

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 664 837

51 Int. Cl.:

C12N 1/21 (2006.01) C12N 9/10 (2006.01) C12N 9/12 (2006.01) C12P 13/08 (2006.01) C12P 13/04 (2006.01) C12P 13/22 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 18.01.2012 PCT/KR2012/000444

(87) Fecha y número de publicación internacional: 26.07.2012 WO12099396

Fecha de presentación y número de la solicitud europea: 18.01.2012 E 12736463 (6)

97 Fecha y número de publicación de la concesión europea: 10.01.2018 EP 2665809

(54) Título: Microorganismo con productividad de L-aminoácidos potenciada y proceso para producir L-aminoácidos con su uso

(30) Prioridad:

18.01.2011 KR 20110005136

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 23.04.2018

(73) Titular/es:

CJ CHEILJEDANG CORPORATION (100.0%) 330, Dongho-ro, Jung-gu Seoul 100-400, KR

(72) Inventor/es:

LEE, KWANG HO; LEE, KEUN CHUL; LEE, SEOK MYUNG y HWANG, YOUNG BIN

(74) Agente/Representante:

GARCÍA GONZÁLEZ, Sergio

DESCRIPCIÓN

Microorganismo con productividad de L-aminoácidos potenciada y proceso para producir L-aminoácidos con su uso

5 Campo técnico

La presente invención se refiere a un microorganismo que tiene una productividad potenciada de aminoácidos útiles por una actividad celular mejorada y un menor tiempo de cultivo celular gracias a un aumento del poder de reducción, así como a un método para producir L-aminoácidos con su uso.

Antecedentes en la técnica

Se sabe que los microorganismos que producen por fermentación productos útiles requieren una gran cantidad de energía, como ATP (adenosina 5'-trifosfato), o poder de reducción, como NADPH (nicotinamida adenina dinucleótido fosfato), para la potenciación de su ruta de biosíntesis.

Durante el metabolismo de los microorganismos, es muy importante el equilibrio intracelular entre NADH (dinucleótido de nicotinamida y adenina) utilizado en las reacciones catabólicas y NADPH (nicotinamida adenina dinucleótido fosfato) utilizado en las reacciones anabólicas. El equilibrio se controla por fosforilación de NAD o desfosforilación de NADP, tal como se muestra en la siguiente fórmula:

$$NADP^+ \rightarrow NAD^+ + fosfato$$

25

10

15

20

En *E.coli*, se sabe que la fosforilación de NAD está catalizada por una enzima denominada NAD quinasa (EC 2.7.1.23) codificada por el gen *nadK* (o yfjB). NAD quinasa utiliza Mg²⁺ como cofactor de una reacción enzimática y es inhibido alostéricamente por NADPH y NADH. Se sabe que el valor Km para NAD+ es 2000 μM y que para ATP es 2500 μM (Eur. J. Biochem., (2001) 268: 4359-4365).

30

Apenas se ha estudiado la desfosforilación de NADP a pesar de su central importancia en la ruta metabólica. Aunque se ha demostrado que un homólogo de NAD quinasa en el arquea *Metharnococcus jannaschii* tiene actividad NADP fosfatasa, todavía no se han identificado los genes que codifican la enzima que tiene dicha actividad en fuentes eucariotas y eubacterianas. En *E. coli*, el producto del gen *cysQ* ha presentado altas actividades de NADP y NADPH fosfatasa, pero los estudios cinéticos de la enzima purificada indicaron que no se trata de la verdadera NADP fosfatasa de este organismo (Biochem J., (2007) 402:205-218, Biosci. Biotechnol. Biochem., (2008) 72:919-930).

35

40

Las actividades de NAD quinasa se encuentran en muchos microorganismos y el sitio de unión a NAD y el sitio activo de NAD quinasa, que son importantes para la actividad catalítica, presentan secuencias de aminoácidos altamente conservadas entre especies. Por ejemplo, diversos microorganismos, incluyendo bacterias Grampositivas, presentan un alto nivel de homología en la predicción de la estructura terciaria de las hélices 2, 4 y 5 (cada una de ellas indicadas por H2, H4 y H5) (Appl Microbiol Biotechnol (2010) 87:583-593).

45

NADP generado por NAD quinasa suministra finalmente un poder de reducción y, en particular, NADP+/NADPH requerido para la producción en masa de productos útiles en *E. coli*, es un elemento esencial para reacciones anabólicas (Biochem J., (2007) 402:205-218). En *E. coli*, NADPH se produce principalmente por 1) la ruta de la pentosa fosfato oxidante, 2) isocitrato deshidrogenasa dependiente de NADP del ciclo TCA (gen *icd*), y 3) transhidrogenasa (gen *pntAB*) (J Biol Chem., (2004) 279: 6613-6619).

50

55

Estas reacciones producen NADPH utilizando NADP como sustrato y, por tanto, se puede aumentar el nivel de NADPH aumentando el nivel intracelular de NADP. Así pues, se han realizado muchas tentativas para aumentar el nivel intracelular de NADP para la producción industrial de diversos metabolitos, como por ejemplo, 1) aumento de la producción de NADPH y timidina a través de la sobreexpresión de *nadK* en *E. coli* (Biotechnol Lett., (2009) 31:1929-1936), 2) aumento de la producción de la cantidad de NADPH y PHB (polihidroxibutirato) a través de la sobreexpresión de *nadK* en *E. coli* (Appl Microbiol Biotechnol., (2009) 83:939-947), y 3) aumento de la producción de lisina a través de la sobreexpresión de *ppnK* en corinebacteria, similar a la sobreexpresión de *nadK* en *E. coli*. El punto clave en todas estas clases es aumentar la expresión del gen *nadK*. Sin embargo, en cada una de estas clases, debe aumentarse también una fuente de fosfato, como ATP, para aumentar el poder de reducción a través de un aumento del nivel de NADPH, como resultado del aumento del nivel de NADP causado por la alta expresión de NAD quinasa.

60

65

ATP se produce principalmente a través de un sistema de transporte de electrones o fosforilación a nivel de sustrato en microorganismos. La ATP producida se descompone para suministrar energía a las células y se reproduce por glucólisis o fosforilación oxidativa. Sobre la base de este hecho, se ha realizado un estudio sobre la aplicación de un sistema de regeneración de ATP bacteriano a un proceso de producción para suministrar energía durante la

producción en masa de productos útiles (Biosci Biotechnol Biochem., (1997) 61: 840-845).

Kiyotaka et al. (FEMS Microbiology Letters, (2009) 297 (2): 217-224) divulga que la deleción de tehB en E. coli puede contribuir a un descenso del consumo excesivo de ATP.

5

10

15

20

30

La patente europea EP 1 829 965 A1 divulga cepas mutantes de E. coli que tienen ADN cromosómico más corto que el de la cepa de E. colí de tipo silvestre y que presentan la propiedad de que el número de células transcurrido cierto período de cultivo es mayor que el de una cepa de tipo silvestre. Por tanto, estas cepas mutantes pueden producir eficientemente en un medio sustancias como proteínas, péptidos, aminoácidos, ácidos nucleicos, etc., para generar y acumular dichas sustancias útiles, recuperándose dichas sustancias útiles del cultivo.

En la patente internacional WO 2010/149574 A1 se describe un método para preparar compuestos químicos orgánicos como L-aminoácidos por fermentación de microorganismos, incluyendo E. coli. Más en particular, dicha divulgación proporciona que una sobreexpresión de NAD quinasa dependiente de ATP presente en E. coli en productores de L-aminoácidos adecuados tiene como resultado un aumento de la producción de aminoácidos.

Sin embargo, tal como se ha descrito, existen pocos estudios sobre el método para aumentar una fuente de fosfato necesaria para aumentar el poder de reducción a través de la alta expresión de NAD guinasa y un subsiguiente aumento de los productos de biosíntesis. Por otra parte, se ha estudiado meramente un aumento del suministro de energía a través de la alta producción de ATP por lo que respecta al suministro de energía a las células y no se ha estudiado la utilización de ATP como fuente de fosfato en la técnica relacionada.

Divulgación de la invención

25 Problema técnico

Por consiguiente, para el desarrollo de microorganismos que producen una alta concentración de L-aminoácidos, los autores de la presente invención han llevado a cabo estudios sobre los genes que están relacionados con diversos metabolismos de energía y de poder de reducción. En consecuencia, han observado que un microorganismo que tiene una potenciación de la expresión de NAD quinasa codificada por nadK y la inactivación de una enzima de una secuencia de aminoácidos SEQ ID NO. 2 codificada por el gen tehB es capaz de producir eficazmente una alta concentración de L-aminoácidos y, sobre esta base, es posible aumentar eficazmente una fuente de ATP fosfato, en virtud de lo cual han completado la presente invención.

35 Es decir, la presente invención se refiere a un método para aumentar la producción de un aminoácido deseado aumentando eficazmente el poder de reducción en un microorganismo, en el que se suministra adicionalmente ATP para su reducción durante el proceso de biosíntesis de NADP para aumentar el poder de reducción del género Escherichia que tiene productividad de L-aminoácidos.

40 Por lo tanto, un objeto de la presente invención es proporcionar un microorganismo del género Escherichia que presenta una potenciación de la productividad de L-aminoácido, en el que el microorganismo se transforma para tener una actividad NAD quinasa potenciada y una actividad inactivada de una enzima que tiene una secuencia de aminoácidos de SEQ ID NO. 2 codificada por el gen tehB gene, en virtud de lo cual presenta una potenciación del poder reductor. 45

Otro objeto de la presente invención es proporcionar un método para producir L-aminoácidos utilizando el microorganismo del género Escherichia.

Solución del problema

50

Para conseguir los objetos mencionados, la presente invención proporciona un microorganismo del género Escherichia que presenta una potenciación de la productividad de L-aminoácido, en el que se transforma el microorganismo para tener una potenciación de la actividad NAD quinasa y una actividad inactivada de la enzima que tiene la secuencia de aminoácidos de SEQ ID NO. 2 codificada por el gen tehB.

55

La presente invención proporciona también un método para producir L-aminoácidos utilizando el microorganismo del género Escherichia.

Efectos ventajosos de la invención

60

65

De acuerdo con la presente invención, se crea un suplemento de un agente de reducción NADPH en el metabolismo de la energía intracelular de un microorganismo que presenta productividad de L-aminoácidos por potenciación de NADP, y se suministra la subsiguiente ausencia de ATP por inactivación de una enzima que tiene la secuencia de aminoácidos de SEQ ID NO. 2 codificada por el gen tehB y, de esta forma, es posible mejorar la productividad de Laminoácidos restaurando el equilibrio del metabolismo de la energía, y aumentando la actividad celular y reduciendo el tiempo de cultivo.

Breve descripción de los dibujos

La FIG. 1 es un diagrama en el que se muestra un vector *nadK*-pINT17E para aumentar el número de copias del gen *nadK* de *E.coli*.

Mejor modo de realización de la invención

La presente invención proporciona un microorganismo que presenta una potenciación de la productividad de L-aminoácido y un método para producir L-aminoácidos con su uso.

10

5

El microorganismo productor de L-aminoácidos de la presente invención comprende cualquier microorganismo procariota o eucariota y entre sus ejemplos se incluyen las cepas de microorganismo que pertenecen al género *Escherichia, Erwinia, Serratia, Providencia, Corynebacterium y Brevibacterium.* El microorganismo de la presente invención es preferentemente un microorganismo que pertenece al género *Escherichia* y, más preferentemente, *E.coli.*

15

En la presente invención, el L-aminoácido es preferentemente L-treonina o L-triptófano.

20

En la realización preferente de la presente invención, la presente invención proporciona un microorganismo del género *Escherichia* que presenta una potenciación de la productividad de L-aminoácido, en el que el microorganismo se transforma para tener una actividad de NAD quinasa potenciada y una actividad inactivada de la enzima que tiene una secuencia de aminoácidos de SEQ ID NO. 2 codificada por el gen *tehB*, en virtud de cual tiene una potenciación del poder de reducción.

25

En la presente invención, la NAD quinasa se refiere a una enzima que tiene actividad de convertir NAD (nicotinamida adenina dinucleótido) en NADP (nicotinamida adenina dinucleótido fosfato) utilizando un grupo fosfato derivado de ATP y otros compuestos.

30

Se divulga específicamente una secuencia de la proteína que tiene actividad NAD quinasa como una secuencia de aminoácidos de SEQ ID NO. 4, y el gen *nadK* que codifica la NAD quinasa es preferentemente un polinucleótido que tiene una secuencia de bases de SEQ ID NO. 3.

35

En la presente invención, puede realizarse la potenciación de la actividad de NAD quinasa del género *Escherichia* que tiene productividad de L-aminoácidos a través de varios métodos conocidos en la técnica. Por ejemplo, el método puede incluir un método de inserción de la propia secuencia de bases que codifica NAD quinasa o un polinucleótido que incluye una región reguladora de expresión extraña en un cromosoma, un método que consiste en aumentar el número de copias introduciéndola en sistema de vector, o un método que consiste en potenciar la actividad enzimática por sustitución de la región reguladora de expresión del gen con otra secuencia reguladora, modificación de toda o parte de la secuencia reguladora de la expresión, o mutación del propio gen.

40

Más preferentemente, la presente invención puede aplicar el método que consiste en aumentar el número de copias introduciendo la secuencia de bases que codifica NAD quinasa en ADN cromosómico de una cepa para potenciar la actividad de NAD quinasa del microorganismo que pertenece al género *Escherichia* que tiene productividad de Laminoácidos.

45

Las personas especializadas en la técnica apreciarán que el aumento del número de copias de la NAD quinasa dentro del ADN cromosómico presenta el mismo efecto que el aumento del número de copias de NAD quinasa mediante el vector extracromosómico, o que el aumento del nivel de expresión por modificación de la región reguladora de expresión del gen nadK que codifica NAD quinasa en el sitio intra- o extra-cromosómico o la mutación del propio gen. Si se utiliza un vector, se transforma el género Escherichia que tiene productividad de L-aminoácidos con el vector recombinante introducido por la secuencia de bases, preparando así un microorganismo del género Escherichia que presenta una potenciación de la actividad de quinasa.

50

El vector utilizado en la presente invención no está particularmente limitado y se puede utilizar cualquier vector de expresión conocido. Preferentemente, puede utilizarse un vector pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322 o pMW118.

55

De acuerdo con una realización de la presente invención, el potenciamiento de la actividad NAD quinasa por transformación aumenta los niveles de NADP y NADPH intracelulares en una cepa.

60

Para aumentar la producción de ATP, los autores de la presente invención también han aplicado un método de inactivación de una actividad de una enzima codificada por el gen *tehB*.

65

En la presente invención, se conoce el gen *tehB* gene (ID de gen NCBI: 945979) como un gen que codifica una proteína de resistencia a telurito o una metiltransferasa dependiente de S-adenosil-L-metionina prevista, pero sus funciones siguen sin estar aclaradas.

Sin embargo, estudios recientes han notificado que la deleción del gen *tehB* en *E. coli* presenta un aumento del 150 % de la producción de ATP en comparación con una cepa parental, y señalan que este resultado se atribuye a una reducción de la ATP necesaria para la biosíntesis de S-adenosil metionina desde metionina (FEMS Microbiol Lett, (2009) 297:217-224).

5

Concretamente, puede describirse una secuencia de la metiltransferasa dependiente de S-adenosil-L-metionina prevista mediante una secuencia de aminoácidos de SEQ ID NO. 2. Por otra parte, el gen *tehB* que codifica la enzima se deriva de *E. coli* y, preferentemente, un polinucleótido que tiene una secuencia de bases de SEQ ID NO. 1

10

El método de inactivación de una actividad de la enzima codificada por el gen *tehB* abarca todos los métodos de modificación del correspondiente gen para impedir la producción de la enzima codificada por el gen que tiene la secuencia de bases of SEQ ID NO. 1. Un ejemplo de los métodos puede ser por deleción de todo o parte del gen por recombinación homóloga, supresión de la expresión de enzima por inserción de transposón dentro del gen correspondiente, supresión de la expresión de enzima por inserción de genes de resistencia a los antibióticos o similar, pero no se limita a ellos.

15

20

25

Tal como se utiliza en el presente documento, el término "transformación" significa un método en el que se introduce un gen en una célula hospedadora para su expresión en la célula hospedadora. Los genes transformados, si están en el estado de ser expresados en la célula hospedadora, comprenden cualquiera de los genes insertados en el cromosoma de la célula hospedadora o que ocupan una posición en otras partes del cromosoma. Por otra parte, el gen comprende ADN y ARN como polinucleótido capaz de codificar un polipéptido. Siempre y cuando se pueda introducir el gen en la célula hospedadora y expresarse en ella, se introduce el gen en cualquier tipo. Por ejemplo, se puede introducir el gen en la célula hospedadora en el tipo de casete de expresión que es un expresoma de polinucleótido que comprende en sí elementos completos para expresar el gen. El casete de expresión que comprende un promotor que está operativamente conectado al gen, señal de terminación de transcripción, sitio de unión a ribosoma y señal de terminación de traducción. El casete de expresión puede ser del tipo del vector de expresión capaz de autoclonación. El gen también puede introducirse en la célula hospedadora por sí mismo o en el tipo de expresoma de polinucleótido que se va a conectar operativamente con la secuencia necesaria para la expresión en la célula hospedadora.

30

En la realización preferente de la presente invención, el microorganismo transformado a través del método puede ser *E. coli* y, preferentemente, *E coli* CA03-448(KCCM11167P), CA03-449(KCCM11168P) o CA04-2001(KCCM11166P).

35

La presente invención proporciona también un método para producir L-aminoácidos utilizando el microorganismo del género *Escherichia*

En la realización preferente de la presente invención, la presente invención proporciona el método para producir L-aminoácidos cultivando el microorganismo recombinante del género *Escherichia* que presenta una potenciación de la productividad de L-treonina o L-triptófano en un medio que comprende sacarosa o glucosa como fuente de carbonos principal.

45

40

Específicamente, la presente invención proporciona un método para producir L-aminoácidos que comprende las etapas de inocular y cultivar el microorganismo recombinante del género *Escherichia* en un medio de cultivo que contiene total o parcialmente sacarosa o glucosa como fuente de carbono; y separar los L-aminoácidos del medio de cultivo.

50

Los procedimientos de cultivo de la presente invención se pueden llevar a cabo en un medio adecuado o en condiciones de cultivo conocidas dentro de la técnica. Dependiendo de las cepas utilizadas, las personas especializadas en la técnica pueden ajustar fácilmente los procedimientos de cultivo. Entre los ejemplos de procedimientos de cultivo se incluyen el tipo discontinuo, el tipo continuo y el tipo de alimentación discontinua, pero no se limitan a ellos. Preferentemente, los medios utilizados en el método de cultivo deberán satisfacer preferentemente los requisitos de una cepa específica.

55

60

65

El medio utilizado en la presente invención contiene sacarosa o glucosa como fuente de carbono principal. Y también es posible utilizar melazas que contienen una alta concentración de sacarosa como fuente de carbono y el medio puede contener una cantidad apropiada de diversas fuentes de carbono sin limitación. Entre los ejemplos de fuente de nitrógeno que se puede utilizar se incluyen una fuente de nitrógeno orgánico como peptona, extracto de levadura, extracto de carne, extracto de malta, agua de macerado de maíz y harina de soja, y una fuente de nitrógeno inorgánico como urea, sulfato de amonio, cloruro de amonio, fosfato de amonio, carbonato de amonio y nitrato de amonio y se pueden utilizar en solitario o en cualquier combinación de los mismos. Pueden añadirse al medio fuentes de fosforo como dihidrógeno fosfato potásico, hidrógeno fosfato dipotásico o las correspondientes sales que contienen sodio. Por otra parte, el medio puede contener sales de metal como sulfato de magnesio y sulfato ferroso. Asimismo, puede suplementarse el medio con aminoácidos, vitaminas y precursores apropiados. Estos medios o precursores pueden añadirse a los cultivos a través de un método de tipo continuo o discontinuo.

Durante el cultivo, pueden añadirse compuestos como hidróxido de amonio, hidróxido de potasio, amoníaco, ácido fosfórico y ácido sulfúrico para ajustar el pH de los cultivos. Asimismo, durante el cultivo, pueden añadirse apropiadamente agentes desespumantes como éster poliglicólico de ácido graso para reducir la formación de espumas en los cultivos. Para mantener los cultivos en estados aeróbicos, puede inyectarse en los cultivos oxígeno o gas que contiene oxígeno. Para mantener los cultivos en estados anaeróbicos o microaeróbicos, es posible no añadir ningún gas o inyectar gas nitrógeno, hidrógeno o dióxido de carbono en los cultivos.

Se mantienen los cultivos a entre 27 y 37 °C y, preferentemente a entre 30 y 35 °C. Puede continuarse el cultivo hasta obtener la cantidad deseada del material deseado y, preferentemente durante 10 a 100 horas.

El método de recogida y recuperación de los aminoácidos producidos en la etapa de cultivo de la presente invención puede realizarse a través de un método apropiado conocido en la técnica, dependiendo de los procedimientos de cultivo, por ejemplo, de tipo discontinuo, de tipo continuo o de tipo de alimentación discontinua, para recoger el aminoácido deseado del medio de cultivo.

Modo para la invención

5

10

15

20

25

30

35

40

45

50

A continuación, se describirá la presente invención con más detalle haciendo referencia a los ejemplos. Sin embargo, dichos ejemplos tienen un único fin ilustrativo y la invención no queda limitada con dichos ejemplos.

Ejemplo 1: Preparación de cepa productora de L-treonina que presenta inactivación de enzima codificada por gen tehB derivado de E. coli

Se suprimió el gen *tehB* de una cepa productora de L-treonina, *E.coli* KCCM10541 (patente coreana NO. 10-0576342) por recombinación homóloga.

E. coli KCCM10541 es una cepa derivada de una cepa productora de L-treonina, *E coli*. KFCC10718 (publicación de patente coreana NO. 10-1992-0008365) y su cepa parental, *E coli* KFCC 10718 tiene resistencia a un análogo de L-metionina, un fenotipo auxótrofo de metionina, resistencia a un análogo de L-treonina, un fenotipo auxótrofo de isoleucina permeable, resistencia a un análogo de L-lisina y resistencia a ácido α-aminobutírico y es capaz de producir L-treonina.

Se sabe que el gen *tehB* gene (ID Gen NCBI: 945979) que se va a suprimir codifica una metiltransferasa dependiente de S-adenosil-L-metionina prevista. Cuando se suprime el gen, no se necesita ATP utilizada en la producción de S-adenosil metionina y, por lo tanto, se seleccionó el gen *tehB* como gen diana para reducir el consumo de energía, y tiene una secuencia de bases de SEQ ID NO. 1.

Para inactivación, se utilizó inactivación en una etapa, que es una técnica que consiste en construir un mutante utilizando una lambda Red recombinasa desarrollada por Datsenko KA et al. (Proc Natl Acad Sci Estados Unidos (2000) 97:6640 6645).

Para confirmar la inserción en el gen, se utilizó un gen resistente a cloranfenicol como marcador. Para la eliminación del gen resistente a cloranfenicol, se utilizó un sistema de recombinación específico de sito Cre/loxP (BMC Biotechnology (2001) 1:7).

Se realizó la reacción en cadena de la polimerasa (en adelante, se hace referencia a ella como "PCR") utilizando un vector pMloxCm como matriz y los siguientes cebador 1 y cebador 2 que tenían una parte del gen *tehB* y una parte de la secuencia de gen resistente a cloranfenicol en las condiciones: 30 ciclos de desnaturalización a 94 °C durante 30 segundos, hibridación a 55 °C durante 30 segundos y elongación a 72 °C durante 1 minuto, con el resultado de la amplificación de un fragmento de gen de aproximadamente 1200 pb.

Tabla 1

	[Tabla 1]
Cebador 1	5'-GCACACACTCTGAAGTACTGGAAGCGGTGAAAGTGGTTAA
	ACCGGGTAAAACGCTGGATTAGGTGACACTATAGAACGCG -
	3' (SEQ ID NO. 6)
Cebador 2	5'-CACCCTCTCCCAGCCTTCGTAATATCGACGTAATTCTCCCT
	CTTTGAAGGCAAACGGGAATAGTGGATCTGATGGGTACC -3'
	(SEQ ID NO. 7)

55

Por otra parte, se sometió a electroforesis el fragmento de ADN obtenido por amplificación de PCR en un gel de agarosa al 0,8 % y después se eluyó y se utilizó como plantilla para una PCR secundaria. Se llevó a cabo una PCR secundaria utilizando el producto de PCR primaria eluido como matriz y los siguientes cebadores 3 y cebador 4 que

tenían 20 pb de una secuencia complementaria para las regiones 5' y 3' del fragmento de ADN primario y que tenía además las regiones 5 y 3' del gen *tehB* en las condiciones: 30 ciclos de desnaturalización a 94 C durante 30 segundos, hibridación a 55 °C durante 30 segundos y elongación a 72 C durante 1 minuto, con el resultado de la amplificación de un fragmento de gen de aproximadamente 1300 pb. Se sometió a electroforesis el fragmento de ADN obtenido a través del procedimiento anterior en gel de agarosa al 0,8 % y después se eluyó utilizando recombinación.

Tabla 2

10

5

	[Tabla 2]
Cebador 3	5'- GTGACGAAAACTATTTTACTGATAAATATGAATTAACCCG-
	CACACACTCTGAAGTACTG -3' (SEQ ID NO. 8)
Cebador 4	5'- GTCGGTGCGGTGCAGCTCGCCGACGTCTTCATTG-
	TATTTCACCCTCTCCCAGCCTTCGTA -3' (SEQ ID NO. 9)

Se preparó *E. coli* KCCM 10541 con productividad de treonina, que había sido transformado con plásmido pKD46 de acuerdo con el método desarrollado por Datsenko KA et al. (Proc. Natl. Acad. Sci.(2000) 97:6640-6645, GenBank No. AY048746), como cepa competente y se llevó a cabo la transformación introduciendo el fragmento de gen de 1300 pb obtenido por PCR. Se seleccionaron las cepas obtenidas en medio LB suplementado con cloranfenicol. Se confirmó una deleción del gen *tehB* con un producto de PCR de aproximadamente 2000 pb obtenido por PCR utilizando los siguientes cebador 5 y cebador 6.

Tabla 3

20

25

35

40

55

15

[Tabla 3]		
Cebador 5	5'-TTTAGGCGCAGGCGTTTTCT -3' (SEQ ID NO. 10)	
Cebador 6	5'-TTTTACGTGCCAGCATCGTG -3' (SEQ ID NO. 11)	

Después de retirar el plásmido pKD46, se introdujo la cepa de *E. coli* recombinante primaria que tenía resistencia a cloranfenicol con un plásmido pJW168 para eliminar el gen marcador de cloranfenicol de la cepa (gen, (2000) 247,255-264). Se llevó a cabo la PCR utilizando los cebadores 5 y 6 para obtener un producto de PCR de 832 pb, lo que indicó que la cepa obtenida finalmente tenía la deleción deseada.

Ejemplo 2: Construcción de vector aumentando el número de copias del gen nadK de E.coli en cromosoma

30 Se amplificó el gen *nadK* por PCR utilizando el cromosoma de *E. coli* W3110 (GeneBank número de acceso: AC000091) cepa adquirida de la Colección de Cultivos Tipo Americana (ATCC) como plantilla.

Concretamente, se llevó a cabo la PCR utilizando los siguientes cebadores 7 y 8 en las condiciones: 30 ciclos de desnaturalización a 94 °C durante 30 segundos, hibridación a 55 °C durante 30 segundos y elongación a 72 °C durante 1 minuto con el resultado de la amplificación del fragmento de gen de 1407 pb (SEQ ID NO.5).

La secuencia amplificada contiene la secuencia codificante de *nadK* así como 501 pb de la región autopromotora prevista. Por otra parte, el cebador 7 tiene un sitio de reconocimiento de enzima de restricción para EcoR I, y el cebador 9 tiene un sitio de reconocimiento de enzima de restricción para Xba I.

Tabla 4

[Tabla 4]		
Cebador 7	5'-CCCGAATTCGCGTCAGCTCAATGCCTTCA-3' (SEQ ID NO. 12)	
Cebador 8	5'-GGGTCTAGAGCTGGCGTAAAATTAGAATA- 3' (SEQ ID NO. 13)	

- Se trató el polinucleótido obtenido con las enzimas de restricción, Xba I y EcoR I, y se clonó en los sitios Xba I y EcoR I del vector pINT17E, seguido de la transformación en *E.coli* BW25113. A continuación, se propagaron las células en medio sólido LB Cm (LB + plaga de agar con cloranfenicol). Se obtuvieron los vectores clonados de las colonias aplicando procedimientos mini-prep convencionales, y se designaron como *nadK_pINT17E*. En la Fig. 1 se muestra el diagrama del vector FIG. 1.
- 50 <u>Ejemplo 3: Preparación de cepa productora de L-treonina que tiene inactivación de la enzima codificada por el gen tehB –derivado de E.coli y potenciación de la actividad NAD quinasa a través del aumento del número de copias en el cromosoma</u>
 - Se utilizaron la cepa con deleción del gen *tehB* preparada de acuerdo con el método descrito en el Ejemplo 1 y el vector *nadK* pINT17E preparado de acuerdo con el método descrito en el Ejemplo 2 para aumentar el número de

copias de NAD quinasa.

En primer lugar, se introdujo plásmido pKD46 en la cepa con deleción del gen *tehB* preparada de acuerdo con el método descrito en el Ejemplo 1, y se preparó como cepa competente, y se transformó la cepa con el vector *nadK_pINT17E*. Se llevó a cabo el cultivo a 37 °C durante 1~2 días para obtener colonias. Se llevó a cabo la PCR utilizando los cebadores 8 y 9 para confirmar si el gen se insertaba en el cromosoma de las colonias obtenidas. Se llevó a cabo la PCR en las siguientes condiciones: 30 ciclos de desnaturalización a 94 °C durante 30 segundos, hibridación a 55 °C durante 45 segundos y elongación a 72 °C durante 2 minutos, con el resultado de la amplificación de un fragmento de gen de aproximadamente 2000 pb.

Tabla 5

5

10

[Tabla 5]			
Cebador 9	5'-TGGTATTCACTCCAGAGCGA-3' (SEQ ID NO. 14)		

- Después de separar el plásmido pKD46 de la cepa recombinante primaria que tenía resistencia cloranfenicol, se introdujo el plásmido pJW168 para eliminar el gen marcador cloranfenicol de la cepa (gen (2000) 247, 255-264). Se llevó a cabo PCR utilizando los cebadores 10 y 11 para obtener un producto de PCR de aproximadamente 1500 pb, lo que indica que, deseablemente, están presentes dos copias consecutivas del gen *nadK* en el cromosoma.
- 20 Se designó el *E. coli* transformado KCCM10541Δ*tehBnadK* copia2 (CA03-448).

Tabla 6

[Tabla 6]			
Cebador 10 5'-GCATCAGCACCGCGATAAA- 3' (SEQ ID NO. 15)			
Cebador 11	5'-CATGTGTTGTCAGTGCAGT-3' (SEQ ID NO. 16)		

25

45

55

Ejemplo 4: Preparación de cepa productora de L-triptófano que tiene inactivación de la enzima codificada por el gen tehB derivado de E. coli y potenciación de actividad NAD quinasa aumentando su número de copias en el cromosoma.

- 30 Se preparó *E. coli* transformado de la misma manera que en los Ejemplos 1 a 3, con la excepción de que se utilizó una cepa productora de L-triptófano, *E.coli* KCCM 10812.
- La cepa parental utilizada en este ejemplo, *E.coli* KCCM 10812P, es una cepa derivada de *E. coli* mutante que tiene productividad de L-fenilalanina (KFCC 10066), y que se caracteriza por que se libera auxotrofía de triptófano, se inactivan los genes *pheA*, *trpR*, m*tr* y *tnaAB* y se mutan los genes *aroG* y *trpE* genes en el cromosoma (patente coreana NO. 10-0792095).
 - El *E.coli* transformado se designó KCCM10812Δ*tehBnadK* copia2 (CA04-2001).
- 40 <u>Ejemplo comparativo 1: Preparación de cepa productora de L-treonina o L-triptófano que tiene inactivación de la enzima codificada por el gen tehB</u>
 - Para suprimir el gen *tehB*, se utilizaron la cepa productora de L-treonina, *E.coli* KCCM10541, y la cepa productora de triptófano, *E.coli* KCCM10812, tal como se describe en el Ejemplo 1. Se aplicó inactivación en una etapa, que es una técnica de construcción de mutante con el empleo de una lambda Red recombinasa desarrollada por Datsenko KA et al. (Proc Natl Acad Sci Estados Unidos., (2000) 97:6640-6645), y el sistema de recombinación específica de sitio Cre/loxP (BMC Biotechnology.(2001) 1:7).
- Se llevó a cabo la PCR utilizando los cebadores 5 y 6 para obtener productos de PCR de 832 pb, lo que indicó que las cepas obtenidas finalmente tenían la deleción deseada y se designaron las cepas KCCM10541Δ*tehB* y KCCM10812PΔ*tehB*, respectivamente.

Ejemplo comparativo 2: Preparación de cepas productores de L-treonina o L-triptófano que presenta una potenciación de la actividad de NAD quinasa

- De acuerdo con el método descrito en el Ejemplo 3, se aumentó el número de copias del gen *nadK* a dos copias en el cromosoma de las cepas productoras de treonina y triptófano para preparar cepas que tenían potenciación de la actividad de NAD quinasa.
- 60 Se introdujo el plásmido pKD46 en la cepa productora de treonina, KCCM10541, y la cepa productora de triptófano, KCCM10812, y se prepararon como células competentes, y se transformaron las cepas con el vector nadK_pINT17E. A continuación, se llevó a cabo el cultivo a 37 °C durante 1-2 días para obtener colonias, se llevó a cabo la PCR utilizando los cebadores 8 y 9 para confirmar si el gen se había insertado o no en el cromosoma de las

colonias obtenidas.

Después de eliminar el plásmido pKD46 de la cepa recombinante primaria que tenía resistencia a cloranfenicol, se introdujo el plásmido pJW168 para eliminar el gen marcador de cloranfenicol de la cepa (Gen, (2000) 247, 255-264). Se realizó la PCR utilizando los cebadores 10 y 11 para obtener productos de PCR de aproximadamente 1500 pb, lo que indicó que estaban deseablemente presentes dos copias consecutivas del gen *nadK* en el cromosoma. Se designaron las cepas preparadas KCCM10541 *nadK* copia2 y KCCM10812 *nadK* copia2, respectivamente.

Ejemplo Experimental 1: Titulación de cepa productora de L-treonina que presenta una potenciación de la actividad de NAD quinasa e inactivación de la enzima codificada por el gen tehB

En primer lugar para proporcionar la cepa productora de L-treonina con capacidad de asimilar sacarosa, se construyó un vector a pAcscBAR'-mak (publicación de patente coreana NO. 10-2010-0092765) (SEQ ID NO. 21) del siguiente modo:

Después de construir pAcscBAR, se clonó el gen *mak* para dar pAcscBAR. Para la construcción de pAcscBAR, se utilizaron los cebadores 12 y 13 para amplificar un polinucleótido de la región cscB, en el que se eliminó cscK.

Tabla 7

20

25

30

40

45

50

5

10

15

[Tabla 7]		
Cebador 12	5'-CGCGATATCTAGCATATGCCGGGTACCGCACTAGTTGAG	
	AGTAAACGGCGAAGT- 3' (SEQ ID NO. 17)	
Cebador 13	5'- ATTCGGCCGGAGCCCTGCAGGTGCACGAGTA-	
	CATTTGAGCGACTGT- 3' (SEQ ID NO. 18)	

Se llevó a cabo la PCR en las siguientes condiciones: tras la desnaturalización a 94 °C durante 3 minutos, seguido de 25 ciclos de desnaturalización a 94 °C durante 30 segundos, hibridación a 56 °C durante 30 segundos y elongación a 72 °C durante 1 minuto y 30 segundos, y a continuación elongación a 72 °C durante 7 minutos, con el resultado de la amplificación de un polinucleótido de 1521 pb. Se trataron el polinucleótido obtenido y pAcscBAR con enzimas de restricción, EcoRV y EagI, respectivamente y se clonaron y transformaron para dar *E.coli* DH5α. Se seleccionaron colonias que contenían pAcscBAR por PCR utilizando las colonias cultivadas en medio LB y se obtuvieron los plásmidos utilizando procedimientos mini-prep de plásmido convencionales. Se confirmó la ausencia de mutación por análisis de secuencia de cscBAR unido en los sitios Xbal y EagI del plásmido pAcscBAR obtenido.

Se utilizaron los cebadores 14 y 15 y el cromosoma de *E.coli* W3110 como matriz para amplificar un polinucleótido que contenía el gen *mak* y se clonó para dar los sitios de enzima de restricción Pstl y Eagl de pAcscBAR para construir el vector pAcscBAR'-mak.

35 Tabla 8

[Tabla 8]		
Primer 14	5'- CACTGCAGTGGGGTAAATGCCATCG- 3' (SEQ ID NO. 19)	
Primer 15	5'-AACGGCCGTCTCGGTGCTCATTACT3' (SEQ ID NO. 20)	

Se llevó a cabo la PCR en las siguientes condiciones: tras la desnaturalización a 94 °C durante 3 minutos, seguido de 25 ciclos de desnaturalización a 94 °C durante 30 segundos, hibridación a 56 °C durante 30 segundos y elongación a 72 °C durante 1 minuto y 30 segundos y, a continuación, elongación a 72 °C durante 7 minutos, con el resultado de la amplificación de un polinucleótido de 1388 pb. Se trataron el polinucleótido obtenido y pAcscBAR con enzimas de restricción, Pstl y Eagl, respectivamente y se clonaron y transformaron para dar *E.coli* DH5α. Se seleccionaron colonias que contenían pAcscBAR'-mak por PCR utilizando las colonias cultivadas en medio LB y se obtuvieron plásmidos utilizando procedimientos de mini-prep de plásmido convencionales. Se confirmó la ausencia de mutación por análisis de secuencia de cscBAR-mak unida a los sitios Xbal y Eagl del plásmido pAcscBAR'-mak obtenido.

Se introdujo pAcscBAR'-mak construido en la cepa de *E. coli* recombinante KCCM10541Δ*tehB nadK* copia2 del Ejemplo 3, la cepa parental *E. coli* KCCM10541 y la cepa KCCM10541 con la deleción del gen *tehB* (designado KCCM10541Δ*tehB*) y la cepa KCCM10541que tiene un aumento del número de copias del gen *nadK* (designado KCCM10541 *nadK* copia2) preparado en los Ejemplos comparativos 1 y 2, respectivamente, y a continuación, se llevó a cabo la titulación.

Se cultivó cada una de las cepas que tenían diferentes características genéticas en medios sólidos LB en una incubadora a 33 °C durante toda la noche. A continuación, se inoculó 1 asa bacteriológica de platino en 25 ml de medio de titulación que contenía sacarosa, tal como se muestra en la tabla 9 y se cultivó en la incubadora a 33 °C y a 200 rpm durante 48 horas. En la tabla 10 se muestran los resultados. Todos los resultados fueron representados como el valor medio obtenido de tres matraces.

Tabla 9

[Tabla 9] Composición Concentración (por litro) Sacarosa 70 g KH₂PO₄ 2 g (NH₄)₂SO₄ 25 g MgSO₄7H₂O 1 g FeSO₄7H₂O 5 mg MnSO₄4H₂O 5 mg L- metionina 0,15 g Extracto de levadura 2 g 30 g Carbonato cálcico рΗ 6,8

5 Tabla 10

10

15

20

25

	[Tabla 10]		
Сера	DO	Consumo de azúcar (g/l) *	L-treonina(g/l)* *
KCCM10541/ pAcscBAR-mak	16,2	34,7	31,8
KCCM10541 tehB / pAcscBAR-mak	15,2	35,7	32,2
KCCM 10541 nadK copia2/ pAcscBAR-mak	16,4	36,6	32,9
KCCM 10541 tehBnadK copia2/ pAcscBAR-mak	14,9	37,4	34,7
* valor medido 24-h			
** valor medido 48-h			

Tal como se muestra en la Tabla 10, cuando solamente se suprimió el gen tehB, la capacidad de asimilación de sacarosa fue similar a la de la cepa parental. Sin embargo, cuando se potenció la actividad NAD quinasa, la capacidad de asimilación de sacarosa aumentó a aproximadamente 2 g, en comparación con la cepa parental.

Asimismo, cuando se suprimió el gen tehB, se redujo la densidad celular a aproximadamente 6 % en comparación con la cepa parental, pero su productividad de treonina fue similar a la de la cepa parental. Sin embargo, cuando se introdujeron las dos mutaciones al mismo tiempo, se redujo la densidad celular a aproximadamente 8 %, la capacidad de asimilación de sacarosa aumentó a aproximadamente 8 % y también aumentó la productividad de treonina a 9 % en comparación con la cepa parental.

Además, se sometieron a ensayo la cepa recombinante E.coli KCCM10541ΔtehB nadK copia2 del Ejemplo 3, la cepa parental E. coli KCCM10541 y la cepa KCCM10541ΔtehB y la cepa KCCM10541 nadK copia2 preparada en los Ejemplos comparativos 1 y 2 por titulación utilizando glucosa como fuente de carbono. Se cultivó cada una de las cepas que tenían diferentes características genéticas en medios sólidos LB en una incubadora a 33 ºC durante toda la noche. A continuación, se inoculó 1 asa bacteriológica de platino en 25 ml de medio de titulación que contenía glucosa, tal como se muestra en la Tabla 11 a continuación y se cultivó en la incubadora a 33 ºC y a 200 rpm durante 48 horas. En la Tabla 12 se muestran los resultados. Todos los resultados representan el valor medio obtenido de los tres matraces.

Tabla 11

[Tabla 11]			
Composición	Concentración (por litro)		
Glucosa	70 g		
KH ₂ PO ₄	1 g		
(NH ₄) ₂ SO ₄	28 g		
MgSO ₄ 7H ₂ O	0,5 g		
FeSO ₄ 7H ₂ O	5 mg		
MnSO ₄ 4H ₂ O	5 mg		
Extracto de levadura	2 g		
L- metionina	0,15 g		
Carbonato cálcico	30 g		
рН	pH 6,8		

Tabla 12 30

> [Tabla 12] Consumo de azúcar (g/l) L-treonina(g/l) 27,6 14,0 26,7

Cepa	DO	Consumo de azúcar (g/l) *	L-treonina(g/l)* *
KCCM 10541 nadK copia2	13,8	28,9	28,4
KCCM 10541 tehBnadK copia2	12,5	30,3	30,1
* valor medido 24-h			
** valor medido 48-h			

La cepa KCCM10541 Δ*tehB nadK* copia2, *E. coli* productora de L-treonina con deleción del gen *tehB* y potenciación de actividad NAD, y con capacidad de asimilación de glucosa fue designada CA03-448, y la cepa KCCM10541 Δ*tehBnadK* copia2/pAcscBAR'-mak, la cepa KCCM10541 Δ*tehB nadK* copia2 a la que se proporcionó capacidad de asimilación de sacarosa, fue designada CA03-449. Y fueron depositadas en la Autoridad Depositaria Internacional del Centro de cultivos de microorganismos coreano, que es filical de la Colección de Cultivos de la Federación Coreana de Colecciones de Cultivo (con domicilio en 361-221, Hongje-1-dong, Seodaemon-gu, Seúl, Corea) el 10 de enero de 2011, con números de depósito asignados (acceso) KCCM11167P y KCCM11168P respectivamente.

10 <u>Ejemplo Experimental 2: Titulación de cepa productora de L-triptófano que presenta una potenciación de la actividad de NAD quinasa e inactivación de la enzima codificada por el gen tehB</u>

Se sometieron a ensayo la cepa recombinante *E. coli* KCCM10812Δ*tehB nadK* copia2 del Ejemplo 4, la cepa parenteral *E.coli* KCCM10812, y la cepa KCCM10812Δ*tehB* y la cepa KCCM10812 *nadK* copia2 preparadas en los Ejemplos comparativos 1 y 2 por titulación utilizando glucosa como fuente de carbono.

Para la titulación, se inoculó 1 asa bacteriológica de platino de la cepa y se cultivó en medios sólidos LB durante toda la noche. A continuación, se inoculó 1 asa bacteriológica de platino en 25 ml de medio de titulación de matraz que tenía la composición que se indica en la siguiente Tabla 13 y después se cultivó a 37º C y a 200 rpm durante 48 horas. En la tabla 14 se muestran los resultados. Todos los resultados se representan como el valor medio obtenido de los tres matraces.

Tabla 13

[Tabla 13]			
Composición	Concentración (por litro)		
Glucosa	60 g		
KH ₂ PO ₄	1 g		
(NH ₄) ₂ SO ₄	10 g		
NaCl	1 g		
MgSO₄7H₂O	1 g		
Citrato sódico	5 g		
Extracto de levadura	2 g		
Carbonato cálcico	40 g		
Citrato sódico	5 g		
Fenilalanina	0,15 g		
Tirosina	0,1 g		
рН	6,8		

25

30

35

40

15

20

Tabla 14

	L	labla 14]	
Cepa	DO	Consumo de azúcar (g/l) *	L-triptófano(g/l)* *
KCCM10812P	13,0	54,8	6,8
KCCM10812P tehB	14,5	55,0	7,0
KCCM10812P nadK copia2	13,3	57,6	6,9
KCCM10812P tehBnadK copia2	14,2	57,3	7,7
* valor medido 33-h	•		•
** valor medido 48-h			

Tal como se muestra en la Tabla 14, cuando se suprimió el gen *tehB*, aumentó la densidad celular a aproximadamente 10 % en comparación con la cepa parental. Cuando se potenció la actividad NAD quinasa, mejoró la capacidad de asimilación de glucosa pero no hubo diferencia en la productividad de triptófano, en comparación con la cepa parental.

Sin embargo, cuando se introdujeron las dos mutaciones al mismo tiempo, aumentó la densidad celular, también mejoró la capacidad de asimilación de glucosa y aumentó la productividad de triptófano a aproximadamente 14 %.

La cepa KCCM10812P Δ*tehB nadK* copia2, *E. coli* productor de L- triptófano con deleción del gen *tehB* y potenciación de la actividad de NAD quinasa, se designó CA04-2001, y fue depositada en la Autoridad Depositaria Internacional del Centro de cultivos de microorganismos coreano, que es filical de la Colección de Cultivos de la Federación Coreana de Colecciones de Cultivo (con domicilio en 361-221, Hongje-1-dong, Seodaemon-gu, Seúl,

Corea) el 10 de enero de 2011, con el número de depósito asignado (acceso) KCCM11166P.

<110> CJ CheilJedang Corporation

5	<120> A MIO PRODUCIN									MINO	ACID	S PRO	DUC	TIVIT	Y ANI	D PRO	OCESS	S FOR
	<130> OPA	11180	PCT															
10	<150> KR10 <151> 18-01	-		5136														
	<160> 21																	
15	<170> Kopa	tentlr	า 1.71															
20	<210> 1 <211> 594 <212> ADN <213> Esch		ia coli	,														
	<400> 1																	
	atgatcat	tc q	gtgad	gaaa	a c	tattt	tact	gat	aaat	atg	aatt	aacc	cg c	acac	actci	t		60
	gaagtact	gg a	agco	ggtga	aa a	gtggt	taaa	ccç	ggta	aaa	cgct	ggat	ct g	ggcte	gtggd	c		120
	aatggtcg	rta a	acagt	cttt	a c	ctggd	cagco	aat	ggtt	atg	atgt	tgac	gc a	tggg	ataaa	a.		180
	aatgccat	ga ç	gtato	gcca	a c	gtcga	agege	att	aaat	cca	ttga	aaat	ct g	gata	attta	a.		240
	cacacccg	rag t	cgtt	gato	et ga	aataa	accto	aca	itttg	ata	gaca	gtac	ga t	ttta	ttoti	ŧ		300
	tegaetgt	.gg t	get	gatgt	tc	ettga	aggct	aaa	acca	tcc	ccgg	gttg	at t	gcca	atato	9		360
	caacgttg	rca d	ctaaa	accto	gg to	ggtta	acaac	cto	attg	tgg	cggc	gatg	ga t	accg	ctgat	t		420
	tatecatg	rta d	ccgto	egget	t c	ccgtt	tgcc	ttc	aaag	agg	gaga	atta	cg t	cgat	atta	c		480
	gaaggetg	igg a	agago	ggtga	a a	tacaa	atgaa	gac	gtcg	gcg	agct	gcac	cg c	accg	acgc	c		540
	aacggtaa	tc ç	tatt	caaac	et ge	egttt	cgcc	aco	ratgo	tgg	cacg	taaa	aa a	tga				594
25 30	<210> 2 <211> 197 <212> PRT <213> Secu <220> <223> Metilit				endier	nte de	S-áde	anosil.	-l -me	tionin	a prev	ieta						
	<400> 2	lialisi	Ciasa	depe	ilulei	ne de	o-aue	110311	-L-1116		a piev	isia						
35	C4007 Z																	
	1	Met 1	Ile	Ile	Arg	Asp 5	Glu	Asn	Tyr	Phe	Thr 10	Asp	Lys	Tyr	Glu	Leu 15	Thr	
	2	Arg	Thr	His	Ser 20	Glu	Val	Leu	Glu	Ala 25	Val	Lys	Val	Val	Lys 30	Pro	Gly	
	:	Lys	Thr	Leu 35	Asp	Leu	Gly	Сув	Gly 40	Asn	Gly	Arg	Asn	Ser 45	Leu	Tyr	Leu	
	i	Ala	Ala 50	Asn	Gly	Tyr	Asp	Val 55	Asp	Ala	Trp	Asp	Lys 60	Asn	Ala	Met	Ser	

Ile 65	Ala	Asn	Val	Glu	Arg 70	Ile	Lys	Ser	Ile	Gl u 75	Asn	Leu	Asp	Asn	Leu 80
His	Thr	Arg	Val	Val 85	Asp	Leu	Asn	Asn	Leu 90	Thr	Phe	Asp	Arg	Gl n 95	Tyr
Asp	Phe	Ile	Leu 100	Ser	Thr	Val	Val	Leu 105	Met	Phe	Leu	Glu	Ala 110	Lys	Thr
Il€	Pro	Gly 115	Leu	Ile	Ala	Asn	Met 120	Gln	Arg	Cys	Thr	Lys 125	Pro	Gly	Gly
Tyr	Asn 130	Leu	Ile	Val	Ala	Ala 135	Met	Asp	Thr	Ala	Asp 140	Tyr	Pro	Cys	Thr
Val 145	Gly	Phe	Pro	Phe	Ala 150	Phe	Lys	Glu	Gly	Gl u 155	Leu	Arg	Arg	Tyr	Tyr 160
Glu	Gly	Trp	Glu	Arg 165	Val	Lys	Tyr	Asn	Glu 170	Asp	Val	Gly	Glu	Leu 175	His
Arg	Thr	Asp	Al a 180	Asn	Gly	Asn	Arg	Ile 185	Lys	Leu	Arg	Phe	Al a 190	Thr	Met
Leu	Ala	Arg 195	Lys	Lys											

<210> 3 <211> 879 <212> ADN 5

<213> Secuencia artificial

<220>

<223> gen nadK

10

<400>3

atgaataatc	atttcaagtg	tattggcatt	gtgggacacc	cacggcaccc	cactgcactg	60
acaacacatg	aaatgctcta	ccgctggctg	tgcacaaaag	gttacgaggt	catcgttgag	120
caacaaatcg	ctcacgaact	gcaactgaag	aatgtgaaaa	ctggcacgct	cgcggagatt	180
gggcaactag	ctgatctcgc	ggtagtcgtt	ggtggcgacg	gtaatatgct	gggcgcggca	240
cgcacactcg	cccgttacga	tattaaagtt	attggaatca	accgtggcaa	cctgggtttc	300
ctgactgacc	ttgaccccga	taacgcccag	caacagttag	ccgatgtgct	ggaaggccac	360
tacatcagcg	agaaacgttt	tttgctggaa	gcgcaagtct	gtcagcaaga	ttgccagaaa	420
cgcatcagca	ccgcgataaa	tgaagtggtg	cttcatccag	gcaaagtggc	gcatatgatt	480
gagttcgaag	tgtatatcga	cgagatcttt	gcgttttctc	agcgatctga	tggactaatt	540
atttcgacgc	caacaggctc	cacegectat	tccctctctg	caggcggtcc	tattetgace	600
cectetetgg	atgcgattac	cctggtgccc	atgttcccgc	atacgttgtc	agcacgacca	660
ctggtcataa	acagcagcag	cacgatccgt	ctgcgttttt	cgcatcgccg	taacgacctg	720
gaaatcagtt	gcgacagcca	gatagcactg	ccgattcagg	aaggtgaaga	tgtcctgatt	780
cgtcgctgtg	attaccatct	gaatctgatt	catccgaaag	attacagtta	tttcaacaca	840
ttaagcacca	agctcggctg	gtcaaaaaaa	ttattctaa			879

<210>4

<211> 292 <212> PRT

<213> Secuencia artificial

<220>

<223> NAD quinasa

10

5

<400> 4

Met 1	Asn	Asn	His	Phe 5	Lys	Cys	Ile	Gly	Ile 10	Val	Gly	His	Pro	Arg 15	His
Pro	Thr	Ala	Leu 20	Thr	Thr	His	Glu	Met 25	Leu	Tyr	Arg	Trp	Leu 30	Cys	Thr
Lys	Gly	Tyr 35	Glu	Val	Ile	Val	Glu 40	Gln	Gln	Ile	Ala	His 45	Glu	Leu	Gln
Leu	Lys 50	Asn	Val	Lys	Thr	Gly 55	Thr	Leu	Ala	Glu	Ile 60	Gly	Gln	Leu	Ala
Asp 65	Leu	Ala	Val	Val	Val 70	Gly	Gly	Asp	Gly	Asn 75	Met	Leu	Gly	Ala	Al a
Arg	Thr	Leu	Ala	Arg 85	Tyr	Asp	Ile	Lys	Val 90	Ile	Gly	Ile	Asn	Arg 95	Gly
Asn	Leu	Gly	Phe 100	Leu	Thr	Asp	Leu	Asp 105	Pro	Asp	Asn	Ala	Gln 110	Gln	Gln
Leu	Ala	Asp 115	Val	Leu	Glu	Gly	His 120	Tyr	Ile	Ser	Glu	Lys 125	Arg	Phe	Leu
Leu	Gl u 130	Ala	Gln	Val	Cys	Gln 135	Gln	Asp	Cys	Gln	Lys 140	Arg	Ile	Ser	Thr
Ala 145	Ile	Asn	Glu	Val	Val 150	Leu	His	Pro	Gly	Lys 155	Val	Ala	His	Met	Il€ 160
Glu	Phe	Glu	Val	Tyr 165	Ile	Asp	Glu	Ile	Phe 170	Ala	Phe	Ser	Gln	Arg 175	Ser
Asp	Gly	Leu	Ile 180	Ile	Ser	Thr	Pro	Thr 185	Gly	Ser	Thr	Ala	Tyr 190	Ser	Leu
Ser	Ala	Gly 195	Gly	Pro	Ile	Leu	Thr 200	Pro	Ser	Leu	Asp	Ala 205	Ile	Thr	Leu
Val	Pro 210	Met	Phe	Pro	His	Thr 215	Leu	Ser	Ala	Arg	Pro 220	Leu	Val	Ile	Asn
Ser 225	Ser	Ser	Thr	Ile	Arg 230	Leu	Arg	Phe	Ser	His 235	Arg	Arg	Asn	Asp	Leu 240
Glu	Ile	Ser	Cys	Asp 245	Ser	Gln	Ile	Ala	Leu 250	Pro	Ile	Gln	Glu	Gly 255	Glu
Asp	Val	Leu	11e 260	Arg	Arg	Cys	Asp	Tyr 265	His	Leu	Asn	Leu	Ile 270	His	Pro
Lys	Asp	Tyr 275	Ser	Tyr	Phe	Asn	Thr 280	Leu	Ser	Thr	Lys	Leu 285	Gly	Trp	Ser

<210>5

<211> 1407 <212> ADN

5

<213> Secuencia artificial

Lys Lys Leu Phe 290

<220> <223> Producto de PCR obtenido con el uso de Cebador 7 y Cebador 8										
<400>5										
cccgaattcg cgtcagctca atgccttcaa ccatcgcaga catatccggg ttag	ctttat 60									
cagccacttc cagcgcacga tccaggctat caatcaccgg cagcaattcg ttga	tgaatt 120									
totocagogo gaatttgtgg gotttttcaa tatocagtto agtacgaoga ogoa	ggtttt 180									
ccatttcggc ttttacacgc aaaatgccgt cacgttcacg ggtctgggct tcag	ccagct 240									
gagettegag attegeaact titteatege geggateeac etgeteagea gaag	cttctg 300									
geteaactge eteaatetet tegtgetgat eeatgataat ttetteeggg gett	gcccct 360									
caggogtttt etgttettta etaeteatga attteteege gtttttteg eatt	catctc 420									
gctaacttcg cttattatgg ggatcagttt cagggtttca agggaagcac tcac	attgtc 480									
atcaatcttc gcaacaagga cctcggaaaa atgaataatc atttcaagtg tatt	ggcatt 540									
gtgggacace cacggcacec cactgcactg acaacacatg aaatgctcta ecgc	tggctg 600									
tgcacaaaag gttacgaggt catcgttgag caacaaateg ctcacgaact gcaa	ctgaag 660									
aatgtgaaaa etggeaeget egeggagatt gggeaaetag etgatetege ggta	gtcgtt 720									
ggtggcgacg gtaatatgct gggcgcggca cgcacactcg cccgttacga tatt	aaagtt 780									
attggaatca accgtggcaa cctgggtttc ctgactgacc ttgaccccga taac	gcccag 840									
caacagttag ccgatgtgct ggaaggccac tacatcagcg agaaacgttt tttg	ctggaa 900									
gegeaagtet gteageaaga ttgeeagaaa egeateagea eegegataaa tgaa	gtggtg 960									
cttcatccag gcaaagtggc gcatatgatt gagttcgaag tgtatatcga cgag	atcttt 1020									
gegttttete agegatetga tggactaatt atttegaege caacaggete cace	gcctat 1080									
tecetetetg caggeggtee tattetgace ecetetetgg atgegattae eetg	gtgccc 1140									
atgttcccgc atacgttgtc agcacgacca ctggtcataa acagcagcag cacg.	atccgt 1200									
ctgcgttttt cgcatcgccg taacgacctg gaaatcagtt gcgacagcca gata	gcactg 1260									
ccgattcagg aaggtgaaga tgtcctgatt cgtcgctgtg attaccatct gaat	ctgatt 1320									
cateegaaag attacagtta ttteaacaca ttaageacea ageteggetg gtea	aaaaaa 1380									
ttattctaat tttacgccag ctctaga	1407									
<210> 6 <211> 80 <212> ADN <213> Secuencia artificial <220> <223> Cebador 1										
<400> 6										
gcacacactc tgaagtactg gaageggtga aagtggttaa acegggtaaa a										
aggtgacact atagaacgcg	80									

5	<210> 7 <211> 80 <212> ADN <213> Secuencia artificial <220> <223> Cebador 2	
	<400>7 caccetetee cageettegt aatategaeg taatteteee tetttgaagg caaaegggaa	60
10	tagtggatct gatgggtacc	80
15	<210> 8 <211> 59 <212> ADN <213> Secuencia artificial <220> <223> Cebador 3 gtgacgaaaa ctattttact gataaatatg aattaacccg cacacactct gaagtactg 59	
20	<210> 9 <211> 60 <212> ADN <213> Secuencia artificial <220>	
25	<223> Cebador 4	
	<400> 9 gtoggtgogg tgcagetoge egaegtette attgtattte accetetece ageettegta 60 60	
30	<210> 10 <211> 20 <212> ADN <213> Secuencia artificial	
35	<220> <223> Cebador 5	
40	<400> 10 tttaggegea ggegttttet 20	
	<210> 11 <211> 20 <212> ADN <213> Secuencia artificial	
45	<220> <223> Cebador 6	
50	<400> 11 ttttacgtgc cagcatcgtg 20	
55	<210> 12 <211> 29 <212> ADN <213> Secuencia artificial	
	<220> <223> Cebador 7	
60	<400> 12 cccgaattcg cgtcagctca atgccttca 29	

```
<210> 13
         <211>29
         <212> ADN
         <213> Secuencia artificial
 5
         <223> Cebador 8
         <400> 13
         gggtctagag ctggcgtaaa attagaata
                                             29
10
         <210> 14
         <211>20
         <212> ADN
15
         <213> Secuencia artificial
         <220>
         <223> Cebador 9
         <400> 14
20
                                    20
          tggtattcac tccagagoga
         <210> 15
         <211>19
25
         <212> ADN
         <213> Secuencia artificial
         <223> Cebador 10
30
         <400> 15
         gcatcagcac cgcgataaa
                                    19
         <210> 16
35
         <211>19
         <212> ADN
         <213> Secuencia artificial
         <223> Cebador 11
40
         <400> 16
         catgtgttgt cagtgcagt
                                  19
         <210> 17
45
         <211>54
         <212> ADN
         <213> Secuencia artificial
50
         <220>
         <223> Cebador 12
         <400> 17
         cgcgatatet agcatatgcc gggtaccgca ctagttgaga gtaaacggcg aagt
                                                                        54
55
         <210> 18
         <211>46
         <212> ADN
         <213> Secuencia artificial
60
         <220>
         <223> Cebador 13
         <400> 18
```

	attoggcogg agecetgeag gtgeaegagt acatttgage gaetgt 46
5	<210> 19 <211> 25 <212> ADN <213> Secuencia artificial
10	<220> <223> Cebador 14 <400> 19
	cactgcagtg gggtaaatgc catcg 25
15	<210> 20 <211> 25 <212> ADN <213> Secuencia artificial
20	<220> <223> Cebador 15
	<400> 20 aacggccgtc tcggtgctca ttact 25
25	<210> 21 <211> 9129 <212> ADN <213> Secuencia artificial
30	<220> <223> Vector pAcscBAR'-mak
	<400> 21
	tatggcaatg aaagacggtg agctggtgat atgggatagt gttcaccctt gttacaccgt 60
	tttccatgag caaactgaaa cgttttcatc gctctggagt gaataccacg acgatttccg 120
	gcagtttcta cacatatatt cgcaagatgt ggcgtgttac ggtgaaaacc tggcctattt 180
	ccctaaaggg tttattgaga atatgttttt cgtctcagcc aatccctggg tgagtttcac 240
	cagttttgat ttaaacgtgg ccaatatgga caacttcttc gcccccgttt tcaccatggg 300
	caaatattat acgcaaggcg acaaggtgct gatgccgctg gcgattcagg ttcatcatgc 360
	cgtctgtgat ggcttccatg tcggcagaat gcttaatgaa ttacaacagt actgcgatga 420
	gtggcagggc ggggcgtaat ttttttaagg cagttattgg tgcccttaaa cgcctggtgc 480
	tacgcctgaa taagtgataa taagcggatg aatggcagaa attcgaaagc aaattcgacc 540
	eggtegtegg tteagggeag ggtegttaaa tageegetta tgtetattge tggtttaeeg 600
	gtttattgac taccggaagc agtgtgaccg tgtgcttctc aaatgcctga ggccagtttg 660
	ctcaggctct ccccgtggag gtaataattg acgatatgat catttattct gcctcccaga 720
	gootgataaa aacggttago gottogttaa tacagatgta ggtgttocac agggtagoca 780
	gcagcatcct gcgatgcaga tccggaacat aatggtgcag ggcgcttgtt tcggcgtggg 840
	tatggtggca ggccccgtgg ccgggggact gttgggcgct gccggcacct gtcctacgag 900
	ttgcatgata aagaagacag tcataagtgc ggcgacgata gtcatgcccc gcgcccaccg 960
35	gaaggagcta ccggacagcg gtgcggactg ttgtaactca gaataagaaa tgaggccgct 1020

catggcgttg	actctcagtc	atagtatcgt	ggtatcaccg	gttggttcca	ctctctgttg	1080
cgggcaactt	cagcagcacg	taggggactt	ccgcgtttcc	agactttacg	aaacacggaa	1140
accgaagacc	attcatgttg	ttgctcaggt	cgcagacgtt	ttgcagcagc	agtegettea	1200
cgttcgctcg	cgtatcggtg	attcattctg	ctaaccagta	aggcaacccc	gccagcctag	1260
ccgggtcctc	aacgacagga	gcacgatcat	gcgcacccgt	ggccaggacc	caacgctgcc	1320
cgagatgcgc	cgcgtgcggc	tgctggagat	ggcggacgcg	atggatatgt	tctgccaagg	1380
gttggtttgc	gcattcacag	ttctccgcaa	gaattgattg	gctccaattc	ttggagtggt	1440
gaatccgtta	gcgaggtgcc	gccggcttcc	attcaggtcg	aggtggcccg	gctccatgca	1500
ccgcgacgca	acgcggggag	gcagacaagg	tatagggcgg	cgcctacaat	ccatgccaac	1560
ccgttccatg	tgctcgccga	ggcggcataa	ategeegtga	cgatcagcgg	tccagtgatc	1620
gaagttaggc	tggtaagagc	cgcgagcgat	ccttgaagct	gtecetgatg	gtcgtcatct	1680
acctgcctgg	acagcatggc	ctgcaacgcg	ggcatcccga	tgccgccgga	agegagaaga	1740
atcataatgg	ggaaggccat	ccagcctcgc	gtcgcgaacg	ccagcaagac	gtagcccagc	1800
gcgtcggccg	teteggtget	cattacttat	tgccggatgc	ggcgtgaacg	ccttatccgc	1860
cctacgcggt	tetggcacat	tttgcaggcc	tgataagacg	cggcaagcgt	cgcatcaggc	1920
atcggagcac	ttattgccgg	atgcggcgtg	aacgccttat	ccggcctacg	gttctggcac	1980
cttttgtagg	cctgataaga	cgcggcaagc	gtcgcatcag	gcatgatgcg	ccaattgcct	2040
acgttttta	ctcttgtggc	cataaccacg	cagegeegeg	tacgccgctg	gaatcaccgt	2100
gettegeett	acgcaccggc	gtttcacatt	cgccgccgaa	gacaaattgt	ttaatcaact	2160
gcccaaccgt	ttgatataaa	cggtctacat	tgctcatccc	gcccccagg	acaatcacat	2220
ccggatcgag	aatattcacg	acatgtgcca	gcgattttgc	cageegeage	tegtagegae	2280
gcaatgccag	tteegetace	ggategettt	cttcaaccag	gcggataatt	tcactgcctt	2340
tcagcgcatg	teegeteaaa	cgacgataat	ccatcgcgaa	tecegtgeee	gaaataaagg	2400
tttcaataca	accttgttta	ccgcaataac	aagggacttc	ctcgcgataa	cgcagttcgt	2460
cttcgtccat	ccacggtagc	ggattgtgtc	cccactcacc	tgccgtgcca	ttgccgccga	2520
tatgcgcccg	cccattgaat	gccacgcccg	cgccgcatcc	cgtgccgata	atcacggcaa	2580
ataccgtctg	cgctcccgct	geegegeeat	ctactgcttc	tgaaaccgcc	agacagttag	2640
cgtcatttgc	cagccgcact	tecegetgea	acctcgcgct	taagtottta	tcgaatggct	2700
gaccgttgag	ccaggttgaa	ttggcattct	tcaccacacc	ggtgtaaggc	gaaattgagc	2760
caggaatgcc	catacctacc	gtteegeget	geeeegtege	ctgctccgcc	atatcaacca	2820
acgtggcgat	cgtttcaata	gtctgccggt	aatcatcacg	cggcgtgggc	agacgatggc	2880
ggtacaactg	ctcccctgca	tcgcccagtg	caatcacttc	agttttggtg	ccgcctaaat	2940

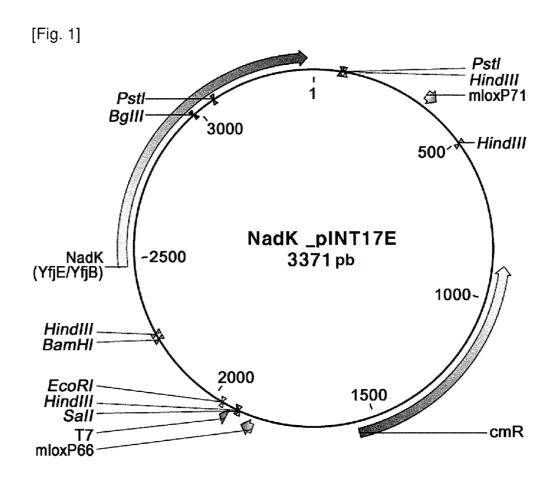
cgatacctat	acgcacggta	ctctccttat	ttttttcaat	atcaatagcg	tagagacgga	3000
caaccggatt	ggcaatgcaa	ggccgccgac	aattcgttat	catgcccgct	aaatttaacg	3060
acaaggccgt	ggaaattatc	atgctgtggt	tcaaaaattt	aatggtttac	cgtcttagcc	3120
gcgagatttc	gctgcgtgca	gaagagatgg	aaaaacagct	agcctcgatg	gcatttaccc	3180
cactgcaggt	gcacgagtac	atttgagcga	ctgtaccaga	acatgaatga	ggcgtttgga	3240
ttaggcgatt	attagcaggg	ctaagcattt	tactattatt	attttccggt	tgagggatat	3300
agagetateg	acaacaaccg	gaaaaagttt	acgtctatat	tgctgaaggt	acaggcgttt	3360
ccataactat	ttgctcgcgt	tttttactca	agaagaaaat	gccaaatagc	aacatcaggc	3420
agacaatacc	cgaaattgcg	aagaaaactg	tctggtagcc	tgcgtggtca	aagagtatcc	3480
cagtcggcgt	tgaaagcagc	acaatcccaa	gcgaactggc	aatttgaaaa	ccaatcagaa	3540
agatcgtcga	cgacaggcgc	ttatcaaagt	ttgccacgct	gtatttgaag	acggatatga	3600
cacaaagtgg	aacctcaatg	gcatgtaaca	acttcactaa	tgaaataatc	caggggttaa	3660
cgaacagcgc	gcaggaaagg	atacgcaacg	ccataatcac	aactccgata	agtaatgcat	3720
tttttggccc	tacccgattc	acaaagaaag	gaataatcgc	catgcacagc	gcttcgagta	3780
ccacctggaa	tgagttgaga	taaccataca	ggcgcgttcc	tacatcgtgt	gattcgaata	3840
aacctgaata	aaagacagga	aaaagttgtt	gatcaaaaat	gttatagaaa	gaccacgtcc	3900
ccacaataaa	tatgacgaaa	acccagaagt	ttcgatcctt	gaaaactgcg	ataaaatcct	3960
cttttttac	ccctcccgca	tctgccgcta	cgcactggtg	atccttatct	ttaaaacgca	4020
tgttgatcat	cataaataca	gcgccaaata	gcgagaccaa	ccagaagttg	atatggggac	4080
tgatactaaa	aaatatgccg	gcaaagaacg	cgccaatagc	atagccaaaa	gatocccagg	4140
cgcgcgctgt	tccatattcg	aaatgaaaat	ttcgcgccat	tttttcggtg	aagctatcaa	4200
gcaaaccgca	toccgccaga	tacccccagc	caaaaaacag	cgccccaga	attagaccta	4260
cagaaaaatt	gctttgcagt	aacggttcat	aaacgtaaat	cataaacggt	ccggtcaaga	4320
ccaggatgaa	actcatacac	cagatgagcg	gtttcttcag	accgagttta	tcctgaacga	4380
tgccgtagaa	catcataaat	agaatgctgg	taaactggtt	gaccgaataa	agtgtaccta	4440
attccgtccc	tgtcaaccct	agatgtcctt	tcagccaaat	agcgtataac	gaccaccaca	4500
gcgaccagga	aataaaaaag	agaaatgagt	aactggatgc	aaaacgatag	tacgcatttc	4560
tgaatggaat	actcagtgcc	ataattacct	gcctgtcgtt	aaaaaattca	cgtcctattt	4620
agagataaga	gcgacttcgc	cgtttacttc	tcaactagtg	cggtacccgg	catatgctag	4680
atatcgactc	cctcagttag	cagcgttctt	tgcattaacg	caccaaaagg	atcatccccc	4740
accegaceta	taaacccact	tgttccgcct	aatctggcga	ttcccaccgc	aacgttagct	4800

ggcgcgccgc caggacaagg cagtaggcgc ccgtctgatt ctggcaagag atctacgacc	4860
gcatccccta aaacccatac tttggctgac attttttcc cttaaattca tctgagttac	4920
gcatagtgat aaacctcttt ttcgcaaaat cgtcatggat ttactaaaac atgcatattc	4980
gatcacaaaa cgtcatagtt aacgttaaca tttgtgatat tcatcgcatt tatgaaagta	5040
agggacttta tttttataaa agttaacgtt aacaattcac caaatttgct taaccaggat	5100
gattaaaatg acgcaatctc gattgcatgc ggcgcaaaac gccctagcaa aacttcatga	5160
gcaccggggt aacactttct atccccattt teacctcgcg cctcctgccg ggtggatgaa	5220
cgatccaaac ggcctgatct ggtttaacga tcgttatcac gcgttttatc aacatcatcc	5280
gatgagcgaa cactgggggc caatgcactg gggacatgcc accagcgacg atatgatcca	5340
ctggcagcat gagcctattg cgctagcgcc aggagacgat aatgacaaag acgggtgttt	5400
ttcaggtagt gctgtcgatg acaatggtgt cctctcactt atctacaccg gacacgtctg	5460
gctcgatggt gcaggtaatg acgatgcaat tcgcgaagta caatgtctgg ctaccagtcg	5520
ggatggtatt catctcgaga aacagggtgt gatcctcact ccaccagaag gaatcatgca	5580
cttccgcgat cctaaagtgt ggcgtgaagc cgacacatgg tggatggtag tcggggcgaa	5640
agatecagge aacaegggge agatectget ttategegge agttegttge gtgaatggae	5700
cttcgatcgc gtactggccc acgctgatgc gggtgaaagc tatatgtggg aatgtccgga	5760
ctttttcagc cttggcgatc agcattatct gatgttttcc ccgcagggaa tgaatgccga	5820
gggatacagt taccgaaatc gctttcaaag tggcgtaata cccggaatgt ggtcgccagg	5880
acgaettttt geacaateeg ggeattttae tgaacttgat aacgggeatg acttttatge	5940
accacaaagc tttttagcga aggatggtcg gcgtattgtt atcggctgga tggatatgtg	6000
ggaatcgtca atgccctcaa aacgtgaagg atgggcaggc tgcatgacgc tggcgcgcga	6060
gctatcagag agcaatggca aacttctaca acgcccggta cacgaagctg agtcgttacg	6120
ccagcagcat caatctgtct ctccccgcac aatcagcaat aaatatgttt tgcaggaaaa	6180
cgcgcaagca gttgagattc agttgcagtg ggcgctgaag aacagtgatg ccgaacatta	6240
cggattacag ctcggcactg gaatgcggct gtatattgat aaccaatctg agcgacttgt	6300
tttgtggcgg tattacccac acgagaattt agacggctac cgtagtattc ccctcccgca	6360
gogtgacacg ctcgccctaa ggatatttat cgatacatca tccgtggaag tatttattaa	6420
cgacggggaa gcggtgatga gtagtcgaat ctatccgcag ccagaagaac gggaactgtc	6480
getttatgee teecaeggag tggetgtget geaacatgga geactetgge tactgggtta	6540
acataatatc aggtggaaca acggatcaac agcgggcaag ggatccgcgt cactettecc	6600
cetteacgae etteaataat atgeaatgea getteeegee egataatgte atgtggaage	6660
tgaattgtgg teageggegg taaaaacaga tgeeegaege caaccagatt atcaaagece	6720

attacggcga	catcctgcgg	gattcgtacc	cccttcgcca	gaagaacctg	ataagccaca	6780
aaggctgcgc	gatcgttacc	acatatcaga	acatcaaaat	ctggtttgcc	cggtttgaag	6840
tgggcattga	gtaaacttgc	gagatcggtg	tagtgatcat	cacctgttgc	catgtgaaat	6900
tgtttcacct	cagccagatc	tcgttcagca	tcacgccagg	cctgctcaaa	tccctgccga	6960
cgataccctg	ttgccaacgc	actttccggt	agccagaagc	ataacggttg	acgatagece	7020
gccgcgagca	aatgctgtgt	tgattcatat	tgtgcagtgt	aatcatcagg	gatataactg	7080
ggtaacgctg	ggtcatccgc	cacacagttc	gccaatacaa	tattttcacc	atacagagac	7140
tcaggcagcg	tgatatatcg	cagccccatt	gtagtataga	taatgccatc	cggacggtgg	7200
gcaagcagct	gacgtgccgc	gegggeageg	tcatcttcag	aaaaaatatt	gattaaaaaa	7260
ctattccagc	cgaactcgct	ggcggtttgc	tcaatggcaa	gcagaatatc	aacagagaaa	7320
ggagtggtag	ccgtgtcctg	cgccagcacg	gcgagagtcg	acggcttacg	tccttgagcg	7380
cgcatcttac	gggcggaaag	atcaggaaca	taattcaggg	tctggattgc	ctgcaatacg	7440
cggtcacgcg	ttgcaggacg	cacagattct	gcattatgca	tcacccggga	gactgtcatc	7500
atcgacactc	cegecaggeg	tgcgacatcc	tttaatgaag	ccatacccaa	gccgtttgcc	7560
gtaaaacggg	cactgtagca	gaaacagacg	tcactggcga	gatecaacge	cctatcacct	7620
gacacagcaa	tacaataaaa	aataacaata	atteceggae	aattgtcccc	agtteegeet	7680
ctgttctcgc	caacgagtct	agaaatattt	tatctgatta	ataagatgat	cttcttgaga	7740
togttttggt	ctgcgcgtaa	tetettgete	tgaaaacgaa	aaaaccgcct	tgcagggcgg	7800
tttttcgaag	gttctctgag	ctaccaactc	tttgaaccga	ggtaactggc	ttggaggagc	7860
gcagtcacca	aaacttgtcc	tttcagttta	gccttaaccg	gcgcatgact	tcaagactaa	7920
ctcctctaaa	tcaattacca	gtggctgctg	ccagtggtgc	ttttgcatgt	ctttccgggt	7 9 80
tggactcaag	acgatagtta	ccggataagg	cgcagcggtc	ggactgaacg	gggggttcgt	8040
gcatacagtc	cagcttggag	cgaactgcct	acccggaact	gagtgtcagg	cgtggaatga	8100
gacaaacgcg	gccataacag	cggaatgaca	ccggtaaacc	gaaaggcagg	aacaggagag	8160
cgcacgaggg	agccgccagg	gggaaacgcc	tggtatcttt	atagtcctgt	cgggtttcgc	8220
caccactgat	ttgagcgtca	gatttcgtga	tgcttgtcag	gggggcggag	cctatggaaa	8280
aacggctttg	cegeggeeet	ctcacttccc	tgttaagtat	cttcctggca	tcttccagga	8340
aatctccgcc	ccgttcgtaa	gccatttccg	ctcgccgcag	togaacgacc	gagcgtagcg	8400
agtcagtgag	cgaggaagcg	gaatatatcc	tgtatcacat	attctgctga	cgcaccggtg	8460
cagccttttt	tctcctgcca	catgaagcac	ttcactgaca	ccctcatcag	tgccaacata	8520
gtaagccagt	atacactccg	ctagcgctga	tgtccggcgg	tgcttttgcc	gttacgcacc	8580

accccgtcag	tagctgaaca	ggagggacag	ctgatagaaa	cagaagccac	tggagcacct	8640
caaaaacacc	atcatacact	aaatcagtaa	gttggcagca	tcacccgacg	cactttgcgc	8700
cgaataaata	cctgtgacgg	aagatcactt	cgcagaataa	ataaatcctg	gtgtccctgt	8760
tgataccggg	aagccctggg	ccaacttttg	gcgaaaatga	gacgttgatc	ggcacgtaag	8820
aggttccaac	tttcaccata	atgaaataag	atcactaccg	ggcgtatttt	ttgagttatc	8880
gagattttca	ggagctaagg	aagctaaaat	ggagaaaaaa	atcactggat	ataccaccgt	8940
tgatatatcc	caatggcatc	gtaaagaaca	ttttgaggca	tttcagtcag	ttgctcaatg	9000
tacctataac	cagaccgttc	agctggatat	tacggccttt	ttaaagaccg	taaagaaaaa	9060
taagcacaag	ttttatccgg	cctttattca	cattcttgcc	cgcctgatga	atgctcatcc	9120
ggaattccg						9129

REIVINDICACIONES


1. Un microorganismo del género *Escherichia* que tiene productividad de L-aminoácido, en el que se transforma el microorganismo para tener una actividad de NAD quinasa potenciada y una actividad inactivada de la enzima que tiene una secuencia de aminoácidos de SEQ ID NO. 2 codificada por el gen *tehB*.

5

30

- 2. El microorganismo de acuerdo con la reivindicación 1, en el que la NAD quinasa es una proteína que tiene una secuencia de aminoácidos de SEQ ID NO. 4.
- 3. El microorganismo de acuerdo con la reivindicación 1, en el que se potencia la actividad de NAD quinasa a través de uno o más métodos de aumento del número de copias por inserción cromosómica o introducción de vector, sustitución o modificación de la región reguladora de expresión.
- 4. El microorganismo de acuerdo con la reivindicación 1, en el que la inactivación se lleva a cabo a través de uno o más métodos de deleción de la totalidad o una parte del gen por recombinación homóloga, supresión de la expresión de enzima por inserción de transposón dentro del gen correspondiente y supresión de expresión de enzima por inserción de genes con resistencia a antibiótico.
- 5. El microorganismo de acuerdo con la reivindicación 1, en el que el microorganismo del género *Escherichia* es 20 *E.coli*.
 - 6. El microorganismo de acuerdo con la reivindicación 1, en el que el L-aminoácido es L-treonina o L-triptófano.
- 7. El microorganismo de acuerdo con la reivindicación 6, en el que se proporciona capacidad de asimilación de sacarosa al microorganismo del género *Escherichia*.
 - 8. El microorganismo de acuerdo con la reivindicación 1, en el que el microorganismo del género *Escherichia* es un *E. coli* productor de L-treonina, CA03-448, que tiene el No. de depósito KCCM11167P o CA03-449, que tiene el No. de depósito KCCM11168P.
 - 9. El microorganismo de acuerdo con la reivindicación 1, en el que el microorganismo del género *Escherichia* es un *E. coli* productor de L-triptófano, CA04-2001, que tiene el No. de depósito KCCM11166P.
- 10. Un método para producir L-aminoácidos que comprende las etapas de inoculación y cultivo del microorganismo del género *Escherichia* de una cualquiera de las reivindicaciones 1 a 9 en un medio de cultivo que contiene total o parcialmente sacarosa o glucosa como fuente de carbono, y separación del L-aminoácido del medio de cultivo.
 - 11. El método de acuerdo con la reivindicación 10, en el que el L-aminoácido es L-treonina o L-triptófano.

25

