



OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA



11 Número de publicación: 2 670 446

51 Int. Cl.:

B01D 15/18 (2006.01) C07C 7/12 (2006.01) C10G 25/12 (2006.01) C10G 53/08 (2006.01) C10G 25/08 (2006.01)

(12)

# TRADUCCIÓN DE PATENTE EUROPEA

**T3** 

(86) Fecha de presentación y número de la solicitud internacional: 09.12.2011 PCT/US2011/064108

(87) Fecha y número de publicación internacional: 28.06.2012 WO12087605

(96) Fecha de presentación y número de la solicitud europea: 09.12.2011 E 11850153 (5)

(97) Fecha y número de publicación de la concesión europea: 21.03.2018 EP 2654924

(54) Título: Eliminación de refinado de línea de transferencia residual de una alimentación para aumentar la capacidad de una unidad de separación de parafinas normales

(30) Prioridad:

20.12.2010 US 972953

Fecha de publicación y mención en BOPI de la traducción de la patente: 30.05.2018

(73) Titular/es:

UOP LLC (100.0%) 25 East Algonquin Road P.O. Box 5017 Des Plaines, Illinois 60017-5017, US

(72) Inventor/es:

PIEPER, JEFFREY L.; SOHN, STEPHEN W. y BERNARD, PETER M.

(74) Agente/Representante:

**LEHMANN NOVO, María Isabel** 

### **DESCRIPCIÓN**

Eliminación de refinado de línea de transferencia residual de una alimentación para aumentar la capacidad de una unidad de separación de parafinas normales

#### CAMPO DE LA INVENCIÓN

5

10

15

20

25

30

35

40

45

50

55

60

El campo de la invención se refiere a procesos de separación por adsorción. En particular, la invención se refiere al proceso de separación por adsorción en lecho móvil simulado continua para la separación de hidrocarburos.

#### ANTECEDENTES DE LA INVENCIÓN

La separación de componentes con un punto de ebullición próximo o la separación de isómeros orgánicos es importante para una variedad de procesos petroquímicos. El uso de procesos de separación por adsorción ha posibilitado la separación normalmente muy difícil de componentes en una mezcla. El proceso de separación por adsorción para un proceso a gran escala usa el diseño de lecho móvil simulado para una separación continua de componentes en la mezcla. El proceso en lecho móvil simulado se describe en el documento US 2.985.589 por Broughton et al. El proceso en lecho móvil simulado usa un movimiento a contracorriente simulado del adsorbente con la mezcla de fluido que debe separarse.

El proceso se realiza usando tecnología comercial establecida, en la que el adsorbente se coloca en una pluralidad de lechos de adsorbente y entre cada par de lechos de adsorbente hay orificios de acceso para admitir y extraer fluido del sistema. A medida que el proceso progresa, las corrientes implicadas en el proceso se desplazan de un lecho de adsorbente al siguiente lecho de adsorbente adyacente. Normalmente, hay cuatro corrientes, una corriente de alimentación que comprende la mezcla que debe separarse, una corriente de extracto que comprende el componente adsorbido preferentemente, una corriente de desorbente para desplazar el componente adsorbido, y una corriente de refinado que comprende los componentes restantes de la mezcla de corriente de alimentación. Cada corriente se desplaza simultáneamente y en el mismo sentido a lo largo de los lechos de adsorbente. Con cada desplazamiento de ubicación, se entrega fluido o se retira de un lecho diferente. Con esta progresión, el componente adsorbido preferentemente se separa de la mezcla. Los documentos US 3.205.166 y US 3.201.491 dan

Tienen que considerarse muchos aspectos del proceso de separación por adsorción. Para una separación dada, el proceso puede ser un proceso de tamizado molecular, o en otros casos, el proceso puede ser una separación debido a fuerzas electrostáticas. El proceso general se basa en la adsorción diferencial de los diferentes componentes en la mezcla. Uno, o más, componente(s) se adsorbe(n) preferentemente, y los componentes restantes se arrastran a medida que el fluido continúa fluyendo sobre el adsorbente. Una separación particular también necesita considerar el tipo de material adsorbente usado y las condiciones de funcionamiento, así como los desorbentes apropiados que pueden usarse.

a conocer procesos de adsorción para la separación de parafinas normales.

La separación por adsorción usa equipamiento caro y el equipamiento no se reemplaza fácilmente para aumentar la producción de una corriente de producto. Con la demanda creciente de los productos de procesos de separación por adsorción, es deseable aumentar el caudal, la capacidad y la recuperación de los productos sin tener que reemplazar el equipamiento.

#### SUMARIO DE LA INVENCIÓN

Esta invención es una mejora del proceso de separación por adsorción que utiliza un proceso en lecho móvil simulado. La invención es tal como se describe en la reivindicación 1. En el presente documento se da a conocer un sistema de lecho móvil simulado que comprende una columna de adsorción de múltiples orificios, en la que los orificios se usan secuencialmente para admitir y extraer corrientes de fluido. El proceso es para la separación de componentes seleccionados de una mezcla de hidrocarburos, en la que los componentes seleccionados se adsorben preferentemente sobre el adsorbente, mientras que los componentes restantes se arrastran fuera de la columna de adsorción. El proceso incluye hacer pasar una corriente de alimentación que comprende la mezcla de hidrocarburos hasta un primer orificio en la columna de adsorción. Una corriente de desorbente se hace pasar hasta un tercer orificio en la columna de adsorción, y una corriente de extracto se extrae de un cuarto orificio que comprende los componentes seleccionados preferentemente. Una corriente de refinado se extrae de un segundo orificio que comprende los componentes no adsorbidos de la corriente de alimentación. En el sistema de lecho móvil simulado resulta una ineficiencia del hecho que la línea de transferencia usada para extraer la corriente de refinado del segundo orificio se usa secuencialmente para admitir la corriente de alimentación en el primer orificio. El proceso incluye además hacer pasar una corriente de lavado terciario a través de un quinto orificio aguas abajo en relación con el primer orificio, y extraer material del interior de la columna de adsorción para desplazar el material refinado al interior de la línea de transferencia. El material refinado lavado de la línea de transferencia se combina con la corriente de refinado que está extrayéndose de la columna de adsorción. La corriente de lavado terciario tiene una cantidad menor de desorbente en comparación con el material refinado y aumenta la capacidad del adsorbente para el proceso de separación.

## ES 2 670 446 T3

La invención es similar a la primera realización, excepto por la posición del quinto orificio y porque la corriente de lavado terciario comprende un material desorbente fraccionado que no entra en los poros del adsorbente. El quinto orificio está aguas arriba en relación con el segundo orificio, o la extracción de refinado. La corriente de lavado terciario despeja la línea de transferencia de material refinado tras haberse movido el orificio de extracción de refinado a un orificio contiguo, y el material se empuja lejos de la columna. La extracción de la corriente de lavado terciario puede incluirse en un aumento en la extracción de la corriente de refinado. La corriente de lavado terciario no contiene material desorbente que pueda entrar en los poros selectivos de adsorbente para aumentar la capacidad del adsorbente para el proceso de separación incluso más que la primera realización.

10

Otros objetos, ventajas y aplicaciones de la presente invención resultarán evidentes para los expertos en la técnica a partir de la siguiente descripción detallada y los dibujos.

#### BREVE DESCRIPCIÓN DE LOS DIBUJOS

15

25

30

35

La Figura 1 muestra un ejemplo de un proceso de adsorción; y

la Figura 2 muestra una realización de un proceso de adsorción según la invención.

#### 20 DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

El uso de tecnologías de separación por adsorción para la purificación de productos incluye muchas áreas en el procesamiento de hidrocarburos. El proceso de separación por adsorción se basa en la tecnología de lecho móvil simulado, tal como se presenta en Broughton *et al.*, en el documento US 2.985.589. El proceso se basa en crear diferentes zonas dentro de los lechos de adsorción. Hay una zona de adsorción en la que el componente adsorbido preferentemente se retira de la corriente de alimentación a medida que la corriente de alimentación pasa a través de los lechos de adsorción. Hay también una zona de desorción en la que un desorbente se hace pasar a través de los lechos de adsorbente para desplazar el componente adsorbido preferentemente de la corriente de alimentación. La zona de adsorción y las zonas de desorción están separadas mediante zonas de almacenamiento intermedio para posibilitar un enriquecimiento significativo del componente adsorbido preferentemente.

El componente adsorbido preferentemente se retira en una corriente de extracto con el desorbente, separándose la mezcla de desorbente y el componente adsorbido preferentemente en una columna de destilación. La elección de desorbente se selecciona para tener un punto de ebullición sustancialmente diferente del componente adsorbido, lo que posibilita una separación relativamente barata mediante destilación. La corriente de alimentación con el componente adsorbido retirada se extrae en una corriente de refinado. La corriente de refinado se procesa para recuperar los desorbentes que se han portado hacia fuera con la corriente de refinado y para reciclar cualquier desorbente. La capacidad de adsorción y la pureza son aspectos importantes para aumentar el caudal de productos de mayor pureza sin aumentar el tamaño de los sistemas de separación por adsorción existentes.

40

Para los propósitos de esta invención, los términos aguas arriba y aguas abajo cuando se usan en referencia con el movimiento de incremento de los orificios para las conexiones de línea de transferencia en un diseño de lecho móvil simulado, aguas arriba se refiere al sentido del orificio que ya ha sido, y aguas abajo se refiere al sentido del orificio que está moviéndose.

45

50

La presente invención mejora la capacidad de adsorción de los lechos de adsorción, o zonas de adsorción, en un sistema de separación por adsorción. Esto también se conoce como sistema de lecho móvil simulado, en el que la separación por adsorción simula el contacto en contracorriente de una corriente de alimentación con un adsorbente. En un contexto simulado, el fluido fluye hacia abajo por una columna de lechos, y el adsorbente sólido se mueve hacia arriba por la columna de lechos a través de 4 zonas en el proceso. En la actualidad, las zonas se mueven hacia abajo por la columna, a medida que las diferentes corrientes se añaden o se extraen de la columna, y las posiciones de las corrientes que entran en y abandonan la columna también se mueven para coincidir con el desplazamiento de las zonas. Cada zona de adsorción, o lecho de adsorbente individual, tiene una entrada de fluido y una salida de fluido, y las zonas de adsorción están conectadas en serie a través de conexiones de fluido.

55

60

El proceso tiene una zona de adsorción, o zona I, de la cámara, en la que la corriente de alimentación entra en contacto con el adsorbente y adsorbe selectivamente los componentes deseados. Esto retira los componentes seleccionados del líquido que fluye, que pasa a ser la corriente de refinado. La corriente de refinado se retira de la parte inferior de la zona I, en la que los componentes deseados se han adsorbido en el adsorbente dejan los componentes no deseados en la corriente de refinado. Como el proceso es un proceso continuo, la corriente de refinado también incluye cualquier desorbente residual que se deja en la columna a medida que la corriente de proceso fluye a través de la columna.

Después de que los lechos de la zona de adsorción han pasado a través de la zona de purificación, se añade un desorbente líquido a la zona de desorbente, o zona III, en la que el desorbente desplaza el componente seleccionado que se ha adsorbido en el adsorbente. La zona III se separa de la zona I mediante la zona de

purificación II. La corriente que comprende el desorbente y el componente seleccionado constituye la corriente de extracto que se retira de la columna. El desorbente se selecciona para desplazar fácilmente el componente seleccionado, pero también se selecciona para separarse fácilmente del componente seleccionado en un proceso de destilación.

La zona I y la zona III también están separadas mediante una zona de almacenamiento intermedio IV, para impedir la contaminación del líquido de la zona III con el líquido de la zona I. Más información sobre el proceso está disponible en numerosas patentes y referencias, incluyendo el documento US 5.912.395.

En algunos procesos de adsorción, la adsorción es a través de tamizado físico, en el que los poros se dimensionan para permitir que las moléculas quepan dentro de los poros. En un proceso, la separación de parafinas normales de una mezcla usa adsorbentes de poros pequeños y permite solo parafinas normales en los poros para la adsorción. La presente invención pretende aumentar la capacidad del adsorbente para el hidrocarburo seleccionado, a través del desplazamiento de desorbente que ocupa los poros incluidos con la corriente de refinado en la línea de transferencia con una corriente de lavado terciario después de que la corriente de refinado que contiene desorbente se lava de otro modo a través de la línea de transferencia al interior del lecho de adsorbente mediante la corriente de alimentación. El desorbente de la línea de transferencia entra en los poros durante la etapa de adsorción, y compite con el hidrocarburo seleccionado por el espacio de poro. Mediante el desplazamiento de algo o todo el desorbente antes de que la corriente de alimentación entre en los lechos de adsorbente, se aumenta la capacidad de los lechos de adsorbente.

25

30

35

40

45

50

55

60

65

Un ejemplo de proceso de adsorción, tal como se muestra en la Figura 1, incluye hacer pasar una corriente de alimentación que comprende una mezcla de hidrocarburos, y en particular parafinas, a un zona de adsorbente 20 a través de un primer orificio 22, en una columna de adsorción 10. Por conveniencia de la descripción y los dibujos, la columna de adsorción se muestra como dos columnas 10, y puede ser una única columna o múltiples columnas, pero la práctica habitual es que dos columnas contengan los lechos de adsorbente. En esta figura, el fluido del lecho inferior de la columna izquierda puede transferirse mediante presión o bombearse a la parte superior de la columna derecha y el fluido del lecho inferior de la columna derecha se bombea a la parte superior de la columna izquierda, constituyendo una secuencia continua de lechos de adsorbente. La práctica habitual para transferir fluido del lecho inferior de la columna izquierda a la parte superior de la columna derecha es la transferencia mediante presión. El número de lechos de adsorbente es de al menos 8 con un número preferido de al menos 20 y un número más preferido de al menos 24 lechos de adsorbente. El número de lechos de adsorbente dependerá de la pureza y la recuperación deseadas de parafinas normales, y puede ser de 12 lechos de adsorbente para algunos procesos. Se prefiere que las zonas I, II y III tengan al menos 6 lechos cada una. Las parafinas normales en la mezcla se adsorben preferentemente mediante el adsorbente y las parafinas no normales permanecen en la fase líquida. Las parafinas no normales están en la corriente de refinado, que se extrae de la columna de adsorción 10 a través de un segundo orificio 14. A medida que el proceso progresa, una corriente de desorbente se hace pasar a través de un tercer orificio 16 para desplazar el hidrocarburo normal adsorbido. El hidrocarburo normal desplazado con el desorbente crea una corriente de extracto que se extrae a través de un cuarto orificio 18. El sistema incluye además un lavado de línea de entrada 12.

El proceso incluye además la adición de una corriente de lavado terciario a través de un quinto orificio 24, y la extracción de la corriente de lavado terciario es a través de un canal adicional en la válvula rotativa 40 y se combina con la corriente de refinado que abandona la válvula rotativa 40 para un aumento en la corriente de refinado. El quinto orificio 24 está preferiblemente uno o dos orificios aguas abajo del primer orificio 22, o el orificio de entrada de corriente de alimentación. La corriente de lavado terciario desplaza el desorbente incluido con la corriente de refinado en la línea de transferencia que se lavaría de lo contrario al interior de la columna de adsorción 10 mediante la corriente de alimentación, abriendo de ese modo más de los poros para el hidrocarburo normal deseado que debe adsorberse. La corriente de lavado terciario para este ejemplo contendrá una concentración menor de desorbente en comparación con la corriente de refinado. Este ejemplo se obtiene a través de una modificación de la válvula rotativa 40. La corriente de lavado terciario usa un canal adicional en la válvula rotativa 40 para añadir una línea de corriente de proceso neta de lavado terciario de la válvula rotativa 40 a la línea de corriente de proceso neta de refinado. Una realización alternativa al canal adicional en la válvula rotativa 40 es para una línea adicional una línea de corriente de lavado terciario añadida a cada una de las líneas de transferencia individuales cerca del extremo mediante la válvula rotativa 40 v conectando el otro extremo de cada una de las líneas de corriente de lavado terciario a la corriente de proceso neta de refinado extraída de la válvula rotativa 40. Estas modificaciones a la válvula rotativa 40 o las líneas adicionales son aplicables a todas las realizaciones.

El proceso también incluirá una corriente de desorbente fraccionado que se usa para el lavado de zona 32 y el lavado de línea en 12. El lavado de zona 32, que a través de la regulación del flujo, lava los componentes de alimentación no deseados hacia abajo a través de la zona de purificación II y lejos de la zona de desorción III, mientras que al mismo tiempo se impide la pérdida de parafinas normales desorbidas de la zona de desorción III, a través de la zona de purificación II y al interior de la zona de adsorción I. Esto facilita mantener la pureza del extracto durante la etapa de desorción. El orificio de entrada de lavado de línea 12 está aguas arriba del orificio de alimentación 22 y el material de corriente de alimentación retirado de la línea de transferencia para impedir la contaminación del extracto con la alimentación que resulta de menor pureza. El orificio de salida de lavado de línea

# ES 2 670 446 T3

34 está aguas abajo del orificio de desorbente 16 y lava la corriente de extracto en la línea de transferencia a la columna de extracto para una recuperación de parafinas normales mejorada.

Para la separación de parafinas normales C10 a C14, un desorbente típico es n-pentano mezclado con otros hidrocarburos tales como isooctano o una mezcla de isooctano y un componente aromático tal como paraxileno. El desorbente se fracciona normalmente para retirar el n-pentano que abandona una corriente de lavado preferida que comprende isooctano o una mezcla de isooctano y paraxileno. Para un sistema de este tipo, una corriente de lavado terciario preferida es la misma que la corriente de lavado que comprende isooctano o una mezcla de isooctano y paraxileno.

10

15

Para este ejemplo, la corriente de lavado terciario se retira de la columna de adsorción 10 en una cantidad de entre el 50% y el 300% del volumen de la línea de transferencia más larga entre la válvula rotativa 40 y la columna 10, o preferiblemente la cantidad es de entre el 100% y el 200%. Una cantidad más preferida para la corriente de lavado terciario es de entre el 80% y el 120% del volumen de la línea de transferencia más larga entre la válvula rotativa 40 y la columna 10. La cantidad de corriente de lavado terciario debe despejar la línea de transferencia para desplazar desorbente, pero no debe ser demasiado excesiva para dar como resultado pérdidas de parafinas de la columna de adsorción 10 a la corriente de refinado.

Las líneas de transferencia antes de la línea de transferencia de corriente de alimentación contienen material refinado. El refinado puede tener material desorbente que contiene del 20% al 30% de n-pentano. La corriente de lavado terciario de la columna de adsorción 10 contendrá entre el 5% y el 15% de n-pentano. La parte de n-pentano del desorbente compite con las parafinas normales en la corriente de alimentación por el espacio en los poros del adsorbente. Retirando al menos una parte de la parte de n-pentano del desorbente en la línea de transferencia que reemplaza el refinado residual con la corriente de lavado terciario, se aumenta la capacidad del adsorbente. Este aumento en la capacidad se obtiene a través de la modificación de la válvula rotativa y uniones de tuberías externas para la corriente de lavado terciario, dando como resultado un retorno rápido para un sistema de separación por adsorción existente.

En una realización de la invención, el proceso es para la recuperación de parafinas normales de una mezcla de hidrocarburos, en la que las parafinas normales tienen de 6 a 30 átomos de carbono, con un intervalo preferido de entre 6 y 20 átomos de carbono. La selección de desorbente dependerá del intervalo de parafinas normales que deben recuperarse en el proceso. El desorbente comprenderá una parafina normal que tiene un punto de ebullición diferente al punto de ebullición de las parafinas normales adsorbidas selectivamente separadas de la corriente de alimentación. Para las parafinas normales adsorbidas seleccionadas en el intervalo de C10 a C13, un desorbente puede ser n-pentano, o una mezcla de n-pentano y un hidrocarburo relativamente ligero, tal como isooctano. Para parafinas normales adsorbidas selectivamente más pesadas, tales como en el intervalo de C10 a C20, puede usarse n-hexano o una mezcla de n-hexano e isooctano para el desorbente.

Cuando el proceso es para la recuperación de n-parafinas ligeras, tales como en el intervalo de C6 a C10, el desorbente usado comprenderá una parafina normal más pesada. Un ejemplo de una parafina normal más pesada es n-C12.

En una realización de la invención tal como se muestra en la Figura 2, el proceso usa el mismo material que la corriente de lavado usada para el lavado de zona y el lavado de línea en corriente para la corriente de lavado terciario, y pasa la corriente de lavado terciario a través de una ubicación diferente. La corriente de lavado terciario se usa para desplazar el desorbente y el material refinado en la línea de transferencia, pero puede reducir la cantidad de n-pentano residual en una cantidad mayor, dado que el lavado es un material desorbente fraccionado que no contiene n-pentano. Este método puede aumentar la capacidad incluso más que la primera realización, pero requerirá volúmenes mayores de material de lavado.

50

55

60

45

El proceso incluye hacer pasar una corriente de alimentación que comprende una mezcla de parafinas normales y no normales a través de un primer orificio 22 a un lecho de adsorbente, en el que se absorben selectivamente las parafinas normales. Las parafinas no normales permanecen preferentemente en la fase fluida y forman una corriente de refinado. La corriente de refinado se retira de un segundo orificio 14. Un desorbente se hace pasar a la columna a través de un tercer orificio 16 y desplaza la parafina normal que se ha adsorbido en el adsorbente. La parafina normal desplazada con algo de desorbente forma una corriente de extracto que se retira de un cuarto orificio 18.

El proceso incluye además hacer pasar una corriente de lavado terciario a la columna a través de un quinto orificio 26, en el que el quinto orificio 26 está situado aguas arriba del orificio de retirada de refinado, o segundo orificio 14. Preferiblemente, la corriente de lavado terciario se hace pasar a la columna uno o dos orificios aguas arriba del segundo orificio 14. La corriente de lavado terciario está compuesta de un material que no ocupará los poros del adsorbente. En la segunda realización, una material de lavado terciario preferido es isooctano o una mezcla de isooctano y paraxileno.

La corriente de lavado en la segunda realización, también lava hacia fuera el refinado de las líneas a través de las que pasa. La corriente de lavado en la segunda realización está en una cantidad de entre el 50% y el 300% del

### ES 2 670 446 T3

volumen de la línea de transferencia más larga entre la válvula rotativa y la columna. Preferiblemente la cantidad es de entre el 100% y el 200% del volumen de la línea de transferencia más larga entre la válvula rotativa y la columna.

El proceso puede incluir además un lavado de cabeza superior e inferior 30. La columna tiene una región de cabeza superior 36 por encima del lecho superior, y una región de cabeza inferior 38 por debajo del lecho inferior. Las regiones de cabeza se lavan con una corriente de lavado para impedir la contaminación cruzada de zonas de columna adsorbentes entre las cabezas a medida que el proceso pasa en ciclos a través de la columna. La corriente de lavado puede comprender el mismo material usado en el lavado terciario, y se selecciona por la capacidad de separar los componentes de corriente de lavado de o bien el material refinado, o bien el material de extracto. 10 Preferiblemente, la corriente de lavado es un material que no ocupará los poros en el adsorbente. Un material de lavado preferido para el proceso de recuperar parafinas normales en el intervalo de C10 a C13 es isooctano. El material de lavado se hace pasar a la columna de adsorción 10, empujando el refinado residual al interior de la columna 10 y aumentando la retirada de refinado de la columna de adsorción 10. Esto retira una parte significativa o toda la parte de n-pentano del desorbente de la línea de transferencia reemplazando el refinado residual con la corriente de lavado terciario y aumenta la capacidad de lecho.

15

20

La primera realización, además de desplazar desorbente de los poros del adsorbente, reduce la cantidad de desorbente separado de la corriente de refinado. La corriente de refinado se hace pasar a una unidad de separación para recuperar desorbente y otros materiales de la corriente de refinado. La unidad de separación habitual es una columna de destilación, en la que el punto de ebullición del desorbente y el material de corriente de lavado es diferente de los componentes de refinado y se separa y recicla fácilmente para su uso en el sistema de separación por adsorción.

Aunque la invención se ha descrito con lo que se han considerado en el presente documento las realizaciones 25 preferidas, debe entenderse que la invención no se limita a las realizaciones dadas a conocer, sino que pretende cubrir diversas modificaciones y disposiciones equivalentes incluidas dentro del alcance de las reivindicaciones adjuntas.

#### REIVINDICACIONES

1.- Un proceso para aumentar los rendimientos de parafinas normales en un sistema de separación por adsorción en lecho móvil simulado, que comprende:

5

10

hacer pasar una corriente de alimentación que comprende una mezcla de parafinas a través de un primer orificio, en el que las parafinas normales en la mezcla se adsorben preferentemente mediante el adsorbente y en el que las parafinas no normales permanecen en la fase fluida, y en el que el adsorbente se divide en una pluralidad de zonas de lecho de adsorbente que están conectadas en serie a través de conexiones de fluido, y en el que cada lecho de adsorbente tiene una entrada de fluido y una salida de fluido;

extraer una corriente de refinado que comprende parafinas no normales a través de un segundo orificio;

hacer pasar una corriente de desorbente que comprende un desorbente a través de un tercer orificio;

15

extraer una corriente de extracto que comprende parafinas normales a través de un cuarto orificio;

hacer pasar una corriente de lavado terciario a través de un quinto orificio;

en el que el quinto orificio está situado aguas arriba del segundo orificio y en el que la corriente de lavado terciario está compuesta de un material que no ocupará los poros del adsorbente; y

en el que el material de lavado terciario es isooctano o una mezcla de isooctano y paraxileno;

25 en el que el quinto orificio está en una posición aguas abajo en relación con la corriente de alimentación; y

extraer la corriente de lavado terciario a través de un sexto orificio:

en el que cada una de las corrientes se hace pasar a través de diferentes líneas de transferencia en comunicación de fluido con los orificios y se dirigen a través de un canal en una válvula rotativa.

- 2.- El proceso según la reivindicación 1, en el que el quinto orificio está uno o dos orificios aguas abajo del orificio de corriente de alimentación.
- 35 3.- El proceso según la reivindicación 1, en el que la corriente de lavado terciario está en una cantidad de entre el 50% y el 300% del fluido suficiente para desplazar el fluido en la línea de transferencia más larga entre el orificio y el canal de válvula rotativa.
- 4.- El proceso según la reivindicación 3, en el que la corriente de lavado terciario está en una cantidad de entre el
  80% y el 120% del fluido suficiente para desplazar el fluido en la línea de transferencia más larga entre el orificio y el canal de válvula rotativa.
  - 5.- El proceso según la reivindicación 1, en el que el número de zonas de lecho de adsorbente es de al menos 12.
- 45 6.- El proceso según la reivindicación 1, en el que la corriente de alimentación comprende una mezcla de hidrocarburos que tienen de 6 a 30 átomos de carbono.
  - 7.- El proceso según la reivindicación 1, en el que el desorbente comprende una parafina normal que tiene un punto de ebullición diferente al punto de ebullición de la parafina normal separada de la corriente de alimentación.

50

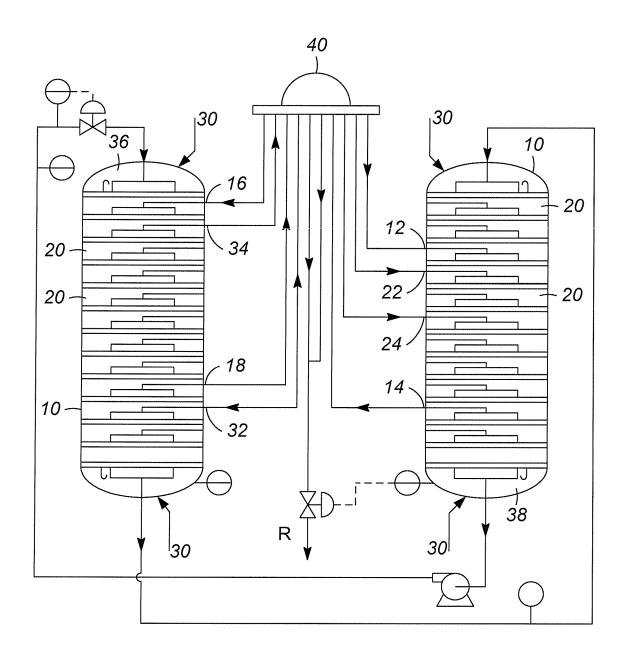



FIG. 1

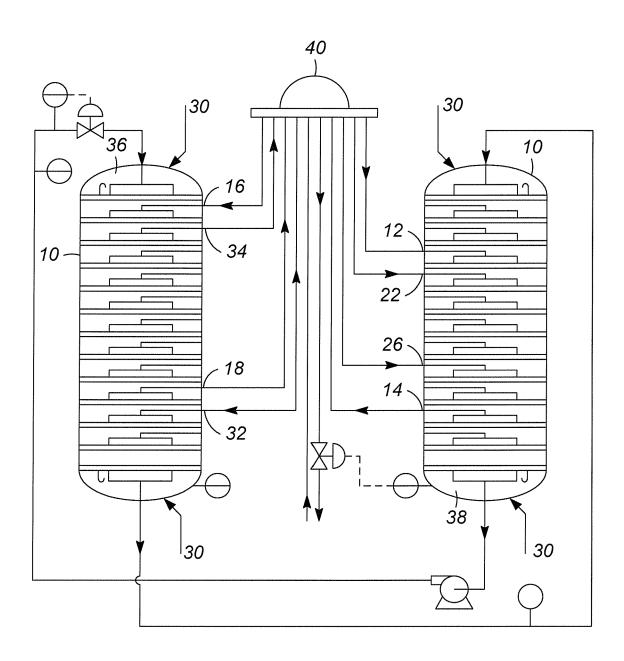



FIG. 2