los que el agente de inducción de la respuesta inmune de la presente invención se utiliza para terapia y/o profilaxis contra el cáncer, el agente inductor de la respuesta inmune comprende preferentemente un adyuvante, además del polipéptido que se ha descrito, como ingrediente eficaz. Dentro de la técnica, se conocen perfectamente muchos tipos de adyuvantes, pudiéndose utilizar cualquiera de dichos adyuvantes. Entre los ejemplos específicos de los adyuvantes se incluyen MPL (SmithKline Beecham), homólogos de lipopolisacárido de Salmonella minnesota Re 595 obtenido tras la purificación y la hidrólisis ácida del lipopolisacárido; QS21 (SmithKline Beecham), saponina QA-21 pura purificada de un extracto de Quillja saponaria; DQS21 descrito en la solicitud PCT WO96/33739 (SmithKline Beecham); QS-7, QS-17, QS-18 y QS-L1 (So y 10 colaboradores, "Molecules and células", 1997, Vol. 7, p. 178-186); adyuvante incompleto de Freund;

adyuvante completo de Freund; vitamina E; Montanide; alumbre; oligonucleótidos CpG (véase, por ejemplo, Kreig y 7 colaboradores, Nature, Vol. 374, p. 546-549); poli-l:C y derivados del mismo (p.ej., poli ICLC); y diversas emulsiones agua-en-aceite preparadas a partir de aceites biodegradables como escualeno y/o tocoferol. Entre ellos, son preferentes adyuvante incompleto de Freund; Montanide; poli-l-C y derivados de los mismos; y oligonucleótidos CpG. La relación de mezclado entre el adyuvante descrito y el polipéptido es normalmente aproximadamente 1:10 a 10:1, preferentemente, aproximadamente 1:5 a 5:1, más preferentemente, aproximadamente 1:1. Sin embargo, el adyuvante no se limita a los ejemplos descritos, pudiéndose utilizar también otros adyuvantes conocidos en la técnica distintos a los descritos cuando se administra el agente de inducción de respuesta inmune de la presente invención (véase, por ejemplo, Goding, "Monoclonal Antibodies: Principles and Practice, 2ª edición",1986). Los métodos de preparación de mezclas o emulsiones de un polipéptido y un adyuvante son muy conocidos entre las personas expertas en la técnica de vacunación.

10

15

20

40

45

50

55

60

65

Asimismo, además de los adyuvantes descritos, pueden utilizarse factores que estimulan la respuesta inmune del sujeto, como el inmunopotenciador antes descrito. Por ejemplo, es posible utilizar varias citoquinas que tienen la propiedad de estimular linfocitos y/o célula presentadora de antígenos como inmunopotenciador en combinación con el agente inductor de la respuesta inmune de la presente invención. Entre las personas expertas en la materia se conoce una serie de dichas citoquinas capaces de potenciar la respuesta inmune, incluyéndose entre los ejemplos de las mismas, pero sin limitarse a ellas, interleuquina-12 (IL-12), GM-CSF, IL-18, interferón-a, interferón-b, interferón-co, interferón-y, y ligando Flt3, que, tal como se ha demostrado, potencia la acción profiláctica de vacunas. Dichos factores se pueden utilizar también como el inmunopotenciador antes descrito y pueden estar contenidos en el agente de inducción de respuesta inmune de la presente invención, o se pueden preparar como composición por separado para su uso en combinación con el agente inductor de respuesta inmune de la presente invención a un paciente.

Al poner en contacto el polipéptido descrito con la célula presentadora de antígenos *in vitro*, puede hacerse que las células presentadoras de antígeno presenten el polipéptido. Es decir, pueden utilizarse los polipéptidos (a) a (c) descritos como agentes para el tratamiento de la célula presentadora de antígenos. Entre los ejemplos de células presentadoras de antígeno que se pueden utilizar preferentemente se incluyen células dendríticas y linfocitos B que tienen moléculas MHC clase I. Se han identificado y se conocen perfectamente varias moléculas MHC clase I. Las moléculas MHC en el ser humano se denominan HLA. Entre los ejemplos de moléculas HLA clase I se incluyen HLA-A, HLA-B y HLA-C, más específicamente, HLA-A1, HLA-A0201, HLA-A0204, HLA-A0205, HLA-A0206, HLA-A0207, HLA-A11, HLA-A24, HLA-A31, HLA-A6801, HLA-B7, HLA-B8, HLA-B2705, HLA-B37, HLA-Cw0401 y HLA-Cw0602.

Las células dendríticas o linfocitos B que tienen moléculas MHC clase I se pueden preparar a partir de sangre periférica a través de un método conocido. Por ejemplo, es posible inducir células dendríticas específicas de tumor induciendo células dendríticas de la médula ósea, sangre del cordón umbilical y sangre periférica del paciente utilizando un factor de estimulación de colonia de macrófagos-granulocitos (GM-CSF) e IL-3 (o IL-4) y añadiendo después un péptido relacionado con el tumor al sistema de cultivo.

Al administrar una cantidad eficaz de dichas células dendríticas es posible inducir una respuesta deseada para la terapia contra un cáncer. Entre las células utilizadas, se incluyen de la médula ósea o la sangre del cordón umbilical donadas por un individuo sano, o de la médula ósea, sangre periférica o similar, del propio paciente. Cuando se utilizan células autólogas del paciente, es posible conseguir una alta seguridad y es de esperar que se eviten efectos secundarios graves. La sangre periférica o la médula ósea pueden ser cualquiera entre una muestra reciente, una muestra almacenada en refrigeración y una muestra congelada. En cuanto a la sangre periférica, es posible cultivar sangre completa o se pueden separar y cultivar los componentes leucocito solamente, siendo esto último más eficiente y por tanto, preferente. Asimismo, entre los componentes leucocito, pueden separarse células mononucleares. En los casos en los que las células tienen su origen en la médula ósea o la sangre del cordón umbilical, pueden cultivarse las células completas que constituyen la médula ósea, o pueden separarse las células mononucleares de las mismas y cultivarse. La sangre periférica, los componentes leucocito de la misma y las células de la médula ósea contienen células mononucleares, células madre hematopoyéticas y células dendríticas inmaduras a partir de las cuales se originan células dendríticas, así como células CD4-positivas y similares. En cuanto a la citoquina utilizada, el método de producción de las mismas no está restringida, pudiéndose emplear una citoquina de origen natural o recombinante, o similar, siempre y cuando se haya confirmado su seguridad y su actividad fisiológica. Preferentemente, se utiliza una preparación de calidad segura para uso médico en la cantidad mínima necesaria. La concentración de la(s) citoquina(s) que se añada no está restringida siempre y cuando sea una concentración a la que se induzca las células dendríticas y, normalmente, la concentración total de la(s) citoquina(s) es preferentemente aproximadamente de 10 a 1000 ng/ml, más preferentemente de aproximadamente 20 a 500 ng/ml. El cultivo se puede llevar a cabo utilizando un medio conocido, normalmente utilizado para el cultivo de leucocitos. La temperatura de cultivo no está restringida, siempre y cuando se obtenga la proliferación de leucocitos a dicha temperatura, siendo sobre todo preferente una temperatura de aproximadamente 37 °C, que es la temperatura del cuerpo en los seres humanos. El entorno atmosférico durante el cultivo no está restringido siempre y cuando se consiga la proliferación de leucocitos en dicho entorno, dejando fluir preferentemente un 5 % CO2. El período de cultivo no está restringido siempre y cuando permita la inducción del número de células necesario y es normalmente de 3 días a 2 semanas. En cuanto a los aparatos utilizados para la separación y el cultivo de las

células, es posible emplear aparatos apropiados, preferentemente aquellos cuya seguridad en la aplicación para uso médico ha sido confirmada y cuya operación es estable y sencilla. En particular, en lo que se refiere al aparato para cultivar células, no solamente es posible utilizar un vaso corriente, como pueda ser una placa de cultivo Petri, un matraz o una botella, sino también un vaso de tipo bandeja, un vaso multi-etapa, una botella con rueda, una botella de tipo rosca, un vaso de cultivo de tipo bolsa, una columna de fibra hueca o similar.

5

10

15

20

25

30

35

40

45

55

60

65

El método que se utilice en sí para poner en contacto el polipéptido descrito con las células presentadoras de antígeno *in vitro* puede ser un método conocido. Por ejemplo, se puede llevar a cabo por cultivo de la célula presentadora de antígeno en un medio de cultivo que contiene el polipéptido descrito. La concentración del péptido en el medio no está restringida y es normalmente de aproximadamente 1 a 100 μg/ml, preferentemente de aproximadamente 5 a 20 μg/ml. La densidad celular durante el cultivo no está restringida y es normalmente de aproximadamente 10³ a 10⁷ células/ml, preferentemente aproximadamente 5 x 10⁴ a 5 x 10⁶ células/ml. El cultivo se puede llevar a cabo de acuerdo con un método convencional a 37 °C bajo una atmósfera de 5 % CO₂. La longitud máxima del péptido que se puede presentar en la superficie de las células presentadoras de antígeno es normalmente aproximadamente 30 restos de aminoácido. Por consiguiente, en los casos en los que se pone en contacto la célula presentadora de antígeno con el polipéptido *in vitro*, se puede preparar el polipéptido para que su longitud sea como máximo aproximadamente 30 restos de aminoácido, si bien la longitud no está restringida.

Al cultivar las células presentadoras de antígeno en coexistencia con el polipéptido descrito, se incorpora el polipéptido en una molécula MHC de las células presentadoras de antígeno y se presentan en la superficie de las células presentadoras de antígeno. Por consiguiente, al utilizar el polipéptido descrito, puede prepararse la célula presentadora de antígeno aislada que contiene el complejo entre el polipéptido y la molécula MHC. Dichas células presentadoras de antígeno pueden presentar el polipéptido contra linfocitos T *in vivo* o *in vitro*, e inducir y permitir en virtud de ello la proliferación de linfocitos T citotóxicos específicos para el polipéptido.

Al poner en contacto las células presentadoras de antígeno así preparadas que tienen el complejo entre el polipéptido descrito y la molécula MHC con linfocitos T in vitro, se puede inducir linfocitos T citotóxicos específicos para el polipéptido y dar cabida a su proliferación. Esto se puede llevar a cabo co-cultivando las células presentadoras de antígeno descritas y los linfocitos T en un medio líquido. Por ejemplo, se puede conseguir suspendiendo las células presentadoras de antígeno en un medio líquido, colocando la suspensión en vasos, como por ejemplo pocillos de una microplaca, añadiendo linfocitos T a la misma y, a continuación, cultivando las células. La relación de mezclado de la célula presentadora de antígeno con respecto a los linfocitos T en el co-cultivo no está restringida y, normalmente es de aproximadamente 1:1 a 1:100, preferentemente de aproximadamente 1:5 a 1:20 por lo que respecta a la relación entre el número de células. La densidad de células presentadoras de antígenos que se van a suspender en el medio líquido no está restringida y, normalmente es de aproximadamente 100 a 10.000.000 células/ml, preferentemente aproximadamente de 10.000 a 1.000.000 células/ml. Preferentemente, se lleva a cabo el co-cultivo de acuerdo con un método convencional a 37 °C bajo una atmósfera de 5 % CO₂. El período de cultivo no está restringido y es normalmente de 2 días a 3 semanas, preferentemente de aproximadamente 4 días a 2 semanas. Preferentemente, se lleva a cabo el co-cultivo en presencia de una o más interleuquinas, tales como IL-2, IL-6, IL-7 y/o IL-12. En tales casos, la concentración de IL-2 o IL-7 es normalmente de aproximadamente 5 a 20 U/ml, la concentración de IL-6 es normalmente de aproximadamente 500 a 2000 U/ml, y la concentración de IL-12 es normalmente de aproximadamente 5 a 20 ng/ml, si bien las concentraciones de las interleuquinas no están restringidas con ello. El co-cultivo mencionado se puede repetir de una vez a varias veces con la adición de células presentadoras de antígeno nuevas. Por ejemplo, se puede repetir de una a varias veces la operación de descartar el sobrenadante de cultivo tras el co-cultivo y añadir una suspensión nueva de células presentadoras de antígeno para seguir llevando a cabo el co-cultivo. Las condiciones de cada co-cultivo pueden ser las mismas que las que se han descrito.

En virtud del co-cultivo descrito, se inducen linfocitos T citotóxicos específicos para el polipéptido y se da cabida a su proliferación. Siendo así, mediante el uso del polipéptido descrito, es posible preparar linfocitos T aislados que se unen selectivamente al complejo entre el polipéptido y la molécula MHC.

Tal como se describe en los ejemplos más adelante, el gen que codifica PDS5A se expresa específicamente en células de cáncer de mama, tejidos de cáncer de mama, células de tumor cerebral, tejidos de tumor cerebral, células de cáncer de esófago, tejidos de cáncer de esófago, células de cáncer de pulmón, tejidos de cáncer de pulmón, células de cáncer renal, tejidos de cáncer renal, tejidos de cáncer renal, tejidos de cáncer renal, células de cáncer de colon, tejidos de cáncer de colon, tejidos de adenocarcinoma perinatal, células de neuroblastoma y células de leucemia. Por consiguiente, se cree que en estas especies de cáncer, existe una cantidad significativamente mayor de PDS5A que en las células normales. Cuando se administran los linfocitos T citotóxicos preparados tal como se ha descrito a un organismo vivo, mientras que una parte de las PDS5A que existen en las células de cáncer es presentada por moléculas MHC en la superficie de las células cancerosas, los linfocitos T citotóxicos pueden dañar las células cancerosas utilizando el polipéptido presentado como marcador. Dado que la célula presentadora de antígenos que presenta el polipéptido descrito puede inducir y permitir la proliferación de linfocitos T citotóxicos específicos para el polipéptido también in vivo, es posible dañar también células cancerosas al administrar las células presentadoras de antígeno a un organismo vivo. Es decir, los linfocitos T citotóxicos y las células presentadoras de antígeno preparadas utilizando el polipéptido también son eficaces como agentes terapéuticos y/o profilácticos contra el

cáncer, de manera similar al agente de inducción de respuesta inmune de la presente invención.

5

10

15

20

25

30

35

60

65

En los casos en los que se administran las células presentadoras de antígenos aisladas descritas o linfocitos T aislados a un organismo vivo, preferentemente, se preparan tratando células presentadoras de antígeno o linfocitos T recogidos del paciente al que se va a tratar con el polipéptido (a) a (c), tal como se ha descrito, para evitar que la respuesta inmune en el organismo vivo ataque a estas células como cuerpos extraños.

El agente terapéutico y/o profiláctico contra el cáncer que comprende como ingrediente eficaz las células presentadoras de antígeno o linfocitos T se administra preferentemente por una ruta de administración parenteral, por ejemplo, por administración intravenosa o intra-arterial. La dosis se selecciona apropiadamente dependiendo de los síntomas, el propósito de la administración y similares, y es normalmente de 1 célula a 10.000.000.000.000 células, preferentemente de 1.000.000 células a 1.000.000.000 células, dosis que se administra preferentemente una vez cada varios días a una vez cada varios meses. La formulación puede consistir por ejemplo en células suspendidas en solución salina fisiológica tamponada y puede utilizarse la formulación en combinación con alguna otra/otras preparaciones anti-cáncer y/o citoquina(s). Asimismo, puede añadirse también uno o más aditivos conocidos en el campo de la formulación de productos farmacéuticos.

Asimismo, al expresar un polinucleótido que codifica cualquiera de los polipéptidos (a) a (c) en el organismo de un sujeto animal, puede inducirse la producción de anticuerpos y linfocitos T citotóxicos en el organismo vivo y obtenerse un efecto comparable al obtenido cuando se administra el polipéptido. Es decir, el agente inductor de la respuesta inmune de la presente invención puede ser aquel que comprende como ingrediente eficaz un vector recombinante que tiene un polinucleótido que codifica cualquiera de los polinucleótidos (a) a (c) siendo capaz dicho vector recombinante de expresar el polipéptido en un organismo vivo. Dicho vector recombinante capaz de expresar un polipéptido antigénico, tal como se menciona más adelante en los ejemplos, se denomina vacuna génica.

El vector utilizado para la producción de la vacuna génica no está restringido siempre y cuando sea un vector capaz de expresar el polipéptido en una célula del sujeto animal (preferentemente en una célula de mamífero) y puede ser o bien un vector de plásmido o bien un vector virus, así como cualquier vector conocido dentro de las vacunas génicas. El polinucleótido, como pueda ser ADN o ARN que codifica el polipéptido descrito, puede prepararse fácilmente, tal como se ha mencionado, a través de un método convencional. La incorporación del polinucleótido en el vector se puede llevar a cabo aplicando un método conocido entre las personas expertas en la materia.

La ruta de administración de la vacuna génica es preferentemente una ruta parenteral, como por ejemplo administración intramuscular, subcutánea, intravenosa o intra-arterial, y la dosis puede seleccionarse apropiadamente dependiendo del tipo de antígeno y similares y es normalmente de aproximadamente 0,1 µg a 100 mg, preferentemente de aproximadamente 1 µg a 10 mg por lo que respecta al peso de la vacuna génica por 1 kg de peso corporal.

Entre los ejemplos del método en el que se utiliza un vector virus se incluyen aquellos en los que se incorpora un polinucléotido que codifica el polipéptido descrito en un virus de ARN o virus de ADN, como por ejemplo un retrovirus, adenovirus, virus adeno-asociado, herpes virus, virus vaccinia, virus de la varicela, virus de la polio o virus Sindbis y a continuación, se infecta al animal sujeto con el virus resultante. Entre estos métodos, son especialmente preferentes aquellos que utilizan un retrovirus, adenovirus, virus adeno-asociado, virus vaccinia o similar.

45 Entre los ejemplos de otros métodos se incluyen un método en el que se administra por vía intramuscular directamente un plásmido de expresión (método de vacuna de ADN), método del liposoma, método de lipofectina, método de micro-inyección, método de fosfato cálcico y método de electroporación, siendo especialmente preferentes el método de vacuna de ADN y el método de liposoma.

Los métodos para hacer que el gen que codifica el polipéptido descrito utilizado en la presente invención actúe realmente como un producto farmacéutico incluyen el método *in vivo* en el que se introduce directamente el gen en el organismo, y el método *ex vivo*, en el que se recoge una determinada clase de células de un sujeto animal y se introduce el gen en las células *ex vivo*, tras lo cual se retornan las células al organismo (Nikkei Science, 1994, abril, p. 20-45; The Pharmaceutical Monthly, 1994, Vol. 36, No. 1, p. 23-48; Experimental Medicine, edición extra, 1994, Vol.12, No. 15; y las referencias citadas en esta bibliografía, y similares). El método *in vivo* es más preferente.

En los casos en los que se administra el gen a través del método *in vivo*, puede administrarse el gen a través de una ruta de administración apropiada dependiendo de la enfermedad que se vaya a tratar, los síntomas, etc. Se puede administrar por ejemplo por administración intravenosa, intra-arterial, subcutánea o intramuscular. En los casos en los que se administra el gen a través del método *in vivo*, puede formularse el gen en una preparación como pueda ser una solución, y en general, se formula en una solución para inyección o similar que contiene ADN que codifica el péptido descrito de la presente invención, como ingrediente eficaz. Si se requiere, puede añadirse también vehículo utilizado habitualmente. En el caso de un liposoma o liposoma de fusión de membrana (virus Sendai (HVJ)-liposoma o similar) que contiene el ADN, es posible formular el liposoma en una preparación de liposoma como pueda ser una suspensión, una preparación congelada o una preparación congelada concentrada por centrifugación.

En la presente invención "la secuencia base presentada en SEQ ID NO: 1" incluye no solamente la secuencia base escrita expresamente en SEQ ID NO: 1, sino también la secuencia complementaria de la misma. Siendo así, "el polinucleótido que tiene la secuencia base presentada en SEQ ID NO: 1" incluye un polinucleótido monocatenario que tiene la secuencia base escrita expresamente en la SEQ ID NO: 1, un polinucleótido monocatenario que tiene la secuencia base complementaria de la misma y un polinucleótido de doble cadena compuesto de estos polinucleótidos monocatenarios. Cuando se prepara un polinucleótido que codifica el polipéptido utilizado en la presente invención, se selecciona apropiadamente cualquiera de estas secuencias base, pudiendo llevar a cabo dicha selección las personas expertas en la materia.

Asimismo, dado que el polipéptido utilizado en la presente invención se expresa específicamente en cáncer, el polipéptido reacciona específicamente con el suero en un organismo vivo portador de cáncer, de manera que el polipéptido de la presente invención se utiliza también para la detección del cáncer.

15

20

25

30

35

40

45

50

55

60

En el método descrito para detectar cáncer, se utiliza una muestra extraída de un organismo vivo para medir la expresión de un polipéptido que tiene una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 2, 4, 6, 8, 10, 12 y 44, o un polipéptido como factor homólogo del mismo, que tiene una identidad de secuencia de al menos 90 %, preferentemente al menos 95 %, más preferentemente al menos 98 %, aún más preferentemente al menos 99 % o al menos 99,5 % con el polipéptido. Entre los ejemplos del método para medir la expresión del polipéptido mediante el uso de la muestra se incluye un método en el que se mide por inmunoensayo un anticuerpo contra el polipéptido, estando contenido dicho anticuerpo en la muestra, (Método 1); un método en el que se mide por inmunoensayo el polipéptido en sí contenido en la muestra (Método 2); y un método en el que se mide el ARNm contenido en la muestra y que codifica el polipéptido (Método 3). En el método de la presente invención, se mide la expresión del polipéptido por inmunoensayo de un anticuerpo. En la presente invención, el término "medición" incluye detección, cuantificación y semi-cuantificación.

En este punto, PDS5A es un polipéptido identificado por el método SEREX utilizando una genoteca de ADNc derivada de cáncer de mama canino y suero obtenido del mismo perro paciente, como polipéptido que se une a un anticuerpo que existe específicamente en el suero derivado del perro portador del tumor (anticuerpo específico de cáncer) (véase Ejemplo 1). Es decir, en el organismo vivo del perro portador de tumor, se induce específicamente un anticuerpo contra PDS5A. Por consiguiente, midiendo el anticuerpo contra PDS5A en el organismo vivo del perro portador de tumor, se puede detectar también un cáncer que expresa PDS5A. Asimismo, al medir el PDS5A como antígeno según el Método 2, se puede detectar el cáncer canino. Asimismo, tal como se describe en los ejemplos más adelante, el ARNm que codifica el polipéptido de antígeno se expresa en niveles significativamente más altos en células cancerosas y tejidos cancerosos, especialmente en células de cáncer de mama, tejidos de cáncer de mama, células de tumor cerebral, tejidos de tumor cerebral, células de cáncer de esófago, tejidos de cáncer de pulmón, tejidos de cáncer de pulmón, células de cáncer renal, tejidos de cáncer renal, células de cáncer de colon, tejidos de cáncer de colon, células de adenocarcinoma perinatal, tejidos de neuroblastoma y células de leucemia, en comparación con los tejidos normales (véase Ejemplo 1), se puede detectar el cáncer canino también midiendo el ARNm.

En el Método 1 anterior, se puede llevar a cabo fácilmente la medición del anticuerpo específico de cáncer que puede existir en la muestra por inmunoensayo utilizando una sustancia antigénica que experimenta una reacción antígeno-anticuerpo con el anticuerpo. El inmunoensayo en sí es un método muy conocido convencional, tal como se explica con detalle más adelante. Entre los ejemplos de la sustancia antigénica que se pueden utilizar en el inmunoensayo se incluyen los polipéptidos (a) to (c). Dado que los anticuerpos tienen una reactividad cruzada, incluso una molécula distinta a la sustancia antigénica que corresponde al inmunógeno original puede unirse al anticuerpo inducido contra el inmunógeno a través de la reacción antígeno-anticuerpo, siempre y cuando la molécula tenga una estructura similar a la de un epítopo del inmunógeno. Por ejemplo, los polipéptidos que tienen una alta identidad de secuencia entre ellos tienen por lo general estructuras de epítopo similares y, en este caso, ambos polipéptidos pueden tener las misma antigenicidad. Tal como se describe más concretamente en los ejemplos más adelante, el polipéptido derivado de ser humano de SEQ ID NO: 4 o 44 experimenta una reacción antígeno-anticuerpo con el anticuerpo descrito inducido en el anticuerpo del perro portador de cáncer. Por consiguiente, en el Método 1 de la presente invención, se puede utilizar cualquier factor homólogo de mamífero como antígeno en el inmunoensayo.

Una sustancia antigénica que tiene una estructura compleja y un peso molecular grande, como pueda ser una proteína, tiene normalmente una pluralidad de sitios que tienen diferentes estructuras en la molécula. Por consiguiente, se producen contra dicha sustancia antigénica una pluralidad de tipos de anticuerpos que reconocen la correspondiente pluralidad de sitios en un organismo vivo. Es decir, un anticuerpo inducido en un organismo vivo contra una sustancia antigénica, como una proteína, es un anticuerpo policlonal, que es una mezcla de una pluralidad de tipos de anticuerpos. Debe advertirse que, en la presente invención, el término "anticuerpo policlonal" significa anticuerpos que existen en el suero de un organismo vivo que incluye una sustancia antigénica y han sido inducidos en el organismo vivo contra la sustancia antigénica.

La medición del anticuerpo en una muestra puede llevarse a cabo fácilmente por inmunoensayo utilizando el polipéptido descrito como antígeno. Los inmunoensayos en sí son muy conocidos dentro de la técnica e incluyen,

cuando se clasifican según el modo de reacción, método sándwich, método de competición, método de aglutinación, transferencia de Western y similares. Cuando se clasifican según el marcador, los inmunoensayos incluyen radioinmunoensayo, inmunoensayo de fluorescencia, inmunoensayo de enzima, inmunoensayo de biotina y similares, y el inmunoensayo del anticuerpo descrito se puede llevar a cabo según cualquiera de dichos inmunoensayos. Aunque no se limita a ellos, preferentemente se aplican el método ELISA sándwich y de aglutinación como método de inmunoensayo del anticuerpo mencionado de la presente invención, ya que las operaciones son sencillas y no es necesario un aparato a gran escala en estos métodos. En los casos en los que se utilice una enzima, como marcador del anticuerpo, la enzima no está restringida en particular, siempre y cuando satisfaga condiciones un buen rendimiento, estabilidad tras la unión con el anticuerpo y una coloración específica del sustrato y, entre los ejemplos de enzima que se puede utilizar se incluyen las enzimas utilizadas en los inmunoensayos de enzima corrientes, tales como peroxidasa, β-galactosidasa, fosfatasa alcalina, glucosa oxidasa, acetilcolinesterasa, glucosa-6-fosfato deshidrogenasa y malato deshisdrogenasa. Puede emplearse también un inhibidor de enzima, una co-enzima y/o similares. La unión de la enzima con el anticuerpo se puede llevar a cabo a través de un método conocido utilizando un agente de reticulación, como un compuesto de maleimida. Como sustrato, puede utilizarse una sustancia conocida, dependiendo del tipo de enzima utilizada. Por ejemplo, en los casos en los que se utiliza peroxidasa como enzima, puede utilizarse 3,3',5,5'-tetrametilbencidina; y en los casos en los que se utiliza fosfatasa alcalina como enzima, puede utilizarse para-nitrofenol o similares. Como radioisótopo, es posible utilizar uno de los utilizados en un radioinmunoensayo corriente, como ¹²⁵I o ³H. Como colorante fluorescente, es posible utilizar uno de los utilizados en una técnica de anticuerpo fluorescente corriente, tales como isotiocianato de fluoresceína (FITC), isotiocianato de tetrametilrodamina (TRITC) o similar.

10

15

20

25

30

35

40

45

50

55

60

65

Estos inmunoensayos son conocidos en sí dentro de la técnica y no es necesario explicarlos en la presente memoria descriptiva. Brevemente, en un inmunoensayo sándwich, por ejemplo, se inmoviliza el polipéptido mencionado utilizado como antígeno sobre una fase sólida y, a continuación, se hace reaccionar con una muestra, como pueda ser suero. Después de lavar la fase sólida, se hace reaccionar el producto resultante con un anticuerpo secundario apropiado. Después de lavar la fase sólida, se mide el anticuerpo secundario unido a la fase sólida. Este método es preferente como realización del método de la presente invención para detectar cáncer, ya que, en este método, la inmovilización del polipéptido de antígeno en la fase solida permite una sencilla eliminación de los anticuerpos secundarios sin unir. Como anticuerpo secundario, puede utilizarse un anticuerpo IgG anti-perro en los casos en los que, por ejemplo, la muestra se deriva de un perro. Al marcar previamente el anticuerpo secundario con una sustancia marcadora, cuyos ejemplos se han citado anteriormente, se puede medir el anticuerpo secundario unido a la fase sólida. La cantidad del anticuerpo secundario así medida corresponde a la cantidad del anticuerpo antes mencionado en la muestra de suero. En los casos en los que se utiliza una enzima como sustancia marcadora, la cantidad de anticuerpo puede medirse añadiendo un sustrato que revela un color tras la descomposición por actividad enzimática y, midiendo ópticamente a continuación la cantidad de descomposición del sustrato. En los casos en los que se utiliza un radioisótopo como sustancia marcadora, se puede medir la cantidad de radiación emitida desde el radioisótopo con un contador de centelleo o similar.

En el Método 2, se mide el polipéptido de las SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44 o un factor homólogo del mismo, que puede estar contenido en la muestra obtenida de un organismo vivo. Tal como se ha mencionado antes, la cantidad de anticuerpo específico de cáncer que experimenta una reacción antígeno-anticuerpo con el polipéptido de SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44 o un factor homólogo del mismo es significativamente mayor en los pacientes con cáncer, y esto indica que la cantidad de producción del polipéptido o un factor homólogo del mismo, que corresponde a un antígeno del anticuerpo específico de cáncer, es significativamente mayor en los pacientes con cáncer. Por consiguiente, se puede detectar cáncer en un organismo vivo también midiendo el polipéptido de SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44 o un factor homólogo del mismo de manera similar al Método 1 antes descrito.

Se puede medir fácilmente el polipéptido en una muestra por inmunoensayo, perfectamente conocido. Más en particular, se puede medir por ejemplo preparando un anticuerpo o un fragmento de unión a antígeno del mismo que experimenta una reacción antígeno-anticuerpo con el polipéptido presentado en las SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44 y utilizándolo en un inmunoensayo, el polipéptido que tiene la secuencia presentada en SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44 o un factor homólogo del mismo que existe en la muestra. El inmunoensayo en sí es un método convencional muy conocido, tal como se ha descrito anteriormente.

La expresión "fragmento de unión a antígeno" en el presente documento significa un fragmento de antígeno como, por ejemplo, un fragmento Fab o un fragmento F(ab')2 contenido en la molécula de anticuerpo que tiene capacidad de unión a antígeno. El anticuerpo puede ser un anticuerpo policlonal o monoclonal, prefiriéndose un anticuerpo monoclonal en un inmunoensayo y similar, ya que se puede obtener una alta reproducibilidad con él. Los métodos de preparación de un anticuerpo policlonal y un anticuerpo monoclonal empleando un polipéptido como inmunógeno son muy conocidos y se pueden llevar a cabo a través de métodos convencionales. Por ejemplo, se puede inducir anticuerpos contra un polipéptido inmunizando a un animal con el polipéptido como inmunógeno conjugado con una proteína vehículo, como hemocianina de lapa californiana (KLH) o caseína, junto con un adyuvante. A continuación, se recogen las células que producen anticuerpos, como células de bazo o linfocitos, del animal inmunizado y se fusionan con células de mieloma para preparar hibridomas. Entre los hibridomas, se selecciona un anticuerpo que se une al polipéptido presentado en las SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44, o un factor homólogo del mismo y se deja proliferar y, a continuación, se puede obtener un anticuerpo monoclonal cuyo antígeno correspondiente es la

proteína mencionada a partir del sobrenadante de cultivo. El método descrito es un método muy conocido convencional.

- En el Método 3, se mide el ARNm que puede estar contenido en una muestra obtenida de un organismo vivo y que codifica PDS5A. Tal como se muestra en los ejemplos más adelante, el ARNm que codifica PDS5A se expresa de forma significativamente alta en los tejidos y las células de cáncer, cáncer de mama, tumor cerebral, cáncer de esófago, cáncer de pulmón, cáncer renal, cáncer de colon, adenocarcinoma perinatal, neuroblastoma y leucemia. Por consiguiente, midiendo el ARNm en una muestra, se puede detectar cáncer en un organismo vivo.
- 10 En el método de detección de la presente invención, se juzga si el órgano vivo participante padece cáncer o no sobre la base del nivel de expresión del polipéptido medido, tal como se ha descrito. Si bien la detección del cáncer se puede obtener midiendo simplemente la expresión del polipéptido en el organismo vivo participante, preferentemente, desde el punto de vista de la potenciación de la precisión de la detección, se obtiene un valor de referencia normal investigando el nivel de expresión del polipéptido (la cantidad de anticuerpo, polipéptido o ARNm) 15 en una o más muestras de individuos sanos, seguido de la comparación del valor medido en el organismo vivo participante con el valor de referencia normal. En los casos en los que se requiere una mayor precisión de detección, se puede obtener un valor de referencia del cáncer investigando el nivel de expresión del polipéptido en muestras obtenidas de muchos pacientes que se sabe que padecen un cáncer, seguido de la comparación del valor medido en el organismo vivo participante tanto con el valor de referencia normal como con el valor de referencia de cáncer. 20 Los valores de referencia pueden determinarse por ejemplo digitalizando el nivel de expresión del polipéptido en cada muestra y calculando el valor medio. El valor de referencia normal y el valor de referencia del cáncer pueden determinarse previamente investigando el nivel de expresión del polipéptido en muchos individuos sanos y pacientes con cáncer. De esta manera, en los casos en los que se lleva a cabo la comparación del valor(es) de referencia en el método de la presente invención, es posible utilizar un valor(es) de referencia determinado(s) previamente.
 - Es posible utilizar el método de detección de la presente invención en combinación con la detección con otro antígeno de cáncer o marcador del cáncer. Con ello, puede aumentarse aún más la precisión de la detección del cáncer.
- 30 Con el método de detección de la presente invención, es posible detectar cánceres en un organismo vivo. Con el método de la presente invención, es posible detectar incluso un cáncer pequeño invisible o un cáncer que existe en una parte profunda del organismo, de modo que el método es útil para la detección temprana de cánceres. Asimismo, al aplicar el método de detección de la presente invención a pacientes en el período de seguimiento tras la terapia contra el cáncer, es posible detectar un cáncer recurrente, si lo hubiera, en sus primeros estadios.

25

50

55

60

- En un organismo vivo portador de tumor, a medida que crece el número de células cancerosas que expresan el polipéptido específico que se va a medir en la presente invención, aumenta la cantidad de acumulación del polipéptido y el ARNm que lo codifica en el organismo vivo, lo que conlleva una mayor producción de anticuerpos contra el polipéptido en el suero. Por otra parte, a medida que disminuye el número de células cancerosas, disminuye la cantidad de acumulación del polipéptido y ARNm que lo codifica en el organismo vivo, lo que conlleva un descenso de los anticuerpos contra el polipéptido en el suero. Siendo así, en los casos en los que el nivel de expresión del polipéptido específico es alto, puede determinarse que ha tenido lugar el crecimiento del tumor y/o metástasis, es decir, que el estado de progresión del cáncer es avanzado.
- Asimismo, tal como se muestra en los ejemplos más adelante, cuando se compara entre el mismo tipo de tumores, el maligno produce una cantidad significativamente mayor de anticuerpos que el benigno. Por consiguiente, en los casos en los que el nivel de expresión de los polipéptidos específicos es alto, puede determinarse que el grado de malignidad del cáncer es alto. Es decir, es posible también detectar el grado de malignidad del cáncer a través del método de la invención.
 - Por otra parte, puede realizarse un control del efecto de la terapia contra el cáncer sobre la base del aumento o disminución del nivel de expresión del polipéptido específico. Por consiguiente, observando el nivel de expresión del polipéptido mencionado en un paciente durante la terapia contra el cáncer o después de ella, es posible obtener pistas para conocer el efecto de un fármaco anti-cáncer, la presencia/ausencia de un tumor residual tras la extirpación del tumor y/o incluso durante el seguimiento, metástasis y/o recurrencia, lo más tempranamente posible. En los casos en los que la terapia sea/haya sido apropiada, el nivel de expresión del polipéptido es menor que en el paciente en estado portador de tumor antes de la terapia y, en consecuencia, se puede juzgar el efecto de la terapia que se ha proporcionado (que se está proporcionando) al organismo vivo como excelente. En los casos en los que el nivel de expresión del polipéptido aumenta o se mantiene, o en los casos en los que el nivel de expresión una vez que desciende vuelve a aumentar, se puede juzgar el efecto terapéutico como insuficiente y esta observación puede servir como base para la selección de un método terapéutico, como pueda ser el uso de otro método terapéutico o la alteración de la dosis de un agente anti-cáncer.
- Entre los ejemplos preferentes de cáncer objeto del método para detectar el cáncer de la presente invención se incluyen cánceres que expresan PDS5A, como cáncer de mama, tumor cerebral, cáncer de esófago, cáncer de pulmón, cáncer renal, cáncer de colon, adenocarcinoma perinatal, neuroblastoma y leucemia. El organismo vivo

objeto del método de la presente invención es preferentemente un mamífero, más preferentemente un ser humano, un perro o un gato.

La muestra proporcionada para el método de la presente invención incluye los fluidos del organismo sangre, suero, plasma, ascitis y derrame pleural. En particular, en el Método 1 y el Método 2 mencionados se pueden emplear preferentemente suero, plasma, ascitis y derrame pleural. En el caso del Método 3 mencionado, en el que se mide ARNm, se utilizan preferentemente una muestra de tejido y una muestra celular.

El polipéptido utilizado como antígeno para el inmunoensayo del Método 1 puede proporcionarse como reactivo para la detección del cáncer. El reactivo puede consistir esencialmente en el polipéptido mencionado o puede contener por ejemplo varios aditivos útiles para la estabilización del polipéptido y/o similares. También es posible proporcionar el reactivo en un estado en el que está inmovilizado en una fase sólida, como por ejemplo una placa o una membrana.

Cuando se va a someter a inmunoensayo el polipéptido presentado en las SEQ ID NO: 2, 4, 6, 8, 10, 12 o 44 o un factor homólogo del mismo en el Método 2, puede proporcionarse un anticuerpo o un fragmento de unión a antígeno del mismo que experimenta una reacción antígeno-anticuerpo con el polipéptido o un factor homólogo del mismo como reactivo para la detección del cáncer. También en este caso, el reactivo para la detección del cáncer puede consistir esencialmente en el anticuerpo o fragmento de unión a antígeno o puede contener por ejemplo varios aditivos útiles para estabilizar el anticuerpo o fragmento de unión a antígeno y/o similar. El anticuerpo o fragmento de unión a antígeno puede estar también en un estado en el que se une un metal, como pueda ser manganeso o hierro, al mismo. La administración de dicho anticuerpo de unión a metal o fragmento de unión a antígeno en un organismo vivo causa una mayor acumulación de antígeno o fragmento de unión a antígeno en emplazamientos en los que existe la proteína de antígeno en una mayor cantidad, de manera que la medición del metal por IRM o similar permite la detección de la existencia de células cancerosas que produce la proteína de antígeno.

Por otra parte, el polinucleótido descrito para la detección de cáncer para su uso para medir ARNm en el Método 3 puede proporcionarse también como un reactivo para la detección del cáncer. También en este caso, el reactivo para la detección del cáncer puede consistir esencialmente en el polinucleótido o puede contener por ejemplo varios aditivos útiles para la estabilización del polinucleótido y/o similares. El polinucleótido para la detección del cáncer contenido en el reactivo es preferentemente un cebador o una sonda.

Eiemplos

30

40

55

60

65

5

35 A continuación, se describe la presente invención con mayor concreción mediante ejemplos.

Ejemplo 1: obtención de nueva proteína de antígeno del cáncer según el método SEREX

(1) Preparación de genoteca de ADNc

Se extrajo ARN total de un tejido de cáncer de mama de un perro portador de tumor según el método ácido guanidinio-fenol-cloroformo y se purificó poli(A) NA utilizando un kit de purificación de ARNm Oligotex-dT30 (fabricado por Takara Shuzo Co., Ltd.) de acuerdo con el protocolo que se adjunta en el kit.

45 Con el uso del ARNm obtenido (5 μg), se sintetizó una genoteca de fagos de ADNc. Para la preparación de la genoteca de fagos de ADNc, se utilizaron el kit de síntesis de ADNc, el kit de síntesis ZAP-cDNA y el kit ZAP-cDNA Gigapack III Gold Cloning (fabricado por STRATAGENE) de acuerdo con el protocolo que se adjunta en los kits. El tamaño de la genoteca de fagos de ADNc preparada fue 1 x 10⁶ ufp/ml

50 (2) Exploración de genoteca de ADNc con suero

Se llevó a cabo la inmunoexploración utilizando la genoteca de fagos de ADNc preparada. Más en particular, se infectó *E. coli* (XL1-Blue MRF') hospedador con la genoteca de manera que aparecieran 2340 clones en una placa de agarosa NZY que tenía un tamaño de Φ90 x 15 mm, y se cultivó a 42 °C durante 3 a 4 horas para permitir que el fago formara placas. Se cubrió la placa con membrana de nitrocelulosa (Hybond C Extra: fabricado por GE Healthcare Bio-Science) impregnada con IPTG (isopropil-β-D-tiogalactosido) a 37 °C durante 4 horas para permitir la inducción y expresión de proteínas, que se transfirieron así a la membrana. A continuación, se recuperó la membrana y se empapó en TBS (10 mM Tris-HCl, 150 mM NaCl; pH 7,5) que contenía leche en polvo desgrasada 0,5 %, seguido de agitación a 4 °C durante toda la noche para suprimir las reacciones no específicas. A continuación, se dejó reaccionar este filtro con suero de paciente canino diluido 500 veces a temperatura ambiente durante 2 a 3 horas.

Como suero de paciente canino, tal como se ha descrito, se utilizó suero recogido de un paciente canino que padecía un tumor perianal. Se almacenó el suero a -80 °C y se trató previamente inmediatamente antes de su uso. El método de pretratamiento del suero fue el siguiente. A saber, se infectó *E. coli* (XL1-Blue MRF') hospedador con fago λ ZAP Express que no llevaba insertado ningún gen extraño, y después se cultivó en un medio de placa NZY a

37 °C durante toda la noche. A continuación, se añadió tampón NaHCO₃ 0,2 M (pH 8,3) que contenía NaCl 0,5 M a la placa y se dejó en reposo la placa a 4 °C durante 15 horas, seguido de la recogida del sobrenadante como extracto de *E. coli* /fago. Seguidamente, se dejó fluir el extracto de *E. coli* /fago recogido a través de una columna NHS (fabricada por GE Healthcare Bio-Science) para inmovilizar las proteínas derivadas del *E. coli* /fago sobre ella. Se dejó fluir el suero del paciente canino a través de ella y que reaccionara con esta proteína-columna inmovilizada para eliminar los anticuerpos adsorbidos con *E. coli* y/o el fago. Se diluyó la fracción de suero que pasó a través de la columna 500 veces con TBS que contenía leche en polvo desgrasada al 0,5 % y se utilizó el diluyente resultante como material para la inmunoexploración.

- Se lavó la membrana en la que se transfirieron el suero así tratado y la proteína de fusión descrita 4 veces con TBS-T (0,05 % Tween 20/TBS) y se dejó reaccionar con IgG anti-perro de cabra (IgGh⁺ anti-perro de cabra conjugado con h+1 HRP I: fabricado por BETHYL Laboratories) diluido 5.000 veces con TBS que contenía leche en polvo desgrasada al 0,5 % como anticuerpo secundario a temperatura ambiente durante 1 hora, seguido de la detección por reacción de coloración con enzima utilizando la solución de reacción NBT/BCIP (fabricada por Roche). Se recuperaron las colonias en las posiciones en las que se observó una reacción de coloración positiva desde la placa de agarosa con NZY que tenía un tamaño de Φ90 3 15 mm, y se disolvieron en 500 μl de tampón SM (100 mM NaCl, 10 mM MgClSO₄, 50 mM Tris-HCl, 0,01 % gelatina; pH 7,5). Se repitió la exploración como una segunda y una tercera exploración de la misma manera que se ha descrito hasta que se obtuvo una única colonia positiva a la reacción de coloración, en virtud de lo cual se aisló un clon positivo tras la exploración de 30940 clones fagos reactivos con IgG en el suero.
 - (3) Búsqueda de homología de secuencia de gen de antígeno aislado
- Se llevó a cabo una operación de conversión del vector fago a un vector plásmido para someter a análisis de secuencia base el único clon positivo aislado a través del método descrito. Más en particular, se mezclaron 200 µl de 25 una solución preparada de manera que estuviera contenido E. coli (XL1-Blue MRF') hospedador a una absorbancia DO₆₀₀ de 1,0 con 100 µl de una solución de fagos purificada y, además, con 1 µl de fago auxiliar ExAssist (fabricado por STRATAGENE) y se dejó que tuviera lugar la reacción a 37 °C durante 15 minutos. Se añadieron a la mezcla de reacción 3 ml de medio LB y se cultivó la mezcla resultante a 37 °C durante 2,5 a 3 horas, seguida inmediatamente 30 de incubación en un baño de agua a 70 °C durante 20 minutos. Después, se centrifugó la mezcla a 4 °C a 1.000 x g durante 15 minutos, y se recuperó el sobrenadante como solución de fagémido. Seguidamente, se mezclaron 200 µl de una solución preparada de manera que estuviera contenido E. coli hospedador fagémido (SOLR) a una absorbancia de DO₆₀₀ de 1,0 con 10 µl de una solución de fagos purificada y se dejó que tuviera lugar la reacción a 37 °C durante 15 minutos. A continuación, se colocaron en placa 50 µl de la mezcla de reacción en medio agar LB suplementado con ampicilina (concentración final: 50 µg/ml), y se cultivó a 37 °C durante toda la noche. Se recuperó 35 una colonia única de SOLR transformado y se cultivó en medio LB suplementado con ampicilina (concentración final: 50 μg/ml) a 37 °C, seguido de purificación del ADN de plásmido que llevaba el inserto de interés utilizando el kit QIAGEN plasmid Miniprep (fabricado por Qiagen).
- 40 Se sometió el plásmido purificado a análisis de la secuencia de longitud total del inserto a través del método de cebador en avance utilizando el cebador T3 descrito en SEQ ID NO: 13 y el cebador T7 descrito en SEQ ID NO: 14. En virtud de este análisis de secuencia, se obtuvo la secuencia génica descrita en SEQ ID NO: 1. Se llevó a cabo la búsqueda de homología frente a los genes conocidos utilizando la secuencia base y la secuencia de aminoácidos de empleando el programa de búsqueda de homología de secuencias (http://www.ncbi.nlm.nih.gov/BLAST/). Como resultado, se puso de manifiesto que el gen obtenido es el gen PDS5A. 45 PDS5A humano, que es un factor homólogo humano de PDS5A canino, tuvo una identidad de secuencia de 94 % por lo que respecta a la secuencia base y 99 % por lo que respecta a la secuencia de aminoácidos; PDS5A murina, que es un factor homólogo murino tuvo una identidad de secuencia de 91 % por lo que respecta a la secuencia base y 99 % por lo que respecta a la secuencia de aminoácidos; PDS5A bovina, que es un factor homòlogo bovino, tuvo 50 una identidad de secuencia de 95 % por lo que respecta a la secuencia base y 99 % por lo que respecta a la secuencia de aminoácidos; PDS5A equina, que es un factor homòlogo equino, tuvo una identidad de secuencia de 96 % por lo que respecta a la secuencia base y 99 % por lo que respecta a la secuencia de aminoácidos; y PDS5A de pollo, que es un factor homòlogo de poyo, tuvo una identidad de secuencia de 83 % por lo que respecta a la secuencia base y 98 % por lo que respecta a la secuencia de aminoácidos. Por lo que respecta a PDS5A humana, la 55 secuencia base se presenta en las SEQ ID NO: 3 y 43, y la secuencia de aminoácidos se presenta en las SEQ ID NO:4 y 44; por lo que respecta a PDS5A murina, la secuencia base se presenta en SEQ ID NO: 5, y la secuencia de aminoácidos se presenta en SEQ ID NO: 6; por lo que respecta a PDS5A bovina, la secuencia base se presenta en SEQ ID NO: 7, y la secuencia de aminoácidos se presenta en SEQ ID NO: 8; por lo que respecta a PDS5A equina, la secuencia base se presenta en SEQ ID NO: 9, y la secuencia de aminoácidos se presenta en SEQ ID NO: 10; y 60 por lo que respecta PDS5A de pollo, la secuencia base se presenta en SEQ ID NO: 11, y la secuencia de aminoácidos se presenta en SEQ ID NO: 12.
 - (4) Análisis de expresión en varios tejidos
- 65 Se investigó la expresión de genes obtenidos a través del método mencionado en tejidos normales caninos, humanos y murinos y en varias líneas celulares por método RT-PCR (PCR de transcripción inversa). Se llevó a cabo

la reacción de transcripción inversa del siguiente modo. A saber, se extrajeron de 50 a 100 mg de cada tejido o 5 x 10⁶ a 10 x 10⁶ células de cada línea celular, se extrajo el ARN total utilizando el reactivo TRIZOL (fabricado por INVITROGEN) de acuerdo con el protocolo descrito en las instrucciones adjuntas. Se sintetizó ADNc con este ARN total con el sistema de síntesis Superscript First-Strand para RT-PCR (fabricado por INVITROGEN) de acuerdo con el protocolo descrito en las instrucciones adjuntas. En cuanto a los ADNc de tejidos normales humanos (cerebro, hipocampo, testículos, colon y placenta), se utilizaron Gene Pool cDNA (fabricada por INVITROGEN), QUICK-Clone cDNA (fabricado por CLONETECH) y la genoteca de inserto grande de ADNc (fabricado por CLONETECH). Se llevó a cabo la reacción de PCR utilizando cebadores específicos de gen (los cebadores caninos descritos en las SEQ ID NO: 15 y 16, los cebadores humanos descritos en las SEQ ID NO: 17 y 18, y los cebadores murinos descritos en las SEQ ID NO: 19 y 20) tal como se describe más adelante. Es decir, se mezclaron los reactivos y el tampón adjunto de manera que estuvieran contenidos 0,25 µl de la muestra preparada por reacción de transcripción inversa, 2 µM de cada uno de los cebadores mencionados, 0,2 mM de cada dNTPs, y 0,65 U ExTaq polimerasa (fabricada por Takara Shuzo Co., Ltd.) en un volumen total de 25 µl, y se llevó a cabo la reacción repitiendo 30 veces el ciclo de 94 °C durante 30 segundos, 55 °C durante 30 segundos y 72 °C durante 1 minuto utilizando un termociclador (fabricado por BIO RAD). Como control con fines comparativos, se utilizaron cebadores específicos para GAPDH (cebadores GAPDH caninos y humanos se presentan en las SEQ ID NO: 21 y 22; y los cebadores murinos GAPDH se presentan en las SEQ ID NO: 23 y 24) al mismo tiempo. Como resultado, tal como se muestra en la Fig. 1, por lo que respecta al gen de PDS5A canino, no se observó la expresión en la mayoría de los tejidos caninos sanos, mientras que sí que se observó una fuerte expresión en los tejidos tumorales caninos. Asimismo, por lo que respecta a los genes de PDS5A murinos y humanos, no se observó la expresión en la mayoría de los tejidos humanos y murinos sanos, mientras que sí se detectó expresión en la mayoría de las líneas de células cancerosas (Figs. 2 y 3), como en el caso del gen de PDS5A canino.

Ejemplo 2: Análisis de antigenicidad contra el cáncer y evaluación del efecto farmacológico de PDS5A en un organismo vivo

(1) Preparación de vector recombinante que expresa PDS5A en un organismo vivo

10

15

20

25

45

65

Sobre la base de la secuencia base de la SEQ ID NO: 5, se preparó un vector recombinante que expresa PDS5A en un organismo vivo. Se mezclaron los reactivos y el tampón adjunto de manera que estuvieron contenido 1 µl de ADNc a partir de la línea de células cancerosas murinas N2a (adquirida de ATCC), que había presentado expresión en el Ejemplo 1, 0,4 µM de cada uno de los tipos de cebadores que tienen sitios de restricción *Notl* y *Xhol* (presentados en las SEQ ID NOs: 25 y 26), 0,2 mM dNTP y 1,25 U PrimeSTAR HS polimerasa (fabricado por Takara Shuzo Co., Ltd.) en un volumen total de 50 µl, y se llevó a cabo la PCR repitiendo 30 veces el ciclo de 98 °C durante 10 segundos, 55 °C durante 15 segundos y 72 °C durante 4 minuto utilizando un termociclador (fabricado por BIO RAD). Los dos tipos de cebadores descritos fueron los cebadores para amplificación de la región que codifica la longitud completa de la secuencia de aminoácidos presentada en SEQ ID NO: 5. Después de la PCR, se sometió el ADN amplificado a electroforesis utilizando gel de agarosa al 1 % y se purificó un fragmento de ADN de aproximadamente 4000 pb utilizando un kit de extracción de gel QIAquick (fabricado por QIAGEN).

Se ligó el fragmento de ADN purificado en un vector de clonación pCR-Blunt (fabricado por Invitrogen). Se transformó *E. coli* con el producto de ligación resultante y después se recuperó el plásmido. Se confirmó por secuenciación que el fragmento de gen amplificado tenía la misma secuencia que la de interés. Se trató el plásmido que tenía la misma secuencia que la de interés con enzimas de restricción *Not*l y *Xho*l, y se purificó utilizando un kit de extracción con gel QIAquick, seguido de la inserción de la secuencia génica de interés en el vector de expresión de mamífero PCDNA3.1 (fabricado por Invitrogen) que había sido tratado con las enzimas de restricción *Not*l y *Xho*l. El uso de este vector permite la producción de la proteína PDS5A en células de mamífero.

Se añadieron a 100 µg del ADN de plásmido preparado 50 µg de partículas de oro (fabricado por Bio Rad), 100 µl de espermidina (fabricado por SIGMA) y 100 µl de CaCl₂ 1 M (fabricado por SIGMA) y se agitó la mezcla resultante con formación de vórtice, tras lo cual se dejó la mezcla en reposo durante 10 minutos a temperatura ambiente (en lo sucesivo, se hace referencia a las partículas resultantes partículas de ADN-oro). Después se centrifugó la mezcla a 3000 rpm durante 1 minuto y se descartó el sobrenadante, seguido del aclarado del precipitado 3 veces con etanol al 100 % (fabricado por WAKO). Se añadieron a las partículas de ADN-oro 6 ml de etanol al 100 % y se agitó suficientemente la mezcla resultante con formación de vórtice seguido del vertido de las partículas de ADN-oro en un sistema de tubos Tefzel (fabricado por Bio Rad) y se dejó que precipitaran las partículas en la superficie de la pared. Se secó al aire el etanol en el sistema de tuberías Tefzel en el que se habían fijado las partículas de ADN-oro y se cortó el tubo en piezas que tenían una longitud apropiada para la pistola génica.

60 (2) Efecto anti-tumor de PDS5A según el método de vacuna de ADN

Se trasplantaron por vía subcutánea una línea celular de neuroblastoma murino N2a y una línea celular de cáncer de colon CT26 a 10 individuos de ratones A/J (7 semanas de vida, macho, adquiridos de Japan SLC) y ratones Balb/c (7 semanas de vida, macho, adquiridos de Japan SLC en una cantidad de 1 x 10⁶ células. Se fijó el tubo antes preparado en una pistola génica y se aplicó una presión de 400 psi utilizando gas helio puro para realizar la administración percutánea de la vacuna de ADN en la cavidad abdominal de cada ratón, previamente afeitados,

repitiéndose la administración un total de 3 veces a intervalos de 7 días (esto se corresponde con 2 µg/individuo por lo que respecta a la dosis de la cantidad inoculada en el ADN de plásmido) para evaluar el efecto anti-tumor (modelo terapéutico). Asimismo, de manera similar, se administró por vía subcutánea la vacuna de ADN a cada uno de los 10 individuos de ratones A/J y ratones Balb/c un total de 3 veces a intervalos de 7 días y, a continuación, se trasplantaron células N21a y células CT26 a cada uno de los ratones para evaluar el efecto ant-tumor (modelo profiláctico). Como control, se administró un ADN de plásmido en el que no se había insertado gen PDS5A a 10 individuos de cada modelo.

Se evaluó el efecto anti-tumor sobre la base del tamaño del tumor (eje mayor x eje menor / 2) y la relación de ratones vivos. En las figuras 4 a 11 se muestran los resultados. Como resultado del estudio, en el modelo terapéutico utilizando la línea celular de neuroblastoma, el tamaño del tumor del Día 41 fue 569 mm³ y 109 mm³ en el grupo de control y el grupo al que se administró plásmido de PDS5A, respectivamente, lo que indica una significativa reducción del tumor en el grupo al que se administró plásmido de PDS5A (Fig. 4). De manera similar, el modelo profiláctico, empleando una línea celular de neuroblastoma, el tamaño del tumor el Día 43 fue 476 mm³ v 0 mm³ en el grupo de control y el grupo al que se administró plásmido de PDS5A, respectivamente, lo que indica una completa regresión del tumor en el grupo al que se administró plásmido de PDS5A (Fig. 5). Asimismo, en el modelo terapéutico utilizando la línea celular de cáncer de colon, el tamaño del tumor el Día 41 fue 589 mm³ y 189 mm³ en el grupo de control y el grupo al que se administró plásmido de PDS5A, respectivamente, lo que indica una significativa reducción del tumor en el grupo al que se administró plásmido de PDS5A (Fig. 8). Asimismo, en el modelo profiláctico, utilizando la línea celular de cáncer de colon, el tamaño del tumor el Día 43 fue 397 mm³ y 43 mm³ en el grupo de control y el grupo al que se administró plásmido de PDS5A, respectivamente, lo que indica una significativa reducción del tumor en el grupo al que se administró plásmido de PDS5A (Fig. 9). Sobre la base de la observación del proceso de supervivencia en ambos modelos, utilizando la línea celular de neuroblastoma, mientras que en todos los casos en el grupo de control habían muerto los ratones el Día 84 tras la administración, el 60 % de los ratones sobrevivieron en ese período en el grupo al que se administró plásmido de PDS5A (Fig. 6). Asimismo, en el modelo profiláctico, mientras que en todos los casos del grupo de control habían muerto los ratones para el Día 90 tras la administración, todos los ratones sobrevivieron en ese período en el grupo al que se administró plásmido de PDS5A (Fig. 7). Asimismo, sobre la base de la observación del proceso de supervivencia en ambos modelos utilizando la línea celular de cáncer de colon, mientras que en todos los casos del grupo de control habían muerto para el Día 84 tras la administración, un 40 % de los ratones habían sobrevivido en ese período en el grupo al que se administró plásmido de PDS5A (Fig. 10). Asimismo, en el modelo profiláctico, mientras que en todos los casos en el grupo de control habían muerto los ratones para el Día 90 tras la administración, el 80 % de los ratones había sobrevivido en ese período en el grupo al que se administró plásmido de PDS5A (Fig. 11).

A la luz de estos resultados, se observó un efecto anti-tumor significativamente más alto en el grupo al que se le administró plásmido de PDS5A que en el grupo de control y según dicha observación se puso de manifiesto que PDS5A es un antígeno del cáncer que tiene una fuerte antigenicidad contra el cáncer y es eficaz para la terapia y profilaxis contra el cáncer.

40 Ejemplo 3: Inducción de linfocitos T CD8-positivos reactivos con epítopo de péptido

10

15

20

25

30

45

50

55

60

65

Para la predicción de un motivo de unión HLA-A0201 en la secuencia de aminoácidos de la proteína PDS5A humana, se utilizó un programa de predicción informático utilizando el software BIMAS conocido (disponible en http://bimas.dcrt.nih.gov/molbio/ hla_bind/) para analizar la secuencia de aminoácidos presentada en las SEQ ID NO:4 y 44, y en virtud de ello se seleccionaron los polipéptidos presentados en las SEQ ID NO: 27 a 35, que según los datos eran capaces de unirse a la molécula HLA clase I.

Se extrajo sangre periférica de un individuo sano HLA-A0201 positivo y se superpuso dicha sangre periférica sobre un medio de separación de linfocitos (OrganonpTeknika, Durham, NC), tras lo cual se centrifugó el resultado a 1.500 rpm a temperatura ambiente durante 20 minutos. Se recuperó una fracción que contenía células mononucleares de sangre periférica (PBMC) y se lavó 3 veces en tampón fosfato frío, para obtener PBMC. Se suspendieron las PBMC obtenidas en 20 ml de medio AIM-V (Life Technololgies, Inc., Grand Island, NY, Estados Unidos), y se permitió que las células se fijaran al matraz de cultivo (Falcon) a 37 °C bajo 5 % CO₂ durante 2 horas. Se utilizaron las células sin fijar para la preparación de linfocitos T y se utilizaron las células fijadas para la preparación de células dendríticas.

Se cultivaron las células fijadas en un medio AIM-V en presencia de IL-4 (1000 U/ml) y GM-CSF (1000 U/ml). Se reemplazó el medio 6 días después con medio AIM-V suplementado con IL-4 (1000 U/ml), GM-CSF (1000 U/ml), IL-6 (1000 U/ml, Genzyme, Cambridge, MA), IL-1β (10 ng/ml, Genzyme, Cambridge, MA) y TNF-α (10 ng/ml, Genzyme, Cambridge, MA), y se llevó a cabo el cultivo durante 2 días más para obtener una población de células sin fijar, que se emplearon como células dendríticas.

Se suspendieron las células dendríticas preparadas en un medio AIM-V a una densidad de células de 1 x 10⁶ células/ml, y se añadió cada uno de los polipéptidos seleccionado a una concentración de 10 μg/ml a la suspensión. Se cultivaron las células utilizando una placa de 96 pocillos, a 37 °C bajo 5 % CO² durante 4 horas. Tras el cultivo, se llevó a cabo la irradiación de rayos X (3000 rad) y se lavaron las células con medio AIM-V, seguido de su suspensión en medio AIM-V suplementado con suero AB humano al 10 % (Nabi, Miami, FL), IL-6 (1000 U/ml) y IL-12

(10 ng/ml, Genzyme, Cambridge, MA). Se colocaron las células en una placa de 24 pocillos en una cantidad de 1 x 10⁵ células/pocillo. Asimismo, se añadió la población de linfocitos T preparada a cada uno de los pocillos en una cantidad de 1 x 10⁶ células, y se cultivó a 37 °C bajo 5 % CO₂. Se descartó cada sobrenadante de cultivo 7 días después, y se suspendieron las células dendríticas obtenidas de la misma manera que se ha descrito por tratamiento con cada uno de los polipéptidos y posterior irradiación de rayos X en un medio AIM-V suplementado con suero AB humano al 10 % (Nabi, Miami, FL), IL-7 (10 U/ml, Genzyme, Cambridge, MA) y IL-2 (10 U/ml, Genzyme, Cambridge, MA) (densidad celular, 1 x 10⁵ células/ml), añadiéndose después dicha suspensión a una placa de 24 pocillos en una cantidad de 1 x 10⁵ células/pocillo, seguido de un posterior cultivo de células. Se repitió la misma operación de 4 a 6 veces a intervalos de 7 días, y se recuperaron después los linfocitos T estimulados, seguido de la confirmación de la inducción de linfocitos T CD8-positivos por citometría de flujo.

Ejemplo 4: Determinación de epítopo de antígeno de linfocito T citotóxicos en PDS5A que estimula linfocitos T CD8-positivos HLA-A0201-positivos

Entre los linfocitos T inducidos en los pocillos correspondientes, se confirmó el crecimiento de linfocitos T 15 estimulados por cada uno de los polipéptidos de las SEQ ID NO: 27 a 35 haciendo el recuento del número de células por microscopio. Para averiguar la especificidad de los correspondientes linfocitos T, cuyo crecimiento había sido confirmado, se añadieron a cada polipéptido utilizado para pulsar 5 x 103 linfocitos T con respecto a 5 x 104 linfocitos T2 que expresaban la molécula HLA-A0201 (Salter RD et al., Immunogenetics, 21: 235-246 (1985), adquirida de 20 TCC) pulsados con el polipéptido (se añadió cada uno de los polipéptidos al medio AIM-V a una concentración de 10 μg/ml, y se cultivaron las células en él a 37 °C a 5 % CO₂ durante 4 horas) y se cultivaron las células en medio AIM-V suplementado con suero AB humano al 10 % en una placa de 96 pocillos durante 14 horas. Después de recuperar el sobrenadante tras el cultivo, se midió la cantidad de producción de IFN-γ por método ELISA. Como resultado, se confirmó una mayor producción de IFN-y en los sobrenadantes de cultivo en los pocillos que contenían linfocitos T2 pulsados con los correspondientes polipéptidos presentados en las SEQ ID NO: 27 a 35 que en los sobrenadantes 25 de cultivo en los pocillos que contenían linfocitos T2 que no fueron pulsados con un polipéptido (Fig. 12). Siendo así, se puso de manifiesto que cada uno de los polipéptidos de las SEQ ID NO: 27 a 35 es un péptido de epítopo de linfocito T que tiene capacidad para estimular y proliferar linfocitos T CD8-positivos HLA-A0201-positivos para inducir la producción de IFN-γ. Por otra parte, en el caso en el que se añade el polipéptido que tiene la secuencia de aminoácidos presentada en SEQ ID NO: 36, que está fuera del alcance de la presente invención, para realizar el 30 tratamiento descrito, no se pudo confirmar la producción de IFN-y (Fig. 12).

A continuación, se estudió si los correspondientes polipéptidos presentados en las SEQ ID NO: 27 a 35, que son polipéptidos para su utilización en la presente invención, se presentan o no en moléculas HLA-A0201 en células tumorales HLA-A0201-positivas que expresan PDS5A, y si células CD8-positivas estimuladas con los polipéptidos pueden dañar o no células tumorales HLA-A0201- positivas que expresan PDS5A.

Se recogieron en un tubo de centrífuga de 50 ml, 10⁵ células de la línea celular de tumor cerebral maligno T98G, cuya expresión de PDS5A había sido confirmada (Stein GH et al., J. Cell Physiol., 99: 43-54 (1979), adquiridas de ATCC), y se añadieron 100 μCi de cromo 51 al tubo, seguido de la incubación a 37 °C durante 2 horas. A continuación, se lavaron las células 3 veces con medio AlM-V suplementado con suero AB humano al 10 %, y se colocaron en una placa de fondo en V de 96 pocillos en una cantidad de 10³ células por pocillo seguido de una posterior adición a cada pocillo de 10⁵, 5 x 10⁴, 2,5 x 10⁴ o 1,25 x 10⁴ linfocitos T CD8-positivos HLA-A0201-positivos suspendidos en medio AlM-V suplementado con suero AB humano al 10 %, estimulándose las células con los correspondientes polipéptidos presentados en las SEQ ID NO: 27 a 35. Después se cultivaron las células a 37 °C a 5 % de CO₂ durante 4 horas. A continuación, se midió la cantidad de cromo 51 liberada desde las células de tumor dañadas en el sobrenadante de cultivo y, en virtud de ello, se calculó la actividad citotóxica de los linfocitos T CD8-positivos estimulados con cada uno de los polipéptidos presentados en las SEQ ID NO: 27 a 35.

Como resultado, se puso de manifiesto que los linfocitos CD8-positivos HLA-A0201-positivos estimulados con los correspondientes polipéptidos presentados en las SEQ ID NO: 27 a 35 tienen actividad citotóxica contra T98G (Fig. 13). Por consiguiente, queda claro que los polipéptidos presentados en las SEQ ID NO: 27 a 35, que son los polipéptidos para su uso en la presente invención, se presentan en moléculas HLA-A0201 en células tumorales HLA-A0201-positivas que expresan PDS5A, y que estos polipéptidos tienen capacidad para inducir linfocitos citotóxicos
 CD8-positivos que pueden dañar dichas células tumorales. Por otra parte, en el caso de añadir el polipéptido que tiene la secuencia de aminoácidos presentada en la SEQ ID NO: 36, que está fuera del alcance de la presente invención, para realizar el tratamiento descrito, no se pudo observar ninguna actividad citotóxica (Fig. 13).

Se determinó la actividad citotóxica, tal como se ha descrito mezclando 10⁵ linfocitos CD8-positivos estimulados e inducidos con cada uno de los péptidos de la presente invención y 10³ células de línea celular de tumor cerebral maligno T98G en el que se incorporó cromo 51, cultivando el resultado durante 4 horas; midiendo la cantidad de cromo 51 liberado al medio de cultivo tras el cultivo; y calculando la actividad citotóxica de los linfocitos T CD8-positivos contra T98G de acuerdo con la siguiente ecuación.*

65

10

35

40

45

* Ecuación: actividad citotóxica (%) = (Cantidad de cromo 51 liberado desde T98G al añadir linfocitos T CD8-positivos) / Cantidad de cromo 51 liberada de las células diana a la que se añade ácido clorhídrico 1N) x 100

- 5 Ejemplo 5: Preparación y evaluación del efecto farmacológico de la proteína PDS5A recombinante; detección de cáncer y diagnóstico de cáncer
 - (1) Preparación de proteína PDS5A recombinante
- Sobre la base del gen de SEQ ID NO: 1 obtenido en el Ejemplo 1, se preparó una proteína recombinante a través del siguiente método. Se mezclaron los reactivos y el tampón adjunto para que estuviera contenido 1 µl del vector obtenido en el Ejemplo 1 que se preparó a partir de la solución de flagémido y que se sometió a análisis de secuencia, 0,4 µM de cada uno de los dos tipos de cebadores que tenían sitios de restricción *Notl* y *Xhol* (presentados en las SEQ ID NO: 3 7 y 38), 0,2 mM dNTP y 1,25 U PrimeSTAR HS polimerasa (fabricada por Takara Shuzo Co., Ltd.) en un volumen total de 50 µl, y se llevó a cabo la PCR repitiendo 30 veces el ciclo de 98 °C durante 10 segundos, 55 °C durante 15 segundos y 72 °C durante 4 minuto utilizando un termociclador (fabricado por BIO RAD). Los dos tipos de cebadores descritos fueron los cebadores para la amplificación de la región que codifica la longitud completa de la secuencia de aminoácidos presentada en SEQ ID NO: 2. Tras la PCR, se sometió el ADN amplificado a electroforesis utilizando gel de agarosa a 1 % y se purificó un fragmento de ADN de aproximadamente 4000 pb utilizando un kit de extracción de gel QIAquick (fabricado por QIAGEN).
 - Se ligó el fragmento de ADN purificado en un vector de clonación pCR-Blunt (fabricado por Invitrogen). Se transformó *E. coli* con el producto de ligación resultante y se recuperó el plásmido. Se confirmó por secuenciación que el fragmento del gen amplificado tenía la misma secuencia que la de interés. Se trató el plásmido que tenía la misma secuencia que la de interés con enzimas de restricción *Not*l y *Xhol*, y se purificó utilizando un kit de extracción con gel QIAquick, seguido de la inserción de la secuencia del gen de interés en un vector de expresión para *E. coli*, pET30a (fabricado por Novagen) que había sido tratado con enzimas de restricción *Not*l y *Xhol*. El uso de este vector permite la producción de proteína recombinante fusionada con etiqueta His. Se transformó *E. coli* para expresión, BL21 (DE3), con este plásmido y se indujo expresión con 1 mM IPTG, para permitir la expresión de la proteína de interés en *E. coli*.
- Asimismo, sobre la base del gen de SEQ ID NO: 43, se preparó una proteína recombinante de PDS5A humana a través del siguiente método. Se mezclaron los reactivos y el tampón adjunto para que estuviera contenido 1 µl del ADN preparado en el Ejemplo 1 cuya expresión pudo confirmarse con ADNsc de varios tejidos y células por método RT-PCR, 0,4 µM de cada uno de los dos tipos de cebadores que tenían sitios de restricción *Notl* y *Xhol* (presentados en las SEQ ID NO: 39 y 40), 0,2 mM dNTP y 1,25 U PrimeSTAR HS polimerasa (fabricada por Takara Shuzo Co., Ltd.) en un volumen total de 50 µl, y se llevó a cabo la PCR repitiendo 30 veces el ciclo de 98 °C durante 10 segundos, 55 °C durante 15 segundos y 72 °C durante 4 minuto utilizando un termociclador (fabricado por BIO RAD). Los dos tipos de cebadores descritos fueron los cebadores para la amplificación de la región que codifica la longitud completa de la secuencia de aminoácidos presentada en SEQ ID NO: 44. Tras la PCR, se sometió el ADN amplificado a electroforesis utilizando gel de agarosa a 1 % y se purificó un fragmento de ADN de aproximadamente 4000 pb utilizando un kit de extracción de gel QIAquick (fabricado por QIAGEN).
- Se ligó el fragmento de ADN purificado en un vector de clonación pCR-Blunt (fabricado por Invitrogen). Se transformó *E. coli* con el producto de ligación resultante y se recuperó el plásmido. Se confirmó por secuenciación que el fragmento del gen amplificado tenía la misma secuencia que la de interés. Se trató el plásmido que tenía la misma secuencia que la de interés con enzimas de restricción *Not*l y *Xhol*, y se purificó utilizando un kit de extracción con gel QIAquick, seguido de la inserción de la secuencia del gen de interés en un vector de expresión para *E. coli*, pET30a (fabricado por Novagen) que había sido tratado con enzimas de restricción *Not*l y *Xhol*. El uso de este vector permite la producción de proteína recombinante fusionada con etiqueta His. Se transformó *E. coli* para expresión, BL21 (DE3), con este plásmido y se indujo expresión con 1 mM IPTG, para permitir la expresión de la proteína de interés en *E. coli*.
- Asimismo, sobre la base del gen de SEQ ID NO: 5, se preparó una proteína recombinante de PDS5A murina a través del siguiente método. Se mezclaron los reactivos y el tampón adjunto para que estuviera contenido 1 µl del ADN preparado en el Ejemplo 1 cuya expresión pudo confirmarse con ADNsc de varios tejidos y células por método RT-PCR, 0,4 µM de cada uno de los dos tipos de cebadores que tenían sitios de restricción *Not*l y *Xhol* (presentados en las SEQ ID NO: 41 y 41), 0,2 mM dNTP y 1,25 U PrimeSTAR HS polimerasa (fabricada por Takara Shuzo Co., Ltd.) en un volumen total de 50 µl, y se llevó a cabo la PCR repitiendo 30 veces el ciclo de 98 °C durante 10 segundos, 55 °C durante 15 segundos y 72 °C durante 4 minuto utilizando un termociclador (fabricado por BIO RAD). Los dos tipos de cebadores descritos fueron los cebadores para la amplificación de la región que codifica la longitud completa de la secuencia de aminoácidos presentada en SEQ ID NO: 6. Tras la PCR, se sometió el ADN amplificado a electroforesis utilizando gel de agarosa a 1 % y se purificó un fragmento de ADN de aproximadamente 4000 pb utilizando un kit de extracción de gel QIAquick (fabricado por QIAGEN).

65

25

30

Se ligó el fragmento de ADN purificado en un vector de clonación pCR-Blunt (fabricado por Invitrogen). Se transformó *E. coli* con el producto de ligación resultante y se recuperó el plásmido. Se confirmó por secuenciación que el fragmento del gen amplificado tenía la misma secuencia que la de interés. Se trató el plásmido que tenía la misma secuencia que la de interés con enzimas de restricción *Not*l y *Xhol*, y se purificó utilizando un kit de extracción con gel QIAquick, seguido de la inserción de la secuencia del gen de interés en un vector de expresión para *E. coli*, pET30a (fabricado por Novagen) que había sido tratado con enzimas de restricción *Not*l y *Xhol*. El uso de este vector permite la producción de proteína recombinante fusionada con etiqueta His. Se transformó *E. coli* para expresión, BL21 (DE3), con este plásmido y se indujo expresión con 1 mM IPTG, para permitir la expresión de la proteína de interés en *E. coli*.

(2) Purificación de proteína PDS5A

10

15

20

40

Se cultivó cada uno de los *E. coli* recombinante que expresa las SEQ ID NO: 2, SEQ ID NO: 44 o SEQ ID NO: 6 en medio LB suplementado con 100 μg/ml ampicilina a 37 °C hasta que la absorbancia a 600 nm alcanzó aproximadamente 0,7, y después se añadió isopropil-β-D-1-tiogalactopiranosida hasta una concentración final de 1 mM, seguido de posterior cultivo del *E. coli* recombinante a 37 °C durante 4 horas. A continuación, se recogieron las células bacterianas por centrifugación a 4.800 rpm durante 10 minutos. Se suspendió el aglomerado de células en solución salina tamponada con fosfato y se sometió también a centrifugación a 4.800 rpm durante 10 minutos para lavar las células bacterianas.

Se suspendieron las células bacterianas en tampón 50 mM Tris-HCl (pH 8,0) y se sometieron a sonicación sobre hielo. Se centrifugó el líquido obtenido por sonicación de *E. coli* a 6000 rpm durante 20 minutos para obtener el sobrenadante como una fracción soluble y el precipitado como la fracción insoluble.

25 Se suspendió la fracción insoluble en tampón 50 mM Tris-HCl (pH 8,0) y se centrifugó a 6000 rpm durante 15 minutos. Se repitió esta operación dos veces para llevar a cabo una operación de eliminación de proteasas.

Se suspendió el residuo en tampón 50 mM Tris-HCl (pH 8.0) suplementado con clorhidrato de guanidina 6 M y cloruro sódico 0,15 M y se dejó en reposo a 4 °C durante 20 horas para desnaturalizar las proteínas. A continuación, se centrifugó la suspensión a 6000 rpm durante 30 minutos, y se colocó la fracción soluble obtenida en una columna de quelato de níquel preparada a través de un método convencional (vehículo: sefarosa quelante (nombre comercial) Fast Flow (GE Health Care); volumen de columna: 5 ml; tampón de equilibrio: tampón 50 mM Tris-HCl (pH 8,0) suplementado con clorhidrato de guanidina 6M y cloruro sódico 0,15 M), seguido de reposo del producto resultante a 4 °C durante toda la noche para permitir la absorción de las proteínas en el vehículo quelado con níquel.

Se centrifugó este vehículo de columna a 1500 rpm durante 5 minutos y después se recuperó el sobrenadante. Se suspendió el vehículo de columna en solución salina tamponada con fosfato y se volvió a cargar en la columna.

Se lavó la fracción no absorbida en la columna con 10 volúmenes de columna de tampón acetato 0,1 M (pH 4,0) suplementado con cloruro sódico 0,5 M e, inmediatamente después, se eluyeron las proteínas con tampón acetato 0,1 M (pH 3,0) suplementado con cloruro sódico 0,5 M para obtener una fracción purificada que se utilizó después como material para una prueba de administración. Se confirmó la proteína de interés en cada fracción eluída por manchado con Coomassie que se llevó a cabo de acuerdo con un método convencional.

Se reemplazó el tampón de la preparación purificada obtenida a través de este método por tampón de reacción (50 mM Tris-HCI, 100 mM NaCI, 5 mM CaCl₂ (pH 8,0)) y se sometió la muestra resultante a escisión de etiqueta His con factor Xa proteasa y purificación de la proteína de interés utilizando el kit Factor Xa Cleavage Capture Kit (fabricado por Novagen) de acuerdo con el protocolo que se adjunta en el kit. A continuación, se reemplazó el tampón de 12 ml de la preparación purificada obtenida según el método anterior por tampón fosfato fisiológico (fabricado por Nissui Pharmaceutical) utilizando ultrafiltración NANOSEP 10K OMEGA (fabricado por PALL), y se sometió la muestra resultante a filtración aséptica a través de HT Tuffryn Acrodisc 0,22 mm (fabricado por PALL) y se utilizó en el experimento.

(3) Efecto anti-tumor de proteína PDS5A murina recombinante en ratón portador de tumor

Se trasplantó por vía subcutánea una línea celular de neuroblastoma murino N2a a ratones A/J (7 semanas de vida, macho, adquiridos de Japan SLC) en una cantidad de 1 x 10⁶ células. Cuando el volumen de tumor alcanzó un promedio de 50 a 100 mm³ (normalmente 7 días después de la inoculación del tumor), se dividió a los ratones de forma aleatoria en grupos de 10 individuos cada uno y se los sometió a evaluación del efecto anti-tumor de la proteína PDS5A murina recombinante (modelo terapéutico). Con 100 μg (0,5 ml) de la proteína PDS5A murina recombinante purificada tal como se ha descrito, se mezclaron 50 μg de poli I:C para preparar un agente terapéutico contra el cáncer, y se administró por vía subcutánea dicho agente terapéutico a ratones portadores de tumor un total de 3 veces a intervalos de 1 semana. Como resultado, el Día 31 después de la administración del agente terapéutico contra el cáncer se había conseguido una completa regresión del tumor. Por otra parte, en el grupo de control negativo, al que se administró PBS(-) y el grupo al que se administró solamente poli I:C (50 μg), el volumen de tumor medio el Día 31 tras la administración fue 1657 mm³ y 932 mm³, respectivamente.

Por otra parte, se preparó un agente terapéutico contra el cáncer en el que se mezclaron 100 μg (0,5 ml) de la proteína PDS5A murina recombinante y 50 μg poli I:C y se administró por vía subcutánea a ratones A/J un total de 3 veces a intervalos de 1 semana, seguido del trasplante de 1 x 10⁶ células N2a a los ratones y la evaluación del efecto anti-tumor (modelo profiláctico). Se incluyeron 10 individuos en cada grupo y, como controles con fines comparativos, se proporcionó un grupo de control negativo al que se le administró PBS(-) y un grupo al que se le administró poli I:C solamente (50 μg). Como resultado, en el grupo al que se le administró el agente terapéutico contra el cáncer, no se observó ningún desarrollo del tumor ni siquiera en el Día 40 tras la administración del agente terapéutico contra el cáncer. En cambio, en el grupo de control negativo, al que se le administró PBS(-) y en el grupo al que se administró poli I:C solamente (50 μg), el volumen de tumor medios el día 40 tras la administración fue 1989 mm³ y 1843 mm³, respectivamente.

Se llevó a cabo el mismo experimento también para un modelo de cáncer de colon. Se trasplantó por vía subcutánea la línea celular de cáncer de colon CT26 a ratones Balb/c (7 semanas de vida, macho, adquiridos de Japan SLC) en una cantidad de 1 x 10⁶ células. Cuando el volumen de tumor alcanzó un promedio de 50 a 100 mm³ (normalmente 7 días después de la inoculación del tumor), se dividió a los ratones de forma aleatoria en grupos de 10 individuos cada uno y se los sometió a evaluación del efecto anti-tumor de la proteína PDS5A murina recombinante (modelo terapéutico). Con 100 μg (0,5 ml) de la proteína PDS5A murina recombinante purificada tal como se ha descrito, se mezclaron 50 μg de poli I:C para preparar un agente terapéutico contra el cáncer, y se administró por vía subcutánea dicho agente terapéutico a ratones portadores de tumor un total de 3 veces a intervalos de 1 semana. Como resultado, el Día 24 después de la administración del agente terapéutico contra el cáncer se había conseguido una completa regresión del tumor. Por otra parte, en el grupo de control negativo, al que se administró PBS(-) y el grupo al que se administró solamente poli I:C (50 μg), el volumen de tumor medio el Día 24 tras la administración fue 1449 mm³ y 835 mm³, respectivamente.

Por otra parte, se preparó un agente terapéutico contra el cáncer en el que se mezclaron 100 μg (0,5 ml) de la proteína PDS5A murina recombinante y 50 μg poli I:C y se administró por vía subcutánea a ratones Balb/c un total de 3 veces a intervalos de 1 semana, seguido del trasplante de 1 x 10⁶ células CT26 a los ratones y la evaluación del efecto anti-tumor (modelo profiláctico). Se incluyeron 10 individuos en cada grupo y, como controles con fines comparativos, se proporcionó un grupo de control negativo al que se le administró PBS(-) y un grupo al que se le administró poli I:C solamente (50 μg). Como resultado, en el grupo al que se le administró el agente terapéutico contra el cáncer, no se observó ningún desarrollo del tumor ni siquiera en el Día 31 tras la administración del agente terapéutico contra el cáncer. En cambio, en el grupo de control negativo, al que se le administró PBS(-) y en el grupo al que se administró poli I:C solamente (50 μg), el volumen de tumor medios el Día 31 tras la administración fue 1781 mm³ y 1675 mm³, respectivamente.

A partir de estos resultados, se concluyó que la proteína PDS5A recombinante es eficaz para terapia y profilaxis contra el cáncer.

(4) Efecto anti-tumor de proteína PDS5A recombinante en perro portador de tumor

10

15

20

35

40

45

Se evaluó el efecto anti-tumor de la proteína recombinante descrita en el Ejemplo 5 a continuación en 3 individuos de perros pacientes portadores de tumor (3 individuos que tenían tumor de la glándula mamaria) que tenían una masa tumoral en la epidermis. Antes de la administración, se midió el título de anticuerpo contra proteína recombinante en el suero de cada perro paciente a través del método descrito en el Ejemplo 5 (3) y, como resultado, se detectó un título de anticuerpo mayor que el de un perro sano. A partir de estos resultados, se pudo deducir que la proteína que tenía la secuencia de aminoácidos presentada en SEQ ID NO: 2 estaba expresada como antígeno de cáncer en el tejido con tumor en el organismo vivo de estos perros pacientes portadores de tumor.

Se mezcló con 500 µg (2,5 ml) de cada proteína PDS5A recombinante (derivad de perro y derivada de ser humano) purificada tal como se ha descrito, la misma cantidad de adyuvante incompleto de Freund (fabricado por Wako Pure Chemical Industries, Ltd.) para preparar 2 tipos de agentes terapéuticos contra el cáncer, administrándose cada uno de ellos en un ganglio linfático regional en la proximidad del tumor un total de 3 veces a intervalos de una semana. Como resultado, se consiguió una completa regresión del tumor que tenía un tamaño de aproximadamente 500 mm³ o 1000 mm³ en el momento de la administración de cada uno de los agentes terapéuticos contra el cáncer, el Día 13 o el Día 21, respectivamente. Por otra parte, en el grupo de control negativo al que se le administro PBS(-), el volumen de tumor, que había sido de aproximadamente 800 mm³ en el momento de la administración de PBS, llego a ser 1625 mm³ el Día 21 tras la administración.

Se mezcló con 500 µg (2,5 ml) de la proteína PDS5A recombinante canina purificada tal como se describe en el Ejemplo 5, a continuación, la misma cantidad de adyuvante incompleto de Freund (fabricado por Wako Pure Chemical Industries, Ltd.) para preparar un agente terapéutico contra el cáncer, y se administró dicho agente terapéutico por vía subcutánea en la proximidad del tumor a cada uno de los individuos pacientes perros que padecían de adenocarcinoma perinatal y carcinoma celular escamoso epidérmico un total de 4 veces a intervalos de una semana. Como resultado, se consiguió una completa regresión del tumor que había tenido un tamaño de aproximadamente 370 mm³ o 280 mm³, respectivamente en el momento de la administración del agente terapéutico contra el cáncer, el Día 35 o el Día 42, respectivamente.

(5) Detección de cáncer utilizando proteína PDS5A recombinante

5

10

15

20

25

30

35

40

45

50

60

65

Se recogió sangre de 112 pacientes perros en los que se había detectado un tumor maligno y 30 perros sanos y se les extrajo suero. Utilizando la proteína PDS5A canina (SEQ ID NO: 2) preparada en (2) antes descrito, se midió el título de anticuerpos específicamente reactivos con la proteína en cada uno de los sueros por método ELISA. Se llevó a cabo la inmovilización de la proteína preparada colocando 100 µl /pocillo de la solución de proteína recombinante diluida a 5 µg/ml con solución salina tamponada con fosfato en una placa Immobilizer Amino de 96 pocillos (fabricada por Nunc), seguido de reposo de la placa a 4º C durante toda la noche. Se llevó a cabo el bloqueo añadiendo 100 µl de tampón bicarbonato sódico 50 mM (pH 8,4) suplementado con 3 % BSA (albumina de suero bovino, fabricado por Sigma-Aldrich Co.) (en los sucesivo denominada solución bloqueante) a cada uno de los pocillos y agitando la placa a temperatura ambiente durante 1 hora. Se diluyeron los sueros 1000 veces con la solución bloqueante y se añadieron a los pocillos en una cantidad de 100 µl/pocillo y se agitó la placa a temperatura ambiente durante 3 horas para dar lugar a que prosiguiera la reacción. Se lavaron los pocillos 3 veces con solución salina tamponada con fosfato suplementada con 0,05 % Tween 20 (fabricado por Wako Pure Chemical Industries, Ltd.) (en lo sucesivo denominada PBS-T), y se añadieron 100 µl/pocillo de anticuerpo IgG anti-perro modificado con HRP (cabra anti perro conjugado con IgG-h+I HRP: fabricado por BETHYL Laboratories) diluido 3000-veces con la solución bloqueante, seguido de agitación de la placa a temperatura ambiente durante 1 hora para dejar que prosiguiera la reacción. Después del lavado de los pocillos 3 veces con PBS-T, se añadieron 100 µl/pocillo de un sustrato HRP TMB (TMB Turbo 1-etapa (tetrametilbencidina), PIERCE) y se dejó que prosiguiera la reacción del sustrato de enzima a temperatura ambiente durante 30 minutos. A continuación, se añadieron 100 µl/pocillo de solución de ácido sulfúrico 0,5 M (fabricado por Sigma-Aldrich Japón) a los pocillos para determinar la reacción y se midió la absorbancia a 450 nm utilizando un lector de microplaca. Para preparar controles con fines comparativos, se llevaron a cabo experimentos de la misma manera que se ha descrito salvo que no se inmovilizó la proteína recombinante preparada o salvo que no se hizo reaccionar el suero de perro portador de tumor.

Las 112 muestras utilizadas en el diagnóstico de cáncer que se ha descrito fueron aquellas que se habían diagnosticado definitivamente como malignos según el diagnóstico patológico utilizando tejidos tumorales extirpados.

Concretamente, las muestras fueron aquellas diagnosticadas como canceres, como por ejemplo melanoma maligno, tumor mixto maligno, carcinoma hepatocelular, carcinoma de célula basal, tumor intraoral, adenocarcinoma perinatal, tumor del saco anal, carcinoma apocrino del saco anal, tumor de célula Sertoli, cáncer de vulva, adenocarcinoma sebáceo, epitelioma sebáceo, adenoma sebáceo, carcinoma de glándula sudorípara, adenocarcinoma intranasal, adenocarcinoma nasal, cáncer de tiroides, cáncer de colon, adenocarcinoma bronquial, adenocarcinoma, carcinoma ductal, adenocarcinoma mamario, adenocarcinoma mamario combinado, tumor mixto maligno de la glándula mamaria, adenocarcinoma papilar intraductal, fibrosarcoma, hemangiopericitoma, osteosarcoma, condrosarcoma, sarcoma del tejido blando, sarcoma histiocítico, mixosarcoma, sarcoma indifernciado, cáncer del pulmòn, mastocitoma, leiomioma cutáneo, leiomioma intra-abdominal, leiomioma, carcinoma de célula escamosa, leucemia linfocítica crónica, linfoma, linfoma gastrointestinal, linfoma de órgano digestivo, linfoma de célula media o célula pequeña, tumor adrenomedular, tumor de célula granulosa o feocromocitoma.

Los sueros de estos perros portadores de cáncer presentaron títulos de anticuerpo significativamente más altos contra la proteína recombinante que los de los perros sanos. Esto puso de manifiesto que, al diagnosticar una muestra que presenta un valor de al menos el doble del valor promedio en perros sanos como maligno, pudieron ser diagnosticas con éxito como malignas 94 muestras, que corresponden a un 83,9 % de los casos. Los tipos de cánceres en estas 94 muestras se describen a continuación. Debe advertirse que, si bien una parte de las muestras sufrían una pluralidad de tipos de cánceres, cada valor presentado a continuación es el total acumulativo para cada tipo de cáncer.

Melanoma maligno, 5 casos; linfoma 10 casos; tumor de célula granulosa, 1 caso; carcinoma hepatocelular, 3 casos; tumor testicular maligno, 3 casos; tumor intraoral, 3 casos; adenocarcinoma perinatal, 5 casos; sarcoma 9 casos; adenocarcinoma mamario, 35 casos; cáncer de pulmón, 1 caso; carcinoma ductal, 4 casos; adenocarcinoma sebáceo, 2 casos; mastocitoma, 5 casos, leiomiosarcoma, 1 caso; sarcoma de célula escamosa, 4 casos; tumor mixto maligno, 2 casos y hematogiopericitoma, 1 caso.

Cuando se llevó a cabo el diagnóstico de cáncer de la misma manera que se ha descrito, utilizando la proteína PDS5A humana (SEQ ID NO: 44) preparada tal como se ha descrito en (2), se obtuvo un resultado similar.

A partir de estos resultados, se puso de manifiesto que al utilizar la proteína PDS5A para medir el título de anticuerpos específicamente reactivos con la proteína en el suero, es posible la detección y el diagnóstico del cáncer.

Susceptibilidad de aplicación industrial

El agente inductor de respuesta inmune de la presente invención que comprende un polipéptido que ejerce una actividad anti-tumor contra varios tipos de cánceres es útil para terapia y/o profilaxis contra el cáncer y/o detección del cáncer.

LISTADO DE SECUENCIAS

```
<110> TORAY INDUSTRIES, INC.
```

5 <120> Composición farmacéutica para tratamiento y prevención de cánceres

<130> CMD/FP6810386

<140> 10813755.5

10 <141> 02-09-2010

<150> PCT/JP2010/064993

<151> 02-09-2010

15 <150> JP 20090203489

<151> 03-09-2009

<160> 44

20 <170> PatentIn versión 3.1

<210> 1

<211> 4396

<212> ADN

25 <213> Canis familiaris

<220>

<221> CDS

<222> (116)..(4129)

30 <223>

<400> 1

ccgacgaggg gcgg	cggcac aaccaccac	ga caaaggcccg	ggcgctcgat gcaco	etteeg 60
ccccatgagg agga	ggagee ggtagagga	ac tgtgaaagaa	aagttgteee eeagg	gatg 118 Met 1
	-		ctc tgt ggc gtc Leu Cys Gly Val 15	
			gta aag gag atc Val Lys Glu Ile 30	
-			ctg aag atg gta Leu Lys Met Val 45	
-			gat gaa aaa cag Asp Glu Lys Gln	_
		-	ttt ttc ctc agg Phe Phe Leu Arg 80	
_			tgt ttg gcc gac Cys Leu Ala Asp 95	
•		a Pro Tyr Thr	tcc cat gat aaa Ser His Asp Lys 110	

_	-			_		att Ile 120		-					_		-	502
	-	-		-		aat Asn	-									550
_		_				aac Asn		_		_	_	_	_	_		598
						ttt Phe										646
						caa Gln										694
		_	_		_	gga Gly 200	_			_		_	_			742
						gca Ala		-					_			790
						ttg Leu										838
						aat Asn										886
_	_	_	_		_	cat His	_		_	_		_	_			934
-		_				tta Leu 280	_		_	_	_	_		_		982
						gga Gly										1030
	_		_			tct Ser		_		_	_	_		_		1078
_				_	_	ttt Phe			_			_			-	1126
						gtg Val										1174
		_		-	_	gat Asp 360			_		_		_	_		1222

	gat Asp															1270
	gct Ala															1318
	gta Val															1366
_	atg Met	_		_	_	_			_			_				1414
_	gca Ala 435		_	_	_	_			_	_			_	_		1462
	ttg Leu							-		-	-		-	-	-	1510
	aaa Lys			_	_			_				_	_		_	1558
	aga Arg	_		_	_					_	_	_	_			1606
_	gtc Val		_			-	_			_	-		_		-	1654
_	cat His 515	-	_	-		_	-	_		_						1702
_	aac Asn	_		_	_				_	_			_	_		1750
	cct Pro	=	_		_	= =		=				_		_		1798
_	ctt Leu		_	_			_			_	_					1846
	cca Pro															1894
_	cga Arg 595			_			_	_								1942
	gtc Val															1990
gaa	gcc	ata	agt	gca	ctg	gta	aaa	ctg	atg	aat	aaa	tca	ata	gaa	ggg	2038

Glu Ala Ile	Ser Ala 630	Leu Val	Lys Leu	Met Asn 635	Lys Ser	Ile G1 64		
aca gca gat Thr Ala Asp								2086
tcg gga ctt Ser Gly Leu 660	_	_					-	2134
ttc cac tct Phe His Ser 675								2182
gaa gat gac Glu Asp Asp 690						-		2230
ggc cac aaa Gly His Lys	_	-		_			ı Ile	2278
ccc att tta Pro Ile Leu								2326
cag gct gtt Gln Ala Val 740	_		-				-	2374
ctt gca cag Leu Ala Gln 755			_		-		-	2422
cca gaa caa Pro Glu Gln 770		_	_	_			_	2470
tta gec eca Leu Ala Pro	-			-			a Asn	2518
ttt att gtg Phe Ile Val	_	-	_					2566
aat gga aaa Asn Gly Lys 820								2614
gca aag gta Ala Lys Val 835								2662
aaa aac aac Lys Asn Asn 850	_		-		_			2710
gcg atg ttg Ala Met Leu	gtt agt Val Ser 870	gag ggt Glu Gly	gac ctg Asp Leu	aca gag Thr Glu 875	caa aag Gln Lys	agg at Arg Il 88	e Ser	2758
aaa tot gat Lys Ser Asp	_		_			_	_	2806

885 890	895
aag ctt get cag gaa cet tgt tae cat gaa att ata act Lys Leu Ala Gln Glu Pro Cys Tyr His Glu Ile Ile Thr 900 905 910	
ttt cag ctc tgt gca ctt gtt att aac gat gag tgc tac Phe Gln Leu Cys Ala Leu Val Ile Asn Asp Glu Cys Tyr 915 920 925	
cag ata ttt gcc cag aag ttg cat aaa gct ctc gtg aag Gln Ile Phe Ala Gln Lys Leu His Lys Ala Leu Val Lys 930 935 940	
cca ttg gaa tat atg gcg atc ttt gcc ttg tgt gcc aaa e Pro Leu Glu Tyr Met Ala Ile Phe Ala Leu Cys Ala Lys . 950 955	
aag gag aga aga goa cat goa cga cag tgt tta cta aaa Lys Glu Arg Arg Ala His Ala Arg Gln Cys Leu Leu Lys : 965 970	-
ata ege agg gag tac att aaa eag aac eec atg get act Ile Arg Arg Glu Tyr Ile Lys Gln Asn Pro Met Ala Thr 980 985 990	
cta tea ctg ttg cct gaa tat gta gtt cca tac atg at Leu Ser Leu Leu Pro Glu Tyr Val Val Pro Tyr Met Il 995 1000 1005	t cac ctg cta 3142 e His Leu Leu
gcc cat gat cca gat ttt aca aga tca caa gat gtt g Ala His Asp Pro Asp Phe Thr Arg Ser Gln Asp Val A 1010 1015 1020	
cgt gat att aaa gag tgc cta tgg ttc atg ctt gaa g Arg Asp Ile Lys Glu Cys Leu Trp Phe Met Leu Glu V 1025 1030 1035	_
aca aag aat gaa aac aat agc cat gca ttt atg aag a Thr Lys Asn Glu Asn Asn Ser His Ala Phe Met Lys L 1040 1045 1050	ag atg gca 3277 ys Met Ala
gag aac atc aag tta aca aaa gat gcc cag tct cca g Glu Asn Ile Lys Leu Thr Lys Asp Ala Gln Ser Pro A 1055 1060 1065	
aag atg aat gaa aaa ctt tat aca gta tgt gat gtg g Lys Met Asn Glu Lys Leu Tyr Thr Val Cys Asp Val A 1070 1080	
gtt ata aat agt aaa agt gct ttg tgc aat gca gat t Val Ile Asn Ser Lys Ser Ala Leu Cys Asn Ala Asp S 1085 1090 1095	
gat cca gtc ctt cca atg aaa ttt ttt aca caa cct g Asp Pro Val Leu Pro Met Lys Phe Phe Thr Gln Pro G 1100 1105 1110	
tte tgt aat gac aag agt tat att tea gaa gag ace a Phe Cys Asn Asp Lys Ser Tyr Ile Ser Glu Glu Thr A 1115 1120 1125	
ctg tta aca gga aag cca aaa cct gct gga gta cta g Leu Leu Thr Gly Lys Pro Lys Pro Ala Gly Val Leu G 1130 1135 1140	

aa c Asn 1145	Lys				gca Ala 1150	Thr					Туг				3592
act Thr 1160	Gly				gga Gly 1165	Ser									3637
aac Asn 1175	Pro				aat Asn 1180										3682
	Glu				agt Ser 1195	Glu									3727
att Ile 1205	Ser				gta Val 1210										3772
gag Glu 1220	Ile			_	cag Gln 1225	Thr		_			Ile	_	_	_	3817
_	Gly	_	_	_	agt Ser 1240	_	-	_	_						3862
caa Gln 1250	Gln			_	gag Glu 1255		-	_	_					-	3907
cct Pro 1265					aga Arg 1270		_	_		_		_		_	3952
	Asn				aat Asn 1285										3997
gga Gly 1295	Arg				geg Ala 1300									ctg Leu	4042
gaa Glu 1310					aaa Lys 1315	Ala									4087
	Āla				gag Glu 1330								taa		4129
aaaga	aaaa	et e	attt	gcaa	a ggga	aaaa	aat q	gaag	gecaa	aa ca	gaag	caca	gact	tecaget	4189
tetge	caaa	aa ci	ttgga	atte	a caat	tgte	set q	gaaca	agaaa	aa tga	aagti	aac	tte	agaacac	4249
actti	tctg	ec ti	tgaaa	aact	g aaaq	gaaa	cta (ttact	tteet	t tt	cacat	gac	cace	aagtoot	4309
ttgai	tgga	aa t	gtaca	agaga	a aact	tette	gag a	agaga	agaga	ag aga	agaga	agag	agag	gagagag	4369
agag	gcta	aa a	gcaa	eteta	a ttci	tatc									4396

<210> 2 <211> 1337 <212> PRT

<213> Canis familiaris

<400> 2

Met 1	Asp	Phe	Thr	Ala 5	Gln	Pro	Lys	Pro	Ala 10	Thr	Ala	Leu	Cys	Gly 15	Val
Val	Ser	Ala	Asp 20	Gly	Lys	Ile	Ala	Tyr 25	Pro	Pro	Gly	Val	Lys 30	Glu	Ile
Thr	Asp	Lys 35	Ile	Thr	Thr	Asp	Glu 40	Met	Ile	Lys	Arg	Leu 45	Lys	Met	Val
Val	Lys 50	Thr	Phe	Met	Asp	Met 55	Asp	Gln	Asp	Ser	Gl u 60	Asp	Glu	Lys	Gln
Gln 65	Tyr	Leu	Pro	Leu	Al a 70	Leu	His	Leu	Ala	Ser 75	Glu	Phe	Phe	Leu	Arg 80
Asn	Pro	Asn	Lys	Asp 85	Val	Arg	Leu	Leu	Val 90	Ala	Cys	Cys	Leu	Ala 95	Asp
Ile	Phe	Arg	Ile 100	Tyr	Ala	Pro	Glu	Ala 105	Pro	Tyr	Thr	Ser	His 110	Asp	Lys
Leu	Lys	Asp 115	Ile	Phe	Leu	Phe	Ile 120	Thr	Arg	Gln	Leu	Lys 125	Gly	Leu	Glu
Asp	Thr 130	Lys	Ser	Pro	Gln	Phe 135	Asn	Arg	Tyr	Phe	Tyr 140	Leu	Leu	Glu	Asn
Leu 145	Ala	Trp	Val	Lys	Ser 150	Tyr	Asn	Ile	Cys	Phe 155	Glu	Leu	Glu	Asp	Cys 160
Asn	Glu	Ile	Phe	Ile 165		Leu	Phe	_	Thr 170		Phe	Ser	Val	Ile 175	Asn
Asn	Ser	His	Asn 180	Lys	Lys	Val	Gln	Met 185	His	Met	Leu	Asp	Leu 190	Met	Ser
Ser	Ile	Ile 195	Met	Glu	Gly	Asp	Gly 200	Val	Thr	Gln	Glu	Leu 205	Leu	Asp	Ser
Ile	Leu 210	Ile	Asn	Leu	Ile	Pro 215	Ala	His	Lys	Asn	Leu 220	Asn	Lys	Gln	Ser
Ph e 225	Asp	Leu	Ala	Lys	Val 230	Leu	Leu	Lys	Arg	Thr 235	Val	Gln	Thr	Ile	Glu 240

Ala	Cys	Ile	Ala	As n 2 4 5	Phe	Phe	Asn	Gln	Val 250	Leu	Val	Leu	Gly	Arg 255	Ser
Ser	Val	Ser	Asp 260	Leu	Ser	Gl u	His	Val 265	Phe	Asp	Leu	Ile	Gln 270	Glu	Leu
Phe	Ala	Ile 275	Asp	Pro	Hìs	Leu	Leu 280	Leu	Ser	Val	Met	Pro 285	Gln	Leu	Glu
Phe	Lys 290	Leu	Lys	Ser	Asn	Asp 295	Gly	Glu	Glu	Arg	Leu 300	Ala	Val	Val	Arg
Leu 305	Leu	Ala	Lys	Leu	Phe 310	Gly	Ser	Lys	Asp	Ser 315	Asp	Leu	Ala	Thr	Gln 320
Asn	Arg	Pro	Leu	Trp 325	Gln	Cys	Phe	Leu	Gly 330	Arg	Phe	Asn	Asp	11e 335	His
Val	Pro	Val	Arg 340	Leu	Glu	Ser	Val	Lys 345	Phe	Ala	Ser	His	Cys 350	Leu	Met
Asn	His	Pro 355	Asp	Leu	Ala	Lys	Asp 360	Leu	Thr	Gl u	Tyr	Le u 365	Lys	Val	Arg
Ser	His 370	Asp	Pro	Glu	Glu	Ala 375	Ile	Arg	His	Asp	Val 380	Ile	Val	Thr	Ile
Ile 385	Thr	Ala	Ala	Lys	Ar g 390	Asp	Leu	Ala	Leu	Val 395	Asn	Asp	Gln	Leu	Le u 400
Gly	Phe	Val	Arg	Glu 405	Arg	Thr	Leu	Asp	Lys 410	Arg	Trp	Arg	Val	Arg 415	Lys
Gl u	Ala	Met	Met 420	Gly	Leu	Ala	Gln	Le u 42 5	Tyr	Lys	Lys	Tyr	Cys 430	Leu	His
Gly	Glu	Ala 435	Gly	Lys	Glu	Ala	Ala 440	Glu	Lys	Val	Ser	Trp 445	Ile	Lys	Asp
Lys	Leu 450	Leu	His	Ile	Tyr	Tyr 455	Gln	Asn	Ser	Ile	Asp 460	Asp	Lys	Leu	Leu
Val 465	Glu	Lys	Ile	Phe	Ala 470	Gl n	Туг	Leu	Val	Pro 475	His	Asn	Leu	Glu	Thr 480
Glu	Glu	Arg	Met	Lys 485	Cys	Leu	Tyr	Tyr	Leu 490	Tyr	Ala	Ser	Leu	Asp 495	Pro

Asn	Ala	Val	Lys 500	Ala	Leu	Asn	Glu	Met 505	Trp	Lys	Cys	G1n	As n 510	Met	Leu
Arg	Ser	His 515	Val	Arg	Glu	Leu	Leu 520	Asp	Leu	His	Lys	Gln 525	Pro	Thr	Ser
Glu	Ala 530	Asn	Cys	Ser	Ala	Met 535	Phe	Gly	Lys	Leu	Met 540	Thr	Ile	Ala	Lys
As n 545	Leu	Pro	Asp	Pro	Gly 550	Lys	Ala	Gln	Asp	Phe 555	Val	Lys	Lys	Phe	As n 560
Gl n	Val	Leu	Gly	Asp 565	Asp	Glu	Lys	Leu	Arg 570	Ser	Gln	Leu	Glu	Leu 575	Leu
Ile	Ser	Pro	Thr 580	Cys	Ser	Cys	Lys	Gln 585	Ala	Asp	Val	Cys	Val 590	Arg	Glu
Ile	Ala	Arg 595	Lys	Leu	Ala	Asn	Pro 600	Lys	Gln	Pro	Thr	Asn 605	Pro	Phe	Leu
Gl u	Met 610	Val	Lys	Phe	Leu	Leu 615	Glu	Arg	Ile	Ala	Pro 620	Val	His	Ile	Asp
S er 625	Glu	Ala	Ile	Ser	Ala 630	Leu	Val	Lys	Leu	Met 635	Asn	Lys	Ser	Ile	Glu 640
Gly	Thr	Ala	Asp	Asp 645	Glu	Glu	Gl u	Gly	Val 650	Ser	Pro	Asp	Thr	Ala 655	Ile
Arg	Ser	G1y	Leu 660	Gl u	Leu	Leu	Lys	Val 665	Leu	Ser	Phe	Thr	His 670	Pro	Thr
Ser		His 675	Ser	Ala	G1u	Thr	Tyr 680	Glu	Ser	Leu		Gln 685	Cys	Leu	Arg
Met	Glu 690	Asp	Asp	Lys	Val	Ala 695	Glu	Ala	Ala	Ile	Gln 700	Ile	Phe	Arg	Asn
Thr 705	Gly	His	Lys	Ile	Glu 710	Thr	Asp	Leu	Pro	Gln 715	Ile	Arg	Ser	Thr	Leu 720
Ile	Pro	Ile	Leu	His 725	Gln	Lys	Ala	Lys	Arg 730	Gly	Thr	Рго	His	Gl n 735	Ala
Lys	Gln	Ala	Val 740	His	Cys	Ile	His	Ala 745	Ile	Phe	Thr	Asn	Lys 750	Gl u	Val
Gln	Len	Δ1 =	G1n	Tle	Dhe	Glu	Pro	T.e.ı	Ser	Arc.	Ser	Ler	A er	Δla	1er

		755					760					765			
Val	Pro 770	Glu	Gln	Leu	Ile	Thr 775	Pro	Leu	Val	Ser	Leu 780	Gly	His	Ile	Ser
Me t 785	Leu	Ala	Pro	Asp	Gln 790	Phe	Ala	Ser	Pro	Met 795	Lys	Ser	Val	Val	Ala 800
Asn	Phe	Ile	Val	Lys 805	Asp	Leu	Leu	Met	Asn 810	Asp	Arg	Ser	Thr	Gly 815	Glu
Lys	Asn	Gly	Lys 820	Leu	Trp	Ser	Pro	Asp 825	Glu	Glu	Val	Ser	Pro 830	Gl u	Val
Leu	Ala	Lys 835	Val	Gl n	Ala	Ile	Lys 840	Leu	Leu	Val	Arg	Trp 845	Leu	Leu	Gly
Met	Lys 850	Asn	Asn	Gl n	Ser	Lys 855	Ser	Ala	Asn	Ser	Thr 860	Leu	Arg	Leu	Leu
Ser 865	Ala	Met	Leu	Val	Ser 870	Glu	Gly	Asp	Leu	Thr 875	Glu	Gln	Lys	Arg	Ile 880
Ser	Lys	Ser	Asp	Met 885	Ser	Arg	Leu	Arg	Leu 890	Ala	Ala	Gly	Ser	Ala 895	Ile
Met	Lys	Leu	Ala 900	Gln	Glu	Pro	Cys	Tyr 905	His	Glu	Ile	Ile	Thr 910	Pro	Glu
Gln	Phe	Gln 915	Leu	Cys	Ala	Leu	Val 920	Ile	Asn	Asp	Glu	Сув 925	Tyr	G l n	Val
Arg	Gl n 930	Ile	Phe	Ala	Gl n	Lys 935	Leu	His	Lys	Ala	Leu 940	Val	Lys	Leu	Leu
Leu 945	Pro	Leu	Glu	Туг	Met 950	Ala	Ile	Phe	Ala	Leu 955	Суз	Ala	Lys	Asp	Pro 960
Val	Lys	Gl u	Arg	Arg 965	Ala	His	Ala	Arg	Gln 970	Cys	Leu	Leu	Lys	Asn 975	Ile
Ser	Ile	Arg	Arg 980	Gl u	Tyr	Ile	Lys	Gln 985	Asn	Pro	Met	Ala	Thr 990	Gl u	Lys
Leu	Leu	Ser 995	Leu	Leu	Pro	Glu	Tyr 1000		L Vai	l Pro	э Ту	r Met 100		Le Hi	is Le
Leu	Ala 1010		s Asp	Pro	Asp	Phe 10:		ır Aı	rg Se	er G	ln As	sp 1	/al /	Asp (31n

Leu Arg Asp Ile Lys Glu Cys Leu Trp Phe Met Leu Glu Val Leu Met Thr Lys Asn Glu Asn Asn Ser His Ala Phe Met Lys Lys Met Ala Glu Asn Ile Lys Leu Thr Lys Asp Ala Gln Ser Pro Asp Glu Ser Lys Met Asn Glu Lys Leu Tyr Thr Val Cys Asp Val Ala Leu Cys Val Ile Asn Ser Lys Ser Ala Leu Cys Asn Ala Asp Ser Pro Lys Asp Pro Val Leu Pro Met Lys Phe Phe Thr Gln Pro Glu Lys Asp Phe Cys Asn Asp Lys Ser Tyr Ile Ser Glu Glu Thr Arg Val Leu Leu Thr Gly Lys Pro Lys Pro Ala Gly Val Leu Gly Ala Val Asn Lys Pro Leu Ser Ala Thr Gly Arg Lys Pro Tyr Val Arg Ser Thr Gly Ala Glu Thr Gly Ser Asn Ile Asn Val Asn Ser Glu 1160 1165 Leu Asn Pro Ser Thr Gly Asn Arg Ser Arg Glu Gln Ser Ser Glu Ala Val Glu Thr Gly Val Ser Glu Asn Glu Glu Asn Pro Val Arg Ile Ile Ser Val Thr Pro Val Lys Asn Ile Asp Pro Val Lys Asn Lys Glu Ile Asn Ser Asp Gln Thr Thr Gln Gly Asn Ile Ser Ser Asp Arg Gly Lys Lys Arg Ser Val Ala Ala Ala Gly Thr Glu Asn Ile Gln Gln Lys Thr Asp Glu Lys Val Asp Glu Ser Gly Pro Pro

Ala Pro Ser Lys Pro Arg Arg Gly Arg Arg Pro Lys Ser Glu Ser 1265 1270 1275

Gln Gly Asn Ala Thr Lys Asn Asp Asp Ile Asn Lys Pro Leu Gly 1280 1285 1290

Lys Gly Arg Lys Arg Ala Ala Val Ser Gln Glu Ser Pro Gly Gly 1295 1300 1305

Leu Glu Ala Gly Asn Ala Lys Ala Pro Lys Leu Gln Asp Val Ala 1310 1315 1320

Lys Lys Ala Val Pro Ala Glu Arg Gln Ile Asp Leu Gln Arg 1325 1330 1335

<210> 3 <211> 6726 <212> ADN

5 <212> ADN <213> Homo sapiens

<220> <221> CDS 10 <222> (197)..(4090) <223>

<400> 3

ccggctcccg gggca	eggac ggccgggc	ge gegeetetge	gaggggcgtc cgggtccgag	60
teggeggtee gggee	ggege gaggtgeg	tg cgggcgggcc	gegggggtee eggaeggaea	120
caagegeaca cacto	ecegga agateget	ta coctoogggg	gtaaaagaga tcaccgacaa	180
gatcaccacg gacga			g gta gtg aaa acc ttt t Val Val Lys Thr Phe 10	
		u Āsp Glu Lys (cag cag tat ctc cca Gln Gln Tyr Leu Pro 25	280
•		u Phe Phe Leu	agg aac ccc aat aaa Arg Asn Pro Asn Lys 40	328
			gat atc ttt cgt atc Asp Ile Phe Arg Ile 60	376
	-	_	aaa ctt aag gac ata Lys Leu Lys Asp Ile 75	424
			gag gat aca aag agt Glu Asp Thr Lys Ser 90	472
-	Arg Tyr Phe Ty		aat tta gct tgg gtt Asn Leu Ala Trp Val	520

aaa tca Lys Ser 110														568
att cag Ile Gln 125														616
aag aag Lys Lys	_	_		_		_	_	_	_				_	664
gaa ggt Glu Gly		ly Val												712
ctc att Leu Ile	_		_					_			_		_	760
aaa gtg Lys Val 190		-	-		_	-				_	-		-	808
aat ttt Asn Phe 205														856
ttg tca Leu Ser														904
cct cat Pro His		eu Leu		-	_		_		_				-	952
agc aat Ser Asn				_		_	_	_	_			_		1000
ttg ttt Leu Phe 270														1048
tgg caa Trp Gln 285														1096
tta gaa Leu Glu														1144
tta gcg Leu Ala		sp Leu												1192
gaa gaa Glu Glu														1240
aag agg Lys Arg 350														1288

_	aga Arg		_	_				_	_	_		_	_	_	_	1336
	ctg Leu															1384
_	gaa Glu	-	_			-	_			_	-			_		1432
	tat Tyr															1480
	gct Ala 430															1528
	tgc Cys						_	_	_	_			_	_		1576
_	ctc Leu		-	-		_	-	-		-			-		-	1624
_	gaa Glu		_	_	_		_	_					_		_	1672
	Ala	_				ctg Leu	_			_	_		_		-	1720
Ser	_	Met 495 aaa	Phe gca	Gly caa	Lys gat	Leu	Met 500 gtg	Thr aag	Ile aaa	Ala ttt	Lys	Asn 505 cag	Leu	Pro	Asp	1720 1768
ccc Pro	Ala ggg Gly	Met 495 aaa Lys gag	Phe gca Ala aaa	Gly caa Gln ctt	Lys gat Asp	ttt Phe 515	Met 500 gtg Val cag	Thr aag Lys ttg	Ile aaa Lys gag	Ala ttt Phe tta	Lys aac Asn 520 tta	Asn 505 cag Gln att	Leu gtt Val	Pro ctc Leu cca	Asp ggc Gly acc	
ccc Pro gat Asp 525	Ala ggg Gly 510 gat	Met 495 aaa Lys gag Glu	Phe gca Ala aaa Lys	Gly caa Gln ctt Leu	gat Asp egg Arg 530 gca Ala	ttt Phe 515 tct Ser	Met 500 gtg Val cag Gln att	aag Lys ttg Leu tgt Cys	aaa Lys gag Glu	Ala ttt Phe tta Leu 535	aac Asn 520 tta Leu	Asn 505 cag Gln att Ile	gtt Val age Ser	ctc Leu cca Pro	Asp ggc Gly acc Thr 540	1768
ccc Pro gat Asp 525 tgt Cys	ggg Gly 510 gat Asp	Met 495 aaa Lys gag Glu tgc Cys	Phe gca Ala aaa Lys aaa Lys	Gly caa Gln ctt Leu caa Gln 545	gat Asp cgg Arg 530 gca Ala	ttt Phe 515 tct Ser gat Asp	Met 500 gtg Val cag Gln att Ile	Thr aag Lys ttg Leu tgt Cys aat	aaa Lys gag Glu gtg Val 550	Ala ttt Phe tta Leu 535 aga Arg	aac Asn 520 tta Leu gaa Glu	Asn 505 cag Gln att Ile ata Ile	gtt Val agc Ser gcc Ala	ctc Leu cca Pro cgg Arg 555	ggc Gly acc Thr 540 aaa Lys	1768 1816
ccc Pro gat Asp 525 tgt Cys ctt Leu	ggg Gly 510 gat Asp tct Ser	Met 495 aaa Lys gag Glu tgc Cys aat Asn	gca Ala aaa Lys aaa Lys	Gly caa Gln ctt Leu caa Gln 545 aag Lys	Lys gat Asp cgg Arg 530 gca Ala caa Gln atc	ttt Phe 515 tct Ser gat Asp	Met 500 gtg Val cag Gln att Ile aca Thr	Thr aag Lys ttg Leu tgt Cys aat Asn 565	aaa Lys gag Glu gtg Val 550 cct Pro	Ala ttt Phe tta Leu 535 aga Arg ttt Phe	aac Asn 520 tta Leu gaa Glu cta Leu	Asn 505 cag Gln att Ile ata Ile gag Glu	gtt Val agc Ser gcc Ala atg Met 570	ctc Leu cca Pro cgg Arg 555 gtc Val	Asp ggc Gly acc Thr 540 aaa Lys aaa	1768 1816 1864
ccc Pro gat Asp 525 tgt Cys ctt Leu ttt	Ala ggg Gly 510 gat Asp tct Ser gca Ala	Met 495 aaa Lys gag Glu tgc Cys aat Asn ttg Leu 575 cta	gca Ala aaa Lys aaa Lys cct Pro 560 gaa Glu	Gly caa Gln ctt Leu caa Gln 545 aag Lys aga Arg	Lys gat Asp cgg Arg 530 gca Ala caa Gln atc Ile	ttt Phe 515 tct Ser gat Asp cca Pro	Met 500 gtg Val cag Gln att Ile aca Thr cct Pro 580 aat	Thr aag Lys ttg Leu tgt Cys aat Asn 565 gtg Val	aaa Lys gag Glu gtg Val 550 cct Pro cac His	Ala ttt Phe tta Leu 535 aga Arg ttt Phe att Ile	aac Asn 520 tta Leu gaa Glu cta Leu gat Asp gag	Asn 505 cag Gln att Ile ata Ile gag Glu tca Ser 585	gtt Val agc Ser gcc Ala atg Met 570 gaa Glu aca	etc Leu cca Pro cgg Arg 555 gtc Val gcc Ala	Asp ggc Gly acc Thr 540 aaa Lys aaa Lys ata Ile	1768 1816 1864 1912
ccc Pro gat Asp 525 tgt Cys ctt Leu ttt Phe agt gat	Ala ggg Gly 510 gat Asp tct Ser gca Ala ctg Leu gca Ala	Met 495 aaa Lys gag Glu tgc Cys aat Asn ttg Leu 575 cta Leu gag	gca Ala aaa Lys aaa Lys cct Pro 560 gaa Glu gtg	Gly caa Gln ctt Leu caa Gln 545 aag Lys aga Arg	Lys gat Asp cgg Arg 530 gca Ala caa Gln atc Ile ttg Leu gta	ttt Phe 515 tct Ser gat Asp cca Pro gca Ala atg Met 595 agt	Met 500 gtg Val cag Gln att Ile aca Thr cet Pro 580 aat Asn cca	Thr aag Lys ttg Leu tgt Cys aat Asn 565 gtg Val aag Lys	aaa Lys gag Glu gtg Val 550 cct Pro cac His	Ala ttt Phe tta Leu 535 aga Arg ttt Phe att Ile ata Ile	Lys aac Asn 520 tta Leu gaa Glu cta Leu gat Asp gag Glu 600 atc	Asn 505 cag Gln att Ile ata Ile gag Glu tca Ser 585 ggg Gly	gtt Val agc Ser gcc Ala atg Met 570 gaa Glu aca Thr	etc Leu cca Pro cgg Arg 555 gtc Val gcc Ala gca Ala	ggc Gly acc Thr 540 aaa Lys aaa Lys ata Ile gat Asp	1768 1816 1864 1912

Glu	Leu	Leu	Lys	Val 625	Leu	Ser	Phe	Thr	His 630	Pro	Thr	Ser	Phe	H is 635	Ser	
_						_		_	-		aga Arg	_		_	-	2152
_	_	-	_	-	-					_	aat Asn					2200
											tta Leu 680					2248
											gca Ala					2296
	-			_						_	gtc Val	_		_	-	2344
					_		_	_		_	gat Asp			_		2392
											tct Ser					2440
_	-		-			_			-	-	gca Ala 760					2488
											gaa Glu					2536
											gta Val					258 4
_	_				_	_			_	_	ggt Gly	_				2632
											tta Leu					2680
											atc Ile 840					2728
											ata Ile					2776
											gaa Glu					2824
											gta Val					2872

880	885	890	
		tta ctg ctc cca ttg gag 2 Leu Leu Pro Leu Glu 905	920
		gat cet gtg aag gag aga 2 Asp Pro Val Lys Glu Arg 920	2968
Arg Ala His Ala Arg	Gln Cys Leu Leu Lys	aat atc agt ata cgc agg 3 Asn Ile Ser Ile Arg Arg 935 940	3016
		gag aaa tta tta tca ctg 3 Glu Lys Leu Leu Ser Leu 955	3064
		cac ctg cta gcc cat gat 3 His Leu Leu Ala His Asp 970	3112
		cag ctt cgt gat atc aaa 3 Gln Leu Arg Asp Ile Lys 985	3160
		atg aca aag aat gaa aac 3 Met Thr Lys Asn Glu Asn 1000	3208
aat age cat gec ttt Asn Ser His Ala Phe 1005		a gag aac atc aag tta 3 a Glu Asn Ile Lys Leu 1015	3253
		c aag aca aat gaa aaa 3 r Lys Thr Asn Glu Lys 1030	3298
	gat gtg gct ctc tg Asp Val Ala Leu Cy 1040		343
agt gct ttg tgc aat Ser Ala Leu Cys Asn 1050		g gac cca gtc ctc cca 3 s Asp Pro Val Leu Pro 1060	388
		c ttc tgt aac gat aag 3 p Phe Cys Asn Asp Lys 1075	3433
		t ctg tta aca gga aag 3 u Leu Leu Thr Gly Lys 1090	3 4 78
		a aat aag oot tta toa 3 1 Asn Lys Pro Leu Ser 1105	3523
		c act ggc act gag act 3 r Thr Gly Thr Glu Thr 1120	3568
		g aac cct tca acc gga 3 u Asn Pro Ser Thr Gly 1135	3613

aat cga tca agg gaa cag agt tca gag gca gca gaa act gga gtt Asn Arg Ser Arg Glu Gln Ser Ser Glu Ala Ala Glu Thr Gly Val 1140 1145 1150	3658
agt gaa aat gaa gag aac cct gtg agg att att tca gtc aca cct Ser Glu Asn Glu Glu Asn Pro Val Arg Ile Ile Ser Val Thr Pro 1155 1160 1165	3703
gta aag aat att gac cca gta aag aat aag gaa att aat tct gat Val Lys Asn Ile Asp Pro Val Lys Asn Lys Glu Ile Asn Ser Asp 1170 1180	3748
cag gct acc cag ggc aac atc agc agt gac cga gga aag aaa aga Gln Ala Thr Gln Gly Asn Ile Ser Ser Asp Arg Gly Lys Lys Arg 1185 1190 1195	3793
aca gta aca gca gct ggt gca gag aat atc caa caa aaa aca gat Thr Val Thr Ala Ala Gly Ala Glu Asn Ile Gln Gln Lys Thr Asp 1200 1205 1210	3838
gag aaa gta gat gaa teg gga eet eee gee eet tee aaa eee agg Glu Lys Val Asp Glu Ser Gly Pro Pro Ala Pro Ser Lys Pro Arg 1215 1220 1225	3883
aga gga cgt cga ccc aag tct gaa tct cag ggc aat gct acc aaa Arg Gly Arg Arg Pro Lys Ser Glu Ser Gln Gly Asn Ala Thr Lys 1230 1235 1240	3928
aat gat gat cta aat aaa cct att aac aag gga agg aag aga gct Asn Asp Asp Leu Asn Lys Pro Ile Asn Lys Gly Arg Lys Arg Ala 1245 1250 1255	3973
gca gtg ggt cag gag agc cct ggg ggt ttg gaa gca ggt aat gcc Ala Val Gly Gln Glu Ser Pro Gly Gly Leu Glu Ala Gly Asn Ala 1260 1265 1270	4018
aaa gca ccc aaa ctg caa gat tta gcc aaa aag gca gca cca gca Lys Ala Pro Lys Leu Gln Asp Leu Ala Lys Lys Ala Ala Pro Ala 1275 1280 1285	4063
gaa aga caa att gac tta caa agg taa aaatgcattt gcaaagggag Glu Arg Gln Ile Asp Leu Gln Arg 1290 1295	4110
aaaatgaagg ccaaacagaa gcaggctcca gcttctgcaa aaacttggat tcacaaatgt	4170
ccctgaacag aaaatgaage teactteaga acacacacte tetgeettga aaactaaaga	4230
gactattact teetttteae atgaceaeaa gteetetgat ggaaatgtae ageagaaact	4290
cttgagagag aggetaaaag caactetgtt etececette eeetagaett ttettaegaa	4350
aagtcaataa ttaagcaaat tgottaacac ttggttocag ttootgccta totggagttt	4410
aaatgcgtaa tacaccatta atttccacgc tgcagttttt attttaaaga aagtaacaag	4470
atgtetttae actgaeactg aaaatteate cattttagag eeaggaatte eeatgttaea	4530
caggaaaaaa tagaagtcta ctgaattaat tttttaaaag aaaagagatc agattaaata	4590
tttctttgtt tttccttttg gaaactttta tgtataattc tttctgcctg cctacttttc	4650
tgcaaaaatg agatgtacag atttcggttc cctgctatga aaagtgatgt ggtagcaatt	4710

ttataaatgt	tgctttctga	tttttatcag	agtgagaaaa	ttaaaattat	tgatttgcaa	4770
gtagtaaaca	gttcatattt	tgatttcccc	tcattttagt	ttaatataat	ttgcaataaa	4830
tgtacatatt	gttgtttgtt	tcataaagca	tatcacttta	aaatggtttt	tactcctgtg	4890
attatgttgg	aatatttgga	attttaaagg	agtaaagact	gtccagcatt	tggttttata	4950
atgtttgtca	ccagatttt	attaatgtaa	aaaaaatcaa	tttttaaaaa	atagttggac	5010
tttggcagct	tttaaggaaa	gttggaggtg	ttttaggatt	gctatcaatt	ttcagcattg	5070
tgctatttgg	aaataagtgt	tttgcttttg	tctgatggtc	tgggctcatt	tttatgttta	5130
ttttagaaaa	ctgttgcatc	aatatattat	gtttcttggc	attgttcagc	ataggtaatg	5190
tgtgcacttt	atgtgtacac	ataatcatat	ttaagttttt	tgcataaaat	aaatgettet	5250
agatgtcatg	gcagtctttt	taatctttt	atcatatgct	ttcttgtgaa	ttttttcatg	5310
ttaaagaget	aaagtcataa	catgattaca	gtcaactctc	cattatctat	ataaaatagt	5370
gactaagcct	caggttttta	attttgtgat	aacaaaataa	cgaaggcatg	taagacctga	5430
ttctggagga	acatgaaatt	tgtettttct	catgtccaga	gttetateet	gececeactg	5490
tecaetgtag	ggtcatccgc	aaagccctag	cagaatgtgc	tcactccatt	tccttacacg	5550
tttctagcat	gggtcagagg	aaacaacatt	tgtgttataa	cttcgtcttg	ataggetgta	5 61 0
gtgtacatgg	gatgtaaaac	aaacaagtgt	atcaaaggtg	gatgattctg	ttagagtgaa	5670
gtttgagagt	aaatgtcact	tacgtttctc	atagataatc	aagagttggc	tgtgtattga	5730
ctgaaagatg	ggtaattatt	ttaaatatge	atttacacac	atttaggtat	cagaagatgc	5790
ttagggaaca	atggatacca	atgatagaaa	atgatacctt	tacaggggca	gaaaaatccc	5850
cactetteet	tattgcctct	tcagaaccct	ttagaaagta	taaaatattg	cctccaacat	5910
gctgaaaaag	agtatetatg	cataagtatc	agagaagtcc	ctcaagcaat	cagtaggtgt	5970
gttctattta	gagagagttt	aaagttctct	tagcatcaga	caacttgatt	cctaaggttt	6030
ccagtgtgtc	accaacaaaa	agtgcattga	tagggacett	tgtetettee	tecetttgat	6090
taattgcccg	gcatcacagt	ttactagatt	accaagtgtt	acatcatatt	aaataaaatg	6150
tagcagaacc	atctgcatca	atatattect	gtttagattt	ttgcaggaga	gaagttaaaa	6210
ggatttgctc	cttgtatgat	gtaagtggcc	caccccaatt	ttgtaacatg	atgcaagtgt	6270
ctggcactaa	gggaagcaag	agtagggttg	tggaaagacc	aagetgatgg	ggagggactt	6330
gtttacggga	attttttag	ttttcctttt	caaaggaaaa	cattaaaatc	ccttaggaat	6390
ttggtattca	catctcagag	aactacaaca	caaaagtgca	gacttatatt	tgagaattaa	6450
tgttaaccct	ttgtgtctag	tttgaagett	cttgtatttg	tctaaaacaa	caagccagaa	6510
ttttgtatct	cctttgataa	aaagtgtgta	taatgtaaag	tagttttgca	tattcttgtg	6570
ctgcacatgg	gctgaatttt	taaattttt	ttaaaaactt	gaagcagaac	cttgtaattt	6630
gtgtaaatga	caagtgtaaa	atcetaccat	aaaatgctaa	aaatatgcac	tgtttcaaat	6690
aaaaccaaga	aatgcagcat	taaaaaaaaa	aaaaaa			6726

<213> Homo sapiens

<400> 4

Me 1	et :	Ile	Lys	Arg	Leu 5	Lys	Met	Val	Val	Lys 10	Thr	Phe	Met	Asp	Met 15	Asp
Gl	ln i	Asp	Ser	Glu 20	Asp	Glu	Lys	Gln	Gl n 25	Tyr	Leu	Pro	Leu	Ala 30	Leu	His
Le	eu A	Ala	Ser 35	Glu	Phe	Phe	Leu	Arg 40	Asn	Pro	Asn	Lys	Asp 45	Val	Arg	Leu
Lę		Val 50	Ala	Cys	Cys	Leu	Ala 55	Asp	Ile	Phe	Arg	11e 60	Туг	Ala	Pro	Glu
A1 65		Pro	Tyr	Thr	Ser	His 70	Asp	Lys	Leu	Lys	Asp 75	Ile	Phe	Leu	Phe	Ile 80
Th	ır i	Arg	Gln	Leu	Lys 85	Gly	Leu	Glu	Asp	Thr 90	Lys	Ser	Pro	Gln	Phe 95	Asn
Ar	g!	Гуг	Phe	Tyr 100	Leu	Leu	Gl u	Asn	Le u 105	Ala	Trp	Val	Lys	Ser 110	Tyr	Asn
11	le (Cys	Phe 115	Glu	Leu	Glu	Asp	Cys 120	Asn	Glu	Ile	Phe	Ile 125	Gln	Leu	Phe
Ar	_	Thr 130	Leu	Phe	Ser	Val	Ile 135	Asn	Asn	Ser	His	Asn 140	Lys	Lys	Val	Gln
Ме 14		His	Met	Leu	Asp	Le u 150	Met	Ser	Ser	Ile	Ile 155	Met	Gl u	Gly	Asp	Gly 160
Va	1 3	Thr	Gln	Glu	Leu 165	Leu	Asp	Ser	Ile	Leu 170	Ile	Asn	Leu	Ile	Pro 175	Ala
Hi	ıs 1	Lys	Asn	Leu 180	Asn	Lys	Gln	Ser	Phe 185	Asp	Leu	Ala	Lys	Val 190	Leu	Leu
Lу	rs l	Arg	Thr 195	Val	Gln	Thr	Ile	Gl u 200	Ala	Cys	Ile	Ala	As n 205	Phe	Phe	Asn
Gl		Val 210	Leu	Val	Leu	Gly	Arg 215	Ser	Ser	Val	Ser	Asp 220	Leu	Ser	Glu	His

Val 225	Phe	Asp	Leu	Ile	Gl n 230	Glu	Leu	Phe	Ala	11e 235	Asp	Pro	His	Leu	Leu 240
Leu	Ser	Val	Met	Pro 2 4 5	Gln	Leu	Glu	Phe	Lys 250	Leu	Lys	Ser	Asn	Asp 255	Gly
Gl u	Glu	Arg	Leu 260	Ala	Val	Val	Arg	Le u 265	Leu	Ala	Lys	Leu	Phe 270	Gly	Ser
Lys	Asp	Ser 275	Asp	Leu	Ala	Thr	Gl n 280	Asn	Arg	Pro	Leu	Trp 285	Gln	Cys	Phe
Leu	Gly 290	Arg	Phe	Asn	Asp	11 e 295	His	Val	Pro	Val	Ar g 300	Leu	Glu	Ser	Val
Lys 305	Phe	Ala	Ser	His	Cys 310	Leu	Met	Asn	His	Pro 315	Asp	Leu	Ala	Lys	Asp 320
Leu	Thr	G1u	Tyr	Leu 325	Lys	Val	Arg	Ser	His 330	Asp	Pro	Glu	G1u	Ala 335	Ile
Arg	His	Asp	Val 340	Ile	Val	Thr	Ile	Ile 345	Thr	Ala	Ala	Lys	Arg 350	Asp	Leu
Ala	Leu	Val 355	Asn	Asp	Gln	Leu	Leu 360	Gly	Phe	Val	Arg	Glu 365	Arg	Thr	Leu
Asp	Lys 370	Arg	Trp	Arg	Val	Ar g 375	Lys	Glu	Ala	Met	Met 380	Gly	Leu	Ala	Gln
Le u 385	Tyr	Lys	Lys	Tyr	Cys 390	Leu	His	Gly	Gl u	Ala 395		Lys	Glu	Ala	Ala 400
Glu	Lys	Val	Ser	Trp 405	Ile	Lys	Asp	Lys	Leu 410	Leu	His	Ile	Tyr	Tyr 415	Gln
Asn	Ser	Ile	Asp 420	Asp	Lys	Leu	Leu	Val 425	Glu	Lys	Ile	Phe	Ala 430	Gln	Tyr
Leu	Val	Pro 435	His	Asn	Leu	Glu	Thr 440	Gl u	Gl u	Arg	Met	Lys 445	Cys	Leu	Tyr
Туг	Leu 450	Tyr	Ala	Ser	Leu	Asp 455	Pro	Asn	Ala	Val	Lys 460	Ala	Leu	Asn	Glu
Met 465	Trp	Lys	Cys	Gln	Asn 470	Met	Leu	Arg	Ser	His 475	Val	Arg	Glu	Leu	Leu 480

Asp	Leu	His	Lys	Gln 485	Pro	Thr	Ser	Glu	Ala 490	Asn	Cys	Ser	Ala	Met 495	Phe
Gly	Lys	Leu	Met 500	Thr	Ile	Ala	Lys	As n 505	Leu	Pro	Asp	Pro	Gly 510	Lys	Ala
Gln	Asp	Phe 515	Val	Lys	Lys	Phe	Asn 520	Gln	Val	Leu	Gly	Asp 525	Asp	Glu	Lys
Leu	A rg 530	Ser	Gln	Leu	Glu	Leu 535	Leu	Ile	Ser	Pro	Thr 540	Cys	Ser	Cys	Lys
Gln 545	Ala	Asp	Ile	Cys	Val 550	Arg	Glu	Ile	Ala	Arg 555	Lys	Leu	Ala	As n	Pro 560
Lys	Gln	Pro	Thr	Asn 565	Pro	Phe	Leu	Glu	Met 570	Val	Lys	Phe	Leu	Leu 575	Glu
Arg	Ile	Ala	Pro 580	Val	His	Ile	Asp	Ser 585	Glu	Ala	Ile	Ser	Ala 590	Leu	Val
Lys	Leu	Me t 595	As n	Lys	Ser	Ile	Glu 600	Gly	Thr	Ala	Asp	Asp 605	Glu	Glu	Glu
Gly	Val 610	Ser	Pro	Asp	Thr	Ala 615	Ile	Arg	Ser	Gly	Leu 620	Glu	Leu	Leu	Lys
Val 625	Leu	Ser	Phe	Thr	His 630	Pro	Thr	Ser	Phe	His 635	Ser	Ala	Gl u	Thr	Tyr 640
Glu	Ser	Leu		Gln 645	Cys	Leu	Arg		Glu 650		Asp	Lys		Ala 655	
Ala	Ala	Ile	Gln 660	Ile	Phe	Arg	Asn	Thr 665	Gly	His	Lys	Ile	Glu 670	Thr	Asp
Leu	Pro	Gln 675	Ile	Arg	Ser	Thr	Leu 680	Ile	Pro	Ile	Leu	His 685	Gln	Lys	Ala
Lys	Arg 690	Gly	Thr	Pro	His	Gln 695	Ala	Lys	Gln	Ala	Val 700	His	Cys	Ile	His
Ala 705	Ile	Phe	Thr	Asn	Lys 710	Gl u	Val	Gl n	Leu	Ala 715	Gln	Ile	Phe	Glu	Pro 720
Leu	Ser	Arg	Ser	Leu 725	Asn	Ala	Asp	Val	Pro	Glu	Gln	Leu	Ile	Thr	Pro

Leu	Val	Ser	Leu 740	Gly	His	Ile	Ser	Met 745	Leu	Ala	Pro	Asp	G1n 750	Ph e	Ala
Ser	Pro	Met 755	Lys	Ser	Val	Val	Ala 760	Asn	Phe	Ile	Val	Lys 765	Asp	Leu	Leu
Met	As n 770	Asp	Arg	Ser	Thr	Gly 775	Glu	Lys	Asn	Gly	L ys 780	Leu	Trp	Ser	Pro
Asp 785	Glu	Glu	Val	Ser	Pro 790	Glu	Val	Leu	Ala	Lys 795	Val	Gln	Ala	Ile	Lys 800
Leu	Le u	Val	Arg	Trp 805	Le u	Leu	Gly	Met	Lys 810	Asn	As n	Gln	Ser	Lys 815	Ser
Ala	As n	Ser	Thr 820	Leu	Arg	Leu	Leu	Ser 825	Ala	Met	Leu	Val	Ser 830	Glu	Gly
Asp	Leu	Thr 835	Glu	Gl n	Lys	Arg	Ile 840	Ser	Lys	Ser	Asp	Met 845	Ser	Arg	Leu
Arg	Le u 850	Ala	Ala	G1y	Ser	Ala 855	Ile	Met	Lys	Leu	Ala 860	Gln	Glu	Pro	Cys
ту г 865	His	Glu	Ile	Ile	Thr 870	Pro	Glu	Gl n	Phe	Gln 875	Leu	Cys	Ala	Lęu	Val 880
Ile	Asn	Asp	Glu	Cys 885	туг	Gln	Val	Arg	Gln 890	Ile	Phe	Ala	Gln	Lys 895	Leu
His	Lys	Ala	Leu 900	Val	Lys	Leu	Leu	Leu 905	Pro	Leu	Gl u	Tyr	Met 910	Ala	Ile
Phe	Ala	Leu 915	Cys	Ala	Lys	Asp	Pro 920	Val	Lys	Glu	Arg	Arg 925	Ala	His	Ala
Arg	Gln 930	Cys	Leu	Leu	Lys	Asn 935	Ile	Ser	Ile	Arg	Arg 940	Glu	Tyr	Ile	Lys
Gln 945	As n	Pro	Met	Ala	Thr 950	Glu	Lys	Leu	Leu	Ser 955	Leu	Leu	Pro	Glu	Tyr 960
Val	Val	Pro	Туг	Met 965	Ile	His	Leu	Lęu	Ala 970	His	Asp	Pro	Asp	Phe 975	Thr
Arg	Ser	G1n	Asp 980	Val	Asp	G1n	Leu	Arg 985	Asp	Ile	Lys	G1u	Cys 990	Leu	Trp
Phe	Met	Leu	Glu	Val	Leu	Met	Thr	Lys	s Ası	ı Glu	ı Ası	ı Ası	ı Se	er Hi	is Ala

	995					10	000				10	005		
Phe	Met 1010		Lys	Met		Glu 1015	Asn	Ile	Lys	Leu	Thr 1020		Asp	Ala
Gln	Ser 1025	Pro	Asp	Gl u	Ser	Lys 1030	Thr	Asn	Glu	Lys	Leu 1035	Туг	Thr	Val
Cys	Asp 1040		Ala	Leu	Cys	Val 1045		Asn	Ser	Lys	Ser 1050	Ala	Leu	Cys
Asn	Ala 1055	Asp	Ser	Pro	Lys	Asp 1060	Pro	Val	Leu	Pro	Met 1065	Lys	Phe	Phe
Thr	Gln 1070		Glu	ГÃЗ		Phe 1075		Asn	Asp	Lys	Ser 1080	туг	Ile	Ser
Glu	Glu 1085	Thr	Arg	Val	Leu	Leu 1090	Leu	Thr	Gly	Lys	Pro 1095	Lys	Pro	Ala
Gly	Val 1100		Gly	Ala	Val	As n 1105	Lys	Pro	Leu	Ser	Ala 1110	Thr	Gly	Arg
Lys	Pro 1115		Val	Arg	Ser	Thr 1120		Thr	Glu	Thr	Gly 1125	Ser	Asn	Ile
Asn	Val 1130	Asn	Ser	Glu	Leu	Asn 1135	Pro	Ser	Thr	Gly	Asn 1140	Arg	Ser	Arg
Glu	Gln 1145		Ser	Gl u	Ala	Ala 1150	Glu	Thr	Gly	Val	Ser 1155	Gl u	Asn	Glu
G1u	Asn 1160	Pro	Val	Arg	Ile	Ile 1165		Val	Thr	Pro	Val 1170	Lys	Asn	Ile
Asp	Pro 1175		Lys	Asn	Lys	Glu 1180	Ile	Asn	Ser	Asp	Gln 1185	Ala	Thr	Gln
Gly	Asn 1190		Ser	Ser	Asp	Arg 1195	Gly	Lys	Lys	Arg	Thr 1200	Val	Thr	Ala
Ala	Gly 1205	Ala	Glu	As n	Ile	Gln 1210	Gln	Lys	Thr	Asp	Glu 1215	Lys	Val	Asp
Glu	Ser 1220	_	Pro	Pro	Ala	Pro 1225	Ser	Lys	Pro	Arg	Arg 1230	Gly	Arg	Arg
Pro	Lys	Ser	Glu	Ser	Gln	Gly	Asn	Ala	Thr	Lys	Asn	Asp	Asp	Leu

	Asn	Lys 125		ro:	Ile	Asn	Lys	Gl ₃ 125		Arg	Lys	Arg	Ala		.a. 260	Val	Gly	Gln
	Glu	Ser 126		ro (31y	Gly	Leu	Glu 127		la	Gly	Asn	Ala	_	rs 275	Ala	Pro	Lys
	Leu	Gln 128		sp 1	Leu	Ala	Lys	Lys 128		lla	Ala	Pro	Ala		.u 290	Arg	Gln	Ile
	Asp	Leu 129		ln i	Arg													
<210> 5 <211> 445 <212> ADI <213> <i>Mus</i>	N	sculus																
<220> <221> CD3 <222> (143 <223>	_	146)																
<400> 5																		
	acgo	jacgg	ag c	cgc	tttgl	tg to	gcago	ccga	. cga	aggg _e	gegg	cggc	ggcg	gc (gcaa	ccac	et	60
	gaça	ıgagg	cc c	ggc	gctc	gc to	gcacc	gtcc	gc	cgc	atga	ggag	gaga	.gg d	ccgg	tagaç	gg	120
	acto	gtgag	aga	aaa	gttai	tt co	secag									ct go ro A		174
		gcc Ala																222
		gga Gly														atc Ile		270
		egt Arg																318
		gaa Glu																366
		gaa Glu 75																414
		tgt Cys																462
		act Thr				Lys			Asp		Phe					Arg		510

											cag Gln					558
											tca Ser					606
		_	_	_	_		_				cag Gln 165			-		654
		_	_				_			-	aaa Lys	_		_		702
											ggt Gly					750
	_		_	_							atc Ile		_		_	798
											gtc Val					846
											ttt Phe 245					894
_		_		aga Arg			_	_	_	_	tct Ser	_		_		942
Leu 250 gat	Val ctg	Leu	Gly cag	Arg	Ser 255 ctt	Ser ttt	Val gct	Ser	Asp gat	Leu 260 cct		Ğlu tta	His ctg	Val tta	Phe 265 tct	942 990
Leu 250 gat Asp	Val ctg Leu atg	att Ile	Gly cag Gln cag	gaa Glu 270 ctt	Ser 255 ctt Leu gaa	Ser ttt Phe ttc	Val get Ala aaa	ser atc Ile	gat Asp 275	Leu 260 cct Pro	Ser cag	Glu tta Leu gat	His ctg Leu ggt	Val tta Leu 280 gaa	Phe 265 tct Ser	
Leu 250 gat Asp gtc Val	val ctg Leu atg Met	att Ile cca Pro	cag Gln cag Gln 285 gtg	gaa Glu 270 ctt Leu	Ser 255 ctt Leu gaa Glu cga	ttt Phe ttc Phe	Val gct Ala aaa Lys	atc Ile ctg Leu 290	Asp gat Asp 275 aag Lys	Leu 260 cct Pro agc Ser	cag Gln aac	Glu tta Leu gat Asp	ctg Leu ggt Gly 295	Val tta Leu 280 gaa Glu	Phe 265 tct Ser gaa Glu gat	990
Leu 250 gat Asp gtc Val cgc Arg	val ctg Leu atg Met cta Leu gat	att Ile cca Pro gct Ala 300 tta	cag Gln cag Gln 285 gtg Val	gaa Glu 270 ctt Leu gtt Val	Ser 255 ctt Leu gaa Glu cga Arg	ttt Phe ttc Phe ctc Leu	yal get Ala aaa Lys ctc Leu 305	atc Ile ctg Leu 290 gca Ala	Asp gat Asp 275 aag Lys aaa Lys	Leu 260 cct Pro agc Ser ttg Leu	cag Gln aac Asn	tta Leu gat Asp ggc Gly 310	ttt	Val tta Leu 280 gaa Glu aaa Lys	Phe 265 tct Ser gaa Glu gat Asp	990 1038
Leu 250 gat Asp gtc Val cgc Arg tca Ser	ctg Leu atg Met cta Leu gat Asp 315	att Ile cca Pro get Ala 300 tta Leu aat	cag Gln cag Gln 285 gtg Val gca Ala	gaa Glu 270 ctt Leu gtt Val aca Thr	Ser 255 ctt Leu gaa Glu cga Arg cag Gln cat	ttt Phe ttc Phe ctc Leu aat Asn 320 gtt	Val get Ala aaa Lys etc Leu 305 egg Arg	atc Ile ctg Leu 290 gca Ala cct Pro	gat Asp 275 aag Lys aaa Lys ctc Leu	Leu 260 cct Pro agc Ser ttg Leu tgg Trp	cag Gln aac Asn ttc Phe cag Gln	Glu tta Leu gat Asp ggc Gly 310 tgc Cys	ctg Leu ggt Gly 295 tct Ser ttt Phe	Val tta Leu 280 gaa Glu aaa Lys	Phe 265 tct Ser gaa Glu gat Asp GGly ttt	990 1038 1086
Leu 250 gat Asp gtc Val cgc Arg tca Ser cga Arg 330 gcc	ctg Leu atg Met cta Leu gat Asp 315 ttt Phe	att Ile cca Pro gct Ala 300 tta Leu aat Asn	cag Gln cag Gln 285 gtg Val gca Ala	gaa Glu 270 ctt Leu gtt Val aca Thr	Ser 255 ctt Leu gaa Glu cga Arg cag Gln cat His 335 atg	ttt Phe ttc Phe ctc Leu aat Asn 320 gtt Val	yal get Ala aaa Lys ctc Leu 305 cgg Arg cct Pro	atc Ile ctg Leu 290 gca Ala cct Pro	gat Asp 275 aag Lys ctc Leu agg Arg	Leu 260 cct Pro agc Ser ttg Leu tgg Trp tta Leu 340 tta	cag Gln aac Asn ttc Phe cag Gln 325	Glu tta Leu gat Asp ggc Gly 310 tgc Cys agt Ser	ctg Leu ggt Gly 295 tct Ser ttt Phe	tta Leu 280 gaa Glu aaa Lys ctt Leu	Phe 265 tct Ser gaa Glu gat Asp ggg Gly ttt Phe 345 aca	990 1038 1086 1134
gat Asp gtc Val cgc Arg tca Ser cga Arg 330 gcc Ala gaa	ctg Leu atg Met cta Leu gat Asp 315 ttt Phe agc Ser tat	att Ile cca Pro gct Ala 300 tta Leu aat Asn cac His	cag Gln cag Gln 285 gtg Val gca Ala gac Asp	gaa Glu 270 ctt Leu gtt Val aca Thr att Ile ttg Leu 350	Ser 255 ctt Leu gaa Glu cga Arg cag Gln cat His 335 atg Met agg	ttt Phe ttc Phe ctc Leu aat Asn 320 gtt Val aat	Val get Ala aaa Lys ctc Leu 305 cgg Arg cct Pro cac His	atc Ile ctg Leu 290 gca Ala cct Pro gtg Val cca Pro	gat Asp 275 aag Lys ctc Leu agg Arg gac Asp 355 cca	Leu 260 cct Pro agc Ser ttg Leu tgg Trp tta Leu 340 tta Leu gaa	cag Gln aac Asn ttc Phe cag Gln 325 gaa Glu	Glu tta Leu gat Asp ggc Gly 310 tgc Cys agt Ser aag	tct Ser ttt Phe gtg Val gat Asp att	Val tta Leu 280 gaa Glu aaa Lys ctt Leu aag Lys ctg Leu 360 cgt	Phe 265 tct Ser gaa Glu gat Asp ggg Gly ttt Phe 345 aca Thr	990 1038 1086 1134 1182

Asp	Val	Ile 380	Val	Thr	Ile	Ile	Thr 385	Ala	Ala	Lys	Arg	Asp 390	Leu	Ala	Leu	
_	aat Asn 395	-	_	_				_		_			_	_		1374
	tgg Trp	_	_	_		_	_	_	_		_	_	_			1422
_	aaa Lys		_				-	_		_	_	_				1470
	agc Ser			_	_	_	_	_							_	1518
	gat Asp															1566
	cac His 475		_	-		-		_	_		_					1614
	gct Ala	_	_	-			-	-		-			-	_		1662
	tgt Cys	_		_		_	-			_	_		_	_		1710
	aag Lys	_				_			_		_	_				1758
_	atg Met								_						_	1806
	gta Val 555	_				_	-			_	_			_		1854
	cag Gln	_	-				-			-		-	_	-	-	1902
	gtt Val															1950
	acc Thr															1998
	cct Pro															2046
	aat Asn															2094

	635					640					645					
							tca Ser									2142
							ttc Phe									2190
_		_	_		_	_	gag Glu	_	_	_	_	_	_	_	_	2238
							ggc G1y 705									2286
_					_		ccc Pro				_		_	_		2334
							cag Gln									2382
							ctg Le u									2430
	_	_			_	_	cca Pro								_	2478
	_					_	tta Leu 785	_		_	_		_		_	2526
atg Met	aaa Lys 795	tct Ser	gta Val	gtg Val	gca Ala	aac Asn 800	ttt Phe	att Ile	gtt Val	aaa Lys	gac Asp 805	ctt Leu	cta Leu	atg Met	aac Asn	2574
_						_	aat Asn							_		2622
-	_			_	-		gca Ala	_	-	_	_				_	2670
							aaa Lys									2718
							gcc Ala 865	_	_	-	_			_	_	2766
						_	aaa Lys		_			_	_	_		2814
-	_		_	-		_	aag Lys		_	_	-		_			2862

-	_	Gln Phe Gln L	tc tgt gca ctg gt eu Cys Ala Leu Va 15	
			tt gcc cag aag ct he Ala Gln Lys Le 93	eu His Lys
	Lys Leu Leu		ag tat atg gcc at lu Tyr Met Ala II 950	-
			gg aga gca cac go rg Arg Ala His Al 965	
			gg gag tac atc as rg Glu Tyr Ile Ly 980	
		Leu Leu Ser L	tg ctg cct gaa ta eu Leu Pro Glu Ty 95	
_		-	gat cct gat ttc Asp Pro Asp Phe	
-			ata aaa gag tgc Ile Lys Glu Cys	
_	-		aat gaa aac aac Asn Glu Asn Asn	_
	_	g gca gag aat t Ala Glu Asn 1055	atc aag cta acc Ile Lys Leu Thr	
-		-	aat gaa aaa ctt Asn Glu Lys Leu	-
			aat agt aaa agt Asn Ser Lys Ser	
			gtc ctc cca atg Val Leu Pro Met	
			aat gac aaa agc Asn Asp Lys Ser	
			aca gga aag cca Thr Gly Lys Pro	
act gga gta Thr Gly Val	tta ggt ac Leu Gly Th	a gtg aac aag r Val Asn Lys 1145	cct tta tca gca Pro Leu Ser Ala	acg gga 3600 Thr Gly 1150

agg aag cct tat Arg Lys Pro Tyr 1155					3645
att aac gcc aat Ile Asn Ala Asn 1170					3690
agg gaa cag agt Arg Glu Gln Ser 1185					3735
gag gag aat cet Glu Glu Asn Pro 1200					3780
att gat act gta Ile Asp Thr Val 1215					3825
caa ggc aac atc Gln Gly Asn Ile 1230			-	-	3870
gca gct ggt gca Ala Ala Gly Ala 1245				_	3915
gag tca gga ccg Glu Ser Gly Pro 1260					3960
ccc aaa tct gaa Pro Lys Ser Glu 1275			cc aaa aac gat hr Lys Asn Asp	2	4005
aat aaa oot gtt Asn Lys Pro Val 1290					4050
gag agt ctg gag Glu Ser Leu Glu 1305					4095
gga gcc aaa aag Gly Ala Lys Lys 1320			ga caa att gat rg Gln Ile Asp		4140
agg taa tgtgacccc Arg	ca ctcatccte	a ccttgtcag	c agtgggaatg go	ctggcaata	4196
gcagatacte agtgta	aggat ggactet	tggc tetgac	ggag egggetteed	cacattaccc	4256
attgtatggg aaatag	gaaag catctto	catt atgtgt	actg ctatatataq	g taaatgtaaa	4316
aaatgagtgt gatggt	tgcac acgtgta	aate ceagee	cttg gaggcagaaa	a gggggttatg	4376
agtttaaaac cacgct	tggge tgtgtag	gtaa gacttt	gtct ttaaaaagtq	, ,,,, ,,,	4436
gcaaggaggg tagaga	ā .				4452

<210>6

5

<211> 1332 <212> PRT

<213> Mus musculus

<400>6

Met 1	Asp	Phe	Thr	Gln 5	Pro	Lys	Pro	Ala	Thr 10	Ala	Leu	Cys	Gly	Val 15	Val
Ser	Ala	Asp	Gly 20	Lys	Ile	Ala	Tyr	Pro 25	Pro	Gly	Val	Lys	Glu 30	Ile	Thr
Asp	Lys	Ile 35	Thr	Thr	Asp	Glu	Met 40	Ile	Lys	Arg	Leu	Lys 45	Met	Val	Val
Lys	Thr 50	Ph⊕	Met	Asp	Met	Asp 55	Gln	Asp	Ser	Glu	Asp 60	Glu	Lys	Gln	Gln
Tyr 65	Leu	Pro	Leu	Ala	Leu 70	His	Leu	Ala	Ser	Gl u 75	Phe	Phe	Leu	Arg	Asn 80
Pro	Asn	Lys	Asp	Val 85	Arg	Leu	Leu	Val	Ala 90	Cys	Cys	Leu	Ala	Asp 95	Ile
Phe	Arg	Ile	Tyr 100	Ala	Pro	Glu	Ala	Pro 105	Tyr	Thr	Ser	His	Asp 110	Lys	Leu
Lys	Asp	Ile 115	Phe	Leu	Phe	Ile	Thr 120	Arg	Gln	Leu	Lys	Gly 125	Leu	Glu	Asp
Thr	Lys 130	Ser	Pro	Gln	Phe	Asn 135	Arg	Tyr	Phe	Tyr	Leu 140	Leu	Glu	Asn	Leu
Ala 145	Trp	Val	Lys	Ser	Tyr 150	Asn	Ile	Cys	Phe	Glu 155	Leu	Glu	Asp	Cys	A sn 160
Glu	Ile	Phe	Ile	Gln 165	Leu	Phe	Arg	Thr	Leu 170	Phe	Ser	Val	Ile	Asn 175	Asn
Ser	His	Asn	Thr 180	Lys	Val	Gln	Met	His 185	Met	Leu	Asp	Leu	Met 190	Ser	Ser
Ile	Ile	Met 195	Glu	Gly	Asp	Gly	Val 200	Thr	Gln	Glu	Leu	Leu 205	Asp	Ser	Ile
Leu	Ile 210	Asn	Leu	Ile	Pro	Ala 215	His	Lys	Asn	Leu	Asn 220	Lys	Gln	Ser	Phe
Asp 225	Leu	Ala	Lys	Val	Leu 230	Leu	Lys	Arg	Thr	Val 235	Gln	Thr	Ile	Glu	Ala 240

Cys Ile Ala Asn Phe Phe Asn Gln Val Leu Val Leu Gly Arg Ser Ser Val Ser Asp Leu Ser Glu His Val Phe Asp Leu Ile Gln Glu Leu Phe Ala Ile Asp Pro Gln Leu Leu Ser Val Met Pro Gln Leu Glu Phe 280 Lys Leu Lys Ser Asn Asp Gly Glu Glu Arg Leu Ala Val Val Arg Leu 295 Leu Ala Lys Leu Phe Gly Ser Lys Asp Ser Asp Leu Ala Thr Gln Asn Arg Pro Leu Trp Gln Cys Phe Leu Gly Arg Phe Asn Asp Ile His Val 330 Pro Val Arg Leu Glu Ser Val Lys Phe Ala Ser His Cys Leu Met Asn 340 345 350 His Pro Asp Leu Ala Lys Asp Leu Thr Glu Tyr Leu Lys Val Arg Ser 355 360 His Asp Pro Glu Glu Ala Ile Arg His Asp Val Ile Val Thr Ile Ile Thr Ala Ala Lys Arg Asp Leu Ala Leu Val Asn Asp Gln Leu Leu Gly 390 395 Phe Val Arg Glu Arg Thr Leu Asp Lys Arg Trp Arg Val Arg Lys Glu Ala Met Met Gly Leu Ala Gln Leu Tyr Lys Lys Tyr Cys Leu His Gly 420 425 Glu Ala Gly Lys Glu Ala Ala Glu Lys Val Ser Trp Ile Lys Asp Lys 435 Leu Leu His Ile Tyr Tyr Gln Asn Ser Ile Asp Asp Lys Leu Leu Val 450 Glu Lys Ile Phe Ala Gln Tyr Leu Val Pro His Asn Leu Glu Thr Glu 465 Glu Arg Met Lys Cys Leu Tyr Tyr Leu Tyr Ala Ser Leu Asp Pro Asn 485 490 Ala Val Lys Ala Leu Asn Glu Met Trp Lys Cys Gln Asn Met Leu Arg

			500					505					510		
Ser	His	Val 515	Arg	G1u	Leu	Leu	Asp 520	Leu	His	Lys	Gln	Pro 525	Thr	Ser	Gl u
Ala	As n 530	Cys	Ser	Ala	Met	Phe 535	Gly	Lys	Leu	Met	Thr 540	Ile	Ala	Lys	Asn
Le u 545	Pro	Asp	Pro	Gly	Lys 550	Ala	Gln	Asp	Phe	Val 555	Lys	Lys	Phe	Asn	Gln 560
Val	Leu	Gly	Asp	Asp 565	Glu	Lys	Leu	Arg	Ser 570	Gln	Lęu	Glu	Leu	Leu 575	Ile
Ser	Pro	Thr	Cys 580	Ser	Cys	Lys	Gln	Ala 585	Asp	Val	Cys	Val	Arg 590	Gl u	Ile
Ala	Arg	Lys 595	Leu	Ala	Asn	Pro	Lys 600	G1n	Pro	Thr	Asn	Pro 605	Phe	Leu	Glu
Met	Val 610	Lys	Phe	Leu	Lęu	Glu 615	Arg	Ile	Ala	Pro	Val 620	His	Ile	Asp	Ser
Glu 625	Ala	Ile	Ser	Ala	Leu 630	Val	Lys	Leu	Met	Asn 635	Lys	Ser	Ile	Glu	Gly 640
Thr	Ala	Asp	Asp	Glu 6 4 5	Glu	Glu	Gly	Val	Ser 650	Pro	Asp	Ser	Ala	11e 655	Arg
Ser	Gly	Leu	Glu 660	Leu	Leu	Lys	Val	Leu 665	Ser	Phe	Thr	His	Pro 670	Thr	Ser
Phe	His	Ser 675	Ala	Glu	Thr	Tyr	G1u 680	Ser	Leu	Leu	Gln	Сув 685	Leu	Arg	Met
Gl u	Asp 690	Asp	Lys	Val	Ala	Gl u 695	Ala	Ala	Ile	Gln	Ile 700	Phe	Arg	Asn	Thr
Gly 705	His	Lys	Ile	Glu	Thr 710	Asp	Leu	Pro	Gln	Ile 715	Arg	Ser	Thr	Leu	Ile 720
Pro	Ile	Leu	His	Gln 725	Lys	Ala	Lys	Arg	Gl y 730	Thr	Pro	His	Gln	Ala 735	Lys
Gl n	Ala	Val	His 740	Сув	Ile	His	Ala	Ile 745	Phe	Ser	Asn	Lys	Glu 750	Val	Gl n
Leu	Ala	Gln 755	Ile	Phe	Glu	Pro	Leu 760	Ser	Arg	Ser	Leu	Asn 765	Ala	Asp	Val

Pro Glu Gln Leu Ile Thr Pro Leu Val Ser Leu Gly His Ile Ser Met

Leu Ala Pro Asp Gln Phe Ala Ser Pro Met Lys Ser Val Val Ala Asn Phe Ile Val Lys Asp Leu Leu Met Asn Asp Arg Ser Thr Gly Glu Lys Asn Gly Lys Leu Trp Ser Pro Asp Glu Glu Val Ser Pro Glu Val Leu Ala Lys Val Gln Ala Ile Lys Leu Leu Val Arg Trp Leu Leu Gly Met Lys Asn Asn Gln Ser Lys Ser Ala Asn Ser Thr Leu Arg Leu Leu Ser Ala Met Leu Val Ser Glu Gly Asp Leu Thr Glu Gln Lys Arg Ile Ser Lys Ser Asp Met Ser Arg Leu Arg Leu Ala Ala Gly Ser Ala Ile Met Lys Leu Ala Gln Glu Pro Cys Tyr His Glu Ile Ile Thr Pro Glu Gln Phe Gln Leu Cys Ala Leu Val Ile Asn Asp Glu Cys Tyr Gln Val Arg Gln Ile Phe Ala Gln Lys Leu His Lys Ala Leu Val Lys Leu Leu Leu Pro Leu Glu Tyr Met Ala Ile Phe Ala Leu Cys Ala Lys Asp Pro Val Lys Glu Arg Arg Ala His Ala Arg Gln Cys Leu Leu Lys Asn Ile Ser Ile Arg Arg Glu Tyr Ile Lys Gln Asn Pro Met Ala Thr Glu Lys Leu Leu Ser Leu Leu Pro Glu Tyr Val Val Pro Tyr Met Ile His Leu Leu Ala His Asp Pro Asp Phe Thr Arg Ser Gln Asp Val Asp Gln Leu

Arg	Asp 1025	Ile	Lys	Gl u	Cys	Leu 1030	Trp	Phe	<u>Me</u> t.	Leu	Glu 1035	Val	Leu	Met
Thr	Lys 1040	As n	Gl u	Asn	Asn	Ser 1045	His	Ala	Phe	Met	Lys 1050	Lys	Met	Ala
Glu	Asn 1055	Ile	Lys	Leu	Thr	Arg 1060	Asp	Ala	Gln	Ser	Pro 1065	Asp	Glu	Ser
Lys	Thr 1070	Asn	Glu	Lys	Leu	Tyr 1075		Val	Cys	Asp	Val 1080	Ala	Leu	Cys
Val	Ile 1085	Asn	Ser	Lys	Ser	Ala 1090	Leu	Cys	Asn	Ala	Asp 1095		Pro	Lys
Asp	Pro 1100		Leu	Pro	Met	Lys 1105	Phe	Phe	Thr	Gln	Pro 1110	Glu	Lys	Asp
Phe	Cys 1115		Asp	Lys	Ser	Tyr 1120		Ser	Glu	Glu	Thr 1125	_	Val	Leu
Leu	Leu 1130	Thr	Gly	Lys	Pro	Lys 1135	Pro	Thr	Gly	Val	Leu 1140	Gly	Thr	Val
Asn	Lys 1145	Pro	Leu	Ser	Ala	Thr 1150	Gly	Arg	Lys	Pro	Tyr 1155	Val	Arg	Ser
Ala	Gly 1160	Thr	Glu	Thr	Gly	Ser 1165	Asn	Ile	Asn	Ala	Asn 1170	Ser	Glu	Leu
Ser	Pro 1175	Ser	Ala	Gly	Ser	Arg 1180	Ser	Arg	Glu	Gln	Ser 1185	Ser	Glu	Ala
Ser	Glu 1190	Thr	Gly	Val	Ser	Glu 1195	Asn	Glu	Gl u	Asn	Pro 1200	Val	Arg	Ile
Ile	Ser 1205	Val	Thr	Pro	Val	Lys 1210	Asn	Ile	Asp	Thr	Val 1215	Lys	Asn	Lys
Glu	Ile 1220	Asn	Ser	Asp	Gln	Ser 1225	Thr	Gln	Gly	Asn	Ile 1230	Ser	Ser	Asp
Arg	Gly 1235	_	Lys	Arg	Ile	Val 1240	Thr	Al a	Ala	Gly	Ala 1245		Asn	Ile
Gln	Lys 1250	Pro	Asp	Gl u	Lys	Val 1255	Asp	Glu	Ser	Gly	Pro 1260	Pro	Ala	Pro

Ser Lys Pro Arg Arg Gly Arg Pro Lys Ser Glu Ser Gln Gly 1265 1270 1275

Asn Ala Thr Lys Asn Asp Asp Leu Asn Lys Pro Val Ser Lys Gly 1280 1285

Arg Lys Arg Ala Ala Gly Ser Gln Glu Ser Leu Glu Ala Gly Asn 1295 1300 1305

Ala Lys Ala Pro Lys Leu Gln Asp Gly Ala Lys Lys Ala Val Pro 1310 1315 1320

Ala Glu Arg Gln Ile Asp Leu Gln Arg 1325 1330

<210> 7 <211> 6553 <212> ADN

<213> Bos taurus

5

<220> <221> CDS 10 <222> (1)..(3912) <223>

<400>7

						ccc Pro										48
	-	-	_		-	atc Ile	-			-		_	_			96
	_	_			_	gac Asp	_	_			_	_	_	_	_	144
_	_			_	_	atg Met 55	_	_	_		_	_	_		_	192
						ttg Leu										240
				_		cgt Arg			_	_	_	_	_	_	-	288
		_			_	cca Pro	_	_						_		336
	-	-			-	ttt Phe			_	-				_		384
_		_	_	_	_	ttt Phe		_								432

	130					135					140					
	_		_		_				_		gaa Glu	_	_	_	_	480
	_				_						ttc Phe					528
	_			_	_	_		_		_	tta Leu	_	_	_	_	576
			_	_		_		_			gaa Glu		_	_		624
							_		-		tta Leu 220			_	_	672
											gtc Val					720
_	_		_						_	_	gtg Val	_		_		768
	-	_	_	_		_		_		_	ctg Leu		_	_		816
	-		-							-	atg Met	-	-		-	864
		_	_	-		-		_	-	_	tta Leu 300	_	_	_	-	912
		_		_					-		gat Asp		-		_	960
	_		_		_	_				_	ttt Phe		_			1008
_			_		_	_				_	agt Ser		_		_	1056
			_		_	_	_				ttc Phe		_	_	_	1104
											gta Val 380					1152
_	_		_	_	_			_			tgt Cys				_	1200

_		_	-	-	gca Ala			-	-			_	-			1248
_					caa Gln		-		_	_			_	-		1296
			-		tat Tyr		-				_	_		-		1344
					tat Tyr											1392
_		_			gaa Glu 470	_		_	_	_		_		_	-	1440
					ttg Leu											1488
	-		_	_	ttt Phe			_	_			-	_		_	1536
	_				gca Ala		_			_					-	1584
		-	_		aaa Lys	_	-		_	_		_			_	1632
		_	_	_	aaa Lys 550	_	_	_	_	_		_	_		_	1680
					cct Pro											1728
					gaa Glu											1776
		Ser			gta Val							Ile				1824
		595					600					605				
		gaç			g a g Glu		gta					gct				1872
Ala gga	Asp 610 ctt	gac Asp gaa	Glu ctt	Glu ctt		Gly 615 gtt	gta Val ctg	Ser	Pro ttc	Asp	Thr 620 cat	gct Ala	Ile	Arg tcg	Ser ttc	1872 1920

_	gac Asp	_	_	_	-	_	_		_			_				2016
	aaa Lys		_		_			_			_					2064
	tta Leu 690					_	-						-			2112
_	gtt Val		_			_						_	_	_		2160
_	cag Gln						_		_	_		_	_	_		2208
-	caa Gln				_		_		_					_		2256
_	cca Pro	-	_		-			_			-	-	-			2304
	gtt Val 770															2352
	aaa Lys					_	_		_			_	_		_	2400
_	gta Val						_	-	-		_	_		_		2448
	aac Asn															2496
-	ttg Leu	-	-			-	-			_	_			-		2544
	gat Asp 850															2592
	get Ala															2640
	ctc Leu															2688
	ttt Phe															2736
ttg	gag	tat	atg	gcc	atc	ttt	gcc	ttg	tgt	gcc	aaa	gat	cct	gtg	aag	2784

Leu	Glu	Tyr 915	Met	Ala	Ile		Ala L e 920	eu Cy	ys Ai	la Ly	y s As r 92!	•	Va.	l Lys	
	_	_	_		_	_	_	-		eu Ly	aa aad ys Asi 40		_		2832
_						_			t A		ct gaq hr Gl i	_			2880
								ro T			tt cad Le His			Ala	2928
		Pro					Ser G				at caq sp Gl:		Arg		2976
			_			Phe 1	_	_		_	Leu Me	_		aaa aa Lys As	
_		Asn	_		_		Met		_	_	gca Ala 1020				3069
		Thr					Ser				tee Ser 1035				3114
		Leu					Asp				tgc Cys 1050				3159
	aaa Lys 1055	Ser					Ala				aag Lys 1065				3204
_	cca Pro 1070	Val					Gln				gac Asp 1080				3249
-	aag Lys 1085	Ser				gaa Glu 1090	Glu				ctt Leu 1095				3294
		Pro					Val				gta Val 1110				3339
		Ala					Pro				agc Ser 1125				3384
		Gly					Val				ctg Leu 1140				3429
	gga Gly 1145	Asn					Gln				gca Ala 1155				3474
											att Ile				3519

1160	1165	1170
aca cca gta aag aat att Thr Pro Val Lys Asn Ile 1175		
tct gat cag tct gcc cag Ser Asp Gln Ser Ala Gln 1190	ggc aac atc agc agt Gly Asn Ile Ser Ser 1195	
aaa aga aca gta aca gca Lys Arg Thr Val Thr Ala 1205		
aca gat gag aaa gca gat Thr Asp Glu Lys Ala Asp 1220	2 22	_
ccc agg aga gga cgt cga Pro Arg Arg Gly Arg Arg 1235		
acc aaa aat gat gat ata Thr Lys Asn Asp Asp Ile 1250	aat aaa cct ctt agt Asn Lys Pro Leu Ser 1255	
aga gct gca gtc agt cag Arg Ala Ala Val Ser Gln 1265		
aat gee aaa gea eee aaa Asn Ala Lys Ala Pro Lys 1280		
ccg aca gag aga cag att Pro Thr Glu Arg Gln Ile 1295		taaatttatt 3922
tgcaaaggga gaaaatgaag go	caaacaga agcaggetet a	gettetgea aaaaettgga 3982
ttcagaatga tgttgaacag ac	aatgaage taaetteaga a	cacacttte tgccttgaaa 4042
actgaaaaaa gctattactt co	ttttttca catgaccaca a	ctcctttga tggaaatgta 4102
cagcagaaac tettgagaga ga	ggetaaaa geaaetettt t	ccaccotec ecccagaett 4162
ttettatgaa aagteaataa tt	aagcaaat tgettaacae t	tggttccag ttcctgcata 4222
tctggagttt aacggcataa ta	caccatta atttccatgo to	gcagtcttt attttaaaga 4282
aagtaacagg atgtccttac ac	tgacaatg aaaattcatc a	attttagag ccaggaattt 4342
cccgtgttac acaagaaaaa at	agaagtot actgaattaa t	tttttagaa gaagagaaat 4402
cagattaaat gtctttttt tt	teettttg gaaaetttta te	gtataattc tttctgcctg 4462
cotactitic incassatus us		
	tgtacaga tttcagttcc c	tgctatgaa aagtgatgtg 4522
gtggcaattt tataaatgtt ge		3.3
	tttctgat ttttatcaga g	tgagaaaat aattaaaatt 4582
gtggcaattt tataaatgtt gc	tttetgat ttttateaga g	tgagaaaat aattaaaatt 4582 attttagtt taatataatt 4642

ggttttataa	tgtttgtcac	cagattttta	ttattgatgt	aaaaaaagt	caattctttt	4822
taaatagttg	gactttggca	gctttgtaag	gaaagtggga	ggtgettagg	attgctatca	4882
atttcagcat	tgtgctgttg	ggaataagtg	ttttgetttt	gtetgeeagt	ctgggctccg	4942
tttttatgtt	ttttttgaag	acaactattg	catcaatata	ttgtttcttg	gcattgttca	5002
gcataggtaa	tgtgtgcact	tttcgtgtac	acatattcat	atttaagttt	tttgcataaa	5062
ataaatgctt	ctagatgtca	tatggtagtc	ttttttaatc	tttttatcac	attatgtttt	5122
cctgtgcagt	ttttatgtga	aagggctaaa	gttataaaga	aacaacatga	ttacagtcaa	5182
ctctccatta	tctatacaaa	acagtgacta	tgcctcaggt	tttggatttt	gcataaaatc	5242
acgtaattaa	tcataaaatt	aaagtaacaa	agcataccgt	aagagctaat	tcaggaggaa	5302
ctcgagattg	gtoctttctc	acctgccccc	actctccact	taagecettt	ccccaaagcc	5362
ccatctgaat	gtgctcagtg	tccttgcgca	cacctggcgt	gggtttgagg	acataaatgt	5422
ttgtgtgata	acttggtctt	gacaggctgt	aagtctacgt	gagatgtaaa	gagtgaacat	5482
gacctgtgtc	caaaaaggat	gataatgtta	aatgtaaaat	ttgttggtag	taaatgtcac	5542
ttaatgttct	cataggtaat	caagagttgg	ctgtatactg	actgactgaa	agatggataa	5602
ttctcttaaa	tatgcatata	cacacattta	ggtattggat	gatggctagg	gaacaatgga	5662
taccagatat	taccttttaa	aagggcagaa	aaagttctac	tcttccttat	tgcctcttca	5722
taatccttta	gaaagataag	atattgcctc	caacatgctg	aaaaagaata	tctatgcata	5782
agcatcagag	aagtccctca	agccatcagt	gggcatgttc	tgtttagatg	ttgaagttct	5842
cttagcatca	gacagettga	ttettaagge	caccaatttg	ccaccaataa	aaagcacact	5902
ggtagaggcc	geststatet	egteteettt	taactgacca	ttcagcatca	tagetgaeta	5962
gattacctag	cgtgaagtca	tagctaacgt	agtgtagcag	ccattcccat	cagttatggc	6022
tgcttagatt	tttgcaagag	agaagttagc	tcaaaggatc	tggtccatat	acaaaatgta	6082
aatggcccac	cttggatttt	ttttaatacg	aagcaagtgt	ctggcactaa	gggatgggag	6142
agtaggactg	agctgatggg	gagggactta	agggaaattt	gtcattttc	ctttgaaaaa	6202
ggaaaaagta	aaatctctta	ggaatttggt	attcacatct	cagagaaata	caacacaaag	6262
tgcagactta	tatttgagaa	ttaatgttaa	cectttgtgt	ctagtttgaa	gettettgta	6322
tttgtctaaa	actacaagce	agaattttgt	atctcctttg	ataaaaagtg	tgtataatgt	6382
aaagtagttt	tgcatattct	tgtgctgcac	atgggctgaa	tttttaaaaa	atttttaaa	6442
agacttgaag	agaaccttgt	aatttgtgta	aatgacaagt	gtaaaatcct	accataaaat	6502
gctaaaaata	tgcattgttt	caaataaaac	caagaaatgc	agcattatat	a	6553

<210> 8 <211> 1303 <212> PRT

5 <212> PRT <213> Bos taurus

<400>8

Met 1	Asp	Phe	Thr	Ala 5	Gln	Pro	Lys	Pro	Ala 10	Thr	Ala	Leu	Cys	Gly 15	Val
Val	Ser	Ala	Asp 20	Gly	Lys	Ile	Ala	Tyr 25	Pro	Pro	Gly	Val	Lys 30	Glu	Ile
Thr	Asp	Lys 35	Ile	Thr	Thr	Asp	Glu 40	Met	Ile	Lys	Arg	Leu 45	Lys	Met	Val
Val	Lys 50	Thr	Phe	Met	Asp	Met 55	Asp	Gl n	Asp	Ser	Glu 60	Asp	Glu	Lys	Gln
Gl n 65	Tyr	Leu	Pro	Leu	Ala 70	Leu	His	Leu	Ala	Ser 75	Glu	Phe	Phe	Leu	Arg 80
Asn	Pro	Asn	Lys	Asp 85	Val	Arg	Leu	Leu	Val 90	Ala	Cys	Cys	Leu	Ala 95	Asp
Ile	Ph⊕	Arg	Ile 100	Tyr	Ala	Pro	Glu	Ala 105	Pro	Tyr	Thr	Ser	His 110	Asp	Lys
Leu	Lys	Asp 115	Ile	Phe	Leu	Phe	Ile 120	Thr	Arg	Gln	Leu	Lys 125	Gly	Leu	Glu
Asp	Thr 130	Lys	Ser	Pro	Gln	Phe 135	Asn	Arg	Tyr	Phe	Tyr 140	Leu	Leu	Glu	Asn
Leu 145	Ala	Trp	Val	Lys	Ser 150	Tyr	Asn	Ile	Cys	Phe 155	Glu	Leu	Glu	Asp	Cys 160
Asn	Glu	Ile	Phe	Ile 165	Gln	Leu	Phe	Arg	Thr 170	Leu	Phe	Ser	Val	Ile 175	Asn
Asn	Ser	His	As n 180	Lys	Lys	Val	Gln	Met 185	His	Met	Leu	Asp	Leu 190	Met	Ser
Ser	Ile	Ile 195	Met	Glu	Gly	Asp	Gly 200	Val	Thr	Gl n	Glu	Leu 205	Leu	Asp	Ser
Ile	Le u 210	Ile	Asn	Leu	Ile	Pro 215	Ala	His	Lys	Asn	Le u 220	Asn	Lys	Gln	Ser
Phe 225	Asp	Leu	Ala	Lys	Val 230	Leu	Leu	Lys	Arg	Thr 235	Val	Gln	Thr	Ile	Glu 240

Ala Cys Ile Ala Asn Phe Phe Asn Gln Val Leu Val Leu Gly Arg Ser

				245					250					255	
Ser	Val	Ser	Asp 260	Leu	Ser	Glu	His	Val 265	Phe	Asp	Leu	Ile	Gln 270	Glu	Leu
Phe	Ala	Ile 275	Asp	Pro	His	Leu	Leu 280	Leu	Ser	Val	Met	Pro 285	Gln	Leu	Glu
Phe	Lys 290	Leu	Lys	Ser	Asn	Asp 295	Gly	Glu	Glu	Arg	Leu 300	Ala	Val	Val	Arg
Leu 305	Leu	Ala	Lys	Leu	Phe 310	Gly	Ser	Lys	Asp	Ser 315	Asp	Leu	Ala	Thr	Gln 320
Asn	Arg	Pro	Leu	Trp 325	Gln	Суз	Phe	Leu	Gly 330	Arg	Phe	Asn	Asp	Ile 335	His
Val	Pro	Val	Arg 340	Leu	Glu	Ser	Val	Lys 345	Phe	Ala	Ser	His	Cys 350	Leu	Met
Asn	His	Pro 355	Asp	Leu	Ala	Lys	Asp 360	Leu	Thr	Gly	Phe	Thr 365	Leu	Ala	Leu
Phe	Gln 370	Val	Ser	Asn	Ser	His 375	Gly	Leu	Trp	Arg	Val 380	Arg	Lys	Glu	Ala
Met 385	Met	Gly	Leu	Ala	Gl n 390	Leu	Tyr	Lys	Lys	Tyr 395	Cys	Leu	His	Gly	Gl u 400
Ala	Gly	Lys	Gl u	Ala 405	Ala	Gl u	Lys	Val	Ser 410	Trp	Ile	Lys	Asp	Lys 415	Leu
Leu	His	Ile	Tyr 420	Туг	Gln	Asn	Ser	11e 425	Asp	Asp	Lys	Leu	Leu 430	Val	Gl u
Lys	Ile	Phe 435	Ala	Gln	Tyr	Leu	Val 440	Pro	His	Asn	Leu	Glu 445	Thr	Glu	Glu
Arg	Met 450	Lys	Cys	Leu	Tyr	Tyr 455	Leu	Tyr	Ala	Ser	Leu 46 0	Asp	Pro	As n	Ala
Val 465	Lys	Ala	Leu	Asn	Glu 470	Met	Trp	Lys	Cys	Gln 475	Asn	Met	Leu	Arg	Ser 480
His	Val	Arg	Gl u	Leu 485	Leu	Asp	Leu	His	Lys 490	Gln	Pro	Thr	Ser	Glu 495	Ala
Asn	Сув	Ser	Ala 500	Met	Phe	Gly	Lys	Leu 505	Met	Thr	Ile	Ala	Lys 510	Asn	Leu

Pro Asp Pro Gly Lys Ala Gln Asp Phe Val Lys Lys Phe Asn Gln Val Leu Gly Asp Asp Glu Lys Leu Arg Ser Gln Leu Glu Leu Leu Ile Ser 530 535 Pro Thr Cys Ser Cys Lys Gln Ala Asp Val Cys Val Arg Glu Ile Ala Arg Lys Leu Ala Asn Pro Lys Gln Pro Thr Asn Pro Phe Leu Glu Met 570 Val Lys Phe Leu Leu Glu Arg Ile Ala Pro Val His Ile Asp Ser Glu 585 Ala Ile Ser Ala Leu Val Lys Leu Met Asn Lys Ser Ile Glu Gly Thr Ala Asp Asp Glu Glu Glu Gly Val Ser Pro Asp Thr Ala Ile Arg Ser 610 615 Gly Leu Glu Leu Leu Lys Val Leu Ser Phe Thr His Pro Thr Ser Phe His Ser Ala Glu Thr Tyr Glu Ser Leu Leu Gln Cys Leu Arg Met Glu 650 Asp Asp Lys Val Ala Glu Ala Ala Ile Gln Ile Phe Arg Asn Thr Gly His Lys Ile Glu Thr Asp Leu Pro Gln Ile Arg Ser Thr Leu Ile Pro 675 680 Ile Leu His Gln Lys Ala Lys Arg Gly Thr Pro His Gln Ala Lys Gln 690 695 Ala Val His Cys Ile His Ala Ile Phe Thr Asn Lys Glu Val Gln Leu 705 Ala Gln Ile Phe Glu Pro Leu Ser Arg Ser Leu Asn Ala Asp Val Pro Glu Gln Leu Ile Thr Pro Leu Val Ser Leu Gly His Ile Ser Met Leu 745 Ala Pro Asp Gln Phe Ala Ser Pro Met Lys Ser Val Val Ala Asn Phe 755 760

Ile Val Lys Asp Leu Leu Met Asn Asp Arg Ser Thr Gly Glu Lys Asn

- Gly Lys Leu Trp Ser Pro Asp Glu Glu Val Ser Pro Glu Val Leu Ala 790 Lys Val Gln Ala Ile Lys Leu Leu Val Arg Trp Leu Leu Gly Met Lys Asn Asn Gln Ser Lys Ser Ala Asn Ser Thr Leu Arg Leu Leu Ser Ala 825 Met Leu Val Ser Glu Gly Asp Leu Thr Glu Gln Lys Arg Ile Ser Lys 840 Ser Asp Met Ser Arg Leu Arg Leu Ala Ala Gly Ser Ala Ile Met Lys 850 855 Leu Ala Gln Glu Pro Cys Tyr His Glu Ile Ile Thr Pro Glu Gln Phe Gln Leu Cys Ala Leu Val Ile Asn Asp Glu Cys Tyr Gln Val Arg Gln Ile Phe Ala Gln Lys Leu His Lys Ala Leu Val Lys Leu Leu Pro Leu Glu Tyr Met Ala Ile Phe Ala Leu Cys Ala Lys Asp Pro Val Lys Glu Arg Arg Ala His Ala Arg Gln Cys Leu Leu Lys Asn Ile Ser Ile 930 935 940 Arg Arg Glu Tyr Ile Lys Gln Asn Pro Met Ala Thr Glu Lys Leu Leu
- Ser Leu Leu Pro Glu Tyr Val Val Pro Tyr Met Ile His Leu Leu Ala 965 970 975

955

950

945

- His Asp Pro Asp Phe Thr Arg Ser Gln Asp Val Asp Gln Leu Arg Asp 980 985 990
- Ile Lys Glu Cys Leu Trp Phe Met Leu Glu Val Leu Met Thr Lys Asn 995 1000 1005
- Glu Asn Asn Ser His Ala Phe Met Lys Lys Met Ala Glu Asn Ile 1010 1015 1020

Lys Leu Thr Lys Asp Ala Gln Ser Pro Asp Glu Ser Lys Thr Asn Glu Lys Leu Tyr Thr Val Cys Asp Val Ala Leu Cys Val Ile Asn 1040 1045 1050 Ser Lys Ser Ala Leu Cys Asn Ala Glu Ser Pro Lys Asp Pro Val 1060 Leu Pro Val Lys Phe Phe Thr Gln Pro Glu Lys Asp Phe Cys Asn 1075 Asp Lys Ser Tyr Ile Ser Glu Glu Thr Arg Val Leu Leu Leu Thr Gly Lys Pro Lys Pro Ala Gly Val Leu Gly Ala Val Asn Lys Pro Leu Ser Ala Thr Gly Arg Lys Pro Tyr Val Arg Ser Thr Gly Ala 1115 1120 Glu Thr Gly Ser Asn Ile Asn Val Asn Ser Glu Leu Asn Pro Ser 1130 1135 1140 Thr Gly Asn Arg Pro Arg Glu Gln Ser Ser Glu Ala Ala Glu Thr 1145 1150 1155 Gly Val Ser Glu Asn Glu Glu Asn Pro Val Arg Ile Ile Ser Val 1165 1160 Thr Pro Val Lys Asn Ile Asp Pro Val Lys Asn Lys Glu Ile Asn Ser Asp Gln Ser Ala Gln Gly Asn Ile Ser Ser Asp Arg Gly Lys 1190 1195 1200 Lys Arg Thr Val Thr Ala Ala Gly Ala Glu Asn Ile Gln Gln Lys 1205 1210 Thr Asp Glu Lys Ala Asp Glu Ser Gly Pro Pro Ala Pro Ser Lys Pro Arg Arg Gly Arg Arg Pro Lys Ser Glu Ser Gln Gly Asn Ala 1240 Thr Lys Asn Asp Asp Ile Asn Lys Pro Leu Ser Lys Gly Arg Lys 1250 1255 1260

Arg Ala Ala Val Ser Gln Glu Ser Pro Gly Gly Leu Glu Ala Gly

			As		a L 80	ys A	la P	ro L	_	eu 285	Gln	Asp	Thr		Lys 1290	Lys	Ala A	Ala	
			Pr		r G 95	lu A	rg G	ln I		.sp 300	Leu	Gln	Arg						
5	<210><211><211><212><213>	6680 ADN	ıs cab	allus															
10	<220><221><222><222><223>	CDS (1)(4	4014)																
	<400>	9																	
		_	_				_		_		_		-		tgt Cys		_	4	8
															a aag Lys 30			9	6
															g aag 1 Lys			14	4
															gaa Glu			19	2
															ttc Phe			24	0
						_		_			_	_	_	_	ttg Leu	_	_	28	8
											Pro				cat His 110			33	6
										Thr					ggt Gly			38	4
		_		_	_	_	_		Asn	_				Leu	tta Leu			43	2
			-		-						_		Glu	-	gaa Glu	-	_	48	0

aat gaa att ttt att cag ctt ttt agg act ctc ttc tca gtg atc aac Asn Glu Ile Phe Ile Gln Leu Phe Arg Thr Leu Phe Ser Val Ile Asn 165 170 175

Asn Ser H	ac aat is Asn 180	-			-		-		-	_	_	-	576
tct atc a Ser Ile I 1													624
att ctt a Ile Leu I 210				_		_					_		672
ttt gac c Phe Asp L 225			l Leu										720
gca tgc a Ala Cys I													768
tca gta a Ser Val S													816
ttt gct a Phe Ala I 2	-		_				_	_		_		_	864
ttc aaa c Phe Lys L 290	_	_	_		_		_		-	_	_	_	912
ctt tta g Leu Leu A		_				_		_	_	_		_	960
305		31	0				315	_				320	
aat cgt c Asn Arg P		tgg ca	g tgt				315 cga			gac	att	320 cac	1008
aat cgt c	ro Leu	tgg ca Trp Gl 325 tta ga	g tgt n Cys a agt	Phe gtg	Leu aaa	Gly 330 ttt	315 cga Arg	Phe agt	Asn cac	gac Asp tgt	att Ile 335 tta	320 cac His	1008
aat cgt c Asn Arg P gtt cct g Val Pro V aac cac c Asn His P	tg aga al Arg 340	tgg ca Trp Gl 325 tta ga Leu Gl	g tgt n Cys a agt u Ser a aag	Phe gtg Val gac	aaa Lys 345	Gly 330 ttt Phe	315 cga Arg gcc Ala	Phe agt Ser	Asn cac His	gac Asp tgt Cys 350	att Ile 335 tta Leu	320 cac His atg Met	
aat cgt c Asn Arg P gtt cct g Val Pro V aac cac c Asn His P	tg aga al Arg 340 aca gat aro Asp 55	tgg ca Trp Gl 325 tta ga Leu Gl tta gc Leu Al	g tgt n Cys a agt u Ser a aag a Lys	gtg Val gac Asp 360	aaa Lys 345 ete Leu	Gly 330 ttt Phe aca Thr	315 cga Arg gcc Ala gaa Glu	Phe agt Ser tat Tyr	cac His ttg Leu 365	gac Asp tgt Cys 350 aaa Lys	att Ile 335 tta Leu gtt Val	cac His atg Met aga Arg	1056
aat cgt c Asn Arg P gtt cct g Val Pro V aac cac c Asn His P 3 tca cat g Ser His A	tg aga al Arg 340 aca gat aro Asp 55 at cca sp Pro	tgg ca Trp Gl 325 tta ga Leu Gl tta go Leu Al gaa ga Glu Gl	g tgt n Cys a agt u Ser a aag a Lys a gcc u Ala 375 a gac g Asp	gtg Val gac Asp 360 att Ile	aaa Lys 345 etc Leu egt Arg	Gly 330 ttt Phe aca Thr cat His	315 cga Arg gcc Ala gaa Glu gat Asp	Phe agt Ser tat Tyr gtc Val 380 aat	Asn cac His ttg Leu 365 att Ile	gac Asp tgt Cys 350 aaa Lys gtt Val	att Ile 335 tta Leu gtt Val act Thr	cac His atg Met aga Arg ata Ile ctt	1056 1104
aat cgt cAsn Arg P gtt cct g Val Pro V aac cac cAsn His P ser His A 370 ata aca g Ile Thr A	tg aga al Arg 340 ca gat ro Asp 55 at cca sp Pro ct gcc la Ala	tgg ca Trp Gl 325 tta ga Leu Gl tta ga Glu Gl aaa ag Lys Ai 39 gaa ag	g tgt n Cys a agt u Ser a aag a Lys a gcc u Ala 375 a gac g Asp 0	gtg Val gac Asp 360 att Ile ctt Leu	aaa Lys 345 ete Leu egt Arg	Gly 330 ttt Phe aca Thr cat His tta Leu	315 cga Arg gcc Ala gaa Glu gat Asp gta Val 395 cgg	Phe agt Ser tat Tyr gtc Val 380 aat Asn	Asn cac His ttg Leu 365 att Ile gat Asp	gac Asp tgt Cys 350 aaa Lys gtt Val	att Ile 335 tta Leu gtt Val act Thr ctg Leu aga	cac His atg Met aga Arg ata Ile ctt Leu 400 aaa	1056 1104 1152

											agt Ser					1344
											gat Asp 460					1392
_					_	_			_		cac His		_	_		1440
_		_	_		_						get Ala	_	_	_		1488
	-	-		_			-	-		_	tgt Cys	_		_		1536
											aag Lys					1584
	_		_		_	_				_	atg Met 540			_	_	1632
	_		_				_		_		gtg Val	_				1680
	-			-	-						cag Gln	_				1728
Gln	Val agc	Leu	Gly	Asp 565 tgt	Asp	Gl u tgc	Lys	Leu cag	Arg 570 gca	Ser gat		Leu tgt	Gl ū gtg	Leu 575 aga	Le u gaa	1728 1776
Gln atc Ile	Val agc Ser gct	cca Pro	Gly acc Thr 580	Asp 565 tgt Cys	Asp tca Ser	Glu tgc Cys	Lys aaa Lys cct	cag Gln 585	Arg 570 gca Ala	Ser gat Asp	Gln gtt	tgt Cys	Glu gtg Val 590 cct	Leu 575 aga Arg	Leu gaa Glu cta	
atc Ile ata Ile	Val agc Ser gct Ala	cca Pro cgg Arg 595	Gly acc Thr 580 aaa Lys	Asp 565 tgt Cys ctt Leu	Asp tca ser gca Ala	tgc Cys aat Asn	aaa Lys cct Pro 600	cag Gln 585 aag Lys	Arg 570 gca Ala caa Gln	gat Asp cca Pro	Gln gtt Val	tgt Cys aat Asn 605	gtg Val 590 cct Pro	Leu 575 aga Arg ttt Phe	gaa Glu cta Leu	1776
atc Ile ata Ile gag Glu	Val agc Ser gct Ala atg Met 610	cca Pro cgg Arg 595 gtc Val	Gly acc Thr 580 aaa Lys aaa Lys	Asp 565 tgt Cys ctt Leu ttt Phe	Asp tca Ser gca Ala ctg Leu	tgc Cys aat Asn ttg Leu 615	Lys aaa Lys cct Pro 600 gaa Glu gta	cag Gln 585 aag Lys aga Arg	Arg 570 gca Ala caa Gln att Ile	gat Asp cca Pro gca Ala	gtt Val aca Thr	tgt Cys aat Asn 605 gtg Val	gtg Val 590 cct Pro	Leu 575 aga Arg ttt Phe att Ile	gaa Glu cta Leu gat Asp	1776 1824
atc Ile ata Ile gag Glu tcg Ser 625	agc Ser gct Ala atg Met 610 gaa Glu	cca Pro cgg Arg 595 gtc Val gcc Ala	Gly acc Thr 580 aaaa Lys aaaa Lys ata Ile	Asp 565 tgt Cys ctt Leu ttt Phe agt Ser	tca Ser gca Ala ctg Leu gca Ala 630	tgc Cys aat Asn ttg Leu 615 ctg Leu	Lys aaa Lys cct Pro 600 gaa Glu gta Val	cag Gln 585 aag Lys aga Arg	Arg 570 gca Ala caa Gln att Ile ttg Leu gta	gat Asp cca Pro gca Ala atg Met 635	gtt Val aca Thr cct Pro 620	tgt Cys aat Asn 605 gtg Val aaa Lys	gtg Val 590 cct Pro cac His	Leu 575 aga Arg ttt Phe att Ile ata Ile	gaa Glu cta Leu gat Asp gag Glu 640	1776 1824 1872
atc Ile ata Ile gag Glu tcg Ser 625 ggg Gly cgt	agc Ser gct Ala atg Met 610 gaa Glu aca Thr	cca Pro cgg Arg 595 gtc Val gcc Ala	Gly acc Thr 580 aaa Lys aaa Lys ata Ile gat Asp	Asp 565 tgt Cys ctt Leu ttt Phe agt Ser gat Asp 645	tca Ser gca Ala ctg Leu gca Ala 630 gaa Glu	tgc Cys aat Asn ttg Leu 615 ctg Leu gag Glu	Lys aaa Lys cet Pro 600 gaa Glu gta Val gag Glu	cag Gln 585 aag Lys aga Arg aaa Lys	Arg 570 gca Ala caa Gln att Ile ttg Leu gta Val 650 ctg	gat Asp cca Pro gca Ala atg Met 635 agt Ser	gtt Val aca Thr cct Pro 620 aat Asn	tgt Cys aat Asn 605 gtg Val aaa Lys gat Asp	gtg Val 590 cct Pro cac His tcc Ser aca Thr	Leu 575 aga Arg ttt Phe att Ile ata Ile gcg Ala 655 cct	gaa Glu cta Leu gat Asp gag Glu 640 att	1776 1824 1872 1920
atc Ile ata Ile gag Glu tcg Ser 625 ggg Gly cgt Arg	Val agc ser gct Ala atg Met 610 gaa Glu aca Thr tca ser	cca Pro cgg Arg 595 gtc Val gcc Ala gca Ala	Gly acc Thr 580 aaa Lys aaa Lys ata Ile gat Asp ctt Leu 660 tct	Asp 565 tgt Cys ctt Leu ttt Phe agt Ser gat Asp 645 gaa Glu	Asp tca Ser gca Ala ctg Leu gca Ala 630 gaa Glu ctt Leu	tgc Cys aat Asn ttg Leu 615 ctg Leu gag Glu ctt Leu	Lys aaa Lys cct Pro 600 gaa Glu gta Val gag Glu aag Lys	cag Gln 585 aag Lys aga Arg aaa Lys ggt Gly gtt Val 665 gag	Arg 570 gca Ala caa Gln att Ile ttg Leu gta Val 650 ctg Leu	gat Asp cca Pro gca Ala atg Met 635 agt Ser tct Ser ctg	gtt Val aca Thr cct Pro 620 aat Asn cca Pro	tgt Cys aat Asn 605 gtg Val aaa Lys gat Asp	gtg Val 590 cct Pro cac His tcc Ser aca Thr cat His 670 tgc	Leu 575 aga Arg ttt Phe att Ile ata Ile gcg Ala 655 cct Pro	gaa Glu cta Leu gat Asp gag Glu 640 att Ile	1776 1824 1872 1920

Met	Gl u 690	As p	Asp	Lys	Val	Al a 695	Gl u	Ala	Ala	Ile	Gln 700	Ile	Phe	Arg	Asn	
					gaa Glu 710		_	_		_		_	_			2160
					cag Gln		_	_	_						_	2208
	_	-	-		tgt Cys			-						_	_	2256
_		_	_		ttt Phe				_		_	_		_	_	2304
_		-			ata Ile				-		_					2352
_		-		_	cag Gln 790		-			_			-	_	-	2400
					gat Asp			_		_						2448
_					tgg Trp			-	-	-	-			-	-	2496
	-	_	-	_	gca Ala				_	_			_	_		2544
_				_	tct Ser			_								2592
		-	_	_	agt Ser 870			-	_				_			2640
					tct Ser											2688
_	_		-	_	gaa Glu		_			-					_	2736
					gca Ala											2784
					cag Gln											2832
	_	_			atg Met				_	_	_	_		_		2880

945 950	955	960
	cat gca cgg cag tgt tta cta His Ala Arg Gln Cys Leu Leu 970	
	att aaa cag aac eee atg get Ile Lys Gln Asn Pro Met Ala 985	
	gaa tat gta gtt cca tat at Glu Tyr Val Val Pro Tyr Me 1000 10	t Ile His Leu
	ttt aca aga tca caa gat Phe Thr Arg Ser Gln Asp 1015 1020	
	tgc cta tgg ttc atg ctt Cys Leu Trp Phe Met Leu 1030 1035	
	aat agc cat gcc ttt atg Asn Ser His Ala Phe Met 1045 1050	
	aca aaa gat gcc cag tct Thr Lys Asp Ala Gln Ser 1060 1065	
toc aag aca aat gaa aaa Ser Lys Thr Asn Glu Lys 1070	ctt tat aca gtg tgt gat Leu Tyr Thr Val Cys Asp 1075 1080	
	agt gct ttg tgc aat gca Ser Ala Leu Cys Asn Ala 1090 1095	
aag gat cca gtc ctt cca Lys Asp Pro Val Leu Pro 1100	atg aaa ttt ttt aca caa Met Lys Phe Phe Thr Gln 1105 1110	cct gaa aag 3339 Pro Glu Lys
gac ttc tgt aat gac aag Asp Phe Cys Asn Asp Lys 1115	agt tat att tca gaa gag Ser Tyr Ile Ser Glu Glu 1120 1125	aca aga gta 3384 Thr Arg Val
	cca aaa cct gct gga gta Pro Lys Pro Ala Gly Val 1135 1140	
	gca acg gga agg aaa cca Ala Thr Gly Arg Lys Pro 1150 1155	
	gga agc act att aat gtc Gly Ser Thr Ile Asn Val 1165 1170	
_	agt cga tca aga gaa cag Ser Arg Ser Arg Glu Gln 1180 1185	
	agt gaa aat gaa gag aac Ser Glu Asn Glu Glu Asn 1195 1200	

						gta Val 1210									3654
_	gag Glu 1220					cag Gln 1225							agc Ser	_	3699
						aca Thr 1240	Val								3744
						gag Glu 1255									3789
	cct Pro 1265					aga Arg 1270		_	-		_		gaa Glu		3834
_	ggc Gly 1280		_			aat Asn 1285	_	_						_	3879
_		_	-	_	-	gcg Ala 1300	-	_	_	_	_				3924
_	gaa Glu 1310					aaa Lys 1315									3969
						gag Glu 1330								taa	4014
taaa	acte	gt ti	tgcaa	aaggg	gaga	aaaatq	yaa q	gee	aaac	ıg a	agcag	gata	cago	ettetgt	4074
aaaa	acttg	ga ti	tcaaa	aatgl	cee	etgaaq	gag a	aaatq	gaagi	t a	agttca	agaa	caca	acacttt	4134
ctg	ccttga	aa aa	actga	aaaga	a aac	catta	act 1	ttett	tttca	ac at	tgacca	acaa	gtet	ttgatg	4194
gaaa	atgtad	ca g	cagaa	aacto	tte	gagaga	agg (ctaaa	aagca	aa ci	tetati	tcta	ccct	teccce	4254
caga	acttti	te ti	tatga	aaaaq	g tea	aataat	ta a	agcaa	aatto	gc t1	taaca	cttg	gtto	ccagttc	4314
ctg	catato	et g	gagti	ttaaa	a ggo	catagi	ac a	accat	ttaat	t to	ccatg	ctgc	agtt	tttatt	4374
ttaa	agaaa	ag ta	aaca	ggato	g te	ettaca	act (gacad	etga	a at	ttcate	caat	ttta	agagcca	4434
ggaa	ttcc	eg ti	tgtta	acaca	a aga	aaaaa	at a	agaaq	gteta	ic to	gaatt	aatt	tttt	agaaga	4494
aaaa	agato	ca ga	attaa	aatat	tte	etttgt	ctt 1	ttect	tttt	gg aa	aactti	ttat	gtat	aattet	4554
ttct	geet	ge et	tacti	tttet	gea	aaaaat	ga 🤄	gatgi	tacaç	ga ti	ttcagi	ttee	ctg	ctatgaa	4614
aagt	gatgi	tg g	tggca	aatti	tat	taaatq	ytt (gettt	tetga	it ti	tttat	caga	gtga	ngaaaat	4674
aatt	aaaat	tt a	ttati	tgatt	tea	atatça	act 1	tcata	attti	g at	tttcc	ectc	catt	ttagtt	4734
taat	ataat	tt t	gcaat	taaat	gta	acatat	tg 1	ttgtt	ttgti	t ca	ataaa	gcat	atca	actttaa	4794
agto	ggttt	tt a	ctcc	tgtga	1 tta	atgtto	ggg 4	atati	ttgga	ia ti	tttaa	agga	gtaa	agactg	4854

tccagcattt	ggttttataa	tgtttgtcac	cagattttta	ttattgatgt	aaaaaaacaa	4914
agtcaatttt	ttaaaatagt	tggactttgg	cagctttgta	aggaaagttg	gaagtgttta	4974
ggattgctat	caatttcagc	attgtgctat	tgggaaataa	gtgttttgct	tttgtctgcc	5034
gatetggget	cagtttttat	gtttatttta	gaagacaact	gttgcatcaa	tatattgctt	5094
cttggcattg	ttcagcatag	gtaatgtgtg	cacttttgtg	tacacatgct	catatttaag	5154
ttttcgcata	aaataaatgc	ttctagatgt	catatggtag	tcttttttaa	tctttttatc	5214
atatgttgtg	aattttttt	atgtgaaagg	gctaatgtca	ttaaacaaag	aacatgatta	5274
cagtcaactc	tccattatct	atataaaata	gtgactgtgc	ctcaggtttt	gaattttgca	5334
gtaatcataa	acttaaaata	atgaaggcat	actgcaggag	ctaattcagg	aggaacttga	5394
aatttgteet	ttctcacgct	cagagttatg	geetgeecee	atteteeatt	gtaggetett	5454
teccaaagee	ctagctgggt	gttettaete	cattcccaca	cacatgccta	gcctgggtta	5514
gaggatggaa	acgacgettg	cattataact	tggtcttcat	aggetgtagt	ctacatggga	5574
tgtacaaaca	gtgaatgtga	gctgtgacaa	aaaaggatgg	ttatgttaat	gcgaaaattt	5634
gctggtagta	aatgtcactt	atgtteteat	agataatcaa	gagttggetg	tatattgact	5694
gagtgaaaaa	tgggtagttc	ttttaaatat	gcatatacac	acatttaggt	atcatgatga	5754
ttagggaaca	atggatacca	gtgacagaaa	acagtatett	ttgaaagggc	agaaacagcc	5814
ctactcttcc	ttattgeete	tteetaacce	tttagaagga	aagtataaaa	aaaacattgc	5874
ctccaacatg	ctgaagaaga	atatctatgc	ataagcatct	gagaagteee	tcaagcaatc	5934
agtgggcacg	ttctatttag	aaagatttta	aagtteeett	agcatcagac	agettggtte	5994
ttaaggccac	caattggtca	ccaataagaa	gcacacctgt	agggaacttc	tttetetett	6054
aactcctttt	gataattact	cagcaccaca	gctgagagat	tacatagtgt	tcagtcatat	6114
tcaacataat	gtagcagaac	catttgcatc	agtttatggc	tgctgagatt	attgcaggag	6174
aggagttagc	tgaaaggatc	tggtccgcat	acacatgtaa	ctggcccact	catgatttta	6234
taacatgtct	ggcactaagg	gaagggagaa	taggatgata	ggaaagattg	agctgatgtg	6294
gagggacttg	tttaagggaa	atttgtcatt	tttcctttga	aaaaggaaaa	agtaaaatcc	6354
cttaggaatt	tggtattegt	atctcagaga	aatacaacac	aaagtgcaga	cttatatttg	6414
agaattaatg	ttaaccettt	gtgtctagtt	tgaagettet	tgtatttgtc	taaaactaca	6474
agccagaatt	ttgtatetee	tttgataaaa	agtgtgtata	atgtaaagta	gttttgcata	6534
ttgtgctgca	catgggctga	atttttaaaa	tttttttaaa	gacttgaagc	agaaccttgt	6594
aatttgtgta	aatgacaagt	gtaaaatcct	accataaaat	gctaaaaata	tgcattgttt	6654
caaataaaac	caagaaatgc	agcatt				6680

<210> 10 <211> 1337

<212> PRT

5

<213> Equus caballus

<400>	1	0
-------	---	---

nec 1	ASP	rne	IIIL	5	GIII	PEO	цуѕ	PIO	10	III	MIG	Leu	Cys	15	Val
Val	Ser	Ala	Asp 20	Gly	Lys	Ile	Ala	Tyr 25	Pro	Pro	Gly	Val	Lys 30	Glu	Ile
Thr	Asp	Lys 35	Ile	Thr	Thr	Asp	Glu 40	Met	Ile	Lys	Arg	Leu 45	Lys	Met	Val
Val	Lys 50	Thr	Phe	Met	Asp	Met 55	Asp	G1n	Asp	Ser	G1u 60	Asp	Gl u	Lys	Glr
Gln 65	Tyr	Leu	Pro	Leu	Ala 70	Leu	His	Leu	Ala	Ser 75	Glu	Phe	Phe	Leu	Arq 80
Asn	Pro	Asn	Lys	As p 85	Val	Arg	Leu	Leu	Val 90	Ala	Cys	Cys	Leu	Ala 95	Asp
Ile	Phe	Arg	11e 100	Tyr	Ala	Pro	Glu	Ala 105	Pro	Tyr	Thr	Ser	His 110	Asp	Lys
Leu	Lys	Asp 115	Ile	Phe	Leu	Phe	Ile 120	Thr	Arg	Gln	Leu	Lys 125	Gly	Leu	Glu
Asp	Thr 130	Lys	Ser	Pro	Gln	Phe 135	Asn	Arg	Tyr	Phe	Tyr 140	Leu	Leu	Glu	Ası
Leu 145	Ala	Trp	Val	Lys	Ser 150	Tyr	Asn	Ile	Cys	Phe 155	Glu	Leu	Glu	Asp	Cys
Asn	Glu	Ile	Phe	Ile 165	Gln	Leu	Phe	Arg	Thr 170	Leu	Phe	Ser	Val	Ile 175	Asr
Asn	Ser	His	Asn 180	Lys	Lys	Val	Gln	Met 185	His	Met	Leu	Asp	Leu 190	Met	Sea
Ser	Ile	Ile 195	Met	Gl u	Gly	Asp	Gly 200	Val	Thr	Gl n	Gl u	Le u 205	Leu	Asp	Sei
Ile	Leu 210	Ile	Asn	Leu	Ile	Pro 215	Ala	His	Lys	Asn	Leu 220	Asn	Lys	Gln	Sei
Phe 225	Asp	Leu	Ala	Lys	Val 230	Leu	Leu	Lys	Arg	Thr 235	Val	Gln	Thr	Ile	Glu 240

Ala	Cys	Ile	Ala	Asn 245	Phe	Phe	Asn	Gln	Val 250	Leu	Val	Leu	Gly	Arg 255	Ser
Ser	Val	Ser	Asp 260	Leu	Ser	Glu	His	Val 265	Phe	Asp	Leu	Ile	Gln 270	Glu	Lęu
Phe	Ala	Ile 275	Asp	Pro	His	Leu	Leu 280	Leu	Ser	Val	Met	Pro 285	G1n	Leu	Glu
Phe	Lys 290	Leu	Lys	Ser	As n	Asp 295	Gly	Glu	Glu	Arg	Le u 300	Ala	Val	Val	Arg
Leu 305	Leu	Ala	Lys	Leu	Phe 310	Gly	Ser	Lys	Asp	Ser 315	Asp	Leu	Ala	Thr	Gln 320
Asn	Arg	Pro	Leu	Trp 325	Gln	Cys	Phe	Leu	Gly 330	Arg	Phe	As n	Asp	Ile 335	His
Val	Pro	Val	Arg 340	Leu	Gl u	Ser	Val	Lys 345	Phe	Ala	Ser	His	Cys 350	Leu	Met
Asn	His	Pro 355	Asp	Leu	Ala	Lys	Asp 360	Leu	Thr	Gl u	Tyr	Leu 365	Lys	Val	Arg
Ser	His 370	Asp	Pro	Glu	Gl u	Ala 375	Ile	Arg	His	Asp	Val 380	Ile	Val	Thr	Ile
Ile 385	Thr	Ala	Ala	Lys	Arg 390	Asp	Leu	Ala	Leu	Val 395	Asn	Asp	Gln	Leu	Leu 400
Gly	Phe	Val	Arg	Glu 405	Arg	Thr	Leu	Asp	Lys 410	Arg	Trp	Arg	Val	Arg 41 5	Lys
Glu	Ala	Met	Met 420	Gly	Leu	Ala	Gln	Leu 42 5	Туг	Lys	Lys	Tyr	Cys 430	Leu	His
Gly	Glu	Ala 435	Gly	Lys	Glu	Ala	Ala 440	Glu	Lys	Val	Ser	Trp 445	Ile	Lys	Asp
Lys	Leu 450	Leu	His	Ile	Tyr	Tyr 455	Gln	Asn	Ser	Ile	Asp 460	Asp	Lys	Leu	Leu
Val 465	Glu	Lys	Ile	Ph∉	Ala 470	Gln	Tyr	Leu	Val	Pro 475	His	As n	Leu	Glu	Thr 480
Glu	Glu	Arg	Met	Lys 485	Cys	Le u	Tyr	Туг	Leu 490	Tyr	Ala	Ser	Leu	Asp 495	Pro
Nen	11-	17-1	T 170	11 a	Ten	h en	Cln.	Mot	Trn	Tue	Cire	Gln.	a en	Mot	T 011

			500					505					510		
Arg	Ser	His 515	Val	Arg	Gl u	Leu	Leu 520	Asp	Leu	His	Lys	Gl n 525	Pro	Thr	Ser
Glu	Ala 530	Asn	Cys	Ser	Ala	Met 535	Phe	Gly	Lys	Leu	Met 540	Thr	Ile	Ala	Lys
Asn 545	Leu	Pro	Asp	Pro	Gly 550	Lys	Ala	Gl n	Asp	Phe 555	Val	Lys	Lys	Phe	Asn 560
Gln	Val	Leu	Gly	Asp 565	Asp	Glu	Lys	Leu	Arg 570	Ser	Gln	Leu	Gl u	Leu 5 75	Leu
Ile	Ser	Pro	Thr 580	Сув	Ser	Cys	Lys	G1n 585	Ala	Asp	Val	Cys	Val 590	Arg	Glu
Ile	Ala	Arg 595	Lys	Leu	Ala	Asn	Pro 600	Lys	Gln	Pro	Thr	Asn 605	Pro	Phe	Leu
Glu	Met 610	Val	Lys	Phe	Leu	Leu 615	Glu	Arg	Ile	Ala	Pro 620	Val	His	Ile	Asp
Ser 625	Glu	Ala	Ile	Ser	Ala 630	Leu	Val	Lys	Leu	Met 635	Asn	Lys	Ser	Ile	Glu 640
Gly	Thr	Ala	Asp	Asp 645	Glu	G1u	Glu	Gly	Val 650	Ser	Pro	Asp	Thr	Ala 6 55	Ile
Arg	Ser	Gly	Leu 660	Glu	Leu	Leu	Lys	Val 665	Leu	Ser	Phe	Thr	His 670	Pro	Thr
Ser	Phe	His 675	Ser	Ala	Glu	Thr	Tyr 680	Glu	Ser	Leu	Leu	Gl n 685	Cys	Leu	Arg
Met	Glu 690	Asp	Asp	Lys	Val	Ala 695	Glu	Ala	Ala	Ile	Gln 700	Ile	Phe	Arg	Asn
Thr 705	Gly	His	Lys	Ile	Glu 710	Thr	Asp	Leu	Pro	Gln 715	Ile	Arg	Ser	Thr	Leu 720
Ile	Pro	Ile	Leu	His 725	Gln	Lys	Ala	Lys	Arg 730	Gly	Thr	Pro	His	Gln 735	Ala
Lys	Gln	Ala	Val 740	His	Cys	Ile	His	Ala 745	Ile	Phe	Thr	Asn	Lys 750	Glu	Val
Gln	Leu	Ala 755	Gln	Ile	Phe	Glu	Pro 760	Leu	Ser	Arg	Ser	Le u 765	Asn	Ala	Asp

Val Pro Glu Gln Leu Ile Thr Pro Leu Val Ser Leu Gly His Ile Ser Met Leu Ala Pro Asp Gln Phe Ala Ser Pro Met Lys Ser Val Val Ala 785 795 790 Asn Phe Ile Val Lys Asp Leu Leu Met Asn Asp Arg Ser Thr Gly Glu 805 810 Lys Asn Gly Lys Leu Trp Ser Pro Asp Glu Glu Val Ser Pro Glu Val Leu Ala Lys Val Gln Ala Ile Lys Leu Leu Val Arg Trp Leu Leu Gly 840 Met Lys Asn Asn Gln Ser Lys Ser Ala Asn Ser Thr Leu Arg Leu Leu 855 Ser Ala Met Leu Val Ser Glu Gly Asp Leu Thr Glu Gln Lys Arg Ile 870 Ser Lys Ser Asp Met Ser Arg Leu Arg Leu Ala Ala Gly Ser Ala Ile Met Lys Leu Ala Gln Glu Pro Cys Tyr His Glu Ile Ile Thr Pro Glu 900 905 Gln Phe Gln Leu Cys Ala Leu Val Ile Asn Asp Glu Cys Tyr Gln Val 920 Arg Gln Ile Phe Ala Gln Lys Leu His Lys Ala Leu Val Lys Leu Leu Leu Pro Leu Glu Tyr Met Ala Ile Phe Ala Leu Cys Ala Lys Asp Pro 945 950 955 Val Lys Glu Arg Arg Ala His Ala Arg Gln Cys Leu Leu Lys Asn Ile Ser Ile Arg Arg Glu Tyr Ile Lys Gln Asn Pro Met Ala Thr Glu Lys 980 985 Leu Leu Ser Leu Leu Pro Glu Tyr Val Val Pro Tyr Met Ile His Leu 1000 1005

Leu Ala His Asp Pro Asp Phe Thr Arg Ser Gln Asp Val Asp Gln

1020

1015

1010

	Arg 1025	Asp	Ile	Lys	Glu	Cys 1030	Leu	Trp	Phe	Met	Leu 1035		Val	Leu
	Thr 1040	Lys	Asn	Glu	Asn	Asn 1045	Ser	His	Ala	Phe	Met 1050	Lys	Lys	Met
	Glu 1055	Asn	Ile	Lys	Leu	Thr 1060	Lys	Asp	Ala	Gln	Ser 1065	Pro	Asp	Gl u
	Lys 1070	Thr	Asn	Glu	Lys	Leu 1075	Tyr	Thr	Val	Cys	Asp 1080	Val	Ala	Leu
_	Val 1085	Ile	Asn	Ser	Lys	Ser 1090	Ala	Leu	Cys	Asn	Ala 1095	Asp	Ser	Pro
-	Asp 1100	Pro	Val	Leu	Pro	Met 1105	Lys	Phe	Ph€	Thr	Gln 1110	Pro	Glu	Lys
_	Phe 1115	Cys	Asn	Asp	Lys	Ser 1120	Tyr	Ile	Ser	Glu	Glu 1125	Thr	Arg	Val
	Le u 1130	Leu	Thr	Gly	Lys	Pro 1135	Lys	Pro	Ala	Gly	Val 1140	Leu	Gly	Ala
	As n 1145	Lys	Pro	Leu	Ser	Ala 1150	Thr	Gly	Arg	Lys	Pro 1155	Tyr	Val	Arg
	Thr 1160	Gly	Thr	Glu	Thr	Gly 1165	Ser	Thr	Ile	Asn	Val 1170	Asn	Ser	Glu
	As n 1175	Pro	Ser	Thr	Gly	Ser 1180	Arg	Ser	Arg	Glu	Gln 1185	Ser	Ser	Glu
	Ala 1190	Glu	Thr	Gly	Val	Ser 1195	Glu	Asn	Glu	Glu	Asn 1200	Pro	Val	Arg
	Ile 1205	Ser	Val	Thr	Pro	Val 1210	Lys	Asn	Ile	Asp	Pro 1215	Val	Lys	Asn
-	Glu 1220	Ile	Asn	Ser	Asp	Gln 1225	Ala	Thr	Gln	Gly	Asn 1230	Ile	Ser	Ser
	Arg 1235	Gly	Lys	Lys	Arg	Thr 1240	Val	Thr	Ala	Ala	Gly 1245	Thr	Glu	Asn
	Gln 1250	Gln	Lys	Thr	Asp	Glu 1255	Lys	Val	Asp	Glu	Ser 1260	Gly	Pro	Pro

		Al:	a Pro 126		Lys	Pro	Arg	Arg 1270	G1y	Arg	Arg		Lys 1275	Ser	Glu Sei	<u>-</u>
		Gl	n Gly 128		Ala	Thr	Lys	Asn 1285	Asp	Asp	Ile		Lys 1290	Pro	Leu Sei	.
		Ly	s Gly 129		Lys	Arg	Ala	Ala 1300	Val	Ser	Gln		Ser 1305	Pro	Gly Gly	7
		Le	u Glu 131		Gly	Asn	Ala	Lys 1315	Ala	Pro	Lys		Gln 1320	Asp	Ile Ala	1
		Ly	s Lys 132		Ala	Pro	Ala	Glu 1330	Arg	Gln	Ile		Leu 1335	Gln	Arg	
5	<210> 11 <211> 480 <212> ADI <213> <i>Gal</i>	N	ıs													
10	<220> <221> CD <222> (23 <223>	_	1)													
	<400> 11															
	gge	tgttc	tt co	ccgg	egg	acgg	agag	eg ge	cacto	gtgto	9 000	geg	gege	gege	teggeg	60
	gaç	jectec	cc ct	ctcc	ıctg	ctgc	cgcc	gc cg	jccad	ccgaç	g cag	ctco	cece	tece	ccttcc	120
	ġaḍ	rcagag	ee ge	cgcac	ecgc	cgcg	cagg	ga go	gaggo	egge	g gga	ıgcg	ggcg	ggca	geggee	180
	ġġ	gggge	gg cg	rgegga	ıgcg	gcga	ggag	eg ge	eegge	egege	g agg	leedo		atg Met 1	_	236
		ctt Leu						g Pro								284
		ttt Phe 20					r Ar									332
		ccc Pro				у Lу										380
		acc Thr			s Il											428
	-	gtg : Val	Val I		_			-	-				_	_		476
15		cag Gln						a Lei								524

ctc . Leu .						_		_			_	-	_	_	_	572
gct Ala 115	_						_		_	_						620
gac Asp																668
ttg Leu		-		_	_					-				_		716
gag Glu			-		-						_			-	-	764
gat Asp	-		-				-								-	812
atc Ile 195			-			_	_	-		_		_	_	_	_	860
atg Met																908
gac Asp			_						_		_				_	956
caa Gln	_		_		_		_	_	_				_	_		1004
att Ile	-	_	-		-					_	_	_	-	_		1052
aag Lys 275			_	_	-			-		-		-	_			1100
gag Glu			_		_				_	_		_	_		_	1148
ctt Leu																1196
gtt Val																1244
aca Thr																1292
atc	cat	gtc	cct	gtg	aga	tta	gag	agt	gtg	aaa	ttc	gcc	agt	cat	tgt	1340

11 e 355	His	Val	Pro	Val	Arg 360	Leu	Glu	Ser	Val	Lys 365	Phe	Ala	Ser	His	Cys 370	
	atg Met				_				_			_		_	_	1388
_	agg Arg			_			_	_		_		_	_		_	1436
	att Ile															1484
	ctg Leu 420															1532
_	aaa Lys	_	_	_	_			_	_			_			_	1580
	cat His															1628
	gat Asp															1676
	cta Leu	_					_	_			_				_	1724
_	aca Thr 500	_		-	_	_	_	_			_		-	-	_	1772
_	cca Pro		_	_		_	_			_		_	_	_		1820
_	ctg Leu		_		_	_	_			_	_		_	_		1868
	tca Ser															1916
	aaa Lys															1964
	aat Asn 580	_	_			_	_	_	_				_		_	2012
	tta Leu															2060
-	gag Glu		-				_			_	_					2108

				61 5					6 20					625		
	-	-	-	-			ctt Le u	-	-	-		-		-		2156
	_		_	_		_	gca Ala 650		_		_	_				2204
				_	_	_	gaa Glu				_	_		_		2252
_		_	_			_	ctt Leu		_	_	_					2300
		_					gag Glu					_	_	_	_	2348
							gta Val									2396
_		_					gaa Glu 730		_	_		_		_		2444
					-		cag Gln		-		_					2492
_	_			_	-		tgt Cys			_						2540
_				_	_		ttt Phe				_	_	_	_		2588
-	-	-		_		_	ata Ile				-		_			2636
		_	_	_		_	cag Gln 810		_			_			-	2684
							gat Asp									2732
					_		tgg Trp			_						2780
_	_		_	_			gca Ala				_	_	_		_	2828
_		_				_	tca Ser			_					_	2876

ttg tta tca gct atg ctt gtc agt gaa gga gac ttg aca gaa cag aag Leu Leu Ser Ala Met Leu Val Ser Glu Gly Asp Leu Thr Glu Gln Lys 885 890 895	2924
ega ate agt aaa tee gat atg tet ega eta ega tta get get gge agt Arg Ile Ser Lys Ser Asp Met Ser Arg Leu Arg Leu Ala Ala Gly Ser 900 905 910	2972
gca ata atg aag ctt gca cag gaa cca tgt tac cat gaa ata att acc Ala Ile Met Lys Leu Ala Gln Glu Pro Cys Tyr His Glu Ile Ile Thr 915 920 925 930	3020
cca gaa cag ttc caa ctc tgt gcg ctc gtc att aat gat gag tgc tac Pro Glu Gln Phe Gln Leu Cys Ala Leu Val Ile Asn Asp Glu Cys Tyr 935 940 945	3068
caa gtg agg cag ata ttt gcc cag aaa ctg cat aaa gca ctt gtg aaa Gln Val Arg Gln Ile Phe Ala Gln Lys Leu His Lys Ala Leu Val Lys 950 955 960	3116
tta ctg ctc cct ttg gaa tat atg gca atc ttt gct ttg tgt gcc aaa Leu Leu Pro Leu Glu Tyr Met Ala Ile Phe Ala Leu Cys Ala Lys 965 970 975	3164
gat cct gtg aaa gag aga aga gca cat gcc aga cag tgc ttg ctt aaa Asp Pro Val Lys Glu Arg Arg Ala His Ala Arg Gln Cys Leu Leu Lys 980 985 990	3212
aac atc agt ata cga aga gag tat att aag cag aat cct atg gct Asn Ile Ser Ile Arg Arg Glu Tyr Ile Lys Gln Asn Pro Met Ala 995 1000 1005	3257
aac gaa aaa ttg ctg tcc ttg ctg cct gaa tat gtg gta cca tat Asn Glu Lys Leu Leu Ser Leu Leu Pro Glu Tyr Val Val Pro Tyr 1010 1020	3302
Met Ile His Leu Leu Ala His Asp Pro Asp Phe Thr Lys Pro Gln 1025	3347
gat gtt gat cag ctt cgt gat gtc aaa gag tgc ctg tgg ttc atg Asp Val Asp Gln Leu Arg Asp Val Lys Glu Cys Leu Trp Phe Met 1040 1045 1050	3392
Asp Val Asp Gln Leu Arg Asp Val Lys Glu Cys Leu Trp Phe Met	3392 3437
Asp Val Asp Gln Leu Arg Asp Val Lys Glu Cys Leu Trp Phe Met 1040 1045 1050 ctt gaa gtt tta atg aca aag aat gag aac aat agc cat gcc ttc Leu Glu Val Leu Met Thr Lys Asn Glu Asn Asn Ser His Ala Phe	
Asp Val Asp Gln Leu Arg 1045 Asp Val Lys Glu Cys Leu Trp Phe Met 1040 1050 ctt gaa gtt tta atg aca aag aat gag aac aat agc cat gcc ttc Leu Glu Val Leu Met Thr 1060 1065 atg aaa aag atg gca gaa aac atc aag ctt aca cga gat gcc cag Met Lys Lys Met Ala Glu Asn Ile Lys Leu Thr Arg Asp Ala Gln	3437
Asp Val Asp Gln Leu Arg 1045 ctt gaa gtt tta atg aca Leu Met Thr 1060 atg aaa aag atg gca gaa Lys Asn Glu Asn Asn 1065 atg aaa aag atg gca gaa Asn Ile Lys Leu Thr 1080 tct cct gat gag cca aag gcc aat gag aaa ctt tat aca gta tgt Ser Pro Asp Glu Pro Lys Ala Asn Glu Lys Leu Tyr Thr Val Cys	3437 3482

caa Gln 1130	Pro				ttt Phe 1135	Ser					Tyr				3662
gag Glu 1145	Thr	aga Arg	gtt Val	ctt Leu	ctt Leu 1150	ttg Leu	aca Thr	gga Gly	aag Lys	cca Pro 1155	aaa Lys	cca Pro	act Thr	ggt Gly	3707
gtg Val 1160	Leu				aac Asn 1165	Lys					Thr				3752
eeg Pro 1175					aca Thr 1180										3797
_	Asn			_	agc Ser 1195			_			_			-	3842
caa Gln 1205					tca Ser 1210	Glu									3887
	Pro				att Ile 1225										3932
gtg Val 1235	Lys				att Ile 1240										3977
					aaa Lys 1255										4022
gag Glu 1265	Asn			_	aaa Lys 1270	Ala	-	_			_	_	-		4067
	Pro	_		_	gca Ala 1285				_		_				4112
cct Pro 1295					acc Thr 1300									aag Lys	4157
	Pro				aga Arg 1315						Ser			agt Ser	4202
cca Pro 1325	Gly	_			gca Ala 1330			_		-			_		4247
	Thr				cca Pro 1345										4292
caa Gln 1355		taa	aaaq	yaaa	act ca	acte	jaaa:	a ggg	gagga	aaat (gaagq	gecaa	aa		4341
taaaq	ggcat	tg c	cca	agcti	ctg	caaaa	aac t	agga	attca	ag aa	attt	cctg	taca	aggaact	4401

gaaattgctt	caaaacacac	agctttcagc	tctgaaaaca	gaaggaaaac	tatgetteee	4461
tttcacgtga	aattaatcct	tctcaatgga	aatgtaaagc	agaaactctt	gagaaagagg	4521
ctaaaagcat	ctgtacttat	ttccccagag	actttttta	tgaaaagtca	ataattaagc	4581
aaattgctta	acacttggtt	ccagttcctg	cattctggag	tttaaaagtg	tatttacacc	4641
attaattttc	atgctgcatt	ttctttttt	ttttaaagga	agtcagaggg	aggtccttac	4701
actgacactg	aaaattcgcg	atcctagagc	caggtattcc	catgttccac	agaaaaagta	4761
gaagtctact	gaatggattt	taaataagac	tagaaaaaaa	aaaaaaa		4809

<210> 12

<211> 1356

<212> PRT

5

<213> Gallus gallus

<400> 12

Met Leu His Leu Pro Glu Leu Arg Glu Arg Pro Val Glu Asp Cys Ala 1 5 10 15

Glu Gly Lys Phe Leu Ser Ser Gly Thr Arg Met Asp Phe Pro Ala Ala 20 25 30

Gln Pro Lys Pro Ala Ala Asp Gly Lys Ile Ile Tyr Tyr Pro Pro Gly 35 40 45

Val Lys Glu Thr Thr Asp Lys Ile Thr Asn Asp Glu Val Val Lys Arg 50 55 60

Leu Lys Met Val Val Lys Thr Phe Met Asp Met Asp Gln Asp Ser Glu 65 70 75 80

Asp Glu Lys Gln Gln Tyr Leu Pro Leu Ala Leu His Leu Ala Ser Glu 85 90 95

Phe Phe Leu Arg Asn Pro Asn Lys Asp Val Arg Leu Leu Val Ala Cys 100 105 110

Cys Leu Ala Asp Ile Phe Arg Ile Tyr Ala Pro Glu Ala Pro Tyr Thr 115 120 125

Ser His Asp Lys Leu Lys Asp Ile Phe Leu Phe Ile Thr Arg Gln Leu 130 135 140

Lys Gly Leu Glu Asp Thr Lys Ser Pro Gln Phe Asn Arg Tyr Phe Tyr 145 150 155 160

Leu Leu Glu Asn Leu Ala Trp Val Lys Ser Tyr Asn Ile Cys Phe Glu 165 170 175

10

Leu	Glu	Asp	Cys 180	Asn	Glu	Ile	Phe	Ile 185	Gln	Leu	Phe	Arg	Thr 190	Leu	Phe
Ser	Val	Ile 195	Asn	Asn	Ser	His	Asn 200	Gln	Lys	Val	Gln	Met 205	His	Met	Leu
Asp	Leu 210	Met	Ser	Ser	Ile	11e 215	Met	Glu	Gly	Asp	Gly 220	Val	Thr	Gln	Glu
L eu 225	Leu	Asp	Ser	Ile	Leu 230	Ile	Asn	Leu	Ile	Pro 235	Ala	His	Lys	Asn	Leu 240
Asn	Lys	Gln	Ala	Phe 2 4 5	Asp	Lęu	Ala	Lys	Val 250	Leu	Leu	Lys	Arg	Thr 255	Val
Gl n	Thr	Ile	Glu 260	Pro	Cys	Ile	Ala	As n 265	Phe	Phe	Asn	Gln	Val 270	Leu	Val
Leu	Gly	Lys 275	Ser	Ser	Val	Ser	Asp 280	Leu	Ser	Glu	His	Val 285	Phe	Asp	Leu
Ile	Leu 290	Glu	Leu	Phe	Ala	11e 295	Asp	Pro	His	Leu	Leu 300	Leu	Ser	Val	Met
Pro 305	Gln	Leu	Glu	Phę	Lys 310	Lęu	Lys	Ser	Asn	Asp 315	Gly	Glu	Glu	Arg	Leu 320
Ala	Val	Val	Arg	Leu 325	Leu	Ala	Lys	Leu	Phe 330	Gly	Ser	Lys	Asp	Ser 335	Asp
Leu	Ala	Thr	Gln 340	Asn	Arg	Pro	Leu	Trp 345	Gln	Суз	Phe	Leu	Gly 350	Arg	Phe
Asn	Asp	Ile 355	His	Val	Pro	Val	Arg 360	Leu	Gl u	Ser	Val	Lys 365	Phe	Ala	Ser
His	Cys 370	Leu	Met	Asn	His	Pro 375	Asp	Leu	Ala	Lys	Asp 380	Leu	Thr	Glu	Туг
Leu 385	Lys	Val	Arg	Ser	His 390	Asp	Pro	Glu	Glu	Ala 395	Ile	Arg	His	Asp	Val 400
Ile	Val	Thr	Ile	Ile 405	Thr	Ala	Gly	Lys	Arg 410	Asp	Leu	Ser	Leu	Val 415	Asn
Asp	Gln	Leu	Leu 420	Gly	Phe	Val	Arg	Glu 425		Thr	Leu	Asp	Lys 430	Arg	Trp

Arg	Val	Arg 435	Lys	Glu	Ala	Met	Met 440	G1y	Leu	Ala	Gln	Leu 445	Tyr	Lys	Lys
Tyr	Cys 450	Leu	His	Ala	Glu	Ala 455	Gly	Lys	Asp	Ala	Ala 460	Glu	Lys	Val	Ser
Trp 465	Ile	Lys	Asp	Lys	Leu 470	Leu	His	Ile	Tyr	Tyr 475	Gln	Asn	Ser	Ile	Asp 480
Asp	Lys	Leu	Leu	Val 485	G1 u	Lys	Ile	Phe	Ala 490	Gln	Tyr	Leu	Val	Pro 495	His
Asn	Leu	Glu	Thr 500	Glu	Gl u	Arg	Met	Lys 505	Cys	Leu	Tyr	Tyr	Leu 510	Tyr	Ala
Ser	Leu	Asp 515	Pro	Asn	Ala	Val	Lys 520	Ala	Leu	Asn	Glu	Met 525	Trp	Lys	Cys
Gln	Asn 530	Met	Leu	Arg	Ser	His 535	Val	Arg	Glu	Leu	Leu 540	Asp	Leu	His	Lys
Gln 545	Pro	Thr	Ser	Glu	Ala 550	Asn	Ser	Ala	Ala	Met 555	Ph e	Gly	Lys	Leu	Met 560
Thr	Ile	Ala	Lys	Asn 565	Leu	Pro	Asp	Pro	Gly 570	Lys	Ala	Gln	Asp	Phe 575	Val
Lys	Lys	Phe	A sn 580	Gln	Val	Leu	Gly	Asp 585	Asp	Glu	Lys	Leu	A rg 590	Ser	Gln
Leu	Glu	Leu 595	Leu	Ile	Ser	Pro	Thr 600	Cys	Ser	Cys	Lys	Gln 605	Ala	Asp	Val
Cys	Val 610	Arg	Glu	Ile	Ala	Arg 615	Lys	Leu	Ala	Asn	Pro 620	Lys	Gln	Pro	Thr
Asn 625	Pro	Phe	Leu	Glu	Met 630	Val	Lys	Phe	Leu	Leu 635	Glu	Arg	Ile	Ala	Pro 640
Val	His	Ile	Asp	Ser 645	Gl u	Ala	Ile	Ser	Ala 650	Leu	Val	Lys	Leu	Met 655	Asn
Lys	Ser	Ile	Glu 660	Gly	Thr	Ala	Asp	Asp 665	Glu	Glu	Glu	Gly	Val 670	Ser	Pro
Asp	Thr	Ala 675	Ile	Arg	Ala	Gly	Leu 680	Glu	Leu	Leu	Lys	Val 685	Leu	Ser	Phe

Thr	His 690	Pro	Thr	Ser	Phe	His 695	Ser	Ala	Glu	Thr	Tyr 700	Glu	Ser	Leu	Leu
Gln 705	Cys	Leu	Arg	Met	Glu 710	Asp	Asp	Lys	Val	Ala 715	Glu	Ala	Ala	Ile	Gln 720
Ile	Phe	Arg	Asn	Thr 725	Gly	His	Lys	Ile	Glu 730	Thr	Asp	Leu	Pro	Gln 735	Ile
Arg	Ser	Thr	Leu 740	Ile	Pro	Ile	Leu	His 745	Gl n	Lys	Ala	Lys	Ar g 750	Gly	Thr
Pro	His	G1n 755	Ala	Lys	Gln	Ala	Val 760	His	Cys	Ile	His	Ala 765	Ile	Phe	Ser
Asn	Lys 770	Glu	Val	Gln	Leu	Ala 775	Gln	Ile	Phe	Glu	Pro 780	Leu	Ser	Arg	Ser
Leu 785	Asn	Ala	Asp	Val	Pro 790	Gl u	Gln	Leu	Ile	Thr 795	Pro	Leu	Val	Ser	Le u 800
Gly	His	Ile	Ser	Met 805	Leu	Ala	Pro	Asp	Gln 810	Phe	Ala	Ser	Pro	Met 815	Lys
Ser	Val	Val	Ala 820	Asn	Phe	Val	Val	Lys 825	Asp	Leu	Leu	Met	As n 830	Asp	Arg
Ser	Thr	Gly 835	Glu	Lys	Asn	Gly	Lys 840	Leu	Trp	Ser	Pro	Asp 845	Glu	Glu	Val
Ser	Pro 850	Glu	Val	Leu	Ala	Lys 855	Val	Gl n	Ala	Ile	Lys 860	Leu	Lęu	Val	Arg
Trp 865	Leu	Lęu	Gly	Met	Lys 870	Asn	Asn	Gln	Ser	Lys 875	Ser	Ala	Asn	Ser	Thr 880
Leu	Arg	Leu	Leu	Ser 88 5	Ala	Met	Leu	Val	Ser 890	Gl u	Gly	Asp	Leu	Thr 895	Gl u
Gln	Lys	Arg	11e 900	Ser	Lys	Ser	Asp	Met 905	Ser	Arg	Leu	Arg	Le u 9 1 0	Ala	Ala
Gly	Ser	Ala 915	Ile	Met	Lys	Leu	Ala 920	Gln	Glu	Pro	Cys	Tyr 925	His	Glu	Ile
Ile	Thr 930	Pro	Gl u	G1n	Phe	Gln 935	Leu	Cys	Ala	Leu	Val 940	Ile	Asn	Asp	G l u
Cys	Tyr	G1n	Va1	Arg	Gln	Ile	Phe	Ala	Gln	Lys	Leu	His	Lys	Ala	Leu

945		950	955		960
Val Lys L	eu Leu Leu 965	Pro Leu G	lu Tyr Met Ala 970	Ile Phe Ala	Leu Cys 975
Ala Lys A	sp Pro Val 980	Lys Glu A	rg Arg Ala His 985	Ala Arg Glr 990	
	sn Ile Ser 95		arg Glu Tyr Il 000	e Lys Gln <i>1</i> 1005	Asn Pro Met
Ala Asn 1010	Glu Lys Le	u Leu Ser 1015	Leu Leu Pro G	lu Tyr Val 1020	Val Pro
Tyr Met 1025	Ile His Le	u Le u Al a 1030	His Asp Pro A	sp Phe Thr 1035	Lys Pro
Gln Asp 1040	Val Asp Gl	n Leu Arg 1045	Asp Val Lys G	lu Cys Leu 1050	Trp Phe
Met Leu 1055	Glu Val Le	u Met Thr 1060	Lys Asn Glu A	sn Asn Ser 1065	His Ala
Phe Met 1070	Lys Lys Me	t Ala Glu 1075	Asn Ile Lys L	eu Thr Arg 1080	Asp Ala
Gln Ser 1085	Pro Asp Gl	u Pro Lys 1090	Ala Asn Glu L	ys Leu Tyr 1095	Thr Val
Cys Asp 1100	Val Ala Le	u Cys Val 1105	Ile Asn Ser L	ys Ser Ala 1110	Leu Cys
Asn Ala 1115	Asp Ser Pr	o Lys Asp 1120	Pro Val Leu P	ro Thr Lys 1125	Phe Phe
Thr Gln 1130	Pro Glu Ly	s Asp Phe 1135	Ser Asn Asp A	rg Asn Tyr 1140	Ile Ser
Glu Glu 1145	Thr Arg Va	l Leu Leu 1150	Leu Thr Gly L	ys Pro Lys 1155	Pro Thr
Gly Val 1160	Leu Asp Th	r Val Asn 1165	Lys Pro Leu S	er Ala Thr 1170	Gly Arg
Arg Pro 1175	Tyr Ile Ar	g Thr Thr 1180	Gly Ser Glu T	hr Gly Ser 1185	Asn Ile
Ser Val 1190	Asn Ser Gl	u Leu Ser 1195	Ser Ser Ala G	ly Asn Arg 1200	Ser Arg

	Glu	Gln 1205		Ser	Asp	Ile	Ser 1210	Glu	Thr	Gly	Val	Ser 1215	Glu	Asn	Asp
	Glu	Asn 1220	Pro	Val	Arg	Ile	Ile 1225	Ser	Val	Thr	Pro	Ala 1230	Lys	Thr	Glu
	Pro	Val 1235		Asn	Lys	Glu	Ile 1240	Asn	Ser	Asp	Gln	Ala 1245	Thr	Gln	Gly
	Asn	Ser 1250	Thr	Glu	Arg	Gly	Lys 1255	Lys	Arg	Thr	Ala	Thr 1260	Ala	Ser	Gly
	Thr	Glu 1265	Asn	Ile	His	Gln	Lys 1270	Ala	Gl u	Gl u	Asn	As n 1275	Ala	Asp	Glu
	Thr	Gly 1280	Pro	Ser	Leu	Ala	Ala 1285	Lys	Thr	Arg	Arg	Gly 1290	Arg	Pro	Pro
	Lys	Pro 1295		Pro	Gln	Gly	Thr 1300	Thr	Ala	Lys	Asn	Glu 1305	Glu	Thr	Asn
	Lys	Pro 1310	Pro	Val	Arg	Gly	Arg 1315	Lys	Arg	Ala	Ala	Ala 1320	Ser	Gln	Glu
	Ser	Pro 1325		Ser	Leu	Glu	Ala 1330	Gly	Asn	Ala	Lys	Ala 1335	Pro	Lys	Gln
	Gln	Asp 1340		Ala	Lys	Lys	Pro 1345	Ala	Ala	Ala	Gln	Arg 1350	Gln	Ile	Asp
	Leu	Gln 1355	Arg												
<210> 13 <211> 20 <212> ADN <213> Artific	ial														
<220> <223> Ceba	dor T3	3													
<400> 13 aattaaccct c	actaa	aggg	2	0											
<210> 14 <211> 19 <212> ADN <213> Artific	ial														
<220> <223> Ceba <400> 14 taatacgact c			19												
<210> 15															

<210> 15

<211> 25

5

10

15

20

25

	<212> ADN <213> Artificial	
5	<220> <223> Cebador en sentido directo	
	<400> 15 aatagcatcg atgacaaact gttgg 25	5
10	<210> 16 <211> 24 <212> ADN <213> Artificial	
15	<220> <223> Cebador en sentido inverso	
	<400> 16 ggtcaggcaa attctttgct atgg 24	
20	<210> 17 <211> 21 <212> ADN <213> Artificial	
25	<220> <223> Cebador en sentido directo	
30	<400> 17 gtaaggtggc tgttgggtat g 21	
35	<210> 18 <211> 24 <212> ADN <213> Artificial	
	<220> <223> Cebador en sentido inverso	
40	<400> 18 ggctagcagg tgaatcatgt atgg 24	
45	<210> 19 <211> 23 <212> ADN <213> Artificial	
50	<220> <223> Cebador en sentido inverso	
30	<400> 19 acttctggta aggtggctgt tgg 23	
55	<210> 20 <211> 25 <212> ADN <213> Artificial	
60	<220> <223> Cebador en sentido inverso	
	<400> 20 ggggtaggag gtgaatgatg tatgg 2	5

5	<210> 21 <211> 18 <212> ADN <213> Artificial	
Ü	<220> <223> Cebador GAPDH	
10	<400> 21 gggctgcttt taactctg 18	
15	<210> 22 <211> 18 <212> ADN <213> Artificial	
	<220> <223> Cebador GAPDH	
20	<400> 22 ccaggaaatg agcttgac 18	
25	<210> 23 <211> 20 <212> ADN <213> Artificial	
30	<220> <223> Cebador GAPDH	
30	<400> 23 cttcaccacc atggagaagg 20	
35	<210> 24 <211> 20 <212> ADN <213> Artificial	
40	<220> <223> Cebador GAPDH	
	<400> 24 tgaagtcgca ggagacaacc 20	
45	<210> 25 <211> 33 <212> ADN <213> Artificial	
50	<220> <223> cebador sentido directo	
	<400> 25 atggacttca cgcagccgaa gcctgccact gcc	33
55	<210> 26 <211> 40 <212> ADN <213> Artificial	
60	<220> <223> Cebador en sentido inverso	
	<400 > 26	

	ttacctttgt aaatcaattt gtote	ctctgc tggaactgcc 40
5	<210> 27 <211> 9 <212> PRT <213> Homo sapiens	
	<400> 27	
		Asn Leu Ile Pro Ala His Lys Asn Leu 1 5
10		- ·
15	<210> 28 <211> 10 <212> PRT <213> Homo sapiens	
	<400> 28	
		Lys Glu Cys Leu Trp Phe Met Leu Glu Val 1 5 10
20	<210> 29 <211> 10 <212> PRT <213> Homo sapiens	
25	<400> 29	
		Phe Leu Gly Arg Phe Asn Asp Ile His Val 1 5 10
30	<210> 30 <211> 10 <212> PRT <213> Homo sapiens	
35	<400> 30	
		Leu Leu Leu Pro Leu Glu Tyr Met Ala Ile 1 5 10
40	<210> 31 <211> 10 <212> PRT <213> Homo sapiens	
45	<400> 31	
.0		Ser Leu Asp Pro Asn Ala Val Lys Ala Leu 1 5 10
50	<210> 32 <211> 9 <212> PRT <213> Homo sapiens	
	<400> 32	
		Lys Leu Lys Asp Ile Phe Leu Phe Ile
55		1 5

```
<210> 33
       <211> 10
       <212> PRT
       <213> Homo sapiens
 5
       <400> 33
                               Leu Leu Ser Leu Leu Pro Glu Tyr Val Val
       <210> 34
10
       <211>9
       <212> PRT
       <213> Homo sapiens
       <400> 34
15
                                Lys Met Ala Glu Asn Ile Lys Leu Thr
       <210> 35
20
       <211> 10
       <212> PRT
       <213> Homo sapiens
       <400> 35
25
                               Gln Val Leu Val Leu Gly Arg Ser Ser Val
                                                   5
                                                                            10
       <210> 36
       <211>9
       <212> PRT
30
       <213> Homo sapiens
       <400> 36
                                 Leu Gln Cys Cys Ser Ala Tyr Lys Leu
                                 1
                                                     5
35
       <210> 37
       <211>34
       <212> ADN
40
       <213> Artificial
       <220>
       <223> Cebador en sentido directo
45
       <400> 37
       geggeegeat ggaetteace gegeageeca agee
                                               34
       <210> 38
       <211>45
       <212> ADN
50
       <213> Artificial
       <220>
       <223> Cebador en sentido inverso
55
       <400> 38
        ctcgagttac ctttgtaagt caatctgtct ctctgctggt actgc
                                                    45
```

5	<210> 39 <211> 29 <212> ADN <213> Artificial	
	<220> <223> Cebador en sentido directo	
10	<400> 39 geggeegeat ggaetteace gegeageee 2	9
15	<210> 40 <211> 29 <212> ADN <213> Artificial	
	<220> <223> Cebador en sentido inverso	
20	<400> 40 ctcgagttac ctttgtaagt caatttgtc 29	
25	<210> 41 <211> 31 <212> ADN <213> Artificial	
30	<220> <223> Cebador en sentido directo	
	<400> 41 geggeegeat ggaetteaeg eageegaage e	31
35	<210> 42 <211> 27 <212> ADN <213> Artificial	
40	<220> <223> Cebador en sentido inverso	
	<400> 42 ctcgagttac ctttgtaaat caatttg 27	
45	<210> 43 <211> 7190 <212> ADN <213> Homo sapiens	
50	<220> <221> CDS <222> (541)(4554) <223>	
55	<400>43	

ggccggcgga ggaaggggag ggagcgagga gcgcgcgc	60
getegegtga eeggeeggtg tgtgegegag geeeeggete eeggggeaeg gaeggeeggg	120
egegegeete tgogagggge gteegggtee gagteggegg teegggeegg egegaggtge	180
gtgcgggcgg gccgcggggg tcccggacgg acacaagcgc acacactccc ggaggagcct	240
togaggetge tetteetegg coagaeggag ageggeactg teteceegee cagegeteae	300
tegeceegeg teteceeeeg eggeggetge teeteetegg cacegeeage eccagegeeg	360
ctcccgggcg ggcgggcggc ggcggcggcg gcggcgggac ccgcggagcc gctttgtgtg	420
cagecegact aggggeggeg gegeaaceae etgacagagg eeegggeget egatgeacet	480
teegeeegea tgaggaggag aggeeggtag aggaetgtga accaaaagtt gteeceeagg	540
atg gac ttc acc gcg cag ccc aag cct gcc act gcc ctc tgt ggc gtc Met Asp Phe Thr Ala Gln Pro Lys Pro Ala Thr Ala Leu Cys Gly Val 1 5 10 15	588
gtg agt gcc gac ggg aag atc gct tac cct ccg ggg gta aaa gag atc Val Ser Ala Asp Gly Lys Ile Ala Tyr Pro Pro Gly Val Lys Glu Ile 20 25 30	636
acc gac aag atc acc acg gac gag atg atc aaa cgc ctg aag atg gta Thr Asp Lys Ile Thr Thr Asp Glu Met Ile Lys Arg Leu Lys Met Val 35 40 45	684
gtg aaa acc ttt atg gat atg gat cag gac tca gaa gat gaa aaa cag Val Lys Thr Phe Met Asp Met Asp Gln Asp Ser Glu Asp Glu Lys Gln 50 55 60	732
cag tat ctc cca cta gcc ttg cat ctt gca tct gaa ttc ttc ctc agg Gln Tyr Leu Pro Leu Ala Leu His Leu Ala Ser Glu Phe Phe Leu Arg 65 70 75 80	780
aac ccc aat aaa gat gtg cgt ctc ctt gta gca tgt tgt ttg gct gat Asn Pro Asn Lys Asp Val Arg Leu Leu Val Ala Cys Cys Leu Ala Asp 85 90 95	828
atc ttt cgt atc tat gcc cca gaa gct cca tat act tcc cat gat aaa Ile Phe Arg Ile Tyr Ala Pro Glu Ala Pro Tyr Thr Ser His Asp Lys 100 105 110	876
ctt aag gac ata ttt ttg ttt att acc aga caa tta aaa ggt ttg gag Leu Lys Asp Ile Phe Leu Phe Ile Thr Arg Gln Leu Lys Gly Leu Glu	924

11	5		120		125			
gat aca aa Asp Thr Ly 130		_	_					72
tta get tg Leu Ala Tr 145							_	20
aat gaa at Asn Glu Il		Gln Leu	-					68
aat agc ca Asn Ser Hi	_		_	His Met	-		•	.16
tct atc at Ser Ile Il 19	e Met Glu				-			64
att ctt at Ile Leu Il 210			_	_		_		:12
ttt gac ct Phe Asp Le 225							3.3	:60
gca tgc at Ala Cys Il		Phe Phe						808
tca gta ag Ser Val Se		_	_	_	_			56
ttt get at Phe Ala Il 27	e Asp Pro			-	-	-	•	04
ttc aaa ct Phe Lys Le 290								52
ctt cta gc Leu Leu Al 305								00
aat egt ee Asn Arg Pr	t ctt tgg o Leu Trp 325	Gln Cys	ttt ctt Phe Leu	gga cga Gly Arg 330	ttt aat Phe Asn	gat att Asp Ile 335	cat 15 His	48
gtt cct gt Val Pro Va				Phe Ala				96
aat cac cc Asn His Pr 35	o Asp Leu							44
tca cat ga Ser His As 370								92

		-	gcc Ala	_		-	-	_		-		-	_	_		1740
		_	agg Arg	_			_	_				_	_	_		1788
			atg Met 420													1836
	-	-	gga Gly	_	-	-	_			-	_			_	_	1884
		_	cat His				-		_		-	_		_	_	1932
_			atc Ile		-	_			_				_	-		1980
			atg Met													2028
	_	_	aaa Lys 500	_			_	_		_	_	_		_		2076
caa	acc	cat	~+ -		~~~										_	
	_		Val	_	_		_	_	_		_	_	cct Pro			2124
Arg gag	Ser	His 515 aac	_	Arg	Glu gee	Leu atg	Leu 520 ttt	Asp	Leu	His ctg	Lys	Gln 525 acc	Pro ata	Thr gca	Ser aag	212 4 2172
Arg gag Glu aat	get Ala 530	His 515 aac Asn	Val tgt	Arg tct Ser	Glu gee Ala ggg	Leu atg Met 535 aaa	Leu 520 ttt Phe gca	Asp gga Gly caa	Leu aaa Lys gat	His ctg Leu ttt	Atg Met 540 gtg	Gln 525 acc Thr	Pro ata Ile aaa	Thr gca Ala ttt	Ser aag Lys aac	
gag Glu aat Asn 545	gct Ala 530 ttg Leu	His 515 aac Asn cct Pro	Val tgt Cys gac	tct Ser ccc Pro	Glu gcc Ala ggg Gly 550 gat	atg Met 535 aaa Lys	Leu 520 ttt Phe gca Ala	Asp gga Gly caa Gln	Leu aaa Lys gat Asp	ctg Leu ttt Phe 555	Atg Met 540 gtg Val	Gln 525 acc Thr aag Lys	Pro ata Ile aaa Lys	Thr gca Ala ttt Phe	aag Lys aac Asn 560	2172
gag Glu aat Asn 545 cag Gln	gct Ala 530 ttg Leu gtt Val agc	His 515 aac Asn cct Pro ctc Leu	Val tgt Cys gac Asp	tct Ser ccc Pro gat Asp 565	gcc Ala ggg Gly 550 gat Asp	atg Met 535 aaa Lys gag Glu	Leu 520 ttt Phe gca Ala aaa Lys	Asp gga Gly caa Gln ctt Leu	Leu aaa Lys gat Asp cgg Arg 570 gca	ttt Phe 555 tct Ser	atg Met 540 gtg Val cag Gln	Gln 525 acc Thr aag Lys ttg Leu	ata Ile aaa Lys gag Glu	Thr gca Ala ttt Phe tta Leu 575	aag Lys aac Asn 560 tta Leu	2172 2220
gag Glu aat Asn 545 cag Gln att Ile	get Ala 530 ttg Leu gtt Val age Ser gec	His 515 aac Asn cct Pro ctc Leu cca Pro	tgt Cys gac Asp ggc Gly acc	tct Ser ccc Pro gat Asp 565 tgt Cys	gcc Ala ggg Gly 550 gat Asp tct Ser	atg Met 535 aaa Lys gag Glu tgc Cys	Leu 520 ttt Phe gca Ala aaa Lys cct	gga Gly caa Gln ctt Leu caa Gln 585	aaa Lys gat Asp egg Arg 570	ttt Phe 555 tct Ser gat Asp	Lys atg Met 540 gtg Val cag Gln att Ile	Gln 525 acc Thr aag Lys ttg Leu tgt Cys	Pro ata Ile aaaa Lys gag Glu gtg Val 590 cct	Thr gca Ala ttt Phe tta Leu 575 aga Arg	aag Lys aac Asn 560 tta Leu gaa Glu	2172 2220 2268
gag Glu aat Asn 545 cag Gln att Ile ata Ile	get Ala 530 ttg Leu gtt Val age Ser gec Ala atg	His 515 aac Asn cet Pro ctc Leu cca Pro	Val tgt Cys gac Asp ggc Gly acc Thr 580	Arg tct Ser ccc Pro gat Asp 565 tgt Cys ctt Leu	Glu gec Ala ggg Gly 550 gat Asp tet Ser gca Ala	Leu atg Met 535 aaa Lys gag Glu tgc Cys aat Asn	Leu 520 ttt Phe gca Ala aaa Lys cct Pro 600 gaa	gga Gly caa Gln ctt Leu caa Gln 585 aag Lys	Leu aaa Lys gat Asp cgg Arg 570 gca Ala caa Gln atc	ttt Phe 5555 tct Ser gat Asp cca Pro	Lys atg Met 540 gtg Val cag Gln att Ile aca Thr	Gln 525 acc Thr aag Lys ttg Leu tgt Cys aat Asn 605 gtg	Pro ata Ile aaa Lys gag Glu gtg Val 590 cct Pro	Thr gca Ala ttt Phe tta Leu 575 aga Arg ttt Phe att	aag Lys aac Asn 560 tta Leu gaa Glu cta Leu	2172 2220 2268 2316

		_	_	gat Asp 645	_				-	-		_		_		2508
				gaa Glu												2556
				gca Ala												2604
				aag Lys												2652
				ata Il e	_		_			_		_	_			2700
				cat His 725			_	_							_	2748
	_	_		cac His	_			_						_	-	2796
_		_	_	att Ile					_		_	_		_	_	2844
		-		ctt Leu					-		_					2892
_		_		gat Asp	_		_			_			_	_	-	2940
				aaa Lys 805												2988
_				ctg Leu				_	-		-			_	_	3036
				cag Gln												3084
				cag Gln												3132
				gtt Val												3180
_			_	atg Met		_	_	_		_	-		_	_		3228
				885					890					895		

Met Lys Leu Ala Gln Glu Pro Cys Tyr His Glu Ile Ile Thr Pro	Glu
cag ttt cag ctc tgt gca ctt gtt att aat gat gag tgt tac caa Gln Phe Gln Leu Cys Ala Leu Val Ile Asn Asp Glu Cys Tyr Gln 915 920 925	-
agg cag ata ttt gct cag aag ctg cat aag gca ctt gtg aag tta Arg Gln Ile Phe Ala Gln Lys Leu His Lys Ala Leu Val Lys Leu 930 935 940	
ctc cca ttg gag tat atg gcg atc ttt gcc ttg tgt gcc aaa gat Leu Pro Leu Glu Tyr Met Ala Ile Phe Ala Leu Cys Ala Lys Asp 945 950 955	
gtg aag gag aga aga gca cac gca cga caa tgt tta ctg aaa aat Val Lys Glu Arg Arg Ala His Ala Arg Gln Cys Leu Leu Lys Asn 965 970 975	
agt ata cgc agg gaa tac att aag cag aat cct atg gct act gag Ser Ile Arg Arg Glu Tyr Ile Lys Gln Asn Pro Met Ala Thr Glu 980 985 990	
tta tta tca ctg ttg cct gaa tat gta gtt cca tac atg att ca Leu Leu Ser Leu Leu Pro Glu Tyr Val Val Pro Tyr Met Ile Hi 995 1000 1005	
cta gcc cat gat cca gat ttt aca aga tca caa gat gtt gat c Leu Ala His Asp Pro Asp Phe Thr Arg Ser Gln Asp Val Asp G 1010 1015 1020	•
ctt cgt gat atc aaa gag tgc cta tgg ttc atg ctt gaa gtt t Leu Arg Asp Ile Lys Glu Cys Leu Trp Phe Met Leu Glu Val L 1025 1030 1035	
atg aca aag aat gaa aac aat agc cat gcc ttt atg aag aag a Met Thr Lys Asn Glu Asn Asn Ser His Ala Phe Met Lys Lys M 1040 1045 1050	-
gca gag aac atc aag tta acc aga gat gcc cag tct cca gat g Ala Glu Asn Ile Lys Leu Thr Arg Asp Ala Gln Ser Pro Asp G 1055 1060 1065	
toc aag aca aat gaa aaa ctg tat aca gta tgt gat gtg gct c Ser Lys Thr Asn Glu Lys Leu Tyr Thr Val Cys Asp Val Ala L 1070 1075 1080	
tgt gtt ata aat agt aaa agt gct ttg tgc aat gca gat tca c Cys Val Ile Asn Ser Lys Ser Ala Leu Cys Asn Ala Asp Ser P 1085 1090 1095	
aag gac cca gtc ctc cca atg aaa ttt ttt aca caa cct gaa a Lys Asp Pro Val Leu Pro Met Lys Phe Phe Thr Gln Pro Glu L 1100 1105 1110	
gac ttc tgt aac gat aag agt tat att tca gaa gag aca aga g Asp Phe Cys Asn Asp Lys Ser Tyr Ile Ser Glu Glu Thr Arg V 1115 1120 1125	
ctt ctg tta aca gga aag cca aag cct gct gga gta cta ggt g Leu Leu Thr Gly Lys Pro Lys Pro Ala Gly Val Leu Gly A 1130 1135 1140	
gta aat aag oot tta toa goa acg gga agg aaa coo tat gtt a Val Asn Lys Pro Leu Ser Ala Thr Gly Arg Lys Pro Tyr Val A	_

	1145					1150					1155				
-	act Thr 1160										gta Val 1170				4059
											cag Gln 1185				4104
-	gca Ala 1190						Ğlu				aac Asn 1200				4149
		Ser									cca Pro 1215				4194
_	gaa Glu 1220				_	_	Āla		_		aac Asn 1230		_	_	4239
		Gly									ggt Gly 1245				4284
	caa Gln 1250										tcg Ser 1260		cct Pro		4329
	cct Pro 1265										aag Lys 1275				4374
											aaa Lys 1290				4419
	gga Gly 1295	Arg									agc Ser 1305				4464
	gaa Glu 1310										caa G l n 1320				4509
	aag Lys 1325										tta Leu 1335			taa	4554
aaat	tgcati	tt g	caaa	ggga	g aaa	aatgaa	agg d	ccaa	acaga	a go	cagget	cca	gcti	totgcaa	4614
aaa	ettgga	at to	caca	aatgt		etgaad	cag a	aaat	gaag	ge to	cactto	caga	acad	cacactc	4674
tet	gcctt	ga a	aacta	aaaga	a gad	ctatta	act t	ceti	ttea	ac at	gacca	acaa	gtc	etetgat	4734
gga	aatgta	ac a	gcaga	aaact	ct1	gagag	gag a	agget	taaaa	ig ca	actct	gtt	ctc	eccettc	4794
acat	tagact	tt ti	tetta	acgaa	a aaq	gtcaai	taa t	taaq	gcaaa	ut to	gottas	acac	ttg	gttccag	4854
ttc	etgeel	ta t	etgga	agtti	. aaa	atgegl	taa t	tacad	ccatt	a at	ttee	acgc	tgc	agttttt	4914
atti	ttaaaq	ga aa	agta	acaaq	g ato	gtatti	tac a	actga	acact	g as	aatto	cato	cati	ttagag	4974
cca	ggaati	te e	catg	ttaca	a caç	ggaaa	aaa t	agaa	agtet	a et	gaatt	aat	ttt	ttaaaag	5034

aaaagagatc	agattaaata	tttctttgtt	tttccttttg	gaaactttta	tgtataattc	5094
tttctgcctg	cctacttttc	tgcaaaaatg	agatgtacag	atttcggttc	cctgctatga	5154
aaagtgatgt	ggtagcaatt	ttataaatgt	tgctttctga	tttttatcag	agtgagaaaa	5214
ttaaaattat	tgatttgcaa	gtagtaaaca	gttcatattt	tgatttcccc	tcattttagt	5274
ttaatataat	ttgcaataaa	tgtacatatt	gttgtttgtt	tcataaagca	tatcacttta	5334
aaatggtttt	tactcctgtg	attatgttgg	aatatttgga	attttaaagg	agtaaagact	5394
gtccagcatt	tggttttata	atgtttgtca	ccagatttt	attaatgtaa	aaaaaatcaa	5454
tttttaaaaa	atagttggac	tttggcagct	tttaaggaaa	gttggaggtg	ttttaggatt	5514
gctatcaatt	ttcagcattg	tgctatttgg	aaataagtgt	tttgcttttg	tctgatggtc	5574
tgggctcatt	tttatgttta	ttttagaaaa	ctgttgcatc	aatatattat	gtttcttggc	5634
attgttcagc	ataggtaatg	tgtgcacttt	atgtgtacac	ataatcatat	ttaagttttt	5694
tgcataaaat	aaatgettet	agatgtcatg	gcagtctttt	taatctttt	atcatatgct	5754
ttcttgtgaa	ttttttcatg	ttaaagagct	aaagtcataa	catgattaca	gtcaactctc	5814
cattatctat	ataaaatagt	gactaagcct	caggttttta	attttgtgat	aacaaaataa	5874
cgaaggcatg	taagacctga	ttctggagga	acatgaaatt	tgtcttttct	catgtccaga	5934
gttctatcct	gcccccactg	tecactgtag	ggtcatccgc	aaagccctag	cagaatgtgc	5994
tcactccatt	tccttacacg	tttctagcat	gggtcagagg	aaacaacatt	tgtgttataa	6054
cttcgtcttg	ataggctgta	gtgtacatgg	gatgtaaaac	aaacaagtgt	atcaaaggtg	6114
gatgattctg	ttagagtgaa	gtttgagagt	aaatgtcact	tacgtttctc	atagataatc	6174
aagagttggc	tgtgtattga	ctgaaagatg	ggtaattatt	ttaaatatgc	atttacacac	6234
atttaggtat	cagaagatgc	ttagggaaca	atggatacca	atgatagaaa	atgatacett	6294
tacaggggca	gaaaaatccc	cactetteet	tattgcctct	tcagaaccct	ttagaaagta	6354
taaaatattg	cctccaacat	gctgaaaaag	agtatctatg	cataagtatc	agagaagtcc	6414
ctcaagcaat	cagtaggtgt	gttctattta	gagagagttt	aaagttetet	tagcatcaga	6474
caacttgatt	cctaaggttt	ccagtgtgtc	accaacaaaa	agtgcattga	tagggacctt	6534
tgtctcttcc	tecetttgat	taattgcccg	gcatcacagt	ttactagatt	accaagtgtt	6594
acatcatatt	aaataaaatg	tagcagaacc	atctgcatca	atatattcct	gtttagattt	6654
ttgcaggaga	gaagttaaaa	ggatttgctc	cttgtatgat	gtaagtggcc	caccccaatt	6714
ttgtaacatg	atgcaagtgt	ctggcactaa	gggaagcaag	agtagggttg	tggaaagacc	6774
aagctgatgg	ggagggactt	gtttacggga	attttttag	ttttcctttt	caaaggaaaa	6834
cattaaaatc	ccttaggaat	ttggtattca	catctcagag	aactacaaca	caaaagtgca	6894
gacttatatt	tgagaattaa	tgttaaccct	ttgtgtctag	tttgaagctt	cttgtatttg	6954

aaatatgcac	tgtttcaaat	aaaaccaaga	aatgcagcat	taaaaaaaaa	aaaaaa	7190
gaagcagaac	cttgtaattt	gtgtaaatga	caagtgtaaa	atectaccat	aaaatgctaa	7134
tagttttgca	tattcttgtg	ctgcacatgg	gctgaatttt	taaattttt	ttaaaaactt	7074
tctaaaacaa	caagccagaa	ttttgtatct	cctttgataa	aaagtgtgta	taatgtaaag	7014

<210> 44 <211> 1337 5 <212> PRT <213> Homo sapiens

<400> 44

1	Asp	rne	THE	5	GIN	PIO	гуз	PIO	10	THE	AIG	Leu	cys	15 15	vai
Val	Ser	Ala	Asp 20	Gly	Lys	Ile	Ala	Tyr 25	Pro	Pro	Gly	Val	Lys 30	Glu	Ile
Thr	Asp	Lys 35	Ile	Thr	Thr	Asp	Glu 40	Met	Ile	Lys	Arg	Le u 45	Lys	Met	Val
Val	Lys 50	Thr	Phe	Met	Asp	Met 55	Asp	Gln	Asp	Ser	Glu 60	Asp	Glu	Lys	Gln
Gln 65	Tyr	Leu	Pro	Leu	Ala 70	Leu	His	Leu	Ala	Ser 75	Glu	Phe	Phe	Leu	Arg 80
Asn	Pro	Asn	Lys	Asp 85	Val	Arg	Leu	Leu	Val 90	Ala	Cys	Cys	Leu	Ala 95	Asp
Ile	Phe	Arg	Ile 100	Tyr	Ala	Pro	Glu	Ala 105	Pro	Tyr	Thr	Ser	His 110	Asp	Lys
Leu	Lys	Asp 115	Ile	Phe	Leu	Phe	Ile 120	Thr	Arg	Gln	Leu	Lys 125	Gly	Leu	Glu
Asp	Thr 130	Lys	Ser	Pro	Gl n	Phe 135	Asn	Arg	Туг	Phe	Туг 140	Leu	Leu	Gl u	Asn
Leu 145	Ala	Trp	Val	Lys	Ser 150	Tyr	Asn	Ile	Cys	Phe 155	Glu	Leu	Glu	Asp	Cys 160
Asn	Glu	Ile	Phe	Ile 165	Gln	Leu	Phe	Arg	Thr 170	Leu	Phe	Ser	Val	Ile 175	Asn
Asn	Ser	His	As n 180	Lys	Lys	Val	Gln	Met 185	His	Met	Leu	Asp	Le u 190	Met	Ser
Ser	Ile	Ile	Met	Glu	Gly	Asp	Gly	Val	Thr	Gln	Glu	Leu	Leu	Asp	Ser

		195					200					205			
Ile	Leu 210	Ile	Asn	Leu	Ile	Pro 215	Ala	His	Lys	Asn	Le u 220	Asn	Lys	Gl n	Ser
Ph e 225	Asp	Leu	Ala	Lys	Val 230	Leu	Leu	Lys	Arg	Thr 235	Val	Gln	Thr	Ile	Glu 240
Ala	Cys	Ile	Ala	Asn 245	Phe	Phe	Asn	Gln	Val 250	Leu	Val	Leu	Gly	Arg 255	Ser
Ser	Val	Ser	Asp 260	Lęu	Ser	Glu	His	Val 265	Phe	Asp	Leu	Ile	Gln 270	Glu	Leu
Phe	Ala	11e 275	Asp	Pro	His	Leu	Leu 280	Leu	Ser	Val	Met	Pro 285	Gln	Leu	Glu
Phe	Lys 290	Leu	Lys	Ser	Asn	As p 295	Gly	Glu	Gl u	Arg	Leu 300	Ala	Val	Val	Arg
Leu 305	Leu	Ala	Lys	Leu	Phe 310	Gly	Ser	Lys	Asp	Ser 315	Asp	Leu	Ala	Thr	Gln 320
Asn	Arg	Pro	Leu	Trp 325	Gl n	Cys	Phe	Leu	Gl y 330	Arg	Phe	Asn	Asp	11e 335	His
Val	Pro	Val	Arg 340	Leu	Gl u	Ser	Val	Lys 345	Phe	Ala	Ser	His	Cys 350	Leu	Met
Asn	His	Pro 355	Asp	Leu	Ala	Lys	Asp 360	Leu	Thr	Glu	Tyr	Leu 365	Lys	Val	Arg
Ser	His 370	Asp	Pro	Gl u	Gl u	Ala 375	Ile	Arg	His	Asp	Val 380	Ile	Val	Thr	Ile
Ile 385	Thr	Ala	Ala	Lys	Arg 390	Asp	Leu	Ala	Leu	Val 395	Asn	Asp	Gln	Leu	Leu 400
Gly	Phe	Val	Arg	Gl u 405	Arg	Thr	Leu	Asp	Lys 410	Arg	Trp	Arg	Val	Arg 415	Lys
G1u	Ala	Met	Met 420	Gly	Leu	Ala	Gln	Leu 425	Tyr	Lys	Lys	Tyr	Cys 430	Leu	His
Gly	Glu	Ala 435	Gly	Lys	Glu	Ala	Ala 440	Glu	Lys	Val	Ser	Trp 445	Ile	Lys	Asp
Lys	Leu 450	Leu	His	Ile	Tyr	Tyr 455	Gl n	Asn	Ser	Ile	Asp 460	Asp	Lys	Leu	Leu

Val 465	Glu	Lys	Ile	Phe	Ala 470	Gln	Tyr	Leu	Val	Pro 475	His	Asn	Leu	Glu	Thr 480
Glu	Glu	Arg	Met	Lys 485	Cys	Leu	Tyr	Tyr	Leu 490	Tyr	Ala	Ser	Leu	Asp 495	Pro
Asn	Ala	Val	Lys 500	Ala	Leu	Asn	Glu	Met 505	Trp	Lys	Cys	G1n	Asn 510	Met	Leu
Arg	Ser	His 515	Val	Arg	Glu	Leu	Leu 520	Asp	Leu	His	Lys	Gln 525	Pro	Thr	Ser
Glu	Ala 530	Asn	Cys	Ser	Ala	Met 535	Phe	Gly	Lys	Leu	Met 540	Thr	Ile	Ala	Lys
As n 545	Leu	Pro	Asp	Pro	Gly 550	Lys	Ala	Gln	Asp	Phe 555	Val	Lys	Lys	Phe	As n 560
Gln	Val	Leu	Gly	Asp 565	Asp	Glu	Lys	Leu	Arg 570	Ser	Gln	Leu	Gl u	Leu 575	Leu
Ile	Ser	Pro	Thr 580	Cys	Ser	Cys	Lys	G1n 585	Ala	Asp	Ile	Cys	Val 590	Arg	Glu
Ile	Ala	Arg 595	Lys	Leu	Ala	Asn	Pro 600	Lys	Gln	Pro	Thr	Asn 605	Pro	Phe	Leu
Glu	Met 610	Val	Lys	Phe	Leu	Le u 615	Glu	Arg	Ile	Ala	Pro 620	Val	His	Ile	Asp
Ser 625	Glu	Ala	Ile	Ser	Ala 630	Leu	Val	Lys	Leu	Met 635	Asn	Lys	Ser	Ile	Glu 640
Gly	Thr	Ala	Asp	Asp 645	Glu	Glu	Glu	Gly	Val 650	Ser	Pro	Asp	Thr	Ala 655	Ile
Arg	Ser	Gly	Le u 660	Glu	Leu	Leu	Lys	Val 665	Leu	Ser	Phe	Thr	His 670	Pro	Thr
Ser	Phe	His 675	Ser	Ala	Glu	Thr	Tyr 680	Glu	Ser	Leu	Leu	Gln 685	Cys	Leu	Arg
Met	Glu 690	Asp	Asp	Lys	Val	Ala 695	Glu	Ala	Ala	Ile	Gln 700	Ile	Phe	Arg	Asn
Thr 705	Gly	His	Lys	Ile	Glu 710	Thr	Asp	Leu	Pro	Gln 715	Ile	Arg	Ser	Thr	Leu 720

	Ile	Pro	Ile	Leu	His 725	Gln	Lys	Ala	Lys	Arg 730	Gly	Thr	Pro	His	Gln 735	Ala
	Lys	Gln	Ala	Val 740	His	Cys	Ile	His	Ala 745	Ile	Phe	Thr	Asn	Lys 750	Glu	Val
	Gln	Leu	Ala 755	Gln	Ile	Phe	Glu	Pro 760	Leu	Ser	Arg	Ser	Leu 765	Asn	Ala	Asp
,	Val	Pro 770	Glu	Gln	Leu	Ile	Thr 775	Pro	Leu	Val	Ser	Le u 780	Gly	His	Ile	Ser
	Met 785	Leu	Ala	Pro	Asp	Gln 790	Ph e	Ala	Ser	Pro	Met 795	Lys	Ser	Val	Val	Ala 800
	Asn	Phe	Ile	Val	Lys 805	Asp	Leu	Leu	Met	Asn 810	Asp	Arg	Ser	Thr	Gly 815	Glu
	Lys	Asn	Gly	Lys 820	Leu	Trp	Ser	Pro	Asp 825	Glu	Glu	Val	Ser	Pro 830	Glu	Val
	Leu	Ala	Lys 835	Val	Gln	Ala	Ile	Lys 840	Leu	Leu	Val	Arg	Trp 845	Leu	Leu	Gly
	Met	Lys 850	Asn	Asn	Gln	Ser	Lys 855	Ser	Ala	Asn	Ser	Thr 860	Leu	Arg	Leu	Leu
	Ser 865	Ala	Met	Leu	Val	Ser 870	Glu	Gly	Asp	Leu	Thr 875	Glu	Gln	Lys	Arg	11e 880
	Ser	Lys	Ser	Asp	Met 885	Ser	Arg	Leu	Arg	Leu 890	Ala	Ala	Gly	Ser	Ala 895	Ile
	Met	Lys	Leu	Ala 900	Gln	Glu	Pro	Cys	Tyr 905	His	Glu	Ile	Ile	Thr 910	Pro	Glu
	Gln	Phe	Gln 915	Leu	Cys	Ala	Leu	Val 920	Ile	Asn	Asp	Glu	Cys 925	Tyr	Gln	Val
,	Arg	Gln 930	Ile	Phe	Ala	Gln	Lys 935	Leu	His	Lys	Ala	Leu 940	Val	Lys	Leu	Leu
	Leu 945	Pro	Leu	Glu	Tyr	Met 950	Ala	Ile	Phe	Ala	Leu 955	Cys	Ala	Lys	Asp	Pro 960
	Val	Lys	Glu	Arg	Arg 965	Ala	His	Ala	Arg	Gl n 970	Cys	Leu	Leu	Lys	Asn 975	Ile

- Ser Ile Arg Arg Glu Tyr Ile Lys Gln Asn Pro Met Ala Thr Glu Lys 980 985 990
- Leu Leu Ser Leu Leu Pro Glu Tyr Val Val Pro Tyr Met Ile His Leu 995 1000 1005
- Leu Ala His Asp Pro Asp Phe Thr Arg Ser Gln Asp Val Asp Gln 1010 1015 1020
- Leu Arg Asp Ile Lys Glu Cys Leu Trp Phe Met Leu Glu Val Leu 1025 1030
- Met Thr Lys Asn Glu Asn Asn Ser His Ala Phe Met Lys Lys Met 1040 1050
- Ala Glu Asn Ile Lys Leu Thr Arg Asp Ala Gln Ser Pro Asp Glu 1055 1060 1065
- Ser Lys Thr Asn Glu Lys Leu Tyr Thr Val Cys Asp Val Ala Leu 1070 1075
- Cys Val Ile Asn Ser Lys Ser Ala Leu Cys Asn Ala Asp Ser Pro 1085 1090 1095
- Lys Asp Pro Val Leu Pro Met Lys Phe Phe Thr Gln Pro Glu Lys 1100 1105 1110
- Asp Phe Cys Asn Asp Lys Ser Tyr Ile Ser Glu Glu Thr Arg Val
- Leu Leu Thr Gly Lys Pro Lys Pro Ala Gly Val Leu Gly Ala 1130 1135 1140
- Val Asn Lys Pro Leu Ser Ala Thr Gly Arg Lys Pro Tyr Val Arg 1145 1150 1155
- Ser Thr Gly Thr Glu Thr Gly Ser Asn Ile Asn Val Asn Ser Glu 1160 1165 1170
- Leu Asn Pro Ser Thr Gly Asn Arg Ser Arg Glu Gln Ser Ser Glu 1175 1180 1185
- Ala Ala Glu Thr Gly Val Ser Glu Asn Glu Glu Asn Pro Val Arg 1190 1195 1200
- Ile Ile Ser Val Thr Pro Val Lys Asn Ile Asp Pro Val Lys Asn 1205 1210 1215
- Lys Glu Ile Asn Ser Asp Gln Ala Thr Gln Gly Asn Ile Ser Ser

	1220					1225					1230			
Asp	Arg 1235	_	Lys	Lys	Arg	Thr 1240	Val	Thr	Ala	Ala	Gly 1245	Ala	Glu	Asn
Ile	Gln 1250	Gln	Lys	Thr	Asp	Glu 1255	_	Val	Asp	Glu	Ser 1260	Gly	Pro	Pro
Ala	Pro 1265		Lys	Pro	Arg	Arg 1270	Gly	Arg	Arg	Pro	Lys 1275	Ser	Glu	Ser
Gl n	Gly 1280	Asn	Ala	Thr	Lys	Asn 1285	_	Asp	Leu	Asn	Lys 1290	Pro	Ile	Asn
Lys	Gly 1295	Arg	Lys	Arg	Ala	Ala 1300	Val	Gly	Gl n	Gl u	Ser 1305	Pro	Gly	G1y
Leu	Glu 1310	Ala	Gly	Asn	Ala	Lys 1315	Ala	Pro	Lys	Leu	Gln 1320	Asp	Leu	Ala
Lys	Lys 1325			Pro		Glu 1330		Gln		Asp	Leu 1335	Gln	Arg	

REIVINDICACIONES

- 1. Un agente para su uso en un método de profilaxis o terapia contra un cáncer, comprendiendo dicho agente como ingrediente(s) eficaz/eficaces al menos un polipéptido seleccionado entre los polipéptidos (a) a (c) a continuación, teniendo dicho(s) polipéptido(s) actividad/actividades de inducción de respuesta inmune, o como ingrediente(s) eficaz/eficaces, un/unos vector(es) recombinante(s) que comprende(n) un/unos polinucleótido(s) que codifica(n) dicho(s) polipéptido(s) y es/son capaz/capaces de expresar dicho polipéptido(s) *in vivo*:
 - (a) un polipéptido que consiste en al menos 7 aminoácidos consecutivos en una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 2, 4, 6, 8, 10, 12 y 44;
 - (b) un polipéptido que tiene una identidad de secuencia de al menos el 90 % con dicho polipéptido (a) y que consiste en al menos 7 aminoácidos; y
 - (c) un polipéptido que comprende dichos polipéptidos (a) o (b) como una secuencia parcial del mismo.

10

20

25

30

35

40

45

50

60

65

- 2. El agente para su uso de acuerdo la reivindicación 1, en el que dicho polipéptido (b) tiene una identidad de secuencia de al menos el 95 % con dicho polipéptido (a).
 - 3. El agente para su uso de acuerdo con la reivindicación 1, en el que cada uno de dicho(s) polipéptido(s) que tiene(n) actividad/actividades de inducción de respuesta inmune es un polipéptido que consiste en al menos 7 aminoácidos consecutivos en una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 2, 4, 6, 8, 10, 12 y 44, o un polipéptido que comprende dicho polipéptido como una secuencia parcial del mismo; o un polipéptido que tiene la misma secuencia de aminoácidos que un polipéptido que consiste en al menos 7 aminoácidos consecutivos en una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 2, 4, 6, 8, 10, 12 y 44 salvo que se supriman, sustituyan y/o añadan uno o varios aminoácidos, o un polipéptido que comprende dicho polipéptido como una secuencia parcial del mismo.
 - 4. El agente para su uso de acuerdo con la reivindicación 3, en el que cada uno de dicho(s) polipéptido(s) que tiene(n) actividad/actividades de inducción de respuesta inmune es un polipéptido que tiene una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO:2, 4, 6, 8, 10, 12 y 44.
 - 5. El agente para su uso de acuerdo con la reivindicación 3, en el que cada uno de dicho(s) polipéptido(s) que tiene(n) actividad/actividades de inducción de respuesta inmune es un polipéptido que consiste en al menos 7 aminoácidos consecutivos en la región de aa111-140, aa211-240, aa248-278, aa327-357, aa459-522, aa909-972, aa959-1022, aa994-1057 o aa1018-1080 en una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 2, 6, 8, 10, 12 y 44, o un polipéptido que comprende dicho polipéptido como una secuencia parcial del mismo; o un polipéptido que tiene la misma secuencia de aminoácidos que un polipéptido que consiste en al menos 7 aminoácidos consecutivos en la región de aa111-140, aa211-240, aa248-278, aa327-357, aa459-522, aa909-972, aa959-1022, aa994-1057 o aa1018-1080 en una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO:2, 6, 8, 10, 12 y 44 salvo que se supriman, sustituyan y/o añadan uno o varios aminoácidos, o un polipéptido que comprende dicho polipéptido como una secuencia parcial del mismo.
 - 6. El agente para su uso de acuerdo con la reivindicación 5, en el que cada uno de dicho(s) polipéptido(s) que tiene(n) actividad/actividades de inducción de respuesta inmune es un polipéptido que tiene una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 27 a 35, o un polipéptido que comprende dicho polipéptido como una secuencia parcial del mismo y que tiene de 10 a 12 restos de aminoácido; o un polipéptido que tiene la misma secuencia de aminoácidos que un polipéptido que tiene una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 27 a 35 salvo que se supriman, sustituyan y/o añadan uno o varios aminoácidos, o un polipéptido que comprende dicho polipéptido como una secuencia parcial del mismo y que tiene de 10 a 12 restos de aminoácido.
 - 7. El agente para su uso de acuerdo con una cualquiera de las reivindicaciones 1 a 6, en donde el cáncer es un cáncer que expresa PDS5A.
- 8. El agente para su uso de acuerdo con una cualquiera de las reivindicaciones 1 a 7, en donde el cáncer es cáncer de mama, tumor cerebral, cáncer de esófago, cáncer de pulmón, cáncer renal, cáncer de colon, adenocarcinoma perinatal, neuroblastoma o leucemia.
 - 9. El agente para su uso de acuerdo con una cualquiera de las reivindicaciones 1 a 8, que comprende además un inmunopotenciador.
 - 10. Un polipéptido que tiene una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 27, 28 y 30 a 35, o un polipéptido que comprende dicho polipéptido como una secuencia parcial del mismo y que tiene de 10 a 12 restos de aminoácido; o un polipéptido que tiene la misma secuencia de aminoácidos que un polipéptido que tiene una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 27, 28 y 30 a 35, salvo que se supriman, sustituyan y/o añadan uno o varios aminoácidos, o un polipéptido que comprende el polipéptido como una secuencia parcial del mismo y que tiene de 10 a 12 restos de aminoácido, polipéptido que tiene actividad

de inducción de respuesta inmune.

5

11. Un método para detectar un cáncer, comprendiendo dicho método la medición por inmunoensayo de un anticuerpo contra un polipéptido que tiene una cualquiera de las secuencias de aminoácidos presentadas en las SEQ ID NO: 2, 4, 6, 8, 10, 12 y 44, en una muestra de sangre, suero, plasma, ascitis o derrame pleural extraídos de un organismo vivo.

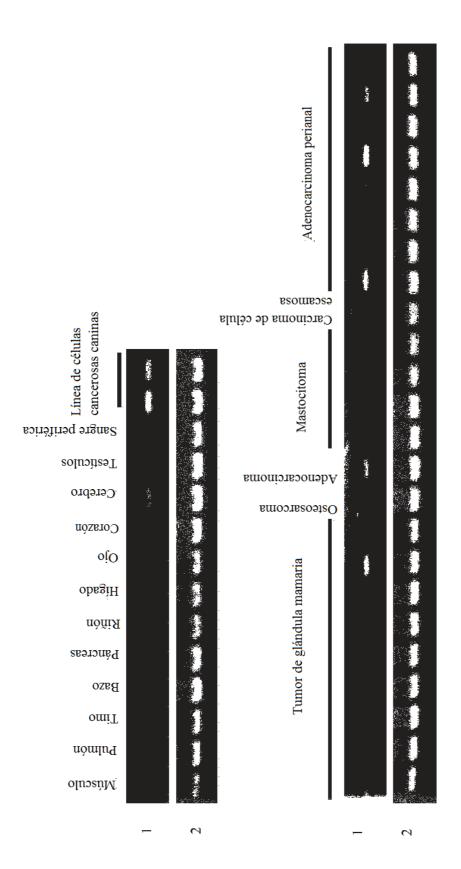


Fig.1

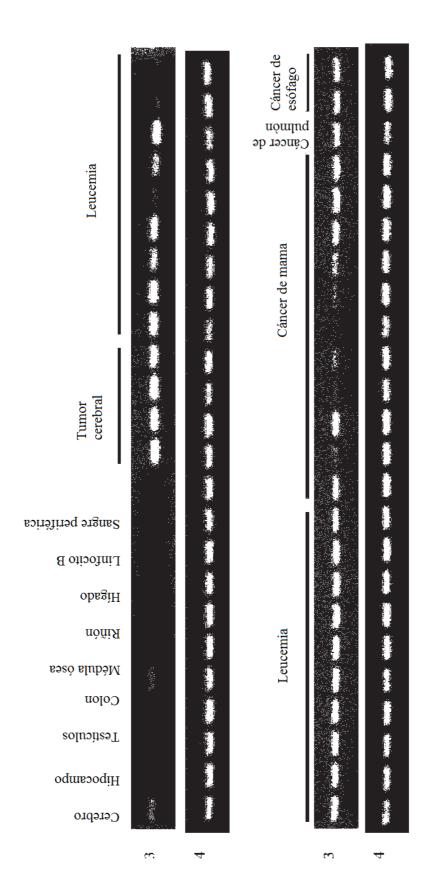



Fig.2

 ${
m Fig.3}$

Efecto anti-tumor (modelo terapéutico – línea celular de neuroblastoma)

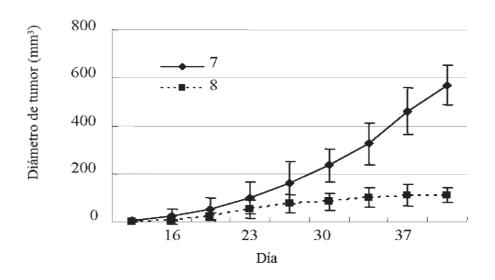
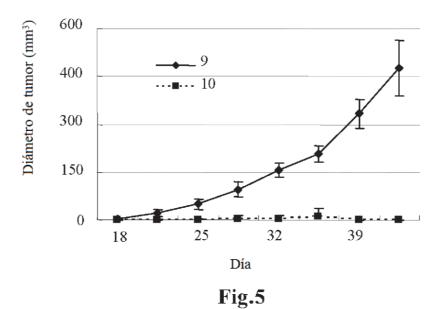
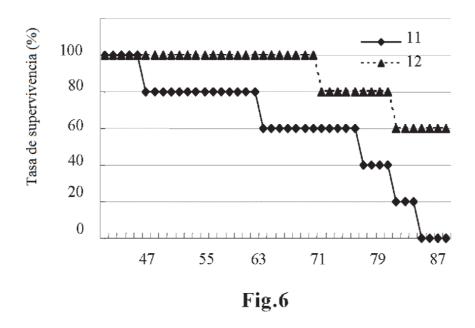
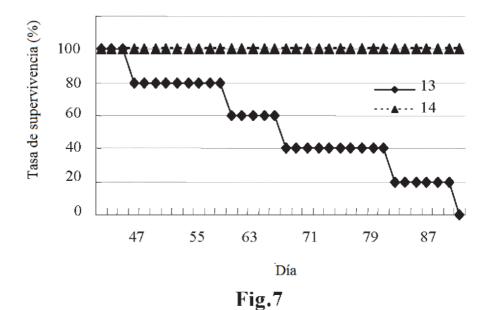




Fig.4


Efecto anti-tumor (modelo profiláctico – línea celular de neuroblastoma)

Tasa de supervivencia (modelo terapéutico – línea celular de neuroblastoma)

Tasa de supervivencia (modelo profiláctico – línea celular de neuroblastoma)

Efecto anti-tumor (modelo terapéutico - línea celular de cáncer de colon)

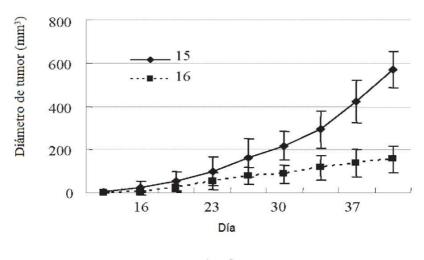


Fig.8

Efecto anti-tumor (modelo profiláctico – línea celular de cáncer de colon)

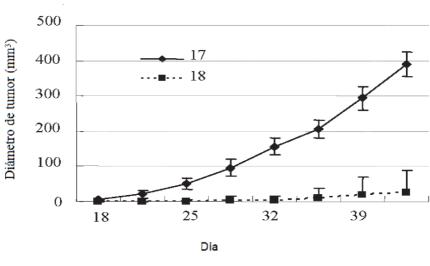


Fig.9

Tasa de supervivencia (modelo terapéutico – línea celular de cáncer de colon)

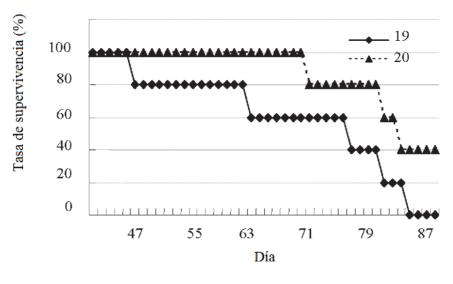


Fig.10

Tasa de supervivencia (modelo profiláctico – línea celular de cáncer de colon)

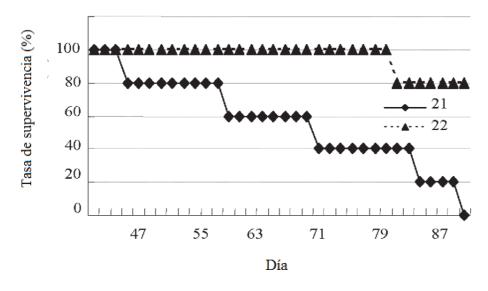


Fig. 11

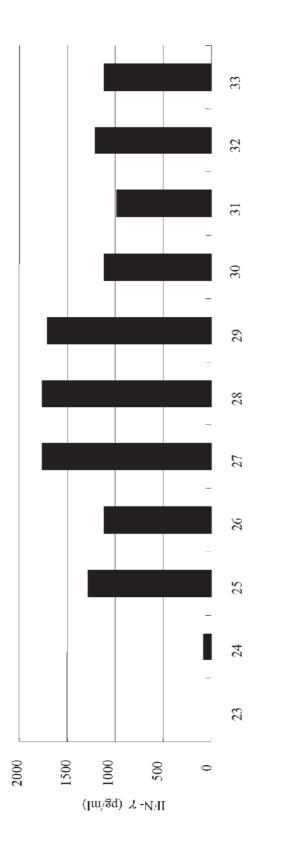


Fig.12

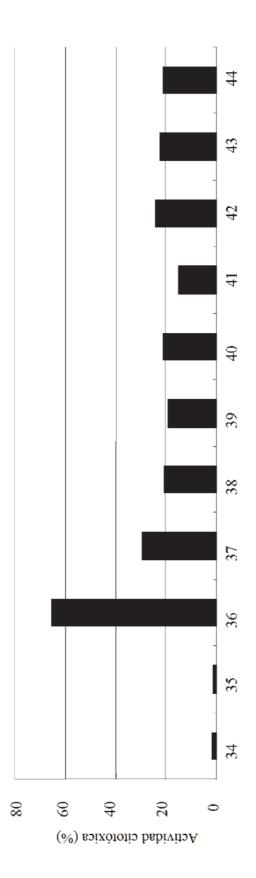


Fig. 13