

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 668 951

51 Int. Cl.:

C11B 9/02 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 02.08.2016 E 16182351 (3)
Fecha y número de publicación de la concesión europea: 28.02.2018 EP 3127994

(54) Título: Procedimiento para el envejecimiento artificial de rizomas de Iris para la formación acelerada de isómeros de ironas

(30) Prioridad:

06.08.2015 DE 102015215010

Fecha de publicación y mención en BOPI de la traducción de la patente: 23.05.2018

(73) Titular/es:

SKH GMBH (100.0%) Königsbacher Strasse 17 94496 Ortenburg, DE

72 Inventor/es:

FLEMMING, MARCEL

(74) Agente/Representante:

FÚSTER OLAGUIBEL, Gustavo Nicolás

DESCRIPCIÓN

Procedimiento para el envejecimiento artificial de rizomas de Iris para la formación acelerada de isómeros de ironas

5 Campo técnico

La presente invención se refiere a un procedimiento para acelerar el envejecimiento de rizomas del lirio (Iris) y para la preparación de manteca de Iris a partir de los rizomas envejecidos.

10 Estado de la técnica

15

Los rizomas de las clases de lirio *Iris germanica*, *Iris pallida* y algunos de sus híbridos, como por ejemplo *Iris Barbata*, contienen compuestos terpenoides, los denominados compuestos iridianos, a partir de los cuales pueden formarse sustancias aromáticas valiosas, las denominadas ironas, mediante división oxidativa. El proceso de envejecimiento se produce actualmente mediante almacenamiento de los rizomas secos durante un periodo de tiempo de al menos tres a cuatro años [F.-J. Marner, Current Organic Chemistry, 1997, 1, 153-186]. Las ironas se obtienen mediante destilación por vapor de agua de los rizomas envejecidos en el aceite esencial, la denominada manteca de Iris, que tiene muchas salidas en la industria de la perfumería, cosmética y alimentaria.

- Para la aceleración del proceso de envejecimiento se llevaron a cabo algunos experimentos. Así, se desarrollaron métodos de oxidación químicos en húmedo con permanganato de potasio o sales de nitrito [F.-J. Marner, W. Krick, B. Gellrich, L. Jaenicke, W. Winter, J. Org. Chem., 1982, 47, 2531-2536; W. Krick, F.-J. Marner, L. Jaenicke, Z. Naturforsch., 1983, 38c, 179; documento FR-2 620 702, 24/3/89; patente estadounidense n.º 6.224.874B1], se probaron procedimientos de biotransformación microbiológicos y enzimáticos [documentos EP 0443 925; EP 0353 683; patente estadounidense n.º 4.963.480; EP 0443 926; patente estadounidense n.º 5.100.790] o se utilizó radiación ionizante para el tratamiento de rizomas frescos [documento FR-2 653 637], para acelerar la formación de ironas.
- Sin embargo, en la práctica no se implementan los métodos mencionados para la formación acelerada de ironas, porque no son deseados por el consumidor al tratarse de un tratamiento previo químico de productos naturales [B. Roger, X. Fernandez, V. Jeannot, J. Chahboun, Phytochem. Anal., 2010, 21, 483-488] o no pueden implementarse de manera económica.
- El documento WO 2009/004517 describe un procedimiento para la maduración de raíces de Iris. A este respecto, en primer lugar se calientan brevemente los rizomas en agua para eliminar los agentes patógenos, pero sin desactivar las enzimas para la posterior fermentación. A continuación se trituran las raíces y se fermentan. El procedimiento se realiza con rizomas frescos que no se secan. También se proporciona información sobre el estudio de la fermentación con las enzimas añadidas externamente y sin oxígeno. A este respecto se encontró que sin oxígeno la formación de ironas se ve claramente afectada.

Objetivo

45

50

55

60

65

El tiempo de almacenamiento prolongado de los rizomas de Iris en el método de preparación tradicional de hasta ahora al menos tres años resulta problemático desde el punto de vista económico, porque es necesario disponer de un espacio de almacenamiento, se interrumpe el flujo de caja y pueden producirse pérdidas considerables por infestación por plagas. Además, ello hace que disminuya la motivación de los agricultores por poner nuevas plantaciones de Iris. Los procedimientos conocidos para acelerar el envejecimiento de rizomas de Iris requieren un uso considerable de reactivos como por ejemplo agentes oxidantes o enzimas, o el uso de microorganismos y existe el riesgo de una baja aceptación por parte de los consumidores debido al tratamiento previo químico.

En vistas de esta problemática, la presente invención se basa en el objetivo de proporcionar un procedimiento para acelerar el envejecimiento de los rizomas y para obtener manteca de Iris, que permita un acortamiento considerable del tiempo de almacenamiento y a este respecto, pueda realizarse de manera económica, sin que sea necesario un tratamiento previo con productos químicos o enzimas.

Para alcanzar este objetivo según la invención se almacenan rizomas de lirio en atmósfera con contenido en oxígeno, una presión aumentada y una temperatura aumentada. A este respecto se encontró sorprendentemente que la cantidad de ironas aumenta en de pocos días a semanas hasta una cantidad que es mayor que en el caso de los rizomas almacenados de manera convencional durante tres años.

Sumario de la invención

La presente invención se refiere a un procedimiento para acelerar el envejecimiento de rizomas de lirio, que comprende el almacenamiento de rizomas de lirio en atmósfera con contenido en oxígeno, que a 25°C presenta una presión parcial de oxígeno de 100 kPa (1 bar) o más, y a una temperatura de 25°C o más.

Además la invención se refiere a un procedimiento para la obtención de manteca de Iris a partir de los rizomas de Irio envejecidos, que tras el almacenamiento comprende la realización de una destilación por vapor de agua o una extracción.

5 Efectos ventajosos de la invención

10

15

25

30

35

40

45

50

55

60

Las ventajas alcanzadas mediante el procedimiento consisten en particular en que es posible acortar el tiempo de almacenamiento de los rizomas de Iris secos de hasta ahora al menos tres años (aunque en parte también hasta cinco años o más) hasta sólo de algunos días a semanas. A este respecto, no se utilizan productos químicos oxidantes como permanganato de potasio o sales de nitrito o procesos microbiológicos o enzimáticos complejos desde el punto de vista de la técnica del procedimiento, sino sólo mezclas de gases con contenido en oxígeno, como oxígeno para uso industrial, aire comprimido o aire sintético a presión aumentada y temperatura aumentada. De este modo se obtiene un producto libre de residuos, algo importante para la aceptación por parte de los clientes en el sector cosmético. Además desaparecen los costes por almacenamiento y pérdidas o la disminución de calidad por infestación por plagas. Adicionalmente, por la duración de la aplicación del procedimiento a rizomas de Iris secos puede influirse en la composición de los diferentes isómeros de ironas y con ello en el aroma de la manteca de Iris preparada a partir de los mismos y así controlarse. Otra ventaja se obtiene mediante la flexibilidad añadida en la preparación por el tiempo de espera ahora reducido.

20 Descripción detallada de la invención

El procedimiento según la invención puede utilizarse en relación con todas las clases de lirios adecuadas para la obtención de ironas. A este respecto se trata en particular de lirios de las clases *Iris germanica, Iris pallida, Iris pallida argentea variegata, Iris pallida aurea variegata, Iris pallida alba, Iris neglecta, Iris spectabilis, Iris macedonica,* y/u otras variaciones de *Iris barbata.*

Habitualmente, antes del almacenamiento, los rizomas de los lirios se pelan, trituran y a continuación se secan. Para la trituración pueden cortarse los rizomas en trozos de 1-3 cm de tamaño. También es posible molerlos para aumentar adicionalmente la superficie y aceleración de la formación de ironas.

Alternativamente también es posible utilizar los rizomas sin tratar o sólo secarse, algo preferido por algunos fabricantes de perfumes. Sin embargo, entonces durante el almacenamiento según la invención por la menor superficie habría que contar con una disminución de la velocidad de la reacción con el oxígeno, de modo que dado el caso podría ser necesario aumentar de manera correspondiente la concentración de oxígeno, la temperatura y/o el tiempo de almacenamiento.

El secado puede producirse mediante simple almacenamiento a temperatura ambiente, o a temperatura aumentada de por ejemplo 30-40°C o más, en particular aproximadamente 45-60°C. Para mejorar adicionalmente la eficacia de secado puede reducirse la presión o secarse a vacío. Sin embargo, en tales circunstancias, debido a la volatilidad de los terpenos, que constituyen el material de partida de las ironas, puede reducirse la formación de ironas. Por tanto se prefieren condiciones de secado suaves.

El tiempo de secado no está limitado especialmente. En general, el secado finaliza cuando se ha alcanzado un peso constante. En caso de secado a vacío o secado con aire caliente esto puede ocurrir en pocas horas, por ejemplo en 5 a 48 horas, en particular 10-24 horas. Con un secado sencillo mediante almacenamiento pueden ser necesarios de varios días a semanas. Cuanto más pequeños estén cortados los rizomas, más rápido será el secado.

El almacenamiento se produce entonces en un recipiente resistente a la presión, que puede calentarse como un autoclave en atmósfera con contenido en oxígeno como por ejemplo aire, mezclas de oxígeno/gas inerte u oxígeno puro.

A este respecto, depende de manera decisiva de la concentración del oxígeno, que a su vez puede calcularse utilizando la ecuación $p_{O2}V = n_{O2}RT$ a partir de la temperatura y la presión parcial de oxígeno p_{O2} . A una temperatura fija, la concentración $c_{O2} = n_{O2}/V$ es proporcional a la presión parcial, se aplica que $p_{O2}V = (n_{O2}/V) * RT$.

Según la invención la concentración se seleccionará de tal modo que la presión parcial de oxígeno a 25°C (298 K) ascienda a 50 kPa (0,5 bares) o más. Preferiblemente la presión parcial de oxígeno es de 200 kPa (2 bares) o más, más preferiblemente 500 kPa (5 bares) o más, aún más preferiblemente 2000 kPa (20 bares) o más. A este respecto puede utilizarse una atmósfera de oxígeno pura; en este caso los datos de presión parcial anteriores corresponden a la presión total a 25°C. La determinación de la presión parcial de oxígeno puede producirse al utilizar oxígeno puro simplemente porque se llena el recipiente de reacción a 25°C y se mide la presión. Cuando el llenado se produce a otra temperatura, entonces habría que recalcular la presión medida dado el caso utilizando la ecuación anterior con el valor a 25°C.

Alternativamente puede utilizarse una mezcla de oxígeno-gas inerte o también aire, debiendo aumentar la presión total en función del contenido en oxígeno de la mezcla de manera correspondiente, de modo que disminuye la

presión parcial de oxígeno al intervalo anterior. La determinación de la presión parcial de oxígeno se produce igualmente mediante la medición de la presión del gas introducido, que sin embargo en este caso debe multiplicarse por el contenido en oxígeno del gas. Cuando por ejemplo se utiliza aire, que presenta un contenido en oxígeno de aproximadamente el 21%, entonces sería necesaria una presión total de aproximadamente 250 kPa (2,5 bares) para obtener la presión parcial de oxígeno necesaria de al menos 50 kPa (0,5 bares).

No existe un límite superior especial para la presión parcial de oxígeno. No obstante, la presión máxima puede estar limitada por el tipo de recipiente utilizado. A este respecto, cabe indicar además que debido al calentamiento la presión sigue aumentando dado el caso.

10

5

El almacenamiento se produce a una temperatura de al menos 25°C, preferiblemente en el intervalo de 30-80°C, en particular 40-60°C. Una temperatura aumentada acelera la formación de ironas, aunque a temperaturas muy elevadas existe el riesgo de que se favorezca la formación de productos secundarios no deseados o de que puedan aparecer reacciones de descomposición, de modo que puede volver a disminuir la cantidad de ironas formada.

15

La duración del almacenamiento no está limitada de manera especial. Habitualmente, el contenido en ironas aumenta inicialmente de manera clara con el tiempo de almacenamiento y entonces alcanza un máximo, y con tiempos de almacenamiento muy prolongados puede volver a disminuir por las reacciones de descomposición. El desarrollo exacto en el tiempo puede depender de la concentración de oxígeno, la presión y la temperatura.

20

25

Una duración del almacenamiento adecuada puede determinarse mediante la medición del desarrollo en el tiempo del contenido en ironas y por ejemplo puede ascender a dos días o más, preferiblemente una semana o más. A la inversa, la duración del almacenamiento, en cuanto a la rentabilidad del procedimiento y el riesgo de la descomposición de las ironas, normalmente no dura más de 12 semanas. Así se produce una duración habitual del almacenamiento de 1-12 semanas, preferiblemente 1-8 semanas, en particular preferiblemente 1-4 semanas.

La obtención de manteca de Iris con contenido en ironas a partir de los rizomas envejecidos se produce mediante procedimientos habituales, por ejemplo destilación por vapor de agua o extracción con disolventes como por ejemplo dióxido de carbono supercrítico.

30

Ejemplos

Ejemplo 1:

35

40

Se utilizan rizomas de *Iris germanica* de origen marroquí. Se pelan los rizomas frescos y se cortan en trozos de aproximadamente 2 cm. Se someten a diferentes métodos de secado. Una parte se seca en un secador de adsorción en flujo de aire a 45°C, la otra parte en una cámara de vacío que puede calentarse a 50°C hasta el peso constante (a aproximadamente el 30-40%). A continuación se colocan los trozos en bombas de presión de acero fino, que se llenan con oxígeno (2000-3000 kPa (20-30 bares) a 25°C) y se colocan cerradas de manera hermética a los gases en un baño de aceite a 50°C. Como control negativo sirven trozos de rizoma almacenados a aire ambiente de la misma carga.

Tras 1, 2 y 4 semanas se extraen muestras del control negativo y tras 1, 2, 4, 6, 10 y 12 semanas se extraen muestras de las bombas de presión y se analizan para obtener el contenido en ironas. Mientras que el contenido en ironas del control negativo durante 4 semanas se sitúa a valores bajos entre 10-30 mg/kg, aumenta considerablemente en las muestras de las bombas de presión (véanse las representaciones 1 y 2). En los rizomas, secados en el secador de adsorción, tras 2 semanas, se procesó un máximo en el contenido total de ironas, situado a 496 mg/kg (representación 1). En rizomas, secados en la cámara de secado a vacío, el máximo se situó a 358 mg/kg y se alcanzó tras 4 semanas (representación 2). También cabe observar que al permanecer más tiempo los rizomas en las bombas de presión varió la relación de los isómeros cis-α-irona con respecto a γ-irona a favor de la γ-irona.

Para el análisis de ironas se trituran de manera fina por cada muestra 0,5 g de los rizomas y se mezclan con 100 µl de una disolución metanólica de ionona con una concentración de 10 mg/ml como patrón interno, lo que corresponde a una adición de 1 mg de ionona por cada muestra. A continuación se mezclan las muestras con 5 ml de éter dietílico y se someten a extracción durante 15 min en baño de ultrasonidos. Se retira el sobrante y se repite la extracción con 3 ml de éter dietílico y 5 min en baño de ultrasonidos. Se juntan los sobrantes de la respectiva muestra, se concentran en flujo de nitrógeno y tras la filtración mediante filtro de jeringa sirven como disolución de análisis. Las muestras se miden en un cromatógrafo de gas con detector de ionización de la llama. La cuantificación se produce mediante comparación de las áreas pico del patrón interno de ionona con las de los isómeros de ironas. Para la determinación de un factor de corrección se comparan las áreas pico de las mismas cantidades de ionona y una mezcla auténtica de los isómeros de ironas.

Ejemplo 2:

65

Se utilizan rizomas de Iris germanica de origen marroquí. Se pelan los rizomas frescos y se cortan en trozos de

aproximadamente 2 cm y se secan en la cámara de secado a 45°C. A continuación se trituran los rizomas secos para obtener polvo (tamaño de grano de aproximadamente 1 mm). El tratamiento posterior es según se describió en el ejemplo 1.

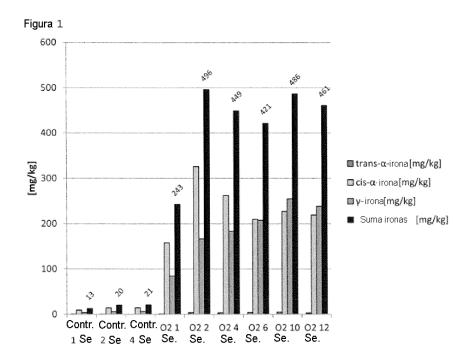
Como comparación se realizó una extracción de una muestra de Iris de tres años (envejecida de manera natural) según el mismo procedimiento como se describió en el ejemplo 1 y también se midió. Los resultados se representan en la representación 3. De manera análoga al ejemplo 1 también en este caso, mediante el procedimiento según la invención del envejecimiento artificial, aumenta considerablemente el contenido en ironas tras 1, 2, 3, 4 y 5 semanas, mientras que el contenido en ironas sigue siendo reducido en el caso de los rizomas almacenados al aire libre (control). Ya tras 1 semana de envejecimiento artificial el contenido en ironas de estos rizomas supera el de los almacenados durante 3 años (representación 3).

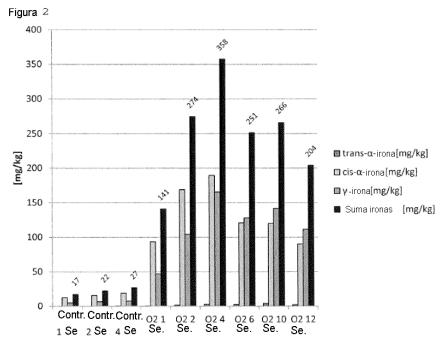
Descripción de las representaciones

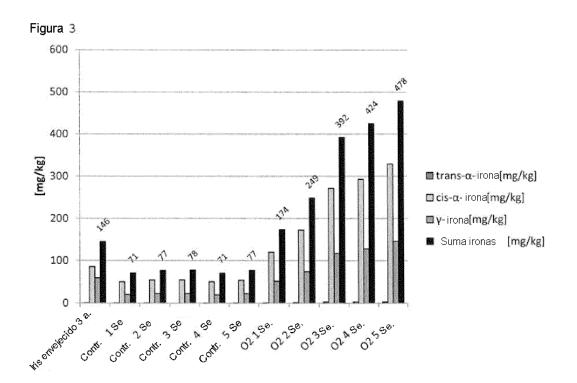
- Figura 1: contenidos en ironas de rizomas de Iris (*Iris germanica*) tratados de manera diferente, recién secados (secado por adsorción). Los contenidos de los isómeros de ironas de los tres grupos de control (contr.) eran claramente inferiores tras un almacenamiento de 1, 2 o 4 semanas al aire ambiente que en el caso de los rizomas, almacenados 1, 2, 4, 6, 10 y 12 semanas con atmósfera de oxígeno (2000-3000 kPa (20-30 bares) a 25°C) y temperatura aumentada (50°C) (O₂). En cada caso se indican las sumas de las ironas en mg/kg.
- Figura 2: contenidos en ironas de rizomas de Iris (*Iris germanica*) tratados de manera diferente, recién secados (cámara de secado a vacío). Los contenidos de los isómeros de ironas de los tres grupos de control (contr.) eran claramente inferiores tras un almacenamiento de 1, 2 o 4 semanas al aire ambiente que en el caso de los rizomas, almacenados 1, 2, 4, 6, 10 y 12 semanas con atmósfera de oxígeno (2000-3000 kPa (20-30 bares) a 25°C) y temperatura aumentada (50°C) (O₂). No obstante, en este ensayo se alcanzó el máximo de contenido en ironas tras 4 semanas. En cada caso se indican las sumas de las ironas en mg/kg.
- Figura 3: contenidos en ironas de rizomas de Iris (*Iris germanica*) tratados de manera diferente, recién secados (cámara de secado, circulación de aire). Se pulverizaron los rizomas de Iris tras el secado. Los contenidos de los isómeros de ironas de los cinco grupos de control (contr.) eran claramente inferiores tras un almacenamiento de 1, 2, 3, 4 o 5 semanas al aire ambiente que en el caso de los rizomas, almacenados 1, 2, 3, 4 y 5 semanas con atmósfera de oxígeno (2000-3000 kPa (20-30 bares) a 25°C) y temperatura aumentada (50°C) (O₂). En cada caso se indican las sumas de las ironas en mg/kg.

REIVINDICACIONES

 Procedimiento para acelerar el envejecimiento de rizomas de lirio, que comprende el almacenamiento de rizomas de lirio en atmósfera con contenido en oxígeno, que a 25°C presenta una presión parcial de oxígeno de 50 kPa (0,5 bares) o más, y una temperatura de 25°C o más.


5


10


20

- 2. Procedimiento según la reivindicación 1, en el que se utilizan lirios de las clases *Iris germanica, Iris pallida*, *Iris pallida argentea variegata*, *Iris pallida aurea variegata*, *Iris pallida alba*, *Iris neglecta*, *Iris spectabilis*, *Iris macedonica* y/u otras variedades de *Iris barbata*.
- 3. Procedimiento según la reivindicación 1 o 2, en el que se utilizan rizomas pelados y/o sin pelar, cortados y/o pulverizados y/o enteros.
- 4. Procedimiento según al menos una de las reivindicaciones 1 a 3, que antes del almacenamiento comprende el secado de los rizomas.
 - 5. Procedimiento según al menos una de las reivindicaciones 1 a 4, en el que la atmósfera a una temperatura de 25°C presenta una presión parcial de oxígeno de 200 kPa (2 bares) o más, preferiblemente 500 kPa (5 bares) o más.
 - 6. Procedimiento según al menos una de las reivindicaciones 1 a 5, en el que se utiliza una atmósfera de oxígeno pura.
- 7. Procedimiento según al menos una de las reivindicaciones 1 a 6, en el que la temperatura durante el almacenamiento asciende a 25-80°C.
 - 8. Procedimiento según al menos una de las reivindicaciones 1 a 7, en el que la duración del almacenamiento asciende al menos a dos días, preferiblemente al menos a una semana.
- 30 9. Procedimiento según al menos una de las reivindicaciones 1 a 8, en el que el almacenamiento se realiza en un autoclave.
- 10. Procedimiento para la obtención de manteca de Iris a partir de rizomas de Iirio, que comprende llevar a cabo el procedimiento según una de las reivindicaciones 1 a 9 así como tras el almacenamiento llevar a cabo una extracción o destilación por vapor de agua o hidrodestilación.

6

