

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 668 806

51 Int. Cl.:

F24C 15/10 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 10.11.2011 E 11188572 (9)
Fecha y número de publicación de la concesión europea: 14.02.2018 EP 2592356

(54) Título: Rejilla de quemador, placa de cocinado de gas, parte superior de cocina de gas y cocina de gas

Fecha de publicación y mención en BOPI de la traducción de la patente: 22.05.2018

(73) Titular/es:

ELECTROLUX HOME PRODUCTS CORPORATION N.V. (100.0%) Raketstraat 40 1130 Bruselas, BE

(72) Inventor/es:

TISSELLI, FILIPPO; ZANETTI, FILIPPO y NEGRETTI, PETER

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Rejilla de quemador, placa de cocinado de gas, parte superior de cocina de gas y cocina de gas

10

20

25

30

35

40

50

La invención está dirigida a una rejilla de quemador, placa de cocinado con gas, parte superior de cocina de gas y cocina de gas.

5 Se conocen quemadores de gas para partes superiores de cocinas de gas domésticas con muchas configuraciones diferentes, en particular con respecto a orificios de salida de llama de capuchones de quemador.

Por ejemplo, el documento EP 2 290 287 A2 describe un capuchón de quemador de gas circular que tiene en su cara superior una pluralidad de orificios de salida de llama dispuestos en secciones circulares concéntricas. Un desafío con tales capuchones de quemador de gas es obtener un suministro de aire secundario a la pluralidad de orificios de salida de llama, en particular a orificios de salida de llama dispuestos en secciones interiores del capuchón de quemador.

En el documento EP 1 207 351 A1 se conoce una placa de cocinado con gas, en la que un quemador está cubierto por una cúpula. Hay previstas unas aberturas laterales en la cúpula para suministrar aire primario y secundario a los orificios de salida de llama del quemador posicionado bajo la cúpula. También en esta placa de cocinado de gas, podría mejorarse aún el suministro de aire secundario a los orificios de salida de llama.

El documento EP 1 830 133 A1 describe un quemador de gas en el que un suministro de aire secundario a la cabeza del quemador de gas es obtenido a través de una ranura o espacio anular, en forma de anillo establecido entre un lado inferior de un anillo de trípode del quemador de gas y una placa superior que soporta el quemador de gas.

Es por ello un objeto de la invención proporcionar medidas para mejorar el suministro de aire secundario a los orificios de salida de llama y a las llamas de un quemador de gas. En particular, se proporcionará el suministro de aire secundario a los orificios de salida de llama y a las llamas situadas en regiones interiores de un quemador de gas o capuchón de quemador.

En particular, y bajo consideraciones similares como se ha mencionado de antemano, se proporcionarán una placa de cocinado con gas, una rejilla de quemador, una parte superior de cocina de gas y una cocina de gas.

Estos objetos son resueltos por las reivindicaciones 1, 4, 7 y 14. Resultan realizaciones de las reivindicaciones dependientes.

De acuerdo con la reivindicación 1, se ha proporcionado una rejilla de quemador. La rejilla de quemador está adaptada e implementada para ser colocada sobre un quemador de gas de una placa de cocinado con gas.

El término "colocada sobre el quemador de gas" en particular significará, que la rejilla de quemador cubre o se extiende al menos sobre el lado de la cara superior del quemador de gas. En general, la rejilla de quemador se extiende en dirección lateral más allá del quemador de gas y está soportada sobre una cara de cocinado. La rejilla de quemador puede ser fijada, es decir unida, a la cara de cocinado, o solo colocada, en particular colocada de manera que se pueda retirar.

Además, la rejilla de quemador propuesta está adaptada e implementada para soportar recipientes de cocción colocados sobre la placa de cocinado con gas. Esto en particular significará que al menos una sección de la rejilla de quemador está posicionada y discurre por encima del lado de la cara superior del quemador de gas. La rejilla de quemador tendrá suficiente resistencia mecánica para soportar y aguantar recipientes de cocción habituales adecuados para la placa de cocinado con gas.

La rejilla de quemador puede ser implementada como una estructura a modo de rejilla que comprende varios brazos de soporte. Los brazos de soporte en un extremo pueden estar adaptados para ser colocados y soportados sobre una cara de cocinado, mientras que secciones de extremo distantes de los brazos de soporte pueden sobresalir a lo largo y por encima del quemador de gas. Las secciones de extremo que sobresalen por encima del quemador de gas en particular están adaptadas para soportar recipientes de cocción en una distancia predefinida desde el quemador de gas, en particular orificios de salida de gas o de llama del quemador de gas.

La rejilla de quemador propuesta comprende además al menos un conducto de alimentación integrado. El conducto de alimentación integrado al menos se extiende desde una región exterior de la rejilla de quemador a una sección central del mismo. El conducto de alimentación propuesto al menos está adaptado e implementado para alimentar aire hacia la sección central, en particular la sección central que ha de ser posicionada sobre y por encima del quemador de gas.

En el sentido de la presente invención, un conducto de alimentación en particular puede ser un tipo de canal alargado que discurre desde la región exterior hacia la sección central. La sección central en particular se comprenderá que representa la sección de la rejilla, que se encuentra, cuando es colocada sobre un quemador de gas, por encima del quemador de gas, preferiblemente por encima de una región o área central del quemador de gas.

El conducto de alimentación puede ser un canal que está abierto en ambos extremos, donde una abertura representa una abertura de entrada de aire y la otra abertura representa una abertura de salida de aire. La abertura de entrada de aire está situada en la región exterior, preferiblemente fuera de la región que será colocada y posicionada sobre el quemador de gas. La abertura de salida de aire está situada en la región interior, preferiblemente dentro de la región que será colocada y posicionada sobre el quemador de gas.

5

10

15

20

25

30

35

40

45

55

El conducto de alimentación puede ser implementado como un elemento constructivo separado, firmemente unido o montado, por ejemplo soldado, a la rejilla de quemador. En una alternativa, el conducto de alimentación puede ser implementado junto con la rejilla, en particular un brazo de soporte de la misma, preferiblemente en una configuración de una sola pieza. En particular en el último caso, el conducto de alimentación puede ser un conducto o canal interior que discurre dentro de la rejilla del quemador.

Una ventaja de la rejilla de quemador propuesta es que mediante al menos un conducto de alimentación, puede suministrarse aire a la sección central del quemador de gas como tal dispuesta por debajo de la rejilla de quemador. En particular, puede suministrarse aire a regiones interiores situadas por encima del quemador de gas. Obsérvese que el término "interior" se referirá a la dimensión lateral del quemador de gas solamente, es decir, será independiente de las alturas axiales.

Con relación al proceso de combustión, en particular llamas de gas, del quemador de gas, el aire suministrado a través del conducto de alimentación propuesto representa aire secundario, generalmente necesario para procesos de combustión óptimos en quemadores de gas. Por tanto, el aire secundario puede ser suministrado a orificios de salida de gas o de llama, o incluso a llamas, en regiones interiores del quemador de gas. Otra ventaja constructiva de la rejilla de quemador propuesta es, en particular, que prever los conductos de alimentación con la rejilla de quemador, o incluso dentro de ella, es relativamente simple, y los costes de fabricación pueden ser mantenidos bajos.

En una realización preferida de la rejilla de quemador, hay previstos varios vástagos de soporte, o brazos de soporte, que se extienden entre la región exterior y la sección central. Con esta realización, al menos un vástago de soporte comprende al menos uno de al menos un conducto de alimentación. Preferiblemente, al menos un conducto de alimentación es un conducto o canal interior de al menos un vástago de soporte.

Prever uno o más conductos de alimentación como conductos o canales interiores en los vástagos o brazos de soporte puede ser ventajoso con respecto a la construcción y fabricación de la rejilla de gas. Además, el suministro de aire secundario puede ser obtenido sin requerir cambios tecnológicos y constructivos serios en la geometría total de las rejillas de quemador conocidas. Los vástagos o brazos de soporte tienen en general suficiente resistencia mecánica para enfrentarse con otros conductos o canales interiores adicionales.

En una realización adicional, la rejilla de quemador comprende al menos un ventilador. El ventilador está adaptado para generar un flujo de aire en el conducto, cuyo flujo de aire es dirigido hacia la sección central.

El ventilador está dispuesto preferiblemente dentro del conducto de alimentación, ventajosamente cerca de una abertura de entrada de aire del conducto de alimentación. La abertura de entrada de aire está dispuesta preferiblemente en una sección exterior de la rejilla de quemador, en particular de tal modo que el aire procedente de una proximidad lateral del quemador de gas puede ser succionado hacia dentro.

Utilizar un ventilador tiene la ventaja de que puede obtenerse un flujo de aire forzado, y por tanto un suministro de aire secundario forzado. Esto puede ser ventajoso para una combustión óptima. Además, el flujo de aire, y por tanto el suministro de aire secundario al quemador de gas, puede ser controlado controlando adecuadamente el funcionamiento del ventilador.

Aquí, puede haber prevista una unidad de control electrónico, adaptada para controlar el ventilador de acuerdo con requisitos de combustión respectivos.

Se mencionará, que prever un ventilador, o prever un ventilador en o para cada uno de los conductos de alimentación no es obligatorio. Obsérvese que un flujo de aire adecuado puede ser obtenido por efectos de succión naturales, en particular efectos Venturi, inducidos por llamas de combustión del quemador de gas. Aquí, el conducto de alimentación, en particular sus aberturas de salida, pueden ser diseñadas de modo adecuado, por ejemplo en forma de boquillas, de tal modo que las llamas de combustión induzcan un flujo de aire, por ejemplo, un flujo de aire secundario, hacia las llamas de combustión.

Otra posibilidad es suministrar aire al conducto de alimentación desde una unidad de suministro de aire, que comprende en particular una cámara y/o ventiladores, dispuestos por debajo de la cara de cocinado. En este caso, la cara de cocinado puede comprender aberturas de salida de aire para ser conectadas o acopladas a aberturas de entrada de aire respectivas de los conductos de alimentación.

Se mencionará, que un conducto de alimentación puede comprender una única abertura de entrada de aire o varias aberturas. Por ejemplo si hay previstas varias aberturas de entrada de aire, puede adaptarse una abertura de entrada de aire para ser acoplada a la unidad de suministro de aire dispuesta por debajo de la cara de la cocina. Otra de las

aberturas de entrada de aire puede ser adaptada para succionar el aire del entorno próximo al quemador de gas y así sucesivamente. Obsérvese que o bien una abertura de entrada de aire común o bien separada puede estar prevista para suministrar aire por succión natural o convección forzada accionada por un ventilador.

De acuerdo con la reivindicación 4, se ha proporcionado una placa de cocinado con gas, que está adaptada para ser utilizada con una parte superior de cocina de gas. La placa de cocinado con gas comprende al menos un quemador de gas y al menos una rejilla de quemador de acuerdo con cualquier realización y configuración descritas antes y más adelante.

5

10

15

20

25

30

35

50

55

Una rejilla de quemador respectiva está posicionada sobre un quemador de gas respectivo. De acuerdo con la descripción adicional anteriormente, la rejilla de quemador, o según el caso pueden ser las rejillas de quemador, está/están adaptadas y configuradas para soportar recipientes de cocinado y similares.

La rejilla de quemador puede comprender una estructura de soporte, en particular elementos de soporte que discurren parcialmente al menos por encima del lado superior del quemador de gas en una distancia predefinida. Por tanto, los recipientes de cocinado, tales como sartenes o cazuelas, pueden ser colocadas sobre la placa de cocinado, en donde el lado inferior de un recipiente de cocción colocado sobre la rejilla de quemador está separado del lado de la cara superior del quemador de gas por la distancia predefinida. La distancia predefinida puede ser seleccionada de tal modo que pueda obtenerse la eficiencia óptima de combustión y calentamiento. Aquí, pueden ser importantes las características del quemador de gas respectivo, en particular sus orificios de salida de gas y/o de llama.

Con la placa de cocina de gas propuesta, la rejilla de quemador es posicionada sobre el quemador de gas y la rejilla de quemador está diseñada de tal forma que una abertura de salida de aire del conducto de alimentación está situada por encima del quemador de gas y en una sección central, por ejemplo, una sección interior, de la misma.

La expresión "situada por encima del quemador de gas" y "en una sección central del mismo" en particular significarán, que una abertura de salida de aire está posicionada o situada por encima del lado de la cara superior del quemador de gas, y con respecto a una vista superior del quemador de gas dentro del lado de la cara superior del quemador de gas. En particular el término "sección central" se referirá al área limitada por el reborde exterior y que se encuentra dentro de él del lado de la cara superior del quemador de gas. Se ha hecho otra referencia a la definición anterior de "interior". El término "lado de la cara superior" se referirá al lado superior del quemador de gas, en particular un capuchón superior del quemador de gas, en una posición operativa ordinaria del quemador de gas.

Obsérvese que el término "una abertura de salida de aire" será entendido en términos de "al menos una abertura de salida de aire". Por ello, la rejilla de quemador puede comprender varias aberturas de salida de aire situadas en una sección central y por encima del quemador de gas. Similarmente, y con propósito de exhaustividad, el término "una abertura de entrada de aire" será entendido en términos de "al menos una abertura de entrada de aire".

Mediante el conducto de alimentación, es posible suministrar aire a la sección central por encima del quemador de gas. El aire así suministrado puede representar aire secundario para procesos de combustión del quemador de gas. Esto es de ventaja particular para una combustión efectiva, si el quemador de gas tiene orificios interiores de salida de gas y/o de llama dispuestos dentro del lado de la cara superior y distantes del reborde superior exterior del quemador de gas.

Por tanto, en una realización de la placa de cocinado con gas, se ha previsto que el quemador de gas comprenda, con respecto a su eje central, orificios exteriores e interiores de salida de gas y/o de llama, en donde la abertura de salida de aire, por ejemplo al menos una abertura de salida de aire, está adaptada y situada para suministrar aire a las llamas de los orificios interiores de salida de gas y/o de llama.

Los orificios de salida de gas y/o de llama dispuestos dentro del lado de la cara superior, es decir, los orificios de salida interiores de gas y/o de llama, pueden por ejemplo ser implementados con un quemador de gas de otra realización que tiene varias coronas de quemador concéntricas. Las coronas de quemador concéntricas pueden comprender respectivamente una pluralidad de orificios de salida de gas y/o de llama. Con esta realización, la abertura de salida de aire está adaptada y situada para suministrar aire a llamas de orificios de salida de gas y/o de llama de coronas de quemador interiores. En particular puede suministrarse aire secundario a procesos de combustión en coronas de quemador interiores.

Como puede verse, en particular con respecto a problemas constructivos, proporcionar una rejilla de quemador con al menos un conducto de alimentación que tiene una abertura de salida de aire, por ejemplo, al menos una abertura de salida de aire, como se ha descrito adicionalmente antes, es un modo relativamente confortable de obtener suficiente suministro de aire secundario incluso en regiones de combustión en la sección central, por ejemplo, sección interior, del quemador de gas.

De acuerdo con la reivindicación 7, se ha proporcionado una parte superior de una cocina de gas que comprende al menos una placa de cocinado con gas de acuerdo con cualquier reivindicación y configuración descritas antes.

En cuanto a ventajas y efectos ventajosos de la parte superior de la cocina de gas, se ha hecho referencia a la descripción anterior y más anteriormente así como más adelante.

ES 2 668 806 T3

En una realización de la parte superior de la cocina de gas, la parte superior de la cocina de gas comprende una cara de cocinado en o a la que está conectada una placa de cocinado con gas. En esta realización, la cara de cocinado comprende una abertura de salida de suministro de aire, que está conectada hidráulicamente a una abertura de entrada de aire del conducto de alimentación.

- En particular, la abertura de salida de suministro de aire establece una conexión fluida con una abertura de entrada de aire de al menos un conducto de alimentación. Mediante la abertura de salida de suministro de aire puede obtenerse un flujo de aire mediante procesos de succión natural y/o suministro forzado de aire al conducto de alimentación. Si un ventilador y similar está situado aguas arriba de la abertura de salida de suministro de aire, puede obtenerse un flujo de aire forzado. Un ventilador respectivo puede por ejemplo estar posicionado por debajo de la cara de cocinado.
- En otra realización, la parte superior de la cocina de gas puede comprender una unidad de suministro de aire, preferiblemente dispuesta por debajo de una cara de cocinado o superficie superior de la cocina de gas. La unidad de suministro de aire puede estar adaptada para alimentar aire a una abertura de entrada de aire del conducto de alimentación. La abertura de salida de suministro de aire prevista dentro de la superficie superior de la cocina de gas, es decir, la cara de cocinado, puede ser parte de la unidad de suministro de aire y alimentada con aire procedente de la unidad de suministro de aire, el suministro de aire al conducto de alimentación puede ser controlado de acuerdo con las necesidades respectivas. Para controlar el suministro de aire, puede preverse una unidad de control electrónico adaptada para controlar por ejemplo ventiladores o elementos o componentes similares adaptados para generar un flujo de aire forzado.
- En otra realización ventajosa, la unidad de suministro de aire puede comprender una cámara de suministro de aire dispuesta por debajo de la parte superior de la cocina de gas. La cámara de suministro de aire puede comprender una salida de la cámara de suministro que está conectada a una abertura de entrada de aire de al menos uno de al menos un conducto de alimentación.
 - Dentro de la cámara de suministro de aire puede haber previsto un ventilador para generar un flujo de aire forzado a través y hacia las aberturas de salida de aire del conducto de alimentación. Un flujo de aire forzado puede ser obtenido de manera alternativa o adicionalmente generando una presión positiva o sobrepresión dentro de la cámara de suministro de aire. Para generar la sobrepresión, puede utilizarse al menos un ventilador y/o incluso un compresor.
 - Aún en otra realización, la rejilla de quemador está posicionada de manera que se puede retirar sobre la parte superior de la cocina de gas. Una conexión hermética al aire entre el conducto de alimentación y una abertura de salida de aire de la parte superior de la cocina de gas o cara de cocinado es establecida automáticamente al poner la rejilla de quemador sobre la parte superior de la cocina de gas. Aquí, pueden utilizarse juntas adecuadas para obtener conexiones herméticas al aire. Prever una rejilla de quemador que se puede retirar puede ser ventajoso con respecto a aspectos de limpieza.
 - De acuerdo con la reivindicación 14, se ha proporcionado una cocina de gas, que comprende una parte superior de cocina de gas de acuerdo con cualquier realización y configuración descritas anteriormente y a continuación.
- 35 A continuación se describirán realizaciones seleccionadas en conexión con las figuras adjuntas, en las que
 - La fig. 1 muestra una vista en perspectiva de una cocina de gas.

25

30

- La fig. 2 muestra una vista en sección esquemática de una primera configuración de una placa de cocinado con gas.
- La fig. 3 muestra una vista en sección esquemática de una segunda configuración de una placa de cocinado con gas, y
- La fig. 4 muestra una vista en sección esquemática de una tercera realización de una placa de cocinado con gas.
- 40 En las figuras, elementos similares serán designados con signos de referencia similares, mientras no se haya indicado de otro modo.
 - La fig. 1 muestra una vista en perspectiva de una cocina 1 de gas. La cocina 1 de gas comprende una parte superior 2 de cocina de gas. La parte superior 2 de cocina de gas comprende varias, en total cuatro, placas 3 de cocinado con gas.
- La fig. 2 muestra una vista en sección esquemática de una primera configuración de una placa 3 de cocinado con gas. La placa 3 de cocinado con gas comprende un quemador 4 de gas. El quemador 4 de gas comprende varias coronas de quemador concéntricas. Una corona de quemador exterior tiene orificios 5 exteriores respectivos de salida de gas o llama, en donde una corona de quemador interior tiene orificios 6 interiores respectivos de gas y/o llama. Obsérvese que los términos exterior e interior se referirán al eje central vertical del quemador 4 de gas. Los orificios 6 interiores de salida de gas y/o de llama pueden considerarse que están dispuestos o posicionados en una sección central de la cara superior del quemador de gas.
 - En funcionamiento, el gas que sale de los orificios 5, 6 de salida de gas se convertirá, después de la ignición, en llamas de gas, mostradas esquemáticamente en las figuras. Las llamas de gas calentarán los recipientes de cocinado situados

sobre la placa 3 de cocinado con gas.

40

45

Para soportar los recipientes de cocinado, tales como sartenes o cazuelas, la placa 3 de cocinado con gas comprende además una rejilla 7 de quemador. La rejilla 7 de quemador es posicionada sobre el quemador 4 de gas y, como ya se ha mencionado, adaptada para soportar recipientes de cocinado que han de ser colocados sobre la placa 3 de cocinado.

- 5 En una configuración mostrada en las figuras, la rejilla 7 de quemador comprende una estructura de soporte, preferiblemente de diseño en forma de retícula. La estructura de soporte, comprende varios brazos 8 de soporte preferiblemente cuatro espaciados angularmente a la misma distancia, dos de los cuales son visibles respectivamente en las figuras. Los brazos 8 de soporte pueden estar interconectados mediante montantes o elementos similares.
- Una primera sección 9 de extremo del brazo 8 de soporte está adaptada para ser colocada, y según el caso puede ser montada, sobre o en una cara 10 de cocinado de la parte superior 2 de la cocina de gas. Una segunda sección 11 de extremo del brazo 8 de soporte, que en el presente caso discurre esencialmente en dirección horizontal, está adaptada para soportar recipientes de cocinado en una distancia predefinida por encima del lado de la cara superior del quemador de gas. Secciones centrales de los brazos 8 de soporte, conectan la primera 9 y la segunda 11 secciones de extremo, y en el presente caso discurren en dirección vertical entre la primera 9 y la segunda 11 secciones de extremo.
- Los puntos finales de las segundas secciones 11 de extremo están posicionados por encima de la sección central o área interior del lado de la cara superior del quemador de gas.
 - La rejilla 7 de quemador comprende conductos de alimentación 12 integrados. Los conductos de alimentación 12 en el presente caso son implementados como canales que discurren dentro de los brazos 8 de soporte. En otras palabras, cada brazo 8 de soporte comprende uno, o más generalmente al menos un, canal interior.
- Los conductos de alimentación 12 en el caso presente se extienden a lo largo de toda la longitud de los brazos 8 de soporte respectivos, en donde las aberturas 13 de entrada de aire respectivas están definidas en lados de la cara de las primeras secciones 9 de extremo y hay definidas aberturas 14 de salida de aire respectivas en lados de la cara de las segundas secciones 11 de extremo.
- Se llega ahora a los conductos de alimentación 12, en particular a las aberturas 13 de entrada de aire, las aberturas 14 de salida de aire y el canal que discurren entre ellas. Durante el funcionamiento del quemador 4 de gas, las llamas en la sección central del quemador 4 de gas, que emanan desde los orificios interiores 6 de salida de gas, inducen un efecto de succión natural, en particular un efecto de succión Venturi, conduciendo a un flujo de aire en los conductos de alimentación 12. El flujo de aire es dirigido desde las aberturas de entrada 13 hacia las aberturas 14 de salida. Obsérvese que el flujo de aire está indicado en las figuras mediante flechas rotas.
- Como consecuencia, el aire procedente de una región exterior del quemador 4 de gas y cerca de la cara 10 de cocinado es alimentado hacia las llamas que emanan desde los orificios interiores 6 de salida de gas, por ejemplo, existentes en la sección central del quemador 4 de gas y de la rejilla 7 de quemador, respectivamente. Obsérvese que el aire es suministrado a las llamas en una región situada por encima del lado de la cara superior del quemador de gas.
- El aire suministrado a las llamas actúa como aire secundario para procesos de combustión respectivos. Como puede verse, el aire secundario puede ser suministrado fácilmente a procesos de combustión relacionados con los orificios 6 interiores de salida de gas. Por tanto los procesos de combustión respectivos y por ello la eficiencia de calentamiento del quemador 4 de gas pueden ser optimizados.
 - Prever conductos de alimentación 12 como se ha descrito más arriba representa un modo comparativamente efectivo de obtener suficiente aire secundario en los procesos de combustión interna, en particular con respecto a un esfuerzo constructivo.
 - Se mencionará, que la ubicación de las aberturas 14 de salida de aire, así como de las aberturas 13 de entrada de aire no está restringida a los lados de la cara respectivos de los brazos 8 de soporte. En su lugar, pueden preverse aberturas 14 de salida de aire y aberturas 13 de entrada de aire en diferentes ubicaciones en tanto en cuanto pueda ser mejorado el suministro de aire secundario a los procesos de combustión interna. Además, se ha descrito solamente una abertura 14 de salida de aire y solamente una abertura 13 de entrada de aire con la rejilla 7 de quemador de la fig. 1. Se mencionará, que pueden preverse varias o incluso una pluralidad de aberturas 14 de salida de aire y de aberturas 13 de entrada de aire, respectivamente. Esto también se aplicará a cualesquiera otras realizaciones y configuraciones de la rejilla de quemador.
- Además, se mencionará que los conductos de alimentación 12, en particular las aberturas 14 de salida de aire, las aberturas 13 de entrada de aire y el canal definido entre ellas pueden estar dimensionados de tal modo que pueda obtenerse un flujo de aire suficiente. Sin embargo, el canal y/o los brazos 8 de soporte deberían estar dimensionados de tal modo que los brazos 8 de soporte tengan suficiente resistencia mecánica para soportar todos los tipos posibles y habituales de recipientes de cocinado.
 - La fig. 3 muestra una vista en sección esquemática de una segunda configuración de una placa 3 de cocinado con gas.

ES 2 668 806 T3

La segunda configuración difiere de la primera configuración porque en cada primera sección 9 de extremo de los brazos 8 de soporte hay previsto un ventilador 15. Esto significa que los ventiladores 15 están posicionados dentro de los conductos de alimentación 12.

Para ajustar los ventiladores 15 al conducto de alimentación 12, el diámetro del conducto de alimentación 12 es ampliado en las primeras secciones 9 de extremo en comparación con la primera configuración.

Los ventiladores 15 están adaptados para generar un flujo de aire, indicado de nuevo mediante flechas rotas, dirigido desde las aberturas 13 de entrada de aire hacia las aberturas 14 de salida de aire. De este modo, el aire, que actúa de nuevo como aire secundario, puede ser suministrado a procesos de combustión interna. Utilizando ventiladores 15, puede obtenerse un flujo de aire forzado, que puede ser ventajoso si los efectos de succión natural son demasiado débiles

Un controlador manual y/o electrónico puede estar previsto para controlar los ventiladores 15. En una configuración, los ventiladores 15, o al menos un ventilador 15, pueden ser activados siempre que el quemador 4 de gas es activado. En otra configuración de hacer funcionar los ventiladores 15, será posible hacer funcionar el quemador 4 de gas mientras los ventiladores 15 están desactivados. En este caso, el aire secundario puede ser suministrado mediante efectos de succión natural. Si los procesos de combustión, en particular los procesos de combustión interior relacionados con las llamas de los orificios interiores 6 de salida de gas, resultan ineficientes, los ventiladores 15, o al menos uno de los ventiladores 15, puede ser activados. Análogamente, uno o más ventiladores 15 pueden ser desactivados si puede suministrarse suficiente aire secundario mediante efectos de succión naturales. La eficiencia de los procesos de combustión puede ser vigilada mediante sensores adecuados, y las señales del sensor pueden ser utilizadas por el controlador electrónico para activar y/o desactivar los ventiladores 15.

La figura 4 muestra una vista en sección esquemática de una tercera realización de una placa 3 de cocinado con gas. La tercera realización difiere de la primera y de la segunda realizaciones porque las secciones horizontales de las primeras secciones 9 de extremo de los brazos 8 de soporte están omitidas. En su lugar, secciones verticales 16 de los brazos 8 de soporte están soportadas directamente sobre la cara 10 de cocinado. Las aberturas 13 de entrada de aire de los conductos de alimentación 12 están previstas en los lados de la cara inferior de las secciones verticales 16.

Los brazos 8 de soporte en la tercera configuración están diseñados y posicionados sobre la cara 10 de cocinado de tal modo que las aberturas 13 de entrada de aire están conectadas hidráulicamente a las aberturas 17 de salida de suministro de aire previstas en la cara 10 de cocinado. Pueden obtenerse conexiones herméticas al aire entre las aberturas 13 de entrada de aire y las aberturas 17 de salida de suministro de aire mediante juntas adecuadas.

En la presente configuración, así como en la primera y segunda configuraciones descritas adicionalmente antes, la rejilla de quemador puede ser colocada de manera que se pueda retirar sobre la cara 10 de cocinado.

Por debajo de la cara 10 de cocinado, hay prevista una cámara 18 de suministro de aire que se extiende sobre las aberturas 17 de salida de suministro de aire. Las aberturas 17 de salida de suministro de aire definen salidas de cámara de la cámara 18 de suministro de aire.

Dentro de la cámara 18 de suministro de aire hay previsto un ventilador adicional 19. Al hacer funcionar el ventilador adicional 19, puede obtenerse un flujo de aire forzado hacia las aberturas 14 de salida de aire. Por tanto, puede suministrarse aire secundario para los procesos de combustión interna del guemador 4 de gas.

Con respecto al funcionamiento del ventilador adicional 19, se ha hecho referencia a la descripción anterior, por ejemplo con relación a los ventiladores 15, que se aplicará mutatis mutandis. En particular, puede preverse que el ventilador adicional 19 puede ser hecho funcionar por un controlador, bien por un controlador manual y/o automáticamente por un controlador electrónico. Además, puede preverse que el ventilador adicional 19 sea activado al producirse la activación del quemador 4 de gas. En un modo operativo diferente, el funcionamiento del ventilador adicional 19 puede ser realizado de forma independiente del funcionamiento del quemador 4 de gas, lo que significará en particular, que el ventilador adicional 19 puede ser desactivado durante el funcionamiento del quemador 4 de gas. En el último caso, puede ser suministrado aire secundario por efectos de succión natural.

En su totalidad resulta claro, que, en particular en contraste con el estado de las soluciones técnicas, la invención es efectiva para mejorar el suministro de aire secundario a orificios de salida de llama y a llamas situadas en regiones interiores de un quemador de gas.

Lista de números de referencia

50 1 cocina de gas

5

10

15

20

25

40

45

- 2 parte superior de la cocina de gas
- 3 placa de cocinado de gas

ES 2 668 806 T3

- 4 quemador de gas
- 5 orificio exterior de salida de gas
- 6 orificio interior de salida de gas
- 7 rejilla de quemador
- 5 8 brazo de soporte
 - 9 primera sección de extremo
 - 10 cara de cocinado
 - 11 segunda sección de extremo
 - 12 conducto de alimentación
- 10 13 abertura de entrada de aire
 - 14 aberturas de salida de aire
 - 15 ventilador
 - 16 sección vertical
 - 17 abertura de salida de suministro de aire
- 15 18 cámara de suministro de aire
 - 19 ventilador adicional

REIVINDICACIONES

1 Rejilla (7) de quemador adaptada e implementada para ser colocada sobre un quemador (4) de gas de una placa (3) de cocinado con gas y para soportar recipientes de cocción colocados sobre la placa (3) de cocinado con gas, caracterizada por que la rejilla (7) de quemador comprende al menos un conducto de alimentación (12) integrado que se extiende desde una región exterior de la rejilla (7) de quemador a una sección central del mismo, en donde al menos un conducto de alimentación (12) está adaptado e implementado para alimentar aire hacia la sección central.

5

10

25

- 2 Rejilla (7) de quemador según la reivindicación 1, que comprende varios vástagos (8) de soporte que se extienden entre la región exterior y la sección central, en donde al menos un vástago (8) de soporte comprende al menos uno de al menos un conducto de alimentación (12), en donde al menos un conducto de alimentación (12) es preferiblemente un conducto interior de al menos un vástago (8) de soporte.
- 3 Rejilla (7) de quemador según cualquiera de las reivindicaciones 1 o 2, que comprende además al menos un ventilador (15, 19), adaptado para generar un flujo de aire en el conducto de alimentación (12), dirigido hacia la sección central del mismo, en donde el ventilador (15) está dispuesto preferiblemente dentro del conducto de alimentación (12) más preferiblemente en una sección exterior (9) del mismo.
- 4 Placa (3) de cocinado con gas, adaptada para ser utilizada con una parte superior (2) de cocina de gas, comprendiendo la placa (3) de cocinado con gas un quemador (4) de gas y una rejilla (7) de quemador según al menos una de las reivindicaciones 1 a 3, en donde la rejilla (7) de quemador está posicionada sobre el quemador (4) de gas y una abertura (14) de salida de aire del conducto de alimentación (12) está situada en una sección central y por encima del quemador (4) de gas.
- 5 Placa (3) de cocinado con gas según la reivindicación 4, en donde el quemador (4) de gas comprende, con respecto a su eje central, orificios exteriores (6) e interiores (5) de salida de llama, en donde la abertura (14) de salida de aire está adaptada y situada para suministrar aire a las llamas de los orificios (6) interiores de salida de llama.
 - 6 Placa (3) de cocinado con gas según la reivindicación 5, en donde el quemador (4) de gas comprende varias coronas de quemador concéntricas que comprenden respectivamente una pluralidad de orificios (5, 6) de salida de llama, en donde la abertura (14) de salida de aire está adaptada y situada para suministrar aire a llamas de orificios (6) de salida de llama de coronas interiores.
 - 7. Parte superior (2) de cocina de gas que comprende al menos una placa (3) de cocinado con gas según al menos una de las reivindicaciones 4 a 6.
- 8. Parte superior (2) de cocina de gas según la reivindicación 7, que comprende una cara (10) de cocinado en o a la que está conectada una placa (3) de cocinado con gas, en donde la cara (10) de cocinado comprende al menos una abertura (17) de salida de suministro de aire, que está conectada hidráulicamente a una abertura (13) de entrada de aire de al menos un conducto de alimentación (12).
 - 9. Parte superior (2) de cocina de gas según al menos una de las reivindicaciones 7 y 8, que comprende una unidad (18, 19) adaptada para alimentar aire a una abertura (13) de entrada de aire de al menos un conducto de alimentación (12).
- 35 10. Parte superior (2) de cocina de gas según la reivindicación 9, comprendiendo la unidad de suministro de aire una cámara (18) de suministro de aire dispuesta por debajo de la parte superior (2) de la cocina de gas, en donde al menos una salida (17) de la cámara de suministro está conectada a una abertura (13) de entrada de aire de al menos uno de al menos un conducto de alimentación (12).
- 11. Parte superior (2) de cocina de gas según al menos una de las reivindicaciones 9 o 10, en donde la unidad de suministro de aire comprende al menos un ventilador (19) adaptado al menos para alimentar aire a la cámara (18) de suministro y a una abertura (13) de entrada de aire de al menos uno del conducto de alimentación (12).
 - 12. Parte superior (2) de cocina de gas según la reivindicación 11, en donde al menos un ventilador (19) está posicionado dentro de la cámara (18) de suministro.
- 13. Parte superior (2) de cocina de gas según cualquiera de las reivindicaciones 7 a 12, en donde la rejilla (7) de quemador está posicionada de manera que se pueda retirar sobre la parte superior (2) de la cocina de gas, y una conexión hermética al aire entre al menos un conducto de alimentación (12) y la abertura (17) de salida de aire de la unidad (18, 19) de suministro de aire es establecida automáticamente durante la colocación de la rejilla (7) de quemador sobre la parte superior (2) de la cocina de gas.
- 14 Cocina (1) de gas que comprende una parte superior (2) de cocina de gas según al menos una de las reivindicaciones 7 a 13.

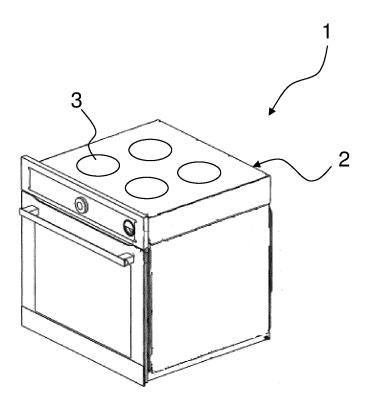


Fig. 1

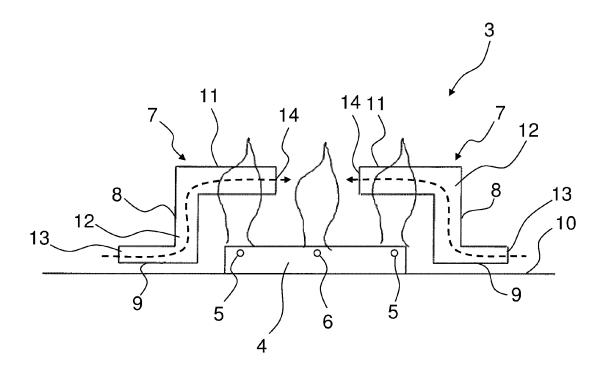


Fig. 2

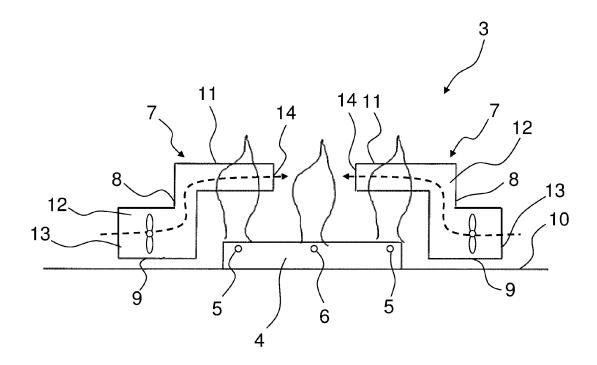


Fig. 3

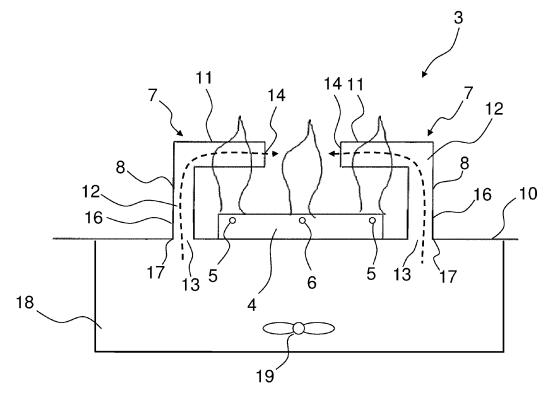


Fig. 4